SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 86 (WHOLE VOLUME)
 SMITHSONIAN METEOROLOGICAL TABLES

[based on guyot's meteorological and piysical tables]

$$
\begin{gathered}
\text { FIFTH REVISED EDITION } \\
\text { (Corrected to January, 193ı) }
\end{gathered}
$$

(Publication 3116)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION

SMITHSONIAN

MISCELLANEOUS COLLECTIONS

VOL. 86

"EVERY MAN IS A VALUABLE MEMBER OF SOCIETY WHO, BY HIS OBSERVATIONS, RESEARCHES, AND EXPERIMENTS, PROCURES KNOWLEDGE FOR MEN"-SMITHSON
(Publication 3215)

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION

THE sCIENCE PRESS PRINTING COMPANY
LANCASTER, PENNSYLVANIA

ADVERTISEMENT

The present series, entitled " Smithsonian Miscellaneous Collections", is intended to embrace all the octavo publications of the Institution, except the Annual Report. Its scope is not limited, and the volumes thus far issued relate to nearly every branch of science. Among these various subjects zoology, bibliography, geology, mineralogy, anthropology, and astrophysics have predominated.

The Institution also publishes a quarto series entitled "Smithsonian Contributions to Knowledge". It consists of memoirs based on extended original investigations, which have resulted in important additions to knowledge.

C. G. Abbot,
Secretary of the Smithsonian Institution.

CONTENTS

Smithsonian Meteorological Tables. Fifth Revised Edition. (Corrected to January, 193r.) 282 pages. I93I. (Publ. 3II6.) (Whole volume.)

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 86 (WHOLE VOLUME)

SMITHSONIAN

METEOROLOGICAL TABLES

[BASED ON GUYO'T'S METEOROLOGICAL AND PHI'SICAL TABLES]
(Corrected to January, 193I)

(Publication 3116)

The I ord Paltimore J'ress
Paltimore, Md.
printed in the U.S.a.

ADVERTISEMENT TO FIFTH REVISED EDITION.

The original edition of the Smithsonian Meteorological Tables was issued in 1893, and revised editions were published in 1896. 1897. 1907, and 1918. A fifth revised edition is here presented. which has been prepared under the direction of Charles F. Marvin, Chief of the U. S. Weather Bureau, assisted by Herbert H. Kimball, Senior Meteorologist of the same bureau. Officials of the U . S. Bureau of Standards have been consulted relative to the value of certain physical constants that enter into the calculation of the tables. All errata thus far detected in the earlier editions have been corrected.

The great development in the exploration of the free air to the height of the tropopause and even beyond calls for an extension of some tables to adapt them to the low temperatures and pressures experienced at these great heights, and also for a distinction between the symbols for the acceleration of gravity at the surface of the earth and in the free air. Also, the measurement of heights as " geopotentials" in " dynamic meters" calls for five new tables. The table of international meteorological symbols has been revised, and a table of " International code for horizontal visibility" has been added. Nuch of the work of extension of old tables and the computation of new ones has been done by the Aerological Division of the Weather Bureau.

The complete revision of the "List of meteorological stations," including an alphabetical arrangement by continents. countries, and stations, has been effected by Mr. W. W. Reed of the Climatological Division, U. S. Weather Bureau.

Charles G. Abbot, Secretary.

Smithsonian Institution, March 2I, 1931.

ADVERTISEMENT TO FOURTH REVISED EDITION.

The original edition of the Smithsonian Meteorological Tables was issued in 1893, and revised editions were published in 1896, 1897, and 1907. A fourth revised edition is here presented, which has been prepared under the direction of Professor Charles F. Marvin, Chief of the U.S. Weather Bureau, assisted by Professor Herbert H. Kimball. They have had at their disposal numerous notes left by the late Professor Cleveland Abbe, and have consulted with officials of the U.S. Bureau of Standards and of other Government bureaus relative to the value of certain physical constants that have entered into the calculation of the tables.

All errata thus far detected in the earlier editions have here been corrected. New vapor pressure tables, derived from the latest experimental values by means of a modification of Van der Waals interpolation formula devised by Professor Marvin, have been introduced. The table of relative acceleration of gravity at different latitudes has been recomputed from a new equation based upon the latest investigations of the U.S. Coast and Geodetic Survey. These values have been employed in reducing barometric readings to the standard value of gravity adopted by the International Bureau of Weights and Measures, supplementing a table that has been introduced for directly reducing barometer readings from the value of gravity at the place of observation to its standard value.

The new values of vapor pressure and of gravity acceleration thus obtained, together with a recent and more accurate determination of the density of mercury, have called for an extensive revision of numerous other tables, and especially of those for the reduction of psychrometric observations, and the barometrical tables.

Among the new tables added are those for converting barometric inches and barometric millimeters into millibars, for determining heights from pressures expressed in dynamic units, tables of gradient winds, and tables giving the duration of astronomical and civil twilight, and the transmission percentages of radiation through moist air.

The tables of International Meteorological Symbols, of Cloud Classification, of the Beaufort Scale of Winds, of the Beaufort Weather Notation, and the List of Meteorological Stations, are among those extensively revised.

Tables for reducing barometric readings to sea level, and tables of logarithms of numbers, of natural sines and cosines, of tangents and cotangents, and for dividing by 28,29, and 3I, with a few others, have been omitted from this edition.

This reprint is from the electroplates that were employed in printing the Fourth Revised Edition, after making certain minor corrections. Charles D. Walcott,

ADVERTISEMENT TO THIRD REVISED EDITION

The original edition of Smithsonian Meteorological Tables was issued in 1893, and revised editions were published in 1896 and 1897. A third revised edition is here presented, which has been prepared at the request of the late Professor Langley by the coöperation of Professors Alexander McAdie, Charles F. Marvin, and Cleveland Abbe.

All errata thus far detected have been corrected upon the plates, the Marvin vapor tensions over ice have been introduced, Professor F. H. Bigelow's System of Notation and Formulx has been added, the List of Meteorological Stations has been revised, and the International Meteorological Symbols, together with the Beaufort Notation, are given at the close of the volume.

R. Rathbun, Acting Secretary.

Smithsonian Institution,

December, 1906.

ADVERTISEMENT TO SECOND REVISED EDITION.

The edition of the Smithsonian Meteorological Tables issued in 1893 having become exhausted, a careful examination of the work has been made, at my request, by Mr. Alexander McAdie, of the United States Weather Bureau, and a revised edition was pullished in 1896, with corrections upon the plates and a few slight changes. The International Meteorological Symbols and an Index were also added.

The demand for the work has been so great that it becomes necessary to print a new edition of the revised work, which is here presented with corrections to date.
S. P. Langley, Secretary.

Smithsonian Institution, Wasiington City, October 30, 1897.

PREFACE TO EDITION OF 1893.

In comnection with the system of meteorological observations estab. lished by the Smithsonian Institution about 1850, a collection of meteorological tables was compiled by Dr. Arnold Guyot, at the request of Secretary Henry, and published in 1852 as a volume of the Miscellaneous Collections.

Five years later, in 1857, a second edition was published after sareful revision by the author, and the various series of tables were so enlarged as to extend the work from 212 to over 600 pages.

In 1859 a third edition was published, with further amendments.
Although designed primarily for the meteorological observers reporting to the Smithsonian Institution, the tables obtained a much wider circulation, and were extensively used by meteorologists and physicists in Europe and in the United States.

After twenty-five years of valuable service, the work was again revised by the author; and the fourth edition, containing over 700 pages, was published in 1884. Before finishing the last few tables, Dr. Guyot died, and the completion of the work was intrusted to his assistant, Prof. Whi. Libbey, Jr., who executed the duties of final editor.

In a few years the demand for the tables exlausted the edition, and thereupon it appeared desirable to recast entircly the work. After very careful consideration, I decided to publish the new tables in three parts: Meteorological Tables, Geograpiical Tables, and Physical Tables, each representative of the latest knowledge in its field, and independent of the others; but the three forming a homogeneous series.

Although thus historically related to Dr. Guyot's Tables, the present work is so substantially changed with respect to material, arrangement, and presentation that it is not a fifth edition of the older tables, but essentially a new publication.

In its preparation the advantage of conformity with the recently issued International Meteorological Tables has been kept steadily in view, and so far as consistent with other decisions, the constants and methods there employed have been followed. The most important difference in constants is the relation of the yard to the metre. The value provisionally adopted by the Bureau of Weights and Measures of the United States Coast and Geodetic Survey,

$$
\text { I metre }=39.3700 \text { inches, }
$$

has been used here in the conversion-tables of metric and English linear measures, and in the transformation of all formulæ involving such conversions.

A large number of tables have been newly computed; those taken from the International Meteorological Tables and other official sources are credited in the introduction.

To Prof. Wm. Libbey, Jr., especial acknowledgments are due for a large amount of attention given to the present work. Prof. Libbey had already completed a revision, involving considerable recomputation, of the meteorological tables contained in the last edition of Guyot's Tables, when it was determined to adopt new values for many of the constants, and to have the present volume set with new type. This involved a large amount of new computation, which was placed under the direction of Mr. GEORGE E. Curtis, who has also written the text, and has carefully prepared the whole mannscript and carried it through the press. To Mr. Curtis's interest, and to his special experience as a meteorologist, the present volume is therefore largely due.

Prof. Libbey lias contributed Tables $38,39,55,56,61,74,77,89$, and 90 , and lias also read the proof-sheets of the entire work.

I desire to express my acknowledgments to Prof. Cleveland Abbe, for the manuscript of Tables $32,81,82,83,84,85,86$; to Mr. H. A. Hazen, for Tables 49, 50, 94, 95, 96, which have been taken from his Hand-book of Metcorological Tables; and also to the Superintendent of the United States Coast and Geodetic Survey, the Chief Signal Officer of the Army, and the Chief of the Weather Bureau, for much valuable counsel during the progress of the work.
S. P. LANGLEY,

Table of Contents.

introduction. Page
Description and use of the Tables xy to lxxxvi
Table THERMOMETRICAL TABLES.
Conversion of thermometric scales-
I Approximate Absolute, Centigrade, Fahrenheit, and Rean- mur scales 2
2 Fahrenheit scale to Centigrade 5
3 Centigrade scale to Fahrenheit IO
4 Centigrade scale to Fahrenheit, near the boiling point of water 13
5 Differences Fahrenheit to differences Centigrade I3
6 Differences Centigrade to differences Fahrenheit I3
Correction for the temperature of the emergent mercurial column of thermometers.
7 Correction for Fahrenheit thermometers 14
8 Correction for Centigrade thermometers I 4
CONVERSIONS INVOLVING LINEAR MEASURES.
9 Inches into millimeters I6
ıо Millimeters into inches 23
if Barometric inches (mercury) into millibars 36
12 Barometric millimeters (mercury) into millibars 38
I3 Feet into meters 40
14 Meters into feet 42
I5 Miles into kilometers 44
ı6 Kilometers into miles 46
17 Interconversion of nautical and statute miles 48
18 Continental measures of length with their metric and English equivalents 48
CONVERSION OF MEASURES OF TIME AND ANGLE.
19 Arc into time 50
20 Time into arc 5 I
2 Days into decimals of a year and angle 52
22 Hours, minutes and seconds into decimals of a day 56
23 Decimals of a day into hours, minutes and seconds 56
Table Page
24 Minutes and seconds into decimals of an hour 57
25 Local mean time at apparent noon 57
26 Sidereal time into mean solar time 58
27 Mean solar time into sidereal time 58
CONVERSION OF MEASURES OF WEIGHT.
28 Conversion of avoirdupois pounds and ounces into kilograms 60
29 Conversion of kilograms into avoirdupois pounds and ounces 61
30 Conversion of grains into grams 61
3 I Conversion of grams into grains 62
WIND TABLES
32 Synoptic conversion of velocities 64
33 Miles per hour into feet per second 65
34 Feet per second into miles per hour 65
35 Meters per second into miles per hour 66
36 Miles per hour into meters per second 67
37 Meters per second into kilometers per hour 68
38 Kilometers per hour into meters per second 69
39 Scale of velocity equivalents of the so-called Beaufort scale of wind 70
Radius of critical curvature and velocities of gradient winds for frictionless motion in HigHS and lows-
40 English measures 7 I
4I Metric measures 72
REDUCTION OF TEMPERATURE TO SEA LEVEL.
42 English measures 76
43 Metric measures 77
REDUCTION OF BAROMETER READINGS TO STANDARD UNITS
Reduction of the barometer to standard temperature-English measures80
Metric measures 100
Reduction of the mercurial column to standard temperature.(For U-shaped manometers with brass scales.) -
English measures 123
Metric measures 125Reduction of mercurial barometer to standard gravity-Direct reduction from local to standard gravity127Reduction through variation with latitude-
English measures 128
49
Metric measures 130
TABLES FOR DETERMINING HEIGHTS AND CONVERSIONSINVOLVING GEOPOTENTIALPage
Determination of heights by the barometer. English measures.
51 Values of $60368\left[\mathrm{I}+\mathrm{o.0010195} \mathrm{\times 36]} \mathrm{\log }. \mathrm{\frac{29.90}{B}}\right.$ I33
52 Term for temperature ${ }^{1} 37$
53 Correction for gravity and weight of mercury ${ }^{1} 39$
Correction for an average degree of humidity I 4 I
54142
Correction for the variation of gravity with altitude 55
Determination of heights by the barometer. Metric and dynamic measures-
$56 \quad$ Values of $18400 \log \frac{760}{B}$ 143
57 Values of $18400 \log \frac{1013.3}{B}$ I44
58 Temperature correction factor ($a=.00367 \theta$) 146
59 Temperature correction ($0.0036 \% \theta \times Z$) 147
60 Correction for humidity 148
6I Correction for humidity. Auxiliary to Table 58 I 50
62 Correction for gravity and weight of mercury 152
63 Correction for the variation of gravity with altitude I 53
64 Heights reduced from meters to dynamic meters, the acceleration of gravity at sea level being 9.8o ${ }^{1} 54$
65 Corrections to Table $6+$ for values of the acceleration of gravity at sea level different from 9.80 I55
66 Normal value of the acceleration of gravity at sea level I 55
67 Heights reduced from dynamic meters to geometric meters, the acceleration of gravity at sea level being 9.8o 156
68 Corrections to Table 67 for values of the acceleration of gravity at sea level different from 9.80 I 57
69 Difference of height corresponding to a change of o.I inch in the barometer. English measures 158
70 Difference of height corresponding to a change of 1 millimeter in the barometer. Metric measures 159
Determination of heights by the barometer-
Formula of Babinet 160Barometric pressures corresponding to the temperature of theboiling point of water-
72 English measures ıб
73 Metric measures 16ı
TABLE
HYGROMETRICAL TABLES. Page
74 Pressure of aqueous vapor over ice. English measures I64
75 Pressure of aqueous vapor over water. English measures 165
76 Pressure of aqueous vapor over ice. Metric measures 169
77 Pressure of aqueous vapor over water. Metric measures 170
78 Pressure of aqueous vapor over ice. Dynamic measures 173
79 Pressure of aqueous vapor over water. Dynamic measures 175
80 Weight of a cubic foot of saturated vapor. English measures 176
8i Weight of a cubic meter of saturated vapor. Metric measures 177
Reduction of psychrometric observations. English measures-
82 Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{\mathrm{I} 57 \mathrm{I}}\right)$. 180
83 Relative Humidity. Temperatures Fahrenheit I9I
Reduction of Psychrometric Observations. Metric measures-
84 Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.00\right.$ I I $\left.5 t^{\prime}\right)$ 194
85 Relative humidity. Temperature Centigrade 200
86 Rate of decrease of vapor pressure with altitude for mountain stations 202
Reduction of snowfall measurements-
87 Depth of water corresponding to the weight of a cylindrical snow core 2.655 inches in diameter 202
88 Depth of water corresponding to the weight of snow (or rain) collected in an S-inch gage 203
89 Quantity of rainfall corresponding to given depths 203
GEODETICAL TABLES.
90 Value of gravity on the earth at sea level 206
91 Relative acceleration of gravity at different latitudes 207
92 Length of one degree of the meridian at different latitudes 209
93 Length of one degree of the parallel at different latitudes 210
94 Duration of sunshine at different latitudes 2 II
95 Declination of the sun for the year IS99, at Greenwich apparent noon 222
96 Duration of astronomical twilight 223
97 Duration of civil twilight 224
Relative intensity of solar radiation at different latitudes-
98 Mean intensity for 24 hours of solar radiation on a hori- zontal surface at the top of the atmosphere 225
99 Relative amounts of solar radiation received on a horizontal surface during the year at different latitudes 226
ioo Air mass, m, corresponding to different zenith distances of the sun 226
roi Relative illumination intensities 226
TableMISCELLANEOUS TABLES.Page
Weight in grams of one cubic centimeter of air. English measures- 102 Temperature term 228
103 Humidity term, auxiliary to Table 104 229
104 Humidity and pressure terms combined 230
Weight in grams of one cubic centimeter of air. Netric measures-
Io5 Temperature term 232
ıo6 Humidity term. Auxiliary to Table 107 233
107 Humidity and pressure terms combined 234
ro8 Atmospheric water-vapor lines in the visible spectrum 237
ro9 Atmospheric water-vapor bands in the infra-red spectrum 238
in Transmission percentages of radiation through moist air 239
iri Energy distribution and atmospheric transmission of solar radi- ation 240
II2 International meteorological symbols 241
ir3 International cloud classification 243
iI4 Beaufort weather notation 245
II5 International code for horizontal visibility 246
ir6 List of meteorological stations 247
Index 279

INTRODUCTION.

DESCRIPTION AND USE OF TABLES.

THERMOMETRI.

The present standard for exact thermometry is the normal centigrade scale of the constant-volume hydrogen thermometer as defined by the International Bureau of Weights and Measures. The constant volume is one liter and the pressure at the freezing point is one meter of mercury reduced to freezing and standard gravity. The scale is completely defined by designating the temperature of melting ice, 0°, and of condensing steam, 100°, both under standard atmospheric pressure. All other thermometric scales that depend upon the physical properties of substances may by definition be made to coincide at the ice point and the boiling point with the normal scale as above defined, but they will diverge more or less from it and from each other at all other points. However, by international consent it is customary in most cases to refer other working scales to the hydrogen scale.

The absolute or thermodynamic scale. To obviate the difficulty which arises because thermometers of different type and substance inherently disagree except at the fixed points, Lord Kelvin proposed that temperatures be defined by reference to certain thermodynamic laws. This course furnishes a scale independent of the nature or properties of any particular substance. The resulting scale has been variously named the absolute, the thermodynamic, and, more recently, in honor of its author, the Kelvin scale. The temperature of melting ice by this scale on the centigrade basis is not as yet accurately known, but it is very nearly $273^{\circ} \cdot 13$, and that of the boiling point, $373^{\circ} \cdot \mathrm{I} 3$.

Many problems in physics and meteorology call for the use of the absolute scale; but it is not convenient, and in many cases not necessary, to adhere strictly to the true thermodynamic scale. In fact, the general requirements of science will very largely be met by the use of an approximate absolute scale which for the centigrade system is defined by the equation

$$
T=\left(273^{\circ}+t^{\circ} \mathrm{C} .\right)
$$

The observed quantity, t°, may be referred to the normal hydrogen centigrade scale or be determined by any acceptable thermometric method.

This scale differs from the true Kelvin scale, first, because 273° is not the exact value of the ice point on the Kelvin scale, second, because each observed value of t° other than 0° or 100° requires a particular correction to
convert it to the corresponding value on the Kelvin scale. These corrections will differ according to the kind of thermometer used in obtaining the value t°, and while they are small for temperatures between 0° and 100° they are large at extreme temperatures and are important in all questions involving thermometric precision.

Since, however, the approximate absolute scale is sufficiently exact for nearly all purposes, and especially since it is most convenient in computations and in the publication of results, much confusion and uncertainty of terminology and meaning will be obviated if scientists will agree to give the approximate absolute scale a particular name of its own.

For the purpose of these tables the name Approximate Absolute will be employed, and in accordance therewith thermometric scales may be designated as follows:-

Scale. Ice point. Boiling point. Symbol.

Centigrade	0°	100°	C.
Fahrenheit	32	212	F. or Fahr
Reaumur	0	80	R.
Thermodynamic Absolute Kelvin	$\left\{\begin{array}{l} 273.13 \mathrm{C} . \pm \\ 491.6 \mathrm{~F} . \pm \\ \text { (Names st } \\ \text { one ide } \end{array}\right.$	$\begin{aligned} & 373.13 \text { C. } \pm \\ & 671.6 \quad F . \pm \\ & y \text { synonymous } \\ & \text { cale.) } \end{aligned}$	A. or K strictly
Approximate Absolute	273	373	A.A.

Table 1. Conversion of the Approximate Absolute thermometric scale to the Centigrade, Fahrenheit, and Reaumur scales.

The equivalent values of the four scales are given for every degree on the Approximate Absolute scale from 375° to 0°.

By the help of the table of proportional parts preceding this table, it is also convenient for converting Fahrenheit to Centigrade and Reaumur, and Centigrade to Fahrenheit and Reaumur.

The formulæ expressing the relations between the different scales are also given, in which

$$
\begin{aligned}
A . A^{\circ} .^{\circ} & =\text { Temperature - Approximate Absolute Scale. } \\
C .^{\circ} & =\text { Temperature - Centigrade Scale. } \\
F .^{\circ} & =\text { Temperature - Fahrenheit Scale. } \\
R .^{\circ} & =\text { Temperature - Reaumur Scale. }
\end{aligned}
$$

Examples:

To convert $285^{\circ} \cdot 5$ Approximate Absolute into Centigrade, Fahrenheit, and Reaumur.
From the table,

$$
285^{\circ} A \cdot A .=12^{\circ} \cdot C=53^{\circ} \cdot 6 F=9^{\circ} \cdot 6 R
$$

From the proportional parts, $\frac{0.5}{285.5 A . A}=\frac{0.5}{12.5 C}=\frac{0.9}{54.5 \mathrm{~F} .}=\frac{0.4}{10.0 R}$

To convert 16.9 Centigrade to Approximate Absolute, Fahrenheit, and Reaumur.
From the table, $\quad 166^{\circ} \mathrm{C}=289^{\circ} \mathrm{A} . \mathrm{A} .=60^{\circ} .8 \mathrm{~F} .=12^{\circ} .8 \mathrm{R}$.
From the proportional parts $-\frac{0.9}{16.9 \mathrm{C} .}=\frac{0.9}{289.9 \mathrm{~A} . \mathrm{A} .}=\frac{1.6}{62.4 \mathrm{~F} .}=\frac{0.7}{13.5 \mathrm{R} .}$
Or,

$$
\begin{aligned}
16^{\circ} .9 \times 2\left(\mathrm{I}-\frac{\mathrm{I}}{\mathrm{IO}}\right)+32 & =33.8 \\
& -3.4 \\
& -\frac{32.0}{62.4} \mathrm{~F}
\end{aligned}
$$

To convert $147^{\circ} 7$ Fahrenheit to Approximate Absolute, Centigrade, and Reaumur.
From the table,

$$
140^{\circ} . F=333^{\circ} \cdot A \cdot A .=60^{\circ} \quad C .=48^{\circ} \cdot R
$$

From the proportional parts $7.7=4.3=4.3=3.4$
$147.7 \mathrm{~F} .=337.3$ A.A $=64.3 \mathrm{C} .=5 \mathrm{I} .4 \mathrm{R}$.

Or, | $\frac{147.7-32.0}{2}\left(\mathrm{I}+\frac{\mathrm{I}}{\mathrm{IO}}+\frac{\mathrm{I}}{100}+\frac{\mathrm{I}}{1000}\right.$ etc. $)$ | $=57.85$ |
| ---: | :--- |
| | +5.78 |
| | $+\quad .58$ |
| | $+\quad .06$ |
| 64.27 C. | |

Fahrenheit may also be reduced to Approximate Absolute by obtaining its equivalent in Centigrade from Table 2 and adding 273 to the result.

To convert $18^{\circ} .3$ Reaumur to Approximate Absolute, Centigrade, and Fahrenheit.
From the table,

$$
16^{\circ} R .=293^{\circ} \cdot A \cdot A=20^{\circ} C=68^{\circ} \quad F .
$$

Frort the proportional parts, $\frac{2.3}{18.3}=\frac{2.9}{295.9} \mathrm{~A} . \mathrm{A} .=2.9=\frac{5.2}{22.9} \mathrm{C} .=\frac{73.2 \mathrm{~F}}{}$.
Or, $18.3 \times \frac{5}{4}=\frac{91.5}{4}=22.9 \mathrm{C}$., and $\left(18.3 \times \frac{9}{4}\right)+32=\frac{164.7}{4}+32=73.2 \mathrm{~F}$.
Table 2. Conversion of readings of the Fahrenheit thermometer to readings Centigrade.
The conversion of Fahrenheit temperatures to Centigrade temperatures is given for every tenth of a degree from $+130^{\circ} 9 F$. to $-120^{\circ} 9 \mathrm{~F}$. The side argument is the whole number of degrees Fahrenheit, and the top argument, tenths of a degree Fahrenheit; interpolation to hundredths of a degree, when desired, is readily effected mentally. The tabular values are given to hundredths of a degree Centigrade.

The formula for conversion is

$$
C^{\circ}=\frac{5}{9}\left(F^{\circ}-32^{\circ}\right)
$$

where F° is a given temperature Fahrenheit, and C° the corresponding temperature Centigrade.

Example:

To convert 79.7 Fahrenheit to Centigrade.
The table gives directly $26^{\circ} .50 \mathrm{C}$.
For conversions of temperatures outside the limits of the table use Table 1.

Table 3. Conversion of readings of the Centigrade thermometer to readings Fahrenheit.

The conversion of Centigrade temperatures to Fahrenheit temperatures is given for every tenth of a degree Centigrade from $+60^{\circ} .9$ to $-90^{\circ} .9 \mathrm{C}$. The tabular values are expressed in hundredths of a degree Fahrenheit.

The formula for conversion is

$$
F^{\circ}=\frac{9}{5} C^{\circ}+32^{\circ}
$$

where C° is a given temperature Centigrade, and F° the corresponding temperature Fahrenheit.

For conversions of temperatures outside the limits of the table, use Table 1 or 4.

Table 4. Conversion of readings of the Centigrade thermometer near the boiling point to readings Fahrenheit.

This is an extension of Table 3 from 90.0 to $\mathbf{1 0 0 . 9}$ Centigrade.

Example:

To convert $95^{\circ} \cdot 74$ Centigrade to Fahrenheit.
From the table,
By interpolation,

$$
\begin{aligned}
95^{\circ} \cdot 70 C & =204.26 F \\
\frac{0.04}{95.74} C & =\frac{0.07}{20+.33} F
\end{aligned}
$$

rable 5. Conversion of differences Fahrenheit to differences Centigrade.
The table gives for every tenth of a degree from 0° to $20^{\circ} .9 \mathrm{~F}$. the corresponding lengths of the Centigrade scale.

Table 6. Conversion of differences Centigrade to differences Fahrenheit.
The table gives for every tenth of a degree from 0° to $9^{\circ} \cdot 9 \mathrm{C}$. the corresponding lengths of the Fahrenheit scale.

Example:

To find the equivalent difference in Fahrenheit degrees for a difference of 4.72 Centigrade.
From the table,
From the table by moving the decinal point for 0.2,

TABLES 7, 8.
Tables 7,8. Correction for the temperature of the emergent mercurial columin of thermometers.
When the temperature of the thermometer stem containing a portion of the mercury column is materially different from that of the bulb, a correction needs to be applied to the observed reading unless the instrument has been previously graduated for the condition of use. This correction frequently becomes necessary in physical experiments where the bulb only, or else the bulb with a portion of the stem, is immersed in a bath whose temperature is to be determined. In meteorological observations the correction may become appreciable in wet-bulb, dew-point, and solar-radiation thermometers, when the temperature of the bulb is considerably above or below the air temperature.

If t^{\prime} be the average temperature of the emergent mercury column, t the observed reading of the thermometer, n the length of the mercury in the emergent stem in scale degrees, and a the apparent expansion of mercury in glass for I°, the correction is given by the expression

$$
a n\left(t-t^{\prime}\right) \text {, or }-a n\left(t^{\prime}-t\right)
$$

which latter may be the more convenient form when t^{\prime} is greater than t.
The value of a varies with the composition of the glass of which the thermometer stem is composed. For glass of unknown composition the best average value for centigrade temperatures appears to be 0.000 I 55 , while for stems of Jena 16^{111}, or similar glasses, or Jena $59^{\text {III }}$, the values 0.00016 for the former and 0.000i 65 for the latter may be preferred. (Letter from U.S. Bureau of Standards dated January 5, 1918.)

The use of the formula given above presupposes that the mean temperature of the emergent column has been determined. This temperature may be approximately obtained in one of three ways. (I) By a "fadenthermometer" (Buckingham, Bulletin, Bureau of Standards, 8, 239, 191 I, Scientific Paper 170); (2) by exploring the temperature distribution along the stem and calculating the mean temperature; (3) by suspending along the side of, or attaching to the stem, a single thermometer. If properly placed this
thermometer will indicate the temperature of the emergent mercurial column to an accuracy sufficient for many purposes. Under conditions ordinarily met with in practice it is desirable to place the bulb of the auxiliary thermometer at some point below the middle of the emergent column.

It is to be noted that the correction sought is directly proportional to the value of a, and that this may vary for glass stems of different composition from 0.00015 to 0.000165 for Centigrade temperatures. For thermometers ordinarily used in meteorological work, however, 0.000155 appears to be a good average value for Centigrade temperatures (0.000086 for Fahrenheit temperatures), and the correction formulæ, therefore, are,

$$
\begin{aligned}
& T=t-0.000086 n\left(t^{\prime}-t\right) \text { Fahrenheit temperatures. } \\
& T=t-0.000 \mathrm{I} 55 n\left(t^{\prime}-t\right) \text { Centigrade temperatures. }
\end{aligned}
$$

In the above, $T=$ Corrected temperature.
$t=$ Observed temperature.
$t^{\prime}=$ Mean temperature of the glass stem and emergent mercury column.
$n=$ Length of mercury in the emergent stem in scale degrees.
When t^{\prime} is $\left\{\begin{array}{l}\text { higher } \\ \text { lower }\end{array}\right\}$ than t the numerical correction is to be $\left\{\begin{array}{l}\text { subtracted. } \\ \text { added. }\end{array}\right\}$
table 7 gives corrections computed to o.oi for Fahrenheit thermometers from the equation $C=-0.000086 n\left(t^{\prime}-t\right)$. The side argument, n, is given for 10° intervals from 10° to 130°; the top argument, $t^{\prime}-t$, for 10° intervals from 10° to 100°.

Table 8 gives corrections computed to o. Oi for Centigrade thermometers from the equation $C=-0.000155 n\left(t^{\prime}-t\right)$. The side argument, n, is given for 10° intervals from 10° to 100°; the top argument, $t^{\prime}-t$, for 10° intervals from IO° to 80°.

Example:

The observed temperature of a black-bulb thermometer is $120^{\circ} \cdot 4 F_{\text {. }}$, the temperature of the glass stem is $55^{\circ} \cdot 2 F$., and the length of mercury in the emergent stem is $130^{\circ} \mathrm{F}$. To find the corrected temperature. With $n=130^{\circ} F$. and $t^{\prime}-t=-65^{\circ} F$., as arguments, Table 7 gives the correction $0^{\circ} .7 F^{\circ}$., which by the above rule is to be added to the observed temperature. The corrected temperature is therefore I2I.i F.

CONVERSIONS INVOLVING LINEAR MEASURES.

The fundamental unit of length is the meter, the length of which is equal to the distance between the defining lines on the international prototype meter at the International Bureau of Weights and Measures (near Paris) when this standard is at the temperature of melting ice $\left(0^{\circ} \mathrm{C}\right)$. The relation
here adopted between the meter and the yard, the Englisn measure of length, is I meter $=39.3700$ inches, as legalized by Act of U.S. Congress, July 28, I866. This U.S. Standard of length must be distinguished from the British Imperial yard, comparisons of which with the international prototype meter give the relation I meter $=39.370$ II 3 inches. (See Smithsonian Physical Tables, 19ı6, p. 7, Table 3.)
table 9. Inches into millimeters.
TABLE 9.

$$
\text { I inch }=25 \cdot 40005 \text { millimeters. }
$$

The argument is given for every hundredth of an inch up to 32.00 inches, and the tabular values are given to hundredths of a millimeter. A table of proportional parts for thousandths of an inch is added on each page.

Example:

To convert $2 \nmid .362$ inches to millimeters.
The table gives (p. 20).

$$
(24.36+.002) \text { inches }=(618.75+0.05) \mathrm{mm} .=618.80 \mathrm{~mm} .
$$

table 10. Millimeters into inches.
TABLE 10.
From o to 400 mm . the argument is given to every millimeter, with subsidiary interpolation tables for tenths and hundredths of a millimeter. The tabular values are given to four decimals. From 400 to 1000 mm ., covering the numerical values which are of frequent use in meteorology for the conversion of barometric readings from the metric to the English barometer, the argument is given for every tenth of a millimeter, and the tabular values to three decimals.

Example:

To convert 143.34 mm . to inches.
The table gives

$$
(143+.3+.04) \mathrm{mm} .=(5.6299+0.0118+0.0016) \text { inches }=5.6433
$$ inches.

Tables 11, 12. Conversion of barometric readings into standard units of pressure.

The equation for the pressure in millibars, ${ }^{1} P_{m b}$, corresponding to the barometric height, B, is

$$
P_{m b}=B \frac{\Delta g_{0}}{\mathrm{IOOO}}
$$

where Δ is the densitv of mercury and g_{0} is the standard value of gravity.

[^0]In order that pressures thus derived shall be expressed in C.G.S. units it is evident that the recognized standard values of the constants of the equation must be employed. It therefore becomes necessary to abandon the values for the density of mercury and for standard gravity heretofore employed, which had the sanction of the International Meteorological Committee, in favor of the more recently determined values that have been adopted by the International Bureau of Weights and Measures.

The value adopted for Δ is 13.5951 grams per cubic centimeter; ${ }^{1}$ and for $g_{0}, 980.655$ dynes. ${ }^{2}$

By the use of these constants in the above equation we obtain

$$
\begin{aligned}
& P_{m b}=\frac{1.333224}{} B \text { (millimeters), and } \\
& P_{m b}=\frac{1.333224}{0.03937} B=33.86395 B \text { (inches) }
\end{aligned}
$$

where B is the height of the barometer in the units indicated, after reduc. tion to standard temperature and the standard value of gravity.
table 11. Barometric inches to millibars.
The argument is for 0.01 inch. From 0.00 to 2.49 inches the tabulated values are given to the nearest hundredth of a millibar, so that by removing the decimal one place to the right the value in millibars of every tenth inch from o.o to $2+.9$ inches may be obtained to the nearest tenth of a millibar. From 25.00 to 3 r. 99 inches the tabular values are given to the nearest tenth of a millibar.

The first part of the table may be used as a table of proportional parts for interpolation.
Ezample:
To convert 23.86 barometric inches into millibars of pressure.
From Table 11, 23.8 inches $=806.0$ millibars
.06 inch $=2.0$
23.86 inches $=\overline{808.0}$ millibars

Tabe 12. Barometric millimeters to millibars.
The argument is for each millimeter from 1 to 799, and the tabular values are given to the nearest tenth of a millibar.

This table may also be used to convert millibars into millimeters of mercury.

[^1]Example:
To convert 1003.5 millibars into millimeters of mercury. 1003.5 mb . $=(1002.6+0.9) \mathrm{mb} .=(752+0.68) \mathrm{mm} .=752.68 \mathrm{~mm}$.
table 13. Feet into meters.
TABLE 13.
From the adopted value of the meter, 39.3700 inches -
I English foot $=0.3048006$ meter.
Table 13 gives the value in meters and thousandths (or millimeters) for every foot from o to 99 feet; the value to hundredths of a meter (or centimeters) of every Io feet from 100 to 4090 feet; and the value to tenths of a meter of every io feet from 4000 to 9090 feet. In using the latter part, the first line of the table serves to interpolate for single feet.
Example:
To convert 47 feet 7 inches to meters. 47 feet 7 inches $=47.583$ feet.
The table gives
47 feet $=14.326$ meters.
By moving the decimal point
0.583 " $=0.178$ "
47.583 feet $=14.504$ meters.
table 14. Meters into feet.
TABLE 14.

```
I meter = 39.3700 inches = 3.280833 + feet.
```

From o to 509 meters the argument is given for every unit, and the tabular values to two decimals; from 500 to 5090 the argument is given to every 10 meters, and the tabular values to one decimal. The conversion for tenths of a meter is added for convenience of interpolation.
Ezample:
Convert 4327 meters to feet.
The table gives

$$
(+320+7) \text { meters }=(14173.2+23.0) \text { feet }=14196.2 \text { feet. }
$$

table 15. Miles into kilometers.
TABLE 15.

$$
\text { I mile }=1.609347 \text { kilometers. }
$$

The table extends from o to 1009 miles with argument to single miles, and from 1000 to 20000 miles for every 1000 miles. The tabular quantities are given to the nearest kilometer.
table 16. Kilometers into miles.
TABLE 16.

$$
\text { I kilometer }=0.621370 \text { mile. }
$$

The table extends to 1009 kilometers with argument to single kilometers, and from 1000 to 20000 kilometers for every 1000 kilometers. Tabular values are given to tenths of a mile.

Example:

Convert 3957 kilometers into miles.
The table gives
$(3000+957)$ kilometers $=(1864.1+594.7)$ miles $=2458.8$ miles.

Table 17. Interconversion of nautical and statute miles.
The nautical mile as defined by the U.S. Coast and Geodetic Survey (Tables for a polyconic projection of maps. U.S. Coast and Geodetic Survey, Special Publication No. 5, page 4) is "A minute of arc of a great circle of a sphere whose surface equals that of the Clarke representative spheroid of $1866, "$ and the value given is 1853.25 meters, or 6080.20 feet.
table 18. Continental measures of length with their metric and English equivalents.

This table gives a miscellancous list of continental measures of length, alphabetically arranged, with the name of the country to which they belong and their metric and English equivalents.

CONVERSION OF MEASURES OF TIME AND ANGLE.
table 19. Arc into time.

$$
\mathrm{I}^{\circ}=4^{\mathrm{m}} ; \mathrm{I}^{\prime}=4^{\mathrm{s}} ; \mathrm{I}^{\prime \prime}=\frac{\mathrm{I}}{\mathrm{I}} \mathrm{~s}=0.067
$$

Example:
Change $124^{\circ} 15^{\prime} 24^{\prime \prime} 7$ into time.
From the table,

$$
\begin{array}{rlrl}
124^{\circ} & = & 8^{\mathrm{h}} & 16^{\mathrm{m}} \\
15^{\prime} & = & 0^{\mathrm{s}} \\
24^{\prime \prime} & = & & \mathrm{I} \\
0 & 0 \\
0^{\prime \prime} 7 & = & & 1.600 \\
& & & .047 \\
8^{\mathrm{h}} & 17^{\mathrm{m}} & 1.647
\end{array}
$$

table 20. Time into arc.

$$
\mathrm{I}^{\mathrm{h}}=\mathrm{I} 5^{\circ} ; \mathrm{I}^{\mathrm{m}}=15^{\prime} ; \mathrm{I}^{\mathrm{s}}=\mathrm{I} 5^{\prime \prime} .
$$

Example:
Change 8^{h} I $7^{3 \mathrm{~m}} \mathrm{I}^{8} 647$ into arc.

From the table,	$8^{\text {h }}$	$=$	120°		
	$17{ }^{\text {m }}$	=	4	15^{\prime}	
	$\mathrm{I}^{\text {s }}$	$=$			$15^{\prime \prime}$
	0.64	=			9.60
By moving the decimal point,	.007	$=$			0. 10
			124°	15^{\prime}	$24^{\prime \prime} 7$

tagle 21. Days into decimals of a year and angle.
The table gives for the beginning of each day the corresponding decimal of the year to five places. Thus, at the epoch represented by the beginning of the 15 th day, the decimal of the year that has elapsed since January i.O is computed from the fraction $\frac{14}{365.25}$. The corresponding value in angle obtained by multiplying this fraction by 360°, is given to the nearest minute.

Two additional columns serve to enter the table with the day of the month either of the common or the bissextile year as the argument, and may be used also for converting the day of the month to the day of the year, and vice versa.

Example:

To find the number of days and the decimal of a year between February 12 and August 27 in a bissextile year.
Aug. 27: Day of year $=240$; decimal of a year $\quad=0.65+35$
Feb. 12: " " " = 43; " " $=\underline{0.11499}$
Interval in days $\quad=197$; interval in decimal of a year $=0.53936$
The decimal of the year corresponding to the interval 197 days may also be taken from the table by entering with the argument ig8.
table 22. Hours, minutes and seconds into decimals of a day.
TABLE 22.
The tabular values are given to six decimals.

Example:

Convert $5^{\mathrm{h}} 24^{\mathrm{m}} 23^{\mathrm{s}} .4$ to the decimal of a day:

$$
\begin{array}{rlr}
5^{\mathrm{h}} & =0.208333 \\
24^{\mathrm{m}} & =0.016667 \\
23^{\mathrm{s}} & = & 266 \\
0.4 & = & \frac{5}{0.22527 \mathrm{I}}
\end{array}
$$

By interpolation, or by moving the decimal for $4^{\text {s }}$
table 23. Decimals of a day into hours, minutes and seconds.
TABLE 23
Example:
Convert 0.225271 to hours, minutes and seconds:

$$
\begin{aligned}
& 0.22 \text { day }=4^{\mathrm{h}} 48^{\mathrm{m}}+28^{\mathrm{m}} 4^{\mathrm{s}}=5^{\mathrm{h}} 16^{\mathrm{m}} 48^{\mathrm{s}} \\
& 0.005^{2} \text { day }=7^{\mathrm{m}} 12^{\mathrm{s}}+17^{\mathrm{s} .28}=72928 \\
& 0.00007 \mathrm{I} \text { day }=6.05+0.09=\frac{6.14}{5^{\mathrm{h}} 24^{\mathrm{m}} 23^{\mathrm{s}} \cdot 4}
\end{aligned}
$$

table 24. Minutes and seconds into decimals of an hour.
TABLE 24
The tabular values are given to six decimals.

Example:

Convert $34^{\mathrm{m}} 28.7$ to decimals of an hour.

$$
\begin{array}{rrr}
34^{\mathrm{m}} & =\mathrm{o}^{\mathrm{h}} 566667 \\
28^{\mathrm{s}} & =7778 \\
0.7 & =\frac{194}{0.574639}
\end{array}
$$

Table 25. Local mean time at apparent noon.

This table gives the local mean time ${ }^{1}$ that should be shown by a clock when the center of the sun crosses the meridian, on the ist, 8 th, I 6 th, and 24 th days of each month. The table is useful in correcting a clock by means of a sundial or noon mark.

Example:

To find the correct local mean time when the sun crosses the meridian on December 15, i89I.
The table gives for December I6, I I ${ }^{\mathrm{h}} 56^{\mathrm{m}}$. By interpolating, it is seen that the change to December 15 would be only one-half minute; the correct clock time is therefore 4 minutes before 12 o'clock noon.
table 26. Sidereal time into mean solar time.
table 27. Mean solar time into sidereal time.
According to Newcomb, the length of the tropical year is 365.24220 mean solar days, ${ }^{2}$ whence
365.24220 solar days $=366.24220$ sidereal days.

Any interval of mean time may therefore be changed into sidereal time by increasing it by its $\frac{1}{365 \cdot 2+220}$ part, and any interval of sidereal time may be changed into mean time by diminishing it by its $\frac{1}{366.2+220}$ part.

Table 26 gives the quantities to be subtracted from the hours, minutes and seconds of a sidereal interval to obtain the corresponding mean time interval, and Table 27 gives the quantities to be added to the hours, minn!tes and seconds of a mean time interval to obtain the corresponding sidereal interval. The correction for seconds is sensibly the same for either a sidereal or a mean time interval and is therefore given but once, thus forming a part of each table.
Examples:
Change $14^{\mathrm{h}} 25^{\mathrm{m}} 36.2$ sidereal time into mean solar time.

Given sidereal time		$14^{\text {h }}$	$25^{\text {m }}$	$36^{\text {s }}$. 2
Correction for $14{ }^{\text {h }}$	$=-2^{\mathrm{m}}$ I $7^{\text {s }}$.6I			
$25^{\text {m }}$	4.10			
36.2	. IO			
	-2 2I.8I		-2	21.8
Corresponding mean time	$=$	14	23	14.4

[^2]2. Change $13^{\mathrm{h}} 37^{\mathrm{m}} 22^{\mathrm{s}} .7$ mean solar time into sidereal time.

Given mean time	=		$13^{\text {h }}$		22.7
Correction for $13{ }^{\text {h }}$	$=+2^{\mathrm{m}}$	$8^{\text {s. }} 13$			
$37^{\text {m }}$	$=+$	6.08			
$22^{\text {s. }} 7$	+	0.06			
	$+2$	14.27		+2	14.3
Corresponding sidereal time	$=$		13	39	37.0

CONVERSION OF MEASURES OF WEIGHT.
TABLE 28.
Table 28. Conversion of avoirdupois pounds and ounces into kilograms.
The comparisons of July, I893, made by the International Bureau of Weights and Measures between the Imperial standard pound and the "kilogram prototype" resulted in the relation:

I pound avoirdupois $=453.5924277$ grams.
For the conversion of pounds, Table 28 gives the argument for every tenth of a pound up to 9.9 , and the tabular conversion values to ten-thousandths of a kilogram.

For the conversion of ounces, the argument is given for every tenth of an ounce up to 15.9 , and the tabular values to ten-thousandths of a kilogram.

Table 29. Conversion of kilograms into avoirdupois pounds and ounces.
From the above relation between the pound and the kilogram,

$$
\begin{aligned}
\text { I kilogram } & =2.204622 \text { avoirdupois pounds. } \\
& =35.274 \quad \text { avoirdupois ounces. }
\end{aligned}
$$

The table gives the value to thousandths of a pound of every tenth of a kilogram up to 9.9 ; the values of tenths of a kilogram in ounces to four decimals; and the values of hundredths of a kilogram in pounds and ounces to three and two decimals respectively.
table 30. Conversion of grains into grams.
TABLES 30, 31.
table 31. Conversion of grams into grains.
From the above relation between the pound and the kilogram,

$$
\begin{aligned}
& \text { I gram }=15.432356 \text { grains. } \\
& \text { I grain }=0.06479892 \text { gram } .
\end{aligned}
$$

Table 30 gives to ten-thousandths of a gram the value of every grain from I to 99 , and also the conversion of tenths and hundredths of a grain for convenience in interpolating.

Table 31 gives to hundredths of a grain the value of every tenth of a gram from O.I to 9.9 , and the value of every gram from 1 to 99 . The values of hundredths and thousandths of a gram are added as an aid to interpolation.

WIND TABLES. CONVERSION OF VELOCITIES.

Table 32. Synoptic conversion of velocities.
This table, ${ }^{1}$ contained on a single page, converts miles per hour into meters per second, feet per second and kilometers per hour. The argument, miles per hour, is given for every half unit from o to 78 . Tabular values are given to one decimal. For the rapid interconversion of velocities, when extreme precision is not required, this table has proved of marked convenience and utility.
Table 33. Conversion of miles per hour into feet per second.
The argument is given for every unit up to I49 and the tabular values are given to one decimal.
Table 34. Conversion of feet per second into miles per hour.
The argument is given for every unit up to 199 and the tabular values are given to one decimal.
Table 35. Conversion of meters per second into miles per hour.
The argument is given for every tenth of a meter per second up to 60 meters per second, and the tabular values are given to one decimal.
Table 36. Conversion of miles per hour into meters per second.
The argument is given for every unit up to 149 , and the tabular values are given to two decimals.
Table 37. Conversion of meters per second into kilometers per hour.
The argument is given for every tenth of a meter per second up to 60 meters per second, and the tabular values are given to one decimal.
Table 38. Conversion of kilometers per hour into meters per second.
The argument is given for every unit up to 200, and the tabular values are given to two decimals.
Table 39. Scale of velocity equizalents of the so-called Beaufort scale of rivind.
The personal observation of the estimated force of the wind on an arbitrary scale is a method that belongs to the simplest meteorological records and is widely practiced. Although anemometers are used at meteorological observatories, the majority of observers are still dependent upon estimates based largely upon their own judgment, and so reliable can such estimates be made that for many purposes they abundantly answer the needs of meteorology as well as of climatology.

A great variety of such arbitrary scales have been adopted by different observers, but the one that has come into the most general use and received

[^3]the greatest definiteness of application is the duodecimal scale introduced into the British navy by Admiral Beaufort about iSoo.

Table 39 is taken from the Observer's Handbook of the Meteorological Office, London, edition of 1917, and the Marine Observer's Handbook of Meteorology, edition of 1930 . The velocity equivalents in meters per second and miles per hour are based on extensive observational data collected by Dr. G. C. Simpson and first published by the Meteorological Office in 1906. Several other sets of equivalents have been published in different countries. For a history of this subject see " Rept. Ioth Meeting International Meteorological Committee," Rome, 19I3, Appendix VII (London, 1914), and a paper by G. C. Simpson on "The velocity equivalents of the Beaufort scale," Professional Notes No. 44, Air Ministry, Meteorological Office, London, 1926.

Simpson points out that the Beaufort scale has been used by sailors for many generations to describe the effect of the air in motion on ships and their rigging, and upon the sea. With change in the rig of ships there still remains the effect of wind upon the surface of the sea, and to this has been added the effect upon objects on land.

Finally, it became desirable to interpret wind force on the Beaufort scale in terms of wind velocity as measured by the anemometer. For this purpose experiments with the anemometer both on land and on sea were made. The results showed considerable discrepancies in the velocity equivalents of winds indicated by different numbers on the Beaufort scale, but Simpson attributes these discrepancies to differences in anemometer exposures during the tests. For example, the Meteorological Office equivalents represent velocities measured by an anemometer not less than io meters above the ground level, while the Deutsche Seewarte equivalents represent velocities measured by anemometers as ordinarily exposed.

Simpson proposed a scale of equivalents about midway between those determined by the Meteorological Office and by the Seewarte, respectively, and this compromise scale was adopted by the Commission for Synoptic Weather Information of the International Meteorological Organization at its meeting in Zurich in 1926, with the proviso that the velocity equivalents correspond on land with the wind speed at a height of approximately 6 meters above a level surface. Since, however, the International Commission for Air Navigation has taken as the surface wind that measured at a height of 10 to I 5 meters above the ground, it has seemed best in these tables to continue to adhere to the British Meteorological Office equivalents, which are based on the equation $V=0.836 \sqrt{B^{3}}$, where B is the Beaufort number representing the wind force, and V is the velocity equivalent in meters per second.

The velocity equivalents adopted by the Commission for Synoptic Weather Information, referred to above, expressed in statute miles per hour, correspond very closely to the values in Table 39 expressed in nautical miles (knots) per hour.

In the Quarterly Journal of the Royal Mcteorological Socicty, volume xxx, No. 132, October, 1904, Prof. A. Lawrence Rotch has described an instrument for obtaining the true direction and velocity of the wind at sea aboard a moving vessel. If a line $A B$ represents the wind due to the motion of a steamer in an opposite direction, and $A C$ the direction of the wind relative to the vessel as shown by the drift of its smoke, then, by measuring the angle $D B A$ that the true wind makes with the vessel-which is easily done by watching the wave crests as they approach it-we obtain the third side, $B C$, of the triangle. This represents, in direction and also in length, on the scale used in setting off the speed of the ship, the true direction of the wind relative to the vessel and also its true velocity. The method fails when the wind direction coincides with the ship's course and becomes inaccurate when the angle between them is small.

GRADIENT WINDS.

When the motions of the atmosphere attain a state of complete equilibrium of flow under definite systems of pressure gradients, the winds blow across the isobars at small angles of inclination depending upon the retarding effects of friction. At the surface of the earth friction is considerable and the angle across the isobars is often great. In the free air, however, the friction is small, and for some purposes may be disregarded entirely. Under an assumption of complete equilibrium of motion and frictionless flow the winds will blow exactly parallel to the isobars-that is, perpendicular to the gradient which produces and sustains the motion. Such winds are called gradient winds. The anomalous condition of flow of terrestrial winds perpendicular to the moving force is the result of the modifications of atmospheric motions due to the deflective influence of the earth's rotation, and to that other influence due to the inertia reaction of matter when it is constrained to move in a curved path, and commonly called centrifugal force. The equations for gradient wind motions have long been known to meteorologists from the work of Ferrel and others, and may be written in the following form:

For Cyclones

$$
\begin{equation*}
V=r\left[\sqrt{\omega^{2} \sin ^{2} \phi+\frac{\Delta P}{\rho r}}-\omega \sin \phi\right] \tag{I}
\end{equation*}
$$

For Anticyclones

$$
\begin{equation*}
V=r\left[\omega \sin \phi-\sqrt{\omega^{2} \sin ^{2} \phi-\frac{\Delta P}{\rho r}}\right] \tag{2}
\end{equation*}
$$

In C. G. S. Units, $V=$ velocity of the gradient wind in centimeters per second; $r=$ radius of curvature of isobars in centimeters; $\Delta P=$ pressure gradient in dynes per square centimeter per centimeter ; $\rho=$ density of air in grams per cubic centimeter ; $\omega=$ angular velocity of the earth's rotation
per second $=\frac{2 \pi}{86 I 64}$, and $\phi=$ latitude. In the Northern Hemisphere the winds gyrate counterclockwise in cyclones and clockwise in anticyclones. These gyrations are in the reversed direction each to each in the Southern Hemisphere.

In equation (2) the values of V are imaginary for values of $\frac{\Delta P}{\rho r}$ greater than $\omega^{2} \sin ^{2} \phi$. The equality $\frac{\Delta P}{\rho r}=\omega^{2} \sin ^{2} \phi$, or $r=\frac{\Delta P}{\rho \omega^{2} \sin ^{2} \phi}$ defines and fixes an isobar with minimum curvature in anticyciones. Winds cannot flow parallel to the isobars within this critical isobar. For this isobar the gradient wind has its maximum value $V_{c}=\frac{\Delta P}{\rho \omega \sin \phi}$. For the same gradient and for an isobar with the same curvature in a cyclone the gradient velocity is $V_{l}=V_{c}(\sqrt{2}-\mathrm{I})=0.4 \mathrm{I} 4 V_{c}$.

When the isobars are parallel straight lines, a condition very often closely realized in nature, $r=\infty$ and the gradient winds have the value given by either (I) or (2) after squaring, namely,

$$
V_{r=\infty}=V_{s}=\frac{\Delta P}{2 \rho \omega \sin \phi}=\frac{1}{2} V_{c} .
$$

For practical units equation (I) becomes
Units of pressure.
$V=R\left[\begin{array}{lll}\sqrt{.0053173 \sin ^{2} \phi+\frac{\mathrm{I}}{\mathrm{IOR} \mathrm{\rho d}}}-.07292 \sin \phi \\ \sqrt{.0053173 \sin ^{2} \phi+\frac{.13333}{R \rho d}}-.07292 \sin \phi & \text { (I) (Millibars) } \\ \sqrt{.068914 \sin ^{2} \phi+\frac{\mathrm{I} .69+6}{R_{\rho} d}}-.26252 \sin \phi\end{array}\right]$ (II) (Millimeters)
$V=$ velocities in meters per second in (I) and (II) and in miles per hour in (III).
$R=$ radius of curvature of isobar (wind path) in kilometers in (I) and (II) and in miles in (III).

The gradient is to be deduced from isobars drawn for pressure intervals of I millibar in (I), I millimeter in (II) and $\frac{\mathrm{I}}{\mathrm{IO}}$ inch in (III); d, is the perpendicular distance between isobars (as above defined) in kilometers in (I) and (II), and in miles in (III). $\rho=$ density of air $=$ grams per cubic centimeter in all cases.

Also \begin{tabular}{c}

Units of
pressure.

$V_{c}=\left[\begin{array}{ll}\frac{1.3713}{\rho d \sin \phi}(\text { IV }) \\
\frac{1.8284}{\rho d \sin \phi} & (\mathrm{~V}) \\
\frac{6.4552}{\rho d \sin \phi}(\mathrm{VI})\end{array}\right.$ and $R_{c}=\left[\begin{array}{ll}\frac{18.806}{\rho d \sin ^{2} \phi} & \text { (VII) (Millibars) } \\
\frac{25.073}{\rho d \sin ^{2} \phi} & \text { (VIII) (Millimeters) } \\
\frac{24.590}{\rho d \sin ^{2} \phi} & \text { (IX) (Inches) }\end{array}\right.$
\end{tabular}

Radius of critical curvature and velocities of gradient winds for frictionless motion in Highs and Lowus.
table 40. English Measures.
TABLES 40, 41.
table 41. Metric Measures.
These tables give the radius of curvature of the critical isobar in anticyclones, computed from the equation

$$
R_{c}=\frac{\Delta P}{\rho \omega^{2} \sin ^{2} \phi},
$$

the velocity of the wind on this isobar, computed from the equation

$$
V_{c}=\frac{\Delta P}{\rho \omega \sin \phi} ;
$$

the velocity of the wind on a straight isobar, computed from the equation

$$
V_{s}=\frac{\Delta P}{2 \rho \omega \sin \phi}=\frac{1}{2} V_{c} ; \text { and }
$$

the velocity of the wind in a cyclone having the same gradient as the anticyclone, and on an isobar having a radius of curvature equal to R_{c}, computed from the equation

$$
V_{1}=V_{c}(\sqrt{2}-1)=0.414 V_{c}
$$

Table ұо, English measures, gives values of R_{c}, in miles, and of V_{c} High, V_{s}, and V Low, in miles per hour. The side argument is the latitude for 10°, and at 5° intervals from 20° to 90°, inclusive. The top argument, d, is the perpendicular distance in miles between isobars drawn for pressure intervals of $\frac{\mathrm{I}}{\mathrm{IO}}$ inch. For values of d one tenth as great as given in the heading of the table the values of R_{c}, V_{c} High, V_{s}, and V Low are increased tenfold.

Table 4I, metric measures, gives values of R_{c} in kilometers, and of V_{c} High, V_{s}, and V Low, in meters per second. The side argument is the same as in Table 40. The top argument, d, is the perpendicular distance in kilometers between isobars drawn for pressure intervals of I millimeter. For values of d one tenth as great as given in the heading of the table the values of R_{c}, V_{c} High, V_{s}, and V Low are increased tenfold.

TEMPERATURE TABLES.

REDUCTION OF TEMPERATLRE TO SEA LEVEL.

Table 42. English Measures.
Table 43. Metric Measures.
These tables give for different altitudes and for different uniform rates of decrease of temperature with altitude, the amount in hundredths of a degree Fahrenheit and Centigrade, which must be added to observed temperatures in order to reduce them to sea level.

The rate of decrease of temperature with altitude varies from one region to another, and in the same region varies according to the season and the meteorological conditions; being in general greater in warm latitudes than in cold ones, greater in summer than in winter, and greater in areas of falling pressure than in areas of rising pressure. For continental plateau regions, the reduction often becomes fictitious or illusory. The use of the tables therefore requires experience and judgment in selecting the rate of decrease of temperature to be used. Much experimental work is now in progress with kites and balloons to determine average vertical gradients. It must be remembered that the tables here given are not tables giving the data as recently determined for various elevations.

The tables are given in order to facilitate the reduction of temperature either upward or downward in special insestigations, but the reduction is not ordinarily applied to meteorological observations.

The tables, 42 and 43, are computed for rates of temperature change ranging from I° Fahrenheit in 200 feet to I° Fahrenheit in 900 feet, and from I° Centigrade in 100 meters to I° Centigrade in 500 meters; and for altitudes up to 5000 feet and 3000 meters respectively. Example, Table 42.

Observed temperature at an elevation of 2,500 feet, 52.5 F .

Reduction to sea level for an assumed decrease in temperature of $1^{\circ} \mathrm{F}$. for every 300 feet,
$\begin{array}{r}\circ \\ +\quad 8 \\ \hline\end{array}$
Temperature reduced to sea level,
$60^{\circ} 8 \mathrm{~F}$. Example, Table 43.

Observed temperature at an elevation of 500 meters, 12.5 C .

Reduction to sea level for an assumed decrease in temperature of $\mathrm{I}^{\circ} \mathrm{C}$. for every 200 meters,
Temperature reduced to sea level,

$$
\frac{+\quad 2!5}{15: 0} C
$$

BAROMETRICAL TABLES.

REDUCTION TO A STANDARD TEMPERATURE OF OBSERVATIONS MADE WITH MERCURIAL BAROMETERS HAVING BRASS SCALES.

The indicated height of the mercurial column in a barometer varies not only with changes of atmospheric pressure, but also with variations of the temperature of the mercury and of the scale. It is evident therefore that if
the height of the barometric column is to be a true relative measure of atmospheric pressure, the observed readings must be reduced to the values they would have if the mercury and scale were maintained at a constant standard temperature. This reduction is known as the reduction for temperature, and combines both the correction for the expansion of the mercury and that for the expansion of the scale, on the assumption that the attached thermometer gives the temperature both of the mercury and of the scale.

The freezing point is universally adopted as the standard temperature of the mercury, to which all readings are to be reduced. The temperature to which the scale is reduced is the normal or standard temperature of the adopted standard of length. For English scales, which depend upon the English yard, this is 62° Fahrenheit. For metric scales, which depend upon the meter, it is 0° Centigrade. As thus reduced, observations made with English and metric barometers become perfectly comparable when converted by the ordinary tables of linear conversion, viz: inches to millimeters and millimeters to inches (see Tables 9, Io), for these conversions refer to the meter at 0° Centigrade and the English yard at 62° Fahrenheit.

Prof. C. F. Marvin in the Monthly Weather Review for July, I898, has pointed out the necessity of caution in conversion of metric and English barometer readings:

Example:

$$
\begin{array}{lc}
\text { Attached thermometer, } & 25^{\circ} .4 \mathrm{C} \\
\text { Barometer reading, } & 762.15 \mathrm{~mm} .
\end{array}
$$

If the temperature is converted to Fahrenheit $=77^{\circ} .7$ and the reading to 30.006 in ., the temperature correction according to table 44 would be -O.I33 inch and the reduced reading 29.873. This would be erroneous. The correct conversion is found by taking the correction corresponding to $25^{\circ}+\mathrm{C}$. and 762 mm ., i.e., -3.15 mm ., which gives a corrected reading of 759 mm ., and converted into inches gives 29.882 which is the correct result.

Professor Marvin further remarks that circumstances sometimes arise in which a Centigrade thermometer may be used to determine the temperature of an English barometer, or a Fahrenheit attached thermometer may be used with a metric scale. In all such cases the temperature must be brought into the same system of units as the observed scale reading before corrections can be applied, and the observed reading must then be corrected for temperature before any conversion can be made.

With aneroid barometers corrections for temperature and instrumental error must be determined for each instrument.

The general formula for reducing mercurial barometers with brass scales to the standard temperature is

$$
C=-B \frac{m(t-T)-l(t-\theta)}{\mathrm{I}+m(t-T)}
$$

in which $C=$ Correction for temperature.
$B=$ Observed height of the barometric column.
$t=$ Temperature of the attached thermometer.
$T=$ Standard temperature of the mercury.
$m=$ Coefficient of expansion of mercury.
$l=$ Coefficient of linear expansion of brass.
$\theta=$ Standard temperature of the scale.
The accepted determination of the coefficient of expansion of mercury is that given by Broch's reduction of Regnault's experiments, viz:

$$
m\left(\text { for } \mathrm{I}^{\circ} C .\right)=1 \mathrm{I}^{-9}\left(\mathrm{I} 8 \mathrm{I} 792+0.175 t+0.035 \mathrm{I} 16 t^{2}\right)
$$

As a sufficiently accurate approximation, the intermediate value

$$
m=0.00018 \mathrm{I} 8
$$

has been adopted uniformly for all temperatures in conformity with the usage of the International Meteorological Tables.

Various specimens of brass scales made of alloys of different composition show differences in their coefficients of expansion amounting to eight and sometimes ten per cent. of the total amount. The Smithsonian Tables prepared by Prof. Guyot were computed with the average value l (for $\mathrm{I}^{\circ} C$.) $=0.0000 \mathrm{I} 88$; for the sake of uniformity with the International Meteorological Tables, the value

$$
l=0.0000184
$$

has been used in the present volume. For any individual scale, either value may easily be in error by four per cent.

A small portion of the tables has been independently computed, but the larger part of the values have been copied from the International Meteorological Tables, one inaccuracy having been found and corrected.

Table 44. Reduction of the barometer to standard temperature - English measures.

For the English barometer the formula for reducing observed readings to a standard temperature becomes

$$
C=-B \frac{m\left(t-32^{\circ}\right)-l\left(t-62^{\circ}\right)}{\mathrm{I}+m\left(t-32^{\circ}\right)}
$$

in which $B=$ Observed height of the barometer in English inches.
$t=$ Temperature of attached thermometer in degrees Fahrenheit.

$$
\begin{aligned}
m & =0.0001818 \times \frac{5}{9}=0.000101 \\
l & =0.0000184 \times \frac{5}{9}=0.0000102
\end{aligned}
$$

The combined reduction of the mercury to the freezing point and of the scale to 62° Fahrenheit brings the point of no correction to approximately $28^{\circ} .5$ Fahrenheit. For temperatures above $28^{\circ} .5$ Fahrenheit, the correction is subtractive, and for temperatures below $28^{\circ} .5$ Fahrenheit, the correction is additive, as indicated by the signs (+) and (-) inserted throughout the table.

The table gives the corrections for every half degree Fahrenheit from 0° to 100°. The limits of pressure are 19 and 31.6 inches, the corrections being computed for every half inch from 19 to 24 inches, and for every twotenths of an inch from 24 to 3 I .6 inches.

Example :

Observed height of barometer $=29.143$
Attached thermometer, 54.5 F .
Reduction for temperature $=-0.068$
Barometric reading corrected for temperature $=29.075$
TABLE 45.
Table 45. Reduction of the barometer to standard temperature - Metric measures.

For the metric barometer the formula for reducing observed readings to the standard temperature, $o^{\circ} C$., becomes

$$
C=-B \frac{(m-l) t}{I+m t}
$$

in which C and B are expressed in millimeters and t in Centigrade degrees.

$$
m=0.0001818 ; \quad l=0.0000184
$$

In the table, the limits adopted for the pressure are 440 and 795 millimeters, the intervals being io millimeters between 40 and 600 millimeters, and 5 millimeters between 600 and 795 millimeters.

The limits adopted for the temperature are 0° and $+35^{\circ} .8$, the intervals being 0.5 and I.O from 440 to 560 millimeters, and $0^{\circ} .2$ from 560 to 795 millimeters.

For temperatures above o° Centigrade the correction is negative, and hence is to be subtracted from the observed readings.

For temperatures below 0° Centigrade the correction is positive, and from $0^{\circ} \mathrm{C}$. down to $-20^{\circ} \mathrm{C}$. the numerical values thereof, for ordinary barometric work, do not materially differ from the values for the corresponding temperatures above $0^{\circ} \mathrm{C}$. Thus the correction for $-9^{\circ} \mathrm{C}$. is numerically the same as for $+9^{\circ} \mathrm{C}$. and is taken from the table. In physical work of extreme precision, the numerical values given for positive temperatures may be used for temperatures below $0^{\circ} C$. by applying to them the following corrections:

Corrections to be applied to the tabular values of Table 45 in order to use them when the temperature of the attached thermometer is below 0° Centigrade.

Temperature.	Pressure in millimeters.							
	450	500	550	600	650	700	750	800
C.	mm.							
$-\mathrm{I}^{\circ}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- 9	.00	. 00	. 00	. 00	. 0	. 00	. 00	. 00
- 10	0.00	0.00	0.00	0.00	0.00	+0.01	+0.01	to.01
II	. 00	. 00	. 00	. 00	+0.01	. OI	. OI	. 01
12	. 0	. 00	. 00	+0.01	. Or	. 01	. OI	. OI
13	. 00	. 00	+0.01	. 01	. OI	. 01	. OI	. 01
-14	. 00	+o.01	. 01	. Or	. Or	. 01	. OI	. OI
- 15	to.01	toor	+0.01	to.01	to.or	+0.01	+o.01	+0.01
16	. 01	. 01	. 01	. 01	. OI	. 01	. 01	. 01
17	. 01	- 01	. 01	. 01	. OI	. 01	. 01	. 02
18	. Or	. 01	. 01	. 01	. 01	. 01	. OI	. 02
-19	. OI	.or	. 01	. 01	. OI	. OI	. 02	. 02
-20	+0.01	+0.01	to.or	to.or	+o.01	+0.02	+0.02	+0.02
21	. 01	. 01	. OI	. 02	. 02	. 02	. 02	. 02
22	. 01	. 01	. 02	. 02	. 02	. 02	. 02	. 02
23	.or	. 02	. 02	. 02	. 02	. 02	. 02	. 02
-24	. OI	. 02	. 02	. 02	. 02	. 02	. 02	. 03

Example:
Observed height of barometer, $763 \cdot 17^{\mathrm{mm}}:$ Temperature of the attached thermometer, $-12^{\circ} \mathrm{C}$.
Numerical value of the reduction for $+12^{\circ} \mathrm{C}$. $={ }^{1.50}$
Correction for temperature below o ${ }^{\circ} \mathrm{C}$.
$=+\underline{0.01}$
Reduction for $-12^{\circ} \mathrm{C}$.
$=+\quad \mathrm{I} .5 \mathrm{I}$
Observed height of barometer
$=763.17$
Barometer corrected for temperature
$=764.68$
Table 46. Reduction of the mercurial column in \mathbf{U}-shaped manometers with brass scales to standard temperature. English measures.

This is in reality an extension of Table 44 to the small differences in height of the mercurial columns as determined with a U -shaped manometer and is used especially in the calibration of instruments for upper-air investigations. Since the corrections are directly proportional to the observed height of the mercurial column, they have been obtained by multiplying corrections given in Table 44 by the appropriate decimal. They have been computed for each inch of pressure from I inch to 20 inches, inclusive, and for intervals of temperature of 2 degrees, from 0° to 100° Fahrenheit.

Example:

Observed heights of the mercury in the manometer tubes (in.), +6.258 and -4.375 .
Difference in height of the two columns 10.633

Attached thermometer, $72^{\circ} .4 \mathrm{~F}$.
Correction for temperature

- .O42

Manometer reading corrected for temperature 10.591
For temperatures above $28^{\circ} 5$ Fahrenheit, the correction is subtractive, and for temperatures below 28.5 Fahrenheit, the correction is additive, as indicated by the signs $(+)$ and (-) inserted throughout the table.
table 47. Reduction of the mercurial columm in U -shaped manometers with brass scales to standard temperature. Metric measures.
This table is an extension of Table 45 to the small differences in height of the mercurial columns as determined with a U -shaped manometer. The values have been obtained from the corrections given in that table by the same process as those given in Table 46 were obtained from Table 44.

Example:

Observed heights of the mercury in the manometer tubes (mm.), + 121.5 and -86.7.
Difference in height of the two columns
Attached thermometer, 18.4 C .
Correction for temperature
$-\quad 0.6$
Manometer reading corrected for temperature
207.6

For temperatures above $o^{\circ} \mathrm{C}$. the correction is negative, and hence is to be subtracted from the observed readings. For negative temperatures see the explanation of Table 45 .

REDUCTION OF THE MERCURIAL BAROMETER TO STANDARD GRAVITY.

Tables 48, 49, 50.

The mercurial barometer does not directly measure the atmospheric pressure. The latter is proportional to the weight of the mercurial column, and also to its height after certain corrections have been applied. Since the height of the barometric column is easily measured, by common consent the pressures are expressed in terms of this corrected height.

The observed height of the barometer changes with the temperature of the mercury as already shown, and also with the variations in the value of gravity, as well as with the pressure. Therefore, to obtain a height that shall be a true relative measure of the atmospheric pressure, the observed height of the mercurial column must not only be reduced to what its height would be if at a standard temperature, but also to what it would be at a standard value of gravity.

As stated on page xxii, the standard value of gravity adopted is 980.665 dynes. At the time of its adoption this value was assumed to apply for "latitude 45° and sea-level" on the basis of the absolute determination of g at the International Bureau by Defforges, 1887-1890 (Procés-Verbaux, Comité Inter. d. Poids et Mesures, I887, pp. 27-28, 86; i891, p. 135).

More recent determinations, ${ }^{1}$ based upon numerous measurements in all parts of the world, and assuming a certain ideal figure for the earth, give for the mean value of g at latitude 45° and sea level the value 980.621 dynes. This differs from the standard value by 0.044 dyne. Departures of this magnitude from the mean sea-level gravity of a given latitude are frequently encountered, and in some cases surpassed. They are attributed to topography and isostatic compensation, and to gravity anomalies. For example, according to Bowie, ${ }^{2}$ at Pikes Peak, Colo., the correction for topography and compensation is +0.187 dyne, while the gravity anomaly ${ }^{3}$ is +0.021 dyne, giving a total gravity departure of +0.208 dyne. Also, at Seattle, Wash., from the mean of measurements at two stations, the correction for topography and compensation is -0.019 dyne ${ }^{4}$ and the gravity anomaly is -0.093 dyne, ${ }^{5}$ giving a total gravity departure of -0.112 dyne. The gravity departure at Pikes Peak is sufficient to cause the barometer to read 0.004 inch or o. 10 mm . low, while the departure at Seattle is sufficient to cause the barometer to read 0.003 inch or 0.09 mm . high, as compared with what the readings would have been with gravity at normal intensity for the latitudes of the respective stations.

From the foregoing it is evident that the value of local gravity, g_{l}, at the observing station must be determined before the barometer reading can be accurately reduced to standard gravity. In many cases, and especially at sea, it is not practicable to measure g_{2}. In the United States its value may frequently be determined with sufficient accuracy in the following manner:
(i) Compute g_{ϕ}, mean gravity at sea level for the latitude of the station, from the equation ${ }^{6}$

$$
\begin{aligned}
g_{\phi} & =978.039\left(\mathrm{I}+0.005294 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right), \\
& =980.621\left(\mathrm{I}-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right)
\end{aligned}
$$

(2) Correct g_{ϕ} for altitude by the equation ${ }^{7}$
$c($ dynes $)=-0.0003086 h$ (meters), or
$c($ dynes $)=-0.00009+h($ feet $)$,

[^4]where h is the altitude of the station above sea level.
(3) Correct g_{ϕ} for gravity anomaly. ${ }^{1}$
(4) Finally, g_{ϕ} is to be corrected for topograply and isostatic compensation. ${ }^{2}$

Example:

To determine the value of local gravity, g_{1}, at the Weather Bureaut Office, Atlanta, Ga., latitude $33^{\circ} 45^{\prime}$ N., longitude $84^{\circ} 23^{\prime}$ W., height of barometer above sea level, i2I 8 feet.
From Table 90, mean sea level gravity for latitude $33^{\circ} 45^{\prime} \quad=979.631$ dynes.
Correction for height of barometer
$(-0.00009+1218)=-0.114$ "
$\begin{array}{llll}\text { Correction for gravity anomaly, } & =-0.023 & " \\ \text { Correction for topography and compensation } & =+ & 0.014\end{array}$
Correction for topography and compensation
Local gravity at Weather Bureau Office, Atlanta,
Ga. $=979.508$ dynes.
Having determined g_{l}, the reduction of barometer readings to standard gravity is easily and accurately accomplished by multiplying by the ratio g_{l} / g_{0}, or by applying a correction to the barometer reading, otherwise corrected, derived from the expression $\frac{\left(g_{l}-g_{0}\right)}{g_{0}} B$. With $g_{l}<g_{0}$ the correction is to be subtracted; with $g_{l}>g_{0}$ the correction is to be added. In general, sufficient accuracy will be attained by computing the gravity correction for a station once for all from the equation $C=B_{n} \frac{\left(g_{1}-g_{0}\right)}{g_{0}}$, in which B_{n} is the normal station barometer pressure, and C is expressed in the same umits as B_{n}.

Table 48 gives corrections to reduce barometer readings to standard gravity. The top argument is the barometer reading. The side argument is the difference, $g_{l}-g_{0}$, for each tenth of a dyne up to 4.0 dynes. The relation is a linear function of both $g_{l}-g_{0}$ and B, and for barometer readings 10 or roo times greater than those given in the argument the correction may be obtained by removing the decimal point in the tabulated values one or two places, respectively, to the right. The correction obtained will be expressed in the same units as the barometer reading to be corrected.

Example I.

The barometer reading corrected for temperature is 29.647 inches, and the local value of gravity is 978.08 . The difference, $g_{l}-g_{0},=-2.585$. From the table,
the correction for a barometer reading of 20 inches $=-0.0527 \mathrm{in}$. the correction for a barometer reading of 9 inches $=-0.0237 \mathrm{in}$. the correction for a barometer reading of 0.65 inches Correction for a barometer reading of 29.65 inches Corrected barometer reading $=29.647 \mathrm{in} .-0.078 \mathrm{in}$.
$=-0.0017 \mathrm{in}$.
$=-\overline{0.078} \mathrm{in}$.
$=29.569$ in.

[^5]
Example 2.

The barometer reading reduced to $0^{\circ} C$ is 637.42 mm ., and the local value of gravity is 98I.5I. The difference, $g_{l}-g_{0}=+0.845$. From the table,
the correction for a barometer reading of 600 mm . the correction for a barometer reading of 30 mm . the correction for a barometer reading of 7 mm . Correction for a barometer reading of 637.4 mm . Corrected barometer reading $=637.42+0.55$
$=+0.517 \mathrm{~mm}$.
$=+0.026 \mathrm{~mm}$.
$=+\underline{0.006} \mathrm{~mm}$.
$=+0.55 \mathrm{~mm}$.
$=+637.97 \mathrm{~mm}$.

In the case of barometer readings made at sea, and also at some land stations, it is not practicable to determine local gravity with greater accuracy than it can be computed from the equations for variations with latitude and altitude given above. The reduction to standard gravity, accordingly, consists of two parts-a correction for altitude, and a correction from the computed sea-level gravity for the latitude of the station to standard gravity. The first part of the correction, or the correction for altitude, may be computed once for all from the expression $\mathrm{c}=-0.0003086 h B_{n}$ (metric measures), or $\mathrm{c}=-0.000094 h B_{n}$ (English measures), and is usually combined with the reduction of the barometer to sea level or to some other reference plane. The second part has heretofore consisted of a correction for the difference between the mean value of gravity for the latitude of the station and for latitude 45°; and, in accordance with the equation given above, it may be derived from the expression

$$
\left(-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right) B
$$

where ϕ is the latitude of the station, and B is the barometer reading. The value of the ratio $\frac{g_{45} \cdot-g_{0}}{g_{0}}=\frac{980.62 \mathrm{I}-980.665}{980.665}=-0.000045$. Therefore, the expression for the gravity correction becomes

$$
\left(-0.00264 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi-0.000045\right) B
$$

Table 49 (English measures) gives the corrections in thousandths of an inch for every degree of latitude and for each inch of barometric pressure from 19 to 30 inches, to reduce barometer readings to standard gravity, computed from the equation

$$
C=\left(-0.00264 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi-0.000045\right) B
$$

Table 50 (metric measures) gives the same corrections in hundredths of a millimeter for each 20 millimeters barometric pressure from 520 to 780 millimeters.

Example:

Barometric reading (corrected for temperature) at latitude
$63^{\circ} 55^{\prime}$,
Correction to standard gravity, Table 49,
Barometer reduced to standard gravity,
$=27.434$ inches
$=0.043$ inches
$=27.477$ inches

The adoption of this new value for standard gravity may require a slight correction to old barometric records in order to make the entire series of readings homogeneous. The amount of this correction will be the difference between the gravity correction computed by these new tables and by the old tables.

Example:

Seattle, Wash., Lat. $47^{\circ} 38^{\prime}$ N., Long. $122^{\circ} 20^{\prime}$ W., height of barometer above sea level 125 feet, normal station barometer 29.89 inches.
g_{ϕ} (Table 90)
Correction for height (-0.000094×125)
$=\quad 980.859$ dynes.
$=-\quad$ 012 "
$=-\quad .019 \quad$ "
$=-\frac{.093}{980.735}$ dynes.
Correction to reduce barometer readings to standard gravity, $980.735-980.665 B_{n}=+0.002$ inch. Old correction, +0.007 ; correction to old 980.665
records $=0.002 \mathrm{in} .-0.007 \mathrm{in} .=-0.005 \mathrm{in}$.
For correcting back records of readings at sea, or at any place where the value of local gravity cannot be determined, the correction is equal to the ratio $\frac{980.599-980.665}{980.665} B=-0.000067 B$. The corrections are as follows :

Barometer reading.
From 8 to 22 inches
From 23 to 32 inches
From 380 to 520 mm .
From 530 to 670 mm .
From 680 to 820 mm .

Correction.

- o.00I in.
-0.002 in.
-0.03 mm .
-0.04 mm .
-0.05 mm .

REDUCTION OF BAROMETER READINGS TO SEA LEVEL.

Tables 5I to 63 inclusive, " Determinations of Heights by the Barometer," may be used for reducing barometric readings to sea level, provided the mean temperature and vapor pressure of the atmosphere between the observing station and sea level are known.

See "Example: (English Measures)," p. xlix.
Barometer at upper station corrected for temperature $=23.6 \mathrm{I} \mathrm{in}$.
Mean temperature of air column, $\theta, \quad=35^{\circ} \cdot \mathrm{F}$.
Latitude of station, ϕ,
Altitude of station above mean sea level, $Z, \quad=6320 \mathrm{ft}$.
The equation for computing the altitude Z is given on p. xlvii. This equation is simplified after justifiable approximations to the form (in English units)

$$
\begin{gathered}
62583.6\left(\log \frac{29.9}{B}-\log \frac{29.9}{B_{0}}\right)= \\
Z-Z\left[0.002039\left(\theta-50^{\circ}\right)+0.378 \frac{e}{b}+(\gamma+\eta)+\frac{Z+2 h_{0}}{R}\right]
\end{gathered}
$$

where the terms are as defined on Pp . xliv to xlvi, inclusive. Calling the terms in the bracket $(a),(b),(c)$ and (d), respectively, to compute B_{0} we have:
from Table 52 with $Z=6320$ feet and $\theta=35^{\circ} \circ \mathrm{F} ., \quad Z(a)=-194$
from Table $5+$ with $Z=6320$ feet and average humidity, $Z(b)=+16$
from Table 53 with $Z=6320$ feet and $\phi=44^{\circ} 16^{\prime}, \quad Z(c)=+16^{1}$
from Table 55 with $Z=6320$ feet and $h_{0}=0, \quad \underline{Z}(d)=+2$

$$
Z[(a)+(b)+(c)+(d)]=
$$

$=-160$.

Then since $Z=6320$ feet we have

$$
62583.6\left(\log \frac{29.9}{B}-\log \frac{29.9}{B_{0}}\right)=6320+160=6480 .
$$

From Table 5I for $B=23.6 \mathrm{I}$ in., we have

$$
\begin{aligned}
& 62583.6 \log \frac{29.9}{B}=6420, \text { hence } \\
& 62583.6 \log \frac{29.9}{B_{0}}=6420-6+80=-60
\end{aligned}
$$

Referring to Table 51 for the value of B_{0} corresponding to this, we find $B_{0}=29.966 \mathrm{in}$.

See " Example: (Metric Measures)," p. lii.
Let, the barometric reading (reduced to $\mathrm{o}^{\circ} \mathrm{C}$.),
the mean temperature of the air column,
the mean vapor pressure of the air column,
the latitude,
the altitude of the station,

$$
\begin{aligned}
& B=655.7 \mathrm{~mm} ., \\
& \theta=12.3 \mathrm{C} ., \\
& e=9 \mathrm{mmm.} \\
& \phi=32^{\circ}, \\
& Z=1379 \text { meters. }
\end{aligned}
$$

The equation for computing Z is simplified to the closely approximate form (from p. 1; for metric units)

$$
\begin{gathered}
18400\left(\log \frac{760}{B}-\log \frac{760}{B_{0}}\right)= \\
Z-Z\left[0.00367 \theta+0.378 \frac{e}{b}+(\gamma+\eta)+\frac{Z+2 h_{0}}{R}\right]
\end{gathered}
$$

where the terms are as defined on pp. xliv-xlvi.
Again calling the terms in the bracket $(a),(b),(c)$ and (d), respectively, to compute B_{0} we have:
from Table 59, with $Z=1379 \mathrm{~m}$. and $\theta=12^{\circ} \cdot 3 \mathrm{C} ., \quad Z(a)=62$
from Table 60, with $Z=1379 \mathrm{~m}$. and $e=9 \mathrm{~mm}$., $Z(b)=7$
from Table 62, with $Z=1379 \mathrm{~m}$. and $\phi=32^{\circ}, \quad Z(c)=5^{1}$
from Table 63 , with $Z=1379 \mathrm{~m}$. and $h_{0}=0$,
$\begin{array}{r}Z(d)=0 \\ \hline=7 t\end{array}$
Since $Z=1379 \mathrm{~m}$., we have

$$
18400\left(\log \frac{760}{B}-\log \frac{760}{B_{0}}\right)=1379-74=1305
$$

From Table 56 for $B=655.7 \mathrm{~mm}$., we have i $8400 \log \frac{760}{B}=$ II 79 , hence ェ $8400 \log \frac{760}{B_{0}}=$ ェ1 $79-$ I $305=-$ 126 .
Referring to Table 56 for the value of B_{0} corresponding to this, we find $B_{0}=772.1 \mathrm{~mm}$.

There are no difficulties connected with the use of these tables to reduce barometric readings to sea level, but serious difficulties are often encountered in attempting to determine θ and e from observations at the elevated station only (see pp. xxxiii and lxxii).

[^6]
TABLES FOR DETERMINING HEIGHTS, AND CONVERSIONS

 INVOLVING GEOPOTENTIAL.
THE HYPSOMETRIC FORMULA AND ITS CONSTANTS.

The fundamental formula for reducing the barometer to sea level and for determining heights by the barometer is the original formula of Laplace, amplified into the following form -
(I) $Z=K(\mathrm{I}+\alpha \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-0.3788_{\bar{b}}^{e}}\right)\left(\mathrm{I}+\frac{g_{0}-g_{i}}{g_{0}}\right)\left(\mathrm{I}+\frac{h+h_{0}}{R}\right) \log \frac{p_{0}}{p}$,
or, where g_{l}, the value of local gravity is unknown,

$$
\begin{equation*}
Z=K(\mathrm{I}+a \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-0.378_{\bar{b}}^{e}}\right)\left(\mathrm{I}+k \cos 2 \phi-k^{\prime} \cos ^{2} 2 \phi+\mathrm{C}\right)\left(\mathrm{I}+\frac{h+h_{0}}{R}\right) \log \frac{p_{0}}{p} \tag{2}
\end{equation*}
$$

in which $\quad h=$ Height of the upper station.
$h_{\circ}=$ Height of the lower station.
$Z=h-h_{0}$.
$p=$ Atmospheric pressure at the upper station.
$p_{0}=$ Atmospheric pressure at the lower station.
$R=$ Mean radius of the earth.
$\theta=$ Mean temperature of the air column between the altitudes h and h_{0}.
$e=$ Mean pressure of aqueous vapor in the air column.
$b=$ Mean barometric pressure of the air column.
$\phi=$ Latitude of the stations.
$K=$ Barometric constant.
$a=$ Coefficient of the expansion of air.
k and $k^{\prime}=$ Constants depending on the figure of the earth.

$$
\begin{aligned}
C & =\text { Constant }=\text { the ratio } \frac{g_{45^{\circ}}-g_{0}}{g_{0}} . \\
g_{0} & =\text { Standard value of gravity }=980.665 \text { dynes. } \\
g_{l} & =\text { Local value of gravity. }
\end{aligned}
$$

The pressures p_{0} and p are computed from the height of the column of mercury at the two stations; the ratio $\frac{B_{0}}{B}$ of the barometric heights may be substituted for the ratio $\frac{p_{0}}{p}$, if $B \circ$ and B are reduced to the values that would be measured at the same temperature and under the same relative value of gravity.

The correction of the observed barometric heights for instrumental temperature is always separately made, but the correction for the variation of gravity with altitude is generally introduced into the formula itself.

If B_{0}, B represent the barometric heights corrected for temperature only, we have the equation

$$
\frac{p_{0}}{p}=\frac{B_{0}}{B}\left(1+\mu \frac{Z}{R}\right),
$$

μ being a constant depending on the variation of gravity with altitude $\left(\frac{\mu}{R}=0.0000003\right)$, and

$$
\log \frac{p_{\circ}}{p}=\log \frac{B_{0}}{B}+\log \left(\mathrm{I}+\mu \frac{Z}{R}\right)
$$

Since $\frac{\mu Z}{R}$ is a very small fraction, we may write

$$
\text { Nap. } \log \left(1+\frac{\mu Z}{R}\right)=\frac{\mu Z}{R}, \text { and } \log \left(1+\frac{\mu Z}{R}\right)=\frac{\mu Z}{R} M
$$

M being the modulus of common logarithms.
By substituting for Z its approximate value $Z=K \log \frac{B_{0}}{B}$, we have

$$
\log \left(1+\frac{\mu Z}{R}\right)=\frac{\mu K}{R} M \log \frac{B_{0}}{B}
$$

With these substitutions the barometric formula becomes

$$
\begin{align*}
Z= & K(\mathrm{I}+a \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-0.378_{b}^{\frac{e}{b}}}\right)\left(\mathrm{I}+\frac{g_{0}-g_{l}}{g_{0}}\right)\left(\mathrm{I}+\frac{h+h_{\mathrm{o}}}{R}\right) \times \tag{I}\\
& \left(\mathrm{I}+\frac{\mu K}{R} M\right) \log \frac{B_{\circ}}{B}, \text { or }
\end{align*}
$$

(2) $Z=K(\mathrm{I}+\alpha \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-0.3-8_{b}^{e}}\right)\left(\mathrm{I}+k \cos 2 \phi-k^{\prime} \cos ^{2} 2 \phi+C\right)\left(\mathrm{I}+\frac{h+h_{0}}{R}\right) \times$

$$
\left(\mathrm{I}+\frac{\mu K}{R} M\right) \log \frac{B_{0}}{B}
$$

As a further simplification we shall put

$$
\beta=0.378 \frac{e}{b}, \gamma=k \cos 2 \phi-k^{\prime} \cos ^{2} 2 \phi+C \text { and } \eta=\frac{\mu K}{R} M
$$

and write for the second form, (2), the formula --

$$
Z=K(\mathrm{I}+\alpha \theta)\left(\frac{\mathrm{I}}{\mathrm{I}-\beta}\right)(\mathrm{I}+\gamma)\left(\mathrm{I}+\frac{h+h_{0}}{R}\right)(\mathrm{I}+\eta) \log \frac{B_{0}}{B}
$$

Values of the constants. - The barometric constant K is a complex quantity defined by the equation

$$
K=\frac{\Delta \times B_{n}}{\dot{\delta} \times M}
$$

B_{n} is the normal barometric height of Laplace, 760 mm .
Δ is the density of mercury at the temperature of melting ice. The value adopted by the International Meteorological Committee, and which has been employed in previous editions of these tables is $\Delta=13.5956$. The
most probable value, taking into account the recently determined relation between the liter and the cubic decimeter, ${ }^{1}$ is as already stated, $\Delta=13.595 \mathrm{I}$ and this value is here adopted.
δ is the density of dry air at $0^{\circ} \mathrm{C}$ under the pressure of a column of mercury B_{n} and under standard gravity. The value adopted by the International Bureau of Weights and Measures for air under the above conditions and free from CO_{2} is $\delta=0.0012928$ grams per cubic centimeter. ${ }^{2}$ This is in close agreement with the value ($\delta=0.00129278$) used in previous editions of these tables. For air containing 4 parts in 10000 of CO_{2} it gives a density of o.00129307, and for air containing 3 parts in 10000 of CO_{2}, the proportion adopted by Hann, ${ }^{3}$ it gives a density of 0.0012930I. Therefore, the value adopted for the density of air containing an average amount of CO_{2} is

$$
\delta=0.0012930
$$

M (Modulus of common logarithms) $=0.4342945$. These numbers give for the value of the barometric constant

$$
K=18400 \text { meters. }
$$

For the remaining constants, the following values have been used:
$\alpha=0.00367$ for I° Centigrade. (International Bureau of Weights and Measures: Travaux et Mémoires, t. I, p. A. 54.)
$\gamma=k \cos 2 \phi-k^{\prime} \cos ^{2} 2 \phi+C=0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi+$ 0.000045
$R=6367324$ meters. (A. R. Clarke: Geodesy, 8°, Oxford, i88o.)
$\eta=\frac{\mu K M}{R}=0.002396$. (Ferrel: Report Chief Signal Officer, 1885, pt. 2, pp. 17 and 393.)

TABLES 51, 52, 53, 54, 65 ,
THE DETERMINATION OF HEIGHTS BY THE BAROMETER.
Tables 51,52,53,54,55.

English Measures.

Since a barometric determination of the height will rarely be made at a place where g_{l} is known, the discussion which follows will be confined to the second form of the barometric formula developed in the preceding section (sce page xly). For convenience in computing heights it is arranged in the following form:

$$
Z=K\left(\log B_{\circ}-\log B\right)\left[\begin{array}{l}
(\mathrm{I}+\alpha \theta) \\
(\mathrm{I}+\beta) \\
\left(\mathrm{I}+k \cos 2 \phi-k^{\prime} \cos ^{2} 2 \phi+C\right)(\mathrm{I}+\eta) \\
\left(\mathrm{I}+\frac{Z+2 h_{\circ}}{R}\right)
\end{array}\right]
$$

[^7]in which $K\left(\log B_{\circ}-\log B\right)$ is an approximate value of Z and the factors in the brackets are correction factors depending respectively on the air temperature, the humidity, the variation of gravity with latitude, the variation of gravity with altitude in its effect on the weight of mercury in the barometer, and the variation of gravity with altitude in its effect on the weight of the air. With the constants already given, the formula becomes in English measures:
\[

Z(feet)=60368^{1}\left(\log B_{0}-\log B\right)\left[$$
\begin{array}{l}
{\left[\mathrm{I}+0.002039\left(\theta-32^{\circ}\right)\right]} \\
(\mathrm{I}+\beta) \quad \\
\left(\mathrm{I}+0.00264 \mathrm{o} \cos 2 \phi-0.000007 \cos ^{2} 2 \phi\right. \\
+0.000045)(\mathrm{I}+0.00239) \\
\left(\mathrm{I}+\frac{Z+2 h_{\mathrm{o}}}{R}\right)
\end{array}
$$\right]
\]

In order to make the temperature correction as small as possible for average air temperatures, $50^{\circ} \mathrm{F}$. will be taken as the temperature at which the correction factor is zero. This is accomplished by the following transformation:

$$
1+0.002039\left(\theta-32^{\circ}\right)=\left[1+0.002039\left(\theta-50^{\circ}\right)\right]\left[1+0.0010195 \times 36^{\circ}\right] .
$$

The second factor of this expression combines with the constant, and gives $60368\left(\mathrm{I}+0.0010195 \times 36^{\circ}\right)=62583.6$.

The first approximate value of Z is therefore

$$
62583.6\left(\log B_{0}-\log B\right) .
$$

In order further to increase the utility of the tables, we shall make a further substitution for $\log B_{\circ}-\log B$, and write

$$
62583.6\left(\log B_{0}-\log B\right)=62583.6\left(\log \frac{29.9}{B}-\log \frac{29.9}{B_{\circ}}\right) .
$$

Table 51 contains values of the expression

$$
62583.6 \log \frac{29.9}{B}
$$

for values of B varying by intervals of 0.01 inch from 12.00 inches to 30.90 inches.

The first approximate value of Z is then obtained by subtracting the tabular value corresponding to B_{\circ} from the tabular value corresponding to B (B and B_{\circ} being the barometric readings observed and corrected for temperature at the upper and lower stations respectively).

Table 52 gives the temperature correction

$$
Z \times 0.002039\left(\theta-50^{\circ}\right)
$$

[^8]The side argument is the mean temperature of the air column (θ) given for intervals of I° from 0° to $100^{\circ} \mathrm{F}$. The top argument is the approximate difference of altitude Z obtained from Table 5I.

For temperatures above $50^{\circ} \mathrm{F}$., the correction is to be added, and for temperatures below $50^{\circ} \mathrm{F}$., the correction is to be subtracted. It will be observed that the correction is a linear function of Z, and hence, for example, the value for $Z=1740$ is the sum of the corrections in the columns headed 1000,700 , and 40 .

In general, accurate altitudes cannot be obtained unless the temperature used is freed from diurnal variation.

Table 53 gives the correction for gravity, and for the effect of the variation of gravity with altitude on the weight of the mercury. When altitudes are determined with aneroid barometers the second factor does not enter the formula. In this case the effect of the latitude factor can be obtained by taking the difference between the tabular value for the given latitude and the tabular value for latitude $45^{\circ} 29^{\prime}$. The side argument is the latitude of the station given for intervals of 2°. The top argument is the approximate difference of height Z.

Table 54 gives the correction for the average humidity of the air at different temperatures. In evaluating the humidity factor as a function of the air temperature, the tables given by Prof. Ferrel have been adopted (Metcorological researches. Part iii. - Barometric hypsometry and reduction of the barometer to sea level. Report, U.S. Coast Survey, I88r. Appendix io.) These tables by interpolation, and by extrapolation below $o^{\circ} \mathrm{F}$., give the following values for β :

For Fahrenheit temperatures,

θ	β	θ	β	θ	β	θ	β
F.		F.		F.		F.	
-20°	0.00008	10°	0.00104	36°	0.00267	62°	0.00724
- 16	. 00020	12	. 00111	38	. 00293	64	. 00762
- 12	. 00032	14	.00118	40	. 00322	66	. 00801
- 8	. $000+4$	16	.00126	42	. 00353	68	. 00839
		18	. 00134	44	. 00386	70	. 00877
-6	0.00050	20	. 00143	46	. 0042 I	72	.00914
- 4	. 00056	22	. 00153	48	. 00458		
-2	. 00062	24	. 00163	50	. 00496	${ }_{7} 6$	0.00990
	. 00068	26	. 00174	52	. 00534	So	. 01065
$+2$. 00075	28	. 00187	54	. 00572	84	. OII4 1
	. 00082	30	. 00203	56	. 00610	88	. 01217
6	. 00089	32	. 00222	58	. 00648	92	. O1293
8	. 00006	34	. 00243	60	. 00686	96	. 01369

This correction could have been incorporated with the temperature factor in Table 52, but it is given separately in order that the magnitude of the correction may be apparent, and in order that, when the actual hu-
midity is observed, the correction may be computed if desircd, by the expression

$$
Z\left(0.378 \frac{e}{b}\right)
$$

where e is the mean pressure of vapor in the air column, and b the mean barometric pressure.

The side argument is the mean temperature of the air column, varying by intervals of 2° from $-20^{\circ} \mathrm{F}$. to $96^{\circ} \mathrm{F}$., except near the extremities of the table where the interval is 4°. The top argument is the approximate difference of altitude Z.

Table 55 gives the correction for the variation of gravity with altitude in its effect on the weight of the air. The side argument is the approximate difference of altitude Z, and the top argument is the elevation of the lower station h_{0}.

The corrections given by Tables 53, 54, and 55 are all additive.

Example:

Let the barometric pressure observed, and corrected for temperature, at the upper and lower stations be, respectively, $B=23.61$ and $B_{\circ}=29.97$. Let the mean temperature of the air column be 35° F., and the latitude $44^{\circ} 16^{\prime}$. To determine the difference of height.

Table 51, argument 23.61, gives	Feet. 6420
Table 51, " 29.97 ,	64
Approximate difference of height (Z)	$\overline{6484}$
Table 52, with $Z=6484$ and $\theta=35^{\circ} \mathrm{F}$, gives	- 198
Table 53, with $Z=6300$ and $\phi=44^{\circ}$, gives	+ 16
Table 54, with $Z=6300$ and $\theta=35^{\circ} \mathrm{F}$., gives	
Table 55, with $Z=6300$ and $h_{\circ}=0$, gives	
Final difference of height (Z)	= 632

If in this example the barometric readings be observed with aneroid barometers, the correction to be obtained from Table 53 will be simply the portion due to the latitude factor, and this will be obtained by subtracting the tabular value for $45^{\circ} 29^{\prime}$ from that for 44°, the top argument being $Z=6300$. This gives $16-15=1$.

Tables 56, 57, 58, 59, 60, 61, 62, 63.

Metric and Dynamic Measures.

The barometric formula developed on page xlvi is, in metric and dynamic units,
Z (meters $)=18400\left(\log B_{0}-\log B\right)\left[\begin{array}{l}(1+0.00367 \text { ol } C) \\ \left(1+0.378 \frac{e}{b}\right) \\ \left(1+0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi\right. \\ +0.000045)(1+0.00239) \\ \left(1+\frac{Z+2 h_{0}}{6367324}\right)\end{array}\right]$
The approximate value of Z (the difference of height of the upper and lower station) is given by the factor $18400\left(\log B_{\circ}-\log B\right)$. This expression is computed by means of two entries of a table whose argument is the barometric pressure. In order that the two entries may result at once in an approximate value of the elevation of the upper and lower stations, a transformation is made, which gives the following identities:
I $8400\left(\log B_{\circ}-\log B\right)=\mathrm{I} 8400\left(\log \frac{760}{B}-\log \frac{760}{B_{\circ}}\right)$ - Metric measures, and $18400\left(\log B_{\circ}-\log B\right)=18,00\left(\log \frac{1013.3}{B}-\log \frac{1013.3}{B_{0}}\right)$-Dynamic measures.

Table 56 gives values of the expression $18400 \log \frac{760}{B}$ for values of B varying by intervals of 1 mm . from 300 mm . to 779 mm . The first approximate value of Z is then obtained by subtracting the tabular value corresponding to B_{\circ} from the tabular value corresponding to B (B and B_{\circ} being the barometric readings observed and reduced to $0^{\circ} C$. at the upper and lower stations respectively). The first entry of Table 56 with the argument B gives an approximate value of the elevation of the upper station above sea level, and the second entry with the argument B ogives an approximate value of the elevation of the lower station.

Table 57 gives values of the expression $18400 \log \frac{1013.3}{b}$ for values of B varying by intervals of 1 mb . from o mb. to 1049 mb . The approximate value of Z is then obtained by subtracting the tabular value corresponding to B_{0} from the tabular value corresponding to B (B and B_{0} being the barometric readings observed and reduced to $0^{\circ} C$. at the upper and lower stations respectively). The first entry of Table 57 with the argument B gives an approximate value of the elevation of the upper station above sea level, and the second entry with the argument B_{\circ} gives an approximate value of the elevation of the lower station.

Table 58 gives the temperature correction factor, $a=0.00367 \theta$, for each tenth of a degree centigrade, from $0^{\circ} \mathrm{C}$. to $50.9^{\circ} \mathrm{C}$. To find the correction corresponding to any mean temperature of the air column, θ, multiply the approximate altitude as determined from Table 56 or 57 by the value of a obtained from this table, and add the result if θ is above $0^{\circ} C$.; subtract, if below $\mathrm{O}^{\circ} \mathrm{C}$.

Attention is called to the fact that the formula is linear with respect to θ, and hence that the correction, for example, for $59^{\circ} .8 \mathrm{C}$. equals the correction for $50^{\circ} .8$ plus the correction for 9° or $.186+.033=.219$, and is to be added.

Table 59 is an amplification of Table 58 and gives the temperature correction $0.00367 \theta \times Z$.

The side argument is the approximate difference of elevation Z and the top argument is the mean temperature of the air column. The values of Z vary by intervals of 100 m . from 100 to 4000 meters and the temperature varies by intervals of I° from $\mathrm{I}^{\circ} \mathrm{C}$. to $10^{\circ} \mathrm{C}$. with additional columns for $20^{\circ}, 30^{\circ}$, and $40^{\circ} \mathrm{C}$. This formula also is linear with respect to θ, and hence the correction, for example, for 27° equals the correction for 20° plus the correction for 7°. When the table is used for temperatures below $0^{\circ} \mathrm{C}$. the tabular correction must be subtracted from, instead of added to, the approximate value of Z.

Table 60 (pp. 148 and i49) gives the correction for humidity resulting from the factor $0.378 \frac{e}{b} \times Z=\beta Z$.

Page 148 gives the value of $0.378 \frac{e}{b}$ multiplied by 10000 . The side argument is the mean pressure of aqueous vapor, e, which serves to represent the mean state of humidity of the air between the two stations. $e=\frac{1}{2}\left(e_{\mathrm{I}}+e_{\mathrm{O}}\right)$ (e_{I} and e_{O} being the vapor pressures observed at the two stations) has been written at the head of the table, but the value to be assigned to e is in reality left to the observer, independently of all hypothesis. The top argument is the mean barometric pressure $\frac{1}{2}\left(B+B_{0}\right)$.

The vapor pressure varies by millimeters from 1 to 40 , and the mean barometric pressure varies by intervals of 20 mm . from 500 mm . to 760 mm . The tabular values represent the humidity factor β, or $0.378 \frac{e}{b}$, multiplied by IOOOO.

Page 149 gives the correction for humidity, with Z and $10000 \times 0.378 \frac{e}{b}$ (derived from page 148) as arguments.

The approximate difference of altitude is given by intervals of 100 meters from 100 to 4000 meters, with additional lines for 5000,6000 , and 7000 meters. The values of 10000β vary by intervals of 25 from. 25 to 300 . The tabular values are given in tenths of meters to facilitate and increase the accuracy of interpolation.

Table 61. Humidity correction: Value of $\frac{1}{2}\left(\frac{0.378 \frac{e}{b}}{0.00367}\right)$. It has been found advantageous to express the humidity term, βZ, as a correction to the temperature term, a θZ.

Let $a \Delta \theta Z=\beta Z$; then,

$$
\Delta \theta=\frac{\beta}{a}=\frac{0.378 \frac{e}{b}}{0.00367}
$$

For convenience in computing, the tabulated values of $\Delta \theta$ are for $\frac{1}{2}\left(\frac{0.378^{\frac{e}{b}}}{0.00367}\right)$. The side and top arguments are air and vapor pressures, respectively, in mm. on p. 150 and in mb. on p. 151. Instead of computing $\Delta \theta$ from the mean of the values of B and e at the upper and lower stations it is computed for each station separately, and the sum of the two determinations is added to θ.

Table 62 gives the correction for gravity, and for the effect of the variation of gravity with altitude on the weight of the mercurial column. When altitudes are determined with aneroid barometers the latter factor does not enter the formula. In this case the effect of the latitude factor can be obtained by subtracting the tabular value for latitude $45^{\circ} 29^{\prime}$ from the tabular value for the latitude in question.

The side argument is the approximate difference of elevation Z varying by intervals of 100 meters from 100 to 4000 , and by 500 meters from 4000 to 7000 . The top argument is the latitude, varying by intervals of 5° from o° to $75 .^{\circ}$

Table 63 gives the correction for the variation of gravity with altitude in its effect on the weight of the air.

The side argument is the same as in Table 62; the top argument is the height of the lower station, varying by intervals of 200 meters from o to 2000, with additional columns for 2500,3000 and 4000 meters.

The corrections given in Table 62 and Table 63 apply to the approximate heights computed from metric or dynamic measures by the use of Tables 56 to 61 , inclusive, and are additive.

Example: (Metric Measures.)

Let the barometric reading (reduced to $0^{\circ} \mathrm{C}$.) at the upper station be 655.7 mm .; at the lower station, 772.4 mm . Let the mean temperature of the air column be $\theta=12^{\circ} .3 \mathrm{C}$., the mean vapor pressure $e=$ 9 mm . and the latitude $\phi=32^{\circ}$.
Table 56 , with argument 655.7 , gives 1179 meters.
Table 56, " " 772.4, " - $\mathbf{1 2 9}$
Approximate value of $Z=1308$
Table 59, with $Z=1308$ and $\theta=12.3 C$, gives 59
Table 60, with $e=9 \mathrm{~mm}$. and $Z=1370$, gives 7

Table 62, with $Z=1370$ and $\phi=32^{\circ}$, gives 5
Table 63 , with $Z=1370$ and $h_{0}=0$, gives
o
Corrected value of $Z \quad=\overline{1379}$ meters.

Example: (Dynamic Measures.)

Let the barometer reading (reduced to $0^{\circ} \mathrm{C}$.) at the upper station be 448.6 mb .; at the lower station, 1000.3 mb . Let the vapor pres-
sure at the upper station be 2.4 mb .; at the lower station 7.3 mb . Let the mean temperature of the air column be $\theta=5^{\circ} 8 \mathrm{C}$. and the latitude $\phi=39^{\circ} 25^{\prime} \mathrm{N}$.
Table 57, with argument 448.6, gives 651 I meters.
Table 57, with argument 1000.3, gives ${ }^{1} \mathrm{O}_{4}$
Approximate value of $Z \quad \overline{6407}$ meters.
Table 6I, with arguments 449 and 2.4 gives $\Delta \theta=0.3$
Table 61, with arguments 1000 and 7.3 gives $\Delta \theta=0.4$
Table 58 , with $\theta=5^{\circ} 8+0^{\circ} .7=6{ }^{\circ} 5$, and $Z=6407$ gives $6.407 \times 0.024=$ I 54
Table 62 with $Z=656 \mathrm{I}$ and $\phi=39^{\circ} 25^{\prime}$, gives 19
Table 63 with $Z=6561$ and $h_{0}=0$, gives
Corrected value of Z $=\overline{6587}$ meters.

GEOPOTENTIAL: DYNAMIC HEIGHTS.

In accordance with the "Règlement " ${ }^{1}$ of the Commission Internationale de la Haute Atmosphère adopted at the meeting held in London in April, 1925, heights in all forms and publications of the International Commission are to be measured as " geopotentials " in " dynamic meters " above sea level.

The geopotential or gravity potential of a point is defined numerically as the value of the potential energy relative to sea level of a unit-mass situated at the point.

The application of geopotential as a measure of height becomes more evident when it is seen that surfaces of equal geopotential are identical with horizontal or level surfaces, and due to the geographical variation of gravity, they are not surfaces equally distant from sea level. In this regard it may be emphasized that energy is involved in displacing a mass of air from one position to another in which the potential energy of the mass is different, whereas the displacement of air may take place along horizontal or equigeopotential surfaces without the gain or expenditure of potential energy once the air is in a state of uniform motion. The latter statement, on the contrary, does not hold for surfaces of equal geometric height above sea level.

For the purposes of dynamical meteorology, in making comparisons of vertical positions, certain advantages are derived by defining the height of points above sea level in terms of geopotential. Heights measured in this way

[^9]are called " dynamic heights," after Prof. V. Bjerknes, ${ }^{1}$ and indicate relative potential energies of unit-mass. Thus, points of equal " dynamic height" lie in horizontal or geopotential surfaces.

The geopotential of a point, from the definition, is equal to the work done in lifting a unit-mass from sea level to the point, and is defined precisely by the expression:

$$
\begin{equation*}
\Gamma=-\int_{0}^{h} g d h \tag{I}
\end{equation*}
$$

where $\quad g=$ acceleration of gravity
and $\quad h=$ geometric height of the point above sea level.
The dimensions of geopotential in the absolute system are l^{2} / t^{2}. Following the proposal of Prof. Bjerknes, ${ }^{1}$ the unit of dynamic height is called the " dynamic meter" and has the magnitude $10 m^{2} / \mathrm{sec}^{2}$ where g is measured in m / sec^{2}, and h in meters.

The unit is chosen with this magnitude for convenience, since a change in elevation of one meter geometric height produces a change in dynamic height of approximately 98 per cent of one "dynamic meter," $i . e .$, within the range of the majority of present atmospheric observations.

CALCULATION OF DYNAMIC HEIGHTS.

Equation (I) may be solved by substituting in it Helmert's ${ }^{2}$ equation for the decrease of acceleration of gravity with height :

$$
\begin{equation*}
g=-\left(g_{\phi}-0.000003086 h\right) \tag{2}
\end{equation*}
$$

where
$g_{\phi}=$ acceleration of gravity below given point at sea level, in m / sec^{2}.
$g=$ acceleration of gravity at point whose elevation is h above sea level.
$h=$ geometric height in meters, above sea level.
The minus sign is used because gravity is directed downwards and heights are measured upwards positively.

Equation (I) becomes:

$$
\begin{equation*}
H_{d}=\frac{\mathrm{I}}{\mathrm{IO}} \int_{0}^{h}\left(g_{\phi}-0.000003086 h\right) d h \tag{3}
\end{equation*}
$$

where $H_{d}=$ dynamic height, in dynamic meters.

[^10]The factor $\frac{I}{I O}$ is substituted in eq. (I) to convert to units of dynamic height in dynamic meters ($10 \mathrm{~m}^{2} / \mathrm{sec}^{2}$).

Integrating (3), we obtain

$$
\begin{equation*}
H_{d}=\frac{g_{\phi}}{10} h-\mathrm{I} .543 \times \mathrm{IO}^{-7} h^{2} \tag{4}
\end{equation*}
$$

For a first approximation, we may neglect the term in h^{2} and take $g_{\phi}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$,
whence
and (6)

$$
\begin{align*}
H_{d} & =0.98 h, \text { approximately } \tag{5}\\
h & =\mathrm{I} .02 H_{d}, \text { approximately. }
\end{align*}
$$

Geometric heights (h) may be expressed in terms of dynamic heights $\left(H_{d}\right)$ by a convenient approximate relationship.

Substituting (6) in the h^{2} term of (4) we obtain

$$
\begin{equation*}
h=\frac{10}{g_{\phi}} H_{d}+\frac{1 \mathrm{O}}{g_{\phi}} \mathrm{I} \cdot 543(\mathrm{I} . \mathrm{O})^{2} \cdot \mathrm{IO}^{-\tau} \cdot H_{d}^{2} \tag{7}
\end{equation*}
$$

which is simplified for computation by taking 9.8062 as g_{ϕ} in the second term, this being the mean value at latitude 45° and sea level.

Thus (7) becomes

$$
\begin{equation*}
h=\frac{10}{y_{\phi}} H_{d}+\mathrm{I} .63 j \times \mathrm{Io}^{-7} H_{d}^{2} \text { approximately. } \tag{8}
\end{equation*}
$$

We are indebted to Prof. V. Bjerknes and his collaborators for the above formulation, and for tables $6_{4}, 6_{5}, 6_{7}$ and 68 , which are copied directly from their " Dynamical Meteorology and Hydrography." ${ }^{1}$

DESCRIPTION AND USE OF TABLES 64 TO 68 INCLUSIVE.

The purpose of these tables is to convert from geometric heights to dynamic heights and vice versa. Tables 64,65 , and 66 are used to convert geometric meters to dynamic meters. Tables 66,67 , and 68 are used to convert dynamic meters to geometric meters.

TABLE 64. Heights reduced from meters to dynamic meters, the acceleration of gravity at sea lcvel bcing 9.So.
This table, computed by means of equation (4) above, makes possible the reduction of geometric heights to dynamic heights, the acceleration of gravity at sea level being $9.80 \mathrm{~m} / \mathrm{sec}^{2}$. In this table the side argument is geometric height above sea level by intervals of 1000 m ., and the top argument is geometric height by intervals of 100 m . The proportionality table at the foot of the main table makes it possible to obtain dynamic heights corresponding to any integral number of geometric meters from o to 30,000 .

[^11]Table 65. Corrections to Table 64 for values of the acceleration of grazity at sea level different from 9.80.
This table is computed from a modification of equation (4) arranged to give the increments of dynamic height corresponding to changes in g_{ϕ} from $9.80 \mathrm{~m} / \mathrm{sec}^{2}$. This form is $H_{d}=\left(0.980 h_{l}-\mathrm{I} .5+3 \times \mathrm{IO}^{-7} h^{2}\right)+\frac{g_{\phi}-9.80}{\mathrm{IO}} h$ the latter factor being the increment.

Corrections obtained from this table are applied to values obtained from Table 64 for stations whose latitude is such that g_{ϕ} differs from $9.80 \mathrm{~m} / \mathrm{sec}^{2}$. The side argument here is geometric height by intervals of 1000 m . and the top argument is g_{ϕ}, the acceleration of gravity at sea level. Interpolations must be made for geometric heights which are not in even km. and for values of g_{ϕ} which lie between the values given at the top.

Table 66. Normal value of the acceleration of gravity at sea level.
This table has been computed by means of the U. S. Coast and Geodetic Survey Formula

$$
g_{\phi}=9.80621\left(\mathrm{I}-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right)
$$

where
$g_{\phi}=$ normal value of acceleration of gravity in m / sec^{2} at latitude ϕ at sea level. and $\phi=$ latitude in degrees.
The side argument is latitude by intervals of 10°, and the top argument is latitude by unit degrees from o to 9 . Thus the value of g_{ϕ} may be obtained for every degree of latitude. For stations whose latitude cannot be expressed in whole degrees, interpolations may be made for fractional parts of degrees, or reference may be made to Table go.

Table 67. Heights reduced from dynamic meters to geometric meters, the accelcration of gravity being 9.So.
This table, computed by means of equation (8) converts dynamic heights to geometric heights, where $g_{\phi}=9.80 \mathrm{~m} / \mathrm{sec}^{2}$. The side argument is dynamic height by intervals of 1000 dynamic meters and the top argument is dynamic height by intervals of 100 dynamic meters. A proportionality table is added as in Table 64.

Table 68. Corrcctions to Table 67 for values of the acceleration of gravity at sea level different from 9.80.
This table is computed from a modification of equation (8). The modified form employed is

$$
\begin{equation*}
h=\left(\frac{10}{9.80} H_{d}+1.637 \times 10^{-7} H_{d}^{2}\right)+\frac{9.80-g_{\phi}}{0.98 g_{\phi}} H_{d} \tag{8a}
\end{equation*}
$$

Table 67 represents values obtained from the expression within the parentheses and Table 68 represents values computed from the latter factor, taking $0.98 g_{\phi}$ as equal to 9.60 for a close approximation of the denominator. This table thus gives increments of geometric height which are applied as corrections to values obtained from Table 67 for stations whose acceleration of gravity at sea level differs from 9.80 . The side argument is dynamic height by intervals of 1000 dynamic meters and the top argument is g_{ϕ}, acceleration of gravity, by intervals of $0.01 \mathrm{~m} / \mathrm{sec} .^{2}$ Interpolations must be made for dynamic heights which are not in even thousands and for values of g_{ϕ} lying between those given at the top.

Table 69. Difference of height corresponding to a change of O.I inch in the barometer-English measures.

If we differentiate the barometric formula, page xlvii, we shall obtain, neglecting insensible quantities,

$$
d Z=-2628 \mathrm{I} \frac{d B}{B}\left(\mathrm{I}+0.002039\left(\theta-32^{\circ}\right)\right)(\mathrm{I}+\beta),
$$

in which B represents the mean pressure of the air column $d Z$.
Putting $d B=0.1$ inch,

$$
d Z=-\frac{262 S . \mathrm{I}}{B}\left(\mathrm{I}+0.002039\left(\theta-32^{\circ}\right)\right)(\mathrm{I}+\beta)
$$

The second member, taken positively, expresses the height of a column of air in feet corresponding to a tenth of an inch in the barometer under standard gravity. Since the last factor $(I+\beta)$, as given on page xlviii, is a function of the temperature, the function has only two variables and admits of convenient tabulation

Table 69 , containing values of $d Z$ for short intervals of the arguments B and θ, has been taken from the Report of the U. S. Coast Survey, I88i, Appendix 10,-Barometric hypsometry and reduction of the barometer to sea level, by Wm. Ferrel. ${ }^{1}$

The temperature argument is given for every 5° from $30^{\circ} \mathrm{F}$. to $85^{\circ} \mathrm{F}$., and the pressure argument for every 0.2 inch from 22.0 to 30.8 inches.

This table may be used in computing small differences of altitude, and, up to a thousand feet or more, very approximate results may be obtained.

[^12]Example:
Mean pressure at Augusta, October, I891, 29.94; temperature, $\quad 60^{\circ} .8 \mathrm{~F}$.
Mean pressure at Atlanta, October, I891, 28.97; temperature, $\quad 59^{\circ} 4$
Mean pressure of air column $\quad B=29.455 ; \quad \theta=60^{\circ} . \mathrm{I}$
Entering the table with 29.455 and 60°. as arguments, we take out 94.95 as the difference of elevation corresponding to a tenth of an inch difference of pressure. Multiplying this value by the number of tenths of inches difference in the observed pressures, viz. 97, we obtain the difference of elevation 921 feet.

TABLE 70.
Table 70. Difference of height corresponding to a change of one millimeter in the barometer - Metric measures.
This table has been computed by converting Table 69 into metric units. The temperature argument is given for every 2° from $-2^{\circ} \mathrm{C}$. to $+36^{\circ} \mathrm{C}$.; the pressure argument is given for $10-\mathrm{mm}$. intervals from 760 to 560 mm .

TABLE 71.
Table 71. Babinet's formula for determining heights by the barometer.
Babinet's formula for computing differences of altitude ${ }^{1}$ represents the formula of Laplace quite accurately for differences of altitude up to 1000 meters, and within one per cent for much greater altitudes. As it has been quite widely disseminated among travelers and engineers, and is of convenient application, the formula is here given in English and metric measures. It might seem desirable to alter the figures given by Babinet so as to conform to the newer values of the barometrical constants now adopted; but this change would increase the resulting altitudes by less than one-half of one per cent without enhancing their reliability to a corresponding degree, on account of the outstanding uncertainty of the assumed mean temperature of the air.

The formula is, in English measures,

$$
Z(\text { feet })=52494\left[\mathrm{I}+\frac{t_{0}+t-64^{\circ}}{900}\right] \frac{B_{0}-B}{B_{0}+B}
$$

and in metric measures,

$$
Z \text { (meters })=\mathrm{I} 6000\left[\mathrm{I}+\frac{2\left(t_{\circ}+t\right)}{1000}\right] \frac{B_{\circ}-B}{B_{\circ}+B}
$$

in which Z is the difference of elevation between a lower and an upper station at which the barometric pressures corrected for all sources of instrumental error are B_{\circ} and B, and the observed air temperatures are t_{0} and t, respectively.

For ready computation the formula is written

$$
Z=C \times \frac{B_{\circ}-B}{B_{\circ}+B},
$$

[^13]and the factor C, computed both in English and metric measures, has been kindly furnished by the late Prof. Cleveland Abbe. The argument is $\frac{1}{2}\left(t_{0}+t\right)$ given for every 5° Fahrenheit between 10° and $100^{\circ} F$., and for every 2° Centigrade between - 10° and 36° Centigrade.

In using the table, it should be borne in mind that on account of the uncertainty in the assumed temperature, the last two figures in the value of C are uncertain, and are here given only for the sake of convenience of interpolation. Consequently one should not attach to the resulting altitudes a greater degree of confidence than is warranted by the accuracy of the temperatures and the formula. The table shows that the numerical factor changes by about one per cent of its value for every change of five degrees Fahrenheit in the mean temperature of the stratum of air between the upper and lower stations; therefore the computed difference of altitude will have an uncertainty of one per cent if the assumed tempcrature of the air is in doubt by $5^{\circ} \mathrm{F}$. With these precautions the observer may properly estimate the reliability of his altitudes whether computed by Babinet's formula or by more elaborate tables.

Example:

Let the barometric pressure observed and corrected for temperature at the upper and lower stations be, respectively, $B=635 \mathrm{~mm}$. and $B_{0}=730 \mathrm{~mm}$. Let the temperatures be, respectively, $t=15^{\circ} \mathrm{C}$., $t_{0}=20^{\circ} C$. To find the approximate difference of height.
With $\frac{1}{2}\left(t_{0}+t\right)=\frac{20^{\circ}+15^{\circ}}{2}=17^{\circ} .5 \mathrm{C}$., the table in metric measures gives

$$
C=17120 \text { meters. } \frac{B_{0}-B}{B_{0}+B}=\frac{95}{1365} .
$$

The approximate difference of height $=17120 \times \frac{95}{1365}=1191.5$ meters.

THERMOMETRICAL MEASUREMENT OF HEIGHTS BY OESERVATION OF THE TEMPERATURE OF THE BOILING POINT OF WATER.

When water is heated in the open air, the elastic force of its vapor gradually increases, until it becomes equal to the incumbent weight of the atmosphere. Then, the pressure of the atmosphere being overcome, the steam escapes rapidly in large bubbles and the water boils. The temperature at which water boils in the open air thus depends upon the weight of the atmospheric column above it, and under a less barometric pressure the water will boil at a lower temperature than under a greater pressure. Now, as the weight of the atmosphere decreases with the elevation, it is obvious that, in ascending a mountain, the higher the station where an observation is made, the lower will be the temperature of the boiling point.

The difference of elevation between two places therefore can be de-
duced trom the temperature of boiling water observed at each station. It is only necessary to find the barometric pressures which correspond to those temperatures, and from these to compute the difference of height by the tables given herein for computing heights from barometric observations.

From the above, it may be seen that the heights determined by means of the temperature of boiling water are less reliable than those deduced from barometric observations. Both derive the difference of altitude from the difference of atmospheric pressure. But the temperature of boiling water is a less accurate measurement of the atmospheric pressure than is the height of the barometer. In the present state of thermometry it would hardly be safe, indeed, to rely, in the most favorable circumstances, upon quantities so small as hundredths of a degree, even when the thermometer has been constructed with the utmost care; moreover, the quality of the glass of the instrument, the form and substance of the vessel containing the water, the purity of the water itself, the position at which the bulb of the thermometer is placed, whether in the current of the steam or in the water, - all these circumstances cause no inconsiderable variations to take place in the indications of thermometers observed under the same atmospheric pressure. Owing to these various causes, an observation of the boiling point, differing by one-tenth of a degree from the true temperature, ought to be still admitted as a good one. Now, as the tables show, an error of one-tenth of a degree Centigrade in the temperature of boiling water would cause an error of 2 millimeters in the barometric pressure, or of from 70 to 80 feet in the final result, while with a good barometer the error of pressure will hardly ever exceed one-tenth of a milimeter, making a difference of 3 feet in altitude.

Notwithstanding these imperfections, the hypsometric thermometer is of the greatest utility to travellers and explorers in rough countries, on account of its being more conveniently transported and much less liable to accidents than the mercurial barometer. A suitable form for it, designed by Regnault (Annales de Chimie et de Physique, Tome xiv, p. 202), consists of an accurate thermometer with long degrees, subdivided into tenths. For observation the bulb is placed about 2 or 3 centimeters above the surface of the water, in the steam arising from distilled water in a cylindrical vessel, the water being made to boil by a spirit-lamp.

TABLES 72, 73
Barometric pressures at standard gravity corresponding to the temperature of boiling water.

Table 72. English Measures.
Table 73. Metric Measures.
Table 72 is copied directly from Table 75. The argument is the temperature of boiling water for every tenth of a degree from 185° o to $214^{\circ} \cdot 9$ Fahrenheit. The tabular values are given to the nearest o.oor inch.

Table 73 is copied directly from Table 77. The argument is given for every tenth of a degree from $80^{\circ} .0$ to 100.9 C . The tabular values are given to the nearest 0.01 mm .

HYGROMETRICAL TABLES.

PRESSURE OF SATURATED AQUEOUS VAPOR.

In former editions of these tables the values of aqueous vapor pressures at temperatures between -29° and $100^{\circ} \mathrm{C}$. were based upon Broch's reduction of the classic observations of Regnault. (Travaux et Mémoires du Bureau international des Poids et Mesures, t. I, p. A 19-39). In these computations the same continuous mathematical function was employed to calculate the values of vapor pressure both above and below the point of change of state on freezing. This resulted in a systematic disagreement between observed and computed vapor pressures below the freezing point, and confirmed the inference from the laws of diffusion following from the kinetic theory of gases, namely, that the pressure of the vapor is different according as it is in contact with its liquid or its solid.

Seeking to remove the uncertainty of the values of vapor pressures at temperatures below freezing, Marvin (Annual Report Chief Signal Officer, 1891, Appendix No. io) made direct experimental determinations thereof, in the course of which the specimens of water were cooled to temperatures of from -10° to $-12^{\circ} \mathrm{C}$. while still retaining the liquid state, thus affording opportunity for measurements of vapor pressure over ice and over water at various temperatures below the freezing point. The results of these investigations, confirmed by similar independent studies by Juhlin, were printed in the third revised edition of these tables.

Since 1907, especially, several extended series ${ }^{1}$ of entirely new determinations, together covering the whole range of temperature from $-70^{\circ} \mathrm{C}$. to $+374^{\circ}$ C., have been made at the Physikalische-Technischen Reichsanstalt. Because of the elaborate instrumental means available and the extreme effort to eliminate all possible errors these results may be presumed to represent the most accurate series of experimental values of this important physical datum available to science.

Hitherto no satisfactory mathematical equation has been offered adequate to give computed values of vapor pressures with an order of precision comparable to the systematic self consistency of the observations

[^14]themselves. This is particularly the case with the more recent data over the whole range of temperature from o° to the critical temperature at about 374° Centigrade. Two remedies have been utilized to overcome this difficulty. First, the employment of separate equations of interpolation adjusted to fit the observations accurately over a short range of temperature, 0° to 100° for example, as in the case of Broch's computations. (It has already been mentioned that theory requires the function for vapor pressures over ice to differ from the one for pressures over water, so that the values for ice offer no difficulty.) The second remedy sometimes employed consists in fitting any reasonably accurate equation as closely as possible to the observations. The differences between the observed and computed values are then charted and a smooth curve drawn by hand through the points thus located. This method has been employed notably by Henning ${ }^{1}$ and others, using an empirical equation proposed by Thiesen.

For the purpose of these tables Marvin has found it possible from among a multitude of equations to develop a modification of the theoretical equation of Van der Waals which fits the whole range of observations much better than any hitherto offered and with an order of precision quite comparable to the data itself. In fact, the equation serves to disclose inconsistencies in the observations, more particularly between 50° and $80^{\circ} C$., which seem to suggest the need for further experimental determination of values possibly over the range between 0° and 100°.

Although it is not difficult to show, as Cederberg ${ }^{2}$ has done, that the simple form of general theoretical equation for all vapors developed by Van der Waals is inadequate to represent experiments on water vapor with sufficient accuracy for practical rquirements, nevertheless a somewhat simple elaboration of its single constant suffices to remove this limitation in a very satisfactory manner.

The resulting equation is:
(1) $\log e=\log \pi-\left[A-b X+m X^{2}-n X^{3}+s Y^{4}\right] \frac{\theta-T}{T}$, where $X=\frac{T-453}{10}$.

The quantity within the square brackets in this equation replaces a single term of the Van der Waals equation which was regarded by him as a constant.

In Van der Waals's original equation π and θ are respectively the critical pressure and temperature (absolute). In the present state of physical science, and from the very nature of the data, these quantities cannot be evaluated exactly. Moreover it is unnecessary to do so for the mere purpose of accurately fitting a mathematical curve to the observational data,

[^15]because the same result is attained by simply passing the curve through a point more accurately known and as near as may be to the critical point. This is equivalent to defining π and θ by an "equation of condition." Another "equation of condition" fixes the pressure at the boiling point which by definition must be 760 mm . From the considerations given on page xv computations are greatly facilitated by taking all temperatures on the approximate absolute scale represented by $T=273 \times t^{\circ}$.

A careful preliminary analysis of the observational data in the vicinity of the critical temperature resulted in assigning values to θ and π as follows :

$$
\theta=643^{\circ}, \log \cdot \pi=5.1959000
$$

It is emphasized here again that these data do not represent critical temperature conditions, but simply a convenient point on the pressure curve slightly below the critical temperature, the value of which is fixed with considerable accuracy by the observational data.

The value of the constant A was fixed by the equation of condition, $e=760 \mathrm{~mm}$. when $T=373(X=-8)$. The remaining constants $(\mathrm{b}, \mathrm{m}, \mathrm{n}, \mathrm{s})$ are computed by the method of least squares. The results are as follows:

$$
\begin{aligned}
A & =3 \cdot 1443172 \\
b & =.00295944 \\
m & =.000+191398 \\
n & =.0000001829924 \\
s & =.00000008243516
\end{aligned}
$$

The number of significant figures in the constants is obviously greater than the accuracy of the data justifies, but is justified to facilitate computation and to secure accuracy in the interpolation of values which should themselves be as accurate as the data.

Observations of the pressure of aqueous vapor over ice have not been as numerous as those over water. Among the observations which have been used in recent times for the development of formulas to express the values of vapor pressures over ice there may be mentioned those of K. Scheel and W. Heuse ${ }^{1}$ at the Physikalisch-Technischen Reichsanstalt at Charlottenburg, those of W. Nernst ${ }^{2}$ at the Physikalisch-Chemischen Institut of the University of Berlin, and those of S. Weber ${ }^{3}$ at the Physical Laboratory of the Uni-

[^16]versity of Leiden. M. Thiesen, ${ }^{1}$ making use of the data of Scheel and Heuse, has developed a formula for vapor pressures over ice. This is given by the equation,
\[

$$
\begin{equation*}
\log _{10} e=\log _{10} e_{0}+9.632(\mathrm{I}-0.00035 t) \frac{t}{T} \tag{2}
\end{equation*}
$$

\]

where

$$
e_{0}=4.5785 \text { and } T=273+t,
$$

the vapor pressures, e, being in millimeters and temperatures, t, in degrees Centigrade.

For convenience in computing this equation, for metric units it may be written

$$
\begin{equation*}
\log _{10} e=0.66072+\left(\frac{9.632-0.0033712 t}{273+t}\right) t . \tag{3}
\end{equation*}
$$

For English units the equation becomes

$$
\begin{align*}
& \log _{10} e_{1}=\overline{\mathrm{I}} .255888+\left(\frac{9.69193-0.00187289 t_{1}}{459 \cdot 4+t_{1}}\right)\left(t_{1}-32\right) \tag{4}\\
& e=\text { vapor pressure in millimeters. } \\
& e_{1}=\text { vapor pressure in inches. } \\
& t=\text { degrees Centigrade. } \\
& t_{1}=\text { degrees Fahrenheit. }
\end{align*}
$$

Although the Scheel and Heuse observations extended down to $-67^{\circ} 9 \mathrm{C}$., the pressure readings between $-60^{\circ} \mathrm{C}$. and that temperature were not very accurate, being discarded by Thiesen ${ }^{1}$ in obtaining the constants in equation (2).

Nernst has made determinations of vapor pressure down to at least $-50^{\circ} \mathrm{C}$., good agreement being found with Scheel and Heuse's measurements. By making use of accurate determinations of the heat of vaporization of ice at o. C., and attributing the deviations of water vapor from the gas laws to the existence of double water molecules ${ }^{2}$ Nernst with the collaboration of H. Levy has found for the vapor pressure over ice the formula

$$
\begin{equation*}
\log _{10} e=-\frac{2611.7}{T}+1.75 \log _{10} T-0.00210 T+6.5343, \tag{5}
\end{equation*}
$$

where $\quad e=$ vapor pressure in mm. of mercury and $\quad T=273.09+t$
$t=$ degrees Centigrade.
This formula has been checked by the accurate determinations of Weber the results of whose observations show good agreement with the values

[^17]calculated therefrom between the highest temperature at which he made observations, $-22.75^{\circ} \mathrm{C}$., and $-96^{\circ} \mathrm{C}$. Below the latter temperature the agreement does not appear so good. Comparisons between Weber's data and the values calculated by means of Thiesen's formula indicate that the latter formula most probably gives values which are slightly too high above $-40^{\circ} \mathrm{C}$., and slightly too low below that temperature.

Nernst ${ }^{1}$ has also developed a more complicated formula than (5), making use of Pollitzer's quantum-formula for the specific heat of ice. The agreement with Weber's data in this case is not quite as good on the whole as in the case of equation (5), and therefore it is not given here.

More recently, E. W. Washburn ${ }^{2}$ has developed a formula for the vapor pressure over ice, making use of Scheel and Heuse's, and Weber's observational data. Tables computed on the basis of this formula have been published in the Monthly Weather Review ${ }^{2}$ and in the International Critical Tables. ${ }^{3}$ Formula (5) gives slightly better agreement with the Weber data than does the last formula referred to. Further determinations are necessary to settle the question as to the most representative equation, especially within the range of temperatures between $0^{\circ} \mathrm{C}$. and $-20^{\circ} \mathrm{C}$. Some work has been done by Holborn, Scheel, and Henning ${ }^{4}$ to correct the values of Scheel and Heuse between $0^{\circ} \mathrm{C}$. and $-50^{\circ} \mathrm{C}$.

Table 76 has been computed by means of Thiesen's formula (3), from $0^{\circ} C$. to $-49^{\circ} .5 \mathrm{C}$. inclusive, and by means of Nernst's formula (5), from $-50^{\circ} \mathrm{C}$. to $-70^{\circ} \mathrm{C}$. inclusive.

The vapor pressures in the tables here given are expressed in standard manometric units.

TABLE 74.
Table 74. Pressure of aqueous vapor over ice. English measures.
The pressure, computed by equation (4) above, are given to 0.0000 I inch for each degree of temperature from -60° to -15°, for each half degree from -I5 to $\pm 0^{\circ}$, and for each tenth of a degree from $\pm 0^{\circ} .0$ to $+32^{\circ}$.

TABLE 75.
Table 75. Pressure of aqueous vapor over water. English measures.
This table has been computed by converting Table 77 into English units. The temperature argument is given for every 0.1 from 32.0 to 214.9 F. The vapor pressures are to 0.0001 inch from 32.0 to $130^{\circ} .9 \mathrm{~F}$., and to 0.001 inch from 130.0 to $214^{\circ} 9 \mathrm{~F}$.

[^18]Table 76. Pressure of aqueous vapor over ice. Metric measures.
The pressures, given to the nearest 0.000 I mm., are computed by Nernst's Formula (5), above, for each degree of temperature from -70° to -50° inclusive, and by Thiesen's Formula (3), above, for each half degree from $-49^{\circ} .5$ to -35° inclusive, and each tenth of a degree from -36° o to ± 0.0.

TABLE 77.
Table 77. Pressure of aqueous vapor over water. Metric measures.
The pressures, computed by equation (i) above, are given for each tenth of a degree to 0.001 mm . from $0^{\circ} .0$ to $59^{\circ} 9$, and to o.OI mm. from 50°. o to $100^{\circ} .9$. They are given for each degree to 0.1 mm . from 100° to 189°, and in millimeters from 190° to 374°.

TABLE 78
Table 78. Pressure of aqueous vapor over ice. Dynamic measures.
The pressures given in Table 78 , in millibars, have been obtained by multiplying the pressures given in Table 76, in millimeters, by I.333224, the value of one millimeter in millibars (see page xxii). The values are given for each tenth of a degree between $-70^{\circ} \mathrm{C}$. and $0^{\circ} \mathrm{C}$., inclusive. It may be noted as in the case of Table 76 that the values between temperatures $-50^{\circ} \mathrm{C}$. and $-70^{\circ} \mathrm{C}$. inclusive have been obtained by means of the Nernst Formula for the vapor pressure over ice (equation (5), p. lxiv), whereas the values between $-50^{\circ} \mathrm{C}$. and $0^{\circ} \mathrm{C}$. have been obtained by means of the Thiesen Formula (equation (3), p. lxiv). Over the range of temperatures between $-50^{\circ} \mathrm{C}$. and $-36^{\circ} \mathrm{C}$., the values for tenths of degrees have been obtained by linear interpolation between whole degrees and half degrees.

Table 79. Pressure of aqueous vapor over water. Dynamic measures.
Similarly, the vapor pressures in Table 79, in millibars, have been obtained by multiplying the pressures given in Table 77 by 1.333224 , and are given for each tenth of a degree between $0^{\circ} \mathrm{C}$. and $44^{\circ} \cdot{ }^{\circ} \mathrm{C}$., inclusive.

TABLES 80:81.
Table 80. Weight of a cubic foot of saturated aqueous vapor. English measures.
Table 81. Weight of a cubic meter of saturated aqueous vapor. Metric measures.
For many years it has been customary to assume that the specific gravity of water vapor relative to dry air is a constant whose theoretical value computed from the accurately known densities of its constituent gases is 0.622 I . Direct experimental determinations of the specific volume of dry saturated steam (as yet but few observations are available at moderate temperatures) show conclusively (I) that this theoretical specific gravity is true only for saturated vapor at very low temperatures or when the vapor is in a very attenuated state of partial saturation; (2) that at increasingly higher temperatures the specific gravity is increasingly greater than 0.6221 . These assertions are in accord with the values of weight per cubic foot of
water vapor tabulated by Marks \& Davis ${ }^{1}$ from the most recent determinations of the specific volume of water vapor. However, owing to the paucity of data, and its inaccuracy for the range of atmospheric temperatures and conditions, the values derived from densities given by Marks and Davis between 10° and 50° are probably too low and require revision. The basis on which this assertion is made is the generalization that the theoretical value 0.6221 is probably a minimum specific gravity towards which actual values asymptotically tend at low temperature and low relative humidity in the meteorological sense, or high super heats in the steam engincering sense. This generalization affords a very helpful "control" in harmonizing and combining experimental determinations of specific volume. It was thus employed in a recomputation, from the original experimental data on specific volumes, of the accompanying table of specific gravities, d, of saturated water vapor.

$T .\left(C^{0}\right)$	d	$T .\left(C^{\circ}\right)$	d
-60	0.6226	60	0.6273
50	0.6227	70	0.6283
40	0.6229	80	0.6296
30	0.6230	90	0.6311
20	0.6232	100	0.6329
-10	0.6235	110	0.6351
± 0	0.6238	120	0.6377
+10	0.6241	130	0.6408
20	0.6246	140	0.6446
30	0.6251	150	0.6491
40	0.6257	160	0.6545
50	0.6264	170	0.6609
		180	0.6687

The weight of a cubic meter of saturated vapor is given by the expression

$$
W=\frac{d \cdot \delta}{1+a t} \cdot \frac{e}{760},
$$

δ is the weight of a cubic meter of dry air (free from carbonic acid) at temperature $0^{\circ} \mathrm{C}$., and pressure of 760 millimeters of mercury of standard density under standard gravity: $\delta=1.2928 \mathrm{~kg}$. (Bureau International des Poids et Mesures: Travaux et Mémoires, t. I, p. A 54.)
d is the density of aqueous vapor relative to dry air: $d=0.622$ I.
While, as stated above, there is reason for believing that this value is too low, for atmospheric temperatures the error is less than one per cent. For practical work in meteorology and at moderate temperatures, it seems best to retain the theoretical value until the actual value has been determined

[^19]with greater accuracy. For all important calculations except those at low temperatures the values of d in the Table on page lxvii should be employed.
c is the pressure of saturated aqueous vapor at temperature t, taken from Tables 76 and 77.
a is the coefficient of expansion of air for $C^{3}: a=0.003670$.
t is the temperature in Centigrade degrees.
Whence we have
$$
W^{\prime}(\text { grams })={ }^{1} \mathrm{I} .05821 \times \frac{e}{1+0.003670 t} .
$$

Table 81 is computed from this formula and gives the weight of saturated vapor in grams in a cubic meter for dew-points from -70° to $+40^{\circ} 9 \mathrm{C}$., the intervals from -35° to $40^{\circ} 9 \mathrm{C}$., being 0.1 C . The tabular values are given to three decimals for temperatures above $-41^{\circ} \div$, and to four decimal places for temperatures below -41.5 .

The weight W_{1} of a cubic foot of saturated vapor is obtained by converting the foregoing constants into English measures.

The weight of a cubic foot of dry air at temperature $32^{\circ} F$. and at a pressure of 760 mmn . or 29.921 inches is

We have therefore,

$$
\delta_{1}(\text { grains })=\frac{1292.78 \times 15.4 .323 .5}{(3.280833)^{3}}={ }^{2} 564.94 .
$$

W_{1} (grains) $=\frac{\delta_{1} d}{29.92 \mathrm{I}} \times \frac{c_{1}}{1+a_{1}\left(t_{1}-32^{\circ}\right)}={ }^{3}$ I I. $7+59 \frac{c_{1}}{1+0.002039\left(t_{1}-32^{\circ}\right)}$
The temperature t_{1} is expressed in degrees Fahrenheit; the vapor pressure e_{1}, expressed in inches, is obtained from Tables 74 and 75 .

Table 80 gives the weight of saturated aqueous vapor in grains per cubic foot for dew-points given to every degree from -30° to $+20^{\circ}$, to each half degree from $+20^{\circ}$ to $+70^{\circ}$, and for every $0^{\circ} 2$ from 70°. to $119^{\circ} 8 F$., the values being computed to the thousandth of a grain.

REDUCTION OF OBSERVATIONS WITH THE PSYCHROMETER AND DETERMINATION OF RELATIVE HUMIDITY.

The psychrometric formula derived by Maxwell, Stefan, August, Regnault and others is, in its simplest form,

$$
e=e^{\prime}-\mathrm{AB}\left(t-t^{\prime}\right),
$$

in which $t=$ Air temperature.
$t^{\prime}=$ Temperature of the wet-bulb thermometer.
$e=$ Pressure of aqueous vapor in the air.
$e^{\prime}=$ Vapor pressure, saturated, at temperature t^{\prime}.
$B=$ Barometric pressure.
$A=\mathrm{A}$ quantity which, for the same instrument and for certain conditions, is a constant, or a function depending in a small measure on t^{\prime}.

[^20]All pressures are expressed in heights of mercurial column under standard gravity.

The important advance made since the time of Regnault consists in recognizing that the value of A differs materially according to whether the wet-bulb is in quiet or moving air. This was experimentally demonstrated by the distinguished Italian physicist, Belli, in 1830 , and was well known to Espy, who always used a whirled psychrometer. The latter describes his practice as follows: "When experimenting to ascertain the dew-point by means of the wet-bulb, I always swung both thermometers moderately in the air, having first ascertained that a moderate movement produced the same depression as a rapid one."

The principles and methods of these two pioneers in accurate psychrometry have now come to be adopted in the standard practice of meteorologists, and psychrometric tables are adapted to the use of a whirled or ventilated instrument.

The factor A depends in theory upon the size and shape of the thermometer buib, largeness of stem and velocity of ventilation, and different formulæ and tables would accordingly be required for different instruments. But by using a ventilating velocity of three meters or more per second, the differences in the results given by different instruments vanish, and the same tables can be adapted to any kind of a thermometer and to all changes of velocity above that which gives sensibly the greatest depression of the wet-bulb temperature; and with this arrangement there is no necessity to measure or estimate the velocity in each case further than to be certain that it does not fall below the assigned limit.

The formula and tables here given for obtaining the vapor pressure and dew-point from observations of the whirled or ventilated psychrometer are those deduced by Prof. Wm. Ferrel (Annual Report Chief Signal Officer, 1886, Appendix 24) from a discussion of a large number of observations.

Taking the psychrometric formula in metric units, pressures being expressed in millimeters and temperatures in centigrade degrees, Prof. Ferrel derived for A the value

$$
A=0.000656\left(1+0.0019 t^{\prime}\right) .
$$

In this expression for A, the factor depending on t^{\prime} arises from a similar term in the expression for the latent heat of water, and the theoretical value of the coefficient of t^{\prime} is 0.00115 . Since it would require a very small change in the method of observing to cause the difference between the theoretical value and that obtained from the experiments, Prof. Ferrel adopted the theoretical coefficient 0.00115 and then recomputed the observations, obtaining therefrom the final value

$$
A=0.000660\left(1+0.001 \mathrm{I}_{5} t^{\prime}\right)
$$

With this value the psychrometric formula in metric measures becomes

$$
c=c^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.001 \mathrm{I} 5 t^{\prime}\right) .
$$

Expressed in English measures, the formula is

$$
\begin{aligned}
e & =e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left[1+0.0006+\left(t^{\prime}-32^{\circ}\right)\right] \\
& =e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)
\end{aligned}
$$

in which $\mathcal{e}=$ Vapor pressure in inches.
$e^{\prime}=$ Pressure of saturated aqueous vapor at temperature t^{\prime}.
$t=$ Temperature of the air in Fahrenheit degrees.
$t^{\prime}=$ Temperature of the wet-bulb thermometer in Fahrenheit degrees $B=$ Barometric pressure in inches.
Table 82. Reduction of Psychrometric Observations-English measures.

$$
\text { Values of } c=c^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(1+\frac{t^{\prime}-32}{1571}\right)
$$

This table provides for computing the vapor pressure, c, from observations of ventilated wet- and dry-bulb Fahrenheit thermometers. From the vapor pressure thus computed the dew-point and relative humidity of the atmosphere may be obtained.

The tabular values of the vapor pressure, e, are computed for degree intervals of t^{\prime} from -20° to $+110^{\circ} \mathrm{F}$. Below $+10^{\circ}$ the interval for $t-t^{\prime}$ is $0^{\circ} .2$, and above 10° the interval is I°.

Corrections for barometric pressure. The computation has been made for $B=30.0$ inches, but at the bottom, and usually, also, at the top of each page of the table is given a correction, $\Delta e \times \Delta B$, computed for $B=29.0$ inches or $\Delta B=\mathrm{I}$ inch. and for the value of t^{\prime} indicated. The correction is a linear function of ΔB. For atmospheric pressures less than 30.0 inches, it is to be added to the tabular values of c, while for atmospheric pressures greater than 30.0 inches it is to be subtracted.

The values of e are given to 0.0001 inch for t^{\prime} less than 10°, and to 0.001 inch for t^{\prime} greater than 10°.

Examples:

I. Given, $t=84^{\circ} .3 ; t^{\prime}=66^{\circ} 7$, and $B=30.00$ inches. With $t^{\prime}=66^{\circ} .7$ and $t-t^{\prime}=17^{\circ} \cdot 6$ as arguments, Table 82 gives for e the value 0.462 inch. On page 182 , for $t-t^{\prime}=0.0$ it is seen that a vapor presure of 0.462 inch corresponds to a temperature $t^{\prime}=t=57^{\circ}$, which is the saturation, or dew-point temperature for the data given.
2. Given, $t=34^{\circ} .5 ; t^{\prime}=29^{\circ} .4 ; B=22.3$ inches. With $t^{\prime}=29^{\circ} .4$ and $t-t^{\prime}=5^{\circ} .1$ as arguments, Table 82 gives for c the value o.Io4. $\Delta B=30.0-22.3=7.7$, and $\Delta e \times \Delta B=0.0018 \times 7.7=0.014$.
Correct value of e
$=0.118$ inch

For $t-t^{\prime}=0.0$ a vapor pressure of 0.118 inch corresponds to a temperature $t^{\prime}=t=23^{\circ}$ (see page 182), which is the saturation or dewpoint temperature for the data given.

table 83. Relative humidity-Temperature Fahrenheit.

The table gives the vapor pressure corresponding to air temperatures from -30° to $+120^{\circ}$ at degree intervals (side argument) and for percentages of saturation at io per cent intervals (top argument). It is computed from the formula

$$
e=e_{s} \times \text { relative humidity }
$$

where e_{s} is the saturation vapor pressure at the given air temperature. Below a temperature of 20° the values of c are given to o.0001 inch; above 20° they are given to o.00I inch.

Exampies:

I. In dew-point example 1 , above, the computed vapor pressure is 0.462 inch. Entering Table 83 with air temperature $84^{\circ} 3$ as side argument, we obtain vapor pressure
0.356 inch $\quad=$ relative humidity 30 and
0.462 inch -0.356 inch $=0.106$ inch $=\quad " \quad$ " $\frac{90}{10}=9$ therefore, vapor pressure 0.462 inch with $t=84^{\circ} 3 \mathrm{~F}$. = " " 39
2. In dew-point example 2, above, the computed vapor pressure is o.II8 inch. Entering Table 83 with air temperature $34^{\circ} 5$ as side argument, we obtain, vapor pressure
0.100 inch $\quad=$ relative humidity 50 and
0.118 inch-0.100 inch $=0.018$ inch = " " $\frac{90}{10}=9$ therefore, vapor pressure
O.II8 inch with $t=34 .{ }^{\circ} \mathrm{F}$. = " " 59
table 84. Reduction of Psychrometric Observations-Metric measures.

$$
\text { Values of } e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.001 \mathrm{I} 5 t^{\prime}\right)
$$

This table provides for computing the vapor pressure from observations of ventilated wet- and dry-bulb Centigrade thermometers. From the vapor pressure thus computed the dew-point and relative humidity of the atmosphere may be obtained.

The tabular values of the vapor pressure, e, are computed for degree intervals of t^{\prime} from -30° to $+45^{\circ} \mathrm{C}$. Below -5°. the interval for $t-t^{\prime}$ is $0^{\circ} \mathrm{I}$, and above $-5^{\circ} \mathrm{O}$ the interval is I°.

Corrections for barometric pressure. The computation has been made for $B=760 \mathrm{~mm}$. but on each page of the table is given a correction, $\Delta e \times \Delta B$, computed for $B=660$, or $\Delta P=100 \mathrm{~mm}$., and for the values of t^{\prime} indicated. The correction is a linear function of ΔB. For atmospheric pressures less than 760 mm . it is to be added to the tabular values of c, while for atmospheric pressures greater than 760 mm . it is to be subtracted. The values of e are given to 0.001 mm . for t^{\prime} less than -5.0 , and to 0.01 mm. for t^{\prime} greater than -5°. .

Example:

Given, $t=10^{\circ} .4 C . ; t^{\prime}=8.3 C$, and $B=740 \mathrm{~mm}$. With $t^{\prime}=8^{\circ} .3$ and $t-t^{\prime}=2$. I as arguments, Table 84 gives for e the value 7.15 mm .
$\Delta B=\frac{760-7+0}{100}=0.2 . \Delta e \times \Delta B=0.14 \times 0.2 \quad=0.03$.
Corrected value of e
$=7.18 \mathrm{~mm}$.
For $t-t^{\prime}=0$ a vapor pressure of 7.18 mm . corresponds to a temperature $t^{\prime}=t=6^{\circ} 3 \mathrm{C}$., which is the saturation, or dew-point temperature for the data given.

Table 85. Relative humidity-Temperature Centigrade.
This table gives the vapor pressure corresponding to air temperatures from $-45^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$. at degree intervals (side argument) and for percentage of saturation at ro per cent intervals (top argument). It is computed from the same formula as Table 83, namely,

$$
e=e_{s} \times \text { relative humidity }
$$

Below a temperature of $+5^{\circ}$. o the values of e are given to 0.01 mm .; above 5° o they are given to 0.1 mm .

Example:

In the dew-point example given above, the computed vapor pressure is 7.18 mm. Entering Table 8_{5} with air temperature 10.4 as side argument, we obtain vapor pressure
$6.6 \mathrm{~mm} . \quad=$ relative humidity $\quad 70$
and

$$
7.18-6.6=0.58 \mathrm{~mm} . \quad=\quad " \quad \frac{60}{10}=6
$$

therefore, vapor pressure

$$
7.18 \mathrm{~mm} \text {. with } t=10.4 C=\quad " \quad=\quad=76
$$

TABLE 86.
table 86. Rate of decrease of vapor pressure weith altitude for mountain stations.
From hygrometric observations made at various mountain stations on the Himalayas, Mount Ararat, Teneriffe, and the Alps, Dr. J. Hann (Lehrbuch der Meteorologie Dritte Auflage, S. 230) has deduced the following empirical formula showing the average relation between the vapor
pressure e_{0} at a lower station and e the vapor pressure at another station at an altitude h meters above it:

$$
\frac{e}{e_{0}}=10^{-\frac{h}{6300}} .
$$

This is of course an average relation for all times and places from which the actual rate of decrease of vapor pressure in any individual case may widely differ.

Table 86 gives the values of the ratio $\frac{e}{e_{0}}$ for values of h from 200 to 6000 meters. An additional column gives the equivalent values of h in feet.

REDUCTION OF SNOWFALL MEASUREMENT.
The determination of the water equivalent of snowfall has usually been made by one of two methods: (a) by dividing the depth of snow by an arbitrary factor ranging from 8 to 16 for snow of different degrees of compactness; (b) by melting the snow and measuring the depth of the resulting water. The first of these methods has always been recognized as incapable of giving reliable results, and the second, although much more accurate, is still open to objection. After extended experience in the trial of both these methods, it has been found that the most accurate and most convenient measurement is that of weighing the collected snow, and then converting the weight into depth in inches. The method is equally applicable whether the snow as it falls is caught in the gage, or a section of the fallen snow is taken by collecting it in an inverted gage.

Table 87. Depth of water corresponding to the weight of a cylindrical snow core, 2.655 inches in diameter.

This table is prepared for convenience in making surveys of the snow layer on the ground, particularly in the western mountain sections of the country. The weighing method is the only one found to be practicable. Present Weather Bureau practice is to take out a sample by means of a special tube, whose diameter, 2.655 inches, has been selected by reason of convenience in manipulation and simplicity in relation to the pound. Table 87 gives the depth of water in inches and hundredths corresponding to given weights. The argument is given in hundredths of a pound from o.or pound to 2.99 pounds.

Table 88. Depth of water corresponding to the weight of snow (or rain) collected in an 8 -inch gage.

The table gives the depth to hundredths of an inch, corresponding to the weight of snow or rain collected in a gage having a circular collecting mouth 8 inches in diameter - this being the standard size of gage used throughout the United States.

The argument is given in hundredths of a pound from o.or pound to 0.99 pound. When the weight of the collected snow or rain is one pound or more, the depth corresponding to even pounds may be obtained from the equivalent of one pound given in the heading of the table.

Example:

The weight of the snow collected in a gage having a circular collecting mouth 8 inches in diameter is 3.48 pounds. Find the corresponding depth of water.
A weight of 3 lbs . corresponds to a depth of water of 0.5507×3, equals
1.65 in.

A weight of 0.48 lbs . corresponds to a depth of water of 0.26 A " " 3.48 " " " " 1.9 I in

Table 89. Quantity of rainfall corresponding to given depths.
TABLE 89.
This table gives for different depths of rainfail in inches over an acre the total quantity of water expressed in cubic inches, cubic feet, gallons, and tons. (See Henry, A. J. "Quantity of Rainfall corresponding to Given Depths." Monthly Weather Review, 1898, 26: fo8-09.)

GEODETICAL TABLES.

Table 90. Value of apparent gravity on the earth at sea level. ${ }^{1}$
TABLE 90.
The value of apparent gravity on the earth at sea level is given for every twenty minutes of latitude from 5° to 86°, and for degree intervals near the equator and the poles. It is computed to o.ool dyne from the equation ${ }^{2}$

$$
\begin{aligned}
g_{\phi} & =978.039\left(1+0.00529+\sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\
& =980.621\left(1-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right)
\end{aligned}
$$

in which g_{ϕ} is the value of the gravity at latitude ϕ.
The second form of the equation is the more convenient for the computation.

TABLE 91.
Table 91. Relative acceleration of gravity at sea level at different latitudes.
The formula adopted for the variation with latitude of apparent gravity at sea level is that of the U.S. Coast and Geodetic Survey, given above.

The table gives the values of the ratio $\frac{g_{\phi}}{g_{45^{\circ}}}$ to six decimals for every 10^{\prime} of latitude from the equator to the pole.

[^21]
LENGTH OF A DEGREE OF THE MERIDIAN AND OF ANY PARALLEL.

The dimensions of the earth used in computing lengths of the meridian and of parallels of latitude are those of Clarke's spheroid of $1866 .{ }^{1}$ This spheroid undoubtedly represents very closely the true size and shape of the earth, and is the one to which nearly all geodetic work in the United States is now referred.

The values of the constants are as follows:
a, semi-major axis $=20926062$ feet; $\log a=7.3206875$.
b, semi-minor axis $=20855121$ feet; $\log b=7.3192127$.

$$
e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=0.00676866 ; \quad \log e^{2}=7.8305030-10 .
$$

With these values for the figure of the earth, the formula for computing any portion of a quadrant of the meridian is

Meridional distance in feet $=[5.5618284] \Delta \phi$ (in degrees),
-- [5.0269880] $\cos 2 \phi \sin \Delta \phi$,
$+[2.0528] \cos 4 \phi \sin 2 \Delta \phi$,
in which $2 \phi=\phi_{2}+\phi_{1}, \Delta \phi=\phi_{2}-\phi_{1} ; \phi_{1}, \phi_{2}=$ end latitudes of arc.
For the length of I degree, the formula becomes:
I degree of the meridian, in feet $=364609.9-1857.1 \cos 2 \phi+3.94 \cos 4 \phi$.
The length of the parallel is given by the equation
I degree of the parallel at latitude ϕ, in feet $=$

$$
365538.48 \cos \phi-310.17 \cos 3 \phi+0.39 \cos 5 \phi .
$$

Table 92. Length of one degree of the meridian at different latitudes.
This gives for every degree of latitude the length of one degree of the meridian in statute miles to three decimals, in meters to one decimal, and in geographic miles to three decimals - the geographic mile being here defined to be one minute of arc on the equator. The values in meters are computed from the relation: I meter $=39.3700$ inches. The tabular values represent the length of an arc of one degree, the middle of which is situated at the corresponding latitude. For example, the length of an arc of one degree of the meridian, whose end latitudes are $29^{\circ} 30^{\prime}$ and $30^{\circ} 30^{\prime}$, is 68.879 statute miles.

Table 93. Length of one degree of the parallel at different latitudes.
This table is similar to Table 92.
${ }^{1}$ Comparisons of Standards of Length, made at the Ordnance Survey Office, Southampton, England, by Capt. A. R. Clarke, R. E., 1866.

Table 94. Duration of sumshine at different latitudes for different values of the sun's declination.

Let Z be the zenith, and $N H$ the horizon of a place in the northern hemisphere.
P the pole;
$Q E Q^{\prime}$ the celestial equator;
$R R^{\prime}$ the parallel described by the sun on any given day;
S the position of the sun when its upper limb appears on the horizon;
$P N$ the latitude of the place, ϕ.
$S T$ the sun's declination, δ.
$P S$ the sun's poiar distance, $90^{\circ}-\delta$.
$Z S$ the sun's zenith distance, z.
$Z P S$ the hour angle of the sun from meridian, t.
r the mean horizontal refraction $=34^{\prime}$ approximately .
s the mean solar semi-diameter $=16^{\prime}$

$$
z=90^{\circ}+r+s=90^{\circ} 50^{\prime}
$$

In the spherical traingle $Z P S$, the hour angle $Z P S$ may be computed from the values of the three known sides by the formula

$$
\begin{gathered}
\sin \frac{1}{2} Z P S=\sqrt{\frac{\sin \frac{1}{2}(Z S+P Z-P S) \sin \frac{1}{2}(Z S+P S-P Z)}{\sin P Z \sin P S}} \\
\sin \frac{1}{2} t=\sqrt{\frac{\sin \frac{1}{2}(z+\delta-\phi) \sin \frac{1}{2}(z-\delta+\phi)}{\cos \phi \cos \delta}}
\end{gathered}
$$

The hour angle t, converted into mean solar time and multiplied by 2 is the duration of sunshine.

Table 94 has been computed for this volume by Prof. W'm. Libbey, Jr. It is a table of double entry with arguments δ and ϕ. For north latitudes northerly declination is considered positive and southerly declination as negative. The table may be used for south latitudes by considering southerly declination as positive and northerly declination as negative.

The top argument is the latitude, given for every 5° from 0° to 40°, for every 2° from 40° to 60°, and for every degree from 60° to 80°.

The side argument is the sun's declination for every 20^{\prime} from $S 23^{\circ} 27^{\prime}$ to $N 23^{\circ} 27^{\prime}$.

The duration of sunshine is given in hours and minutes.
To find the duration of sunshine for a given day at a place whose latitude is known, find the declination of the sun at mean noon for that day in the Nautical Almanac, and enter the table with the latitude and declination as arguments.

Example:

To find the duration of sunshine, May 18,1892 , in latitude $49^{\circ} 30^{\prime}$ North.
From the Nautical Almanac, $\delta=19^{\circ} 43^{\prime} N$., at Greenwich apparent noon.
From the table, with $\delta=19^{\circ} 43^{\prime} N$. and $\phi=49^{\circ} 30^{\prime}$, the duration of sunshine is found to be $15^{h} 33^{m}$.
Table 95. Declination of the sun for the year I899, at Greenwevich apparent noon.
This table is an anxiliary to Table 94, and gives the declination of the sun for every third day of the year 1899 . These declinations may be used as approximate values for the corresponding dates of other years when the exact declination cannot readily be obtained. Thus, in the preceding example, the declination for May I8, 1892, may be taken as approximately the same as that for the same date in I899, viz. $19^{\circ} 34^{\prime}$.

THE DURATION OF TWILIGHT.

A review of the literature ${ }^{1}$ indicates that from an early date astronomical twilight has been considered to end in the evening and begin in the morning when the true position of the sun's center is 18° below the horizon. At this time stars of the sixth magnitude are visible near the zenith, and generally there is no trace on the horizon of the twilight glow.

It also appears that civil twilight ends in the evening and begins in the morning when the true position of the sun's center is 6° below the horizon. At this time stars and planets of the first magnitude are just visible. In the evening the first purple light has just disappeared, and darkness compels the suspension of outdoor work unless artificial lighting is provided. In the morning the first purple light is beginning to be visible, and the illumination is sufficient for the resumption of outdoor occupations.

Some confusion has arisen in the computation of tables of the duration of both astronomical and civil twilight, due to the fact that in some instances the time of sunrise or sunset has been considered to be that instant when the center of the sun is on the true horizon; in others, when its center appears to be on the true horizon; and in still others when the upper limb of the sun appears to coincide with the true horizon. In the United States this latter is regarded as defining the time of sunrise and sunset.

In the tables here presented the duration of astronomical twilight is the interval between sunrise or sunset, according to this latter definition, and the instant the true position of the sun's center is 18° below the horizon. Likewise, the duration of civil twilight is the interval from sunrise or sunset to the instant the true position of the sun's center is 6° below the horizon.

[^22]The computations may be made from the equation

$$
\cos t=\frac{\sin a-\sin \phi \sin \delta}{\cos \phi \cos \delta}
$$

where t is the sun's hour angle from the meridian, a is the sun's altitude, considered minus below the horizon, δ is the solar declination, and ϕ is the latitude of the place of observation.

The solar declinations employed are those given in the American Ephemeris and Nautical Almanac, 1899, pp. 377-384, Solar Ephemeris for Washington.

The atmospheric refraction with the sun on the horizon has been assumed to be 34^{\prime}, and 16 ' has been allowed for the sun's semi-diameter, so that at the instant of sunrise or sunset, as defined above, the true position of the sun's center is about 50^{\prime} below the horizon. The difference between this value of t and its value with the sun 6° and 18° below the horizon gives, respectively, the duration of civil and astronomical twilight.

The computations have been simplified by the use of Ball's Altitude Tables, ${ }^{1}$ from which the value of t has been determined for true altitudes of the sun of $-50^{\prime},-6^{\circ}$, and -18°.

Table 96. Duration of astronomical twilight.
TABLE 96.
The duration of astronomical twilight is given to the nearest minute for the Ist, IIth, and 2 Ist day of each month for north latitudes, $0^{\circ}, 10^{\circ}$, $20^{\circ} ; 25^{\circ}$, and at 2° intervals from 30° to 50°, inclusive. The absence of data for latitude 50° from June 1 to July in, inclusive, indicates that between these dates at this latitude astronomical twilight continues throughout the night.

Table 97. Duration of civil twilight.
TABLE 97.
The duration of civil twilight is given to the nearest minute for the Ist, 11 th and 2 Ist day of each month for north latitudes $0^{\circ}, 10^{\circ}, 20^{\circ}, 25^{\circ}$, and at 2° intervals from 30° to 50°, inclusive.

> RELATIVE INTENSITY OF SOLAR RADIATION AT DIFFERENT LATITUDES.

TABLE 98.
Table 98. Mean intensity for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere.

This table is that of Prof. Wm. Ferrel, published in the Annual Report of the Chief Signal Officer, 1885, Part 2, p. 427, and computed from formulæ and constants given in Chapter II of the above publimation, pages 75 to 82 . It gives the mean intensity, J, for $2+$ hours of solar radiation received by a horizontal surface at the top of the atmosphere, in terms of the mean solar

[^23]constant A_{o}, for each tenth parallel of latitude of the northern hemisphere, and for the first and sixteenth day of each month; also the values of the solar constant A in terms of A_{\circ}, and the longitude of the sun for the given dates.

Table 99. Relative amounts of solar radiation received on a horizontal surface during the year at different latitudes.

The second column of this table is obtained from the last line of Table 98 by multiplying by 1440 , the number of minutes in $2+$ hours. It therefore gives the average daily amount of radiation that would be received from the sun on a horizontal surface at the surface of the earth if none were absorbed or scattered by the atmosphere, expressed in terms of the mean solar constant. The following columns give similar data, excert that the atmospheric transmission coefficient is assumed to be $0.9,0.8,0.7$ and o.6, respectively, and have been computed by utilizing Angot's work (Recherches théoretiques sur la distribution de la chaleur à la surface du globe, par M. Alfred Angot, Annales du Bureau Central Météorologique de France, Année 1883. v. I. B 121-B 169), which leads to practically the same values as Ferrel's when expressed in the same units.

The vertical argument of the table is for 10° intervals of latitude from the equator to the north pole, inclusive.

Table 100. Air mass, m, corresponding to diffcrent renith distances of the sun.
For homogenous rays, the intensity of solar energy after passing through an air mass, m, is expressed by the equation $\mathrm{I}=\mathrm{I}_{0} a^{m}$, where I_{0} is the intensity before absorption, a is the atmospheric transmission coefficient, or the proportion of the energy transmitted by unit air mass, and m is the air mass passed through. If we take for unit air mass the atmospheric mass passed through by the rays when the sun is in the zenith, then for zenith distances of the sun less than 80° the air mass is nearly proportional to the secant of the sun's zenith distance. In general, the secant gives air masses that are too high by an increasing amount as the zenith distance of the sun increases.

The equation by which air masses are sometimes computed is

$$
m=\frac{\text { atmospheric refraction }}{K \sin Z}
$$

where Z is the sun's zenith distance and K is a constant. The uncertain factor in this equation is the atmospheric refraction. Table 100 gives values of m computed by Bemporad (Rend. Acc. Lincei., Roma, Ser. 5, V. 16, 2 Sem. 1907, pp. 66-71) from the above formula, using for K the value $58^{\prime \prime} .36$. The argument is for each degree of Z from 20° to 89°, with values of m added for $Z=0^{\circ}$, 10°, and 15°. The values of m are given to two decinal places.

Table 101. Relative illumination intensities.
The table gives illumination intensities in foot-candles for zenithal sum, sky at sunset, sky at end of civil twilight, zenithal full moon, quarter moon, and starlight, and the ratio of these intensities to the illumination from the zenithal full moon. For the sources of the data see Kimball, Herbert H., " Duration and Intensity of Twilight," Monthly Weather Revicz, 1916, 44: 6I4-620.

MISCELLANEOUS TABLES.

WEIGHT IN GRAMS OF A CUBBC CENTIMETER OF AIR.

The following tables (IO 2 to IO) give the factors for computing the weight of a cubic centimeter of air at different temperatures, humidities and pressures.

$$
\delta=\frac{0.0012930}{\mathrm{I}+0.00367 t}\left(\frac{B-0.378 c}{760}\right)
$$

in which δ is the weight of a cubic centimeter of air expressed in grams, tunder the standard value of gravity ($g=980.665$)
B is the atmospheric pressure in millimeters, under standard gravity ;
c is the pressure of aqueous vapor in millimeters, under standard gravity ;
t is the temperature in Centigrade degrees.
For dry atmospheric air (containing 0.0004 of its weight of carbonic acid) at a pressure of 760 mm . and temperature $0^{\circ} C$., the absolute density, or the weight of one cutbic centimeter, is 0.0012930 gram. See p. xlvi.

The weight of a cubic centimeter may also be written as follows:

$$
\delta=\frac{0.0012930}{1+0.002039\left(t-32^{\circ}\right)}\left(\frac{B-0.378 c}{29.92 \mathrm{I}}\right)
$$

where δ is defined as before, but B and c are expressed in inches and t in Fahrenheit degrees. Thus by the use of tables based on these two formulæ, lines of equal atmospheric density may be drawn for the whole world, no matter whether the original observations are in English or metric measures.

ENGLISH MEASURES.

TABLES 102, 103, 104.
Table 102. Temperature Term.
This table gives the values and logarithms of the expression

$$
\delta_{t, 29.921}=\frac{0.0012930}{\mathrm{I}+0.002039\left(t-32^{\circ}\right)}
$$

for values of t extending from $-45^{\circ} \mathrm{F}$. to $+140^{\circ} \mathrm{F}$., the intervals between $0^{\circ} F$. and $110^{\circ} F$. being I°.

The tabular values are given to five significant figures.

Table 103. Term for Iumidity; auxiliary to Table 102.
TABLE 104. Humidity and pressure term. $\frac{h}{29.92 \mathrm{I}}=\frac{B-0.378 e}{29.92 \mathrm{I}}$.
Table 103 gives values of $0.378 e$ to three decimal places as an aid to the use of Table rof. The argument is the dew-point given for every degree from $-60^{\circ} \mathrm{F}$. to $+140^{\circ} \mathrm{F}$. The second column gives the corresponding values of the vapor pressure (e) derived from Tables 74 and 75 .

TABLE 104 gives values and logarithms of $\frac{h}{29.92 \mathrm{I}}=\frac{B-0.378 e}{29.92 \mathrm{I}}$ for values of h extending from 10.0 to 3 I. 7 inches. The logarithms are given to five significant figures and the corresponding numbers to four decimals.

Example:

The air temperature is $68^{\circ} \mathrm{F}$., the pressure is 29.36 inches and the dewpoint $5 \mathrm{I}^{\circ} \mathrm{F}$. Find the logarithm of the density.
Table IO2, for $t=68^{\circ} \mathrm{F}$., gives

$$
7.08085-10
$$

Table Io3, for dew-point 51°, gives $0.378 e=0.142$ inch,
Table IO4, for $h=B-0.378 e=29.36-0 . I_{4}=29.22$, gives

$$
9.98941 \text { - } 10
$$

Logarithm of density $=$

$$
\frac{30}{7.07056-10}
$$

METRIC MEASURES.

TABLe 105. Temperature term.
This table gives values and logarithms of the expression

$$
\delta_{t,{ }_{760}}=\frac{0.0012930}{1+0.00367 t}
$$

for values of t extending from $-34^{\circ} \mathrm{C}$. to $+69^{\circ} \mathrm{C}$. The tabular values are given to five significant figures.
Table 106. Term for humidity; auriliary to Table 107.
Table 107. Humidity and pressure terms. $\frac{h}{760}=\frac{B-0.378 e}{760}$.
Table io6 gives the values of $0.37^{8} e$ to hundredths of a millimeter for dew-points extending from $-50^{\circ} \mathrm{C}$. to $+60^{\circ} \mathrm{C}$. Above $-25^{\circ} \mathrm{C}$. the interval is one degree. The values of the vapor pressure, e, corresponding to these dew-points, given in the second column," are taken from tables 76 and 77.

Table 107 gives values and logarithms of $\frac{h}{760}=\frac{B-0.378 e}{760}$ for values of h extending from 300 to 799 mm . The atmospheric pressure B is the barometer reading corrected for gravity and $0.37^{8} e$ is the term for humidity obtained from Table io6. The logarithms are given to five significant figures and the corresponding numbers to four decimal places.

Table 108. Atmospheric acater-vapor lines in the visible spectrum.
Table io8, prepared by the Astrophysical Observatory at Washington, gives a summary of lines in St. John's (1928) revision of Rowland's "Preliminary Table of Solar Spectrum Wave Lengths," recorded as of atmospheric water vapor origin. There are more than 400 such lines in Rowland's table, but an abridgment is here made as follows:

Only lines of intensity " I " or greater are here separately given, but the total number and average intensity of the fainter lines lying between these are inserted. The scale of intensities is such that a line of intensity " I " is " just clearly visible" on Rowland's map; the H and K lines are of intensity, I,000; D_{1} (the sodium line of greater wave length), 20; C., 40. "Lines more and more difficult to see " are distinguished by $0,-1,-2$, and -3 .

TABLE 109.
Table 109. Atmospheric water-vapor bands in the infra-red spectrum.
The values of Table 109 relate to the transmission of energy in the minima of various water-vapor bands, when there is 1 cm. of precipitable water in the path through the air. For other amounts of water-vapor, the depths of these minima may be taken as equal to $a^{\hat{o}}$, where a is the coefficient taken from the third column of Table 109 and δ is the amount of precipitable water in cm . in the path. For average conditions in the transmission of radiation through the atmosphere, δ may be determined by the modification of Hann's formula $\delta=2.0 \varepsilon \mathrm{sec} . Z$, where e is the vapor pressure in cms. as determined by wet and dry thermometers and Z is the angle which the path makes with the vertical.

For the use of the transmissions observed in such bands for the inverse process of determining the amount of water-vapor in the atmosphere, see Fowle, Astrophysical Journal, 35, p. 149, 1912; 37, p. 359, 1913.

TABLE 110.
Table 110. Transmission percentages of radiation through moist air.
The values of Table ino will be of use when the transmission of energy through the atmosphere containing a known amount of water-vapor is under consideration. An approximate value for the energy transmitted may be had if the amount of energy from the source between the wavelengths of the first column is known and is multiplied by the corresponding transmission coefficients of the subsequent columms of the table. The table is compiled from Fowle, "Water-vapor Transparency," Smithsonian Miscellaneous Collections, 68, No. 8, 1917; see also, Fowle, "The Transparency of Aqueous Vapor," Astrophysical Journal, 42, p. 394, 1915.

TABLE 111.
TABLE 111. The spectral distribution of solar radiation and its transmission by the atmosphere.
The measured relative intensity of radiation at a given wave length depends not only upon the source, but also upon the prismatic dispersion.

Usually, a dispersion coefficient is used to reduce the intensities to what they would have been had the dispersion been the same at all wave lengths, but in Table ini it is that of the ultra-violet glass prism employed by the Astrophysical Observatory of the Smithsonian Institution in making Solar radiation measurements. Column I gives the deviation from ω_{1} in minutes of arc at which the energy was measured. Column 2 gives the corresponding wave length. Column 3 gives transmission coefficients, $a_{a \lambda}$, for pure dry air at 760 mm . pressure, with the sun in the zenith. They have been computed by means of Rayleigh's equation as modified by King. ${ }^{1}$ Fowle's ${ }^{2}$ values of $a_{v v \lambda}$, the transmission coefficient for that amount of atmospheric water vapor which if precipitated would produce a layer of water one centimeter thick, have been employed to compute the transmission of solar radiation through moist air. Column 5 gives what Abbot^{3} considers the most reliable value for the relative energy outside the atmosphere, $e_{0 \lambda}$, at the wave lengths corresponding to the deviations of Column I.

The data in the upper part of Columns 6,7 , and 8 have been computed by means of the factors shown in their respective headings. They give the energy distribution with the sun in the zenith and atmospleric pressure of 760 mm ., column 6 with no moisture present, and columns 7 and 8 with sufficient moisture to produce a layer of water 1.0 cm . and 2.0 cm . thick, respectively, if precipitated.

Fowle ${ }^{4}$ has shown that for average conditions the precipitable water in the atmosphere above a given place may be approximately determined from the equation $w=2.3 c$ 10 $\frac{-h}{22000}$, where e is the surface water vapor pressure in centimeters and l is the altitude of the place above sea level, in meters. The Aerological Division of the U. S. Weather Bureau is developing equations that more accurately express the relation between surface vapor pressure and the water-vapor content of the atmosphere, utilizing for this purpose its valuable accumulation of free-air data. It's results, which are approaching completion, will probably be published in the Monthly Weather Review during the current year.

Similarly, the data in the upper part of columns 9 and io have been computed for the sun at zenith distances 60 and 70.7 degrees, and the moisture content of the atmosphere equivalent to 1.0 cm ., and 3.0 cm ., of precipitable water, respectively.
${ }^{1}$ King, Louis Vessot. On the scattering and the absorption of light in gaseous media with applications to the intensity of sky radiation. Phil. Trans. Roy. Soc., London, A. 212, p. 375, 1919.
${ }^{2}$ Fowle, F. E. Water vapor transparency to low-temperature radiation. Smithsonian Misc. Coll., vol. 68, no. 8, 1917.
${ }^{3}$ Abbot, C. G., and others. The distribution of energy in the spectrum of the sun and stars. Smithsonian Misc. Coll., vol. 74, no. 7, 1923.
${ }^{4}$ Fowle, F. E. Atmospheric transparency for radiation. Monthly Weather Review, vol. 42, pp. 2-4, 1914.

These computations take account of the depletions of solar radiation by scattering only. We now proceed to compute the energy in the total solar spectrum after passing through dust-free air containing the amounts of atmospheric moisture specified, and with the sun at the distances from the zenith indicated.

The wave lengths given in column 2 do not cover the entire range of wave lengths included in the solar spectrum. It is therefore necessary to apply a correction to the measured energy so as to include the energy not

Figure i.
measured. Abbot's ${ }^{1}$ method of determining these corrections has been followed in computing the corrections for \mathfrak{u}. v. (ultra-violet) and i. r. (infrared) energy not measured, which are given in the lower part of Table inf. The absorption by water vapor in the great water vapor bands in the infrared (w. v. absorption) had been computed by the method developed by Fowle. ${ }^{2}$ Finally, Fowle has computed for this table the absorption by the permanent gases of the atmosphere.

The relative energy in different parts of the solar spectrum may now be determined by summing up the energies at different wave lengths, giving

[^24]double weight to those 10^{\prime} in deviation apart. It will be noted that the summation includes the following spectral bands, namely, below 0.346μ, between $0.3+6$ and 0.405μ, between 0.405 and 0.704μ, and above 0.704μ; or the short-wave ultra violet, the long-wave ultra violet, the visible radiation, and the infra-red radiation. The percentage of the energy included in each of these sections to the total energy is given, and the percentage of the total to the total before it enters the atmosphere, or the atmospheric transmission corresponding to the conditions as specified, is also given.

By means of computations such as are given in Table in ithe curves of Figure I, showing the depletion by scattering in passing through dry air, curve I, and through air containing different amounts of moisture, curves 2 to 8 , and the depletion by both scattering and absorption, curves $9-15$, have been constructed. The ordinates give atmospheric transmission ; the abscissas, air masses, m, corresponding to zenith distances of the sun $0^{\circ}, 60^{\circ}, 70.7^{\circ}$, and 75.7°. The values for m less than I represent depletions at elevations above sea level.

For a more complete description of this figure see the Monthly Weather Review, $55: 167,1927$, and $56: 394,1928$, and $58: 43$. 1930 .

Abbot's correction for u. v. radiation below $0.3+6 \mu$, which is not measured, includes the radiation absorbed at these wave lengths by an average amount of atmospheric ozone, but does not take account of variations in the ozone content of the atmosphere. Fowle ${ }^{1}$ has shown that the absorption by ozone in the visible spectrum varies in amount with both time and place, and that it causes a depletion of solar radiation by about 0.2 to 0.4 per cent of the solar constant. This depletion has not been included in "Absorption by permanent gases," near the bottom of Table iI2. The values of atmospheric transmission in the last line of the table are therefore too high by from 0.2 to 0.4 per cent, more or less, depending upon the ozone absorption in the visible spectrum, and disregarding the possible error, probably small in amount, due to variations in the ozone absorption in the ultra-violet.

Example of the use of Figure 1. The atmospheric pressure is 76.0 cm ., the water vapor pressure 0.87 cm ., the zenith distance of the sun is 60° ($n=2.0$), and the elevation of the station is only slightly above sea level. The precipitable water $=2.3 \times 0.87 \times 10^{\frac{-h}{22000}}=2.0 \mathrm{~cm}$. From Figure I the transmission read from curve i I, for $m=2$, is 0.653 .
Table 112. International meteorological symbols.
The information under this heading has been compiled for the present edition by the librarian of the United States Weather Bureau, and represents current practice in the use of the symbols approved by the International Meteorological Organization. For further information on the sub-

[^25]ject of meteorological symbols, see Monthly Weather Review (Wash., D. C.), May, 1916, pp. 265-274.
table 113. International Cloud Classification.
In the " International Atlas of Clouds and of State of the Sky, Abridged edition for the use of Observers, Paris, 1930," the Commission of the International Meteorological Committee for the Study of Clouds has proposed a classification of clouds under Families A, B, C, and D, Forms a, b, and c, and Genera i to io inclusive. But since the definitions of most of these latter differ but little from those given in the International Cloud Atlas, ad edition, Paris. 1910, and since the new Atlas has not yet been generally accepted, the well known definitions of the older Atlas are adhered to in Table II3.
table 114. Beaufort zecather notation.
This table has been revised in the library of the United States Weather Bureau, and represents the current practice of American and British observers in the use of the Beaufort letters.
table 115. International code for horizontal visibility.
The code for horizontal visibility is used by a large number of Nations and was adopted by the International Commission for Air Navigation. Reference: Convention relating to the Regulation of Aerial Navigation dated October 13. 1919; corrected text of May 1929. The seat of the Commission and of its permanent Secretariat has been fixed at No. 20 Avenue Kléber, Paris.
Table 116. List of metcorological stations.
This list has been extensively revised, mainly by large additions for the continents of South America,' Asia, and Africa. It includes stations for which data appear in the " Réseau Mondial" of the British Metcorological Office for 1922 (published 1929), which were selected to represent, as far as available data permitted, the meteorology of all land areas of the globe, on the basis of two, or in some cases three, stations for each ten-degree square of latitude and longitude. Many additional stations are included for some countries, and especially for the United States.

No attempt has been made in this edition of the Smithsonian Tables to indicate the " order" of the several stations, according to the definitions adopted at the Viemna Congress of 1873: as, owing to the present widespread use of self-recording instruments, the old distinction between first and second order stations has lost much of its importance.

Several stations included in the list are no longer in operation. Data concerning the locations and altitudes of these stations are still valuable, in view of the frequent use made of their records in meteorological and climatological studies.

In general, the established English spellings of geographical names in foreign countries have been followed. Where no English name was established, native orthography has been followed.

THERMOMETRICAL TABLES

Conversion of thermometric scales -
Approximate Absolute, Centigrade, Fahrenheit, and Reau- mur scales
Fahrenheit scale to Centigrade Table 2
Centigrade scale to Fahrenheit Table 3
Centigrade scale to Fahrenheit, near the boiling point of water Table 4
Differences Fahrenheit to differences Centigrade Table 5
Differences Centigrade to differences Fahrenheit Table 6
Correction for the temperature of the emergent mercurial columnof thermómeters -
Correction for Fahrenheit thermometers Table 7
Correction for Centigrade thermometers Table 8

Table 1.
APPROXIMATE ABSOLUTE, CENTIGRADE, FAHRENHEIT, AND REAUMUR SCALES.

Conversion Formulæ for Approximate Absolute (A.A), Centigrade (C), Fahrenheit (F), and Reaumur (R) Scales.

$\begin{aligned} & A \cdot A=5 / 9(F-32)+273=C+273=5 / 4 R+273 \\ & C=5 / 9(F-32)=5 / 4 R=A . A-273=\frac{1}{2}(F-32)\left(\mathrm{I}+\frac{\mathrm{I}}{10}+\frac{\mathrm{I}}{100}+\frac{\mathrm{I}}{1000}+\right) \\ & F=9 / 5 C+32=9 / 4 R+32=9 / 5(A . A-273)+32=2 C\left(\mathrm{I}-\frac{\mathrm{I}}{10}\right)+32 \\ & R=4 / 9(F-32)=4 / 5 C=4 / 5(A . A-273) \end{aligned}$											
$\begin{array}{r} F \\ C \\ A \cdot A \\ R \end{array}$!	I.I		6^{*}		5 2.77^{*} 2.22^{*}	6 $3 \cdot 33^{*}$ $2.66 *$	7 $3.88 *$ $3.15 *$			
$\begin{array}{r} R \\ C \\ A \cdot A \\ F \end{array}$	I. 2.	2.5 4.5		$\begin{array}{ll} 5 & 5 \\ 5 & 9 \\ \text { k These } \end{array}$	figu	$\begin{gathered} 5 \\ 6.25 \\ 1.25 \\ \text { es repeated } \end{gathered}$	$\begin{gathered} 6 \\ 7.50 \\ \text { 13.50 } \\ \text { indefinitel } \end{gathered}$	$\begin{gathered} 7 \\ 8.75 \\ 15.75 \\ y . \end{gathered}$			
A. A.	c.	F.	R.	A. A.	C.	F.	R.	A. A.	c.	F.	R.
375°	102°	215.6	$8{ }_{\text {I }}$. 6	350°	77°	1 $70^{\circ} .6$	$6 \mathrm{I}^{\circ} .6$	325°	52°	125.6	$41^{\circ} .6$
374	IOI	213.8	80.8	349	76	168.8	60.8	324	51	123.8	40.8
373	100	212.0	So.o	348	75	167.0	60.0	323	50	122.0	40.0
372	99	210.2	79.2	347	74	165.2	59.2	322	49	120.2	39.2
37 I	98	208.4	78.4	346	73	163.4	58.4	321	48	118.4	38.4
370	97	206.6	77.6	345	72	16 1. 6	57.6	320	47	116.6	37.6
360	96	20.4	76.8	344	71	r 59.8	56.8	319	46	114.8	36.8
368	95	203.0	76.0	343	70	158.0	56.0	318	45	113.0	36.0
367	94	201.2	75.2	34^{2}	69	156.2	55.2	317	44	III. 2	35.2
306	93	199.4	$74 \cdot 4$	34 I	68	I 54.4	54.4	316	43	109.4	34.4
365	92	197.6	73.6	340	67	152.6	53.6	315	42	107.6	33.6
364	91	195.8	72.8	339	66	150.8	52.8	314	41	105.8	32.8
363	90	194.0	72.0	338	65	149.0	52.0	313	40	104.0	32.0
362	89	192.2	71.2	337	64	147.2	51.2	312	39	102.2	31.2
361	88	190.4	70.4	336	63	145.4	50.4	311	38	100.4	30.4
360	87	I 88.6	60.6	335	62	143.6	49.6	310	37	98.6	29.6
359	86	I'S6.8	68.8	334	61	14 I .8	48.8	309	36	96.8	28.8
358	85	185.0	68.0	333	60	140.0	48.0	308	35	95.0	28.0
357	84	183.2	67.2	332	59	I 38.2	47.2	307	34	93.2	27.2
356	83	181.4	66.4	331	58	I 36.4	46.4	306	33	91.4	26.4
355	82	179.6	65.6	330	57	134.6	45.6	305	32	80.6	25.6
354	8 I	177.8	64.8	329	56	I 32.8	44.8	304	31	87.8	24.8
353	80	176.0	64.0	328	55	I 31.0	44.0	303	30	86.0	24.0
35^{2}	79	$17+.2$	63.2	327	54	129.2	43.2	302	29	84.2	23.2
351	78	172.4	62.4	326	53	127.4	42.4	301	28	82.4	22.4
350	77	170.6	6 r .6	325	52	125.6	41.6	300	27	80.6	21.6
A. A.	c.	F.	R.	A. A.	C.	F.	R.	A.A.	c.	F.	R.

A.A.	C.	F.	R.	A. A.	C.	F.	R.	A. A.	C.	F.	R.
300°	27°	80, 6	2 I $^{\circ} 6$	250°	-23°	- 9.4	-18.4	200°	-73°	- 99.4	-58.4
299	26	78.8	20.8	249	24	11.2	19.2	199	74	101.2	59.2
298	25	77.0	20.0	248	25	${ }^{1} 3.0$	20.0	198	75	103.0	60.0
297	24	75.2	19.2	247	26	14.8	20.8	197	76	10.4	60.8
296	23	73.4	18.4	246	27	16.6	21.6	196	77	106.6	6 ¢. 6
295	22	71.6	17.6	245	-28	-18.4	-22.4	195	-78	-108.4	-62.4
29.4	21	69.8	16.8	244	29	20.2	23.2	194	79	110.2	63.2
293	20	68.0	16.0	2.43	30	22.0	24.0	193	80	I 12.0	64.0
292	19	66.2	15.2	242	31	23.8	24.8	192	81	113.8	64.8
291	18	64.4	14.4	241	32	25.6	25.6	191	82	115.6	65.6
290	17	62.6	13.6	240	-33	-27.4	-26.4	190	-83	- 117.4	-66.4
289	16	60.8	12.8	239	34	29.2	27.2	189	8	119.2	67.2
288	15	59.0	12	238	35	31.0	28.0	188	85	121.0	68.0
287	14	57.2	II. 2	237	36	32.8	28.8	187	86	122.8	68.8
286	13	55.4	10.4	236	37	34.6	29.6	I 86	87	124.6	69.6
285	12	53.6	9.6	235	-38	-36.4	-30.4	185	-88	-126.4	-70.4
$28+$	11	51.8	8.8	234	39	38.2	31.2	184	89	128.2	71.2
283	10	50.0	8.0	233	40	40.0	32.0	183	90	130.0	72.0
282	8	48.2	7.2	232	41	41.8	32.8	182	91	131.8	72.8
281	8	46.4	6.4	231	42	43.6	33.6	ISI	92	133.6	73.6
280	7	44.6	5.6	230	-43	-45.4	-34.4	180	-93	- 135.4	-74.4
279	6	42.8	4.8	229	44	47.2	35.2	179	94	137.2	75.2
278	5	41.0	4.0	228	45	49.0	36.0	178	95	139.0	76.0
277	4	39.2	3.2	227	46	50.8	36.8	177	96	140.8	76.8
276	3	37.4	2.4	226	47	52.6	37.6	176	97	142.6	77.6
275	+ 2	35.6	+ 1.6	225	-48	-54.4	-38.4	175	-98	- 144.4	-78.4
274	+ I	33.8	+ 0.8	22.4	49	56.2	39.2	174	99	146.2	79.2
273	± 0	32.0	± 0.0	223	50	58.0	40.0	173	100	148.0	80.0
272	-	30.2	- 0.8	222	51	59.8	40.8	172	101	149.8	80.8
271	- 2	28.4	- 1.6	22 I	52	61.6	41.6	171	102	151.6	8ı. 6
270	-3	26.6	- 2.4	220	-53	-63.4	-42.4	170	-103	-153.4	-82.4
269	4	24.8	3.2	219	54	65.2	43.2	169	104	155.2	83.2
268	5	23.0	4.0	218	55	67.0	44.0	168	105	157.0	84.0
267	6	21.2	4.8	217	56	68.8	44.8	167	106	158.8	84.8
266	7	19.4	5.6	216	57	70.6	45.6	166	107	160.6	85.6
265	-8	17.6	- 6.4	215	-58	-72.4	-46.4	165	-108	-162.4	-86.4
264	9	15.8	7.2	214	59	74.2	47.2	164	109	164.2	87.2
263	10	14.0	8.0	213	60	76.0	48.0	163	110	166.0	88.0
262	II	12.2	8.8	212	61	77.8	48.8	162	III	167.8	88.8
261	I 2	10.4	9.6	2 II	62	79.6	49.6	161	II 2	169.6	89.6
260	-13	8.6	- 10.4	210	-63	-81.4	-50.4	160	-113	-171.4	-90.4
259	14	6.8	II. 2	209	64	83.2	51.2	159	114	173.2	91.2
258	15	5.0	12.0	208	65	85.0	52.0	158	115	175.0	92.0
257	10	3.2	12.8	207	66	86.8	52.8	157	116	176.8	92.8
256	17	+ I. 4	13.6	206	67	88.6	53.6	156	117	178.6	93.6
255	- 18	-0.4	- 14.4	205	-68	-90.4	-54.4	155	-118	-180.4	-94.4
254	19	2.2	15.2	204	69	92.2	55.2	154	119	182.2	95.2
253	20	4.0	16.0	203	70	94.0	56.0	153	120	184.0	96.0
252	21	5.8	16.8	202	71	95.8	56.8	152	121	185.8	96.8
251	22	7.6	r 7.6	201	72	97.6	57.6	151	122	187.6	97.6
250	-23	-9.4	-I8.4	200	-73	-99.4	-58.4	150	-123	-189.4	-98.4
A. A.	C.	F.	R.	A. A.	C.	F.	R.	A.A.	C.	F.	R.

A. A.	C.	F.	R.	A. A.	C.	F.	R.	A. A.	C.	F.	R.
150°	-123°	-189.4	- 98.4	100°	-173°	-279.4	-138.4	50°	-223°	-369.4	-178.4
149	124	191.2	99.2	99	174	28 I .2	139.2	49	224	371.2	179.2
148	125	193.0	100.0	98	175	283.0	140.0	48	225	373.0	180.0
147	126	19.4 .8	100.8	97	176	284.8	140.8	47	226	374.8	I80.8
1.46	127	196.6	101. 6	96	177	286.6	141.6	46	227	376.6	I81. 6
145	-128	-198.4	-102.4	95	-178	-288.4	-142.4	45	-228	-378.4	-I82.4
144	129	200.2	103.2	94	179	290.2	143.2	44	229	380.2	183.2
I43	130	202.0	104.0	93	180	292.0	144.0	43	230	382.0	I84.0
142	131	203.8	104.8	92	ISI	293.8	144.8	42	231	383.8	IS4.8
141	132	205.6	105.6	91	182	295.6	145.6	41	232	385.6	185.6
140	-I33	-207.4	-106.4	90	-183	-297.4	-146.4	40	-233	$-387 \cdot 4$	-186.4
139	134	209.2	107.2	89	184	299.2	147.2	39	234	389.2	187.2
138	135	211.0	108.0	88	185	301.0	I48.0	38	235	391.0	188.0
137	136	212.8	108.8	87	I 86	302.8	148.8	37	236	392.8	188.8
136	137	214.6	109.6	86	187	304.6	149.6	36	237	394.6	I 89.6
135	$-\mathrm{I} 38$	-216.4	-IIO.4	85	-188	-306.4	-150.4	35	-238	-396.4	-190.4
134	I 39	218.2	1.2	${ }_{8} 8_{4}$	I89	308.2	151.2	34	239	398.2	191.2
133	140	220.0	112.0	83	190	310.0	152.0	33	240	400.0	192.0
132	141	221.8	112.8	82	191	31.8	152.8	32	241	401.8	192.8
I3 I	142	223.6	113.6	8 I	192	313.6	153.6	31	24^{2}	403.6	193.6
130	-143	-225.4	-114.4	80	-193	-315.4	-154.4	30	-243	-405.4	-194.4
I29	144	227.2	115.2	79	$19+$	317.2	155.2	29	2.4	407.2	195.2
128	145	229.0	116.0	78	195	319.0	156.0	28	245	409.0	196.0
127	146	230.8	I 16.8	77	196	320.8	156.8	27	246	410.8	196.8
126	147	232.6	117.6	76	197	322.6	157.6	26	247	412.6	197.6
125	-148	-234.4	-118.4	75	-198	-324.4	-158.4	25	-248	-414.4	-198.4
124	149	236.2	119.2	74	199	326.2	159.2	24	249	416.2	199.2
123	150	238.0	120.0	73	200	328.0	160.0	23	250	4 IS .0	200.0
122	151	239.8	120.8	72	201	329.8	160.8	22	251	419.8	200.8
12 I	152	241.6	121.6	71	202	331.6	161.6	2 I	252	42 I .6	201.6
120	- 153	-243.4	-122.4	70	-203	-333.4	-162.4	20	-253	-423.4	-202.4
119	154	245.2	123.2	69	204	335.2	163.2	19	254	425.2	203.2
II8	155	247.0	124.0	68	205	337.0	164.0	IS	255	427.0	204.0
117	156	248.8	124.8	67	206	338.8	164.8	17	256	428.8	204.8
I 16	157	250.6	125.6	66	207	340.6	165.6	16	257	430.6	205.6
115	-158	-252.4	-126.4	65	-208	-342.4	-166.4	15	-258	-432.4	-206.4
II4	159	254.2	127.2	64	209	3.4 .42	167.2	14	259	434.2	207.2
II3	160	256.0	128.0	63	210	346.0	168.0	13	260	436.0	208.0
II 2	161	257.8	128.8	62	211	347.8	168.8	12	261	437.8	208.8
I II	162	259.6	129.6	61	212	349.6	169.6	II	262	439.6	209.6
110	-163	-261.4	-r30.4	60	-213	-351.4	-170.4	10	-263	$-4.41 .4$	-210.4
109	164	263.2	131.2	59	214	353.2	171.2	9	264	443.2	211.2
108	165	265.0	132.0	58	215	355.0	172.0	8	265	445.0	212.0
107	166	266.8	132.8	57	216	356.8	172.8	7	266	446.8	212.8
106	167	268.6	133.6	56	217	358.6	173.6	6	267	448.6	213.6
105	-168	-270.4	-134.4	55	-218	-360.4	-174.4	5	-268	-450.4	-214.4
104	169	272.2	135.2	54	219	362.2	175.2	4	269	452.2	215.2
103	170	274.0	136.0	53	220	364.0	176.0	3	270	454.0	216.0
102	171	275.8	136.8	52	22 I	365.8	176.8	2	271	455.8	216.8
IOI	172	277.6	137.6	51	222	367.6	177.6	I	272	457.6	217.6
100	-173	-279.4	-I38.4	50	-223	-369.4	-178.4	0	-273	-459.4	-218.4
A.A.	C.	F.	R.	A.A.	C.	F.	R.	A. A.	C.	F.	R.

FAHRENHEIT SUALE TO CENTIGRADE.

Fahren. heit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	c.									
$+130^{\circ}$	+54. ${ }^{\circ} 44$	$+54.50$	$+54.56$	$+54.6 \mathrm{I}$	$+54.67$	$+54^{\circ} 72$	$+54^{\circ} 78$	$+54^{\circ} ._{3}$	$+54.89$	$+54.94$
129	53.89	53.94	54.00	54.06	54.11	54.17	54.22	54.28	54.33	54.39
128	53.33	53.39	53.44	53.50	53.56	53.61	53.67	53.72	53.78	53.83
127	52.78	52.83	52.89	52.94	53.00	53.06	53.1 I	53.17	53.22	53.28
126	52.22	52.28	52.33	52.39	52.44	52.50	52.56	52.6 I	52.67	52.72
+125	+51.67	$+51.72$	$+51.78$	+51. S_{3}	+51.89	+51.94	+52.00	+52.06	+52.11	+52.17
124	5 I.II	51.17	51.22	51.28	51.33	5 I .39	51.44	51.50	51.56	51.61
123	50.56	50.61	50.67	50.72	50.78	50.83	50.89	50.94	51.00	51.06
122	50.00	50.06	50.11	50.17	50.22	50.28	50.33	50.39	50.44	50.50
121	49.44	49.50	49.56	49.6I	49.67	49.72	49.78	49.83	49.89	49.94
$+120$	$+48.89$	+43.94	$+49.00$	+49.06	+49. 11	+49.17	+49.22	+49.28	$+49.33$	+49.39
119	48.33	48.39	48.44	48.50	48.56	48.61	48.67	48.72	48.78	48.83
118	47.78	47.83	47.89	47.94	48.00	48.06	48. I I	48.17	48.22	48.28
117	47.22	47.28	47.33	47.39	47.44	47.50	47.56	47.61	47.67	47.72
I 16	46.67	46.72	46.78	46.83	46.89	46.94	47.00	47.06	47.11	47.17
$+115$	+46. 11	+46.17	$+46.22$	$+46.28$	$+46.33$	+46.39	$+46.44$	$+46.50$	+46.56	+46.61
II4	45.56	45.61	45.67	45.72	45.78	45.33	45.89	45.94	46.00	46.06
113	45.00	45. 06	45.11	45.17	45.22	45.28	45.33	45.39	45.44	45.50
II2	44.44	44.50	44.56	44.61	44.67	44.72	44.78	44.33	44.89	44.94
III	43.89	43.94	44.00	44.06	44.11	44.17	44.22	44.28	44.33	44.39
$+110$	$+43.33$	+43.39	+43.44	+43.50	+43.56	+43.6I	$+43.67$	+43.72	$+43.78$	+43.83
109	42.75	42.83	42.89	42.94	43.00	43.06	43.1I	43.17	43.22	43.28
108	42.22	42.28	42.33	42.39	42.44	42.50	42.56	42.61	42.67	42.72
107	41.67	41.72	41.78	41.83	41.89	41.94	42.00	42.06	42.11	42.17
106	41.1I	41.17	41.22	41.28	41.33	41.39	4 I .44	41.50	41.56	41.61
$\div 105$	$+40.56$	+40.6I	$+40.67$	$+40.72$	+40.78	$+40.83$	+40.89	+40.94	$+41.00$	+41.06
104	40.00	40.06	40.11	40.17	40.22	40.28	40.33	40.39	40.44	40.50
103	39.44	39.50	39.56	39.61	39.67	39.72	39.78	39.83	39.89	39.94
102	38.89	38.94	39.00	39.06	39. I I	39.17	39.22	39.28	39.33	39.39
101	38.33	38.39	38.44	38.50	38.56	38.61	38.67	38.72	38.78	38.83
$+100$	$+37.78$	$+37.83$	+37.89	+37.94	$+38.00$	$+38.06$	+38.11	$+38.17$	$+38.22$	$+38.28$
99	37.22	37.28	37.33	37.39	37.44	37.50	37.56	37.61	37.67	37.72
98	36.67	36.72	36.78	36.83	36.89	36.94	37.00	37.06	37. I I	37.17
97	36.11 35.56	36.17	36.22 35.67	36.28	36.33	36.39	36.44	36.50	36.56	36.61
96	35.56	35.61	35.67	35.72	35.78	35.83	35.89	35.94	36.00	36.06
$+95$	+35.00	$+35.06$	+35.11	+35.17	+35.22	+35.28	+35.33	+ 35.39	$+35.44$	+35.50
94	34.44	34.50	34.56	34.61	34.67	34.72	34.78	34.83	34.89	34.94
93	33.89	33.94	34.00	34.06	34.11	34.17	34.22	34.28	34.33	34.39
92	33.33	33.39	33.44	33.50	33.56	33.61	33.67	33.72	33.78	33.83
91	32.78	32.83	32.89	32.94	33.00	33.06	33.1 I	33.17	33.22	33.28
$+90$	+32.22	+32.28	+32.33	+32.39	+32.44	+32.50	$+32.56$	+32.61	+32.67	+32.72
89	31.67	31.72	31.78	31.83	31.89	31.94	32.00	32.06	32.11	32.17
88	31.11	31.17	31.22	31.28	31.33	31.39	31.44	31.50	31.56	3 S .61
87 86	30.56	30.61	30.67	30.72	30.78	30.83	30.89	30.94	31.00	31.06
86	$30 . \mathrm{co}$	30.06	30.11	30.17	30.22	30.28	30.33	30.39	30.44	30.50
$+85$	+29.44	$+29.50$	+29.56	+29.6I	+29.67	+29.72	+29.78	+29.83	+29.89	+29.94
84	2889	28.94	29.00	29.06	29.11	29.17	29.22	29.28	29.33	29.39
83	28.33	28.39	28.44	28.50	28.56	28.61	28.67	28.72	28.78	28.83
S2	27.78 27.22	27.83	27.89	27.94	28.00	28.06	28.11	28.17	28.22	28.28
$+80$	27.22 +26.67	27.28	27.33	27.39	27.44	27.50	27.56	27.61	27.67	27.72
+80	+26.67	+26.72	+26.78	+26.83	+26.89	+26.94	+27.00	+27.06	+27.11	+27.17
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

Smithsonian Tableg.
table 2.
FAHRENHEIT SCALE TO CENTIGRADE.

Fahren. heit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
$+80^{\circ}$	$\begin{gathered} c . \\ +26^{\circ} .67 \end{gathered}$	$\begin{gathered} c . \\ +26^{\circ} \cdot 72 \end{gathered}$	$\begin{gathered} \text { c. } \\ +26^{\circ} \cdot 78 \end{gathered}$	$+26.83$	$\begin{gathered} c . \\ +26: 89 \end{gathered}$	$\begin{gathered} \text { C. } \\ +26.94 \end{gathered}$	$\begin{array}{r} \text { c. } \\ +27.00 \end{array}$	$\begin{gathered} c . \\ +27.06 \end{gathered}$	$+27^{\circ} .11$	$+27^{\circ} .17$
79	26.11	26.17	26.22	26.28	26.33	26.39	26.44	26.50	26.56	26.6 I
78	25.56	25.6 I	25.67	25.72	25.78	25.83	25.89	25.94	26.00	26.06
77	25.00	25.06	25. 11	25.17	25.22	25.28	25.33	25.39	25.44	25.50
76	24.44	24.50	24.56	24.6 I	24.67	24.72	24.78	24.83	24.89	24.94
+75	+23.89	+23.94	+24.00	$+24.06$	$+24.11$	$+24.17$	+24.22	+24.28	$+24.33$	$+24.39$
74	23.33	23.39	23.44	23.50	23.56	23.61	23.67	23.72	23.78	23.83
73	22.78	22.83	22.89	22.94	23.00	23.06	23.11	23.17	23.22	23.28
72	22.22	22.28	22.33	22.39	22.44	22.50	22.56	22.61	22.67	22.72
71	21.67	21.72	21.78	21.83	2 I .89	21.94	22.00	22.06	22.1 I	22.i7
+70	+2I.II	+21.17	+21.22	+21.28	+21.33	+21.39	+21.44	$+21.50$	+21.56	+21.6I
69	20.56	20.61	20.67	20.72	20.78	20.83	20.89	20.94	2 I . 00	21.06
68	20.00	20.06	20.11	20.17	20.22	20.28	20.33	20.39	20.44	20.50
67	19.44	19.50	19.56	19.61	19.67	19.72	19.78	19.83	19.39	19.94
66	18.89	18.94	19.00	19.06	19.11	19.17	19.22	19.28	19.33	19.39
$+65$	+18.33	+18.39	+18.44	+18.50	+18.56	+18.6I	+18.67	+18.72	+18.78	+18.83
64	17.78	17.83	17.89	17.94	18.00	18.06	18.11	18.17	18.22	18.28
63	17.22	17.28	17.33	17.39	17.44	17.50	17.56	17.61	17.67	17.72
62	16.67	16.72	16.78	16.83	16.89	16.94	17.00	17.06	17.11	17.17
61	16.11	16.17	16.22	16.28	16.33	16.39	16.44	16.50	16.56	16.61
$+60$	+15.56	+15.61	+15.67	+15.72	$+15.78$	+15.83	+15.89	+15.94	$+16.00$	$+16.06$
59	15.00	15.06	15.11	15.17	15.22	15.28	15.33	15.39	15.44	15.50
58	14.44	14.50	14.56	14.61	14.67	14.72	14.78	14.33	14.89	14.94
57	13.89	13.94	14.00	14.06	14.11	14.17	14.22	14.28	14.33	14.39
56	13.33	13.39	13.44	13.50	13.56	13.61	13.67	13.72	13.78	13.83
$+55$	+12.78	+12.83	+12.89	+12.94	+13.00	+13.06	+13.11	+13.17	+13.22	广 13.28
54	12.22	12.28	12.33	12.39	12.44	12.50	12.56	12.61	12.67	12.72
53	11.67	11.72	11.78	11.83	11.89	11.94	12.00	12.06	12.11	12.17
52	II. II	11.17	11.22	11.28	11.33	11.39	11.44	11.50	11.56	II. 61
51	10.56	10.61	10.67	10.72	10.78	10.83	10.89	10.94	11.00	11.06
$+50$	$+10.00$	+10.06	+10.11	+10.17	+10.22	+10.28	+10.33	+10.39	+10.44	+10.50
49	9.44	9.50	9.56	9.61	9.67	9.72	9.78	9.83	9.89	9.94
48	8.89	8.94	9.00	9.06	9. 11	9.17	9.22	9.28	9.33	9.39
47	8.33	8.39	8.44	8.50	8.56	8.61	8.67	8.72	8.78	8.83
46	7.78	7.83	7.89	7.94	8.00	8.06	8.11	S. 17	S. 22	8. 28
+45	+ 7.22	+ 7.28	+ 7.331	+ 7.39	+ 7.44	$+7.50$	+ 7.56	$+7.61$	$+7.67$	$+7.72$
44	6.67	6.72	6.78	6.83	6.89	6.94	7.00	7.06	7.11	7.17
43	6.11	6.17	6.22	6.28	6.33	6.39	6.44	6.50	6.56	6.61
42	5.56	5.61	5.67	5.72	5.78	5.83	5.89	5.94	6.00	6.06
41	5.00	5.06	5.11	5.17	5.22	5.28	$5 \cdot 33$	$5 \cdot 39$	5.44	$5 \cdot 50$
$+40$	$+4.44$	$+4.50$	$+4.56$	$+4.6 \mathrm{I}$	$+4.67$	$+4.72$	$+4.78$	$+4.83$	$+4.89$	$+4.94$
39	3.89	3.94	4.00	4.06	4.1 I	4.17	4.22	4.28	$4 \cdot 33$	4.39
38	3.33	3.39	3.44	3.50	3.56	3.61	3.67	3.72	3.78	3.83
37	2.78	2.83	2.89	2.94	3.00	3.06	3.11	3.17	3.22	3.28
36	2.22	2.28	2.33	2.39	2.44	2.50	2.56	2.61	2.67	2.72
+35	+ 1.67	$+1.72$	+ 1.78	$+1.83$	+ 1.89	+ 1.94	$+2.00$	$+2.06$	+2.11	+2.17
34	+1.11	+1.17	+ 1.22	+1.28	+1.33	+ 1.39	+ 1.44	+ 1.50	+ 1.56	+ 1.61
33	$+0.56$	+0.6I	+ 0.67	+0.72	+ 0.78	+ 0.83	+ o. 89	+ 0.94	+ 1.00	$+1.06$
32	0.00	+ 0.06	+ 0.11	+0.17	+ 0.22	+ 0.2 S	$+0.33$	+0.39	$+0.44$	$+0.50$
3 I	-0.56	-0.50	-0.44	-0.39	-0.33	$-0.2 \mathrm{~S}$	-0.22	-0.17	- 0.11	-0.06
$+30$	- I.II	- 1.06	- 1.00	-0.94	-0.89	-0.83	-0.78	- 0.72	-0.67	- 0.6I
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

FAHRENHEIT SCALE TO CENTIGRADE.

Fahrenheit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	c.									
$+30^{\circ}$	- İ. ${ }^{\text {a }}$ I	-	- I	-	-	-0.83	-0.78	-0.72	-0.67	- 0.61
29	67	1.6I	1.56	50	. 44	I. 39	33	2 S	. 22	. 17
28	2.22	2.17	2.11	2.06	2.00	1.94	1.89	1.83	1.78	. 72
27	2.78	. 72	2.67	2.61	2.56	2.50	2.44	2.39	2.33	2.28
26	3.33	3.28	3.22	3.17	3.11	3.06	3.00	2.94	2.89	2.83
$+25$	- 3.89	-3.83	- 3	- 3	- 3	-	-3.56	-3.50	-3.44	3.39
24	44	4.39	4.33	4.28	4.22	4.17	4.11	4.06	4.00	3.94
23	00	4.94	4.89	4.83	4.78	4.72	4.67	4.61	4.56	. 50
22		50	5.44	5.39	5.33	5.28	5.22	5.17	5.11	. 06
21	I	6.06	6.00	$5 \cdot 94$	5.89	5.83	5.78	5.72	5.67	.6I
+20	- 6	-6.61	-6.56	-6.50	- 6.44	- 6.39	-6.33	-6.28	-6.22	6.17
19	7.22	17	7.11	7.06	7.00	6.94	6.89	6.83	6.78	6.72
18	7.78	72	7.67	7.61	7.56	7.50	7.44	7.39	7.33	7.28
17	33	8.28	8.22	S. 17	S. 11	S. 06	8.00	7.94	7.89	. 83
16	8.89	8.83	S.78	S. 72	S. 67	8.61	8.56	8.50	8.44	8.39
$+15$	- 9	- 9.39	-9.33	- 9	- 9	- 9.17	- 9.11	-9.06	- 9.00	-8.94
14	10	9.94	9.89	9.83	9.7	9.72	9.67	6I	9.56	9.50
13	10	10.50	10.44	10.39	10.3	10.28	10.22	10.17	10.11	10.06
12	II.II	II	11	10.94	10.89	10.83	10.78	10.72	10.67	I
II	11.67	I 1.6	11.5	11.50	I 1.44	11.39	11.33	11.28	11.22	11.17
$+10$	--12.22	-12	-12.II	-12.06	-I	-il. 94	-11. S_{9}	-11.83	-11.78	-11.72
9	12	12.	12.6	12	12.5	12	12.44	12.39	12.33	12.28
8	13	13.28	13.22	13	13.11	13.0	13.00	12.94	12.89	12.83
7		13.83	13.78	13.72	13.67	13.61	13.56	13.50	13.44	13.39
6	14.44	14.39	14.33	14.28	14.22	14.17	14.11	14.06	14.00	13.94
+ 5	-I5	--14	-I	-14.83	-14.78	-I	-14.67	-14.61	-14.56	-14.50
4	15	15.	15.44	15.39	15.33	15.28	15.22	15.17	15.51	15.06
3	16.11	16.06	16.00	15.94		${ }^{1} 5.83$	15.78	15.72	. 67	5.61
2	16.67	16.61	16.56	16.50	16.44	16.39	16.33	16.28	16.22	6.17
,	17.22	17.17	17.11	17.06	17.00	16.94	16.89	16.83	16.78	16.72
+ 0	17.78	17.72	17.67	17.61	17.56	17.50	17.44	17.39	17.33	17.28
0	-I	-17.83	- 17.89	-17.94	-18.00	-18.06	-IS. 1	-IS. 17	-18.22	-18.28
1	IS. 3	18.39	18.44	18.50	18.56	I8.61	18.67	18.72	18.78	18.83
2		18.94	19.00	19.06	19. II	19.17	19.22	19.28	19.33	${ }_{15} 89$
3	19.4	19.5	19.56	19.61	19.67	19.72	19.78	19.83	19.89	$\underline{9.94}$
4	20.0	20.0	20.11	20.17	20.22	20.28	20.33	20.39	20.44	20.50
-5	-20	-20.	-20.	-20.	-20	-20.83	-20.89	-20	-21.00	-21.06
6	21.11	21.17	8	21.			21.	21.50	21.56	6I
	2 I .6	21.7	21.78	21.83	21.89	21.94	22.00	22.06	22.11	22.17
8	22.22	22.28	22.33	22.39	22.44	22.50	22.56	22.61	22.67	22.72
9	22.78	22.83	22.89	22.94	23.00	23.06	23. 11	23.17	23.22	23.28
-10		-23.39	-23.44		-23.56	-23.61	-23.67	-23.72	-23.78	-23.83
11	23.8	23.94	24.00	24	24.11	24.17	24.22	24.28	24.33	24.39
12	24.4	24.50	24.56		24.67	24.72	24.7	24.83	24.89	24.94
13	25.00	25.06	25.11	25.17	25.22	25.28	25.33	25.39	25.44	25.50
14	25.5	25	25.67	25.72	25.78	25.83	25.89	25.94	26.00	26.06
- 15	-26.11	-26.17	-26.22	-26.28	-26.33	-26.39	-26.44	-26.50	-26.56	-26.6I
16	26.67	26.72	26.78	26.83	26.89	26.94	27.00	27.06	27.11	27.17
17	27.22	27.28	27.33	27.39	27.44	27.50	27.56	27.61	27.67	27.72
18	27.78	27.83	27.89	27.94	28.00	28.06	28.11	28.17	28.22	28.28
19	28.3	28.39	28.44	28.50	28.56	28	28.67	28.72	28.78	28.83
-20	-28.89	-28.94	-29.00	-29.06	-29.1 1	-29.17	-29.22	-29.28	-29.33	-29.39
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

Table 2.
FAHRENHEIT SCALE TO CENTIGRADE.

Fahren. heit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	c.									
-20°	-28.89	-28.94	-29.00	29.06	-29.11	$-29^{\circ} 17$	$-29^{\circ} 22$	$-29^{\circ} .28$	-29.33	-29.39
21	29.44	29.50	29.56	29.61	29.67	29.72	29.78	29.83	29.89	29.94
22	30.00	30.06	30.11	30.17	30.22	33.28	30.33	30.39	30.44	30.50
23	30.56	30.61	30.67	30.72	30.78	30.83	30.89	30.94	31.00	31.06
24	3 I .11	31.17	31.22	31.28	31.33	31.39	31.44	31.50	31.56	31.6I
-25	-31.67	-31.72	-31.78	-31.83	31.89	- 31.94	-32.00	-32.06	-32.1I	-32.17
26	32.22	32.28	32.33	32.39	32.44	32.50	32.56	32.61	32.67	32.72
27	32.78	32.83	32.89	32.94	33.00	33.06	33.11	33.17	33.22	33.28
28	33.33	33.39	33.44	33.50	33.56	33.61	33.67	33.72	33.78	33.83
29	33.89	33.94	34.00	34.06	34.11	34.17	34.22	34.28	34.33	34.39
-30	-34.44	-34.50	-34.56	-34.6I	-34.67	-34.72	-34.78	-34.83	-34.89	-34.94
31	35.00	35.06	35.11	35.17	35.22	35.28	35.33	$35 \cdot 39$	35.44	35.50
32	35.56	35.61	35.67	35.72	35.78	35.83	35.89	35.94	36.00	36.06
33	36.11	36.17	36.22	36.28	36.33	36.39	36.44	36.50	36.56	36.61
34	36.67	36.72	36.78	36.83	36.89	36.94	37.00	37.06	37.11	37.17
-35	-37.22	-37.28	-37.33	-37.39	-37.44	-37.50	-37.56	-37.61	-37.67	-37.72
36	37.78	37.83	37.89	37.94	38.00	38.06	38.11	38.17	30.22	38.28
37	38.33	3 S .39	38.44	38.50	38.56	38.61	$3^{8.67}$	38.72	38.78	38.83
38	38.89	38.94	39.00	39.06	39.1 I	39.17	39.22	39.28	39.33	39.39
39	39.44	39.j0	39.56	39.61	39.67	39.72	39.78	39.83	39.89	39.94
-40	-40.00	-40.06	-40.11	-40.17	-40.22	-40.28	-40.33	-40.39	-40.44	-40.50
41	40.56	40.61	40.67	40.72	40.78	40.83	40.89	40.94	41.00	41.06
42	41.11	41.17	41.22	41.28	41.33	41.39	41.44	41.50	41.56	41.61
43	41.67	41.72	41.78	41.83	4 I .39	41.94	42.00	42.06	42.11	42.17
44	42.22	42.28	42.33	42.39	42.44	42.50	42.56	42.61	42.67	42.72
-45	-42.78	-42.83	-42.89	-42.94	-43.00	-43.06	-43.11	-43.17	-43.22	-43.29,
46	43.33	43.39	43.44	43.50	43.56	43.61	43.67	43.72	43.78	43.83
47	43.89	43.94	44.00	44.06	44.1 I	44.17	44.22	44.28	44.33	44.39
48	42.44	44.50	44.5^{5}	44.61	44.67	44.72	44.78	44.83	44.89	44.94
49	45.00	45.06	45. I I	45.17	45.22	45.2 S	$45 \cdot 33$	$45 \cdot 39$	45.44	45.50
-50	-45.56	-45.6I	-45.67	-45.72	-45.78	-45.83	-45.89	-45.94	-46.00	-46.06
51	45.11	46.17	46.22	46.28	46.33	46.39	46.44	46.50	46.56	46.61
52	46.67	46.72	46.78	46.83	46.89	46.94	47.00	47.06	47.1 I	47.17
53	47.22	47.28	47.33	47.39	47.44	47.50	47.56	47.61	47.67	47.72
54	47.78	47.83	47.89	47.94	48.00	48.06	48.11	48.17	48.22	48.28
-55	-48.33	-48.39	-48.44	-48.50	-48.56	-48.61	-48.67	-48.72	-48.78	-48.83
56	48.89	48.94	49.00	49.06	49. 11	49.17	49.22	49.28	49.33	49.39
57	49.44	49.50	49.56	49.6I	49.67	49.72	49.78	49.83	49.89	49.94
58	50.00	50.06	50.11	50.17	50.22	50.28	50.33	50.39	50.44	50.50
59	50.56	50.61	50.67	50.72	50.78	50.83	50.89	50.94	51.00	51.06
-60	-51.11	-51.17	-51.22	-51.28	-51.33	-5I. 39	-51.44	-51.50	-51.56	-51.6I
$6 t$	51.67	51.72	51.78	51.83	51.89	51.94	52.00	52.06	52.11	52.17
62	52.22	52.28	52.33	52.39	52.44	52.50	52.56	52.61	52.67	52.72
63	52.78	52.83	52.89	52.94	53.00	53.06	53.11	53.17	53.22	53.28
64	53.33	53.39	53.44	53.50	53.56	53.61	53.67	53.72	53.78	53.83
-65	-53.39	-53.94	-54.00	-54.06	-54. 11	-54.17	-54.22	-54.28	-54.33	-54.39
66	54.44	54.50	54.56	54.6 I	54.67	54.72	54.78	54.83	54.89	54.94
67	55.00	55.06	55.1 I	55.17	55.22	55.28	55.33	55.39	55.44	55.50
68	55.56	55.61	55.67	55.72	55.78	55.83	55.89	55.94	56.00	56.06
69	56.1 I	56.17	56.22	56.28	56.33	56.39	56.44	56.50	56.56	56.61
-70	-56.67	-56.72	-56.78	-56.83	-56.89	-56.94	-57.00	-57.06	-57.11	-57.17
	. 0	. 1	. 2	.3	. 4	. 5	. 6	. 7	. 8	. 9

Smithsonian Tables.

FAHRENHEIT SCALE TO CENTIGRADE.

Fahrenheit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	$-56{ }^{\circ} 67$	c.		c.	C.	56°	- 7°	- 7° O	.	C.
-70°	-56.67	-56.72	-56.78	$-56^{\circ} .83$	$-56^{\circ} \mathrm{B}$ 9	-56.94	-57.00	-57.06	-57.11	-57.17
71	57.22	57.28	57.33	57.39	57.44	57.50	57.56	57.61	57.67	57.72
72	57.78	57.83	57.89	57.94	58.00	58.06	58.11	58.17	58.22	58.28
73	58.23	58.39	58.44	58.50	58.56	58.61	58.67	58.72	58.78	58.83
74	58.89	58.94	59.00	59.06	59.1 I	59.17	59.22	59.28	59.33	59.39
-75	-59.44	-59.50	-59.56	-59.6I	-59.67	-59.72	-59.78	-59.83	-59.89	-59.94
76	¢0.0	60.06	60.11	60.17	60.22	60.28	60.33	60.39	60.44	60.50
77	60.56	60.61	60.67	60.72	60.78	60.83	60.89	60.94	61.00	61.06
78	6 I .1 I	61.17	61.22	$6 \pm .28$	6 r .33	61.39	61.44	61.50	61.56	61.6 I
79	6 I .67	61.72	61.78	61.83	61.89	61.94	62.00	62.06	62.11	62.17
-80	-62.22	-62.28	-62.33	-62.39	-62.44	-62.50	-62.56	-62.61	-62.67	-62.72
8 I	62.78	62.83	62.89	62.94	63.00	63.06	63.11	63.17	63.22	63.28
82	63.33	6.3 .39	63.44	63.50	63.56	63.61	63.67	63.72	63.78	63.83
83	63.89	63.94	64.00	6.4 .06	64.1 I	64.17	64.22	64.28	64.33	64.39
84	64.44	64.50	64.56	6.4 .61	64.67	64.72	64.78	64.83	64.89	64.94
-85	-65.00	-65.06	-65.11	-65.17	-65.22	-65.28	-65.33	-65.39	-65.44	-65.50
86	65.56	65.61	65.67	65.72	65.78	65.83	65.89	65.94	66.00	66.06
87	66.11	66.17	66.22	66.28	66.33	66.39	66.44	66.50	66.56	66.6 r
88	66.67	66.72	66.78	66.83	66.89	66.94	67.00	67.06	67.1 I	67.17
89	67.22	67.28	67.33	67.39	67.44	67.50	67.56	67.61	67.67	67.72
-90	-67.78	-67.83	-67.89	-67.94	-68.00	-68.06	-68.11	-68.17	-68.22	-68.28
91	68.33	68.39	68.44	68.50	68.56	68.61	68.67	68.72	68.78	68.83
92	68.89	68.94	69.00	69.06	69.11	69.17	69.22	69.28	69.33	69.39
93	69.44	69.50	69.56	69.61	69.67	69.72	69.78	69.83	69.89	69.94
94	70.00	70.06	70.11	70.17	70.22	70.28	70.33	70.39	70.44	70.50
-95	-70.56	-70.61	-70.67	-70.72	-70.78	-70.83	-70.89	-70.94	-71.00	-71.06
96	71.11	71.17	71.22	71.28	71.33	71.39	71.44	71.50	71.56	7 I .61
97	71.67	71.72	71.78	71.83	7 I .89	71.94	72.00	72.06	72.11	72.17
98	72.22	72.28	72.33	72.39	72.44	72.50	72.56	72.61	72.67	72.72
99	72.78	72.83	72.89	72.94	73.00	73.06	73.11	73.17	73.22	73.28
-100	-73.33	-73.39	-73.44	-73.50	-73.56	-73.61	-73.67	-73.72	-73.78	-73.83
101	73.89	73.94	74.00	74.06	74.11	74.17	74.22	74.28	74.33	74.39
102	74.44	74.50	74.56	74.6	74.67	74.72	74.78	74.83	74.89	74.94
103	75.00	75.06	75.11	75.17	75.22	75.28	75.33	75.39	75.44	75.50
104	75.56	75.61	75.67	75.72	75.78	75.83	75.89	75.94	76.00	76.06
-105	-76.11	-76.17	-.76.22	-76.28	-76.33	-76.39	-76.44	-76.50	-76.56	-76.61
106	76.67	76.72	76.78	76.83	76.89	76.94	77.00	77.06	77.11	77.17
107	77.22	77.28	77.33	77.39	77.44	77.50	77.56	77.61	77.67	77.72
	77.78	77.83	77.89	77.94	78.00	78.06	78.11	78.17	78.22	78.28
109	78.33	78.39	78.44	78.50	78.56	78.61	78.67	78.72	78.78	78.83
-110	-78.89	-78.94	-79.00	-79.06	-79.11	-79.17	-79.22	-79.28	-79.33	-79.39
III	79.44	79.50	79.56	70.61	79.67	79.72	79.78	79.83	79.89	79.94
112	80.00	80.06	80.11	80.17	80.22	80.28	80.33	80.39	80.44	80.50
113	80.56	80.61	80.67	80.72	80.78	80.83	80.89	80.94	8 t .00	81.06
114	8 I .11	81.17	81.22	81.28	8 I .33	81.39	8 s .44	81.50	8т.56	8ı.6ı
-115	-81. 67	-81.72	-81.78	$-8 \mathrm{r} .83$	-81.89	-81.94	-82.00	-82.06	-82.11	-82.17
116	82.22	82.28	82.33	82.39	82.44	82.50	82.56	82.61	82.67	82.72
117	82.78	82.83	82.89	82.94	83.00	83.06	83.11	83.17	83.22	83.28
118	83.33	83.39	83.44	83.50	83.56	83.61	83.67	83.72	83.78	83.83
119	83.89	83.94	84.00	S4.06	84.1 I	84.17	84.22	84.28	84.33	84.39
-120	-84.44	-84.50	-84.56	-84.61	-84.67	-84.72	-84.78	-84.83	-84.89	-84.94
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	.7	. 8	. 9

Centigrade.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
$+60^{\circ}$	$\begin{gathered} F \\ +140.00 \end{gathered}$	$\begin{gathered} F \\ +140^{\circ} .18 \end{gathered}$	$\begin{gathered} F . \\ +140 \cdot 36 \end{gathered}$	$\begin{gathered} F . \\ +140.54 \end{gathered}$	$\begin{array}{r} \text { F. } \\ +140.72 \end{array}$	$\begin{gathered} F . \\ +140.90 \end{gathered}$	$\begin{gathered} F . \\ +141.08 \end{gathered}$	$\begin{gathered} F . \\ +141.26 \end{gathered}$	$\begin{gathered} F \\ +141.44 \end{gathered}$	$\begin{gathered} F . \\ +141.62 \end{gathered}$
59	138.20	138.38	138.56	138.74	138.92	139.10	139.28	139.46	139.64	139.82
58	136.40	136.58	136.76	136.94	137.12	137.30	137.48	137.66	137.84	138.02
57	13.4 .60	13.4 .78	134.96	135.14	135.32	135.50	${ }^{1} 35.68$	135.86	136.04	136.22
56	132.80	I 32.98	I 33.16	133.34	133.52	133.70	133.88	134.06	134.24	134.42
$+55$	+131.00	+131.18	+131.36	+131.54	+131.72	+131.90	+132.08	+132.26	+132.44	+132.62
54	129.20	129.38	129.56	129.74	129.92	130.10	130.28	130.46	130.64	${ }^{1} 30.82$
53	127.40	127.58	127.76	127.94	128.12	128.30	128.48	128.66	128.84	129.02
52	125.60	125.78	125.96	126.14	126.32	126.50	126.68	126.86	127.04	127.22
51	123.80	123.98	124.16	124.34	124.52	12.4 .70	I 24.88	125.06	125.24	125.42
+50	122.00	+122.18	+122.36	+122.54	+122.72	+122.90	+123.08	+123.26	+123.44	+123.62
49	120.20	120.38	120.56	120.74	120.92	121.10	121.28	121.46	121.64	121.82
48	118.40	118.58	I18.76	118.94	119.12	119.30	119.48	119.66	119.84	120.02
47	116.60	116.78	116.96	117.14	117.32	117.50	117.68	117.86	118.04	118.22
46	114.80	114.98	115.16	I15.34	115.52	115.70	115.88	116.06	116.24	116.42
+45	+113.00	+113.18	+113.36	+113.54	+113.72	+113.90	+114.08	+114.26	+114.44	+114.62
44	III. 20	111.38	111.56	111.74	III.92	II2.10	112.28	112.46	112.64	112.82
43	100.40	109.58	109.76	109.94	110.12	110.30	110.48	110.66	110.84	111.02
42	107.60	107.78	107.96	108.14	108.32	108.50	108.68	108.86	109.04	109.22
4 I	105.80	105.98	106.16	106.34	106.52	106.70	106.88	107.06	107.24	107.42
+40	+104.00	+104.18	+104.36	+104.54	+104.72	+104.90	+105.08	$+105.26$	+105.44	+105.62
39	102.20	102.38	102.56	102.74	102.92	103.10	103.28	103.46	103.64	103.82
38	100.40	100.58	100.76	100.94	101.12	101. 30	101.48	101.66	101.84	102.02
37	98.60	98.78	98.96	99.14	99.32	99.50	99.68	99.86	100.04	100.22
36	96.80	96.98	97.16	97.34	97.52	97.70	97.88	98.06	98.24	98.42
+35	+ 95.00	+ 95.18	6	+ 95.54	+ 95.72	90	$+96.08$	+ 96.26	+ 96.44	$+96.62$
34	93.20	93.38	93.56	93.74	93.92	04.10	94.28	94.46	94.64	94.82
33	91.40	91.58	91.76	91.94	92.12	92.30	92.48	92.66	92.84	93.02
32	89.60	89.78	S9.96	90.14	90.32	90.50	90.68	90.86	91.04	91.22
31	87.80	87.98	88.16	88.34	88.52	88.70	88.88	89.06	89.24	89.42
$+30$	+ 86.00	+ 86.18	+ 86.36	+ 86.54	+ 86.72	+ 86.90	+ 87.08	+ 87.26	+ 87.44	$+87.62$
29	84.20	84.38	S4.56	84.74	8.4.92	85.10	85.28	85.46	85.64	85.82
28	82.40	82.58	82.76	82.94	83.12	83.30	83.48	83.66	83.84	84.02
27	So. 60	So. 78	80.96	8 I .14	SI.32	SI.50	81.68	81.86	82.04	82.22
26	78.80	78.98	79.16	79.34	79.52	79.70	79.88	80.06	80.24	80.42
+25	+ 77.00	+ 77.18	+ 77.36	+ 77.54	+ 77.72	+ 77.90	+ 78.08	+ 78.26	+ 78.44	$+78.62$
24	75.20	75.38	75.56	75.74	75.92	76.10	76.28	76.46	76.64	76.82
23	73.40	73.58	73.76	73.94	74.12	74.30	74.48	74.66	74.84	75.02
22	71.60	71.78	71.96	72.14	72.32	72.50	72.68	72.86	73.04	73.22
21	69.80	69.98	70.16	70.34	70.52	70.70	70.88	71.06	71.24	71.42
+20	+ 68.00	+ 68.18	+ 68.36	+ 68.54	+ 68.72	+ 68.90	$+69.08$	$+69.26$	+ 69.44	$+69.62$
19	66.20	66.38	66.56	66.74	66.92	67.10	67.28	67.46	67.64	67.82
18	64.40	6.4 .58	64.76	64.94	65.12	65.30	65.48	65.66	65.84	66.02
17	62.60	62.78	- 62.96	63.14	63.32	63.50	63.68	- 63.86	64.04	-64.22
16	60.80	60.98	61.16	61.34	61.52	61.70	61.88	62.06	62.24	62.42
$+15$	+ 59.00	+ 59.18	+ 59.36	+ 59.54	+ 59.72	59.90	$+60.08$	$+60.26$	+ 60.44	$+60.62$
14	57.20	57.38	57.56	57.74	57.92	58.10	58.28	- 58.46	58.64	58.82
13	55.40	55.58	55.76	55.94	56.12	56.30	56.48	- 56.66	56.84	57.02
12	53.60	53.78	- 53.96	54.14	54.32	54.50	- 54.68	- 54.86	-55.04	55.22
11	51.80	51.98	52.16	52.34	52.52	52.70	52.88	- 53.06	53.24	53.42
$+10$	+ 50.00	+ 50.18	+ 50.36	+ 50.54	+ 50.72	$+50.90$	$+51.08$	+ 51.26	+ 51.44	$+51.62$
		. 1	. 2	. 3	. 4	5	. 6	.7	. 8	. 9

Smithsonian Tables.

GENTIGRADE SCALE TO FAHRENHEIT.

Centigrade.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
$+10^{\circ}$	$+50^{\circ} .00$	$+50^{\circ} .18$	$+50^{\circ} .36$	$+50^{\circ} .54$	$\begin{gathered} F . \\ +50^{\circ} .72 \end{gathered}$	$\begin{gathered} \text { F. } \\ +50.90 \end{gathered}$	$\begin{gathered} F . \\ +51.08 \end{gathered}$	$\begin{gathered} F . \\ +5 \mathrm{I} .26 \end{gathered}$	$\begin{gathered} F . \\ +5 \mathrm{r} .44 \end{gathered}$	$\begin{gathered} F_{0} \\ +5 I^{\circ} .62 \end{gathered}$
+ 9	$+48.20$	+48.38	$+48.56$	+48.74	+48.92	+49.10	$+49.28$	+49.46	+49.64	+49.82
8	46.40	46.58	46.76	46.94	47.12	47.30	47.48	47.66	47.84	48.02
7	44.60	44.78	44.96	45.14	$45 \cdot 32$	45.50	45.68	45.86	46.04	46.22
6	42.80	42.98	43.16	43.34	$43 \cdot 52$	43.70	43.88	44.06	44.24	44.42
5	41.00	41.18	41.36	41.54	41.72	41.90	42.08	42.26	42.44	42.62
+ 4	$+39.20$	$+39.38$	+39.56	+39.74	$+39.92$	+40.10	$+40.28$	$+40.46$	+40.64	+40.82
3	37.40	37.58	37.76	37.94	38.12	38.30	38.48	38.66	38.84	39.02
2	35.60	35.78	35.96	36.14	36.32	36.50	36.68	36.86	37.04	37.22
1	33.80	33.98	34.16	$34 \cdot 34$	34.52	34.70	34.88	35.06	35.24	35.42
+ 0	32.00	32.18	32.36	32.54	32.72	32.90	33.08	33.26	33.44	33.62
- 0	+32.00	$+31.82$	+31.64	$+31.46$	+31.28	+31.10	+30.92	+30.74	+30.56	30.38
I	30.20	30.02	29.84	29.66	29.48	29.30	29.12	28.94	28.76	28.58
2	28.40	28.22	28.04	27.86	27.68	27.50	27.32	27.14	26.96	26.78
3	26.60	26.42	26.24	26.06	25.88	25.70	25.52	25.34	25.16	24.98
4	24.80	24.62	24.44	24.26	24.08	23.90	23.72	23.54	23.36	23.18
- 5	+23.00	$+22.82$	+22.6	$+22.46$	+22.28	+22.10	$+21.92$	+21.74	+21.56	+21.38
6	21.2	21.02	20.84	20.66	20.48	20.30	20.12	4	19.76	9.58
7	19.	19.22	19.04	18.86	18.68	18.50	18.32	18.14	17.96	17.78
8	17.60	17.42	17.24	17.06	I6.88	16.70	16.52	16.34	16.16	5.98
9	15.80	15.62	15.44	15.26	15.08	14.90	14.72	14.54	14.36	14.18
-10	+14.00	+13.82	+13.6	$+13.46$	+13.28	+13.10	+12.92	+12.74	+12.56	+12.38
II	12.20	12	11.84	11.66	11.48	11.30	11.12	10.94	10.76	10.58
12	10.40	10.22	10.04	9.86	9.68	9.50	9.32	9.14	8.96	8.78
13	8.60	8.42	8.24	8.06	7.88	7.70	7.52	7.34	7.16	6.98
14	6.80	6.62	6.44	6.26	6.08	5.90	5.72	$5 \cdot 54$	5.36	5.18
-15	$+5.00$	$+4.82$	+ 4.64	$+4.46$	$+4.28$	+ 4.10	$+3.92$	+ 3.74	$+3.56$	$+3.38$
16	$+3.20$	$+3.02$	+ 2.84	+ 2.66	+ 2.48	+ 2.30	+ 2.12	+ 1.94	+ 1.76	+ 1.58
17	+ 1.40	+ 1.22	+ 1.04	+ 0.86	$+0.68$	$+0.50$	$+0.32$	+ 0.14	- 0.04	- 0.22
18	-	-0.58	-0.76	-	- 1.12	- 1.30	- 1.48	- 1.66	$-\quad 1.84$	-2.02
19	- 2	- 2.38	- 2.56	- 2.74	-2.92	- 3.10	-3.28	- 3.46	- 3.64	-3.82
-20	- 4.00	- 4.18	- 4.36	- 4.54	-4.72	- 4.90	- 5.08	-5.26	- 5.44	- 5.62
21	5.80	5.98	6.16	6.34	6.52	6.70	6.88	7.06	7.24	7.42
22	7.60	7.78	7.96	8.14	S.32	8.50	8.68	8.86	9.04	9.22
23	9.40	9.58	9.76	9.94	10.12	10.30	10.48	10.66	10.84	11.02
24	11.20	I 1.38	11.56	11.74	11.92	12.10	12.28	12.46	12.64	12.82
-25	-13.00	-13.18	- 13.36	-13.54	- 13.72	-13.90	-14.08	-14.26	-14.44	-14.62
26	14.80	14.98	15.16	15.34	15.52	15.70	15.88	16.06	16.24	16.42
27	16.60	16.78	16.96	17.14	17.32	17.50	17.68	17.86	18.04	18.22
28	18.40	18.58	18.76	18.94	19.12	19.30	19.48	19.66	19.84	20.02
29	20.20	20.38	20.56	20.74	20.92	21.10	21.28	21.46	21.64	21.82
-30	-22.00	-22.18	-22.36	-22.54	-22.72	-22.90	-23.08	-23.26	-23.44	-23.62
31	23.80	23.98	24.16	24.34	24.52	24.70	24.88	25.06	25.24	25.42
32	25.60	25.78	25.96	26.14	26.32	26.50	26.68	26.86	27.04	27.22
33	27.40	27.58	27.76	27.94	28.	28.30	28.48	28.66	28.84	29.02
34	29.20	29.38	29.56	29.74	29.92	30.10	30.28	30.46	30.64	30.82
-35	-31.00	-31.18	-31.36	-31.54	-31.72	-31.90	-32.08	-32.26	-32.44	-32.62
36	32.80	32.98	33.16	33.34	33.52	33.70	33.88	34.06	34.24	34.42
37	34.60	34.78	34.96	35.14	$35 \cdot 32$	35.50	35.68	35.86	36.04	6.22
38	36.40	36.58	36.76	36.94	37.12	37.30	37.48	37.66	37.84	38.02 39.82
39	38.20	38.38	38.56	38.74	38.92	39.10	39.28	39.46	39.64	39.82
-40	-40.00	-40.18	-40.36	-40.54	-40.72	-40.90	-41.08	-41.26	-41.44	-41. 62
	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9

Centigrade.	. 0	. 1	. 2	.3	.4	. 5	. 6	.7	. 8	. 9
	F.	F,	F.	F.						
-40°	- 40.00	- 40.18	-40.36	-40.54	- 40.72	- 40.90	- 41.08	- 41.26	$-4 \mathrm{I}^{\circ} .44$	41.62
4 I	41.80	41.98	42.16	42.34	42.52	42.70	42.88	43.06	43.24	43.42
42	43.60	43.78	43.96	44.14	44.32	44.50	44.68	44.86	45.04	45.22
43	45.40	45.58	45.76	45.94	46.12	46.30	46.48	46.66	46.84	47.02
44	47.20	47.38	$47 \cdot 56$	47.74	47.92	48.10	48.28	48.46	48.64	48.82
- 45	49.00	- 49.18	- 40.36	- 49.54	49.72	49.90	- 50.08	- 50.26	- 50.44	- 50.62
46	50.80	50.98	51.16	51.34	51.52	51.70	51.88	52.06	52.24	52.42
47	52.60	52.78	52.96	53.14	53.32	53.50	53.68	53.86	54.04	54.22
48	54.40	54.58	54.76	54.94	55.12	$55 \cdot 30$	55.48	55.66	55.84	56.02
49	.56.20	56.38	56.56	56.74	56.92	57.10	57.28	57.46	57.64	57.82
- 50	58.00	58.18	58.36	- 58.54	58.72	58.90	50.08	59.26	- 59.44	59.62
51	59.80	59.98	60.16	60.34	60.52	60.70	60.98	61.06	61.24	61.42
52	61.60	61.78	61.96	62.14	62.32	62.50	62.68	62.86	63.04	63.22
53	63.40	63.58	63.76	63.94	64.12	64.30	$6+.48$	64.66	64.84	65.02
54	65.20	65.38	65.56	65.74	65.92	66.10	66.28	66.46	66.64	66.82
- 55	67.00	-67.18	- 67.36	-67.54	-67.72	- 67.90	- 68.08	- 68.26	- 68.44	-68.62
56	68.80	68.98	69.16	69.34	69.52	69.70	69.88	70.06	70.24	70.42
57	70.60	70.78	70.96	71.14	71.32	71.50	71.68	71.86	72.04	72.22
58	72.40	72.58	72.76	72.94	73.12	73.30	73.48	73.66	73.84	74.02
59	74.20	74.38	74.56	74.74	74.92	75.10	75.28	75.46	75.64	75.82
, -60	76.00	-76.18	- 76.36	76.54	76.72	- 76.90-	- 77.08	- 77.26	- 77.44	- 77.62
61	77.80	77.98	78.16	78.34	78.52	78.70	78.88	79.06	79.24	79.42
62	79.60	79.78	79.96	80.14	80.32	80.50	80.68	80.86	SI.O4	81.22
63	8 I .40	8 I .58	81.76	81.94	82.12	82.30	82.48	82.66	82.84	83.02
64	83.20	83.38	83.56	83.74	83.92	84.10	84.28	84.46	84.64	84.82
-65	- 85.00	-85.18	-85.36	- 85.54	85.72	- 85.90	- 86.08	- 86.26	- 86.44	86.62
66	86.80	86.98	87.16	87.34	87.52	87.70	87.88	88.06	88.24	88.42
67	88.60	88.78	88.96	89.14	S9.32	89.50	89.68	89.86	90.04	90.22
68	90.40	90.58	90.76	90.94	91.12	91.30	91.48	91.66	91.84	92.02
69	92.20	92.38	92.56	92.74	92.92	93.10	93.28	93.46	93.64	93.82
- 70	94.00	- 94.18	- 94.36	- 94.54	- 94.72	- 94.90	- 95.08	- 95.26	- 95.44	- 95.62
71	95.80	95.98	96.16	96.34	96.52	96.70	96.88	97.06	97.24	97.42
72	97.60	97.78	97.96	98.14	98.32	98.50	98.68	98.86	99.04	99.22
73	99.40	99.58	99.76	99.94	100.12	100.30	100.48	100.66	100.84	101.02
74	IOI. 20	101.38	101.56	101.74	101.92	102.10	102.28	102.46	102.64	102.82
-75	-103.00	-103.18	-103.36	-103.54	-103.72	-103.90	-104.08	-104.26	-104.44	10.4 .62
76	104.80	104.98	105.16	105.34	105.52	105.70	105.88	106.06	106.24	106.42
77	106.60	106.78	106.96	107.14	107.32	107.50	107.68	107.86	108.04	108.22
78	108.40	108.58	108.76	108.94	109.12	109.30	109.48	109.66	109.84	110.02
79	110.20	110.38	110.56	110.74	110.92	111.10	III. 28	III. 46	III. 64	111.82
-80	\|-II2.00	-112.18	-II2.36	-112.54	-II2.72	-II 2.90	-113.08	-113.26	- 113.44	-113.62
81	113.80	113.98	II. 1.16	II 1 + 34	114.52	114.70	114.88	115.06	115.24	115.42
82	I 15.60	115.78	115.96	116.14	116.32	116.50	116.68	116.86	117.04	117.22
83	I 17.40	117.58	117.76	117.94	II8.I2	118.30	118.48	118.66	118.84	119.02
84	I19.20	119.38	I 19.56	119.74	119.92	120.10	120.28	120.46	I 20.64	120.82
-85	-121.00	-I21.18	-121.36-	-121.54	-121.72	- 121.90	-122.0S	- 122.26	-I32.44	-122.62
86	122.80	122.98	123.16	123.34	123.52	123.70	123.88	124.06	124.24	124.42
87	124.60	124.78	124.96	125.14	125.32	125.50	125.68	125.86	126.04	126.22
88	I26.40	126.58	126.76	126.94	127.12	127.30	127.48	127.66	127.84	128.02
89	I28.20	128.38	128.56	128.74	128.92	129.10	I 29.28	129.46	129.64	129.82
-90	-130.00	-130.18	-130.36	-130.54	-130.72	-130.90	-131.08	-131.26	-131.44	-131.62
	. 0	.1	. 2	. 3	.4	. 5	. 6	.7	. 8	. 9

Table 4.
CENTIGRADE SCALE TO FAHRENHEIT - Near the Boiling Point.

Centigrade.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
100°	$\begin{gathered} \text { F. } \\ 212.00 \end{gathered}$	$\begin{gathered} \text { F. } \\ 212.18 \end{gathered}$	$\begin{gathered} \text { F. } \\ 212^{\circ} .36 \end{gathered}$	$\begin{gathered} \text { F. } \\ 212.54 \end{gathered}$	$\begin{gathered} \text { F. } \\ 212.72 \end{gathered}$	$\begin{gathered} \text { F. } \\ 212.90 \end{gathered}$	$\begin{gathered} \text { F. } \\ 213.08 \end{gathered}$	$\begin{gathered} \text { F. } \\ 213.26 \end{gathered}$	$\begin{gathered} F . \\ 213 \circ 44 \end{gathered}$	$\begin{gathered} F_{1} \\ 213: 62 \end{gathered}$
99	210.20	210.38	210.56	210.74	210.92	21.10	211.28	211.46	211.64	211.82
98	208.40	208.58	208.76	208.94	209.12	209.30	209.48	209.66	209.84	210.02
97	206.60	206.78	206.96	207.14	207.32	207.50	207.68	207.86	208.04	208.22
96	204.80	204.98	205.16	205.34	205.52	205.70	205.88	206.06	206.24	206.42
95	203.00	203.18	203.36	203.54	203.72	203.90	204.08	204.26	204.44	204.62
94	201.20	201.38	201.56	201.74	201.92	202.10	202.28	202.46	202.64	202.82
93	199.40	199.58	199.76	199.94	200. 12	200.30	200.48	200.66	200.84	201.02
92	197.60	197.78	197.96	198.14	198.32	198.50	198.68	198.86	199.04	199.22
91	195.80	195.98	196.16	196.34	196.52	196.70	196.88	197.06	197.24	197.42
90	194.00	194.18	194.36	194.54	194.72	194.90	I95.08	195.26	I95.44	195.62

TABLE 5.
DIFFERENCES FAHRENHEIT TO DIFFERENCES CENTIGRADE.

Fahrenheit.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
0°	$\begin{gathered} \text { c. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { c. } \\ 0.06 \end{gathered}$	$\begin{gathered} \text { c. } \\ 0 . \mathrm{II}^{2} \end{gathered}$	$\begin{gathered} c . \\ 0.17 \end{gathered}$	$\begin{gathered} c . \\ 0.22 \end{gathered}$	$\begin{gathered} \text { c. } \\ 0.28 \end{gathered}$	$\begin{gathered} c . \\ 0.33 \end{gathered}$	$\begin{gathered} \text { c. } \\ 0.39 \end{gathered}$	$\begin{gathered} \text { c. } \\ 0.44 \end{gathered}$	$\begin{gathered} \text { c. } \\ 0.50 \end{gathered}$
0	0.56	0.61	0.67	0.72	0.78	0.83	0.33 0.89	0.39 0.94	I. 00	I. 06
2	I. 11	I. 17	I. 22	I. 28	1.33	I. 39	I. 44	I. 50	I. 56	I. 6 ?
3	I. 67	5.72	1.78	I. 83	1.89	I. 94	2.00	2.06	2.1 I	2. 17
4	2.22	2.28	2.33	2.39	2.44	2.50	2.56	2.61	2.67	2.72
5	2.75	2.83	2.89	2.94	3.00	3.06	3. II	3.17	3.22	3.28
6	3.33	3.39	3.44	3.50	3.56	3.61	3.67	3.72	3.78	3.83
7	3.89	3.94	4.00	4.06	4. II	4.17	4.22	4.28	4.33	4.39
8	4.44	4.50	4.56	4.61	4.67	4.72	4.78	4.83	4.89	4.94
9	5.00	5.06	5. I I	5.17	5.22	5.28	5.33	5.39	5.44	5.50
10	5.56	5.61	5.67	5.72	5.78	5.83	5.89	5.94	6.00	6.06
I I	6.11	6.17	6.22	6.28	6.33	6.39	6.44	6.50	6.56	6.61
12	6.67	6.72	6.78	6.83	6.89	6.94	7.00	7.06	7. I I	7.17
13	7.22	7.28	7.33	7.39	7.44	7.50	$7 \cdot 56$	7.61	7.67	7.72
14	7.78	7.83	7.89	7.94	8.00	8.06	S.II	8.17	S. 22	8.28
15	8.33	8.39	8.44	8.50	8.56	8.6I	8.67	8.72	8.78	8.83
16	8.89	8.94	9.00	9.06	9. I I	9.17	9.22	9.28	9.33	9.39
17	9.44	9.50	9.56	9.61	9.67	9.72	9.78	9.83	9.89	9.94
IS	10.00	10.06	10. II	10.17	10.22	10.28	10.33	IO. 39	10.44	10.50
19	10.56	10.6I	10.67	10.72	10.78	10.83	Io. 89	Io. 94	11.00	I 1.06
20	11.11	II 17	11.22	II. 28	II. 33	11.39	I 1.44	I I. 50	I 1.56	II.6I

TABLE 6.
DIFFERENCES CENTIGRADE TO DIFFERENCES FAHRENHEIT.

Centigrade.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	9
0°	$\begin{gathered} \text { F. } \\ 0.00 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.18 \end{gathered}$	$\begin{gathered} F . \\ 0.36 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.54 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0_{0}^{0} .72 \end{gathered}$	$\begin{gathered} \text { F. } \\ 0.90 \end{gathered}$	$\begin{gathered} \text { F. } \\ \text { I.OS } \end{gathered}$	$\begin{gathered} \text { F. } \\ \text { I. } 26 \end{gathered}$	$\begin{gathered} \text { F. } \\ \text { I. } 44 \end{gathered}$	$\begin{gathered} F . \\ 1.62 \end{gathered}$
I	1. So	I. 98	2.16	2.34	2.52	2.70	2.58	3.06	3.24	3.42
2	3.60	3.78	3.96	4.14	4.32	4.50	4.68	4.86	5.04	5.22
3	5.40	5.58	5.76	5.94	6.12	6.30	6.48	6.66	6.84	7.02
4	7.20	$7 \cdot 38$	7.56	7.74	7.92	8.10	8.28	8.46	8.64	8.82
5	9.00	9.18	9.36	9.54	9.72	9.90	10.08	10.26	10.44	10.62
6	10.So	10.98	I1.16	II 1.34	II. 52	11.70	II. SS	12.06	12.24	12.42
7	12.60	12.78	12.96	I3.14	13.32	13.50	13.68	13.86	14.04	14.22
8	14.40	14.58	14.76	14.94	I5.12	15.30	15.48	I 5.66	15.84	16.02
9	16.20	16.38	16.56	16.74	16.92	17.10	17.28	17.46	17.64	17.82

Smithsonian Tables.

CORRECTION FOR THE TEMPERATURE OF THE EMERGENT MERCURIAL COLUMN OF THERMOMETERS.
$T=t-0.000086 n\left(t^{\prime}-t\right)-$ Fahrenheit temperatures.
$T=t-0.000155 n\left(t^{\prime}-t\right)-$ Centigrade temperatures.
$T=$ Corrected temperature.
$t=$ Observed temperature.
$t^{\prime}=$ Mean temperature of the glass stem and emergent mercury column.
$n=$ Length of mercury in the emergent stem in scale degrees.
When t^{\prime} is $\left\{\frac{\text { higher }}{\text { lower }}\right\}$ than t the numerical correction is to be $\left\{\frac{\text { subtracted. }}{\text { added. }}\right\}$

Table 7.
CORRECTION FOR FAHRENHEIT THERMOMETERS.
Values of $0.000086 n\left(t^{\prime}-t\right)$

n	$t^{\prime}-t$									
	10°	20^{3}	30°	40	50°	60°	70°	80°	90°	100°
F.	F.	F.	F.	F.	F.	F.	F.		F.	F.
10°	O.OI	0.02	0.03	0.03	0.04	0.05		0.07	0.08	0.09
20	0.02	0.03	0.05	0.07	0.09	0.10	0. 12	0.14	0.15	0.17
30	0.03	0.05	0.08	0.10	0.13	0.15	0.18	0.21	0.23	0.26
40	0.03	0.07	0.10	0.14	0.17	0.21	0.24	0.28	0.31	0.34
50	0.04	0.09	0.13	0.17	0.22	0.26	0.30	0.34	0.39	0.43
60	0.05	0.10	0.15	0.21	0.26	0.31	0.36	0.41	0.46	0.52
70	0.06	0.12	0.18	0.24	0.30	0.36	0.42	0.48	0.54	0.60
80	0.07	0.14	0.21	0.28	0.34	0.41	0.48	0.55	0.62	0.69
00	0.08	0.15	0.23	0.31	0.39	0.46	0.54	0.62	0.70	0.77
100	0.09	0.17	0.26	0.34	0.43	0.52	0.60	0.69	0.77	0.86
110	0.09	0.19	0.28	0.38	0.47	0.57	0.66	0.76	0.85	0.95
120	0.10	0.21	0.31	0.41	0.52	0.62	0.72	0.83	0.93	1.03
130	0.11	0.22	0.34	0.45	0.56	0.67	0.78	0.90	1.01	1.12

Table 8.
CORRECTION FOR CENTIGRADE THERMOMETERS.
Values of $0.000155 n\left(t^{\prime}-t\right)$

n	$t^{\prime}-1$							
	10	20°	30°	40	50	60	70	80°
c.	${ }_{0}$.	c.						
10	0.02	0.03	0.05	0.00	0.08	0.09	O. 11	0.12
20	0.0.3	0.06	0.09	0.12	0.16	0.19	0.22	0.25
30	0.05	0.00	0.14	0.10	0.23	0.28	0.33	0.37
40	0.06	0.12	0.19	0.25	0.31	0.37	0.43	0.50
50	0.08	0.10	0.23	0.31	0.30	0.46	0.54	0.62
60	0.00	0.19	0.28	0.37	0.46	0.56	0.65	0.74
70	O. 11	0.22	0.33	0.43	0.54	0.65	0.76	0.87
80	0.12	0.25	0.37	0.50	0.62	0.74	0.87	0.99
00	-. 14	0.28	0.42	0.56	0.70	0.84	0.98	1.12
100	O. I 6	0.31	0.46	0.62	0.78	0.93	1.08	I. 24

CONVERSIONS INVOLVING LINEAR MEASURES.

Inches into millimeters Table 9
Millimeters into inches Table 10
Barometric inches (mercury) into millibars Table il
Barometric millimeters (mercury) into millibars Table 12
Feet into meters Table I3
Meters into feet Table 14
Miles into kilometers Table 15
Kilometers into miles Table 16
Interconversion of nautical and statute miles Table 17
Continental measures of length with their metric and EnglishequivalentsTable 18

INCHES INTO MILLIMETERS.
1 inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm	mm.	mm .	min.	mm.	mm,	mm .	mm.	mm.	mm.
0.00	0.00	0.25	0.51	0.76	. 02	1.27	1.52	1.78	2.03	2.29
0.10	2.54	2.79	3.05	3.30	3.56	3.81	4.06	4.32	4.57	4.83
0.20	5.08	5.33	5.59	5.84	6.10	6.35	6.60	6.86	7.11	7.37
0.30	7.62	7.87	S.13	8.38	S.64	8.89	9.14	9.40	9.65	9.91
0.40	10.16	10.41	10.67	10.92	I1.18	11.43	11.68	II. 94	12.19	12.45
0.50	12.70	12.95	13.21	13.46	13.72	13.97	14.22	14.48	14.73	14.99
0.60	I5.24	15.49	15.75	16.00	16.26	16.51	16.76	17.02	17.27	17.53
0.70	17.78	18.03	I8.29	IS. 54	18.8o	19.05	19.30	19.56	19.81	20.07
0.80	20.32	20.57	20.53	21.08	21.34	21.59	21.84	22.10	22.35	22.61
0.90	22.86	23.11	23.37	23.62	23.88	24.13	24.38	24.64	24.89	25.15
1.00	25.40	25.65	25.91	26.16	26.42	26.67	26.92	27.18	27.43	27.69
1.10	27.94	28.19	28.45	28.70	28.96	29.21	29.46	29.72	29.97	30.23
1.20	30.48	30.73	30.99	31.24	31.50	3 I .75	32.00	32.26	32.51	32.77
1.30	33.02	33.27	33.53	33.78	34.04	34.29	34.54	34.80	35.05	35.31
I. 40	35.56	35.8I	36.07	36.32	36.58	36.83	37.08	37.34	37.59	37.85
1.50	38.10	38.35	38.61	38.86	39.12	39.37	39.62	39.8S	40.13	40.39
1.60	40.64	40.89	41.15	4 I .40	41.66	41.91	42.16	42.42	42.67	42.93
1.70	43.18	43.43	43.69	43.94	44.20	44.45	44.70	44.96	45.2 I	45.47
I.So	45.72	45.97	46.23	46.48	46.74	46.99	47.24	47.50	47.75	48.01
1.90	48.26	48.51	48.77	49.02	49.28	49.53	49.78	50.04	50.29	50.55
2.00	50.So	51.05	51.31	51.56	51.82	52.07	52.32	52.58	52.83	53.09
2.10	53.34	53.59	53.85	54.10	54.36	54.61	54.86	55.12	55.37	55.63
2.20	55.SS	56.13	56.39	56.64	56.90	57.15	57.40	57.66	57.91	58.17
2.30	58.42	58.67	58.93	59.18	59.44	59.69	59.94	60.20	60.45	60.71
2.40	60.96	6 I .2 I	61.47	61.72	6 I .98	62.23	62.48	62.74	62.99	63.25
2.50	63.50	63.75	64.01	64.26	64.52	64.77	65.02	65.28	65.53	65.79
2.60	66.04	66.29	66.55	66.80	67.06	67.31	67.56	67.82	68.07	68.33
2.70	65.58	68.83	69.09	69.34	69.60	69.85	70.10	70.36	70.61	70.87
2.80	71.12	71.37	71.63	71.88	72.14	72.39	72.64	72.90	73.15	73.41
2.90	73.66	73.91	74.17	74.42	74.68	74.93	75.18	75.44	75.69	75.95
3.00	76.20	76.45	76.71	76.96	77.22	77.47	77.72	77.98	78.23	78.49
3.10	${ }_{7} 8.74$	78.99	79.25	79.50	79.76	So.OI	So. 26	So. 52	80.77	SI. 03
3.20	S1. 28	81.53	S1. 79	S2.04	S2.30	S2.55	S2.So	S3.06	83.31	S3.57
3.30	83.82	84.07	84.33	84.59	84. 8_{4}	85.09	S5.34	S5.60	85.85	S6.I I
3.40	S6.36	S6.6I	86.87	87.12	87.38	S7.63	87.88	S8.14	88. 39	S8.65
3.50	88.90	S9.15	S9.41	S9.66	S9.92	90.17	90.42	90.68	90.93	91.19
3.60	91.44	91.69	91.95	92.20	92.46	92.71	92.96	93.22	93.47	93.73
3.70	93.98	94.23	9.4 .49	94.74	95.00	95.25	95.50	95.76	96.01	96.27
3.80	96.52	96.77	97.03	97.28	97.54	97.79	98.04	98.30	98.55	98.81
3.90	99.06	99.31	99.57	99.82	100.08	100.33	100.58	100.84	101.09	101. 35
4.00	101.60	IOI. 85	102.11	102.36	102.62	102.87	103.12	103.38	103.63	103. 99
4.10	104.14	104.39	104.65	104.90	105.16	105.41	105.66	105.92	106.17	106.43
4.20	106.68	106.93	107.19	107.44	107.70	107.95	108. 20	108.46	10S.71	108.97
4.30	109.22	109.47	109.73	109.98	110.24	110.49	110.74	I I 1 . 00	111.25	III.51
4.40	III 1.76	112.01	I 12.27	112.52	112.78	113.03	113.28	II 3.54	113.79	I 14.0.5
4.50	114.30	114.55	114.81	115.06	II5.32	115.57	115.82	I 16.08	116.33	II6.59
4.60	II6.84	117.09	I17.35	117.60	117.86	IIS.il	118.36	IIS.62	118.87	119.13
4.70	II 9.38	119.63	119.89	120.14	120.40	120.65	120.90	121.16	121.4I	121.67
4.80	121.92	122.17	122.43	122.68	122.94	123.19	123.44	123.70	123.95	124.2 I
4.90	124.46	124.7 I	124.97	125.22	125.48	125.73	125.98	I26.24	126.49	126.75
5.00	127.00	127.25	127.51	127.76	128.02	128.27	128.52	128.78	129.03	129.29

$\begin{array}{lccccccccccc}\text { Proportional Parts. } & \text { Inch. } & 0.001 & 0.002 & 0.003 & 0.004 & 0.005 & 0.006 & 0.007 & 0.008 & 0.009 \\ & \text { mm. } & 0.025 & 0.051 & 0.076 & 0.102 & 0.127 & 0.152 & 0.178 & 0.203 & 0.229\end{array}$

Smithsonian Tableg.

I inch $=25.40005 \mathrm{~mm}$.

Table 9.
INCHES INTO MILLIMETERS.
1 inch $=\mathbf{2 5} .40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm	m	mn	mr	m	111 m .	m	min.	mm.	mm.
10.00	254.00	254.25	254.51	254.76	255.02	255.27	255.52	255.78	256.03	256.29
. 10	256.54	256.79	257.05	257.30	257.56	257. ${ }^{\text {I }}$	25 S. 06	258.32	258.57	258.83
10.20	259.08	259.33	259.59	259.84	260. 10	260.35	260.60	260.86	261. II	261.37
10.30	261.62	261.87	262. I_{3}	262.38	262.64	262.89	263.14	263.40	263.65	263.91
10.40	264. 16	$26+41$	264.63	264.92	265.18	265.43	265.68	265.94	266.19	266.45
10.50	266.70	266.95	267.21	267.46	267.72	267.97	268.22	268.48	268.73	268.99
10.60	269.24	269.49	269.75	270.00	270.26	270.51	270.76	271.02	271.27	271.53
10.70	271.78	272.03	272.29	272.54	272.80	273.05	273.30	273.56	273.81	274.07
10.So	274.32	274.57	274.93	275.0S	275.34	275.59	275.8.4	276. 10	276.35	276.61
10.90	276.86	277. I I	277.37	277.62	277.88	278.13	278.38	278.64	278.89	279.15
11.00	279.40	279.65	279.91	280.16	280. 42	280. 67	280.92	28 I .18	281.43	281. 69
I I.IG	28.94	2S2.19	282.45	282.70	282.96	283.21	283.46	2S3.72	283.97	284.23
11.20	284.48	284.73	284.99	285.24	285.50	$2 S 5.75$	286.00	286.26	286.51	286.77
I 1.30	287.02	287.27	287.53	287.78	288.04	288.29	288.54	285.80	289.05	289.3I
11.40	289.56	289.81	290.07	290.32	290.58	290.83	291.08	291.34	291.59	291.85
11.50	292.10	292.35	292.6I	292.86	293.12	293.37	293.62	293.88	294. 13	294.39
11.60	294.64	294.89	295.15	295.40	295.66	295.91	296.16	296.42	296.67	296.93
11.70	297. IS	297.43	297.69	297.94	298.20	298.45	298.70	298.96	299.21	299.47
I 1. So	299.72	299.97	300.23	300.48	300.74	300.99	301.24	301.50	301.75	302.01
11.90	302.26	302.5 I	302.77	303.02	303.28	303.53	303.78	304.04	304.29	304.55
12.00	304.80	305.05	305.3I	305.56	305.82	306.07	306.32	306.58	306.83	307.09
12.10	307.34	307.59	307.85	308. 10	308.36	308.61	308.86	309. 12	309.37	309.63
12.20	309.8S	310.13	310.39	310.64	310.90	311.15	311.40	311.66	31.91	312.17
12.30	312.42	312.67	312.93	313.18	313.44	313.69	313.94	314.20	314.45	314.71
12.40	314.96	315.2 I	315.47	315.72	315.98	316.23	316.48	316.74	316.99	317.25
12.50	317.50	317.75	3 IS . 1	318.26	318.52	318.77	319.02	319.28	319.53	319.79
12.60	320.04	320.29	320.55	320.80	321.06	321.31	32 I. 56	32 I .82	322.07	322.33
12.70	322.58	322.83	323.09	323.34	323.60	323.85	324. IO	324.36	324.61	324.87
12.80	325. 12	325.37	325.63	325.88	326. I 4	326.39	326.64	326.90	327.15	327.41
12.90	327.66	327.91	328.17	328.42	328.68	328.93	329.18	329.44	329.69	329.95
13.00	330.20	330.45	330.71	330.96	331.22	331.47	331.72	331.98	332.23	332.49
13.10	332.74	332.99	333.25	333.50	333.76	334.01	334.26	334.52	334.77	335.03
13.20	335.28	335.53	335.79	336.04	336.30	336.55	336.80	337.06	337.31	337.57
13.30	337.82	338.07	338.33	338.58	338.84	339.09	339.34	339.60	339.85	340. II
13.40	340.36	340.6I	340. 87	34 I .12	341.38	341.63	341.88	342.14	342.39	342.65
13.50	342.90	343. I5	343.41	343.66	343.92	344. 7	344.42	344.68	344.93	345.19
13.60	345.44	345.69	345.95	346.20	346.46	346.71	346.96	347.22	347.47	347.73
13.70	347.98	3.48 .23	34 S .49	348.74	349.00	349.25	349.50	349.76	350.01	350.27
13.80	350.52	350.77	351.03	351.28	351.54	351.79	352.04	352.30	$35^{2} .55$	352.8I
13.90	353.06	353.3I	353.57	353.82	354.0S	354.33	354.58	354.84	355.09	355.35
14.00	355.60	355.85	356. II	356.36	356.62	356.87	357.12	357.38	357.63	357.89
14.10	35 S. 14	358.39	358.65	358.90	359.16	359.41	359.66	359.92	360.17	360.43
14.20	360.68	360.93	361.19	361.44	361.70	361.95	362.20	362.46	362.71	362.97
14.30	363.22	363.47	363.73	363.98	364.24	364.49	364.74	365.00	365.25	365.5I
14.40	365.76	366.01	366.27	366.52	366.78	367.03	367.28	367.54	367.79	368.05
14.50	368.30	368.55	368.8 I	369.06	369.32	369.57	369.82	370.08	370.33	370.59
14.60	370.84	371.09	371.35	371.60	371.86	372.11	372.36	372.62	372.87	373.13
14.70	373.35	373.63	373.59	374.14	374.40	374.65	374.90	375.16	375.41	375.67
14.80	375.92	376. 17	376.43	376.68	376.94	377.19	377.44	377.70	377.95	378.21
14.90	378.46	378.71	378.97	379.22	379.48	379.73	379.98	380. 24	380.49	380. 75
15.00	381.00	381.25	381.51	3 SI. 76	382.02	382.27	382.52	382.78	383.03	383.29

$\begin{array}{llllllllllll}\text { Proportional Parts. Inch. } & 0.001 & 0.002 & 0.003 & 0.004 & 0.005 & 0.006 & 0.007 & 0.008 & 0.009\end{array}$ $\begin{array}{lllllllll}\mathrm{mm} & 0.025 & 0.05 \mathrm{I} & 0.076 & 0.102 & 0.127 & 0.152 & 0.178 & 0.203\end{array} 0.229$

1 inch $=25.40005 \mathrm{~mm}$.

Table 9.
INCHES INTO MILLIMETERS.
1 inch $=25.40005 \mathrm{~mm}$.

smitheonian Tableb.

1 inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mm.	mm.	mm.	mm.	mm.	mmm.	mm.	mm.	.	mm.
25.00	635.00	635.26	635.51	635.76	636.02	636.27	636.53	636.78	637.03	637.29
25.10	637.54	637.80	638.05	638.30	638.56	638.81	639.07	639.32	639.57	639.83
25.20	640.08	6.40 .34	640.59	640.84	6.41 .10	641.35	641.61	641.86	642.11	642.37
25.30	6.42 .62	642.88	643. 13	$643 \cdot 38$	6.43 .64	643.59	644.15	644.40	644.65	644.91
25.40	645.16	645.42	645.67	645.92	6.46. IS	646.43	6.46 .69	646.94	647.19	647.45
25.50	647.70	647.96	6.48 .21	648.46	$6+8.72$	648.97	649.23	6.49 .45	649.73	649.99
25.60	650.24	650.50	650.75	651.00	65 I .26	651.51	65 I .77	65.02	654.27	652.53
25.70	652.78	653.04	653.29	653.54	653.80	654.05	654.31	654.56	654.8 I	655.07
25.So	655.32	655.58	655.83	656.08	656.34	656.59	656.85	657.10	657.35	657.61
25.90	657.86	65 S. 12	658.37	$65 S .62$	65 S. SS	659. I3	659.39	659.64	659.59	660.15
26.00	660.40	660.66	660.91	661.16	661.42	661.67	661.93;	662.18	662.43	662.69
26.10	662.94	663.20	663.45	663.70	663.96	664.21	66.4 .47	664.72	664.97	665.23
26.20	665.48	665.74	665.99	666.24	666.50	666.75	667.01	667.26	667.51	667.77
26.30	668.02	668.28	665.53	665.78	669.04	669.29	669.55	669.So	670.05	670.31
26.40	670.56	670.82	671.07	671.32	671.58	67 I .83	672.09	672.34	672.59	672.85
26.50	673.10	673.36	673.61	673.86	674.12	674.37	674.63	674.88	675.13	675.39
26.60	675.64	675.90	676.15	676.40	676.66	676.91	677.17	677.42	677.67	677.93
26.70	678.18	678.44	678.69	678.94	679.20	679.45	679.71	679.96	6So. 21	650.47
26.80	650.72	680.98	681.23	681.48	6 SI .74	68 I .99	682.25	682.50	682.75	683.01
26.90	683.26	683.52	683.77	684.02	684.28	684.53	684.79	685.04	655.29	685.55
27.00	685.80	686.06	686.3I	686.56	686.82	687.07	687.33	687.58	687.83	688.09
27.10	685.34	688.60	688.85	6S9.10	689.36	6S9.61	689.87	690.12	690.37	690.63
27.20	690.85	691.14	691.39	691.64	691.90	692.15	692.41	692.66	692.91	693.17
27.30	693.42	693.68	693.93	694.18	694.44	69.4 .69	694.95	695.20	695.45	695.7 I
27.40	695.96	696.22	696.47	696.72	696.98	697.23	697.49	697.74	697.99	698.25
27.50	698.50	698.76	699.01	699.26	699.52	699.77	700.03	700.28	700.53	700.79
27.60	701.04	701.30	701.55	701.80	702.06	702.31	702.57	702.82	703.07	703.33
27.70	703.58	703.84	704.09	704.34	70.60	704.85	705.11	705.36	705.61	705.87
27.80	706.12	706.35	706.63	706.88	707.14	707.39	707.65	707.90	708.15	708.41
27.90	708.66	708.92	709.17	709.42	709.68	709.93	710.19	710.44	710.69	710.95
28.00	711.20	711.46	711.71	711.96	712.22	712.47	712.73	712.98	713.23	713.49
2S.10	713.74	714.00	714.25	714.50	714.76	715.01	715.27	715.52	715.77	716.03
28.20	716.28	716.54	716.79	717.04	717.30	717.55	717.81	718.06	718.31	718.57
28.30	718.82	719.08	719.33	719.58	719.84	720.09	720.35	720.60	720.85	721.11
28.40	721.36	721.62	721.87	722.12	722.39	722.63	722.89	723.14	723.39	723.65
28.50	723.90	724.16	724.41	724.66	724.92	725.17	725.43	725.68	725.93	726. I9
28.60	726.44	726.70	726.95	727.20	727.46	727.71	727.97	728.22	728.47	728.73
28.70	728.98	729.24	729.49	729.74	730.00	730.25	730.51	730.76	731.01	731.27
2 2 .80	731.52	731.78	732.03	732.28	732.51	732.79	733.05	733.30	733.55	733.8I
28.90	734.06	734.32	734.57	734.82	735.08	735.33	735.59	735.84	736.09	736.35
29.00	736.60	736.86	737.1 1	737.36	737.62	737.87	73S.13	73 S.38	738.63	738.89
29.10	739.14	739.40	739.65	739.90	740.16	740.41	740.67	740.92	741.17	741.43
29.20	74 I .68	741.94	742.19	742.44	742.70	742.95	743.21	743.46	743.71	743.97
29.30	744.22	744.48	744.73	744.98	745.24	745.49	745.75	746.00	746.25	746.51
29.40	746.76	747.02	747.27	747.52	747.78	748.03	748.29	748.54	748.79	749.05
29.50	749.30	749.56	749.8 I	750.06	750.32	750.57	750.83	751.0S	751.33	751.59
29.60	75 I .84	752.10	752.35	752.60	752.86	753.11	753.37	753.62	753.87	754.13
29.70	754.38	754.64	754.89	755. I4	755.40	755.65	755.91	756.16	756.41	756.67
29.80	756.92	757.18	757.43	757.68	757.94	75 S. 19	755.45	758.70	75S.95	759.21
29.90	759.46	759.72	759.97	760.22	760.48	760.73	760.99	761.24	761.49	761.75
30.00	762.00	762.26	762.51	762.76	763.02	763.27	763.53	763.78	764.03	764.29
Proportional Parts		Inch. mm.	. 0.001	0.002	0.003 0.	$\begin{aligned} & 0.004 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 0.006 \\ & 0.152 \end{aligned}$	$\begin{aligned} & 0.007 \\ & 0.178 \end{aligned}$	0.008	$\begin{aligned} & 0.009 \\ & 0.229 \end{aligned}$
		0.025	0.051	0.076	0.203					

Table 9.
INCHES INTO MILLIMETERS.
1 inch $=25.40005 \mathrm{~mm}$.

Inches.	. 00	.01	. 02	. 03	. 04	05	. 06	. 07	. 08	. 09
	mm.	mm .	mm.	nm .	mm.	mm.	mmı.	тии.	mm.	mm.
30.00	762.00	762.26	762.51	762.76	763.02	763.27	763.53	763.78	764.03	764.29
30.10	764.54	764.80	765.05	765.30	765.56	765.SI	766.07	766.32	766.57	766.83
30.20	767.08	767.34	767.59	767.84	768. 10	768.35	768.6I	768.86	769. I I	769.37
30.30	769.62	769.88	770.13	770.38	770.64	770.89	771.15	771.40	771.65	771.91
30.40	772.16	772.42	772.67	772.92	773.1S	773.43	773.69	773.94	774.19	774.45
30.50	77.4.70	774.96	775.2 I	775.46	775.72	775.97	776.23	776.48	776.73	776.99
30.60	777.24	777.50	777.75	7ヶS.00	778.26	77 S .51	778.77	779.02	779.27	779.53
30.70	779.78	780.04	780.29	780.54	7 So .80	781.05	${ }_{7}^{781} .31$	781.56	${ }_{7 S 1}$ ISI	782.07
30.80	782.32	782.58	782.83	783.08	783.34	783.59	$7_{7} 8.85$	784.10	7S4.35	784.61
30.90	784.86	785.12	785.37	785.62	785.88	786.13	786.39	786.64	786.59	787.15
31.00	787.40	787.66	787.91	7SS.16	788.42	788.67	788.93	789.18	789.43	789.69
31.10	789.94	790.20	790.45	790.70	790.96	791.2I	791.47	791.72	791.97	792.23
31.20	792.48	792.74	792.99	793.24	793.50	793.75	794.01	794.26	794.5 1	794.77
31.30	795.02	795.28	795.53	795.78	796.04	796.29	796.55	796.80	797.05	797.31
31.40	797.56	797.82	798.07	79 S. 32	$79 \mathrm{~S} .5^{8}$	798.83	799.09	799.34	799.59	799.85
31.50	Soo. Io	Soo. 36	Soo. 61	Soo. S6	Soi. 12	Soi. 37	SoI. 63	Soi. 88	So2. 13	So2. 39
31.60	So2. 64	So2.90	So3. 15	So3.40	So3. 66	So3.91	So.4. 17	So4.42	So4. 67	So4.93
31.70	So5.IS	805.44	805.69	So5.94	So6. 20	So6.45	So6.71	So6.96	So7.21	So7. 47
31.80	So7.72	So7.9S	So8. 23	SoS. 48	SoS. 74	SoS. 99	809. 25	So9.50	Sog. 75	Sio.or
31.90	Sio. 26	SIo. 52	810.77	Sili. 02	SII. 28	8II. 53	8ir. 79	Si2.04	SI2.29	SI 2.55
32.00	SI2.So									
Proportional Parts		S. $\begin{aligned} & \text { Inch } \\ & \mathrm{mm} .\end{aligned}$	0.001	0.002	0.0030	$4 \quad 0.005$	0.006	0.007	$\begin{aligned} & 0.008 \\ & 0.203 \end{aligned}$	$\begin{aligned} & 0.009 \\ & 0.229 \end{aligned}$
		0.025	0.051	0.076	$\begin{aligned} & 0.074 \\ & 0.102 \end{aligned}$	$7 \quad 0.152$	0.178			

Smithsonian Tableg

MILLIMETERS INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	0	1	2	3	4	5	6	7	8	9
	Inches.									
0	0.0000	0.0394	0.0787	0.1181	0.1575	0.196S	0.2362	0.2756	0.3150	0.3543
10	0.3937	0.4331	0.4724	0.5118	0.5512	0.5906	0.6299	0.6693	0.7087	0.7480
20	0.7874	$0.326 S$	0.8661	0.9055	0.9449	0.9842	1.0236	1.0630	1.1024	1.1417
30	I.ISII	I. 2205	1.2598	1.2992	1.3386	1.3780	1.4173	1.4567	I. 4961	I. 5354
40	I. 5748	1.6142	1. 6535	1.6929	1.7323	I.7716	I. Sifo	1.8504	1.8898	I.929I
50	1.9685	2.0079	2.0472	2.0866	2.1260	2.1654	2.2047	2.2441	2.2835	2.3228
60	2.3622	2.4016	2.4409	2.4803	2.5197	2.5590	2.5984	2.6378	2.6772	2.7165
70	2.7559	2.7953	2.8346	2.8740	2.9134	2.9528	2.992 I	3.0315	3.0709	3.1102
So	3.1496	3.1890	3.2283	3.2677	3.3071	3.3464	3.3 S5S	3.4252	3.4646	3.5039
90	3.5433	3.5828	3.6220	3.6614	3.7008	3.7402	3.7795	3.8189	3.8583	3.8976
100	3.9370	3.9764	4.0157	4.0551	4.0945	4.1338	4.1732	4.2126	4.2520	4.2913
110	4.3307	4.3701	4.4094	4.4488	4.4882	4.5276	4.5669	4.6063	4.6457	4.6850
120	4.7244	4.7638	4.8031	4.8425	4.88 I9	4.92 I2	4.9606	5.0000	5.0394	5.0787
130	5.1181	5.1575	5.1968	5.2362	5.2756	5.3150	5.3543	5.3937	5.433 I	5.4724
140	5.5118	5.5512	5.5905	5.6299	5.6693	5.7086	5.7480	5.7874	5.8268	5.8661
150	5.9055	5.9449	5.9842	6.0236	6.0630	6.1024	6.1417	6.1811	6.2205	6.2598
160	6.2992	6.3386	6.3779	6.4173	6.4567	6.4960	6.5354	6.5748	6.6142	6.6535
170	6.6929	6.7323	6.7716	6.8110	6.8504	6.8898	6.9291	6.9685	7.0079	7.0472
ISo	7.0866	7.1260	7.1653	7.2047	$7.244{ }^{1}$	7.2834	7.3228	7.3622	7.4016	7.4409
190	7.48 o 3	7.5197	7.5590	7.5984	7.6378	7.6772	7.7165	7.7559	7.7953	7.8346
200	7.8740	7.9134	7.9527	7.9921	8.0315	S.0708	8.1102	8.1496	8.1890	8.2283
210	8.2677	8.3071	S. 3464	8.3858	8.4252	8.4646	8.5039	8.5433	8.5827	8.6220
220	8.6614	8.7008	8.7401	8.7795	8.8189	8.8582	8.5976	8.9370	8.9764	9.0157
230	9.0551	9.0945	9.1338	9.1732	9.2126	9.2520	9.2913	9.3307	9.3701	9.4094
240	9.4488	9.4882	9.5275	9.5669	9.6063	9.6456	9.6850	9.7244	9.7638	9.8031
250	9.8425	9.8819	9.9212	9.9606	10.0000	10.0394	10.0787	10.118i	10.1575	10.1968
260	10.2362	10.2756	I0.3549	10.3543	IO.3937	10.4330	10.4724	10.5118	10.5512	10.5905
270	10.6299	10.6693	10.7086	10.7480	10.7874	10.8268	10.8661	10.9055	10.9449	10.9842
280	I 1.0236	I I . 0630	II.1023	II.1417	II.I8It	II 1.2204	I 1.2598	II. 2992	I 1.3338	I I 1.3779
290	II. 4173	II 4.4568	II 14960	I I. 5354	I 1.5748	I 1.6142	I 1.6535	I 1.6929	11.7323	I 1.7716
300	If.8110	II. 8504	II. 8897	I 1.9291	I I. 9685	I2.0078	12.0472	12.0866	12.1260	12.1653
310	12.2047	12.244 I	12.2834	12.3228	I2.3622	12.4016	I2.4409	12.4803	12.5197	12.5590
320	12.5984	I2.637S	I2.6771	12.7165	I2.7559	I2.7952	12.8346	12.8740	12.9134	12.9527
330	12.992 I	13.0315	13.0708	13.1102	13.1496	I3.1890	13.2283	I 3.2677	13.3071	I3.3464
$34{ }^{\circ}$	13.3858	I 3.4252	I3.4645	I 3.5039	I 3.5433	I 3.5826	13.6220	13.6614	13.7008	13.7401
350	I 3.7795	13.8189	13.8582	13.8976	13.9370	I 3.9764	I4.0157	14.0551	14.0945	14.1338
360	I4.1732	I4.2126	I4.2519	14.2913	14.3307	14.3700	14.4094	14.4488	14.4882	14.5275
370	I4.5669	14.6063	14.6456	146850	14.7244	14.7638	14.8031	I4.8425	I4.8819	14.9212
380	I 4.9606	15.0000	15.0393	15.0787	15.1181	I5.1574	15.1968	15.2362	I5.2756	15.3149
390	I 5.3543	I5.3937	15.4330	I 5.4724	15.5118	15.55 12	I5.5905	I 5.6299	15.6693	15.7086
400	I 5.7480	I5.7874	15.8267	I 5.8661	15.9055	I5.9448	15.9842	16.0236	16.0630	16.1023
	Tenths of a millimeter.					Hundredths of a millimeter.				
	mm.		mm .		Inch. 0.0236	min. 0.01	Inch.	$\mathrm{mm} .$		Inch. 0.0024
	. 2	0.0039.0079		0.6 .7	. 0×76	. 02	.0008		. 07	. 0028
	$\cdot 3$. 0118		. 5	. 0315	. 03	.0012		. 08	.no3r
	. 4	.0157.0197		$\begin{array}{r} .9 \\ 1.0 \end{array}$. 0354	. 04	. 0016		. 09	.0035
	. 5			. 0394	. 05	. 10			. 0039	

Smithbonian Tables.
rable 10.
MILLIMETERS INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters	. 0	.1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Iuches.	Inches.							
400	15.748	15.752	15.756	15.760	15.764	15.768	15.772	15.776	15.779	$15.7 \mathrm{~S}_{3}$
401	15.787	15.791	15.795	I5.799	15.803	15.807	15.81 I	I5.815	15.819	${ }^{1} 5.823$
402	15.827	15.831	15.835	15.839	15.842	15.846	15.550	I 5.854	15.858	15.852
403	15.866	15.870	15.874	15.878	15.882	I5.8S6	15.590	15.894	I 5.898	15.902
404	15.905	15.909	15.913	15.917	15.921	I5.925	15.929	15.933	15.937	15.94I
405	15.9.45	I 5.949	15.953	I5.957	15.961	15.965	15.968	15.972	I 5.976	15.980
406	15.984	15.988	15.992	I 5.996	16.000	16.004	$16.00 S$	16.012	16.016	16.020
407	16.024	16.028	16.031	16.035	16.039	16.043	16.047	16.051	I6.055	16.059
408	16.063	16.067	16.07 I	16.075	16.079	16.083	16.087	16.091	16.094	16.098
409	16.102	16.106	16.110	16.114	16.11S	I6. 122	16.126	16.130	16.134	16.13S
410	16.142	16.146	16.150	16.154	16.157	16.16I	16.165	16.169	16.173	16.177
4 II	16.181	16.185	16.189	16.193	16.197	16.201	I6.205	16.209	16.213	16.217
412	16.220	16.224	16.228	16.232	16.236	16.240	16.244	16.248	16.252	16.256
413	16.260	16.264	16.268	16.272	16.276	16.279	16.283	16.257	16.291	16.295
414	16.299	16.303	16.307	16.311	16.315	16.319	16.323	16.327	16.33 I	16.335
415	16.339	16.342	16.346	16.350	16.354	16.358	16.362	16.366	16.370	16.374
416	16.378	16.382	16.386	16.390	16.394	16.398	16.402	16.405	16.409	16.413
417	16.417	16.42 I	16.425	16.429	16.433	16.437	16.44 I	16.445	16.449	16.453
418	16.457	16.461	16.465	16.468	16.472	16.476	16.480	16.484	16.458	16.492
419	I6.496	16.500	16.504	16.508	16.512	16.516	16.520	16.524	16.528	16.53 I
420	I6.535	16.539	16.543	16.547	16.55I	16.555	16.559	16.563	16.567	16.571
42 I	16.575	16.579	16.583	16.587	I6.591	16.594	16.598	16.602	16.606	16.610
422	16.614	16.61S	16.622	16.626	16.630	16.634	16.638	16.642	16.646	16.650
423	16.654	16.657	16.661	16.665	16.669	16.673	16.677	16.68I	16.685	16.689
424	16.693	16.697	16.701	16.705	16.709	16.713	16.717	16.720	16.724	16.728
425	16.732	16.736	16.740	16.744	16.748	16.752	16.756	16.760	I6.764	16.768
426	16.772	16.776	16.779	16.783	16.787	16.791	16.795	16.799	16.503	16.807
427	16.811	$16 . \mathrm{S}_{15}$	16.519	16.823	16.827	16.83 I	16.835	16.839	16.842	16.846
428	16.550	16.854	16.858	16.862	16.866	16.870	16.874	16.578	16.882	16.856
429	16.590	16.89 .4	16.898	16.902	16.905	16.909	16.913	16.917	16.921	16.925
430	16.929	16.933	16.937	16.94 I	16.945	16.949	16.953	16.957	16.961	16.965
431	16.968	16.972	16.976	16.980	16.954	16.958	16.992	16.996	17.000	17.004
432	17.00 S	17.012	17.016	17.020	17.024	17.028	17.031	17.035	17.039	17.043
433	17.047	17.051	17.055	17.059	17.063	17.067	17.071	17.075	17.079	17.083
434	17.087	17.091	17.094	17.098	17.102	17.106	17.110	17.114	17.11S	17.122
435	17.126	17.130	17.134	17.138	17.142	17.146	17.150	17.154	17.157	17.161
436	17.165	17.169	17.173	\%7.177	17.151	17.185	17.189	17.193	17.197	17.201
437	17.205	17.209	17.213	17.217	17.220	17.224	17.228	17.232	I 7.236.	17.240
438	17.244	17.248	17.252	17.256	17.260	17.264	17.268	17.272	17.276	17.279
439	17.283	17.287	17.291	17.295	17.299	17.303	17.307	17.311	17.315	17.319
440	17.323	17.327	I 7.33I	17.335	17.339	17.342	17.346	17.350	17.354	17.358
441	17.362	17.366	17.370	17.374	17.378	17.382	17.356	17.390	17.394	17.398
442	17.402	17.405	17.409	17.413	17.417	17.42 I	17.425	17.429	17.433	17.437
443	17.44 I	17.445	17.449	17.453	17.457	17.461	17.465	17.468	17.472	17.476
444	17.450	17.484	17.488	I7.492	17.496	17.500	17.504	17.50 S	17.512	17.516
445	17.520	17.524	17.528	17.531	17.535	17.539	17.543	17.547	I 7.55 I	17.555
446	17.559	17.563	17.567	17.571	17.575	17.579	17.5 ${ }^{1} 3$	17.587	17.591	17.594
447	17.59 S	17.602	17.606	17.610	17.614	17.618	17.622	17.626	17.630	17.634
448	17.6 .35	17.642	17.646	17.650	17.654	17.657	17.661	17.665	17.669	17.673
449	17.677	17.681	17.685	17.689	17.693	17.697	17.701	17.705	17.709	17.713
450	I7.717	17.720	17.724	17.728	17.732	17.736	17.740	17.744	17.748	17.752

MILLIMETERS INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	4	. 5	6	. 7	. 8	. 9
	Inches.									
450	17.717	17.720	I7.724	17.728	17.732	17.736	17.740	17.744	17.748	I7.752
45 I	17.756	17.760	17.764	17.768	17.772	17.776	17.779	17.783	17.787	I7.791
452	17.795	17.799	17.803	17.807	17.8II	17.815	17.819	17.823	17.827	17.83I
453	17.835	17.839	17.842	17.846	17.850	17.854	17.858	17.862	17.866	17.870
454	17.874	17.878	17.882	17.886	17.890	17.894	17.898	17.902	17.905	17.909
455	17.913	17.917	17.921	17.925	17.929	17.933	17.937	17.941	17.945	17.949
456	17.953	17.957	17.961	17.965	17.968	17.972	17.976	17.980	17.984	17.988
457	17.992	17.996	18.000	18.004	18.008	IS.OI 2	18.016	18.020	18.024	18.028
458	I8.03I	18.035	18.039	18.043	18.047	18.051	18.055	18.059	18.063	18.067
459	18.071	18.075	18.079	18.083	18.087	I8.09I	I8.094	18.098	IS. 102	18.106
460	I8.110	18.114	18.118	18.122	18.126	18. 130	18. 134	18.138	18.142	18.146
461	18.150	18.154	IS. 157	18.161	IS. 165	I8.169	IS. 173	IS. 177	IS.18I	I8.185
462	IS.IS9	18.193	18.197	18.201	18.205	18.209	18.213	18.216	18.220	IS. 224
463	18.228	18.232	18.236	18.240	18.244	I8.248	18.252	18.256	I8.260	I8.264
464	18.268	18.272	18.276	18.279	18.283	18.287	18.291	I8.295	I8. 299	18.303
455	18.307	I8.3II	I8.315	18.319	18.323	I8.327	18.33I	18.335	18.339	18.342
466	18.346	18.350	18.354	18.358	I8. 362	IS. 366	18.370	18.374	18.378	18.382
467	I8.386	18.390	IS. 394	18.39 S	IS. 402	18.405	I8.409	18.413	18.417	18.421
468	18.425	18.429	18.433	IS.437	I8.4.4I	18.445	I8.449	18.453	18.457	IS.46I
469	IS.465	18.468	18.472	18.476	I8.480	18.484	18.488	18.492	I8.496	18.500
470	I 8.504	I 8.508	18.512	18.516	18.520	I8.524	18.528	IS.53I	18.535	I 8.539
471	18.543	18.547	18.551	18.555	IS. 559	I8.563	18.567	18.571	18.575	18.579
472	I8.583	18.587	18.591	18.594	I8.598	18.602	18.606	18.610	18.614	18.618
473	18.622	18.626	18.630	I8.634	IS.638	18.642	18.646	18.650	18.654	18.657
474	18.661	18.665	18.669	IS.673	18.677	I8.68I	18.685	18.689	18.693	18.697
475	18.701	18.705	18.709	18.713	18.716	18.720	IS. 724	18.728	18.732	18.736
476	18.740	18.744	18.748	18.752	18.756	18.760	18.764	18.768	18.772	18.776
477	IS.779	18.783	18.787	18.791	I8.795	18.799	18.803	18.807	18.81I	18.815
478	18.819	18.823	18.827	18.83 I	18.835	18.839	18.842	I8.846	18.850	18.854
479	I 8.858	18.862	I8.866	18.870	18.874	18.878	18.882	18.886	18.890	18.894
480	I 8.898	18.902	I8.905	18.909	18.913	18.917	18.921	18.925	I8.929	18.933
481	18.937	18.941	I8.945	18.949	IS. 953	18.957	18.961	18.965	18.968	18.972
482	18.976	18.980	18.984	18.988	18.992	18.996	19.000	19.004	19.008	19.012
483	19.016	19.020	19.024	19.028	19.03 I	19.035	19.039	19.043	19.047	19.051
484	19.055	19.059	19.063	19.067	19.071	19.075	19.079	19.083	19.087	19.09I
485	19.094	19.098	19.102	19.106	19.110	19.114	19.118	19. 122	19.126	19.130
486	19. I34	19.138	19.142	19.146	19.150	19.154	19.157	19.161	19.165	19.169
487	19.173	19.177	19.181	19.185	19.189	19.193	19. 197	19.201	19.205	19.209
488	19.213	I9.216	19.220	19.224	19.228	19.232	19.236	19.240	19.244	19.248
489	19.252	19.256	19.260	19.264	19.268	19.272	19.276	19.279	19.283	19.287
490	19.291	19.295	19.299	19.303	19.307	19.3II	19.315	19.319	19.323	19.327
491	19.331	19.335	19.339	19.342	19.346	19.350	19.354	19.358	19.362	19.366
492	19.370	19.374	19.378	19.382	19.386	19.390	19.394	19.398	19.402	19.405
493	19.409	19.413	19.417	19.421	19.425	19.429	19.433	19.437	19.441	19.445
494	19.449	I9.453	19.457	19.46I	19.465	19.468	19.472	19.476	19.480	19.484
495	19.488	19.492	19.496	19.500	19.504	19.508	19.512	19.516	19.520	19.524
496	19.528	19.531	19.535	19.539	19.543	19.547	19.55 I	19.555	19.559	19.563
497	19.567	19.57 I	19.575	19.579	19.583	19.587	19.591	19.594	19.598	19.602
498	19.606	19.610	19.614	19.618	19.622	19.626	19.630	19.634	19.638	19.642
499	19.646	19.650	19.654	19.657	19.661	19.665	19.669	19.673	19.677	19.68I
500	19.685	19.689	19.693	19.697	19.701	19.705	19.709	19.713	19.716	19.720

Bmithgonian Tableg.
$1 \mathrm{~mm} .=0.03937$ inch.

Milli-	0	. 1	. 2	. 3	. 4	. 5	. 6	7	. 8	. 9
	Inches.									
500	19.685	19.689	19.693	19.697	19.701	19.705	19.709	19.713	19.716	19.720
501	19.724	19.728	19.732	19.736	19.740	19.744	19.748	19.752	19.756	19.760
502	19.764	19.768	19.772	19.776	19.779	19.783	19.787	19.791	19.795	19.799
503	19.803	19.507	19.811	19.815	19.819	19.823	19.827	19.83 I	19.835	19.839
504	19.842	19.846	19.850	19.854	19.858	19.862	19.866	19.870	19.874	19.878
505	19.882	19.886	19.890	19.894	19.898	19.902	19.905	19.909	19.913	19.917
506	19.92 I	19.925	19.929	19.933	19.937	19.941	19.945	19.949	19.953	19.957
507	19.961	19.965	19.968	19.972	19.976	19.980	19.984	19.988	19.992	19.996
508	20.000	20.004	20.008	20.012	20.016	20.025	20.024	20.028	20.031	20.035
509	20.039	20.043	20.047	20.051	20.055	20.059	20.063	20.067	20.071	20.075
510	20.079	20.083	20.087	20.091	20.094	20.098	20.102	20.106	20.110	20.114
5 II	20.11S	20. 122	20.126	20.130	20.134	20.138	20.142	20.146	20.150	20.154
512	20.157	20.161	20.165	20.169	20.173	20.177	20.18I	20.185	20.189	20.193
513	20.197	20.201	20.205	20.209	20.213	20.216	20.220	20.22 .4	20.22 S	20.232
514	20.236	20.240	20.244	20.248	20.252	20.256	20.260	20.264	20.268	20.272
515	20.276	20.279	20.283	20.287	20.291	20.295	20.299	20.303	20.307	20.311
516	20.315	20.319	20.323	20.327	20.331	20.335	20.339	20.342	20.346	20.350
517	20.354	20.358	20362	20.366	20.370	20.374	20.37 S	20.382	20.386	20.390
518	20.394	20.398	20.402	20.405	20.409	20.413	20.417	20.42 I	20.425	20.429
519	20.433	20.437	20.441	20.445	20.449	20.453	20.457	20.46 I	20.465	20.468
520	20.472	20.476	20.4So	20.484	20.488	20.492	20.496	20.500	20.504	20.508
52 I	20.512	20.516	20.520	20.524	20.528	20.531	20.535	20.539	20.543	20.547
522	20.55 I	20.555	20.559	20.563	20.567	20.571	20.575	20.579	20.583	20.587
523	20.591	20.594	20.598	20.602	20.606	20.610	20.614	20.618	20.622	20.626
52.4	20.630	20.634	20.638	20.642	20.646	20.650	20.654	20.657	20.661	20.665
525	20.669	20.673	20.677	20.68I	20.685	20.689	20.693	20.697	20.701	20.705
526	20.709	20.713	20.716	20.720	20.724	20.72 S	20.732	20.736	20.740	20.744
527	20.748	20.752	20.756	20.760	20.764	20.768	20.772	20.776	20.779	20.783
528	20.787	20.791	20.795	20.799	20.803	20.807	20.811	20.815	20.819	20.823
529	20.827	20.831	20.835	20.839	20.842	20.846	20.850	20.854	20.858	20.862
530	20.866	20.870	20.874	20.878	$20.8 S_{2}$	20.856	20.590	20.S94	20.898	20.902
531	20.905	20.909	20.913	20.917	20.92 I	20.925	20.929	20.933	20.937	20.941
532	20.945	20.949	20.953	20.957	20.961	20.965	20.968	20.972	20.976	20.980
533	20.984	20.985	20.992	20.996	21.000	21.004	21.008	21.012	21.016	21.020
534	21.024	21.028	21.03 I	21.035	21.039	21.043	21.047	21.051	21.055	21.059
535	21.063	21.067	21.071	21.075	21.079	$2 \mathrm{I} .08_{3}$	21.087	21.091	21.094	21.098
536	21.102	21.106	21.110	21.114	21.118	21.122	21.126	21.130	21.134	21.138
5.37	21.142	21.146	21.150	21.154	21.157	21.16I	21.165	21.169	21.173	21.177
538	2I.ISI	21.185	21.189	21.193	21.197	21.201	21.205	21.209	21.213	21.216
539	21.220	21.224	21.22 S	21.232	21.236	21.240	21.244	21.248	21.252	21.256
540	21.260	21.264	21.268	21.272	21.276	21.279	21.283	21.287	21.291	21.295
541	21.299	21.303	21.307	21.3II	21.315	21.319	21.323	21.327	21.331	21.335
542	21.339	21.342	21.346	21.350	21.354	21.358	21.362	21.366	21.370	21.374
543	$2 \mathrm{1.378}$	21.382	21.386	21.390	21.394	21.398	21.402	21.405	21.409	21.413
544	21.417	21.42 I	21.425	21.429	21.433	21.437	21.44 I	21.445	21.449	21.453
545	21.457	21.461	21.465	21.468	21.472	21.476	21.48o	21.484	21.488	21. 492
546	21.496	21.500	21.504	21.508	21.512	21.516	21.520	21.524	21. 52 S	21.53 I
547	2 I .535	21.539	21.543	21.547	21.551	21.555	2 I .559	21.563	21.567	21.571
$54{ }^{8}$	21.575	21.579	21.583	21.587	21.591	21.59 .4	21.598	21.602	21.606	21.610
549	21.614	21.618	21.622	21.626	21.630	21.634	21.638	21.642	21.646	21.650
550	21.654	21.657	21.661	21.665	21.66c	21.673	21.677	21.681	21.685	21.689

MILLIMETERS INTO INCHES.
$\mathrm{I} \mathrm{mm} .=0.03937$ inch.

Milli-	0	. 1	. 2	3	.4	. 5	. 6	. 7	. 8	. 9	
	Inches. In	Inches. I	Iuches. In	Inches. In	Inches. In	Inches. I	Inches. In	Inches. I	Inches. In	Inches.	
550	21.6542	21.6572	21.6612	21.6652	21.6692	21.673	21.6772	21.681	21.685	21.689	
551	21.6932	21.6972	21.701	21.7052	21.7092	21.713	21.716^{2}	21.720	21.724	21.7	
552	21.732	21.7362	21.7402	21.744	21.748	21.752	21.756	21.7	21		
553	21.772	21.776	21.779	21.783	21.787	21.791	21.795	21.799 21.839		I. 846	
554	21. SII 2	21.815	21.819	21.823	$21.827{ }^{2}$	21.831	21.035	21.839		6	
555	21.850	21.854	21.858	21.862	21.866	21.870	21.874	21.878	21.882	21.886	
556	21.890	21.8942	21.898	21.902	21.905	21.909	21.9132	21.917	21.921	21.925	
557	21.9292	21.933	21.9372	21.941	21.945	21.949	21.953	21957	21.961		
558	21.968	21.972	21.976	21.980	21.984	21.988	21.992	21.996	22.000 22.039	22.004 22.043	
559	22.008	22.012	22.016	22.020	22.024	22.028	22.031	22.0	22.		
560	22.047	22.051	22.055	22.059	22.063	22.067	22.071	22.075	22.079	22.083	
561	22.087	22.091	22.094	22.098	22.102	22. 106	22.110	22.114	22.118		
562	22.126	22.130	22.134	22.138	22.142	22.146	22.150	22		22.201	
563	22.165	22.169	22.173	22.177 22.216	22.151 22.220	22.155 22.224	22.228	22.232	22.236	22.240	
564	22.205	22.209	2								
565	22.244	22.248	22.252	22.256	22.260	22.264	22.268	22.272	22.276	22.279 22.319	
566	22.283	22.287	22.291	22.295	22.299	22.303 22.342	22.3076	22.350	22.354	22.35 S	
567	22.323	22.327	22.331 22.370	22.335 22.374	22.378	22.3 S 2	22.386	22.390	22.394	22.398	
569	22.402	22.405	22.409	22.413	22.417	22.42 I	22.425	22.429	22.433	22.437	
570	22.4.41	22.445	22.449	22.453	22.457	22.461	22.465	22.468	22.472	22.476	
57 I	22.480	22.484	22.488	22.492	22.496	22.500	22.504	22.508	22.512	22.516	
572	22.520	22.52 .4	22.52 S	22.531	22.535	22.539	22.543	22.547	22.551	22.555	
573	22.559	22.563	22.567	22.571	22.575	22.579	22.553	22.587		22.634	
574	22.598	22.602	22.606	22.610	22.614	22.615	22			22.634	
575	22.638	22.642	22.646	22.650	22.653	22.657	22.661	22.665	22.669	22.673	
576	22.677	22.681	22.685	22.689	22.693	22.697	22.701	22.705	22.709	22.713 22.752	
577	22.716	22.720	22.724	22.728	22.732	22.736	22.740	22.744 22.783	22.787	22.791 22.791	
578	22.756	22.760	22.764	22.768 22.807	22.772 22.811	22.776 22.815	22.779 22.819	22.7823 22.823	22.827	22.831	
579	22.795	22.799	22.803	22	22.811	22.815	22.819	22.523			
580	22.835	22.839	22.842	22.8.46	22.850	22.854	22.858	22.862	22.866	22.870 22.909	
58 I	22.874	22.878	22.882	22.886	22.890	22.894	22.898	22.902 22.941	22.905 22.945	22.909 22.949	
582	22.913	22.917	22.921	22.925	22.929	22.933	22.937	22.941 22.980	22.924	22.988	
583	22.953	22.957	22.961	22.965 23.004	22.968	22.972 23.012	22.976 23.016	23.020	23.024	23.028	
584	22.992	22.996	23.000	23.004	23.008	23.012					
585	23.031	23.035	23.039	23.043	23.047	23.051	23.055	23.059 23.098	23.063 23.102	$\begin{aligned} & 23.007 \\ & 23.106 \end{aligned}$	
586	23.071	23.075	23.079	23.083	23.087	23.091 23.130	23.094 23.134	23.098 23.138	($\begin{aligned} & 23.102 \\ & 23142\end{aligned}$	23.146	
58	23. 110	23.114	23.118	23.122	23.126	23.130 23.169	23.134 23.173		23.181	23.185	
588	23.150	23. 153	23.157	23.161	23.165	23.169 23.209	23.173 23.213	23.216	23.220	23.224	
589	23.189	23.193	23.197	23.201	23.205	23.209				23.264	
590	23.228	23.232	23.236	23.240	23.244	23.248 23.28	23.252 23.291	23.256 23.295	[12929	23.303	
591	23.268	23.272	23.276	23.279	23.283 23.323	23.287 23.327	23.291 23.331	23.295 23.335	-23.339	23.342	
592	23.307	23.311	23.315	23.319 23	(1) $\begin{aligned} & 23.323 \\ & 23.362\end{aligned}$	23.327 $23 \cdot 366$ 23.405	23.370	23.374	$4 \quad 23.378$	23.382	
593	23.346	23.350	23.354	23.358 23.398	\|l	l $\begin{aligned} & 23.362 \\ & 23.402\end{aligned}$	23.366 23.405	23.409	23.413	23.417	23.421
594	23.386	23.390	23.394	23.39	23.402			23.453	323.457	23.461	
595	23.425	[123.429	-23.433	23.437	23.441 23.480	13.445 23.484	23.449 23.488	\|23.492	23.496	23.500	
596	23.465	53.468 23.508	23.472 23.512	23.476 23.516	23.480 23.520	10 23.404 03.524	$4{ }_{4}{ }^{23.528}$	23.53I	I 23.535	\| 23.539	
	23.504 23.543	4 23.508 3 23.547	23.512 23.551	11 23.516 13.555		923.563	- 23.567	23.571	123.575	523.579	
599	23.583	3 23.587	23.591	$1{ }^{1} 23.594$	423.598	S 23.602	23.606	23.610	23.614	423.618	
600	23.622	223.626	623.630	- 23.634	423.638	S 23.642	2 23.646	623.650	O 23.653	323.657	

$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	4	. 5	. 6	. 7	. 8	. 9
	Inches.									
600	23.622	23.626	23.630	23.634	23.638	23.642	23.646	23.650	23.653	23.657
601	23.661	23.665	23.669	23.673	23.677	23.681	23.685	23.689	23.693	23.697
602	23.701	23.705	23.709	23.713	23.716	23.720	23.724	23.728	23.732	23.736
603	23.740	23.714	23.748	23.752	23.756	23.760	23.764	23.768	23.772	23.776
604	23.779	23.753	23.787	23.791	23.795	23.799	23.503	23.507	23.811	23.815
605	23. S19	23. 2 23	23.827	23.831	23.835	23.839	23.842	23. 8.46	23.850	23.854
606	23.858	23.862	23.866	23.570	23.874	23.878	$23.8 S_{2}$	23.886	23.890	23. 994
607	23.598	23.902	23.905	23.909	23.913	23.917	23.921	23.925	23.929	23.933
608	23.937	23.941	23.945	23.949	23.953	23.957	23.961	23.965	23.968	23.972
609	23.976	23.980	23.984	23.988	23.992	23.996	24.000	2.4 .004	24.008	24.012
610	24.016	24.020	24.024	24.028	24.031	24.035	24.039	24.043	2.4 .047	24.051
611	24.055	24.059	24.063	24.067	2.4.071	24.075	24.079	2.4 .083	24.087	24.091
612	2.4.094	24.098	24.102	24.106	24.110	24.114	24.118	24.122	$2+126$	24.130
613	24.134	2.4.138	24. 142	24.146	24.150	24.153	24. 157	2.4.16I	2.4. 165	24.169
614	24.173	24.177	24.18I	24.185	24.189	2.4.193	24.197	24.201	24.205	24.209
615	24.213	2.4.216	24.220	24.224	24.228	2. 4.232	24.236	2.4 .240	24.244	24.248
616	24.252	24.256	24.260	2.4 .264	24.268	2.4 .272	24.276	24.279	24.253	24.287
617	24.291	24.295	2.4.299	24.303	24.307	$2+3$ II	24.315	$2+319$	24.323	24.327
6 IS	24.331	24.335	24.339	2.4.3.12	2.4.346	24.350	24.354	24.358	24.362	24.366
619	24.370	24.374	24.378	2.4 .382	2.4 .386	$2+.390$	24.394	$2+.398$	24.402	2.4 .405
620	24.409	2.4 .413	2.4 .417	2.4 .42 I	24. 425	2.4 .429	24.433	24.437	24.441	24.445
621	24.449	$2+453$	$2+457$	2.4.461	24.465	$2+.468$	24.472	24.476	24.480	24.484
622	24.488	24.492	2.4 .496	24.500	24.504	24.508	24.512	24.516	24.520	24.524
623	24.528	$2+.531$	$2+535$	24.539	2.4 .543	24.547	24.55 I	24.555	2.4.559	24.563
62.4	24.567	24.571	2.4.575	24.579	2.4 .583	2.1.5S7	24.591	2.4.59.4	24.598	24.602
625	24.606	24.610	24.614	24.618	24.622	2. 4.626	24.630	2.4 .634	24.63 S	24.642
626	24.646	24.650	24.653	2.4 .657	$2+661$	24.665	24.669	2.4 .673	24.677	24.68 I
627	$2+.685$	2.4 .689	24.693	24.697	2.4.701	21.705	24.709	2.4 .713	24.716	24.720
62 S	24.72 .4	24.725	24.732	24.736	2.4 .740	24.744	24.748	24.752	24.756	24.760
629	24.764	24.768	24.772	24.776	24.779	24.783	24.787	2.4.791	24.795	24.799
630	$24 . \mathrm{So3}$	24.807	24.SII	24.815	24.S19	24. S_{23}	24.827	24.831	24.835	24.839
631	24.842	24.846	24.850	24.854	24.858	24.862	24.866	24.870	24.874	24.878
632	2.4.8S2	24.886	24.890	24.894	24.898	24.902	24.905	24.909	24.913	24.917
633	24.92 I	24.925	24.929	24.933	24.937	24.941	24.945	$2+.949$	24.953	24.957
634	24.961	24.965	24.965	24.972	24.976	24.950	24.984	24.988	24.992	24.996
635	25.000	25.004	25.008	25.012	25.016	25.020	25.024	25.028	25.031	25.035
636	25.039	25.043	25.047	25.051	25.055	25.059	25.063	25.067	25.071	25.075
637	25.079	25.083	25.087	25.091	25.094	25.098	25.102	25.106	25.110	25.114
638	25.118	25.122	25.126	25.130	25.134	25.138	25.142	25.146	25.150	25.153
639	25.157	25.161	25.165	25.169	25.173	25.177	25.18I	25. IS5	25.189	25.193
640	25.197	25.201	25.205	25.209	25.213	25.216	25.220	25.224	25.22 S	25.232
6.1	25.236	25.240	25.214	25.248	25.252	25.256	25.260	25.264	25.268	25.272
6.42	25.276	25.279	25.283	25.287	25.291	25.295	25.299	25.303	25.307	25.311
6.3	25.315	25.319	25.323	25.327	25.33 I	25.335	25.339	25.342	25.346	25.350
6.44	$25 \cdot 35$ t	$25 \cdot 358$	25.362	25.366	25.370	25.374	25.37 S	$25.3 \mathrm{~S}^{2}$	25.386	25.390
645	25.394	25.398	25.402	25.405	25.409	25.413	25.417	25.421	25.425	25.429
646	25.433	25.437	25.441	25.445	25.149	25.453	25.457	25.461	25.465	25.468
647	25.472	25.476	25.4So	25.4 S 4	25.485	25.492	25.496	25.500	25.504	25.508
648	25.512	25.516	25.520	25.524	25.52 S	25.531	25.535	25.539	25.543	25.547
649	25.551	25.555	25.559	25.563	25.567	25.57 I	25.575	25.579	$25.5{ }^{8} 3$	25.5S7
650	25.591	25.594	25.598	25.602	25.606	25.610	25.614	25.618	25.622	25.626

I mm. $=0.03937$ inch.

Milli- meters.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inch								
650	25.591	25.594	25.598	25.602	25.606	25.610	25.614	25.61S	25.622	25.626
651	25.630	25.634	25.638	25.642	25.646	25.650	25.653	25.657	25.661	25.665
652	25.669	25.673	25.677	25.68I	25.685	25.689	25.693	25.697	25.701	25.705
653	25.709	25.713	25.716	25.720	25.724	25.728	25.732	25.736	25.740	25.744
654	25.748	25.752	25.756	25.760	25.764	25.768	25.772	25.776	25.779	25.783
655	25.787	25.79 I	25.795	25.799	25.803	25.807	25.SII	25.815	25.819	25.823
656	25.827	25.83 I	25.835	25.839	25.842	25.846	25.850	25.854	25.858	25.862
657	25.866	25.870	25.874	25.878	25.882	25.856	25.890	25.894	25.898	25.902
658	25.905	25.909	25.913	25.917	25.921	25.925	25.929	25.933	25.937	25.94 I
659	25.945	25.949	25.953	25.957	25.961	25.965	25.968	25.972	25.976	25.980
660	25.984	25.988	25.992	25.996	26.000	26.004	26.008	26.012	26.016	26.020
661	26.024	26.028	26.031	26.035	26.039	26.043	26.047	26.051	26.055	26.059
662	26.063	26.067	25.07 I	26.075	25.079	26.053	26.087	26.090	26.094	26.098
663	26.102	26.106	26.110	26.1 14	26.1 IS	26. 122	26. I26	26.130	26.134	26.138
664	26.142	26.146	26.150	26.153	26.157	26.161	26.165	26.169	26.173	26.177
665	26. ISI	26.185	26.1S9	26. 193		26.201	26.205	26.209	26.213	26.216
666	26.220	26.22 .4	26.22 S	26.232	26.236	26.240	26.244	26.245	26.252	26.256
667	26.260	26.26 .4	26.268	26.272	26.276	26.279	26.283	26.287	26.291	26.295
668	26.299	26.303	26.307	26.31 I	26.315	26.319	26.323	26.327	26.331	26.335
669	26.339	26.3 .42	26.346	26.350	26.354	26.358	26.362	26.366	26.370	26.374
670	26.378	26.382	26.386	26.390	$26.39+$	26.398	26.402	26.405	26.409	26.413
671	26.417	26.421	26.425	26.429	26.433	26.437	26.44 I	26.445	26.449	26.453
672	26.457	26.46 I	26.465	26.468	26.472	26.476	26.480	26.484	26.488	26.492
673	26.496	26.500	26.504	26.508	26.512	26.516	26.520	26.524	26.528	26.53 I
674	26.535	26.539	26.543	26.547	26.55 I	26.555	26.559	26.563	26.567	26.57 I
675	26.575	26.579	26.583	26.587	26.590	26.59 .4	26.598	26.602	26.606	26.610
676	26.614	26.618	26.622	26.626	26.630	26.634	26.638	26.642	26.646	26.650
677	26.653	26.657	26.661	26.665	26.669	26.673	26.677	26.68 I	26.685	26.689
678	26.693	26.697	26.701	26.705	26.709	26.713	26.716	26.720	26.724	26.72 S
679	26.732	26.736	26.740	26.744	26.748	26.752	26.756	26.760	26.764	26.768
680	26.772	26.776	26.779	26.783	26.787	26.791				
651	26.81 I	$26 . \mathrm{SI}_{5}$	26.819	26.823	26.827	26.83 I	26.835	26.538	26.842	26.846
682	26.850	26.554	26.555	26.862	26.866	26.870	26.574	26.57S	26.882	26.856
683	26.890	26.594	26.898	26.902	26.905	26.909	26.913	26.917	26.921	26.925
684	26.929	26.933	26.937	26.941	26.945	26.949	26.953	26.957	26.961	26.965
685	26.968	26.972	26.976	26.980	26.984	26.988	26.992	26.996	27.000	27.004
686	27.008	27.012	27.016	27.020	27.024	27.028	27.03 I	27.035	27.039	27.043
65_{7}	27.047	27.051	27.055	27.059	27.063	27.067	27.071	27.075	27.079	27.083
688	27.087	27.090	27.094	27.098	27.102	27.106	27.110	27.114	27.1IS	27.122
689	27.126	27.130	27. I34	27.138	27.142	27.146	27.150	27.153	27.157	27.161
690	27.165	27.169	27.173	27.177	27.181	27.185	27.189	27.193	27.197	27.201
691	27.205	27.209	27.213	27.216	27.220	27.224	27.228	27.232	27.236	27.240
692	27.244	27.248	27.252	27.256	27.260	27.264	27.268	27.272	27.276	27.279
693	27.283	27.287	27.291	$2 \% .295$	27.299	27.303	27.307	27.311	27.3 I5	27.319
694	27.323	27.327	27.331	27.335	27.339	27.342	$27 \cdot 3.46$	27.350	27.354	27.358
695	27.362	27.366	27.370	27.374	27.378	27.382	27.386	27.390	27.394	27.398
696	27.402	27.405	27.409	27.413	27.417	27.421	27.425	27.429	27.433	27.437
697	27.44 I	27.445	27.449	27.453	27.457	27.46 I	27.465	27.468	27.472	27.476
698	27.450	27.484	27.488	27.492	27.496	27.500	27.504	27.508	27.512	27.516
699	27.520	27.524	27.52 S	27.531	27.535	27.539	27.543	27.547	27.55I	27.555
700	27.559	27.563	27.567	27.57 I	27.575	27.579	27.583	27.587	27.590	27.594

smitysonian tables.

MILLIMETERS INTO INCHES.

$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	4	. 5	. 6	. 7	. 8	. 9
	Inches.									
700	27.559	27.563	27.567	27.571	27.575	27.579	27.583	27.587	27.590	27.594
701	27.598	27.602	27.606	27.610	27.614	27.618	27.622	27.626	27.630	27.634
702	27.638	27.642	27.646	27.650	27.653	27.657	27.661	27.665	27.669	27.673
703	27.677	27.68I	27.685	27.689	27.693	27.697	27.701	27.705	27.709	27.713
704	27.716	27.720	27.724	27.728	27.732	27.736	27.740	27.744	27.748	27.752
705	27.756	27.760	27.764	27.768	27.772	27.776	27.779	27.783	27.787	27.791
706	27.795	27.799	27.803	27.807	27.811	27.815	27.819	27.823	27.827	27.831
707	27.835	27.839	27.842	27.8.46	27.550	27.854	27.858	27.862	27.866	27.870
708	27.874	27.875	27.882	27.886	27.890	27.894	27.898	27.902	27.905	27.909
709	27.913	27.917	27.92 I	27.925	27.929	27.933	27.937	27.941	27.945	27.949
710	27.953	27.957	27.961	27.965	27.968	27.972	27.976	27.980	27.984	27.988
711	27.992	27.996	28.000	29.004	28.008	28.012	28.016	28.020	28.024	2 S .02 S
712	28.031	28.035	28.039	28.043	28.047	28.051	2 S. 055	23.059	28.063	28.067
713	28.071	28.075	28.079	28.083	28.087	28.090	28.094	28.098	28.102	28.106
714	28.110	28.114	28.1IS	28.122	28.126	28.130	28.134	2S.138	2S. 142	28.146
715	28.150	2S. 153	2S. 157	28.16I	28.165	28.169	28.173	28.177	28. 181	28.185
716	28.189	2S. 193	28.197	28.201	28.205	28.209	$2 \mathrm{S.213}$	28.216	28.220	28.224
717	28.228	28.232	28.236	28.240	2 S .244	2 S .248	2 S. 252	28.256	28.260	28.264
718	28.268	28.272	28.276	28.279	28.283	28.287	28.291	28.295	28.299	28.303
719	28.307	28.3 II	$2 \mathrm{S.315}$	28.319	28.323	28.327	28.33 I	28.335	28.339	28.342
720	28.346	28.350	28.354	28.358	28.362	28.366	28.370	28.374	28.378	2 S .382
721	28.386	28.390	28.394	28.398	2 S .402	28.405	28.409	28.413	28.417	2 S .42 I
722	28.425	28.429	28.433	28.437	28.44 I	28.445	28.449	28.453	2 S .457	28.461
723	28.465	28.468	2 S .472	28.476	2 S .480	28.484	28.488	2 S .492	28.496	28.500
724	28.504	28.508	28.512	28.516	28.520	28.524	28.528	28.531	28.535	28.539
725	28.543	28.547	28.551	28.555	28.559	28.563	28.567	28.571	28.575	28.579
726	2 S .583	28.587	28.590	28.594	28.598	28.602	28.606	28.610	28.614	28.618
727	28.622	28.626	2 S .630	28.634	28.638	28.642	28.6 .46	28.650	28.653	28.657
728	28.661	2 S .665	28.669	28.673	28.677	28.681	28.685	28.689	28.693	28.697
729	28.701	28.705	28.709	28.713	28.716	28.720	28.724	28.728	28.732	28.736
730	28.740	28.744	28.748	28.752	28.756	28.760	28.764	28.768	28.772	28.776
731	28.779	28.783	28.787	28.791	28.795	28.799	$2 \mathrm{S}$. So3	$28 . \mathrm{So7}$	28.8II	28.815
732	28.819	28.823	28.827	28.831	28.835	28.839	$2 \mathrm{S}. \mathrm{~S}_{4}$	28.846	28.850	28.854
733	28.858	28.862	28.866	28.870	28.874	28.878	28.882	2S.886	28.890	28.894
734	28.598	28.902	28.905	28.909	28.913	28.917	2 S .92 I	28.925	28.929	28.933
735	28.937	28.94 I	28.945	28.949	28.953	28.957	2S.96I	28.965	28.968	2 S .972
736	28.976	28.980	28.984	28.988	28.992	28.996	29.000	29.004	29.008	29.012
737	29.016	29.020	29.024	29.028	29.03 I	29.035	29.039	29.043	29.047	29.051
738	29.055	29.059	29.063	29.067	29.071	29.075	29.079	29.053	29.087	29.090
739	29.094	29.098	29.102	29. 106	29.1 IO	29. I 14	29.118	29.122	29.126	29.130
740	29. 134	29.13S	29.142	29.146	29.150	29.153	29.157	29.16I	29.165	29.169
741	29.173	29.177	29.18I	29.185	29.189	29.193	29.197	29.201	29.205	29.209
742	29.213	29.216	29.220	29.224	29.228	29.232	29.236	29.240	29.244	29.248
743	29.252	29.256	29.260	29.264	29.268	29.272	29.276	29.279	29.283	29.287
74.4	29.291	29.295	29.299	29.303	29.307	29.3 II	29.315	29.319	29.323	29.327
745	29.331	29.335	29.339	29.342	29.346	29.350	29.354	29.358	29.362	29.366
746	29.370	29.374	29.378	29.382	29.386	29.390	29.394	29.398	29.402	29.405
747	29.409	29.413	29.417	29.421	29.425	29.429	29.433	29.437	29.44 I	29.445
748	29.449	29.453	29.457	29.46 I	29.465	29.468	29.472	29.476	29.480	29.484
749	29.458	29.492	29.496	29.500	29.504	29.508	29.512	29.516	29.520	29.524
750	29.528	29.53 I	29.535	29.539	29.543	29.547	29.551	29.555	29.559	29.563

MILLIMETERS INTO INCHES.
$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Iuches.	Inches.	Inches.	Inches.	Inches.
750	29.52S	29.53I	29.535	29.539	29.543	29.547	29.55 I	29.555	29.559	29.563
751	29.567	29.571	29.575	29.579	29.583	29.587	29.590	29.594	29.598	29.602
752	29.606	29.610	29.614	29.618	29.622	29.626	29.630	29.634	29.638	29.642
753	29.646	29.650	29.653	29.657	29.661	29.665	29.669	29.673	29.677	29.68I
754	29.685	29.689	29.693	29.697	29.701	29.705	29.709	29.713	29.716	29.720
755	29.724	29.728	29.732	29.736	29.740	29.744	29.748	29.752	29.756	29.760
756	29.764	29.768	29.772	29.776	29.779	29.783	29.787	29.791	29.795	29.799
757	29.803	29.807	29.81 I	29.815	29.819	29.823	29.827	29.831	29.835	29.839
758	29.842	29.846	29850	29.854	29.858	29.862	29.866	29.870	29.574	29.878
759	29.882	29.886	29. S90	29.594	29.898	29.902	29.905	29.909	29.913	29.917
760	29.92 I	29.925	29.929	29.933	29.937	29.941	29.945	29.949	29.953	29.957
761	29.961	29.965	29.968	29.972	29.976	29.980	29.984	29.958	29.992	29.996
762	30.000	30.004	30.008	30.012	30.016	30.020	30.024	30.027	30.031	30.035
763	30.039	30.043	30.047	30.051	30.055	30.059	30.063	30.067	30.071	30.075
764	30.079	30.083	30.087	30.090	30.09.4	30.098	30.102	30. 106	30.110	30. 114
765	30. 118	30.122	30.126	30.130	30.134	30.138	30. 142	30. 146	30.150	30. 153
766	30. 157	30.161	30.165	30.169	30.173	30.177	30.18I	30.185	30.159	30.193
767	30. 197	30.201	30.205	30.209	30.213	30.216	30.220	30.224	30.228	30.232
768	30.236	30.240	30.244	30.248	30.252	30.256	30.260	30.264	30.268	30.272
769	30.276	30.279	30.283	30.287	30.291	30.295	30.299	30.303	30.307	30.311
770	30.315	30.319	30.323	30.327	30.33I	30.335	30.339	30.342	30.346	30.350
771	30.354	30.358	30.362	30.366	30.370	30.374	30.378	30.382	30.386	30.390
772	30.394	30.398	30.402	30.405	30.409	30.413	30.417	30.42 I	30.425	30.429
773	30.433	30.437	30.441	30.445	30.449	30.453	30.457	30.461	30.465	30.468
774	30.472	30.476	30.4So	30.484	30.488	30.492	30.496	30.500	30.504	30.508
775	30.512	30.516	30.520	30.524	30.528	30.53 I	30.535	30.539	30.543	30.547
776	30.551	30.555	30.559	30.563	30.567	30.571	30.575	30.579	30.553	30.587
777	30.590	30.594	30.593	30.602	30.606	30.610	30.614	30.618	30.622	30.626
778	30.630	30.634	30.638	30.642	30.646	30.650	30.653	30.657	30.661	30.665
779	30.669	30.673	30.677	30.681	30.685	30.689	30.693	30.697	30.701	30.705
780	30.709	30.713	30.716	30.720	30.724	30.728	30.732	30.736	30.740	30.744
781	30.748	30.752	30.756	30.760	30.764	30.768	30.772	30.776	30.779	30.783
782	30.787	30.791	30.795	30.799	30.So3	30.807	30.8II	30.815	30.819	30.823
783	30.827	30.83 I	30.835	30.839	30.842	30.846	30.850	30.854	30.858	30.862
784	30.866	30.870	30.874	30.878	30.882	30.856	30.890	30. S94	30.898	30.902
785	30.905	30.909	30.913	30.917	30.92 I	30.925	30.929	30.933	30.937	30.941
786	30.945	30.949	30.953	30.957	30.961	30.965	30.968	30.972	30.976	30.980
787	30.984	30.988	30.992	30.996	31.000	31.004	31.008	3 I .012	3 I .016	31.020
788	31.024	31.027	31.031	31.035	31.039	31.043	31.047	31.051	31.055	31.059
789	31.063	31.067	31.071	31.075	31.079	31.083	31.087	31.090	31.094	31.098
790	3 I .102	31. 106	3 I .110	31.114	31.118	31.122	31.126	31.130	31.134	3I.138
791	3 I .142	31.146	31.150	31.153	31.157	31.16I	31.165	31.169	31.173	3 I .177
792	3 I .18 I	3 I .185	31.189	31.193	31.197	31.201	31.205	31.209	31.213	31.216
793	31.220	31.224	31.228	31.232	31.236	31.240	31.244	31.248	31.252	31.256
794	31.260	31.264	31.268	31.272	31.276	31.279	31.283	31.287	31.291	31.295
795	31.299	31.303	31.307	3I.3II	31.315	31.319	31.323	31.327	31.331	31.335
796	3 I .339	31.342	31.346	3 I .350	31.354	31.358	31.362	31.366	31.370	3 I .374
797	3 I .37 S	3 I .382	3 I .380	31.390	3 I .394	31.398	3 I .402	31.405	31.409	3 I .413
798	31.417	3 I .42 I	3 I .425	31.429	31.433	31.437	3 I .44 I	3 I .445	3I. 449	3 I .453
799	31.457	31.461	31.465	31.468	31.472	31.476	31.4So	3 I .484	31.488	$3 \mathrm{I} .49^{2}$
800	31.496	31.500	31.504	31.508	31.512	31.516	31.520	31.524	31.527	31.53 I

Smitheonian Tables.
$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Iuches.	Inches.	Inches.	Inches.
800	31.496	31.500	31.504	31.508	31.512	3I.516	31.520	31.524	31.527	31.531
SoI	31.535	31.539	31.543	31.547	31.55 I	31.555	31.559	31.563	31.567	31.571
So2	31.575	31.579	31.583	31.587	31.590	31.594	31.598	31.602	31.606	31.610
SO_{3}	31.614	31.6IS	31.622	31.626	31.630	31.634	31.638	31.642	31.646	31.650
SO. 4	31.653	31.657	3 I .66 I	31.665	31.669	31.673	31.677	31.68 I	31.685	31.689
805	31.693	31.697	31.701	31.705	31.709	31.713	31.716	31.730	31.724	31.728
So6	31.732	31.736	31.740	31.744	31.748	31.752	31.756	31.760	31.764	31.768
So7	31.772	31.776	31.779	31.783	31.757	31.791	31.795	31.799	31.803	31.807
SoS	3 I .SII	3I.Si5	31.819	31.823	31.827	3 I. S3I	31.835	31.839	3 I.S42	31.846
So9	$31 . S_{50}$	31.854	31.858	31.862	31.866	31.870	31.874	31.578	31.882	31.886
810	31.590	31.894	31.898	31.902	31.905	31.909	31.913	31.917	31.921	31.925
SII	31.929	31.933	31.937	31.94I	31.945	31.949	31.953	31.957	31.961	31.965
SI2	31.968	31.972	31.976	31.980	31.984	31.988	31.992	31.996	32.000	32.004
SI 3	32.008	32.012	32.016	32.020	32.024	32.027	32.031	32.035	32.039	32.043
SI4	32.047	32.05 I	32.055	32.059	32.063	32.067	32.071	32.075	32.079	32.083
815	32.087	32.090	32.094	32.098	32.102	32.106	32.110	32.1I4	32.118	32.122
Si6	32.126	32.130	32. 134	32.138	32.142	32.146	32.150	32.153	32.157	32.161
SI7	32.165	32.169	32.173	32.177	32.1 I I	32.185	32.189	32.193	32.197	32.201
818	32.205	32.209	32.213	32.216	32.220	32.22 .4	32.22 S	32.232	32.236	32.240
SI9	32.214	32.248	32.252	32.256	32.260	32.264	32.268	32.272	32.276	32.279
820	32.283	32.287	32.29 I	32.295	32.299	32.303	32.307	32.311	32.315	32.319
821	32.323	32.327	32.33 I	32.335	32.339	32.342	32.346	32.350	32.354	32.358
S22	32.362	32.366	32.370	32.374	32.378	32.352	32.386	32.390	32.394	32.398
823	32.402	32.405	32.409	32.413	32.417	32.42 I	32.425	32.429	32.433	32.437
82.4	32.44 I	32.445	32.449	32.453	32.457	32.461	32.465	32.468	32.472	32.476
825	32.480	32.484	32.488	32.492	32.496	32.500	32.504	32.508	32.512	32.516
826	32.520	32.52 .4	32.527	32.53 I	32.535	32.539	32.543	32.547	32.551	32.555
S27	32.559	32.563	32.567	32.57 I	32.575	32.579	32.583	32.587	32.590	32.594
S2S	32.598	32.602	32.606	32.610	32.614	32.6 IS	32.622	32.626	32.630	32.634
S29	32.638	32.6 .42	32.646	32.650	32.653	32.657	32.66 I	32.665	32.669	32.673
830	32.677	32.68 I	32.655	32.689	32.693	32.697	32.701	32.705	32.709	32.713
831	32.716	32.720	32.724	32.72 S	32.732	32.736	32.740	32.744	32.748	32.752
S32	32.756	32.760	32.76 .4	32.768	32.772	32.776	32.779	32.783	32.787	32.791
S33	32.795	32.799	$32 . \mathrm{So} 3$	32.807	32.SII	32.815	32.819	32.823	32.827	32.831
S34	32.835	32.839	$32 . S_{42}$	32.846	32.850	32.854	32.858	32.862.	32.866	32.870
835	32.874	32.878	32.882	32.886	32.890	32.894	32.898	32.902	32.905	32.909
836	32.913	32.917	32.92 I	32.925	32.929	32.933	32.937	32.941	32.945	32.949
837	32.953	32.957	32.961	32.965	32.968	32.972	32.976	32.980	32.984	32.988
838	32.992	32.996	33.000	33.004	33.008	33.012	33.016	33.020	33.024	33.027
S39	33.031	33.035	33.039	33.043	33.047	33.051	33.055	33.059	33.063	33.067
840	33.07 I	33.075	33.079	33.083	33.087	33.090	33.094	33.098	33.102	33.106
841	33.110	33.114	33. IIS	33.122	33.126	33.130	33.134	33.138	33.142	33.146
5.12	33.150	33.153	33. 157	33.161	33.165	33.169	33.173	33.177	33.1SI	33.185
8.43	33.159	33.193	33.197	33.201	33.205	33.209	33.213	33.216	33.220	33.22 .4
S44	33.228	33.232	33.236	33.240	33.244	33.248	33.252	33.256	33.260	33.264
845	33.268	33.272	33.276	33.279	33.283	33.287	33.291	33.295	33.299	33.303
846	33.307	33.311	33.315	33.319	33.323	33.327	33.331	33.335	33.339	33.342
847	33.346	33.350	33.354	33.358	33.362	33.366	33.370	33.374	33.378	33.382
S48	33.386	33.390	33.394	33.398	33.402	33.405	33.409	33.413	33.417	33.421
S49	33.425	33.429	33.433	33.437	33.441	33.445	33.449	33.453	33.457	33.461
850	33.464	33.468	33.472	33.476	33.4 So	33.484	33.488	33.492	33.496	$33 \cdot 500$

$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inch	Inches.								
850	33.4	33.468	33.472	33.476	33.480	33.484	33.485	33.492	33.496	33.500
S51	33.504	33.508	33.512	33.516	33.520	33.52.4	33.527	33.53 I	$33 \cdot 535$	33.539
S52	33.543	33.547	33.551	33.555	33.559	33.563	33.567	33.57 I	33.575	33.579
S53	33.583	33.587	33.590	33.594	33.598	33.602	33.606	33.610	33.614	33.6IS
S54	33.622	33.626	33.630	33.634	33.638	33.642	33.646	33.650	33.653	33.657
855	33.661	33.665	33.669	33.673	33.677	33.681	33.685	33.689	33.693	33.697
S56	33.701	33.705	33.709	33.713	33.716	33.720	33.724	33.728	33.732	33.736
S57	33.740	33.744	33.748	33.752	33.756	33.760	33.764	33.768	33.772	33.776
858	33.779	33.783	33.787	33.791	33.795	33.799	33.803	33.807	33.8II	33.8I5
S59	33.819	33.823	33.827	33.831	33.835	33.839	33.842	33.8.46	33.850	33.854
860	33.558	33.862	33.866	33.570	33.574	33.8-5	33.882	33.886	33.890	33.894
861	33.898	33.902	33.905	33.909	33.913	33.917	33.92 I	33.925	33.929	33.933
862	33.937	33.941	33.945	33.949	33.953	33.957	33.96	33.964	33.968	33.972
863	33.976	33.950	33.98.	33.988	33.992	33.996	34.000	34.004	34.008	34.012
S64	34.016	34.020	34.024	34.027	34.03 I	34.035	34.039	34.043	34.047	34.051
865	34.055	34.059	34.063	34.067	34.071	34.075	34	34.083	34.087	34.090
866	34.094	34.098	34.102	34.106	34.1 10	34. I I 4	34.118	34.122	34.126	34.130
867	34.134	34.138	34.142	34.146	34.150	34.153	34.157	34.161	34.165	34.169
868	34.173	34.177	34.ISI	34.185	34.189	34.193	34.197	34.201	34.205	34.209
869	34.213	34.216	34.220	34.224	34.228	34.232	34.236	34.240	34.244	34.248
870	34.252	34.256	34.260	34.26 .4	34.268	34.272	34.276	34.279	34.283	34.287
S71	34.291	34.295	34.299	34.303	34.307	34.3 I	34.315	34.319	34.323	34.327
872	34.33 I	34.335	34.339	34.342	34.346	34.350	$34 \cdot 354$	34.358	34.362	34.366
873	34.370	34.374	34.378	34.3 S2	$3+\cdot 386$	34.390	34.39 .4	34.398	34.402	34.405
874	34.409	34.413	34.417	34.421	34.425	34.429	34.433	34.437	34.44 I	34.445
875	34.449	34.453	34.457	34.46 I	34.464	24.468	34.472	34.476	34.480	34.484
876	34.488	34.492	34.496	34.500	34.504	34.508	34.512	34.516	34.520	$34 \cdot 524$
877	34.527	34.53I	34.535	34.539	34.543	34.547	$3+551$	34.555	34.559	34.563
878	34.567	34.57 I	34.575	34.579	34.583	34.587	34.590	34.594	34.598	34.602
S79	34.606	34.610	34.614	34.6I8	34.622	34.626	34.630	34.634	34.638	34.642
880	34.646	34.650	34.653	34.657	34.66I	34.665	34.669	34.673	34.677	34.6SI
SSI	34.685	34.689	34.693	34.697	34.701	34.705	34.709	34.713	34.716	34.720
882	34.72 .4	34.728	34.73^{2}	34.736	34.740	34.744	34.74 S	34.752	34.756	34.760
883	34.764	34.768	34.772	34.776	34.779	34.783	34.787	34.791	34.795	34.799
SS.	$34 . \mathrm{So} 3$	34.807	34.8 I I	34.815	34.819	34.823	34.827	34.83 I	34.835	34.839
885	34. $8_{4} 42$	34.846	34.850	34.854	34.85	34.862	34.866	34.870	34.874	34.878
886	34.882	34.886	34.890	34.594	34.898	34.902	34.905	34.909	34.913	34.917
887	34.92 I	34.925	34.929	34.933	34.937	34.94 .1	34.9.45	34.949	34.953	34.957
SS8	34.96 I	3.4 .964	3.4.968	34.972	34.976	34.9So	34.984	34.9S8	34.992	34.996
SS9	35.000	35.004	35.008	35.012	35.016	35.020	35.024	35.027	35.031	35.035
890	35.039	35.043	35.047	35.05 I	35.055	35.059	35.063	35.067	35.071	35.075
S91	35.079	35.083	35.087	35.090	35.094	35.098	35.102	35. 106	35.110	35.1 I4
S92	35.1IS	35. 122	35.126	35.130	35.134	35.138	35.142	35.146	35.150	35. I 53
S93	35.157	35.16I	35.165	35.169	35.173	35.177	35.18I	35.185	35.189	35. 193
894	35.197	35.201	35.205	35.209	35.213	35.216	35.220	35.224	35.228	35.232
895	35.236	35.240	35.244	35.248	35.252	35.256	35.260	35.264	35.268	35.272
S96	35.276	35.279	35.283	35.287	35.291	35.295	35.299	35.303	35.307	35.311
S9	35.315	35-319	35.323	35.327	35.331	35.335	35.339	35.342	35.346	35.350
S98	35.354	$35 \cdot 35 \mathrm{~S}$	$35 \cdot 362$	35.366	35.370	35.374	35.378	35.382	35.386	35.390
S99	35.394	35-398	35.402	35.405	35.409	35.413	35.417	35.42I	35.425	35.429
900	35.433	35.437	35.44I	35.445	35.449	35.453	35.457	35.46 I	35.464	35.468

Table 10.

MILLIMETERS INTO INCHES.

I $\mathrm{mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	Inches.	Inches.	Inclies.	Inches.	Iuches.	Iuches.	Inches.	Inches.	Inches.	Inches.
900	35.433	35.437	35.44 I	35.445	35.449	35.453	35.457	35.46I	35.464	35.468
901	35.472	35.476	35.480	35.484	35.488	35.492	35.496	35.500	35.504	35.508
902	35.512	35.516	35.520	35.52.4	35.527	35.531	35.535	35.539	35.543	35.547
903	35.55 I	$35 \cdot 555$	35.559	35.563	35.567	35.57 I	35.575	35.579	35.583	35.587
904	35.590	35.594	35.598	35.602	35.606	35.610	35.614	35.618	35.622	35.626
905	35.630	35.634	35.638	35.642	35.646	35.650	35.653	35.657	35.661	35.665
906	35.669	35.673	35.677	35.68I	35.685	35.689	35.693	35.697	35.701	35.705
907	35.709	35.713	35.716	35.720	35.724	35.728	35.732	35.736	35.740	35.744
908	35.748	35.752	35.756	35.760	35.764	35.768	35.772	35.776	35.779	35.783
909	35.757	35.791	35.795	35.799	35.803	35. So^{7}	35.8II	35.815	35.819	35.823
910	35.827	35.831	35.835	35.839	35.842	35.8.46	35.850	35.854	35.858	35.862
911	35.866	35.870	35.874	35.878	35.882	35.886	35.890	35.894	35.898	35.902
912	35.905	35.909	35.913	35.917	35.92 I	35.925	35.929	35.933	35.937	35.941
913	35.9.45	35.949	35.953	35.957	35.96 I	35.964	35.968	35.972	35.976	35.980
914	35.984	35.988	35.992	35.996	36.000	36.004	36.008	36.012	36.016	36.020
915	36.024	36.027	36.03 I	36.035	36.039	36.043	36.047	36.05 I	36.055	36.059
916	36.063	36.067	36.071	36.075	36.079	36.083	36.087	36.090	36.094	36.098
917	36. IO2	36.106	36.110	36.114	36.1IS	36.122	36.126	36.130	36.124	36.138
918	36. 142	36.146	36.150	36.153	36.157	36.161	36.165	36.169	30.173	36.177
919	36. IS I	36.185	36.189	36.193	36.197	36.201	36.205	36.209	36.213	36.216
920	36.220	36.224	36.228	36.232	36.236	36.240	36.244	36.248	36.252	36.256
92 I	36.260	36.264	36.268	36.272	36.276	36.279	36.283	36.287	36.291	36.295
922	36.299	36.303	36.307	36.31 I	36.315	36.319	36.323	36.327	36.331	36.335
923	36.339	36.342	36.346	36.350	36.354	36.358	36.362	36.366	36.370	36.374
924	36.378	36.3 S2	36.386	36.390	36.39 .4	36.398	36.402	36.405	36.409	36.413
925	36.417	36.42 I	36.425	36.429	36.433	36.437	36.44 I	36.445	36.449	36.453
926	36.457	36.461	36.464	36.46 S	36.472	36.476	36.480	36.484	36.488	36.492
927	36.496	36.500	36.50 .4	36.508	. 36.512	36.516	36.520	36.524	36.527	36.53 I
928	36.535	36.539	36.5.13	36.547	36.55 I	36.555	36.559	36.563	36.567	36.571
929	36.575	36.579	36.583	36.587	36.590	36.59 .4	36.598	36.602	36.606	36.610
930	36.614	36.618	36.622	36.626	36.630	36.634	36.638	36.642	36.646	36.650
931	36.653	36.657	36.661	36.665	36.669	36.673	36.677	36.681	36.685	36.689
932	36.693	36.697	36.701	36.705	36.709	36.713	36.716	36.720	36.72 .4	36.72 S
933	36.732	36.736	36.740	36.744	36.748	36.752	36.756	36.760	36.764	36.768
934	36.772	36.776	36.779	36.783	36.787	36.791	36.795	36.799	36.803	3 ¢. 807
935	36.SII	36.815	36.819	36.823	36.827	36.83 I	36.835	36.839	36.842	36.8.46
936	36.850	36.854	36.858	36.862	36.866	36.870	36.874	36.878	36.882	36.886
937	36.590	36.894	36.898	36.902	36.905	36.909	36.913	36.917	36.921	36.925
938	36.929	36.933	36.937	36.941	36.945	36.949	36.953	36.957	36.961	36.964
939	36.968	36.972	36.976	36.980	36.984	36.988	36.992	36.996	37.000	37.004
940	37.008	37.012	37.016	37.020	37.024	37.027	37.03I	37.035	37.039	37.043
941	37.047	37.051	37.055	37.059	37.063	37.067	37.07 I	37.075	37.079	37.083
9.42	37.087	37.090	37.09.4	37.098	37.102	37.106	37.110	37.114	37.118	37.122
$9+3$	37.126	37.130	37.134	37.138	37.142	37.146	37.150	37.153	37.157	37.161
9.4	37.165	37.169	37.173	37.177	37.18I	37.185	37.189	37.193	37.197	37.201
945	37.204	37.208	37.212	37.216	37.220	37.22 .4	37.228	37.232	37.236	37.240
9.46	37.244	37.248	37.252	37.256	37.260	37.264	37.268	37.272	37.276	37.279
947	37.283	37.287	37.291	37.295	37.299	37.303	37.307	37.311	37.315	37.319
948	37.323	37.327	37.331	37.335	37.339	37.342	37.346	37.350	37.354	37.35S
949	37.362	37.366	37.370	37.374	37.378	$37.3{ }^{\text {82 }}$	37.386	37.390	37.394	37.398
950	37.402	37.405	37.409	37.413	37.417	37.42 I	37.425	37.429	37.433	37.437

$1 \mathrm{~mm} .=0.03937$ inch.

Millimeters.	. 0	. 1	. 2	. 3	. 4	. 5	6	. 7	. 8	. 9
	Inches.									
950	37.402	37.405	37.409	37.413	37.417	37.42 I	37.425	37.429	37.433	37.437
951	37.44 I	37.445	37.449	37.453	37.457	37.461	37.464	37.468	37.472	37.476
952	37.48 O	37.484	37.488	37.492	37.496	37.500	37.504	37.508	37.512	37.516
953	37.520	37.524	37.527	37.53 I	37.535	37.539	37.543	37.547	37.55I	37.555
954	37.559	37.563	37.567	37.571	37.575	37.579	37.583	37.587	37.590	37.594
955	37.598	37.602	37.606	37.610	37.614	37.618	37.622	37.626	37.630	37.634
956	37.638	37.642	37.646	37.650	37.653	37.657	37.661	37.665	37.669	37.673
957	37.677	37.681	37.685	37.689	37.693	37.697	37.701	37.705	37.709	37.713
958	37.716	37.720	37.724	37.728	37.732	37.736	37.740	37.744	37.74S	37.752
959	37.756	37.760	37.764	37.768	37.772	37.776	37.779	37.783	37.787	37.791
960	37.795	37.799	$37 . \mathrm{So} 3$	37.807	37.SII	37.815	37.819	37.823	37.827	37.831
961	37.835	37.839	37.842	37.846	37.850	37.854	37.858	37.862	37.866	37.870
962	37.574	37.878	37.882	37.886	37.890	37.894	37.898	37.901	37.905	37.909
963	37.913	37.917	37.92 I	37.925	37.929	37.933	37.937	37.941	37.945	37.949
964	37.953	37.957	37.961	37.964	37.968	37.972	37.976	37.980	37.984	37.98S
965		37.996	38.000	38.004	38.008	38.012	38.016	3 S.020	38.024	38.027
966	38.03	$3 \mathrm{S.035}$	38.039	38.043	38.047	38.051	3 3.055	3 3.059	38.063	38.067
967	38.071	38.075	38.079	38.083	38.087	38.090	38.094	38.098	38.102	38.106
968	38.110	3S.II4	38.118	38.122	38.126	38.130	3S. I34	38.138	3S. 142	38.146
969	38.150	3S. I 53	38. 157	38.16I	38.165	38.169	38.173	38.177	3S.ISI	38.185
970	38.189	38.193	38.197	3 3.201	38.205	38.209	$3 \mathrm{S.213}$	38.216	38.220	38.224
971	38.228	38.232	38.236	3 S. 240	38.244	38.248	38.252	38.256	38.260	38.264
972	38.268	38.272	38.276	38.279	38.283	38.287	38.291	38.295	38.299	38.303
973	38.307	38.311	38.315	38.319	38.323	38.327	38.331	38.335	38.339	$3^{S .} 3+2$
974	38.346	38.350	38.354	38.358	38.362	38.366	38.370	38.374	38.378	38.382
975	38.386	38.390	38.394	38.398	38.401	38.405	38.409	38.413	38.417	38.42 I
976	3 S. 425	38.429	38.433	38.437	3 S .44 I	38.445	38.449	38.453	38.457	38.461
977	38.464	38.468	38.472	38.476	38.480	38.484	38.488	3 S. 492	3 S. 496	38.500
978	$3 \mathrm{S}$.	3 S. 508	38.512	38.516	38.520	38.524	38.527	3 S. 531	38.535	38.539
979	38.543	$3 \mathrm{S}$.	38.55 I	38.555	38.559	38.563	38.567	38.57 I	38.575	38.579
980	38.583	38.587	38.590	38.594	38.598	38.602	38.606	38.610	38.614	38.618
981	38.622	38.626	38.630	38.634	38.638	38.642	38.646	38.650	38.653	38.657
982	38.661	38.665	38.669	38.673	38.677	38.68 I	38.685	3 3.689	38.693	38.697
983	38.701	38.705	38.709	38.713	38.716	38.720	38.724	38.728	38.732	
984	38.740	38.744	38.748	38.752	38.756	38.760	38.764	38.768	38.772	38.776
985	38.750	38.783	38.787	38.791	38.795	38.799	38.803	38.807	38.811	
986	3 3. 19	38.823	38.827	38.831	38.835	38.839	38.842	38.846	38.850	38.854
987	3 S. 555	38.862	38.866	38.870	3 3. 874	38.875	3 S.SS2	38.886	38.890	38. 994
988	38.898	38.901	38.905	38.909	38.913	3 S.917	38.921	38.925	3 3.929	38.933
989	38.937	$3 \mathrm{S.941}$	$3^{88} .945$	38.949	3 S .953	3 S.957	$3 \mathrm{S.961}$	38.964	38.968	38.972
990	38.976	38.9So	38.984	38.988	38.992	38.996	39.000	39.004	39.008	39.012
991	39.016	39.020	39.024	39.027	39.031	39.035	39.039	39.043	39.047	39.051
992	39.055	39.059	39.063	39.067	39.071	39.075	39.079	39.083	39.087	39.090
99,3	39.094	39.098	39.102	39.106	39.110	39.114	39.118	39.122	39.126	39.130
994	39.134	39.138	39.142	39.146	39.150	39.153	39.157	39.161	39.165	39.169
995	39.173	39.177	39.18I	39.185	39.189	39.193	39.197	39.201	39.205	
996	39.213	39.216	39.220	39.224	39.228	39.232	39.236	39.240	39.244	39.248
997	39.252	39.256	39.260	39.264	39.268	39.272	39.276	39.279	39.283	39.287
998	39.291	39.295	39.299	39.303	39.307	39.311	39.315	39.319	39.323	39.327
999	39.331	39.335	39.339	$39 \cdot 342$	39.346	39.350	39.354	39.358	39.362	39.366
1000	39.370	39.374	39.378	39.382	39.386	39.390	39.394	39.398	39.401	39.405

Table 11.
BAROMETRIC INCHES (MERCURY) INTO MILLIBARS.
I inch $=33.86395 \mathrm{mb}$.

Inches	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	mb.	mb.	mb.	mb .	mb.	nib.	mb .	mb.	mb .	mb.
0.0	0.00	0.34	0.68	. 02	1.35	1.69	2.03	2.37	2.71	3.05
0.1	3.39	3.73	4.06	4.40	4.74	5.08	5.43	5.76	6.10	6.43
0.2	6.77	7.11	$7 \cdot 45$	7.79	8.13	8.47	8.80	9.14	9.48	9.82
0.3	10.16	10.50	10.84	11.18	11.51	II. S_{5}	12.19	12.53	12.87	13.21
0.4	13.55	13.88	14.22	14.56	14.90	15.24	15.58	15.92	16.25	16.59
0.5	16.93	17.27	${ }_{7} 7.61$	17.95	18.29	18.63	18.06	10.30	19.64	19.98
0.6	20.32	20.66	21.00	21.33	21.67	22.01	22.35	22.69	23.03	23.37
0.7	23.70	24.04	24.38	$2+.72$	25.06	25.40	25.74	26.08	26.41	26.75
0.8	27.09	27.43	27.77	$2 \mathrm{S.1} 1$	28.45	28.78	29.12	29.46	29.80	30.14
0.9	30.48	30.82	31.15	31.49	31.83	32.17	32.51	32.85	33.19	33.53
1.0	33.86	34.20	34.54	34.88	35.22	35.56	35.90	36.23	36.57	36.91
I. 1	37.25	37.59	37.93	38.27	38.60	38.94	39.28	39.62	39.96	40.30
1. 2	40.64	40.98	41.31	41.65	41.99	42.33	42.67	+3.01	$43 \cdot 35$	43.68
I. 3	44.02	$44 \cdot 36$	$4+70$	45.04	45.38	45.72	46.05	46.39	46.73	47.07
1.4	47.41	47.75	48.09	48.43	48.76	49.10	$49 \cdot 44$	49.78	50.12	50.46
1.5	50.80	51.13	5 I .47	51.8I	52.15	52.49	52.83	53.17	53.51	53.84
1.6	54.18	54.52	54.86	55.20	55.54	55.88	56.21	56.55	56.89	57.23
1.7	57.57	57.91	58.25	58.58	58.92	59.26	59.60	59.94	60.28	60.62
1. 8	60.96	61.29	61.63	61.97	62.31	62.65	62.99	63.33	03.66	64.00
1.9	$64 \cdot 3+$	64.68	65.02	65.36	65.70	66.03	66.37	66.71	67.05	67.39
2.0	67.73	68.07	68.41	68.74	69.08	69.42	69.76	70.10	70.44	70.78
2.1	71.11	71.45	71.79	72.13	72.47	72.8 I	73.15	73.48	73.82	74.16
2.2	74.50	74.84	75.18	75.52	75.86	76.19	76.53	76.87	77.21	77.55
2.3	77.89	78.23	78.56	78.90	79.24	79.58	79.92	So. 26	So. 60	So. 93
2.4	81.27	81.61	81.95	82.29	82.63	S2.97	83.31	83.64	83.98	$8+32$
25.0	8.46 .6	846.9	$8+7.3$	847.6	848.0	848.3	S+8.6	8.49 .0	$8+9.3$	849.6
25.1	850.0	850.3	850.7	851.0	851.3	851.7	852.0	852.4	852.7	853.0
25.2	853.4	853.7	854.0	854.4	854.7	855.1	855.4	855.7	856.1	856.4
$25 \cdot 3$	856.8	857.1	857.4	857.8	858.1	858.5	S58.8	859.1	859.5	859.8
25.4	860.1	860.5	S60.8	861.2	S61. 5	86 I .8	862.2	862.5	862.9	863.2
25.5	863.5	863.9	864.2	864.5	864.9	865.2	865.6	865.9	866.2	866.6
25.6	866.9	867.3	867.6	867.9	868.3	868.6	868.9	869.3	869.6	870.0
25.7	870.3	870.7	871.0	871.3	871.7	872.0	872.3	872.7	873.0	873.4
25.8	873.7	S74.0	874.4	S74.7	875.0	$875 \cdot 4$	875.7	876.1	876.4	876.7
25.9	877.1	$877 \cdot 4$	877.8	S78.1	878.4	878.8	879.1	879.4	879.8	880.1
26.0	880.5	880.8	881.1	881.5	S8ı. 8	88.2	882.5	882.8	883.2	883.5
26.1	883.8	884.2	88+5	884.9	885.2	885.5	885.9	886.2	886.6	880.9
26.2	887.2	887.6	887.9	888.3	888.6	888.9	889.3	889.6	889.9	890.3
26.3	890.6	891.0	891.3	S91.6	S92.0	892.3	80.7	893.0	893.3	893.7
26.4	894.0	S94.3	89.4.7	895.0	895.4	895.7	S96.0	896.4	896.7	897.I
26.5	897.4	S97.7	898.1	898.4	S98.7	S99.I	899.4	S99.8	900.1	900.4
26.6	900.8	901.1	901.5	901.8	902.1	902.5	902.5	903.2	903.5	903.8
26.7	904. 2	904.5	904.8	905.2	905.5	905.9	906.2	906.5	906.9	907.2
26.8	907.6	907.9	908.2	908.6	908.9	909.2	909.6	909.9	910.3	910.6
26.9	910.9	91.3	911.6	912.0	912.3	912.6	913.0	913.3	913.6	914.0
27.0	914.3	91.4.7	915.0	915.3	915.7	916.0	916.4	916.7	917.0	917.4
27.1	917.7	918.1	918.4	918.7	919.1	919.4	919.7	920.1	920.4	920.8
27.2	92 I .1	92 I .4	921.8	922.1	922.5	922.8	923.1	923.5	923.8	924.1
27.3	924.5	924.8	925.2	925.5	925.8	926.2	926.5	926.9	927.2	927.5
27.4	927.9	928.2	928.5	928.9	929.2	929.6	929.9	930.2	930.6	930.9

BAROMETRIC INCHES (MERCURY) INTO MILLIBARS.
I inch $=33.86395 \mathrm{mb}$.

Simithisonian tables.

Table 12.
BAROMETRIC MILLIMETERS (MERCURY) INTO MILLIBARS.
$1 \mathrm{~mm} .=1.33322387 \mathrm{mb}$.

Millimeters.	0	1	2	3	4	5	6	7	8	9
	mb.	mb .	mb.							
0	\bigcirc	1.3	2.7	4.0	$5 \cdot 3$	6.7	8.0	9.3	10.7	12.0
10	13.3	14.7	10.0	17.3	18.7	20.0	21.3	22.7	24.0	25.3
20	20.7	28.0	29.3	30.7	32.0	$33 \cdot 3$	34.7	36.0	37.3	38.7
30	40.0	41.3	42.7	+4.0	$45 \cdot 3$	46.7	48.0	49.3	50.7	52.0
40	53.3	54.7	56.0	57.3	58.7	60.0	61.3	62.7	64.0	65.3
50	66.7	68.0	69.3	70.7	72.0	73.3	74.7	76.0	77.3	78.7
60	80.0	8 I .3	82.7	8.4 .0	85.3	86.7	88.0	89.3	90.7	92.0
70	93.3	94.7	96.0	97.3	98.7	100.0	101.3	102.7	104.0	105.3
80	106.7	108.0	109.3	110.7	112.0	113.3	114.7	I 16.0	117.3	118.7
90	120.0	121.3	122.7	124.0	125.3	126.7	I28.0	I 29.3	130.7	132.0
100	133.3	134.7	136.0	${ }^{1} 37.3$	138.7	140.0	141.3	142.7	144.0	145.3
110	1+6.7	148.0	149.3	150.7	152.0	153.3	154.7	I 56.0	157.3	158.7
120	160.0	161.3	162.7	164.0	165.3	166.7	168.0	169.3	170.7	172.0
130	173.3	174.7	176.0	177.3	178.7	180.0	181.3	182.7	I84.0	185.3
140	I 86.7	188.0	189.3	190.7	192.0	193.3	194.7	196.0	197.3	198.7
150	200.0	201.3	202.7	204.0	20.5 .3	206.6	208.0	209.3	210.6	212.0
160	213.3	214.6	216.0	217.3	218.6	220.0	221.3	222.6	224.0	225.3
170	220.6	228.0	229.3	230.6	232.0	233.3	234.6	236.0	237.3	238.6
180	240.0	2.41 .3	242.6	244.0	245.3	246.6	248.0	249.3	250.6	252.0
190	253.3	254.6	256.0	257.3	258.6	260.0	261.3	262.6	264.0	265.3
200	266.6	268.0	269.3	270.6	272.0	273.3	274.6	${ }_{27} 6.0$	277.3	278.6
210	280.0	281.3	282.6	284.0	285.3	286.6	288.0	289.3	290.6	292.0
220	293.3	294.6	296.0	297.3	208.6	300.0	301.3	302.6	304.0	305.3
230	306.6	308.0	309.3	310.6	312.0	313.3	314.6	316.0	317.3	318.6
240	320.0	321.3	322.6	324.0	325.3	326.6	328.0	329.3	330.6	332.0
250	333.3	334.6	336.0	$337 \cdot 3$	338.6	340.0	341.3	342.6	344.0	
260	346.6	348.0	349.3	350.6	352.0	353.3	354.6	356.0	357.3	358.6
270	360.0	361.3	362.6	364.0	365.3	366.6	368.0	369.3	370.6	372.0
280	373.3	374.6	376.0	$377 \cdot 3$	378.6	380.0	381.3	382.6	384.0	385.3
290	386.6	388.0	389.3	390.6	392.0	$393 \cdot 3$	394.6	396.0	397.3	398.6
300	400.0	401.3	402.6	404.0	405.3	406.6	408.0	409.3	410.6	412.0
310	+13.3	414.6	416.0	417.3	418.6	420.0	42 I .3	422.6	424.0	425.3
320	426.6	428.0	429.3	430.6	432.0	433.3	434.6	436.0	$437 \cdot 3$	438.6
330	440.0	441.3	442.6	444.0	445.3	446.6	448.0	449.3	450.6	452.0
340	45.3.3	454.6	456.0	457.3	458.6	460.0	461.3	462.6	464.0	465.3
350	466.6	468.0	469.3	470.6	472.0	473.3	474.6	476.0	477.3	478.6
360	480.0	481.3	482.6	484.0	485.3	486.6	488.0	489.3	490.6	492.0
370	493.3	494.6	496.0	497.3	498.6	500.0	501.3	502.6	50.4 .0	505.3
380	506.6	508.0	509.3	510.6	512.0	513.3	514.6	516.0	517.3	518.6
390	520.0	521.3	522.6	524.0	525.3	526.6	528.0	529.3	530.6	532.0
400	$533 \cdot 3$	534.6	536.0	537.3	538.6	540.0	541.3	542.6	544.0	
410	546.6	548.0	549.3	550.6	552.0	553.3	554.6	556.0	557.3	558.6
420	560.0	561.3	562.6	564.0	565.3	566.6	568.0	569.3	570.6	572.0
430	573.3 586.6	574.6	576.0	577.3 500.6	578.6	580.0	581.3	582.6	584.0	585.3
440	586.6	588.0	589.3	590.6	592.0	593.3	594.6	596.0	597.3	598.6

Smithsonian tables.

Table 12.
BAROMETRIC MILLIMETERS (MERCURY) INTO MILLIBARS.
$1 \mathrm{~mm} .=\mathrm{x} .33322387 \mathrm{mb}$.

Millimeters.	0	1	2	3	4	5	6	7	8	9
	mb.	mb.	mb .	mb.	mb.	mb.	mb.	mb .	mb.	mb.
450	600.0	601.3	602.6	604.0	605.3	606.6	608.0	609.3	610.6	611.9
460	613.3	614.6	615.9	617.3	618.6	619.9	621.3	622.6	623.9	625.3
470	626.6	627.9	629.3	630.6	631.9	633.3	634.6	635.9	637.3	638.6
480	639.9	641.3	642.6	643.9	645.3	646.6	647.9	649.3	650.6	651.9
490	$653 \cdot 3$	654.6	655.9	657.3	658.6	659.9	601.3	662.6	663.9	$665 \cdot 3$
500	666.6	667.9	669.3	670.6	671.9	673.3	674.6	675.9	677.3	678.6
510	679.9	681.3	682.6	683.9	685.3	686.6	687.9	689.3	690.6	691.9
520	693.3	694.6	695.9	$697 \cdot 3$	698.6	699.9	701.3	702.6	703.9	705.3
530	706.6	707.9	709.3	710.6	711.9	713.3	714.6	715.9	717.3	718.6
540	719.9	721.3	722.6	723.9	$725 \cdot 3$	726.6	727.9	729.3	730.6	731.9
550	733.3	734.6	735.9	737.3	738.6	739.9	741.3	742.6	743.9	$745 \cdot 3$
560	746.6	747.9	749.3	750.6	751.9	753.3	754.6	755.9	757.3	758.6
570	759.9	761.3	762.6	763.9	765.3	766.6	767.9	769.3	770.6	771.9
580	773.3	774.6	775.9	777.3	778.6	779.9	781.3	782.6	783.9	785.3
590	786.6	787.9	789.3	790.6	791.9	$793 \cdot 3$	794.6	795.9	$797 \cdot 3$	798.6
600	799.9	801.3	802.6	803.9	805.3	806.6	807.9	809.3	810.6	811.9
610	813.3	814.6	815.9	817.3	818.6	819.9	82 I .3	822.6	823.9	825.3
620	826.6	827.9	829.3	830.6	831.9	833.3	834.6	835.9	837.3	838.6
630	839.9	84 I .3	842.6	843.9	$845 \cdot 3$	846.6	847.9	849.3	850.6	851.9
640	853.3	854.6	855.9	857.3	858.6	859.9	861.3	862.6	863.9	865.3
650	866.6	867.9	869.3	870.6	871.9	873.3	874.6	875.9	877.3	878.6
660	879.9	881.3	882.6	883.9	885.3	886.6	887.9	889.3	890.6	891.9
670	893.3	894.6	895.9	897.3	898.6	809.9	901.3	902.6	003.9	005.3
680	906.6	907.9	909.3	910.6	9II.9	913.3	914.6	915.9	917.3	918.6
690	919.9	921.3	922.6	923.9	$925 \cdot 3$	926.6	927.9	929.3	930.6	931.9
700	933.3	934.6	935.9	937.3	938.6	939.9	941.3	942.6	943.9	$045 \cdot 3$
710	946.6	947.9	949.3	950.6	951.9	953.3	954.6	955.9	957.3	958.6
720	959.9	$96 \mathrm{t} \cdot 3$	962.6	963.9	905.3	966.6	967.9	969.3	970.6	971.9
730	973.3	974.6	975.9	977.3	978.6	979.9	981.3	982.6	983.9	985.3
740	986.6	987.9	989.3	990.6	991.9	993.3	994.6	995.9	$997 \cdot 3$	998.6
750	999.9	1001.3	1002.6	100.3.9	1005.3	1006.6	1007.9	1009.3	1010.6	1011.9
760	1013.3	1014.6	IO15.9	1017.2	1018.6	IOI9.9	1021.2	1022.6	1023.9	1025.2
770	1026.6	1027.9	1029.2	1030.6	1031.9	1033.2	1034.6	1035.9	1037.2	1038.6
780	1039.9	1041.2	1042.6	1043.9	1045.2	1046.6	1047.9	1049.2	1050.6	1051.9
790	1053.2	1054.6	1055.9	1057.2	1058.6	1059.9	1061.2	1062.6	1063.9	1065.2

Smithsonian Tables.

1 foot $=03048006$ meter.

Feet.	0	I	2	3	4	5	6	7	8	9
0	$\begin{gathered} \mathrm{m} . \\ \text { o.000 } \end{gathered}$	m. 0.305	$\begin{aligned} & \mathrm{m} . \\ & 0.610 \end{aligned}$	$\begin{gathered} 111 . \\ 0.914 \end{gathered}$	m. $\text { I. } 219$	m. 1.524	m. 1. 829	$\begin{gathered} \mathrm{m} . \\ 2.134 \end{gathered}$	$\mathrm{m} .$ 2.438	11.
10	3.045	$3 \cdot 353$	3.658	3.962	4.267	4.572	4.877	5. IS2	5.486	5.791
20	6.096	6.401	6.706	7.010	7.315	7.620	7.925	8.230	S. 534	8.839
30	9.14.	9.449	9.754	10.058	10.363	10.668	10.973	11.278	11.582	11.887
40	12.192	12.497	12.SO2	13. 106	13.41 I	13.716	14.02 I	14.326	14.630	14.935
50	I 5.240	15.545	15.550	16.154	16.459	16.764	17.069	17.374	17.678	17.983
60	18.288	18.593	18.898	19.202	19.507	19.812	20.117	20.422	20.726	21.03 I
70	21.336	21.641	21.9.46	22.250	22.555	22.860	23.165	23.470	23.774	24.079
So	24.384	2.4.689	24.994	25.298	25.603	25.908	26.213	26.518	26.822	27.127
90	27.432	27.737	28.042	28.346	28.551	2 S .956	29.26I	29.566	29.870	30.175
	0	10	20	30	40	50	60	70	80	90
100	30.48	33.53	36.58	39.62	42.67	45.72	48.77	51.82	54.86	57.91
200	60.96	6.4 .01	67.06	70.10	73.15	76.20	79.25	82.30	S5.34	S8. 39
300	91.44	94.49	97.54	100.58	103.63	106.68	109.73	112.78	115.82	II 8.87
400	121.92	124.97	128.02	131.06	134.11	137.16	140.21	143.26	146.30	149.35
500	152.40	155.45	158.50	161.54	16.4 .59	167.64	170.69	173.74	176.78	179.83
600	I S2. 88	185.93	I88.98	192.02	195.07	198.12	201.17	204.22	207.26	210.31
700	213.36	216.41	219.46	222.50	225.55	228.60	231.65	234.70	237.74	240.79
Soo	243.84	246.89	249.94	252.98	256.03	259.08	262.13	265.18	268.22	271.27
900	274.32	$277 \cdot 37$	280.42	283.46	286.51	289.56	292.61	295.66	298.70	301.75
1000	304.80	307.85	310.90	313.94	316.99	320.04	323.09	326.14	329.18	332.23
1100	335.28	338.33	341.38	344.42	347.47	350.52	353.57	356.62	359.67	362.71
1200	365.76	368. I $^{\text {I }}$	371.86	374.90	377.95	3 SI.00	384.05	387.10	390.14	393.19
I 300	396.24	399.29	402.34	405.38	408.43	411.48	414.53	417.58	420.62	423.67
1400	426.72	429.77	432.82	435.86	438.91	441.96	445.01	448.06	451.10	454.15
1500	457.20	460.25	463.30	466.34	469.39	472.44	475.49	478.54	481.58	484.63
1600	487.68	490.73	493.78	496.82	499.87	502.92	505.97	509.02	512.07	515.11
1700	5 IS. 16	521.21	52.+. 26	527.3I	530.35	533.40	536.45	539.50	542.55	545.59
I Soo	548.64	55 I .69	554.74	557.79	560.83	563.88	566.93	569.98	573.03	576.07
1900	579.12	582.17	$5 \$ 5.22$	585.27	591.3I	59+. 36	597.41	600.46	603.5 I	606.55
2000	609.60	612.65	615.70	6IS. 75	621.79	62.4 .84	627.89	630.94	633.99	637.03
2100	640.08	643.13	646. IS	649.23	652.27	655.32	658.37	66 I .42	66.4.47	667.51
2200	670.56	673.61	676.66	679.7 I	682.75	685.80	688.55	691.90	694.95	697.99
2300	701.04	704.09	707.14	710.19	713.23	716.28	719.33	722.38	725.43	728.47
2400	731.52	734.57	737.62	740.67	743.71	746.76	749.81	752.86	755.91	758.95
2500	762.00	765.05	768.10	771.15		777.24	780.29	783.34	786.39	
2600	792.48	795.53	798.58	So1. 63	SO4. 67	807.72	SIO. 77	SI3.82	SI6.87	S19.91
2700	822.96	826.01	829.06	832.11	835.15	S3S. 20	841.25	844.30	S47.35	850.39
2800	853.44	S56.49	S59.54	862.59	865.63	868.68	871.73	S74.78	S77.83	S80. 87
2900	S83.92	S86.97	S90.02	S93.07	S96.1 I	899.16	902.21	905.26	908.31	911. 35
3000	914.40	917.45	920.50	923.55	926.59	929.64	932.69	935.74	938.79	$9+1.83$
3100	944.SS	947.93	950.98	954.03	957.07	960. 12	963.17	966.22	969.27	972.31
3200	975.36	978.41	98 c .16	9S.4.5 1	987.55	990.60	. 993.65	996.70	999.75	1002.79
3300	1005.84	1008.89	IOII.94	1014.99	1018.03	1021.08	1024.13	1027.18	1030.23	1033.27
3400	1036.32	1039.37	1042.42	10.45 .47	1048.51	1051.56	1054.6I	1057.66	1060.71	1063.75
3500	1066.80	1069.85	I672.90	1075.95	1078.99	1082.04	Io85.09	1088. 14	1091.19	1094.23
3600	1097.28	1100.33	1103.38	1106.43	1109.47	II I 2.52	1115.57	I I I 8.62	I121.67	1124.71
3700 3800	I 127.76 I I 58.24	1130.81	1133.86	1136.91	1139.95	1143.00	11.46 .05	II 149.10	II 52.15	II 55.19
3800 3900	II 58.24	1161.29	1164.34	1107.39	1170.43	1173.48	I 1766.53	II79.58	1182.63	1185.67
3900	I IS8.72	1191.77	119.4 .82	1197.87	1200.91	1203.96	1207.(11	1210.06	1213.1I	1216.15
4000	1219.20	1222.25	1225.30	1228.35	1231.39	1234.4.t	1237.49	I 240.54	12.43 .59	1246.63

FEET INTO METERS.
1 foot $=0.3048006$ meter.

Feet.	0	10	20	30	40	50	60	70	80	90
	m.	m.	m .	m.	m	11.	m.	m.	m .	m.
4000	1219.2	1222.3	1225.3	I22S. 3	1231.4	1234.4	1237.5	1240.5	I 243.6	12,46.6
4100	1249.7	1252.7	1255.8	125S.S	I26I.9	1264.9	I268.0	1271.0	1274.1	1277. I
4200	I2SO. 2	1283.2	12S6.3	I2S9.3	1292.4	I 295.4	1298.5	I301.5	I304. 5	I307.6
4300	I310.6	1313.7	I316.7	1319.8	1322.8	1325.9	1328.9	1332.0	1335.0	1338. 1
4400	I34I. I	I 344.2	I 347.2	I 350.3	I 353.3	I 356.4	1359.4	I362.5	I 365.5	1368.6
4500	1371.6	1374.7	1 377.7	1380.7	1383.8	I386.S	1389.9	I 392.0	1396.0	I 399.0
4600	1402. 1	1405.1	1408.2	1411.2	1414.3	1417.3	1420.4	1423.4	1426.5	1429.5
4700	1432.6	1435.6	I43S.7	1441.7	I444.8	I 447.8	1450.9	I453.9	1456.9	1460.0
4800	1463.0	1466. I	1469. I	I472.2	1475.2	I 478.3	1481.3	1484.4	1487.4	I490. 5
4900	1493.5	1496.6	1499.6	I502.7	I 505.7	I 508.8	I5II.S	1514.9	1517.9	152 1. 0
5000	I524.0	1527.1	1530.1	1533. 1	1536.2	I539.2	I 542.3	I545.3	I 5.48 .4	1551.4
5100	I554.5	I557.5	1560.6	1563.6	I566.7	I 569.7	1572.8	I $575 . \mathrm{S}$	I578.9	I5SI. 9
5200	I585.0	1588.0	I591.I	I594. I	1597.2	1600.2	1603.3	1606.3	1609.3	16I2.4
5300	1615.4	1618.5	1621.5.	I624.6	1627.6	1630.7	1633.7	$1636 . S$	I639.8	1642.9
5400	1645.9	16.49.0	1652.0	1655. I	1658. I	1661.2	1664.2	1667.3	1670.3	1673.4
5500	1676.4	Iо́79.5	I682.5	1685.5	I688.6	I691.6	1694.7	1697.7	1700.8	1703.8
5600	I706.9	1709.9	1713.0	1716.0	1719.1	1722.1	I725.2	1728.2	1731.3	1734.3
5700	1737.4	1740.4	1743.5	1746.5	1749.6	1752.6	I755.7	1758.7	1761.7	1764.8
5800	I767.8	1770.9	I773.9	1777.0	1780.0	I7S3.	I786. I	1789.2	1792.2	1795.3
5900	I798.3	ISOI. 4	ISO4.4	ISO7.5	1810.5	ISI3.6	1816.6	1519.7	I822.7	I 825.8
6000	I828.8	1831.9	1834.9	1837.9	1841.0	IS44.0	I 847.1	1850. 1	I 853.2	IS56.2
6100	IS59.3	IS62.3	IS65.4	I 868.4	1871.5	IS74.5	IS77.6	I880. 6	IS83.7	1886.7
6200	I889.8	I892.8	I895.9	IS98.9	1902.0	I905.0	I908. I	I9II.I	I914.I	1917.2
6300	1920.2	1923.3	1926.3	1929.4	1932.4	1935.5	1938.5	1941.6	I944.6	1947.7
6.400	1950.7	1953.8	I956.8	1959.9	1962.9	1966.0	1969.0	1972. I	1975. I	1978.2
6500	I98I. 2	I984.3	1987.3	1990.3	1993.4	I996.4	1999.5	2002.5	2005.6	2008.6
6600	2011.7	2014.7	2017.8	2020.8	2023.9	2026.9	2030.0	2033.0	2036. I	2039. I
6700	2042.2	2045.2	204S.3	2051.3	2054.4	2057.4	2060.5	2063.5	2066.5	2069.6
6800	2072.6	2075.7	2078.7	2081. 8	2084.8	2087.9	2090.9	2094.0	2097.0	2100.1
6900	2103.1	2106.2	2109.2	2 I12.3	2115.3	2118.4	2 I 21.4	2124.5	$2127 \cdot 5$	2130.6
7000	2133.6	2136.7	2139.7	2 I42.7	2145.8	2148.8	2 I5 I. 9	2154.9	2158.0	216 I .0
7100	2164.1	2167.1	2170.2	2173.2	2176.3	2179.3	2182.4	2185.4	2188.5	2 I91. 5
7200	2194.6	2197.6	2200.7	2203.7	2206.8	2209.8	2212.9	2215.9	2218.9	2222.0
7300	2225.0	2228. 1	2231.I	2234.2	2237.2	2240.3	2243.3	2246.4	2249.4	2252.5
7400	2255.5	2258.6	2261.6	2264.7	2267.7	2270.8	2273.8	2276.9	2279.9	2283.0
7500	2286.0	2289. 1	2292.I	2295. I	2298.2	2301.2	2304.3	2307.3	2310.4	2313.4
7600	2316.5	2319.5	2322.6	2325.6	2328.7	2331.7	2334.8	2337.8	2340.9	2343.9
7700	2347.0	2350.0	2353. 1	2356. I	2359.2	2362.2	2365.3	2368.3	2371.3	2374.4
7800	2377.4	23 So. 5	2383.5	2386.6	2389.6	2392.7	2395.7	2398.8	2401.8	2404.9
7900	2407.9	2411.0	2414.0	2417.1	2420. I	2423.2	2426.2	2429.3	2432.3	2435.4
8000	2438.4	2441.5	2444.5	2447.5	2450.6	2453.6	2.456 .7	2459.7	2462.8	2465.8
8100	2.468 .9	2471.9	2.475 .0	2478.0	24SI. I	2484. I	2487.2	2.490 .2	2493.3	2496.3
S200	2499.4	2502.4	2505.5	2508.5	2511.6	2514.6	2517.7	2520.7	2523.7	2526.8
8300	2529.8	2532.9	2535.9	2539.0	2542.0	2545. I	254S.I	2551.2	2554.2	2557.3
S400	2560.3	2563.4	2566.4	2569.5	2572.5	2575.6	2578.6	25 SI .7	2584.7	2587.8
8500	2590.8	2593.9	2596.9	2599.9	2603.0	2606.0	2609. 1	2612.1	2615.2	2618.2
8600	262 I. 3	2624.3	2627.4	2630.4	2633.5	2636.5	2639.6	26.42 .6	2645.7	2648.7
S700	2651.8	2654.8	2657.9	2660.9	2664.0	2667.0	2670. I	2673.1	2676.1	2679.2
SSOO	2682.2	2685.3	2688.3	2691.4	2694.4	2697.5	2700.5	2703.6	2706.6	2709.7
8900	2712.7	2715.8	2718.8	2721.9	2724.9	2728.0	2731.0	2734.1	2737. 1	2740.2
9000	2743.2	2746.3	2749.3	2752.3	2755.4	2758.4	2761.5	2764.5	2767.6	2770.6

Table 14.
METERS INTO FEET.
I meter $=39.3700$ inches $=3.280833$ feet.

Meters.	0	1	2	3	4	5	6	7	8	9
	Feet.									
0	0.00	3.28	6.56	9.84	13.12	16.40	19.68	22.97	26.25	29.53
10	32.81	36.09	39.37	42.65	45.93	49.21	52.49	55.77	59.05	62.34
20	65.62	68.90	72.18	75.46	78.74	S2.02	S5.30.	S8.58	91. 86	95.14
30	98.42	101.71	104.99	108.27	II I. 55	114.83	IIS.II	121.39	124.67	127.95
40	I 31.23	I34.5	137.79	141.08	144.36	147.64	150.92	154.20	157.48	160.76
50	164.04	167.32	170.60	173.88	177.16	ISo. 45	183.73	187.01	190.29	193.57
60	196.85	200.13	203.41	206.69	209.97	213.25	216.53	219.82	223.10	226.38
70	229.66	232.94	236.22	239.50	2.42 .78	246.06	249.34	252.62	255.90	259.19
So	262.47	265.75	269.03	272.31	275.59	278.87	282.15	285.43	288.71	291.99
90	295.27	298.56	301.84	305.12	308.40	311.68	314.96	318.24	32 I .52	324.80
100	328.08	331.36	334.64	337.93	$3+1.21$	344.49	347.77	351.05	354.33	357.61
110	360.89	364.17	367.45	370.73	374.01	377.30	3 So. 58	383.86	357.14	390.42
120	393.70	396.98	400.26	403.54	406.82	410.10	413.38	416.67	419.95	423.23
130	426.51	429.79	433.07	436.35	439.63	442.91	446.19	449.47	452.75	456.04
140	459.32	462.60	465.85	469.16	472.44	475.72	479.00	482.28	485.56	488.84
150	492.12	495.41	498.69	501.97	505.25	508.53	5II.SI	515.09	518.37	521.65
160	524.93	528.21	531.49	534.78	538.06	541.34	54.62	547.90	551.18	554.46
170	557.74	561.02	564.30	567.58	570.86	574.15	577.43	580.71	583.99	587.27
I So	590.55	593.83	597.II	600.39	603.67	606.95	610.23	613.52	616.80	620.08
190	623.36	626.64	629.92	633.20	636.48	639.76	643.04	646.32	649.60	652.89
200	656.17	659.45	662.73	666.01	669.29	672.57	675.85	679.13	682.41	685.69
210	688.97	692.26	695.54	698.82	702.10	705.38	708.66	711.94	715.22	718.50
220	721.78	725.06	728.34	731.63	734.91	738.19	741.47	744.75	748.03	751.3 J
230	754.59	757.87	$76 \pm .15$	764.43	767.71	771.00	774.28	777.56	780.84	784.12
240	787.40	790.68	793.96	797.24	Soo. 52	So3.So	So7.08	Sio. 37	813.65	SI6.93
250	S20.2 1		S26.77	S30.05	S33.33	S36.6I	S39.89	S43.17	S46.45	849.74
260	S53.02	S56.30	859.5S	862.56	866.14	S69.42	872.70	875.98	S79.26	S82.54
270	S85.82	S89.11	S92.39	S95.67	S9S.95	902.23	905.51	908.79	$9^{1} 2.07$	915.35
2 So	918.63	921.91	925.19	$92 \mathrm{S.4S}$	931.76	935.04	938.32	941.60	944.58	948.16
290	951.44	954.72	958.00	96 I .28	96.4.56	967.85	971.13	974.41	977.69	980.97
300	9S4. 25	987.53	990.81	994.09	997.37	1000.65	1003.93	1007.22	1010.50	1013.78
310	1017.06	1020.34	1023.62	1026.90	1030.18	1033.46	1036.74	1040.02	1043.30	1046.59
320	1049.87	1053.15	1056.43	1059.71	1062.99	1066.27	1069.55	1072.83	1076.11	1079.39
330	IoS2.67	1085.96	1089.24	1092.52	1095.80	1099.08	I IO2.36	1105.64	I 109.92	I I 12.20
340	1115.48	1118.76	II 22.04	I 125.33	I I28.6I	1131.89	I 135.17	1138.45	1141.73	I 1 45.01
350	1148.29	1151.57	1154.85	1158.13	II 61.41	1164.70	1167.98	II7 7.26	I 174.54	1177.82
360	1181.10	1184.38	II 87.66	I 190.94	1194.22	1197.50	1200.78	1204.07	1207.35	1210.63
370	1213.91	1217.19	1220.47	1223.75	1227.03	1230.31	1233.59	1236.87	I240.15	I 243.44
380	1246.72	1250.00	1253.28	1256.56	1259.S4	1263.12	I266.40	1269.68	1272.96	1276.24
390	1279.52	1282.81	1286.09	1289.37	1292.65	1295.93	1299.21	I 302.49	1305.77	1309.05
400	1312.33	1315.61	I318.S9	1322.18	1325.46	1328.74	1332.02	1335.30	1338.58	I 341.86
410	1345.14	1348.42	1351.70	1354.98	1358.26	1361.55	1364.83	I368.1 I	I371.39	1374.67
420	1377.95	1381.23	I 3 S4.51	1387.79	I 391.07	${ }^{1} 394.35$	1397.63	I 400.92	1404.20	1407.48
430	1410.76	1414.04	1417.32	1420.60	1423.88	I 427.16	1430.44	1433.72	1437.00	1440.29
440	[443.57	I446.85	1450.13	1453.41	I456.69	I 459.97	1463.25	I 466.53	I469.81	1473.09
450	1476.37	1479.66	1482.94	1486.22	I4S9.50	1492.78	1496.06	I 499.34	1502.62	1505.90
460	I509.18	1512.46	1515.74	1519.03	I522.31	1525.59	1528.87	I532.15	1535.43	1538.71
470	I 541 I .99	I545.27	I 548.55	1551.83	I555. I I	${ }^{1} 558.40$	1561.68	I564.96	1568.24	1571.52
4 So	[574.80	1578.08	I5SI. 36	1584.64	1587.92	1591.20	1594.48	1597.77	1601.05	1604.33
49°	1607.61	1610.89	1614.17	1617.45	1620.73	162.4.01	1627.29	1630.57	1633.85	1637.14
500	16.40.42	1643.70	1646.98	1650.26	1653.54	1656.82	1660.10	1663.38	1660.66	1669.94

METERS INTO FEET.
I meter $=39.3700$ inches $=3280833$ feet.

Table 15.
MILES INTO KILOMETERS.
I mile $=1.609347$ kilometers.

Miles.	0	1	2	3	4	5	6	7	8	9
	km .	km .	km .	上m.	km .	km				
0	0	2	3	5	6	8	10	II	13	14
10	16	IS	19	21	23	24	26	27	29	31
20	32	34	35	37	39	40	42	43	45	47
30	48	50	5 I	53	55	56	58	60	61	63
40	64	66	68	69	71	72	74	76	77	79
50	So	S2	84	S5	87	S9	90	92	93	95
60	97	98	100	IOI	103	105	106	108	109	111
70	I 13	114	116	II7	II9	121	122	124	126	127
So	129	130	132	134	135	137	13 S	140	142	143
90	145	146	148	150	151	153	154	156	158	159
100	161	163	164	166	167	169	171	172	174	175
1 Io	177	179	180	182	IS_{3}	185	187	ISS	190	192
120	193	195	196	198	200	201	203	204	206	208
130	209	2 II	212	214	216	217	219	220	222	224
140	225	227	229	230	232	233	235	237	23 S	240
150	241	243	245	246	248	249	251	253	254	256
160	257	259	261	262	26.4	266	267	269	270	272
170	274	275	277	278	2 So	2 S 2	$2 S_{3}$	2 S 5	286	2 SS
ISo	290	291	293	295	296	298	299	301	303	304
190	306	307	309	311	312	314	315	317	319	320
200	322	323	325	327	328	330	332	333	335	336
210	338	340	341	343	344	346	348	349	351	352
220	354	356	357	359	360	362	364	365	367	369
230	370	372	373	375	377	378	380	381	383	385
240	386	388	389	391	393	394	396	398	399	401
250	402	404	406	407	409	410	412	414	415	417
260	418	420	422	423	425	426	428	430	431	433
270	435	436	438	439	44 I	443	444	446	447	449
280	45 I	452	454	455	457	459	460	462	463	465
290	467	468	470	472	473	475	476	478	480	481
300	483	484	486	488	489	491	49^{2}	494	496	497
310	499	501	502	504	505	507	509	510	512	5 I 3
320	515	517	518	520	52 I	523	525	526	528	529
330	531	533	534	536	538	539	54 I	542	544	546
340	547	549	550	552	554	555	557	558	560	562
350	563	565	566	568	570	571	573	575	576	578
360	579	581	583	584	5 56	587	589	591	592	594
370	595	597	599	600	602	604	605	607	608	610
380	6 I 2	613	6 I 5	616	618	620	62 I	623	624	626
390	628	629	631	632	634	636	637	639	64 I	642
400	644	645	647	649	650	652	653	655	657	658
410	660	661	663	665	666	668	669	67 I	673	674
420	676	678	679	681	682	-684	656	687	689	690
430	692	694	695	697	698	700	702	703	705	706
440	708	710	711	713	715	716	718	719	721	723
450	724	726	727	729	731	732	734	735	737	739
460	740	742	744	745	747	748	750	752	753	755
470	756	758	760	761	763	764	766	768	769	771
480	772	774	776	778	779	781	${ }_{7} 82$	${ }_{7} 84$	785	787
490	789	790	792	793	795	797	798	Soo	801	803
500	So5	So6	So8	So9	SII	SI3	SI4	Si6	SIS	819
510	82 I	822	S24	S26	S27	S29	S30	832	S34	S35
520	837	838	840	S42	843	845	847	848	S50	851
530	853	855	856	S58	S59	861	863	S64	866	867
540	S69	871	572	874	875	877	879	880	882	S84
550	SS5	887	888	S90	S92	S93	S95	S96	S98	900

Miles.	0	1	2	3	4	5	6	7	8	9
	km .	km.	km .	km .	km .	km .	km.	km.	km .	km.
550	885	887	8SS	890	892	S93	S95	S96	S9S	900
560	901	903	904	906	908	909	911	912	914	916
570	917	919	921	922	924	925	927	929	930	932
580	933	935	937	938	940	941	943	945	946	948
590	950	951	953	954	956	958	959	961	962	964
600	966	967	969	970	972	974	975	977	978	9So
610	982	983	955	987	988	990	991	993	995	996
620	998	999	1001	1003	1004	1006	1007	1009	IOII	1012
630	1014	1015	1017	1019	1020	1022	1024	1025	1027	1028
640	1030	1032	1033	1035	1036	1038	1040	1041	1043	1044
650	1046	1048	1049	1051	1053	1054	1056	1057	1059	1061
660	1062	1064	1065	1067	1069	1070	1072	1073	1075	1077
670	1078	1080	1081	1083	Io85	IoS6	IoS8	1090	1091	1093
680	1094	1096	IogS	1099	I 1101	I IO2	1104	1106	1107	1109
690	IIIO	III 2	III4	I II5	III7	IIIS	1120	I 122	1123	1125
700	1127	1128	1130	II3I	1133	I 135	1136	1138	1139	1141
710	1143	1144	II46	1147	I 149	1151	1152	II54	I 156	1157
720	I 159	1160	1162	1164	1165	1167	1168	II70	1172	1173
730	II 75	1176	1178	IISo	IISI	1183	1184	I IS6	I ISS	1189
740	1191	1193	II94	1196	I 197	1199	1201	1202	1204	1205
750	1207	1209	1210	1212	1213	1215	1217	1218	1220	1221
760	1223	1225	1226	1228	1230	1231	1233	1234	1236	1238
770	1239	1241	1242	I 244	1246	1247	1249	1250	1252	1254
780	1255	1257	1259	1260	1262	1263	1265	1267	1268	1270
790	1271	1273	1275	1276	1278	1279	12 SI	1283	1284	1286
800	1287	1289	1291	1292	1294	1296	1297	1299	1300	1302
810	1304	1305	1307	1308	1310	1312	1313	I315	${ }^{1} 316$	1318
820	1320	1321	1323	I 324	1326	1328	I329	1331	1333	1334
830	1336	1337	1339	1341	1342	I 344	${ }^{1} 345$	1347	1349	1350
840	1352	I 353	1355	1357	1358	I360	I362	1363	1365	1366
850	1368	1370	1371	1373	I374	1376	1378	1379	I3SI	1382
860	1384	${ }_{1} 386$	1387	1389	I 390	I 392	1394	1395	I 397	1399
870	1400	1402	1403	1405	1407	1408	1410	1411	1413	1415
88o	1416	1418	1419	1421	1423	I424	1426	1427	1429	1431
890	1432	1434	1436	1437	1439	1440	1442	1444	1445	1447
900	1448	1450	1452	1453	1455	1456	1458	1460	1461	1463
910	1464	1466	1468	1469	1471	1473	1474	1476	1477	1479
920	1481	1482	1484	1485	1487	1489	1490	1492	1493	1495
930	1497	1498	1500	1502	1503	1505	1506	1508	1510	1511
940	1513	I5I4	1516	${ }_{1518}$	1519	1521	${ }^{1} 522$	${ }^{1} 524$	1526	1527
950	1529	1530	1532	I534	1535	1537	1539	I540	1542	1543
960	I 545	I547	${ }^{1} 548$	I 550	155	1553	1555	${ }^{1} 556$	155 S	1559
970	1561	1563	I564	1566	1567	1569	1571	1572	1574	${ }^{1} 576$
980	I 577	1579	1580	1582	1.55	1585	1587	1588	1590	1592
990	I 593	${ }^{1} 595$	1596	1598	1600	1601	1603	1605	1606	1608
1000	1609	161I	1613	1614	1616	16ヶ7	1619	1621	I622	1624
	Miles.	km .				iles.	km .	Miles.	km .	
	1000	1609				000	17703	16000	25750	
	2000	3219				000	19312	17000	27359	
	3000	4828				000	20922	18000	28968	
	4000	6437				000	22531	19000	30578	
	5000	So47	100			000	24140	20000	32187	

Table 16.
KILOMETERS INTO MILES.
I kilometer $=0.621370 \mathrm{mile}$.

Kilometers.	0	1	2	3	4	5	6	7	8	9
	Miles.									
0	0.0	0.6	1.2	1.9	2.5	3.1	$3 \cdot 7$	$4 \cdot 3$	5.0	5.6
10	6.2	6.8	7.5	8.1	8.7	9.3	9.9	10.6	II. 2	I 1.8
20	I2.4	13.0	13.7	14.3	14.9	15.5	16.2	16.8	17.4	IS.0
30	18.6	19.3	19.9	20.5	21.1	21.7	22.4	23.0	23.6	24.2
40	24.9	25.5	26. 1	26.7	27.3	28.0	28.6	29.2	29.8	30.4
50	3 I. I	31.7	32.3	32.9	33.6	34.2	34.8	35.4	36.0	36.7
60	37.3	37.9	38.5	39.1	39.8	40.4	41.0	4 I .6	42.3	42.9
70	43.5	44.1	44.7	45.4	46.0	46.6	47.2	47.8	48.5	49. I
So	49.7	50.3	51.0	51.6	52.2	52.8	53.4	54.1	54.7	$55 \cdot 3$
90	55.9	56.5	57.2	57.8	58.4	59.0	59.7	60.3	60.9	61.5
100	62.1	62.8	63.4	64.0	64.6	65.2	65.9	66.5	67.1	67.7
110	68.4	69.0	69.6	70.2	70.8	71.5	72.1	72.7	73.3	73.9
120	74.6	75.2	75.8	76.4	77.0	77.7	78.3	78.9	79.5	80.2
130	So. 8	8 SI .4	82.0	S2.6	83.3	83.9	84.5	85. 1	85.7	86.4
140	87.0	87.6	88.2	88.9	S9.5	90. I	90.7	91.3	92.0	92.6
150	93.2	93.8	94.4	95. I	95.7	96.3	96.9	97.6	98.2	98.8
160	99.4	100.0	100.7	101.3	101.9	102.5	103.I	103.8	104.4	105.0
170	105.6	106.3	106.9	107.5	108. I	108.7	109.4	I 10.0	110.6	III. 2
ISo	III. 8	112.5	II3.I	II3.7	II4.3	115.0	115.6	116.2	116.8	117.4
190	118.1	118.7	119.3	119.9	120.5	121.2	121.8	122.4	123.0	123.7
200	124.3	124.9	125.5	126. I	126.8	I27.4	128.0	128.6	129.2	129.9
210	130.5	131.r	131.7	132.4	133.0	133.6	134.2	134.8	135.5	136. 1
220	136.7	137.3	I 37.9	I 38.6	I 39.2	I 39.8	140.4	I41.1	141.7	142.3
230	I 42.9	143.5	I44.2	I 44.8	145.4	I46.0	146.6	I 47.3	147.9	148.5
240	149.1	149.8	I50.4	I51.0	${ }^{1} 51.6$	I52.2	I 52.9	${ }^{1} 53.5$	154. I	154.7
250	155.3	156.0	156.6	157.2	157.8	158.4	159.1	159.7	160.3	160.9
260	161.6	162.2	162.8	163.4	164.0	164.7	165.3	165.9	166.5	167.1
270	167.8	168.4	169.0	169.6	170.3	170.9	171.5	172.1	172.7	173.4
280	174.0	174.6	175.2	175.8	176.5	177.1	177.7	178.3	179.0	179.6
290	ISo. 2	180.8	I81.4	IS2. I	182.7	183.3	183.9	I 84.5	185.2	185.8
300	186.4	187.0	187.7	I88.3	I88.9	189.5	190. I	190.8	191.4	192.0
310	192.6	193.2	193.9	194.5	195.I	195.7	196.4	197.0	197.6	198.2
320	198.8	199.5	200. I	200.7	201.3	201.9	202.6	203.2	203.8	204.4
330	205. I	205.7	206.3	206.9	207.5	208.2	203.8	209.4	210.0	210.6
340	211.3	211.9	212.5	213.1	213.8	214.4	215.0	215.6	216.2	216.9
350	217.5	218.1	218.7	219.3	220.0	220.6	221.2	221.8	222.5	223. I
360	223.7	224.3	224.9	225.6	226.2	226.8	227.4	228.0	228.7	229.3
370	229.9	230.5	23 I .1	231.8	232.4	233.0	233.6	234.3	234.9	235.5
380	236.1	236.7	237.4	238.0	238.6	239.2	239.8	240.5	241.1	241.7
390	242.3	243.0	243.6	244.2	244.8	$245 \cdot 4$	246.1	2.46 .7	247.3	247.9
400	248.5	249.2	249.8	250.4	251.0	251.7	252.3	252.9	253.5	254.1
410	254.8	255.4	256.0	256.6	257.2	257.9	258.5	259. I	259.7	260.4
420	261.0	261.6	262.2	262.8	263.5	264. I	264.7	265.3	265.9	266.6
430	267.2	267.8	268.4	269. I	269.7	270.3	270.9	271.5	272.2	272.8
440	273.4	274.0	254.6	275.3	275.9	276.5	277.1	277.8	278.4	279.0
450	279.6	280.2	280.9	281.5	282. I	282.7	283.3	284.0	284.6	285.2
460	285.8	286.5	287. 1	287.7	288.3	288.9	-289.6	290.2	290.8	291.4
470	292.0	292.7	293.3	293.9	294.5	295.2	295.8	296.4	297.0	297.6
480	298.3	298.9	299.5	300. 1	300.7	301.4	302.0	302.6	303.2	303.8
490	304.5	305. I	305.7	306.3	307.0	307.6	308.2	308.8	309.4	310.1
500	310.7	311.3	311.9	312.5	313.2	313.8	314.4	$3^{15} 5.0$	315.7	316.3
510	316.9	317.5	318.1	318.8	319.4	320.0	320.6	321.2	321.9	322.5
520	323. 1	323.7	324.4	325.0	325.6	326.2	326.8	327.5	328.1	328.7
530	329.3	329.9	330.6	33 I .2	33 I .8	332.4	333. 1	333.7	334.3	334.9
540	335.5	336.2	336.8	337.4	338.0	338.6	339.3	339.9	340.5	34 I .1

KILOMETERS INTO MILES.

Kilometers.	0	1	2	3	4	5	6	7	8	9
550	Miles.341.8	Miles.	Miles.	Miles.343.6	$\begin{aligned} & \text { Miles. } \\ & 344.2 \end{aligned}$	Miles.344.9	$\begin{aligned} & \text { Miles. } \\ & 345.5 \end{aligned}$	$\begin{aligned} & \text { Miles. } \\ & 346.1 \end{aligned}$	$\begin{aligned} & \text { Mile } \text {. } \\ & 346.7 \end{aligned}$	Miles.$347 \cdot 3$
		Miles. 342.4	Miles.							
560	348.0	348.6	349.2	349.8	350.5	35 I. I	351.7	352.3	352.9	353.6
570	354.2360.4	354.8	35.4	356.0	356.7	357.3	357.9	358.5	359.2	359.8
5 So		361.0	36 I. 6	362.3	362.9	363.5	364.1	364.7	365.4	366.0
590	$\begin{aligned} & 360.4 \\ & 366.6 \end{aligned}$	367.2	367.9	368.5	369. 1	369.7	370.3	371.0	371.6	372.2
600	372.8	373.4	374. I	374.7	$375 \cdot 3$	375.9	376.6	377.2	377.8	378.4
610	379.0	379.7	3 30. 3	3 30. 9	381.5	382.1	382.8	383.4	384.0	3S4.6
620	385.2	385.9	386.5	387. I	387.7	3 SS. 4	389.0	389.6	390.2	390.8
630	$\begin{aligned} & 391.5 \\ & 397.7 \end{aligned}$	392. 1	392.7	393.3	393.9	394.6	395.2	395.8	396.4	397. I
640		398.3	398.9	399.5	400.2	400.8	401.4	402.0	402.6	403.3
650	403.9	404.5	405. 1	405.8	406.4	407.0	407.6	408.2	408.9	409.5
660	410.1	410.7	411.3	412.0	412.6	413.2	413.8	414.5	415.1	415.7
670	416.3422.5	416.9	417.6	418.2	418.8	419.4	420.0	420.7	421.3	421.9
680		423.2	423.8	424.4	425.0	425.6	426.3	426.9	427.5	42S. I
690	428.7	429.4	430.0	430.6	431.2	431.9	432.5	433. 1	433.7	434.3
700	435.0	435.6	436.2	436.8	437.4	438. 1	438.7	$439 \cdot 3$	439.9	440.6
710	44 I .2	441.8	442.4	443.0	443.7	444.3	444.9	445.5	446. I	446.8
720	447.4453.6	448.0	448.6	449.3	449.9	450.5	451. I	451.7	452.4	453.0
730		454.2	454.8	455.5	456. I	456.7	$457 \cdot 3$	457.9	458.6	459.2
740	$\begin{aligned} & 453.6 \\ & 459.8 \end{aligned}$	460.4	461. I	461.7	462.3	462.9	463.5	464.2	464.8	465.4
750	466.0	466.6	467.3	467.9	468.5	469. I	469.8	470.4	471.0	471.6
760	472.2	472.9	$473 \cdot 5$	474. I	474.7	475.3	476.0	476.6	477.2	477.8
770	$\begin{aligned} & 47 S .5 \\ & 48.4 .7 \end{aligned}$	479.1	479.7	480.3	480.9	48 I .6	482.2	482.8	483.4	484.0
780		485.3	485.9	486.5	487.2	487.8	488.4	489.0	489.6	490.3
790	490.9	491.5	492. I	492.7	493.4	494.0	494.6	495.2	495.9	496.5
800	497. I	497.7	49 S .3	499.0	499.6	500.2	500.8	501.4	502. I	502.7
Sio	503.3	503.9	504.6	505.2	505.8	506.4	507.0	507.7	508.3	508.9
820	$\begin{aligned} & 509.5 \\ & 515.7 \end{aligned}$	510.1	510.8	511.4	512.0	512.6	513.3	513.9	514.5	515. I
830		516.4	517.0	517.6	518.2	518.8	519.5	520.1	520.7	521.3
840	$\begin{aligned} & 515.7 \\ & 522.0 \end{aligned}$	522.6	523.2	523.8	524.4	525. I	525.7	526.3	526.9	527.5
850	528.2	528.8	529.4	530.0	530.6	531.3	531.9	532.5	533. I	533.8
860	534.4	535.0	535.6	536.2	536.9	537.5	538. 1	538.7	539.3	540.0
870	540.6546.8	541.2	541.8	542.5	543. I	543.7	544.3	544.9	545.6	546.2
880		547.4	548.0	548.7	549.3	549.9	550.5	55 I .2	55 I .8	552.4
890	553.0	553.6	554.3	554.9	555.5	556. I	556.7	557.4	558.0	558.6
900	559.2	559.9	560.5	561. I	561.7	562.3	563.0	563.6	564.2	564.8
910	565.4	566. I	566.7	567.3	567.9	568.6	569.2	569.8	570.4	571.0
920	$\begin{aligned} & 571.7 \\ & 577.9 \end{aligned}$	572.3	572.9	573.5	574. I	574.8	575.4	576.0	576.6	577.3
930		578.5	579.1	579.7	580.4	5 SI.O	5 SI .6	582.2	582.8	583.5
940	$\begin{aligned} & 577.9 \\ & 584 . \mathrm{I} \end{aligned}$	584.7	585.3	586.0	586.6	587.2	587.8	588.4	589.1	589.7
950	590.3 596.5 602.7 608.9 615.2 621.4	590.9 597. I 603.4 609.6 615.8 622.0	591.5 597.8 604.0 610.2 616.4 622.6	592.2 598.4 604.6 610.8 617.0 623.2	592.8 599.0 605.2 611.4 617.6 623.9	$\begin{aligned} & 593.4 \\ & 599.6 \\ & 605.8 \\ & 612.0 \\ & 618.3 \\ & 624.5 \end{aligned}$	594.0 600.2 606.5 612.7 618.9 625.1	594.7 600.9 607.1 613.3 619.5 625.7	595.3 601.5 607.7 613.9 620. 1 626.3	$\begin{aligned} & 595.9 \\ & 602.1 \\ & 608.3 \\ & 614.5 \\ & 620.7 \\ & 627.0 \end{aligned}$
960										
970										
980										
990										
1000										
	km. Miles. $\mathbf{l 0 0 0}$ 621.4 $\mathbf{2 0 0 0}$ 1242.7 3000 1864.1 4000 2485.5 5000 3106.8		5m Mil	Miles.		km.	Miles.	$\mathrm{km} \text {. }$	Miles.	
			600			0006		16000	9941.9	
				0		7	56.4	17000	10563.3	
			800	0497		000 S	77.8	18000	I 1184.7	
			900	0559		000	99.2	19000	11806.0	
			1000	0 621		000	20.5	20000	12427.4	

Table 17.
INTERCONVERSION OF NAUTICAL AND STATUTE MILES.
I nautical mile* $=6080.20$ feet.

Nautical Miles.	Statute Miles.	Statute Miles.	Nautical Miles.
1	1.1516	1	0.8684
2	2.3031	1.7368	
3	3.4547	2.6052	
4	4.6062	3	3.4736
5	5.7578	4	4.3420
6	6.9093	5	5.2104
7	8.0609	6	6.9787
8	9.2124	7	7.8155
9	10.3640	9	

* As defined by the United States Coast Survey.

Table 18.

CONTINENTAL MEASURES OF LENGTH WITH THEIR METRIC AND ENGLISH EQUIVALENTS.

The asterisk (*) indicates that the measure is obsolete or seldom used.

Measure.	Metric Equivalent.	English Equivalent.
El (Netherlands)	1 meter.	3.2808 feet.
Fathom, Swedish $=6$ feet	1.7814	5.8445 "
Foot, Austrian*	0.31608 "	1.0370 "
old French*	0.32484 "	I.0657 "
Russian	0.30 .480 "	1 "
Rheinlandisch or Rhenish (Prussia*, Dennuark, Norway*).	0.313S5 "	1. 0297 "
Swedish*	0.2969 "	0.974 I
Spanislı* $=1 / 3$ vara	0.2786 "	0.9140 "
*Klafter, Wiener (Vienna)	1.896.48 "	6.2221 "
* Line, old French $=\frac{1}{144}$ foot	0.22558 cm .	0.0888 iuch.
Mile, Austrian post* $=24000$ feet	7.58594 I. 852	4.714 statute miles. I. 1508 " "
Swedish $=36000$ feet	10.69 "	6.642 "
Norwegian $=36000$ feet	II.2986 "	7.02 "
Netherlands (mijl).	I "	0.6214 " "
Prussian (law of 1868)	7.500	4.660 " "
Danish	7.5324	4.6804
Palm, Netherlands	O.I meter.	0.3281 feet.
* Rode, Danish	3.7662 , "	12.356 "
*Ruthe, Prussian, Norwegian	3.7662	12.356 "
Sagene (Russian)	2.1336	7
\#'Toise, old French $=6$ feet	I. 9490	6.3943 "
*Vara, Spanish	0.8359 "	2.7424 "
Mexican	0.8380	2.7493
Werst, or versta (Russian) $=500$ sashjene .	1. 0668 km .	3.500 "

CONVERSION OF MEASURES OF TIME AND ANGLE.

Arc into time Table ig
Time into arc Table 20
Days into decimals of a year and angle Table 21
Hours, minutes and seconds into decimals of a day Table 22
Decimals of a day into hours, minutes and seconds Table 23
Minutes and seconds into decimals of an hour Table $2+$
Local mean time at apparent noon Table 25
Sidereal time into mean solar time Table 26
Mean solar time into sidereal time Table 27

ARC INTO TIME.

-	h. m.	-	h. m.	-	h. m.	-	h m.	-	h. m.	-	h. m.	,	m. s.	11	s.
0	\bigcirc	60	40	120	8 o	180	120	240	16 -	300	200	0	$\bigcirc 0$	0	0.000
1	- 4	6 I	44	121	S 4	18 I	124	241	164	301	204	I	O 4	1	0.067
2	- S	62	48	12	S 8	I82	128	242	16 S	302	20 S	2	- S	2	0.133
3	O 12	63	412	123	812	183	1212	243	1612	303	2012	3	O 12	3	0.200
4	- 16	64	416	124	816	IS4	1216	244	1616	304	2016	4	- 16	4	0. 267
5	- 20	65	420	125	820	185	1220	245	1620	305	2020	5	O 20	5	0.333
6	O 24	66	424	126	824	IS6	1224	246	1624	306	2024	6	- 24	6	0.400
7	- 28	67	428	127	828	IS7	1228	247	1628	307	2028	7	- 28	7	0.467
S	- 32	68	432	128	832	ISS	1232	2.48	1632	308	2032	8	- 32	8	0.533
9	- 36	69	4.36	12	836	189	1236	2.49	1636	309	2036	9	036	9	0.600
10	- 40	70	440	130	840	190	1240	250	1640	310	2040	10	- 40	10	0.667
11	O 44	71	444	131	844	191	1244	25 I	1644	311	2044	11	- 44	II	0.733
12	O 48	72	443	132	S 48	192	1248	252	1648	312	2048	12	- 45^{5}	2	o. 800
13	O 52	73	452	I33	S 52	193	1252	253	1652	313	2052	13	- 52	13	0. 867
14	- 56	74	456	1.34	S 56	194	1256	254	I6 56	314	2056	14	- 56	14	0.933
15	I 0	75	5 O	135	9 o	195	130	255	170	315	210	15	10	15	1.000
16	I 4	76	5	136	94	196	134	256	174	316	214	16	14	16	1.067
17	18	77	5 S	137	98	197	138	257	178	317	218	17	1	17	I. 133
IS	112	78	512	138	912	198	1312	25 S	1712	318	2 I 12	18	112	IS	1.200
19	116	79	516	139	916	199	1316	259	1716	319	21 16	19	116	9	1.267
20	120	80	520	140	920	200	1320	260	1720	320	21 20	20	I 20	20	1.333
21	I 24	Sil	524	41	924	201	1324	261	1724	32 I	21 24	2 I	I 24	21	1.400
22	128	S2	528	I 42	928	202	1328	62	1728	322	21 28	22	I 28	22	I. 467
23	I 32	S_{3}	532	143	932	203	1332	263	1732	323	2132	23	132	23	1.533
24	I 36	S	536	I 44	936	204	1336	264	1736	324	2136	24	I 36	24	I. 600
25	I 40	85	540	145	940	205	1340	265	1740	325	2140	25	I 40	25	I. 667
26	144	S6	544	146	944	206	1344	266	1744	326	2144	26	I 44	26	1.733
27	148	87	548	147	948	207	1348	267	1748	327	2148	27	I 48	27	I. Soo
28	152	SS	552	148	952	208	1352	268	1752	328	2152	2 S	I 52	28	1.867
29	I 56	80	5.56	149	956	209	I3 56	269	1756	329	2156	29	I 56	29	1.933
30	20	90	6	150	10	210	140	270	$18 \quad 0$	330	22	30	2	30	2.000
31	24	91	6	51		211	I4 4	271	I8	331	22	31		31	2.067
32	2 S	92	68	152	108	2 I	148	272	I8 8	332	22	32	2	32	2. I 33
33	212	93	612	153	IO I2	213	1412	273	IS 12	333	22 I2	33	212	33	2.200
34	216	94	616	154	Io 16	214	1416	274	I8 16	33	22 I6	34	216	34	2.267
35	220	95	620	155	IO 20	215	I4 20	275	IS 20	335	2220	35	220	35	2.333
36	224	96	624	156	IO 24	216	1424	276	IS 2.4	336	2224	36	224	36	2.400
37	228	97	628	157	102 S	217	1428	277	IS 28	337	2228	37	228	37	2.467
38	232	98	632	158	IO 32	218	1432	278	IS 32	338	2232	38	232	38	2.533
39	236	99	636	159	1036	219	1436	279	IS 36	339	2236	39	236	39	2.600
40	240	100	640	160	1040	220	1440	280	1840	340	2240	40	240	40	2.667
41	244	IOI	644	161	1044	221	1444	281	IS 44	34 I	2244	41	2.44	41	2.733
42	248	2	648	162	1048	22	1448	282	I8 48	342	2248	42	248	42	2.800
43	252	103	652	163	1052	223	1452	283	I8 52	343	2252	43	252	43	2.867
44	256	104	656	164	10 56	224	I4 56	284	IS 56	344	2256	44	256	44	2.933
45	30	105	7 o	165	II 0	225	150	285	19 O	345	230	45	30	45	3.000
46	3	10	74	166	II 4	226	154	286	I9 4	346	234	46	3	46	3.067
47	38	107	78	167	II 8	227	15 S	287	198	347	238	47	3 S	47	3.133
48	312	10	712	168	II 12	228	1512	285	1912	348	2312	48	312	48	3.200
49	316	109	716	169	II 16	229	1516	289	1916	3.4	2.316	49	316	49	3.267
50	320	110	720	170	1120	230	1520	290	1920	350	2320	50	320	50	3.33,3
51	324	II I	724	171	II 24	231	1524	291	1924	351	2324	51	324	51	3.400
52	328	112	728	172	II 28	232	1528	292	1928	352	2328	52	328	52	3.467
53	332	113	732	173	II 32	233	1532	293	I9 32	353	2332	53	332	53	3.533
54	336	114	736	174	II 36	234	1536	294	1936	354	2336	54	33^{6}	54	3.600
55	340	115	740	175	II 40	235	1540	295	1940	355	2340	55	340	55	3.667
56	344	116	744	176	II 44	236	1544	296	1944	356	2344	56	344	56	3.733
57	345	117	748	177	II 48	237	I5 48	297	1948	357	2348	57	348	57	3.800
58	352	IIS	752	178	II 52	238	I5 52	298	1952	35 S	2352	58	352	58	3.867
59	356	I19	756	179	II 56	239	1556	299	1956	35\%	고 56	59	356	59	- 3.933
60	4 O	120	80	180	120	240	16 O	300	20 O	360	240	60	4 ○	60	4.000

emitheonian Tableg.

TIME INTO ARC.

Hours into Arc.											
Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.	Time.	Arc.
hrs.	-	hrs.	-	hrs.	-	hrs.	-	hts.	-	hrs.	-
1	15	5	75	9	${ }^{1} 35$	13	195	17	255	21	315
2	30	6	90	10	150	14	210	18	270	22	330
3	45	7	105	11	165	15	225	19	285	23	345
4	60	8	120	12	ISo	16	2.40	20	300	24	360

Minutes of Time into Arc.

m.	-	,	m.		,	m.		,	s.	,	//	s		/	s.		
1		15	21		15	41	10	15	1	o	15	21		15	41		
2	\bigcirc	30	22		30	42	103	30	2	-	30	22		30	42		30
3	-	45	23	5	45	43		45	3	-	45	23	5	45	43		45
4	I	-	2.	6	-	44		-	4	I	-	24	6	0	44	1	0
5	I	15	25	6	15	45	11	15	5	I	15	25	6	15	45		15
6	I	30	26	6	30	46		30	6	1	30	26	6	30	46		30
7	1	45	27	6	45	47	II	45	7	1	45	27	6	45	47		45
8	2	-	28	7	o	48		\bigcirc	8	2	-	28	7	o	48	12	0
9	2	15	29	7	15	49	12	15	9	2	15	29	7	15	49	12	15
10	2	30	30	7	30	50	12	30	0	2	30	30	7	30	50	12	30
11	2	45	31	7	45	5 I	12	45	11	2	45	31	7	45	5 I	12	45
12	3	-	32	8	-	52	13	0	12	3	o	32	S	-	52	13	O
13	3	I5	33	S	15	53		15	13	3	15	33	8	15	53	13	15
14	3	30	34	S	30	54	13	30	14	3	30	34	8	30	54	13	30
15	3	45	35	8	45	55	13	45	15	3	45	35	8	45	55	13	45
16	4	-	36	9	0	56	14	0	16	4	-	36	9		56	14	0
17	4	I5	37	9	15	57		I5	17	4	15	37		15	57	14	15
18	4	30	38	9	30	58		30	IS	4	30	38			58	14	30
19	4	45	39	9	45	59		45	19	4	45	39	9	45	59	14	45
20	5	O	40	10	O	60	15	0	20	5	0	40	10	\bigcirc	60	15	

Hundredths of a Second of Time into Arc.

Hundredths of a Second of time	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
s. 0.00	ó.00	O. 15	0.10	0. 0.45	0.60	O. 75	0. 0.90	I'.05	Í. 20	I. 1.35
. 10	1.50	1.65	1.80	1.95	2. 10	0.25	2.40	2.55	2.70	2.85
. 20	3.00	3.15	3.30	3.45	3.60	3.75	3.90	4.05	4.20	4.35
. 30	4.50	4.65	4.80	4.95	5.10	5.25	5.40	5.55	5.70	5.85
. 40	6.00	6.15	6.30	6.45	6.60	6.75	6.90	7.05	7.20	$7 \cdot 35$
0.50	7.50	7.65	7.50	7.95	8.10	8.25	8.40	8.55	8.70	8.85
. 60	9.00	9.15	9.30	9.45	9.60	9.75	9.90	10.05	10.20	10.35
. 70	10.50	10.65	10.80	10.95	11.10	11.25	11.40	11.55	11.70	11.85
.So	12.00	12.15	12.30	12.45	12.60	I2.75	12.90	13.05	13.20	13.35
. 90	I 3.50	13.65	13.80	13.95	14. 10	14.25	14.40	I 4.55	14.70	14.85

Table 21.

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$	$\begin{aligned} & \text { Decimal } \\ & \text { of } \\ & \text { a Year. } \end{aligned}$	Angle.	Day of	Month.	$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$	Decimal of a Year.	Angle.	Day of Month.	
			Common Year.	Bissextile Year.				$\begin{aligned} & \text { Common } \\ & \text { Year. } \end{aligned}$	Bissextile Year.
1	0.00000	$0^{\circ} 0^{\prime}$	Jan. I	Jan. 1	51	0.13689	$49^{\circ} 17^{\prime}$	Feb. 20	Feb. 20
2	. 00274	- 59		2	52	. 13963	5016	2 I	2 I
3	. 00548	158	3	3	53	. 14237	51 I5	22	22
4	.00S2I	257	4	4	54	. 145 II	5214	23	23
5	0.01095	357	5	5	55	0. 14784	5313	24	24
6	. 01369	456	6	6	56	. 15058	54 13	25	25
7	. 01643	555	7	7	57	- 15332	5512	26	26
8	. 01916	654	8	S	58	. 15606	56 II	27	27
9	.02190	753	9	9	59	. 15880	57 IO	2 S	2 S
10	0.02464	852	10	10	60	0.16153	$58 \quad 9$	Mar. I	29
1 I	. 02738	9 5I	II	II	61	. 16427	598	2	Mar. 1
12	. 03011	1051	12	12	62	. 16701	607	3	2
13	. 03285	II 50	I3	13	63	. 16975	617	4	3
14	. 03559	1249	14	14	6.	. 17248	626	5	4
15	0.03833	I3 48	15	15	65	O. 17522	635	6	5
16	.04107	1447	16	16	66	. 17796	644	7	6
17	.04381	I5 46	17	17	67	. 18070	653	8	7
18	. 04654	1645	18	18	65	. IS344	662	9	8
19	. 04928	1744	19	19	69	.18617	67 I	10	9
20	0.05202	I8 44	20	20	70	0.18891	68 -	II	10
2 I	. 05476	1943	21	21	71	. 19165	69 -	12	11
22	. 05749	2042	22	22	72	. 19439	6959	13	12
23	. 06023	2141	23	23	73	. 19713	$70 \quad 58$	14	13
24	. 06297	2240	24	24	74	. 19986	7157	15	14
25	0.06571	2339	25	25	75	0.20260	7256	16	15
26	. 06845	24 3S	26	26	76	. 20534	7355	17	16
27	. 07 II8	2538	27	27	77	. 20SoS	7454	IS	17
28	. 07.392	2637	28	28	78	. 2108 I	7554	19	18
29	. 07666	2736	29	29	79	. 21355	7653	20	19
30	0.07940	2835	30	30	80	0.21629	7\% 52	2 I	20
31	.082I 4	2934	Feb ${ }^{31}$	- 3 I	SI	. 21903	- 5	22	2 I
32	. 08487	$30 \quad 33$	Feb. I	Feb. 1	82	. 22177	7950	23	22
33	.08761	3132	2	2	S3	. 22450	So 49	24	23
34	. 09035	3232	3	3	84	. 22724	8 I 4 S	25	24
35	0.09309	33 3I	4	4	85	0.22998	S2 48	26	25
36	. 09582	3430	5	5	S6	. 23272	8347	27	26
37	. 09585	$35 \quad 29$	6	6	S7	. 23546	8446	28	27
3 S	.10130	$\begin{array}{ll}36 & 28\end{array}$	7	7	88	.23SI9	S5 45	29	28
39	. 10404	3727	8	8	89	. 2.4093	8644	30	29
40	0. 10678	3826	9	9	90	0.2.4367	8743	31	30
41	. IO95I	3926	10	10	91	:24641	SS 42	Apr. 1	31
42	. II 225	4025	II	I I	92	. 24914	8942	2	Apr. 1
43	. II 499	4124	12	12	93	.25ISS	9041	3	2
44	. I I 773	4223	13	13	94	. 25462	9140	4	3
45	O. 12047	4322	14	14	95	0.25736	9239	5	4
46	. 12320	44 21	15	15	96	. 26010	9338	6	5
47	. 12594	$45 \quad 20$	16	16	97	. 26283	9437	7	6
48	. 12868	46 I9	17	17	98	. 26557	9536	8	7
49	. 13142	47 I9	18	18	99	. 26831	9635	9	8
50	0.13415	48 I8	19	19	100	0.27105	9735	10	9

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$	$\begin{aligned} & \text { Decimal } \\ & \text { of } \\ & \text { a Year. } \end{aligned}$	Angle.	Day of Month.		$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$	Decimal of a Year.	Angle.	Day of Month.	
			$\begin{aligned} & \text { Common } \\ & \text { Year. } \end{aligned}$	Bissextile Year.				Common Year.	Bissextile Year.
101	0.27379	$98^{\circ} 34^{\prime}$	Apr. II	Apr. 10	151	0.41068	$147^{\circ} 51^{\prime}$	May 3I	May 30
102	. 27652	9933	12	11	152	. 41342	14850	fune 1	3 I
103	. 27926	100 32	I3	12	153	.41615	14949		June 1
104	. 28200	IOI 3I	14	13	154	.41889	15048	3	2
105	0.28474	10230	15	14	155	0.42163	15147	4	3
106	. 28747	10329	16	15	I56	. 42437	15246	5	4
107	. 29021	10429	17	16	157	. 42710	15345	6	5
108	. 29295	10528	18	17	158	. 42984	15445	7	6
109	. 29569	10627	19	18	159	.4325	I 5544	8	7
110	0.29843	10726	20	19	160	0.43532	15643	9	8
III	. 30116	10825	21	20	161	.43806	15742	10	9
112	. 30390	10924	22	21	162	. 44079	15841	11	10
113	. 30664	IIO 23	23	22	163	. 44353	15940	12	11
II4	. 30938	III 23	24	23	164	. 44627	16039	13	12
115	0.31211	11222	25	24	165	0.44901	16 I 39	14	13
116	. 31485	11321	26	25	166	. 45175	16238	15	14
117	. 31759	11420	27	26	167	. 45448	16337	16	15
118	. 32033	11519	28	27	168	. 45722	16436	17	16
119	. 32307	116 IS	29	28	169	. 45996	16535	18	17
120	0.32580	11717	30	29	170	0.46270	16634	19	18
121	. 32854	11817	May I	30	175	. 46543	16733	20	19
122	. 33128	11916	2	May I	172	. 46817	16833	2 I	20
123	. 33402	12015	3	2	173	.47091	16932	22	2 I
124	. 3.3676	12114	4	3	174	. 47365	17031	23	22
125	0.33949	122 I3	5	4	175	0.47639	17130	24	23
126	. 34223	12312	6	5	176	. 47912	17229	25	24
127	- 34497	124 II	7	6	177	. 48186	17328	26	25
128	-34771	12510	8	7	178	. 48460	17427	27	26
129	. 35044	12610	9	8	179	. 48734	$175 \quad 26$	28	27
130	0.353 I 8	$127 \quad 9$	10	9	180	0.49008	17626	29	28
131	. 35592	128 S	11	10	181	. 4928 I	17725	$]^{30}$	29
132	. 35866	1297	12	II	182	. 49555	17824	July I	3^{30}
133	. 36140	1306	13	12	183	. 49829	17923	2	July 1
134	. 36413	I3I 5	14	13	184	. 50103	ISo 22	3	2
135	0. 36687	I32 4	15	14	185	0.50376	18121	4	3
136	. 36961	1334	16	15	186	. 50650	18220	5	4
137	. 37235	1343	17	16	187	. 50924	18320	6	5
138	-37509	1352	18	17	IS8	.51198	18419	7	6
139	. 37782	136 I	19	18	IS9	. 51472	185 I8	8	7
140	0.3 So56	137 o	20	19	190	0.51745	18617	9	8
141	. 38330	13759	21	20	191	. 52019	18716	10	9
142	. 38604	13858	22	21	192	. 52293	18815	II	10
143	-38877	I 3958	23	22	193	. 52567	I89 14	12	11
144	.3915I	1.40 .57	24	23	194	. 5284 I	19014	13	12
145	0.39425	14156	25	2.4	195	0.53 II4	19113	14	13
146	. 39699	14255	26	25	196	. 53388	19212	15	14
147	- 39973	14354	27	26	197	. 53662	193 II	16	15
148	. 40246	14453	28	27	198	. 53936	19410	17	16
149	. 40520	14552	29	28	199	. 54209	1959	18	17
150	0.40794	14651	30	29	200	0.54483	196 8	19	18

Table 21.

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { Year. } \end{aligned}$	$\begin{aligned} & \text { Decimal } \\ & \text { of } \\ & \text { a Year. } \end{aligned}$	Angle.	Day of Month.		$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { Year. } \end{aligned}$	Decimal of a Year.	Angle.	Day of Month.	
			Common Year.	Bissextile Year.				Common Year.	Bissextile Year.
201	0.54757	$197^{\circ} \mathrm{S}^{\prime}$	July 20	July 19	251	0.68446	$246^{\circ} 24^{\prime}$	Sept. S	Sept. 7
202	. 55031	1987	21	20	252	. 68720	24724	9	8
203	. 55305	1996	22	21	253	. 68994	24 S 23	10	9
20.4	. 55578	2005	23	22	254	. 69268	24922	I I	10
205	0. $55 \mathrm{~S}_{52}$	2014	24	23	255	0.69541	25021	12	II
206	. 56126	2023	25	24	256	. 69815	25120	13	12
207	. 56400	2032	26	25	257	. 70089	25219	14	13
208	. 56674	204 I	27	26	258	.70363	253 IS	15	14
209	. 56947	205 I	28	27	259	.70637	254 I7	16	15
210	0.5722 I	206 o	29	28	260	0.70910	255 I7	17	16
211	. 57495	20659	30	29	261	.71184	25616	18	17
212	. 57769	2075 S	3 I	30	262	. 71458	257 I 5	19	18
213	-5SO42	20857	Aug. I	3 I	263	. 71732	25 S 14	20	19
214	.58316	20956	2	Aug. 1	264	. 72005	259 I 3	21	20
215	0.58590	21055	3	2	265	0.72279	26012	22	21
216	. 58864	21155	4	3	266	. 72553	261 II	23	22
217	.59138	21254	5	4	267	. 72827	262 II	24	23
215	. 5941 I	21353	6	5	268	.73101	263 Io	25	24
219	.59685	21452	7	6	269	. 73374	2649	26	25
220	0.59959	215 51	8	7	270	0.73648	265 S	27	26
22 I	. 60233	21650	9	8	27 I	. 73922	266	2.8	27
222	. 60507	21749	10	9	272	.74196	2676	29	28
223	.60780	21849	11	10	273	. 74470	2685	30	29
22.4	.61054	2194 S	12	11	274	.74743	2695	Cct. I	30
225	0.6132S	22047	13	12	275	0.75017	2704	2	Oct. I
226	. 61602	22146	14	13	276	. 75291	271	3	2
227	.61875	22245	15	14	277	. 75565	2722	4	3
228	. 62149	22344	16	15	278	.75838	273 I	5	4
229	. 62423	22.43	17	16	279	.76112	274 o	6	5
230	0.62697	22543	18	17	280	0.76386	27459	7	6
231	. 62971	22642	19	18	2 SI	. 76660	27559	8	7
232	. 63244	22741	20	19	2 S 2	. 76934	27658	9	8
233	. 63515	22 S 40	21	20	283	. 77207	27757	10	9
234	. 63792	22939	22	21	2 S 4	.774SI	27S 56	II	10
235	0.64066	2303 S	23	22	285	0.77755	27955	12	11
236	. 64339	23137	24	23	286	.7S029	2 So 54	13	12
237	.64613	23236	25	24	287	. 78303	28153	14	13
238	.64887	23336	26	25	288	.75576	2 S 252	15	14
239	.6516I	23435	27	26	289	.78850	28352	16	15
240	0.65435	23534	28	27	290	0.79124	28451	17	16
241	. 6570 O	23633	29	28	291	. 79398	28550	18	17
2.42	.65982	23732	30	29	292	.79671	28649	19	18
243	. 66256	23831	Scti ${ }^{31}$	30	293	. 79945	28748	20	19
244	. 66530	23930	Sept. I	3 I	294	. $\mathrm{So2} 19$	28847	21	20
245	0.66804	24030	2	Sept. I	295	0.80493	28946	22	21
246	. 67077	24129	3	2	296	. 80767	29046	23	22
2.47	. 67351	24228	4	3	297	. SiO40	29145	24	23
2.48	. 67625	24327	5	4	298	. Si3IT	29244	25	24
2.49	.67S99	24426	6	5	299	.Si5SS	29343	26	25
250	0.68172	24525	7	6	300	0.SiS62	29442	27	26

DAYS INTO DECIMALS OF A YEAR AND ANGLE.

$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Year. } \end{gathered}$	$\begin{aligned} & \text { Decimal } \\ & \text { of } \\ & \text { a Year. } \end{aligned}$	Angle.	Day of	Month.	$\begin{aligned} & \text { Day } \\ & \text { of } \\ & \text { Year. } \end{aligned}$	Decimal of a Year.	Angl	Day of Monih.		
			Common Year	Bissextile Year.					Common Year.	Bissextile Year.
301	0.82136	$295{ }^{\circ} 4 \mathrm{I}^{\prime}$	Oct. 28	Oct. 27	351	0.95825	$344{ }^{\circ}$		Dec. 17	Dec. :6
302	. 82409	29640	29		352	. 96099			18	17
303	. 82683	29740	30	29	353	. 96372			19	18
304	. 82957	29839	3 I	30	354	. 96646			20	19
305	0. 8323 I	29938	Nov. I	3I	355	0.96920			21	20
306	. 53504	30037	2	Nov. I	356	. 97194	349		22	21
307	. 83778	30136	3	2	357	. 97467			23	22
308	. 84052	30235	4	3	358	.97741			24	23
309	. 84326	30334	5	4	359	.98oI 5	352		25	2.4
310	0.84600	30434	6	5	360	0.98289			26	25
311	. 44873	30533	7	6	36 I	. 98563			27	26
312	. 55147	30632	S	7	362	.9S836			2 S	27
313	. 5_{5421}	30731	9	8	363	-99110			29	2 S
314	. 55695	30830	10	9	364	. 99384			30	29
315	0.85969	30929	11	10	365	0.99658			31	30
316	. 56242	31028	12	11	366	. 99932	359			31
317	. 86516	31127	13	12						
318	. 86790	31227	14	13						
319	. 87064	31326	15	14	Conv	ersion for	ours.	Conv	version for	Minutes.
320	0.S7337	31425	16	15						
321	. 87611	$\begin{array}{ll}315 & 24\end{array}$	17	16	Hrs.	Dec. of Year.	Angle.	Min.	Dec. of Year.	Ang'e.
322	.87885	$\begin{array}{llll}316 & 23\end{array}$	IS	17						
323	. SSI $^{\text {S }} 5$	3 I 722	19	IS						
324	. 88433	3 IS 21	20	19	1	0.0001 I	2.5	1	0.00000	0.04
325	$0 . S 8706$	319 2I	21	20	2	23	4.9	2	-	. 08
326	. 88980	32020	22	2 I	3	34	7.4	3 '	,	. 12
327	. S 9254	32119	23	22	4	46	$9 \cdot 9$	4	I	. 16
328	. S 952 S	322 I8	24	23						
329	. S 9 So 2	32317	25	24	6	0.00057 68	12.3	6	0.00001	0.21 .25
330	0.90075	32416	26	25	7	So	17.2	7	I	. 29
331	. 90349	32515	27	26	8	9 I	19.7	8	2	. 33
332	. 90623	32615	28	27	9	103	22.2	9	2	. 37
333	. 90897	32714	29	2 S						
334	.91170	32813	30	29	10	0.00114	24.6	10	0.00002	0.41
					II	126	27.1	20	4	. S_{2}
335	0.91444	32912	Dec. I		12	137	29.6	30	6	1.23
336	.91718	33011	2	Dec. 1	13	148	32.0	40	8	1.64
337	.91992	33110	3	2	14	160	34.5	50	10	2.05
338	. 92266	3329	4	3						
339	. 92539	3339	5	4	15	0.0017 I	37.0	60	0.00011	2.46
340	0.92813		6		16	183	39.4			
34 I	. 93087	3357	7	6	17	194	41.9			
342	. 93361	3366	S	7	IS	205	44.4			
343	. 93634	3375	9	8	19	217	46.5			
344	. 93908	33 S 4	Io	9	20	0.00228	49.3			
345	0.94182		II	IO	21	240	51.7			
346	. 944456	$\begin{array}{ll}340 & \\ 34\end{array}$	12	11	22	251	54.2			
347	. 94730	3412	13	12	23	262	56.7			
348	. 95003	342 I	14	13	24	274	59.1			
349	. 95277	343 o	15	14						
350	0.9555 I	34359	16	15						

Table 22.
HOURS, MINUTES AND SECONDS INTO DECIMALS OF A DAY.

Hours.	Day.	Min.	Day.	Min.	Day.	Sec.	Day.	Sec.	Day.
1	0.041667	1	0.000694	31	0.021 528	1	0.000012	31	0.000359
2	.083 333	2	.ool 3 S9	32	. 022222	2	. 000023	32	. 000370
3	. 125000	3	. 002083	33	. 022917	3	. 000035	33	. 000382
4	. 166667	4	. 002778	34	.02361 I	4	. 000046	34	. 000394
5	0.208333	5	0.003472	35	0.024305	5	0.000058	35	0.000405
6	. 250000	6	. 004167	36	. 025000	6	. 000069	36	. 000417
7	. 291667	7	.00.4 86I	37	. 025694	7	. 0000 osi	37	.oon 428
8	. 333333	8	. 005556	38	. 026389	S	.000 093	38	.000440
9	. 375000	9	. 006250	39	. 027 o83	9	. 000104	39	. 00045 I
10	0.416667	10	0.006944	40	0.027778	10	0.000116	40	0.000463
1 I	. 458333	11	. 007639	41	.028 472	1 I	.000 127	4 I	. 000475
12	. 500000	12	.008 333	42	. 029167	12	.000 I39	42	. 000486
13	. 541667	13	. 009028	43	. 029861	13	.000 I 50	43	. 000498
14	.583333	14	. 009722	44	. 030556	14	.000 I62	44	.000509
15	0.625000	15	0.010417	45	0.031250	15	0.000174	45	0.000521
16	. 666667	16	.OII II I	46	.031 944	16	. 000185	46	. 000532
17	. 708333	17	. OII 806	47	. 032639	17	.000 197	47	. 000544
18	. 750000	18	. 012500	48	. 033333	18	. 000208	48	. 000556
19	.791 667	19	.OI3 I9.4	49	. 034028	19	. 000220	49	. 000567
20	0.833333	20	0.013889	50	0.034722	20	0.000231	50	0.000579
21	. 875000	21	.OI4 5^{83}	5 I	. 035417	21	. 000243	5 I	. 000590
22	.916667	22	. 015278	52	.036 11 I	22	. 000255	52	. 000602
23	.958333	23	.O15 972	53	. 036806	23	. 000266	53	.000 6I3
24	1.000000	24	.016667	5.4	. 037500	2.4	.000 278	54	.000 625
		25	0.017361	55	0.038194	25	0.000289	55	0.000637
		26	.oIS 056	56	.038 889	26	. 000301	56	. 000648
		27	. 018750	57	. 039583	27	.000 3 I 3	57	. 000660
		2 S	. 019444	58	. 040278	28	.000 324	58	. 000671
		29	. 020139	59	. 040972	29	. 000336	59	.000683
		30	0.020833	60	0.04 I 667	30	0.000347	60	. 000694

table 23.
DECIMALS OF A DAY INTO HOURS, MINUTES AND SECONDS.

Hundredths of a Day.				Ten Thousandths of a Day.			Millionths of a Day.	
d.		m.	s.	d.	min	sec.	d.	sec.
0.01				0.0001		S. 64	0.000001	0.09
. 02				2		17.28	2	O. 17
. 03				3		25.92	3	0.26
. 04				4		34.56	4	0.35
0.05	1	12	-	0.0005		4.3 .20	0.000005	0.43
. 06		26				5 I .84	6	0.52
. 07	1	40		7	I	0.48	7	0.60
. 08				8	I	9.12	S	0. 69
. 09		9		9	I	17.76	9	0.78
0.10	2	24	-	0.0010	1	26.40	0.000010	0. 86
. 20		48	0	20	2	52.80	20	1.73
. 30		12	-	30	4	19.20	30	2.59
. 40	9	36	-	40	5	45.60	40	3.46
0.50		O	-	0.0050	7	12.00	0.000050	
. 60		24	\bigcirc	60		38.40	60	5.18
. 70		48		70		4.80	70	6.05
. 80		12	\bigcirc	So		3 I .20	So	6.91
.90		36	0	90	I2	57.60	90	$7 \cdot 78$

MINUTES AND SECONDS INTO DECIMALS OF AN HOUR.

Min.	Decimals of an hour.	Min.	Decimals of an hour.	Sec.	Decimals of an hour.	Sec.	Decimals of an hour.
I	0.016667	31	0.516667	1	0.000278	31	0.0086 II
2	. 033333	32	. 533333	2	. 000556	32	. 008 859
3	. 050000	33	. 550000	3	. $000 \mathrm{~S}_{3}$	33	. 009167
4	. 066667	34	. 566667	4	. O O1 II I	34	.009 444
5	o.oS3 333	35	0.583 333	5	0.001389	35	0.009722
6	. 100000	36	. 600000	6	.001 667	36	. 010000
7	.II6667	37	. 616667	7	.001 944	37	. 010278
8	. 133333	3 S	. 633333	S	. 002222	3 S	.OIO 556
9	. 150000	39	.650000	9	. 002500	39	. 010 S33
10	o.I66667	40	0.666667	10	0.002778	40	O.OII III
II	. 183.333	4 I	. 683333	II	. 003056	41	.OII 389
12	. 200000	42	. 700000	12	. 003333	42	.OII 667
13	. 216667	43	.716667	13	.003611	43	.OII 944
14	. 233333	44	.733333	14	. 003 SS9	44	. 012222
15	0.250000	45	0.750000	15	0.004167	45	0.012500
16	. 266667	46	. 766667	16	. 004444	46	. 01277 S
17	.2S3 333	47	. 783333	17	. 004722	47	. 013056
18	. 300000	48	. Soo 000	18	. 005000	48	. 013333
19	. 316667	49	.S16667	19	. 005278	49	.013611
20	0.333333	50	$0 . S 33333$	20	0.005556	50	0.013 S89
21	. 350000	51	. 550000	21	. 005833	51	.014 167
22	. 366667	52	. 666667	22	. 006111	52	.OI4 444
23	. 383333	53	.SS3 333	23	. 006389	53	.OI4 722
24	. 400000	54	. 900000	24	. 006667	54	. 015000
25	0.416667	55	0.916667	25	0.006944	55	0.015 278
26	. 433333	56	. 933333	26	. 007222	56	.OI 5.556
27	. 450000	57	. 950000	27	. 007500	57	. 015833
28	. 466667	58	. 966667	28	. 007778	58	.or6 11 I
29	. 4 S3 333	59	.9S3 333	29	. 008056	59	.016 359
30	0.500000	60	1.000000	30	0.008333	60	0.016 667

Table 25.
LOCAL MEAN TIME AT APPARENT NOON.

Day of Month.	JAN.	FEB.	MAR.	APR.	MAY.	JUNE.
1 8 16 24	$\begin{array}{lr}\text { h. } & \text { mi. } \\ \text { I2 } & 4 \\ \text { I2 } & 7 \\ \text { I2 } & 10 \\ \text { I2 } & 12\end{array}$	$\begin{array}{ll}\text { h. } & \text { m. } \\ \text { 12 } & 14 \\ 12 & 14 \\ 12 & 14 \\ 12 & 13\end{array}$	h. m. I2 I2 I2 II I2 9 I2 6	h. m. I2 4 I2 2 I2 0 II 58	$\begin{array}{cc} \text { h. } & \text { m. } \\ \text { II } & 57 \\ \text { II } & 56 \\ \text { II } & 56 \\ \text { II } & 57 \end{array}$	$\begin{array}{lr} \text { h. } & \text { m. } \\ \text { II } & 58 \\ \text { II } & 59 \\ \text { I2 } & 0 \\ \text { I2 } & 2 \end{array}$
	JULY.	AUG.	SEPT.	OCT.	NOV.	D. ${ }^{\text {a }}$ C.
1 8 16 24	h. m. $\begin{array}{ll}\text { I2 } & 4 \\ \text { I2 } & 5 \\ \text { I2 } & 6 \\ \text { I2 } & 6\end{array}$	$\begin{array}{rr}\mathrm{h} . & \mathrm{m} \\ \mathrm{I} 2 & 6 \\ \mathrm{I} 2 & 5 \\ 12 & 4 \\ \mathrm{I} 2 & 2\end{array}$	h. m. I2 0 II 58 II 55 II 52	$\begin{array}{ll} \text { h. } & \text { m. } \\ \text { II } & 50 \\ \text { II } & 48 \\ \text { II } & 46 \\ \text { II } & 44 \end{array}$	h. m. II 44 II 44 II 45 II 47	h. m. II 49 II 52 II 56 I2 0

Smithoonian Tables.

Table 26.
SIDEREAL TIME INTO MEAN SOLAR TIME.

The tabular values are to be subtracted from a sidereal time interval.

Hrs.	$\begin{aligned} & \text { Reduction } \\ & \text { to } \\ & \text { Mean Time. } \end{aligned}$	Min.		Min.	
h.	m. s.	m.	s.	m.	s.
1	- 9.83	1	o. 16	31	5.08
2	- 19.66	2	o. 33	32	5.24
3	- 29.49	3	0. 49	33	5.41
4	- 39.32	4	0.66	34	5.57
5	- 49.15	5	0. 82	35	5.73
6	- 58.98	6	0.98	36	5.90
7	18.81	7	I. 15	37	6.06
8	I 18.64	8	1.31	35	6.23
9	I 28.47	9	1.47	39	6.39
10	138.30	10	1.64	40	6.55
11	I 48.13	II	1.80	41	6.72
12	I 57.95	12	1.97	42	6.88
13	27.78	13	2.13	43	7.04
14	2 I7.6I	14	2.29	44	7.21
15	227.44	15	2.46	45	7.37
16	237.27	16	2.62	46	7.54
17	2 47.10	17	2.79	47	7.70
18	256.93	18	2.95	48	7.86
19	$3 \quad 6.76$	I9	3.11	49	S. 03
20	316.59	20	3.28	50	S. 19
21	326.42	21	3.44	51	8.36
22	3 36.25	22	3.60	52	8.52
23	3 46.08	23	3.77	53	S.68
24	3 55.9I	24	3.93	54	8.85
		25	4. 10	55	9.01
		26	4.26	56	9.17
		27	4.42	57	9.34
		28	4.59	58	9.50
		29	4.75	59	9.67
		30	4.91	60	9.83

Table 27.
MEAN SOLAR TIME INTO SIDEREAL TIME.

The tabular values are to be added to a mean solar time interval.

Hrs.	Reduction to Sidereal Time.	Min.	Reduc. tion to Sidereal Time.	Min.	Reducton to Siderea Time.
h.	m. s.	m.	s.	m.	s.
I	- 9.86	1	0.16	31	5.09
2	- 19.71	2	0.33	32	5.26
3	- 29.57	3	0.49	33	5.42
4	- 39.43	4	0. 66	34	5.59
5	- 49.28	5	0.82	35	5.75
6	- 59.14	6	0.99	36	5.91
7	19.00	7	1.15	37	6.08
8	I IS. 85	8	1.31	38	6.24
9	128.71	9	I. 48	39	6.41
10	I 38.56	10	1.64	40	6.57
II	I 48.42	11	1.81	4 I	6.74
12	I 58.28	12	1.97	42	6.90
13	28.13	13	2. 14	43	7.06
1.4	$2 \quad 17.99$	14	2.30	44	7.23
15	$2 \quad 27.85$	15	2.46	45	7.39
16	237.70	16	2.63	46	7.56
17	247.56	17	2.79	47	7.72
18	257.42	IS	2.96	48	7.89
19	$3 \quad 7.27$	19	3.12	49	8.05
20	$3 \quad 17.13$	20	3.29	50	8.21
21	$3 \quad 26.99$	21	3.45	51	8.38
22	3 3	22	.3.61	52	8.54
23	3 46.70	23	3.78	53	8.71
24	356.56	24	3.94	54	8.87
		25	4. I I	55	9.04
		26	4.27	56	9.20
		27	4.4	57	9.36
		28	4.60	58	9.53
		29	4.76	59	9.69
		30	4.93	60	9.86

Reduction for Seconds-sidereal or mean solar.

The tabular values are to be $\left\{\begin{array}{l}\text { subtracted from a sidereal } \\
\text { added to a mean solar }\end{array}\right\}$ time interval.

Sidereal or Mean Time	0	I	2	3	4	5	6	7	8	9
s.	s.	s.	S.	s.	s.	s.	s.	s.	s.	s.
0	0.00	0.00	0.01	0.01	0.OI	O.OI	0.02	0.02	0.02	0.02
10	. 03	. 03	. 03	. 04	. 04	. 04	. 04	. 05	. 05	. 05
20	. 05	. 06	. 06	. 06	. 07	. 07	. 07	. 07	. 08	. 08
30	. 08	. 08	. 09	. 09	. 09	. 10	. 10	. 10	. 10	. II
40	.II	.II	. 11	. 12	. 12	. 12	. 13	.13	. 13	. 13
50	0.14	0.14	0.14	0.15 ${ }^{*}$	0.15	0.15	0.15	0.16	0.16	0.16

Smithbonian Tableg.

CONVERSION OF MEASURES OF WEIGHT.

Conversion of avoirdupois pounds and ounces into kilograms . TABLE 28 Conversion of kilograms into avoirdupois pounds and ounces . Table 29 Conversion of grains into grams Table 30 Conversion of grams into grains Table 3I

Table 28.

AVOIRDUPOIS POUNDS AND OUNCES INTO KILOGRAMS.

I avoirdupois pound $=0.4535924$ kilogram.
I avoirdupois ounce $=0.0283495$ kilogram.

Pounds.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	kg.	kg .	kg.	kg .	kg.	kg.	kg.	kg .	kg.	kg.
0	0.0000	0.0454	0.0907	0.1361	O. 1814	0.2268	0.2722	0.3175	0.3629	$0.40{ }^{2} 2$
1	0.4536	0.4990	0.5443	0.5897	0.6350	0.6804	0.7257	0.7711	0.8165	0.8618
2	0.9072	0.9525	0.9979	1. 0433	1.0886	I. 1340	I.1793	1.2247	1.2701	1.3154
3	1.3608	1.406I	1.4515	1.4969	1.5422	1.5876	1.6329	1.6783	1.7237	1.7690
4	1.8144	I. 8597	1.905I	1.9504	1.9958	2.0412	2.0565	2.1319	2. 1772	2.2226
5	2.2680	2.3133	2.3587	2.4040	2.4494	2.4948	2.5401	2.5855	2.6308	2.6762
6	2.7216	2.7669	2.8123	2.8576	2.9030	2.9484	2.9937	3.0391	3.0844	3.1298
7	3.175I	3.2205	3.2659	3.3112	3.3566	3.4019	3.4473	3.4927	3.53 So	3.5834
8	3.6287	3.6741	3.7195	3.7648	3.8102	3. S $_{555}$	3.9009	3.9463	3.9916	4.0370
9	4.0823	4.1277	4.1731	4.2184	4.2638	4.3091	$4 \cdot 3545$	4.399 S	4.4452	4.4906
Ounces.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	kg .	$\mathrm{kg} \text {. }$	kg.	kg.	kg.	kg .	kg.	kg.	kg.	kg.
0	0.0000	0.0028	0.0057	0.0085	0.0113	0.0142	0.0170	o.oI98	0.0227	0.0255
I	. 0283	. 0312	. 0340	. 0369	. 0397	. 0425	. 0454	. 0482	. 0510	. 0539
2	. 0567	. 0595	. 0624	. 0652	.06So	. 0709	. 0737	. 0765	.0794	.0S22
3	. 0850	.0879	. 0907	. 0936	.0964	. 0992	. 102 I	. 1049	. 1077	. 1106
4	. 1134	. 1162	. 1191	. 1219	. 1247	. 1276	. 1304	. 1332	. 1361	. 13 S9
5	0.1417	0.1446	0. 1474	0.1503	0.153I	O. 1559	0.1588	0.1616	0.1644	0.1673
6	.1701	. 1729	.1758	. 1786	. 1814	.1843	.1871	. 1899	. 1928	. 1956
7	. 1984	.2013	. 2041	. 2070	. 2098	. 2126	. 2155	. 2183	.2211	. 2240
8	. 2268	.2296	. 2325	. 2353	. 23 SI	.2410	. 243 S	. 2466	. 2495	. 2523
9	. 2551	. 2580	. 2608	. 2637	. 2665	. 2693	. 2722	. 2750	. 2778	. 2807
10	0.2835	0.2863	0.2892	0.2920	0.2948	0.2977	0.3005	0.3033	0.3062	0.3090
II	. 3118	. 3147	. 3175	. 3203	.3232	. 3260	. 3289	. 3317	- 3345	. 3374
12	. 3402	. 3430	. 3459	. 3487	. 3515	. 3544	. 3572	. 3600	. 3629	. 3657
13	. 3685	. 3714	-3742	. 3770	. 3799	.3827	. 3856	-3884	. 3912	- 3941
14	. 3969	- 3997	. 4026	. 4054	. 4082	.4III	. 4139	.4167	.4196	. 4224
15	.4252	.428I	. 4309	. 4337	.4366	. 4394	.4423	.445 I	. 4479	. 4508

Smithsonian Tables.

Table 29.
KILOGRAMS INTO AVOIRDUPOIS POUNDS AND OUNCES.
I kilogram $=2.204622$ avoirdupois pounds.

Table 30.

GRAINS INTO GRAMS.

I grain $=0.06479892$ gram.

Smitheonian tableg.

GRAMS INTO GRAINS.
I gram $=15.432356$ grains.

WIND TAbles.

Synoptic conversion of velocities Table 32
Miles per hour into feet per second Table 33
Feet per second into miles per hour Table 34
Meters per second into miles per hour Table 35
Miles per hour into meters per second Table 36
Meters per second into kilometers per hour Table 37
Kilometers per hour into meters per second Table 38
Scale of velocity equivalents of the so-called Beaufort scale of wind Table 39
Radius of critical curvature and velocities of gradient winds for frictionless motion in Highs and Lows.
English measures Table 40
Metric measures Table 41

SYNOPTIC CONVERSION OF VELOCITIES.

Miles per hour into meters per second, feet per second and kilometers per hour.

$\begin{aligned} & \text { Miles } \\ & \text { per } \end{aligned}$ hour.	Meters per second	Feet per second.	Kilometers per hour.	Miles per hour.	$\begin{aligned} & \text { Meters } \\ & \text { per } \end{aligned}$ second.		Kilometers per hour.	Miles per hour.	Meters per second.	Feet per second	Kilometers per hour.
0.0	0.0	0.0	0.0	26.0	11.6	3 S.I	41.8	52.0	23.2	76.3	83.7
0.5	0.2	0.7	$0 . S$	26.5	11.8	38.9	42.6	52.5	23.5	77.0	84.5
1.0	0.4	I. 5	1.6	27.0	12.1	39.6	43.5	53.0	23.7	77.7	85.3
I. 5	0.7	2.2	2.4	27.5	12.3	40.3	44.3	53.5	23.9	78.5	S6.1
2.0	0.9	2.9	3.2	28.0	12.5	4 I .1	45.1	54.0	24.1	79.2	S6.9
2.5	I.I	3.7	4.0	28.5	12.7	41.8	45.9	54.5	24.4	79.9	87.7
3.0	I. 3	4.4	4.8	29.0	13.0	42.5	46.7	55.0	24.6	80.7	88.5
3.5	1.6	5.1	5.6	29.5	13.2	$43 \cdot 3$	47.5	55.5	24.8	81.4	89.3
4.0	I.S	5.9	6.4	30.0	13.4	44.0	48.3	56.0	25.0	82.I	90.1
4.5	2.0	6.6	7.2	30.5	13.6	44.7	49.1	56.5	25.3	S2.9	90.9
5.0	2.2	7.3	8.0	31.0	I3.9	45.5	49.9	57.0	25.5	S3.6	91.7
5.5	2.5	S.I	8.9	31.5	I4.I	46.2	50.7	57.5	25.7	S. 4.3	92.5
6.0	2.7	S.8	9.7	32.0	14.3	46.9	51.5	58.0	25.9	S5.1	93.3
6.5	2.9	9.5	10.5	32.5	I4.5	47.7	52.3	58.5	26.2	S5. 8	94.I
7.0	3.1	10.3	11.3	33.0	14.8	48.4	53.1	59.0	26.4	S6.5	95.0
$7 \cdot 5$	3.4	I 1.0	12.1	33.5	15.0	49.1	53.9	59.5	26.6	87.3	95.8
8.0	3.6	11.7	12.9	34.0	15.2	49.9	54.7	60.0	26.8	SS.O	96.6
8.5	3.8	12.5	13.7	34.5	15.4	50.6	55.5	60.5	27.0	88.7	97.4
9.0	4.0	13.2	14.5	35.0	15.6	51.3	56.3	61.0	$27 \cdot 3$	S9.5	98.2
9.5	4.2	13.9	15.3	35.5	15.9	52.1	57.1	61.5	27.5	90.2	99.0
10.0	$4 \cdot 5$	14.7	16.1	36.0	16.1	52.8	57.9	62.0	27.7	90.9	99.8
10.5	4.7	I5.4	16.9	36.5	16.3	53.5	5 S .7	62.5	27.9	91.7	100.6
II.O	4.9	16.I	17.7	37.0	16.5	54.3	59.5	63.0	28.2	92.4	IOI. 4
11.5	5.1	16.9	18.5	37.5	16.8	55.0	60.4	63.5	28.4	93.I	102.2
12.0	5.4	17.6	19.3	38.0	17.0	55.7	61.2	64.0	28.6	93.9	103.0
12.5	5.6	18.3	20.1	38.5	17.2	56.5	62.0	64.5	$2 \mathrm{S}$. 8	94.6	103.8
13.0	5.8	19.1	20.9	39.0	17.4	57.2	62.8	65.0	29.1	95.3	104.6
13.5	6.0	19.8	21.7	39.5	17.7	57.9	63.6	65.5	29.3	96.1	105.4
14.0	6.3	20.5	22.5	40.0	17.9	58.7	64.4	66.0	29.5	96.8	106.2
14.5	6.5	21.3	23.3	40.5	18.1	59.4	65.2	66.5	29.7	97.5	107.0
15.0	6.7	22.0	24.1	41.0	I8.3	60.1	66.0	67.0	30.0	98.3	107.8
15.5	6.9	22.7	24.9	41.5	IS.6	60.9	66.8	67.5	30.2	99.0	108.6
16.0	7.2	23.5	25.7	42.0	18.8	61.6	67.6	68.0	30.4	99.7	109.4
16.5	7.4	24.2	26.6	42.5	19.0	62.3	65.4	68.5	30.6	100.5	110.2
17.0	7.6	24.9	27.4	43.0	19.2	63.1	69.2	69.0	30.8	101.2	111.0
17.5	7.8	25.7	28.2	43.5	19.4	63.8	70.0	69.5	31.1	IOI. 9	I I 1.8
18.0	S.O	26.4	29.0	44.0	19.7	64.5	70.8	70.0	31.3	102.7	I 12.7
18.5	S. 3	27.1	29.8	44.5	19.9	65.3	71.6	70.5	31.5	103.4	I 13.5
19.0	S. 5	27.9	30.6	45.0	20.1	66.0	72.4	71.0	31.7	104.1	114.3
19.5	8.7	28.6	3 I .4	45.5	20.3	66.7	73.2	71.5	32.0	104.9	II5.I
20.0	8.9	29.3	32.2	46.0	20.6	67.5	74.0	72.0	32.2	105.6	115.9
20.5	9.2	30.1	33.0	46.5	20.8	68.2	74.8	72.5	32.4	106.3	116.7
21.0	9.4	30.8	33.8	47.0	21.0	68.9	75.6	73.0	32.6	107.1	I 17.5
2 I .5	9.6	31.5	34.6	47.5	21.2	69.7	76.4	73.5	32.9	107.8	I I8.3
22.0	9.8	32.3	35.4	48.0	21.5	70.4	77.2	74.0	33.1	108.5	I 19.I
22.5	10.1	33.0	36.2	48.5	21.7	71.1	78.1	74.5	33.3	109.3	I19.9
23.0	10.3	33.7	37.0	49.0	21.9	71.9	78.9	75.0	33.5	110.0	120.7
23.5	10.5	34.5	37.8	49.5	22.1	72.6	79.7	75.5	33.5	I 10.7	I2 1.5
24.0	10.7	35.2	38.6	50.0	22.4	73.3	So. 5	76.0	34.0	111.5	122.3
2.4 .5	11.0	35.9	39.4	50.5	22.6	74.1	SI. 3	76.5	34.2	112.2	123.1
25.0	11.2	36.7	40.2	51.0	22.8	74.8	S2.I	77.0	34.4	II 2.9	123.9
25.5	11.4	37.4	41.0	5 I .5	23.0	75.5	S2.9	77.5	34.6	113.7	124.7
26.0	II. 6	$3 \mathrm{S.1}$	41.8	52.0	23.2	76.3	S3.7	78.0	34.9	114.4	I 25.5

MILES PER HOUR INTO FEET PER SECOND.

I mile per hour $=\frac{44}{30}$ feet per second.

Miles per hour.	0	1	2	3	4	5	6	7	8	9
	Feet per sec.	Feet per sec.	Feet per	Feet per sec.	Feet per sec	Feet per				
0	0.0	I. 5	2.9	4.4	5.9	7.3	8.8	10.3	11.7	2
10	14.7	16.1	17.6	19.1	20.5	22.0	23.5	24.9	26.4	27.9
20	29.3	30.8	32.3	33.7	35.2	36.7	3 S. I	39.6	4I. I	42.5
30	44.0	45.5	46.9	48.4	49.9	$5 \mathrm{I} \cdot 3$	52.8	54.3	55.7	57.2
40	58.7	60.1	61.6	63.1	64.5	66.0	67.5	68.9	70.4	7 I .9
50	73.3	74.8	76.3	77.7	79.2	80.7	82.I	83.6	S5.1	S6.5
60	88.0	S9.5	90.9	92.4	93.9	95.3	96.8	98.3	99.7	IOI. 2
70	102.7	104. I	105.6	107. 1	108. 5	110.0	III. 5	I12.9	114.4	115.9
So	117.3	IIS.S	120.3	121.7	123.2	124.7	126.1	127.6	129.1	130.5
90	132.0	133.5	134.9	I36.4	I 37.9	139.3	140.8	142.3	143.7	I45.2
100	146.7	148. 1	149.6	151.1	152.5	I54.0	I 55.5	156.9	I5S.4	159.9
110	161.3	162.8	16.4.3	165.7	167.2	168.7	170. 1	171.6	173.1	174.5
120	176.0	177.5	178.9	ISo. 4	181.9	183.3	184.8	IS6.3	187.7	IS9.2
130	190.7	192.I	193.6	195.1	196.5	198.0	199.5	200.9	202.4	203.9
140	205.3	206.8	208.3	209.7	211.2	212.7	214. 1	215.6	217.1	218.5

Table 34.

FEET PER SECOND INTO MILES PER HOUR.

1 foot per second $=\frac{30}{44}$ miles per hour.

Feet per sec.	0	1	2	3	4	5	6	7	8	9
	Miles per hr.	Mites per hr.	Miles per hr.	Miles per hr.						
0	0.0	0.7	I. 4	2.0	2.7	3.4	4.1	4.8	$5 \cdot 5$	6.1
10	6.8	$7 \cdot 5$	8.2	8.9	9.5	10.2	10.9	I 1.6	12.3	13.0
20	13.6	14.3	15.0	15.7	16.4	17.0	17.7	18.4	19.1	19.8
30	20.5	2 I . 1	21.8	22.5	23.2	23.9	24.5	25.2	25.9	26.6
40	27.3	28.0	28.6	29.3	30.0	30.7	31.4	32.0	32.7	33.4
50	34. I	34.8	35.5	36.1	36.8	37.5	38.2	38.9	39.5	$4{ }^{\circ} 2$
60	40.9	41.6	42.3	43.0	43.6	44.3	45.0	45.7	46.4	47.0
70	47.7	48.4	49. I	49.8	50.5	5 I .1	51.8	52.5	53.2	53.9
80	54.5	55.2	55.9	56.6	$57 \cdot 3$	58.0	58.6	59.3	60.0	60.7
90	61.4	62.0	62.7	63.4	64.1	64.8	65.5	66.1	66.8	67.5
100	68.2	65.9	69.5	70.2	70.9	71.6	72.3	73.0	73.6	74.3
110	75.0	75.7	76.4	77.0	77.7	78.4	79.1	79.8	8.5	SI. 1
120	Si. 8	82.5	83.2	83.9	84.5	85.2	S5.9	S6.6	87.3	SS.0
130	88.6	89.3	90.0	90.7	91.4	92.0	92.7	93.4	94.1	94.8
140	95.5	96.1	96.8	97.5	98.2	98.9	99.5	100.2	100.9	IOI. 6
150	102.3	103.0	103.6	104.3	105.0	105.7	106.4	107.0	107.7	Io8.4
160	109. I	109.8	110.5	III. I	III. 8	II2.5	113.2	113.9	114.5	I 15.2
170	II 5.9	116.6	II7.3	IIS.O	I18.6	119.3	120.0	120.7	121.4	120.0
ISo	I22.7	123.4	I24. 1	124.8	125.5	I26.I	126.8	127.5	$12 \mathrm{S}$.	128.9
190	129.5	130.2	I30.9	131.6	132.3	133.0	I 33.6	134.3	I 35.0	I 35.7

Gmithsonian Tableb.

METERS PER SECOND INTO MILES PER HOUR.

I meter per second $=2.236932$ miles per hour.

Meters per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	Miles per hr.	Miles per lir.	Miles per hr.							
0	0.0	0.2	0.4	0.7	0.9	I. I	1.3	1.6	1.8	2.0
I	2.2	2.5	2.7	2.9	3. 1	3.4	3.6	3.8	4.0	4.3
2	$4 \cdot 5$	4.7	4.9	5. I	5.4	5.6	5.8	6.0	6.3	6.5
3	6.7	6.9	7.2	7.4	7.6	7.8	8.1	8.3	S. 5	8.7
4	S. 9	9.2	9.4	9.6	9.8	10.1	10.3	10.5	10.7	II.O
5	11.2	${ }^{1} \mathrm{I} .4$	II. 6	11.9	12.1	12.3	12.5	12.8	13.0	13.2
6	13.4	13.6	13.9	14. I	14.3	14.5	14.8	15.0	15.2	15.4
7	15.7	15.9	16.1	16.3	16.6	16.8	17.0	17.2	17.4	17.7
8	17.9	18.1	18.3	18.6	18.8	19.0	19.2	19.5	19.7	19.9
9	20.1	20.4	20.6	20.8	21.0	2 I .3	21.5	2 I .7	21.9	22. I
10	22.4	22.6	22.8	23.0	23.3	23.5	23.7	23.9	24.2	24.4
II	24.6	2.4 .8	25. I	25.3	25.5	25.7	25.9	26.2	26.4	26.6
12	26.8	27. I	27.3	27.5	27.7	28.0	28.2	2 S .4	28.6	28.9
13	29. I	29.3	29.5	29.8	30.0	30.2	30.4	30.6	30.9	31.1
14	31.3	31.5	31.8	32.0	32.2	32.4	32.7	32.9	33. 1	33.3
15	33.6	33.8	34.0	34.2	34.4	34.7	34.9	35. I	35.3	35.6
16	35.8	36.0	36.2	36.5	36.7	36.9	37.1	37.4	37.6	37.8
17	38.0	38.3	3 3.5	38.7	38.9	39.1	39.4	39.6	39.8	40.0
IS	40.3	40.5	40.7	40.9	41.2	41.4	41.6	41.8	42.1	42.3
19	42.5	42.7	43.0	43.2	43.4	43.6	43.8	44.1	$4+3$	44.5
20	44.7	45.0	45.2	45.4	45.6	$45 \cdot 9$	46.1	46.3	46.5	46.8
2 I	47.0	47.2	47.4	47.6	47.9	48.1	4 S .3	48.5	48.8	49.0
22	49.2	49.4	49.7	49.9	50.1	50.3	50.6	50.8	51.0	51.2
23	51.5	51.7	51.9	52.1	52.3	52.6	52.8	53.0	53.2	53.5
24	53.7	53.9	54.1	54.4	54.6	54.8	55.0	55.3	55.5	55.7
25	55.9	56.1	56.4	56.6	56.8	57.0	57.3	57.5	57.7	57.9
26	58.2	5 S. 4	58.6	58.8	59.1	59.3	59.5	59.7	60.0	60.2
27	60.4	60.6	60.8	6 I .1	6 I .3	61.5	6 I .7	62.0	62.2	62.4
28	62.6	62.9	63.1	63.3	63.5	63.8	64.0	64.2	64.4	64.6
29	64.9	65.1	65.3	65.5	65.8	66.0	66.2	66.4	66.7	66.9
30	67.1	67.3	67.6	67.8	68.0	68.2	68.5	68.7	68.9	69.1
31	69.3	69.6	69.8	70.0	70.2	70.5	70.7	70.9	71.1	71.4
32	71.6	71.8	72.0	72.3	72.5	72.7	72.9	73. 1	73.4	73.6
33	73.8	74.0	74.3	74.5	74.7	74.9	75.2	75.4	75.6	75.8
34	76.1	76.3	76.5	76.7	77.0	77.2	77.4	77.6	77.8	78.1
35	78.3	78.5	78.7	79.0	79.2	79.4	79.6	79.9	So. I	So. 3
36	So. 5	So. 8	Si.o	SI. 2	SI. 4	SI. 6	SI. 9	S2.I	S2.3	S2.5
37	82.8	83.0	83.2	83.4	83.7	84.0	S4. I	S4.3	S4.6	S4.8
38	85.0	S5.2	S5.5	85.7	S5.9	S6. I	86.3	S6.6	S6.8	S7.0
39	87.2	S7.5	87.7	87.9	S8. I	88.4	S8. 6	S8.8	S9.0	S9.3
40	S9.5	89.7	S9.9	90.2	90.4	90.6	90.8	91.0	91.3	91.5
41	91.7	91.9	92.2	92.4	92.6	92.8	93. I	93.3	93.5	93.7
42	94.0	94.2	94.4	94.6	94.8	95.1	95.3	95.5	95.7	96.0
43	96.2	96.4	96.6	96.9	97.1	97.3	97.5	97.8	98.0	98.2
44	98.4	98.7	98.9	99. I	99.3	99.5	99.8	100.0	100.2	100.4

Meters per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	Miles per hr.									
45	100.7	100.9	IOI. I	IOI. 3	101.6	IOI. 8	102.0	102.2	102.5	102.7
46	IO2.9	103.1	103.3	103.6	103.8	104.0	104.2	104.5	104.7	104. 9
47	105. I	105.4	105.6	105.8	106.0	106.3	106.5	106.7	106.9	107.2
48	107.4	107.6	107.8	108.0	108.3	IoS. 5	108.7	108.9	109.2	109.4
49	109.6	109.8	IIO. I	110.3	I 10.5	110.7	III. 0	II I. 2	II II. 4	III. 6
50	III.S	II2.I	II 2.3	II2.5	112.7	II3.0	II3.2	II3.4	II3.6	II3.9
51	I 14.1	114.3	I 14.5	I 14.8	II 5.0	II 5.2	II5.4	115.7	II5.9	116. 1
52	I 16.3	116.6	II6.8	117.0	117.2	II7.4	117.7	II7.9	IIS.I	IIS.3
53	IIS.6	II8.8	119.0	II9.2	I 19.5	119.7	119.9	120. 1	120.4	120.6
54	120.8	121.0	121.3	121.5	121.7	121.9	122.1	122.4	122.6	122.8
55	123.0	123.3	123.5	123.7	123.9	12.4 .2	124.4	124.6	I24.8	I25. I
56	125.3	125.5	125.7	126.0	126.2	I26.4	126.6	126.8	127.1	127.3
57	127.5	127.8	I28.0	I28.2	I28.4	128.6	128.9	129. I	129.3	129.5
58	129.7	130.0	130.2	I 30.4	130.7	130.9	I3I. 1	131.3	131.6	131.8
59	I 32.0	132.2	I 32.5	132.7	I32.9	I33. I	133.3	I 33.6	I 33.8	134.0

table 36.

MILES PER HOUR INTO METERS PER SECOND.

I mile per hour $=0.4470409$ meters per second.

Miles per hour.	0	I	2	3	4	5	6	7	8	9
	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.	meters per sec.
0	0.00	0.45	o. 89	1.34	I. 79	2.24	2.68	3.13	3.58	4.02
10	4.47	4.92	$5 \cdot 36$	5.81	6.26	6.71	7.15	7.60	8.05	8.49
20	8.94	9.39	9.83	10.28	10.73	II. I8	11.62	12.07	12.52	12.96
30	13.41	13.86	14.31	14.75	15.20	15.65	16.09	16.54	16.99	17.43
40	I7.88	18.33	18.78	19.22	19.67	20.12	20.56	21.01	21.46	21.90
50	22.35	22.80	23.25	23.69	24. I4	24.59	25.03	25.48	25.93	26.37
60	26.82	27.27	27.72	28.16	28.61	29.06	29.50	29.95	30.40	30.85
70	31.29	31.74	32.19	32.63	33.08	33.53	33.98	34.42	34.87	35.32
80	35.76	36.21	36.66	37.10	37.55	3 S .00	38.44	38.89	39.34	39.79
90	40.23	40.68	4 I . I 3	4 I .57	42.02	42.47	42.92	$43 \cdot 36$	43.81	44.26
100	44.70	45. 15	45.60	46.04	46.49	46.94	47.39	47.83	48.28	48.73
110	49.17	49.62	50.07	50.51	50.96	5 I .41	51.86	52.30	52.75	53.20
120	53.64	54.09	54.54	54.98	55.43	55.88	56.33	56.77	57.22	57.67
130	58.12	58.56	59.01	59.46	59.90	60.35	60.80	61.24	61.69	62. 14
140	62.59	63.03	63.48	63.93	64.37	64.82	65.27	65.72	66.16	66.61

Smithsonian Tables.

Table 37.
METERS PER SECOND INTO KILOMETERS PER HOUR.
I meter per second $=3.6$ kilometers per hour.

Meters per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	$\begin{aligned} & \text { kim. } \\ & \text { per hr. } \end{aligned}$	$\underset{\text { per hr. }}{\text { kin. }}$	$\begin{aligned} & \mathrm{km} . \\ & \text { per } \mathrm{hr} . \end{aligned}$	$\begin{gathered} \text { kni. } \\ \text { per hr. } \end{gathered}$	$\begin{aligned} & \text { km. } \\ & \text { per hr. } \end{aligned}$	$\begin{gathered} \text { knı. } \\ \text { per hr. } \end{gathered}$	$\underset{\text { km. }}{\text { per hr. }}$	$\underset{\text { per } \mathrm{kr} .}{\mathrm{km.}}$	$\begin{gathered} \text { km. } \\ \text { per hr. } \end{gathered}$	$\operatorname{km.}_{\text {per hr. }}$
0	0.0	0. 4	0.7	I. I	1.4	I.S	2.2	2.5	2.9	3.2
I	3.6	4.0	$4 \cdot 3$	4.7	5.0	5.4	5.8	6.1	6.5	6.8
2	7.2	7.6	7.9	S. 3	S.6	9.0	9.4	9.7	10.1	10.4
3	10.8	11.2	11.5	11.9	12.2	12.6	13.0	13.3	13.7	14.0
4	14.4	14.8	15.1	15.5	15.8	16.2	16.6	16.9	17.3	17.6
5	IS.O	18.4	18.7	19. 1	19.4	19.8	20.2	20.5	20.9	21.2
6	21.6	22.0	22.3	22.7	23.0	23.4	23.8	24.1	24.5	24.5
7	25.2	25.6	25.9	26.3	26.6	27.0	27.4	27.7	2 S . 1	28.4
8	28.8	29.2	29.5	29.9	30.2	30.6	31.0	31.3	31.7	32.0
9	32.4	32.8	33. 1	33.5	33.8	34.2	34.6	34.9	$35 \cdot 3$	35.6
10	36.0	36.4	36.7	37. I	37.4	37.8	38.2	38.5	38.9	39.2
11	39.6	40.0	40.3	40.7	41.0	41.4	41.8	42. I	42.5	42.8
12	43.2	43.6	43.9	44.3	44.6	45.0	45.4	45.7	46.1	46.4
13	46.8	47.2	47.5	47.9	48.2	48.6	49.0	49.3	49.7	50.0
14	50.4	50.8	5 I .1	51.5	51.8	52.2	52.6	52.9	53.3	53.6
15	54.0	54.4	54.7	55. I	55.4	55.8	56.2	56.5	56.9	57.2
16	57.6	58.0	58.3	58.7	59.0	59.4	59.8	60.1	60.5	60.8
17	6 I .2	61.6	61.9	62.3	62.6	63.0	63.4	63.7	64.1	64.4
18	64.8	65.2	65.5	65.9	66.2	66.6	67.0	67.3	67.7	68.0
19	68.4	68.8	69.1	69.5	69.8	70.2	70.6	70.9	71.3	71.6
20	72.0	72.4	72.7	73.1	73.4	73.8	74.2	74.5	74.9	75.2
21	75.6	76.0	76.3	76.7	77.0	77.4	77.8	78.1	78.5	78.8
22	79.2	79.6	79.9	So. 3	80.6	Si.o	SI. 4	SI. 7	S2. 1	S2.4
23	S2.8	S3.2	83.5	83.9	S4.2	S+. 6	S5.0	S5.3	S5.7	86.0
24	S6.4	S6.8	87.1	S7.5	S7.8	88.2	SS. 6	88.9	89.3	S9.6
25	90.0	90.4	90.7	91.I	91.4	91.8	92.2	92.5	92.9	93.2
26	93.6	94.0	94.3	94.7	95.0	95.4	95.8	96. I	96.5	96.8
27	97.2	97.6	97.9	98.3	98.6	99.0	99.4	99.7	100. I	100.4
28	100.8	101.2	101.5	101.9	102.2	102.6	103.0	103.3	103.7	10.4 .0
29	104.4	104. 8	105. I	105.5	105.8	106.2	106.6	106.9	107.3	107.6
30	108.0	108.4	108.7	109. 1	109.4	109.8	110.2	110.5	110.9	III. 2
3 I	III. 6	112.0	I12.3	I 12.7	113.0	II 3.4	$113 . \mathrm{S}$	II4. 1	I 14.5	114.8
32	II 5.2	115.6	115.9	II6.3	I 16.6	II7.0	117.4	117.7	IIS. I	IIS. 4
33	I I 8.8	119.2	119.5	119.9	120.2	120.6	121.0	121.3	121.7	122.0
34	122.4	122.8	I23.1	123.5	123.8	124.2	124.6	124.9	125.3	125.6
35	126.0	126.4	126.7	127.1	127.4	127.8	12 S .2	12S. 5	$12 \mathrm{S.9}$	129.2
36	129.6	130.0	130.3	130.7	131.0	131.4	131.8	132. I	I 32.5	132.8
37	133.2	133.6	133.9	I 34.3	134.6	135.0	I 35.4	135.7	136. 1	136.4
38	${ }^{1} 36.8$	${ }^{1} 37.2$	I 37.5	137.9	138.2	138.6	139.0	139.3	139.7	140.0
39	I. 40.4	140.8	I41. I	141.5	141.8	142.2	142.6	142.9	143.3	143.6
40	144.0	144.4	144.7	145.1	145.4	145.8	146.2	146.5	146.9	147.2
41	147.6	148.0	148.3	148.7	149.0	149.4	I 49.8	150.1	150.5	I50.S
42	${ }^{1} 51.2$	151.6	151.9	152.3	152.6	I53.0	153.4	153.7	I54. I	I 54.4
43	154.8	${ }^{1} 55.2$	I55.5	155.9	156.2	${ }^{1} 56.6$	157.0	157.3	157.7	158.0
44	158.4	158.8	159.1	159.5	159.8	160.2	160.6	160.9	161.3	Iól. 6

Table 37.
METERS PER SECOND INTO KILOMETERS PER HOUR.

Meters per second.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	km . per hr.	$\underset{\text { per } \mathrm{km} .}{\mathrm{km} .}$	$\begin{aligned} & \text { km. } \\ & \text { per } \mathrm{hr} . \end{aligned}$	$\begin{aligned} & \text { km. } \\ & \text { per } \mathrm{hr} . \end{aligned}$	$\begin{aligned} & \text { km. } \\ & \text { per hr. } \end{aligned}$	$\begin{gathered} \mathrm{km} . \\ \text { per } \mathrm{hr} . \end{gathered}$	km. per hr.	$\begin{aligned} & \mathrm{km} . \\ & \text { per } \mathrm{hr} . \end{aligned}$	$\begin{aligned} & \mathrm{km} . \\ & \text { per } \mathrm{hr} . \end{aligned}$	$\underset{\text { per hr. }}{\text { km. }}$
45	162.0	162.4	162.7	163.1	163.4	163.8	16.4	164.5	164.9	165.2
46	165.6	166.0	166.3	166.7	167.0	167.4	167.8	168. 1	168.5	165.8
47	169.2	169.6	169.9	170.3	170.6	171.0	171.4	171.7	172.1	172.4
4 S	172.8	173.2	173.5	173.9	174.2	174.6	175.0	175.3	175.7	176.0
49	176.4	176.8	177.1	177.5	177.8	17S.2	178.6	178.9	179.3	179.6
50	I 80.0	180.4	180. 7	181. I	181.4	181. 8	182.2	182.5	182.9	183.2
51	183.6	184.0	IS4.3	184.7	I85.0	185.4	IS5.8	186. 1	I86.5	186.8
52	187.2	187.6	I87.9	ISS. 3	IS8.6	189.0	189.4	I 89.7	190. 1	190.4
53	190.8	191.2	191.5	191.9	192.2	192.6	193.0	193.3	193.7	194.0
54	194.4	194.8	195. I	195.5	195.8	196.2	196.6	196.9	197.3	197.6
55	198.0	198.4	198.7	199. I	199.4	199.8	200.2	200.5	200.9	201.2
56	201.6	202.0	202.3	202.7	203.0	203.4	203.8	204. 1	204.5	204.8
57	205.2	205.6	205.9	206.3	206.6	207.0	207.4	207.7	20S. I	208.4
58	208.8	209.2	209.5	209.9	210.2	210.6	211.0	211.3	211.7	212.0
59	212.4	212.8	213.1	213.5	213.8	214.2	214.6	214.9	215.3	215.6

Table 38.
KILOMETERS PER HOUR INTO METERS PER SECOND.
I kilometer per hour $=\frac{10}{36}$ meters per second.

Kilcmeters per hour.	0	1	2	3	4	5	6	7	8	9
	meters per sec.									
0	0.00	0.28	0.56	0.83	I.II	I. 39	1.67	1.94	2.22	2.50
10	2.78	3.06	$3 \cdot 33$	3.61	3.89	4.17	4.44	4.72	5.00	5.28
20	5.56	5.83	6.11	6.39	6.67	6.94	7.22	7.50	7.78	8.06
30	S. 33	8.61	S. 99	9.17	9.44	9.72	10.00	10.28	10.56	10.83
40	II. I I	I 1.39	II. 67	II. 9.4	12.22	12.50	12.78	13.06	13.33	13.61
50	13.89	14.17	14.44	14.72	15.00	15.28	15.56	15.83	16. 11	16.39
60	16.67	16.94	17.22	17.50	17.78	18.06	18.33	18.61	18.89	19.17
70	19.44	19.72	20.00	20.28	20.56	20.83	21.11	2 I .39	21.67	21.94
So	22.22	22.50	22.78	23.06	23.33	23.61	23.89	24. 17	24.44	24.72
90	25.00	25.28	25.56	25.83	26. 11	26.39	26.67	26.94	27.22	27.50
100	27.78	28.06	28.33	28.61	28.89	29.17	29.44	29.72	30.00	30.28
110	30.56	30.83	3 I .11	31.39	31.67	31.94	32.22	32.50	32.78	33.06
120	33.33	33.61	33.89	34.17	34.44	34.72	35.00	35.28	35.56	35.83
130	36. 11	36.39	36.67	36.94	37.22	37.50	37.78	38.06	38.33	38.61
140	38.89	39.17	39.44	39.72	40.00	40.28	40.56	40.83	41.11	4 I .39
150	41.67	41.94	42.22	42.50	42.78	43.06	43.33	43.61	43.89	44. 17
160	44.44	44.72	45.00	45.28	45.56	45.83	46.11	46.39	46.67	46.94
170	47.22	47.50	47.78	48.06	48.33	48.61	48.89	49.17	49.44	49.72
ISo	50.00	50.28	50.56	50.83	51. II	51.39	51.67	5.94	52.22	52.50
190	52.78	53.06	53.33	53.61	53.89	54.17	54.44	$5+72$	55.00	55.28

Smithbonian Tables.

Table 39.

SCALE OF VELOCITY EQUIVALENTS OF THE SO-CALLED BEAUFORT SCALE OF WIND.

Beaufort Number, International	Beaufort description of wind, International	Deep Sea Criterion. 1874, International		Specification for use on land	Limits of velocity			
				Miles per hour	Meters per sec.			
				Nautical (knots)		Statute		
0	Calm	Just sufficient to give steerage way. ${ }^{1}$			Calm, smoke rises vertically.	$\begin{aligned} & \text { Less } \\ & \text { than } 1 \end{aligned}$	$\begin{aligned} & \text { Less } \\ & \text { than } 1 \end{aligned}$	$\begin{aligned} & \text { Less than } \\ & 0.4 \end{aligned}$
1	Light air			Direction of wind shown by smoke drift, but not by wind vanes.	1 to 3	1 to 3	0.4 to 1.5	
2	Light breeze	That in which a well-conditioned man-ofwar, with all sail set, and clean full, would go in smooth water from-	$1 \text { to } 2 \text { knots }$		Wind feit on face: leaves rustle; ordinary vane moved by wind. Leaves and small twigs in constant motion; wind extends light flag. Raises dust and loose paper: small branches are moved.	4 to 6	4 to 7	1.6 to 3.3
3	$\begin{aligned} & \text { Gentle } \\ & \text { breeze } \end{aligned}$		\| 3 to 4 knots	7 to 10		8 to 12	3.4 to 5.4	
4	Moderate breeze		5 to 6 knots	11 to 16		13 to 18	5.5 to 7.9	
5	$\begin{aligned} & \text { Fresh } \\ & \text { breeze } \end{aligned}$	That to which she could just carry in chase, full and by-	$\left\{\begin{array}{l}\text { Royals. \&c } \\ \text { Top gallant } \\ \text { sails. }\end{array}\right.$	Small trees in leaf begin to sway; crested wavelets form on inland waters. Large branches in motion; whestling heard in telegraph wires; umbrellas used with difficulty.	17 to 21	19 to 24	8.0 to 10.7	
6	Strong brceze				22 to 27	25 to 31	10.8 to 13.8	
7	Moderate gale	That to which she could just carry in chase, full and by-	$\left\{\begin{array}{c}\text { Tonsails, } \\ \text { jnb, \&c. } \\ \\ \text { Reefed up- } \\ \text { per top- } \\ \text { sails and } \\ \text { courses } \\ \text { Lower top- } \\ \text { sails and } \\ \text { courses. }\end{array}\right.$	Whole trees in motion; inconvenience felt when walking against wind.	28 to 33	32 to 38	13.9 to 17.1	
8	$\begin{gathered} \text { Fresh } \\ \text { gale } \end{gathered}$			Breaks twigs off trees; generally impedes progress.	34 to 40	39 to 46	17.2 to 20.7	
9	Strong gale			Slight structural damage occurs (chimney pots and slate removed).	41 to 47	47 to 54	20.8 to 24.4	
10	Whole gale	That with which she could scarcely bear lower maintopsail and recfed foresail.		Seldom experienced inland; trees uprooted; considerable structural damage occurs.	48 to 55	55 to 63	24.5 to 28.4	
11	Storm	That which would reduce her to storm stay-sails.		Very rarely experienced, accompanied by wide-spread damage.	56 to 65	64 to 75	28.5 to 33.5	
12	$\begin{aligned} & \text { Hurri- } \\ & \text { cane } \end{aligned}$	That which no canvas could withstand.			Above 65	Above 75	Above 33.5	

${ }^{1}$ A full-rigged ship of 1874 .
Smithsonian Tables

Table 40.

RADIUS OF CRITICAL CURVATURE AND VELOCITIES OF GRADIENT WINDS FOR FRICTIONLESS MOTION IN HIGHS AND LOWS.

Evglish Measures.

$R_{c}=$ radius of critical curvature in miles. V_{c} High $=$ maximum speed in miles per hour on isobar of critical curvature. $V_{s}=$ speed along straight line isobars $=0.5 V_{c} . \quad V$ Low $=$ speed in Low along isobar of curvature $R_{c} . V$ Low $=0.4142 V_{c}$.
The table is computed for a density of the air, $\rho=.0010$, which represents the conditions in the free air at an elevation of, roughly, one mile. Values for any other density can be readily found by dividing each or any of the tabulated values by the ratio of the densities, as, for example, for surface conditions divide by $1.2=\frac{.0010}{.0012}$ and so on

$\begin{aligned} & \text { Lati- } \\ & \text { tude: } \\ & \phi \end{aligned}$	d (miles)											
		100	125	150	175	200	250	300	400	500	600	800
10°	R_{c}	8160	6530	5440	4660	4080	3260	2720	2040	1630	1360	1020
	V_{c} High	372	298	248	212	186	149	124	93.0	74.4	62.0	46.5
		186	149	124	106	93.0	74.4	62.0	46.5	37.2	31.0	23.2
	V Low	I 54	123	103	88.0	77.0	61.6	51.3	38.5	30.8	25.7	19.2
20	R_{c}	2100	1680	1400	1200	1050	S41	701	526	420	350	263
	$V_{c} \mathrm{High}$	189	151	126	108	94.4	75.5	62.9	47.2	37.8	31.5	23.6
	V^{\prime} s	94. 4	75.5	62.9	54.0	47.2	37.8	3 I .4	23.6	18.9	15.8	11.8
	V Low	78.2	62.5	52.1	44.7	39. I	31.3	26. I	19.6	15.7	13.0	9.8
25		1380	1100	918	787	688	551	459	$3+4$	275	230	172
	V_{c}^{c} High	153	122	102	87.3	76.4	61.1	50.9	$3^{8 .} 2$	30.6	25.5	19. I
	V s	76.4	61.1	50.9	43.6	38.2	30.6	25.4	19. I	15.3	12.8	9.5
	V Low	63.3	50.6	42.2	36.2	31.6	25.3	2I. I	15.8	12.7	10.6	7.9
30		984	787	656	562	. 492	393	328	2.46	197	164	123
	$V_{c} \mathrm{High}$	129	103	86. I	73.8	64.5	51.6	43.0	32.3	25.8	2 I .5	16. I
	V s	64.5	51.6	43.0	36.9	32.2	25.8	21.5	16. 2	12.9	10.8	8.1
	V Low	53.5	42.8	35.7	30.6	26.7	21. 4	178	13.4	10.7	8.9	6.7
35		747	598	498	427	374	299	249	187	150	125	93.4
	V_{c} High	112	90.0	75.0	64.3	56.3	45.0	37.5	28. I	22.5	18.8	14. I
	V s	56.3	45.0	37.5	32.2	28.2	22.5	18.8	14.0	11.2	9.4	7.0
	V Low	46.6	37.3	31. I	26.6	23.3	18.6	I 5.5	II. 6	9.3	7.8	5.8
40		595	476	397	340	298	238	198	149	119	99.2	74.4
	$V_{c}^{c} \mathrm{High}$	100	80.3	66.9	57.4	50.2	40.2	33.5	25.1	20. 1	16.7	12.6
	V s	50.2	40.2	33.4	28.7	25. 1	20.1	16.8	12.6	10.0	8.4	6.3
	V Low	41.6	33.3	27.7	23.8	20.8	16.7	13.9	10.4	8.3	6.9	5. 2
45		492	393	328	28 I	246	197	164	123	98.4	82.0	61. 5
	V_{c} High	91.3	73.0	60.9	52.2	45.6	36.5	30.4	22.8	18.3	15.2	11. 4
	V^{\prime} s	45.6	36.5	30.4	26. I	22.8	18.2	15.2	II. 4	9.2	7.6	$5 \cdot 7$
	V Low	37.8	30.2	25.2	21.6	18.9	15. I	12.6	9.4	7.6	6.3	4.7
50		419	335	279	240	210	168	140	105	83.8	69.9	52.4
	$V_{c}{ }_{c}$ High	84.3	67.4	56.2	48.2	42.1	33.7	28. I	21. I	16.9	14.0	10. 5
	$V^{\text {s }}$	42.1	33.7	28. I	24. I	21.0	16.8	14.0	10.6	8.4	7.0	$5 \cdot 3$
	V Low	34.9	27.9	23.3	20.0	17.4	14.0	11.6	8.7	7.0	5.8	$4 \cdot 4$
55	R_{c}	366	293	244	209	183	147	122	91.6	73.3	61.1	45.8
	V_{c}^{c} High	78.8	63.0	52.5	45.0	39.4	31.5	26.3	19.7	15.8	13.1	9.8
	V_{s}	39.4	31.5	26.2	22.5	19.7	15.8	13.2	9.8	7.9	6.6	4.9
	V Low	32.6	26. I	21.7	18. 6	16.3	13.0	10.9	8.2	6.5	5.4	4.1
60	R_{c}	328	262	219	187	16.	131	109	82.0	65.6	54.7	41.0
	$V \mathrm{Cligh}$	74.5	59.6	49.7	42.6		29.8	24.8	18.6	14.9	12.4	9.3
	$V \mathrm{~s}$	37.3	29.8	24.8	21.3	18.6	14.9	12.4	9.3	$7 \cdot 4$	6.2	$4 \cdot 7$
	V Low	30.9	24.7	20.6	17.6	15.5	12.3	10. 3	$7 \cdot 7$	6.2	5. I	3.9
65		299	240	200	171	150	120	99.8	74.8	59.9	49.9	37.4
	V_{c}^{c} High	71.2	57.0	47.5	40.7	35.6	28.5	23.7	17.8	14.2	II. 9	8.9
		35.6	28.5	23.8	20.4	17.8	14.2	II. 8	8.9	7.1	6.0	$4 \cdot 4$
	V Low	29.5	23.6	19.7	16. 9	14.7	II. 8	9.8	7.4	5.9	4.9	3.7

Table 40.
radius of critical Gurvature and velocities of gradient WINDS FOR FRICTIONLESS MOTION IN HIGHS AND LOWS.

English Measures.

$\begin{aligned} & \text { Lati- } \\ & \text { tude: } \\ & \text { De } \end{aligned}$	d (miles)											
		100	125	150	175	200	250	300	400	500	600	800
70°		278	223	86	159	139	111	92.8	69.6	55.7	46.4	$3+.8$
	$V_{c}{ }_{c}$ High	68.7	55.0	45.8	39.3	$3+3$	27.5	22.9	17.2	13.7	11.4	8.6
	V_{s}	34.3	27.5	22.9	10.6	17.2	13.8	11.4	8.6	6.8	5.7	4.3
	V Low	28.5	22.8	19.0	16.3	14.2	11.4	9. 5	7.1	5.7	4.7	3.6
75		264	211	176	151	132	105	87.9	65.9	52.7	43.9	33.0
	V_{c}^{c} High	66.8	53.5	+4. 6	38.2	33.4	26.7	22.3	16.7	13.4	11. 1	8.4
	$V_{V}{ }^{\text {s }}$ Low	33.4 27.7	26.8 22.2	22.3 18.5	19. 15 15.8	10.7 13.8	13.4 11.1	11.2 9.2	8.4 0.0	6.7 5.0	5.6 4.6	4.2 3.5
80				169			101	St. 5	63.4			
	V_{c} High	65.5	52.4	43.7	37.5	32.8	20.2	21.8	16.4	13.1	10.9	8. 2
		32.8	26.2	21.8	18.8	16.4	13.	10.0	8.2	6.6	5.4	+. 1
	V Low	27. 1	21.7	18.1	15.5	13.6	10.9	9.0	6.8	5.4	$+5$	3.4
85			108	165	142	124	09.1	S2.6	82.0	49.6	41.3	31.0
	V_{c} High	648	51.8	43.2	37.0	32.4	25.9	21.6	16.2	13.0	10.8	S. I
		32.4	25.9	22.6	18.5	16. 2	13.0	10.8	S. I	0.5	5.4	+. 0
	V Low	26.8	21.5	17.9	15.3	13.4	10.7	9	0.7	5.4	4.5	3.4
90		246	197	164	140	123	08.4	82.0	61.5	49.2	41.0	30.7
	V_{c}^{c} High	64.6	51.6	+3.0	36.9	32.3	25.8	21.5	16.1	12.0	10.8	S. I
	$V_{V}{ }^{\text {s }}$ Low	32.3 26.8	25.8	21.5	18.4	16.2	12.9	10.8	8.0	6.4	5.4	4.0
	V Low	20.8	21.4	17.5	15.3	13.4	10.7	8.9	6.7	$5 \cdot 3$	+ 5	$3 \cdot 3$

Table 41.

radius of critical curvature and velocities of gradient WINDS FOR FRICTIONLESS MOTION IN HIGHS AND LOWS.

Metric Measures.

$R_{c}=$ radius of critical curvature in kilometers. $\quad V_{c} H i g h=$ maximum speed in meters per second on isobar of critical curvature. $V_{s}=$ speed along straight line isobars $=0.5 V_{c} . V$ Low $=$ speed in Low along isobar of curvature $R_{c} . V$ Low $=0.4142 \mathrm{~V}$.

The remarks in heading of Table 40 relative to the density of the air apply equally to Table 4 I .

Lati- tude: -	d (kilometers)												
		100	125	150	175	200	250	300	400	500	600	800	
10°	R_{c}	8330	6660	5550	4760	4160	3330	2780	20So	1670	1390	10.40	
	V_{c} High	105	84.3	70.2	60.2	52.7	42.1	35.1	26.3	21.1	17.6	13.2	
	V s	52.7	42.2	35. I	30. I	26.4	21.0	17.6	13.2	106	8.8	6.6	
	V Low	$43 \cdot 5$	34.9	29.1	24.9	21.8	17.4	14.5	10.9	8.7	$7 \cdot 3$	$5 \cdot 5$	
20	R_{c}	2140	1710	r430	1220	1070	857	714	536	429	357	268	
	V_{c} High	53.5	42.8	35.6	30.5	26.7	21.4	17.8	13.4	10.7	8.9	6.7	
	V_{s}	26.7	21.4	17.8	15.2	13.4	10. 7	8.9	6.7	5.4	4.4	3.4	
	V Low	22.2	17.7	14.7	12.6	11. I	S. 9	$7 \cdot 4$	5.6	4.4	3.7	2.8	
25	R_{c}	. 1400	1120		802	702	562	468	351	281	234	175	
	$V{ }_{c} \mathrm{High}$	43.3	34.6	28.8	24.7	21.6	17.3	14.4	10.8	8.7	7.2	5.4	
	$V{ }^{\text {s }}$	21.6	17.3	14.4	12.4	10.8	8.6	7.2	5.4	4.4	3.6	2. 7	
	V Low	17.9	14.3	11.9	10.2	8.9	7.2	6.0	$4 \cdot 5$	3.6	3.0	2.2	
30	R_{C}	1003	802	669	573	501	401	334	251	201	167	125	
	V_{c} High	36.6	29.3	24.4	20.9	18.3	14.6	12.2	9.1	$7 \cdot 3$	6.1	4.6	
	V_{s}	18.3	14.6	12.2	10.4	9.2	$7 \cdot 3$	6.1	4.6	3.6	3.0	2.3	
	\\|V L Low	15.2	12. I	10. I	8.7	7.6	6.0	5. I	3.8	3.0	2.5	1.9	

Smithsonian Tables.

Table 41. RADIUS OF CRITICAL CURVATURE AND VELOCITIES OF GRADIENT WINDS FOR FRICTIONLESS MOTION IN HIGHS AND LOWS.

Metric Measures.

Latitude:	d (kilometers)											
		100	125	150	175	200	250	300	400	500	600	800
35°	R_{c}	762	610	508	435	381	305	254	191	152	127	95.3
	V_{c} High	31.9	25.5	21.3	18.2	I5.9	12.8	10.6	8.0	6.4	$5 \cdot 3$	4.0
	V_{s}	15.9	12.8	10.6	9. I	8.0	6.4	$5 \cdot 3$	4.0	3.2	2.6	2.0
	V Low	13.2	10.6	8. 8	$7 \cdot 5$	6.6	$5 \cdot 3$	4.4	$3 \cdot 3$	2.7	2.2	1. 7
40	R_{c}	607	485	405	347	303	${ }^{2} 43$	202	152	12 I	101	75.8
	V_{c} High	28.4	22.8	19.0	16.3	14.2	11.4	$9 \cdot 5$	7.1	5.7	4.7	75.8 3.6
	V_{s}	14.2	II. 4	9.5	8. 2	7.1	5.7	4.8	3.6	2.8	2.4	I. 8
	1 Low		9.4	7.9	6.8	$5 \cdot 9$	4.7	$3 \cdot 9$	2.9	2.4	I. 9	I. 5
45	R_{c}	501	401	334	287	251	201	167	125	100	83.6	62.7
	V_{c} c High	25.9	20.7	17.2	14.8	12.9	10.3	8.6	6.5	5.2	$4 \cdot 3$	3.2
	V_{s}	12.9	10.4	8.6	7.4	6.4	5.2	4.3	3.2	2.6	2. 2	I. 6
	V Low	10. 7	8.6	7.1	6.1	$5 \cdot 3$	$4 \cdot 3$	3.6	2. 7	2.2	I. 8	I. 3
50	R_{c}	427	34^{2}	285	244	214	171	142	107	85.5	71.2	53.4
	V_{c} c High	23.9	10.1	15.9	13.6	II. 9	9.5	8.0	6.0	4.8	4.0	3.0
	$V^{\text {s }}$	II. 9	9.6	8.0	6.8	6.0	4.8	4.0	3.0	2.4	2.0	I. 5
	V Low	9.9	$7 \cdot 9$	6.6	5.6	4.9	3.9	$3 \cdot 3$	2.5	2.0	1.7	I. 2
55	R_{c}	374	299	249	213	187	149	125	93.4	74.7	62.3	
	V_{c} High	22.3	17.9	$1+9$	12.8	11. 2	8.9	$7 \cdot 7$	5.6	4.5	3.7	2.8
	$V_{V}{ }^{\text {s }}$	II. 2	9.0	7.4	6.4	5.6	4.4	3.7	2.8	2.2	1.8	I. 4
	1 Low	9.2	7.4	6.2	$5 \cdot 3$	4.6	3.7	3.1	2.3	1.9	I. 5	I. 2
60	R_{c}	334	267	223	191	167	134	111	83.6	66.9	55.7	41.8
	V_{c} High	21.1	16.9	14. 1	12. 1	10.6	8.4	7.0	5.3	4.2	3.5	2.6
	V_{s}	10. 6	8.4	7.0	6.0	$5 \cdot 3$	4.2	$3 \cdot 5$	2.6	2.1	1.8	I. 3
	V Low	8. 7	7.0	5.8	5.0	$4 \cdot 4$	$3 \cdot 5$	2.9	2.2	I. 7	I. 4	I. I
65	R_{c}	305	244	20.4	174	153		102	76.3	61.0	50.9	38.2
	$V_{C} \text { High }$	20. 2	16. 1	13.4	II. 5	10. 1	8.1	6.7	5.0	4.0	3.4	2.5
	V^{s} s Low	10. I	8.0	6.7	5.8	5.0	4.0	3.4	2. 5	2.0	I. 7	I. 2
	V Low	S. 4	6.7	5.6	4.8	4.2	$3 \cdot 4$	2.8	2. I	I. 7	1.4	I. 0
70	R_{c}	284	227	189	162	142			71.0	56.8	47.3	35.5
	V_{c} High	19. 5	15.6	13.0	II. I	9.7	7.8	-6. 5	$+9$	3.9	3.2	2.4
	$V^{\text {s }}$ Low	9. 7	7.8	6.5	5.6	4.8	3.9	3.2	2.4	2.0	I. 6	1.2
	V Low	8. I	6.5	$5 \cdot 4$	4.6	4.0	3.2	2.7	2.0	1. 6	I. 3	1. 0
75	R_{c}	269	215	179	154	134			67.2	$53 \cdot 7$	44.8	33.6
	V_{c} High	18.9	15. I	I2. 6	10.8	9.5	7.6	6.3	4.7	3.8	3.2	2.4
	V_{s}	9.5	7.6	6.3	$5 \cdot 4$	4.8	3.8	3.2	2.4	I. 9	I. 6	I. 2
	V Low	7.8	6.3	5.2	4.5	3.9	3.1	2.6	1.9	I. 6	I. 3	I. 0
80	R_{c}		207	172	148	129	103	86.2	64.6	51.7	43.1	32.3
	V c High	18.6	14.9	12.4	10. 6	9.3	7.4	6.2	4.6	3.7	3. I	2.3
		9.3	7.4	6.2	53	4.6	3.7	3.1	2.3	I. 8	I. 6	I. 2
	V Low	$7 \cdot 7$	6.2	5. I	4.4	$3 \cdot 9$	3.1	2.6	I. 9	I. 5	I. 3	I. 0
85	R_{c}	25.3	202	168	144	126	101	84. 2	63.2	50.5	42.1	31.6
	V_{c} High	18.4	14.7	I 2.2	10. 5	9.2	$7 \cdot 3$	6.1	4.6	3.7	3.1	2.3
	V^{s} Low	9.2	7.4	6.1	5.2	4.6	3.6	3.0	2.3	1.8	I. 6	I. 2
	V Low	7.6	6.1	5. I	4.3	3.8	3.0	2. 5	I. 9	1. 5	1.3	I. 0
90		251	201	167	143	125	100	83.6	62.7	50. I	41.8	3 I. 3
	V_{c} High	18.3	14. 6	12.2	10.4	9.1	7.3	6.1	4.6	3.7	3.0	2.3
	$V^{\text {s }}$ Low	9.1	$7 \cdot 3$	6.1	5.2	4.6	3.6	3.0	2.3	1.8	I. 5	I. 2
	V Low	7.6	6.0	5. I	$4 \cdot 3$	3.8	3.0	2.5	1.9	I. 5	I. 2	1.0

REDUCTION OF TEMPERATURE TO SEA LEVEL.

English measures
Table 42
Metric measures Table 43

REDUCTION OF TEMPERATURE TO SEA LEVEL.
ENGLISH MEASURES.

Rate of decrease \qquad		DIF	FERE	NCES	BETW	EEN	A^{\prime}	EA	$\begin{aligned} & \mathrm{RA}^{\prime} \\ & \mathrm{EV} \end{aligned}$	URE	T AN	AL		
	ALTITUdE in feet.													
	100	200	300	400	500	600	700	800	900	1000	2000	3000	4000	5000
Feet.	F.	\bigcirc	${ }^{\circ}$	2°				F.						
200	0.50	I.oo	1.50	2.00	2.50	3.00	$3 \cdot 50$	4.00	$4^{\circ} \cdot 50$	5.00	10.00	$15^{\circ} .00$	20.00	25.00
205	0.49	0.98	1.46	I. 95	2.44	2.93	3.41	3.90	$4 \cdot 39$	4.88	9.76	14.63	19.51	24.39
210	0.48	0.95	I. 43	I. 90	2.38	2.86	3.33	3.8 I	4.29	4.76	9.52	14.29	19.05	23.81
215	0.47	0.93	I. 40	I. 56	2.33	2.79	3.26	3.72	4.19	4.65	9.30	13.95	18.60	23.26
220	0.45	0.91	1.36	1.82	2.27	2.73	3.18	3.64	4.09	4.55	9.09	13.63	18.18	22.72
230	0.43	0.87	1.30	1.74	2.17	2.61	3.04	3.48	3.91	4.35	8.70	13.04	17.39	21.74
2.40	0.42	0.83	1.25	1. 67	2.08	2.50	2.92	3.33	3.75	4.17	8.33	12.50	16.67	20.83
250	0.40	0.80	1.20	1. 60	2.00	2.40	2.80	3.20	3.60	4.00	8.00	12.00	16.00	20.00
260	0.38	0.77	I. 15	1.54	1.92	2.31	2.69	3.08	3.46	3.85	7.69	II 1.54	${ }^{1} 5.38$	19.23
270	0.37	0.74	I. II	1.48	I. 85	2.22	2.59	2.96	3.33	3.70	7.41	II.II	14.81	18.52
280	0.36	0.71	1.07	I. 43	1.79	2. 14	2.50	2.86	3.21	$3 \cdot 57$	7.14	10.71	14.29	17.86
290	0.34	0.69	1.03	1. 38	1.73	2.07	2.41	2.76	3.10	3.45	6.90	10.34	13.79	17.24
300	0.33	0.67	1.00	I. 33	1.67	2.00	2.33	2.67	3.00	3.33	6.67	10.00	13.33	16.67
310	0.32	0.65	0.97	1.29	1.61	1.94	2.26	2.58	2.90	3.23	6.45	9.68	12.90	16.13
320	0.31	0.62	0.94	I. 25	1.56	1.87	2.19	2.50	2.81	3.12	6.25	9.37	12.50	15.62
340	0.29	0.59	0.88	1. 18	1.47	1.7	2.06	2.35	2.65	2.94	5.88	8.82	11.76	14.71
36	0.28	0.5	0.83	I. II	I. 39	1.67	I. 94	2.22	2.50	2.78	5.56	8.33	I1. II	13.89
3 So	0.26	0.53	0.79	I. 05	1.32	1. 58	I. 84	2. 10	2.37	2.63	5.26	7.89	10.53	13.16
400	0.25	0.50	0.75	I. 00	1.25	1.50	I. 75	2.00	2.25	2.50	5.00	7.50	10.00	12.50
420	0.24	0.48	0.71	0.95	I. 19	1.43	1. 67	I. 90	2.14	2.38	4.76	7.14	9.52	II.90
440	0.23	0.45	0.68	0.91	I. I4	I. 36	1.59	1. 82	2.05	2.27	4.55	6.82	9.09	II 1.36
460	0.22	0.43	0.65	0.87	1.09	1.30	1.52	I. 74	I. 96	2.17	$4 \cdot 35$	6.52	8.70	10.87
480	0.21	0.42	0.62	0.83	1.04	I. 25	1.46	I. 67	1.87	2.08	4.17	6.25	8.33	10.42
500	0.20	0.40	0.60	o. 80	1.00	1.20	I. 40	1.60	1.80	2.00	4.00	6.00	8.00	10.00
520	O. 19	0.38	0.58	0.77	0.96	I. 15	1.35	I. 54	1.73	1.92	3.85	5.77	7.69	9.62
540	0.19	0.37	0.56	0.74	0.93	I. II	1.35	I. 48	1. 67	I. 85	3.70	5.56	7.41	26
560	0. 18	0.36	0.54	0.71	0.89	1.07	1.25	1.43	1.61	1.79	3.57	$5 \cdot 36$	7.14	8.93
5 So	0.17	0.34	0.52	0.69	0.86	I. 03	1.21	1.38	1.55	1.72	3.45	5.17	6.90	8.62
600	0.17	0.33	0.50	0.67	0. 83	1.00	I. 17	I. 33	I. 50	1.67	3.33	5.00	6.67	8.33
620	O. 16	0.32	0.48	0.65	0.8I	0.97	I. 13	I. 29	I. 45	1.6I	3.23	4.84	6.45	8.06
650	O. 15	0.31	0.46	0.62	0.77	0.92	J.08	1.23	1.38	I. 54	3.08	4.62	6.15	7.69
700	0.14	0.29	0.43	0.57	0.71	0.86	1.00	I. 14	1.29	I. 43	2.86	4.29	5.71	7.14
750	0. 13	0.27	0.40	0.53	0.67	0.80	0.93	1.07	1.20	I. 33	2.67	4.00	5.33	6.67
00	0.12	0.25	0.37	0.50	0.62	0.75	0.87	1.00	I. 12	I. 25	2.50	3.75	5.00	6.25
850	0.12	0.24	0.35	0.47	0.59	0.71	0.82	0.94	1.06	1. 18	2.35	3.53	4.71	5.88
900	O. I I	0.22	0.33	0.44	0.56	0.67	0.78	0.89	1.00	I. II	2.22	3.33	4.44	$5 \cdot 56$

Tabular values are to be added to the observed temperature to obtain the temperature at sea level.

REDUCTION OF TEMPERATURE TO SEA LEVEL. METRIC MEASURES.

Rate of decrease of temperature. $i^{\circ} \mathrm{C}$. forevery	DIFFERENCES											
	ALTITUDE IN METERS.											
	100	200	300	400	500	600	700	800	900	1000	2000	3000
$\begin{array}{r} \mathrm{m} \\ 100 \end{array}$	$\begin{gathered} \text { c. } \\ \text { I.Oo } \end{gathered}$	$\begin{aligned} & \text { c. } \\ & 2.00 \end{aligned}$	$\begin{gathered} \text { c. } \\ 3.00 \end{gathered}$	$\begin{gathered} c . \\ 4: 00 \end{gathered}$	c. 5.00	$\begin{gathered} c . \\ 6: 00 \end{gathered}$	$\begin{gathered} \text { c. } \\ 7.00 \end{gathered}$	c. 8.00	C.	c.		
102	0.98	1.96	2.94	92	4.90	5.88	6.86	7.84	8.82	9.80	19.61	
104	0.96	1.92	2.88	3.85	4.81	5.77	6.73	7.69	8.65	9.62	19.23	28.85
106	0.94	1. 89	2.83	3.77	4.72	5.6 ¢́	6.60	$7 \cdot 55$	8. 49	9.43	18.87	28.30
Io8	0.93	1.85	2.78	3.70	4.63	5.56	6.48	7.41	S. 33	9.26	18.52	27.78
110	0.91	1.82	2.73	3.64	4.55	5.45	6.36	7.27	8.18	9.09	I8.18	27.27
II5	0.87	1.74	2.61	3.48	4.35	5.22	6.09	6.96	7.83	8.70	17.39	26.09
120	0.83	1.67	2.50	3.33	4. 17	5.00	5.83	6.67	7.50	8.33	16.67	25.00
125	0.8o	1.60	2.40	3.20	4.00	4.80	5.60	6.40	7.20	8.00	16.00	24.00
130	0.77	1.54	2.31	3.08	3.85	4.62	5.38	6.15	6.92	7.69	15.38	23.08
135	0.74	1.48	2.22	2.96	3.70	4.44	5.19	5.93	6.66	7.41	14.8I	22.22
140	0.71	1.43	2.14	2.86	3.57	4.29	5.00	5.7 I	6.43	7.14	14.29	21.43
145	0.69	1.38	2.07	2.76	3.45	4. 14	4.83	$5 \cdot 52$	6.21	6.90	13.79	20.69
150	0.67	1.33	2.00	2.67	3.33	4.00	4.67	$5 \cdot 33$	6.00	6.67	13.33	20.00
${ }^{1} 55$	0.65	1.29	1.94	2.58	3.23	3.87	$4 \cdot 52$	5.16	5.8 I	6.45	12.90	19.35
160	0.62	I. 25	1.87	2.50	3.12	$3 \cdot 75$	$4 \cdot 37$	5.00	5.62	6.25	12.50	18.75
170	0.59	I. I8	1.76	2.35	2.94	3.53	4. 12	4.70	5.29	5.88	11.76	17.65
I 80	0.56	I.II	1.67	2.22	2.78	3.33	3.89	4.44	5.00	5.56	II. I I	16.67
190	0.53	1.05	1.58	2.10	2.63	3.16	3.68	4.2 I	4.74	5.26	10.53	I 5.79
200	0.50	1.00	I. 50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	10.00	I 5.00
210	0.48	0.95	I. 43	1.90	2.38	2.86	$3 \cdot 33$	3.8 I	4.29	4.76	9.52	14.29
220	0.45	0.91	1. 36	1.82	2.27	2.73	3.18	3.64	4.09	4.55	9.09	13.64
230	0.43	0.87	I. 30	1.74	2.17	2.61	3.04	3.48	3.91	4.35	8.70	13.04
2.40	0.42	0.83	1.25	1.67	2.08	2.50	2.92	3.33	3.75	4.17	8.33	12.50
250	0.40	0.80	I. 20	1.60	2.00	2.40	2.80	3.20	3.60	4.00	8.00	12.00
260	0.38	0.77	I. 15	1.54	1.92	2.31	2.69	3.08	3.46	3.85	7.69	I I 5.54
270	0.37	0.74	I.II	1.48	1.85	2.22	2.59	2.96	3.33	3.70	7.41	II. II
280	0.36	0.71	1.07	1.43	1.79	2.14	2.50	2.86	3.21	3.57	7.14	10.71
290	0.34	0.69	1.03	1.38	1.72	2.07	2.41	2.76	3.10	3.45	6.90	10.34
300	0.33	0.67	1.00	1.33	1.67	2.00	2.33	2.67	3.00	3.33	6.67	10.00
320	0.31	0.62	0.94	1.25	1.56	r. 87	2. 19	2.50	2.81	3.12	6.25	9.37
340	0.29	0.59	0.88	I. 18	1.47	1. 76	2.06	2.35	2.65	2.94	5.88	8.82
360	0.28	0.56	0. 83	I.II	1.39	1.67	1.94	2.22	2.50	2.78	5.56	8.33
3 So	0.26	0.53	0.79	1.05	I. 32	I. 58	I. 84	2.10	2.37	2.63	5.26	7.89
400	0.25	0.50	0.75	1.00	1.25	I. 50	1.75	2.00	2.25	2.50	5.00	7.50
420	0.24	0.48	0.71	0.95	I. 19	I. 43	1.67	I. 90	2.14	2.38	4.76	7.14
440	0.23	0.45	0.68	0.91	I. 14	I. 36	I. 59	1.82	2.05	2.27	4.55	6.82
460	0.22	0.43	0.65	0.87	1.09	1.30	I. 52	1.74	1.96	2.17	4.35	6.52
480	0.21	0.42	0.62	0.83	1.04	I. 25	I. 46	1. 67	1.87	2.08	4.17	6.25
500	0.20	0.40	0.60	0. 80	1.00	I. 20	1. 40	1.60	I. 80	2.00	4.00	6.00

Tabular values are to be added to the observed temperature to obtain
the temperature at sea level.

REDUCTION OF BAROMETER READINGS TO STANDARD UNITS

Reduction of the barometer to standard temperature-Table 44
Metric measures Table 45
Reduction of the mercurial column to standard temperature. (For U-shaped manometers with hrass scales.)
English measures Table 46
Metric measures Table 47
Reduction of the mercurial barometer to standard gravity.
Direct reduction from local to standard gravity Table 48
Reduction through variation with latitude-
English measures Table 49
Metric measures Table 50

Table 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther. mometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5
$\begin{array}{r} \text { F. } \\ 0.0 \end{array}$	$\begin{gathered} \text { Inch. } \\ \text { +o.050 } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.05 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.052 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.053 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.055 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.056 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.057 \end{gathered}$	$\begin{gathered} \text { Inclı. } \\ +0.059 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.060 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.061 \end{array}$
$+0.5$	+0.049	+0.050	+0.05I	+0.053	+0.054	+0.055	+0.056	+0.058	+0.059	$+0.060$
1.0	. 048	. 049	. 050	. 052	. 053	. 054	. 055	. 057	. 058	. 059
1.5	. 047	. 048	. 049	.05I	. 052	. 053	. 054	. 056	. 057	. 058
2.0	. 046	. 047	. 049	. 050	.05I	.0,52	. 053	. 055	. 056	. 057
2.5	. 045	. 046	. 048	. 049	. 050	.05I	. 052	. 054	. 055	. 056
3.0	+0.044	+0.046	+0.047	+0.048	+0.049	+0.050	+0.05I	+0.053	+0.054	+0.055
3.5	. 043	. 045	. 046	. 047	. 048	. 049	. 050	.05I	. 053	. 054
4.0	. 043	. 044	. 045	. 046	. 047	. 048	. 049	. 050	. 052	. 053
4.5	. 042	. 043	. 044	.045	. 046	. 047	. 048	. 049	.05I	. 052
5.0	.04I	. 042	. 043	. 044	. 045	. 046	. 047	.048	. 049	.05I
5.5	+0.040	+0.04I	$+0.042$	+0.043	+0.044	$+0.045$	+0.046	+0.047	+0.048	+0.049
6.0	. 039	. 040	. 041	. 042	. 043	. 044	. 045	. 046	. 047	. 0.48
6.5	. 038	. 039	. 040	.04I	. 042	. 043	. 0.44	. 045	. 046	. 047
7.0	. 037	. 038	. 039	. 040	. 041	. 042	. 043	. 044	. 045	. 046
7.5	. 037	. 038	.038	. 039	. 040	.04I	. 042	. 043	. 044	. 045
8.0	+0.036	+0.037	$+0.038$	+0.038	+0.039	+0.040	+0.04I	+0.042	+0.043	+0.044
8.5	. 035	. 036	. 037	. 038	. 038	. 039	. 040	. 041	. 042	. 043
9.0	. 034	. 035	. 036	. 037	. 038	. 038	. 039	. 040	. 041	. 042
9.5	. 033	. 034	. 035	. 036	. 037	. 037	. 038	. 039	. 040	.04I
10.0	. 032	. 033	. 034	. 035	. 036	. 036	. 037	. 038	. 039	. 040
10.5	+0.031	$+0.032$	+0.033	+0.034	+0.035	+0.035	+0.036	$+0.037$	+0.038	+0.039
11.0	. 030	. 031	. 032	. 033	. 034	. 034	. 035	. 036	. 037	. 038
11.5	. 030	. 030	. 031	. 032	. 033	. 034	. 034	. 035	. 036	. 037
12.0	. 029	. 030	. 030	.03I	. 032	. 033	. 033	. 034	. 035	. 036
12.5	. 028	. 029	. 029	. 030	. 031	. 032	. 032	.033	. 034	.c34
13.0	+0.027	$+0.028$	+0.028	+0.029	+0.030	+0.03I	+0.03I	+0.032	+0.033	+0.033
13.5	. 026	. 027	. 028	. 028	. 029	. 030	. 030	.03I	. 032	. 032
14.0	. 025	. 026	. 027	. 027	. 028	. 029	. 029	. 030	. 031	.03I
14.5	. 024	. 025	. 026	. 026	. 027	. 028	. 028	. 029	. 030	. 030
15.0	. 024	. 024	. 025	. 025	. 026	. 027	. 027	. 028	. 029	. 029
15.5	+0.023	+0.023	+0.024	$+0.024$	+0.025	+0.026	+0.026	+0.027	$+0.027$	+0.028
16.0	. 022	. 023	. 023	. 024	. 024	. 025	. 025	. 026	. 226	. 027
16.5	. 021	. 022	. 022	. 023	. 023	. 024	. 024	. 025	. 025	. 026
17.0	. 020	. 021	. 021	. 022	. 022	. 023	. 023	.02.4	. 024	. 025
17.5	. 019	. 020	. 020	. 02 I	. 021	. 022	. 022	. 023	. 023	. 024
18.0	+0.018	+0.019	+0.019	+0.020	$+0.020$	$+0.021$	+0.02I	+0.022	+0.022	$+0.023$
18.5	. 017	. 018	. 018	. 019	. 019	. 020	. 020	. 021	. 021	. 022
19.0	. 017	. 017	. 018	. 018	. 018	. 019	. 019	. 020	. 020	. 02 I
19.5	. 016	. 016	. 017	. 017	. 017	. 118	.oi8	. 019	. 019	. 020
20.0	. 15	. 015	.or6	.or6	. 016	. 017	. 017	. 118	. 018	. 018
20.5	+0.014	+0.014	+0.015	+0.015	+0.016	+0.016	+0.016	+0.017	+0.017	+0.017
21.0	. 013	. 014	. O 4	. 014	. 015	. 015	. 015	. 016	. 016	. 016
21.5	. OI 2	. 013	. 013	.OI3	.oI4	. 014	.OI4	. 015	. 015	. 015
22.0	. OII	. 012	. OI 2	. 012	.OI3	. 013	. 13	. 014	.OI4	. 014
22.5	.OII	. OII	. 01 II	.OII	. 012	.OI2	. 012	. 013	. OI 3	. 1213
23.0	+0.010	+0.010	+0.010	+0.010	+0.011	+0.011	+0.011	+0.012	+0.012	+0.012
23.5	. 009	. 009	. 009	. 010	. 010	. 010	. 010	. 011	. OI I	. OII
24.0	. 008	. 008	. 008	. 009	. 009	. 009	. 009	. 010	. 010	. 010
24.5	. 007	. 007	. 008	.008	.008	. 008	. 008	. 009	. 009	. 009
25.0	. 006	. 006	. 007	. 007	. 007	. 007	. 007	. 008	. 008	. 008

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
heit.	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5
$\begin{array}{r} \text { F. } \\ 25: 5 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.005 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ + \text { + } .006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ \text {--0.006 } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ + \text { o.006 } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.006 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.007 \end{array}$	Inch. -0.007
26.0	. 005	. 005	. 005	. 005	. 005	.005	. 005	. 005	. 005	. 006
26.5	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 005
27.0	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
27.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
28.0	+0.001	+0.001	+0.001	+0.001	+0.001	+o.0nt	+0.001	+0.001	+0.001	+0.001
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 002	. 002	. 002	. 003	.003	. 003	. 003	. 003	. 003	. 003
30.5	-0.003	-0.003	-0.003	-0.003	-0.004	-0.004	-0.004	-0.004	-0.00. 4	-0.034
31.0	. 004	. 004	. 004	. 004	. 005	. 005	. 005	. 005	. 005	. 005
31.5	. 005	. 005	. 005	. 005	.005	. 006	. 006	. 006	. 006	. 006
32.0	. 006	. 006	. 006	. 006	. 006	. 007	. 007	. 007	. 007	. 007
32.5	. 007	. 007	. 007	. 007	. 007	. 008	. 008	. 008	. 008	. 008
33.0	-0.008	-0.008	-0.008	-0.008	-0.008	-0.009	-0.009	-0.009	-0.009	-0.009
33.5	. 008	. 009	. 009	. 009	.009	. 010	. 010	. 010	. O IO	. 010
34.0	.009	. 010	. OIO	. OIO	. 010	. OIO	. OII	. OI 1	. OII	. 011
34.5	. 010	. 010	. OI I	. OI I	. 011	. OII	.OI 2	. 012	.OI 2	. 013
35.0	. OII	. OII	.OI2	.OI 2	. 012	.OI2	. OI 3	. O 3	.OI3	. 014
35.5	-O.OI 2	-0.012	-0.012	-0.013	-0.013	-0.013	-0.014	-0.014	-0.014	-0.015
36.0	. 013	. 013	. OI 3	.or 4	. 114	. 014	. 015	. 015	. 015	. 016
36.5	. 014	. 014	.or4	. 15	.oI5	. 15	. 016	. 016	. 016	. 017
37.0	.or4	. OI 5	.oI 5	. 016	. 016	. 16	. 017	. 017	. 017	.oi8
37.5	.O15	. 016	.or6	. 017	.017	. OI 7	. or 8	. 018	.oI9	. 019
38.0	-0.016	-0.017	-0.017	-0.017	-0.018	-0.018	-0.019	-0.019	-0.020	-0.020
38.5	. 017	. 017	. 018	. 018	. 019	.oI9	. 020	. O 2 O	. O 21	. O 2 I
39.0	.oI8	. 018	.OI9	. 019	. 020	. 020	. O 2 I ,	. 221	. 022	. 022
39.5	. 019	. 019	. 020	. 020	. 02 I	. O 2 I	. 022	. 022	. 023	. 023
40.0	. 020	. 020	. 021	. 021	. 022	. 022	. 023	. 023	. 02.4	. 024
40.5	-0.020	-0.021	-0.022	-0.022	-0.023	-0.023	-0.024	-0.024	-0.025	-0.025
41.0	. 02 I	. 022	. 022	. 023	. 024	. 024	. 025	. 025	. 026	. 026
41.5	. 022	. 023	. 023	. 024	. 025	. 025	. 026	. 026	. 027	. 027
42.0	. 023	. 024	. 024	. 025	. 025	. 026	. 027	. 027	. 028	. 029
42.5	. 024	. 025	. 025	. 026	. 026	. 027	. 028	. 028	. 029	. 030
43.0	-0.025	-0.025	-0.026	-0.027	-0.027	-0.028	-0.029	-0.029	-0.030	-0.031
43.5	. 026	. 026	. 027	. 028	. 028	. 029	. 030	. 030	. 03 I	. 032
44.0	. 026	. 027	. 028	. 029	. 029	. 030	. 03 t	. O I	. 032	. 033
44.5	. 027	. 028	. 029	.030	.030	.03I	.032	. 032	. 033	. 034
45.0	. 028	. 029	. 030	. 030	. 031	. 032	. 033	. 033	. 034	. 035
45.5	-0.029	-0.030	-0.03I	-0.031	-0.032	-0.033	-0.034	-0.034	-0.035	-0.036
46.0	. 030	. 03 I	.03I	. 032	. 033	.034	. 035	. 035	. 036	. 037
46.5	.03I	. 032	. 032	. 033	. 034	. 035	. 036	. 036	. 037	.038
47.0	. 032	. 032	. 033	. 034	. 035	.036	. 037	. 037	.03S	. 039
47.5	. 033	. 033	. 034	. 035	. 036	. 037	.038	.038	. 039	. 040
48.0	-0.033	-0.034	-0.035	-0.036	-0.037	-0.038	-0.039	-0.0.40	-0.040	-0.041
48.5	. 034	. 035	. 036	. 037	.038	. 039	. 040	. 041	. 041	. 042
49.0	. 035	. 036	. 037	. 038	. 039	. 040	. 041	. 042	. 042	. 043
49.5	.036	. 037	. 038	. 039	. 040	. 0.41	. 042	. 043	. 044	. 044
50.0	. 037	.038	. 039	. 040	.041	. 042	. 043	. 044	0. 45	. 046

Table 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES

Attached Thermometer Fahrenheit.	HEIGHT OF THE, BAROMETER IN INCIESS.									
	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5
$\stackrel{F}{\text { F. }}$	Inch.	Inch	Iuch.							
50.5	-0.038	-0.039	-0.040	-0.0.41	-0.042	-0.043	-0.044	-0.045	-0.0.46	-0.047
51.0	. 039	. 040	. 041	. 042	. 043	.044	. 045	. 046	0.47	. 048
51.5	. 039	. 040	. 0.41	. 0.42	. 044	. 045	. 046	. 047	. 048	. 0.49
52.0	.040	.04I	. 042	. 043	. 044	. 046	. 047	. 048	. 049	. 050
52.5	. 041	. 042	. 0.43	. 044	. 045	. 047	.048	. 049	. 050	. 051
53.0	-0.042	-0.043	-0.044	-0.045	-0.046	-0.047	-0.049	-0.050	-0.05 I	-0.052
53.5	. 043	. 044	. 045	. 046	. 047	. 048	. 050	. 051	. 052	. 053
54.0	. 044	. 045	. 046	. 047	. 048	. 049	. 051	. 052	. 053	. 054
54.5	.0.45	. 046	. 047	. 048	. 049	. 050	. 052	. 053	. 054	. 055
55.0	. 045	. 047	.048	. 049	. 050	. 051	. 053	. 054	. 055	. 056
55.5	-0.046	-0.047	-0.049	-0.050	-0.05 I	-0.052	-0.054	-0.055	-0.056	-0.057
56.0	. 047	. 048	. 050	. 051	. 052	. 053	. 055	. 056	. 057	. 058
56.5	. 048	. 049	. 050	. 052	. 053	. 054	. 056	. 057	. 058	. 059
57.0	. 049	. 050	. 051	. 053	. 054	. 055	. 057	. 058	. 059	.060
57.5	. 050	. 051	. 052	. 054	. 055	. 056	.058	. 059	. 060	.06I
58.0	-0.05I	-0.052	-0.053	-0.055	-0.056	-0.057	-0.059	-0.060	-0.06I	-0.063
58.5	.05I	. 053	. 054	. 055	. 057	.05'	. 060	. 061	. 062	. 064
59.0	. 052	. 054	. 055	. 056	. 058	. 059	. 061	. 062	. 063	. 065
59.5	. 053	. 055	. 056	. 057	. 059	. 060	.06I	. 063	. 064	. 066
60.0	.054	. 055	. 057	.058	. 060	.06I	. 062	. 064	. 065	. 067
60.5	-0.055	-0.056	-0.058	-0.059	-0.06I	-0.062	-0.063	-0.065	-0.066	-0.068
61.0	. 056	. 057	. 059	. 060	. 062	. 063	. 064	. 066	. 067	. 069
61.5	. 057	.058	. 060	.06I	. 062	. 064	.065	. 067	. 068	. 070
62.0	. 057	. 059	. 060	. 062	. 063	. 065	. 066	. 068	.069	. 071
62.5	.058	. 060	.06I	. 063	. 064	. 066	. 067	. 069	.07I	. 072
63.0	-0.059	-0.06I	-0.062	-0.064	-0.065	-0.067	-0.068	-0.070	-0.072	-0.073
63.5	. 060	. 062	. 063	. 065	. 066	0.68	. 069	. 071	. 073	.074
64.0	. 061	. 062	. 064	. 066	. 067	. 069	. 070	. 072	. 074	. 075
64.5	. 062	. 063	. 065	. 067	. 068	. 070	.071	. 073	. 075	. 076
65.0	. 063	.064	. 066	. 067	. 069	. 071	. 072	. 074	. 076	. 077
65.5	-0.063	-0.065	-0.067	-0.068	-0.070	-0.072	-0.073	-0.075	-0.077	-0.078
66.0	. 064	. 066	. 068	. 069	. 071	. 073	. 074	. 076	.078	. 079
66.5	. 065	. 067	. 069	. 070	. 072	. 074	. 075	. 077	. 079	.08I
67.0	. 066	. 068	. 069	.071	. 073	. 075	. 076	. 078	. 080	.082
67.5	. 067	. 069	. 070	. 072	. 074	. 076	. 077	. 079	.08I	.083
68.0	-0.068	-0.069	-0.071	-0.073	-0.075	-0.077	-0.078	-0.08o	-0.082	-0.084
68.5	. 069	. 070	. 072	. 074	. 076	. 078	. 079	.08I	.083	.oS5
69.0	.069	. 071	. 073	. 075	. 077	. 079	.080	. 082	. 084	.086
69.5	.070	. 072	. 074	. 076	. 078	. 079	.08I	. 083	. 085	.087
70.0	. 071	. 073	. 075	. 077	. 079	.oso	.082	. 084	. 086	. 088
70.5	-0.072	-0.074	-0.076	-0.078	-0.080	-0.08I	-0.083	-0.085	-0.087	-0.089
71.0	. 073	. 075	. 077	. 079	. 080	.082	. 084	.086	. 088	. 090
71.5	. 074	. 076	. 078	. 079	. OS I	.083	.085	. 087	.o89	.09I
72.0	. 075	. 076	. 078	. 080	. 082	.084	. 086	. 088	. 090	. 092
72.5	. 075	. 077	. 079	.OSI	.o83	.085	.087	. 089	.09I	. 093
73.0	-0.076	-0.078	-0.080	-0.082	$-\mathrm{o.OS} 4$	-0.086	-0.088	-0.090	-0.092	-0.094
73.5	. 077	.079	.OSI	. 083	.085	. 087	.089	. 091	. 093	. 095
74.0	. 078	. OSO	.082	.084	. 086	. 088	. 090	. 092	. 09.4	.096
74.5	.079	.08I	.083	.o85	.087	.089	.09I	. 093	. 095	. 097
75.0	.oSo	.082	.084	. 086	.os8	. 090	. 092	. 094	. 096	. 099

Table 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Table 44.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGITT OF T									
Fahrenheit.	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
$\begin{gathered} \text { F. } \\ 0^{\circ} .0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.063 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.063 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.064 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.064 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.065 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.065 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.066 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ \div 0.066 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.067 \end{array}$	$\begin{gathered} \text { Inch. } \\ +0.067 \end{gathered}$
+0.5	to.061	+0.062	+0.063	+0.063	+0.064	+0.064	+0.005	$+0.065$	+0.066	+0.066
1.0	. 060	.06I	I .06I	. 062	. 062	.063	. 063	. 064	. 064	. 065
1.5	. 059	. 060	.060	.06I	.06I	.062	. 062	.063	. 063	.064
2.0	. 058	. 059	. 059	. 060	. 060	.06I	.06I	.062	.062	. 063
2.5	. 057	. 058	. 058	. 059	. 059	. 059	. 060	.060	.06I	.06I
3.0	+0.056	+0.056	+0.057	+0.057	+0.058	+0.05S	+0.059	+0.059	+0.060	+0.060
$3 \cdot 5$. 055	. 055	. 056	. 056	. 057	.057	. 058	. 058	. 059	. 059
4.0	. 054	. 054	. 055	. 055	. 056	. 056	. 057	. 057	. 057	. 058
4.5	. 053	. 053	. 054	. 054	. 054	.055	. 055	. 056	. 056	. 057
5.0	.052	. 052	.052	. 053	.053	. 054	. 054	. 055	. 055	. 056
5.5	+0.05I	+0.05I	+0.05I	$+0.052$	+0.052	+0.053	+0.053	+0.053	+0.054	+0.054
6.0	. 049	. 050	. 050	. 051	. 051	. 052	. 052	. 052	. 053	. 053
6.5	.048	. 049	. 049	. 050	. 050	. 050	.051	. 051	. 052	. 052
7.0	. 047	. 048	. 048	. 048	. 049	. 049	. 050	. 050	. 050	. 05 I
7.5	.046	. 047	. 047	.0 .47	.048	.048	. 048	. 049	. 049	. 050
8.0	+0.045	+0.045	$+0.046$	+0.0.46	+0.047	+0.047	+0.047	+0.048	+0.048	+0.048
8.5	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 047	. 0.47	. 047
9.0	. 043	. 043	. 044	. 044	. 044	.045	. 045	. 045	. 046	.046
9.5	.042	. 042	. 042	. 0.43	. 043	. 044	. 044	. 044	. 0.45	. 045
10.0	.041	.04I	.041	. 0.42	. 042	. 042	. 043	. 043	. 043	. 044
10.5	+0.040	+0.040	$+0.040$	+0.041	+0.04I	+0.04I	+0.042	+0.0.42	+.0.042	+0.043
I 1.0	. 039	. 039	. 039	. 039	. 040	. 040	. 040	.04I	. 041	. 041
II. 5	. 037	.038	. 038	.038	. 039	. 039	. 039	. 040	. 040	. 040
12.0	. 036	.037	. 037	.037	. 038	.038	. 038	. 038	.039	. 039
12.5	.035	.036	.036	.036	. 036	.037	. 037	. 037	. 038	.038
13.0	+0.034	+0.034	$+0.035$	+0.035	+0.035	$+0.036$	+0.036	$+0.036$	$+0.036$	+0.037
I 3.5	. 033	. 033	. 034	. 034	. 034	.034	. 035	. 035	. 035	. 036
14.0	. 032	.O32	. 032	. 033	. 033	. 033	. 034	. 034	. 034	. 034
14.5	.O3I	.O3I	. 031	. 032	. 032	. 032	. 032	. 033	. 033	. 033
I 5.0	. 030	.030	.030	.030	.03I	.O3I	. O 3 I	. 031	. 032	. 032
15.5	+0.029	$+0.029$	$+0.029$	$+0.029$	+0.030	$+0.030$	+0.030	+0.030	+0.03I	$+0.031$
I6.0	.028	.028	. 028	.028	. 028	. 029	. 029	. 029	. 029	. 030
16.5	. 026	. 027	. 027	.027	. 027	. 028	. 028	. 028	. 028	. 023
I7.0	. 025	. 026	. 026	.026	. 026	. 026	. 027	. 027	. 027	.027
I7.5	. 024	. 024	. 025	.025	. 025	. 025	. 026	. 026	. 026	. 026
18.0	+0.023	+0.023	+0.024	+0.024	+0.024	+0.024	+0.024	+0.025	+0.025	$+0.025$
18.5	. 022	. 022	. 022	.023	. 023	. 023	. 023	. 023	. 024	. 024
19.0	. O 2 I	. 021	. 021	. 022	. 022	. 022	.022	. 022	. 022	. 023
19.5	. 020	. 020	. 020	. 022	. O 2 I	. 021	. 021	. 021	. 02 I	. O 2 I
20.0	. 019	. 019	.OI9	.OI9	. OI9	. 020	. 020	. O 20	. 020	. 020
20.5	t-0.018	+0.018	+O.OIS	+0.018	+0.018	$+0.018$	+0.019	+0.019	to.019	+0.019
21.0	.OI7	. 017	. O17	. 017	. OI7	.OI7	. O17	. 18	. 018	. OIS
2 I .5	. 016	.OI6	. 016	.016	. 016	.OI6	. O16	.OI6	.O17	.OI 7
22.0	. 014	.OIE	. 015	. 015	.OI5	.OI5	. 015	. OI5	.015	. 016
22.5	.OI3	.OI3	.OI4	. 014	.OI4	.OI4	. OI4	. OI4	.OI4	. 014
23.0	+0.012	+0.012	+0.012	+0.013	+0.013	+0.013	+0.013	+0.013	+0.013	+0.013
23.5	. OII	.OII	. OII	.OII	. OI 2	. OI 2	.OI2	.OI2	.OI2	. OI2
24.0	. 010	. O1O	. 010	. 010	. 010	. OII	. OII	.OII	.OII	.OII
24.5	. 009	. 009	. 009	. 009	. 009	. 009	. OC9	. 010	. 010	. 010
25.0	. 008	. 008	.008	. 008	. 008	. 008	. or 8	. 008	. 008	. 009

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
$\begin{gathered} \text { F. } \\ 25.5 \end{gathered}$	Inch. +0.007	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	Inch. +0.007	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	Inch. +0.007	Inch. $+0.007$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	Inch. $+0.007$	Inch.	Inch.
26.0	+0.007 .006	+0.007 .006	+0.007 .006	+0.007 .006	+0.007 .006	+0.007 .006	+0.007 .006	+0.007 .006	0.007 .006	0.007 .006
26.5	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005
27.0	. 004	.004	.004	. 004	. 004	. 004	. 004	. 004	. 004	. 004
27.5	. 002	. 002	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
28.0	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.00I	+0.001	+0.001
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	0.001	0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
30.5	-0.004	-0.004	-0.004	0.004	0.004	0.004	0.004	-0.004	0.004	-0.004
31.0	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 006	. 006
31.5	. 006	. 006	. 006	. 006	. 006	. 007	. 007	. 007	. 007	. 007
32.0	. 007	. 007	. 007	.008	. 008	. 008	. 008	. 008	.008	. 008
32.5	. 008	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009
33.0	0.010	0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010
33.5	. 111	. OII	. 011	. 011	. 01 I	. 011	. 011	. OI 1	. OI	. OI 1
34.0	. 012	. OL 2	. 012	. 012	.OI2	.OI2	. 012	. 012	. 012	. 013
34.5	.013	. 013	. 013	. 013	. 013	. 13	. 013	. 014	. 014	. 014
35.0	. 014	. 014	. 014	. 014	.OI4	. 014	. 015	. 015	. O 5	. 015
35.5	-0.015	-0.015	-0.015	-0.015	-0.015	-0.016	-0.016	-0.016	-0.016	-0.016
36.0	. 016	. 016	. 016	. 016	. 017	. 017	. 017	. 017	. 017	. 017
36.5	. 017	. 017	. 017	. 018	. 018	. 018	. 018	. 018	. 018	.or8
37.0	. 018	. OI 8	. 019	.O19	. 019	. 019	.O19	.019	. 019	.019
37.5	. 019	. 019	. 020	. 020	. 020	. 020	. 020	. 020	. 02 I	. 021
38.0	0.020	-0.021	-0.02 J	-0.021	-0.021	-0.021	-0.021	-0.022	-0.022	-0.022
38.5	I	. 022	22	. 022	. 022	. 022	. 023	. 023	. 023	. 023
39.0	. 023	. 023	. 023	. 023	. 023	. 024	. 024	. 024	. 024	. 024
39.5	. 024	. 024	. 024	. 024	. 024	. 025	. 025	. 025	. 025	. 025
40.0	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026	. 026	. 027
40.5	-0.026	-0.026	-0.026	-0.026	-0.027	-0.027	-0.027	-0.027	-0.028	-0.028
41.0	. 027	. 027	. 027	. 028	. 028	. 028	. 028	. 029	. 029	. 029
41.5	. 028	. 028	. 028	. 029	. 029	. 029	. 029	. 030	. 030	. 030
42.0	. 029	. 029	. 030	. 030	. 030	. 030	.03I	. 031	. 031	. 031
42.5	. 030	. 030	. 031	. 031	. 031	.03I	. 032	. 032	. 032	. 032
43.0	-0.031	-0.032	-0.032	-0.032	-0.032	-0.033	-0.033	-0.033	-0.033	-0.034
43.5	. 032	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 035	. 035
44.0	. 033	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 036	. 036
44.5	. 035	. 035	. 035	. 035	. 036	. 036	. 036	. 037	. 037	. 037
45.0	. 036	. 036	. 036	. 037	. 037	. 037	. 037	. 038	.038	. 038
45.5	-0.037	-0.037	-0.037	-0.038	-0.038	-0.038	-0.039	-0.039	-0.039	-0.039
46.0	. 038	. 038	. 038	. 039	. 039	. 039	. 040	. 040	. 040	. 041
46.5	. 039	. 039	. 040	. 040	. 040	.04I	. 041	.041	. 041	. 042
47.0	. 040	. 040	. 041	.04I	.04I	. 042	. 042	. 042	. 043	. 043
47.5	.04I	. 041	. 042	. 042	. 042	. 043	. 043	. 043	. 044	. 044
48.0	-0.042	-0.042	-0.043	-0.043	-0.044	-0.044	-0.044	-0.045	-0.045	-0.045
48.5	. 043	. 044	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046
49.0	. 044	. 045	. 045	. 045	. 046	. 046	. 047	. 047	. 047	. 048
49.5	. 045	. 046	. 046	. 047	. 047	. 047	. 048	. 048	. 048	. 049
50.0	. 046	. 047	. 047	. 048	. 048	.048	. 049	. 049	. 050	. 050

Table 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGIIT OF THI: BAROMETER IN INCHES.									
Fahren- heit.	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
F.	Inch.	Inch.	Iuch.	Inch.	Inch.	Iuch.	Inch.	Inch.	Inch.	Inch.
50.5	-0.048	-0.0.48	-0.0.48	-0.049	-0.0.49	-0.050	-0.050	-0.050	-0.05I	0.051
51.0	. 049	. 049	. 049	. 050	. 050	. 051	. 05 I	. 051	. 052	. 052
51.5	. 050	. 050	.05I	.051	. 051	. 052	. 052	. 053	. 053	. 053
52.0	.051	. 051	. 052	. 052	. 053	. 053	. 053	. 054	. 054	. 055
52.5	.052	. 052	. 053	. 053	. 054	. 054	. 055	. 055	. 055	. 056
53.0	-0.053	-0.053	-0.054	-0.054	-0.055	-0.055	-0.056	-0.056	-0.057	-0.057
53.5	. 054	. 055	. 055	. 055	. 056	. 056	. 057	. 057	. 058	. 058
54.0	.055	. 056	.056	.057	.057	. 057	. 058	.058	. 059	. 059
54.5	. 056	. 057	. 057	.058	. 058	. 059	. 059	. 060	. 060	. 060
55.0	. 057	. 058	.058	. 059	. 059	. 060	. 060	. 061	.06I	. 062
55.5	-0.05 ${ }^{\text {S }}$	-0.059	-0.059	-0.060	-0.060	-0.061	-0.061	-0.062	-0.062	-0.063
56.0	. 060	. 060	. 060	. 061	. 061	. 062	. 062	. 063	. 063	. 064
56.5	.06I	. 061	. 062	. 062	. 063	.063	. 064	. 064	. 065	. 065
57.0	. 062	. 062	.063	.063	. 064	. 064	. 065	. 065	. 066	. 066
57.5	. 063	. 063	. 064	. 06.4	. 065	. 065	. 066	. 066	. 067	.067
58.0	-0.064	-0.064	-0.065	-0.065	-0.066	-0.066	-0.067	-0.068	-0.06S	-0.069
58.5	. 065	. 065	. 066	. 067	. 067	. 068	. 068	. 069	. 069	.070
59.0	. 066	. 067	. 067	. 068	.06S	.069	. 069	. 070	. 070	. 071
59.5	.067	. 068	. 068	. 069	. 069	. 070	. 070	. 071	.072	. 072
60.0	.06S	. 069	. 069	. 070	.070	. 071	. 072	. 072	. 073	. 073
60.5	-0.069	-0.070	-0.070	-0.071	-0.072	-0.072	-0.073	-0.073	-0.074	-0.074
61.0	. 070	. 071	.072	. 072	. 073	. 073	. 074	. 074	. 075	. 076
61.5	. 071	. 072	. 073	. 073	. 074	. 074	. 075	. 076	.076	. 077
62.0	. 073	. 073	.074	.074	. 075	. 076	. 076	. 077	. 077	. 078
62.5	. 074	. 074	. 075	. 075	. 076	. 077	. 077	. 078	. 078	.079
63.0	-0.075	-0.075	-0.076	-0.077	-0.077	-0.078	-0.078	-0.079	-0.080	-0.080
63.5	. 076	. 076	. 077	. 078	. 078	. 079	.oSo	. 080	. OS I	.o8I
64.0	. 077	. 077	. 078	. 079	. 079	. 080	. oS I	. 08 I	. 082	.082
64.5	.078	. 079	. 079	. 0 So	. 08.1	. OSI	. OS 2	.082	.083	.084
65.0	. 079	. 080	.080	. 081	. 082	.082	.o83	.08.4	.084	. 085
65.5	-0.080	-0.081	-0.08I	-0.082	-0.083	-0.083	-0.084	-0.085	-0.085	-0.086
66.0	. 08 I	.OS2	. 083	.o83	.084	. 085	. 085	. 080	. 087	.087
66.5	.082	.os3	.084	.084	.o85	.os6	. 086	. 087	. 088	.o8S
67.0	. 083	.os4	.o85	. 085	. 086	. 087	. 087	. 088	.089	.090
67.5	.08. 4	.o85	.086	.087	. 087	. 088	. 089	.os9	. 090	. 091
68.0	-0.085	-0.086	-0.087	-0.088	-0.088	-0.089	-0.090	-0.090	-0.091	-0.092
68.5	. 087	.oS7	. 088	. 089	. 089	. 090	. 091	. 092	. 092	. 093
69.0	. 088	.os8	.os9	. 090	. 091	. 091	. 092	. 093	. 093	. 094
69.5	.089	.089	. 090	. 091	. 092	. 092	. 093	. 09.4	. 095	. 095
70.0	. 090	.091	.09I	. 092	. 093	. 09.4	. 094	. 095	. 096	. 097
70.5	-0.091	-0.092	-0.092	-0.093	-0.094	-0.095	-0.095	-0.096	-0.097	-0.098
71.0	. 092	. 093	. 09.4	. 094	. 095	. 096	. 097	. 097	.098	. 099
71.5	. 093	. 094	. 095	. 095	.096	. 097	. 098	.098	. 099	. 100
72.0	. 094	. 095	.096	. 096	.097	. 098	. 099	. 100	. ICo)	. IOI
72.5	. 095	.096	. 097	. 098	.09'	. 099	. 100	. 101	. 102	. 102
73.0			-0.098	-0.099	-0. 100	-0. 100	-O. IOI	-0. 102	--0. 103	-0.104
73.5	. 097	.098	. 099	. 100	. IOi	. IOI	. 102	. 103	.104	. 105
74.0	. 098	. 099	. 100	. IOI	. 102	. 103	.103	. 104	. 105	. 106
74.5	. 100	. 100	. IOI	. 102	. 103	. 10.4	. 105	. 105	. 106	. 107
75.0	. 101	. 101	. 102	. 103	. 104	. 105	. 106	. 106	. 107	. 108

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
FahrenFahre heit.	24.0	24.2	24.4	24.6	24.8	25.0	25.2	25.4	25.6	25.8
$\begin{array}{r} \text { F. } \\ 75^{\circ} .5 \end{array}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{O} .102 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{O} .103 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{O} . \mathrm{IO} 3 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{O} . \mathrm{IO}_{4} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.105 \end{gathered}$	$\begin{gathered} \text { Iuch. } \\ -\mathrm{O} .106 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.107 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{O} . \mathrm{IoS} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -\mathrm{O} .10 \mathrm{~S} \end{gathered}$	Inch. -0. 109
76.0	. 103	. 104	. 104	. 105	. 106	. 107	. 108	. 109	. 110	. 10
76.5	. 104	. 105	. 106	. 106	.107	. 108	. 109	. 1 Io	. 11 I	. 112
77.0	. 105	. 106	. 107	. 108	. 108	. 109	. 110	. II I	. 112	. 113
77.5	. 106	. 107	. IOS	. 109	. 110	. 110	. III	. 112	. 113	. 114
78.0	$-\mathrm{O} .107$	-0. 108	-0.109	-0.110	-O. 11 I	-0.112	-0.112	-0.113	-0.114	-O. 115
7 S .5	. 108	. 109	. 110	. 111	. 12	. 113	. 114	. II 4	. 115	. 116
79.0	. 109	. 110	. 111	. 112	. 113	. 114	. 115	. 116	. 117	. 117
79.5	. 110	III	. 112	. 113	. 114	. II5	. 116	. 117	. 118	. 119
80.0	. I I I	. 112	.113	. 114	. 115	. 116	. 117	. 118	. 19	. 120
80.5	-0.112	-0. 113	-0.114	-0.115	-0.116	-0.117	-0.118	-0.119	-0.120	-0.12I
81.0	. 114	. 115	. 115	. 116	. 117	. 118	. 119	. 120	. 12 I	. 122
8 I .5	. 115	. 116	. 117	. 118	. 118	. 19	. 120	. 121	. 122	. 123
82.0	. 116	. 117	. 118	. 119	. 120	. 12 I	. 122	. 122	. 123	. 124
82.5	. 117	. 118	-119	. 120	. 121	. 122	. 123	. 124	. 125	. 126
83.0	-O.IIS	-0. 119	-O. 120	-0.121	-0.122	-0.123	-0. 124	-0.125	-0. 126	-0.127
S3.5	. 119	. 120	. 121	. 122	. 123	. 124	. 125	. 126	. 127	. 128
84.0	. 120	. 12 I	. 122	. 123	. 124	. 125	. 126	. 127	. 128	- 129
S.4.5	. 121	. 122	. 123	. 124	. 125	. 126	. 127	. 128	. 129	. 30
85.0	. 122	. 123	. 124	. 125	. 126	. 127	128	. 129	. 130	. 131
85.5	-0.123	-O. I 24	-O. 125	-0.126	-0. 127	-0.128	-0.129	-O. 130	-0.13I	-0.133
S6.0	. 124	. 125	. 126	. 127	. 128	. 30	. 31	. 132	. 133	. 134
S6.5	. 125	. 126	. 128	. 129	. 130	. 313	. 132	. 133	- 134	. 135
87.0	. 126	. 128	. 129	. 130	. 131	. 132	. 133	. 134	. 135	. 136
S7.5	. 128	. 129	. 130	. 31	. 32	. 133	. 34	. 135	. 136	. 37
88.0	-0.129	-0.130	-0.131	-0.132	-0. 133	-0.134	-0. 135	-0. 136	-0.137	-0.138
SS. 5	. 130	. 131	. 132	. 133	. 134	. 135	. 36	. 137	. 138	. 39
89.0	.131	. 132	. 133	. 134	. 335	. 136	. 137	. 138	. 140	. 141
89.5	.132	. 133	. 134	. 135	. 136	. 137	.138	. 140	. 141	. 142
90.0	. 133	. 134	. 135	. 136	. 137	. 138	. 140	. 141	. 142	. 143
90.5	-0.134	-O. I 35	-0. 136	-0. I37	-01.39	-0.140	-0.141	-0.142	-0.143	-0.144
91.0	. 135	. 136	. 137	. 138	. 140	. 141	. 142	.143	. 144	. 145
91.5	. 136	. 137	. 138	. 140	. 141	. 142	. 143	. 144	. 145	. 146
92.0	. 137	.138	. 140	. 141	. 142	. 143	. 144	. 145	. 146	. 148
92.5	. 138	. 139	. 141	. 142	. 143	. 144	. 145	. 146	. 148	. 149
93.0	-O. 139	-0.141	-0.142	-0.143	-0.144	-0.145	-0.146	-0.148	-0. 149	-0. 150
93.5	. 140	. 142	. I43	. 144	. 145	. 146	. 148	. 149	. 150	. 51
94.0	. 142	. 143	. 144	. 145	. 146	.147	. 149	. 150	.151	. 55
94.5	. 143	. 144	. 145	. 146	. I 47	. 149	. 150	.151	. 152	. 153
95.0	. 144	. 145	. 146	. 147	. 149	. 150	. 151	. 152	. 153	. 154
95.5	-0.145	-0.146		-0.148	-0.150	-0.15 ${ }^{1}$	-0. 152	-0.153	-0. 154	-o. 156
96.0	. 146	. 147	. 148	. 550	. 151	. 152	. 153	. 154	. 156	. 157
96.5	.147	. 148	. 149	. 151	- 152	. 53	-154	. 156	. 157	. 158
97.0	.148	.149	. 150	. 152	. 153	. 154	. 155	. 157	. 158	159 -160
97.5	. 149	.150	. 152	. 153	. 154	. 155	. 157	. 15	. 159	. 160
98.0	-0.150	-0.15 I	-0. 153	-0.154	-0.155	-0.156	-0.158	-0.159	-0.160	$-\mathrm{O} .16 \mathrm{I}$
98.5	. 515	. 153	. 154	. 155	. 156	. 158	- 159	. 160	. 161	. 163
99.0	. 152	. 554	. 155	. 156	. 157	. 159	. 160	. 161	. 162	164 .165
99.5	. 553	. 155	. 156	157 .158	159 .160	.160 .161	.161 .162	.162 .163	.164 .165	.165 .166
100.0	. 154	. 156	. 157	. 158	. 160	. 161	. 162	.163	. 165	. 166

Table 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Thermometer Fahrenheil.	HEIGHT OF THE BAROMETER IN INCHES.									
	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
$\begin{gathered} F . \\ 0.0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ \text { +0.068 } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.068 \end{gathered}$	$\begin{gathered} \text { Iuch. } \\ +0.069 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +-0.069 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.070 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.070 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.07 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.07 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.072 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.072 \end{gathered}$
+0.5	+0.067	+0.067	+0.068	+-0.068	+0.069	+0.069	$+0.070$	+0.070	+0.071	+0.071
I. 0	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 069	. 069	. 070
1.5	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 069
2.0	. 063	. 064	. 064	. 065	. 065	. 065	. 066	. 066	. 067	. 067
2.5	. 062	. 062	. 063	. 063	. 064	. 064	. 065	. 065	. 066	. 066
3.0	+0.061	+0.06I	+0.062	+0.062	+0.063	$+0.063$	+0.063	+0.064	+0.064	+0.065
3.5	. 059	. 060	. 060	.061	.06I	. 062	. 062	. 063	. 063	. 064
4.0	. 058	. 059	. 059	. 060	. 060	.06I	.06I	.06I	. 062	. 062
4.5	. 057	. 058	. 058	. 058	. 059	. 059	. 060	.060	.06I	.06I
5.0	. 056	. 056	. 057	. 057	. 058	. 058	. 059	. 059	. 059	. 060
5.5	+0.055	+0.055	+0.056	$+0.056$	+0.056	+0.057	+0.057	+0.058	+0.058	+0.059
6.0	. 054	. 054	. 054	. 055	. 055	.056	. 056	. 056	. 057	. 057
6.5	.052	. 053	. 053	. 054	. 054	. 054	. 055	. 055	. 056	. 056
7.0	.05I	. 052	. 052	. 052	. 053	. 053	. 054	. 054	. 054	. 055
7.5	. 050	. 050	. 051	. 051	.052	. 052	.052	. 053	. 053	. 053
8.0	+0.049	+0.049	$+0.050$	+0.050	+0.050	+0.051	+0.05I	+0.05I	+0.052	+0.052
8.5	. 048	. 048	. 048	. 049	. 049	. 049	. 050	. 050	. 05 I	. 051
9.0	. 046	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049	. 050
9.5	. 045	. 046	. 046	. 046	. 047	. 047	. 047	. 048	. 048	. 048
10.0	. 044	. 044	. 045	. 045	. 045	. 0.46	. 046	. 046	. 047	. 047
10.5	+0.043	+0.043	+0.044	+0.044	+0.044	+0.0.45	+0.045	+0.045	+0.046	+0.046
11.0	. 042	. 042	. 042	. 043	. 043	. 043	. 044	. 0.44	. 044	. 045
II. 5	.04I	.04I	.041	.041	. 042	. 042	. 042	. 043	. 043	. 043
12.0	. 039	. 040	. 040	. 040	. 041	. 041	. 041	.041	. 042	. 042
12.5	.038	.038	. 039	. 039	. 039	. 040	. 040	. 040	. 040	. 041
13.0	+0.037	+0.037	+0.038	+0.038	+0.038	+0.038	+0.039	+0.039	+0.039	+0.040
13.5	.036	. 036	. 036	. 037	. 037	. 037	. 037	. 038	. 038	. 038
14.0	. 035	. 035	. 035	. 035	. 036	. 036	. 036	. 036	. 937	. 037
14.5	. 033	. 034	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 036
15.0	. 032	. 032	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034
15.5	+0.031	+0.031	+0.032	+0.032	+0.032	+0.032	+0.032	+0.033	+0.033	+0.033
16.0	. 030	.030	. 030	. 031	.03I	.031	. 031	.031	. 032	. 032
16.5	. 029	. 029	. 029	. 029	. 030	. 030	. 030	. 030	. 030	. 031
17.0	. 027	. 028	. 028	. 028	. 028	. 029	. 029	. 029	. 029	. 029
17.5	. 026	. 027	. 027	. 027	. 027	. 027	. 028	. 028	. 02 S	. 028
18.0	+0.025	+0.025	$+0.026$	+0.026	$+0.026$	+0.026	$+0.026$	+0.026	+0.027	$+0.027$
18.5	. 024	. 024	. 024	. 024	. 025	. 025	. 025	. 025	. 025	. 026
19.0	. 023	. 023	. 023	. 023	. 023	. 024	. 024	. 024	. 024	. 024
19.5	. 022	. 022	. 022	. 022	. 022	. 022	. 023	. 023	. 023	. 023
20.0	. 020	. 021	. O 2 I	. 02 I	.021	. 02 I	. 02 I	. 02 I	. 022	. 022
20.5	+u.019	+0.019	$+0.020$	+0.020	+0.020	+0.020	+0.020	+0.020	+0.020	+0.02I
21.0	. OI 8	. 018	. OI 8	. 018	. 019	. 019	. 019	. 019	. 019	. 019
21.5	. 017	. 017	. 017	. 017	. 017	. 017	. 018	. 018	.ors	.or8
22.0	. 016	.016	. 016	. 016	.or6	. 016	.oi6	. 017	. 017	. 017
22.5	. 014	. 015	. OI 5	. 1215	. 015	. 015	. 015	. 015	. OI 5	. O 5
23.0	+0.013	+0.013	+0.014	+o.014	+0.014	+0.014	+0.014	+0.014	+0.014	+0.014
23.5	. 012	. 012	. OL 2	. Or 2	. OL 2	. 013	. 013	. 013	. 013	. O 3
24.0	.OII	. 1.1 I	. OII	. OI 2	. O 2	. 12				
24.5	. 010	. 010	. OI	. 010	.010	. 010	. OI	. OIO	. OIO	. 110
25.0	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009

TAble 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
$\begin{gathered} \text { F. } \\ 25^{\circ} .5 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.007 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.00 \mathrm{~S} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ + \text { o.00S } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +\mathrm{o.00S} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.00 \mathrm{~S} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ \text { fo.00S } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ + \text { o.00S } \end{gathered}$
26.0	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 007	. 007	. 007
26.5	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005	. 005
27.0	.004	. 004	.004	. 004	. 004	. 004	. 004	.00.4	. 004	. 004
27.5	.003	. 003	. 003	. 003	. 003	. 003	. 003	.003	. 003	. 003
28.0	+.0.001	+0.001	+0.002	$+0.002$	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
29.0	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 003
30.5	0.004	-0.004	-0.004	-0 005	-0.005	-0.005	-0.005	0.005	-0.005	0.005
31.0	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006	. 006
31.5	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007
32.0	. 008	. 008	. 008	. 008	.008	. 008	. 008	. 008	. 008	. 009
32.5	. 009	. 009	. 009	. 009	. 009	. 009	. 010	. 010	. OIO	. OIO
33.0	-0.010	-0.010	-0.010	-0.011	-0.011	$\rightarrow 0.01$ I	-0.011	-0.01 I	-0.011	-0.01 1
33.5	.OII	. 012	. OI 2	. 012	. 012	. 012	. 012	. 012	. OI 2	. 012
34.0	.OI3	. 013	.OI3	. 013	.OI3	.OI3	. OI 3	. Or 3	. OI 3	. OI 4
34.5	. 014	. 014	. 014	.OI4	. 014	. 014	. 014	.or 5	.OI5	. 015
35.0	. 015	. 015	. OI 5	. 015	. 015	. 016	. 016	. 016	. 016	. 016
35.5	-0.016	-0.016	-0.016	-0.017	-0.017	-0.017	-0.017	-0.017	-0.017	-0.017
36.0	. 017	. 018	. 018	. 018	. 018	. 018	. 018	. 018	. 018	. 019
36.5	. 019	. 019	. 019	. 19	. 019	. 019	. 019	. 020	. 020	. 020
37.0	. 020	. 020	. 020	. 020	. 020	. 02 I	. 021	. O 2 I	. 021	. 021
37.5	. 02 I	. $\mathrm{O2I}$. $\mathrm{O2}$ I	. O 2 I	. 022	. 022	. 022	. 022	. 022	. 022
38.0	-0.022	-0.022	-0.022	-0.023	-0.023	-0.023	-0.023	-0.023	-0.023	-0.024
38.5	. 023	. 023	. 024	. 024	. 024	. 024	. 024	. 025	. 025	. 025
39.0	. 024	. 025	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026
39.5	. 026	. 026	. 026	. 026	. 026	. 027	. 027	. 027	. 027	. 027
40.0	. 027	.027	. 027	. 027	. 028	. 028	. 028	. 028	. 028	. 029
40.5	0.028	-0.028	-0.028	-0.029	-0.029	-0.029	-0.029	-0.030	-0.030	-0.030
41.0	. 029	. 029	. 030	. 030	. 030	. 030	. 031	. 031	. 031	. 031
41.5	. 030	.03I	. 031	. 031	. 031	. 032	. 032	. 032	. 032	. 032
42.0	. 032	. 032	. 032	.032	. 033	. 033	. 033	. 033	. 033	. 034
42.5	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034	. 035	. 035
43.0	-0.034	-0.034		-0.035	-0.035	-0.035	-0.035	-0.036	-0.036	-0.036
43.5	. 035	. 035	.036	. 036	. 036	. 036	. 037	. 037	. 037	. 037
44.0	. 036	. 037	. 037	. 037	. 037	. 038	. 038	. 038	. 038	. 039
44.5	. 037	. 038	. 038	. 038	039	. 039	. 039	. 039	. 040	. 040
45.0	. 039	. 039	. 039	. 039	. 040	. 040	. 040	. 0.41	. 041	. 041
45.5	-0,040	-0.040	-0.040	-0.04I	-0.04I	-0.04I	-0.042	-0.042	-0.042	-0.043
46.0	. 041	. 041	. 042	. 042	. 042	. 043	. 043	. 043	. 043	. 0.44
46.5	. 042	. 042	. 043	. 043	. 043	. 044	. 044	. 044	. 045	. 045
47.0	. 043	. 044	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046
47.5	. 045	. 0.45	. 045	. 0.46	. 046	.046	. 047	. 047	. 047	. 048
48.0	-0.046	-0.046	-0.046	-0.047	-0.047	-0.047	-0.048	-0.048	-0.048	-0.049
48.5	. 047	. 047	. 048	. 048	. 048	. 049	. 0.49	. 049	. 050	. 050
49.0	. 048	. 048	. 049	. 049	. 049	. 050	. 050	. 051	. 051	.05I
49.5	. 049	. 050	. 050	. 050	.051	. 051	.05I	. 052	. 052	. 053
50.0	. 050	.05I	. 051	. 052	. 052	. 052	. 053	. 053	. 053	. 054

Table 44.
REDUC'TION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
Fahren ${ }^{\text {F }}$ heit.	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
F.	Inch.									
50.5	-0.052	-0.052	-0.052	-0.053	-0.053	-0.054	-0.054	-0.054	-0.055	-0.055
51.0	. 053	. 053	. 054	.054	. 054	. 055	. 055	. 056	. 056	. 056
51.5	. 054	. 054	. 055	. 055	. 056	. 056	. 056	. 057	. 057	. 058
52.0	. 055	. 055	. 056	. 056	. 057	. 057	.05S	.058	. 058	. 059
52.5	. 056	. 057	. 057	.05S	.058	. 058	. 059	. 059	. 060	. 060
53.0	-0.057	-0.058	-0.058	-0.059	-0.059	-0.060	-0.060	-0.061	-0.061	-0.061
53.5	. 059	. 059	. 059	.060	. 060	.06I	. 061	. 062	. 062	. 063
54.0	. 060	. 060	.06I	. 061	. 062	. 062	. 063	. 063	. 063	. 064
54.5	. 061	. 061	. 062	. 062	. 063	. 063	.064	. 064	. 065	. 065
55.0	. 062	. 063	. 063	. 064	. 064	. 064	. 065	. 065	. 066	. 066
55.5	-0.063	-0.064	-0.064	-0.065	-0.065	-0.066	-0.066	-0.067	-0.067	-0.068
56.0	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 069
56.5	. 066	. 066	.067	. 067	.068	. 068	. 069	.069	. 070	. 070
57.0	. 067	. 067	. 068	. 068	. 069	. 069	. 070	. 070	. 071	.071
57.5	. 068	. 069	. 069	. 070	.070	. 071	. 07 I	. 072	. 072	. 073
58.0	-0.069	-0.070	-0.070	-0.071	-0.071	-0.072	-0.072	-0.073	-0.073	-0.074
58.5	. 070	. 071	. 071	. 072	. 072	. 073	.074	. 074	. 075	. 075
59.0	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 075	.076	.076
59.5	. 073	. 073	. 074	. 074	. 075	. 075	.076	.077	. 077	.078
60.0	. 074	. 074	. 075	. 076	.076	. 077	. 077	.078	.078	. 079
60.5	-0.075	-0.076	-0.076	-0.077	-0.077	-0.078	-0.078	-0.079	-0.080	-0.08o
61.0	. 076	. 077	.0.7	. 078	. 079	.079	.oSo	.OSo	.08I	.081
6 I .5	. 077	. 078	. 079	. 079	. 0.50	.080	.oSI	.082	.082	.083
62.0	. 079	. 079	.080	.oSo	. 081	.082	.os2	.083	.083	.o84
62.5	.080	.oso	.08I	.082	.082	. 083	.083	.084	. 085	. 085
63.0	-0.081	-0.082	-0.082	-0.083	-0.083	-0.084	-0.085	-0.085	-0.086	-0.086
63.5	. 082	. 083	.083	.os 4	. 085	. 085	.os6	. 086	. 087	. 088
64.0	. 083	. 084	.085	. 085	.086	.086	.o87	.088	. 088	.089
64.5	.084	.oS5	.086	. 086	.087	. 088	. 088	. 089	.090	. 090
65.0	.086	. 086	. 087	. 088	. 088	.089	. 090	. 090	.09I	. 092
65.5	-0.087	-0.087	0.088	-0.089	-0.089	-0.090	-0.091	-0.091	-0.092	-0.093
66.0	. 088	.089	.089	. 090	.09I	.091	. 092	. 093	. 093	. 094
66.5	.089	. 090	. 090	.09I	. 092	. 093	. 093	. 094	. 095	. 095
67.0	.090	. 091	. 092	. 092	. 093	.094	.09.4	. 095	. 090	. 097
67.5	. 092	. 092	. 093	. 094	. 094	.095	. 096	. 096	. 097	. 098
68.0	-0.093	-0.093	-0.094	-0.095	-0.095	-0.096	-0.097	-0.098	-0.09	-0.099
68.5	. 094	. 095	. 095	. 096	. 097	. 097	.098	. 099	. 100	. 100
69.0	. 095	.096	. 096	. 097	.098	. 099	. 099	. 100	. 101	. 102
69.5	. 096	. 097	.098	.098	. 099	. 100	. 101	. 101	. 102	. 103
70.0	. 097	. 098	. 099	. 100	.100	. 101	. 102	. 103	. 103	. 104
70.5	-0.09S	-0.099	-0.100	-0.101	-O.101	-0.102	-0.103	-0.104	-0.105	-0.105
71.0	. 100	. 100	. 101	. 102	. 103	. 103	. 104	. 105	. 106	. 107
71.5	. IOI	. 102	. 102	. 103	. 104	. 105	. 105	. 106	. 107	. 108
72.0	. 102	.103	.104	.104	.105	.106	.107	.107	.108	.109
72.5	. 103	. 104	. 105	. 106	. 106	.107	. 108	.109	.109	. 110
73.0	-0.104	-0.105	-0.106	-0.107	-0.108	-0.10S	-0.109	-0.110	-0.111	-0.112
73.5	. 105	. 106	. 107	. 108	. 109	. 110	. 110	. 111	. 112	.113
74.0	.107	. 107	.108	.109	. 110	. III	. I12	. 112	. 113	. II4
74.5	. 108	. 109	.109	. 110	. II I	. 112	.II3	. 114	114	. 115
75.0	. 109	. 110	. 111	. 112	. 112	. 113	.II4	. II5	116	. 117

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
Fahren- heit.	26.0	26.2	26.4	26.6	26.8	27.0	27.2	27.4	27.6	27.8
F.	Inch.	Inch.	ach.	.	Inch.	Inc	nch.	nch.	Iuch.	Inch.
75.5	-0.110	-O. III	-0.112	-0.113	-0.114	-0.114	-0.115	-0.116	-0.117	-0.11S
76.0	. 111	. 112	. II3	. 114	. 115	. 116	. 116	. 117	. 118	.119
76.5	. II3	. 113	. 114	. 115	. 116	. 117	. 118	. 119	. 119	. 120
77.0	. 114	. II	. 115	. 116	. 117	. 118	. 119	. 120	. 121	. 122
77.5	. 115	. 116	. 117	. 117	. IIS	. 119	. 120	. 121	. 122	. 123
78.0	-O.116	-0. 117	-0.118	-0.119	-0.120	-0.120	-0.121	-0.122	-0.123	-0. 124
78.5	. 117	. 118	. 119	. 120	. 121	. 122	. 123	. 123	. 124	. 125
79.0	. IIS	. 119	. 120	. 121	. 122	.123	. 124	. 125	. 126	. 127
79.5	. 120	. 120	. 121	. 122	. 123	. 124	. 125	. 126	. 127	. 128
8.0	. 12 I	. 122	. 123	. 123	. 124	. 125	. 126	. 127	. 128	. 129
80.5	-0.122	-0.123	-0.124	-0.125	-0.126	-0.127	-0.127	-0.128	-0.129	$\rightarrow 0.130$
Si.o	. 123	. 124	. 125	. 126	. 127	. 128	. 129	. 130	. 131	. 132
81.5	. 124	. 125	. 126	. 127	. 128	. 129	. 130	. 131	. 32	. 133
S2.0	. 125	. 126	. 127	. 128	. 129	. 130	. 131	. 132	. 133	. 134
82.5	. 127	. 128	. 12 S	. 129	. 130	. 13 I	. 132	. 133	. 134	. 135
83.0	-0.128	-0.129	-0.130	-0.13I	-0.132	-0.133	-0.134	-0.135	-0. I36	-0.137
83.5	. 129	. 130	. 331	. 132	. 133	. 134	. 135	. 136	. 137	. 138
84.0	. 130	.131	. 132	. 133	- 134	. 135	. 136	. 137	. 138	. 139
84.5	. 13 I	. 132	. 133	. 134	. 135	. 136	. 137	.138	. 139	. 140
S5.0	. 132	. 133	. 134	. 135	. 136	. 137	. 138	. 139	. 141	. 142
85.5	-0.134	-0. I35	-0.136	-0.137	-0.13 3	-0.139	-0.140	-0.141	-0.142	-0. 143
86.0	. 135	.136	. 137	. 138	. 139	. 140	. 141	. 142	. 143	. I44
86.5	. 136	. 137	. 138	. 139	.140	. 141	. I42	. 143	. 144	. 145
87.0	. 137	.13S	. 139	. 140	. 141	. 142	. 143	. 144	. 145	. 147
87.5	.138	. 139	. 140	. 141	. 142	. 144	. 145	. 146	. 147	. 148
88.0	-O.I39	-0.140	-0.142	-0.143	-0.144	-0.145	-0.146	-0.147	-0.14S	-0. 149
88.5	. 141	. 142	. 143	. 144	. 145	. 146	. 147	. 148	. 149	. 150
89.0	. 142	. 143	. 144	. 145	. 146	. 147	. 148	. 149	. 150	. 152
S9.5	.143	. 144	. 1.45	. 146	. 147	. 148	. 149	. 151	. 152	. 153
90.0	. 144	. 145	. 146	. 147	. 148	. 150	.151	. 152	. 153	. 154
90.5	-0.145	-0.146	-0. 147	-0.149	-0.150	-0.151	-0.152	-0.153	-0.154	-0.155
91.0	.146	. 147	. 149	. 150	. 151	. 152	. 153	. 154	-155	. 157
91.5	. 148	. 149	. 150	. 151	. 152	. 153	. 154	. 155	. 157	. 158
92.0	. 149	. 150	. 151	. 152	. 153	. 154	. 156	. 157	.158	. 159
92.5	. 150	. 151	. 152	. 153	. 154	. 156	. 157	. 158	- 159	. 160
93.0	-0.15I	-0.152	-0.153	-0.155	-0.156	-0.157	-0.158	-0.159	-0.160	-0.16I
93.5	. 152	. 153	. 155	. 156	. 157	.15S	. 159	. 160	. 162	.163
94.0	. 153	. 155	. 156	. 157	. 158	. 159	. 160	.162	. 163	. 164
94.5	. 155	. 156	. 157	. 158	. 159	. 160	.162	. 163	. 164	. 165
95.0	. 156	. 157	. 158	. 159	. 160	. 162	. 163	. 164	. 165	. 166
95.5	-0.157	-0.158	-0.159	-0.160	-0.162	-0.163	-0.164	-0.165	-0.167	-0.168
96.0	. 158	. 159	. 160	. 162	.163	. 164	. 165	. 167	. 168	. 169
96.5	. 159	. 160	. 162	.163	.164	.165	. 167	. 168	. 169	. 170
97.0	.160	. 162	. 163	. 164	.165	.167	. 168	. 169	. 170	. 171
97.5	.162	. 163	. 164	. 165	. 166	. 168	. 169	. 170	. 171	. 173
98.0	-0.163	-0.164	-0.165	-0.166	-0.168	-0.169	-0.170	-0.171	-0.173	-0.174
98.5	. 164	. 165	. 166	. 168	.169	. 170	. 171	. 173	. 174	. 175
99.0	. 165	. 166	. 168	. 169	.170	. 171	. 173	. 174	. 175	. 176
99.5	. 166	. 167	. 169	. 170	.171	. 173	. 174	. 175	. 176	. 178
100.0	. 167	. 169	. 170	. 171	. 172	. 174	. 175	. 176	. 178	. 179

Table 44.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HT OF THE BAROMETER IN									
Fahren- heit.	28.0	28.2	28.4	28.6	28.8	29.0	29.2	29.4	29.6	29.8
$\begin{gathered} F . \\ 0.0 \end{gathered}$	$\left\|\begin{array}{c} \text { 1uch. } \\ +0.073 \end{array}\right\|$	$\begin{gathered} \text { Inch. } \\ +0.074 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.074 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.075 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.075 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.076 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.076 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +\mathrm{o} .077 \end{gathered}$	$\begin{gathered} \text { lnch. } \\ +\mathrm{O} .077 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.078 \end{array}$
+0.5	+0.072	+0.072	+0.073	+0.073	+0.074	+0.074	+0.075	+0.075	$+0.076$	+0.076
1.0	. 070	. 07 l	.071	. 072	. 072	. 073	. 073	. 074	. 074	. 075
r. 5	. 069	. 070	. 070	. 071	. 07 I	.072	.072	. 073	. 073	. 074
2.0	. 068	. 068	. 069	. 069	.070	.070	. 071	. 071	. 072	. 072
2.5	.067	. 067	. 068	. 068	. 069	. 069	. 069	. 070	. 070	. 071
3.0	+0.065	+0.066	+0.066	+0.067	+0.067	+0.068	-0.068	+0.069	+0.069	+0.070
3.5	. 064	. 065	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068
4.0	. 063	. 063	. 064	.064	. 065	. 065	. 065	. 066	. 066	. 067
4.5	. 062	. 062	. 062	. 063	. 063	. 064	.064	. 065	. 065	. 065
5.0	. 060	. 061	. 061	. 062	. 062	. 062	. 063	. 063	.064	.064
5.5	+0.059	+0.059	+0.060	+0.060	+0.061	+0.06r	+0.062	+0.062	+0.062	+0.063
6.0	.05s	.05S	. 059	. 059	. 059	. 060	. 060	. 061	. 061	.061
6.5	. 056	. 057	. 057	. 058	. 058	. 058	. 059	. 059	. 060	. 060
7.0	. 055	. 056	.056	.056	.057	. 057	. 057	.05S	. 058	. 059
7.5	. 054	. 054	. 055	. 055	. 055	.056	.056	. 057	. 057	. 0.57
8.0	+0.053	+0.053	+0.053	+0.054	+0.054	+0.054	+0.055	+0.055	+0.056	+0.056
8.5	. 051	. 052	. 052	. 052	. 053	. 053	. 053	. 054	. 054	. 055
9.0	. 050	. 050	. 051	. 051	.05I	. 052	. 052	. 053	. 053	. 053
9.5	. 049	. 049	. 049	. 050	. 050	. 050	. 051	.05 I	. 052	. 052
10.0	.047	.048	. 048	. 0.48	. 049	. 049	. 050	. 050	. 050	. 051
10.5	+0.046	+0.047	+0.047	+0.047	+0.048	+0.0.48	+0.048	+0.049	+0.049	+0.049
11.0	.045	. 045	. 046	. 046	.046	. 047	. 047	. 047	. 047	.048
I 1.5	.04.4	. 044	. 044	. 045	. 045	. 045	.046	. 046	. 0.46	.046
12.0	.042	. 0.43	. 043	. 043	. 044	. 044	. 044	. 044	. 045	. 045
12.5	.0.41	. 04 r	. 042	. 0.42	. 0.42	. 043	. 043	. 043	. 043	. 044
13.0	+0.0.40	+0.040	+0.040	+0.041	+0.041	+0.041	+0.042	+0.042	$+0.042$	+0.042
13.5	. 039	. 039	. 039	. 039	. 040	. 040	. 0.40	. 040	. 0.41	. 041
14.0	. 037	. 038	.038	.038	. 038	. 039	. 039	.039	. 039	. 040
14.5	. 036	. 036	. 037	. 037	. 037	. 037	. 038	.038	. 038	.038
15.0	. 035	. 035	. 035	. 035	. 036	. 036	. 036	. 036	. 037	. 037
15.5	+0.033	+0.034	+0.034	+0.034	+0.034	+0.035	+0.035	+0.035	+0.035	$+0.036$
16.0	.032	. 032	. 033	. 033	. 033	. 033	. 034	. 034	. 034	. 034
16.5	.031	. 031	. 031	. 032	. 032	.032	. 032	. 032	. 033	. 033
17.0	. 030	. 030	. 030	. 030	. 030	.031	. 031	. 031	.03I	.032
17.5	. 028	. 029	. 029	. 029	. 029	. 029	. 030	. 030	. 030	. 030
18.0	+0.027	+0.027	+0.027	+0.028	+0.028	+0.028	+0.028	+0.028	+0.029	+0.029
18.5	. 026	.026	. 025	. 026	. 027	. 027	. 027	. 027	. 027	. 027
19.0	. 025	. 025	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026
19.5	. 023	. 023	. 02.4	. 024	. 024	.024	. 024	. 024	. 025	. 025
20.0	. 022	. 022	. 022	. 022	. 023	. 023	. 023	. 023	. 023	. 023
20.5	+0.02 I	+0.02I	+0.02 I	+0.02I	+0.02I	+0.02I	+0.022	+0.022	+0.022	+0.022
21.0	.oi9	. 020	. 020	. 020	. 020	. 020	. 020	. 020	. 022 I	. 021
21.5	. 018	. 018	. 018	.OI9	. 019	. 019	.or9	. 019	.or9	.or9
22.0	.017	.017	.017	.017	. 017	.017	. 018	. 018	.OIS	.ois
22.5	. 016	.016	.016	.016	. 016	. 016	.or6	. 16	. 016	.or 7
23.0	+0.014	+0.014	+0.015	+0.015	+0.015	+0.015	+0.015	+0.015	+0.015	+0.015
23.5	.OI3	.013	. 013	.013	.013	.014	. 014	. 014	. OI 4	. 014
24.0	.012	.012	.OI2	. 012	.012	.012	.012	. 012	. 012	.or3
24.5	. 011	. 011	. 011	. 011	. 011	. 111	. 011	.OII	. 011	. OI
25.0	. 009	. 069	. 009	. 009	.009	. 010	. 010	. 010	. 010	. 010

Table 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. ENGLISH MEASURES.

Attached Thermometer Fahren. heit.	d HEIGHT OF THE BAROMETER IN INCHES.									
	28.0	28.2	28.4	28.6	28.8	29.0	29.2	29.4	29.6	29.8
F.	Inch.	Inch.	Inch.	Inch.			Inch.	Inch.	Inch.	
25.5	+o.00S	+0.008	+0.008	+0.008	+o.00S	+0.008	+0.008	+0.008	+0.008	$\begin{aligned} & \text { luch. } \\ & +0.008 \end{aligned}$
26.0	. 007	. 007	. 007	. 007	. 007	- .007	. 007	. 007	1.008 .007	. .007
26.5	. 005	.005	. 005	. 006	. 006	6 . 006	. .006	. 006	- .006	. 006
27.0	.004	.004	. 004	. 004	. 004	. 004	4 . 004	. 00.4	. 004	. 004
27.5	. 003	. 003	. 003	. 003	. 003	. 003	. .003	. 003	.003	.003
28.0	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002			
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	+0.002 0.000	+0.002 0.000	$\begin{array}{r} +0.002 \\ 0.000 \end{array}$
29.0	-0.001	-0.001	-0.001	-0.001	-0.00I	-0.001	-0.001	-0.000	- $\begin{array}{r}0.000 \\ -0.001\end{array}$	$\begin{array}{r} 0.000 \\ -0.001 \end{array}$
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	.002	. 002	. 0.002
30.0	. 003	.004	. 004	. 004	. 004	.004	.004	. 004	.004	.002
30.5	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005				
31.0	. 006	. 006	. 006	. 006	.006	. 006	-0.005	-0.005	-0.005 .006	$\begin{array}{r} -0.005 \\ .006 \end{array}$
31.5	.007	. 007	. 007	. 007	. 008	.008	. 008	. 008	. 008	.008
32.0	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 009
32.5	.oio	.oio	. 010	. OIO	. 010	. 010	. O O	. 10	. 010	.oro
33.0	-0.01 1	-0.011	-0.01 I	-O.OI I	-O.OI I	-0.012	-0.012	-0.012	-0.012	-0.012
33.5	. 012	. 012	. 013	. 013	. 013	.OI3	.OI3	. 013	. 013	
34.0	.OI4	.oI4	. 014	.OI4	.oI4	. 014	.OI4	.OI4	.OI 4	.OI5
34.5	. 015	. 015	.or 5	.or 5	. 015	. 015	. 016	.or 6	.oi6	. 016
35.0	.oi6	.oi6	. 016	.or 7	. 017	. 017	. 017	. 17	. 017	. 017
35.5	-0.017	-0.018	-0.018	-0.ois	-0.018	-0.018	-0.018		-o.ors	
36.0	. 179	. 019	. 019	.OI 9	. 019	.019	-0.018	-0.018	-0.018	-0.019 .020
36.5	. 020	. O 2 O	. 020	. 020	. 02 I	. 02 I	. 02 I	. O 2 I	I	. 021
37.0	. 02 I	. O 2 I	. 022	. 022	. 022	. 022	22	. 02	. 022	. 023
37.5	. 023	. 023	. 023	.023	. 023	. 023	. 024	. 024	. 024	. 024
38.0	-0.024	-0.02. 4	-0.024	-0.024	-0.024	-0.025	-0.025			
38.5	. 025	. 025	. 025	. 026	. 026	. 026	-0.025	-0.025	-0.025	-0.025
39.0	.026	. 027	. 027	. 027	. 027	. 027	. 027	. 028	.028	. 028
39.5	. 028	. 028	. 028	. 028	. 028	. 029	. 029	. 029	.029	. 029
40.0	. 029	. 029	. 029	. 030	. 030	. 030	. 030	.030	.03I	. 03 I
40.5	-0.030	-0.030	-0.031	-0.03I	-0.03 I	-0.031	-0.03I	-0.032	-0.032	-0.032
41.0	. O I	. 032	. 032	. 032	.032	. 033	-. 033	. 033	.033	. 033
41.5	. 033	. 033	. 033	. 033	. 034	. 034	.034	.034	. 035	. 035
42.0	. 034	. 034	.034	. 035	. 035	. 035	. 035	.036	.036	.036
42.5	. 035	. 035	. 036	.036	. 036	. 036	. 037	. 037	. 037	. 037
43.0	-0.036	-0.037		-0.037	-0.038	-0.038	-0.038			
43.5	. 038	. 038	.03 ${ }^{\text {S }}$. 039	. 039	. 039	.039	-0.038	$\begin{array}{r} -0.039 \\ .040 \end{array}$	-0.039 .040
44.0	. 039	. 039	. 040	. 0.40	. 040	. 040	. 041	. 041	. 041	. 042
44.5	. 040	.041	. 041	.041	. 041	. 042	. 042	. 042	. 043	. 043
45.0	. 042	. 042	. 042	. 0.42	. 043	. 043	. 043	. 0.44	. 044	. 044
45.5	-0.043	-0.043	-0.043	-0.044				-0.045	-0.045	-0.046
46.0	. 044	. 044	. 045	. 045	. 045	. 046	. 046	. 046	-0.047	-0.046
46.5	. 045	.046	. 046	. 046	. 047	. 047	. 047	. 048	. 0.48	. 048
47.0	.047	. 047	. 047	. 048	.048	. 048	. 049	. 049	. 049	.050
47.5	.048	. 048	. 049	. 049	. 0.49	. 050	. 050	. 050	. 05 I	. 051
48.0	-0.049	-0.050 -	-0.050	-0.050	-0.05 I	-0.05I -	-0.05I	-0.052	-0.052	-0.052
48.5	. 050	. 051	. 051	. 052	. 052	.052	. 053	. 053	. 053	. 054
49.0	. 052	. 052	. 052	. 053	. 053	. 054	. 054	. 054	. 055	. 055
49.5	. 053	. 053	. 054	. 054	. 054	. 055	. 055	. 056	. 056	.056
50.0	. 054	. 055	. 055	. 055	. 056	. 056	. 057	. 057	. 057	. 058

Table 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	28.0	28.2	28.4	28.6	28.8	29.0	29.2	29.4	29.6	29.8
F. 50.5	Inch. o.055	Inch. -0.056	Inch.	Inch.	Inch.	Inch.	$\begin{gathered} \text { Inch. } \\ -0.058 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.05 S \end{gathered}$	Inch. -0.059	Inch.
51.0	. 057	. 057	. 058	. 058	. 058	. 059	. 059	.060	. 060	. 060
51.5	. 058	. 058	. 059	. 059	. 060	. 060	. 061	.06I	.06I	.062
52.0	. 059	. 060	. 060	.06I	.06I	.06I	. 062	. 062	.063	. 063
52.5	.06I	.06I	.06I	. 062	. 062	. 063	. 063	. 064	. 064	. 064
53.0	0.062	-0.062	-0.063	-0.063	-0.064	-0.064	-0.064	-0.065	-0.065	-0.066
53.5	. 063	. 064	. 064	. 064	. 065	. 065	. 066	. 066	. 067	. 067
54.0	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 068
54.5	. 066	. 066	. 067	. 067	. 067	. 068	. 068	. 069	. 069	. 070
55.0	. 067	. 067	. 068	. 068	. 069	. 069	. 070	. 070	.07I	. 071
55.5	-0.068	-0.069	-0.069	-0.070	-0.070	-0.071	-0.071	-0.072	-0.072	-0.073
56.0	. 069	. 070	. 070	. 071	. 071	. 072	. 072	. 073	. 073	. 074
56.5	.071	.071	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 075
57.0	. 072	. 072	. 073	. 073	. 074	. 075	. 075	. 076	. 076	. 077
57.5	. 073	. 074	. 074	. 075	. 075	. 076	. 076	. 077	. 077	. 078
58.0	-0.074	-0.075	-0.076	-0.076	-0.077	-0.077	-0.078	-0.078	-0.079	-0.079
58.5	. 076	. 076	. 077	. 077	. 078	. 078	. 079	.08o	.080	.c8I
59.0	. 077	.078	. 078	. 079	. 079	.080	.080	.081	.081	. 082
59.5	.078	. 079	. 079	. 080	.08I	.081	.082	. 082	.083	. 083
60.0	.0So	.08o	.08I	.08I	. 082	. 082	. 083	. 084	.084	. 085
60.5	-0.08I	-0.08I	-0.082	-0.083	-0.083	-0.084	-0.084	-0.085	-0.085	-0.086
61.0	. 082	. 088	. 083	. 084	. 084	. 085	. 086	. 086	. 087	. 087
61. 5	.o83	.oS4	. 085	.085	. 086	.086	. 087	. 087	. 088	. 089
62.0	.o85	.oS5	.086	.086	. 087	. 088	. 088	.089	.089	. 090
62.5	.086	. 086	.087	. 088	. 088	.089	. 090	. 090	.091	.091
63.0	-0.087	-0.08S	-0.088	-0.089	-0.090	-0.090	-0.091	-0.091	-0.092	-0.093
63.5	.088	.oS9	. 090	. 090	.09I	. 092	. 092	. 093	. 093	. 094
64.0	. 090	.090	. 091	. 092	. 092	. 093	. 093	. 094	. 095	. 095
64.5	. 091	. 092	. 092	. 093	. 093	. 094	. 095	. 095	. 096	. 097
65.0	. 092	. 093	. 093	. 094	. 095	. 095	. 096	. 097	. 097	. 098
65.5	0.093	-0.094	-0.095	-0.095	-0.096	-0.097	-0.097	-0.098	-0.099	-0.099
66.0	. 095	. 095	. 096	. 097	. 097	. 098	. 099	. 099	.100	. 101
66.5	. 096	. 097	. 097	.098	. 099	. 099	. 100	. 101	. 101	. 102
67.0	. 097	. 098	. 099	. 099	. 100	. 101	. 101	. 102	.103	. 103
67.5	. 098	. 099	. 100	. 101	. IOI	. 102	. 103	. 103	. 104	.105
68.0	-0.100	-0.100	-0.101	-0.102	-0.103	-0.103	-0.104	-0.105	-0.105	-0.106
68.5	. IOI	. 102	. 102	. 103	. 104	.105	. 105	. 106	. 107	. 107
69.0	. 102	.103	. 104	. 104	.105	. 106	. 107	.107	. 108	. 109
69.5	. 104	. 104	. 105	. 106	. 106	. 107	. 108	. 109	. 109	. 110
70.0	. 105	. 106	. 106	. 107	. 108	. 109	. 109	. 110	. III	. 112
70.5	-0.106	-0.107	-0.108	-0.108	-0.109	-O. 110	-O.III	-0.111	-0.112	-0.113
71.0	. 107	. 108	. 109	. 110	. 110	. III	. 112	. 113	.II3	.II4
71.5	.109	. 109	. 110	. III	. 112	. 112	. 113	.114	.II5	.116
72.0	. 110	. 111	. 111	. 112	. 113	.114	. 115	. 115	.II6	.II7
72.5	. 111	. 112	. 13 3	. II3	. 114	. 115	. 116	. 117	. 117	. 118
73.0	-0.112	-0.113	-0. I I4	-0. II 5	-0. 116	-0.116	-0.117	-0.118	-0.119	-0.120
73.5	. 114	. 114	. 115	. 116	. 117	. 118	. 118	. 119	. 120	. 121
74.0	. 115	. 116	. 117	. 117	. 118	.119	. 120	. 121	. 121	. 122
74.5	. 116	. 117	. 118	. 119	. 119	. 120	. 121	. 122	. 123	. 124
75.0	. 117	. I 18	. 119	. 120	.121	. 122	. 122	.123	. 124	. 125

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
Fahren-	28.0	28.2	28.4	286	288	29.0	29.2	29.4	29.6	29.8
F. 75.5	Inch. O. II9	$\begin{gathered} \text { Inch. } \\ -0.119 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & -\mathrm{O} .120 \end{aligned}$	$\begin{gathered} \text { Inch. } \\ - \text { O. I } 2 \text { I } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ -0.122 \end{gathered}$	Inch.	Inch.	Iuch. -0. 125	Inch. O. 125	Iuch. -0. 126
76.0	. 120	. 121	22	. 122	. 123	. 124	. 125	. 126		I28
76.5	. 121	. 122	. 123	. 124	. 125	. 125	. 126	. 127	128	129
77.0	. 122	. 123	. 124	. 125	. 126	. 127	. 128	. 129	. 129	. 130
77.5	. 124	. 125	. 125	. 126	. 127	. 128	. 129	. 130	. 31	. 132
78.0	-0.125	-0.126	-0. 127	-0.128	-0.129	-0.129	-0.130	-0.131	-0.132	-0.133
78.5	. 126	. 127	. 128	. 129	. 130	. 13 I	. 132	. 133	. 133	. 134
79.0	. 127	. 128	. 129	. 130	I3I	.132	. 133	. 134	. 135	. 136
79.5	. 129	. 130	. 131	. 311	. 132	. 133	. 134	. 135	. 136	.137
So.o	. 130	. 31	. 132	. 133	. 134	. 135	. 136	. 136	. 137	.138
80.5	-0.131	-0.132	-0.133	-0.134	-0.135	-0.136	-0.137	-0.138	-0.139	-0.140
SI. 0	.132	. 133	. 134	. 135	. 136	. 137	. 138	. 139	. 140	. 141
81. 5	. 134	. 135	.136	. 137	.I38	. 139	. 139	. 140	. 141	. 142
82.0	. I35	. 136	.137	. 138	. I39	.140	. 141	. 142	. 143	. 144
82.5	. 136	. 137	. 138	. 139	. 140	. 141	. 142	. 143	. 144	. 145
83.0	-0.138	-0. I39	-0.139	-0.140	-0.141	-0.142	-0.143	-0.144	-0.145	-0.146
83.5	. 139	. 140	.141	. 142	. I43	. 144	. 145	.I46	. 147	. 148
84.0	. 140	. 141	. 142	. 143	. 144	. 145	. 146	. 147	. 148	. 149
84.5	. 141	. 142	. 143	. 144	. 145	. 146	.147	. 148	. 149	. 150
85.0	. 143	. 144	. 145	. 146	. 147	. 148	. 149	. 150	. 151	. 52
85.5	-0.144	-0. 145	-0.146	-0.147	-0.148	-0.149	-0.150	-0.151	-0.152	-0. 153
S6.0	. 145	. 146	. 147	. 148	. 149	. 150	. 151	. 152	. 153	. 154
86.5	. 146	. 147	.148	. 149	. 151	. 152	. 153	. 154	. 155	. 156
87.0	. 148	. 149	. 150	. 151	. 152	. 153	. 54	. 155	. 156	. 157
87.5	. 149	. 150	. 151	. 152	. 153	. 154	. 155	. 156	. 157	. 155
88.0	-0.150	-0.151	-0.152	-0.153	-0. 154	-0.155	-0.157	-0.158	-0.159	$\rightarrow 0.160$
83.5	. 515	. 152	. 154	. 155	.156	. 157	.158	. 159	. 160	. 161
89.0	. 153	. 154	. 155	. 156	. 157	.158	. 159	. 160	. 161	. 162
89.5	. 154	. 155	. 156	. 157	. 158	. 159	.160	. 162	.163	. 164
90.0	. 155	. 156	. 157	. 158	. 160	.16I	. 162	.163	.164	. 165
90.5	-0.156	-0.157	-0.159	-0.160	-0.16I	-0.162	-0.163	-0.164	-0.165	-0.166
91.0	. 158	. 159	. 160	.161	. 162	. 163	. 164	. 166	. 167	. 168
91.5	. 159	. 160	. 161	. 162	. 163	. 165	.166	. 167	. 168	. 169
92.0	. 160	.161	. 162	. 164	. 165	. 166	. 167	. 168	. 169	. 170
92.5	.16I	.163	. 164	. 165	. 166	.167	. 168	. 169	. 171	. 172
93.0	-0.163	-0. 164	-0.165	-0.166	-0.167	-0.168	-0.170	-0.171	-0.172	-0.173
93.5	.164	. 165	. 166	.167	. 169	. 170	.171	. 172	. 173	. 174
94.0	.165	. 166	. 165	. 169	. 170	. 171	. 172	. 173	. 175	. 176
94.5	.166	. 168	. 169	. 170	.171	. 172	. 174	. 175	. 176	. 177
95.0	. 168	.169	. 170	. 171	. 172	. 174	. 175	. 176	. 177	.178
95.5	-0.169	-0.170	-0.171	-0.173	-0.174	-0.175	-0.176	-0.177	-0.179	-0.180
96.0	. 170	. 171	. 173	. 174	. 175	. 176	. 177	. 179	. 180	. ISI
96.5	. 171	.173	. 174	. 175	. 176	. 178	-179	.180	. 18 I	. I 82
97.0	.173	. 174	. 175	.176	. 178	. 179	. ISo	. 181	.183	. 184
97.5	-174	. 175	. 176	. 178	. 179	. ISo	. S_{1}	. 183	. 184	. 185
98.0	-0.175	-0.176	-0.178	-0.179	-0.180	-0.18I	-0.183	-0.184	-0.185	-0.186
98.5	.176	. 178	. 179	. 180	. 181	. 183	. IS 4	. 185	. 187	. 188
99.0	. 178	. 179	.180	. 182	. 183	.IS4	.185	. 187	. 188	. 189
99.5	.179	. 180	. 182	. 183	.184	. 185	.187	. 188	. 189	. 190
100.0	.180	. 182	. 183	. 184	. 185	.187	. 188	. 159	.191	. 192

Table 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE ENGLISH MEASURES.

Attached Thermometer Fahrenheit.	HEIGHT OF THE BAROMETER IN INCHES.									
	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
$\begin{gathered} \text { F. } \\ 0.0 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.0-5 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.078 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.079 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.079 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ \text { +o.oSo } \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +\mathrm{o} .08 \mathrm{ol} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Inch. } \\ +0.08 \mathrm{I} \end{gathered}\right.$	$\begin{gathered} \text { Inch. } \\ +\mathrm{o.0SI} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.0 S 2 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.082 \end{gathered}$
0.5	+0.076	$+0.077$	+0.077	+0.078	+0.078	+0.079	+0.079	+0.0So	+0.08o	+0.081
1.0	. 075	. 076	. 076	. 077	. 077	. 078	. 078	. 079	.079	.oSo
1.5	. 074	. 074	. 075	. 075	.076	. 076	. 077	. 077	.078	.07S
2.0	. 072	. 073	. 073	. 074	. 074	. 075	. 075	. 076	.076	. 077
2.5	.071	. 07 I	. 072	. 072	. 073	. 073	. 074	. 074	. 075	. 075
3.0	+0.070	+0.070	+0.070	+0.071	+0.071	+0.072	+0.072	+0.073	+0.073	+0.074
3.5	. 068	. 069	. 069	. 070	.070	. 070	. 07 I	. 07 I	. 072	. 072
4.0	. 067	. 067	. 068	. 068	. 069	. 069	. 070	. 070	. 070	.071
4.5	. 065	. 066	. 066	. 067	. 067	. 068	. 068	. 069	. 069	. 069
5.0	. 064	. 065	. 065	. 065	. 066	. 066	. 067	. 067	. 068	. 068
5.5	+0.063	+0.063	+0.064	+0.064	+0.064	+0.065	+0.065	+0.066	+0.066	+0.067
6.0	.06I	. 062	. 062	.063	. 063	. 063	. 064	. 064	. 065	. 065
6.5	. 060	. 060	. 061	.06I	. 062	. 062	. 062	. 063	.063	. 064
7.0	. 059	. 059	. 059	. 060	. 060	.06I	.06I	.06I	. 062	. 062
7.5	. 057	. 058	. 058	.058	.059	. 059	. 060	. 060	. 060	. 061
8.0	+0.056	+0.056	+0.057	$+0.057$	$+0.057$	+0.058	+0.058	+0.059	+0.059	+0.059
8.5	. 055	. 055	. 055	. 056	. 056	. 056	. 057	. 057	. 058	. 058
9.0	. 053	. 054	. 054	. 054	. 055	. 055	. 055	. 056	.056	. 056
9.5	.052	. 052	. 053	. 053	. 053	. 054	. 054	. 054	. 055	. 055
10.0	. 051	. 051	.05I	.052	. 052	.052	. 053	. 053	. 053	. 054
10.5	+0.049	+0.049	+0.050	+0.050	+0.050	+0.051	+0.051	+0.051	+0.052	$+0.052$
II. 0	. 048	. 048	. 048	. 049	. 049	. 049	. 050	. 050	. 050	. 051
II. 5	. 046	. 047	. 047	. 047	. 048	. 048	.048	. 049	. 049	. 049
12.0	. 045	. 045	. 046	. 046	. 046	. 047	. 047	. 047	.048	. 048
12.5	. 044	. 044	. 044	. 045	. 045	. 045	. 045	. 046	.046	.046
13.0	+0.042	+0.043	$\div 0.043$	+0.043	+0.0.44	+0.044	+0.044	+0.044	+0.045	+0.045
13.5	. 041	.04I	. 042	.042	. 042	. 042	. 043	. 043	. 043	. 043
14.0	. 040	. 040	. 040	. 040	.04I	.04I	.041	. 042	.042	. 042
14.5	. 033	. 039	. 039	. 039	. 039	. 040	.040	. 040	.040	.04I
15.0	.037	.037	. 037	.03S	. 038	.038	.038	. 039	.039	. 039
15.5	+0.036	+0.036	+0.036	+0.036	+0.037	+0.037	+0.037	$+0.037$	+0.037	+0.038
16.0	. 034	. 034	. 035	. 035	. 035	. 035	.036	. 036	.036	. 036
16.5	. 033	. 033	. 033	. 034	. 034	. 034	. 034	. 034	. 035	.035
17.0	. 032	. 032	. 032	. 032	. 032	. 033	. 033	. 033	. 033	. 033
17.5	. 030	. 030	. 031	. 031	. 03 I	. 03 I	.031	. 032	. 032	.032
18.0	+0.029	+0.029	$+0.029$	+0.029	+0.030	+0.030	+0.030	+0.030	+0.030	+0.03I
18.5	. 027	. 028	. 028	. 02 S	. 028	. 028	. 029	. 029	. 029	. 029
19.0	. 026	. 026	. 026	. 027	. 027	. 027	. 027	. 027	. 027	. 028
19.5	. 025	. 025	. 025	. 025	. 025	. 026	. 026	. 026	. 026	. 026
20.0	. 023	. 02.4	. 024	. 024	. 024	. 024	. 024	. 024	. 025	. 025
20.5	+0.022	+0.022	$+0.022$	+0.022	+0.023	$+0.023$	+0.023	$+0.023$	$+0.023$	+0.023
21.0	. 021	. 021	. 021	. 021	. 02 I	. 02 I	. 022	. 022	. 022	. 022
21.5	.019	.OI9	. 020	. 020	. 020	. 020	. 020	. 020	. 020	. 020
22.0	. 018	.or8	.or8	.oı8	. 018	.OI9	. 019	. 019	.OI9	.ol9
22.5	. 017	. 017	. 017	.017	. 017	. 017	.017	. 017	. 017	. 018
23.0	+0.015	+o.015	+0.015	+0.016	+0.016	+0.016	+0.016	+0.016	+0.016	+0.016
23.5	. 014	.OI4	. 014	.OI4	.OI4	. 014	. 014	. OI 5	. 015	. 015
24.0	. 013	.OI3	. 013	. 013	.OI 3	. OI 3	. 013	. 013	.oI3	.OI3
24.5	. OI 1	.OII	.OII	. 011	.oII	. OI 2	. 012	. 012	. O 2	. 012
25.0	. 010	. 010	. 010	. OIO	.oro	.oio	. O O	. O O	o. 10	. 10

Table 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
ahren heit.	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
F.	Inch.								Inch.	nch.
25.5	+0.008	+0.009	+0.009	+0.009	+0.009	$+0.009$	+0.009	+0.009	+0.009	+0.009
26.0	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 007	. 008	- 0.008
26.5	. 006	. 006	. 006	. 006	. .006	. .006	. 006	. 006	. 006	-.006
27.0	. 004	4 .004	. 004	. 005	. 005	. 005	. 005	. 005	. 005	. 005
27.5	. 003	. 003	. 003	. 003	. 003	.003	. 003	. 003	. 003	. 003
28.0	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	+0.002	to.002
28.5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	+0.002 0.000
29.0	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	- $\begin{array}{r}\text { 0.000 } \\ -0.001\end{array}$
29.5	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002	. 002
30.0	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004	. 004
30.5	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
31.0	. 006	. 006	. 006	. 007	. 007	. 007	. 007	. 007	. 007	. 007
31.5	. 008	. 008	. 008	. 008	. 008	. 008	.008	. 008	. 008	. 008
32.0	. 009	. 009	. 009	. 009	. 009	. 009	. 009	. 010	. 010	. 010
32.5	. 010	.OII	. 011	. OI I	. OI I	. 017	. 011	. OII	.OII	. OI 1
33.0	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.012	-0.013
33.5	. 013	. 013	. 013	. 013	. 014	. 014	.OI4	. OI 4	. 014	. 014
34.0	. 015	. 015	. OI 5	. 015	. 015	. 015	. 015	. 015	. 015	. OI 5
34.5	. 016	. 016	. 016	. 016	. 016	. 016	. 017	. 017	. 017	. 1017
35.0	. 017	.017	. 017	. 018	. 018	. OI 8	. 018	.ors	. 018	. 018
35.5	0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.019	-0.020	-0.020
36.0	. 020	. 020	. 020	. 020	. 020	. 021	.02I	. 02 I	. 021	. 021
36.5	. 021	. 021	. 022	. 022	. 022	. 022	. 022	. 022	. 022	. 023
37.0	. 023	. 023	. 023	. 023	. 023	. 023	. 024	. 024	. 024	. 024
37.5	. 024	. 024	. 024	. 024	. 025	. 025	. 025	. 025	. 025	. 025
38.0	-0.025	-0.026	-0.026	-0.026	-0.026	-0.026	-0.026	-0.027	-0.027	-0.027
38.5	. . 027	. 027	. 027	. 027	. 027	. 028	. 028	. 028	. 028	. 028
39.0	. 028	. 028	. 028	. 029	. 029	. 029	. 029	. 029	. 030	. 030
39.5	. 029	. 030	. 030	.030	. 030	.030	.03I	.03I	. 031	. 031
40.0	.03I	. 03 I	. 031	. 03 I	. 032	. 032	. 032	.032	. 032	. 033
40.5	-0.032	-0.032	-0.033	-0.033	-0.033	-0.033	-0.033	-0.034	-0.034	-0.034
41.0	. 033	. 034	. 034	. 034	. 034	. 035	. 035	. 035	. 035	. 035
41.5	.035	. 035	. 035	. 035	. 036	. 036	.036	.036	. 037	. 037
42.0	. 036	. 036	. 037	. 037	. 037	. 037	. 038	. 038	. 038	. 038
42.5	. 037	. 038	. 038	. 038	. 038	. 039	. 039	. 039	. 040	. 040
43.0	-0.039	-0.039	-0.039	-0.040	-0.040	-0.040	-0.040	-0.04I	-0.04I	-0.04I
43.5	. 040	. 040	.041	. 041	.04I	. 042	. 042	. 042	. 042	. 043
44.0	. 042	. 042	. 042	. 042	. 043	. 043	. 043	. 043	. 044	. 044
44.5	. 043	. 043	. 043	. 044	. 044	. 044	. 045	. 045	.045	. 045
45.0	. 044	. 045	. 045	. 045	. 045	. 046	. 046	. 046	. 047	. 047
45.5	-0.046	-0.046	-0.046	-0.047	-0.047	-0.047	-0.047	-0.048	-0.048	--0.048
46.0	. 047	. 047	. 048	. 048	. 048	. 049	. 049	. 049	. 049	. 050
46.5	. 048	. 049	. 049	. 049	.050	.050	. 050	.05I	.051	. 051
47.0	. 050	. 050	. 050	.051	.051	. 051	. 052	. 052	. 052	. 053
47.5	. 051	.051	.052	.052	.052	. 053	. 053	. 053	. 054	. 054
48.0	-0.052	-0.053	-0.053	-0.053	-0.054				-0.055	-0.055
48.5	. 054	. 054	. 054	. 055	. 055	. 055	. 056	. 056	. 057	. 057
49.0	. 055	. 055	. 056	. 056	. 057	. 057	. 057	. 058	. 058	. 053
49.5	. 056	. 057	. 057	. 058	.058	. 058	. 059	. 059	. 059	. 060
50.0	. 058	. 058	. 058	. 059	. 059	. 060	. 060	. 060	.06I	.061

Table 44.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
ENGLISH MEASURES.

Attached Ther-	HEIGHT OF THE BAROMETER IN INCHES.									
Fahren- heit.	29.8	30.0	30.2	30.4	30.6	30.8	31.0	31.2	31.4	31.6
F.	Inch.	Iuch.	Inch.							
50.5	0.059	-0.059	-0.060	-0.060	-0.061	-0.06I	-0.06I	-0.062	-0.062	-0.063
51.0	. 060	. 061	. 061	. 062	. 062	. 062	. 063	. 063	. 06.4	. 064
51.5	. 062	.062	.063	. 063	.063	.064	.064	. 065	. 065	. 065
52.0	. 063	. 064	. 064	.064	. 065	. 065	. 066	. 066	. 066	. 067
52.5	. 064	. 065	. 065	. 066	. 066	. 067	. 067	. 067	. 068	. 068
53.0	-0.066	-0.066	-0.067	-0.067	-0.068	-0.06S	-0.068	-0.069	-0.069	-0.070
5.3 .5	. 067	. 068	. 065	. 069	. 069	. 069	. 070	. 070	. 071	. 071
54.0	. 068	. 069	. 069	. 070	. 070	.07I	. 071	.072	. 072	. 073
54.5	.070	. 070	.07I	. 071	. 072	. 072	. 073	. 073	. 074	. 074
55.0	.07 5	. 072	.072	. 073	. 073	. 074	. 074	. 075	. 075	. 075
55.5	-0.073	-0.073	-0.074	-0.074	-0.074	-0.075	-0.075	-0.076	-0.076	-0.077
56.0	. 074	. 074	. 075	. 075	. 076	. 076	. 077	. 077	. 078	. 078
56.5	. 075	. 076	.076	. 077	.077	.07S	.078	. 079	. 079	.080
57.0	.077	. 077	.078	. 078	. 079	. 079	.oSo	.OSO	.08I	.08I
57.5	.078	. 078	. 079	. 079	.0So	.OSI	.08I	.082	. 082	.083
58.0	-0.079	-0.0So	-0.080	-0.08I	-0.08I	-0.082	-0.082	-0.083	-0.084	-0.084
58.5	.OSI	. OSI	.0S2	. 082	. 083	.os3	.084	.084	. 0 S5	. 085
59.0	.082	.083	.083	.084	.084	. 085	.0S5	. 086	. 086	. 087
59.5	$.08_{3}$.os4	.084	.085	. 086	.086	.087	.087	.OSS	.088
60.0	. 085	.oS5	. 086	.os6	. 087	. 087	.oSS	.os9	.os9	.090
60.5	0.086	-0.0S7	-0.087	-0.08S	-0.08S	-0.089	-0.089	-0.090	-0.091	-0.091
61.0	.087	.oSS	.089	.oS9	. 090	. 090	.09I	.091	. 092	. 093
61.5	.oS9	.oS9	.090	. 090	.09I	. 092	. 092	. 093	. 093	. 094
62.0	. 090	.09I	.091	. 092	. 092	. 093	. 094	. 094	. 095	. 095
62.5	.091	. 092	. 093	. 093	. 094	. 094	. 095	. 096	. 096	. 097
63.0	-0.093	-0.093	-0.094	-0.095	-0.095	-0.096	-0.096	-0.097	-0.09S	-0.09S
63.5	. 094	. 095	. 095	. 096	. 097	. 097	.098	.09S	. 099	. 100
64.0	. 095	. 096	. 097	. 097	.098	. 099	. 099	.100	. 101	. IOI
64.5	. 097	. 097	.098	. 099	.099	. 100	. 101	. IO	. 102	. 103
65.0	.ogS	. 099	. 099	. 100	. IOI	. IOI	. 102	. 103	. 103	. 104
65.5	-0.099	-0. 100	-0.101	-O.IOI	-0.102	-0.103	-0.103	-0.104	-0.105	-0.105
66.0	. IOI	. IOI	. 102	. 103	.103	. 104	. 105	. 106	. 106	. 107
66.5	. 102	. 103	. 103	. 104	.105	.106	. 106	. 107	. 108	. 108
67.0	. 103	. 104	. 105	. 106	.106	. 107	. ioS	. 108	. 109	. 110
67.5	. 105	. 106	. 106	. 107	. 108	. 108	. 109	. 110	. 110	. II I
68.0	-0.106	-0.107	-0.108	-0.108	-0.109	-0.110	-0.110	-O. III	-0.112	-0.113
6 S .5	. 107	. IOS	. 109	. 110	. 110	. III	. 112	. 113	.113	. II4
69.0	. 109	. 110	. 110	. 111	. 112	. 112	. 113	. 114	. 115	. 115
69.5	. 110	. III	. 112	. 112	. 113	. II4	. 115	. 115	.116	. 117
70.0	. 112	. 112	. 113	. 114	. 115	. 115	.116	.117	. 117	.IIS
70.5	-0.113	-0.114	-0.114	-0.115	-0.116	-0.117	-0.117	-0. IIS	-0.119	-0.120
71.0	. 114	. II 5	. 116	. 116	. 117	. IIS	. 119	. 120	. 120	.12I
71.5	. 116	. 116	.117	. 118	. 119	. 19	. 120	. 121	. 122	. 123
72.0	. 117	. 118	. 118	. 119	.120	. 121	. 122	. 122	.123	. 124
72.5	. 118	. 119	. 120	. 121	. 121	. 122	.123	. 124	.125	.125
73.0	-0.120	-0.120	-0.121	-0.122	-0.123	-0.124	-0.124	-0.125	-0.126	-0.127
73.5	. 121	. 122	. 123	. 123	.124	. 125	. 126	. 127	. 127	. 12 S
74.0	. 122	. 123	. 124	. 125	. 126	. 126	. 127	. 128	. 129	.130
74.5 75.0	.124 .125	124 .126	. 125	. 126	.127 .128	. 128	. 129	. 129	. 130	.13I
75.0	. 125	. 126	. 127	. 127	. 128	. 129	. 130	. 131	. 132	.132

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

 ENGLISH MEASURES.| Attached Thermometer Fahren. heit. | HEIGHT OF THE BAROMETER IN INCHES. | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 29.8 | 30.0 | 30.2 | 30.4 | 30.6 | 30.8 | 31.0 | 31.2 | 31.4 | 31.6 |
| F. | Inch. |
| 75.5 | -0.126 | -0.127 | -0.128 | -0.129 | -0.130 | -0.131 | -0.131 | -0.132 | -0. 133 | -0.134 |
| 76.0 | . 128 | . 128 | . 129 | . 130 | . 311 | .132 | . 133 | . 134 | . 134 | . 135 |
| 76.5 | . 129 | . 130 | . 131 | . 132 | . 132 | . 133 | . 134 | . 135 | . 136 | . 137 |
| 77.0 | . 130 | .13I | .132 | . 133 | . 134 | . 135 | . 136 | . 136 | . I37 | . 138 |
| 77.5 | . 132 | . 133 | . 133 | . I34 | . 135 | . 136 | . 137 | . 138 | . I 39 | . 140 |
| 78.0 | -0.133 | -0.134 | -0.135 | -0.136 | -0.137 | -0.137 | -0.138 | -0.139 | -0.140 | -0.141 |
| 78.5 | . 134 | . 135 | . 136 | . 137 | . 138 | . 139 | . 140 | . 141 | . 142 | . 142 |
| 79.0 | . 136 | . 137 | . 137 | . 138 | . 139 | . 140 | . I4I | . 142 | . 143 | . 144 |
| 79.5 | . 137 | . 138 | - I39 | . 140 | . 141 | . 142 | . 143 | . 143 | . 144 | . 145 |
| 80.0 | . 138 | . 139 | . 140 | . 141 | . 142 | . 143 | . 144 | . 145 | . 146 | . 147 |
| 80.5 | -0.140 | -0.14I | -0.142 | -0.142 | -0.143 | -0.144 | -0.145 | -0.146 | -0.147 | -0.148 |
| 81.0 | . 141 | . 142 | . 143 | . 144 | . 145 | . 146 | . 147 | . 148 | . 149 | . 150 |
| 81.5 | . 142 | . 143 | . 144 | . 145 | . 146 | . 147 | . 148 | . 149 | . 150 | . 151 |
| 82.0 | . 144 | . 145 | . 146 | . 147 | .148 | . 149 | . 149 | . 150 | .15I | . 152 |
| 82.5 | . 145 | . 146 | . 147 | . 148 | . 149 | . 150 | . 151 | . 152 | . 53 | . 154 |
| 83.0 | -0.146 | -0.147 | -0.148 | -0.149 | -0.150 | -0.151 | -0.152 | -0.153 | -0.154 | -0.155 |
| 83.5 | . 148 | . 149 | . 150 | . 151 | . 152 | . 153 | . 154 | . 155 | . 156 | . 157 |
| 84.0 | . 149 | . 150 | . 515 | . 152 | . 153 | . 154 | . 155 | . 156 | . 157 | . 158 |
| 84.5 | . 150 | . 151 | . 152 | . 153 | . 154 | . 155 | . 156 | . 157 | . 158 | . 159 |
| 85.0 | . 152 | . 153 | . 154 | . 155 | . 156 | . 157 | . 158 | . 159 | . 160 | . 161 |
| 85.5 | -0.153 | -0.154 | -0.155 | -0.156 | -0.157 | -0.158 | -0.159 | -0.160 | -0.16I | -0.162 |
| 86.0 | . 154 | . 155 | . 156 | . 158 | . 159 | . 160 | .16I | . 162 | . 163 | . 164 |
| 86.5 | . 156 | . 157 | . 158 | . 159 | . 160 | .16I | .16.2 | .163 | . 164 | . 165 |
| 87.0 | . 157 | . 158 | . 159 | . 160 | . 161 | . 162 | . 163 | . 164 | . 166 | .167 |
| 87.5 | . 158 | . 159 | .161 | . 162 | . 163 | . 164 | . 165 | . 166 | . 167 | . 168 |
| 88.0 | -0.160 | -0.161 | -0.162 | -0.163 | -0.164 | -0.165 | -0.166 | -0.167 | -0.168 | -0.169 |
| 88.5 | . 161 | . 162 | . 163 | . 164 | . 165 | . 166 | . 168 | . 169 | . 170 | .171 |
| 89.0 | . 162 | . 164 | . 165 | . 166 | . 167 | . 168 | . 169 | . 170 | . 171 | .172 |
| 89.5 | . 164 | . 165 | . 166 | . 167 | . 168 | .169 | . 170 | . 171 | . 173 | . 174 |
| 90.0 | .165 | . 166 | . 167 | . 168 | . 170 | .171 | . 172 | . 173 | . 174 | . 175 |
| 90.5 | -0.166 | -0.168 | -0.169 | -0.170 | -0.171 | -0.172 | -0.173 | -0.174 | -0.175 | -0.176 |
| 91.0 | . 168 | . 169 | . 170 | . 171 | . 172 | . 173 | . 175 | . 176 | . 177 | . 178 |
| 91.5 | . 169 | .170 | .171 | . 173 | . 174 | . 175 | . 176 | . 177 | . 178 | . 179 |
| 92.0 | . 170 | . 172 | .173 | . 174 | . 175 | . 176 | .177 | . 178 | . 180 | .181 |
| 92.5 | . 172 | . 173 | . 174 | . 175 | . 176 | . 178 | . 179 | . 180 | .181 | .182 |
| 93.0 | -0.173 | -0.174 | -0.175 | -0.177 | -0.178 | -0.179 | -0.180 | -0.18I | -0.182 | -0.184 |
| 93.5 | . 174 | . 176 | . 177 | . 178 | . 179 | . I8o | . 181 | .183 | . 184 | -. 185 |
| 94.0 | . 176 | . 177 | .178 | . 179 | . ISo | . 182 | . 183 | . 184 | . 185 | . I86 |
| 94.5 | . 177 | .178 | .179 | . 181 | . 182 | . 183 | . IS4 | . 185 | . 187 | . 188 |
| 95.0 | . 178 | . 180 | .181 | . 182 | . 183 | . 184 | . 186 | . 187 | . 188 | . 189 |
| 95.5 | -0.180 | -0.18I | -0.182 | -0.183 | -0.185 | -0.186 | -0.187 | -0.188 | -0 189 | -0.191 |
| 96.0 | . 181 | . 182 | . 184 | . 185 | . 186 | . 187 | . 188 | . 190 | . 191 | . 192 |
| 96.5 | . 182 | . 184 | . 185 | . 186 | . 187 | . 189 | . 190 | .191 | . 192 | . 193 |
| 97.0 | . IS4 | . 185 | . 186 | .187 | . 189 | . 190 | . 191 | . 192 | . 194 | . 195 |
| 97.5 | . 185 | . 186 | . 188 | . 189 | . 190 | .191 | . 193 | . 194 | . 195 | . 196 |
| 98.0 | -0.186 | -0.188 | -0.189 | -0.190 | -0.191 | -0.193 | -0.194 | -0.195 | -0.196 | -0.198 |
| 98.5 | . 188 | . 189 | . 190 | . 192 | . 193 | . 194 | . 195 | . 197 | . 198 | . 199 |
| 99.0 | . 189 | . 190 | . 192 | . 193 | . 194 | . 195 | . 197 | . 198 | . 199 | . 201 |
| 99.5 | . 190 | . 192 | . 193 | . 194 | . 196 | . 197 | . 198 | . 199 | . 201 | . 202 |
| 100.0 | . 192 | . 193 | . 194 | . 196 | . 197 | . 198 | . 200 | . 201 | . 202 | . 203 |

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE METRIC MEASURES.
for temperatures above 0° centigrade, the correction to be subtracted.

Attached Thermometer Centigrade.	height of the barometer in millimeters.												
	440	450	460	470	480	490	500	510	520	530	540	550	560
c.	mm.	mm.	mm .	mm.	mm .	mm .	mm .	mm.	mm.	mm.	mm.	mm.	mm .
0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.5	. 04	. 04	. 04	. 04	. 04	. 04	. 04	. 0.4	. 04	. 04	. 04	. 04	. 05
1.0	. 07	. 07	. 08	. 08	. 08	. 08	.o8	. 08	. 08	. 09	. 09	. 09	. 09
1.5	. 11	. II	. 1 I	. 12	. 12	. 12	. 12	. 12	. 13	. 13	. 13	. 13	. 14
2.0	. 14	. 15	. 15	. 15	. 16	. 16	. 16	. 17	. 17	. 17	. 18	. 18	. 18
2.5	0.18	0.18	O. 19	0. 19	0. 20	0.20	0.20	0. 21	0.2I	0.22	0.22	0.22	0.23
3.0	. 22	. 22	. 23	. 23	. 24	. 24	. 24	. 25	. 25	. 26	. 26	. 27	. 27
3.5	. 25	. 26	. 26	. 27	. 27	. 28	. 29	. 29	. 30	. 30	. 31	. 31	. 32
4.0	. 29	. 29	. 30	. 31	. 31	. 32	. 33	. 33	. 34	. 35	. 35	. 36	. 37
4.5	. 32	. 33	- 34	- 35	. 35	. 36	. 37	. 37	. 38	. 39	. 40	. 40	. 4 I
5.0	0.36	0.37	0.38	0.38	0.39	0.40	0.41	0.42	0.42	10.43	0.44	0.45	0.46
5.5	. 40	. 40	. 41	. 42	. 43	. 44	. 45	. 46	. 47	. 48	48	. 49	. 50
6.0	. 43	. 41	. 45	. 46	. 47	. 48	. 49	. 50	. 51	. 52	. 53	. 54	. 55
6.5	. 47	.48	. 49	. 50	. 5 I	. 52	. 53	. 54	. 55	. 56	. 57	. 58	. 59
7.0	. 50	. 51	. 53	. 54	. 55	. 56	. 57	. 58	. 59	.61	. 62	. 63	. 64
7.5	0.54	0.55	0.56	0.58	0.59	0.60	0.6I	0.62	0.64	0.65	0. 66	0.67	0.69
8 o	. 57	. 59	. 60	. 61	. 63	. 64	. 65	. 67	. 68	. 69	. 70	. 72	. 73
8.5	.61	. 62	. 64	. 65	.67	. 68	. 69	. 71	. 72	. 73	. 75	. 76	. 78
9.0	. 65	. 66	. 68	. 69	. 70	. 72	. 73	. 75	.76	. 78	.79	. 81	. 82
9.5	. 68	.70	. 71	. 73	. 74	.76	.77	. 79	. 81	. 82	. 84	. 85	. 87
10.0	0.72	0.73	0. 75	0.77	0.78	0.80	0.82	0. 83	0. 85	0.86	0.88	0.90	0.91
10.5	. 75	. 77	. 79	. 80	. 82	. 84	. 86	. 87	. 89	.91	. 92	. 94	. 96
II. 0	. 79	. 81	. 83	. ¢ $_{4}$. 86	. 88	. 90	. 91	. 93	. 95	. 97	. 99	1.00
I 1.5	. 83	. 84	. 86	. 88	.90	. 92	. 94	. 96	. 98	. 99	1.01	1.03	1.05
12.0	. 86	. 88	. 90	. 92	. 94	.96	. 98	1.00	1.02	1.04	I. 06	1.08	I. IO
13.0	- 93	0.95	0.97	1.00	1.02	1.04	1. 06	1.0S	1. 10	1.12	I. 14	I. 17	I. 19
14.0	1.00	1.03	1.05	1. 07	I. 10	I. 12	I. 14	I. 16	1.19	1.21	I. 23	1. 25	1. 28
15.0	1.08	110	1.12	I.I5	1.17	I. 20	1.22	1.25	1.27	1.30	1.32	1.34	I. 37
16.0	1. I5	1.17	I. 20	1.23	I. 25	1. 28	1.30	1.33	1. 36	I. 38	I.4I	I. 43	I. 46
17.0	1.22	1.25	1.27	1.30	1.33	1. 36	1.38	1.41	1. 44	1.47	1.50	1.52	1.55
18.0	1.29	1.32	1.35	1.38	I. 41	1.44	1.47	1.50	1.52	I. 55	1.58	1.61	1. 64
19.0	1.36	1.39	1.42	1.45	I. 49	1.52	I. 55	1.58	I.6I	I. 64	1.67	1.70	1.73
20.0	1.43	1.47	1.50	1.53	1.56	1. 60	1.63	I. 66	I. 69	1.73	I. 76	1.79	1.82
2 I .0	1.50	I. 54	I. 57	1.61	1.64	1.67	1.71	1.74	I. 78	1.81	1.85	1.88	I.91
22.0	I. 58	1.6I	1.65	1.68	1.72	1.75	I. 79	1. 83	I. 86	I. 90	1.93	1.97	2.01
23.0	1.65	1.68	1. 72	1.76	1.80	1.83	1.87	191	1.95	1.98	2.02	2.06	2. 10
24.0	1.72	1.76	1. 30	I. 84	1.87	1.91	1.95	1.99	2.03	2.07	2. II	2.15	2.19
25.0	1.79	J. 83	I. 87	I.91	I. 95	1.99	2.03	2.07	2. II	2.16	2.20	2.24	2.28
26.0	1.86	1.90	I. 95	I. 99	2.03	2.07	2.11	2. I6	2.20	2.24	2.28	2.33	2.37
27.0	I. 93	1.98	2.02	2.06	2. II	2. I5	2.20	2.24	2.28	2.33	2.37	2.41	2.46
28.0	2.00	2.05	2.09	2.14	2. 18	2.23	2.28	2.32	2.37	2.41	2.46	2.50	2.55
29.0	2.07	2. 12	2.17	2.22	2.26	2.31	2.36	2.40	2.45	2.50	2.55	2.59	2.64
30.0	2.15	2.19	2.24	2.29	2.34	2.39	2.44	2.49	: 5. 4	2.58	2.63	2.68	2.73
31.0	2.22	2.27	2.32	2.37	2.42	2.47	2.52	2.57	2.02	2.57	2.72	2.77	2.82
32.0	2.29	2.34	2.39	2.44	2.50	2.55	2.60	2.65	2.70	2.76	2.81	286	2.91
33.0	2.36	2.41	247		2.57	2.63	2.68	2.73	2.79	2.84	2.89	2.95	3.00
34.0	2.43	2.48	2.54	2.60	2.65	2.71	2.76	2.82	2.87	2.93	2.98	3.04	3.09
35.0	2.50	2.55	2.61	2.67	2.73	2.78	2.84	2.90	2.96	3.01	3.07	3.13	3.18

Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, the CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 560 mm .					HEIGHT OF THE BAROMETER 570 mm .				
Attached Thermometer.	$0 \% 0$	0:2	0.4	0.6	0.8	0.0	0:2	0.4	0.6	0.8
c.	mm .	mm .	mm.	mm .	mm .	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.05	0.07	0.00	0.02	0.04	0.06	0.07
I	. 09	. II	. I3	. 15	. 16	. 09	. II	. I3	. 15	. 17
2	. 18	. 20	. 22	. 24	. 26	. 19	. 20	. 22	. 24	. 26
3	. 27	. 29	. 31	. 33	. 35	. 28	. 30	$\cdot 32$. 34	. 35
4	$\cdot 37$. 3 S	. 40	. 42	. 44	. 37	. 39	.4I	.43	. 45
5	0.46	0.48	0.49	0.51	0.53	0.47	0.48	0.50	0. 52	0.54
6	. 55	. 57	. 5 S	. 60	. 62	. 56	. 5 S	. 60	. 61	. 63
7	. 64	. 66	. 68	. 69	. 71	.65	. 67	. 69	. 71	. 73
8	. 73	.75	.77	. 79	.So	.74	.76	. 78	. So	. 82
9	. S 2	. 84	. 86	. 58	. 90	. 84	. 86	. 87	. 89	. 91
10	0.91	0.93	0.95	0.97	0.99	0.93	0.95	0.97	0.99	I. 00
II	1.00	1.02	I. 0.4	1.06	I. 08	1.02	I. 0.4	1.06	1.08	I. 10
12	I. 10	I. II	I. I3	1.15	I. 17	I. 12	I. 13	I. 15	I. 17	I. 19
I3	I. 19	1.20	I. 22	I. 24	I. 26	I. 21	1.23	1.25	1.26	1.28
14	1. 28	1.30	I. 3 I	1.33	I. 35	1.30	I. 32	I. 34	I. 36	1.37
15	1.37	1.39	1.41	I. 42	I. 44	I. 39	I. 4 I	1.43	I. 45	I. 47
16	I. 46	1.48	1.50	I. 51	I. 53	1.49	I. 50	1.52	1.54	I. 56
17	I. 55	1.57	1.59	I.6I	1.62	1. 58	I. 60	1.62	1.63	I. 65
IS	1.64	1.66	1.68	1.70	1.71	I. 67	I. 69	1.71	1.73	1.75
19	1.73	I. 75	1.77	I. 79	1.81	1. 76	1.78	I. So	I. 82	1.84
20	I. S_{2}	J. S_{4}	I. 66	I. SS	1.90	I. 86	I. 87	I. 99	I.91	I. 93
2 I	1.91	1.93	1.95	1.97	1.99	I. 95	1.97	1.99	2.00	2.02
22	2.01	2.02	2.04	2.06	2.08	2.04	2.06	2.0 S	2.10	2.1 I
23	2.10	2.11	2.13	2.15	2.17	2.13	2.15	2.17	2.19	2.21
24	2.19	2.20	2.22	2.24	2.26	2.23	2.24	2.26	2.28	2.30
25	2.28	2.30	2.3 I	2.33	2.35	2.32	2.34	2.35	2.37	2.39
26	2.37	2.39	2.40	2.42	2.44	2.41	2.43	2.45	247	2.48
27	2.46	2.48	2.49	2.51	2.53	2.50	2.52	2.54	2.56	2.58
28	2.55	2.57	2.59	2.60	2.62	2.59	2.61	2.63	2.65	2.67
29	2.64	2.66	2.68	2.69	2.71	2.69	2.71	2.72	2.74	2.76
30	2.73	2.75	2.77	2.78	$2 . \mathrm{So}$	2.78	$2 . \mathrm{So}$	$2 . \mathrm{S} 2$	2.83	2.85
31	2.82	2.84	2. S 6	2.87	$2 . \mathrm{S} 9$	2.87	2.89	2.91	2.93	2.94
32	2.91	2.93	2.95	2.97	2.98	2.96	2.98	3.00	3.02	3.04
33	3.00	3.02	3.04	3.06	3.07	3.06	3.07	3.09	3.11	3.13
34	3.09	3.11	3.13	3.15	3.16	3.15	3.17	3.15	3.20	3.22
35	3.18	3.20	3.22	3.24	3.25	3.24	3.26	3.28	3.29	3.31

Table 45.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

 METRIC MEASURES.FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 580 mm .					HEIGIIT OF THE BAROMETER 590 mm.				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
C.	mmı.	mmı.	mm .	mm.	mm.	mım.	mm.	mm .	mm.	mm .
$0{ }^{\circ}$	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 09	. II	. 13	. 15	. 17	. 10	. 12	. 13	. 15	. 17
2	. 19	. 21	. 23	. 25	. 27	. 19	.21	. 23	.25	. 27
3	. 28	. 30	$\cdot 32$. 34	. 36	. 29	. 31	. 33	. 35	. 37
4	$\cdot 3^{8}$. 40	. 42	. 44	. 45	- 39	. 40	. 42	. 44	. 46
5	0.47	0.49	0.51	0.53	0.55	0.48	0.50	0.52	0.54	0.56
6	. 57	. 59	.6I	. 62	. 64	. 58	. 60	. 62	. 64	. 65
7	. 66	. 68	.70	. 72	. 74	. 67	. 69	. 7 SI	. 73	. 75
8	.76	.78	. 79	. 81	. 83	. 77	. 79	. 81	.83	. 85
9	.85	. 87	.89	. 91	. 93	.87	. 89	. 90	.92	. 94
10	0.95	0.96	0.98	1.00	I. 02	0.96	0.98	1.00	1.02	1. 04
II	1.04	1.06	1.08	1.10	I. 12	1.06	1.08	I. 10	1.12	I. 14
12	I. 13	I. 15	I. 17	I. 19	I. 21	I. 15	1.17	1. 19	I. 21	1. 23
13	I. 23	1.25	1.27	1.29	1.30	1.25	1.27	1.29	1.31	1.33
14	1.32	1. 34	1. 36	1.38	I. 40	I. 35	1.37	1.38	1. 40	I. 42
15	1.42	1. 44	I. 46	1.47	I. 49	1. 44	1.46	1.48	1.50	1.52
16	I. 51	1. 53	1.55	1.57	I. 59	1.54	I. 56	1.58	1.60	1.61
17	1.6I	1.62	I. 64	I. 66	1.68	I. 63	I. 65	1.67	1.69	1.71
18	1.70	1.72	1.74	1. 76	1. 78	I. 73	1.75	1.77	I. 79	I. $\mathrm{SI}^{\text {I }}$
19	1.79	I. 81	1.83	I. 85	1.87	I. 83	I. 84	1. 86	1. 88	1.90
20	I. 89	1.91	1.93	1.95	1.96	I. 92	1.94	1.96	1.98	2.00
21	1.98	2.00	2.02	2.04	2.06	2.02	2.04	2.06	2.07	2.09
22	2.08	2.10	2.11	2.13	2.15	2. II	2.13	2. 15	2.17	2.19
23	2.17	2.19	2.21	2.23	2.25	2.21	2.23	2.25	2.27	2.25
24	2.26	2.28	2.30	2.32	2.34	2.30	2.32	2.34	2.36	2.38
25	2.36	2.38	2.40	2.41	2.43	2.40	2.42	2.44	2.46	2.48
26	2.45	2.47	2.49	2.51	2.53	2.49	2.51	2.53	2.55	2.57
27	2.55	2.57	2.58	2.60	2.62	2.59	2.61	2.63	2.65	2.67
28	2.64	2.66	2.68	2.70	2.72	2.69	2.70	2.72	2.74	2.76
29	2.73	2.75	2.77	2.79	2.81	2.78	2. So	2.82	2.84	2.86
30	2.83	2.85		2.95	2.90	2.88	2.90	2.91	2.93	2.95
31	2.92	2.94	2.96	2.98	3.00	2.97	2.99	3.01	3.03	3.05
32	3.02	3.03	3.05	3.07	3.09	3.07	3.09	3.11	3.12	3.14
33	3.11	3.13	3.15	3.16	3.18	3.16	3.18	3.20	3.22	3.24
34	3.20	3.22	3.24	3.26	3.28	3.26	3.28	3.30	3.3 I	3.33
35	3.30	3.31	3.33	3.35	3.37	3.35	3.37	3.39	3.41	3.43

Ghithbonian Tables.

Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
METRIC MEASURES.
FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	heigiit of the barometer 600 mm .					HEIGHT OF TIIE BAROMETER 605 mm .				
Attached Ther. mometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	11 mm .	11111.	11112.	1113.	mm.	1111.	1111.	11112.	mm.
$0{ }^{\circ}$	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.0S
I	. 10	. 12	. 14	. 16	. 18	. 10	. 12	. 14	. 16	. 18
2	. 20	. 22	. 24	. 25	. 27	. 20	.22	. 24	. 26	. 28
3	. 29	. 31	.33	. 35	. 37	- 30	.32	. 34	.36	.38
4	. 39	. 41	. 43	. 45	. 47	.40	.4I	. 43	. 45	.47
5	0.49	0.51	0.53	0.55	0.57	0.49	0.51	0.53	0.55	0.57
6	. 59	. 61	. 63	. 65	. 67	. 59	. 61	. 63	. 65	. 67
7	. 69	. 70	. 72	. 74	. 76	. 69	. 71	. 73	. 75	. 77
8	.78	. So	. 82	. 84	. 86	. 79	. SI	. 3_{3}	. 85	. 87
9	. 88	.90	.92	. 94	.96	.89	.91	. 93	. 95	. 97
10	0.98	1.00	I. O 2	1.04	1.06	0.99	1.01	1.03	1.05	1.07
11	1.0S	I. 10	I. 12	I. 13	I. 15	1.09	1. 10	1.12	1.14	1.16
12	1.17	I. 19	I. 21	1.23	I. 25	I. 18	1.20	I. 22	I. 24	I. 26
13	1.27	1.29	1.3I	I. 33	I. 35	1.28	1.30	1. 32	I. 34	I. 36
14	1.37	I. 39	I. 41	I. 43	I. 45	1.38	1.40	I. 42	I. 44	1. 46
15	I. 47	1. 49	1.51	I. 53	I. 54	1.48	1.50	I. 52	I. 54	1.56
16	I. 56	1.58	1.60	1.62	1.64	1.58	1.60	1.62	I. 64	I. 66
17	1.66	1.68	1.70	1.72	1.74	I. 68	1.70	1.71	1.73	1.75
18	1.76	1.78	I. So	1. 82	I. 84	1.77	1.79	I. SI	$1 . S_{3}$	I. 85
19	I. 86	1.88	1.90	1.91	1.93	I. 87	1. 89	1.91	1.93	1.95
20	1.95	1.97	I. 99	2.01	2.03	1.97	1.99	2.01	2.03	2.05
21	2.05	2.07	2.09	2.11	2.13	2.07	2.09	2.11	2. I 3	2.15
22	2.15	2. 17	2.19	2.21	2.23	2.17	2. 19	2.21	2.23	2.24
23	2.25	2.26	2.28	2.30	2.32	2.26	2.28	2.30	2.32	2.34
24	2.34	2.36	2.38	2.40	2.42	2.36	2.35	2.40	2.42	2.44
25	2.44	2.46	2.48	2.50	2.52	2.46	2.48	2.50	2.52	2.54
26	2.54	2.56	2.58	2.60	2.61	2.56	2.58	2.60	2.62	2.64
27	2.63	2.65	2.67	2.69	2.71	2.66	2.68	2.70	2.71	2.73
28	2.73	2.75	2.77	2.79	2.81	2.75	2.77	2.79	2.81	2.83
29	2.83	2.85	2.87	2.89	2.91	2.95	2.87	2.89	2.91	2.93
30	2.93	2.94	2.96	2.98	3.00	2.95	2.97	2.99	3.01	3.03
3 I	3.02	3.04	3.06	3.08	3.10	3.05	3.07	3.09	3.11	3.13
32	3.12	3.14	3.16	3.1S	3.20	3.15	3.16	3.18	3.20	3.22
33	3.22	3.24	3.25	3.27	3.29	3.24	3.26	3.28	3.30	3.32
34	3.31	3.33	3.35	3.37	3.39	3.34	3.36	3.38	3.40	3.42
35	3.41	3.43	3.45	3.47	3.49	3.44	3.46	3.48	3.50	3.52

Smithsonian Tabife

Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	IIEIGIIT OF TIIE BAROMETER 610 mm .					HEIGIIT OF TIIE BAROMETER 615 mm .				
Attached Thermometer	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0:8
c.	mm .	mm .	mm.	mm.	mm.	mm .	mm .	mm .	nım.	mm .
$0{ }^{\circ}$	0.00	0.02	0.0.4	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	. 12	. 14	. 16	. 18	. 10	. 12	. 14	. 16	. 18
2	. 20	. 22	. 24	. 26	. 28	. 20	. 22	. 24	. 26	. 28
3	. 30	. 32	. 34	. 36	. 38	. 30	$\cdot 32$	- 34	. 36	. 38
4	. 40	.42	. 44	.46	. 48	. 40	.42	. 44	.46	. 48
5	0.50	0.52	0.54	0.56	0.58	0.50	0.52	0.54	0.56	0.58
6	. 60	. 62	. 64	. 66	. 68	. 60	. 62	. 64	. 66	. 68
7	. 70	.72	.74	. 76	.78	.70	.72	. 74	.76	.78
8	. 80	. 82	. 8.4	. 86	. 88	. 80	. 82	. 84	. 86	. 88
9	.90	.92	. 94	.96	.98	. 90	.92	. 94	.96	. 98
10	0.99	I. OI	1.03	1.05	1.07	1.00	I. 02	1. 04	1.06	1.08
I I	1.09	I. II	I. 13	I. 15	1.17	1. 10	1. 12	I. 14	1.16	1.18
12	I. 19	1.21	1.23	1.25	1.27	1.20	I. 22	1.2.4	I. 26	I. 28
13	1. 29	1.31	1.33	1.35	1.37	1.30	I. 32	I. 34	I. 36	I. 38
14	I. 39	1.4I	1.43	1.45	1.47	1.40	I. 42	1.44	I. 46	I. 48
15	1.49	I. 51	1.53	I. 55	1.57	1.50	1.52	I. 54	I. 56	1. 58
16	1.59	1.61	1.63	1.65	1. 67	1. 60	1.62	1.64	1.66	1.68
17	1.69	1.71	1.73	1.75	1. 77	1. 70	1.72	1.74	1. 76	1. 78
18	1.79	I. SI	1.83	1.85	1.87	1.80	1.82	I. 84	1.86	I. 88
19	I. 89	1.91	1.93	1.95	1.97	I. 90	1.92	1.94	1.96	1.98
20	1.99	2.01	2.03	2.05	2.07	2.00	2.02	2.04	2.06	2.08
2 I	2.09	2. IO	2.12	2.14	2. 16	2.10	2.12	2. 14	2.16	2.18
22	2.18	2.20	2.22	2.24	2.26	2.20	2.22	2.24	2.26	2.28
23	2.28	2.30	2.32	2.34	2.36	2.30	2.32	2.34	2.36	2.38
24	2.38	2.40	2.42	2.44	2.46	2.40	2.42	2.44	2.46	2.48
25	2.48	2.50	2.52	2.54	2.56	2.50	2.52	2.54	2.56	2.58
26	2.58	2.60	2.62	2.64	2.66	2.60	2.62	2.64	2.66	2.68
27	2.68	2.70	2.72	2.74	2.76	2.70	2.72	2.74	2.76	2.78
28	2.78	2.So	2.82	2.84	2.86	2.80	2.82	2.84	2.86	2.88
29	2.88	2.90	2.91	2.93	2.95	2.90	2.92	2.94	2.96	2.98
30	2.97	2.99	3.01	3.03	3.05	3.00	3.02	3.04	3.06	3.08
31	3.07	3.09	3.11	3.13	3.15	3.10	3.12	3.14	3.16	3.18
32	3.17	3.19	3.21	3.23	3.25	3.20	3.22	3.24	3.26	3.23
33	3.27	3.29	$3 \cdot 31$	3.33	3.35	3.30	$3 \cdot 32$	$3 \cdot 34$	3.36	3.35
34	3.37	3.39	3.41	3.43	3.45	3.40	3.42	3.44	3.46	3.48
35	3.47	3.49	3.51	3.53	3.55	3.49	3.51	3.53	3.55	$3 \cdot 57$

imithscmian Tablez.
table 45.
REDUCIION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTEO.

	heigirt of the barometer 620 mm .					height of the barometen 625 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.3	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm .	mm.							
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
I	. 10	. 12	. 14	. 16	. 18	. 10	. 12	. 14	. 16	. 18
2	. 20	. 22	. 24	. 26	. 28	. 20	. 22	. 24	. 27	. 29
3	. 30	. 32	- 34	. 36	- 38	. 31	. 33	. 35	.37	. 39
4	.40	. 43	. 45	. 47	. 49	. 41	. 43	. 45	.47	. 49
5	0.51	0.53	0.55	0.57	0.59	0.51	0.53	0.55	0.57	0.59
6	. 61	. 63	. 65	. 67	. 69	. 61	. 63	. 65	. 67	. 69
7	. 71	. 73	. 75	. 77	.79	. 71	. 73	. 75	. 78	. 80
8	. 81	. 83	. 85	. 87	. 89	. 82	. 8_{4}	. 86	. 88	. 90
9	. 91	. 93	. 95	. 97	. 99	.92	. 94	.96	. 98	1.00
10	I.OI	1.03	1.05	1.07	1.09	1.02	I. 04	1.06	1.08	1.10
II	I. I I	I. 13	I. 15	1.17	I. 19	I. 12	1.14	1.16	I. 18	1.20
12	I. 21	1.23	1.25	1.27	I. 29	I. 22	1.24	1.26	1.28	1.30
I 3	I. 31	1.33	I. 35	1.37	I. 39	I. 32	1.34	I. 37	1. 39	1.41
14	I. 41	1.43	1.46	1.48	1.50	I. 43	1.45	I. 47	1.49	1. 51
15	1.52	1.54	1.56	1.58	1. 60	1.53	I. 55	I. 57	1.59	1.61
16	1.62	1.64	1.66	1.68	1.70	1.63	1. 65	1.67	1.69	1.71
17	1.72	1.74	1.76	1.78	I. 80	1.73	I. 75	1.77	1.79	1.81
IS	1.82	1.84	1.86	I. 88	1.90	I. 83	1.85	1.87	1.89	1.91
19	1.92	1.94	1.96	1.98	2.00	1.93	1.95	1.97	1.99	2.01
20	2.02	2.04	2.06	2.08	2. IO	2.04	2.06	2.08	2.10	2.12
21	2. 12	2.14	2.16	2.18	2.20	2.14	2. 16	2.18	2.20	2.22
22	2.22	2.24	2.26	2.28	2.30	2.24	2.26	2.28	2.30	2.32
23	2.32	2.34	2.35	2.38	2.40	2.34	2.36	2.38	2.40	2.42
24	2.42	2.44	2.46	2.48	2.50	2.44	2.46	2.48	2.50	2.52
25	2.52	2.54	2.56	2.58	2.60	2.54	2.56	2.58	2.60	2.62
26	2.62	2.64	2.66	2.68	2.70	2.64	2.66	2.68	2.70	2.72
27	2.72	2.74	2.76	2.78	2.So	2.74	2.76	2.78	2.80	2.82
28	2.82	2.84	2.86	2.88	2.90	2.55	2.87	2.89	2.91	2.93
29	2.92	2.94	2.96	2.98	3.00	2.95	2.97	2.99	3.01	3.03
30	3.02	3.04	3.06	3.08	3.10	3.05	3.07	3.09	3.11	3. 13
31	3.12	3.14	3.16	3.18	3.20	3.15	3.17	3.19	3.21	3.23
32	3.22	3.24	3.26	3.28	3.30	3.25	3.27	3.29	3.31	3.33
33	3.32	3.34	3.36	3.38	3.40	$3 \cdot 35$	$3 \cdot 37$	3.39	3.4 I	3.43
34	3.42	3.44	3.46	3.48	3.50	3.45	3.47	3.49	3.51	3.53
35	3.52	$3 \cdot 54$	3.56	3.58	3.60	3.55	3.57	$3 \cdot 59$	3.6 r	3.63

Smithsonian Tableb.

Table 45.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE. THE CORRECTION IS TO BE SUBTRACTED

	HEIGHT OF THE BAROMETER 630 mm .					height of tile baroneter 635 mm .				
Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	min.	mm.	mm .	mm .	mm.	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	. 12	. 14	. 16	. 19	. 10	. 12	. 15	.17	. 19
2	. 21	. 23	. 25	. 27	. 29	. 21	. 23	. 25	. 27	. 29
3	. 31	. 33	. 35	. 37	. 39	. 31	. 33	. 35	. 37	. 39
4	. 41	. 43	. 45	. 47	. 49	. 41	. 44	. 46	.48	. 50
5	0.51	0.53	0.56	0.58	0.60	0. 52	0. 54	0.56	0.58	0.60
6	. 62	. 64	. 66	. 68	. 70	. 62	. 64	. 66	. 68	. 70
7	.72	.74	. 76	. 78	. 80	. 73	.75	.77	. 79	. 81
8	. 82	. 84	. 86	. 88	. 90	. 83	. 85	. 87	. 89	.91
9	.92	. 95	. 97	. 99	I.OI	. 93	. 95	. 97	. 99	1.02
10	1.03	I. 05	1.07	1.09	I.II	1.04	1.06	1.08	I. 10	I. 12
I I	I. 13	I. 15	1.17	1. 19	1.21	1.14	I. 16	I. 18	1.20	1.22
12	1.23	I. 25	1.27	1.29	1.31	1.24	I. 26	1.28	1.30	1.33
13	I. 34	I. 36	1.38	1.40	1.42	1.35	I. 37	1.39	1.41	1.43
14	I. 44	1. 46	I. 48	1. 50	1.52	I. 45	I. 47	1.49	I. 51	I. 53
15	I. 54	I. 56	I. 58	1.60	1.62	1.55	I. 57	1.59	I.6I	1.63
16	1.64	1.66	1.68	1.70	1.72	1.66	1.68	1.70	1.72	1.74
17	1. 74	1. 77	1.79	I. 81	1.83	1. 76	1.78	I. So	I. 82	1.84
18	1.85	1.87	I. 89	1.91	1.93	I. 86	1.83	1.90	1.92	1.94
19	I. 95	1.97	1.99	2.01	2.03	1. 96	1.99	2.01	2.03	2.05
20	2.05	2.07	2.09	2.11	2.13	2.07	2.09	2.11	2.13	2.15
2 I	2.15	2.17	2.19	2.21	2.24	2.17	2.19	2.21	2.23	2.25
22	2.26	2.28	2.30	2.32	2.34	2.27	2.29	2.31	2.34	2.36
23	2.36	2.38	2.40	2.42	2.44	2.38	2.40	2.42	2.44	2.46
24	2.46	2.48	2.50	2.52	2.54	2.48	2.50	2.52	2.54	2.56
25	2.56	2.58	2.60	2.62	2.64	2.58	2.60	2.62	2.64	2.66
26	2.66	2.68	2.70	2.73	2.75	2.69	2.71	2.73	2.75	2.77
27	2.75	2.79	2.81	2.83	2.85	2.79	2.81	2.83	2.85	2.87
2 S	2.87	2.89	2.91	2.93	2.95	2.89	2.91	2.93	2.95	2.97
29	2.97	2.99	3.01	3.03	3.05	2.99	3.01	3.03	3.05	3.08
30	3.07	3.09	3. II	3. 13	3. 15	3.10	3. 12	3.14	3.16	3.18
31	3.17	3.19	3.21	3.23	3.25	3.20	3.22	3.24	3.26	3.25
32	3.28	3.30	3.32	3.34	3.36	3.30	3.32	3.34	$3 \cdot 36$	3.38
33	3.38	3.40	3.42	3.44	3.46	3.40	3.42	3.44	3.47	3.49
34	3.48	3.50	3.52	3.54	3.56	3.51	3.53	3.55	3.57	3.59
35	3.58	3.60	3.62	3.64	3.66	3.6 I	3.63	3.65	3.67	3.69

for temperatures above 0° Centigrade, the correction is to be subtracted.

	IIEIGIIT OF THE BAROMETER 640 mm.					HEIGIT OF THE BAROMETER 645 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	$0 \% 2$	0.4	0.6	0.8
c.	mm.	mm .	mm.	mm.	mm.	mm.	mm.	mm.	mm .	mm.
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.08
1	. 10	. 13	. 15	. 17	. 19	. 11	. 13	. 15	.17	. 19
2	. 21	. 23	.25	. 27	. 29	. 21	. 23	. 25	. 27	. 29
3	. 31	. 33	. 36	. 38	. 40	- 32	- 34	. 36	. 38	. 40
4	. 42	. 44	.46	. 48	. 50	.42	. 44	.46	.48	. 51
5	0.52	0.54	0.56	0.59	0.6I	0.53	0. 55	0.57	0.59	0.61
6	. 63	. 65	. 67	. 69	.71	. 63	. 65	. 67	. 69	. 72
7	.73	. 75	. 77	. 79	.8I	. 74	.76	. 78	. So	. 82
8	. 84	. 86	. 88	. 90	. 92	. 84	. 86	. 88	. 90	. 93
9	. 94	.96	.98	1.00	1.02	. 95	. 97	. 99	I.OI	1.03
10	1.04	1.06	1.09	1.11	I. 13	1.05	1.07	1.09	I. 12	I. 14
11	I. 15	I. 17	1.19	I. 21	1.23	1. 16	I. 18	1.20	1.22	1.24
12	1.25	1.27	I. 29	1.31	I. 34	1.26	I. 28	I. 30	1.32	I. 35
13	1.36	1.38	1.40	I. 42	1.44	1.37	I. 39	I. 41	1.43	1.45
14	1.46	1.48	I. 50	1.52	1.54	1.47	I. 49	I. 51	1.53	I. 56
15	1.56	1. 59	1.61	1. 63	1. 65	I. 58	I. 60	I. 62	I. 64	1.66
16	1.67	1.69	1.71	1.73	1.75	1.68	1.70	1.72	1.74	1.77
17	1.77	1.79	1.81	1.83	1.86	1.79	1.81	I. S_{3}	I. 85	I. 87
18	1.88	1.90	1.92	1.94	1.96	1. 89	1.91	1.93	1.95	I. 97
19	1.98	2.00	2.02	2.04	2.06	2.00	2.02	2.04	2.06	2.08
20	2.08	2.10	2.13	2. 15	2. 17	2.10	2.12	2. I4	2.16	2.18
21	2.19	2.21	2.23	2.25	2.27	2.20	2.23	2.25	2.27	2.29
22	2.29	2.31	2.33	2.35	2.37	2.31	2.33	2.35	2.37	2.39
23	2.40	2.42	2.44	2.46	2.48	2.41	2.43	2.46	2.48	2.50
24	2.50	2.52	2.54	2.56	2.58	2.52	2.54	2.56	2.58	2.60
25	2.60	2.62	2.64	2.66	2.69	2.62	2.64	2.66	2.69	2.71
26	2.71	2.73	2.75	2.77	2.79	2.73	2.75	2.77	2.79	2.81
27	2.81	2.83	2.85	2.87	2.89	2.83	2.85	2.87	2.89	2.92
28	2.91	2.93	2.95	2.98	3.00	2.94	2.96	2.98	3.00	3.02
29	3.02	3.04	3.06	3.08	3.10	3.04	3.06	3.08	3.10	3.12
30	3.12	3.14	3.16	3.18	3.20	3.14	3.17	3.19	3.21	3.23
31	3.22	3.24	3.27	3.29	$3 \cdot 3 \mathrm{I}$	3.25	3.27	3.29	$3 \cdot 31$	3.33
32	3.33	$3 \cdot 35$	3.37	3.39	3.41	3.35	3.37	3.39	3.42	3.44
33	3.43	3.45	3.47	3.49	3.51	3.46	3.48	3.50	3.52	3.54
34	3.53	3.55	3.58	360	3.62	3.56	3.58	3.60	3.62	3.64
35	3.64	3.66	3.68	3.70	3.72	3.67	3.69	3.71	3.73	3.75

Smithionian Tables.

Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	heigilt of the barometfr 650 mm .					helchit of the barometer 655 mm .				
Attached Thermometer.	0:0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0\% 6	0.8
c.	minl.	mm.	mm.	mm.	mm.	mm .	mm.	mm.	mm.	11 m .
0°	0.00	0.02	0.04	0.06	0.08	0.00	0.02	0.04	0.06	0.09
I	. 11	. 13	. 15	. 17	. 19	. I I	. 13	. 15	. 17	. 19
2	. 21	. 23	. 25	. 28	. 30	. 21	. 24	. 26	. 2 S	.30
3	. 32	. 34	. 36	. 38	. 40	.32	. 34	. 36	. 39	. 41
4	.42	. 45	. 47	.49	. 51	. 43	. 45	. 47	. 49	. 51
5	0.53	0.55	0.57	0.59	0.62	0.53	0.56	0.58	0.60	0.62
6	. 64	. 66	. 68	. 70	. 72	. 64	. 66	. 68	. 71	. 73
7	. 74	.76	.78	.8I	. 83	. 75	. 77	. 79	. 81	. 83
8	. 85	. 87	. 89	.91	. 93	. 55	. 88	. 90	. 92	. 94
9	. 95	.98	1.00	1.02	I. 04	.96	. 98	1.00	1.03	1.05
10	1. 06	1.08	I. 10	I. 12	1.14	1.07	1.09	I. II	I. 13	1.15
11	I. 17	1.19	1.21	1.23	1. 25	1.17	1.20	1.22	1.24	1.26
12	I. 27	1.29	1.31	I. 34	1. 36	1.28	1.30	I. 32	1.35	1.37
13	I. 38	1.40	1.42	I. 44	1.46	I. 39	I. 41	I. 43	I. 45	1.47
14	I. 48	I. 50	I. 53	1. 55	I. 57	I. 49	I. 52	I. 54	1.56	I. 58
15	I. 59	I.6I	1. 63	1. 65	1.67	I. 60	I. 62	1.64	1. 66	1. 69
16	I. 69	1.72	1.74	1.76	1.75	1.71	1.73	1.75	1.77	1.79
17	I. 80	1.82	1.84	I. 86	1. 88	I. SI_{1}	I. S_{4}	1.86	1.88	1.90
18	1.91	I. 93	1.95	1.97	I. 99	1.92	1.94	1.96	I. 98	2.01
19	2.01	2.03	2.05	2.07	2.10	2.03	2.05	2.07	2.09	2.11
20	2.12	2.14	2.16	2.18	2.20	2.13	2.15	2.18	2.20	2.22
21	2.22	2.24	2.26	2.29	2.31	2.24	2.26	2.28	2.30	2.32
22	2.33	2.35	2.37	2.39	2.41	2.35	2.37	2.39	2.41	2.43
23	2.43	2.45	2.47	2.50	2.52	2.45	2.47	2.49	2.52	2.54
24	2.54	2.56	2.58	2.60	2.62	2.56	2.58	2.60	2.62	2.64
25	2.64	2.66	2.69	2.71	2.73	2.66	2.68	2.71	2.73	2.75
26	2.75	2.77	2.79	2.81	2.83	2.77	2.79	2.81	2.83	2.55
27	2.85	2.87	2.90	2.92	2.94	2.58	2.90	2.92	2.94	2.96
28	2.96	2.98	3.00	3.02	3.04	2.98	3.00	3.02	3.05	3.07
29	3.06	3.08	3.11	3.13	3.15	3.09	3.11	3.13	3.15	3.17
30	3.17	3.19	3.21	3.23	3.25	3.19	3.21	3.24	3.26	3.28
31	3.27	$3 \cdot 30$	3.32	3.34	$3 \cdot 36$	$3 \cdot 30$	$3 \cdot 32$	3.34	$3 \cdot 36$	$3 \cdot 38$
32	$3 \cdot 38$	3.40	3.42	3.44	3.46	3.41	$3 \cdot 43$	3.45	3.47	3.49
33	3.48	3.51	3.53	3.55	3.57	3.51	3.53	3.55	3.57	3.60
34	3.59	3.61	3.63	3.65	3.67	3.62	3.64	3.66	3.68	3.70
35	3.69	3.71	3.74	3.76	3.78	3.72	3.74	3.76	3.79	3.81

Smithbonian Tablet.
IOS

Table 45.
REDUUTION OF THE BAROMETER TO STANDARD TEMPERATURE.
METRIC MEASURES.
FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	neIGHT OF THE BAROMETER 660 mm .					height of the barometer 665 mm .				
Attached Thermometer.	0.0	0.2	0. 4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	1 mm .	mm.	1mm.	mm.	mm.	mm.	nm.	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.06	0.09	0.00	0.02	0.04	0.07	0.09
I	. II	. 13	. 15	. 17	. 19	. 11	. 13	. 15	.17	. 20
2	. 22	. 24	. 26	. 28	. 30	. 22	. 24	. 26	. 28	. 30
3	- 32	. 34	.37	. 39	. 41	. 33	. 35	. 37	. 39	. 41
4	. 43	. 45	. 47	. 50	. 52	. 43	. 46	.48	. 50	. 52
5	0.54	0.56	0.58	0.60	0.62	0.54	0.56	0.59	0.61	0.63
6	. 65	. 67	. 69	. 71	. 73	. 65	. 67	. 69	. 72	. 74
7	. 75	. 78	. 80	. 82	. 84	. 76	. 78	. 80	. 82	. 85
8	. 86	. 88	. 90	. 93	. 95	. 87	. 89	. 91	. 93	. 95
9	. 97	. 99	I. OI	I. 03	1.05	.98	1.00	1.02	1.04	1.06
10	1.08	I. 10	I. 12	I. 14	1.16	1.08	I. 11	I. 13	1.15	1.17
II	I. 18	I. 21	1.23	1.25	1.27	I. 19	1.21	1.24	I. 26	1. 28
12	1.29	1.31	I. 33	1. 36	1. 38	1.30	I. 32	I. 34	1.37	1.39
13	1.40	1.42	I. 44	1.46	1.48	1.41	1. 43	I. 45	1.47	I. 50
14	1.51	I. 53	L. 55	1.57	1. 59	I. 52	1. 54	I. 56	1.58	1.60
15	1.6 1	1.63	1. 66	1.68	1.70	1.63	1.65	1.67	1.69	1.71
16	1.72	1.74	1.76	1.78	I. 81	1.73	I. 76	1.78	I. So	1.82
17	$1 . \mathrm{S}_{3}$	1.85	1.87	1.89	1.91	1. 84	1.86	1.88	1.91	1.93
18	1.93	1.96	1.98	2.00	2.02	1.95	1.97	1.99	2.01	2.04
19	2.04	2.06	2.08	2.11	2.13	2.06	2.08	2.10	2.12	2.14
20	2.15	2.17	2. 19	2.2 I	2.23	2.17	2.19	2.21	2.23	2.25
21	2.26	2.28	2.30	2.32	2.34	2.27	2.29	2.32	2.34	2.36
22	2.36	2.38	2.41	2.43	2.45	2.38	2.40	2.42	2.45	2.47
23	2.47	2.49	2.51	2.53	2.56	2.49	2.51	2.53	2.55	2.57
24	2.58	2.60	2.62	2.64	2.66	2.60	2.62	2.64	2.66	2.68
25	2.68	2.71	2.73	2.75	2.77	2.70	2.73	2.75	2.77	2.79
26	2.79	2.81	2.83	2.85	2.88	2.81	2.83	2.85	2.88	2.90
27	2.90	2.92	2.94	2.96	2.98	2.92	2.94	2.96	2.98	3.01
28	3.00	3.03	3.05	3.07	3.09	3.03	3.05	3.07	3.09	3.11
29	3.11	3.13	3.15	3.18	3.20	3.13	3.16	3.18	3.20	3.22
30	3.22	3.24	3.26	3.28	3.30	3.24	3.26	3.29	3.31	3.33
31	3.32	3.35	3.37	3.39	3.41	$3 \cdot 35$	$3 \cdot 37$	3.39	3.41	3.44
32	3.43	3.45	3.47	3.49	3.52	3.46	3.48	3.50	3.52	3.54
33	3.54	356	3.58	3.60	3.62	3.56	3.59	3.61	3.63	3.65
34	3.64	3.67	3.69	3.71	3.73	3.67	3.69	3.71	3.74	3.76
35	3.75	3.77	3.79	3.81	3.84	3.78	3.80	3.82	3.84	3.86

Bmithsonian tableg.

Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE METRIC MEASURES.
for temperatures above 0° centigrade, the correction is to be subtracted.

	HEIGIT OF THE B.AROMETER$670 \mathrm{~mm} .$					HEIGHT OF THE BAROMETER 675 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	111 ml .	1 mm .	mm.	mm .	mm.	mm.	mm .	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.07	0.09	0.00	0.02	0.04	0.07	0.09
I	. II	. 13	. 15	. 18	. 20	. I I	. 13	. 15	. 18	. 20
2	. 22	. 24	. 26	. 28	-31	. 22	. 24	. 26	. 29	-3I
3	. 33	. 35	. 37	- 39	. 42	. 33	. 35	. 37	. 40	. 42
4	. 44	. 46	.48	. 50	. 53	. 44	.46	. 48	. 51	. 53
5	0.55	0.57	0.59	0.61	0.63	0.55	0.57	0.60	0.62	0.64
6	. 66	. 68	. 70	. 72	. 74	. 66	. 68	. 71	. 73	. 75
7	. 77	. 79	.SI	. 83	. 85	. 77	. 79	. 82	. 84	. 86
8	. 87	.90	. 92	. 94	. 96	. 88	. 90	. 93	. 95	. 97
9	.98	I.OI	1. 03	1.05	1.07	. 99	I.OI	1.04	1.06	1.08
10	1.09	I. II	1.14	1. 16	I. 18	1.10	I. 12	1.14	I. 17	I. 19
11	1.20	1.22	I. 25	1.27	I. 29	I. 21	I. 23	1.25	I. 28	1.30
12	1. 31	1.33	1.35	1.38	I. 40	1.32	I. 34	I. 36	I. 39	1.41
13	1.42	1.44	I. 46	I. 49	1.51	I. 43	I. 45	I. 47	I. 50	1.52
14	I. 53	I. 55	I. 57	1.59	1.62	I. 54	1. 56	1.58	1.6I	1.63
15	1. 64	1. 66	1. 68	1.70	I. 72	1.65	1.67	1.69	1.72	I. 74
16	1.75	1.77	1.79	1.81	1.83	1.76	1.78	1.80	1.83	I. 85
17	1.86	1.88	1.90	1.92	1.94	1.87	1.89	1.91	1.94	1.96
18	1.96	1.99	2.01	2.03	2.05	1.98	2.00	2.02	2.04	2.07
19	2.07	2.09	2.12	2.14	2.16	2.09	2. II	2.13	2.15	2.18
20	2. IS	2.20	2.23	2.25	2.27	2.20	2.22	2.24	2.26	2.29
21	2.29	2.31	2.33	2.36	2.38	2.31	2.33	2.35	2.37	2.39
22	2.40	2.42	2.44	2.46	2.49	2.42	2.44	2.46	2.48	2.50
23	2.51	2.53	2.55	2.57	2.59	2.53	2.55	2.57	2.59	2.61
24	2.62	2.64	2.66	2.68	2.70	2.64	2.66	2.68	2.70	2.72
25	2.72	2.75	2.77	2.79	2.81	2.74	2.77	2.79	$2 . S 1$	2.83
26	2.83	2.85	2.88	2.90	2.92	2.85	2.88	2.90	2.92	2.94
27	2.94	2.96	2.98	3.01	3.03	2.96	2.99	3.01	3.03	3.05
28	3.05	3.07	3.09	3.11	3.14	3.07	3.09	3.12	3.14	3.16
29	3.16	3.IS	3.20	3.22	3.24	3.18	3.20	3.23	3.25	3.27
30	3.27	3.29	3.3:	3.33	3.35	3.29	3.31	3.33	3.36	$3 \cdot 38$
3 I	$3 \cdot 37$	3.40	3.42	3.44	3.46	3.40	3.42	3.44	3.47	3.49
33	3.48	3.50	3.53	3.55	3.57	3.51	3.53	3.55	3.57	3.60
33	3.59	3.61	3.63	3.66	3.68	3.62	3.64	3.66	3.68	3.71
34	3.70	3.72	3.74	3.76	3.79	3.73	3.75	3.77	3.79	3.81
35	3.8 I	3.83	3.85	3.87	3.89	3.84	3.86	3.88	3.90	3.92

Table 45.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

METRIC MEASURES.
FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF THE BAROMETER 680 mm .					heigiit of the barometer 685 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mim.	mm .	mm.	mm.	mm.	mm .	mm.	mm.	mm.
0°	0.00	0.02	0.04	0.07	0.09	0.00	0.02	0.04	0.07	0.09
I	. 11	. 13	. 16	. 18	. 20	. I I	. 13	. 16	. 18	. 20
2	. 22	. 24	. 27	. 29	. 31	. 22	. 25	. 27	. 29	. 31
3	.33	. 36	- 3^{8}	. 40	. 42	- 34	. 36	. 38	. 40	. 43
4	. 44	. 47	. 49	. 51	. 53	. 45	. 47	. 49	. 51	. 54
5	0.56	0.58	0.60	0.62	0.64	0.56	0.58	0.60	0.63	0.65
6	. 67	. 69	. 71	. 73	. 75	. 67	. 69	. 72	. 74	. 76
7	.78	. So	. 82	. 84	. 87	.78	. 80	. 83	. 35	. 87
8	. 59	.91	. 93	. 95	. 98	. 89	. 92	. 94	. 96	. 98
9	I. 00	1.02	I. 04	I. 06	I. 09	I.OI	1.03	1.05	1.07	1.09
10	I. I I	I. I3	I. I5	1.18	1.20	I. 12	I. 14	I. 16	I. 18	1.21
II	1.22	1.24	I. 26	1.29	1.31	1.23	I. 25	1.27	I. 30	I. 32
12	1.33	1.35	I. 37	1.40	1.42	1.34	1.36	1.38	I. 41	I. 43
13	I. 44	1.46	I. 49	I. 51	I. 53	I. 45	1.47	1. 50	I. 52	I. 54
14	I. 55	1.57	1.60	1.62	I. 64	1.56	1.59	I.6I	1.63	I. 65
15	1. 66	1.68	1.71	1.73	1.75	1.67	1.70	1.72	1.74	1. 76
16	1.77	1.79	1.82	I. 84	I. 86	1.79	1.81	I. 83	I. 85	I. 87
17	1.88	1.91	1.93	I. 95	1.97	1.90	1.92	I. 94	I. 96	I. 99
IS	1.99	2.02	2.04	2.06	2.08	2.01	2.03	2.05	2.07	2. 10
19	2.10	2.13	2.15	2.17	2.19	2.12	2.14	2.16	2.19	2.21
20	2.21	2.24	2.26	2.28	2.30	2.23	2.25	2.27	2.30	2.32
21	2.32	2.35	2.37	2.39	2.41	2.34	2.36	2.39	2.41	2.43
22	2.43	2.46	2.48	2.50	2.52	2.45	2.47	2.50	2.52	2.54
23	2.54	2.57	2.59	2.61	2.63	2.56	2.59	2.61	2.63	2.65
24	2.66	2.68	2.70	2.72	2.74	2.67	2.70	2.72	2.74	2.76
25	2.77	2.79	2.81	2.83	2.95	2.79	2.81	2.83	2.85	2.87
26	2.88	2.90	2.92	2.94	2.96	2.90	2.92	2.94	2.96	2.99
27	2.99	3.01	3.03	3.05	3.07	3.01	3.03	3.05	3.07	3.10
28	3.10	3.12	3.14	3.16	3.18	3.12	3.14	3.16	3.18	3.21
29	3.21	3.23	3.25	3.27	3.29	3.23	3.25	3.27	3.30	3.32
30	3.32	$3 \cdot 34$	$3 \cdot 36$	3.38	3.40	3.34	3.36	3.38	3.41	3.43
31	3.43	3.45	3.47	3.49	3.51	3.45	3.47	3.49	3.52	3.54
32	3.54	3.56	3.58	3.60	3.62	3.56	3.58	3.61	3.63	3.65
33	3.64	3.67	3.69	3.71	3.73	3.67	3.69	3.72	3.74 3	3.76
34	3.75	3.78	3.80	3.82	3.84	3.78	3.50	3.83	3.85	3.87
35	3.86	3.89	3.91	3.93	3.95	3.89	3.91	3.94	3.96	3.98

Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.
fOR TEMPERATURES ABOVE 0° CENTIGRADE, the CORRECTION IS TO BE SUBTRACIED.

	heIGIIT OF TIIE B MROMETEL: 690 mm .					HEIGHT OF THE BAROMETER 695 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm.	mm.	mm .	mm.	mm .	mm.	mm.	mm .
$0{ }^{5}$	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
1	. I I	. 14	. 16	. 18	. 20	. 11	. 14	. 16	. 18	. 20
2	. 23	.25	.27	.29	. 32	.23	.25	. 27	- 30	. 32
3	- 34	. 36	.38	. 41	. 43	. 34	. 36	. 39	. 41	. 43
4	. 45	. 47	. 50	. 52	. 54	. 45	. 48	. 50	.52	. 54
5	0.56	0.59	0.61	0.63	0.65	0.57	0.59	0.61	0.64	0.66
6	. 68	. 70	. 72	. 74	. 77	. 68	. 70	.73	. 75	. 77
7	. 79	. 81	. 83	. 86	. 88	. 79	. 82	. 84	. 86	. 88
8	. 90	. 92	. 95	. 97	. 99	.91	. 93	. 95	. 98	1.00
9	I.OI	1.04	1.06	1.08	1.10	1.02	1. 04	I. 07	1.09	I. II
10	I. 13	1.15	1.17	1.19	1.22	I. 13	1. 16	I. 18	1.20	1.22
II	1.24	1.26	1. 28	1.3I	1.33	1.25	1.27	1.29	1.3I	I. 34
12	I. 35	1.37	1.39	1.42	1.44	1.36	1.38	1.41	1.43	1.45
13	1.46	1.48	1.51	1.53	I. 55	1.47	I. 50	I. 52	1.54	I. 56
14	1.57	1.60	1.62	1.64	1.66	I. 59	1.61	1.63	1.65	1.68
15	1.69	1.71	1.73	1.75	1.78	1.70	1.72	1.74	1.77	1.79
16	1.80	1.82	1. 84	1.87	1. 89	1.81	1. S_{3}	1.86	1. 88	1.90
17	1.91	1.93	1.96	1.98	2.00	1.92	1.95	1.97	1.99	2.01
18	2.02	2.05	2.07	2.09	2.11	2.04	2.06	2.08	2.11	2.13
19	2. 13	2.16	2.18	2.20	2.22	2.15	2.17	2.20	2.22	2.24
20	2.25	2.27	2.29	2.31	2.34	2.26	2.29	2.31	2.33	2.35
21	2.36	2.38	2.40	2.43	2.45	2.38	2.40	2.42	2.44	2.47
22	2.47	2.49	2.52	2.54	2.56	2.49	2.51	2.53	2.56	2.58
23	2.58	2.60	2.63	2.65	2.67	2.60	2.62	2.65	2.67	2.69
24	2.69	2.72	2.74	2.76	2.78	2.71	2.74	2.76	2.78	2.80
25	2.81	2.83	2.85	287	2.90	2.83	2.85	2.87	2.89	2.92
26	2.92	2.94	2.96	2.99	3.01	2.94	2.96	2.98	3.01	3.03
27	3.03	3.05	3.07	3.10	3.12	3.05	3.07	3.10	3.12	3.14
28	3.14	3.16	3.19	3.21	3.23	3.16	3.19	3.21	3.23	3.25
29	3.25	3.27	$3 \cdot 30$	3.32	3.34	3.28	3.30	$3 \cdot 32$	3.34	$3 \cdot 37$
30	3.36	$3 \cdot 39$	3.41	3.43	3.45	3.39	3.41	3.43	3.46	3.48
31	3.48	3.50	3.52	3.54	3.56	3.50	3.52	3.55	3.57	3.59
32	3.59	3.61	3.63	3.65	3.68	3.61	3.64	3.66	3.68	3.70
33	3.70	3.72	3.74	3.77	3.79	3.73	3.75	3.77	3.79	3.8!
34	3.8 I	3.83	3.85	3.88	3.90	3.84	3.86	3.88	3.90	3.93
35	3.92	3.94	3.97	3.99	4.01	3.95	3.97	3.99	4.02	4.04

Gmithsonian Tables.
hevuction of the barometer to standard temperature METRIC MEASURES
for temperatures above 0° centigrade, the correction is to be subtracted.

	HEIGHT OF THE BAROMETER 700 mm .					IIEIGHT OF THE BAROMETEL 705 mm .				
Attached Thermometer.	0.0	0.2	0.4	0\%6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm .	mm .	mm .	mm.	mm.	mm.	mm.	mm.	mm.
$0{ }^{\circ}$	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
1	. 11	. 14	. 16	. 18	. 21	. 12	. 14	. 16	. 18	. 2 I
2	. 23	. 25	. 27	. 30	. 32	. 23	. 25	. 28	.30	. 32
3	. 34	. 37	. 39	. 41	. 43	. 35	. 37	. 39	. 41	. 44
4	.46	. 48	. 50	. 53	. 55	. 46	. 48	. 51	.53	. 55
5	0.57	0.59	0.62	0. 64	0. 66	0.58	0.60	0.62	0.64	0.67
6	. 69	. 71	.73	.75	. 78	. 69	.71	. 74	. 76	. 78
7	. So	. 82	.85	. 87	. 89	. 81	.83	. 85	. 87	. 90
8	. 91	. 94	. 96	. 98	1.00	. 92	. 94	. 97	. 99	I. 1.1
9	1. 03	1. 05	1.07	1. 10	1.12	1.04	1.06	I. 08	1.10	1. 13
10	1.14	I. 16	1.19	1.21	1.23	1. 15	1.17	1.20	1.22	1.24
11	1.26	1.28	1.30	1.32	1.35	1.26	1.29	1.31	1.33	1.36
12	1.37	I. 39	I. 42	1.44	1.46	1.38	1.40	I. 43	1.45	1.47
13	1.48	1.51	I. 53	1.55	1.57	1.49	I. 52	I. 54	I. 56	1.59
14	1. 60	1.62	I. 64	1.67	1.69	1.6I	1. 63	I. 65	1.68	1.70
15	1.71	1.73	1.76	1.78	1.80	1.72	1.75	1.77	1.79	1.81
16	1.82	1. 85	1.87	1. 89	1. 92	1.84	I. 86	I. 88	1.91	1.93
17	I. 94	1.96	1.98	2.01	2.03	1.95	1.98	2.00	2.02	2.04
18	2.05	2.07	2. 10	2.12	2.14	2.07	2.09	2.11	2.14	2.16
19	2.17	2.19	2.21	2.23	2.26	2.18	2.20	2.23	2.25	2.27
20	2.28	2.30	2.32	2.35	2.37	2.30	2.32	2.34	2.36	2.39
21	2.39	2.42	2.44	2.46	2.48	2.41	2.43	2.46	2.48	2.50
22	2.51	2.53	2.55	2.57	2.60	2.52	2.55	2.57	2.59	2.62
23	2.62	2.64	2.67	2.69	2.71	2.64	2.66	2.68	2.71	2.73
24	2.73	2.76	2.78	2.80	2.82	2.75	2.78	2.80	2.82	2.84
25	2.85	2.8\%	2.89	2.91	2.94	2.87	2.89	2.91	2.94	2.96
26	2.96	2.98	3.01	3.03	3.05	2.98	3.00	3.03	3.05	3.07
27	3.07	3.10	3.12	3.14	3.16	3.10	3.12	3.14	3.16	3.19
28	3.19	3.21	3.23	3.25	3.28	3.21	3.23	3.25	3.28	3.30
29	3.30	332	3.34	3.37	3.39	3.32	3.35	3.37	3.39	3.41
30	3.41	3.44	3.46	3.48	3.50	3.44	3.46	3.48	3.51	3.53
31	3.53	3.55	3.57	3.59	3.62	3.55	3.57	3.60	3.62	3.64
32	3.64	3.66	3.68	3.7 I	3.73	3.66	3.69	3.71	3.73	3.76
33	3.75	3.77	3.80	3.82	3.84	3.78	3.80	3.82	3.85	3.87
34	3.87	3.89	3.91	3.93	3.96	3.89	3.92	3.94	3.96	3.98
35	3.98	4.00	4.02	4.05	4.07	4.01	4.03	4.05	4.07	4.10

[^26]Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.
for temperatures above 0° centigrade, the correction is to be subtracteo.

	height of the barometer 710 mm .					HEIGHT OF TIIE BAROMETER 715 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0:8	$0: 0$	0.2	0\%.4	0.6	0.8
c.	min.	mm .	mm.	mm.	mm .	mm.	mm.	mm .	mm.	mm.
0°	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
	. 12	. 14	. 16	. 19	. 21	. 12	. 14	. 16	. 19	. 21
2	. 23	. 26	. 28	.30	$\cdot 32$.23	. 26	. 28	- 30	. 33
3	. 35	- 37	- 39	. 42	. 44	$\cdot 35$	- 37	. 40	. 42	. 44
4	. 46	. 49	. 51	. 53	. 56	. 47	. 49	. 51	. 54	. 56
5	0.58	0.60	0.63	0.65	0.67	0.58	0.6I	0.63	0.65	0.68
6	. 70	. 72	. 74	. 76	. 79	. 70	. 72	. 75	. 77	. 79
7	.SI	. 83	. 86	. 88	. 90	. 82	. 84	. 86	. 99	. 91
8	. 93	. 95	. 97	1.00	1.02	. 93	.96	. 98	1.00	1.03
9	1.04	1.07	1.09	I. 11	I. 13	1.05	1.07	I. 10	I. 12	1.14
10	1.16	I. 18	1.20	1.23	1.25	1.17	1. 19	I. 21	1. 24	1.26
11	1.27	1.30	1.32	I. 34	1.37	1.28	1.3I	1.33	1. 35	1.38
12	1.39	I. 41	1.44	1.46	I. 48	1.40	1.42	1.45	1.47	1.49
13	1.50	1.53	1. 55	I. 57	1.60	1.52	1.54	1.56	1.58	1.61
14	1.62	I. 64	1.67	1.69	1.71	1.63	I. 65	1. 68	1.70	1.72
15	1. 74	1.76	1.78	1.80	1. 83	1.75	1.77	1.79	1.82	I. S_{4}
16	1.85	1.87	1.90	1.92	1.94	1.86	1.89	1.91	1.93	1.96
17	1.97	1.99	2.01	2.04	2.06	1.98	2.00	2.03	2.05	2.07
18	2.08	2.10	2.13	2.15	2.17	2.10	2.12	2.14	2.17	2.19
19	2.20	2.22	2.24	2.27	2.29	2.21	2.24	2.26	2.28	2.30
20	2.31	2.33	2.36	2.38	2.40	2.33	2.35	2.37	2.40	2.42
21	2.43	2.45	2.47	2.50	2.52	2.44	2.47	2.49	2.51	2.54
22	2.54	2.57	2.59	2.61	2.63	2.56	2.58	2.61	2.63	2.65
23	2.66	2.68	2.70	2.73	2.75	2.68	2.70	2.72	2.75	2.77
24	2.77	2.80	2.82	2.84	2.86	2.79	2.81	2.84	2.86	2.88
25	2.89	2.91	2.93	2.96	2.98	2.91	2.93	2.95	2.98	3.00
26	3.00	3.03	3.05	3.07	3.09	3.02	3.05	3.07	3.09	3.12
27	3.12	3.14	3.16	3.19	3.21	3.14	3.16	3.19	3.21	3.23
28	3.23	3.25	3.28	3.30	3.32	3.25	3.28	3.30	3.32	3.35
29	3.35	3.37	3.39	3.42	3.44	$3 \cdot 37$	3.39	3.42	3.44	3.46
30	3.46	3.48	3.51	3.53	3.55	3.49	3.51	3.53	3.56	3.58
31	3.58	3.60	3.62	3.65	3.67	3.60	3.62	3.65	3.67	3.69
32	3.69	3.71	3.74	3.76	3.78	3.72	3.74	3.76	3.79	3.81
33	3.81	3.83	3.85	3.87	3.90	3.83	3.86	3.88	3.90	3.92
34	3.92	3.94	3.97	3.99	4.01	3.95	3.97	3.99	4.02	4.04
35	4.03	4.06	4.08	4.10	4.13	4.06	4.09	4. II	4.13	4.16

Smitheonian Tableg.

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	IEIGHT OF TIIE BAROMETER 720 mm .					heigirt of tile barometer 725 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
0	mm.	mm.	mm.	mm .	mm.	mm.	mm .	mm.	mm.	mm.
$0{ }^{\circ}$	0.00	0.02	0.05	0.07	0.09	0.00	0.02	0.05	0.07	0.09
1	12	. 14	. 16	. 19	. 21	. 12	. I 4	. 17	. 19	. 21
2	. 2.4	. 26	. 28	. 31	. 33	. 24	. 26	. 28	. 3 I	. 33
3	. 35	. 38	. 40	. 42	. 45	. 36	. 38	. 40	. 43	. 45
4	. 47	. 49	. 52	. 54	. 56	. 47	. 50	. 52	. 54	. 57
5	0.59	0.61	0.63	0.66	0.68	0.59	0.62	0.64	0.66	0.69
6	. 71	. 73	. 75	. 78	. 80	. 71	. 73	.64 .76	. 78	. So
7	. 82	. 85	. 87	. 89	. 92	. 8_{3}	. 85	. 88	. 90	. 92
8	. 94	. 96	. 99	I. 01	1.03	. 95	. 97	. 99	1.02	1.04
9	1. 06	1.08	I. IO	I. I 3	I. 15	1.06	I. 09	I. II	I. 14	I. 16
10	I. 17	1.20	1.22	1.24	1.27	I. IS	I. 21	I. 23	1.25	1.28
II	I. 29	1.31	I. 34	1. 36	I. 39	1.30	I. 32	I. 35	1.37	I. 39
12	1. 41	I. 43	I. 46	I. 48	1. 50	I. 42	I. 44	I. 47	I. 49	I. 51
13	I. 53	I. 55	I. 57	1. 60	1. 62	I. 54	I. 56	1.58	I. 61	1. 63
14	I. 64	1.67	1.69	1.71	1. 74	1.65	1.68	I. 70	I. 73	I. 75
15	1. 76	1.78	1.81	1. 83	I. 55	1.77	1.80	I. 82	1. 84	1.87
16	I. 88	1.90	1.92	1.95	I. 97	I. 89	I.91	I. 94	I. 96	I. 98
17	1.99	2.02	2.04	2.06	2.09	2.01	2.03	2.05	2.08	2.10
18	2. I I	2. 13	2.16	2. IS	2.20	2.13	2.15	2.17	2.20	2.22
19	2.23	2.25	2.27	2.30	2.32	2.24	2.27	2.29	2.31	2.34
20	2.34	2.37	2.39	2.41	2.44	2.36	2.38	2.41	2.43	2.45
21	2.46	2.48	2.51	2.53	2.55	2.48	2.50	2.53	2.45 2.5	2.45 2.57
22	2.58	2.60	2.62	2.65	2.67	2.60	2.62	2.64	2.67	2.69
23	2.69	2.72	2.74	2.76	2.79	2.71	2.74	2.76	2.78	2.81
24	2.81	2.83	2.86	2.88	2.90	2.83	2.85	2.88	2.90	2.92
25	2.93	2.95	2.97	3.00	3.02	2.95	2.97	3.00	3.02	
26	3.04	3.07	3.09	3.11	3.14	3.07	3.09	3.11	3.14	3.16
27	3.16	3.18	3.21	3.23	3.25	3.18	3.21	3.23	3.25	3.28
28	3.28	3.30	3.32	3.35	3.37	3.30	3.32	3.35	3.37	3.39
29	3.39	3.42	3.44	3.46	3.49	3.42	3.44	3.46	3.49	3.51
30	3.51	3.53	3.56	3.58	3.60	3.53	3.56	3.58	3.50	3.63
3 I	3.63	3.65	3.67	3.70	3.72	3.65	3.68	3.70	3.72	3.75
32	3.74	3.77	3.79	3.81	3.84	3.77	3.79	3.82	3.84	3.86
33	3.86	3.88	3.91	3.93	3.95	3.89	3.91	3.93	3.96	3.98
24	3.98	4.00	4.02	4.05	4.07	4.00	4.03	4.05	4.07	4.10
35	4.09	4. II	4. I4	4.16	4. I8	4. 12	4. 14	4.17	4.19	4.2 I

Emitmgonian Tableg.

Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.
for temperatures above 0° centigrade. the correction is to be subtracteo.

	heigirt of tile barometer 730 mm .					HIEIGIIT OF THE BAROMETER 735 mm .				
Attached Thermometer	0%	0.2	0.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm .	mm .	mm .	mm.						
0°	0.00	0.02	0.05	0.07	0. 10	0.00	0.02	0.05	0.07	O. 10
I	. 12	. 14	.17	. 19	. 21	. 12	. 14	. 17	. 19	. 22
2	. 24	. 26	. 29	. 3 I	. 33	. 24	. 26	. 29	. 31	. 34
3	. 36	. 38	. 41	. 43	. 45	. 36	. 38	. 41	. 43	. 46
4	.48	. 50	. 52	. 55	. 57	.48	. 50	. 53	. 55	. 58
5	0.60	0.62	0.64	0.67	0.69	0.60	0.62	0.65	0.67	0.70
6	. 7 I	. 74	. 76	. 79	. 81	.72	. 74	. 77	. 79	. 82
7	. 83	. 86	. 88	.91	. 93	. 84	. 86	. 89	.91	. 94
8	. 95	. 98	1.00	1.02	1.05	. 96	.98	I.OI	1.03	1.06
9	1.07	I. 10	I. 12	I. 14	I. 17	1.08	I. 10	I. 13	1. 15	I. 17
10	I. 19	I. 21	1.24	1.26	1.29	1.20	1. 22	I. 25	1.27	1.29
I I	1.31	1.33	1. 36	1.38	I. 40	1.32	I. 34	I. 37	I. 39	1.41
12	1.43	1.45	1. 48	I. 50	I. 52	I. 44	I. 46	I. 49	I. 51	1.53
13	1. 55	I. 57	I. 59	1. 62	1.64	I. 56	1. 58	I.6I	1.63	1.65
14	I. 67	I. 69	1.71	1. 74	1. 76	I. 68	1.70	1.72	I. 75	1.77
15	1.78	1.8I	1.83	1. 86	I. 88	I. So	1.82	1.84	I. 87	1. 89
16	1.90	1.93	I. 95	1.97	2.00	1.92	1.94	1.96	I. 99	2.01
17	2.02	2.05	2.07	2.09	2.12	2.04	2.06	2.08	2.11	2. 13
18	2. 14	2. 16	2. 19	2.2 I	2.23	2. 15	2. IS	2.20	2.23	2.25
19	2.26	2.28	2.31	2.33	2.35	2.27	2.30	2.32	2.35	2.37
20	2.38	2.40	2.42	2.45	2.47	2.39	2.42	2.44	2.46	2.49
21	2.50	2.52	2.54	2.57	2.59	2.51	2.54	2.56	2.58	2.61
22	2.61	2.64	2.66	2.68	2.71	2.63	2.66	2.68	2.70	2.73
23	2.73	2.76	2.78	2.80	2.83	2.75	2.77	2.80	2.82	2.95
24	2.85	2.87	2.90	2.92	2.94	2.87	2.89	2.92	2.94	2.97
25	2.97	2.99	3.02	3.04	3.06	2.99	3.01	3.04	3.06	3.08
26	3.09	3.11	3.13	3.16	3.18	3.11	3.13	3.16	3.18	3.20
27	3.20	3.23	3.25	3.28	3.30	3.23	3.25	3.27	3.30	3.32
28	3.32	3.35	3.37	3.39	3.42	3.35	3.37	3.39	3.42	3.44
29	3.44	3.46	3.49	3.5 I	3.54	3.46	3.49	$3 \cdot 51$	3.54	3.56
30	3.56	3.58	3.61	3.63	3.65	3.58	3.61	3.63	3.65	3.68
3 I	3.68	3.70	3.72	3.75	3.77	3.70	3.73	3.75	3.77	3.80
32	3.79	3.82	3.84	3.87	3.89	3.82	3.84	3.87	3.89	3.92
33	3.91	3.94	3.96	3.98	4.01	3.94	3.96	3.99	4.01	4.03
34	4.03	4.05	4.08	4.10	4.12	4.06	4.08	4. II	4.13	4.15
35	4. 15	4.17	4.20	4.22	4.24	4. IS	4.20	4.22	4.25	4.27

REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.

METRIC MEASURES.
for temperatures above 0° Centigrade, the correction is to be subtracted.

	height of tile barometer 740 mm .					HEIGIIT OF TIIE BAROMETER 745 mm .				
Attached Thermometer	$0: 0$	0.2	0.4	0.6	0.8	0%	0.2	0.4	0.6	$0 \% 8$
c.	mm.	mm.	mm.	mm .	mm .	mm.	mm.	mm .	mm.	mm.
0°	0.00	0.02	0.05	0.07	0.10	0.00	0.02	0.05	0.07	0.10
I	. 12	. 15	. 17	. 19	. 22	. 12	. 15	.17	. 19	. 22
2	. 24	. 27	. 29	. 31	. 34	. 24	. 27	.29	.32	. 34
3	. 36	- 39	. 41	. 44	. 46	- 37	. 39	. 41	. 44	. 46
4	.48	. 51	. 53	. 56	. 58	. 49	.51	. 54	. 56	. 58
5	0.60	0.63	o. 65	0.68	0.70	0.61	0.63	0.66	0.68	0.71
6	. 72	. 75	. 77	. So	. 82	.73	. 75	. 78	. 80	. 83
7	. 85	. 87	. 89	. 92	. 94	. 85	. 85	. 90	. 92	. 95
8	. 97	. 99	I. OI	1. 04	1.06	. 97	1.00	I. 02	1.05	1.07
9	I. 09	I. II	I. 13	1. 16	I. 18	1. 09	1. 12	I. 14	1. 17	1.19
10	1.21	1.23	I. 26	1.28	1.30	1.22	1.24	I. 26	I. 29	1.31
I I	1.33	I. 35	I. 38	1.40	I. 42	I. 34	1. 36	1. 38	I. 41	1.43
12	I. 45	1.47	1.50	I. 52	1.54	1. 46	1.48	1.51	I. 53	1.55
13	I. 57	I. 59	1.62	1. 64	1.66	I. 58	1. 60	I. 63	I. 65	1.68
14	I. 69	1.71	1.74	1. 76	1.78	1.70	1.72	1. 75	1.77	1.80
15	I. Sr	1.83	1. 86	1. 88	1.90	1.82	I. 85	I. 87	I. 89	1.92
16	1.93	1.95	1.98	2.00	2.03	1.94	1.97	1.99	2.01	2.04
17	2.05	2.07	2.10	2.12	2.15	2.06	2.09	2.1 I	2. I4	2. 16
18	2.17	2.19	2.22	2.24	2.27	2.18	2.21	2.23	2.26	2.28
I9	2.29	2.31	2.34	2.36	2.39	2.31	2.33	2.35	2.38	2.40
20	2.41	2.43	2.46	2.48	2.51	2.43	2.45	2.47	2.50	2.52
21	2.53	2.55	2.58	2.60	2.63	2.55	2.57	2.59	2.62	2.64
22	2.65	2.67	2.70	2.72	2.75	2.67	2.69	2.72	2.74	2.76
23	2.77	2.79	2.82	2.84	2.87	2.79	2.81	2.84	2.56	2.88
2.4	2.89	2.91	2.94	2.96	2.99	2.91	2.93	2.96	2.98	3.01
25	3.01	3.03	3.06	3.08	3.11	3.03	3.05	3.08	3.10	3.13
26	3.13	3.15	3.18	3.20	3.22	3.15	3.17	3.20	3.22	3.25
27	2. 25	3.27	3.30	3.32	$3 \cdot 34$	3.27	3.29	3.32	3.34	3.37
28	3.37	3.39	3.42	3.44	3.46	3.39	3.42	3.44	3.46	3.49
29	$3 \cdot 49$	3.51	3.54	3.56	3.58	3.5I	3.54	3.56	3.58	3.61
30	3.61	3.63	3.66	3.68	3.70	3.63	3.66	3.68	3.70	3.73
31	3.73	3.75	3.78	3.80	3.82	3.75	3.78	3. So	3.82	3.85
32	3.55	3.87	3.89	3.92	3.94	3.87	3.90	3.92	3.95	3.97
33	3.97	3.99	4.01	4.04	4.06	3.99	4.02	4	4.07	4.09
34	4.09	4.1 I	4.13	4.16	4.18	4.11	4.14	4.16	4.19	4.21
35	4.2 I	4.23	4.25	4.28	4.30	4.23	4.26	4.28	$4.3{ }^{1}$	4.33

Smithaonian Tables.

Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE.
METRIC MEASURES.
FOR TEMPERATURES ABOVE 0° CENTIGRADE, the CORRECTION IS TO BE SUBTRACTED.

	IIEIGHT OF TIIE BAROMETER 750 mm .					HEIGHT OF THE BAROMETER 755 mm .				
Attached Ther-mom-ter.	0%	0 0.2	0.4	0.6	0.8	0.0	0.2	0.4	$0 \% 6$	0.8
c.	milu.	min.	1 mm .	mm.	mm .	mm.	mm.	min.	nim.	mm.
$0{ }^{\circ}$	0.00	0.02	0.05	0.07	O. 10	0.00	0.02	0.05	0.07	O. 10
I	. 12	. 15	. 17	. 20	. 22	. 12	. 15	. 17	. 20	. 22
2	. 25	. 27	. 29	. 32	. 34	. 25	. 27	.30	. 32	. 35
3	. 37	. 39	. 42	. 44	. 47	. 37	- 39	. 42	. 44	. 47
4	. 49	. 51	. 54	.56	. 59	. 49	. 52	. 54	. 57	. 59
5	0.61	0.64	0.66	0.69	0.71	0.62	0. 64	0.67	0.69	0.71
6	. 73	. 76	. 78	. $\mathrm{SI}^{\text {I }}$. 83	.74	. 76	. 79	. SI	. 84
7	. 86	. 88	.91	. 93	. 95	. 86	. 89	. 91	. 94	. 96
8	.98	1.00	1.03	1.05	1. 08	. 99	I.OI	1.03	1.06	1.08
9	1. 10	I. 13	I. 15	I. 17	I. 20	I. II	I. I3	1. 16	I. IS	I. 2 I
10	1.22	1.25	1.27	I. 30	1.32	1.23	1.26	1.28	1.31	1.33
II	1. 35	1.37	I. 39	1.42	I. 44	1. 35	I. 38	1.40	1.43	1.45
12	1.47	I. 49	1.52	I. 54	I. 56	I. 48	1.50	1.53	I. 55	1.58
13	I. 59	1.61	1. 64	1. 66	I. 69	I. 60	1.62	1.65	1.67	1.70
14	1.71	1.74	1. 76	1.78	I. 81	1.72	1.75	1.77	1. 80	1.82
15	1.83	I. 86	1. 88	I.91	I. 93	1. 85	1.87	1.89	I. 92	1.94
16	1.96	1.98	2.00	2.03	2.05	1.97	1.99	2.02	2.04	2.07
17	2.08	2.10	2.13	2.15	2.17	2.09	2.12	2.14	2.16	2.19
I 8	2.20	2.22	2.25	2.27	2.30	2.21	2.24	2.26	2.29	2.3 I
19	2.32	2.34	2.37	2.39	2.42	2.34	2.36	2.38	2.41	2.43
20	2.44	2.47	2.49	2.52	2.54	2.46	2.48	2.51	2.53	2.56
2 I	2.56	2.59	2.61	2.64	2.66	2.58	2.61	2.63	2.65	2.68
22	2.69	2.71	2.73	2.76	2.78	2.70	2.73	2.75	2.78	2.80
23	2.81	2.83	2.86	2.88	2.90	2.83	2.85	2.87	2.90	2.92
24	2.93	2.95	2.98	3.00	3.03	2.95	2.97	3.00	3.02	3.05
25	3.05	3.07	3.10	3.12	3.15	3.07	3.09	3.12	3.14	3.17
26	3. 17	3.20	3.22	3.24	3.27	3.19	3.22	3.24	3.27	3.29
27	3.29	3.32	$3 \cdot 34$	3.37	$3 \cdot 39$	$3 \cdot 31$	3.34	3.36	3.39	3.41
2 S	3.41	3.44	3.46	3.49	3.51	3.44	3.46	3.49	3.51	3.53
29	3.54	3.56	3.58	3.61	3.63	3.56	3.58	3.61	3.63	3.66
30	3.66	3.68	3.71	3.73	3.75	3.68	3.71	3.73	3.75	3.78
31	3.78	3.80	3.83	3.85	3.87	3.80	3.83	3.55	3.88	3.90
32	3.90	3.92	3.95	3.97	4.00	3.92	3.95	3.97	4.00	4.02
33	4.02	4.04	4.07	4.09	4. 12	4.05	4.07	4.10	4.12	4. 14
34	4. 14	4. 17	4.19	4.21	4.24	4.17	4.19	4.22	4.24	4.27
35	- 4.26	4.29	4.31	4.33	4.36	4.29	4.31	4.34	4.36	$4 \cdot 39$

Smithsonian Tobles.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	HEIGHT OF TIIE BAROMETER 760 mm .					heIght of tile barometer 765 mm .				
Attached Ther. mometer.	0.0	0.2	0\%.4	0.6	0.8	0.0	0.2	0.4	0.6	0.8
c.	mm.									
0°	0.00	0.02	0.05	0.07	0. 10	0.00	0.03	0.05	0.07	0. 10
I	. 12	. 15	. 17	. 20	. 22	. 13	. 15	. 17	. 20	. 22
2	. 25	. 27	. 30	.32	- 35	. 25	. 27	. 30	.32	. 35
3	. 37	. 40	.42	. 45	. 47	. 37	. 40	. 42	. 45	. 47
4	. 50	. 52	. 55	. 57	. 60	. 50	. 52	. 55	. 57	. 60
5	0.62	0.65	0. 67	0.69	0.72	0.62	0.65	0.67	0.70	0.72
6	. 74	. 77	. 79	. 82	. 84	. 75	. 77	. 80	. 82	. 85
7	. 87	. 89	. 92	. 94	. 97	. 87	. 90	. 92	. 95	. 97
8	. 99	I. 02	I. 04	1.07	1.09	1.00	1.02	1.05	1.07	I. IO
9	I. 12	1.14	I. 17	I. 19	1.2I	1.12	1.15	I. 17	1.20	1.22
10	I. 24	1. 26	1.29	1.31	1.34	1.25	1.27	1.30	1.32	1.35
11	1. 36	I. 39	1.41	I. 44	I. 46	I. 37	1.40	1.42	1.45	1.47
12	1. 49	I. 51	I. 54	1.56	I. 59	1.50	1.52	I. 55	1.57	1.60
I3	1.6I	I. 64	1.66	1.68	1.71	1.62	1.65	1.67	1.70	1.72
14	1.73	1.76	1.78	I. SI	1.83	1.75	1.77	1. 80	I. 82	1. 85
15	1.86	1.88	I.91	1.93	1.96	1.87	1.89	1.92	1.94	1.97
16	1.98	2.01	2.03	2.06	2.08	1.99	2.02	2.04	2.07	2.09
17	2.10	2.13	2.15	2.18	2.20	2.12	2.14	2.17	2.19	2.22
18	2.23	2.25	2.28	2.30	2.33	2.24	2.27	2.29	2.32	2.34
19	2.35	2.38	2.40	2.43	2.45	2.37	2.39	2.42	2.44	2.47
20	2.47	2.50	2.52	2.55	2.57	2.49	2.52	2.54	2.57	2.59
21	2.60	2.62	2.65	2.67	2.70	2.62	2.64	2.66	2.69	2.71
22	2.72	2.75	2.77	2.80	2.82	2.74	2.76	2.79	2.81	2.84
23	2.84	2.87	2.89	2.92	2.94	2.86	2.89	2.91	2.94	2.96
24	2.97	2.99	3.02	3.04	3.07	2.99	3.01	3.04	3.06	3.09
25	3.09	3.12	3. 14	3.16	3.19	3.11	3. 14	3.16	3.19	3.21
26	3.21	3.24	3.26	3.29	$3 \cdot 31$	3.23	3.26	3.28	$3 \cdot 3 \mathrm{I}$	3.33
27	3.34	3.36	3.39	3.41	3.43	3.36	3.38	3.41	343	$3 \cdot 46$
28	3.46	3.48	3.51	3.53	3.56	3.48	3.51	3.53	3.56	3.58
29	3.58	3.6 I	3.63	3.66	3.68	3.61	3.63	3.66	3.68	3.70
30	3.71	3.73		3.78	3.So	3.73	3.75	3.78	3.80	3.83
31	3.83	3.85	3.88	3.90	3.93	3.85	3.88	3.90	3.93	3.95
32	3.95	3.98	4.00	4.02	4.05	3.98	4.00	4.03	4.05	4.08
33	4.07	4. IO	4.12	4. 15	4. 17	4. 10	4.13	4.15	4. 17	4.20
34	4.20	4.22	4.25	4.27	4.29	4.22	4.25	4.27	4.30	4.32
35	4.32	4.34	4.37	4.39	4.42	$4 \cdot 35$	4.37	4.40	4.42	4.45

Emithionian Tables.

Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	height of tile barometer. 770 mm .					HEIGHT OF THE BAROMETER 775 mm .				
Attached Thermometer.	0.0	0.2	0.4	0.6	0.8	0%	0.2	0.4	0.6	0.8
c.	mm.	mm.	mm.	mm .	mm.	mm.	mm.	mm.	mm.	mm.
0°	0.00	0.03	0.05	0.08	0. 10	0.00	0.03	0.05	0.08	0. 10
I	. 13	. 15	. 18	. 20	. 23	. 13	. 15	. 18	. 20	. 23
2	. 25	. 28	- 30	-33	. 35	. 25	. 28	. 30	-33	. 35
3	. 38	. 40	. 43	. 45	. 48	. 38	. 40	. 43	. 46	. 48
4	. 50	. 53	. 55	. 58	. 60	. 51	. 53	. 56	.58	.6I
5	0.63	0.65	0.68	0.70	0.73	0.63	0.66	0.68	0.71	0.73
6	. 75	. 78	. 80	. 83	. 85	. 76	.78	. 81	. 83	. 86
7	. 88	. 90	. 93	. 95	. 98	. 89	.91	. 94	. 96	. 99
8	I.OI	1.03	1.06	1.08	I. II	I.OI	1.04	1.06	1.09	I. II
9	I. 13	1.16	I. 18	1.21	1.23	I. 14	I. 16	1. 19	1.21	1.24
10	1. 26	1.28	1.31	I. 33	1. 36	I. 26	1.29	1.31	1.34	I. 36
II	I. 38	1.41	1.43	I. 46	1.48	I. 39	I. 42	1.44	1.47	1.49
12	1.51	1. 53	1.56	1.58	1.6I	1.52	1.54	1. 57	I. 59	1.62
13	1.63	1.66	1.68	1.71	1.73	1.64	1.67	1.69	1.72	1.74
14	1.76	1.78	1.81	1.83	I. 86	1.77	1.79	1.82	1.84	1.87
15	1.88	1.91	1.93	1.96	1.98	I. 89	1.92	I. 94	I. 97	2.00
16	2.01	2.03	2.06	2.08	2.11	2.02	2.05	2.07	2.10	2.12
17	2.13	2.16	2.18	2.21	2.23	2. 15	2.17	2.20	2.22	2.25
IS	2.26	2.28	2.31	2.33	2.36	2.27	2.30	2.32	2.35	2.37
19	2.38	2.41	2.43	2.46	2.48	2.40	2.42	2.45	2.47	2.50
20	2.51	2.53	2.56	2.58	2.61	2.52	2.55	2.57	2.60	2.62
21	2.63	2.66	2.68	2.71	2.73	2.65	2.67	2.70	2.72	2.75
22	2.76	2.78	2.81	2.83	2.86	2.77	2.80	2.83	2.85	2.88
23	2.88	2.91	2.93	2.96	2.98	2.90	2.93	2.95	2.98	3.00
2.4	3.01	3.03	3.06	3.08	3.11	3.03	3.05	3.08	3.10	3. 13
25	3.13	3.16	3.18	3.21	3.23	3.15	3.18	3.20	3.23	
26	3.26	3.28	3.31	3.33	3.36	3.28	3.30	3.33	3.35	3.38
27	$3 \cdot 38$	3.41	3.43	3.46	3.48	3.40	3.43	3.45	3.48	3.50
28	3.51	3.53	3.56	3.58	3.60	3.53	3.55	3.58	3.60	3.63
29	3.63	3.65	3.68	3.70	3.73	3.65	3.68	3.70	3.73	3.75
30	3.75	3.78	3.80	3.83	3.85	3.78	3.80	3.83	3.85	3.88
31	3.58	3.90	3.93	3.95	3.98	3.90	3.93	3.95	3.98	4.00
32	4.00	4.03	4.05	4.08	4.10	4.03	4.05	4.08	4.10	4.13
33	4.13	4.15	4.18	4.20	4.23	4.15	4.18	4.20	4.23	4.25
34	4.25	4.28	4.30	4.33	4.35	4.28	4.30	4.33	4.35	4.3 S
35	$4 \cdot 38$	4.40	4.43	4.45	4.48	4.40	4.43	4.45	4.48	4.50

Emithsonian Tables.

Table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE. METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, THE CORRECTION IS TO BE SUBTRACTED.

	himint uf the banometer 780 mm .					HEICHT OF TIIE BAROMETER 785 mm .				
Attached Ther. mometer.	0.0	0.2	0.4	0.6	0.8	0%	0.2	0.4	0\%6	0.8
c.	mm.	mm.	mm.	mm.	mm.	mm.	mm .	mm.	mm.	mm.
0°	0.00	0.03	0.05	0.08	0. 10	0.00	0.03	0.05	0.08	-. 10
1	. 13	. 15	I8	. 20	. 23	. 13	. 15	. 18	. 21	. 23
2	.25	. 28	. 31	. 33	. 36	. 26	. 28	. 31	. 33	.36
3	. 38	. 41	. 43	. 46	. 48	. 38	. 41	. 44	. 46	. 49
4	. 51	. 53	. 56	. 59	.6I	. 51	. 54	. 56	. 59	. 62
5	0.64	0.66	0.69	0.71	0. 74	0.64	0.67	0.69	0.72	0.74
6	. 76	. 79	. SI	. 84	. 87	. 77	. 79	. 82	. 85	. 87
7	. 89	. 92	. 94	. 97	. 99	. 90	.92	. 95	. 97	1.00
8	1.02	1.04	1.07	1.09	1.12	1.02	1.05	1.08	I. 10	I. 13
9	1.15	1.17	1.20	1.22	I. 25	I. 15	I. 18	1.20	I. 23	1.25
10	1.27	1.30	1.32	1.35	1.37	1.28	1.31	I. 33	1.36	1. 38
11	1.40	I. 42	1. 45	I. 48	I. 50	I. 41	1.43	I. 46	1. 48	1.51
12	I. 53	1. 55	I. 58	1. 60	1.63	1.54	1. 56	1.59	I. 61	I. 64
13	1.65	I. 68	1.70	1.73	I. 75	1.66	I. 69	1.71	1.74	1.77
14	1.78	1. 81	1. 83	1.86	I. 88	1.79	1.82	I. 84	1.87	I. S 9
15	1.91	1.93	1.96	1.98	2.01	1.92	1.94	1.97	2.00	2.02
16	2.03	2.06	2.08	2.11	2.13	2.05	2.07	2.10	2.12	2.15
17	2.16	2.19	2.21	2.24	2.26	2.17	2.20	2.22	2.25	2.28
IS	2.29	2.31	2.34	2.36	2.39	2.30	2.33	2.35	2.38	2.40
19	2.41	2.44	2.46	2.49	2.51	2.43	2.45	2.48	2.51	2.53
20	2.54	2.57	2.59	2.62	2.64	2.56	2.58	2.61	2.63	2.66
21	2.67	2.69	2.72	2.74	2.77	2.68	2.71	2.73	2.76	2.79
22	2.79	2.82	2.84	2.87	2.89	2.81	2.84	2.86	2.89	2.91
23	2.92	2.94	2.97	3.00	3.02	2.94	2.96	2.99	3.01	3.04
24	3.05	3.07	3.10	3.12	3.15	3.07	3.09	3.12	3.14	3.17
25	3.17	3.20	3.22	3.25	3.27	3.19	3.22	3.24	3.27	3.29
26	3.30	$3 \cdot 32$	3.35	$3 \cdot 37$	3.40	3.32	$3 \cdot 34$	3.37	3.40	3.42
27	3.42	3.45	3.47	3.50	3.53	3.45	$3 \cdot 47$	3.50	3.52	3.55
28	3.55	3.58	3.60	3.63	3.65	3.57	3.60	3.62	3.65	3.57 3.67
29	3.68	3.70	3.73	3.75	3.78	3.70	3.73	3.75	3.75	3.80
30	3.80	3.83	3.85	3.85	3.90	3.83	3.85	3.85	3.90	3.93
31	3.93	3.95	3.98	4.00	4.03	3.95	3.98	4.00	4.03	4.06
32	4.05	4.08	4. I I	4. I3	4.16	4.08	4. I I	4. 13	4.16	4.18
33	4. IS	4.21	4.23	4.26	4.28	4.21	4.23	4.26	4.28	4.31
34	4.31	4.33	4.36	4.38	4.41	4.33	4.36	4.39	4.41	4.44
35	4.43	4.46	4.48	4.51	4.53	4.46	4.49	4.51	4.54	4.56

Smithion an Tables.
table 45.
REDUCTION OF THE BAROMETER TO STANDARD TEMPERATURE METRIC MEASURES.

FOR TEMPERATURES ABOVE 0° CENTIGRADE, the CORRECTION IS TO BE SUBTRACTED.

	heIgit of tile barometer 790 mm .					heigilt of tile barometer 795 mm .				
Attached Thermometer.	0.0	0.2	0\%4	$0 \% 6$	0.8	0%	0.2	0.4	0.6	0.8
c.	minl.	mm.	mim.	mm.	mm .	mm.	mm.	mm.	mı.	mm.
0°	0.00	0.03	0.05	0.08	O. 10	0.00	0.03	0.05	0.08	0. 10
I	. 13	. 15	. 18	. 21	. 23	. 13	. 16	. 18	. 21	. 23
2	. 26	. 28	. 3 I	. 34	- 36	. 26	. 29	-3I	. 34	. 36
3	. 39	. 41	- 44	. 46	-49	- 39	. 42	. 44	. 47	. 49
4	. 52	. 54	. 57	. 59	. 62	. 52	. 55	. 57	. 60	. 62
5	0.64	0.67	0.70	0.72	0.75	0.65	0.67	0.70	0.73	0.75
6	. 77	. 50	. 83	. 85	. 88	.78	. 80	. 83	. 86	. 88
7	. 90	. 93	. 95	. 98	I. OI	. 91	. 93	. 96	. 99	I. OI
8	1.03	I. 06	1.08	I. I I	I. 13	1.04	1.06	1.09	I. 12	I. 14
9	I. 16	I. 19	I. 21	I. 24	1.26	I. 17	1. 19	1.22	1.24	I. 27
10	I. 29	I. 31	I. 3.4	1. 37	I. 39	1.30	1.32	I. 35	I. 37	1.40
II	1.42	I. 44	I. 47	I. 49	I. 52	I. 43	1.45	I. 48	1.50	I. 53
12	I. 55	1.57	1.60	1.62	1. 65	I. 56	1. 58	1.6I	1. 63	I. 66
13	1.67	1.70	1.73	1. 75	1. 78	1. 68	1.71	I. 74	1.76	I. 79
14	I. So	I. S_{3}	1. 85	I. 58	I.91	I. 81	1.84	1.87	1.89	1.92
15	1.93	1.96	1.98	2.01	2.03	I. 94	1.97	1.99	2.02	2.05
16	2.06	2.09	2.11	2.14	2.16	2.07	2.10	2.12	2.15	2.18
17	2.19	2.21	2.24	2.26	2.29	2.20	2.23	2.25	2.28	2.30
IS	2.32	2.34	2.37	2.39	2.42	2.33	2.36	2.38	2.41	2.43
19	2.44	2.47	2.50	2.52	2.55	2.46	2.49	2.51	2.54	2.56
20	2.57	2.60	2.62	2.65	2.67	2.59	2.61	2.64	2.67	2.69
21	2.70	2.73	2.75	2.78	2.50	2.72	2.74	2.77	2.79	2.82
22	$2 . S_{3}$	2.85	2.88	2.91	2.93	2.85	2.87	2.90	2.92	2.95
23	2.96	2.98	3.01	3.03	3.06	2.98	3.00	3.03	3.05	3.08
24	3.08	3.11	3.14	3.16	3.19	3.10	3.13	3.16	3.18	3.21
25	3.21	3.24	3.26	3.29	$3 \cdot 31$	3.23	3.26	3.28	3.31	3.34
26	3.34	$3 \cdot 37$	$3 \cdot 39$	3.42	3.44	$3 \cdot 36$	3.39	3.41	3.44	3.46
27	3.47	3.49	3.52	3.54	3.57	3.49	$3 \cdot 52$	3.54	3.57	3.59
28	3.60	3.62	3.65	3.67	3.70	3.62	3.64	3.67	3.70	3.72
29	3.72	3.75	3.77	3.80	3.83	3.75	3.77	3.80	3.82	3.85
30	3.85	3.88	3.90	3.93	3.95	3.88	3.90	3.93	3.95	3.98
31	3.98	4.00	4.03	4.06	4.08	4.00	4.03	4.06	4.08	4. II
32	4. I I	4.13	4.16	4. IS	4.21	4.13	4.16	4. IS	4.21	4.24
33	4.23	4.26	4.29	$4 \cdot 31$	4.34	4.26	4.29	4.31	$4 \cdot 34$	$4 \cdot 36$
34	$4 \cdot 36$	4.39	4.41	4.44	4.46	4.39	4.42	4.44	4.47	4.49
35	4.49	4.51	4.54	4.57	4.59	4.52	4.54	4.57	4.59	4.62

ENGLISH MEASURES

Table reconstructed from Table 44 to adapt it to U-shaped manometers with brass scales.

	Difference in height of the two columns, i. e., the algebraic difference of their readings, in inches.									
	1	2	3	4	5	6	7	8	9	10
F 0 0 2	$\begin{gathered} \text { Inch. } \\ +0.003 \\ +0.002 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & +0.005 \end{aligned}$	$\begin{gathered} \text { Inch. } \\ +0.008 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.010 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.013 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & +0.016 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & +0.018 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & +0.02 \mathrm{I} \end{aligned}$	$\begin{gathered} \text { Inch. } \\ +0.023 \end{gathered}$	$\begin{array}{r} \text { Inch. } \\ +0.026 \end{array}$
4	+0.002 .002		+0.007 .007	+0.010	+0.012	+0.015	+0.017	+0.019	$+0.022$	+0.024
6	. 002	.004	. 006	. 008	. 010	.013	.016	. 018	0.20	0.22
8	. 002	. 004	. 006	. 008	. 009	. OI 1	.OI 3	. 017	. 019	21
10	. 002	. 003	. 005	. 007	. 008	. 10	. 1212	. 014	. 015	.019 .017
12	+0.002	+0.003	+0.005	+0.006	+0.008	+0.009	+0.011	+0.012	+0.014	+o.015
14	. 0001	. 003	.004	. 005	. 007	. 008	. 009	. 011	. 012	+0.015 .013
18	.001	. 002	. 003	. 005	. 006	. 007	. 008	. 009	. 010	. O 12
20	. 001	. 002	.02	.004	. 005	. 006	. 007	. 008	. 009	10
22									. 007	. 008
24	000	. 001	, I	+0.002	+0.003	+0.004	+0.004	+0.005	0.005	+0.006
26	. 000	.001	. 00 I	O22	.002	. 002	. 003	. 003	.004	. 004
28	. 000	00	oo	. 000	.001	. 000	. 002	. 002	. 002	. 003
30	. 000	. 000	. 000	-.001	-.001	-.000	-.000	.001	.001	.001 -.001
32	0.000	OI	0.001	.00I	0.002	. 002	0.002	-0.003		
34	-.001	. 001	. 002	. 002	. 003	. 003	.004	.004	.003 .005	-0.003
36	. 001	. 001	. 002	. 003	. 003	. 004	. 005	. 005	.006	$\begin{aligned} & .005 \\ & .007 \end{aligned}$
38	.00I	. 002	. 003	. 003	.004	. 005	. 006	.007	. 0	. 008
40	. 001	. 002	. 003	. 004	. 005	.006	.007	. 008	. 009	. 010
42	0.001	02	4	005	. 006	. 007				
44	OOI	.003	.004	006	. 007	. 008	. 010	. 0	012	-0.012
46	. 002	.003	. 005	. 006	. 008	. 009	. 011	. 013	. 012	.014
48	. 002	.004	. 005	. 007	. 009	. 017	. 012	.OI4	. 016	. 018
50	. 002	.004	. 006	. 008	. 010	. OL 2	. 014	. 016	. 018	. 019
52	0.002	O4	06	. 008	0.011	0.013	.015	0.017	0.019	
54	02	. 005	. 007	.009	. 01 I	. 014	. 016	.oi 8	.021	. 023
56	. 002	. 005	. 007	. 010	. 012	. 015	. 017	. 020	. 02	. 025
58	. 003	. 005	. 008	.OI I	.OI3	. 016	. 019	. 022 I	. 024	. 027
60	. 003	. 006	. 008	. 011	.OI4	. 017	. 020	. 023	. 025	. 028
62	-0.003	0.006	0.009	0.012	0.015	0.018	0.021	0.024	0.027	0.030
64	.003	.006	. 010	. 013	.016	. 1219	. 022	. 026	. 029	. 032
66	.003	.007	. 010	.014	. 017	. 020	. 022	. 027	.03I	. 034
68	. 004	.007	. 01 I	.014	. 018	. 02 I	. 025	. 028	.032	. 036
70	. 004	. 007	. OII	. 015	. 019	. 022	. 026	. 030	. 034	. 037
72	0.004	. 008	0.012	-0.016	-0.020	0.024	-0.027	-0.031	0.035	-0.039
74	.004	.008	. 012	.016	. 020	. 025	. 029	. 033	. 037	.041
76	. 004	. 009	.013	. 017	. 021	. 026	. 030	. 034	. 038	. 043
78 80	. 004	. 009	. 013	. 018	. 022	.027	.03I	. 036	. 040	. 045
80	. 005	. 009	. 014	. 019	. 023	. 028	. 032	. 037	.042	. 0.46
82	-0.005	0.010	0.014	-0.019	0.024	0.029	-0.034	0.039	0.043	-0.048
84	. 005	. 010	. 015	. 020	. 025	. 030	. 035	. 040	. 045	. 050
86	. 005	.010	. 016	. 021	. 026	. 03 I	. 036	. 042	. 047	. 052
88	. 005	. 011	. 016	. 021	. 027	. 032	. 037	. 043	. 048	. 053
90	. 006	.OII	. 017	. 022	. 028	. 033	. 039	. 044	. 050	. 055
92	0.006	O.OI I	0.017	-0.023	-0.029	0.034	0.040	0.046	-0.052	-0.057
94	. 006	.OI2	. 018	. 024	. 030	. 035	. 04 I	. 047	.053	. 059
96	. 006	. 012	. 118	.024	. 030	. 036	. 043	. 049	. 055	.06I
98	. 006	. 013	.019	. 025	.031	. 038	. 044	. 050	.056	. 063
100	. 006	. 013	. 019	. 026	. 032	. 039	. 045	.052	.058	. 064

Table 46.
REDUCTION OF THE MERCURIAL COLUMN TO STANDARD TEMPERATURE.
ENGLISH MEASURES
Table reconstructed from Table 44 to adapt it to U-shaped manometers with brass scales.

	Difference in height of the two columns, i. E., the algebraic difference of their readings, in inches.									
	11	12	13	14	15	16	17	18	19	20
$\mathrm{F} .$	$\begin{aligned} & \text { Inch. } \\ & +0.029 \end{aligned}$	$\begin{gathered} \text { Inch. } \\ +0.03 \mathrm{I} \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.034 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & +0.037 \end{aligned}$	$\begin{gathered} \text { Inch. } \\ +0.039 \end{gathered}$	$\begin{gathered} \text { Inch. } \\ +0.042 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & +0.044 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & +0.047 \end{aligned}$	$\begin{gathered} \text { Inch. } \\ +0.050 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & +0.052 \end{aligned}$
2	+0.027	+0.029	+0.03I	+0.034	$+0.036$	+0.039	+0.041	+0.044	+0.046	+0.049
4	. 025	. 027	.029	. 031	.033	. 036	. 038	. 0.40	. 043	. 045
6	.023	. 025	. 027	. 029	. 031	. 033	. 035	. 037	. 039	.04I
8	. 021	.023	. 025	. 026	. 028	. 030	.032	. 034	. 036	. 038
10	.OI9	. 020	. 022	. 024	.025	.027	. 029	. 03 I	. 032	. 034
12	+0.017	+0.018	+0.020	+0.021	+0.023	+0.024	$+0.026$	+0.027	+0.029	$+0.030$
14	.OI 5	.OI6	.OI7	.018	. 020	. 021	.023	. 024	. 025	. 027
16	.OI 3	.OI4	.OI 5	.016	. 017	.OI9	. 020	. 02 I	.022	. 023
18	. 017	. 012	.OI 3	.OI4	.015	.016	.016	.OI7	. 018	. 019
20	.009	. 009	. OIO	. OI I	. 012	.OI3	.OI 3	.OI4	. 015	.016
22	+0.007	+0.007	+0.008	+0.008	$+0.009$	+0.010	+0.010	+0.01I	+0.011	$+0.012$
24	.005	. 005	. 006	. 006	. 006	. 007	.007	. 008	. 008	. 008
26	.003	.003	.003	. 004	.004	. 004	. 004	. 004	. 005	. 005
28	. 001	.001	. OOI	. 001	. OOI	. 001	. 001	. OOI	. 001	. 001
30	-0.001	-0.002	0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002
32	-0.003	-0.004	-0.004	-0.004	0.005	0.005	0.005	-0.006	-0.006	-0.006
34	.005	. 006	. 007	. 007	. 008	. 008	. 008	. 009	. 009	. 010
36	. 007	. 008	.009	. 009	. 010	. 011	. 011	.OI 2	.013	.OI3
38	.009	.010	.OII	.012	. 013	. 014	. 014	.015	.016	.017
40	. OII	.012	.OI 3	.015	. 016	. 017	. 018	. 019	. 020	. 021
42	-0.013	-0.015	-0.016	-0.017	O.OI 8	-0.020	0.02 I	-0.022	-0.023	-0.024
44	.O15	. 017	.OI 8	.OI9	. 021	. 022	. 024	. 025	. 026	. 028
46	.OI 7	. 019	.020	. 022	.024	. 025	.027	. 028	. 030	. 031
48	.019	. 021	. 023	. 025	.026	. 028	. 030	.032	.033	. 035
50	. 02 I	.023	.025	.027	. 029	. 03 I	.033	. 035	.037	. 039
52	-0.023	-0.025	-0.027	-0.030	-0.032	-0.034	-0.036	-0.038	-0.040	-0.042
54	. 025	. 028	. 030	. 032	. 034	. 037	. 039	.04I	. 044	.046
56	. 027	. 030	.032	. 035	. 037	.040	.042	.045	.047	. 050
58	. 029	. 032	. 035	.037	.040	. 043	.045	.048	.051	.053
60	. 031	.034	.037	.040	.042	.045	.048	.05I	.054	.057
62	-0.033	-0.036	-0.039	-0.0.42	-0.045	-0.048	-0.05I	-0.054	-0.057	-0.060
64	. 035	. 038	.042	. 045	.048	.051	. 054	. 058	.06I	.064
66	. 037	.04I	.044	.048	.05I	.054	.057	.06I	.064	. 068
68	. 039	. 043	.046	.050	.053	.057	.06I	.064	. 068	. 071
70	.04 I	.045	.049	.052	.056	. 060	.064	.067	. 071	. 075
72	-0.043	-0.047	-0.05 I	-0.055	-0.059	-0.063	-0.067	-0.071	-0.075	-0.078
74	.045	. 049	. 053	. 057	. 061	. 065	. 070	.074	. 078	. 082
76	.047	.051	.056	. 060	.064	. 068	.073	.077	.08I	. 086
78	.049	.054	.058	. 062	.067	.071	.076	.080	.085	. 089
80	.05I	.056	.060	.065	. 070	.074	.079	.084	. 088	.093
2	-0.053	-0.058	-0.063	-0.067	-0.072	-0.077	-0.082	-0.087	-0.092	-0.096
84	. 055	. 060	.065	. 070	.075	. 080	. 085	. 090	.095	. 100
86	. 057	. 062	.067	. 073	.078	.083	. 088	. 093	. 098	. 104
88	.059	.064	.070	.075	.080	. 086	.09I	. 096	.102	. 107
90	.06I	. 066	.072	.078	.083	. 089	.094	.100	. 105	. I 11
92	-0.063	-0.069	-0.074	-0.080	-0.086	0.092	-0.097	-0.103	-0.109	-O.II 4
94	. 065	. 071	.077	. 083	. 089	. 095	.100	.106	. I12	. 118
96	.067	. 073	. 079	. 085	. 091	.097	. 103	. 109	.I I 5	. 122
98	.069	. 075	.08I	. 088	.094	. 100	. 106	. I 13	. 119	. 125
100	. 071	. 077	.084	.090	. 097	. 103	. 109	. 116	. 122,	. 129

REDUCTION OF THE MERCURIAL COLUMN TO STANDARD TEMPERATURE. METRIC MEASURES
Table reconstructed from Table 45 to adapt it to U-shaped manometers with brass scales. For temperatures above $0^{\circ} \mathrm{C}$., the correction is to be subtracted; for temperatures below, added.

Attached thermometer	Difference in height of the two columins, i. e., the algebraic difference of their readings (mm.).											
	20	40	60	80	100	120	140	160	180	200	220	240
C.	mm .	mm .	mm.	mm .	mm .	mm .	mm .	min.	mm.	mm.	mm.	mm.
0°	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
2	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 1	. 1	. 1	. I	. 1
3	. 0	. 0	. 0	. 0	. 0	. 1	. 1	. 1	. 1	. 1	. 1	. I
4	. 0	. 0	. 0	. 1	. 1	. I	. 1	. 1	. 1	. I	. I	. 2
5	0.0	0.0	0.0	O.I	O.I	0.1	O. I	O.I	O.I	0.2	0.2	0.2
6	. 0	. 0	.I	. 1	. 1	. 1	. 1	. 2	. 2	. 2	. 2	. 2
7	. 0	. 0	. 1	. I	. 1	. 1	. 2	. 2	. 2	. 2	. 3	. 3
8	. 0	. 1	. I	. 1	. I	. 2	. 2	. 2	. 2	. 3	. 3	. 3
9	. 0	. 1	. 1	. 1	. 1	. 2	. 2	. 2	. 3	. 3	- 3	. 4
10	0.0	0.1	0.1	O.I	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.4
11	. 0	. 1	. I	. 1	. 2	. 2	. 3	. 3	. 3	. 4	. 4	. 4
12	. 0	. 1	. 1	. 2	. 2	. 2	. 3	. 3	. 4	. 4	. 4	. 5
13	. 0	. 1	. I	. 2	. 2	-3	-3	. 3	. 4	. 4	. 5	. 5
14	. 0	. 1	. 1	.2	. 2	. 3	. 3	. 4	.4	. 5	. 5	. 5
15	0.0	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.4	0.5	0.5	
16	. 1	. 1	. 2	. 2	. 3	. 3	. 4	. 4	. 5	. 5	. 6	. 6
17	. I	. 1	. 2	. 2	- 3	- 3	. 4	. 4	. 5	. 6	. 6	. 7
18	. 1	. 1	. 2	. 2	. 3	. 4	. 4	. 5	. 5	. 6	. 6	.7
19	. 1	. 1	.2	.2	$\cdot 3$. 4	. 4	. 5	. 6	. 6	. 7	. 7
20	O. I	0.1	0.2	0.3	0.3	0.4	0.5	0.5	0.6	0.7	0.7	0.8
21	. 1	. I	. 2	. 3	. 3	. 4	. 5	. 5	. 6	. 7	. 8	. 8
22	. 1	. I	. 2	. 3	. 4	. 4	. 5	. 6	. 6	. 7	. 8	. 9
23	. 1	. I	. 2	. 3	. 4	. 4	. 5	. 6	.7	. 7	. 8	. 9
24	. 1	. 2	. 2	$\cdot 3$. 4	. 5	. 5	. 6	. 7	. 8	. 9	. 9
25	O.I	0.2	0.2	0.3	0.4	0.5	0.6	0.7	0.7	0.8	0.9	1.0
26	. 1	. 2	. 3	. 3	. 4	. 5	. 6	. 7	. 8	. 8	. 9	1.0
27	. I	.2	$\cdot 3$. 4	. 4	. 5	. 6	. 7	. 8	. 9	I. 0	I. I
28	. I	. 2	. 3	. 4	. 5	. 5	. 6	. 7	. 8	. 9	I. 0	I.I
29	. 1	. 2	. 3	. 4	. 5	. 6	.7	. 8	. 8	. 9	1.0	I.I
30	O.I	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	I.I	1.2
31	. I	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	1.0	I.I	1.2
32	. 1	. 2	. 3	.4	. 5	. 6	. 7	. 8	. 9	1.0	I.I	I. 2
33	. 1	.2	$\cdot 3$.4	. 5	. 6	. 8	. 9	1.0	I. I	I. 2	1.3
34	. I	. 2	$\cdot 3$.4	. 6	.7	. 8	. 9	1.0	I. I	1.2	1.3

Smithsonian Tables

Table 47.
REDUCTION OF THE MERCURIAL COLUMN TO STANDARD TEMPERATURE.

METRIC MEASURES

Table reconstructed from Table 45 to adapt it to U-shaped manometers with brass scales.
For temperatures above $0^{\circ} \mathrm{C}$., the correction is to be subtracted; for temperatures below, added.

	Difference in height of the two columns, i. e., the algebraic DIFFERENCE OF THEIR READINGS (MM.).												
	260	280	300	320	340	360	380	400	420	440	460	480	500
C.	mm.	mm .	mm.	mm.	mm .	mm .	mm .	mm .	mm.	mm.	mm.	mm.	mm .
0°	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I	. 0	. 0	. 0	. I	. I	. I	. I	. I	. 1	. I	. I	. I	. I
2	. I	. I	. I	. I	. I	. I	. I	. I	. 1	. I	. 2	. 2	. 2
3	. I	. I	. I	. 2	. 2	. 2	. 2	. 2	. 2	. 2	. 2	. 2	. 2
4	. 2	. 2	. 2	. 2	. 2	. 2	. 2	. 3	. 3	. 3	. 3	. 3	.3
5	0.2	0.2	0.2	0.3	. 03	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4
6	. 3	. 3	. 3	. 3	. 3	. 4	. 4	. 4	. 4	. 4	. 5	. 5	. 5
7	. 3	- 3	. 3	. 4	. 4	. 4	. 4	. 5	. 5	. 5	. 5	. 5	. 6
8	. 3	. 4	. 4	. 4	. 4	. 5	. 5	. 5	. 5	. 6	. 6	. 6	.7
9	. 4	.4	. 4	. 5	. 5	. 5	. 6	. 6	. 6	.6	.7	. 7	.7
10	0.4	0.5	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8
I I	. 5	. 5	. 5	. 6	. 6	. 6	. 7	. 7	. 8	. 8	. 8	. 9	. 9
12	. 5	. 5	. 6	.6	.7	.7	.7	. 8	. 8	.9	.9	. 9	I. 0
13	. 5	. 6	. 6	. 7	. 7	. 8	. 8	. 8	. 9	. 9	I . 0	1.0	I. I
14	.6	. 6	.7	.7	. 8	. 8	.9	.9	I. 0	1.0	1.0	I. I	I. I
15	0.6	0.7	0.7	0.8	0.8	0.9	0.9	I. 0	I. 0	I.I	I. I	1.2	1.2
16	.7	. 7	. 8	. 8	.9	. 9	1.0	I . 0	I. I	I. I	I. 2	I. 2	I. 3
17	. 7	. 8	. 8	. 9	.9	I. 0	I. I	I. I	I. 2	I. 2	I. 3	1.3	I. 4
18	. 8	. 8	.9	. 9	I. 0	I. I	I. I	1.2	I. 2	I. 3	I. 3	1.4	I. 5
19	. 8	.9	.9	1.0	I. I	I. I	I. 2	1.2	I. 3	I. 4	I. 4	I. 5	I. 5
20	0.8	0.9	1.0	I. 0	I.I	1.2	1.2	1.3	I. 4	1.4	1.5	I. 6	I. 6
21	. 9	1.0	I. 0	I. I	I. 2	1.2	I. 3	1.4	1.4	1.5	1.6	I. 6	I. 7
22	. 9	1.0	I. I	I. I	1.2	I. 3	1.4	I. 4	1.5	1.6	1.6	1.7	I. 8
23	1.0	1.0	I. I	I. 2	I. 3	I. 3	I. 4	1.5	1.6	1.6	1.7	1.8	1.9
24	I . 0	I. I	1.2	I. 2	I. 3	1.4	1.5	I. 6	I. 6	1.7	I. 8	1.9	1.9
25	I. I	I. I	1.2	1.3	1.4	1.5	I. 5	I. 6	1.7	1.8	1.9	2.0	2.0
26	I. I	1.2	1.3	1.4	1.4	1.5	I. 6	I. 7	I. 8	1.9	1.9	2.0	2.1
27	I. I	I. 2	I. 3	1.4	1.5	1.6	1.7	1.8	I. 8	1.9	2.0	2.1	2.2
28	1.2	1.3	I. 4	1.5	I. 5	I. 6	1.7	I. 8	1.9	2.0	2.1	2.2	2.3
29	1.2	I. 3	I. 4	I. 5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4
30	I. 3	I. 4	I. 5	I. 6	1.7	I. 8	1.9	2.0	2.0	2.1	2.2	2.3	2.4
3 I	I. 3	I. 4	I. 5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5
32	I. 4	I. 5	I. 6	I. 7	I. 8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6
33	1.4	I. 5	I. 6	1.7	I. 8	1.9	2.0	2.1	2.2	2.4	2.5	2.6	2.7
34	I. 4	I. 5	I. 7	I. 8	I. 9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.8

Smithsonian Tables GRAVITY.

$$
C=\frac{\left(g_{t}-g_{0}\right)}{g_{0}} B
$$

(WITH $\mathrm{g}_{2}<\mathrm{g}_{0}$ THE CORRECTION IS TO BE SUBTRACTED ; WITH $\mathrm{g}_{l}>\mathrm{g}_{0}$ IT IS TO BE ADDED.)

$g_{l}-g_{0}$	BAROMETER READING B.									
	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
Dynes.										
0.1	0.00010	0.00020	0.00031	$0.000+1$	0.00051	0.00061	0.00071	0.00082	0.00092	0.00102
0.2	00020	00041	00061	00082	00102	00122	00143	00163	00184	00204
0.3	00031	00061	00092	O122	00153	00184	00214	00245	00275	00306
0.4	00041	00082	00122	00163	0020.4	00245	00286	00326	00367	00408
0.5	0005 I	00102	-0153	00204	00255	00306	00357	00408	00459	00510
0.6	0.00061	0.00122	0.0018 .4	0.00245	0.00306	0.00367	0.00428	$0.00+89$	0.00551	0.00612
0.7	00071	OOI43	00214	00286	00357	00428	00500	00571	006.42	00714
0.8	00082	00163	00245	00326	00408	OO+49	00571	00653	00734	00816
0.9	00092	oor84	00275	00367	00.459	00551	00642	00734	00826	00918
1.0	00102	00204	00306	00408	00510	00612	00714	008ı6	00918	O1020
1.1	0.00112	0.00224	0.00337	0.00449	0.00561	0.00673	0.00785	0.00897	0.01010	0.01122
I. 2	00122	00245	00367	00489	00612	$0073+$	00857	00979	OIIOI	OI 224
I. 3	00133	00265	00398	00530	00663	00795	00928	01061	OI 193	O1326
1.4	$\infty 143$	00286	00428	00571	00714	00857	00999	OII4 ${ }^{2}$	01285	01428
1.5	00153	00306	00.459	0061 2	00765	OO918	01071	01224	-1377	O1530
1.6	0.00163	0.00326	0.00489	0.00653	0.00816	0.00979	0.01142	0.01305	0.01468	0.01632
1.7	00173	00347	00520	00693	00867	01040	01213	OI 387	01560	O1734
1.8	00184	00367	-055 I	00734	00918	OIIII	-1285	OI468	01652	01835
I. 9	$\infty \times 19$	00387	0058 I	00775	00969	O1162	OI 356	OI550	OI 744	O1937
2.0	00204	00.408	00612	00816	01020	O1224	01428	01632	Or835	02039
2.1	0.00214	0.00428	0.00642	0.008_{57}	0.01071	0.01285	0.01499	0.01713	0.01927	0.02141
2.2	00224	00449	00673	00897	Ori 22	Or 346	or 570	01795	02019	02243
2.3	00235	00469	00704	00938	OII 73	01407	01642	01876	O2III	02345
2.4	00245	00489	00734	00979	O1224	01468	-1713	-1958	02203	02447
2.5	00255	00510	00765	O1020	O1275	OI530	01783	02039	02294	02549
2.6	0.00265	0.00530	0.00795	0.01061	0.01326	0.01591	0.01856	0.02121	0.02386	0.02651
2.7	00275	00551	00826	OIIOI	01377	-1652	01927	02203	02478	02753
2.8	00286	00571	00857	OII q^{2}	OI428	01713	-1999	02284	02570	02855
2.9	00296	00591	00887	Ori83	01479	01774	02070	02366	02661	02958
3.0	00306	00612	00918	OI2 2.4	O1530	01835	$02 \mathrm{I}+\mathrm{I}$	02447	02753	03059
3.1	0.00316	0.00632	0.00048	0.01264	0.01581	0.01897	0.02213	0.02529	0.02845	0.03161
3.2	00326	00653	00079	01305	01632	01958	02284	02610	02937	03263
$3 \cdot 3$	00337	00673	-1010	OI3.46	01683	02019	02356	02692	03029	03365
3.4	© 0347	00693	010.40	-1387	01734	02080	02427	02774	03120	03467
3.5	00357	00714	01071	OT 428	01785	02141	02498	02855	03212	$\bigcirc 3569$
3.6	0.00367	0.00734	0.01101	0.01468	0.01835	0.02203	0.02570	0.02937	0.03304	0.03671
3.7	00377	00755	OII32	-1500	-1886	02264	02641	03018	03396	$\bigcirc 3773$
3.8	00387	00775	OII62	-1550	01937	02325	02712	03100	03487	03875
3.9	00398	00795	-1193	01591	-1988	02386	02784	03182	03579	03977
4.0	00408	00816	01224	01632	02039	02447	02855	03263	03671	04079

[^27]Table 49.
REDUCTION OF THE BAROMETER TO STANDARD GRAVITY.
ENGLISH MEASURES.
FROM LATITUOE 0° TO 45°, THE CORRECTION IS TO BE SUBTRACTEO.

EMITHSONIAN TABLES.

FROM LATITUDE 46° TO 90° THE CORREGTION IS TO BE AODED.

Lati tude.	HEIGHT OF THE BIROMETFR TN INCHES.											
	19	20	21	22	23	24	25	26	27	28	29	30
45°	$\begin{aligned} & \text { Inch. } \\ & -0.001 \end{aligned}$	$\begin{gathered} \text { Inch. } \\ -0.00 \mathrm{I} \end{gathered}$	Inch. -0.001	$\begin{gathered} \text { Inch. } \\ -0.001 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & -0.001 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & -0.001 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & -0.001 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & -0.00 \mathrm{I} \end{aligned}$	$\begin{gathered} \text { Inch. } \\ -0.001 \end{gathered}$	$\begin{aligned} & \text { Inch. } \\ & -0.001 \end{aligned}$	$\begin{aligned} & \text { Inch. } \\ & -0.001 \end{aligned}$	Inch. -0.001
46	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001	+0.001
47	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004
48	0.004	0.005	0.005	0.005	0.005	0.006	0.006	0.006	0.006	0.006	0.007	0.007
49	0.006	0.006	0.007	0.007	0.007	0.008	0.008	0.008	0.009	0.009	0.000	0.010
50	0.008	0.008	0.009	0.000	0.010	0.010	0.010	0.011	0.011	0.012	0.012	0.012
51	+0.010	+0.010	+0.01 1	+0.01 I	+0.012	+0.012	+0.013	+0.013	+0.014	+0.014	+0.015	15
52	0.01 I	0.012	0.012	0.013	0.014	0.014	0.015	0.015	0.016	0.016	0.017	0.018
53	0.013	0.014	0.014	0.015	0.016	0.016	0.017	0.018	0.018	0.010	0.020	0.020
54	0.015	0.015	0.016	0.017	0.018	0.019	0.019	0.020	0.021	0.022	0.022	0.023
55	0.016	0.017	0.018	0.019	0.020	0.02 I	0.021	0.022	0.023	0.024	0.025	0.026
56	+0.018	+0.019	$+0.020$	+0.021	+0.022	+0.023	+0.024	+0.024	0.026	+0.026	+0.027	2 S
-	0.020	0.021	0.022	0.023	0.024	0.025	0.026	0.027	0.028	0.029	0.030	0.031
58	0.021	0.022	0.023	0.025	0.026	0.027	0.028	0.029	0.030	0.031	0.032	0.033
59	0.023	0.024	0.025	0.026	0.028	0.020	0.030	0.031	0.032	0.033	0.035	0.036
60	$0.02+$	0.026	0.027	0.028	0.029	0.031	0.032	0.033	0.0 .34	0.036	0.037	0.038
61	+0.026	+0.027	+0.028	+0.030	+0.031	+0.0.33	+0.034	-0.035	+0.037	+0.038	+0.0.39	+0.041
62	0.027	0.029	0.030	0.032	0.033	0.034	0.036	0.037	0.039	0.010	0.0.1?	0.043
63	0.029	0.030	0.032	0.033	0.035	0.036	0.038	0.030	0.041	0.042	0.044	0.045
64	0.030	0.032	0.033	0.035	0.036	0.038	0.040	0.041	0.043	0.0 .44	0.046	0.047
65	0.031	0.033	0.035	0.036	0.038	0.040	0.041	0.04 .3	0.045	0.046	0.048	0.050
66	+0.033	+0.034	+0.036	+0.038	+0.040	+0.0.4 1	+0.043	+0.045	$+0.047$	+0.0.4	0.05	0.052
67	0.034	0.036	0.038	0.039	0.041	$0.0+3$	0.045	0.047	0.048	0.050	0.052	0.054
68	0.035	0.037	0.039	0.071	0.043	0.045	0.046	0.048	0.050	0.052	0.054	0.056
69	0.036	0.038	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.054	0.056	0.058
70	0.038	0.040	0.042	0.044	0.046	0.048	0.050	0.052	0.053	0.055	0.057	0.059
71	+0.039	+0.0.11	$+0.043$	+0.045	+0.047	+0.049	+0.051	+0.053	+0.055	+0.057	+0.059	+0.061
72	0.040	0.042	0.047	0.046	0.048	0.050	0.052	0.054	0.057	0.059	0.061	0.063
73	0.041	0.043	0.045	0.047	0.049	0.052	0.054	0.056	0.058	0.060	0.062	0.064
74	0.042	0.044	0.046	0.048	0.051	0.053	0.055	0.057	0.059	0.062	0.064	0.066
75	0.043	0.045	0.047	0.049	0.052	0.054	0.056	0.058	0.061	0.063	0.065	0.067
76	+0.0.4.	+0.0.46	+0.0.48	+0.050	+0.053	+0.055	+0.057	+0.060	+0.062	+0.064	+0.066	+0.069
77	0.044	0.047	0.049	0.051	0.054	0.056	0.058	0.061	0.063	0.065	0.068	0.070
78	0.045	0.047	0.050	0.052	0.055	0.057	0.059	0.062	0.064	0.066	0.069	0.07 I
79	0.046	0.048	0.051	0.053	0.055	0.058	0.060	0.063	0.065	0.067	0.070	0.072
80	0.046	0.049	0.051	0.054	0.056	0.059	0.061	0.063	0.066	0.068	0.071	0.073
81	+0.047	+0.049	+0.052	+0.05 4	+0.057	+0.059	+0.062	+0.064	$+0.067$	+0.060	+0.072	+0.074
82	0.047	0.050	0.052	0.055	0.057	0.060	0.062	0.065	0.067	0.070	0.072	0.075
83	0.048	0.050	0.053	0.056	0.058	0.061	0.063	0.066	0.068	0.071	0.073	0.076
84	0.048	0.051	0.053	0.056	0.059	0.061	0.064	0.066	0.069	0.071	0.074	0.076
85	0.049	0.05 I	0.054	0.056	0.059	0.061	0.064	0.067	0.069	0.072	0.074	0.077
90	+0.0.40	+0.052	+0.055	+0.057	+0.060	$+0.062$	+0.065	+0.068	+0.070	+0.073	+0.075	$+0.078$

Table 50.
 REDUCTION OF THE BAROMETER TO STANDARD GRAVITY.
 METRIC MEASURES.

FROM LATITUDE 0° TO 45°, THE CORRECTION IS TO BE SUBTRACTED.

Latitude.	HEIGHT OF THE BAROMETER IN MILLIMETERS.													
	520	540	560	580	600	620	640	660	680	700	720	740	760	780
	mm.	mm.	mm.	m.			m.	mm.			mm.		m.	mm.
0°	-1.39	-1.45	-1.50	-1.55	-1.61	-1.66	-1.71	-1.77	-1.82	-1.87	-1.93	- 1.98	-2.04	-2.09
5	-1.37	-1. 4^{2}	-1.48	-1.53	-1.58	-1.64	-1. 69	-1.74	-1.79	-1. 85	-1.90	-I.95	-2.00	-2.06
6	1.36	1.42	1.47	1.52	1.57	1.63	1.68	1.73	1.78	1.83	I. 89	I. 94	1.99	2.04
7	I. 35	1.40	1.46	I. 51	1.56	1.61	I. 66	1.72	1.77	1.82	1.87	. 1.92	1.98	2.03
8	1.34	1.39	1.44	1.49	1.55	1.60	1.65	1.70	1.75	1.80	1.85	1.91	1.96	2.01
9	1.33	I. 38	1.43	1.48	I. 53	1.58	1.63	I. 68	1.73	1.78	I. 84	I. 89	I. 94	1.99
10	-1.31	-1.36	-1.4 1	-1. 46	-1.51	-1.56	-1.61	-1.66	-1.71	-1.76	-1.81	-1.86	-1.92	-1.97
11	1.29	1.34	1.39	1.44	1.49	I. 54	1.59	1.64	1.69	1.74	1.79	1.84	1.89	1.94
12	1.27	1. 32	1.37	1.42	1.47	1.52	1.57	1.62	I. 67	1.72	1.76	1.8:	1.86	1.91
13	1.25	1.30	1.35	1.40	1.45	1.50	I. 54	I. 59	I. 64	1.69	1.74	1.78	1.83	1.88
14	1.23	I. 28	I. 33	1. 38	1.42	1.47	1.52	1.56	I. 61	I. 66	1.71	1.75	1.80	1.85
15	-1.2I	-I. 26	- I. 30	-1.35	- 1.40	-1.44	-1.49	-1.54	-1.58	-1. 63	-1.67	-1.72	-1.77	$-\mathrm{I} .8 \mathrm{I}$
16	I. 19	I. 23	1.28	1.32	1.37	1.41	1.46	1.50	1.55	1.60	1.64	1.69	1.73	1.78
17	I. 16	1.20	1.25	1.29	I. 34	1.38	1.43	1.47	1.52	I. 56	1.60	1.65	1.69	1.74
18	I. 13	I. 18	1.22	I. 26	I. 31	I. 35	1.39	1.44	I. 48	1.52	1.57	1.61	1.65	1.70
19	I. 10	I. 15	1.19	1.23	I. 27	1.32	I. 36	1.40	1.44	1.48	1.53	1.57	I. 61	1. 65
20	-1.07	-I.II	-1.16	-1.20	-1.24	-1.28	-1.32	-1.36	-1.40	-1.44	-1.49	-1.53	-1.57	-1.61
2 I	04	1.08	1.12	1.16	1.20	1.24	1.28	1.32	1.36	1.40	I. 44	1.48	1.52	1. 56
22	1.01	1.05	1.09	1.13	I. 16	1.20	1.24	1.28	1.32	I. 36	1.40	1.44	1.48	I. 51
23	0.98	I. OI	1.05	1.09	I. 13	1.16	1.20	I. 24	1.28	1.31	1.35	I. 39	1.43	1.46
24	0.94	0.98	1.OI	1.05	1.08	I. 12	1.16	I.19	1.23	1.27	1.30	1.34	1.37	1.41
25	-0.90	-0.94	-0.97	-1.01	-1.04	-1.08	- I. 11	-1.15	-I.18	-1.22	-1.25	-I. 29	-1.32	-1.36
26	0.87	0.90	0.93	0.97	1.00	1.03	1.07	1.10	1.13	1.17	1.20	1.23	1.27	1.30
27	0.83	0.86	0.89	0.92	0.96	0.99	1.02	1.05	1.08	I. 12	1.15	1.18	1.21	1.24
28	0.79	0.82	0.85	0.88	0.91	0.94	0.97	1.00	1.03	1.06	1.09	1.12	I. 15	1.18
29	0.75	0.78	0.81	0.84	0.86	0.89	0.92	0.95	0.98	I.OI	1.04	1.07	1.10	1.12
30	-0.71	-0.74	-0.76	-0.79	-0.82	-0.85	-0.87	-0.90	-0.93	-0.95	-0.98	-1.01	-1.04	-1.06
31	0.67	0.69	0.72	0.74	0.77	0.80	0.82	0.85	0.87	0.90	0.92	0.95	0.98	1.00
32	0.62	0.65	0.67	0.70	0.72	0.74	0.77	0.79	0.82	0.84	0.86	0.89	0.91	0.94
33	0.58	0.60	0.63	0.65	0.67	0.69	0.72	0.74	0.76	0.78	0.80	0.83	0.85	0.87
34	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	0.72	0.74	0.76	0.79	0.81
35	-0.49	-0.51	-0.53	-0.55	-0.57	-0.59	-0.61	-0.63	-0.64	-0.66	-0.68	-0.70	-0.72	-0.74
36	0.45	0.46	0.48	0.50	0.52	0.53	0.55	0.57	0.58	0.60	0.62	0.64	0.65	0.67
37	0.40	0.42	0.43	0.45	0.46	0.48	0.49	0.51	0.52	0.54	0.56	0.57	0.59	0.60
38	0.36	0.37	0.38	0.40	0.41	0.42	0.44	0.45	0.46	0.48	0.49	0.51	0.52	0.53
39	0.31	0.32	0.33	0.34	40.36	0.37	0.38	0.39	0.40	0.42	0.43	0.44	0.45	0.46
40	-0.26	-0.27	-0.28	-0.29	-0.30	-0.31	-0.32	-0.33	-0.34	-0.35	-0.36	-0.37	-0.38	-0.39
4 I	0.21	0.22	0.23	0.24	0.25	0.26	0.26	0.27	0.28	0.29	0.30	0.30	0.31	0.32
42	0.17	0.17	0.18	0.19	0.19	0.20	0.21	0.21	0.22	0.22	0.23	0.24	0.24	0.25
43	0.12	0.12	2.13	0.13	3 0.14	0.14	0.15	0.15	0.16	0.16	0.16	0.17	0.17	0.18
44	0.07	0.07	0.08	8	0.08	0.08	0.09	0.09	0.09	0.10	-	0.10	0.1	0.11
45	-0.02	-0.02	-0.03	-0.03	--0.03	-0.03	-0.03	-0.0.3	-0.03	-0.03	-0.03	-0.03	-0.03	-0.04

Smithsonian tables.

FROM LATITUDE 46° TO 90°, THE CORRECTION IS TO BE ADOEO.

Lati- tude.	HEIGIT OF THE BAROMETER IN MILLIMETERS.													
	520	540	560	580	600	620	640	660	680	700	720	740	760	780
	mm.	mm.	mm.	mm.	m.	m.	n.	mm.	.	mm.	mm.	m.	mm.	mm.
45	-0.02	-0.02	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	0.03	-0.03	-0.04
46	1-0.02	+0.03	+0.03	+0.03	+0.03	+0.03	+0.03	+0.03	+0.03	+0.03	$+0.03$	+0.03	+0.04	+0.04
47	0.07	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.09	0.10	0.10	0.10	-. 10	0.11
48	0.12	0.12	0.13	O. 13	O. 14	0.14	0.15	0.15	0.16	0.16	0.17	0.17	0.18	0.18
49	0.17	0.17	O.I8	O. IO	O.19	0.20	0.21	0.21	0.22	0.23	0.23	0.24	0.25	0.25
50	0.22	0.22	0.23	0.24	0.25	0.26	0.26	0.27	0.28	0.29	0.30	0.3 I	0.31	0.32
51	to. 26	+0.27	+0.28	+0.29	+0.30	+0.31	+0.32	+0.33	+0.34	+0.35	+0.36	+0.37	+0.38	+0.39
52	0.31	0.32	0.33	0.34	0.36	0.37	0.38	0.39	0.40 ,	, 0.42	0.43	0.44	0.45	0.46
53	0.36	0.37	0.38	0.40	0.41	0.42	0.44	0.45	0.46	0.48	0.49	0.51	0.52	0.53
54	0.40	0.42	0.43	0.45	0.46	0.48	0.49	0.51	0.52	0.54	0.56	0.57	0.59	0.60
55	0.45	0.46	0.48	0.50	0.52	0.53	0.55	0.57	0.58	0.60	0.62	0.64	0.65	0.67
56	0.49	+0.51	+0.53	+0.55	+0.57	$+0.59$	+0.60	+0.62	+0.64	+0.66	+0.68	0.70	+0.72	+0.74
57	0.54	0.56	0.58	0.60	0.62	0.64	0.66	0.68	0.70	0.72	$0.74{ }^{\prime}$	0.76	0.78	0.80
58	0.58	0.60	0.62	0.65	0.67	0.69	0.71	0.74	0.76	0.78	0.80	0.82	0.85	0.87
59	0.62	0.65	0.67	0.69	0.72	0.74	0.77	0.79	0.81	0.84	0.86	0.89	0.91	0.93
60	0.66	0.69	0.72	0.74	0.77	0.79	0.82	0.84	0.87	0.89	0.92	0.94	0.97	1.00
61	+0.71	+0.73	+0.76	+0.79	$+0.81$	+0.84	$+0.87$	+0.89	+0.92	+0.95	+0.08	1.00	$+1.03$	+1.06
62	0.74	0.77	0.80	0.83	0.85	0.88	0.91	0.94	0.97	1.00	I. O_{2}	1.05	1.08	I. I I
63	0.78	0.8 I	0.85	0.88 ,	0.91	0.94	0.07	1.00	1.03	1.06	1.09	I.12	I. I5	1.18
64	0.82	0.85	0.89	0.92	0.95	0.08	1.01	1.04	1.08	I. I I	I. 14	1.17	1.20	1.23
65	0.86	0.89	0.93	0.96	0.99	1.03	1.06	1.09	I. I3	1.10	I. 19	1.22	I. 26	I. 29
66	+0.90	+0.93	+0.97	+1.00	+1.04	+1.07	+ I. 10	+1.14	+1.17	+1.21	+1.2.	1.28	+1.3I	+1.35
67	0.93	0.97	1.00	1.04	1.08	I.II	1.15	I.IS	1.22	1.25	1. 29	1.33	I. 36	1.40
68	0.97	1.00	1.04	1.08	I. 11	1.15	1.19	I. 23	I. 26	1.30	I. 34	1.37	1.41	1.45
69	1.00	1.04	1.08	I.II	I.I5	1.19	1. 23	1.27	1.31	I. 34	1.38	1.42	1.46	1.50
70	1.03	1.07	I. II	1.15	1.19	1.23	1.27	I. 3 I	I. 35	I. 39	1.43	1.47	1.51	I. 55
71	+1.06	+1.10	+I.I4	+ I. 18	+1.22	+1.26	+1.3I	+1.35	+1.39	+1.43	+1.47	1.51	+1.55	+1.59
72	1.09	I. 13	I. I 7	1.22	1.26	1.30	1.34	I. 38	I. 42	1.47	I. 51	1.55	1.59	1.63
73	I. I 2	I. 16	1.20	1.25	1.29	1.33	I. 37	1.42	1.46	1.50	I. 55	1. 59	1.63	1.67
74	1.14	1. 19	1.23	1. 28	I. 32	I. 36	1.41	1.45	1.50	I. 54	1.58	1.63	1.67	1.72
75	1.17	I. 2 I	1. 20	30	I. 35	1. 39	1.44	1.48	1.53	1.57	1.62	1. 66	1.71	1.75
76	+1.19	+1.24	+1.28	+1.33	+1.37	+1.42	+1.47	+1.51	+1.56	$+1.60$	$+1.65$	+1.70	+1.74	+1.79
77	I. 21	I. 26	I. 31	1.35	1.40	1.45	1.49	1.54	I. 59	1.63	1.68	I. 73	1.77	1.82
78	1.23	1. 28	I. 33	1.38	1.42	1.47	I. 52	I. 57	1.61	1. 66	1.71	1.70	1.80	I. 85
79	1.25	I. 30	I. 35	1.40	I. 45	1.49	I. 54	I. 59	I. 64	1.69	1.73	1.78	1.83	1.88
80	1.27	1. 32	I. 37	1.42	. 147	I. 51	1. 56	1.61	1. 66	I. 71	1.76	I. 8 I	1.86	1.90
8	+1.29	+1.33	+1.38	+1.43	$+1.48$	+1.53	+1.58	+1.63	+1.68	+1.73	1.78	+1.83	I. SS	+1.93
82	1.30	1.35	1.40	1.45	1.50	I. 55	1.60	1.65	1.70	1.75	I. 80	1.85	1.90	1.95
83	I. 3 I	I. 36	1.41	1.46	I. 5 I	1. 56	1.61	1.67	1.72	1.77	I. 82	1.87	1.92	1.97
84	I. 32	1.37	1.42	1.48	I. 53	I. 58	1.63	1.68	1.73	1.78	1.83	1.88	1.93	I. 08
85	I. 33	1.38	1. 43	I. 49	I. 54	1.59	1. 64	1.69	I. 74	1.79	1.84	1.90	1.95	2.00
90	+1.35	+1.41	$+1.46$	+1.5I	$+1.56$	+1.61	$+1.67$	+1.72	+1.77	$+1.82$	1.87	1.93	+1.98	$+2.03$

SMITHSONIAN TABLES.

TABLES FOR DETERMINING HEIGHTS, AND CONVERSIONS INVOLVING
GEOPOTENTIAL

Determination of heights by the barometer. Englisli measures.
Values of $60368(1+0.0010195 \times 36) \log \frac{29.90}{B}$. . . Table 51

Term for temperature Table 52
Correction for gravity and weight of mercury Table 53
Correction for an average degree of humidity Table $5+$
Correction for the variation of gravity with altitude . . . Table 55
Determination of heights by the barometer. Metric and dynamic
measures.
Values of $18+00$ log 760 Table 56
Values for $18+00 \log \frac{1013.3}{B}$. Table 57
Temperature correction factor $(a=.0037 \theta)$. Table 58
Temperature correction ($0.00367 \theta \times Z$) Table 59
Correction for humidity Table 60
Correction for lumidity. Auxiliary to Table 58 Table 6I
Correction for gravity and weight of mercury Tarbe 62
Correction for the variation of gravity with altitude . . . Table 63
Heights reduced from meters to dynamic meters, the acceleration
of gravity at sea level being 9.80 Table $6+1$
Corrections to Table $6+$ for values of the acceleration of gravity
at sea level different from 9.80 Table 65
Normal values of the acceleration of gravity at sea level . . . Table 66
Heights reduced from dynamic meters to geometric meters, the
acceleration of gravity at sea level being 9.8o . . Table 67
Corrections to Table 67 for values of the acceleration of gravity
at sea level different from 9.80 Table 68
Difference of height corresponding to a change of o. I inch in the
barometer. English measures Table 69
Difference of height corresponding to a change of I millimeter
in the barometer. Netric measures Table jo
Determination of heights by the barometer.
Formula of Pabinet Table 7 I
Barometric pressures corresponding to the temperature of the boiling point of water-
English measures
Table 72
Metric measures
Table 73

DETERMINATION OF HEIGHTS BY THE BAROMETER.
ENGLISH MEASURES.
Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{B}$.

Barometric Pressure. B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Inches.	Feet.									
12.00	24814	24791	24769	24746	24723	24701	24678	24656	24633	24611
12.10	24588	24566	24543	2452 I	24499	24476	24454	2443 I	24409	24387
12.20	24365	24342	24320	24298	24276	24253	24231	24209	24187	24165
12.30	24143	24121	24098	24076	24054	24032	24010	23988	23966	23944
12.40	23923	23901	23879	23857	23835	23813	23791	23770	23748	23726
12.50	23704	23682	23661	23639	23617	23596	23574	23552	23531	23509
12.6	2348	23466	23445	23423	23402	23380	23359	23337	23316	23294
12.70	2327	23251	23230	23209	23187	23166	23145	23123	23102	23081
12.80	23060	23038	23017	22996	22975	22954	22933	22911	22890	22869
12.90	22848	22827	22806	22785	22764	22743	22722	22701	22680	22659
13.00	22638	22617	22596	22576	22555	2253	2251	22492	22471	22451
13.10	22430	22409	22388	22368	22347	22326	22306	22285	22264	22244
13.20	22223	22203	22182	22162	22141	22121	2210	22080	22059	22039
13.30	22018	21998	21977	2195	21937	2191	2,Sy6	21876	21855	21835
13.40	21815	21794	${ }^{21} 774$	21754	21734	21713	21693	21673	21653	21633
13.50	21612	21592	21572	21552	21532	21512	21492	21472	21452	21432
13.60	21412	21392	21372	21352	21332	21312	21292	21272	21252	21233
13.70 13	21213	21193	21173	2153	21134	21114	21094	21074	21054	21035
13.80	21015	20995	20976	20956	20936	20917	20897	20878	20858	20838
13.90	20819	20799	20780	20760	20741	20721	20702	2068	20663	20643
14.00	20624	20605	20585	20566	20546	20527	20508	20488	20469	20450
14.10	20431	2041 I	20392	20373	20354	20334	20315	20296	20277	20258
14.20	20238	20219	20200	20181	20162	20143	20124	20105	20086	20067
14.30	20048	20029	20010	19991	19972	19953	19934	19915	19896	19877
14.40	19858	19839	19821	19802	19783	19764	19745	19727	19708	19689
14.50	19670	19651	19633	19614	19595	195	19558	195	1952I	02
14.60	19483	19465	19446	19428	19409	19390	19372	19353	19335	19316
14.70	19298	19279	19261	19242	19224	19206	19187	19169	19150	19132
14.80	19114	19095	19077	19059	19040	19022	19004	18985	18967	18949
14.90	18931	18912	18894	18876	18858	18840	1882	18803	-585	18767
15.00	18749	18731	18713	18694	18676	IS658	18640	18622	18604	18586
15.10	18568	18550	18532	15514	18496	18478	18460	18442	18425	18407
15.20	18359	18371	18353	I8335	18317	18300	18282	18264	18246	18228
15.30	18211	18193	18175	18157	18140	18122	18104	18086	18069	I8051
15.40	I 8033	ISOI	17998	17981	17963	17945	17928	1791	178	875
15.50	17858	17840	17823	17805	17788	1777	1775	1773	17718	00
15.60	17683	17665	17648	17631	17613	17596	17578	17561	17544	17526
15.70	17509	17492	17474	17457	17440	17423	17405	17388	17371	17354
15.80	17337	17319	17302	17285	17268	17251	17234	17215	17199	17182
15.90	17165	17148	17131	17114	17097	17080	17063	17046	17029	17012
16.00	16995	16978	16961	16944	16927	16910	16893	16876	16859	16842
16.10	16825	16808	16792	16775	16758	16741	16724	16707	16691	16674
16.20	16657	16640	16623	16607	16590	16573	16557	16540	16523	16506
16.30	16490	16473	16456	16440	16423	16406	16390	16373	16357	16340
16.40	16324	16307	16290	16274	16257	16241	16224	16208	16191	16175
16.50	16158	16142	16125	16109	16092	16076	16060	16043	16027	16010
16.60	15994	15978	15961	15945	15929	15912	15896	15880	15863	15847
16.70	15831	15815	15798	15782	15766	15750	15733	15717	15701	15685
16.80	15669	15652	15636	15620	15604	15588	15572	${ }^{1} 5556$	15539	${ }^{1} 5523$
16.90	15507	15491	15475	15459	443	15427	154II	15395	15379	${ }^{5} 5363$
17.00	15347	15331	15315	15299	15283	15267	1525I	15235	15219	15203

Table 51.
DETERMINATION OF HEIGHTS BY THE BAFIOMETER.
ENGLISH MEASURES.
Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{B}$

Barometric P-essure B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Inches.	Feet.									
17.00	15347	15331	15315	15299	15283	15267	15251	15235	15219	15203
17.10	15187	15172	I5156	15140	15124	15108	15092	15076	15061	15045
17.20	I5029	15013	14997	14982	14966	14950	14934	14919	14903	14887
17.30	14871	14856	14840	14824	14809	14793	14777	14762	14746	14730
17.40	14715	14699	14684	14668	14652	14637	1462 I	14606	14590	14575
17.50	14559	14544	I 4528	14512	14497	I4481	14466	14451	14435	14420
17.60	14404	14389	14373	14358	14342	14327	14312	14296	14281	14266
17.70	14250	14235	14219	14204	14189	14173	14158	14143	14128	14112
17.80	14097	14082	14067	14051	14036	14021	14006	13990	I 3975	13960
17.90	I 3945	13930	I 3914	13899	13884	13869	1.3854	13839	13 S24	13808
18.00	I 3793	13778	13763	13748	13733	13718	13703	I3688	13673	I 3658
18.10	I 3643	13628	13613	13598	${ }^{1} 3583$	13568	I 3553	13538	13523	13508
18.20	12493	13478	13463	I 3448	I 3433	13418	${ }^{1} 3404$	13389	13374	${ }^{1} 3359$
18.30	I3j14	13329	13314	13300	13285	13270	13255	13240	I 3226	I32II
IS.40	13196	13181	13166	I 3152	13137	I3122	13107	13093	13078	13063
18.50	I 3049	13034	13019	13005	12990	12975	12961	12946	12931	12917
18.60	12902	12888	12873	12 S 58	12844	12829	12SI5	12800	12785	12771
18.70	12756	12742	12727	12713	12695	126S4	12669	12655	12640	12626
18.80	'2611	12597	$125 \mathrm{~S}_{3}$	12568	12554	12539	12525	12510	12496	12482
18.90	1.2467	12453	12438	12424	12410	12395	12381	12367	12352	12338
19.00	12324	12310	12295	12281	12267	12252	12238	12224	12210	12195
19.10	1218I	12167	I2 153	12138	12124	12110	12096	12082	12068	12053
19.20	12039	12025	I2OII	11997	11983	11969	11954	119.40	11926	11912
19.30	I 1898	11884	IIS70	II856	II842	IIS28	11814	I I Soo	11786	11772
19.40	11758	11744	11730	11716	11702	I 1688	11674	11660	11646	11632
19.50	II618	11604	II590	11576	11562	11548	II534	I 1520	11507	I 1493
19.60	I I479	I 1465	11451	11437	11423	11410	I 1396	11382	II368	I I 354
19.70	I 1340	I 1327	11313	11299	11285	11272	I 1258	II 244	11230	I1217
19.80	I 1203	IIIS9	III75	III 62	III48	III 134	III2 1	11107	11093	I IOSO
19.90	11066	11052	11039	IIO25	IIOII	10998	10984	10970	10957	10943
20.00	10930	10916	10903	108S9	10 S75	10S62	10S48	10835	10821	10SoS
20.10	10794	107SI	10767	10754	10740	10727	10713	10700	10686	10673
20.20	10659	10646	10632	10619	10605	10592	10579	10565	10552	10538
20.30	IO525	10512	10498	I24S5	10472	10458	10445	10431	10418	10.405
20.40	10391	10378	10365	10352	10338	10325	10312	10298	10285	10272
20.50	10259	10245	10232	10219	10206	10192	IOI79	10166	10153	10139
20.60	IOI26	10113	10100	10087	10074	10060	10047	10034	10021	10008
20.70	9995	9982	9968	9955	99.42	9929	9916	9903	9890	9 977
20.So	9864	9851	9838	9825	9812	9799	9786	9772	9759	9746
20.90	9733	9720	9707	9694	968 I	9668	9655	96.42	9629	9617
21.00	9604	9591	9578	9565	9552	9539	9526	9513	9500	9487
21.10	9474	9462	9449	9436	9423	9410	9397	$93{ }^{\text {S }} 4$	9372	9359
21.20	9346	9333	9320	9307	9295	9282	9269	9256	9244	9231
21.30	9218	9205	9193	9180	9167	9154	9142	9129	9116	9103
21.40	909I	9078	9065	9053	9040	9027	9015	9002	$89 \mathrm{S9}$	8977
21.50	8964	8951	8939	S926	8913	8901	8888	8876	8863	S850
21.60	8838	8825	8813	8800	8788	S775	S762	8750	8737	8725
21.70	8712	8700	8687	8675	S662	8650	8637	8625	8612	8600
21.80	8587	8575	8562	8550	$\mathrm{S}_{53} 8$	S525	S513	8500	8488	S475
21.90	8463	845 I	8.438	S426	S413	8401	$\mathrm{S}_{3} \mathrm{~S}_{9}$	8376	8364	8352
22.00	8339	8.327	S314	8302	S290	8277	8265	8253	8240	8228

DETERMINATION OF HEIGHTS BY THE BAROMETER.

ENGLISH MEASURES.
Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{B}$.

Barometric Pressure. B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Inches.	Feet.									
22.00	8339	8327	8354	8302	8290	8277	8265	8253	8240	8228
22.10	S216	8204	8191	Si79	8167	8r54	8142	SI30	Sil 8	8 I 5
22.20	So93	So8 1	So69	8056	So44	8032	8020	Soo8	7995	7983
22.30	7971	7959	7947	7935	7922	7910	7898	7886	7874	7862
22.40	7849	7837	7825	7313	7801	7789	7777	7765	7753	7740
22.50	7728	7716	7704	7692	7680	7668	7656	7644	7632	7620
22.60	7608	7596	7584	7572	7560	7548	7536	7524	7512	7500
22.70	7488	7476	7464	7452	7440	7428	7416	7404	7392	7380
22.80	7368	7356	7345	7333	7321	7309	7297	7285	7273	7261
22.90	7249	7238	7226	7214	7202	7190	7178	7166	7155	7143
23.00	7131	7119	7107	7096	7084	7072	7060	7048	7037	7025
23.10	7013	7001	6990	6978	6966	6954	6943	6931	6919	6907
23.20	6896	6884	6572	6861	6849	6837	6825	6814	6802	6790
23.30	6779	6767	6755	6744	6732	6721	6709	6697	6686	6674
23.40	6662	665 I	6639	6628	6616	6604	6593	6581	6570	6558
23.50	6546	6535	6523	6512	6500	6489	6477	6466	6454	6443
23.60	6431	6420	6408	6397	6385	6374	6362	6351	6339	6328
23.70	6316	6305	6293	6282	6270	6259	6247	6236	6225	6213
23.80	6202	6190	6179	6167	6156	6145	6133	6122	6110	6099
23.90	6088	6076	6065	6054	6042	6031	6020	6008	5997	5986
24.00	5974	5963	5952	5940	5929	5918	5906	5895	5884	5872
24.10	5861	5850	5839	5827	5816	5805	5794	5782	5771	5760
24.20	5749	5737	5726	5715	5704	5693	5681	5670	5659	5648
24.30	5637	5625	5614	5603	5592	558 I	5570	5558	5547	5536
24.40	5525	5514	5503	5492	5480	5469	5458	5447	5436	5425
24.50	5414	5403	5392	5381	5369	5358	5347	5336	5325	5314
24.60	5303	5292	5281	5270	5259	5248	5237	5226	5215	5204
24.70	5193	5182	5171	5160	5149	5138	5127	5116	5105	5094
24.80	$50{ }^{5}$	5072	5061	5050	5039	5028	5017	5006	4995	4985
24.90	4974	4963	4952	494 I	4930	4919	4908	4897	4886	4876
25.00	4865	4854	4843	4832	4821	4810	4800	4789	4778	4767
25.10	4756	4745	4735	4724	4713	4702	4691	4681	4670	4659
25.20	4648	4637	4627	4616	4605	4594	4584	4573	4562	455 I
25.30	4540	4530	4519	4508	4498	4487	4476	4465	4455	4444
25.40	4433	- 4423	4412	4401	4391	4380	4369	4358	4348	4337
25.50	4326	4316	4305	4295	4284	4273	4263	4252	4241	423 I
25.60	4220	4209	4199	4188	4178	4167	4156	4146	4135	4125
25.70	4114	4104	4093	4082	4072	4061	4051	4040	4030	4019
25.80	4009	3998	3988	3977	3966	3956	3945	3935	3924	3914
25.90	3903	3893	3882	3872	3861	3851	3841	3830	3820	3809
26.00	3799	3788	3778	3767	3757	3746	3736	3726	3715	3705
26.10	3694	3684	3674	3663	3653	3642	3632	3622	3611	3601
26.20	3590	3580	3570	3559	3549	3539	3528	3518	3508	3497
26.30	3487	3477	3466	3456	3446	3435	3425	3415	3404	3394
26.40	3384	3373	3363	3353	3343	3332	3322	3312	3301	3291
26.50	3281	3270	3260	3250	3240	3230	3219	3209	3199	3189

Table 51.

DETERMINATION OF HEIGHTS BY THE BAROMETER.

ENGLISH MEASURES.
Values of $60368[1+0.0010195 \times 36] \log \frac{29.90}{B}$.

Barometric Pressure. B.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
Luches.	Feet.									
26.50	32 II	3270	3260	3250	3240	3230	3219	3209	3199	3 I 89
26.60	3179	3168	3158	3148	3138	3128	3117	3107	3097	3087
26.70	3077	3066	3056	3046	3036	3026	3016	3005	2995	2985
26.80	2975	2965	2955	2945	2934	292.4	2914	2904	2894	2884
26.90	2874	2864	2854	2843	2833	2823	2 SI 3	$2 \mathrm{So3}$	2793	2783
27.00	2773	2763	2753	2743	2733	2723	2713	2703	2692	2682
27.10	2672	2662	2652	2642	2632	2622	2612	2602	2592	2582
27.20	2572	2562	2552	2542	2532	2522	2512	2502	2493	2483
27.30	2473	2463	2453	2443	2433	2423	2413	2403	2393	2353
27.40	2373	2363	2353	2343	2334	2324	2314	2304	229.	2284
27.50	2274	2264	2254	2245	2235	2225	2215	2205	2195	2185
27.60	2176	2166	2156	2146	2136	2126	2116	2107	2097,	-ก87
27.70	2077	2067	2058	2048	2038	2028	2018	2009	1999	1989
27.80	1979	1970	1960	1950	1940	1930	1921	I91I	1901	1891
27.90	1882	1872	IS62	I852	1843	1833	1823	I814	1804	1794
28.00	1784	1775	1765	I755	1746	1736	1726	1717	1707	1697
28.10	1688	1678	1668	1659	1649	1639	1630	1620	1610	1601
28.20	1591	I 581	1572	1562	1552	I 543	I 533	1524	1514	1504
28.30	1495	1485	1476	1466	1456	1447	1437	1428	1418	1408
28.40	I 399	1389	1380	1370	I361	I 351	1342	1332	1322	1313
28.50	1303	1294	1284	1275	1265	1256	1246	1237	1227	1218
28.60	1208	I 199	IIS9	1180	1170	1161	1151	1142	II32	1123
28.70	III 3	1104	1094	1085	1075	1066	1057	1047	1038	1028
2 2.30	1019	1009	1000	990	98 I	972	962	953	943	934
28.90	925	915	906	896	SS7	878	\$68	859	849	840
29.00	831	821	SI2	803	793	784	775	765	756	746
29.10	737	728	718	709	700	690	681	672	663	653
29.20	644	635	625	616	607	597	588	579	570	560
29.30	551	542	532	523	514	505	495	486	477	468
29.40	458	449	440	43 I	421	412	403	394	3 S 4	375
29.50	366	357	348	338	329	320	311	302	292	283
29.60	274	265	256	247	237	228	219	210	201	192
29.70	182	173	164	155	146	137	128	118	109	100
29.80	+91	+ 82	+ 73	+ 64	+ 55	+ 45	+ 36	+ 27	+ I8	+ 9
29.90	-	- 9	- 18	- 27	-36	- 45	-55	- 64	-73	-82
30.00	- 9I	- 100	- 109	-118	- 127	- 136	- I45	- I54	-163	- I72
30.10	-181	- 190	- I99	- 208	-217	- 226	-235	-244	- 253	-262
30.20	-271	- 280	-289	- 298	-307	-316	-325	-334	-343	-352
30.30	-36I	-370	-379	-388	- 397	-406	-415	-424	-433	-442
30.40	-45I	-460	-469	$-47 \mathrm{~S}$	-486	-495	-504	-513	-522	-531
30.50	- 540	- 549	-558	-567	-576	-585	- 593	-602	-6II	-620
30.60	-629	-63S	-647	-656	-665	-673	-682	-691	- 700	-709
30.70	-718	-727	-735	-744	-753	-762	- 771	-780	- 788	-797
30.80	-806	-SI5	-S24	-833	-84I	-850	-859	- 868	- S77	-885

DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.
Term for Temperature : $0.002039\left(\theta-50^{\circ}\right) \mathrm{z}$.

Mean Temperature. θ.		APPROXIMATE DIFFERENCE OF HEIGHT OBTAINED FROM TAble 61.												
		20	40	60	80	'100	200	300	400	500	600	700	800	900
F.		Feet.	Feet.	Feet.	Feet.	Feet.	$\overline{\text { Feet. }}$	Feet.						
49°	51°	0	0	0	o	0	o	1	1	1	1	1	2	2
48	52	-	-	0	\bigcirc	-	I	1	2	2	2	3	3	4
47	53	\bigcirc	0	0	o	I	1	2	2	3	4	4	5	6
46	54	\bigcirc	0	o	1	1	2	2	3	4	5	6	7	7
45	55	\bigcirc	\bigcirc	1	1	1	2	3	4	5	6	7	8	9
44	56	\bigcirc	\bigcirc	1	1	1	2	4	5	6	7	9	10	11
43	57	\bigcirc	1	1	I	1	3	4	6	7	9	10	II	13
42	58	\bigcirc	1	1	I	2	3	5	7	8	10	11	13	15
4 I	59	\bigcirc	1	1	1	2	4	6	7	9	II	13	15	17
40	60	O	1	1	2	2	4	6	8	10	12	14	16	18
39	61	\bigcirc	1	1	2	2	4	7	9	II	13	16	18	20
38	62	-	I	1	2	2	5	7	10	12	15	17	20	22
37	63	I	I	2	2	3	5	8	II	13	16	19	21	24
36	64	1	I	2	2	3	6	9	II	14	17	20	23	26
35	65	1	1	2	2	3	6	9	12	15	18	2 I	24	28
34	66	I	1	2	3	3	7	10	13	16	20	23	26	29
33	67	I	1	2	3	3	7	10	14	17	21	24	28	31
32	68	I	1	2	3	4	7	11	15	18	22	26	29	33
3 I	69	1	2	2	3	4	8	12	15	19	23	27	31	35
30	70	1	2	2	3	4	8	12	16	20	24	29	33	37
29	71	1	2	3	3	4	9	13	17	21	26	30	34	39
28	72	I	2	3	4	4	9	13	18	22	27	31	36	40
27	73	I	2	3	4	5	9	14	19	23	28	33	38	42
26	74	I	2	3	4	5	10	15	20	24	29	34	39	44
25	75	I	2	3	4	5	10	15	20	25	31	36	4 I	46
24	76	1	2	3	4	5	11	16	21	27	32	37	42	48
23	77	1	2	3	4	6	11	17	22	28	33	39	44	50
22	78	I	2	3	5	6	11	17	23	29	34	40	46	51
21	79	1	2	4	5	6	12	18	24	30	35	41	47	53
20	80	I	2	4	5	6	12	18	24	3 I	37	43	49	55
19	SI	1	3	4	5	6	13	19	25	32	38	44	51	57
18	82	1	3	4	5	7	13	20	26	33	39	46	52	59
17	S_{3}	1	3	4	5	7	13	20	27	34	40	47	54	61
16	S4	1	3	4	6	7	14	21	28	35	42	49	55	62
15	85	1	3	4	6	7	14	2 I	29	36	43	50	57	
14	86	1	3	4	6	7	15	22	29	37	44	51	59	66
13	87	2	3	5	6	8	15	23	30	38	45	53	60	68
12	SS	2	3	5	6	S	15	23	31	39	46	54	62	70
11	89	2	3	5	6	8	16	24	32	40	48	56	64	72
10	90	2	3	5	7	8	16	24	33	41	49	57	65	73
9	91	2	3	5	7	S	17	25	33	42	50	59	67	75
8	92	2	3	5	7	9	17	26	34	43	5 I	60	69	77
	93	2	4	5	7	9	18	26	35	44	53	61	70	79
6	9.4	2	4	5	7	9	IS	27	36	45	54	63	72	SI
5	95	2	4	6	7	9	18	28	37	46	55	64	73	83
4	96	2	4	6	8	9	19	28	38	47	56	66	75	84
3	97	2	4	6	S	10	19	29	38	48	57	67	77	86
2	98	$?$	4	6	8	10	20	29	39	49	59	69	78	88
1	99	2	4	6	S	10	20	30	40	50	60	70	80	90
0	100	2	4	6	8	10	20	3 I	4 I	5 I	61	71	82	92

Table 52.

DETERMINATION OF HEIGHTS BY THE BAROMETER. ENGLISH MEASURES.
Term for Temperature : $0.002039\left(\theta-50^{\circ}\right) \mathrm{z}$.
For temperatures $\left\{\begin{array}{l}\text { above } 50^{\circ} \mathrm{F} . \\ \text { below } 50^{\circ} \mathrm{F} .\end{array}\right\}$ the values are to be $\left\{\begin{array}{l}\text { added. } \\ \text { subtrac }\end{array}\right.$ below $50^{\circ} \mathrm{F}$. the values are to be $\{$ subtracted.

Mean Temperature. θ.		APPROXIMATE DIFFERENCE OF					HEIGH	T OBTAINED		FROM	TABL	51.
		1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	20000
$\begin{gathered} F . \\ 49^{\circ} \end{gathered}$	F. 51°	Feet.										
49°	51°	2	4	6	S	10	12	14	16	18	20	4 I
48	52	4	8	12	16	20	2.4	29	33	37	4 I	S2
47	53	6	12	18	24	31	37	43	49	55	61	122
46	54	S	16	24	33	4 I	49	57	65	73	S2	163
45	55	10	20	31	4 I	51	61	71	82	92	102	204
44	56	12	24	37	49	61	73	S6	98	110	122	245
43	57	14	29	43	57	71	86	100	114	128	143	285
42	5 S	16	33	49	65	S2	98	114	130	147	163	326
41	59	IS	37	55	73	92	110	128	147	165	I 84	367
40	60	20	4 I	61	82	102	122	143	163	I8.4	204	408
39	61	22	45	67	90	I 12	135	I57	179	202	224	449
38	62	24	49	73	98	122	147	171	196	220	245	489
37	63	27	53	So	106	${ }^{1} 33$	I 59	186	212	239	265	530
36	64	29	57	86	114	143	17 I	200	228	257	285	57 I
35	65	31	61	92	122	153	I84	214	245	275	306	612
34	66	33	65	98	130	163	196	228	261	294	326	652
33	67	35	69	104	I39	173	208	2.43	277	312	347	693
32	68	37	73	110	147	I84	220	257	294	330	367	734
31	69	39	77	116	${ }^{1} 55$	19.4	232	27 I	310	349	387	775
30	70	41	82	122	163	204	245	285	326	367	408	816
29	71	43	86	128	171	214	257	300	343	$3{ }^{3} 5$	428	856
28	72	45	90	135	179	224	269	314	359	404	449	S97
27	7.3	47	94	141	I88	234	281	328	375	422	469	938
26	74	49	98	147	196	245	294	343	391	440	489	979
25	75	5 I	IO2	153	204	255	306	357	408	459	510	1020
24	76	53	106	159	212	265	318	371	424	477	530	1060
23	77	55	110	165	220	275	330	385	440	495	551	IIOI
22	78	57	114	171	228	285	343	400	457	514	571	1142
21	79	59	118	177	236	296	355	4 I 4	473	532	591	I 183
20	80	61	122	184	245	306	367	428	489	55 I	612	1223
19	81	63	126	190	253	316	379	442	506	569	632	1264
IS	82	65	130	196	261	326	391	457	522	587	652	1305
17	83	67	135	202	269	336	404	471	538	606	673	I 346
16	84	69	I39	208	277	347	416	485	555	624	693	I3S7
15	85	71	143	214	285	357	428	500	571	642	714	1427
14	86	73	147	220	294	367	440	514	557	661	734	I 468
13	87	75	15 I	226	302	377	453	528	604	679	754	I 509
12	88	77	I55	232	310	387	465	542	620	697	775	1550
II	89	So	I59	239	318	398	477	557	636	716	795	${ }^{1} 590$
10	90	82	163	245	326	408	489	57 I	652	734	Si6	1631
	91	S4	167	251	334	418	502	585	669	752	836	1672
8	92	86	171	257	343	428	514	599	685	771	856	1713
7	93	S8	175	263	35 I	438	526	614	701	789	S77	1754
6	94	90	179	269	359	449	538	628	718	S07	S97	1794
5	95	92	184	275	367	459	551	642	734	826	918	1835
4	96	94	IS8	2 SI	375	469	563	657	750	S44	938	I876
3	97	96	192	287	383	479	575	671	767	862	958	1917
2	98	98	196	294	391	489	587	685	783	88I	979	1957
1	99	100	200	300	400	500	599	699	799	899	999	1998
0	100	102	204	306	408	510	612	714	8I6	918	1020	2039

Correction for Gravity and Weight of Mercury: $z\left(0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi+0.00244\right)$.

Latitude. ϕ	APPROXIMATE			DIFFERENCE O		HEIGH	T OBTAINED		FROM	tables	51-52.
	500	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500
	Feet.										
0°	+3	$+5$	+8	+10	+13	+15	+i8	$\begin{array}{r} \text { reet. } \\ +20 \end{array}$	$\begin{array}{r} \text { reet. } \\ +\quad 23 \end{array}$	$\begin{array}{r} \text { Feet. } \\ +25 \end{array}$	$\begin{aligned} & \text { Feet. } \\ & +28 \end{aligned}$
2	3	5	8	10	13	15	18	20	23 2	+25	+28
4	3	5	8	10	13	15	18	20	23	25	28
8	3	5	8	10	13	15	18	20	23	25	28
8	2	5	7	10	12	15	17	20	22	25	27
10	+2	$+5$	+7	+10	+12	+15	$+17$	+20	$+22$	+25	
12	,	5	7	10	12	15	17	19	- 22	+25 24	+27 +27
14	2	5	7	10	12	14	17	19	21	24 24	27 26
16	2	5	7	9	12	14	16	19	2 I	23	26
18	2	5	7	9	11	14	16	18	2 I	23	25
20	+2	+4	+7	$+9$	+II	+13	+16	+18	+20	$+22$	
22		4	6	9	1 I	13	15	+ 7	19 +10	$\begin{array}{r}+22 \\ \hline 22\end{array}$	+24 +24
24	2	4	6	8	10	13	15	17	19	21	
26	2	4	6	8	10	12	14	16	18	20	23 22
28	2	4	6	S	10	12	14	16	18	20	21
30	$+2$	+4	$+6$	+8	+9	+1I	+13	+15	$+17$	+19	+2I
32	2	4	5	7	9	11	13	14	16	18	20
34	2	3	5	7	9	10	12	14	15	17	19
36	2	3	5	6	8	10	II	13	15	10	18
38	2	3	5	6	8	9	11	12	14	15	17
40	$+1$	$+3$	+4	$+6$	$+7$	+ 9	$+10$	+12	+13	$+14$	+16
42	I	3	4	5	7	8	9	11	12	13	15
44	I	3	4	5	6	S	9	10	II	13	14
45	+1	+2	+4	+ 5	$+6$	$+7$	$+9$	+10	+ 11	$+12$	+13
46	+1	+2	+4	$+5$	+6	$+7$	$+8$	+ 9	+11	+12	
48	1	,	3	4	5	6	8	9	10	11	12
50	1	2	3	4	5	6	7	8	9	10	II
52	+1	+2	$+3$	+ 4	+ 4	$+5$	+ 6	$+7$	$+8$		+10
54	I	2		3	4	5	6	6	7	8	9
56	1	I	2	3	4	4	5	6	7	7	8
58	I	1	2	3	3	4	4	5	6	6	7
60	I	I	2	2	3	3	4	4	5	6	6
62	\bigcirc	+1		+ 2	+ 2						
64	\bigcirc	1	+	2	2	+	3 3	4 4	+ 3 3	5 4	5 4
66	\bigcirc	I	I	I	2	2		3	3	3	3
68	\bigcirc	1	I	I	1	2	2	2	2	3	3
70	-	\bigcirc	I	1	I	1	1	2	2	2	2
72	\bigcirc	\bigcirc	\bigcirc	\bigcirc	+ I	+ I	+ 1	+ I	+ I	+ I	+ I
74	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	I	1	I	1	I	1
76	\bigcirc										
78	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc
80	\bigcirc										

Smithsonian tables.

ENGLISH MEASURES.
Correction for Gravity and Weight of Mercury : $z\left(0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi+0.00244\right)$.

Latitude. ϕ	APPROXIMATE DIFFERENCE OF HEIGIT OBTALNED FROM TABLES 51-52.										
	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	20000
	Feet.										
0°	$+30$	+35	+4I	+46	+5I	+56	+6I	$+66$	+71	+76	+ior
2	30	35	40	46	51	56	61	66	71	76	101
4	30	35	40	45	50	55	61	66	71	76	101
6	30	35	40	45	50	55	61	66	71	76	100
8	30	35	40	45	50	55	60	65	70	75	99
10	+29	+34	+39	+44	+49	+54	+59	+64	$+69$	+74	+98
12	29	34	39	44	48	53	58	63	68	73	97
14	29	33	38	43	48	52	57	62	67	71	95
16	28	33	37	42	47	51	56	61	65	70	93
18	27	32	37	41	46	50	55	59	64	68	91
20	+27	$+31$	$+36$	$+40$	+45	+49	+53	$+58$	+62	$+67$	$+89$
22	26	30	35	39	43	48	52	56	61	65	87
24	25	29	34	38	42	46	50	55	59	63	84
26	24	28	32	37	41	45	49	53	57	61	81
28	23	27	31	35	39	43	47	51	55	59	78
30	+23	+26	$+30$	+34	$+38$	+41	+45	+49	+53	$+56$	+ 75
32	22	25	29	32	36	40	43	47	50	54	72
34	21	2.4	27	31	34	38	41	44	48	51	68
36	20	23	26	20	32	36	39	42	46	49	65
38	18	22	25	28	31	34	37	40	43	46	61
40	+17	+20	+23	+26	$+20$	$+32$	+35	+38	+41	+43	+ 57
42	16	19	22	24	27	30	33	35	3^{8}	41	54
44	15	18	20	23	25	28	30	33	35	38	50
45	+ I_{5}	$+17$	+19	+22	+24	+27	+29	$+32$	+34	$+37$	+ 49
46	+14	$+16$	+19	+2I	+23	+26	$+28$	$+30$	+33	+35	$+46$
48	13	15	17	19	22	24	26	28	30	32	43
50	12	14	16	18	20	22	24	26	28	30	40
52	+ 11	+13	+ 1.4	+16	+18	+20	+22	+23	+25	$+27$	$+36$
54	10	11	13	15	16	IS	19	21	23	24	32
56	9	10	12	13	14	16	17	19	20	22	29
58		9	10	11	13	1.4	15	17	18	19	26
60	7	S	9	10	11	12	13	14	16	17	22
62	+ 6	+ 7	+8	$+9$	+10	+11	+II	+12	+13	+14	+ 19
64		6	6		8	9	10	10	11	12	
66	4	5	5	6	7	7	8	9	9	10	13
68	3	4	+	5	5	6	6	7	7	8	11
70	2	3	3	4	4	4	5	5	6	6	8
72	+ 2	'+2	$+2$	$+3$	$+3$						
74 76	$\begin{array}{r}+ \\ + \\ + \\ + \\ \hline\end{array}$	+1 $+\quad 1$	+ 2 +1	+2 $+\quad 1$	$+\quad 2$ $+\quad 1$						
78		0	\bigcirc	\bigcirc	-						
80	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- I						

Smithsonian Tables.

Table 54.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
ENGLISH MEASURES.
Correction for an Average Degree of Humidity.

Mean Temperature.	APPROXIMATE DLFFERENCE OF HEIGHT OBTAINED FROM TABLES 51-52											
	500	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	20000
F. $\begin{array}{r}\text { F. } \\ -20^{\circ} \\ -16 \\ -12\end{array}$	Feet.	Feet. 0 0 0 0	Feet. 0 0 + I	Feet. 0 +1 1	Feet. 0 +1 I	Feet. 0 +1 2	Feet. 0 +1 2	Feet. +I I 2	Feet. +I 2 3	Feet. +1 2 3	Feet. +1 2 3	Feet. +2 4 6
-8	\bigcirc	-	I	I	2	2	3	3	4	4	4	9
- 6	-	\bigcirc	I	I	2	2	3	3	4	4	5	10
- 4	-	+ I	I	2	2	3	3	4	4	5	6	II
- 2	0	I	I	2	2	3	4	4	5	6	6	12
0	0	I	I	2	3	3	4	5	5	6	7	14
+ 2	o	I	1	2	3	4	4	5	6	7	7	15
	-	I	2	2	3	4	5	6	7	7	8	16
6	o	I	2	3	4	4	5	6	7	8	9	18
8	-	1	2	3	4	5	6	7	8	9	10	19
10	+ I	1	2	3	4	5	6	7	8	9	10	21
12	1	I	2	3	4	6	7	8	9	10	I I	22
14	I	I	2	4	5	6	7	S	9	II	12	24
16	1	I	3	4	5	6	8	9	10	II	13	25
18	1	I	3	4	5	7	8	9	II	12	13	27
20	I	1	3	4	6	7	9	10	II	13	14	29
22	I	2	3	5	6	8	9	II	12	14	15	3 I
24	I	2	3	5	7	8	Io	II	13	15	16	33
26	I	2	3	5	7	9	Io	12	14	16	17	35
28	1	2	4	6	7	9	I I	13	15	17	19	37
30	I	2	4	6	8	10	12	14	16	I 8	20	4 I
32	I	2	4	7	9	II	13	16	18	20	22	44
34	1	2	5	7	10	12	15	17	19	22	24	49
36	I	3	5	8	I I	13	16	19	2 I	24	27	53
38	I	3	6	9	12	15	IS	21	23	26	29	59
40	2	3	6	10	13	16	19	23	26	29	32	64
42	2	4	7	II	14	18	21	25	28	32	35	71
44	2	4	8	12	15	19	23	27	31	35	39	77
46	2	4	8	13	17	21	25	29	34	3 S	42	84
48	2	5	9	14	18	23	27	32	37	41	46	92
50	2	5	10	I5	20	25	30	35	40	45	50	99
52	3	5	II	16	21	27	32	37	43	48	53	107
54	3	6	II	17	23	29	34	40	46	51	57	II4
56	3	6	12	18	24	30	37	43	49	55	61	122
58	3	6	13	19	26	32	39	45	52	58	65	130
60	3	7	14	21	27	34	41	48	55	62	69	137
62	4	7	14	22	29	36	43	5 I	58	65	72	145
64	4	8	15	23	30	38	46	53	61	69	76	152
66	4	8	16	24	32	40	48	56	64	72	So	I60
68	4	8	17	25	34	42	50	59	67	76	S4	168
70	4	9	18	26	35	44	53	61	70	79	S8	175
72	5	9	IS	27	37	46	55	64	73	S2	91	183
76	5	10	20	30	40	49	59	69	79	89	99	198
So	5	II	21	32	43	53	64	75	85	96	106	213
84	6	II	23	34	46	57	68	So	91	103	114	228
SS	6	12	24	37	49	61	73	85	97	110	122	243
92	6	13	26	39	52	65	78	91	IO3	I 16	129	259
96	7	14	27	4 I	55	68	82	96	110	123	137	274

Table 55.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
ENGLISH MEASURES.
Correction for the Variation of Gravity with Altitude : $\frac{z\left(z+2 h_{0}\right)}{R}$.

Approximate diffe, ence of height. Z.	HEIGHT OF LOWER STATION IN FEET (h_{0}) .											
	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	12000
Fee'.	Feet.											
500	-	-	-	-	-	-	o	o	o	0	0	+ I
1000	\bigcirc	-	O	0	-	+ I	+ I	+ I	+ I	+ I	+1	I
1500	o	o	o	+ I	+ I	1	1	1	1	I	2	2
2000	-	-	+1	I	I	1	I	2	2	2	2	2
2500	\bigcirc	+ I	1	I	1	1	2	2	2	2	3	3
3000	-	1	I	1	2	2	2	2	3	3	3	4
3500	+ I	1	I	2	2	2	3	3	3	4	4	5
4000	1	1	2	2	2	3	3	3	4	4	5	5
4500	1	I	2	2	3	3	4	4	4	5	5	6
5000	I	2	2	3	3	4	4	5	5	6	6	7
5500	1	2	3	3	4	4	5	5	6	6	7	8
6000	2	2	3	3	4	5	5	6	6	7	7	9
6500	2	3	3	4	5	5	6	6	7	S	S	9
7000	2	3	4	4	5	6	6	7	8	8	9	10
7500	3	3	4	5	6	6	7	S	8	9	10	II
Sooo	3	4	5	5	6	7	S	8	9	10	II	12
8500	3	4	5	6	7	S	S	9	10	II	12	13
9000	4	5	6	6	7	8	9	10	II	12	12	14
9500	4	5	6	7	S	9	10	I I	12	13	13	15
10000	5	6	7	S	9	10	11	11	12	13	If	16
11000	6	7	S	9	10	I I	12	13	14	15	16	15
12000	7	S	9	10	II	13	14	15	16	17	IS	2 I
13000	S	9	II	12	13	14	16	17	IS	19	21	23
14000	9	11	12	13	15	16	17	19	20	2 I	23	25
15000	1 I	12	14	I5	17	18	19	2 I	22	24	25	28
16000	12	14	15	17	IS	20	21	23	25	26	28	3 I
17000	14	15	17	19	20	22	2.4	25	27	28	30	
I Sooo	16	17	19	21	22	2.4	26	28	30	3 I		
19000	17	19	21	23	25	26	2 S	30	32			
20000	19	21	23	25	27	29	31					

DETERMINATION OF HEIGHTS BY THE BAROMETER. METRIC MEASURES.

Values of $18400 \log \frac{760}{B}$.

Barometric Pressure.	0	1	2	3	4	5	6	7	8	9
mm .	m.	.	1 m.							
300	7428	7401	7375	7348	7322	7296	7270	7244	72 IS	19.
310	7166	7140	7115	$7 \mathrm{OS9}$	7064	7038	7013	6987	6962	6937
320	6912	6887	6862	6838	6813	6-59	6764	6740	6715	6691
330	6666	6642	6618	6594	6570	6546	6522	6498	6475	6451
340	6428	6405	63 SI	6358	6334	6311	6288	6265	6242	6219
350	6196	6173	6151	6128	6106	6083	6061	6038	6016	
360	5971	5949	5927	5905	5883	5861	5839	${ }_{5} \mathrm{~S}_{7}$	5795	5993 5773
370 350	5752	5730	5709	5687	5666	5644	5623	5602	558 I	5560
350	5539	5518	5497	5476	5455	5434	5414	5393	5373	5352
390	5332	53 II	5291	5270	5250	5229	5209	5189	5169	5I49
400	5129	5109	5089	5069	5049	5029	5010	4990	4971	
410 420	4932 4739	4912	4893	4873	4854	4834	$4 \mathrm{SI}_{5}$	4796	4977	4951 4758
420	4739	4720	4701	4682	4663	46.44	4625	4606	45 SS	4569
430	4551	4532	4514	4495	4477	4458	4440	4422	4404	4386
440	4368	4350	4332	4314	4296	4278	4260	4242	4224	4206
450	4188	4170	4152	4134	4117	4099	4082	4064	4047	4029
460	4 OI 2	3994	3977	3959	3942	3925	3908	3891	3874	3857
470	3840 3672	3823	3806	3789	3772	3755	3738	3721	3705	3688
490	3672 3507	3655	3639	3622	3606	3589	3573	3556	3540	3523
490	3507	3490	3474	3458	3442	3426	3410	3394	3378	3362
500	3346	3330	3314	3298	3282	3266	3250	3235	3219	
510 520	3188	3172 3017	3157	3141	3126	3110	3095	3235	3064	3203 3048
520 530	3033 2880	3017	3002	2986	2971	2955	2940	2925	2910	2895
530	2880	2865	2850	2835	2820	2 SO 5	2790	2775	2760	2745
540	2731	2716	2701	2687	2672	2657	2643	2628	2613	2599
550	2584	2570	2555	2541	2526	2512	2497	2.483	2468	2454
560	2440	2426	2411	2397	2383	2369	2355	234 I	2327	2313
570	2299	2285	2271	2257	2243	2229	2215	2201	2 ISS	2174
580 590	2160	2146	2133	2119	2105	2092	2078	2064	2051	2037
590	2023	2010	1996	1983	1969	1956	1942	1929	1915	1902
600	I889	1875	I862	I $\mathrm{S}_{4} 8$	1835	1822	1809	1796	1783	1770
610	1757	1744	1731	1718	1705	1692	1679	1666	1653	1640
620	1627	1614	1601	1588	1576	1563	1550	1537	1525	${ }^{1} 1212$
630 640	1499	1486	1474	1461	1448	1436	1423	1411	I 398	1386
640	1373	1361	1348	I 336	1323	- I3II	1298	1286	1273	I 261
650	1249	1236	1224	1212	1199	1187	I 175	1163		
660 670	1127	III5	1103	1091	1079	1067	1055	1043	1151	1139 1019
670 680	1007 889	995	983	971	960	948	936	924	913	901
680 690	SS9 772	877 761	866	854	842	831	819	807	796	784
690	772	761	749	738	726	715	703	692	680	669
700	657	646	635	623	612	601	589	578	567	555
710	544	533	52 I	510	499	487	476	465	454	443
720	432	42 I	410	399	3 SS	377	366	355	344	333
730	322	3 II	300	2 S 9	278	267	256	245	234	224
740	213	202	192	181	170	160	149	138	128	117
$750+$	+ 106	+ 95	$+85$	+ 74	+ 64	$+53$		+ 32	+ 22	+ II
760	0	- 10	- 21	- 31	- 42	- 52	+ 63	+ 73	- 83	- 94
770	- 104	- II5	- 125	- I 36	-146	-156	-166	-177	$-\mathrm{IS} 7$	-197

[^28]Table 57.
DETERMINATION OF HEIGHTS BY THE BAROMETER. DYNAMIC MEASURES.
Values of $18400 \log \frac{1013.3}{B}$

Barometric Pressure	0	1	2	3	4	5	6	7	8	9
mb .	m.	m,	m.							
0	∞	55306	49767	46527	44228	42445	40988	39756	38689	37748
10	36906	36144	35448	34809	34217	33666	33150	32665	32209	31777
20	31367	30977	30605	30250	29910	29584	29270	2 S 969	28678	28397
30	28127	27865	27611	27365	27126	20895	26670	26451	26238	26031
40	25828	25630	25438	25250	25066	24887	24711	24539	24371	24206
50	24043	23886	23731	23579	23430	23283	23139	22998	22859	22722
60	22588	22456	22326	22198	22072	21948	21827	21706	21587	21471
70	21356	21242	21131	21021	20912	20805	20699	20594	20491	20389
So	20289	20189	20092	19995	19899	19804	1971 I	19618	19527	19437
90	19348	19259	19172	19086	19000	18916	18832	18749	18667	18586
100	18506	18426	18347	18269	18192	18116	18040	17965	17891	17817
110	17744	17672	17600	17529	17459	17389	17320	I725I	17183	17115
120	17049	16982	16917	16851	16787	16722	16659	16596	16533	16471
130	16409	16348	16287	16227	16167	16108	16048	${ }^{1} 5990$	15932	15874
140	15817	15760	15703	15647	15592	15536	15482	I 5427	15373	15319
150	15266	15212	15160	15107	15055	15004	14952	14901	14850	14800
160	14750	14700	14650	14601	14553	14504	14456	14408	14360	14312
170	14265	14218	14172	14125	14079	14034	I 3988	13943	13898	13853
180	13800	13764	13720	13677	13633	13590	13547	1350.4	13461	13419
r90	13377	13335	13293	13251	13210	13169	13128	13087	13047	13007
200	12967	12927	12887	12848	$12 \mathrm{So8}$	12769	12730	:2692	12653	12615
210	12577	12539	12501	12463	12426	12389	12352	12315	12278	12242
220	12205	12169	12133	12097	I 2061	12026	11990	11955	11920	11885
230	11850	IISI5	11781	I 1746	11712	11678	11644	11610	11577	11543
240	11510	11476	11443	11410	11378	11345	11312	11280	11248	11216
250	11184	III 5^{2}	11120	11088	11057	11025	10994	10963	10932	10901
260	10870	10839	10809	10778	10748	10718	10688	10658	10628	10598
270	10569	10539	10510	10480	10451	10422	10393	10364	10335	10307
280	10278	10249	10221	10193	10165	10137	10108	100SI	10053	10025
290	9997	9970	9943	9915	9888	9861	9834	$9 \mathrm{So7}$	9780	9753
300	9727	9700	9674	9647	9621	9594	9568	9542	9516	9490
310	9465	9439	9413	9388	9362	9337	9311	9286	9261	9236
320	9211	9186	9161	9136	9111	9087	9062	9038	9014	8989
330	S965	8941	8917	8893	8869	8845	882 I	8797	8773	8750
340	8726	8703	8679	8656	8633	8610	8587	8564	8541	8518
350	8495	8472	8449	8427	8404	83 SI	S359	8336	8314	8292
360	8270	8247	8225	8203	8181	8159	8138	8116	8094	8073
370	8051	8029	8008	7986	7965	7943	7922	7901	7880	7859
380	7838	7817	7796	7775	7754	7733	7712	7692	7671	7651
390	7630	7610	7589	7569	7548	7528	7508	7488	7468	7448
400	7428	7408	7388	7368	7348	7328	7309	7289	7269	7250
410	7230	7211	7191	7172	7153	7133	7114	7095	7076	7057
420	7038	7019	7000	6981	6962	6943	6924	6906	6887	6868
430	6850	6831	6813	6794	6776	6757	6739	6721	6703	6684
440	6666	6648	6630	6612	6594	6576	6558	6540	6522	6504
450	6487	6469	6451	6433	6416	6398	6381	6363	6346	6328
460	6311	6294	6276	6259	6242	6225	6207	6190	6173	6156
470	6139	6122	6105	6088	6071	6055	6038	6021	6004	5987
480	5071	5954	5937	5921	5004	5888	5871	5855	5839	5822
490	5806	5790	5773	5757	5741	5725	5709	5693	5677	5661

Table 57.
DETERMINATION OF HEIGHTS BY THE BAROMETER. DYNAMIC MEASURES.

Values of $18400 \log \frac{1013.3}{B}$

Barometric Pressure	0	1	2	3	4	5	6	7	8	9
mb.	m.									
500	5645	5629	5613	5597	5581	5565	55.49	5533	5518	5502
510	5486	5471	5455	5439	5424	5408	5393	5377	5362	5346
520	5331	5316	5300	5285	5270	5255	5239	5224	5209	5194
530	5179	5164	5149	5134	5119	5104	5089	5074	5059	5044
540	5030	5015	5000	4985	4971	4950	4941	4927	4912	4898
550	4883	4868	4854	4839	4825	4811	4796	4782	4768	4753
560	4739	4725	4710	4696	4682	4668	4654	4640	4626	4612
570	4598	4583	4569	4556	4542	4528	4514	4500	4486	4472
580	4459	4445	4431	4417	4404	4390	4376	4363	4349	4335
590	4322	4308	4295	4281	4268	4254	42.41	4228	4214	4201
600	4188	4174	4161	4148	4134	4121	4108	4095	4082	4069
610	4056	4042	4029	4016	+003	3990	3977	3964	3951	3939
620	3926	3913	3900	3887	3874	3861	3849	3836	3823	3810
630	3798	3785	3772	3760	3747	3735	3722	3709	3697	3684
640	3672	3659	3647	3635	3622	3610	3597	3585	3573	3560
650	3548	3536	3523	351 I	3499	3487	3475	3462	3450	3438
660	3426	3414	3402	3390	3378	3366	3354	3342	3330	3318
670	3306	3294	3282	3270	3258	3246	3235	3223	3211	3199
680	3187	3176	3164	3152	3141	3129	3117	3106	3094	3082
690	3071	3059	3048	3036	3025	3013	3002	2990	2979	2967
700	2956	2944	2933	2922	2910	2899	2888	2876	2865	2854
710	2842	2831	2820	2809	2798	2786	2775	2764	2753	2742
720	2731	2720	2708	2697	2686	2675	2664	2653	2642	2631
730	2621	2609	2599	2588	2577	2566	2555	2544	2533	2523
740	2512	2501	2490	2479	2469	2458	2447	2437	2426	2415
750	2405	2394	2383	2373	2362	2351	2341	2330	2320	2309
760	2299	2288	2278	2267	2257	22.46	2236	2225	2215	2205
770	219.4	2184	2173	2163	2153	2142	2132	2122	2112	2101
780	2091	2081	2071	2060	2050	2040	2030	2020	2009	1999
790	1989	1979	1969	1959	1949	1939	1929	1919	1909	1899
800	1889	1879	1869	1859	1849	1839	1829	18 I9	1809	1799
810	1789	1780	1770	1760	1750	1740	1731	1721	1711	1701
820	1692	1682	1672	1662	1653	1643	1633	1623	1614	1604
830	1595	1585	1575	1566	1556	1547	1537	1527	1518	1508
840	1499	1489	1480	1470	1461	1451	1442	1433	1423	1414
850	1404	1395	1386	1376	1367	1357	1348	1339	1329	1320
860	1311	1302	1292	1283	1274	1264	1255	1246	1237	1228
870	1218	1209	1200	1191	1182	1173	1164	1154	1145	1136
880	1127	1118	1109	1100	1091	1082	1073	1064	1055	1046
890	1037	1028	1019	1010	1001	992	983	974	965	956
900	948	939	930	92 I	912	903	S94	886	877	868
910	859	850	842	833	824	815	807	798	789	781
920	772	763	755	746	737	729	720	711	703	694
930	686	677	668	660	651	643	634	626	617	608
940	600	592	583	575	566	55^{8}	549	54 I	532	524
950	516	507	499	490	482	474	465	457	448	440
960	432	424	415	407	399	390	382	374	365	357
970	349	34 I	332	324	316	308	300	292	283	275
980	267	259	251	243	234	226	218	210	202	194
990	186	178	170	162	154	146	138	130	122	114
1000	106	98	90	82	74	66	58	50	42	34
1010	26	18	10	2	- 6	- 13	- 21	- 29	- 37	- 45
1020	- 53	-61	- 68	-76	- 84	- 92	-100	-107	- 115	-123
1030	-131	-138	-146	- I54	-162	-169	-177	-185	-192	-200
1040	-208	-215	-223	-231	-238	-246	-254	-261	-269	-277

Table 58.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
METRIC MEASURES.
Temperature correction factor, $a=.00367 \theta$.
Multiply approximate altitudes, determined from table 56 or 57 . by values of a corresponding to mean temperature, θ, of air column. Add, if θ is above $0^{\circ} \mathrm{C}$; subtract, if below $\circ^{\circ} \mathrm{C}$.

Mean Temp. θ	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
${ }^{\circ} \mathrm{C}$.	a.	a.	a.	a.	a.	a.	a.	a.	a.	a.
0	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.003
1	. 004	.004	. 004	. 005	. 005	. 006	. 006	. 006	. 007	. 007
2	. 007	. 008	. 008	. 008	. 009	. 009	. 010	. 010	. 010	. 011
3	. 011	. 011	. 012	. 012	. 012	. 013	. 013	. 014	. 014	. 014
4	. 015	.015	.015	. 016	. 016	. 017	. 017	. 017	. 018	. 018
5	. 018	. 019	.or9	. 19	. 020	. 020	. 221	. 021	. 021	. 022
6	. 022	. 022	. 023	. 023	. 023	. 024	. 024	. 025	. 025	. 025
7	. 026	. 026	. 026	. 027	. 027	. 028	. 028	. 028	. 029	. 029
8	. 029	. 030	. 030	. 030	. 031	. 031	.032	. 032	. 032	. 033
9	. 033	. 033	.0,34	. 034	. 034	. 035	. 035	. 036	.036	. 036
10	. 037	. 037	. 037	. 038	. 038	. 039	. 039	. 039	. 040	. 040
11	. 040	. 041	. 041	. $0+1$. 042	. 042	. 043	. 043	. 043	. 044
12	. 044	. 044	. 045	. 045	. 046	. 046	. 046	. 047	. 047	. 047
13	. 048	. 0.48	. 048	. 049	. 049	. 050	. 050	. 050	. 051	. 051
14	.051	.052	. 052	. 352	. 053	. 053	. 054	. 054	. 054	. 055
15	. 055	. 055	. 056	. 056	. 057	. 057	. 057	. 058	.058	.058
16	. 059	. 059	. 059	. 060	. 060	. 061	. 061	. 061	. 062	. 062
17	. 062	. 063	. 063	.063	. 064	. 064	. 065	. 065	. 065	. 066
18	. 066	. 066	. 067	.067	. 068	. 068	. 068	. 069	. 069	. 069
19	. 070	. 070	. 070	. 071	. 071	. 072	. 072	. 072	. 073	. 073
20	. 073	. 074	. 074	. 075	. 075	. 075	. 076	.076	. 076	. 077
2 I	. 077	. 077	. 078	. 078	. 079	. 079	. 079	. 080	. 080	. 080
22	. 081	. 081	. 081	.082	. 082	. 083	. 083	. 083	. 084	. 084
23	. 08.8	. 085	. 085	. 086	. 086	. 086	. 087	. 087	. 087	. 088
24	. 088	. 088	. 089	.089	. 090	. 090	. 090	.091	.09I	.091
25	. 092	. 092	. 002	. 093	. 093	. 094				. 095
26	. 095	. 096	. 096	. 097	. 097	. 097	. 098	. 098	. 098	. 099
27	. 099	. 099	. 100	. 100	. 101	. 101	. 101	. 102	. 102	. 102
28	. 103	.103	. 103	. 104	. 104	. 105	. 105	. 105	. 106	. 106
29	. 106	.107	. 107	. 108	. 108	. 108	.109	. 109	.109	. 110
30	. 110	. 110	. 111	. 111	. 112	. 112	. 112	. 113	. 113	. 113
31	. 114	. 114	. 115	. 115	. 115	. 116	. 116	. 116	. 117	. 117
32	.117	. 118	. 118	.119	. 119	. 119	.120	. 120	. 120	. 121
33	. 121	. 121	. 122	. 122	.123	. 123	. 123	. 124	.124	. 124
34	. 125	. 125	. 126	. 126	. 126	. 127	. 127	. 127	. 128	. 128
35	. 128	. 129	. 129	. 130	.130	. 130	. 131	. 131	. 131	. 132
36	. 132	. 132	. 133	. 133	. 134	. 134	. 34	. 135	. 135	. 135
37	. 136	. 136	.137	. 137	. 137	. 138	. 38	.'38	. 139	. 139
38	. 139	. 140	.140	.141	.141	. 141	.142	. 142	.142	. 143
39	. 143	. $1+3$. 144	. $14+$. 145	. 145	. 145	. 146	.146	. 146
40	. 147	. 147	. 148	. 148	.148	. 149	. 149	. 149	. 150	. 150
41	. 150	. 151	.151	. 152	. 152	. 152	. 153	. 153	. 153	. 154
42	. 154	. 155	. 155	. 155	. 150	. 156	.156	. 157	. 157	. 157
43	. 158	. 158	. 159	. 159	. 159	. 160	. 160	. 160	. 161	. 161
44	. 161	. 162	. 162	. 163	.163	. 163	. 164	. 164	. 164	. 165
45	. 165	. 166	. 166	. 166	.167	.167	.167	. 168	. 168	. 168
46	. 169	. 169	.170	. 170	. 170	. 171	. 171	. 171	. 172	. 172
47	. 172	. 173	.173	. 174		. 174	. 175	. 175	. 175	. 176
48	. 176	.177	.177	.177	. 178	.178	.178	. 179	. 179	.179
49	. 180	. 180	.181	.181	.181	. 182	. 182	. 182	. 183	.183
50	. 184	.184	.184	. 185	.185	.185	. 186	. 186	. 186	. 187

DETERMINATION OF HEIGHTS BY THE BAROMETER.

METRIC MEASURES.
Term for Temperature: $0.00367 \theta \times z$.
For temperatures $\left\{\begin{array}{l}\text { above } o^{\circ} \mathrm{C} . \\ \text { below } 0^{\circ} \mathrm{C} .\end{array}\right\}$ the values are to be $\left\{\begin{array}{l}\text { added. } \\ \text { subtracted. }\end{array}\right.$

Approximate difference of height. 2.	MEAN TEMPERATURE OF AIR COLUMN IN CENTIGRADE DEGREES (θ).												
	$1{ }^{\circ}$	2°	3°	4°	5°	6°	7°	8°	9°	10°	20°	30°	40°
m.	m.	m.	m.	m.	m .	m.							
100	0	1	1	1	2	2	3	3	3	4	7	11	15
200	I	1	2	3	4	4	5	6	7	7	15	22	29
300	1	2	3	4	6	7	8	9	10	1 I	22	33	44
400	I	3	4	6	7	9	10	12	13	15	29	44	59
500	2	4	6	7	9	II	13	15	17	18	37	55	73
600	2	4	7	9	II	13	15	18	20	22	44	66	S8
700	3	5	8	10	13	15	18	21	23	26	51	77	103
800	3	6	9	12	15	I8	21	23	26	29	59	88	117
900	3	7	10	13	17	20	23	26	30	33	66	99	132
1000	4	7	11	15	18	22	26	29	33	37	73	110	147
1100	4	8	12	16	20	24	28	32	36	40	81	121	161
I 200	4	9	13	18	22	26	31	35	40	44	85	132	176
1300	5	10	14	19	24	29	33	38	43	48	95	143	191
1400	5	10	15	21	26	3 I	36	41	46	51	103	154	206
1500	6	II	17	22	28	33	39	44	50	55	110	165	220
1600	6	12	18	23	29	35	41	47	53	59	117	176	235
1700	6	12	19	25	31	37	44	50	56	62	125	187	250
I 800	7	13	20	26	33	40	46	53	59	66	132	198	264
1900	7	14	21	28	35	42	49	56	63	70	139	209	279
2000	7	I5	22	29	37	44	51	59	66	73	147	220	294
2100	S	15	23	3 I	39	46	54	62	69	77	154	231	308
2200	8	16	24	32	40	48	57	65	73	81	161	242	323
2300	S	17	25	34	42	51	59	68	76	84	169	253	33 S
2400	9	18	26	35	44	53	62	70	79	88	176	264	352
2500	9	18	28	37	46	55	64	73	83	92	184	275	367
2600	10	19	29	38	48	57	67	76	86	95	191	286	382
2700	10	20	30	40	50	59	69	79	89	99	198	297	396
2800	10	21	31	41	51	62	72	82	92	103	206	308	411
2900	I I	21	32	43	53	64	75	85	96	106	213	319	426
3000	II	22	33	44	55	66	77	88	99	110	220	330	440
3100	II	23	34	46	57	68	80	91	102	114	228	341	455
3200	12	23	35	47	59	70	S2	94	106	117	235	352	470
3300	12	24	36	48	61	73	85	97	109	121	242	363	484
3400	12	25	37	50	62	75	87	100	112	125	250	374	499
3500	13	26	39	5 I	64	77	90	103	116	128	257	385	514
3600	13	26	40	53	66	79	92	106	119	132	264	396	528
3700	14	27	41	54	68	8 I	95	109	122	136	272	407	543
3800	14	28	42	56	70	84	98	112	126	139	279	418	558
3900	14	29	43	57	72	S6	100	II5	129	143	286	429	573
4000	15	29	44	59	73	88	103	117	132	147	294	440	587
5000	18	37	55	73	92	110	128	147	165	183	367	551	734
6000	22	44	66	88	110	132	154	176	198	220	440	661	831
7000	26	5 I	77	103	128	154	180	206	231	257	514	771	1028

©mithionian Tables.

Table 60.
DETERMINATION OF HEIGHTS BY THE BAROMETER. METRIC MEASURES.
Correction for Humidity: Values of 10000β.

$$
\beta=0.378_{\bar{b}}^{e}=0.378^{e_{1}+e_{0}} \underset{B+B_{0}}{ } .
$$

DETERMINATION OF HEIGHTS BY THE BAROMETER.

 METRIC MEASURES.Correction for Humidity: $10000 \beta \times z$.
Top argument: Values of 10000β obtained from page 148
Side argument: Approximate difference of height (z).

Approximate Difference of Height. z.	10000β.											
	25	50	75	100	125	150	175	200	225	250	275	300
m.	m.	m.	m.	m .	$\mathrm{m}^{\text {. }}$	m .	mu.	mu.	m.	m	m.	m.
100	0.3	0.5	0.8	1.0	1.3	1.5	1.8	2.0	2.3	2.5	2.8	3.0
200	0.5	1.0	1.5	2.0	2.5	3.0	$3 \cdot 5$	4.0	$4 \cdot 5$	5.0	5.5	6.0
300	0.8	1.5	2.3	3.0	3.8	4.5	$5 \cdot 3$	6.0	6.8	7.5	8.3	9.0
400	I. 0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
500	1.3	2.5	3.8	5.0	6.3	$7 \cdot 5$	8.8	10.0	11.3	12.5	13.8	15.0
600	I. 5	3.0	$4 \cdot 5$	6.0	7.5	9.0	10.5	12.0	13.5	15.0	16.5	18.0
700	1.8	3.5	$5 \cdot 3$	7.0	8.8	10.5	12.3	14.0	15.8	17.5	19.3	21.0
Soo	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	22.0	24.0
900	2.3	$4 \cdot 5$	6.8	9.0	I 1.3	13.5	15.8	18.0	20.3	22.5	24.8	27.0
1000	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	27.5	30.0
I 100	2.8	5.5	8.3	II. 0	13.8	16.5	19.3	22.0	24.8	27.5	30.3	33.0
1200	3.0	6.0	9.0	12.0	15.0	18.0	21.0	24.0	27.0	30.0	33.0	36.0
1300	3.3	6.5	9.8	13.0	16.3	19.5	22.8	26.0	29.3	32.5	35.8	39.0
1400	$3 \cdot 5$	7.0	IG. 5	14.0	17.5	21.0	24.5	28.0	31.5	35.0	38.5	42.0
1500	3.8	7.5	11.3	15.0	I8.8	22.5	26.3	30.0	33.8	37.5	$4 \mathrm{I} \cdot 3$	45.0
1600	4.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	40.0	44.0	48.0
1700	$4 \cdot 3$	8.5	12.8	17.0	21.3	25.5	29.8	34.0	38.3	42.5	46.8	51.0
ISoo	4.5	9.0	13.5	18.0	22.5	27.0	31.5	36.0	40.5	45.0	49.5	54.0
1900	4.8	9.5	14.3	19.0	23.8	28.5	$33 \cdot 3$	38.0	42.8	47.5	52.3	57.0
2000	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0
2100	$5 \cdot 3$	10.5	15.8	21.0	26.3	31.5	36.8	42.0	47.3	52.5	57.8	63.0
2200	5.5	II.O	16.5	22.0	27.5	33.0	38.5	44.0	49.5	55.0	60.5	66.0
2300	5.8	1 I .5	17.3	23.0	28.8	34.5	40.3	46.0	51.8	57.5	63.3	69.0
2400	6.0	12.0	18.0	24.0	30.0	36.0	42.0	48.0	54.0	60.0	66.0	72.0
2500	6.3	12.5	18.8	25.0	31.3	37.5	43.8	50.0	56.3	62.5	68.8	75.0
2600	6.5	13.0	19.5	26.0	32.5	39.0	45.5	52.0	58.5	65.0	71.5	78.0
2700	6.5	13.5	20.3	27.0	33.8	40.5	47.3	54.0	60.8	67.5	$74 \cdot 3$	81.0
2800	7.0	14.0	21.0	28.0	35.0	42.0	49.0	56.0	63.0	70.0	77.0	84.0
2900	7.3	14.5	21.8	29.0	36.3	43.5	50.8	58.0	65.3	72.5	79.8	87.0
3000	7.5	15.0	22.5	30.0	37.5	45.0	52.5	60.0	67.5	75.0	82.5	90.0
3100	7.8	15.5	23.3	31.0	38.8	46.5	54.3	62.0	69.8	77.5	85.3	93.0
3200	8.0	16.0	24.0	32.0	40.0	48.0	56.0	64.0	72.0	80.0	88.0	96.0
3300	8.3	16.5	24.8	33.0	41.3	49.5	57.8	66.0	74.3	82.5	90.8	99.0
3400	8.5	17.0	25.5	34.0	42.5	51.0	59.5	68.0	76.5	85.0	93.5	102.0
3500	8.8	17.5	26.3	35.0	43.8	52.5	61.3	70.0	78.8	87.5	96.3	105.0
3600	9.0	18.0	27.0	36.0	45.0	54.0	63.0	72.0	81.0	90.0	99.0	108.0
3700	$9 \cdot 3$	18.5	27.8	37.0	46.3	55.5	64.8	74.0	S3.3	92.5	101.8	II 1.0
3800	9.5	19.0	28.5	38.0	47.5	57.0	66.5	76.0	85.5	95.0	104.5	114.0
3900	9.8	19.5	29.3	39.0	48.8	58.5	68.3	78.0	87.8	97.5	107.3	117.0
4000	10.0	20.0	30.0	40.0	50.0	60.0	70.0	So.o	90.0	100.0	110.0	120.0
5000	12.5	25.0	37.5	50.0	62.5	75.0	87.5	100.0	112.5	125.0	137.5	150.0
6000	15.0	30.0	45.0	60.0	75.0	90.0	105.0	1200	135.0	150.0	165.0	180.0
7000	17.5	35.0	52.5	70.0	87.5	105.0	122.5	140.0	157.5	175.0	192.5	210.0

METRIC MEASURES.
Correction for Humidity: Values of $\frac{1}{2}\left(\frac{0.378_{\bar{b}}^{e}}{0.00367}\right)$
Top argument : Values of e.
Side argument : Values of b. Auxiliary to Table 58.

Air Pressure.	VAPOR PRESSURE mm.												
	0.5	1	2	3	4	5	6	7	8	9	10	20	30
mm.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$.								
780	0.0	O. I	O. 1	0.2	0.3	0.3	0.4	0.5	0.5	0.6	0.7	1.3	2.0
760	. 0	. 1	. 1	. 2	. 3	. 3	. 4	. 5	. 5	. 6	. 7	1.4	2.0
740	. 0	. 1	. I	. 2	. 3	. 4	. 4	-5	. 6	. 6	.7	1.4	2.1
720	. 0	. 1	. I	. 2	. 3	4	4	. 5	. 6	. 6	.7	1.4	2.1
700	. 0	. 1	. 2	. 2	$\cdot 3$. 4	4	. 5	. 6	. 7	. 7	1.5	2.2
680	. 0	. 1	. 2	. 2	. 3	. 4	4	. 5	. 6	. 7	. 8	1.5	
660	. 0	. 1	. 2	. 2	. 3	. 4	.5	. 5	. 6	.7	. 8	1.6	
640	. 0	. 1	. 2	. 2	. 3	. 4	. 5	. 6	. 0	.7	. 8	1. 6	
020	. 0	. 1	. 2	. 2	$\cdot 3$. 4	. 5	. 6	. 7	. 8	. 8	1.7	
600	. 0	. 1	. 2	$\cdot 3$. 3	. 4	. 5	. 6	.7	. 8	.9	1.7	
580	. 0	. 1	. 2	-3	4	. 4	. 5	. 6	.7	. 8	.9		
560	. 0	. 1	. 2	. 3	4	. 5	. 6	.	.7	. 8	. 9		
540	. 0	. 1	. 2	- 3	.4	.5	. 6	.7	. 8	. 9	1.0		
520	. 0	. 1	. 2	-3	4	. 5	. 6	.7	. 8	. 9			
500	. 0	. 1	. 2	-3	4	. 5	. 6	.7	. 8	. 9			
480	. 1	. 1	. 2	-3	4	. 5	. 6	. 8					
460	. 1	. 1	. 2	- 3	. 4	. 6	.7	. 8					
44°	. I	. 1	. 2	. 4	. 5	. 6	.7						
420	. 1	. 1	. 2	. 4	. 5	. 6	.7						
400	. 1	. 1	$\cdot 3$. 4	. 5	. 6							
380	. 1	. 1	. 3	4	5								
360	. 1	. 1	$\cdot 3$. 4	. 6								
340	. 1	. 2	. 3	. 4									
320	. 1	. 2	-3	. 5									
300	. I	. 2	$\cdot 3$										
280	. 1	. 2	. 4										
260	. 1	. 2	. 4										
1240	. 1	. 2	. 4										
220	. 1	. 2											
200	. 1	$\cdot 3$											
180	. 1	$\cdot 3$											
160	. 2	. 3											
I40	. 2	. 4											
120	. 2	. 4											
100	. 3	. 5											
80	-3												
60	.4												
40	. 6												
20	I. 3												
10	2.6												

Smithsoniay Tables.

Correction for Humidity: Values of $\frac{1}{2}\left(\frac{0.378 \frac{e}{b}}{0.00367}\right)$
Top argument: Values of e.
Side argument : Values of b. Auxiliary to Table 58.

Air Pressure.	VAPOR PRESSURE mb.													
	0.5	1	2	3	4	5	6	7	8	9	10	20	30	40
mb.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.			${ }^{\circ} \mathrm{C}$.								
1080	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.4	0.5	1.0	I. 4	1.9
1060	. 0	. 0	. I	. 1	. 2	. 2	. 3	. 3	- 4	. 4	. 5	1.0	1.4 I. 5	1.9
1040	. 0	. 0	. I	. 1	. 2	. 2	. 3	. 3	- 4	. 4	. 5	1.0	I. 5	
1020	. 0	. 1	. 1	. 2	. 2	. 3	. 3	4	- 4	. 5	. 5	1.0	1.5	2.0 2.0
1000	. 0	.i	. 1	. 2	. 2	$\cdot 3$. 3	. 4	- +	. 5	.5	I. 1	1.5	2.0 2.1
980	. 0	. 1	. 1	. 2	. 2	-3								
960	. 0	. 1	. I	. 2	. 2	. 3	. 3	.4 .4	4 .4	. 5	. 5	I. I		2.1
9.9	. 0	. 1	. I	. 2	. 2	. 3	. 3	. +	. 4	. 5	. 5	1.1	1.6	2.1
920	. 0	. 1	. I	. 2	. 2	. 3	. 3			$\cdot .5$. 6	I.I	1.6	2.2
900	. 0	. 1	. 1	. 2	. 2	. 3	. 3	.4	$\stackrel{7}{7}$. 5	. 6	I.I	1.7	2.2
880														
	. 0	. 1	. 1	. 2	. 2	-3	. 4	. 4	. 5	. 5	. 6	1.2		
860	. 0	. 1	. I	. 2	. 2	. 3	. 4	. 4	. 5	. 5	. 6	1.2	1. 8	2.3 2.4
840	. 0	. 1	. I	. 2	. 2	. 3	. 4	. 4	. 5	. 6	. 6	I. 2	I. 8	
820	. 0	I	. I	. 2	$\cdot 3$	-3	- 7	. 4	. 5	. 6	. 6	1.3	1.9	
800	. 0	. 1	. 1	. 2	$\cdot 3$	-3	- 4	. 5	. 5	. 6	. 6	I. 3	I. 0	
780	. 0	. I	. I	. 2	$\cdot 3$									
760	. 0	. 1	. 1	. 2	. 3	. 3	$\stackrel{+}{4}$	$\cdot 5$.5	. 5	. 6		1.3 1.4	2.0	
740	. 0	. I	. I	. 2	. 3	. 3	4	. 5	.6	. 6	. 7	1.4 1.4		
720	. 0	. 1	. I	. 2	-3	. 4	- +	. 5	. 6	. 6	. 7	1.4		
700	. 0	. 1	. 1	. 2	. 3	. 4	. 4	. 5	. 6	.7	.7	1.4		
680	. 0	. 1	. 2	. 2	$\cdot 3$	$\cdot 4$. 5	. 5	. 6					
660	. 0	. 1	.2	. 2	. 3	4	.5	. 5	. 6	.7	. 8			
640	. 0	. 1	. 2	. 2	. 3	.4	. 5	. 6	. 6	. 7	. 8			
620	. 0	. 1	. 2	. 2	. 3	. 4	. 5	. 6	. 7	. 7				
600	. 0	. 1	.2	-3	. 3	4	. 5	. 6	. 7	. 8				
580	. 0	. I	. 2	. 3	+	. 4	. 5	. 6	. 7	. 8				
560	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 6	. 7					
540	. 0	. 1	. 2	. 3	4	. 5	. 6	. 7	. 8					
520	. 0	. 1	. 2	. 3	- 4	. 5	. 0	.7	. 8					
500	. I	. 1	. 2	. 3	- 4	. 5	. 6	.7						
480	. 1	. 1	. 2	-3	$\cdot 4$. 5	. 6	. 8				VAPO	PRES	URE
460	. 1	. 1	. 2	. 3	. 4	. 6	. 7	. 8			Pres-			
440	. 1	. 1	. 2	. 4	- 5	. 6	. 7				sure.			
420	. 1	. 1	. 2	\cdots	. 5	. 6	.7					0.5	1	2
400	. 1	. 1	. 3	4	. 5		. 8							
380	. 1	. I										${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.	${ }^{\circ} \mathrm{C}$.
360	. 1	. I	. 3	4 .	. 6	. 7						. 1	$\cdot 3$. 6
340	. 1	. 2	. 3	. 5	. 6	. 8					160	$\cdot 2$	- 3	. 6
320	. 1	. 2	. 3	. 5	. 6						120	. 2	.4 .4	
300	. 1	.2	$\cdot 3$. 5	. 7						100		. 5	
280	. 1	. 2	$\cdot 4$. 6	. 7									
260	. I	. 2		. 6							60	.3 .4		
240	. I	. 2	$\cdot 7$. 0							40	. 6		
220	. 1	. 2		. 7							20	I. 3		
200	. 1	-3	. 5								10	2.6		

Table 62.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
METRIC MEASURES.
Correction for Gravity and Weight of Mercury : $z\left(0.002640 \cos 2 \phi-0.000007 \cos ^{2} 2 \phi+0.00244\right)$.

Approximate difference of Height. Z.	Latitude (ϕ)															
	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°
Meters.	m.															
100	I	1	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
200	1	1	1	1	I	1	I	I	I	-	-	-	0	-	-	\bigcirc
300	2	2	1	1	I	1	1	1	1	1	1	\bigcirc	-	-	-	\bigcirc
400	2	2	2	2	2	2	2	I	1	I	I	I	\bigcirc	-	-	\bigcirc
500	3	3	2	2	2	2	2	2	1	I	1	1	1	\bigcirc	-	\bigcirc
600	3	3	3	3	3	2	2	2	2	1	1	1	1	\bigcirc	-	\bigcirc
700	4	4	3	3	3	3	3	2	2	2	1	1	1	1	-	\bigcirc
800	4	4	4	4	4	3	3	3	2.	2	2	I	1	1	-	-
900	5	5	4	4	4	4	3	3	3	2	2	I	1	I	-	\bigcirc
1000	5	5	5	5	4	4	4	3	3	2	2	2	1	1	\bigcirc	-
1100	6	6	5	5	5	5	4	4	3	3	2	2	1	1	\bigcirc	\bigcirc
1200	6	6	6	6	5	5	5	4	3	3	2	2	I	1	\bigcirc	-
1300	7	7	6	6	6	5	5	4	4	3	3	2	1	1	1	\bigcirc
1400	7	7	7	7	6	6	5	5	4	3	3	2	2	I	I	\bigcirc
1500	8	8	7	7	7	6	6	5	4	4	3	2	2	1	1	\bigcirc
1600	8	8	8	8	7	7	6	5	5	4	3	2	2	1	I	-
1700	9	9	8	8	8	7	6	6	5	4	3	3	2	I	I	\bigcirc
1800	9	9	9	8	8	7	7	6	5	4	4	3	2	1	I	\bigcirc
1900	10	10	9	9	8	8	7	6	5	5	4	3	2	I	I	\bigcirc
2000	10	10	10	9	9	8	8	7	6	5	4	3	2	1	1	\bigcirc
2100	II	11	10	10	9	9	8	7	6	5	4	3	2	2	1	\bigcirc
2200	I I	II	II	10	10	9	8	7	6	5	4	3	2	2	1	\bigcirc
2300	12	12	11	II	10	9	9	8	7	6	5	4	3	2	1	\bigcirc
2.400	12	I 2	12	II	II	10	9	8	7	6	5	4	3	0	1	\bigcirc
2500	13	13	12	12	II	10	9	8	7	6	5	4	3	2	1	\bigcirc
2600	13	13	İ3	12	12	11	10	9	8	6	5	4	3	2	1	\bigcirc
2700	1.4	14	13	13	12	11	10	9	8	7	5	4	3	2	1	\bigcirc
2800	I4	14	14	13	12	12	I I	9	8	7	6	4	3	2	1	\bigcirc
2900	15	15	14	14	13	12	I I	10	8	7	6	4	3	2	1	\bigcirc
3000	15	15	15	14	13	12	I I	10	9	7	6	5	3	2	1	\bigcirc
3100	16	16	15	15	14	13	12	10	9	8	6	5	3	2	1	\bigcirc
3200	16	16	16	15	14	13	12	11	9	8	6	5	4	2	1	-
3300	17	17	16	16	15	14	12	11	10	8	7	5	4	2	1	\bigcirc
3400	17	17	17	16	15	14	13	I I	10	8	7	5	4	2	I	\bigcirc
3500	18	18	17	17	16	14	13	12	10	9	7	5	4	3	1	1
3600	18	18	18	17	16	15	14	12	10	9	7	5	4	3	1	1
3700	19	19	18	17	16	15	14	12	11	9	7	6	4	3	2	1
3800	19	19	19	18	17	16	14	13	II	9	8	6	4	3	2	
3900	20	20	19	18	17	16	15	13	II	9	8	6	4	3	2	I
4000	20	20	20	19	18	17	15	13	12	10	8	6	4	3	2	1
4500	23	23	22	21	20	19	17	15	13	II	9	7	5	3	2	1
5000	25	25	25	24	22	21	19	17	1.4	12	10	8	6	4	2	1
5500	28	28	27	26	24	23	21	18	16	13	11	8	6	4	2	1
6000	30	30	29	28	27	25	23	20	17	15	12	9	7	4	2	1
6500	33	33	32	31	29	27	24	22	19	16	13	10	7	5	3	1
7000	35	35	34	33	31	29	26	23	20	17	14	II	8	5	3	1

Table 63.
DETERMINATION OF HEIGHTS BY THE BAROMETER.
METRIC MEASURES.
Correction for the variation of gravity with altitude: $\frac{z\left(z+2 h_{0}\right)}{R}$

Approximate difference of height. Z.	height of lower station in meters (h_{0}) .													
	0	200	400	600	800	1000	1200	1400	1600	1800	2000	2500	3000	4000
meters	m .	m.	m.	m .	m.	m.	m.							
200	0	0	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	o	0	O	0	-	\bigcirc	0
300	0	o	o	-	o	-	0	-	\bigcirc	-	0	O	0	0
400	0	o	-	\bigcirc	-	o	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	I
500	0	0	\bigcirc	0	\bigcirc	o	o	o	o	o	o	o	1	1
600	o	0	-	-	\bigcirc	-	0	-	0	O	0	I	I	I
700	0	-	-	-	\bigcirc	0	0	-	\bigcirc	\bigcirc	I	I	1	1
800	0	-	\bigcirc	-	\bigcirc	\bigcirc	-	-	1	I	I	I	I	I
900	0	0	-	-	-	-	o	I	I	1	I	I	I	1
1000	-	o	0	o	0	O	1	I	1	1	I	I	1	1
1100	-	-	0	-	-	1	I	1	I	I	I	1	I	2
I 200	0	-	o	-	I	1	I	I	I	I	I	I	I	2
1300	o	-	-	I	I	1	I	I	I	1	I	I	1	2
1400	o	0	-	I	I	1	I	1	1	I	I	I	2	2
1500	0	o	I	I	I	I	I	1	I	I	I	2	2	2
1600	\bigcirc	I	I	I	I	I	1	1	I	I	1	2	2	2
1700	-	1	I	I	1	1	I	I	1	I	2	2	2	3
1800	1	I	I	I	I	I	I	I	1	2	2	2	2	3
1900	I	I	1	I	I	1	I	I	2	2	2	2	2	3
2000	I	I	I	I	I	*I	I	2	2	2	2	2	3	3
2100	I	1	I	1	1	I	I	2	2	2	2	2	3	3
2200	I	I	I	I	1	1	2	2	2	2	2	2	3	4
2300	I	I	I	I	1	2	2	2	2	2	2	3	3	4
2400	I	I	I	I	2	2	2	2	2	2	2	3	3	4
2500	1	1	I	1	2	2	2	2	2	2	3	3	3	4
2600	1	I	I	2	2	2	2	2	2	3	3	3	4	4
2700	1	1	I	2	2	2	2	2	3	3	3	3	4	5
2800	1	1	2	2	2	2	2	2	3	3	3	3	4	5
2900	I	2	2	2	2	2	2	3	3	3	3	4	4	5
3000	I	2	2	2	2	2	3	3	3	3	3	4	4	5
3100	2	2	2	2	2	2	3	3	3	3	3	4	4	5
3200	2	2	2	2	2	3	3	3	3	3	4	4	5	6
3300	2	2	2	2	3	3	3	3	3	4	4	4	5	6
3400	2	2	2	2	3	3	3	3	4	4	4	4	5	6
3500	2	2	2	3	3	3	3	3	4	4	4	5	5	6
3600	2	2	2	3	3	3	3	4	4	4	4	5	5	7
3700	2	2	3	3	3	3	4	4	4	4	4	5	6	7
3 Soo	2	3	3	3	3	3	4	4	4	4	5	5	6	7
3900	2	3	3	3	3	4	4	4	4	5	5	5	6	7
4000	3	3	3	3	4	4	4	4	5	5	5	6	6	8
4500	3	3	4	4	4	5	5	5	5	6	6	7	7	9
5000	4	4	5	5	5	5	6	6	6	7	7	8	9	10
5500	5	5	5	6	6	6	7	7	8	8	8	9	10	12
6000	6	6	6	7	7	8	8	S	9	9	9	10	1 I	13
6500	7	7	7	8	8	9	9	9	10	10	I I	12	13	15
7000	S	S	9	9	9	10	10	II	II	12	12	13	14	16

Table 64.
HEIGHTS REDUCED FROM METERS TO DYNAMIC METERS, THE
ACCELERATION OF GRAVITY AT SEA LEVEL BEING 9.80 .

$\begin{aligned} & \text { Height } \\ & \text { (meters) } \end{aligned}$	0	100	200	300	400	500	600	700	800	900
29000	28290	28387	28484	28582	28679	28776	28873	28970	29067	29164
28000	27319	27416	27513	27610	27708	27805	27902	27999	28096	28193
27000	26347	26445	26542	26639	26736	26833	26930	27028	27125	27222
26000	25376	25473	25570	25667	25764	25862	25959	26056	26153	26250
25000	24404	24501	24598	24695	24792	24890	24987	25084	25181	25279
24000	23431	23528	23626	23723	23820	23917	24015	24112	24209	24306
23000	22458	22556	22653	22750	22847	22945	23042	23139	23237	23334
22000	21485	21583	21680	21777	21875	21972	22069	22166	22264	22361
21000	20512	20609	20707	20804	20901	20999	21096	21193	21291	21388
20000	19538	19636	19733	19830	19928	20025	20122	20220	20317	20415
19000	I 8564	18662	I 8759	18856	I 8954	19051	19149	19246	19344	I944I
18000	17590	17687	17785	17882	17980	18077	18175	18272	18369	18467
17000	16615	16713	16810	16908	17005	17103	17200	17298	17395	17493
16000	I 5640	15738	15835	15933	16030	16128	16225	16323	16420	16518
15000	14665	14763	14860	14958	I 5055	I 5153	15250	I $534{ }^{8}$	I 5446	I 5543
I 4000	13690	13787	13885	13982	14080	14178	14275	14373	14470	14568
13000	12714	I28II	12909	13007	13104	13202	13299	13397	I 3495	I 3592
12000	11738	11835	11933	12031	12128	12226	12323	1242 I	I2519	12616
11000	10761	10859	10957	11054	III 52	I 1250	I 1347	I I 445	I 1543	II640
10000	9785	9882	9980	10078	10175	10273	1037 I	10468	10566	10664
9000	8807	8905	9003	9101	9198	9296	9394	9492	9589	9687
8000	7830	7928	8026	8123	822 I	8319	8417	8514	8612	8710
7000	6852	6950	7048	7146	7244	$73+1$	7439	7537	7635	7732
6000	5874	5972	6070	6168	6266	6363	6461	6559	6657	6755
5000	4896	4994	5092	5190	5287	5385	5483	558 I	5679	5777
4000	3918	4015	4113	42 II	4309	4407	4505	4603	4700	4798
3000	2939	3037	3134	3232	3330	3428	3526	3624	3722	3820
2000	1959	2057	2155	2253	2351	2449	2547	2645	2743	2841
1000	980	1078	1176	1274	I 372	1470	I 568	1666	1763	I 861
0	0	98	196	294	392	490	588	686	784	882
	0	100	200	300	400	500	600	700	800	900

Proportionality Table.

Meters	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
90	88	89	90	91	92	93	94	95	96	97
80	78	79	80	81	82	83	84	85	86	87
70	69	70	71	72	73	74	74	75	76	77
60	59	60	61	62	63	64	65	66	67	68
50	49	50	51	52	53	54	55	56	57	58
40	39	40	41	42	43	44	45	46	47	48
30	29	30	31	32	33	34	35	36	37	38
20	20	21	22	23	24	24	25	26	27	28
10	10	11	12	13	14	15	16	17	18	19
0	0	1	2	3	4	5	6	7	8	9
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$

Smithsonian Tables

Table 65.
CORRECTIONS TO TABLE 64 FOR VALUES OF THE ACCELERATION OF GRAVITY AT SEA LEVEL DIFFERENT FROM 9.80.

$\begin{aligned} & \text { Height } \\ & \text { (meters) } \end{aligned}$	Acceleration of grayity at sea level.								
	9.76	9.77	9.78	9.79	9.80	9.81	9.82	9.83	9.84
29000	-116	-87	-58	-29	0	29	58	87	116
28000	-112	-84	-56	-28	O	28	56	84	112
27000	-108	-81	-54	-27	-	27	54	8 I	108
26000	-104	-78	-52	-26	o	26	52	78	104
25000	-100	-75	-50	-25	0	25	50	75	100
24000	- 96	-72	-48	-24	o	24	48	72	96
23000	-92	-69	-46	-23	O	23	46	69	92
22000	- 88	-66	-44	-22	o	22	44	66	88
21000	- 84	-63	-42	-2I	O	21	42	63	84
20000	- 80	-60	-40	-20	O	20	40	60	80
19000	- 76	-57	-38	-19	0	19	38	57	76
18000	- 72	-54	-36	-18	-	18	36	54	72
17000	-68	-51	-34	-17	o	17	34	5 I	68
16000	- 64	-48	-32	-16	o	16	32	48	64
15000	-60	-45	-30	-15	0	15	30	45	60
14000	- 56	-42	-28	-I4	o	14	28	42	56
13000		-39	-26	-13	o	13	26	39	52
12000	- 4^{8}	-36	-24	-I2	-	12	24	36	48
11000	- 44	-33	-22	- 11	o	11	22	33	44
10000	- 4^{0}	-30	-20	- 10	o	10	20	30	40
		-27	-18		0		18	27	36
8000	- 32	-24	-16	-8	0	8	16	24	32
7000	- 28	-21	-I4	-7	-	7	14	21	28
6000	- 24	-I8	-I2	- 6	o	6	12	18	24
5000	- 20	-15	$-\mathrm{IO}$	- 5	o	5	10	15	20
4000	- 16	-12	-8	- 4	0	4	8	12	16
3000	- 12	- 9	- 6	-3	0	3	6	9	12
2000	- 8	- 6	- 4	- 2	o	2	4	6	8
1000	- 4	- 3	- 2	- I	o	1	2	3	4
-	0	0	0	o	o	o	0	0	\bigcirc
	9.76	9.77	9.78	9.79	9.80	9.81	9.82	9.83	9.84

Table 66.
NORMAL VALUE OF THE ACCELERATION OF GRAVITY AT SEA LEVEL, $\mathbf{G}_{\phi}, \mathbf{M} / \mathbf{S E C} .^{2}$

Latitude	$0{ }^{\circ}$	$1{ }^{\circ}$	2°	3°	4°	5°	6°	7°	8°	9°
80°	9.8306	. 8309	9.8312	9.8314	9.8316	9.8318	9.8319	9.8320	9.832 I	9.8322
70°	9.8261	9.8266	9.8272	9.8277	9.8282	9.8287	9.8291	9.8295	9.8299	9.8303
60°	9.8192	9.8200	9.8207	9.8214	9.8222	9.8229	9.8236	9.8242	9.8249	9.8255
50°	9.8107	9.8116	9.8125	9.8134	$9.81{ }^{4} 2$	9.8151	9.8159	9.8168	9.8176	9.8184
40°	9.8017	9.8026	9.8035	9.8044	9.8053	9.8062	9.8071	9.8080	9.8089	9.8098
30°	9.7933	9.7941	9.7949	9.7957	9.7965	9.7974	9.7982	9.7991	9.8000	9.8008
20°	9.7864	9.7870	9.7876	9.7883	9.7889	9.7896	9.7903	9.7910	9.7918	9.7925
10°	9.7819	9.7823	9.78	7830	9.7834	9.7838	9.7843	9.7848	9.7853	9.7858
0°	9.7804	9.780	9.780	9.7805	9.7806	9.7808	9.7810	9.7812	9.7814	

S_{ϕ} at $90^{\circ}=0.8322$

Table 67.

HEIGHTS REDUCED FROM DYNAMIC METERS TO GEOMETRIC METERS, THE ACCELERATION OF GRAVITY AT SEA LEVEL BEING 9.80.

Height (dynamic meters)	0	100	200	300	400	500	600	700	800	900
29000	29729	29832	29935	30038	30141	30244	30347	30451	30554	30657
28000	28700	28803	28906	29009	29112	29215	29318	29420	29523	29626
27000	27670	27773	27876	27979	28082	28185	28288	28391	28494	28597
26000	26641	26744	26847	26950	27053	27156	27259	27362	27464	27567
25000	25612	25715	25818	25921	26024	26127	26230	26333	26435	26538
24000	24584	24687	24790	24893	24995	25098	25201	25304	25407	25510
23000	23556	23659	23762	23864	23967	24070	$2+173$	24276	24378	24481
22000	22528	22631	22734	22836	22939	23042	23145	23248	23350	23453
21000	21501	21603	21706	21809	21912	22014	22117	22220	22323	22425
20000	20474	20576	20679	20782	20884	20987	21090	21193	21295	21398
19000	19447	19549	19652	19755	19858	19960	20063	20166	20268	20371
18000	18420	I 8523	18626	18728	18831	18934	19036	19139	19242	19344
17000	17394	17497	17599	17702	17805	17907	18010	18112	18215	18318
16000	16368	16471	16574	16676	16779	16881	16984	17086	17189	17292
15000	I 5343	I 5445	15548	15651	15753	15856	15958	16061	16163	16266
14000	$1+318$	14420	14523	14625	14728	14830	14933	15035	15138	15240
13000	13293	13395	13498	13600	13703	13805	13908	14010	14113	14215
12000	12268	12371	12473	12576	12678	12781	12883	12986	13088	13190
11000	11244	11347	I I 449	II 552	11654	I 1756	11859	11961	12064	12166
10000	10220	10323	10425	10528	10630	10732	10835	10937	11040	11142
9000	9197	9299	9402	9504	9606	9709	9811	9913	10016	10118
8000	8174	8276	8378	848 I	8583	8685	8788	8890	8992	9095
7000	7151	7253	7355	7458	7560	7662	7765	7867	7969	8071
6000	6128	6231	6333	6435	6537	6640	6742	6844	6946	7049
5000	5106	5208	53 II	5413	5515	5617	5719	5822	5924	6026
4000	4084	4186	4289	4391	4493	4595	4697	4800	4902	5004
3000	3063	3165	3267	3369	3471	3573	3676	3778	3880	3982
2000	2042	2144	2246	2348	2450	2552	2654	2756	2858	2961
1000	IO2I	1123	1225	1327	1429	1531	1633	1735	1837	1939
0	0	102	204	306	408	510	612	714	816	919
	0	100	200	300	400	500	600	700	800	900

Proportionality Table.

Meters	0	1	2	3	4	5	6	7	8	9
90	92	93	94	95	96	97	98	99	100	IOI
80	82	83	84	85	86	87	88	89	90	91
70	71	72	73	74	76	77	78	79	80	81
60	6 I	62	63	64	65	66	67	68	69	70
50	5 I	52	53	54	55	56	57	58	59	60
40	41	42	43	44	45	46	47	48	49	50
30	31	32	33	34	35	36	37	38	39	40
20	20	21	22	23	24	26	27	28	29	30
10	10	II	12	13	I 4	15	16	17	18	19
0	0	1	2	3	4	5	6	7	8	9
	0	1	2	3	4	5	6	7	8	9

Smithsonian Tables GRAVITY AT SEA LEVEL DIFFERENT FROM 9.80.

Height (dynamic meters)	Acceleration of gravity at sea level.								
	9.76	9.77	9.78	9.79	9.80	9.81	9.82	9.83	9.84
29000	121	91	60	- 30	0	-30	-60	-9I	-I2I
28000	117	88	58	29	0	-29	-58	-88	-117
27000	113	8.	56	28	0	-28	-56	-84	-II3
26000	108	81	54	27	o	-27	-54	-81	-108
25000	104	78	52	26	0	-26	-52	-78	-104
24000	100	75	50	25	0	-25	-50	-75	-100
23000	96	72	48	24	0	-24	-48	-72	- 96
22000	92	69	46	23	o	-23	-46	-69	-92
21000	87	66	44	22	0	-22	-44	-66	- 87
20000	83	62	42	21	0	-2I	-42	-62	-83
19000	79	59	40	20	0	-20	-40	-59	- 79
18000	75	56	37	19	0	-19	-37	-56	- 75
17000	71	53	35	18	0	-18	-35	-53	- 71
16000	67	50	33	17	0	-17	-33	-50	-67
15000	62	47	31	16	o	-16	-3I	-47	- 62
14000	58	44	29	15	0	-I5	-29	-44	- 58
13000	54	4 I	27	14	0	-14	-27	-4I	- 54
12000	50	37	25	13	0	-13	-25	-37	- 50
11000	46	34	23	11	o	-II	-23	-34	- 46
10000	42	3 I	21	10	o	-10	-21	-31	- 42
9000	37	28	19	9	0	-9	-19	-28	- 37
8000	33	25	17	8	o	- 8	-17	-25	- 33
7000	29	22	15	7	o	- 7	-15	-22	- 29
6000	25	19	12	6	o	- 6	-I2	-19	- 25
5000	2 I	16	10	5	0	- 5	-10	-16	-2I
4000	17	12	8	4	0	- 4	- 8	-12	- I7
3000	13	9	6	3	0	-3	- 6	-9	- 13
12000	8 4	6 3	4	2	o	1 -1	- 4	-6	- 8
0	0	0	0	0	0	0	0	0	0
	9.76	9.77	9.78	9.79	9.80	9.81	9.82	9.83	9.84

Examples to tables 67 and 68.

1	2	3	4	5
1614	1633	14	+2	1649
2804	2858	4	+3	2865
4704	4800	4	+6	4810
12140	12371	$4 I$	+16	12428

Column

1. Heights above sea level given in dynamic meters.
2. Values of table 67 for the dynamic heights, $1600,2800,4700,12100$.
3. Values of proportionality table for dynamic heights $14,4,4,40$.
4. Corrections from table 68 for $g=9.7873$ at sea level and for the heights of column 1.
5. Sum of numbers in columns 2,3 and 4 , giving the geometrical heights corresponding to the dynamic heights of column 1 .

Examples to tables 64 and 65 .

1	2	3	4	5
1649	I 568	48	-2	1614
2865	2743	64	-3	2804
4810	4700	10	-6	4704
12428	12128	27	-15	I2I40

Column

1. Heights above sea level given in meters.
2. Values of table 64 for the heights 1600,2800 , 4800, 12400.
3. Values of proportionality table for the heights 49, 65, 10, 28.
4. Corrections from table 65 for $g=9.7873$ at sea level and for the heights of column 1.
5. Sum of numbers in columns 2,3 and 4 , giving the dynamic heights corresponding to the geometrical heights of column 1.

Table 69.
DIFFERENCE OF HEIGHT CORRESPONDING TO A CHANGE OF 0.1 INCH IN THE BAROMETER.

ENGLISH MEASURES.

Barometric Pressure.	MEAN TEMPERATURE OF THE AIR IN FAHRENHEIT DEGREES.											
	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°
Inche	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.	Feet.
22.0	119.2	120.5	121.8	123. 1	124.4	125.8	I27.1	128.5	129.8	131.2	132.5	133.9
. 2	IIS.2	119.4	120.7	122.0	123.3	124.7	I26.0	127.3	128.7	130.0	I3 1.3	132.7
.4	117.1	118.3	119.6	120.9	122.2	123.6	124.9	126.2	127.5	I28.8	I30.2	131.5
. 6	II6.I	117.3	118.6	119.8	I2I.I	I22.5	123.8	125. I	J26.4	127.7	129.0	I30. 3
. 8	115.0	116.3	117.5	I 18.8	120.1	121.4	122.7	124.0	125.3	I26.6	127.9	I29.2
23.0	I14.0	115.3	116.5	117.8	119.0	I20.3	121. 6	122.9	124.2	125.5	126.8	I2S. I
. 2	II3.1	114.3	I15.5	116.8	118.0	119.3	120.6	121.8	123.1	124.4	125.7	127.0
. 4	II2.I	113.3	II4.5	115.8	117.0	I I8.3	I 19.5	I 20.8	122.1	123.3	124.6	125.9
. 6	III.I	II2.3	II3.5	114.8	116.0	117.3	118.5	119.8	121.0	122.3	123.5	124.8
. 8	IIO. 2	III.4	I I 2.6	113.8	II5. I	116.3	117.5	I 8.8	120.0	121.3	122.5	123.8
24.0	109.3	110.5	111.7	112.9	II4. 1	115.3	116.5	117.8	119.0	120.2	121.5	122.7
. 2	IoS. 4	109.5	I 10.7	III. 9	II3.I	II 4.4	115.6	116.8	118.0	II9.2	120.5	121.7
. 4	107.5	108.6	109.8	III.O	II2.2	113.4	I 14.6	I 15.9	117.1	I18.3	119.5	120.7
. 6	106.6	107.8	108.9	IIO. I	IIII. 3	I 12.5	113.7	I I 4.9	II6. I	117.3	118.5	119.7
. 8	105.8	106.9	108. 1	109. 2	110.4	III. 6	II 2.8	114.0	II 5.2	116.4	117.6	i18.8
25.0	104.9	106.0	107.2	108. 3	109.5	110.7	III. 9	II3.1	114.2	115.4	116.6	117.8
. 2	104. I	105.2	106.3	107. 5	108.7	109.8	III.O	II 2.2	113.3	114.5	I 15.7	116.9
. 4	103.3	10.4 .4	105.5	106.6	107.8	109.0	IIO.I	III. 3	II 2.4	II 3.6	114.8	116.0
. 6	102.5	103.6	104.7	105.8	107.0	IOS. I	109.3	I 10.4	III. 6	112.7	113.9	115.1
. 8	IOI. 7	102.8	103.9	105.0	106. I	107.3	108.4	tog. 6	110.7	111.9	II3.0	II 4.2
26.0	100.9	102.0	103. I	104.2	105.3	106.4	107.6	108.7	109.9	III.O	112.I	113.3
. 2	100. I	IOI. 2	102.3	103.4	104.5	105.6	106.8	107.9	109.0	IIO. I	III. 3	I 12.4
. 4	99.4	100.4	101. 5	102.6	103.7	10.4 .8	106.0	107. 1	10S. 2	109.3	110.4	I I 1.6
. 6	98.6	99.7	100.7	IOI. 8	IO2.9	104.0	105.2	106.3	107.4	108. 5	109. 6	110.7
. 8	97.9	98.9	100.0	IOI, I	102.2	103.3	104.4	105.5	106.6	107.7	108.8	109.9
27.0	97. 1	98.2	99.2	100.3	101.4	102.5	103.6	104.7	105.8	106.9	IOS.O	109. I
. 2	96.4	97.5	98.5	99.6	100.7	IoI. 8	102.8	103.9	105.0	106. I	107.2	10S. 3
. 4	95.7	96.8	$97 . \mathrm{S}$	98.9	99.9	101.0	102. I	103.2	104.2	105.3	106.4	107.5
. 6	95.0	96.1	97.1	98.1	99.2	100.3	IOI. 3	102.4	103.5	104.6	105.6	106. 7
. 8	94.3	95.4	96.4	97.4	98.5	99.6	100.6	101.7	102.7	103.8	104.9	105.9
28.0	93.7	94.7	$95 \cdot 7$	96.7	97.8	9 9.8	99.9	IOI. 0	102.0	103. 1	104.1	105.2
. 2	93.0	94.0	95.0	96.1	97. I	9S. I	99.2	100.2	101.3	102.3	103.4	104.4
-4	92.4	93.4	94.4	95.4	96.4	97.5	98.5	99.5	100. 6	IOI. 6	102.7	103.7
. 6	91.7	92.7	93.7	94.7	95.7	96.8	97.8	98.8	99.9	100.9	IOL. 9	103.0
. 8	9 I .1	92.1	93.I	94. I	95. I	96.1	97. I	98.2	99.2	100. 2	IOI. 2	102.3
29.0	90.4	91.4	92.4	93.4	94.4	95.4	96.5	97.5	98.5	99.5	100.5	IOI. 6
. 2	S9. 8	90.8	91.8	92.8	93.8	94.8	95.8	96.8	97.8	98.8	99.9	I00. 9
. 4	S9.2	90.2	9 I .1	92.1	93. I	94.1	95.1	96.1	97. I	98.2	99.2	100.2
. 6	88.6	S9.6	90.5	91.5	92.5	93.5	94.5	95.5	96.5	97.5	98.5	
. 8	88.0	S9.0	89.9	90.9	91.9	92.9	93.9	94.9	95.8	96.8	97.8	98.8
30.0	87.4	88.4	89.3	90.3	91.3	92.3	93.2	94.2	95.2	96.2	97.2	98.2
. 2	S6. ${ }^{\text {S }}$	87.8	S5. 7	S9.7	90.7	91.7	92.6	93.6	94.6	95.6	96.5	97.5
- 4	86.3	87.2	88.2	89.1	90.1	9 I .1	92.0	93.0	94.0	94.9	95.9	96.9
. 8	85.7	86.7	87.6	88.5	S9.5	90.5	91.4	92.4	93.3	94.3	95.3	96.2
. 8	S5.2	S6. I	87.0	88.0	SS. 9	S9.9	90.8	91.8	92.7	93.7	94.7	95.6

Table 70.
DIFFERENCE OF HEIGHT CORRESPONDING TO A CHANGE OF 1 MILLIMETER IN THE BAROMETER.

METRIC MEASURES.

Barometric Pressure.	MEAN TEMPERATURE OF THE AIR IN CENTIGRADE DEGREES.									
	-2°	0°	2°	4°	6°	8°	10°	12°	14°	16°
$\begin{aligned} & \mathrm{mm} . \\ & 760 \end{aligned}$	$\begin{array}{\|c} \text { Meters. } \\ 10.48 \end{array}$	$\begin{gathered} \text { Meters. } \\ 10.57 \end{gathered}$	Meters. 10.65	$\begin{array}{\|c\|} \hline \text { Meters. } \\ 10.73 \end{array}$	Meters. IO.SI	Meters. $\text { Io. } 89$	Meters. $10.9 \mathrm{~S}$	Meters. II. 06	$\begin{gathered} \text { Meters. } \\ \text { II. I5 } \end{gathered}$	$\begin{gathered} \text { Meters. } \\ \text { I } 1.23 \end{gathered}$
750	10.62	10.71	10.79	10.87	10.95	II. 04	11.13	II. 2 I	II. 30	II. 38
740	10.77	10.85	10.93	1 I .02	II. 10	II. 19	II. 28	II 1. 36	11.45	II. 54
730	10.91	11.00	11.08	11.17	II. 26	II. 35	11.43	II. 52	11.61	11.70
720	11.06	II. 15	11.24	11.32	11.42	II. 51	II 1.59	I 1.68	I 1.77	I 1.86
710	I 1.22	11.31	I 1.40	II 1.48	II. 58	11.67	11.75	II. S_{5}	II 1.94	12.03
700	II. 3 S	11.47	11.56	11.65	II. 74	I 1.83	II. 92	12.02	12.11	12.20
690	I I. 55	11.63	11.72	11.82	11.91	12.00	12.09	12.19	12.28	12.38
680	11.72	II. So	$11 . \mathrm{S} 9$	11.99	12.08	12.18	12.27	12.37	12.46	12.56
670	II. 89	11.98	12.07	12.17	12.26	12.36	12.46	12.55	12.65	12.75
660	12.07	12.16	12.26	12.35	12.45	I2.55	12.65	12.74	12.84	12.94
650	12.26	12.35	12.45	12.54	12.64	12.74	12.84	12.94	13.04	13.14
640	I 2.45	12.55	12.64	12.74	12.84	12.94	13.04	I3.14	13.24	13.35
630	12.65	12.75	12.84	12.94	13.04	I3.15	13.25	13.35	13.45	13.56
620	12.85	12.96	13.05	13.15	${ }^{1} 3.25$	13.36	13.46	I 3.57	13.67	13.78
610	13.06	13.17	13.27	13.37	13.47	${ }^{1} 3.58$	${ }^{1} 3.68$	13.79	13.89	14.01
600	13.28	13.39	13.49	13.59	13.70	13.80	I3.91	14.02	14.13	14.24
590	I 3.51	13.62	13.72	13.82	13.93	14.03	I4. 15	14.26	14.37	14.48
5 So	13.74	13.85	${ }^{1} 3.96$	14.06	14.17	14.28	14.39	14.51	14.62	14.73
570	13.98	14.09	14.20	14.31	14.42	14.53	14.64	14.76	14.88	14.99
560	14.23	14.34	14.45	I. 4.57	14.68	I4.79	14.90	15.02	I5.14	I 5.25
Barom n tric Pressure.	MEAN TEMPERATURE OF THE AIR IN CENTIGRADE DEGREES.									
	18°	20°	22°	24°	26°	28°	30°	32°	34°	36°
$\begin{aligned} & \mathrm{mm} . \\ & 760 \end{aligned}$	Meters. $\text { II. } 32$	$\begin{gathered} \hline \text { Meters. } \\ \text { II. } 4 \mathrm{I} \end{gathered}$	Meters. $\text { II } 49$	Meters. 11.58	$\begin{gathered} \text { Meters. } \\ \text { I I. } 66 \end{gathered}$	$\begin{gathered} \hline \text { Meters. } \\ \text { II. } 75 \end{gathered}$	Meters. $\text { II. } 84$	Meters. 11.92	$\begin{array}{\|c\|} \hline \text { Meters. } \\ \text { I2.0I } \end{array}$	Meters. $\text { 12. } 10$
750	II. 47	II. 56	11.64	II. 73	II. S_{2}	11.91	12.00	12.08	12.17	12.26
740	11.63	II. 72	11.80	11.89	II.98	12.07	12.16	12.24	12.33	12.42
730	II. 79	II .88	11.96	12.05	12.15	12.23	12.32	12.41	12.50	12.59
720	11.95	12.04	12.13	12.22	12.32	12.40	12.49	12.58	12.68	12.77
710	I2.12	12.21	12.30	12.39	12.49	12.58	12.67	12.76	I2. 86	12.95
700	12.29	12.39	12.48	12.57	12.67	12.76	12.85	12.94	13.04	13.13
690	12.47	12.57	12.66	12.75	12.85	12.94	13.04	13.13	13.23	13.32
6So	12.66	12.75	12.85	12.94	13.04	I3.13	13.23	13.32	13.42	13.52
670	12.85	12.94	13.04	13.14	13.23	${ }^{1} 3.33$	13.43	13.52	13.62	I 3.72
660	13.04	13.14	13.24	13.34	13.43	13.53	13.63	13.73	13.83	13.93
650	I 3.24	I3.34	13.44	13.54	13.64	13.74	13.84	13.94	1.4 .04	14.15
640	13.45	13.55	13.65	13.75	13.85	13.96	14.06	14.15	14.26	14.37
630	13.66	13.76	13.87	13.97	14.07	14.18	14.28	14.38	14.49	14.60
620	13.85	13.98	14.09	14.20	14.30	14.41	14.51	14.62	14.72	14.83
610	14.11	14.2 I	14.32	14.43	14.54	14.64	14.75	14.86	14.96	15.07
600	14.35	14.45	14.56	14.67	14.78	14.89	${ }^{1} 5.00$	${ }^{15} 511$	15.21	15.32
590	14.59	14.70	14.81	14.92	15.03	15.14	15.25	15.36	15.47	15.59
580	14.84	14.95	15.07	15.17	15.29	15.40	${ }^{15} 5.52$	15.63	15.74	15.86
570	15.10	15.21	15.33	15.44	15.56	15.67	15.79	15.91	16.02	16.14
560	15.37	15.48	15.60	15.72	15.84	15.95	16.07	16.19	16.30	16.42

Table 71.

DETERMINATION OF HEIGHTS BY THE BAROMETER.

Formula of Babinet.

$$
z=C \frac{B_{0}-B}{B_{0}+B}
$$

$C($ in feet $)=52494\left[1+\frac{t_{0}+t-64}{900}\right]-$ English Measures.
C (in metres) $=16000\left[1+\frac{2\left(t_{0}+t\right)}{1000}\right]$-Metric Measures.
In which $Z=$ Difference of height of two stations in feet or metres.
$B_{0}, B=$ Barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.
$t_{0}, t=$ Air temperatures at the lower and upper stations respectively.
Values of C.
ENGLISH MEASURES.

$1 / 2\left(t_{0}+\mathbf{t}\right)$.	$\log C$.	c.
F.		Feet.
10°	4.69834	4992 S
15	. 70339	50511
20	.70837	51094
25	.71330	51677
30	.71518	52261
35	4.72300	52844
40	. 72777	53428
45	. 73248	5401 I
50	. 73715	54595
55	.74177	55178
60	4.74633	55761
65	. $750 \mathrm{~S}_{5}$	56344
70	. 75532	56927
75	. 75975	5751 I
So	.76413	5So94
85	4.76847	5S677
90	. 77276	59260
95	.77702	59844
100	.78123	60427

$1 / 2\left(t_{0}+\mathbf{t}\right)$.	$\log C$.	c.
c.		Metres.
-10°	4.IS639	15360
-8	. 19000	15488
-6	. 19357	15616
-4	. 19712	15744
-2	. 20063	15872
0	4.20412	16000
$+2$. 20758	16128
4	. 211 IOI	16256
6	. 21442	16384
S	. 21780	16512
10	4.22II5	16640
12	. 224.48	16768
14	. 22778	16896
16	.23106	17024
18	. $23+3 \mathrm{I}$	17152
20	4.23754	17280
22	. 2.4075	17408
24	. 24393	${ }^{17536}$
26	.24709	17664
28	. 25022	17792
30	4.25334	17920
32	. 25643	$1 \mathrm{SO}_{48}$
34	. 25950	${ }_{18176}$
36	. 26255	$1 \mathrm{~S}_{3} 04$

8mithbonian Tables.

Table 72.
BAROMETRIC PRESSURES CORRESPONDING TO THE TEMPERATURE OF THE BOILING POINT OF WATER.

ENGLISH MEASURES.

$\begin{gathered} \text { Tempera- } \\ \text { ture. } \\ \hline \end{gathered}$. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
F	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
185°	17.075	17.112	17.150	17.187	17.224	17.262	17.300	17.337	17.375	17.413
186	17.450	17.488	17.526	17.564	17.602	17.641	17.679	17.717	17.756	17.794
187	17.832	17.871	17.910	17.948	17.987	18.026	18.065	IS.104	18.143	18.182
188	18.221	18.261	18.300	18.340	18.379	18.419	18.458	18.498	18.538	18.578
189	18.618	18.658	18.698	18.738	18.778	18.818	18.859	18.899	18.940	18.980
190	19.02 I	19.062	19.102	19.143	19.184	19.225	19.266	19.308	19.349	19.390
191	19.431	19.473	19.514	19.556	19.598	19.639	19.681	19.723	19.765	19.807
192	19.849	19.892	19.934	19.976	20.019	20.061	20.104	20.146	20.189	20.232
193	20.275	20.318	20.361	20.404	20.447	20.490	20.533	20.577	20.620	20.664
194	20.707	20.751	20.795	20.839	20.883	20.927	20.971	21.015	21.059	21.103
195	21.148	21.192	21.237	21.282	21.326	21.371	21.416	21.461	21.506	21.551
196	21.597	21.642	21.687	21.733	21.778	21.824	21.870	21.915	21.961	22.007
197	22.053	22.099	22.145	22.192	22.238	22.284	22.33 I	22.377	22.424	22.471
198	22.517	22.564	22.611	22.658	22.706	22.753	22.800	22.847	22.895	22.942
199	22.990	23.038	23.085	23.133	23.181	23.229	23.277	23.325	23.374	23.422
200	23.470	23.519	23.568	23.616	23.665	23.714	23.763	23.812	23.861	23.910
201	23.959	24.009	24.058	24.108	24.157	24.207	24.257	24.307	24.357	24.407
20	24.457	24.507	24.557	24.608	24.658	24.709	24.759	24.810	24.861	24.912
203	24.963	25.014	25.065	25.116	25.168	25.219	25.27 I	25.322	25.374	25.426
204	25.478	25.530	25.582	25.634	25.686	25.738	25.791	25.843	25.896	25.948
205	26.001	26.054	26.107	26.160	26.213	26.266	26.319	26.373	26.426	26.480
206	26.534	26.587	26.641	26.695	26.749	26.803	26.857	26.912	26.966	27.021
207	27.075	27.130	27.184	27.239	27.294	27.349	27.404	27.460	27.515	27.570
208	27.626	27.681	27.737	27.793	27.848	27.904	27.960	28.016	28.073	28.129
209	28.185	28.242	28.298	28.355	28.412	28.469	28.526	28.583	28.640	28.697
210	28.754	28.812	28.869	28.927	28.985	29.042	29.100	29.158	29.216	29.275
211	29.333	29.391	29.450	29.508	29.567	29.626	29.685	29.744	29.803	29.862
212	29.92 I	29.981	30.040	30.100	30.159	30.219	30.279	30.339	30.399	30.459
213	30.519	30.580	30.640	30.701	30.761	30.822	30.883	30.944	31.005	31.066
214	31.127	31.199	31.250	31.311	31.373	31.435	31.497	31.559	31.621	31.683

METRIC MEASURES.
Table 73.

Tempera- ture.	. 0	. 1	. 2	.3	. 4	. 5	. 6	. 7	. 8	. 9
.	mm.									
80°	355.40	356.84	358.28	359.73	361.19	362.65	364.1 I	365.58	367.06	368.54
81	370.03	371.52	373.01	374.51	376.02	377.53	379.05	380.57	382.09	383.62
82	385.16	386.70	388.25	389.80	391.36	392.92	394.49	396.06	397.64	399.22
83	400.8 I	402.40	404.00	405.6I	407.22	408.83	$4^{10.45}$	412.08	413.71	415.35
84	416.99	418.64	420.29	421.95	423.61	425.28	426.95	428.64	430.32	432.01
85	433.71	435.41	437.12	438.83	440.55	442.28	444.01	445.75	447.49	449.24
86	450.99	452.75	454.51	456.28	458.06	459.84	461.63	463.42	465.22	467.03
87	468.84	470.66	472.48	474.31	476.14	477.99	479.83	481.68	483.54	485.41
88	487.28	489.16	491.04	492.93	494.82	496.72	498.63	500.54	502.46	504.39
89	506.32	508.26	510.20	512.15	514.11	516.07	518.04	520.01	521.99	523.98
90	525.97	527.97	529.98	531.99	534.01	536.04	538.07	540.11	542.15	544.21
91	546.26	548.33	550.40	552.48	554.56	556.65	558.75	560.85	562.96	565.08
92	567.20	569.33	571.47	573.61	575.76	577.92	580.08	582.25	584.43	586.6 x
93	588.80	591.00	593.20	595.4 I	597.63	599.86	602.09	604.33	606.57	608.82
94	611.08	613.35	615.62	617.90	620.19	622.48	624.79	627.09	629.41	631.73
95	634.06	636.40	638.74	641.09	643.45	645.82	648.19	650.57	652.96	655.35
96	657.75	660.16	662.58	665.00	667.43	669.87	672.32	674.77	677.23	679.70
97	682.18	684.66	687.15	689.65	692.15	694.67	697.19	699.71	702.25	704.79
98	707.35	709.90	712.47	715.04	717.63	720.22	722.8 I	725.42	728.03	730.65
99	733.28	735.92	738.56	741.21	743.87	746.54	749.22	751.90	754.59	757.29
100	760.00	762.72	765.44	768.17	770.91	773.66	776.42	779.18	781.95	784.73

HYGROMETRICAL TABLES.

Pressure of aqueous vapor over ice—English measures . . . Table 74
Pressure of aqueous vapor over water-English measures . . Table 75
Pressure of aqueous vapor over ice—Metric measures . . . Table 76
Pressure of aqueous rapor over water-Metric measures . . Table 77
Pressure of aqueous vapor over ice-Dynamic measures . . Table 78
Pressure of aqueous rapor over water-Dynamic measures . . Table 79
Weight of a cubic foot of saturated vapor-English measures . Table So
Weight of a cubic meter of saturated vapor-Metric measures . Table 8I

Table 74.
PRESSURE OF AQUEOUS VAPOR OVER ICE.
ENGLISH MEASURES.

Temperature.	Vapor Pressure.	Tempera ture.	Vapor Pressure.	Tempera- e. ture.	Vapor Pressure.	Tempera ture.	Vapor Pressure.		Temperature.	Vapor Pressure.
F.	Inches.	F -45°	Inches.	. $\begin{gathered}\text { F. } \\ -30^{\circ}\end{gathered}$	Inches.		Inches.		${ }^{\text {F. }} 5^{\circ}$	inches.
	0.00099		0. 00275		0.0070				$7{ }^{\circ}$	0. 02556
59	. 00107	7		$4{ }^{-29}$. 0074	14.5		I 738	7.0	02626
58	OOI 14	43	. 00313	$13-28$. 0079	514.0		1787	6.5	. 02698
57	. 00123	3	. 00334	34	. 0084	413.5		1838	6.0	. 02771
56	. 00131	I 41	. 00356	26	. 0089	$6 \quad 13.0$		90	$5 \cdot 5$. 02847
-55	. 00141	I -40	. 00379	$79-25$. 000	$1-12.5$		43 -	-50	. 02924
54	. 00151	1 19	. 00404	424	. 0100	12.0		1998	4. 5	. 03003
53	. 00161	$1{ }^{8}$. 00431	123	- or Io6	9 II. 5		2054	4.0	. 03084
52	. 00173	3 37	. 00458	8 22	. OII 13	33 I1.0		2111	3.5	. 03168
51	. 00185	5 - 36	. 00488	8	. 0120	10.5		170	3.0	. 03253
-50	. 00198	$8-35$. 00519	$19-20$. O 12	$22-10.0$		230 -	-2.5	. 03340
49	. 00211	134	. 00552	52 19	. 0134	47 -9.5		292	2.0	. 03429
48	. 00226	633	. 00588	18	. 014	6 9.0		356	I. 5	. 03520
47	. 00241	132	. 00625	25 17	. 01510	108.5		421	-	. 03614
46	. 00258	8 31	. 00664	- 16		8.0	. 02487		0.5	. 03710
Temperat.	. 0	. 1	2	. 3	.4	.5	. 6	. 7	. 8	. 9
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	nches.	nches.	. Inches.	Inches.
0	0.038090	0.03829	0.038490	0.03869	0.03890	0.039100	0. 03930	0.03951	10.03971	10.03992
1	. 04013	. 04034	. 04055	. 04076	. 04097	. 04118	. 04140	. 04161	1.04183	3.04204
2	. 04226	. 04248	. 04270	. 04292	. 04314	. 04337	. 04359	. 04382	2 . 04404	+.04427
3	. 04450	. 04473	. 04496	. 04519	. 04543	. 04566	. 04590	. 0.4613	3.04637	7.04661
4	. 04685	.04709	. 04733	. 04758	. 04782	.04807	. 0.4831	. 0.4856	6 . 04881	I . 04906
5	. 04931	. 04956	. 04982	. 05007	. 05033	. 05058	.05084	. 05110	-. 05136	6.05102
6	. 05189	. 05215	05242	. 05269	. 05296	. 05322	. 05350	. 05377	7 . 05404	4.05431
7	. 05459	. 05487	. 05514	. 05.542	. 05570	. 05598	. 05627	. 05655	5.05684	4.05712
8	. 05741	. 05770	. 05799	. 05828	. 05858	. 05887	. 05917	. 05947	7.05977	7.06007
9	. 06037	. 06067	. 06098	. 06128	. 06159	. 06190	. 06221	. 06252	2.06283	3.06315
10	. 06346	. 06378	. 06410	. 06442	. 06474	. 06507	. 06539	06572	2.06605	5.06638
11	. 06670	. 06703	. 06737	. 06770	. 06804	. 06838	. 06872	. 06906	6.06940	-. 06975
12	. 07009	. 07044	. 07079	. 07114	. 07149	. 07184	. 07220	. 07256	6.07292	2.07328
13	. 07363	. 07399	. 07436	. 07472	. 07509	. 07546	. 07583	. 07621	1.07658	8, .07696
14	. 07733	. 07771	. 07809	. 07848	. 07886	. 07925	. 07964	. 08003	3 . 08042	$2 . .08082$
15	. O8I 21	.08161	. 08201	. 08241	.08281	. 08321	. 08362	. 08402	2.08443	3.08484
16	. 08525	. 08566	. 08608	. 08650	. 08602	.08734	. 08777	. 08SI9	9.08862	2.08905
17	. 08948	. 08991	. 09035	. 09079	. 00123	. 09167	. 09211	. 09255	55.09300	-. 09345
18	. 09390	. 09435	. 09481	. 09520	. 00572	. 09618	. 00664	. 09711	I . 09757	7 . ogSo4
19	. 09851	. 00898	. 09046	. 09994	. 10042	. 10090	. 10138	10186	$66 \cdot 10235$	5 . 10284
20	. 10333	. 10383	. 10432	. 10482	10532	. 10582	. 10633	. 10683	3.10734	$4 \cdot 10785$
21	. 10836	10888	. 10940	. 10992	. 11044	. 11096	. 11149	. 11202	2 . 11255	5.11308
22	. 11361	. 11415	. 11469	. 11523	. 11578	. 11632	. 11687	. 11742	22.11798	8 . 11853
23	. 11909	. 11965	. 12022	. 12078	. 12135	. 12192	. 12250	. 12307	7 . 12365	5.12423
24	. 12481	. 12540	. 12598	. 12657	. 12717	. 12776	. 12836	. 12896	6 . 12956	6.13017
25	. 13077	. 13138	. 13200	. 13261	. 13323	. 13385	. 13447	. 13510	10.13573	3.13636
26	. 13699	. 13763	. 13827	. 13891	. 13956	. 14021	. 14086	. 14151	11.14216	6 . 14282
27	. 14348	. 14415	. 14481	. 14548	. 14616	. 14683	. 14751	. 14819	19.14887	7.14956
28	. 15024	. 15093	. 15163	. 15233	. 15303	. 15374	. 15444	. 15515	5 . 15586	6.15658
29	. 15729	. 15801	. 15874	I 5947	. 16020	. 16093	. 16167	. 16241	1 . 16315	5.16389
30	. 16463	. 16538	. 16614	. 16600	. 16766	. 16842	. 16919	. 16996	6 . 17073	3.17150
31	. 17228	. 17306	. 17386	17466	. 17546	. 17626	. 17707	. 17788	- I7869	9.17950
32	. 18032									

Smithsonian Tables.

ENGLISH MEASURES.

Temperature.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
F.	Inches.									
32°	0.1803	0.1810	0.1818	0.1825	0.1833	0.1840	0.1847	0.1855	0.1862	0.1870
33	.1877	. 1885	.1893	. 1900	. 1908	.1915	. 1923	.1931	. 1939	. 1946
34	. 1954	. 1962	. 1970	. 1978	. 1986	.1994	. 2002	. 2010	. 2018	. 2026
35	. 2034	. 2042	. 2050	. 2059	. 2067	. 2075	. 2083	. 2091	. 2100	. 2108
36	. 2117	. 2125	. 2133	. 2142	. 2150	. 2159	. 2168	. 2176	. 2185	. 2193
37	. 2202	. 2211	. 2220	. 2228	. 2237	. 2246	. 2255	. 2264	. 2273	. 2282
38	. 2291	. 2300	. 2309	. 2318	. 2327	. 2336	. 2345	. 2355	. 2364	. 2373
39	.2382	. 2392	. 2401	. 2410	.2420	. 2429	. 2439	. 2448	. 2458	. 2467
40	. 2477	.2487	. 2496	. 2506	.2516	. 2526	. 2536	. 2545	. 2555	. 2565
41	. 2575	.2585	. 2595	. 2606	. 2616	. 2626	. 2636	. 2646	. 2656	. 2667
42	. 2677	. 2687	. 2698	. 2708	. 2719	. 2729	. 27.40	. 2750	. 2761	. 2771
43	. 2782	. 2793	. 2804	.2814	. 2825	. 2836	. 2847	. 2858	. 2869	. 2880
44	.2891	. 2902	. 2913	.2924	. 2935	. 2946	. 2958	. 2969	. 2981	. 2992
45	. 3003	. 3014	. 3026	. 3037	. 3049	.3061	. 3073	- 3084	. 3096	. 3108
46	. 3120	. 3132	. 3144	. 3156	. 3167	. 3179	. 3191	. 3203	. 3216	. 3228
47	. 3240	. 3252	. 3265	- 3277	-3289	. 3301	. 3314	. 3326	. 3339	. 3352
48	. 3365	. 3377	- 3390	- 3402	.3415	. 3428	. 3441	. 3454	. 3467	. 3480
49	- 3493	. 3506	. 3519	. 3532	. 3546	. 3559	. 3572	. 3585	. 3599	. 3612
50	. 3626	. 3639	.3653	. 3666	. 3680	-3694	- 3708	-3722	. 3736	. 3749
51	.3763	- 3777	-3791	.3805	. 3820	. 3834	. 3848	. 3862	.3876	. 3890
52	. 3905	.3919	. 3934	- 3948	. 3963	-3978	- 3993	. 4007	. 4022	. 4037
53	. 4052	. 4067	. 4082	.4097	-4112	.4127	. 4142	.4157	.4172	. 4187
54	. 4203	. 4218	. 4234	.4249	.4265	. 4280	. 4296	.4312	. 4328	. 4343
55	. 4359	. 4375	. 4391	. 4407	. 4423	. 4439	. 4455	. 447 I	. 4488	. 4504
56	. 452 I	. 4537	. 4554	. 4570	. 4587	. 4603	. 4620	. 4637	. 465.4	. 4670
57	. 4687	. 4704	. 4721	. 4738	. 4755	. 4772	. 4790	. 4807	. 4824	. 48.11
58	. 4859	. 4876	. 4894	. 4912	. 4930	. 4947	. 4965	. 4983	. 5001	. 5019
59	. 5037	. 5055	. 5073	.5091	. 5110	. 5128	. 5146	. 5164	. 5183	. 5201
60	. 5220	. 5239	. 5258	. 5276	- 5295	. 5314	. 5333	. 5352	-5371	. 5390
61	. 5409	. 5428	. 5448	. 5467	. 5486	. 5505	. 5525	. 5545	. 5565	. 5584
62	. 5604	. 5624	. 56.44	.5663	. 5683	. 5703	. 5724	. 5744	. 5764	. 5784
63	. 5805	. 5825	. 58.46	. 5866	. 5887	. 5908	. 5929	. 5950	. 5971	. 5992
64	. 6013	. 6034	. 6055	. 6076	. 6097	.6118	. 6140	.6161	. 6183	. 620.4
65	. 6226	. 6248	. 6270	. 6292	. 6314	.6336	. 6358	. 6380	. 6402	. 6424
66	. 6447	. 6469	. 6492	. 6514	. 6537	. 6559	.6582	. 6605	. 6628	. 6651
67	. 6674	. 6697	. 6721	. 6744	. 6767	. 6790	. 6814	.6837	. 6861	. 6885
68	. 6909	. 6932	. 6956	. 6980	. 7004	. 7028	. 7053	. 7077	. 7101	. 7125
69	. 7150	. 7174	.7199	. 7224	. 7249	. 7274	. 7299	.7324	. 7348	. 7373
70	. 7399	. 7424	. 7449	. 7474	. 7500	. 7526	.7552	. 7577	. 7603	. 7629
71	. 7655	.7681	. 7707	. 7733	. 7760	. 7786	. 7813	. 7839	. 7866	. 7892
72	. 7919	. 7946	. 7973	. 8000	. 8027	. 8054	. 8081	. 8108	.8136	. 8163
73	.8191	. 8219	. 8247	. 8274	. 8302	. 8330	. 8358	. 8386	. 8414	. 8442
74	. 8471	. 8499	. 8528	. 8556	.8585	.8614	. 8643	. 8672	.8701	. 8730
75	. 8760	. 8789	.88ı8	. 8847	. 8877	. 8007	. 8937	. 8966	. 8996	. 9026
76	. 9056	. 9086	.9117	.9147	. 9178	. 9208	. 9239	. 9269	. 9300	. 9331
77	. 9362	. 9393	.9424	. 9455	. 9487	.9518	. 9550	. 9581	. 9613	.9645
78	. 9677	. 9709	. 9741	. 9773	. 9805	.9837	. 9870	. 9902	. 9935	. 9968
79	1.0001.	1.0033	1.0066	1.0099	1.0133	1.0166	1.0199	1.0232	1.0266	1.0300
80	1.0334	1.0367	1.0401	1.0435	1.0470	1.0504	1.0538	1.0572	1.0607	1.064 1

Table 75.
PRESSURE OF AQUEOUS VAPOR OVER WATER.
ENGLISH MEASURES.

Temperature.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
F.	Inches.									
80°	1.0334	1.0367	1.0401	1.0435	1.0470	1.0504	1.0538	1.0572	1.0607	1.0641
81	1.0676	1.0711	1.0746	1.0781	1.0816	1.0851	1.0887	1.0022	1.0958	1.0993
82	1.1029	1.1065	1.1ioi	1.1137	1.1173	1.1209	1.1246	1.1282	I.1319	1.1355
83	1.1392	1.1429	1.1466	1.1503	1.1540	1.1577	1.165	1.1652	1.1690	1.1727
84	1.1765	1.1803	I.IS4I	1.1879	1.1917	1.1955	1.1994	1. 2032	1.2071	1.2110
85	1.2149	1.2188	1.2227	1. 2266	1.2305	1.2344	1.2384	I. 2423	1.2463	1.2503
86	1.2543	1.2583	I. 2623	I. 2663	1.2704	1.2744	1.2785	1. 2826	1.2867	1.2908
87	I. 2949	1. 2990	1.3031	1.3072	1.3114	I. 3155	1.3197	I. 3239	1.3281	1.3323
88	1.3365	1.3407	I. 3450	1. 3492	1.3535	1.3578	1.3621	I. 3664	1.3707	1.3750
89	I. 3794	1.3837	1.3881	1.3925	I. 3969	1.4013	1.4057	I. 410 I	1.4146	1.4190
90	1.4234	1.4279	I. 4324	1. 4360	1.44 I 4	I. 4459	1.4505	I. 4550	1.4596	1.4642
91	1.4688	1.4734	1.4780	1. 4826	1.4872	1.4918	I. 4965	1.5012	1.5059	1.5106
92	1.5153	1. 5200	I. 5247	I. 5294	I. 5342	1.5390	1.5438	I. 5486	1. 5534	1.5582
93	I. 5630	1.5678	1.5727	1.5776	1.5825	1.5874	1.5923	1.5972	1.6022	1.6071
94	1.612I	1.6171	1.6221	1.6271	1.632 I	1.6371	1. 6422	1.6472	1.6523	1. 6574
95	1. 6625	1.6676	1.6728	1.6779	1.683I	1.6882	1.6934	I. 6986	1.7038	1.7090
96	1.7143	1.7195	1.7248	1.7301	1.7354	1.7407	1. 7460	1.7513	1.7567	1.7620
97	1.7674	1. 7728	1.7782	1. 7836	1.7891	1.7945	I. 8000	I. 8055	1.SIIO	1. 81.65
98	1.8220	1.8275	1.8331	1.8386	1.8442	1.8498	I. 8554	1.8610	1. 8667	1.8723
99	1.8780	1.8837	1.8894	1.8951	1.9008	1.9065	1.9123	1.9ISI	1.9239	1.9297
100	1.9355	1.9413	1.9472	1.9530	1.9589	1.9648	1.9707	1.9766	1.9826	1.9885
101	1.9945	2.0005	2.0065	2.0125	2.0185	2.0245	2.0306	2.0367	2.0428	2.0489
102	2.0550	2.0611	2.0673	2.0735	2.0797	2.0859	2.0921	2.0083	2.10 .46	2.1108
103	2.1171	2.1234	2.1298	2.1361	2.1425	2.1488	2.1552	2.1616	2.1680	2.1744
104	2.1809	2.1874	2.1939	2.2004	2.2069	2.2134	2.2200	2.2265	2.2331	2.2397
105	2.2463	2.2529	2.2596	2.2663	2.2730	2.2797	2.2864	2.2931	2.2999	2.3067
106	2.3135	2.3203	2.3271	2.3339	2.3408	2.3477	2.3546	2.3615	2.3684	2.3753
107	2.3823	2.3893	2.3963	2.4033	2.4103	2.4173	2.4244	2.4315	2.4386	2.4457
108	2.4529	2.4600	2.4672	2.4744	2.4816	2.4888	2.4961	2.5033	2.5106	2.5179
109	2.5252	2.5325	2.5399	2.5473	2.5547	2.562 I	2.5695	2.5770	2.5845	2.5919
110	2.5994	2.6069	2.6145	2.6220	2.6296	2.6372	2.6448	2.6524	2.6601	2.6678
III	2.6755	2.6832	2.6909	2.6986	2.7064	2.7142	2.7220	2.7298	2.7377	2.7456
I	2.7535	2.7614	2.7693	2.7772	2.7852	2.7932	2.8012	2.8002	2.8173	2.8253
II3	2.8334	2.8415	2.8496	2.8577	2.8659	2.8741	2.8823	2.8905	2.8988	2.9070
II4	2.9153	2.9236	2.9320	2.9403	2.9487	2.957 I	2.9655	2.9739	2.9823	2.9908
115	2.9993	3.0078	3.0163	3.0248	3.0334	3.0420	3.0506	3.0592	3.0679	3.0766
116	3.0853	3.0940	3.1027	3.1115	3.1203	3.1291	3.1379	3.1467	3.1556	3.1645
117	3.1734	3.1823	3.1913	3.2003	3.2093	3.2183	3.2273	3.2364	3.2455	3.2546
118	3.2637	3.2728	3.2820	3.2912	3.300.4	3.3096	3.3189	$3 \cdot 3282$	3.3375	3.3468
119	3.3562	$3 \cdot 3655$	3.3749	$3 \cdot 3843$	3.3938	3.4032	3.4127	3.4222	3.4318	3.4413
120	3.4509	3.4605	3.4701	3.4797	3.489 .4	3.499 I	3.5088	3.5185	3.5283	3.5381
121	3.5479	3.5577	3.5676	3.5774	3.5873	3.5972	3.6072	3.6172	3.6272	3.6372
122	3.6472	3.6573	3.6674	3.6775	3.6876	3.6977	3.7079	3.7181	3.7284	3.7386
123	3.7489	3.7592	3.7695	3.7799	3.7903	3.8007	3.8111	3.8215	3.8320	3.8425
124	3.8530	3.8636	3.8742	3.8848	3.8954	3.9060	3.9107	3.9274	3.938 I	3.9488
125	3.9596	3.9704	3.9813	3.9921	4.0030	4.0139	4.0248	4.0357	4.0467	4.0577
126	4.0687	4.0797	4.0908	4.1019	4.1131	4.1242	4.1354	4.1466	4.1578	4.1690
127	4.1803	4.1916	4.2030	4.2143	4.2256	4.2370	4.2485	4.2599	4.2714	4.2829
128	4.2945	4.3061	4.3177	$4 \cdot 3293$	4.3410	4.3527	4.3645	4.3702	4.3880	4.3998
129	4.4116	4.4235	4.4354	4.4473	4.4592	4.47 II	4.483 I	4.4951	4.5072	4.5192
130	4.5313	$4 \cdot 5434$	4.5555	4.5677	4.5798	4.592 I	4.6043	4.6166	4.6289	4.6412

PRESSURE OF AQUEOUS VAPOR OVER WATER.

ENGLISH MEASURES.

Temperature.	. 0	. 1	. 2	. 3	. 4	.5	. 6	. 7	. 8	. 9
F.	Inches.									
130°	4.53 I	$4 \cdot 5+3$	4.556	4.568	4.580	4.592	4.604	4.617	4.629	4.641
131	4.654	4.666	4.678	4.691	4.703	4.716	4.728	4.741	4.754	4.766
132	4.779	4.792	4.80 .4	4.817	4.830	4.843	4.855	4.868	4.88 I	4.894
133	4.907	4.920	4.933	4.946	4.959	4.972	4.985	4.998	5.012	5.025
134	5.038	5.05 I	5.065	5.078	5.091	5.105	5.118	5.132	5.145	5.158
135	5.172	5.186	5.190	5.213	5.226	5.240	5.254	5.268	5.28 I	5.295
136	5.309	$5 \cdot 323$	5.337	$5 \cdot 35 \mathrm{I}$	5.365	5.379	5.392	5.407	5.42 I	5.435
137	5.449	5.463	5.477	5.492	$5 \cdot 506$	$5 \cdot 520$	5.535	5.549	5.563	5.578
138	5.592	5.607	5.621	5.636	5.650	5.665	5.680	5.694	5.709	5.724
139	$5 \cdot 739$	5.754	5.768	$5 \cdot 783$	$5 \cdot 798$	5.813	5.828	5.843	5.858	5.873
140	5.889	5.904	5.919	5.934	5.949	5.965	5.980	5.995	6.011	6.026
141	6.041	6.057	6.072	6.088	6.104	6.119	6.135	6.151	6.166	6.182
142	6.198	6.214	6.229	6.245	6.261	6.277	6.293	6.309	6.325	6.34 r
143	6.358	6.374	6.390	6.406	6.422	6.439	6.455	6.472	6.488	6.504
144	6.52 I	6.537	6.554	6.571	6.587	6.604	6.621	6.637	6.654	6.671
145	6.688	6.705	6.722	6.739	6.756	6.773	6.790	6.807	6.824	6.841
146	6.858	6.876	6.803	6.910	6.928	6.945	6.962	6.980	6.997	7.015
147	7.032	7.050	7.068	7.085	7.103	7.121	7.139	7.156	7.174	7.192
148	7.210	7.228	7.246	7.264	7.282	7.300	7.319	$7 \cdot 337$	$7 \cdot 355$	7.374
149	7.392	7.410	$7 \cdot 429$	7.447	$7 \cdot 466$	$7 \cdot 484$	$7 \cdot 503$	$7 \cdot 52 \mathrm{I}$	7.540	7.559
150	7.577	7.596	7.615	7.634	7.653	7.672	7.691	7.710	7.729	7.748
151	7.767	7.786	7.805	7.824	7.844	7.863	7.882	7.902	7.921	7.941
152	7.960	7.980	8.000	8.019	8.039	8.059	8.078	8.098	8.118	8.138
153	8.158	8.178	8.108	8.218	8.238	8.258	8.278	8.298	8.319	8.339
I 54	8.360	8.380	8.400	8.42 I	8.441	8.462	8.482	8.503	8.524	8.545
155	8.565	8.586	8.607	8.628	8.649	8.670	8.69 I	8.712	8.733	8.754
156	S. 776	8.797	8.818	8.839	8.861	8.882	8.904	8.025	8.947	8.968
157	8.990	9.012	9.034	9.055	9.077	9.099	9.121	9.143	9.165	9.187
158	9.209	9.231	9.253	9.276	9.298	9.320	9.342	9.365	9.387	9.410
159	9.432	9.455	9.478	9.500	9.523	9.546	9.569	9.592	9.615	9.638
160	9.661	9.684	9.707	9.730	9.753	9.776	9.799	9.823	9.846	9.870
161	9.893	9.916	9.940	9.964	9.987	10.011	10.035	10.059	10.082	10.106
162	10. 130	10.154	10.178	10.203	10.227	10.251	10.275	10.299	10.324	10.348
r63	10.373	10.397	10.422	10.446	10.471	10.495	10.520	10.545	10.570	10.595
164	10.620	10.645	10.670	10.695	10.720	10.745	10.770	10.795	10.821	10.846
165	10.872	10.897	10.922	10.948	10.974	10.999	11.025	11.051	11.077	II.102
166	I1.128	11.154	11.180	11.206	11.232	11.258	II. 284	11.311	11.337	11.363
167	11.390	11.417	II. 444	11.470	Ir. 497	11.523	11.550	11.577	11.604	11.631
168	11.658	11.685	11.712	11.739	11.766	11.793	II.82I	11.848	I 1.875	11.903
169	11.930	11.957	11.985	12.013	12.040	12.068	12.096	12.124	12.152	12.180
170	12.208	12.236	12.264	12.292	12.320	12.349	12.377	12.406	12.434	12.463
171	12.49 I	12.520	12.548	12.577	12.606	12.635	12.664	12.693	12.722	12.75 I
172	12.780	12.809	12.838	12.868	I 2.897	12.927	12.956	12.986	13.015	13.045
173	13.074	13.104	13.134	13.164	13.194	13.224	13.254	13.284	I3.314	13.344
174	13.374	13.405	13.435	13.465	1 3.496	13.527	13.557	13.588	13.619	13.649
175	13.680	13.711	13.742	13.773	13.804	13.835	13.867	13.898	13.929	13.96I
176	13.992	14.024	14.055	14.087	14.118	14.150	14.182	1.4.214	14.246	14.278
177	14.310	14.342	14.374	14.406	14.438	14.47 I	14.503	1.4.536	14.568	14.601
178	14.633	14.666	14.699	14.731	14.764	14.797	14.830	14.864	14.897	14.930
179	14.963	14.996	15.030	15.063	15.097	15.130	15.164	15.197	15.231	15.265
180	15.299	15.333	15.367	15.401	15.435	15.469	15.504	15.538	15.572	15.607

Table 75.
PRESSURE OF AQUEOUS VAPOR OVER WATER.
ENGLISH MEASURES.

Temperature.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	.7	. 8	. 9
F.	Inches.									
180°	15.299	15.333	15.367	I5.401	15.435	15.469	15.504	15.538	15.572	15.607
181	15.641	15.676	15.710	15.745	15.780	15.815	15.850	15.885	15.920	15.955
182	15.990	16.025	16.060	16.096	16.131	16.167	16.202	16.238	16.274	16.309
183	16.345	16.381	16.417	16.453	16.489	16.525	16.561	16.598	16.634	16.670
184	16.707	16.743	16.780	16.817	I6.853	16.890	16.927	16.964	17.001	17.038
185	17.075	17.112	17.150	17.187	I7.224	17.262	17.300	17.337	17.375	17.413
186	17.450	17.488	17.526	17.564	17.602	17.641	17.679	17.717	17.756	17.794
187	17.832	17.87 I	17.910	17.9.48	17.087	18.026	18.065	18.104	18.143	18.182
188	18.221	18.261	18.300	18.340	18.379	18.419	18.458	18.498	18.538	18.578
189	18.618	18.658	18.698	18.738	18.778	18.818	18.859	18.899	18.940	18.980
190	19.021	19.062	19.102	19.143	19.184	19.225	19.266	19.308	19.349	19.390
191	19.431	19.473	19.514	19.556	10.598	19.639	19.681	19.723	19.765	19.807
192	19.849	19.892	19.934	19.976	20.019	20.061	20.104	20.146	20.189	20.232
193	20.275	20.318	20.361	20.404	20.447	20.490	20.533	20.577	20.620	20.664
194	20.707	20.751	20.795	20.839	20.883	20.927	20.97 I	21.015	21.059	21.103
195	21.148	21.102	21.237	21.282	21.326	21.371	21.416	21.461	21.506	21.551
196	21.597	21.642	21.687	21.733	21.778	21.824	21.870	21.915	21.961	22.007
197	22.053	22.099	22.145	22.192	22.238	22.284	22.331	22.377	22.424	22.471
198	22.517	22.504	22.611	22.658	22.706	22.753	22.800	22.847	22.895	22.942
199	22.990	23.038	23.085	23.133	23.181	23.229	23.277	23.325	23.374	23.422
200	23.470	23.519	23.568	23.616	23.665	23.714	23.763	23.812	23.861	23.910
201	23.959	24.009	24.058	24.108	24.157	24.207	2.4 .257	24.307	24.357	24.407
202	24.457	24.507	24.557	24.608	24.658	24.709	24.759	24.810	24.861	24.912
203	24.963	25.014	25.065	25.116	25.168	25.219	25.27 I	25.322	25.374	25.426
20.4	25.478	25.530	25.582	25.634	25.686	25.738	25.791	25.843	25.896	25.948
205	26.001	26.054	26.107	26.160	26.213	26.266	26.319	26.373	26.426	26.480
206	26.534	26.587	26.641	26.695	26.749	26.803	26.857	26.912	26.966	27.021
207	27.075	27.130	27.184	27.239	27.294	27.349	27.404	27.460	27.515	27.570
208	27.626	27.681	27.737	27.793	27.848	27.904	27.960	28.016	28.073	28.129
209	28.185	28.242	28.298	28.355	28.412	28.469	28.526	28.583	28.640	28.697
210	28.754	28.812	28.869	28.927	28.985	29.042	29.100	29.158	29.216	29.275
211	29.333	29.391	20.450	29.508	29.567	29.626	29.685	29.744	29.803	29.862
212	29.92 I	29.981	30.040	30.100	30.159	30.219	30.279	30.339	30.399	30.459
213	30.519	30.580	30.640	30.701	30.761	30.822	30.883	30.944	31.005	31.066
214	31.127	31.189.	31.250	31.3 II	31.373	31.435	31.497	31.559	31.621	31.683

Smithsonian Tables.

PRESSURE OF AQUEOUS VAPOR OVER ICE.
METRIC MEASURES

Table 77.
PRESSURE OF AQUEOUS VAPOR OVER WATER.
METRIC MEASURES.

$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture. } \end{aligned}$. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
C.	mm.									
0°	$4 \cdot 580$	4.614	4.647	4.68 I	4.715	4.750	4.784	4.819	4.854	4.889
1	4.924	4.960	4.996	5.032	5.068	5.105	5.142	5.179	5.216	5.254
2	5.291	$5 \cdot 329$	5.368	5.406	5.445	5.484	5.523	5.562	5.602	5.642
3	5.682	5.723	5.763	5.804	5.846	5.887	5.929	5.971	6.013	6.056
4	6.098	6.141	6.185	6.228	6.272	6.316	6.361	6.406	6.450	6.496
5	6.541	6.587	6.633	6.680	6.726	6.773	6.820	6.868	6.916	6.964
6	7.012	7.061	7.110	7.159	7.209	7.259	7.300	7.360	7.410	7.462
7	7.513	7.565	7.617	7.669	7.722	7.775	7.828	7.882	7.036	7.99 I
8	8.045	8.100	8.156	8.211	8.267	S. 324	8.380	S.437	8.494	8.552
9	8.610	S.669	8.727	8.786	8.846	8.906	8.966	9.026	9.087	9.148
10	9.210	9.272	9.334	9.397	9.460	9.523	9.587	9.651	0.716	0.78 x
I I	9.846	9.912	9.978	10.044	10.111	10.178	10.246	10.314	10.382	10.45 I
12	10.52 I	10.590	10.660	10.731	10.801	10.873	10.044	11.016	11.080	11.162
13	11.235	11.309	11.383	11.458	II. 533	11.608	I1.684	11.761	11.837	11.915
14	11.992	12.070	12.149	12.228	I 2.307	12.387	12.468	12.549	12.630	12.712
15	12.794	12.877	12.960	13.043	I3.127	13.212	13.297	13.383	13.460	13.555
15	13.642	13.729	13.817	13.906	13.995	14.084	14.174	14.265	14.356	14.447
17	14.539	14.632	14.725	14.818	14.912	15.007	15.102	15.197	15.203	15.390
18	15.487	15.585	15.683	15.782	15.882	15.981	16.082	16.183	16.285	16.387
19	16.489	16.593	16.696	16.801	16.906	17.011	17.117	17.224	17.331	17.439
20	17.548	17.657	17.766	17.877	17.987	18.009	18.211	18.323	18.437	18.551
21	18.665	18.780	18.896	19.012	19.129	19.247	10.365	19.484	19.603	19.723
22	19.844	19.965	20.087	20.210	20.333	20.457	20.582	20.707	20.833	20.960
23	21.087	21.215	21.344	21.473	21.604	21.734	21.866	21.998	22.131	22.264
24	22.398	22.533	22.669	22.805	22.942	23.080	23.219	23.358	23.498	23.638
25	23.780	23.022	24.065	24.209	24.353	24.498	${ }_{24}{ }^{4} 644$	24.791	24.938	25.086
26	25.235	25.385	25.535	25.687	25.839	25.901	26.145	26.299	26.455	26.610
27	26.767	26.925	27.083	27.242	27.402	27.563	27.725	27.887	28.051	28.215
28	28.380	28.546	28.712	28.880	29.048	29.217	29.387	29.558	29.730	29.903
29	30.076	30.25 I	30.426	30.602	30.779	30.957	31.136	31.315	31.496	31.678
30	31.860	32.043	32.228	32.413	32.599	32.786	32.074	33.163	33.353	33.543
31	33.735	33.928	34.121	34.316	34.512	34.708	34.906	35.104	35.303	35.504
32	35.705	35.008	36.111	36.315	36.52 I	36.727	36.035	37.143	37.353	37.563
33	37.775	37.987	38.201	38.415	38.631	38.848	30.065	39.284	39.504	39.725
34	39.947	40.170	40.394	40.619	40.846	41.073	41.302	41.531	41.762	41.994
35	42.227	42.46 I	+2.696	42.932	43.170	43.408	43.648	43.889	44.131	44.374
36	44.619	44.804	45.111	$45 \cdot 358$	45.608	45.858	46.109	46.362	46.615	46.870
37	47.127	47.384	47.643	47.902	48.163	48.426	48.689	48.054	49.220	49.487
38	49.756	50.025	50.296	50.560	50.842	51.117	51.393	51.670	51.949	52.229
39	52.510	52.793	53.077	53.362	53.649	53.937	54.226	54.516	54.808	55.101
40	$55 \cdot 396$	55.692	55.989	56.288	56.588	56.889	57.102	57.496	57.802	58.109
41	58.417	58.727	59.038	59.351	50.665	59.9 ${ }^{\text {I }}$ I	60.298	00.616	60.036	61.257
42	61.580	61.004	62.230	62.557	62.886	63.216	63.547	63.880	64.215	64.551
43	64.889	65.228	65.560	65.911	66.255	66.600	66.947	67.295	67.645	67.997
44	68.350	68.704	69.06 I	69.419	69.778	70.139	70.502	70.866	71.232	71.599
45	71.968	72.339	72.712	73.086	73.461	73.839	74.218	74.598	74.981	75.365
46	75.751	76.138	76.527	76.918	77.311	77.705	78.101	78.499	78.808	79.300
47	79.703	80.107	80.514	80.922	81.332	81.744	82.158	82.573	82.990	83.409
48	83.830	84.253 88.58	84.677	85.104	85.532	85.962	86.304	86.828	87.263	87.701
49	SS.140	88.581	80.024	S0.470	89.916	90.365	90.816	91.269	91.723	92.180
50	92.639	93.099	93.562	94.026	94.492	94.961	95.431	95.903	96.378	96.854

METRIC MEASURES.

Temture.	. 0	. 1	. 2	. 3	. 4	.5	. 6	. 7	. 8	. 9
C.	mm.									
50°	92.64	93.10	$93 \cdot 56$	94.03 .	94.49	94.96	95.43	95.90	96.38	96.85
51	97.33	97.81	98.30	98.78	99.27	99.76	100.25	100.74	IOI. 23	101.73
52	102.23	102.73	103.23	103.74	104.25	104.75	105.27	105.78	106.30	106.81
53	107.33	107.86	108.38	108.91	109.44	109.97	110.50	111.04	111.57	112.11
54	I 12.66	113.20	113.75	114.30	114.85	115.40	115.96	116.51	117.07	117.64
55	118.20	118.77	119.34	119.91	120.49	121.06	121.64	122.22	122.81	123.39
56	123.98	124.57	125.16	125.76	126.36	126.96	127.56	128.17	128.77	129.38
57	130.00	130.61	131.23	131.85	132.47	133.10	133.73	1 34.36	134.99	135.62
58	136.26	136.90	137.54	I38.19	138.84	139.49	140.14	140.80	141.46	142.12
59	142.78	143.45	144.12	144.79	145.46	146.14	146.82	I 47.50	148.19	148.88
60	149.57	150.26	150.95	151.65	152.35	153.06	153.77	I 54.48	155.19	I55.90
61	156.62	157.34	158.07	158.79	159.52	160.26	160.99	161.73	162.47	163.21
62	163.96	164.71	165.46	166.22	166.98	167.74	168.50	169.27	170.04	170.81
63	171.59	172.37	173.15	173.93	174.72	175.51	176.31	177.10	177.91	178.71
64	179.52	180.32	181.14	181.95	182.77	183.59	18.42	185.25	186.08	186.91
65	187.75	188.59	189.44	190.28	191.13	191.99	192.85	193.71	19.4 .57	195.44
66	196.31	197.18	198.06	198.94	199.82	200.71	201.60	202.49	203.39	204.29
67	205.19	206.10	207.01	207.92	208.84	209.76	210.68	211.61	212.54	213.47
68	$214.4{ }^{1}$	215.35	216.30	217.24	218.20	219.15	220.11	221.07	222.04	223.01
69	223.98	224.96	225.94	226.92	227.91	228.90	229.89	230.89	231.89	232.90
70	233.91	234.92	235.94	236.96	237.98	239.01	240.04	241.08	242.12	243.16
71	244.21	245.26	246.31	247.37	248.43	249.50	250.57	251.64	252.72	253.80
72	254.88	255.97	257.07	258.16	259.27	260.37	261.48	262.59	263.71	$26+83$
73	265.96	267.08	268.22	269.35	270.50	271.64	272.79	273.94	275.10	276.26
74	277.43	278.60	279.77	280.95	282.13	283.32	284.5 1	285.71	286.90	288.11
75	289.32	290.53	291.74	292.97	294.19	295.42	296.65	297.89	299.13	300.38
76	301.63	302.89	304.15	305.4 I	306.68	307.95	309.23	310.51	311.80	313.09
77	314.38	315.68	316.99	318.30	319.61	320.93	322.25	323.58	324.91	326.25
78	327.59	328.93	330.28	331.64	333.00	334.36	335.73	337.10	3384^{88}	339.86
79	341.25	342.65	344.04	$3+5.44$	346.85	348.26	349.68	351.10	352.53	3.33 .96
80	355.40	356.84	358.28	359.73	361.19	362.65	364.11	365.58	367.06	368.54
81	370.03	371.52	373.01	374.51	376.02	377.53	379.05	380.57	382.09	383.62
82	385.16	386.70	388.25	389.80	391.36	392.92	394.49	396.06	397.64	399.22
83	400.81	402.40	+04.00	405.61	407.22	408.83	410.45	412.08	413.71	415.35
84	416.99	418.64	420.29	421.95	423.61	425.28	426.95	428.64	430.32	432.01
85	433.71	$435 \cdot 41$	437.12	438.83	440.55	442.28	444.01	445.75	447.49	449.24
86	450.99	452.75	454.51	456.28	458.06	459.84	$46 \pm .63$	463.42	465.22	467.03
87	468.84	470.66	472.48	474.31	476.14	477.99	479.83	481.68	483.54	485.41
88	487.28	489.16	491.04	492.93	494.82	496.72	498.63	500.54	502.46	504.39
89	506.32	508.26	510.20	512.15	514.11	516.07	518.04	520.01	521.99	523.98
90	525.97	527.97	529.98	531.99	534.01	536.04	538.07	540.11	542.15	544.21
91	546.26	548.33	550.40	552.48	554.56	556.65	558.75	560.85	562.96	565.08
92	567.20	569.33	571.47	573.61	575.76	577.92	580.08	582.25	58.4.43	586.61
93	588.80	591.00	593.20	595.41	597.63	599.86	602.09	604.33	606.57	608.82
94	611.08	613.35	615.62	617.90	620.19	622.48	624.79	627.09	629.41	631.73
95	634.06	636.40	638.74	641.09	643.45	645.82	648.19	650.57	652.96	$655 \cdot 35$
96	657.75	660.16	662.58	665.00	667.43	669.87	672.32	674.77	677.23	679.70
97	682.18	684.66	687.15	689.65	692.15	694.67	697.19	699.71	702.25	704.79
98	707.35	709.90	712.47	715.04	717.63	720.22	722.81	725.42	728.03	730.65
99	733.28	735.92	738.56	741.21	743.87	746.54	749.22	751.90	754.59	757.29
100	760.00	762.72	765.44	768.17	770.91	773.66	776.42	779.18	781.95	784.73

TABLE 77.
PRESSURE OF AQUEOUS VAPOR OVER WATER.
METRIC MEASURES.

Temperature	0°	$1{ }^{\circ}$	2°	3°	4°	5°	6°	7°	8	9°
6.	mm.	mm.	mm.	mm.	mm.	m	mm.	mm.	mm.	
100°	760.0	787.5	815.9	845.0	875. I	906.0	937.8	970.5	1004. 2	1038.8
110	1074.4	IIII.O	1148.6	1187.2	1226.9	1267.7	1309.6	1352.6	1396.8	I $4+2$. 1
120	1488.7	1536.4	1585.4	1635.7	1687.3	1740.2	$179+4$	1850.0	1907.0	1965.4
130	2025.2	2086.5	2149.3	2213.7	2279.6	2347.0	2416.1	2486.8	2559.2	2633.2
I 40	2709.0	2786.5	2865.8	2947.0	3029.9	3114.7	3201.4	3290. I	3380.7	$3+73 \cdot 3$
150°	3507.9	3664.6	3703.3	3864.2	3967.2	4072.4	4179.8	4289.5	4701.5	4515.7
I60	4632.4	4751.4	4872.8	4996.7	5123.1	5252.0	5383.4	5517.5	5654.2	5793. 5
170	5935.6	6080.4	6228.0	6378.4	6531.7	6687.8	6846.9	7009.0	7174.0	7342.1
180	7513.3	7687.7	7865.2	$80+5 \cdot 9$	8229.8	8417.0	8607.6	8801.5	8998.9	9199.6
190°	9404	9612	9823	10038	10257	10479	10705	10935	11169	11407
200	11648	11894	12143	12397	12654	12916	13182	13452	13727	1,4006
210	14289	14577	14869	15165	15467	15772	16083	16398	16718	17043
220	17372	17707	18046	18391	18740	19095	19454	19819	20190	20565
230°	20946	21332	21724	22121	22524	22932	23347	23766	24192	24623
240	25001	25504	25953	26408	26870	27337	27811	28291	28778	29270
250	29770	30275	30787	31306	31832	32364	32903	$33+49$	34002	34562
260	35128	35702	36283	36872	$37+67$	38070	38680	39298	39923	40556
270	41197	41845	42501	43165	43836	44516	45204	45899	46603	473 I6
280°	48036	48765	49503	50248	51003	51766	52538	53318	54108	54906
290	55714	56530	57356	58191	59035	59888	60751	61624	62506	63.308
300	64299	65211	66132	67063	68005	68956	69918	70890	71872	72865
310	73869	74883	75907	76043	77990	79047	Soli6	81195	82286	83389
320	84503	85628	86765	87913	89074	90246	91430	92626	93835	95056
330°	c6280	97534	98703	100060	101350	102640	103950	105280	106610	107960
340	109320	110700	112090	113490	II 4910	I 16340	117780	I 19240	120720	122210
350	123710	125220	126760	128310	129870	131440	133030	I 34640	136270	137000
360	130560	$1+1230$	142020	I+4620	14634°	148070	149820	I5 I 590	153380	155180
370	157000	158840	160690	162560	164450					

SMITHSONIAN TABLES.

PRESSURE OF AQUEOUS VAPOR OVER ICE.
DYNAMIC MEASURES

Temp.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
	mb	mb.	mb.	mb.	mb.	mb.	mb.	mb.	m	mb
-70°	0.0026	0.0025	0.0025	0.0025	0.0024	0.0024	0.0024	0.0023	0.0023	0.0023
-69	0.0030	0.0029	0.0029	0.0029	0.0028	0.0028	0.0027	0.0027	0.0027	0.0026
-68	0.0035	0.0034	0.0034	0.0033	0.0033	0.0032	0.0032	0.0031	0.0031	0.0030
-67	0.0040	0.0040	0.0039	0.0038	0.0038	0.0037	0.0037	0.0036	0.0036	0.0035
-66	0.00 .46	0.0046	0.0045	0.0044	0.0044	$0.00+3$	0.0043	0.0042	0.0041	0.0041
-65	0.0054	0.0053	0.0052	0.0051	0.0051	0.0050	0.0049	0.0048	0.00 .48	0.0047
-64	0.0062	0.0061	0.0060	0.0059	0.0058	0.0057	0.0057	0.0056	0.0055	0.0054
-63	0.0071	0.0070	0.0069	0.0068	0.0067	0.0066	0.0065	$0.006+$	0.0063	0.0063
-62	0.0082	0.0080	0.0079	0.0078	0.0077	0.0076	0.0075	$0.007+$	0.0073	0.0072
-6I	0.0094	0.0092	0.0091	0.0090	0.0089	0.0087	0.0086	0.0085	$0.008+$	0.0083
-60	0.011	0.011	0.010	. 010	. 010	0.010	0.0099	0.0097	0.0096	0.0095
-59	0.012	0.012	0.012	0.012	0.012	0.011	0.011	0.01 I	0.011	0.01 I
-58	0.014	0.014	0.014	0.013	0.013	0.013	0.013	0.013	0.013	0.012
-57	0.016	0.016	0.016	0.015	0.015	0.015	0.015	0.015	0.014	0.014
-56	0.018	0.018	0.018	0.018	0.017	0.017	0.017	0.017	0.016	0.016
--55	0.02 I	0.021	0.020	0.020	0.020	0.020	0.019	0.019	0.019	0.019
-54	0.024	0.023	0.023	0.023	0.022	0.022	0.022	0.022	0.021	0.021
-53	0.027	0.027	0.026	0.026	0.026	0.025	0.025	0.025	0.024	0.024
-52	0.031	0.030	0.030	0.029	0.029	0.029	0.028	0.028	0.028	0.027
-51	0.035	0.03t	0.034	0.033	0.033	0.033	0.032	0.032	0.031	0.03 I
-50	0.039	0.039	0.038	0.038	0.037	0.037	0.036	0.036	0.036	0.035
-49	0.044	0.043	0.043	0.042	0.0 .42	0.041	0.041	0.040	0.040	0.039
-48	0.050	0.049	0.049	0.048	0.047	0.047	0.046	0.046	0.045	0.044
-47	0.056	0.055	0.055	0.054	0.053	0.053	0.052	0.052	0.051	0.050
-46	0.063	0.063	0.062	0.061	0.060	0.060	0.059	0.058	0.058	0.057
-45	0.072	0.07 I	0.070	0.069	0.068	0.067	0.067	0.066	0.065	0.064
-44	0.081	0.080	0.079	0.078	0.077	0.076	0.075	0.074	0.073	0.072
-43	0.09 I	0.090	0.089	0.088	0.087	0.086	0.085	0.084	0.083	0.082
-42	0.102	O.IO1	0.100	0.098	0.097	0.096	0.095	0.094	0.093	0.092
-4I	0.115	0.113	0.112	O. 11 I	0.109	0.108	0.107	0.106	0.104	0.103
-40	0.129	0.127	0.126	0. 124	0.123	0.121	0.120	O.II9	O. 117	0.116
-39	$0.1+4$	0.142	$0.1+1$	0.139	0.138	0.136	0.134	0.133	0.132	0.130
-38	0.161	0.159	0.158	0.156	0.154	$0.15{ }^{2}$	0.151	0. 149	0.147	0.146
-37	0.180	0.178	0.1 76	0.174	0.172	0.171	0.169	0.167	0.165	0.163
-36	0.201	0.199	0.197	0.195	0.193	0.191	-. 189	0.186	0.184	0.182

Smithsonian Tables

Table 78.
PRESSURE OF AQUEOUS VAPOR OVER ICE.
DYNAMIC MEASURES

Temp.	. 0	. 1	. 2	.3	. 4	. 5	. 6	. 7	. 8	. 9
C.	mb.	mb .	mb.	mb.	mb .					
-35°	0.225	0.222	0.220	0.218	0.215	0.213	0.21 I	0.208	0.206	0.204
-34	0.251	0.248	0.245	0.243	0.240	0.237	0.235	0.232	0.230	0.227
-33	0.279	0.276	0.273	0.270	0.267	0.265	0.262	0.259	0.256	0.253
-32	0.311	0.307	0.304	0.301	0.298	0.295	0.291	0.288	0.285	0.282
-31	0.345	0.342	0.338	0.335	0.33I	0.328	0.324	0.32 I	0.317	0.314
-30	0.384	0.380	0.376	0.372	0.368	0.364	0.360	0.357	0.353	0.349
-29	0.426	0.42 I	0.417	0.413	0.408	0.404	0.400	0.396	0.392	0.388
-28	0.472	0.467	0.462	0.458	0.453	0.448	0.444	0.439	0.435	0.430
-27	0.523	0.518	0.512	0.507	0.502	0.497	0.492	0.487	0.482	0.477
-26	0.579	0.573	0.567	0.561	0.556	0.550	0.545	0.539	0.534	0.528
-25	0.640	0.634	0.627	0.621	0.615	0.609	0.602	0.596	0.590	0.585
-24	0.707	0.700	0.693	0.686	0.679	0.673	0.666	0.659	0.653	0.646
-23	0.780	0.773	0.765	0.758	0.750	0.743	0.736	0.728	0.72 I	0.714
-22	0.861	0.852	0.844	0.836	0.828	0.820	0.812	0.804	0.796	0.788
-21	0.949	0.939	0.930	0.92 I	0.912	0.904	0.895	0.886	0.878	0.869
--20	1.04	1.03	1.02	I. OI	1.00	1.00	0.986	0.976	0.967	0.958
-19	1.15	I. 14	I. 13	1.12	I. II	1.10	1.09	1.07	1.06	1.05
-18	I. 26	1.25	1.24	1.23	I. 22	1.20	I. 19	1.18	1.17	1.16
-17	I. 39	1.37	I. 36	I. 35	I. 34	I. 32	1. 31	I. 30	1.29	1.27
-16	I. 52	I. 51	I. 49	I. 48	I. 47	I. 45	1.44	I. 43	I. 41	1.40
-15	I. 67	I. 65	1.64	1. 62	1.6I	1. 59	I. 58	1. 57	1.55	I. 54
-14	1.83	I. 81	I. 80	I. 78	1.76	1.75	1.73	I. 72	1.70	1.69
-13	2.00	1.99	1.97	1.95	1.93	1.92	1.90	1.88	I. 86	1.85
-12	2.19	2.17	2.15	2.13	2.12	2.10	2.08	2.06	2.04	2.02
-II	2.40	2.38	2.35	2.33	2.31	2.29	2.27	2.25	2.23	2.21
-10	2.62	2.60	2.57	2.55	2.53	2.51	2.48	2.46	2.44	2.42
-9 -8	2.86	2.83	2.81	2.78	2.76	2.74	2.71	2.69	2.67	2.64
-8	3.12	3.09	3.07	3.04	3.01	2.99	2.96	2.93	2.91	2.88
-7	3.40	3.37	3.34	$3 \cdot 3$ I	3.29	3.26	3.23	3.20	3.17	3.15
-6	3.70	3.67	3.64	3.6I	3.58	3.55	$3 \cdot 52$	3.49	3.46	3.43
- 5	4.03	4.00	3.97	3.93	3.90	3.87	3.83	3.80	3.77	3.74
- 4	4.39	4.35	4.31	4.28	4.24	4.21	4.17	4.14	4.10	4.07
- 3	4.77	4.73	4.69	4.65	4.61	4.58	4.54	4.50	4.46	4.42
- 2	5.18	5.14	5.10	5.06	5.OI	4.97	4.93	4.89	4.85	4.81
- I	5.63	$5 \cdot 58$	$5 \cdot 53$	5.49	5.44	5.40	$5 \cdot 36$	5.3I	5.27	5.23
-0	6.11	6.06	6.01	5.96	5.91	5.86	5.81	5.77	$5 \cdot 72$	5.67

Smithsonian Tables

Table 79.
PRESSURE OF AQUEOUS VAPOR OVER WATER.
DYNAMIC MEASURES

Temp.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
c.	mb .				mb .	mb .				
0°	6.11	6.15	6.20	6.24	6.29	6.33	6.38	6.42	6.47	6.52
1	6.56	6.61	6.66	6.71	6.76	6.81	6.86	6.90	6.95	7.00
2	7.05	7.10	7.16	7.21	7.26	7.31	7.36	7.42	7.47	7.52
3	7.58	7.63	7.68	7.74	7.79	7.85	7.90	7.96	8.02	8.07
4	8.13	8.19	8.25	8.30	8.36	8.42	8.48	8.54	8.60	8.66
5	8.72	8.78	8.84	8.91	8.97	9.03	9.09	9.16	9.22	9.28
6	9.35	9.41	9.48	9.54	9.61	9.68	9.74	9.81	9.88	9.95
7	10.02	10.09	10.16	10.22	10.30	10.37	10.44	10.51	10.58	10.65
8	10.73	10.80	10.87	10.95	11.02	11.10	II 117	11.25	11.32	11.40
9	11.48	11.56	11.64	11.71	11.79	11.87	I 1.95	12.03	12.12	12.20
10	12.28	12.36	12.44	12.53	12.61	12.70	12.78	12.87	12.95	13.04
11	13.13	13.21	13.30	13.39	13.48	13.57	13.66	13.75	13.84	13.93
12	14.03	14.12	14.21	14.31	14.40	14.50	14.59	14.69	14.78	I 4.88
13	14.98	15.08	15.18	15.28	15.38	15.48	I 5.58	15.68	15.78	15.89
14	15.99	16.09	16.20	16.30	16.41	16.51	16.62	16.73	16.84	16.95
15	17.06	17.17	17.28	17.39	17.50	17.61	17.73	17.84	17.96	18.07
16	18.19	18.30	18.42	18.54	18.66	18.78	18.90	19.02	19.14	19.26
17	19.38	19.51	19.63	19.76	19.88	20.01	20.13	20.26	20.39	20.52
18	20.65	20.78	20.91	2 I .04	21.17	21.31	21.44	21.58	21.71	21.85
19	21.98	22.12	22.26	22.40	22.54	22.68	22.82	22.96	23.11	23.25
20	23.40	23.54	23.69	23.83	23.98	24.13	24.28	24.43	2.4 .58	24.73
21	24.88	25.04	25.19	25.35	25.50	25.66	25.82	25.98	26.14	26.30
22	26.46	26.62	26.78	26.94	27.11	27.27	27.44	27.61	27.78	27.94
23	28.11	28.28	28.46	28.63	28.80	28.98	29.15	29.33	29.51	29.68
24	29.86	30.04	30.22	30.40	30.59	30.77	30.96	31.14	31.33	3 I .5 I
25	31.70	31.89	32.08	32.28	32.47	32.66	32.86	33.05	33.25	33.45
26	33.64	33.84	$3+.04$	$3+.25$	34.45	34.65	34.86	35.06	35.27	35.48
27	35.69	35.90	36.11	36.32	36.53	36.75	36.96	37.18	37.40	37.62
28	37.84	38.06	38.28	38.50	38.73	38.95	39.18	39.41	39.64	39.87
29	40.10	40.33	40.56	40.80	41.04	41.27	41.51	41.75	41.99	42.23
30	42.48	42.72	42.97	43.21	$43 \cdot 46$	43.71	43.96	44.21	44.47	44.72
31	44.98	45.23	45.49	45.75	46.01	46.27	46.54	46.80	47.07	47.33
32	47.60	47.87	48.14	48.42	48.69	48.97	49.24	49.52	49.80	50.08
33	50.36	50.65	50.93	51.22	51.50	51.79	52.08	52.37	52.67	52.96
34	53.26	53.56	53.85	54.15	54.46	54.76	55.06	55.37	55.68	55.99
35	56.30	56.61	56.92	57.24	57.56	57.87	58.19	58.51	58.84	59.16
36	59.49	59.81	60.14	60.47	60.81	61.14	61.47	61.81	62.15	62.49
37	62.83	63.17	63.52	63.86	$6+.21$	$6+56$	64.91	65.27	65.62	65.98
38	66.34	66.69	67.06	$67 \cdot 4^{2}$	67.78	68.15	68.52	68.89	69.26	69.63
39	70.01	70.38	70.76	71.14	71.53	71.91	72.30	72.68	73.07	$73 \cdot 4^{6}$
40	73.86	74.25	74.65	75.04	$75 \cdot 44$	75.85	76.25	76.66	77.06	77.47
41	77.88	78.30	78.71	79.13	79.55	79.97	80.39	80.81	81.24	81.67
42	82.10	82.53	82.97	83.40	83.84	84.28	84.72	85.17	85.61	86.06
43	86.51	86.96	87.42	87.87	88.33	88.79	89.26	89.72	90.19	90.66
44	91.13	91.60	92.07	92.55	93.03	93.51	93.99	$94 \cdot 48$	94.97	95.46

Smithsonian Tables

Table 80.
WEIGHT OF A CUBIC FOOT OF SATURATED VAPOR.
ENGLISH MEASURES.

Temperature.		Temperature.	. 0	. 5	Temperaature.	. 0	. 2	. 4	. 6	. 8
F.	Grains	F.	Grains	Grains	F.	Grains	Grains	Grains	Grains	Grains
-30°	0.095	$+20^{\circ}$	1.244	1.273	$+70^{\circ}$	8.066	8.117	8.170	8.223	8.276
29	0.100	21	1.301	1.332	71	8.329	8.383	8.437	8.491	8.546
28	0.106	22	1. 362	I. 393	72	8.600	8.656	8.711	8.766	8.823
27	0.112	23	1.425	1. 457	73	8.879	8.936	8.992	9.050	9.107
26	0.119	24	1.490	1.524	74	9.165	9.223	9.281	9.34 I	9.400
-25	0. 126	$+25$	I. 558	1.593	$+75$	9.460	0.519	9.579	9.640	9.700
24	0.134	26	1.629	1.666	76	9.761	9.823	9.885	9.947	10.009
23	$0.14{ }^{1}$	27	1.703	1.741	77	10.072	10.135	10.199	10.263	10.327
22	0.150	28	1.779	1.819	78	10.392	10.457	10.521	10.587	10.653
21	0.158	29	1. 859	1.900	79	10.720	10.785	10.853	10.92 I	10.987
-20	0.167	$+30$	1.942	1.984	$+80$	11.056	II.124	11.193	11.262	11.331
19	0.176	31	2.028	2.072	81	11.401	11.471	$11.54{ }^{2}$	11.613	11.685
18	0.187	32	2.118	2.159	82	I 1.756	11. 828	I 1.900	11.974	12.047
17	0.197	33	2.200	2.242	83	I2.12 I	12.195	12.269	12.344	12.419
16	0.208	34	2.286	2.330	84	12.494	12.570	I 2.646	12.723	12.800
-15	0.220	+35	2.375	2.420	$+85$	12.878	12.956	13.034	13.113	$13.19{ }^{2}$
14	0.232	36	2.466	2.513	86	13.272	13.351	13.432	13.512	13.594
13	0.244	37	2.560	2.609	87	13.676	13.758	13.840	13.923	14.006
12	0.258	38	2.658	2.708	88	14.090	14.174	14.258	14.344	14.429
I I	0.272	39	2.759	2.810	89	14.515	14.601	14.689	14.776	14.864
-10	0.286	$+40$	2.863	2.916	$+90$	14.951	15.040	15.129	15.219	15.309
9	0.302	41	2.970	3.026	91	15.400	15.490	15.581	15.673	15.766
8	0.318	42	3.082	3.138	92	15.858	15.95 I	16.045	16.139	16.234
7	0.335	43	3.196	3.254	93	16.328	16.423	16.520	16.616	16.713
6	0.353	44	3.315	3.374	94	16.810	16.909	17.007	17.106	17.205
- 5	0.37 I	$+45$	3.436	3.499	$+95$	17.305	17.406	17.506	17.607	17.709
4	0.301	46	3.563	3.627	96	17.812	17.914	18.018	18.121	18.226
3	0.411	47	3.693	3.759	97	18.330	18.436	18.542	18.648	18.755
,	0.433	48	3.828	3.895	98	18.863	18.971	19.079	19.188	19.298
I	0.455	49	3.965	4.036	99	19.407	19.518	19.629	19.74 I	19.853
± 0	0.479	+50	4.108	4.181	$+100$	19.966	20.079	20.193	20.307	20.422
+ 1	0.503	51	4.255	4.331	101	20.538	20.654	20.770	20.887	21.005
2	0.529	52	4.407	4.485	102	21.123	21.242	21.362	21.481	21.602
3	0.556	53	4.564	4.644	103	21.723	21.845	21.967	22.090	22.213
4	0.584	54	4.725	4.807	104	22.337	22.462	22.588	22.714	22.839
5	0.613	$+55$	4.891	4.976	+105	22.966	23.095	23.223	23.35 I	23.481
6	0.644	56	5.062	5.149	106	23.611	23.742	23.873	24.005	24.138
8	0.676	57	5.238	$5 \cdot 328$	107	24.271	24.405	2.4.539	2.4 .673	24.809
8	0.709	58	5.420	$5 \cdot 513$	108	24.946	25.082	25.220	25.358	25.497
9	0.744	59	5.607	5.703	109	25.636	25.776	25.917	26.058	26.201
10	0.780	$+60$	5.800	5.899	+ 110	26.343	25.486	26.630	26.775	26.920
1 I	0.818	61	5.999	6.099	III	27.066	27.213	27.360	27.508	27.657
12	0.858	62	6.203	6.306	II 2	27.807	27.956	28.107	28.259	28.411
13	0.900	63	6.413	6.521	113	28.563	28.717	28.87 I	29.026	29.181
14	0.943	64	6.630	6.740	II 4	29.338	29.495	29.653	29.812	29.970
15	0.988	$+65$	6.852	6.966	$+115$	30.130	30.291	30.452	30.614	30.777
16	1.035	66	7.082	7.198	116	30.940	31.104	31.270	31.435	31.601
17	1.084	67	7.317	7.437	117	31.768	31.937	32.106	32.274	32.445
18	1.135	68	7.560	7.683	118	32.616	32.787	32.960	33.133	33.307
$+10$	1.189	+69	7.809	7.937	+119	33.482	33.657	33.834	34.010	34.189

WEIGHT OF A CUBIC METER OF SATURATED VAPOR OVER ICE.
METRIC MEASURES

Table 81.
WEIGHT OF A CUBIC METER OF SATURATED VAPOR OVER WATER.
METRIC MEASURES

Temp.	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
C.	grams	grams	grams	grams	grams	grams	grams	grams	grams	grams
$+0^{\circ}$	4.847	4.88 I	4.914	$4 \cdot 948$	4.982	5.017	5.05 I	5.086	5.121	5.157
	5.192	5.228	5.264	$5 \cdot 300$	$5 \cdot 336$	$5 \cdot 373$	5.410	5.447	5.483	$5 \cdot 52 \mathrm{I}$
2	$5 \cdot 559$	$5 \cdot 596$	5.634	5.673	5.71 I	5.750	5.789	5.828	5.868	5.908
3	$5 \cdot 947$	5.988	6.028	6.068	6.110	6.151	6.192	6.234	6.275	6.318
4	6.360	6.402	6.445	6.488	6.532	6.575	6.619	6.664	6.708	6.753
$+5$	6.797	6.842	6.888	6.934	6.979	7.025	7.072	7.119	7.166	7.213
	7.261	7.309	7.357	$7 \cdot 405$	$7 \cdot 453$	$7 \cdot 502$	$7 \cdot 552$	7.601	7.651	7.701
7	7.751	7.802	7.853	7.904	7.956	8.007	8.059	8.112	8.164	8.217
8	8.27 I	8.324	8.378	8.432	8.487	8.542	8.597	8.652	8.708	8.764
9	8.82 I	8.877	8.934	8.99 I	9.049	9.106	9.165	9.223	9.282	$9 \cdot 341$
$+10$	9.40 I	9.46 I	$9 \cdot 52 \mathrm{I}$	9.582	9.643	9.704	9.765	9.827	9.889	9.952
11	10.015	10.078	10.142	10.205	10.270	10.334	10.400	10.465	10.530	10.597
12	10.664	10.730	10.797	10.865	10.932	I 1.00I	I 1.069	II. 138	I 1.208	I 1.278
13	II. 348	II.418	I 1. 489	11.561	11.632	11.704	11.777	11.850	11.922	I 1.997
14	12.070	12.144	12.219	12.295	12.370	12.446	12.523	12.600	12.677	12.754
$+15$	12.832	12.911	12.990	13.068	13.148	13.229	13.309	13.390	13.472	13.553
16	13.635	13.718	13.801	I 3.885	13.969	14.053	14.139	14.224	14.309	14.395
17	14.482	14.569	14.657	14.744	14.833	14.922	15.01 I	15.101	15.19 I	I 5.282
18	15.373	15.465	I 5.557	15.650	15.743	15.836	15.931	16.025	16.12I	16.216
19	16.31 I	16.409	16.505	16.603	16.701	16.799	16.898	16.998	17.097	I 7.198
$+20$	17.300	17.401	17.503	17.606	17.708	17.812	17.917	18.021	18.126	18.232
21	18.338	18.445	18.553	18.660	18.768	I 8.878	18.987	19.097	19.207	19.319
22	19.430	19.542	19.655	19.769	19.882	19.996	20.112	20.227	20.343	20.461
23	20.578	20.695	20.814	20.933	21.053	21.173	21.295	21.416	21.538	21.660
24	21.783	21.907	22.032	22.157	22.282	22.409	22.536	22.663	22.791	22.920
$+25$	23.049	23.179	23.310	23.442	23.573	23.706	23.839	23.973	24.107	24.242
26	24.378	24.514	24.651	24.790	24.929	25.066	25.206	25.346	25.488	25.629
27	25.771	25.915	26.058	26.203	26.348	26.494	26.641	26.787	26.936	27.084
28	27.234	27.384	27.534	27.686	27.837	27.990	28.143	28.298	28.453	28.609
29	28.765	28.923	29.08I	29.239	29.399	29.559	29.720	29.881	30.044	30.207
$+30$	30.37 I	30.535	30.701	30.867	31.034	31.202	31.37 I	31.540	31.710	31.880
31	32.052	32.225	32.398	32.572	32.747	32.923	33.100	33.277	33.454	33.633
32	33.812	33.993	34.175	34.356	$3+540$	34.723	34.909	35.094	35.280	35.467
33	35.656	35.844	36.034	36.224	36.416	36.609	36.801	36.995	37.190	37.386
34	37.583	37.780	37.979	38.178	38.378	38.579	38.782	38.984	39.187	39.395
$+35$	39.599	39.805	40.013	40.22 I	40.430	40.640	40.851	41.064	41.277	41.491
36	41.706	41.921	42.139	42.356	42.575	42.795	43.015	43.237	43.459	43.683
37	43.908	44.134	44.360	44.587	44.815	45.046	45.277	45.507	45.740	45.973
38	46.208	46.443	46.680	46.918	47.156	47.396	47.636	47.878	48.121	48.365
39	48.609	48.855	49.103	49.350	49.600	49.850	50.101	50.353	50.606	50.861
$+40$	5.117 7	51.373	51.63I	51.890	52.150	52.410	52.673	52.936	53.200	53.466

[^29]
HYGROMETRICAL TABLES.

Reduction of psychrometric observations - English measures.
Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(1+\frac{t^{\prime}-32}{1571}\right)$. Table 82
Relative humidity - Temperature Fahrenheit . . . Table 83
Reduction of psychrometric observations - Metric Measures.
Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.00115 t^{\prime}\right)$. Table 84
Relative humidity - Temperature Centigrade Table 8_{5}
Rate of decrease of vapor pressure with altitude Table 86
Reduction of snowfall measurements.
Depth of water corresponding to the weight of a cylindrical snow core 2.655 inches in diameter

Table 87
Depth of water corresponding to the weight of snow (or rain) collected in an 8 -inch gage .

Table 88
Quantity of rainfall corresponding to given depths . . . Table 89

Table 82.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.
 ENGLISH MEASURES.

Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
Pressure of Saturated Aqueous Vapor, ε.

Temperature.	0	1	2	3	4	5	6	7	8	9
$\begin{gathered} \text { F. } \\ -60^{\circ} \end{gathered}$	Inches. .0010	Inches.	Inches.	Inches.	Inches	Inches.	Inches.	Inches.	Inches.	Inches.
50	20	. 0018	. 0017	.0016	. 0015	.0014	.0013	.OOI 2	.OOII	. 0011
40	38	36	33	31	29	28	26	24	23	21
30	71	66	62	59	55	52	49	46	43	40
20	. 0127	. 0120	. 0113	. 0107	. 1010	. 0095	. 0090	. 0084	. 0080	. 0075

$e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
$B=30.0$ inches

t^{\prime}	$1-t^{\prime}$									
	. 0	. 2	. 4	. 6	. 8	1.0	1.2	1.4	1.6	1.8
	Inches.	Inches.	Inches.	Inches.	Inches,	Inches,	Inches.	Inches.	Inches.	Inches.
-20°	. 0127	. 0106	. 0085	. 0063	.0042	. 0021				
19	135	113	92	71	49	28	. 0007			
18	143	12 I	. 0100	79	57	36	. 0015			
17	15 I	130	108	87	66	44	23	. 0002		
10	160	138	117	96	74	53	32	. 0010		
15	169	148	126	. 0105	84	62	41	19		
14	179	157	136	115	93	72	50	20	. 0008	
13	189	168	146	125	. 0103	82	61	39	. 0018	
12	200	178	157	136	114	93	7 I	50	29	. 0007
II	211	190	168	147	125	. 0104	83	61	40	.0018
10	223	202	180	r 59	137	116	94	73	52	30
9	236	214	193	171	150	128	. 0107	85	64	43
8	249	227	206	184	163	141	120	98	77	56
7	263	241	220	198	177	I55	134	. 0112	91	69
6	277	256	234	213	191	170	148	127	. 0105	84
5	292	271	249	228	206	185	163	142	120	. 0099
4	308	287	265	244	222	201	179	158	136	. 0115
3	325	304	282	261	239	218	196	175	${ }^{1} 53$	132
2	343	321	300	278	257	235	214	192	171	149
- I	361	340	318	297	275	254	232	210	189	167
± 0	381	350	338	316	294	273	251	230	208	187
+ 1	401	380	358	337	315	293	272	250	229	207
2	423	401	379	358	336	315	293	271	250	228
3	445	423	402	380	359	337	315	294	272	250
4	468	447	425	40.4	382	360	339	317	295	274
5	493	47 I	450	428	407	385	363	342	320	298
6	519	497	476	454	432	411	389	367	346	324
7	546	524	503	481	459	438	416	394	373	351
8	574	552	531	509	487	466	444	422	401	379
9	604	582	560	539	517	495	474	452	430	408
10	. 0635	.0613	. 0591	. 0569	.0548	. 0526	. 0504	.0483	. 0461	. 0439
$\left.\begin{array}{r} -20 \\ +10 \end{array}\right\}$	$\Delta e \times \Delta B$	+.000 I	+.0001	+.0002	+.0003	+.0004	+.0004	+.0005	+.0006	+.0007

Smithsonian tables.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.

 ENGLISH MEASURES.Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
$B=30.0$ inches

Table 82.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.
Values of $c=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}}{15^{\prime} \mathrm{I}} 32\right)$
$B=30.0$ inches

i^{\prime}	$t-t^{\prime}$									
	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
$\begin{aligned} & \text { F } \\ & 10^{\circ} \end{aligned}$	$\begin{gathered} \text { Inches. } \\ \Delta e \times \Delta B \end{gathered}$	$\begin{array}{r} \text { Inches. } \\ +.0004 \end{array}$	$\begin{array}{r} \text { Inches. } \\ +.0007 \end{array}$	$\begin{aligned} & \text { Inches. } \\ & +.00 \text { I } \end{aligned}$	$\begin{array}{r} \text { Inches. } \\ +.0014 \end{array}$	$\begin{array}{r} \text { Inches. } \\ +.0018 \end{array}$	$\begin{aligned} & \text { Inches. } \\ & +.0022 \end{aligned}$	$\begin{array}{r} \text { Inches. } \\ +.0025 \end{array}$	$\begin{array}{r} \text { Inches. } \\ +.0029 \end{array}$	$\begin{array}{r} \text { Inches. } \\ +.0033 \end{array}$
10°	0.063	0.053	0.042	0.031	0.020	0.009				
II	67	56	45	34	23	. 012	0.002			
12	70	59	48	.37	27	16	5			
13	74	63	52	41	30	19	8			
14	77	66	56	45	34	23	. OI 2	0.001		
15	8 I	70	59	49	38	27	16	5		
16	85	74	63	53	42	31	20	9		
17	89	79	68	57	46	35	24	.013	0.002	
18	94	83	72	61	50	30	28	18	7	
19	. 099	88	77	66	55	4.4	33	22	11	0.000
20	. 103	92	81	71	60	49	38	27	16	. 005
2 I	. 108	97	86	76	65	54	43	32	21	. 010
22	.II4	. 103	92	81	70	59	48	37	26	15
23	.119	. 108	97	86	75	64	53	42	32	21
24	. 125	. I 14	.103	92	8 I	70	59	48	37	26
25	.131	. 120	. 109	98	87	76	65	54	43	32
26	.137	. 126	. 115	. 104	93	82	71	60	49	38
27	.143	. 133	. 122	. 111	. 100	89	78	67	56	45
28	. 150	. 139	. 128	. 117	. 106	95	84	73	62	51
29	. 157	.146	. 135	. 124	. II3	.102	91	80	69	58
30	. 165	. 154	.143	.132	. 121	. 110	99	88	77	66
31	. 772	.161	. 150	. 139	. 128	. 117	. 106	95	84	73
32	.180	.169	. 158	. 147	. 136	. 125	. 114	. 103	92	81
33	. 188	.177	. 166	.155	. 144	. 133	. 122	. 111	. 100	89
34	.195	. 184	.173	. 162	. 151	. 140	. 129	. 118	. 107	96
35	. 203	. 192	.18I	. 170	. 159	. 148	. I37	. 126	.115	. 104
36	. 212	. 201	. 190	. 179	. 168	. 157	. 145	.134	. 123	. 112
37	. 220	. 209	.198	. 187	. 176	.165	. 154	. 143	. 132	.121
38	. 229	. 218	. 207	. 196	. 185	. 174	.163	. 152	.141	.130
39	. 238	. 227	. 216	. 205	. 194	. 183	. 172	.161	. 150	. 139
40	. 248	. 237	. 226	. 215	. 203	. 192	.181	.170	. 159	.148
41	. 258	. 246	. 235	. 224	. 213	. 202	. 191	.180	.169	. 158
42	. 268	. 257	. 246	. 234	. 223	. 212	. 201	. 190	. 179	. 168
43	. 278	. 267	. 256	. 245	.234	.223	. 212	. 201	. 190	.178
44	. 289	. 278	. 267	. 256	. 245	. 234	. 223	. 211	. 200	.189
45	. 300	. 289	. 278	.267	. 256	. 245	. 234	. 223	. 2 I 1	. 200
46	. 312	-301	. 290	. 279	. 268	. 256	. 245	. 234	.223	. 212
47	. 324	. 313	. 302	. 291	. 280	. 268	.257	. 246	. 235	. 224
48	. 336	. 325	. 314	.303	. 292	. 281	.270	. 259	.248	.236
49	.349	. 338	.327	. 316	. 305	. 294	.283	.271	. 260	. 249
50	.363	.351	. 340	. 329	. 318	. 307	. 296	.285	. 274	
5 I	.376	. 365	. 354	. 343	. 332	. 32 I	. 309	. 298	. 287	. 276
52	.390	-379	. 368	. 357	. 346	. 335	. 324	. 312	. 301	. 290
53	.405	. 394	.383	. 372	.361	- 349	. 338	.327	.316	. 305
54	.420	. 409	. 398	$\cdot 387$. 376	. 364	-353	. 342	. 33 I	. 320
55	.436	. 425	. 414	. 402	. 391	. 380	.369	. 358	-347	-335
56	. 452	.441	. 430	. 419	. 407	. 396	.385	. 374	. 363	. 352
57	. 469	. 458	. 446	. 435	. 424	. 413	. 402	-390	. 379	. 368
58	.486	. 475	. 464	. 452	. 441	. 430	. 419	. 408	-396	. 385
59	. 504	. 493	.48I	. 470	. 459	. 448	. 437	. 425	. 414	. 403
60	0.522	0.511	0.500	0.488	0.477	0.466	0.455	0.444	0.432	0.42 I
60	$\Delta c \times \Delta B$	+.0004	$+.0007$	+.0011	+.0015	+.0019	+.0022	+.0026	+.0030	+.0034

table 82.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS.
ENGLISH MEASURES.
Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{\mathrm{I}_{57} \mathrm{I}}\right)$
$B=30.00$

t^{\prime}	$t-t^{\prime}$									
	10	11	12	13	14	15	16	17	18	19
F. $30^{\circ} \Delta e \times \Delta B$	$\begin{aligned} & \text { Inches. } \\ & \text { +.00.3 } \end{aligned}$	$\begin{aligned} & \text { Inches. } \\ & +.0040 \end{aligned}$	$\begin{aligned} & \text { Inches. } \\ & +.0044 \end{aligned}$	$\begin{aligned} & \text { Inches. } \\ & +.0048 \end{aligned}$	$\begin{aligned} & \text { Inches. } \\ & +.005 \mathrm{I} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Inches. } \\ +.0055 \end{array}$	$\begin{aligned} & \text { Inches. } \\ & +. .0050 \end{aligned}$	Inches. $+.0062$	$\begin{aligned} & \text { Inches. } \\ & +.0066 \end{aligned}$	$\begin{aligned} & \text { Inches. } \\ & +.0070 \end{aligned}$
22°	0.004									
23 24	.010 15									
25	21	0.010								
26	27	16	0.005							
27	34	23	. 112	0.001						
28 29	40	29 36	18 25	. r_{4}^{7}	0.003					
30	55	44	3.3	22	. 111	0.000				
31	62	51	40	29	18	. 007				
32	70	59	48	37	26	. 015	0.004			
33 34	78 85	67 74	55 63	44 52	33 41	22 30	11	0.000 .008		
34			63	52				. 008		
35	93	82	71	60	49	38	27	. 016	0.005	
36	. 101	90	79	68	57	46	35	24	. 013	0.002
37	. 110	99	88	77	66	55	43	32	2 I	
38	. 119	. 108	06	85	74	63	52	41	30	19 28
39	. 128	. 117	. 105	94	83	72	61	50	39	
40	. 137	. 126	.II5	. 104	93	82	71	60	49	37
41	. 147	. 136	. 125	. 114	. 103	91	80	69	58	47
42	. 157	. 146	. 135	.124	.113	. 101	90	79	68	57
43	. 167	.156	. 145	.134	. 123	. 112	. 101	90	79 89	68 -8
44	.178	.167	.156	.145	. 134	. 123	. 112	. 100	89	78
45	. 189	. 178	. 167	. 156	. 145	. 134	. 123	. 112	. 100	89
46	. 201	. 190	. 179	. 168	. 156	. 145	. 134	. 123	. 112	.101
47	. 213	. 202	. 191	. 180	. 168	. 157	. 46	. 135	. 124	.113
48	.225	. 214	. 203	. 192	. 181	.170 +182	.159 .171	.147 .160	.136 .149	.125 .138
49	. 238	. 227	. 216	. 205	. 193	. 182	. 171	. 160	. 149	
50	. 251	. 240	. 229	. 218	. 207	. 196	.184	. 173	.162	.151
51	. 265	. 254	. 243	. 231	. 220	. 209	. 198	. 187	.176	. 165
52	. 279	. 268	. 257	. 246	. 234	. 223	. 212	. 201	. 100	.179
53	. 294	. 282	. 271	. 260	. 249	.238	. 227	. 216	. 204	. 193
54	. 309	. 297	. 286	. 275	. 264	. 253	.242	.231	. 219	. 208
55	. 324	-313	. 302	.291	. 280	. 268	. 257	. 246	. 235	. 224
56	- 340	-329	. 318	. 307	. 296	. 285	. 273	. 262	. 251	. 2.40
57	- 357	. 346	. 334	. 323	-312	. 301	. 290	.279 .206	. 267	. 256
58 59	.374 .392	.363 .381	.352 .369	.340 .358	.329 .347	.318 .336	.307 .325	.296 .313	.284 .302	.273 .291
59	-392									
60	0.410	0.399	0.388	0.376	0.365	0.354	0.343	0.331	0.320	0.309
$60 \Delta e \times \Delta B$	+.0037	+.0041	+.0045	+. 0049	+.0052	+.0056	+.0060	+.0064	+.0067	+.0071

ENGLISH MEASURES.

Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(1+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
$B=30.00$

t^{\prime}	$t-t^{\prime}$									
	20	21	22	23	24	25	26	27	28	29
F.	inches.									
$40^{\circ} \Delta \mathrm{e} \times \Delta B$	+.0074	+.0077	+.008 I	+. 0085	+.0089	+.0092	+.0096	+.0100	$+.0103$	+.0107
38°	0.008									
39	. 017	0.006								
40	26	. 015	0.004							
41	36	25	. 014	0.003						
42	46	35	24	. 013	0.002					
43	56	45	34	23	. 012	0.001				
44	67	56	45	34	23	. 012	0.001			
45	78	67	56	45	34	23	. Ol 2	0.001		
46	90	79	68	57	45	34	23	. 012	0.001	
47	.102	91	79	68	57	46	35	24	13	0.002
48	. 114	. 103	92	SI	70	58	47	36	25	. 014
49	. 127	. 110	. 104	93	82	71	60	49	38	27
50	. 140	. 129	. 118	. 106	95	8_{4}	73	62	51	40
51	. 153	. 142	.131	. 120	.109	08	87	75	64	53
52	. 167	. 156	. 145	. 134	. 123	. 112	. I O	89	78	67
53	. 182	. 77	. 160	. 149	. 137	. 126	. 115	. 104	93	82
54	. 197	. 186	. 775	. 164	. 152	. 141	. 130	. 119	. 108	97
55	. 212	. 201	. 190	. 179	. 168	. 157	.145	. 134	. 123	. 112
56	. 229	. 218	. 206	. 195	. 184	. 173	. 162	. 150	. 139	. 128
57	. 245	. 234	. 223	. 211	. 200	. 189	. 178	. 167	. 156	. 144
58	. 262	. 251	. 240	. 228	. 217	. 206	. 195	. 184	. 173	.161
59	. 280	. 269	. 257	. 246	. 235	. 224	. 213	. 201	. 190	. 179
60	0.298	0.287	0.275	0.264	0.253	0.242	0.231	0.219	0.208	0.197
$60 \Delta e \times \Delta B$	+.0075	+.0078	+.0082	+.0086	+.0090	$+.0093$	$+.0097$	+.O101	+.0105	+.0108
t^{\prime}	$t-t^{\prime}$									
	30	31	32	33	34	35	36	37	38	39
	Inches.		Inches.	Incties.	Inches.	Inches.		Inches.	Inches.	Inches.
$50^{\circ} \Delta e \times \Delta B$	+.0111	$+.0115$	$+.0119$	$+.0122$	$+.0126$	$+.0130$	$+.0134$	$+.0137$	+.0141	+.0145
48°	0.003									
49	. 015	. 004								
50	29	. 017	0.006							
51	42	31	. 020	0.009						
52	56	45	34	. 023	0.011	0.000				
53	70	59	48	37	26	. 015	0.004			
54	85	74	63	52	41	30	. 018	0.007		
55	.IOI	90	78	67	56	45	34	. 023	0.011	0.000
56	.117	. 106	95	83	72	61	50	39	28	. 016
57	. 133	. 122	. 111	. 100	88	77	66	55	44	32
58	. 150	. 139	. 128	.117	. 105	94	83	72	6 I	49
59	. 168	. 157	. 145	. 134	.123	. 112	. IOI	89	78	67
60	0.186	0.175	0.163	0.152	0.141	0.130	0.119	0.107	0.096	0.085
$60 \Delta c \times \Delta B$	+.01 12	+.0116	+.0120	+.O1 23	+.0127	+.0131	+.0134	+.0138	+.0142	+.0146
t^{\prime}	$t-t^{\prime}$									
	40	41	42	43	44	45	46			
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.			
56°	0.005									
57 58	. 021	0.010								
				0.005 .022						
59 60					0.011 0.029	0.000 0.018				
$60 \Delta c \times \Delta B$	+.0149	+.0153	+.0157	+.0161	+.0164	+.0168	+.0172			

Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
$B=30.00$

t^{\prime}	$t-t^{\prime}$										
	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
F.	Inches.										
60°	$\Delta e \times \Delta B$	+.0004	+.0007	+.001 1	+.0015	+.0019	+. 0022	+.0026	+.0030	+.0034	+.0037
60°	0.522	0.511	0.500	0.488	0.477	0.466	0.455	0.444	0.432	0.42 I	0.410
61	. 541	. 530	. 518	. 507	. 496	. 485	. 474	. .462	. +51	. 440	. 429
62	. 560	. 549	. 538	. 527	.516	. 504	. 493	. 482	. 471	- 459	. 448
63	- 580	569	. 558	. 547	. 536	. 524	. 513	. 502	. 491	. 479	. 468
64	. 601	. 590	. 579	. 568	. 556	. 545	. 534	. 523	. 511	. 500	. 489
65	. 623	.6I I	. 600	. 589	. 578	. 566	. 555	. 544	. 533	. 521	. 510
66	. 645	. 633	. 622	. 611	. 600	. 588	. 577	. 566	. 555	. 543	. 532
67	. 667	. 656	. 645	. 634	. 622	. 611	. 600	. 589	. 577	. 566	. 555
68	. 691	. 680	. 668	. 657	. 646	. 635	. 623	. 612	. 601	. 590	. 578
69	. 715	.704	. 692	. 68 I	. 670	. 659	. 647	. 636	. 625	. 614	. 602
70	. 740	. 729	. 717	. 706	. 695	. 684	. 672	. 66 I	. 650	. 638	. 627
71	. 766	.754	-743	. 732	. 720	. 709	. 698	. 687	. 675	. 664	. 653
72	.792	.781	.769	. 758	. 747	. 735	. 724	. 713	. 702	. 690	. 679
73	. 819	. 808	. 797	. 785	. 774	. 763	. 751	. 740	. 729	. 717	. 706
74	. 847	. 836	. 824	. 813	. 802	.791	. 779	.768	.757	. 745	. 734
75	. 876	. 865	. 853	. 842	. 831	. 819	. $\mathrm{So8}$.797	. 7 Sb	. 774	. 763
76	. 906	. 894	. 883	. 872	. 860	. 849	. 838	. 826	. II_{5}	. 804	. 792
77	. 936	. 925	. 914	. 902	. 891	. 880	. 868	. 857	. 846	. 834	. 823
78	.968	. 956	. 945	. 934	. 922	.91 1	. 900	. 888	. 877	. 866	. 854
79	1.000	. 989	. 977	. 966	. 955	. 943	. 932	. 921	. 909	. 898	. 887
80	1.033	1.022	I.OII	. 999	. 988	. 977	. 965	.954	. $9+3$.93I	. 920
81	. 068	. 056	. 045	1.034	1.022	1.OII	. 999	. 988	. 977	. 965	. 954
82	. 103	. 092	. 080	. 069	. 057	. 046	1.035	1.023	1.012	1.001	. 989
83	. 139	. 128	. 116	. 105	. 094	. 082	. 071	. 060	. 048	. 037	1.026
84	. 176	. 165	. 154	. $1+2$. 31	. 120	. 108	. 097	. 086	. 074	. 063
85	1.215	I. 204	1.192	1.181	1.J69	1.158	1.147	1.135	1.124	I.II 2	1.101
86	. 254	.243	. 232	. 220	. 209	. 197	. 186	. 175	.163	. 152	. 140
87	. 295	. $2 \mathrm{~S}_{4}$. 272	. 261	. 249	. 238	. 227	. 215	. 204	. 192	. 181
88	. 336	. 325	. 314	. 302	. 291	. 279	. 268	. 257	.245	. 234	. 222
89	. 379	. 368	. 357	-345	. 334	. 322	. 311	. 300	. 288	. 277	. 265
90	1.423	1.412	I. 401	1.389	1.378	I. 366	1.355	I. 343	1.332	1.321	1.309
91	. 469	. 457	. 446	435	. 423	. 412	. 400	. 389	. 377	. 366	. 355
92	-515	. 504	. 492	. 481	. 470	. 458	. 447	. 435	- +24	. +12	. 401
93	.563	. 552	- 540	. 529	. 517	. 506	. 494	. 483	-471	. 460	. 449
94	. 612	. 601	.589	. 578	. 566	. 555	- 543	. 532	. 52 I	. 509	. 498
95	1. 662	1.651	1.640	1.628	1. 617	1.605	1. 594	1. 582	I. 57 I	I. 559	I. 548
96	. 714	. 703	. 691	.680	. 668	. 657	. 646	. 634	. 623	. 611	. 600
97	. 767	. 756	. 744	. 733	. 722	. 710	. 699	. 687	.776	. 064	. 653
98	. 822	. 811	. 799	. 788	. 776	. 765	. 753	.742	. 730	. 719	. 707
99	. 878	. 867	. 855	. 844	.832	. 82 I	. 809	. 798	.786	. 775	. 763
100	1.936	1.924	1.913	1.901	1.890	1.878	1.867	1.855	1.844	1.832	1.82 I
101	. 994	. 983	. 972	. 960	. 949	. 937	. 926	. 914	. 903	. 891	. 880
102	2.055	2.043	2.032	2.020	2.009	. 997	. 986	. 974	. 963	.95I	. 940
103	.117	. 106	. 094	. 083	. 071	2.060	2.048	2.037	2.025	2.014	2.002
104	. 181	.169	. 158	. 46	. 135	.123	.112	. 100	. 089	. 077	. 066
105	2.240	2.235	2.223	2.212	2.200	2.189	2.177	2.166	2.154	2.143	2. 13 I
106	. 314	. 302	. 290	. 279	. 267	. 256	. 244	. 233	. 221	. 210	. 198
107	.382	.371	. 359	-348	. 336	. 325	-313	. 302	. 290	. 278	. 267
108	. 453	441	. 430	.418	. 407	-395	-384	. 372	. 361	-340	. 337
109	. 525	. 514	.502	491	479	.467	- 456	-44	$\cdot 433$. 421	. 410
110	2.599	2.588	2.576	2.565	2.553	2.542	2.530	2.519	2.507	2.495	2.484
110	$\Delta c \times \Delta B$	+.0004	+.0008	+.0012	+.015	+.0019	+.0023	+.0027	+.003 1	+.0035	+.0039

Table 82.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.

$$
\begin{gathered}
\text { Values of } e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{\mathrm{I}_{57 \mathrm{I}}}\right) \\
B=30.00
\end{gathered}
$$

t^{\prime}	$t-t^{\prime}$										
	0.0	11	12	13	14	15	16	17	18	19	20
F.	Inches.										
60°	$\Delta e \times \Delta B$	+.004 I	+.0045	+.0049	$+.0052$	+.0056	+.0060	$+.0063$	$+.0067$	+.0071	+.0075
60°	0.522	0.399	0.388	0.376	0.305	0.354	0.343	0.331	0.320	0.309	0.298
61	. 54 I	0.418	. 406	. 395	. 384	. 373	. 361	. 350	. 339	. 328	. 317
62	. 560	. 437	. 426	. 415	. 403	. 39^{2}	. 381	. 370	-358	. 347	. 336
63	. 580	. 457	. 446	. 435	. 423	. 412	. 401	. 390	. 378	. 367	. 356
64	. 601	. 478	. 466	. 455	. 444	. 433	. 422	. 410	-399	. 388	. 377
65	. 623	. 499	. 488	. 476	. 465	. 454	. 443	. 43 I	. 420	. 409	- 398
66	. 645	. 52 I	. 510	. 498	. 487	. 476	. 465	. 453	. 442	. 431	. 420
67	.667	. 544	. 532	. 52 I	. 510	. 499	. 487	. 476	. 465	. 454	. 442
68	. 691	. 567	. 556	. 544	. 533	. 522	. 511	. 499	. 488	. 477	. 466
69	. 715	. 591	. 580	. 568	. 557	. 546	. 535	.523	. 512	. 501	. 490
70	. 740	. 616	. 605	- 593	. 582	. 57 I	-559	. 548	. 537	. 526	.514
71	.766	. 641	. 630	. 619	. 608	. 596	. 585	. 574	. 562	. 551	. 540
72	.792	. 668	.656	. 645	. 634	. 623	.61 1	. 600	.589	. 577	. 566
73	. 819	. 695	. 684	. 672	. 661	. 650	. 638	. 627	. 616	. 604	. 593
74	. 847	. 723	. 711	. 700	. 689	. 678	. 666	. 655	. 644	.632	. 62 I
75	. 876	. 752	. 740	. 729	. 718	. 706	. 695	. 684	. 672	. 661	. 650
76	. 906	. 781	. 770	.758	. 747	. 736	. 725	. 713	. 702	. 69 I	. 679
77	. 936	. 812	. 800	. 789	. 778	. 766	. 755	. 744	. 732	. 721	. 710
78	. 968	. 843	. 832	. 820	. 809	. 798	. 786	. 775	.764	. 752	. 741
79	1.000	. 875	. 864	. 853	. 841	. 830	. 819	. 807	. 796	.785	. 773
80	1.033	. 909	. 897	. 886	. 875	. 863	. 852	. 841 I	. 829	. 818	. 806
81	. 068	. 943	. 931	. 920	. 909	. 897	. 886	. 875	. 863	. 852	. 841
82	. 103	. 978	. 967	. 955	. 944	. 932	. 921	. 910	. 898	. 887	. 876
83	. 139	1.014	1.003	.991	. 980	.969	. 957	. 946	. 935	. 923	.912
84	. 176	. 051	. 0.40	1.029	1.017	1.006	. 995	.983	. 972	. 960	. 949
85	1.215	1.090	1.078	1.067	1.056	I. 044	I. 033	1.021	1.010	. 999	. 987
86	. 254	. 129	. 118	. 106	. 095	. 083	. 072	.061	. 049	1.038	1.027
87	. 295	. 170	. 158	. 147	. 135	. 124	. 113	. 101	. 090	. 078	. 067
88	. 336	. 211	. 200	. 188	. 177	. 165	. 154	. 143	. 13 I	. 120	. 108
89	. 379	. 254	. 242	. 231	. 220	. 208	. 197	. 185	. 174	. 163	. 151
90	1.423	1. 298	1.286	1.275	1. 264	1.252	1.241	1.229	1.218	1.206	1.195
91	. 469	. 343	. 332	. 320	. 309	. 297	. 286	. 275	. 263	. 252	. 240
92	. 515	. 390	. 378	. 367	. 355	. 344	. 332	. 32 I	. 310	. 298	. 287
93	.563	. 437	. 426	. 414	. 403	. 391	-380	-369	-357	-346	-334
94	.6ı 2	. 486	. 475	. 463	-452	. 440	. 429	. 418	. 406	-395	. 383
95	1.662	I. 537	1.525	1.514	1.502	1.491	1.479	1.468	1.456	I. 445	1.433
96	. 714	. 588	. 577	. 565	- 554	-542	. 53 I	. 520	. 508	. 497	. 485
97	. 767	. 641	. 630	. 618	. 607	. 595	. 584	. 572	. 561	. 550	. 538
98	. 822	. 696	. 684	. 673	. 661	. 650	. 638	. 627	. 615	. 604	. 593
90	. 878	. 752	. 740	. 729	.717	. 706	. 694	. 683	. 67 I	. 660	. 648
100	1.936	1.809	1.798	1.786	1.775	1.763	1.752	1.740	1. 729	1.717	1.706
101	. 99.4	. 868	. 857	. 845	. 834	. 822	.8II	. 799	. 788	. 776	.765
102	2.055	. 928	. 917	. 905	. 894	. 882	.871	. 859	. 848	. 836	. 825
103	. 117	.991	. 979	. 968	. 956	. 944	. 933	.921	. 910	. 898	. 887
104	. 18 I	2.054	2.043	2.031	2.020	2.008	. 997	. 985	. 974	. 962	.95I
105	2.246	2.120	2.108	2.097	2.085	2.073	2.062	2.050	2.039	2.027	2.016
106	. 314	. 187	. 775	. 164	. 152	. 141	. 129	. 118	. 106	. 094	. 083
107	. 382	. 255	. 244	. 232	. 221	. 209	. 198	. 186	. 175	.163	. 152
108	. 453	- 326	. 314	. 302	. 291	.280	. 268	. 257	. 245	. 234	. 222
109	. 525	-398	-387	. 375	.364	. 352	. 340	. 329	.317	. 306	. 294
110	2.599	2.472	2.461	2.449	2.438	2.426	2.414	2.403	2.391	2.380	2.368
110	$\Delta{ }_{P} \times \Delta B$	+.0042	+.0046	+.0050	+.0054	+.0058	+.0062	+.0065	+.0069	+.0073	+.0077

ENGLISH MEASURES.

Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{1571}\right)$
$B=30.00$

$$
B=30.00
$$

	$t-t^{\prime}$										
	0.0	21	22	23	24	25	26	27	28	29	30
F.	Inches.	Inches.	Inches.	Inches.	!nches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
60°	$\Delta e \times \Delta B$	+.0078	+.co82	+.0086	+.009 C	+. 0093	+.0097	+.	+.0105	+. 0108	+.OI 12
60°	0.522	0.287	0.275	0. 264	0.253	0.242	0.231	0.219	0.208	-.197	0.186
61	. 54 I	0.305	. 294	. 283	. 272	. 261	. 249	. 238	. 227	. 216	. 205
62	. 560	. 325	. 314	- 302	. 291	. 280	. 269	. 257	. 246	. 235	. 224
63	. 580	. 345	. 334	. 322	. 311	. 300	. 289	. 277	. 266	. 255	. 244
64	. 601	. 365	. 354	- 343	. 332	. 320	. 309	. 298	. 287	.276	. 264
65	. 623	. 387	-375	. 364	-353	-342	-330	-319	. 308	. 297	. 285
66	. 645	-408	- 397	-386	- 375	. 363	. 352	. 341	. 330	. 319	. 307
67	. 667	. 431	. 420	. 409	-397	-386	- 375	. 364	. 352	. 341	. 330
68	. 691	. 454	. 443	. 432	. 421	. 409	-398	. 387	. 376	. 364	. 353
69	. 715	. 478	. 467	. 456	. 445	. 433	. 422	. 4 I	- 399	. 388	. 377
70	. 740	. 503	. 492	. 48 I	. 469	. 458	. 447	. 435	. 424	. 413	. 402
71	. 766	. 529	. 517	. 506	. 495	.483	. 472	. 461	. 450	. 438	. 427
72	. 792	. 555	. 544	. 532	. 521	. 510	. 498	.487	. 476	. 464	. 453
73	. 819	.582	. 571	- 559	-548	. 537	. 525	. 514	. 503	.491	. 480
74	. 847	. 610	. 598	.587	. 576	. 564	. 553	. 542	531	. 519	. 508
75	. 876	. 638	. 627	. 616	. 605	. 593	$.5^{82}$. 571	-559	. 548	. 537
76	. 906	. 668	. 657	. 645	. 634	. 623	.61	. 600	. 589	. 577	. 566
77	. 936	. 698	. 687	. 676	. 664	. 653	. 642	. 630	. 619	. 608	. 596
78	. 968	. 730	. 718	. 707	. 696	. 684	. 673	. 662	. 650	. 639	. 628
79	1.000	.762	.751	. 739	. 728	. 717	. 705	. 694	. 683	. 671	. 660
80	1.033	. 795	.784	. 772	.761	. 750	. 738	. 727	. 716	. 704	. 693
81	. 068	. 829	. 818	. 806	. 795	. 784	. 772	. 761	. 750	. 738	. 727
82	. 103	. 864	. 853	. 842	. 830	. 819	. 808	. 796	. 785	. 773	. 762
83	. 39	. 900	. 889	. 878	. 866	. 855	. 844	. 832	.821	. 810	. 798
84	. 176	. 938	. 926	. 915	. 904	. 892	. 881	. 869	. 858	. 847	. 835
85	I. 215	. 976	. 965	. 953	. 942	. 930	. 919	. 908	. 896	. 885	. 873
86	. 254	I. 015	I. 004	. 992	. 98 I	. 970	. 958	. 947	. 935	. 92.4	. 913
87	. 295	. 056	. 044	1.033	1.021	1.010	. 999	.987	. 976	. 964	. 953
88	. 336	. 097	. 086	. 074	. 063	. 051	1.040	1.029	1.017	1. 006	. 994
89	. 379	. 140	. 128	. 117	. 106	. 094	. 083	. 071	. 060	. 649	1.037
90	1.423	I. 184	1.172	I. 161	1.149	I.I38	1.127	I.II 5	I. 104	1.092	1.081
91	. 469	. 229	. 217	. 206	. 195	. 183	. 172	. 160	. 149	. 138	. 126
92	. 515	. 275	. 264	. 252	. 241	. 230	. 218	. 207	. 195	. 184	. 172
93	. 563	. 323	. 311	. 300	. 288	. 277	. 266	. 254	. 243	. 231	. 220
94	. 612	. 372	. 360	- 349	. 337	. 326	. 315	. 303	.292	. 280	. 269
95	1.662	1.422	1.41 I	1.399	I. 388	1. 376	1.365	I. 353	1.342	1.330	I.319
96	. 714	474	. 462	-451	. 439	. 428	. 416	. 405	. 393	. 382	. 371
97	. 767	. 527	. 515	. 504	. 492	. 481	. 469	. 458	-446	. 435	. 423
98	. 822	. 581	. 570	. 558	. 547	. 535	. 524	. 512	. 501	. 489	. 478
99	. 878	. 637	. 625	. 614	. 602	. 591	. 580	. 568	. 557	. 54.5	. 534
100	1.936	1. 694	1.683	1.671	1.660	1. 648	1.637	1.625	1.614	1.602	1.591
101	. 994	. 753	. 742	. 730	. 719	. 707	. 696	. 684	. 673	. 661	. 650
102	2.055	. 813	. 802	. 790	. 779	.767	. 756	. 744	. 733	. 721	. 710
103	. 117	. 875	. 864	. 852	.84I	. 829	. 818	. 806	. 795	. 783	. 772
104	.181	. 939	. 928	.916	. 905	. 893	. 882	. 870	. 858	. 847	. 835
105	2.246	2.004	I. 993	1.981	1.970	1.958	1.947	1.935	I. 924	I.912	1.901
106	. 314	. 071	2.060	2.048	2.037	2.025	2.OI 4	2.002	. 991	. 979	. 968
107 108	.382 .453	. 140	. 129	-117	. 105	. 094	. 082	. 071	2.059	2.048	2.036
108	. 453	. 211	. 199	. 187	. 776	. 164	. 153	. 141	. 130	. 118	. 107
109	- 525	. 283	. 271	. 260	. 248	. 236	. 225	. 213	. 202	. 190	. 179
110	2.599	2.357	2.345	2.334	2.322	2.310	2.299	2.287	2.276	2.264	2.253
110	$\Delta c \times \Delta B$	+.co8I	+.0085	+.co89	+.0092	+.0006	+. 0100	+.0104	+.0108	+.0112	+.0116

Table 82.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.
Values of $e=e^{\prime}-0.000367 B\left(t-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{157 \mathrm{I}}\right)$
$B=30.00$

t^{\prime}	$t-t^{\prime}$										
	0.0	31	32	33	34	35	36	37	38	39	40
F.	Inches.										
60°	$\Delta e \times \Delta B$	+.01 16	+.01 20	+.CI 2.3	+.012\%	+.0131	+.0134	+.0138	+.0142	+.0146	+.0149
60°	0.522	0.175	0.163	O. 152	0.141	-. 130	0.119	0.107	0.096	0.085	0.074
61	.54I	. 193	. 182	. 17 I	.16c	. 148	. 137	. 126	. 115	. 104	. 092
62	. 560	. 213	. 201	. 190	. 779	. 168	. 156	. 145	. 134	. 123	. 112
63	. 580	. 232	. 221	. 210	. 199	. 188	.176	. 165	. 154	. 143	. 311
64	.601	. 253	. 242	. 231	. 219	. 208	. 197	. 186	. 174	. 163	. 152
65	. 623	. 274	. 263	. 252	. 240	. 229	. 218	. 207	. 195	. 18.4	. 173
66	. 645	. 296	. 285	. 274	. 262	. 251	. 240	. 229	. 217	. 206	. 195
67	. 667	. 318	. 307	. 296	. 285	. 273	. 262	.251	. 240	. 228	. 217
68	.691	. 342	. 330	. 319	. 308	. 297	. 285	. 274	.263	.252	. 240
69	. 715	. 366	. 354	- 343	. 332	. 32 I	. 309	. 298	.287	. 275	. 264
70	-740	. 390	-379	. 368	-357	-345	. 334	-323	.311	-300	. 289
71	. 766	. 416	. 404	. 393	. 382	. 371	. 359	. 348	. 337	. 325	. 314
72	. 792	. 442	. 431	.419	. 408	. 397	.385	. 374	. 363	. 352	-340
73	. 819	. 469	. 458	. 446	. 435	. 424	. 412	. 401	. 390	. 379	. 367
74	. 847	. 496	. 485	. 474	. 463	.45I	. 440	. 429	. 418	. 406	. 395
75	. 876	. 525	. 514	. 503	. 491	.480	. 469	. 457	. 446	. 435	. 424
76	. 906	. 555	. 543	. 532	. 521	. 509	. 498	. 487	. 476	. 464	. 453
77	. 936	. 585	. 574	. 562	.551	-540	. 529	. 517	. 506	. 495	. 483
78	. 968	. 616	. 605	. 594	. 582	. 571	. 56 c	-548	-537	. 526	. 514
79	1.000	. 649	. 637	. 626	. 615	. 603	. 592	.581	. 569	- 558	- 547
80	1.0.33	. 682	. 670	. 659	. 648	. 636	. 625	. 614	. 602	. 591	. 580
81	. 068	. 716	. 704	. 693	. 682	. 678	. 659	. 648	. 636	. 625	. 613
82	. 103	. 751	. 739	. 728	. 717	.705	. 694	.683	. 67 I	660	. 648
83	. 139	. 787	. 775	. 764	. 753	.741	. 730	. 719	. 707	. 696	. 685
84	. 176	. 824	. 813	. 801	. 790	.778	. 767	. 756	. 744	. 733	. 722
85	I. 215	. 862	. 851	. 839	. 828	. 817	. 805	. 794	.782	. 771	. 760
86	. 254	.901	. 890	. 878	. 867	. 856	. 844	. 833	. 822	. 810	. 799
87	. 295	. 942	. 930	.919	. 907	. 896	.885	. 873	. 862	. 850	. 839
88	. 336	.983	. 972	. 960	. 949	. 937	. 926	.915	.903	. 892	. 880
89	. 379	1.026	1.014	1.003	.991	.980	.969	. 957	. 946	. 934	. 923
90	1.423	1.069	1.058	1.047	1.035	1.024	1.012	1.001	. 990	. 978	967
91	. 469	. 115	.103	. 092	.08c	. 069	. 058	. 046	1.035	1.023	1.012
92	. 515	. 161	. 150	. 138	. 127	. 115	. 104	. 092	.081	. 070	. 058
93	. 563	. 208	. 197	. 186	. 174	.163	. 51	. 140	. 128	. 117	. 105
94	. 612	. 257	. 2.46	. 234	. 223	. 212	. 200	. 189	.177	.166	. 154
95	1.662	1.308	1. 296	1. 285	1. 273	1. 262	1. 250	1. 239	1.227	1.216	1. 204
96	. 714	. 359	. 348	. 3.36	. 325	. 313	. 302	. 290	. 279	: 267	. 256
97	. 767	. 412	. 401	-389	. 378	-366	. 355	. 343	.332	. 320	- 309
98	. 822	. 466	. 455	. 443	. 432	. 420	. 409	- 398	- 386	. 375	. 363
99	. 878	. 522	. 511	. 499	. 488	.476	. 465	. 453	. 442	. 430	. 419
100	I. 936	1.579	1. 568	1. 556	1.545	1.533	1. 522	1. 510	1. 499	1. 488	1. 476
101	. 994	. 638	. 627	. 615	. 604	. 592	. 581	.509	. 558	. 546	. 535
102	2.055	. 698	. 687	. 675	. 664	. 652	. 64 I	. 629	. 618	. 606	. 595
103	. 117	. 760	. 749	. 737	. 726	. 714	.703	. 691	. 680	. 668	. 657
10.4	. 181	. 824	. 812	. Sor	.789	. 778	.766	. 755	. 743	. 732	. 720
105	2.246	1.889	1. 878	1.866	1. 8_{55}	1.843	I. 8_{32}	1.820	1.808	1. 797	1. 785
106	. 314	. 956	. 945	. 933	. 922	. 910	. So 8	. 887	. 875	. 864	. 852
107	. 382	2.025	2.613	2.002	. 990	. 979	.907	. 955	. 944	. 932	. 921
108	. 453	. 005	. 084	. 072	2.060	2.049	2.037	2.026	2.014	2.003	. 991
100	2.525	2.167	2.156	2.144	2.133	2.121	2.1C0	2.098	2.086	2.075	2.063
110	$\Delta_{c} \times \Delta B$	+.0119	+.0123	+.012	+.C13I	+.c135	-.0130	+.014.3	+.0146	+.0150	+. 0154

REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.

Values of $e=e^{\prime}-0.000367 B$$B=30.00$											
t^{\prime}	$t-t^{\prime}$										
	0.0	41	42	43	44	45	46	47	48	49	50
F.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches	nches.	Inches.	Inches.	Inches.	Inches.
60°	$\Delta e \times \Delta B$	+.0153	+.c1 57	+.0161	+.0164	+.0168	+. 0172	+.0176	+. 0179	+.0183	+.0187
60°	0.522	0.063	0.051	0.040	0.629	0.018	0.007				
61	. 54 I	.08I	.070	. 059	. 048	. 036	. 025	0.014	0.003		
62	. 560	. 100	.089	. 078	. 067	. 055	. 044	. 033	. 022	0.011	
63	. 580	. 120	. 100	.c98	. 087	. 075	. 064	. 053	. 042	. 030	0.019
64	. 601	.14 I	. 29	. 118	. 107	. 096	. 085	. 073	.c62	. 051	. 040
65	. 623	. 162	. 150	. 139	. 128	. 117	.105	.c94	.083	. 072	. 061
66	. 645	. 184	. 172	. 161	. 150	. 139	. 127	. 116	. 105	. 094	. 082
67	. 667	. 206	. 195	.183	. 172	. 161	. 150	. 138	. 127	. 116	. 105
68	. 69 I	. 229	. 218	. 207	. 195	. 184	. 173	.162	. 150	. 139	. 128
69	. 715	. 253	. 242	. 230	$\therefore 219$. 208	. 197	. 185	. 174	.163	. 152
70	. 740	.278	. 266	. 255	. 244	.232	. 221	. 210	. 199	.187	. 176
71	. 766	. 303	. 292	. 280	. 269	. 258	. 246	. 235	. 224	. 213	. 201
72	. 792	. 329	-318	. 306	. 295	. 284	. 273	. 261	. 250	. 239	. 227
73	. 819	. 356	-345	. 333	-322	. 311	. 299	. 288	. 277	. 266	. 254
74	. 847	. 384	.372	. 361	. 350	.338	.327	.316	.304	. 293	282
75	. 876	. 412	. 401	. 390	. 378	. 367	.356	-344	- 333	. 322	. 310
76	.9c6	. 442	. 430	. 419	. 408	- 396	-385	. 374	. 362	. 35 I	. 340
77	. 936	. 472	. 461	. 449	.438	. 427	. 415	. 404	- 393	-381	. 370
78	. 968	. 503	. 492	. 480	. 469	. 458	. 446	. 435	. 424	.412	. 401
79	1.000	. 535	. 524	. 513	. 501	. 490	. 478	. 467	. 456	- 444	. 433
80	1.033	. 568	. 557	. 546	. 534	. 523	. 511	. 500	. 489	477	. 466
81	. 068	. 602	. 591	. 579	. 568	. 557	. 545	. 534	. 523	. 511	. 500
82	. 103	. 637	. 626	. 614	. 603	. 592	. 580	. 569	. 558	. 546	. 535
83	. 139	. 673	. 662	. 650	. 639	. 628	. 616	. 605	. 594	.582	. 571
84	.176	. 710	. 699	. 687	. 676	. 665	. 653	.642	. 63 I	. 619	. 608
85	1.215	.748	. 737	. 725	. 714	. 703	. 69 I	. 680	. 669	. 657	.646
86	. 254	.787	. 776	.765	. 753	. 742	. 730	. 719	. 708	. 696	. 685
87	. 295	. 828	. 816	. 805	. 793	.782	. 771	. 759	. 748	. 737	. 725
88	. 336	. 869	. 858	. 846	. 835	. 823	. 812	. 801	. 789	. 778	. 766
89	. 379	.912	. 900	. 889	. 877	. 866	. 855	. 843	.832	. 820	. 809
90	1.423	. 955	. 944	. 932	. 921	.910	. 898	.887	. 875	. 864	. 853
91	. 469	1.000	. 989	. 978	. 966	. 955	. 94.3	. 932	. 920	. 909	. 898
92	. 515	. 047	1.035	1.024	1.012	1.001	. 989	. 978	. 967	. 955	. 944
93	. 563	. 094	. 083	. 071	. 660	. 048	1.037	1.025	1.014	1.003	.991
94	. 612	. 143	. 131	. 120	. 109	.c97	. 086	. 074	.c63	. 051	I.C40
95	1.662	1.193	1.182	1.170	1.159	1.147	1.136	I. 124	1.113	I.ICI	1.090
96	. 714	. 244	. 233	. 222	. 210	. 199	. 187	. 176	.164	. 153	. 141
97	.767	. 297	. 286	. 274	. 263	. 251	. 240	. 229	. 217	. 206	. 194
98	. 822	. 352	. 340	. 329	. 317	. 306	. 294	. 283	. 271	. 260	. 248
99	1.878	1.407	1.396	1.384	1.373	1.361	1.350	1.338	1.327	1.316	I. 304
100	$\Delta e \times \Delta B$	+. 0157	+.0161	+.0165	+.0168	+.0172	+.0176	+0.180	$+.0184$	+.0188	+.0191

Smithsonian Tables.

Table 82.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS. ENGLISH MEASURES.

$$
\begin{gathered}
\text { Values of } c=e^{\prime}-0.000367 B\left(l-t^{\prime}\right)\left(\mathrm{I}+\frac{t^{\prime}-32}{\mathrm{I}_{57} \mathrm{I}}\right) \\
B=30.00
\end{gathered}
$$

t^{\prime}	$t-t^{\prime}$										
	0.0	51	52	53	54	55	56	57	58	59	60
F.	Inches.										
62°	0.560										
63	. 580	0.008									
64	. 601	0.028	0.017	0.006							
65	. 623	. 049	. 038	. 027	0.016	0.004					
66	. 645	. 071	. 060	. 849	. 037	. 026	0.015	0.004			
67	. 667	. 093	. 082	. 071	. 060	. 048	. 037	. 026	c.015	0.003	
68	. 691	.116	. 105	. 094	. 083	. 071	. 060	. 049	. 038	. 026	0.015
69	. 715	. 140	. 129	. 118	. 106	. 095	. 084	. 073	. 061	. 050	. 039
70	. 740	. 165	- 154	. 142	.131	. 120	. 108	. 097	. 086	. 075	. 063
71	.766	. 190	. 179	. 167	.156	. 145	. 134	. 122	. 111	. 100	. 089
72	. 792	. 216	. 205	. 194	. 182	.171	. 160	. 148	. 137	. 126	.114
73	. 819	. 243	.232	. 220	. 209	. 198	. 186	. 175	.164	. 153	.141
74	. 847	. 271	. 259	. 248	.237	. 225	.214	. 203	.191	. 180	. 169
75	. 876	. 299	. 288	.276	. 265	. 254	. 243	. 231	. 220		. 197
76	. 9 c6	. 328	. 317	. 306	. 294	. 283	. 272	. 260	. 249	. 238	. 226
77	. 936	. 359	-347	-336	. 325	. 313	. 302	. 291	. 279	. 268	. 257
78	. 968	. 390	. 378	- 367	- 356	- 344	- 333	. 322	-310	. 209	. 288
79	1.000	. 422	410	- 399	. 388	. 376	. 365	- 354	-342	. 331	. 320
80	1.03.3	. 455	. 443	. 432	. 421	. 409	- 398	. 387	. 375	. 364	. 353
81	. 068	. 489	. 477	. 466	. 455	. 443	. 432	. 420	. 409	. 398	. 386
82	.103	. 524	. 512	. 501	. 489	- 478	. 467	. 455	. 44	. 433	. 42 I
83	. 139	. 559	. 548	. 537	. 525	. 514	. 503	. 491	. 480	. 469	-457
84	.176	. 596	. 585	. 574	. 562	. 551	. 540	. 528	. 517	. 505	. 494
85	1.215	. 634	. 623	. 612	. 600	. 589	. 578	. 566	-555	-543	. 532
86	. 254	. 673	. 662	. 651	. 639	. 628	. 617	. 605	. 594	. 582	. 571
87	. 295	. 714	. 702	. 691	.680	. 668	. 657	. 645	. 634	. 623	. 611
88 89	. 336 r .370	. 755	. 744	. 732	. 721	. 709	. 698	. 687	. 675	. 664	. 652
	1.379	0.798	0.780	0.775	0.763	0.752	0.740	0.729	0.718	0.706	0.695
90	$\Delta e \times \Delta B$	+. 19194	+. 0198	+.0202	+.0205	+.0209	+.0213	+.021年	+.0221	+.0225	+.c228

EMITHSONIAN TABLES.

RELATIVE HUMIDITY.
TEMPERATURES FAHRENHEIT.

$\begin{aligned} & \text { Air } \\ & \text { Temper- } \\ & \text { ature. } \end{aligned}$	relative humidity, or percentage of saturation.									
	10	20	30	40	50	60	70	80	90	100
F.	Vapor pressure (inches).									
-30°	0.0007	0.0014	0.0021	0.0028	0.0035	0.0042	0.0049	0.0056	0.0063	0.0071
29	. 0007	. 0015	. 0022	.0030	. 0037	. 0045	.0052	. 0060	. 0067	. 0075
28	. 0008	.0016	. 0024	. 0032	. 0040	. 0048	. 0056	. 0064	. 0072	. 0080
27	. 0008	. 0017	. 0025	. 0034	. 0042	. 0051	. 0059	. 0068	.0076	. 0084
26	. 0009	. 0018	. 0027	. 0036	. 0045	. 0054	.c063	. 0072	. $00 \mathrm{~S}_{\text {I }}$. 0090
-25	0.0010	0.0019	0.0029	0.0038	0.0048	0.0057	0.0067	0.0076	0.0086	0.0095
24	10	. 0020	. 0030	. 0040	. 0050	. 0060	.0071	.008I	. 0001	. 0101
23	. 001 I	. 0021	.0032	. 0043	. 0053	. 0064	. 0075	. 0086	. 0096	. 0107
22	. 011	.0023	. 0034	. 0045	. 0057	.006S	.0079	.0091	. 0102	. 0113
21	. 0012	. 0024	. 0036	.0048	. 0060	.0072	.0084	.0096	. 0108	. 0120
-20	0.0013	0.0025	0.0038	0.0051	0.0064	0.0076	0.0089	0.0102	0.0114	0.0127
19	.0013	. 0027	. 0040	. 0054	. 0067	. 0081	. 0094	. 0108	. 0121	. 0135
18	.0014	. 0029	. 0043	. 0057	.0071	. 0086	. 0100	. 0114	. 0128	. 0143
17	.0015	. 0030	. 0045	.0060	. 0076	. 0091	. 0106	. 0121	. 0136	. 0151
16	.0016	.0032	. 0048	.0064	.0080	.0096	. 0112	. 0128	. 0144	. 0160
-15	0.0017	0.0034	0.0051	0.0068	0.0084	O.OIOI	0.0118	0.0135	0.0152	0.0169
14	. 0018	. 0036	. 0054	. 0071	.0089	. 0107	. 0125	. 0143	.0161	. 0179
13	.0019	.0038	. 0057	. 0076	. 0094	. 0113	.OI32	. 0151	. 0170	. 0189
12	. 0020	. 0040	. 0060	. 0080	. 0100	. 0120	. 0140	. 0160	. 0180	. 0200
11	. 0021	. 0042	.0063	. 0084	. 0106	. 0127	. 0148	. 0109	. 0190	. 22 I I
-10	0.0022	0.0045	0.0067	0.0089	0.0112	0.0134	0.0156	0.0178	0.0201	0.0223
9	. 0024	. 0047	. 0071	. 0094	. 0118	. 0141	. 0165	. 0188	. 0212	. 0236
8	. 0025	. 0050	. 0075	. 0099	. 0124	. 0149	. 0174	. 0199	. 0224	. 0249
7	. 0026	. 0053	. 0079	. 0105	.0131	. 0158	.0184	. 0210	.0236	.0263
6	. 0028	. 0055	. 0083	. OIII	. 0139	. 0166	.0194	. 0222	. 02.49	. 0277
- 5	0.0029	0.0058	0.0088	0.0117	0.0146	0.0175	0.0205	0.0234	0.0263	0.0292
4	. 0031	. 0062	. 0093	. Or 23	. 0154	. 0185	. 2216	. 0247	. 0278	. 0308
3	. 0033	. 0065	. 0098	. 0130	.0163	. 0195	. 0228	. 0260	. 0293	. 0325
2	. 0034	. 0069	. 0103	. 0137	. 0171	. 0206	. 0240	. 0274	.0309	. 0343
1	.0036	. 0072	. 0108	. 0145	. 0181	. 0217	. 0253	. 0289	. 0325	.0361
± 0	0.0038	0.0076	0.0114	0.0152	0.0190	0.0229	0.0267	0.0305	0.0343	0.0381
I	. 0040	. 0080	. 0120	. 0161	. 0201	. 024 I	. 0281	. 0321	.0361	. 0.401
2	.0042	. 0085	. 0127	. 0169	. 0211	. 0254	. 0296	.0.338	. 3880	. 0423
3	. 0044	. 0089	. 0134	. 0178	. 0222	. 0267	. 0312	.0.356	. 0400	. 0445
4	. 0047	. 0094	. 0141	. 0187	. 0234	. 0281	. 0328	. 0375	. 0422	. 0468
5	0.0049	0.0099	0.0148	0.0197	0.0247	0.0296	0.0345	0.0394	0.0444	0.0493
6	. 0052	. 0104	. 0156	. 0208	. 0259	. 0311	. 0363	. 0.415	. 0467	. 0519
7	. 0055	. 0109	. 0164	. 0218	. 0273	. 0328	. 0382	. 0437	. 0491	. 0546
8	. 0057	. 0115	. 0172	. 0230	.0287	. 0344	. 0402	. 0459	. 0517	. 0574
9	. 0060	. 0121	. 0181	. 0241	.0302	. 0362	. 0423	. 0483	. 0543	. 0604
10	0.0063	0.0127	0.0190	0.0254	0.0317	0.0381	0.0444	0.0508	0.0571	0.0635
1 I	. 0067	. 0133	. 0200	. 0267	. 0334	. 0400	. 0467	. 0534	. 0600	. 0667
12	. 0070	. 0140	. 2210	. 0280	. 0350	. 0421	. 0491	. 0561	. 0631	. 0701
13	. 0074	. 0147	. 0221	. 0295	. 0368	. 0442	. 0515	. 0589	. 0663	. 0736
14	. 0077	. 0155	. 0232	. 0309	.0387	. 0464	. 0541	.0619	. 0696	. 0773
15	0.0081	0.0162	0.0244	0.0325	0.0406	0.0487	0.0568	0.0650	0.0731	0.0812
16	. 0085	. 0170	. 0256	. 0341	. 0426	.0512	. 0597	. 0682	. 0767	. 0852
17	. 0089	. 0179	. 0268	. 0358	. 0447	. 0537	. 0626	. 0716	. 0305	. 0895
18	. 0094	. 0188	. 0282	.0376	. 0470	. 0563	. 0657	. 0751	. 0845	. 0939
19	. 0099	. 0197	. 0296	. 0394	. 0493	. 0591	.0690	.0788	. 0887	.0985
20	0.0103	0.0207	0.0310	0.0413	0.0517	0.0620	0.0723	0.0827	0.0930	0.1033

Table 83.
RELATIVE HUMIDITY.
TEMPERATURES FAHRENHEIT.

$\begin{aligned} & \text { Air } \\ & \text { Temper- } \\ & \text { ature. } \end{aligned}$	Relative humidity, or Percentage of saturation.									
	10	20	30	40	50	60	70	80	90	100
F.	Vapor pressure (inches).									
20°	0.010	0.021	0.031	0.041	0.052	0.062	0.072	0.083	0.093	0.103
21	. 011	. 022	. 033	. 043	. 054	. 065	. 076	. 087	. 098	. 108
22	. 011	. 023	. 034	. 045	. 057	. 068	.080	. 091	.102	. 114
23	. 012	. 024	. 036	.648	. 060	. 071	. 083	. 095	. 107	. 119
24	. 012	. 025	.0.37	. 050	. 062	. 075	.087	. 100	. 112	. 125
25	0.013	0.026	0.039	0.052	0.065	0.078	0.092	0.105	0.118	-.13I
26	. 014	. 027	. 041	. 055	. 068	. 082	.096	. 110	. 123	. 137
27	. 014	. 029	. 043	.057	. 072	. 086	. 100	. 115	. 129	. 143
28	. 015	. 030	. 045	. 060	. 075	. 090	.105	. 120	. 135	. 150
29	. 016	. 031	. 047	. 063	. 079	. 094	. 110	. 126	. 142	. 157
30	0.016	0.033	0.049	0.066	0.082	0.099	0.115	0.132	0.148	0.165
31	. 1017	. 034	. 052	. 069	. 086	. 103	. 121	. 138	. 155	.172
32	. 18	. 036	. 054	. 072	. 090	. 108	. 126	. 144	.162	. 180
33	. 019	. 038	. 056	. 075	.094	. 113	. 31	. 150	. 169	. 188
34	. 020	. 039	.c59	.078	. 0.98	. 117	. 137	. 156	. 176	. 195
35	0.020	c. 041	0.061	0.081	0.102	O.122	0.142	0.163	0.183	0.203
30	. 021	. 042	. 064	. 085	. 106	. 127	.148	. 169	. 191	. 212
37	. 022	. 044	066	. 088	. 110	. 132	.154	. 76	. 198	. 220
38	. 023	. 046	. 069	. 092	. 115	. 137	.160	.183	. 206	. 229
39	. 024	. 048	. 071	. 095	.119	. 143	. 167	.191	. 214	. 238
40	0.025	0.050	0.074	0.099	0.124	0.149	0.173	0.198	0.223	0.248
4 I	. 026	.052	. 077	. 103	. 129	. 155	. 180	. 206	.232	. 258
42	. 027	. 054	. 080	.107	. 134	. 161	.187	. 214	. 241	. 268
43	. 028	. 056	. 083	.III	. 139	.167	. 195	. 223	. 250	.278
44	. 029	. 058	. 087	. 116	.145	. 173	. 202	. 231	. 260	. 289
45	0.030	0.060	c.090	0.120	0. 150	0.180	0.210	0.240	0.270	0.300
46	. 031	. 062	. 094	. 125	. 156	. 187	. 218	. 250	. 281	. 312
47	. 032	. 065	. 097	. 130	. 162	. 194	. 227	. 259	. 292	. 324
48	. 034	. 067	. 101	. 135	. 168	. 202	. 236	. 269	.303	. 336
49	. 035	. 050	.105	. 140	. 175	. 210	. 245	. 279	. 314	-349
50	0.036	0.073	0.109	0.145	0.181	0.218	0.254	0.290	0.326	0.363
51	. 038	. 075	. 113	. 151	. 188	. 226	. 263	. 301	. 339	. 376
52	. 039	. 078	. 117	.156	. 195	. 234	. 273	-312	. 351	-390
53	. 041	.08I	. 122	. 162	. 203	. 243	. 284	. 324	. 365	. 405
54	. 042	.084	. 126	. 168	. 210	. 252	. 294	. 336	. 378	. 420
55	0.044	0.087	0.131	0.174	0.218	0.262	0.305	0.349	0.392	0.436
56	. 045	. 090	. 136	. 181	. 226	. 271	.316	. 362	. 407	. 452
57	. 047	. 094	.141	.187	. 234	. 281	. 328	. 375	. 422	. 469
58	. 049	.097	. 14.6	. 194	. 243	. 292	. 340	. 389	. 437	. 486
59	. 050	. 101	. 151	. 201	. 252	. 302	. 353	. 403	. 453	. 504
60	0.052	0.104	-. 157	0.209	0.261	0.313	0.365	0.418	0.470	0.522
61	. 054	. 108	. 162	. 216	. 270	. 325	. 379	. 433	. 487	. 541
62	. 056	. 112	. 168	. 224	. 280	. 336	. 392	. 448	. 504	. 560
63	. 058	. 116	. 174	.232	. 290	. 348	.406	. 464	. 522	. 580
64	. 060	.120	. 180	. 241	. 301	. 361	. 42 I	. 481	. 541	.601
65	0.062	0.125	0.187	0.249	0.311	0.374	0.436	0.498	0.560	0.623
66	. 064	. 129	. 193	. 258	. 322	. 387	. 451	. 516	. 580	. 645
67	. 067	.133	. 200	. 267	. 334	. 400	. 467	. 534	. 601	. 667
68	. 069	. 138	. 207	.276	. 345	.415	. 484	. 553	. 622	.691
69	. 072	. 143	. 214	. 286	. 358	. 429	. 500	. 572	. 644	. 715
70	0.074	0.148	0.222	0.296	0.370	0.444	0.518	0.592	0.666	0.740

RELATIVE HUMIDITY.
TEMPERATURES FAHRENHEIT.

$\begin{aligned} & \text { Air } \\ & \text { Temper- } \\ & \text { ature. } \end{aligned}$	relative ilumidity, or percentage of saturation.									
	10	20	30	40	50	60	70	80	90	100
F.	Vapor pressure (inches).									
70°	0.074	0.148	0.222	0.296	0.370	0.444	0.518	0.592	0.666	0.740
71	. 077	. 153	. 230	. 306	.383	. 459	. 536	. 612	. 689	. 760
72	. 079	. 158	. 238	. 317	. 396	. 475	- 554	. 634	. 713	.792
73	. 082	. 164	. 246	. 328	. 410	. 491	- 573	. 655	. 737	. 819
74	. 085	. 169	. 254	. 339	. 424	. 508	. 593	. 678	.762	. 847
75	0.088	0. 175	0.263	0.350	0.438	0.526	0.613	$0.7 C 1$	0.788	0.876
76	. 091	. 181	.272	. 362	. 453	. 543	. 634	. 724	. 815	. 906
77	. 094	. 187	. 281	. 374	. 468	. 562	. 655	. 749	. 843	. 936
78	. 097	. 194	. 290	. 387	. 484	.581	. 677	. 774	. 871	. 968
79	. 100	. 200	. 300	. 400	. 500	. 600	.700	. 800	. 900	1.000
80	0.103	0.207	0.310	0.413	0.517	0.620	0.723	0.827	0.930	1.033
81	. 107	. 214	. 320	. 427	. 534	. 641	. 747	. 854	. 961	1.068
82	. 110	. 221	. 331	. 44 I	. 551	. 662	. 772	. 882	. 993	1. 103
83	. 114	. 228	. 342	.456	. 570	. 684	. 797	.91I	1.025	1.139
84	. 118	. 235	. 353	. 471	. 588	. 706	. 824	. 941	1. 059	1.17 76
85	0.121	0.243	0.364	0.486	0.607	0.729	0.850	0.972	1.093	1.215
86	. 125	. 251	. 376	. 502	. 627	. 753	. 878	1.003	I. 129	1. 254
87	. 129	. 259	. 388	. 518	.647	. 777	. 906	1.036	1.165	1.295
88	. 134	. 267	. 401	. 535	. 668	. 802	. 936	1.069	1.203	1.336
89	. 138	. 276	. 414	. 552	. 690	. 828	. 966	1. 104	1.24 I	1.379
90	0.142	0.285	0.427	0.569	0.712	0.854	0.996	1.139	1.281	1.423
91	. 147	. 294	. 441	. 588	. 734	. 88 I	1.028	1.175	1.322	1.469
92	. 152	. 303	-455	. 606	. 758	. 909	1.061	1.212	I. 364	1.515
93	. 156	. 313	. 469	. 625	.782	.938	1.094	1.2 .50	1.407	1.563
94	.161	. 322	. 484	. 645	. 806	. 967	1. 128	1. 290	1.45 I	1.612
95	0.166	0.332	0.499	0.665	0.831	0.998	1.164	1.330	1. 496	1.662
96	. 171	. 343	.514	. 686	. 857	1.029	1.200	1.371	1.543	1.714
97	. 177	. 353	. 530	.707	. 884	1.060	1.237	1.414	1. 591	1.767
98	. 182	. 364	. 547	. 729	. 911	1.093	1.275	1.458	1.640	1.822
99	. 188	. 376	. 563	.751	. 939	1.127	1.315	1.502	1.690	1. 878
100	0.194	0.387	0.581	0.774	0.968	1.161	1.355	1. 548	1.742	1.936
101	. 199	. 399	. 598	. 798	. 997	1.197	1.396	1.596	1.795	1.994
102	. 206	. 41 I	.616	. 822	1.028	1.233	1.438	1. 644	1. 850	2.055
103	. 212	. 423	. 635	. 847	1.059	1.270	1.482	1.694	1.905	2.117
104	. 218	. 436	. 654	. 872	1.090	1.309	1.527	1.745	1.963	2.181
105	0.225	0.449	0.674	0.899	1.123	1.348	1.572	1.797	2.022	2.246
106	. 231	. 463	. 694	. 925	1.157	1.388	1.619	1. 851	2.082	2.314
107	. 238	.476	. 715	. 953	1.19 I	1.429	1.668	1.906	2.144	2.382
108	. 245	. 491	. 736	. 981	1. 226	1.472	1.717	1.962	2.208	2.453
109	. 253	. 505	.758	1.010	1.263	1.515	1.768	2.020	2.273	2.525
110	0.260	0.520	0.780	1.040	1.300	1.560	1.820	2.080	2.339	2.599
III	. 268	. 535	. 8 c3	1.070	1.338	1.605	1.873	2.140	2.408	2.676
112	. 275	. 551	. 826	1.101	1.377	1.652	1.027	2.203	2.478	2.754
II3	. 283	. 567	. 850	1.133	1.417	1.700	1.983	2.267	2.550	2.833
114	. 292	. 583	. 875	1.166	1. 45^{8}	1.749	2.04 I	2.332	2.624	2.915
115	0.300	0.600	0.900	1.200	1.500	1.80c	2.100	2.399	2.699	2.999
116	. 309	. 617	. 926	1.234	1. 543	1.851	2.160	2.468	2.777	3.085
117	. 317	. 635	. $95{ }^{2}$	1.269	1.587	1.904	2.221	2.539	2.856	3.173
118	.326	. 653	. 979	1.305	1.632	1.958	2.285	2.611	2.937	3.264
119	. 336	. 671	1.007	1.342	1.678	2.014	2.349	2.685	3.021	3.356
120	0.345	0.69 c	1.035	1.380	1.725	2.071	2.416	2.761	3.106	3.45 I

Table 84.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS.
METRIC MEASURES.
Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.00115 t^{\prime}\right)$

REDUCTION OF PSYCHROMETRIC OBSERVATIONS. METRIC MEASURES.
Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.00 \mathrm{I} \mathrm{I} 5 t^{\prime}\right)$
$B=760 \mathrm{~mm}$.

t^{\prime}	$t-t^{\prime}$										
	0.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
C.	mm.	mm.		mm.	mm.	mm.		mm.	mm.	mm.	mm.
-25°	0.480										
24	. 530										
23	. 585	0.048									
22	. 646	. 108	0.059	0.010							
-20	.783	. 244	. 195	. 146	. 097	0.048					
19	. 862	. 322	. 273	. 224	. 175	. 126	0.077	0.028			
18	. 947	. 407	. 358	. 309	. 260	. 211	.161	. 112	0.063	0.014	
17	1.041	. 500	. 450	. 401	. 352	. 303	. 254	. 205	. 155	. 106	0.057
16	I. 142	. 600	. 551	.502	. 453	. 404	-354	. 305	.256	. 207	. 57
-15	1.252	.710	. 661	. 612	. 562	. 513	.464	.414	.365	. 316	. 267
14	1.373	.830	. 780	. 731	. 682	. 632	.583	. 534	. 484	. 435	. 386
13	1.503	. 959	. 910	. 861	. 8 I	.762	. 712	. 663	.614	. 564	. 515
12	1.644	1.100	1.051	1.001	. 952	. 902	. 853	.803	. 754	.705	. 655
I I	1.798	1.253	I. 20.4	1.154	1.105	1.055	1.005	.956	.906	. 857	. 807
-10	+1.964	1.419	1.369	1.320	1.270	1.221	1.171	1.121	1.072	1.022	. 973
9	2.144	1.598	1. 549	1.499	1.450	1.400	1.350	1.301	1.251	1.201	1.152
8	2.340	1.79.3	1.743	1.693	1.644	1.594	1.544	1. 495	1.445	1. 395	1. 346
7	2.550	2.003	1.953	1.904	1.854	1.804	1.754	1.705	1. 655	1. 605	1.555
6	2.778	2.231	2.181	2.131	2.081	2.031	1.981	1.932	1.882	1.832	1.782
-5	3.025	2.476	2.426	2.376	2.327	2.277	2.227	2.177	2.127	2.077	2.027
-5	$\Delta e \times \Delta B$	+0.072	+0.079	+0.085	+0.092	+0.098	+0.105	+0.112	+0.118	+0.125	+0.131
t^{\prime}	$t-t^{\prime}$										
	0.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
C.	mm .	mm.									
-15°	$\Delta \times \Delta B$	+0.136	+0.143	+0.149	+0.156	+0.162	+0.169	+0.175	+o.182	+o.188	+0.195
-17°	1.041	0.008									
16	1.142	-. 108	0.059	0.010							
-15	1. 252	0.217	. 168	. 119	0.069	0.020					
14	1.373	.336	. 287	. 237	. 188	. 139	0.089	0.040			
13	1.503	. 465	. 416	. 366	-317	. 268	. 218	. 169	0.119	0.070	0.021
12	1.644	. 006	. 556	. 507	. 457	. 408	-358	. 309	. 259	. 210	. 160
11	1.798	.758	. 708	. 659	. 609	. 560	. 510	.46I	. 411	.362	. 312
-10	1.964	. 923	. 873	. 824	. 774	. 72.5	. 675	. 626	.576	. 526	. 477
9	2.144	1.102	1.052	1.003	. 953	. 903	. 854	. 804	. 755	. 70.5	. 655
8	2.340	1.296	1.246	1.196	1.147	1.097	1.047	. 998	. 948	. 898	. 849
		1.506	1.456	1.406	1.356	1.307	1.257	1.207	1.157	1.108	1.058
6	2.778	1.732	1.683	1.633	1. 583	1.533	1.483	1. 434	1.384	1.334	1.284
- 5	3.025	1.977	1.928	1.878	I. 828	1.778	1.728	1. 678	1. 628	1.579	1.529
- 5	$\Delta c \times \Delta B$	+0.138	+0.144	+0.151	+0.157	+o.164	+0.171	+0.177	+0.184	+0.190	+0.197

Smithsonian Tables.

Table 84.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS. METRIC MEASURES.

$$
\text { Values of } e=c^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(1+0.00115 t^{\prime}\right)
$$

$B=760 \mathrm{~mm}$.

t^{\prime}	$t-t^{\prime}$									
	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0
$\begin{aligned} & \mathrm{C} \\ & -10^{\circ} \Delta e \times \Delta B \end{aligned}$	mm.	mm. +0.209	mm. +0.215	$\begin{gathered} \mathrm{mm} . \\ +0.222 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.228 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.235 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.24 \mathrm{I} \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.248 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.254 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.261 \end{gathered}$
-12° 11	0.111 .263	0.061 .213	0.012 .164	O.II4	0.065	0.015				
-10	. 427	. 378	. 328	.278	. 229	. 179	0.130	0.080	0.031	
9	. 606	. 556	. 506	. 457	. 407	-357	. 308	. 258	. 209	-. 159
8	. 799	. 749	. 699	. 650	. 600	- 5.50	. 501	. 451	.401	. 3.52
7	1. 008	.958	909	. 859	. 809	. 759	. 710	. 660	. 610	. 560
6	1.234	1.184	1.135	1.085	1.035	.985	. 935	. 886	. 836	. 786
-5	1.479	1.429	1.379	1.329	I. 279	1. 229	1.180	1.130	1.080	1.030
$-5 \Delta e \times \Delta B$	$+0.203$	+0.210	+0.217	+0.223	+0.230	+0.2.36	+0.243	+0.249	+0.256	+0.262
t^{\prime}	$t-t^{\prime}$									
	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
C. $-8^{\circ} \Delta e \times \Delta B$	$\begin{gathered} \mathrm{mm} . \\ +0.268 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.275 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.28 \mathrm{I} \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.288 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.204 \end{gathered}$	mm. +0.301	mm. +0.307	$\begin{gathered} \mathrm{mm} . \\ +0.314 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.320 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +0.327 \end{gathered}$
-9°	0.109	0.060	0.010							
8	0.302	0.252	. 202	0.153		0.053	0.004			
7	.510 .736	. 4681	. 411	. 361	.311 .537	.262 .487	.212 .437	0.162 .387	0.112 .338	0.063 .288
-5	0.980	0.930	0.880	0.830	0.781	0.731	0.68 I	0.631	0.58 I	0.531
$-5 \Delta_{c} \times \Delta B$	+0.269	+0.276	+0.282	+0.280	+0.295	+0.302	+0.308	+0.315	+0.322	+0.328
t^{\prime}	$t-t^{\prime}$									
	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6.0
c.	mm.	mm .	mm.	mm.	mm .	mm.	mm .	mm .	mm .	mm.
$\begin{gathered} -7^{\circ} \\ 6 \end{gathered}$	$\begin{array}{r} 0.013 \\ .238 \end{array}$	0.188	0.138	0.089	0.039					
-5	0.48 I	0.431	0.382	0.332	0.282	0.232	0.182	0.132	0.082	0.033
$-5 \Delta e \times \Delta B$	+0.335	+0.34 I	+0.348	+0.354	+0.361	$+0.367$	+0.374	+0.381	$+0.387$	+0.304

Smithsonian tables.

Table 84.

REDUCTION OF PSYCHROMETRIC OBSERVATIONS. METRIC MEASURES.
Values of $e=c^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(1+0.00115 t^{\prime}\right)$
$B=760 \mathrm{~mm}$.

t^{\prime}	$t-t^{\prime}$										
	0	1	2	3	4	5	6	7	8	9	10
c.	mm	mm.	mm.	mm.	mm.	mm.	mm.		mm.		mm.
-5°	$\Delta e \times \Delta B$	+0.07	+0.13	+0.20	+0.26	+0.33	+0.30	+0.46	+0.52	+0.59	66
-5°	3.02	2.53	2.03	1.53	1.03	0.53	0.03				
4	3.29	2.79	2.29	I. 79	1.29	0.79	0.29				
3	3.58	3.08	2.58	2.08	1.58	1.08	0.58	0.08			
2	3.89	3.39	2.89	2.39	1.89	1.38	0.88	0.38			
1	4.22	3.72	3.22	2.72	2.22	1.71	1.21	0.71	. 21		
± 0	$4 \cdot 58$	4.08	$3 \cdot 58$	3.08	2.57	2.07	1.57	1.07	0.57	0.07	
+1	4.92	4.42	3.92	3.42	2.92	2.41	1.91	1.41	0.91	0.40	
2	5.29	4.79	4.29	3.78	3.28	2.78	2.27	1.77	1.27	0.77	0.26
3	5.68	5.18	4.68	4.17	3.67	3.17	2.66	2.16	I. 66	1.15	0.65
4	6.10	5.59	5.09	4.59	4.08	3.58	3.07	2.57	2.07	I. 56	1.06
5	6.54	6.03	5.53	5.03	$4 \cdot 52$	4.02	3.51	3.01	2.51	2.00	1.50
6	7.01	6.51	6.00	$5 \cdot 50$	4.99	4.49	3.98	3.48	2.97	2.47	1.96
	7.51	7.01	6.50	6.00	5.49	4.98	4.48	3.97	3.47	2.96	2.46
8	8.05	7.54	7.03	6.53	6.02	5.51	5.01	4.50	4.00	3.49	2.98
9	8.61	8.10	7.60	7.09	6.58	6.08	$5 \cdot 57$	5.06	$4 \cdot 56$	4.05	$3 \cdot 54$
10	9.21	8.70	8.20	7.69	7.18	6.67	6.17	5.66	5.15	4.64	4.14
11	9.85	9.34	8.83	8.32	7.81	7.31	6.80	6.29	5.78	5.27	4.77
12	10.52	10.01	9.50	9.00	8.49	7.98	7.47	6.96	6.45	5.94	5.44
13	I I . 24	10.73	10.22	9.71	9.20	8.69	8.18	7.67	7.16	6.65	6.14
14	11.99	11.48	10.97	10.46	9.95	9.44	8.93	8.42	7.91	7.4 I	6.90
15	12.79	12.28	11.77	11.26	10.75	10.24	9.73	9.22	8.71	8.20	7.69
16	I 3.64	13.13	12.62	12.11	11.60	11.09	10.58	10.07	9.56	9.04	8.53
17	14.54	14.03	13.52	13.00	12.49	11.98	11.47	10.96	10.45	9.94	9.42
18	15.49	14.98	14.46	13.95	13.44	12.93	12.42	11.90	11.39	10.88	10.37
19	16.49	15.98	15.46	14.95	14.44	13.93	13.41	12.90	12.39	11.88	11.36
20	${ }^{1} 7.55$	17.03	16.52	16.01	15.50	14.98	14.47	13.96	13.44	12.93	12.42
21	18.66	18.15	17.64	17.12	16.61	16.10	15.58	15.07	14.56	14.04	13.53
22	19.84	19.33	18.82	18.30	17.79	17.27	16.76	16.24	15.73	15.22	14.70
23	21.09	20.57	20.06	19.54	19.03	18.51	18.00	17.48	16.97	16.45	15.94
24	22.40	21.88	21.37	20.85	20.34	19.82	19.31	18.79	18.27	17.76	17.24
25	23.78	23.26	22.75	22.23	21.72	21.20	20.68	20.17	19.65	19.14	18.62
26	25.24	24.72	24.20	23.69	23.17	22.65	22.14	21.62	21.10	20.59	20.07
27	26.77	26.25	25.73	25.22	24.70	24.18	23.66	23.15	22.63	22.11	21.60
28	28.38	27.86	27.34	26.83	26.31	25.79	25.27	24.76	24.24	23.72	23.20
29	30.08	29.56	29.04	28.52	28.00	27.48	26.97	26.45	25.93	25.41	24.89
30	31.86	31.34	30.82	30.30	29.78	29.27	28.75	28.23	27.71	27.19	26.67
31	33.74	33.22	32.70	32.18	31.66	31.14	30.62	30.10	29.58	29.06	28.54
32	35.70	35.18	34.66	34.14	33.62	33.10	32.58	32.06	31.54	31.02	30.50
33	37.78	37.25	36.73	36.21	35.69	35.17	34.65	34.13	33.61	33.09	32.57
34	39.95	39.43	38.90	38.38	37.86	37.34	36.82	36.30	35.78	35.26	34.73
35	42.23	41.71	41.18	40.66	40.14	39.62	39.10	38.57	38.05	37.53	37.01
36	44.62	44.10	43.57	43.05	42.53	42.01	41.48	40.96	40.44	39.92	39.40
37	47.13	46.60	46.08	45.56	45.04	44.51	43.99	43.47	42.94	42.42	41.90
38	49.76	49.23	48.71	48.19	47.66	47.14	46.61	46.09	45.57	45.04	44.52
39	52.51	51.99	51.46	50.94	50.41	49.89	49.37	48.84	48.32	47.79	47.27
40	55.40	54.87	54.35	53.82	53.30	52.77	52.25	51.72	51.20	50.67	50.15
41	58.42	57.89	57.37	56.84	56.32	55.79	55.27	54.74	54.21	53.69	53.16
42	61.58	61.05	60.53	60.00	59.48	58.95	58.43	57.90	57.37	56.85	56.32
43	64.89	64.36	63.84	63.31	62.78	62.26	61.73	61.20	60.68	60.15	59.62
44	68.35	67.82	67.30	66.77	66.24	65.72	65.19	64.66	64.13	63.61	63.08
45	71.97	71.44	70.91	70.39	69.86	69.33	68.80	68.28	67.75	67.22	66.69
45	$\Delta e \times \Delta B$	+0.07	+0.14	+0.21	+0.28	+0.35	+0.42	+0.49	+0.56	+0.62	+0.69

Smithsonian Tables.

Table 84.
REDUCTION OF PSYCHROMETRIC OBSERVATIONS.
METRIC MEASURES.
Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(\mathrm{I}+0.00115 t^{\prime}\right)$
$B=760 \mathrm{~mm}$.

t^{\prime}	$t-t^{\prime}$										
	0	11	12	13	14	15	16	17	18	19	20
$\begin{gathered} \text { C. } \\ +5^{\circ} \end{gathered}$	$\stackrel{\mathrm{mm} .}{\Delta c \times \Delta B}$	$\begin{gathered} \mathrm{mm} . \\ +0.73 \end{gathered}$	$\begin{aligned} & \mathrm{mm} . \\ & +0.80 \end{aligned}$	$\begin{aligned} & \mathrm{mm} . \\ & +0.86 \end{aligned}$	$\begin{aligned} & \mathrm{mm} . \\ & +0.93 \end{aligned}$	$\begin{gathered} \mathrm{mm} . \\ +1.00 \end{gathered}$	$\begin{aligned} & \mathrm{mm} . \\ & +\mathrm{I} .06 \end{aligned}$	$\begin{aligned} & \mathrm{mm.} \\ & +\mathrm{I} .13 \end{aligned}$	$\begin{gathered} \mathrm{mm} . \\ +1.19 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +1.26 \end{gathered}$	$\begin{gathered} \mathrm{mm} . \\ +1.33 \end{gathered}$
$+3^{\circ}$	5.68	0.15									
4	6.10	0.56	0.05								
5	6.54	0.99	0.49								
6	7.01	I. 46	0.95	0.45							
7	7.51	1.95	1.45	0.94	0.43						
8	8.05	2.48	1.97	1.46	0.96	0.45					
9	8.61	3.04	2.53	2.02	1.52	1.01	0.50				
10	9.21	3.63	3.12	2.61	2.11		1.09	0.58	0.08		
11	9.85	4.26	$3 \cdot 75$	3.24	2.73	2.23	1. 72	1.21	0.70	0.20	
12	10.52	4.93.	4.42	3.91	3.40	2.89	2.38	1.88	1.37	0.86	0.35
13	11.24	5.63	5.13	4.62	4.11	3.60	3.09	2.58	2.07	1. 56	1.05
14	11.99	6.39	5.88	$5 \cdot 37$	4.86	$4 \cdot 35$	3.84	3.33	2.82	2.31	1.80
15	12.79	7.18	6.67	6.16	5.65	5.14	4.63	4.12	3.61	3.10	2.59
16	13.64	8.02	7.51	7.00	6.49	5.98	5.47	4.96	4.45	3.94	3.43
17	14.54	8.91	8.40	7.89	7.38	6.87	6.36	5.85	5.33	4.82	$4 \cdot 31$
18	15.49	9.86	9.34	8.83	8.32	7.81	7.30	6.78	6.27	5.76	5.25
19	16.49	10.85	10.34	9.83	9.31	8.80	8.29	7.78	7.26	6.75	6.24
20	I 7.55	11.90	11.39	10.88	10.36	9.85	9.34	8.82	8.31	7.80	7.29
21	18.66	13.01	12.50	11.99	11.47	10.96	10.45	9.93	9.42	8.90	8.39
22	19.84	14.19	13.67	13.16	12.64	12.13	11.62	11.10	10.59	10.07	9.56
23	21.09	15.42	14.91	14.39	13.88	13.36	12.85	12.33	11.82	11.30	10.79
24	22.40	16.73	16.21	15.70	15.18	14.67	14.15	13.64	13.12	12.60	12.09
25	23.78	18.10	17.59	17.07	16.56	16.04	15.52	15.01	14.49	13.98	13.46
26	25.24	19.55	19.04	18.52	18.00	17.49	16.97	16.45	15.94	15.42	14.90
27	26.77	21.08	20.56	20.04	19.53	19.01	18.49	17.98	17.46	16.94	16.42
28	28.38	22.68	22.17	21.65	21.13	20.61	20.10	19.58	19.06	18.54	18.02
29	30.08	24.37	23.86	23.34	22.82	22.30	21.78	21.26	20.75	20.23	19.71
30	31.86	26.15	25.63	25.11	24.60	24.08	23.56	23.04	22.52	22.00	21.48
31	33.74	28.02	27.50	26.98	26.46	25.94	25.42	${ }^{24.90}$	24.38	23.86	23.34
32	35.70	29.98	29.46	28.94	28.42	27.90	27.38	26.86	26.34	25.82	25.30
33	37.78	32.05	31.53	31.01	30.49	29.97	29.44	28.92	28.40	27.88	27.36
34	39.95	34.21	33.69	33.17	32.65	32.13	31.61	31.09	30.57	30.04	29.52
35	42.23	36.49	35.97	35.44	34.92	34.40	33.88	33.36	32.83	32.31	31.79
36	44.62	38.87	38.35	37.83	37.31	36.78	36.26	35.74	35.22	34.69	34.17
37	47.13	41.37	40.85	40.33	39.8 I	39.28	38.76	38.24	37.71	37.19	36.67
38	49.76	44.00	43.47	42.95	42.43	41.90	41.38	40.86	40.33	39.81	39.29
39	52.51	46.74	46.22	45.70	45.17	44.65	44.12	$+3.60$	43.08	42.55	42.03
40	55.40	49.62	49.10	48.58	48.05	47.53	47.00	46.48	45.95	45.43	44.90
41	58.42	52.64	52.11	51.59	51.06	50.54	50.01	49.49	48.96	48.44	47.91
42	61.58	55.80	55.27	54.74	54.22	53.69	53.17	52.64	52.12	51.59	51.06
43	64.80	59.10	58.57	58.05	57.52	56.99	56.47	55.94	55.41	54.89	54.36
44	68.35	62.55	62.03	61.50	60.97	60.45	59.92	$59 \cdot 39$	58.86	58.34	57.81
45	71.97	66.16	65.64	65.11	64.58	64.05	63.53	63.00	62.47	61.94	61.42
45	$\Delta e \times \Delta B$	+0.76	$+0.83$	+0.90	+0.97	+1.04	+I.II	+1.18	+1.25	+1.32	+1.39

REDUCTION OF PSYCHROMETRIC OBSERVATIONS.

METRIC MEASURES
Values of $e=e^{\prime}-0.000660 B\left(t-t^{\prime}\right)\left(1+0.00115 i^{\prime}\right)$
$B=; 60 \mathrm{~mm}$.

Air Temperature.	RELATIVE HUMIDITY, OR PERCENTAGE OF SATURATION.									
	10	20	30	40	50	60	\% 70	80	90	100
C.	Vapor pressure (millimeters).									
-45°	O. OI	O.OI	0.02	0.02	0.c3	0.03	0.04	0.04	0.05	0.05
44	O. OI	O. OI	0.02	-. 02	0.03	0. 0.4	-. 04	0.05	0.05	0.06
43	O. OI	O. OI	0.02	0.03	0.03	0. 0.4	c. 05	0.05	-. 06	0.07
42	O. OI	0.02	0.02	0.03	0. 0.4	0.05	0.05	0.06	0.07	0.08
4 I	0.01	0.02	c. 03	0.03	O. 64	0.05	0.06	0.07	-0.08	0.09
-40	0.01	0. 02	0.03	0. 04	0.05	0.06	0. 07	0. 08	0.09	O. 10
39	O. OI	0.02	0.03	0. 04	0.05	0.06	0.08	0.00	-. 10	O. II
38	O.OI	0.02	0.04	0.05	0.06	0.07	0.08	c. 10	O. II	O. 12
37	0.01	0.03	0.04	0.05	0.07	0.08	0.00	O. 11	O. 12	O. 14
36	0.02	0.03	0.05	0.06	0.08	0.09	O. I I	O. 12	O. I4	O. 15
-35	0.02	0.03	0.05	0.07	0.08	O. 10	O. 12	0.13	-. 15	O. 17
34	0. 02	0. 0.4	0.06	0.08	0.09	O. II	O. I3	-. 15	-. 17	-.19
33	0.02	0. 0.4	0.06	0.08	0.10	-. I 3	-. 15	-. 17	-.19	-. 21
32	0.02	0.05	0.07	0.09	O. 12	-. 14	-. 16	-. 19	0. 21	0. 23
31	0.03	0.05	0.08	0.10	-. 13	-. 16	-. IS	-. 21	-. 23	O. 26
-30	0.03	0.06	0.09	O. 12	O. 14 4	O. 17	0. 20	0. 2.5	-. 26	O. 29
20	0.03	0.06	-. 10	O. 13	-. 16	-. I9	0. 22	0. 26	-. 29	0.32
28	0.04	0.07	O. II	-. 14	-. 18	0. 21	-. 25	-. 28	-. 32	0.35
27	0.0 .4	0.08	- 12	-. 16	0. 20	-0. 24	-. 27	0. 31	-. 35	0.39
26	0.04	0.09	-. I3	O. 17	0. 22	O. 26	0. 30	0. 35	-. 39	0.43
-25	0.05	O. 10	O. I4	O. 19	O. 24	O. 29	0. 34	-0.3S	0.43	-. 48
24	0.05	O. II	-. I6	-. 21	0. 27	0. 32	0.37	-0. 42	-. 48	0. 53
23	0.06	O. 12	-. 18	O. 23	0. 29	0.35	0. 41	0. 47	-. 53	-. 59
22	0.06	0. 13	-. 19	-. 26	0.32	0. 39	0.45	-. 52	-. 5^{8}	0.65
2 I	0.07	O. 14	- 21	-. 28	0.36	-0. 43	0. 50	-. 57	-. 64	0.71
-20	0.08	-. 16	0. 24	0.31	0.39	0.47	0.55	0.63	0.71	-. 78
19	O. CO	O. I 7	-. 26	0. 34	0. 43	O. 52	0.60	0.69	0. 78	-. 86
18	0.09	-. 19	-. 28	0.38	0.47	0. 57	0.66	-0.76	0.85	0.95
I 7	O. 10	0. 21	0. 31	0.42	0. 52	0. 62	0.73	-. 83	0.94	I. 04
I 6	O. II	-. 23	0. 34	0. 4^{6}	-0. 57	0.69	0. So	0.91	1.03	I. I4
-15	O. 13	0. 25	0. 3^{8}	0. 50	0.63	0. 75	0.88	1. 00	I. I3	I. 25
14	-. 14	0. 27	0. 41	0. 55	0.69	0. 82	0.06	1. 10	I. 24	I. 37
I 3	O. I 5	0.30	0.45	0.60	0.75	0.90	1.05	I. 20	I. 35	I. 50
I 2	O. 16	0.33	-. 49	0.66	0.82	0.99	I. I5	I. 32	I. 48	1. 64
I I	-. 18	-. 36	- 54	0. 72	0.90	I. 08	I. 26	I. 44	I. 62	1. 80
-10	O. 20	0.39	-0. 59	-. 79	0.98	I. 18	I. 38	I. 57	1.77	1. 9^{6}
9	-. 21	0.43	-. 64	0.86	1.07	I. 29	I. 50	1. 72	I. 93	2. 14
8	0. 23	0.47	0.70	0.94	1.17	I. 40	I. 64	1. 87	2 . 11	2.34
7	O. 26	0. 51	0. 77	I. 02	1. 28	I. 53	I. 79	2.04	2.30	2. 55
6	-. 28	0.56	0.83	I. II	I. 39	1. 67	I. 94	2.22	2.50	2. 78
-5	0.30	0. 60	0.91	I. 21	I. 51	I. 8 I	2.12	2.42	2. 72	3.02
4	0.33	0. 66	0.99	I. 3^{2}	I. 65	1.97	2.30	2.63	2.96	3.29
3	0. 36	0.72	I. 07	I. 43	I. 79	2.15	2. 50	2.86	3.22	$3 \cdot 58$
2	0. 39	0. 78	I. I 7	I. 55	I. 94	2.33	2.72	3.11	$3 \cdot 50$	3.89
I	0.42	-0.84	I. 27	1. 69	2. I I	2. 53	2.95	$3 \cdot 38$	3.80	4.22
± 0	0.46	0.92	I. 37	I. 83	2. 29	2.75	3.21	3.66	4. I 2	$4 \cdot 58$
+ I	0.49	0.98	I. 4^{8}	I. 07	2.46	2.95	3.45	3.94	4.43	4.92
2	0. 53	1.06	I. 59	2. 12	2.65	3.17	3.70	4.23	4.76	5.29
3	0.57	I. I 4	1. 70	2. 27	2.84	3.41	3.98	$4 \cdot 5.5$	5. 1 I	5.68
4	0.6I	I. 22	I. 83	2.44	3.05	3.66	4.27	4.88	5.49	6.10
$+5$	0.65	1.3I	I. 96	2.62	3.27	3.92	4. 5^{8}	5.23	5.89	6.54

RELATIVE HUMIDITY.
TEMPERATURE CENTIGRADE.

AirTemperature.	Relative humidity, or percentage of s.ituration.									
	10	20	30	40	50	60	70	80	90	100
C.	Vapor pressure (millimeters).									
5°	0. 7	1. 3	2.0	2.6	$3 \cdot 3$	3.9	4.6	5.2	5.9	6.5
6	0. 7	1. 4	2.1	2.8	3.5	4.2	4.9	5.6	6.3	7.0
7	0.8	I. 5	2.3	3.0	3.8	4.5	$5 \cdot 3$	6.0	6.8	7.5
8	0.8	1. 6	2.4	3.2	4.0	4.8	5.6	6.4	7.2	8.0
9	0.9	I. 7	2.6	$3 \cdot 4$	$4 \cdot 3$	5. 2	6.0	6.9	7.7	8.6
10	0.9	1.8	2.8	$3 \cdot 7$	4.6	$5 \cdot 5$	6.4	$7 \cdot 4$	8.3	9.2
11	1.0	2.0	3.0	3.9	4.9	5.9	6.9	7.9	8.9	9.8
12	I. I	2. I	3.2	4.2	$5 \cdot 3$	6.3	$7 \cdot 4$	8.4	0.5	10. 5
13	I. I	2.2	$3 \cdot 4$	4.5	5.6	6.7	7.9	9.0	10. I	II. 2
14	I. 2	2.4	3.6	4.8	6.0	7.2	8.4	9.6	10.8	12.0
15	1.3	2.6	3.8	5.1	6.4	7.7	9.0	IC. 2	II. 5	12.8
16	1. 4	2. 7	4.1	$5 \cdot 5$	6.8	8.2	9.5	10.9	12.3	13.6
17	I. 5	2.9	$4 \cdot 4$	5.8	$7 \cdot 3$	8.7	10.2	I 1.6	13.1	14.5
18	1. 5	3. I	4.6	6.2	7.7	9.3	10.8	12.4	13.9	15.5
19	I. 6	$3 \cdot 3$	$4 \cdot 9$	6.6	8.2	9.9	II. 5	I3. 2	14.8	16.5
20	I. 8	3.5	$5 \cdot 3$	7.0	8.8	10.5	12.3	14.0	15.8	17.5
21	1.9	$3 \cdot 7$	5.6	7.5	9.3	II. 2	13.1	14.9	16.8	18.7
22	2.C	4.0	6.0	7.9	9.9	II. 9	13.9	15.9	17.9	19.8
23	2.1	4.2	6.3	8.4	10.5	12.7	14.8	16.9	19.0	2 I . 1
24	2.2	$4 \cdot 5$	6.7	9.0	II. 2	13.4	15.7	17.9	20.2	22.4
25	2.4	4.8	7. I	9. 5	11.9	14.3	16.6	19.0	21.4	23.8
26	2.5	5.0	7.6	10. I	12.6	15.1	17.7	20.2	22.7	25.2
27	2.7	5.4	8.0	10. 7	13.4	16.1	18.7	21.4	24.1	26.8
28	2.8	$5 \cdot 7$	8.5	II. 4	14.2	17.0	19.9	22.7	25.5	28.4
29	3.0	6.0	9.0	12.0	15.0	18.0	21. I	24.1	27.1	30. 1
30	3. 2	6.4	9.6	12.7	15.9	19. I	22.3	25.5	28.7	31.9
31	3. 4	6.7	10. 1	13.5	16.9	20.2	23.6	27.0	30.4	33.7
32	3. 6	7. I	10.7	14.3	17.9	21.4	25.0	28.6	32.1	35.7
33	3.8	7.6	II. 3	15.1	18.9	22.7	26.4	30.2	34.0	37.8
34	4.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	39.9
35	4.2	8.4	12.7	16.9	21. I	25.3	29.6	33.8	38.0	42.2
36	4.5	8.9	13.4	17.8	22.3	26.8	31.2	35.7	40.2	44.6
37	4.7	9.4	14.1	18.9	23.6	28.3	33.0	37.7	42.4	47.1
38	5.0	10.0	14.9	19.9	24.9	29.9	34.8	39.8	44.8	49.8
39	$5 \cdot 3$	10. 5	15.8	21.0	26.3	31.5	36.8	42.0	47.3	52.5
40	5. 5	II. I	16.6	22. 2	27.7	33.2	38.8	$44 \cdot 3$	49.9	55.4
41	5.8	II. 7	17. 5	23.4	29.2	35. I	40.9	46.7	52.6	58.4
42	6.2	12.3	I8. 5	2.4 .6	30.8	36.9	43. 1	49.3	55.4	61.6
43	6.5	13.0	19. 5	26.0	32.4	38.9	45.4	51.9	58.4	64.9
44	6.8	13.7	20. 5	27.3	34.2	41.0	47.8	54.7	61.5	68.4
45	7.2	14.4	21.6	28.8	36.0	43.2	50.4	57.6	64.8	72.0
46	7.6	15.2	22.7	30.3	37.9	45.5	53.0	60.6	68.2	75.8
47	8.0	15.9	23.9	31.9	39.9	47.8	55.8	63.8	71.7	79.7
48	8.4	16.8	25.1	33. 5	41.9	50.3	58.7	67.1	75.4	83.8
49	8.8	17.6	26.4	$35 \cdot 3$	44. I	52.9	61.7	70.5	79.3	88.1
50	9.3	18. 5	27.8	37. I	46.3	55.6	64.8	74. I	83.4	92.6
51	9.7	19.5	29.2	38.9	48.7	58.4	68.1	77.9	87.6	97.3
52	10. 2	20. 4	30.7	40.9	51.1	61.3	7 7 .6	81.8	92.0	102. 2
53	10.7 II. 3	21. 5	32.2 33.8	42.9	53.7	64.4	75. I	85.9	96.6	107.3
54	11.3	22.5	33.8	45. I	56.3	67.6	78.9	90. I	101. 4	I12.7
55	II 8	23.6	35.5	47.3	59. I	70.9	82.7	94.6	106.4	118.2

Table 86.
RATE OF DECREASE OF VAPOR PRESSURE WITH ALTITUDE FOR MOUNTAIN STATIONS.
(According to the empirical formula of Dr. J. Hann.)

$$
\frac{\varepsilon}{\epsilon_{0}}=10-\frac{h}{6_{300}}
$$

$\varepsilon, \epsilon_{0}=$ Vapor pressures at an upper and a lower station respectively.
$h=$ Difference of altitude in meters.

Difference of Altitude.		$\frac{\varepsilon}{\epsilon_{0}}$.	Differense of Altitude.		$\frac{e}{e_{0}}$.	Difference of Altitude.		$\frac{e}{c_{0}}$.
Meters. 200	$\begin{aligned} & \text { Feet. } \\ & 056 \end{aligned}$	0.93	Meters. I 800	Feet. 5905	0. 52	Meters. 3.400	$\begin{aligned} & \text { Feet. } \\ & \text { I } 1155 \end{aligned}$	O. 29
$+\infty 0$	I3I 2	. 86	2000	0362	48	3000	IISII	. 27
000	1968	. So	2200	7218	45	3800	12407	. 25
S00	2625	75	2400	-574	42	4000	13123	. 23
1000	3281	0.60	2600	S530	0.30	+500	14764	O. I9
1200	3937	. 64	2800	9186	. 36	5000	$16+04$. I6
1400	4593	. 60	3000	$08_{4} 2$. 33	5500	18045	. I3
1000	$52+9$. 56	3200	10499	. 3 I	6000	19685	. I I

Table 87. DEPTH OF WATER CORRESPONDING TO THE WEIGHT OF A CYLINDRICAL SNOW CORE 2.655 INCHES IN DIAMETER.
(One-fifth pound equals 1 inch.)

Weight los.	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
0	0.00	0.05	O. IO	O. I5	0. 20	0. 25	0. 30	0.35	0. 40	0.45
. I	-. 50	-. 55	-. 60	-. 65	-. 70	-0. 75	-. So	-. 85	0.90	0.95
. 2	I. 00	1. 05	I. 10	I. I5	I. 20	I. 25	I. 30	1.35	1. 40	I. 45
. 3	I. 50	1. 55	I. 60	I. 65	1. 70	1. 75	I. So	I. 85	1. 00	I. 95
. 4	2.00	2.05	2. 10	2. 15	2. 20	2.25	2.30	2.35	2.40	2.45
5	2.50	2.55	2.60	2.65	2. 70	2. 75	2. So	2. 85	2.90	2.95
. 6	3.00	3.05	3. 10	3.15	3.20	3. 25	3.30	$3 \cdot 35$	$3 \cdot 40$	3.45
. 7	3.50	3. 55	3.60	3.65	3. 70	3.75	3. So	3.85	3.90	3.95
. 8	4.00	4.05	4.10	+.15	+. 20	4. 25	$+30$	4.35	4.40	4.45
. 9	4.50	+. 55	+ 60	+. 65	4.70	4.75	4. So	4.85	4.90	4.95
1.0	5.00	5.05	5.10	5.15	5.20	5.25	$5 \cdot 30$	$5 \cdot 35$	$5 \cdot 10$	5.45
I. I	5.50	5.55	5.60	5.65	5.70	5.75	5. So	5. S_{5}	5.90	5.95
I. 2	6.00	6.05	6.10	6.15	6.20	6. 25	6.30	6.35	6.40	6.45
I. 3	6.50	6.55	6.60	6.65	6. 70	6.75	6. So	6. S_{5}	6.90	6.95
I. 4	7.00	7.05	7.10	7. 15	7.20	7.25	7.30	7.35	$7 \cdot 40$	$7 \cdot 45$
15	7.50	7.55	7.60	7.65	7.70	7.75	7.80	7.85	7.90	7.95
I. 6	8. 00	8. 05	S. 10	S. 15	8. 20	S. 25	S. 30	8. 35	8. 40	8.45
I. 7	S. 50	8. 55	S. 60	S. 65	8. 70	8. 75	8. 80	S. 8_{5}	8.90	8.95
I. S	9. 00	9.05	9.10	9.15	9. 20	9.25	9.30	9.35	9.40	9.45
I. 9	9. 50	$9 \cdot 55$	9.60	9.65	9.70	9.75	9. So	9. 8_{5}	9.90	0.95
2.0	10. 00	10.05	10. 10	10. 15	10. 20	10. 25	10. 30	10.35	10.70	10.45
2. I	10. 50	10. 55	10. 60	10.65	10. 70	10. 75	Io. So	10. S_{5}	10.00	10.95
2.2	II $1 . \infty$	11.05	II. 10	II. 15	II. 20	II 1.25	II. 30	11.35	II 1.40	11.45
2.3	II. 50	11. 55	11. 60	11.65	II. 70	II. 75	I I . So	11.85	II. 90	II 195
2.4	I 2.00	12.05	12.10	12. 15	12.20	12. 25	12.30	12.35	12.40	12.45
2.5	I 2.50	12. 55	12.60	12.65	12. 70	I2.75	12. So	12.85	12.90	12.95
2.6	13.00	13.05	13.10	13.15	13.20	13.25	13.30	13.35	13.40	13.45
2.7	13.50	I3. 55	13.60	13.65	13.70	13. 75	I3. So	13.85	13.90	13.95
2.8	14. 00	14.05	14. 10	14.15	14. 20	14. 25	It. 30	14.35	14.40	14.45
2.9	14. 50	14.55	14.60	14.65	14.70	14.75	If. So	14.85	14.90	14.95

Table 88.
DEPTH OF WATER CORRESPONDING TO THE WEICHT OF SNOW OR RAIN COLLECTED IN AN 8-INCH GAGE. (One pound equals 0.5507 inch.)

table 89.
QUANTITY OF RAINFALL CORRESPONDING TO GIVEN DEPTHS.

GEODETICAL TABLES.

Value of gravity on the earth at sea level Table: 90
Relative acceleration of gravity at different latitudes Table 91
Length of one degree of the meridian at different latitudes Table 92
Length of one degree of the parallel at different latitudes Table 93
Duration of sunshine at different latitudes Table $9+$
Declination of the sun for the year 1899 Table 95
Duration of astronomical twilight Table go
Duration of civil twilight Table 97
Relative intensity of solar radiation at different latitudes.
Mean intensity for 24 hours of solar radiation on a hori- zontal surface at the top of the atmosphere Table 98
Relative amounts of solar radiation received during the year on a horizontal surface at different latitudes . . Table 99
Air mass, m, corresponding to different zenith distances of thesunTable 100
Relative illumination intensities Table iot
$\begin{aligned} g_{\phi} & =97 S .039\left(1+0.005294 \sin ^{2} \phi-0.000007 \sin ^{2} 2 \phi\right) \\ & =080.621\left(1-0.0026 .40 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right)\end{aligned}$

ϕ	g_{ϕ}	ф	g_{ϕ}	ϕ	g_{ϕ}	ϕ	g_{ϕ}	ϕ	g_{ϕ}
	Dynes.		Dynes.		Dynes.		Dynes.	- ,	Dynes.
	978.039	2000	978.642	3700	979.908	$54 \bigcirc 0$	981. 422	7100	982.665
1 ○	. 041	20	.661		. 937		. 450		. 684
	. 045	40	.681	40	. 966	40	. 479	40	. 702
3 -	. 05.3	2100	701	38 oo	995	55 ○0	. 507	72 oo	. 720
4 -	. 064	20	721	20	980. 024	20	- 535		. 738
		40	74^{2}	40	. 054	40	- 564	40	. 755
500	. 078	2200	762	3900	. 083	56	- 592	73 ○0	. 772
20	. 084	20	. 783	20	-113	20	. 620		. 789
40	. 089	40	. 805	40	. 142	40	. 647	40	. 805
600	. 095	2300	. 826	4000	172	57 0	. 675	74 ○0	. 822
20	. 102	20	848	20	201		. 703	20	837
40	108	40	870	40	231	40	. 730	40	. 853
700	115	24 oo	892	4100	261	58 -0	. 757	75 ○0	868
20	12.3	20	. 914		. 291		784		883
40	131	40	. 037	40	. 321	40	8_{11}	40	. 898
8 ○	139	2500	. 960	4200	350	59 oo	. 838	7600	. 912
20	147	20	. 083	20	. 380	20	. 865	20	. 926
40	156	40	979.006	40	410	40	. 891	40	. 940
$9 \bigcirc$	165	26 oo	-30	4300	440	$60 \sim 0$. 917	77 O	. 953
20	174	20	. 054	20	471	20	. 943	20	. 966
40	184	40	. 077	40	. 501	40	. 969	40	. 979
10 00	194	$27 \quad 0$	102	$4+\infty$	531	6100	. 995	7800	. 992
20	205	20	126	20	561	20	082.020		983.004
40	215	40	151	40	591	40	. 046	40	. 016
1100	. 227	28 oo	175	4500	. 621	6200	. 071	7900	. 027
20	. 238	20	201	20	651	20	. 096	20	. 039
40	250	40	226	40	68 I	40	121	40	. 049
1200	. 262	2900	251	4600	711	63 ○0	145	So oo	. 060
20	274	20	277	20	741	20	160	20	. 070
40	287	40	302	40	772	40	194	40	080
1300	300	30 oo	. 328	47 ¢	802	6400	217	81 0	. 090
20	313	20	. 354	20	832	20	241	20	. 099
40	. 327	40	. 381	40	862	40	. 265	40	. 108
1400	. 341	3100	407	48 ○0	892	65 co	. 288	8200	. 116
20	355	20	$43+$	20	922	20	. 311	20	124
40	- 369	40	460	40	952	40	. 334	40	.132
1500	-384	3200	487	$49 \bigcirc 0$	981	66 oo	. 356	8300	. 140
20	. 399	20	515	20	98i. OII	20	-379	20	. 147
40	415	40	542	40	0.41	40	401	40	. 153
16 -0	430	3300	. 569	$50 \sim 0$	071	67 00	423	84+ 0	. 160
20	447	20	597	20	100	20	445	20	166
40	463	40	. 624	40	130	40	466	40	. 172
17 ¢	479	$3+\infty$. 652	5100	160	68 oo	487	8500	177
20	496	20	. 680	20	I 80	20	. 508	20	182
40	514	40	. 708	40	218	40	528	40	187
18 о	531	3500	. 736	$52 \times$	248	69 oo	549		
20	549	20	. 765	20	277	20	560	S6 00	102
40	567	40	793	40	306	40	580	8700	20.3
1900	585	3600	. 822	53 oo	335	70 00	608	88 00	210
20	604	20	850	20	364	20	628	S9 00	215
40	978.623	40	979.879	40	981. 393	40	982.647	00 -	083.217

Table 91.
RELATIVE ACCELERATION OF GRAVITY AT DIFFERENT LATITUDES.
Ratio of the acceleration of gravity at sea level for cach ro' of latitude, to its acceleration at latitude 45°.
$\frac{g_{\phi}}{g_{45}}=\mathrm{I}-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi$

Latitude.	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50^{\prime}
0°	0. 997367	0. 997367	-. 997367	0. 907367	-. 997368	-. 997368
1	. 997369	. 997369	. 997370	097371	997371	. 997372
2	. 997373	. 997374	. 997376	997377	. 997378	. 997380
3	. 997381	. 997383	. 997385	. 997387	. 997388	. 997390
4	. 997393	. 997395	. 997397	. 997399	. 997402	. 997404
5	0.997407	0. 997410	0.997412	-. 997415	-. 097418	-. 99742 I
6	. 997424	. 997428	. 99743 I	. 997434	. 097438	. 997441
7	. 997445	. 997449	. 997453	. 997456	. 997460	. 997465
8	. 997469	. 997473	. 997477	. 997482	. 997486	. 99749 I
9	. 997496	. 997500	. 997505	997510	997515	997520
10	0. 997525	0. 99753 I	-0.997536	0. 997541	-. 997547	-. 997553
11	. 997558	. 997564	. 997570	. 997576	. 997582	. 997588
12	. 997594	. 997600	. 997607	997613	. 997620	- 997626
13	. 997633	. 997640	. 997646	997653	. 997660	. 997667
14	. 997674	. 997682	. 997689	997696	. 997704	09771 I
15	0.997719	0. 997727	-. 997734	0. 997742	-. 997750	-. 997758
16	. 997766	. 997774	. 997783	997791	. 997799	. 997808
17	. 997816	. 997825	. 997833	997842	. 997851	. 997860
18	. 997869	. 997878	. 997887	997896	. 997905	097915
19	. 997924	997934	. 997943	997953	. 997962	. 097972
20	-. 997982	0.997992	-. $99800{ }_{2}$	-. 998012	- 0.998022	-. 998032
21	. 908042	. 998052	. 998063	. 998073	. 90808	. 998094
22	. 998104	998115	. 998 I 26	998137	. 998148	. 998 I 59
23	. 998170	998181	. 998192	. 998203	. 998214	. 998225
24	. 998237	998248	. 998260	998271	. 998283	. 998294
25	0.998306	-. 998318	-. 998330	-. 99834 I	-. 998353	-. 998365
20	. 998377	. 998389	. 998402	. 9984 r4	. 998426	. 998438
27	. 998451	. 998463	. 998476	. 998488	. 998501	. 9985 I 3
28	. 998526	. 998539	. 99855 I	. 998564	. 998577	. 998590
29	. 998603	. 9986 I6	. 998629	. 998642	. 998655	. 998669
	-. 998682	C. 998695	-. 998708	-. 998722	-. 998735	-. 998749
3 I	. 998762	. 998776	. 998789	. 998803	. 998817	. 998830
32	. 998844	. 998858	. 998872	. 998886	. 998899	. 998913
33	. 998927	. 998941	. 998956	. 998970	. 998984	. 998998
34	. 999012	. 999026	. 99904 I	. 999055	. 999069	- 999084
35	0. 999098	0.999112	0.999127	-. 999141	-. 999156	-. 999170
36	. 999185	. 999199	. 999214	. 999229	. 999243	. 999258
37	. 999273	. 999288	. 999302	. 999317	. 999332	. 999347
38	. 999362	. 999377	. 999392	. 999406	. 99942 I	. 999436
39	. 999451	. 999466	. 999482	. 999497	. 999512	. 999527
40	-. 999542	0. 999557	O. 99957^{2}	-. 099587	-. 999602	-. 999618
$4{ }^{1}$. 999633	. 999648	. 999663	. 999678	. 999694	. 999709
42	. 999724	. 999739	. 999755	. 999770	. 999785	. 999801
43	. 999816	. 999831	. 999847	. 999862	. 999877	. 999893
44	. 999908	.999923	. 999939	. 999954	. 999969	. 999985
45	1.000000	I. 000015	I. 000031	1. 000046	1. 000061	1.000077

Table 91.
RELATIVE ACCELERATION OF GRAVITY AT DIFFERENT LATITUDES.
Ratio of the acceleration of gravity at sea level for each 10^{\prime} of latitude, to its acceleration at latitude 45°.
$\frac{g_{\phi}}{g_{45}}=\mathrm{I}-0.002640 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi$

Latitude.	0^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	50^{\prime}
45	1. 000000	I. 000015	1.00003 I	I. 000046	1.000061	1. 000077
46	092	108	123	138	153	169
47	184	200	215	230	246	261
48	276	291	307	322	337	352
49	368	383	398	413	428	444
50	1. 000459	I. 000474	1. 2000489	I. 000504	1. 000519	1. 000534
51	549	564	579	594	609	624
52	639	654	669	684	699	713
53	728	743	758	773	787	802
54	SI6	831	846	860	875	889
55	1. 000904	1. 000918	1. 000933	I. 000947	1.000961	1.000976
56	0990	1004	1018	1033	1047	1061
57	1075	1089	1103	1117	1131	1145
58	I 159	1173	1186	1200	1214	1227
59	1241	1255	1268	1282	1295	1308
60	1. 001322	I. 001335	1. 001348	1. 001362	1.001375	1. 001388
61	1401	1414	1427	1440	1453	1466
62	1478	1491	1504	1517	1529	1542
63	1554	1567	1579	1591	1604	1616
64	1628	1640	1652	1664	1676	1688
65	I. 001700	1. 001712	1. 001723	1. 001735	I. COI 747	1. 001758
66	1770	1781	1792	1804	1815	1826
67	1837	1848	1859	1870	1881	1892
68	1903	1913	1924	1935	1945	1955
69	I966	1976	1986	1996	2007	2017
70	1.002026	1. 002036	1. 002046	1. 002056	I. 002066	1.002075
71	2085	2094	2104	2II3	2122	2131
72	2140	2149	2158	2167	2176	2185
73	2194	2202	2211	2219	2227	2236
74	2244	2252	2260	2268	2276	2284
75	I. 002292	1. 002299	I. 002307	1.002314	:. 002322	1. 002329
76	- 2336	2344	2351	2358	2365	2372
77	2378	2385	2392	2398	2405	2411
78	2418	2424	2430	2436	2442	2448
79	2454	2460	2465	2471	2476	2.482
80	1. 002487	I. 002492	I. 002497	1. 002502	1. 002507	1.002512
81	2517	2522	2527	2531	2536	2540
82	2544	2548	2553	2557	2561	2564
83	2568	2572	2576	2579	2582	2586
84	2589	2592	2595	2598	2601	2604
85	1. 002607	1. 002609	1. 002612	1.002614	1.002617	1.002619
86	2621	2623	2625	2627	2629	2631
87	2632	2634	2636	2637	2638	2639
88	26.41	2642	2643	2643	2644	2645
89	2645	2646	2646	2647	2647	2647
90	I. 002647					

SMITHSONIAN TABLES.

LENGTH OF ONE DEGREE OF THE MERIDIAN AT DIFFERENT LATITUDES.

Latitude.	Meters.	Statute Miles.	Geographlc Miles. 1^{\prime} of the Eq.	Latitude.	Meters.	Statute Miles.	Geographic Miles. 1^{\prime} of the Eq.
$0{ }^{\circ}$	I 10568.5	68.703	59.594	45°	111132.1	69.054	59.898
1	110568.8	68.704	59.594	46	III 151.9	69.067	59.908
2	110569.8	68.705	59.595	47	III 171.6	69.079	59.919
3	110571.5	68.706	59.596	48	III 191. 3	69.091	59.929
4	I IO 573.9	68.707	59.597	49	II I 210.9	69.103	59.940
5	I 10577.0	68.709	59.598	50	III 230.5	69.115	59.95I
6	110580.7	68.71 I	59.600	5 I	I I I 249.9	69.127	59.961
7	I 10585.1	68.714	59.603	52	I I I 269.2	69.139	59.972
8	110590.2	68.717	59.606	53	I II 288.3	69.151	59.982
9	I 10 595.9	68.72 I	59.609	54	III 307.3	69.163	59.992
10	110602.3	68.725	59.612	55	III 326.0	69.175	60.002
II	I 10609.3	68.729	59.616	56	I I I 344.5	69.186	60.012
12	110617.0	68.734	59.620	57	I I I 362.7	69. 198	60.022
13	I 10625.3	68.739	59.625	5 S	II 138 So .7	69.209	60.032
14	I 10634.2	68.745	59.629	59	I II 398.4	69.220	60.041
15	I Io 643.7	68.751	59.634	60	III 415.7	69.230	60.051
16	I 10653.8	68.757	59.640	61	III 432.7	69.241	60.060
17	I 10664.5	68.763	59.646	62	II I 449.4	69.251	60.069
18	I 10675.7	68.770	59.652	63	I I 1465.7	69.261	60.077
19	I 10687.5	68.778	59.658	64	II I 48 r .5	69.271	60.086
20	I Io 699.9	68.786	59.665	65	I I I 497.0	69.281	60.094
21	I10712.8	68.794	59.672	66	III 512.0	69.290	60.102
22	I 10726.2	68.502	59.679	67	I I I 526.5	69.299	60.110
23	I 10740.1	68.810	59.686	68	II 1540.5	69.308	60.118
24	I 10754.4	68.819	59.694	69	I I 1554.1	69.316	60.125
25	I 10 769.2	68.829	59.702	70	III 567.1	69.324	60.132
26	1 10 7 S 4.5	68.838	59.710	71	II I 579.7	69.33^{2}	60. 139
27	110800.2	68.848	59.719	72	III 591.6	69.340	60.145
28	ı 10816.3	68.858	59.727	73	111603.0	69.347	60.151
29	110832.8	68.868	59.736	74	111613.9	69.354	60.157
30	I 10 849.7	68.879	59.745	75	111624.1	69.360	60.163
31	I 10866.9	68.889	59.755	76	III 633.8	69.366	60.168
32	110884.4	68.900	59.764	77	III 642.8	69.372	60.173
33	110902.3	68.91 I	59.774	78	III 651.2	69.377	60.177
34	110920.4	68.923	59.784	79	III 659.0	69.382	60.182
35	110938.8	68.934	59.794	80	III 666.2	69.386	60.186
36	110957.4	68.946	59.804	SI	III 672.6	69.390	60.189
37	110976.3	68.957	59.814	82	III 678.5	69.394	60.192
38	110995.3	68.969	59.824	83	II I 683.6	69.397	60.195
39	III OI4.5	68.981	59.834	84	In I 688. 1	69.400	60.197
40	111033.9	68.993	59.845	85	III 691.9	69.402	60.199
4 I	111053.4	69.005	59.855	86	II I 695.0	69.404	60.201
42	111073.0	69.017	59.866	87	III 697.4	69.405	60.202
43	111092.6	69.029	59.876	88	III 1699.2	69.407	60.203
44	III II2.4	69.042	59.887	89	III 700.2	69.407	60.204
45	III 132.1	69.054	59.898	90	III 700.6	69.407	60.204

8mithsonian Tables.

Table 93.

LENGTH OF ONE DEGREE OF THE PARALLEL AT DIFFERENT LATITUDES.

Latilude.	Meters.	Statute Miles.	Geographic Miles. 1^{\prime} of the Eq.	Latitude.	Meters.	Statute Miles.	Geographic Miles. I^{\prime} of the Eq.
0°	I I I 32 I .9	69.171	60.000	45°	78850.0	48.995	42.498
1	1 II 305.2	69.162	59.991	46	77466.5	48. 135	41.753
2	I I I 254.6	69.130	59.964	47	76059.2	47.261	40.994
3	111170.4	69.078	59.918	48	74628.5	46.372	40.223
4	I I I O52.6	69.005	59.855	49	73174.9	45.469	$39.44{ }^{\circ}$
5	I IO 901.2	68.911	59.773	50	71698.9	44.552	38.644
6	I 10716.2	68.796	59.673	5 I	70200.8	43.621	37.837
7	I 10497.7	68.660	59.556	52	68681.1	42.676	37.018
8	I 10245.8	68.593	59.420	53	67140.3	41.710	36.187
9	109960.5	68.326	59.266	54	65578.8	40.749	35.346
10	109641.9	68.128	59.095	55	63997.1	39.766	34.493
II	109 290. 1	67.909	58.905	56	62395.7	38.771	33.630
12	Io8 905.2	67.670	58.697	57	60775.1	37.764	32.757
13	IoS 457.3	67.411	$5 \mathrm{S.472}$	58	59135.7	36.745	31.873
14	108036.6	67.131	58.229	59	5747 S. I	35.715	30.979
15	107553.1	66.830	57.969	60	55802.8	34.674	30.076
16	107037.0	66.510	57.690	61	54 I10.2	33.622	29.164
17	106488.5	66.169	57.395	62	52400.9	32.560	28.243
18	105907.7	65.808	57.082	63	50675.4	31.488	27.313
19	IO5 294.7	65.427	56.751	64	48934.3	30.406	26.374
20	104 649.8	65.026	56.404	65	47 178.0	29.315	25.428
21	103973.2	64.606	56.039	66	45 407. I	$2 \mathrm{S.215}$	24.473
22	$103265 . \mathrm{C}$	64.166	55.657	67	43622.2	27.106	23.51 I
23	IO2 525.4	63.706	55.259	68	41823.8	25.988	22.542
24	IOI 754.6	63.227	54. 4 $_{43}$	69	40012.4	2.4 .862	21.566
25	100 953.6	62.729	54.41 I	70	38 ISS.6	23.729	20.583
26	100 I 20.6	62.212	53.963	71	36353.0	22.589	19.593
27	99257.8	61.676	53.498	72	34506.2	21.441	18.598
28	98364.8	61.121	53.016	73	32648.6	20.287	17.597
29	97441.9	60.548	52.519	74	30780.9	19.126	16.590
30	96459.3	59.956	52.006	75	28903.6	17.960	15.578
31	$\bigcirc 5507.3$	59.345	51.476	76	27017.4	16.788	14.562
32	94496.2	58.717	50.93 I	77	25122.8	15.611	13.541
33	93.456 .3	58.07 I	50.371	78	23220.4	14.428	12.515
34	92387.9	57.407	49.795	79	21310.8	13.242	11.486
35	91 291.3	56.726	49.204	80	19394.6	12.051	10.453
36	90166.8	56.027	48.598	SI	17472.4	10.857	9.417
37	89014.8	55.311	47.977	82	I5 544.7	9.659	S. 378
3 S	87835.6	54.578	47.34 I	83	13612.2	8.458	7.337
39	S6629.6	53.829	46.691	S4	II 675.5	7.255	6.293
40	S5 397.0	53.063	46.027	85	9735.1	6.049	5.247
4 I	St 138.4	52.28 I	45.349	86	7791.7	4.84 I	4.200
42	82854.0	51.483	44.656	87	5845.9	3.632	3.151
43	SI 544.2	50.669	43.950	88	3898.3	2.422	2. IOI
44	So 209.4	49.840	43.23 I	89	I 949.4	1.2II	1.051
45	78550.0	48.995	42.498	90	0.0	0.000	0.000

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { one Sun. } \end{aligned}$	LATITUDE NORTH.								
	0°	5°	10°	15°	20°	25°	30°	35°	40°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-23^{\circ} 27^{\prime}$	127	II 50	II 32	II I4	10 55	1035	1013	948	919
2320	127	II 50	II 32	II 14	IO 56	IO 36	1014	949	920
-23 0	127	II 50	II 33	II 15	Io 57	1037	1015	951	923
-2240	127	II 50	II 33	1116	1058	1038	1017	953	926
2220	127	II 5I	1134	I 17	IO 59	1040	1019	955	929
22 O	127	II 5I	II 34	1118	II 0	10 41	1020	958	931
-2140	127	II 51	1135	II 19	II	10 43	1022	100	934
-21 20	127	II 52	II 35	II 19	II	1044	1024	10	937
210	127	II 52	$\begin{array}{ll}\text { II } & 36\end{array}$	II 20	II 4	1046	1026	10 4	940
-2040		II 52	II 37	II 21	II	1047	1028	106	942
-20 20	127	II 52	1137	II 22	II 6	IO 49	1029	108	945
20 O	127	1153	II 38	1123	II 7	Io 50	1031	Io II	947
- 1940	127	II 53	1138	II 23	II 8	1051	1033	10 I3	950
- I9 20		II 53	II 39	II 24	II 9	Io 53	10 35	$10 \quad 15$	953
-190	127	II 53	II 39	II 25	II 10	IO 54	1037	10 17	955
-1840	127	II 54	II 40	II 26	II II	Io 55	1038	$10 \quad 19$	958
- IS 20	127	II 54	1140	1127	II 12	1057	1040	1021	101
-180	127	II 54	II 41	II 28	II 13	IO 58	1042	1023	103
-1740	127	II 54	1141	1128	II I4	1059	1043	IO 26	
-1720	127	II 55	II 42	II 29	II 15	II I	IO 45	1028	108
-170	127	II 55	II 42	II 30	II 16	II 2	10 47	1030	Io Io
-1640	127	II 55	II 43	II 31	1117	II 4	IO 49	1032	10 I3
1620	127	II 55	II 43	1131	II 18	II 5	1050	IO 34	10 16
-16 0	127	II 56	II 44	II 32	II 19	II	Io 52	10 36	IO 18
-1540	127	II 56	II 44	II 33	II 20	II 8	1053	1038	1020
- I5 20	127	II 56	II 45	I I 34	II 21	II 9	Io 55	1040	1023
- I5 0	127	II 56	II 45	II 34	II 22	II 10	IO 57	10 42	1025
-1440	127	II 57	II 46	II 35	II 23	II II	IO 59	IO 44	10 28
-14 20	127	II 57	II 46	II 36	II 25	1113	II 0	10 46	1030
- I4 o	127	II 57	II 47	II 37	II 26	II 14	II	1048	10 32
-1340	127	II 57	II 47	II 37	II 27	II 16	II 4	1050	1035
- 1320	7	II 58	II 48	II 38	II 28	1117	II 5	1052	10 37
-130	127	II 5^{8}	II 4^{8}	II 39	II 29	II I8	II 7	Io 54	10 40
- 1240	127	II 58	II 49	II 40	II 30	II 19	II 8	10 56	1042
1220	127	II 58	II 49	II 40	II 31	II 2I	II 10	10 58	IO 44
120	127	II 58	II 50	II 41	II 32	II 22	II II	II 0	1047
- 1140	127	II 59	II 50	II 42	II 33	II 23	II 13	II 2	10 49
- II 20	127	II 59	II 51	II 43	II 34	II 25	II I5	II 4	Io 52
I 10	127	II 59	1151	II 43	II 35	II 26	II 16	II 6	1054
- 1040	127	II 59	II 52	II 44	II 36	1127	11 IS	II 8	10 56
- 1020	127	120	II 52	II 45	II 37	II 28	II 20	II Io	Io 59
- 100	127	120	II 53	II 46	II 38	II 30	II 21	II 12	II I
- 940	127	120	II 53	II 46	II 39	II 31	II 23	II 14	II 3
- 920	127	120	II 54	II 47	II 40	1132	II 24	II 16	$\begin{array}{ll}\text { II } & 5\end{array}$
- 90	127	12	II 54	II 47	II 41	II 34	II 26	1117	II S
- 840	$\begin{array}{ll}12 & 7 \\ \\ 12 & 7\end{array}$	12 I	II 55	II 48	II 42	II 35	II 28	II 19	II 10
-- 820	127	12	II 55	II 49	II 43	II II	II 29	II 2I	II 12
- 80	127	12	II 56	II 50	II 44	1137	II 3I	II 23	II 14

Table 94.

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.									
	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-23^{\circ} 27^{\prime}$	97	853	835	822	84	744	722	656	627	552
-2320	98	S 54	839	823	85	745	724	655	629	554
-230	9 II	858	843	828	8 10	750	729	74	636	62
-22 40	914	9 I	846	831	814	755	734	7 10	643	
-22 20	917	94	850	835	8 I8	8 \%	739	716	649	617
22	920	97	853	838	822	S 4	744	722	655	625
-2140	923	9 IO	S 57	S 42	826	$8 \quad 9$	749	727	7	632
-21 20	926	9 I3	9 I	846	S 30	813	754	732	7 S	638
- 21	92 S	917	94	850	834	8 IS	759	738	714	646
-2040	931	920	97	853	838	822	84	743	720	652
-2020	934	923	9 II	¢ 57	S 42	826	8 8	749	725	659
- 200	937	926	914	9 I	846	831	8 I3	754	731	75
-1940	940	929	9 I7	94	850	835	8 I8	759	737	712
-19 20	943	932	920	97	854	839	823	84	743	7 I8
- 190	946	9. 35	924	9 II	858	843	827	89	748	725
-1840	948	93 S	927	915	92	847	S 32	8 I 4	754	731
- I8 20	95 I	94 I	930	9 I9	96	852	836	S 19	759	737
-180	954	944	934	922	9 10	856	S 41	824	85	743
-1740	956	947	937	925	9 I3	90	S 45	829	8 ı 10	749
-1720	959	950	940	929	917	94	850	834	815	755
-170	IO 2	953	943	932	921	98	854	838	820	8 I
- 1640	IO 5	956	946	935	925	9 I2	858	843	826	86
- 1620	$10 \quad 7$	959	949	939	928	916	92	S 47	831	8 I2
16 o	10 IO	IO I	952	943	932	920	97	852	836	817
-- 1540	1012	IO 4	955	946	935	924	9 II	857	841	823
-- I5 20	10 I5	107	958	949	939	928	9 I5	92	846	829
-- 15 o	10 IS	1010	10 I	952	943	931	919	96	85 I	834
-1440	1020	1013	IO 4	956	946	935	923	9 II	856	840
- I4 20	IO 23	1016	10 7	959	949	939	928	9 I5	9 I	845
\rightarrow I4 0	IO 26	Io I9	1010	IO 2	953	943	932	919	96	850
-1340	10 28	1021	1013	105	956	947	936	924	9 II	856
- I3 20	1031	1024	1016	Io S	100	950	940	928	916	9 I
- I3 0	Io 33	IO 26	Io I9	IO II	103	954	944	933	920	96
-1240	10 36	1029	1022	1015	107	95 S	948	937	925	9 II
- 1220	Io 38	10 32	1025	10 I 8	10 IO	10 I	952	94 I	930	917
- 120	104 I	IO 35	1028	1021	1013	105	956	946	935	922
- 1140	Io 44	Io 38	1031	IO 25	1017	IO 9	10 O	950	939	927
- II 20	Io 46	1040	Io 34	1028	1020	1013	IO 4	955	944	932
- II	IO 49	Io 43	10 37	1031	1023	10.16	108	959	949	937
-1040	1051	1046	1040	1034	IO 27	1019	IO 12	103	953	942
- 1020	10 53	Io 49	1043	10 37	1031	1023	1016	107	958	947
- 100	IO 56	10 51	1046	1040	1034	1027	1019	10 II	IO 3	952
- 940	IO 59	1054	1049	1043	1037	1031	1023	1016	IO 7	957
- 920	II 1	1056	10 5^{2}	1046	10 40	Io 34	10 27	1020	10 II	102
- 90	II 3	IO 59	IO 55	Io 49	1044	Io 37	10 3r	1024	1016	107
- 840	II 6	II 2	IO 57	IO 52	1047	1041	1034	1028	1020	IO II
- S 20	II 8	II 4	II 0	1055	1050	10 44	Io 38	IO 32	1025	1016
- 80	1110	II 7	II 3	Io 58	10 53	1048	10 42	10 36	IO 29	1021

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.								
	0°	5°	10°	15°	20°	25°	30°	35°	40°
	h. m.	h. m.	h. m.	h. m. II 50	h. m. II 44	$\begin{array}{ll} \text { h. } & \mathrm{m} . \\ \text { II } & 37 \end{array}$	$\begin{aligned} & \mathrm{h} . \mathrm{m} . \\ & \text { II } 3 \mathrm{I} \end{aligned}$	$\begin{array}{ll} \text { h. } & \mathrm{m} . \\ \text { II } & 23 \end{array}$	$\begin{array}{ll} \mathrm{h} . & \mathrm{m} . \\ \text { II } & 14 \end{array}$
$-8^{\circ} 0^{\prime}$	127	12 I	II 55	II 50	$\text { II } 44$			$\begin{array}{lll}11 & 23 \\ \text { II } & 25\end{array}$	$\begin{array}{ll}\text { II } & 14 \\ \text { II } & 17\end{array}$
- 740	127	12 I	$\begin{array}{ll}\text { II } & 56 \\ \text { II } & 56\end{array}$	$\begin{array}{ll}\text { II } & 50 \\ \text { II } & 5\end{array}$	$\begin{array}{ll}\text { II } & 45 \\ \text { I I } & 46\end{array}$	$\begin{array}{ll}\text { II } & 3 \\ \text { II } & 40\end{array}$	$\begin{array}{ll}\text { II } & 32 \\ \text { II } & 34\end{array}$	II 25 II 27	$\begin{array}{ll} \text { II } 17 \\ \text { II } & 19 \end{array}$
-720	127	12 I	$\begin{array}{ll}\text { II } & 56 \\ \text { II } & 57\end{array}$	$\begin{array}{ll}\text { II } & 5 \\ \text { II } & 52\end{array}$	II 46 II 47	$\begin{array}{ll}\text { II } & 40 \\ \text { II } & 41\end{array}$	$\begin{array}{lll}11 & 34 \\ \text { II } & 35\end{array}$	II 27 II 29	$\begin{array}{lll}\text { II } & 19 \\ \text { II } & 22\end{array}$
-70	127	122	II 57	II 52	$\begin{array}{ll}11 & 47 \\ \text { II } & 48\end{array}$	$\begin{array}{ll}\text { II } & 41 \\ \text { II } & 42\end{array}$	$\begin{array}{lll}11 & 35 \\ \text { II } & 37\end{array}$	$\begin{array}{ll}11 & 29 \\ \text { II } & 31\end{array}$	$\begin{array}{ll}11 & 24\end{array}$
-640	127	122	$\begin{array}{ll}11 & 57 \\ \text { II } & 58\end{array}$	$\begin{array}{ll}\text { II } & 53 \\ \text { II } & 53\end{array}$	II 48 II 49	$\begin{array}{ll}\text { II } & 42 \\ \text { II } & 43\end{array}$	II 37 II 3	$\begin{array}{ll}\text { II } & 31 \\ \text { II } & 32 \\ \text { II }\end{array}$	$\begin{array}{lll}\text { II } & 24 \\ \text { II } & 26\end{array}$
-6 20	127	122	$\begin{array}{ll}\text { II } & 58 \\ \text { II } & 5\end{array}$	$\begin{array}{lll}\text { II } & 53 \\ \text { II } & 54\end{array}$	$\begin{array}{lll}\text { II } & 49 \\ \text { II } & 50\end{array}$	$\begin{array}{ll}\text { II } & 43 \\ \text { II } 45\end{array}$	$\begin{array}{ll}\text { II } & 3 \\ \text { II } & 40\end{array}$	$\begin{array}{ll}\text { II } & 32 \\ \text { II } & 34\end{array}$	II 2 S
-6 o	127	122	II 5^{8}	II 54	II 50	$\begin{array}{lll}\text { II } & 45 \\ \text { II } & 46\end{array}$	$\begin{array}{ll}11 & 40 \\ \text { II } 41\end{array}$	$\begin{array}{lll}\text { II } & 34 \\ \text { II } & 36\end{array}$	
-5 40	127	123	$\begin{array}{ll}\text { II } 59 \\ \text { II } & 59\end{array}$	II 55	II 51 II 52	II 46 II 47	$\begin{array}{lll}11 & 41 \\ \text { II } 43\end{array}$	$\begin{array}{ll}11 & 36 \\ \text { II } & 3 \\ 8\end{array}$	II II 3
- 5^{20}	127	$\begin{array}{ll}12 & 3 \\ 12 & \end{array}$	$\begin{array}{ll}11 & 59 \\ \text { I2 }\end{array}$	$\begin{array}{ll}\text { II } & 55 \\ \text { II } & 56\end{array}$	II 52 II 53	$\begin{array}{ll}\text { II } & 47 \\ \text { I } 149\end{array}$	$\begin{array}{ll}11 & 43 \\ \text { II } 44\end{array}$	II 40	II 35
-5	127	123	120	II 56	II 53	II 49 II 50	$\begin{array}{ll}\text { II } & 44 \\ \text { II } & 46\end{array}$		$\begin{array}{ll}11 & 37\end{array}$
-4 40	127	123	12 O	II 57 II 58	$\begin{array}{ll}\text { II } & 54 \\ \text { II } & 55\end{array}$	$\begin{array}{ll}\text { II } & 50 \\ \text { II } & 51\end{array}$	$\begin{array}{ll}\text { II } & 46 \\ \text { II } & 47\end{array}$	II 42 II 44	II 37 II 40
-420	127	124	$\begin{array}{ll}\text { I2 } & 1 \\ 12 & 1\end{array}$	$\begin{array}{ll}\text { II } & 5 \\ \text { II } & 58\end{array}$	I 155 II 56	$\begin{array}{ll}\text { II } & 51 \\ \text { II } & 52\end{array}$	$\begin{array}{ll}11 & 47 \\ \text { II } 49\end{array}$	II 46	II 4^{2}
-4 0	127	124	12 I	II 5^{8}	II 56	II 52	1149	1146	1142
-340	127	124	122	II 59	II 57	1153	II 51	II 47	II 44 II 46
-320	127	124	122	120	II $5{ }^{\text {S }}$	II 55 II 56	$\begin{array}{lll}\text { II } & 52 \\ \text { II } & 54\end{array}$	$\begin{array}{ll}\text { II } & 49 \\ \text { II } & 51\end{array}$	$\begin{array}{ll}11 & 46 \\ \text { II } 49\end{array}$
-30	127	125	123	12 I	II 58	II 56	II 54	II 51	
-2 40	127	125	123	12	II 59	II 5 S	II 55	II 53	
-2 20	127	125	124	12 2.	120	II 59	II 157	I I 55 15	$\begin{array}{ll}\text { II } & 53 \\ \text { II } & 55\end{array}$
-20	127	125	124	123	12 I	120	II 55	II 57	II 55
-1 40	127	12	124	124	122	12	120	II 59	II 5^{8}
- 120	127	126	125	124	123	12	122	12 I	12 O
10	127	126	125	125	124	124	123	122	$12 \quad 2$
-0 40	127	126	126	125	125	125	125	124	$\begin{array}{ll}12 & 4 \\ \\ 12 & 7\end{array}$
-0 20	127	126	126	126	126	126	126	126	127
0	127	127	127	127	127	127	128	128	129
+0 20	127	127	127	128	128	128	129	1210	12 II
- 40	127	127	128	I2 8	129	1210	12 II	12 I2	1213
10	127	12	12 S	129	1210	12 II	1213	$\begin{array}{lll}12 & 14 \\ 12\end{array}$	$\begin{array}{ll}12 & 15 \\ 12 & 17\end{array}$
120	127	128	129	1210	12 II	12 I3	1214	1216	1217
I 40	127	128	129	1210	1212	1214	1216	1217	1220
20	127	128	1210	12 II	1213	1215	$\begin{array}{lll}12 & 17\end{array}$	1219	$\begin{array}{ll}12 & 22 \\ 12 & 25\end{array}$
220	127	128	1210	1212	1214	1216	1219	1221	$\begin{array}{ll}12 & 25 \\ 12\end{array}$
240	127	129	12 II	1213	1215	1217	1220	1223	1227
30	7	129	12 II	1213	1216	1219	1222	1225	$\begin{array}{ll}12 & 29\end{array}$
320	127	129	1212	1214	12 I 7	1220	1223	1227	1231
340	127	129	1212	1215	12 IS	1221	1225	1229	1233
40	127	1210	1213	1216	1219	1222	1226	1231	1235
420	127	1210	12 I 3	1216	1220	1223	1228	$\begin{array}{ll}12 & 32 \\ 12\end{array}$	1238
440	127	1210	1214	1217	1221	1225	1229	1234	1240
50	127	1210	1214	12 I 8	1222	1226	1231	1236	1243
520	127	1210	12 I 5	1219	1223	1228	1232	1235	1245
540	127	12 II	12 I 5	1219	1224	1229	1234	1240	1247
60	27	12 II	1216	1220	1225	1230	$\begin{array}{ll}12 & 35\end{array}$	1242	1249
620	127	12 II	1216	1221	$\begin{array}{ll}12 & 26\end{array}$	1231	$\begin{array}{lll}12 & 37 \\ \text { I2 } & 39\end{array}$	1244 1246	$\begin{array}{lll}12 & 52 \\ 12 & 54\end{array}$
640	127	12 II	1216	1222	1227	1232	1239	1246	
70	127	1212	1217	1222	1228	1234	1240	1245	1256 1258
720	127	$\begin{array}{lll}12 & 12 \\ 12\end{array}$	$\begin{array}{lll}12 & 17 \\ 12 & \text { IS }\end{array}$	$\begin{array}{ll}12 & 23 \\ 12 & 23\end{array}$	$\begin{array}{ll}12 & 29 \\ 12 & 30\end{array}$	$\begin{array}{ll}12 & 35 \\ 12 & 36\end{array}$	1242 1243	125 1252	13 I
740	12	1212	12 IS	1223	1230	123 1238	1245	1253	13
80		1213	1218	1224	1231	1238	1245	1253	13 3

Table 94.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTII.									
	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°
	h. im.	h. m.	h. m.	h. m.	11. 11.	h. 11.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} 0^{\prime}$	11 II	II 7	II 3	II 58	IO 53	1048	IO 43	10 36	Io 30	1021
-740	1113	II 10	II 5	II	IO 57	10 52	IO 46	1040	10 34	IO 26
-7 20	II 16	1112	115	II 4	II O	IO 55	Io 50	1044	Io 38	1031
$-7 \quad 0$	II 19	II 15	II II	I 17	113	IO 59	10 54	1048	IO 42	IO 35
-640	II 21	II 17	1114	11 IO	II 7	11	1058	10 52	Io 47	IO 40
- 620	II 23	II 20	1117	1113	II Io	II 5	11	IO 5^{6}	IO 51	IO 45
-6 o	II 26	II 23	II 20	I I 16	II 13	I I 9	II 5	II 0	IO 55	1050
-540	II 28	II 25	II 23	II 19	II 16	$\begin{array}{ll}\text { II } & 13\end{array}$	118	I I 4	10 59	IO 55
-520	II 31	II 28	II 25	1122	II 19	II 16	II 13	II S	II 4	IO 59
-5	II 33	1131	II 28	II 25	II 23	II 19	II 16	II 12	II S	II 4
-4 40	II 35	I 133	1131	II 2 S	II 26	II 23	II 20	II 16		II S
-420	II 33°	II 36	II 34	1131	II 29	II 26	II 23	II 20	II 17	II I3
- 0	II 40	II 3 S	II 37	I I 34	II 32	II 30	II 27	I I 24	112 I	11 If
-3 40	II 43	II 41	II 39	II 37	II 35	II 33	1131	II 2 S	II 26	II 22
320	II 45	II 43	II 42	I I 40	II 3 S	II 37	II 35	$\begin{array}{ll}\text { I I } & 32 \\ \text { II }\end{array}$	II 30	II 27
-30	II 47	II 46	II 45	II 43	II 42	II 40	II 38	II 3^{6}	I I 3.4	I I 32
-240	II 50	II 49	II 47	I I 4^{6}	II 45	II 44	II 42	II 40	II 35	II 37
-2 20	II 52	II 51	1150	II 49	II 48	II 47	I I 46	II 44	II 43	II 41
-2 0	II 55	I I 54	II 53	II 52	II 52	II 50	II 49	II 4 S	I I 47	I I 46
-140	II 57	II 56	I I 55	II 55	II 55	II 54	II 53	II 52	II 51	I I 50
I 20	II 59	II 59	II 58	II 5 S	II 5^{3}	II 57	I I 57	II 56	I I 56	I I 55
I O	122	122	12 I	121	12 I	12 I	12 I	120	120	I I 59
-0 40	124	124	124	124	124	12	12	12	124	124
O 20	127	127	127	127	127	127	12 S	12 S	12 S	129
+00	129	129	12 IO	12 10	1210	12 11	12 II	1212	12 I 3	12 I 3
- 20	12 II	1212	1213	1213	12 I 4	1214	12 I 5	1216	1217	12 IS
- 40	1214	12 I4	1215	1216	1217	1217	1219	1220	1221	1223
10	1216	1217	12 IS	1219	1220	1221	1222	1224	1225	1227
I 20	1219	1220	1220	1222	1223	1225	1226	1228	1229	$\begin{array}{ll}12 & 32\end{array}$
I 40	1221	1222	1223	1225	1226	1228	1230	1232	$12 \quad 34$	1237
20	1223	1225	1226	1228	1229	1231	1234	1236	1238	1241
220	1226	1225	1229	1231	1232	1235	1237	1240	1243	1246
240	1228	1230	1232	1234	1236	1235	124 I	1244	1247	1250
30	1231	1232	1235	1237	1239	1241	1244	1248	1251	1255
320	$\begin{array}{ll}12 & 33\end{array}$	1235	1237	1240	1242	1245	1248	1252	1255	130
340	I2 35	1238	1240	1243	1246	1249	1252	1256	130	134
40	1238	1240	1243	1246	1249	1252	1256	130		139
420	1240	1243	1246	1249	1252	1255	1259	I3 4	13 S	1314
440	1243	1246	1249	125^{2}	1255	I2 59	133	13 S	1313	1319
50	1245	1248	1251	1255	1258	132	137	I3 12	1317	1323
520	1247	1251	1254	1258	I3 2	136	13 II	1316	1322	1328
540	1250	1253	1257	13 I	135	13 Io	1314	1320	1326	I3 33
60	1253	I2 56	1259	I3 4	13 S	1313	13 IS	1324	13 31	1338
620	1255	I2 59	132	137	13 II	1316	1322	1328	1335	I3 43
640	1258	13	I3 5	1310	1314	1320	1326	I3 32	1339	I3 47
70	130	134	13 S	1313	13 IS	1323	1329	$13 \quad 36$	1344	135^{2}
720	132	137	13 II	1316	1321	I3 27	1333	1340	1348	1357
740	135	I3 9	1314	I3 19	1325	13 31	1337	1344	I3 53	142
80	I3 7	I3 12	1317	I3 22	1328	1334	1341	I3 48	1357	$14 \quad 7$

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { te Sun. } \end{aligned}$	LATITUDE NORTH.								
	0°	5°	10°	15°	20°	25°	30°	35°	40°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$+8^{\circ} 0^{\prime}$	127	1213	12 IS	1224	1231	1238	1245	1253	133
S 20	127	12 I3	1219	1225	1232	1239	1247	1255	135
840	127	12 I3	1219	1226	1233	1240	1248	1257	13 S
90	127	1213	1220	1226	I2 $3+$	124 I	1250	1259	1310
920	127	12 I 3	1220	I2 27	1235	1243	1252	131	1313
940	127	12 I 4	1221	1228	$12 \quad 36$	1244	1253	133	$\mathrm{I}_{3} 14$
100	127	12 I 4	1221	1229	1237	1245	1255	135	1317
1020	127	1214	1222	1229	1238	1247	1256	137	1319
1040	127	1214	1222	1230	1239	1248	1258	I3 9	I3 22
110	127	12 I5	1223	1231	1240	12.49	1259	13 II	1324
II 20	127	12 I5	1223	1232	1241	1250	13 I	1313	1326
1140	12, 7	1215	1224	1232	1242	1252	I3 2	I3 I5	I3 29
120	127	1215	$\begin{array}{ll}12 & 2.4\end{array}$	1233	1243	1253	I3 4	1317	1331
1220	127	1216	1225	1234	1244	1255	I3 6	13 I9	1334
1240	127	1216	1225	1235	1245	1256	13 S	1321	1336
130	127	1216	1226	1235	1246	1257	I3 9	I3 23	1338
1320	127	1216	1226	1236	$12+7$	1258	1311	I3 25	1341
1340	127	1217	1227	1237	1248	130	1313	1327	1343
140	12	12 I 7	1227	1238	1249	13	13 It	I3 29	1346
1420	12	1217	1225	1239	1250	13	I3 16	1331	1348
1440	127	1217	1225	1240	1251	134	1317	1333	I3 5I
150	127	1218	1229	1240	1252	135	1319	13.35	1353
1520	$12 \quad 7$	12 IS	1229	1241	1253	137	1321	1337	1356
1540	127	12 I8	1230	1241	1254	13 8	1323	I3 39	1358
160	127	12 I 9	1230	1242	1255	$13 \quad 9$	I3 25	I3 4I	14 I
1620	127	1219	1231	1243	1256	13 II	I3 26	I3 43	143
1640	127	1219	1231	1244	1258	1312	1328	1345	146
170	127	12 I 9	1232	1245	1259	1313	1329	I3 47	148
1720	127	1220	1232	1246	130	1315	1331	1350	I4 II
1740	12%	1220	1233	1246	13 I	I3 16	1333	1352	14 I4
180	127	1220	1233	1247	131	1317	I3 35	I3 54	1416
1820	127	1220	1234	1248	133	$\begin{array}{ll}13 & 19\end{array}$	1337	I3 56	1419
1840	127	1221	1234	1249	134	1320	1338	1358	1422
190	127	1221	1235	1250	135	1322	1340	If 0	1424
1920	127	1221	1235	1251	136	1323	${ }^{1} 342$	142	1426
1940	$12 \quad 7$	1222	1236	125^{2}	137	1325	I3 44	145	1429
200	127	1222	1236	1252	13 S	1326	1346	147	I4 32
$20 \quad 20$	127	1222	1237	1253	1310	1328	I3 47	1410	1435
2040	127	1222	1237	1254	I3 II	1329	1349	1412	I4 37
210	127	1223	1238	1255	1312	1331	13 5I	1414	1440
2120	127	1223	1239	1256	1313	1332.	1353	1416	1443
2140	127	1223	1239	1256	13 I4	1334	I3 55	1419	1446
220	127	122.4	1240	125%	1316	I3 35	1356	1421	I4 49
$22 \quad 20$	127	i2 2.4	1241	1258	I3 17	I3 37	1358	1423	1452
2240	127	122.4	1241	1259	13 IS	$13{ }^{1} 8$	140	1425	1454
230	127	1225	1242	130	1319	1340	$14 \quad 2$	I+ 28	I4 57
2320	127	1225	1242	13 I	1320	1341	I4 4	1430	150
2327	127	1225	1243	13	1320	I3 4I	145	1431	I5 I

Table 94.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES

$\begin{aligned} & \text { Declin } \text { "fion } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.									
	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$+8^{\circ} 0^{\prime}$	137	1312	1317	1322	1328	1334	1341	1349	1358	147
S 20	13 Io	1314	I3 20	1325	1331	1338	I3 45	1353	$14 \quad 2$	1412
840	1312	1317	1323	1328	I3 34	1341	I3 49	I3 57	146	1417
90	1315	1320	1325	1331	1338	1345	1353	14 I	14 II	1422
920	1317	I3 23	1328	I3 34	I3 4I	1349	I3 56	145	1415	I4 26
940	1320	I 325	I3 3I	133^{8}	I3 44	1352	140	14 Io	1420	1431
100	I3 22	1328	I3 34	134 I	1348	1356	I4 4	1414	1425	1436
1020	I3 25	13 31	1337	1344	1351	1359	148	1418	1429	1441
1040	1328	I3 34	I3 40	1347	I3 55	143	$14 \quad 12$	1422	1434	14 47
110	I3 30	I3 36	I3 43	1350	1358	147	1416	1427	1438	1452
II 20	I3 32	1339	I3 46	1353	14 I	14 10	1420	1431	1443	1457
II 40	I3 35	I3 4I	I3 49	I 356	145	1414	1424	1435	1448	152
120	1338	1344	1352	140	14 S	1418	1428	1440	1453	158
1220	I3 40	I3 47	I3 55	143	1412	1422	1432	1444	I4 58	15 I3
1240	1343	I3 50	1358	146	1416	1425	1437	I4 49	I5 2	1518
130	I3 46	I3 53	14 I	14 Io	1419	1429	I4 4I	1453	I5 7	$15 \quad 23$
1320	I3 48	I3 56	I4 4	1413	1422	1433	1445	1458	1513	1529
1340	I3 5°	I3 58	147	1416	1426	1437	1449	$15 \quad 2$	1517	1535
140	1353	14 I	14 IO	1419	1429	1441	1453	15	1522	1540
1420	I3 56	144	1413	1423	I4 33	I4 45	1457	15 II	1528	1546
1440	I3 59	I4 7	1416	1426	1437	I4 49	152	1516	1533	1551
150	14	1410	1419	I4 29	I4 40	1452	156	1521	1538	1557
1520	I4 4	1413	I4 22	1433	I4 44	1.456	1510	1526	1543	$16 \quad 2$
1540	147	1416	I4 26	1436	1448	I5 0	I5 14	I5 30	I5 48	168
160	14 IO	1419	1429	1440	1452	154	1519	I5 35	1553	1614
1620	1412	1422	1432	1443	1455	15 S	1523	I5 40	1559	1620
1640	1415	1425	1435	1446	1459	1513	1528	I5 45	164	1626
170	1417	1428	143^{8}	I4 50	153	1517	1532	1550	16 ıo	1632
1720	1420	1431	1441	I4 53	157	1521	1537	1555	1615	1638
1740	1423	I4 34	1445	1457	1510	I5 25	1541	16 O	1620	1645
180	1426	I4 37	1448	15 I	1514	I5 29	1546	165	1626	1651
1820	1429	I4 40	1452	154	1518	I5 34	1550	16 Io	1632	1658
I8 40	1432	1443	1455	158	1522	1538	1555	16 I5	1638	174
190	1435	1446	1458	15 II	1526	I5 42	160	1620	1644	17 II
1920	1437	I4 49	15 I	1515	1530	1546	16	1625	1650	1717
1940	1440	I4 52	$15 \quad 5$	1519	I5 34	1551	1610	1631	1656	1724
200	1443	1455	158	1522	$15 \quad 38$	1555	1615	1637	$17 \quad 2$	1731
2020	1446	1458	15 II	1526	1542	16 O	1620	1642	178	1738
2040	1449	$15 \quad 2$	1515	I5 30	I5 46	164	1625	1647	1714	I7 46
210	1452	155	15 I9	1534	I5 50	$16 \quad 9$	1630	1653	1720	1753
2120	1455	158	I5 22	I5 38	I5 55	1613	1635	1659	1727	18 I
2140	1458	15 II	1526	1542	I5 59	1618	1640	I7 5	1734	188
220	I5 I	1514	1529	I5 46	163	1623	1645	17 II	1740	I8 16
2220	I5 4	1518	I5 33	I5 49	167	1628	1650	$\begin{array}{ll}17 & 17\end{array}$	1747	1824
2240	I5 7	-522	I5 37	1553	I6 12	1632	1656	1723	I7 54	1832
230	I5 10		I5 40	1557	1616	1637	17 I	1729	18 I	1841
2320	1513	I5 28	1544	16 I	1621	1642	I7 7	1735	I8 8	1849
2327	1514	1529	I5 46	163	1623	1644	179	1737	I8 II	I8 52

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { the Sun. } \end{aligned}$	IATITUDE NORTH.										
	60°	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°
	h. m.	h. m.	h. m.	h.m.	h. m.	h. m.	h. m.	h.m.	h.m.	h. m.	h.m.
$-23^{\circ} 27^{\prime}$	552	53 I	58	442	4 II	334	246	129			
-2320	555	534	512	446	416	340	253	14 I			
-23 0	62	543	521	456	428	353	3 II	2 II			
-22 40	6 10	551	530	56	439	47	327	235	- 59		
- 2220	617	559	539	516	450	420	343	256	I 43		
-22 0	625	67	547	525	5 I	432	358	3 I 4	213		
-2140	632	6 I4	556	534	5 II	443	4 II	331	238	1 I	
2I 20	639	622	64	543	520	455	424	347	259	145	
210	646	629	612	552	530	55	436	4 I	318	216	
-2040	652	637	620	6 I	540	516	448	416	335	241	12
- 2020	659	644	627	69	549	526	459	429	351	32	I 47
20 O	75	65 I	634	617	558	535	5 Io	441	46	322	219
- 1940	712	658	642	625	$6 \quad 6$	545	521	453	420	339	
- 1920	7 I8	74	649	633	614	554	531	55	434	355	36
-19 0	725	7 II	656	64 I	623	63	54 I	516	447	4 II	326
- 1840	731	717	74	648	631	612	551	526	459	425	344
- 1820	737	724	710	655	639	620	61	537	5 II	439	41
18 o	743	731	717	73	647	629	610	547	522	45^{2}	416
- 1740	749	737	724	710	655	638	6 19	557	5.33	55	431
-1720	755	743	731	717	72	646	628	67	543	517	445
-170	8 I	749	737	724	79	653	636	616	554	528	458
-16 40	86	755	744	731	717	7 I	644	626	64	540	5 II
- 16 20	812	8 8 1	750	738	724	$\begin{array}{ll}7 & 9\end{array}$	652	635	614	551	523
- 160	817	87	756	744	731	717	71	644	624	$6 \quad 2$	535
-1540	823	813	$8 \quad 2$	751	738	725	78	652	634	612	547
-1520	829	819	88	758	745	732	717	71	643	622	559
-150	834	825	8 I5	84	752	739	725	$\begin{array}{ll}7 & 9\end{array}$	652	632	610
-14 40	840	831	821	8 10	759	746	732	717	7 I	642	620
-1420	845	836	827	817	88	753	740	726	7 10	651	631
-140	850	842	833	823	812	8 I	747	734	7 58	71	64 I
-1340	856	S 47	838	829	819	87	755	741	726	7 Io	651
- 1320	91	853	844	835	825	814	82	749	735	719	71
-130	96	858	850	841	832	821	8 10	757	743	728	7 10
-1240	9 II	94	856	847	838	828	817	85	751	737	720
- 1220	917	9 IO	92	853	844	834	824	812	759	745	729
120	922	915	97	859	850	84 I	831	820	87	753	738
- 1140	927	920	913	95	856	847	838	827	8 I5	82	747
II 20	932	925	919	9 II	93	854	844	834	823	810	756
II O	937	931	924	917	98	90	85 I	84 I	83 I	818	85
-1040	942	936	929	922	915	97	858	849	838	826	814
- IO 20	947	941	935	928	921	913	95	856	846	834	822
10 O	952	946	940	934	927	919	9 II	93	853	842	831
- 940	957	951	946	940	933	926	918	910	9 O	850	839
- 920	IO 2	956	951	945	939	932	925	916	98	858	847
-90	IO 7	102	956	950	944	938	931	923	915	95	855
- 840	IO II	107	102	956	950	944	937	930	922	913	93
- 820	1016	1012	IO 7	IO 2	956	950	944	937	929	921	9 II
- 50	1021	1017	1012	10 7	102	956	950	943	936	928	919

smitheonian Tables

Table 94.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { the of Sun. } \end{aligned}$	LATITUDE NORTH.										
	60°	61°	62°	63°	64°	65°	66°	67°	68°	69	70°
	h. mı.	h. 11 m	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} \quad 0^{\prime}$	IO 21	1017	1012	IO 7	102	956	950	943	936	928	919
-7 40	IO 26	1022	1017	10 I3	Io 8	102	956	950	943	935	927
-7 20	1031	1027	1023	10 I8	1013	IO 8	103	957	950	943	935
-7	1035	1032	1028	1023	1019	IO I4	109	IO 4	957	950	943
--6 40	1040	1037	1033	10 29	1025	IO 20	1015	Io 10	10.4	957	951
-6 20	1045	IO 42	1038	IO 34	1031	10 26	1022	1016	IU 11	105	958
-6 o	1050	IO 47	10 43	1040	1036	10 32	1028	1023	1018	1012	
-5 40	1055	IO 52	1049	IO 45	1041	1038	1034	1029	10 25	1019	IO 14
-5 20	10 59	10 56	10 54	1050	1047	10 44	10 40	10 36	1031	1026	1021
-5	II 4	II I	IO 59	10 56	1053	1050	10 46	1042	1038	IO 34	1029
-4 40	118	II 6	II 4	II	1058	1055	IO 52	1049	1045	1041	IO 36
420	1113	II II	II 9	117	114	II I	1058	1055	1052	1048	Io 44
-4 0	1118	II 16	1114	II 12	II 10	II 7	II 4	II	1058	IO 55	1051
-3 40	II 22	II 21	1119	1117	1115	I 13	II 10	118	II 5	II 2	1059
320	II 27	II 26	II 24	II 22	1120	II I9	II 16	II 14	11 II	119	115
-3 0	II 32	1131	II 29	1128	II 26	I I 24	II 22	II 20	11 IS	II 16	1113
-2 40	1137	I1 35	II 34	1133	II 31	I 130	1128	11 27	1125	II 23	1121
220	II 41	II 40	1139	1138	11 37	II 36	1134	II 33	1132	1130	1128
2	II 46	I I 45	II 44	I I 43	II 43	II 41	II 40	II 40	II 38	II 37	1135
-1 40	I 150	II 50	II 49	I I 49	1148	1147	II 46	II 46	II 45	II 44	1143
20	II 55	II 55	II 54	II 54	II 53	1153	II 52	1152	II 52	II 51	II 50
1	I I 59	II 59	II 59	II 59	I1 59	11 59	II 58	1158	II 58	1158	II 5^{8}
-0 40	124	124	124	124	124	124	124	124	125	125	125
-0 20	129	129	129	1210	1210	1210	1210	12 II	12 II	1212	1212
	1213	1214	1214	1215	1215	1216	1216	1217	1218	1219	1219
+0 20	1218	1219	1219	1220	1220	1222	1222	1223	1225	1226	1227
O 40	1222	1223	1224	1225	1226	1227	1228	1229	1231	1233	1234
	1227	1228	1229	1231	1232	1233	1234	1236	1238	1240	1241
I 20	1232	1233	1234	1236	1237	1239	1240	1242	1244	1247	1249
140	1237	1238	1239	1241	1243	1244	1246	I2 49	1251	1254	1256
	1241	1243	1244	1246	1248	1250	1252	1255	1258	13 I	$\begin{array}{ll}13 & 4\end{array}$
220	1246	1247	1249	1252	1253	1256	1259	13 1	134	138	1311
240	1250	1252	1254	1257	1259	132	135	137	1311	1315	I3 19
30	1255	1257	1259	131	135	138	13 II	1314	1317	1322	1326
320	130	$1 \begin{array}{ll}1 & 2\end{array}$	135	137	1310	1313	$\begin{array}{lll}13 & 17\end{array}$	1320	1324	1329	1334
340	I3 4	137	1310	1313	1316	1319	1323	1327	1331	1336	1341
40	139	1312	1315	13 I8	1322	1325	1329	1333	1338	1343	1349
420	1314	1317	1320	1323	1327	1331	I 335	1340	1345	I3 50	1356
440	1319	1322	1325	1329	133^{2}	1337	1341	1346	1352	I3 58	144
50	1323	1327	1330	1334	1338	1343	1347	1353	1358	145	1411
520	1328	1332	1335	I3 40	I3 44	1349	1354	1359	14	1412	1419
540	1333	1337	I3 41	1345	1350	1355	14 -	146	1412	1419	1427
63	1338	1342	1346	1350	I3 55	141	I4 46	1413	1419	1426	1435
620	I3 43	1347	I3 51	1356	14 I	$14 \quad 7$	1412	1419	14 26	1434	1443
640	I3 47	1352	1356	141	147	1413	1418	1426	1433	1442	1451
70	I3 52	1357	14 I	147	1412	1419	1425	I4 32	1440	1449	1459
720	1357	142	147	1413	14 IS	1425	1431	1439	1448	1457	15 7 15
740	142	147	1412	14 IS	1424	1431	1438	1446	1455	154	1515
80	147	1412	1417	1423	1430	1437	1445	I4 5^{2}	152	1512	I5 23

table 94.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { of Sun. } \end{aligned}$	LATITUDE NORTH.									
	71°	72°	73°	74°	75°	76°	77°	78°	79°	80°
	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
$-8^{\circ} 0^{\prime}$	9 10	859	S 47	S 33	S 17	758	737	710	638	556
-740	9 IS	9 os	S 56	843	S 28	S II	750	726	656	6 I8
720	926	917	96	853	S 39	823	84	741	714	638
7 0	935	926	916	93	S 50	S 35	817	756	731	658
-640	943	934	925	914	9 I	S 47	S 30	S II	747	717
-620	951	943	934	924	912	859	843	825	83	736
6 -	959	952	943	934	923	9 II	856	839	819	754
-540	107	101	953	944	934	922	99	853	834	811
520	1015	10 9	$10 \quad 2$	953	944	934	922	97	850	828
-5	10 23	1017	IO II	103	955	945	934	920	95	846
-440	1031	10 26	1020	1013	105	956	946	934	919	$9 \quad 2$
-4 20	10 39	1034	10 29	1022	1015	10 7	958	947	934	918
40	10 47	Io 43	10 38	1032	10 26	1018	1010	100	949	934
-340	1055	1051	10 46	1041	10 36	1029	IO 22	1013	IO 3	950
-320	II 3	Io 59	1055	1051	1046	1040	10 34	Io 26	1017	106
-30	II II	II 8	II 4	II 0	Io 56	1051	1045	10 39	1031	1022
-240	II 19	II 16	II 13	II 10	II 6	II 2	10 57	1052	10 45	10 37
220	II 26	II 24	II 22	II 19	II 16	II 13	118	114	1059	1052
20	I I 34	II 32	II 31	II 28	II 26	II 23	II 20	1117	II I3	II 8
-140	II 42	1141	II 39	11138	II 36	I I 34	II 32	II 29	II 26	II 23
120	II 49	II 49	II 48	II 47	II 46	II 45	II 43	II 42	II 40	II 38
- 10	II 57	II 57	II 56	II 56	II 56	I I 55	II 55	II 55	II 54	II 53
-040	125	125	125	125	126	126	127	127	128	128
-0 20	1213	1213	1214	1215	1216	1217	1218	1220	1221	1223
00	1220	1222	1222	1224	12. 26	1228	1229	1232	1235	1238
+020	1228	1230	1231	1234	1236	1238	1241	1244	1249	1253
- 40	1236	1238	1240	1243	1246	1249	1253	1257	132	I3 9
10	1244	1246	1249	1252	1256	130	135	1310	1316	I3 24
I 20	1252	1255	1258	$13 \quad 2$	136	I3 II	1316	1323	1330	I3 40
I 40	1259	133	137	13 II	1316	1322	1328	I3 36	13 44	I 355
20	$\begin{array}{ll}13 & 7\end{array}$	13 II	1316	1320	I3 26	1332	1340	I3 49	1359	14 II
220	1315	1319	I3 25	1330	I3 36	I3 43	135^{2}	141	1413	1427
240	I3 23	1328	1333	1340	I3 46	I3 54	144	1414	1428	1443
30	I3 3I	I3 36	1342	1349	I3 57	14	1416	1428	1442	1459
320	1339	I3 44	13 51	1359	147	1417	1428	1441	1456	1516
340	I 347	1353	14 I	148	1417	1428	1440	1455	15 II	I5 33
40	1355	$14 \quad 2$	14 Io	1418	1428	1440	1453	158	1527	1550
420	143	1410	1419	1428	1438	1451	$15 \quad 5$	I5 22	15.43	167
440	14 II	$14 \quad 19$	1428	1438	1449	152	1518	I5 36	1558	1625
50	1419	1428	1437	1448	150	1514	1531	1550	$16 \quad 14$	1644
520	1427	1437	1446	1458	15 II	1526	1544	165	1631	173
540	1435	1445	1456	I5 8	1522	1538	1557	I6 20	1647	1722
60	1444	1454	$15 \quad 5$	15 I9	1533	1550	16 II	I6 35	175	1743
620	1452	$15 \quad 3$	15	$15 \quad 29$	1544	$16 \quad 3$	1625	1651	1723	185
640	I5 I	1512	1525	I5 40	1556	1616	1639	17	1741	$18 \quad 27$
	15 IO	1522	1535	1550	168	1629		1723	18 I	1850
720	15 I8	1231	1545	161	1620	1642	178	1740	1821	1916
740	1527	1540	1555	1612	1632	1655	1723	$175^{\text {S }}$	1842	1944
80	I5 35	I5 50	$16 \quad 5$	1623	1644	179	1739	I8 16	195	2015

DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.										
	60°	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°
$+8^{\circ} 0^{\prime}$	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.	h. m.
	147	1412	1417	1423	1430	1437	1445	1453	$15 \quad 2$	1512	1523
+820	1412	14 I;	1423	I4 29	1436	I4 43	1452	150	1510	I5 20	1532
8	1417	1422	1428	I4 35	1442	1450	145^{8}	157	1517	1528	1540
	1422	1427	1434	1441	1448	1456	15	1514	1525	1536	1549
920	1427	1432	I4 39	1446	1454	$15 \quad 2$	15 II	1521	1532	1544	1557
940	1432	143^{8}	1445	145^{2}	150	159	15 I8	1528	1540	1552	166
100	1437	1443	1450	145^{8}	156	1515	1525	1535	1547	16	1615
10	1442	1449	1456	154	1513	1522	1532	1543	1555	16 S	1624
10 40	1447	1454	$15 \quad 2$	15 Io	I5 19	1528	1539	1550	163	1617	1633
$\begin{array}{cc} 11 & 0 \\ \text { II } & 20 \end{array}$	1452	1459	157	1516	1525	1535	1546	1558	16 II	1626	1642
	1457	$15 \quad 5$	1513	I5 22	1531	1541	1553	165	1619	1634	1652
	152	1510	1519	1528	1538	1548	160	16 I3	1627	1643	171
	158	1516	1525	1534	1544	1555	167	1621	1635	1652	17 II
	1513	1521	1531	1540	1550	$16 \quad 2$	1615	1629	1644	17 1	1721
$\begin{array}{ll}12 & 20 \\ 12 & 40\end{array}$	15 IS	1527	1536	1546	1557	169	1622	1637	1653	17 II	1731
13	1523	1533	1542	1553	16. 4	1616	1630	1645	$17 \quad 2$	1720	1741
	1529	1539	1548	1559	1611	1623	1637	1653	1710	1730	1752
$\begin{array}{ll}13 & 20 \\ 13 & 40\end{array}$	I 535	I 544	I5 55	165	1617	1631	1645	17 I	1719	1740	183
140	1540	1550	161	1612	1624	1638	1653	1710	1729	1750	1814
1420	1546	I 55^{6}	167	1619	1631	1646	17	17 19 17 28	1738	IS O	
14	155 I	162	16 I 3	1625	1638	1653	179	1728	1748	18 II	8
150	1557	168	1619	1632	1646	17	1717	1737	1758	1822	1850
1520	162	1614	1626	1639	1653	179	1726	1746	I8 8	1833	193
15	168	1620	1632	1646	17 I	1717	I7 35	1755	1818	1845	1916
160	1614	1626	1639	1653	178	1725	1744	I8 5	1829	I8 57	1930
16	1620	1632	1646	17 -	1716	1733	1753	1815	1840	1910	1945
16	1626	1639	1652	$17 \quad 7$	1723	1741	182	I8 25	IS 51	1923	201
17	1632	1645	1659	1714	1731	1750	1811	1835	193	1936	2017
172	1638	1652	176	1722	1739	1759	1821	1846	1915	1950	2035
1740	1645	1658	1713	1729	1747	188	1831	1857	1928	206	2055
180	1651	175	1720	1737	1756	1817	184 I	198	1941	2022	2117
IS 20	1658	1712	1728	1745	185	1826	1852	1920	1955	2040	2142
18	174	1719	1735	1753	1814	1836	193	1933	2010	2059	22 I3
190	17 II	1726	1743	182	1823	1846	1914	1946	2026	2120	2258
1920	1717	1733	1751	18 IO	1832	IS 56	1925	20	2044	2145	
1940	1724	I7 4I	1759	1819	1841	197	1937	2014	213	2216	
200	1731	1748	187	IS 28	1851	1919	1950	2030	2123	2259	
	1738	1756	1815	1837	19 I	1930	20.4	2047	2447		
$20 \quad 20$ $20 \quad 40$	1745	I8 4	I8 23	1846	1912	1942	2019	2 I 5	2217		
210	1752	18 II	IS 32	I8 56	1923	1925	2034	21 26	23 I		
2120	18 o	1820	1841	196	I9 34	208	2050	2150			
2140	188	1828	I8 50	1916	1946	2022	218	22 I9			
220	IS 16	I8 37	19 o	1927	1958	2037	2129	$23 \quad 2$			
2220	I8 24	I8 46	1910	1938	20 II	2053	2152				
2240	IS 32	I8 55	1920	1950	2025	2111	22 21				
230	1841	194	1931	$20 \quad 2$	2040	2131	$23 \quad 3$				
$\begin{array}{lll}23 & 20 \\ 23 & 27\end{array}$	1849	1913	1941	2014	2056	2154					
	IS 52	19 I7	I9 46	2019	212	223					

Table 94.
DURATION OF SUNSHINE AT DIFFERENT LATITUDES.

$\begin{aligned} & \text { Declination } \\ & \text { of } \\ & \text { the Sun. } \end{aligned}$	LATITUDE NORTH.				
	71°	72°	73°	74°	75°
$+8^{\circ} 0^{\prime}$	1. m1.	h. m.	h. m.	h. m.	h. m.
	1535	1550	165	1623	1644
820	1544	1559	1616	1635	1657
S 40	1553	169	1626	1646	1710
90	163	$16 \quad 19$	1637	1658	1723
920	1612	1629	1648	1710	1737
940	1622	1639	1659	1723	1751
100	1631	1650	17 II	1735	IS 5
1020	1641	17 o	1722	1749	IS 20
Io 40	1650	17 II	1734	IS 2	IS 36
110	17 I	1722	1747	IS I6	If 52
II 20	17 II	1734	1759	1831	199
II 40	1722	1745	IS I3	IS 46	1927
	1732	1757	IS 26	19 I	1946
1220	1743	IS 9	IS 40	19 IS	207
1240	1755	1822	IS 55	I9 35	2029
130	186	1835	19 II	I9 54	2055
1320	IS 18	IS 49	1926	2014	2123
I 340	IS 30	192	1943	2035	21 59
$\begin{array}{cc} 14 & 0 \\ 14 & 20 \end{array}$	IS 43	1917	$20 \quad 1$	210	2250
	IS 56	1933	2020	2128	
1440	19 Io	I9 49	2041	222	
151515	1924	$20 \quad 7$	2 I 5	2252	
	I9 40	2026	2132		
15 15 15	I9 55	2046	225		
$\begin{array}{cc}16 & 0 \\ 16 & 20\end{array}$	2013	2110	2254		
	2031	2136			
1640	2051	22 S			
$\begin{array}{cc} 17 & 0 \\ 17 & 20 \\ 17 & 40 \end{array}$	2113	2256			
	$\begin{array}{ll}21 & 39\end{array}$				
	22 II				
1740	76°	77°	78°	79°	80°
+ $8^{\circ} 0^{\prime}$		1739	1816	195	2015
S 20	1723	1755	IS 35	1929	2050
8	1738	1812	1856	1956	2133
90	1753	1830	1917	2025	2235
920	IS 8	IS 48	19 4I	2059	
940	IS 25	19 S	206	21 40	
100	IS 41	192 S	2031	2239	
1020	IS 59	1950	216		
IO 4°	19 IS	2015	2I 46		
110	1938	2041	2243		
II 20	1959	2113			
II 40	2023	2150			
120	2049	2246			
1212 20	2119				
	2155				

TABLE 95.
DECLINATION OF THE SUN FOR THE YEAR 1899, AT GREEN-

WICH APPARENT NOON.

Day of Month.	Jan.	$F e b$.	Mur.
1	$-23^{\circ} 0^{\prime}$	$-17^{\circ} \quad 4^{\prime}$	$-7^{\circ} 33^{\prime}$
4	-22 44	$16 \quad 12$	$6 \quad 24$
7	$22 \quad 22$	15 I6	$5 \quad 14$
10	2157	$14 \quad 19$	44
13	2128	1319	253
16	2055	12 I8	142
19	$20 \quad 19$	II 14	- 031
21	1953	1031	+or6
24	19 II	925	127
27	1826	8 IS	239
30	$17 \quad 38$. .	343
	Apr.	May.	June.
1	$+4^{\circ} 34^{\prime}$	$+15^{\circ} 6^{\prime}$	$+22^{\circ} 4^{\prime}$
4	543	1559	$22 \quad 27$
7	651	1650	2246
10	$7 \quad 58$	1738	23 I
13	94	1824	23 I3
16	109	197	$23 \quad 22$
19	1112	1947	$23 \quad 26$
2 I	1153	$20 \quad 12$	$23 \quad 27$
2.4	1253	$20 \quad 47$	2325
27	1351	2119	2320
30	144^{8}	2 I 47	23 II
	July.	Aug.	Sept.
1	$+23^{\circ} 7^{\prime}$	$+15^{\circ} \mathrm{I}^{\prime}$	$+8^{\circ} 17^{\prime}$
4	2253	17.15	7 II
7	2236	1626	64
10	2215	1534	456
13	2150	1440	$3 \quad 47$
16	$2 \mathrm{I} \quad 22$	1344	238
19	20 51	1246	128
21	$20 \quad 29$	127	+ o 42
24	1952	II 6	- 0 29
27	19 I 3	104	I 39
30	1831		249
	Oct.	Noz'.	Dec.
I	$3^{\circ} 12^{\prime}$	$-14^{\circ} 27^{\prime}$	$-21^{\circ} 50^{\prime}$
4	422	$15 \quad 24$	2216
7	5 31	16 I8	2238
Io	640	17 Io	$22 \quad 56$
13	7 4	18 o	23 IO
16	855	1846	$23 \quad 20$
19	10 O	1929	$23 \quad 26$
2 I	1043	1956	$23 \quad 27$
24	I I 47	2035	$23 \quad 26$
27	1248	2 I 9	$23 \quad 20$
30	I3 49	2140	23 10

DURATION OF ASTRONOMICAL TWILIGHT.
(Interval between sunrise or sunset and the time when the true position of the sun's center is 18° below the borizon.)

SMITHSONIAN TABLES.
(Interval between sunrise or sunset and the time when the true position of the sun's center is 6° below the horizon.)
[Minutes.]

Date.	north latitude.														
	0°	10°	20	25°	30°	32°	34°	36°	38°	40°	42°	44°	46	48°	50°
Jan. I	22	22	24	25	27	27	28	28	29	30	32	33	34	36	39
II	22	22	24	25	26	27	28	28	29	30	31	32	33	35	38
21	22	22	23	24	26	26	27	27	28	29	30	32	33	34	37
Feb. I	22	22	23	24	25	26	27	27	27	28	29	31	32	34	35
II	22	22	22	23	25	26	26	27	27	28	29	30	31	33	34
1	21	22	22	23	24	25	25	26	27	28	28	29	30	32	33
Mar. I	21	22	22	23	24	24	25	26	27	28	28	29	30	31	33
11	21	21	22	23	24	24	25	26	26	27	27	29	30	31	32
21	21	21	22	23	24	24	25	26	26	27	- 27	28	30	31	33
Apr. I	21	21	22	23	24	25	25	26	27	28	28	29	30	32	33
II	21	22	22	23	24	25	26	26	27	28	28	29	31	32	34
21	22	22	22	23	25	25	26	27	28	28	29	30	32	34	35
May i	22	22	23	24	25	26	27	28	28	29	30	32	33	35	36
11	22	22	23	24	26	27	28	29	29	30	31	33	35	36	39
21	22	22	24	25	27	28	28	29	30	31	33	35	36	38	4 I
June I	22	22	24	25	27	28	28	29	31	32	34	36	37	40	43
11	22	23	24	26	28	28	29	30	31	33	34	36	38	41	44
21	22	23	25	26	28	29	29	30	31	33	34	36	38	4^{2}	44
July I	22	23	24	26	28	28	29	30	31	33	34	36	38	4 I	44
II	22	22	24	25	27	28	28	29	31	32	34	36	37	40	43
21	22	22	24	2.5	27	28	28	29	30	31	33	35	36	38	4 I
Aug. I	22	22	23	24	26	27	28	29	29	30	31	33	35	36	39
II	22	22	23	24	25	26	27	28	28	29	30	32	33	35	36
21	22	22	22	23	25	25	26	28	28	28	29	30	32	34	35
Sept. I	21	22	22	23	24	25	26	26	27	28	28	29	31	32	34
	21	21	22	23	24	25	25	26	27	28	28	29	30	31	33
21	21	21	22	23	24	24	25	26	26	27	27	29	30	31	32
Oct. ${ }^{1}$	21	21	22	23	24	24	25	26	26	27	27	29	30	31	32
II	21	22	22	23	24	24	25	26	27	28	28	29	30	31	33
2 I	21	22	22	23	24	25	25	26	27	28	28	29	30	32	33
	22	22	22	23	25	25	26		28	28	29	30			34
11	22	22	23	24	25	26	27	28	28	29	30	31	32	33	35
21	22	22	23	24	26	26	27	28	28	29	30	32	33	34	37
Dec. ${ }^{\text {I }}$	22	22	24	25	26	27	28	28	29						38
II	22	22	24	25	27	27	20	28	29	30	32	33	34	36	39
21	22	23	24	25	27	27	28	28	29	31	32	33	34	37	39

BMITHSONIAN TABLES.

Table 98.

RELATIVE INTENSITY OF SOLAR RADIATION,

Mean intensity J for 24 hours of solar radiation on a horizontal surface at the top of the atmosphere and the solar constant A,
in terms of the mean solar constant A_{0}.

Table 99.
RELATIVE AMOUNTS OF SOLAR RADIATION RECEIVED ON A HORIZONTAL SURFACE DURING THE YEAR AT DIFFERENT LATITUDES.

	ATMOSPHERIC TRANSMISSION COEFFICIENT.				
(North.)	1.0	0.9	0.8	0.7	0.6
Equator.	439	374	316	262	213
10°	43.3	368	310	257	209
20°	416	350	293	2.42	195
30°	386	322	206	213	171
40°	347	28.4	231	185	144
50°	301	239	100	I 49	114
60°	249	191	1.48	113	84
70°	207	152	I 13	83	60
80°	192	13.4	94	6.4	43
90°	ISI	125	S5	56	35

Table 100.
AIR MASS, M, CORRESPONDING TO DIFFERENT ZENITH DISTANCES OF THE SUN.

Sun's zenitis distance.	Sun's zenith distance.									
	0	1	2°	3	4	5	6°	7°	8°	9°
	AIR MISS.									
0	1. 00									
10	I. 02					I. 04				
20	I. 06	1. 07	1. 08	1. 09	I. O9	I. 10	1. II	I. 12	I. 13	I. 14
30	I. I 5	I. 17	I. 18	I. 19	I. 20	1. 22	1. 23	I. 25	I. 27	I. 28
40	1. 30	1. 32	I. 34	I. 37	I. 39	I. 41	I. 44	I. 46	r. 49	I. 52
50	1. 55	1. 59	1. 62	I. 66	1. 70	I. 74	1. 78	1. 83	1. 88	I. 9.4
60	2.00	2.06	2. 12	2. 19	2. 27	2.36	2.45	2.55	2.65	2.77
70	2.90	3.05	3. 21	$3 \cdot 39$	$3 \cdot 59$	3.82	4.07	4.37	4.72	5.12
So	5.60	6. IS	6. 88	7. 77	8.00	10. 30	12.44	$15 \cdot 36$	19.79	26.96

Table 101.
RELATIVE ILLUMINATION INTENSITIES.

Source of illumination.	Intensity	Ratio to zenithal full moon.
Zenithal sun	Foot-candles. 9600. 0	465000.0
Sky at sunset	33.00	1650.0
Sky at end of civil twilight.	0.40	20.0
Zenithal full moon.	0.02	I. 0
Quarter moon	0. 002	o. I
Starlight.	0.00008	0.004

MISCELLANEOUS TABLES.

Weight in grams of one cidic centineter of alr.
English measures-Temperature term Table 102
Humidity term ; auxiliary table Table ioz
Humidity and pressure terms, com- bined Table iot
Metric measures-Temperature term Table 105
Humidity term; auxiliary to table 107 Table iof
Humidity and pressure terms, com- bined Table Io_{7}
Atmospheric water-vapor lines in the visible spectrum Table io8
Atmospheric water-vapor bands in the infra-red spectrum Table 109
Transmission percentages of radiation through moist air Table ifo
Energy distribution and atmospheric transmission of solar radiation Table ili
International Meteorological Symbols Table 112
International Cloud Classification Table 1 I 3
Beaufort Weather Notation Table il+
International code of horizontal visibility Table 115
List of meteorological stations Table 116

Table 102.

WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.

Temperature term: $\delta_{t}=\frac{0.0012930}{1+0.002039\left(t-32^{\circ}\right)}$ Fahrenheit temperatures. I cubic centimeter of dry air at the temperature of $32^{\circ} \mathrm{F}$. and pressure 760 mm ., under the standard value of gravity, weighs 0.0012930 gram .

Tempera-	δ_{t}	Log δ_{t}	Tempera-	δ_{t}	$\log \delta_{t}$	$\begin{aligned} & \text { Tempera- } \\ & \text { ture } \end{aligned}$	δ_{t}	$\log \delta_{t}$
F.	0.00	-10	,	0.00	-10	F_{75}	0.00	-10
-45°	15338	7.18577	30°	12983	7.11339	75°	11888	7.07512
-40	15155	. 18056	31	12956	. 11247	76	11866	. $07+30$
-35	14976	. 17540	32	12930	. 11160	77	11843	. 07346
-30	14801	.17029	33	12904	.11073	78	1182 I	. 07265
-25	14630	.16524	34	12877	.10981	79	11799	.07185
-20	$\stackrel{\text { O.00 }}{14463}$	7.16026	35	0.00	7.10894	80	0.00 11777	7.07103
-18	14398	$\stackrel{.}{.15831}$	36	12825	. 10806	81	11756	. 07026
16	14333	. 5634	37	12800	. 10721	82	11734	. 06946
-14	14268	. 54336	38	12774	. 10633	83	11712	. 06863
-12	14204	. 524 I	39	12748	. 10544	84	11691	. 06785
	0.00			0.00			0.00	
-10	14141	7.15048	40	12722	7.10456	85	11669	7.06703
-8	14078	.14854	$4{ }^{1}$	12697	. 10370	86	11648	. 06625
6	14016	. 14663	42	12672	. 10285	87	11626	. 06543
4	13954	. 14470	43	12646	. 10195	88	11605	. 06466
2	13893	. 14279	44	12621	. 10109	89	11584	. 06387
± 0	0.00 13832	7.14088	45	O. 00 12596	7.10023	90	${ }_{1}^{0.00} 11563$	7.06307
+ I	I 3803	. 13997	46	12571	. 09937	91	11542	. 06228
	13773	. 13903	47	12546	.09851	92	11521	.06149
3	13743	. 13808	48	12522	. 09767	93	11500	. 06070
4	13713	.13713	49	12497	. 09682	94	11479	. 05992
5	0.00 13683	7.13618	50	${ }_{12472}^{0.00}$	7.09594	95	0.00 I 1458	7.05913
6	13654	. 13527	51	$12+48$. 09511	96	11438	. 05835
7	13625	. 13434	52	$12+24$.09426	97	11417	. 05755
8	13595	. 13338	53	12399	. 09338	98	11396	. 05675
9	13566	.13245	54	12375	. 09256	99	11376	. 05600
	0.00			0.00			0.00	
10	13537	7.13152	55	12351	7.09171	100	11356	7.05523
11	13508	. 13062	56	12327	. 09087	101	11335	.05442
12	13480	. 12970	57	12303	. 09002	102	11315	. 05367
13	13451	. 12875	58	12279	. 08916	103	11295	. 05290
14	13423	. 12785	59	12255	. 08831	104	11275	. 05213
15	0.00 13394	7.12691	60	${ }^{0.00} 12232$	7.08750	105	$\xrightarrow{0.00} 11254$	7.05I3I
16	13366	. 12600	61	12208	. 08665	106	11235	. 05058
17	13338	. 12510	62	12185	. 08583	107	11215	. 04982
18	13310	. 12419	63	12161	. 08497	108	11195	. 04902
19	13282	. 12328	64	12138	.08416	109	11175	. 04824
20	0.00	7.12235	65	0.00 12115	7.08334	110	${ }_{\substack{0.00 \\ 1156}}$	7.04752
21	13227	. 121214	66	12092	. 08251	112	11117	. 04599
22	13199	. 12054	67	12069	.08168	114	11078	. 04447
23	13172	. 11966	68	12046	. 08085	116	11039	. 04293
${ }^{2}+$	13144	. 11873	69	12023	. 08003	118	11001	. 04145
	0.00			0.00			0.00	
25	13117	7.11783	70	12000	7.07918 .07839	120	10963	7.03994
27	13090	. 11604	72	11955	. 07755	130	10869	. 03250
28	13036	.11514	73	11933	. 07675	135	10686	. 02883
29	13010	. 11428	74	11910	. 07593	140	10597	. 02518

Smithsonian Tables

WEICHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.

Humidity term: Values of 0378 e.
Auxiliary to Table 104.
(See Tables 74 and 75.) $e=$ Vapor pressure in inches.

Temperature by normal hydrogen thermometer.

DewPoint		0.378 e	DewPoint.	Vapor Pressure. (*)	0.378 e	DewPoint.	Vapor Pressure. 0.3 (Water.)	0.378 e	DewPoint.	Vapor Pressure. (Water.)	0.378 e
F.	Inch.	Inch.	F.	Inch.	Inch.	F.	Inch.	Inch.		Inches. In	Inches.
-60°	0.0010	0.000	-10°	0.0223	0.008	40°	0.24770	0.094	90°	1.423	0.538
-60	. 001 I	. 000	9	. 0236	. 009	41	. 2575	. 097	91	1. 469	. 555
58	. 0011	. 00	8	. 0249	. 009	42	. 2677	.101	92	I. 515	. 573
57	. 0012	. 000	7	. 0263	. 010	43	. 2782	. 106	93	1.563	. 591
56	. 0013	-	6	. 0277	. 010	44	. 2801	. 100	94	1.612	. 609
-55	0.0014	0.001	5	0.0292	0.011	45	0.3003	0.114	95	1.662	0.628
54	. 0015	. 001	4	. 0308	. 012	46	. 3120	. 18	96	1.714	. 648
53	.0016	. 001	3	. 0325	. 012	47	-3240	I2	97 08	1.767 1.822	. 689
52	. 0017	. 001	2	. 0343	. 013	48	. 3365	.127 .132	99	1.878	. 710
51	.0018	. 001		. 0361	. 014	49 50	.3493 0.3626	-.137	100	1.936	0.732
-50	0.0020	0.001	$\begin{array}{ll} \pm & 0 \\ +\quad 1\end{array}$	0.0381 .0401	0.014 .015	5 I	0.3626 .3763	. 142	IOI	1.994	. 754
49	. 0021	. .001	+ 1	. 0401	.015 .016	5	. 3905	. 147	102	2.055	. 777
47	. 0024	. 001	3	. 0445	. 017	53	. 4052	. 153	103	2.117	. 800
46	. 0026	. 001	4	. 0468	. 018	54	. 4203	. 159	104	2.181	. 824
-45	0.0028	0.001	$+5$	0.0493	0.019	55	0.4359	-. 165	105	2.246	0.849
44	. 0029	. 001	6	. 0519	. 020	56	. 4521	. 171	106	2.314	. 875
43	.0031	. 01	7	. 0546	. 021	57	. 4687	. 177	107	2.382	.900
42	. 0033	. 001	8	. 0574	. 022	58	. 4859	. 184	108	2.453	. 927
41	. 0036	. 001	9	. 0604	. 023	59	. 5037	. 190	109	2.525	. 954
-40	0.co38	0.001	$+10$	0.0635	0.024	60	0.5220	0.197	110	2.599 2.676	0.982 1.012
39	. 0040	. 002	11	. 0667	. 025	61	. 5409	.204 .212	III	2.676 2.754	1.012
38	. 0043	. 002	12	. 0701	.027 .028	62 63	.5604 .5805	.212 .219	II3	2.754 2.833	1.041
37	. 0046	. 002	I3	. 0736	. 0228	64	. 6013	. 227	114	2.915	1.102
36 -35	. 0049	. 002	+15	.0773 0.0812	0.031	65	0.6226	0.235	115	2.999	1.I34
$\begin{array}{r}-35 \\ \hline 34\end{array}$	0.0052	0.002 .002	15 +15	0.0812 .0852	0.031 .032	66	. 6447	. 244	116	3.085	I. 166
34 33	.0055	. 002	17	. 0895	. 034	67	. 6674	. 252	117	3.173	1.199
32	. 0062	2	18	. 0939	. 035	68	. 6909	. 261	118	3.264	1. 234
31	. 0066	. 003	19	. 0985	. 037	69	. 7150	. 270	119	3.356	
-30	0.0070	0.003	+20	0.1033	0.039	70	0.7399	0.280	120	3.451	1. 304
29	. 0075	. 003	21	. 1084	. 041	71	. 7655	. 289	121	3.548	1.341
28	. 0080	. 003	22	.1136	. 043	72	. 7919	. 299	122	3.647	1.379 $\mathbf{1 . 4 1 7}$
27	. 0084	. 003	23	. 1191	. 045	73	.8191 .8471	. 310	123 124	3.749 3.853	1.41756 1.45
26	. 0090	. 003	24	. 1248	. 047	74	. 8471	. 320	124 125	3.853 3.960	1.456 1.497
-25	0.0095	0.004	+25	0. 1308	0.049	75	0.8760 .9056	0.331 .343	125 126	3.960 4.069	1.497 1.538 1.580
24	. 0101	. 004	26	. 1370 .1435	.052 .054	76	. 9056	.343 .354	127	4.180	1.580
23	. 0107	. 004	27 28	.1435 .1502	2 $\begin{aligned} & .054 \\ & .057\end{aligned}$	77 78	. 93677	. .366	128	4.294	1.623
22	. 0113	. 004	28 29	.1502 .1573	2-057	79	. I .0001	. 378	129	4.412	1.668
-21	.0120 0.0127	. 0.005	+ +30	-. 1646	0.062	80	I. 0334	0.391	130	4.531	1.713
-20 19	0.0127 .0135	$\begin{array}{r}\text {. } \\ .005 \\ \hline\end{array}$	+31 31	0.1646 .1723	- 066	81	1.0676	- 404	131	4.654	4 I .759
18	. 0143	. 0005	- 32	. 1803	3 .068	82	I.,1029	. 417	132	4.779	1.806
17	. 0151	. 006	33	. 1877	7 . 071	83	1.1392	- 431	133	4.907	1.85
16	. 0160	. 006	- 34	. 1954	4 . 074	84	1. 1765	- 445	134	5.038	1.90
-15	0.0169	-0.006	+35	0.2034	$4 \quad 0.077$	85	1.2149	0.459	135	5.172	1.95
14	. 0179	. .007	76	. 2117	7 .080	86	1.2543	- 474	136	5.309	92.00
13	. 0189	$9 . .007$	737	. 2202	$2 . .083$	87	1. 2949	-480	137	5.449	$9{ }^{2.06}$
12	. 0200	-.008	8 38	. 2291	$1 \quad .087$	88	1.3365	5 . 505	138	5.592	2.11
1 I	. 0211	1 . 008	839	. 2382	2.090	- 89	1.3794	4 . 521	139	5.739	
10	0.0223	30.008	840	0.2477	$7 \quad 0.094$	90	1.4234	40.538	140	5.889	9 2.22

Smithsonian tables.

Table 104.
WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Humidity and pressure terms combined: $\frac{\delta}{\delta_{0}}=\frac{h}{29.92 \mathrm{I}}=\frac{B-0.378 e}{29.92 \mathrm{I}}$.
$B=$ Barometric pressure in inches; $e=$ Vapor pressure in inches.

h.	$\frac{\mathrm{h}}{29.921}$.	$\log \frac{h}{29.92 \mathrm{I}}$.	h.	$\frac{\mathrm{h}}{29.291}$.	$\log \frac{\mathrm{h}}{29.92 \mathrm{I}}$.	h.	$\frac{\mathrm{h}}{29.92 \mathrm{I}}$.	$\log \frac{h}{29.92 \mathrm{I}}$.
Inch's.		- 10	Inches.		- 10	Inches		- 10
10.0	0.3342	9.52.402	15.0	0.5013	9.70012	20.0	0.6684	9.82505
10.I	. 3376	. 52835	15.1	. 50.47	.70300	20.1	.6718	. 82722
10.2	. 3409	. 53262	15.2	. 5080	.70587	20.2	.675I	. 8293 S
10.3	- 3442	. 53686	15.3	. 5113	. 7081 I	20.3	. 6784	. 83152
10.4	. 3476	-54106	I5.4	-5I47	.71154	20.4	.68ı8	. 83365
10.5	0.3509	9.54521	15.5	c. 518 So	9.71.435	20.5	0.6851	9. $8_{357} 8$
10.6	. 3543	. 54933	I5.6	.52I4	.71715	20.6	. 6885	. 83789
10.7	. 3576	. 5534 I	15.7	. 5247	. 71992	20.7	.6918	. 83999
10.8	. 3609	. 55745	15.8	. 5281	. 72268	20.8	. 6952	. 84209
10.9	. 3643	. 56145	I5.9	.5314	. 72542	20.9	. 6985	. 84417
11.0	0.3676	9.56542	16.0	0.5347	9.728 I 4	21.0	0.7018	9. 84624
II.I	. 3710	. 56935	16.1	. 5381	.73085	21.1	. 7052	. 8483 I
11.2	- 3743	- 57324	I6.2	. 5414	.73354	2 I .2	.7085	. 55036
11.3	. 3777	. 57710	16.3	. $5+48$. 7362 I	21.3	.7119	. 55240
II. 4	-3SIO	. 58093	16.4	.548I	.73887	21.4	.7152	. S_{5444}
11.5	0.3S43	9.5S472	16.5	0.5515	$9.74{ }^{151}$	21.5	0.7186	9. 85646
II. 6	. 3 S77	. 58848	16.6	. 5548	.74413	21.6	.7219	. 55848
11.7	. 3910	. 59221	16.7	.5581	. 74674	21.7	. 7252	. 86048
II.S	. $39+4$. 59591	16.8	. 5615	.74933	21.8	. 7286	. 86248
11.9	- 3977	. 59957	16.9	. 56.48	.75191	21.9	.7319	. S 6447
12.0	0.4011	c. 6032 I	17.0	0.5682	9.75447	22.0	0.7353	9. 56645
12.I	. 40.44	.6068i	17.1	. 5715	.75702	22.1	.7386	. 56842
12.2	. 4077	.6103S	17.2	. 5748	. 75955	22.2	. 7420	. 87038
12.3	.4111	.6I393	17.3	. 5782	.76207	22.3	. 7453	. 87233
12.4	.4144	. 61745	17.4	. $5^{\text {SI } 5}$. 76.457	22.4	.7486	. 87427
12.5	0.4178	9.62093	17.5	0.5S49	9.76706	22.5	0.7520	9. 87621
12.6	. 42 I I	. 62439	17.6	. 5 SS2	. 76954	22.6	. 7553	.87Si3
12.7	. 4244	. 62782	17.7	. 5916	. 77200	22.7	.7587	. 88005
12.8	.4278	. 63123	17.8	- 5949	. 77444	22.8	.7620	.S8196
12.9	. 43 II	.6346I	17.9	. 5982	.77687	22.9	.7653	. 88356
13.0	0.4345	9.63797	18.0	0.6016	9.77930	23.0	0. 7687	9.8S575
I3. I	. 4378	.64130	IS. I	. 60.49	.78izo	23. I	.7720	. SS764
13.2	.4412	. 64460	IS. 2	$.608_{3}$.784 10	23.2	.7754	. S895 I
13.3	. 4445	.64788	IS. 3	.6116	. 786.48	23.3	.7787	. 89138
I 3.4	. 4478	.65113	IS.4	.6I49	.78884	23.4	.7821	. 89324
13.5	0.4512	9.65436	18.5	0.6183	9.79120	23.5	0. 7854	
13.6	. 4545	. 65756	i8.6	. 6216	. 79354	23.6	. 7887	. 89693
13.7	. 4579	. 66074	18.7	. 6250	. 79587	23.7	. 792 I	. 89877
I 3.8	.4612	. 66390	18.8	.6283	.798i8	23.8	. 7954	. 90060
I 3.9	. 46.46	.66704	18.9	. 6317	. 50049	23.9	.7988	.902 .42
14.0	0.4679	9.67015	19.0	0.6350	9. $\mathrm{SO} 27^{7} \mathrm{~S}$	24.0	0. So 21	9.90424
14. I	. 4712	. 67324	19.I	. 6383	. 80506	2.4. 1	. 8054	. 90604
14.2	. 4746	. 6763 I	19.2	. 6.417	. 80733	2.4 .2	. $\mathrm{SoS8}$.90784
14.3	.4779	. 67936	19.3	. 6450	. So95S	2.4 .3	. SI2 I	.90963
14.4	.4SI 3	. 68239	19.4	.6484	. SIIS_{3}	2.4 .4	.SI55	.91141
14.5	0.4846	9.65539	19.5	0.6517	9. SI 406	24.5	o. SISS	9.91319
14.6	. 4879	. 68537	19.6	. 655 I	. Si62S	2.4 .6	. 8222	. 91496
14.7	. 4913	. 69134	19.7	. 6584	. Sis49	24.7	. 2255	.91672
14.8	. 4946	. 69429	19.8	. 6617	. 82069	2.4 .8	. S 2 S 9	.91848
14.9	.498o	. 6972 r	19.9	. 665 I	. 82288	24.9	.S_{322}	. 92022

WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Humidity and pressure terms combined: $\frac{\delta}{\delta_{0}}=\frac{h}{29.92 \mathrm{I}}=\frac{B-0.378 e}{29.92 \mathrm{I}}$.
$B=$ Barometric pressure in inches; $e=$ Vapor pressure in inches.

h.	$\frac{h}{29.921}$	$\log \frac{h}{29.92 I}$	h.	$\frac{\mathrm{h}}{29.92 \mathrm{I}}$	$\log \frac{\mathrm{h}}{29.92 \mathrm{I}}$	h.	$\frac{h}{29.921}$	$\log \frac{\mathrm{h}}{29.92 \mathrm{I}}$.
Inches.		- 10	Inches.		- 10	Inches.		- 10
25.00	0.8355	9.92196	27.25	0.9107	9.95939	29.50	0.9859	9.99385
25.05	. 8372	. 92283	27.30	. 9124	. 96019	29.55	. 9876	. 99458
25. 10	. 8.389	. 92370	27.35	.914I	. 96008	29.60	. 9893	. 99532
25. 15	. 8.405	.92456	27.40	.9157	. 96177	29.65	. 9909	. 99605
25.20	. 8.422	. 92542	27.45	.9174	.96256	29.70	. 9926	. 99678
25.25	o. 8439	9.92628	27.50	0.9191	9.96336	29.75	0.9943	9.9975 I
25.30	. 8456	. 92714	27.55	. 9208	. 96414	29.80	. 9960	. 99824
25.35	. 8472	. 92800	27.60	. 9224	. 96493	29.85	. 9976	. 99897
25.40	. 8489	. 92886	27.65	. 9241	. 96572	29.90	. 9993	. 99970
25.45	. 5506	. 9297 I	27.70	.925 S	. 96650	29.95	1. 0 OIO	0.00042
25.50	0.8522	9.93056	27.75	0.9274	9.96728	30.00	1.0026	0.00115
25.55	. 8539	. 93141	27.80	. 9291	. 96807	30.05	I. 0043	.00187
25.60	. 8556	. 93226	27.85	. 9308	. 96885	30. 10	1.0060	. 00259
25.65	. 8573	. 9331 I	27.90	. 9325	. 96963	30.15	1.0076	. 00331
25.70	.85S9	. 93396	27.95	. 9341	. 97040	30.20	1.0093	. 00403
25.75	0.8606	9.93480	28.00	0.935^{8}	9.97118	30.25	I. Ol 10	0.00475
25.80	. 8623	. 93564	28.05	. 9375	. 97195	30.30	1. 0127	. 00547
25.85	. 8639	.93648	28. 10	. 9391	. 97273	30.35	I. 0143	. 00618
25.90	. 8656	. 93732	28.15	. 9408	. 97350	30.40	1.0160	.00690
25.95	. 8673	.93816	28.20	- 9425	. 97427	30.45	1.0177	.00761
26.00	0. 8690	9.93900	28.25	0.944 I	9.97504	30.50	1.0193	0.00832
26.05	. 8706	. 93983	28.30	. 9458	.975SI	30.55	1.0210	. 00903
26. 10	. 8723	. 94066	28.35	. 9475	. 97657	30.60	1.0227	. 00975
26. 15	. 8740	.94149	28.40	. 9492	. 97734	30.65	1. 0244	. 01045
26.20	. 8756	. 94233	28.45	. 9508	.97810	30.70	1.0260	.OIII6
26.25	0. 8773	9.94315	28.50	0.9525	9.97887	30.75	1.0277	0.01187
26.30	. 8790	. 94398	28.55	. 9542	. 97963	30.80	1.0294	. 01257
26.35	. 8806	. 94480	28.60	. 9558	. 98039	30.85	1.0310	. 01328
26.40	. 8823	. 94563	28.65	. 9575	.98is	30.90	1.0327	. 01398
26.45	.8840	. 94645	28.70	. 9592	.98i91	30.95	1. 0344	. 01468
26.50	0. 8857	9.94727	28.75	0.9609	9.98266	31.00	1.0361	0.01539
26.55	. 8873	.94So9	2 2. So	. 9625	. 98342	31.05	1.0377	. 01608
26.60	. 8890	.94891	28.85	. 9642	. 98417	31.10	1. 0394	.01678
26.65	. 8907	. 94972	28.90	. 9659	. 98492	3 I. 15	1.04II	. 01748
26.70	. 8924	. 95054	28.95	.9675	.98567	31.20	1. 0427	. 01818
26.75	0.8940	9.95135	29.00	0.9692	9.98642	31.25	I. 0444	ヘ.01887
26.80	. S 957	. 95216	29.05	. 9709	. 98717	31.30	I. 0461	. 01957
26.85	. 8974	. 95297	29. 10	. 9726	. 98792	31.35	1.0478	. 02026
26.90	. 8990	.95378	29.15	. 9742	.9SS66	3 I .40	1.0494	. 02095
26.95	.9007	. 95458	29.20	. 9759	. 98941	3 I .45	I. 051 I	. 02164
27.00	0.9024	9.95539	29.25	0.9776	9.99015	31.50	1.0528	0.02233
27.05	. 9040	. 95619	29.30	. 9792	. 99089	3155	I. 0544	. 02302
27.17	.9057	. 95699	29.35	. 9809	. 99163	31.60	1.0561	. 02371
27.15	. 9074	. 95779	29.40	. 9826	. 99237	31.65	1.0578	. 02439
27.20	.9091	.95859	29.45	.9843	. 993 II	31.70	1.0594	. 02508

Table 105.

WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Temperature term: $\delta_{t, 760}=\frac{0.0012930}{1+0.003670}$. Centigrade temperature.
I cubic centimeter of dry air at the temperature of $0^{\circ} \mathrm{C}$. and pressure 760 mm ., under the standard value of gravity, weighs o.001 2930 gram.

t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$
C.	0.00	-10	C	0.00	-10		0.00	-10
-34°	14774	7.16950	-4.5°	13147	7.11883	${ }^{\circ} .0$	12129	7.08383
-33	14712	.16768	-4.0	13123	. 11804	18.5	12108	. 08309
-32	14651	. 16587	-3.5	13098	. 11720	19.0	12087	. 08232
-3I	14590	. 16407	-3.0	13074	. 11642	19.5	12066	.08156
	0.00			0.00			0.00	
-30	14529	7.16224	-2.5	13050	7.11562	20.0	12046	7.08085
-29	14470	. 16047	-2.0	13026	. 11481	20.5	12025	. 08009
-28	14410	. 15866	-1.5	13002	. 11.401	21.0	12005	. 07937
-27	14352	. 1569 I	-1.0	12978	- II 321	21.5	11984	. 07860
-26	I 4294	. 15515	-0.5	12954	. 11241	22.0	11964	. 07788
	0.00			0.00			0.00	
-25	14236	7.15339	0.0	12930	7.11160	22.5	I 1944	7.07716
-24	14179	. 15166	+0.5	12906	. 11079	23.0	11924	.07642
-23	14122	. 14990	1.0	12883	. 11002	23.5	11903	. 07566
-22	I 4065	.14714	1.5	12859	. 10921	24.0	11883	. 07493
-2I	14010	. 14645	2.0	12836	.10844	24.5	I 1863	.07419
	0.00			0.00			0.00	
-20.0	13955	7.14472	2.5	12812	7.10762	25.0	I 1843	7.07346
-19.5	13927	. I 4386	3.0	12789	. 10684	25.5	11823	. 07273
-19.0	13899	. I 4298	$3 \cdot 5$	12766	. 10607	26.0	11804	. 07204
-18.5	13872	.14215	4.0	12743	. 10527	26.5	11784	.07131
-18.0	13844	. 14126	$4 \cdot 5$	12720	.10450	27.0	11764	.07056
	0.00			0.00			0.00	
-17.5	13818	7.14044	5.0	12698	7.10372	27.5	11745	7.06986
-17.0	13790	. 13956	$5 \cdot 5$	12675	. 10294	28.0	11725	. 06912
-16.5	13763	. 13871	6.0	12651	. 10212	28.5	11706	. 06841
-16.0	13737	. 13790	6.5	12629	. IOI 38	29.0	I 1686	. 06767
-15.5	13710	. 13705	7.0	12606	. 10058	29.5	I I 667	. 06697
	0.00			0.00			0.00	
-15.0	13684	7.13621	7.5	12584	7.09982	30.0	11648	7.06625
-14.5	13657	. 13536	8.0	12561	. 09902	30.5	11628	. 06550
-14.0	13630	- 13450	8.5	12539	. 09828	31.0	11609	. 06479
-13.5	13604	. 13368	9.0	12517	. 09750	31.5	11590	.06408
-13.0	13578	. 13285	$9 \cdot 5$	12494	. 09670	32.0	11571	. 06337
	0.00			0.00			0.00	
-12.5	13552	7.13201	10.0	12472	7.09594	32.5	11552	7.06266
-12.0	13526	.13II 7	10.5	12450	. 09517	33.0	11533	.06I94
-11.5	13500	. 13034	II .0	12428	. 09440	33.5	11514	. 06123
-11.0	$13+74$. 12950	II. 5	12406	. 09363	34.0	11496	. 06055
-10.5	13448	. 12866	12.0	12384	. 09286	34.5	11477	. 05984
	0.00			0.00			0.00	
-10.0	13423	7.12785	12.5	12363	7.09214	35.0	11458	7.05911
- 9.5	13397	.12701	13.0	12341	. 09135	35.5	I I 444°	.05843
- 9.0	13372	. 12620	13.5	12320	. 09061	36.0	II42I	. 05772
- 8.5	13346	. 12535	14.0	12298	. 08983	36.5	11403	. 05702
- 8.0	1332 I	. 12454	14.5	12277	.08910	37.0	11384	. 05629
	0.00 132		15.0	0.00		37.5	0.00 11366	
	13	7.1		122	7.08	38.0	11347	7.05562 .05488
-6.5	13246	. 12210	16.0	12213	. 08683	38.5	11329	. 05419
- 6.0	13221	. 12126	16.5	12192	. 08608	39.0	11311	. 05352
- 5.5	13196	. 12044	17.0	12171	. 08533	39.5	11293	. 05282
- 5.0	0.00 13172	7.11966	17.5	0.00 12150	7.08458	40.0	$\begin{aligned} & 0.00 \\ & 11275 \end{aligned}$	7.05213

Table 105.
WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Temperature term. (Continued)

t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$	t.	$\delta_{t, 760}$	$\log \delta_{t, 760}$
C.	0.00	-10	C.	0.00	- 10	C.	0.00	- 10
$+40^{\circ}$	11275	7.05213	$+50^{\circ}$	10925	7.03842	$+60^{\circ}$	10597	7.02518
41	11239	. 05074	51	10891	.03707	61	10565	. 02388
42	11203	. 04933	52	10858	. 03576	62	10534	. 02258
43	11168	. 04798	53	10825	. 03443	63	10502	.02128
44	11132	. 04657	54	10792	. 03309	64	10471	. 01999
	0.00			0.00			0.00	
45	11097	7.04521	55	10758	7.03173	65	10440	7.01870
46	11063	.04387	56	10726	.03044	66	10409	. 01742
47	11028	. 04251	57	10693	. 02910	67	10378	.01611
48	10993	.04112	58	10661	. 02780	68	10348	. 01486
49	10959	.03977	59	10629	.02649	69	10317	. 01355

Table 106.
Humidity term: Values of 0.378 e. Auxiliary to Table 107.
$e=$ lapor pressure in mm .
(See Tables 76 and 77).

Dewpoint	e Vapor Pressure (Ice)	$0.378 e$	Dewpoint	e Vapor Pressure (IVater)	$0.378 e$	Dewpoint	e Vapor Pressure (W'ater)	$0.378 e$
$\begin{gathered} C_{5} \\ -50^{\circ} \end{gathered}$	mm.	mm .	$\mathrm{C}_{0}{ }^{\circ}$	mm	mm .	C.		mm.
-50	0.	0.01		4.580	1.73		31.860	12.04
	0.054	0.02	2	4.927	1.86	31	33.735	12.75
-35	0.169	0.06	3	5.682	2.15	33	35.785 37.775	13.50 14.28
-30	0.288	0.11	4	6.098	2.31	34	39.947	15.10
-25	0.480	0.18	5	6.541	2.47	35	42.227	15.96
24	0.530	0.20	6	7.012	2.66	36	44.619	16.87
23	0.585	0.22	7	7.513	2.84	37	47.127	17.81
22	0.646	0.24	8	8.045	3.04	38	49.756	18.81
21	0.712	0.27	9	8.610	3.25	39	52.510	19.85
-20	0.783	0.30	10	9.210	3.48	40	55.396	20.94
19	0.862	0.33	11	9.8 .46	3.72	41	58.417	22.08
18	0.947	0.36	12	10.521	3.98	42	61.580	23.28
17	1.041	0.39	13	11.235	4.25	43	64.889	$24 \cdot 53$
16	$1.1+2$	0.43	14	11.992	4.53	44	68.350	25.84
-15	1.252	0.47	15	12.794	4.84	45	71.968	27.20
14	1.373	0.52	16	13.642	5.16	46	75.751	28.63
13	1.503	0.57	17	14.539	5.50	47	79.703	30.13
12	1.644	0.62	18	15.487	5.85	48	83.830	31.69
11	1.798	0.68	19	16.489	6.23	49	88.140	33.32
-10	1.964	0.74	20	17.548	6.63	50	92.64	35.02
9	2.144	0.81	21	18.665	7.06	51	97.33	36.79
8	2.340	0.88	22	19.8 .44	7.50	52	102.23	38.64
7	2.550	0.96	23	21.087	7.97	53	107.33	40.57
6	2.778	1.05	24	22.398	8.47	54	112.66	42.59
-5	3.025	1.14	25	23.780	8.99	55	118.20	44.68
4	3.291	I. 24	26	25.235	9.54	56	123.98	46.86
3	3.578	1.35	27	26.767	10.12	57	130.00	49.14
2	3.887	1.47	28	28.380	10.73	58	136.26	51.51
1	4.220	1.60	29	30.076	11.37	59	142.78	53.97
0	$4 \cdot 580$	1.73	30	31.860	12.04	60	149.57	56.54

Table 107.
WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Humidity and pressure terms combined : $\frac{\delta}{\delta_{0}}=\frac{h}{760}=\frac{B-0.378 e}{760}$.
$B=$ Barometric pressure in mm. ; $e=$ Vapor pressure in mm.

h.	$\frac{h}{760}$.	$\log \frac{h}{760}$.	h.	$\frac{h}{760}$.	$\log \frac{h}{760}$	h.	$\frac{\mathrm{h}}{760} .$	$\log \frac{h}{760}$.
mm.		- 10	mm.		- 10	mm.		-10
300	0.3947	9.59631	400	0.5263	9.72125	450	0.5921	9.77240
302	. 3974	. 59919	401	. 5276	. 72233	45I	. 5934	. 77336
304	. 4000	. 60206	402	. 5289	. 72341	452	. 5947	. 77432
306	. 4026	.6049I	403	. 5303	. 72449	453	. 5961	. 77528
308	. 4053	. 60774	404	. 5316	. 72557	454	. 5974	. 77624
310	0.4079	9.61055	405	0.5329	9.72664	455	0.5987	9.77720
312	. 4105	.6I334	406	. 5342	. 72771	456	. 6000	.77815
314	. 4132	.61612	407	. 5355	. 72878	457	. 6013	. 77910
316	. 4158	. 61887	408	. 5369	. 72985	458	. 6026	.78005
318	. 4184	.6216I	409	. 5382	.73091	459	. 6040	. 78100
320	0.42 II	9.62434	410	0.5395	9.73197	460	0. 6053	9.78194
322	. 4237	. 62704	411	. 5408	. 73303	461	. 6066	. 78289
324	.4263	. 62973	412	. 542 I	. 73408	462	. 6079	.78383
326	. 4289	. 63240	413	. 5434	.7351.4	463	.6092	.78477
328	. 4316	. 63506	414	. 5447	.73619	464	.6105	. 78570
330	0.4342	9.63770	415	0.5461	9.73723	465	0.6IIS	9.78664
332	. 4368	. 64032	416	. 5474	. 73828	466	.6I32	.78757
334	. 4395	. 64293	417	. 5487	. 73932	467	.6145	. 78850
336	. 4421	. 64552	418	. 5500	. 74036	468	.6158	.78943
338	. 4447	. 64810	419	. 5513	. 74140	469	.6171	. 79036
340	0.4474	9.65066	420	0.5526	9.74244	470	0.6184	9.79128
342	. 4500	. 6532 I	421	. 5540	. 74347	471	. 6197	. 79221
344	. 4526	. 65574	422	- 5553	. 74450	472	. 6210	. 79313
346	. 4553	. 65826	423	. 5566	. 74553	473	. 6224	. 79405
348	. 4579	. 66076	42.4	. 5579	. 74655	474	. 6237	. 79496
350	0.4605	9.66325	425	0. 5592	9.74758	475	0.6250	9.79588
352	.4632	. 66573	426	. 5605	. 74860	476	. 6263	. 79679
354	. 4658	. 66819	427	. 5618	.7496I	477	. 6276	. 79770
356	. 4684	. 67064	428	.5632	.75063	478	. 6289	. 79861
358	. 47 II	. 67307	429	. 5645	. 75164	479	. 6303	. 79952
360	0.4737	9.67549	430	0. 5658	9.75265	480	0.6316	9.80043
362	.4763	. 67790	431	. 5671	. 75366	481	. 6329	. 80133
364	. 4789	. 68029	432	. 5684	. 75467	482	. 6342	. So 223
366	.4816	. 68267	433	. 5697	. 75567	483	. 6355	. 80313
368	.4842	. 68503	434	. 57 I I	. 75668	484	. 6368	. SO 403
370	0.4868	9.68739	435	0.5724	9.75768	485	0.6382	
372	. 4895	. 68973	436	. 5737	. 75867	486	. 6395	. 80582
374	. 4921	. 69206	437	. 5750	. 75967	487	. 6408	. 80672
376	. 4947	. 69437	438	.5763	.76066	488	. 6421	. 80761
378	. 4974	. 69668	439	. 5776	.76165	489	. 6434	. 80550
380	0.5000	9.69897	440	0.5790	9.76264	490	0.6447	9.80938
382	. 5026	. 70125	441	. 5803	. 76362	491	. 646 I	. 81027
384	. 5053	. 70352	442	. 5816	. 76461	492	. 6474	. Sili5
386	. 5079	.70577	443	. 5829	.76559	493	.6487	. 81203
388	.5105	. 70802	444	.5842	.76657	494	. 6500	.81291
390	$0.513{ }^{2}$	9.71025	445	0.5855	9.76755	495	0.6513	9.81379
392	-5I58	. 71247	446	. 5868	. 76852	496	. 6526	. 81467
394	. 5184	. 71468	447	. 5882	. 76949	497	. 6540	. SI 556
396	.5211	. 71688	448	. 5895	. 77046	498	. 6553	. Si 642
398	. 5237	.71907	449	. 5908	. 77143	499	. 6566	.81729

Table 107.
WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Humidity and pressure terms combined : $\frac{\hbar}{\delta_{0}}=\frac{h}{760}=\frac{B-0.37 S e}{760}$.
$B=$ Barometric pressure in mm. ; $e=$ Vapor pressure in mm.

h.	$\frac{h}{760}$.	Log $\frac{\mathrm{h}}{760}$.	h.	$\frac{\mathrm{h}}{760}$.	$\log _{760}{ }^{h}$.	h.	$\frac{\mathrm{h}}{760}$.	$\log \frac{h}{760}$
mm.		- Io	mm.		10	mm.		- 10
500	0.6579	9.81816	550	0.7237	9.85955	600	0.7895	9. 89734
501	. 6592	. 81902	551	. 7250	. 86034	601	. 7908	. 89806
502	. 6605	. 81989	552	. 7263	. 86112	602	. 7921	. 89878
503	. 6618	. 82075	553	. 7276	. 86191	603	. 7934	. 89950
504	. 6632	. 82162	554	. 7290	. 86270	604	. 7947	. 90022
505	0.6645	9.82248	555	0.7303	9.86348	605	0.7961	9.90094
506	. 6658	. 82334	556	. 7316	. 86426	606	. 7974	. 90166
507	. 6671	. 82419	557	. 7329	. 86504	607	. 7987	. 90238
508	. 6684	. 82505	558	. 7342	. 86582	608	. 8000	. 90309
509	. 6697	. 82590	559	. 7355	. 86660	609	. 8013	. 90380
510	0.6711	9.82676	560	0.7368	9. 86737	610	0.8026	9.90452
511	. 6724	. 82761	561	. 7382	. 86815	611	. 8040	. 90523
512	. 6737	. 82846	562	. 7395	.86892	612	. 8053	. 90594
513	. 6750	. 82930	563	. 7408	. 86969	$6{ }^{1} 3$. 8066	. 90665
514	. 6763	. 83015	564	. 7421	. 87046	614	. 8079	. 90735
515	0.6776	9.83099	565	0.7434	9.87123	615	0. 8092	9.90806
516	. 6789	. 83184	566	. 7447	. 87200	616	. 8105	. 90877
517	.6803	. 83268	567	.7461	. 87277	617	.8118	. 90947
518	.6816	. 83352	568	. 7474	. 87353	618	. 8132	. 91017
519	. 6829	. 83435	569	. 7487	. 87430	619	. 8145	. 91088
520	0.6842	9.83519	570	0.7500	9. 87506	620	0.8158	9.91158
521	. 6855	. 83602	571	.7513	. 87582	621	. 8171	.91228
522	. 6869	. 83686	572	. 7525	. 87658	622	. 8184	.91298
523	. 6882	. 83769	573	. 7540	. 87734	623	.8197	. 91367
524	. 6895	. 83852	574	. 7553	. 87810	624	.8211	. 91437
525	0. 6908	9.83934	575	0.7566	9.87885	625	0.8224	9.91507
526	. 6921	. 84017	576	. 7579	. 87961	626	. 8237	. 91576
527	. 6934	. 84100	577	. 7592	. 88036	627	. 8250	. 91645
528	. 6947	. 84182	578	. 7605	.88I II	628	. 8263	. 91715
529	. 6961	. 84264	579	. 7618	. 88186	629	. 8276	. 91784
530	0.6974	9.84346	580	0.7632	9.88261	630	0.8289	9.91853
531	. 6987	. 84428	581	. 7645	. 88336	631	. 8303	. 91922
532	. 7000	. 84510	582	. 7658	. 88411	632	. 8316	. 91990
533	. 7013	. 84591	583	. 7671	. 88486	633	. 8329	. 92059
534	. 7026	. 84673	584	. 7684	. 88560	634	. 8342	. 92128
535	0.7040	9.84754	585	0.7697	9.88634	635	0.8355	9.92196
536	. 7053	. 84835	586	. 7711	. 88708	636	. 8368	. 92264
537	. 7066	. 84916	587	. 7724	. 88782	637	. 8382	. 92332
538	. 7079	. 84997	588	. 7737	. 88856	638	. 8395	. 92401
539	.7092	. 85078	589	. 7750	. 88930	639	. 8408	. 92469
540	0.7105	9.85158	590	0.7763	9.89004	640	0.8421	9.92537
541	. 7118	. 85238	591	. 7776	. 89077	641	. 8434	. 92604
542	. 7132	. 85318	592	. 7789	. 89151	642	. 8447	. 92672
543	. 7145	. 85399	593	.7803	. 89224	643	. 8461	. 92740
544	. 7158	. 85478	594	. 7816	. 89297	644	. 8474	. 92807
545	0.7171	9.85558	595	0.7829	9.89370	645	0.8487	9.98875
546	. 7184	. 85638	596	. 7842	. 89443	646	. 8500	. 92942
547	. 7197	. 85717	597	. 7855	. 89516	647	. 8513	-93009
548	. 7211	. 85797	598	. 7868	. 895889	648	. 8526	. 93076
549	. 7224	. 85876	599	. 7882	. 89662	649	. 8539	. 93143

Gmithbonian Tableg.

Table 107.
WEIGHT IN GRAMS OF ONE CUBIC CENTIMETER OF AIR.
Iumidity and pressure terms combined : $\frac{\hbar}{\delta_{0}}=\frac{h}{760}=\frac{B-0.378 e}{760}$.
$B=$ Barometric pressure in mm. ; $e=$ Vapor pressure in mm.

h.	$\frac{h}{760} .$	$\log _{760}{ }^{\text {h }}$	h.	$\frac{h}{760}$.	$\log \frac{h}{760}$.	h.	$\frac{h}{760} .$	$\log \frac{h}{760}$.
mm.		- 10	mm .		- 10	mm.		- 10
650	0.8553	9.93210	700	0.92 II	9.96428	750	0.9868	9.99425
651	. S5 $^{\text {ch }}$. 93277	703	. 9224	. 96490	751	. 9882	. 99443
652	. 8579	.93341	702	. 9237	. 96552	752	. 9895	. 99540
653	. 5592	. 93410	703	. 9250	.96614	753	. 9908	. 99598
654	. 5605	. 93476	704	. 9263	. 96676	754	. 9921	. 99656
655	0.8618	9.93543	705	0.9276	9.96738	755	0.9934	9.99713
656	. 8632	. 93609	706	. 9289	. 96799	756	. 9947	. 99771
657	. 8645	. 93675	707	. 9303	. 96860	757	. 9961	. 99828
65 S	. 8658	.9374I	708	. 9316	. 96922	758	. 9974	. 99886
659	. 8671	.93So7	709	. 9329	. 96983	759	.9987	. 99943
660	o. S684	9.93 S73	710	0.9342	9.97044	760	1.0000	0.00000
66I	. 5697	. 93939	711	. 9355	. 97106	761	. 0013	. 00057
662	. 8711	. 94004	712	. 9368	.97167	762	. 0026	. OOI 14
663	. 8724	. 94070	713	. 9382	. 97228	763	. 0039	. 00171
664	. 8737	. 94135	714	. 9395	. 972 SS	764	. 0053	. 00228
665	0. S 50	9.94201	715	0.940 S	9.97349	765	1.0066	0.00285
666	. S 763	. 94266	716	. 942 I	. 97410	766	. 0079	. 00342
667	. 8776	. 9433 I	717	. 9434	. 97470	767	. 0092	. 00398
668	. 5790	. 94396	718	. 9447	. 9753 I	76 S	. 0105	. 00455
669	. SSo3	. 94461	719	.946I	. 97592	769	. OI 18	. 0051 I
670	0.88ı6	9.94526	720	0.9474	9.97652	770	1.0132	0.00568
671	. SS29	. 94591	721	. 9487	.97712	771	. 0145	. 00624
672	. SS_{42}	. 94656	722	. 9500	. 97752	772	. 0158	. 00680
673	.SS55	. 94720	723	. 9513	. 97832	773	. 0171	. 00736
674	.SS69	. 94785	72.4	. 9526	. 97892	774	. 0184	. 00793
675	0.88S2	9.94849	725	0.9539	9.97952	775	1.0197	0.00849
676	.S895	. 94913	726	. 9553	.9SOI2	776	. 0211	. 00905
677	. S 908	. 94978	727	. 9566	.9So72	777	. 0224	.00961
678	. S 921	. 95042	728	. 9579	.9SI 32	778	. 0237	. 01017
679	. 8934	.95106	729	. 9592	.9Si9I	779	. 0250	. 01072
680	0.8947	9.95170	730	0.9605	9.9S250	780	1.0263	0.01128
681	. S960	. 95233	731	.96IS	. 98310	781	. 0276	.OII84
$6 S_{2}$. 8974	. 95297	732	.9632	. 98370	$7 \mathrm{~S}_{2}$. 0289	. 01239
$6 S_{3}$. $\mathrm{S9} 87$.95361	733	. 9645	. 98429	${ }_{7} \mathrm{~S}_{3}$. 0303	. 01295
684	. 9000	. 95424	734	. 9658	.984SS	754	. 0316	. OI 350
685	0.9013	9.95488	735	0.9671	9.98547	785	1.0329	0.01406
686	. 9026	. 95551	736	. 9684	. 98606	786	. 0342	. 01461
687	. 9039	.95614	737	. 9697	. 98665	787	. 0355	. 01516
688	.9053	. 95677	73 S	.9711	.98724	7 SS	.036S	.OI571
689	. 9066	. 95740	739	. 9724	.9S7S3	789	. 0382	. 01626
690	0.9079	9.95S04	740	0.9737	9.98842	790	1.0395	
691	.9092	. 95566	741	. 9750	. 98900	791	. 0408	. 01736
692	. 9105	. 95929	7.42	. 9763	.9S959	792	. 0421	. 01791
693	.9118	. 95992	743	. 9776	.9901S	793	. 0434	. OIS46
694	.9132	. 96054	744	. 9789	. 99076	794	. 0447	. O1901
695	0.9145	9.96117	745	0.9803		795	1.0461	0.01955
696	. 9158	.96180	746	.98I6	. 99192	796	. 0474	. 02010
697	. 9171	. 962.12	747	. 9829	. 99251	797	. 0487	. 02064
698	. 9184	. 96304	748	. 9842	. 99309	79 S	. 0500	.02119
699	.9197	. 96366	749	. 9855	. 99367	799	.05I3	.02173

Table 108.
ATMOSPHERIC WATER-VAPOR LINES IN THE VISIBLE SPECTRUM.

Wave lengths in Ångströms	Number of lines	Intensity	Wave lengths in Ångströms	Number of Iines	Intensity
5292.2	1 ?	-2	5915.628.		I
$5861.6-5869.8$	7	-2	$5915.8-5918.0$	6	-1
5870.653...		I	5918.423		4
$587 \mathrm{I} .2-5875.6$	8	-I	5919.0...	I	-2
5876.126....		1	5919.059.		5
$5877.3-5879.2$	4	-I	5919.647.		7
5879.608.		I	5920.2	1	-I
5879.733 .		1	5920.56+..		I
$5880.5-5880.7$	2	0	$5921.2-5922.4$	3	-I
$5880.935 \ldots . .$.		1	$5922.522 \ldots$.		2
5881.1		o	$5922.7-5923.2$	2	-I
5881.872		I	5923.652.		1
$5882.0-5883.0$	3	0	5923.827.		2
$5883.908 \ldots$		5	5924.276		4
$588+2-5885.6$	3	-I	5924.8	1	-2
5885.981 .		5	5925.007		2
5886.348.		1	5926.6.	I	-2
5886.+ -5886.7	2	o	5928.296.		2
5887.226		5	5928.8-5931.0.	5	-2
5887.664.		3	5932.097.		5
5887.8	I	-1	5932.788.		2
5888.708.		2	$5933.0-5940.0$	14	-2
5889.1	1	-I	5940.427.		I
5889.643		3	$59+0.9$.	I	- 5
5889.888.		2	$59+1.080$		5
$5890.2-5890.7$	2	\bigcirc	5941.3	I	-2
5891.186.		1	$59+1.632$		2
5891.5	I	0	$59+2 \cdot 3$	I	-2
5891.665		4	$59+2.422$.		1
5892.401		3	$59+2 \cdot 576$.		3
5893.1	I	0	$59+4.317$.		1
$5893 \cdot 513 \cdots$.		1	$59+4.732$.		I
$589++-5896 .+$	5	-I	$59+5.2-59+5.3$	2	-1
5896.498.		1	$59+5.652$.		1
$5896.835 \cdots$		2	5946.010.		3
$5897.1-5897.9$	4	-I	$59+6.7$	1	2
$\begin{array}{llll}5898.173 & \ldots \\ 5898.4 & -5898.8\end{array}$	2	4 -2	5946.849 5947.070		2
5899.003....		2	5947.4-5949.0	4	-2
5899.923.		2	5949.176..		2
5900.048.		4	$5949.6-5954 \cdot 4$	11	-I
$5900.4-5901.3$	3	-1	5954.956.		1
5901.472.		6	$5955.8-5956.3$	4	2
5902.0.	I	-2	5957.884		I
5902.151		1	5958.246.		-
5902.8.	1	-2	$5961.4-5966.3$	5	-1
5903.536		I	5966.670.		I
$5903.7-5907.5$	13	-1	5967.3	1	-I
5907.858.		I	5967.843		2
5908.213.		I	5968. I.	I	-2
5909.001.		3	5968.280		-
5909.5.	1	-I	$5969.0-5970.7$	3	-1
$5910.3-5910.6$	3	-1	5975.114.		I
5910.775....		2	5976.5.	1	-1
$5910.9-5912.7$	7	-2	5977.036		1
5913.000.		3	$5977 \cdot 4-6029.9$	27	-I
$591+218$.		6	$6267.7-6350.7$	28	-2
$5914.93+$.		I	$6463.5-6479.5$	14	-2
$5915 \cdot+38$.		I	$6+60.070$		I

Table 108.
ATMOSPHERIC WATER-VAPOR LINES IN THE VISIBLE SPECTRUM.

Wave lengths in Ảngströms	Number of lines	Intensity	W'ave lengths in Ångströms	Number of lines	Intensity
$6480.3-6483.1$	3	-3	69+1.0.	I	-2
6483.252.....		I	6941.234.		1
$6483.5-6490.7$	I 1	-3	6942.163.		2
6490.798....		I	$69+2.387 \ldots$		1
$6492.9-5493.3$	2	-1	$69+3.815$.		3
6494.510. . . .		1	6947.552..		5
$6+95.864$.		2	$69+7.6 \ldots$	I	-I
$6497.6-6514.3$	7	-I	6948.997.		
$65 \text { I } 4.737 \ldots .$		2	$69+9.067$		I
6515.9		-2	6950.77 \%.		I
6516.527.		I	6953.586...		1
6516.632.		2	$6953.8-6955.7$.	2	-2
6517.1 -6519.2	3	-I	6956.416		4
$6519.5 \cdots$		I	6956.502.		
$6521.9-6523.7$	4	-3	6959.467..		3
6523.855		I	6961.275		4
$6525.8 \quad-6530.6$	2	-2	6964.564.		
6532.369		I	6970.9	I	0
$6533 \cdot 949$		2	$6977 \cdot 487$.		3
$6534.6-6542.3$	3	-2	6981.474...		1
$65+3.912$		2	6984.9...	I	-
$6545.8-6547.7$	2	-I	6986.592.		3
$6548.627 \ldots .$,	$6987.9 \ldots$	I	0
$6552.636 \ldots$		1	$6989.00 \mathrm{I}$		3
$6553.8-6558.2$	3	-I	6990.391.		I
6560.570.		1	6993.535.		2
$6561 . \mathrm{I}-657 \text { 1.0. }$	8	-2	$6994.124 .$		1
$6572.099 \ldots .$		I	6998.7..	1	0
$6573.5 \ldots$	1	-3	6998.98 I.		2
6574.854		I	7004.3..	1	0
$6576.4-66.43 .9$	22	-2	7004.766.....		2
6929.3.........	I	-I	7005.1 -7009.9	2	0
$6933.832 .$		-	$7011.342 \ldots$.		2
6937.716.		2	7016.452.		3
$6938.27 \mathrm{I}$		I	7023.517.		2
$6939.630 .$		2	7027.0.	I	0
6940.198.		2	7027.491		2

Table 109.
ATMOSPHERIC WATER-VAPOR BANDS IN THE INFRA-RED SPECTRUM.

Name of band	Wavelengths	Transmission coefficient a	The infra-red bands may perhaps be composed of numerous fine lines which the bolographic apparatus does not separately distinguish. Wide bands of very great atmospheric watervapor absorption are found in the infra-red spectrum as follows:		
a...........	$\begin{gathered} \mu \\ 0.718 \\ 0.814 \\ 0.896 \end{gathered}$	0.91	Name	Wave lengths	Absorption at Washington
		0.90 0.63		$\mu \quad \mu$	
σ	0.945	0.69	$\rho \sigma$	0.926-0.978	0.3 to 0.5
	0.974	0.91		1.095-1.165	0.5 to 0.8
Ф	I.II9	0.54		1.319-1.498	0.7 to 1.0
中	1.134	0.60		$1.762-1.977$	0.9 to I.0
	1.172	0.92		$2.520-2.845$	$\text { I.o }\left\{\begin{array}{c} \text { Partly } \\ \mathrm{CO}_{2} \end{array}\right\}$
In ${ }^{\text {l }} \mathrm{w}$	1.331 I. 451	0.74 0.36			(CO_{2})
1n	1.451 1.499	0.55	See \ol. Smithsonia	nuls A strophy itution.	abservatory,

Table 110.
TRANSMISSION PERCENTAGES OF RADIATION THROUGH MOIST AIR.

* These plares require multiplication by the following factors to allow for losses in CO_{2} gas. Under average sea-level outdoor conditions the CO_{2} (partial pressure $=0.0003$ atmos.) amounts to about 0.6 grams per cu.m. Paschen gives 3 times as much for indoor conditions.
2μ to 3μ, for ${ }_{4}^{2}$ grams in m_{4}^{2} path (95); for $1_{4} 40$ grams in m_{4}^{2} path (93);
4 " 5 , ". " " " " (93) ; " " " " " " (70); more CO_{2} no further effect;
13 ". I 4 , slight allowance to be made;
I4 is 15,80 grams in m^{2} path reduces energy to zero;
\dagger These places require multiplication by 0.90 arc 0 .
65 for
0.65 for two air masses to allow for ozone absorption when the radiation comes from a celestial body.
F. Paschen gives (Annalen d. Physik. u. Chemie, 51, p. 14, 1804) the absorption of the radiation from a blackened strip at $500^{\circ} \mathrm{C}$. by a layer 33 centimeters thick of water vapor at $100^{\circ} \mathrm{C}$. and atmospheric pressure as follows:

Wave length.	$\begin{array}{cc} \mu & \mu \\ 2.20-3.10 \end{array}$	$\begin{array}{cc} \mu \quad \mu \\ 5.33-7.67 \end{array}$	$\begin{array}{cc} \mu & \mu \\ 7.67-10(?) \end{array}$
Percentage absorption. .	80	94	94-13

The following table, due to Rubens and Aschkinass (Annalen d. Physik u. Chcmie, 64, p. 598, 1898), gives the absorption of radiation from a zircon burner by a layer 75 centimeters thick of water vapor saturated at $100^{\circ} \mathrm{C}$. This amount of vapor is about equivalent to a layer of water 0.45 millimeter thick or to 1.5% of the water in a total vertical atmospheric column whose dewpoint at sea-level is $10^{\circ} \mathrm{C}$. The region of spectrum examined includes most of the region of terrestrial radiation.

Wave length.	$\begin{gathered} \mu \\ 7.0 \end{gathered}$	$\begin{gathered} \mu \\ 8.0 \end{gathered}$	$\begin{gathered} \mu \\ 9.0-12.0 \end{gathered}$	$\begin{gathered} \mu \\ 12.4 \end{gathered}$	$\begin{gathered} \mu \\ 12.8 \end{gathered}$	$\begin{gathered} \mu \\ 13.4 \end{gathered}$	μ 14.0
Percentage absorption.	75	40	6	20	13	28	22
Wave length	$\begin{gathered} \mu \\ 14 \cdot 3 \end{gathered}$	$\begin{gathered} \mu \\ 15.0 \end{gathered}$	$\begin{gathered} \mu \\ 15.7 \end{gathered}$	$\stackrel{\mu}{16.0}$	$\begin{gathered} \mu \\ 17.5 \end{gathered}$	$\begin{gathered} \mu \\ 18.3 \end{gathered}$	$\begin{gathered} \mu \\ 20.0 \end{gathered}$
Percentage absorption.	43	35	65	52	88	80	100

Table 111.
ENERGY DISTRIBUTION AND ATMOSPHERIC TRANSMISSION OF SOLAR RADIATION.

U. ${ }^{\top}$. glass deviation from ω_{1}	Wave lengths	Trans-mis-sionfordryair	Trans-mission for water vapor	U. V. glass prismatic energy	Energy distribution				
					Dry air	Moist air			
					Sun in zenith			Sun's zenith distance	
								$60^{\circ} .0$	$70^{\circ} \cdot 7$
$+230$	μ	$a_{a \lambda}$0.556				$e_{0 \lambda} a_{a \lambda} a_{s v \lambda} e_{0 \lambda} a_{a \lambda} a_{w e \lambda}^{2}$		$e_{\theta \lambda} a_{a \lambda}^{2} a_{z, \lambda}^{2}$	$e_{0 \lambda} a_{u \lambda \lambda}^{3} a_{u \lambda \lambda}^{y}$
	. 3504			127	71	65	61	34	1I
220	. 3600	. 592	$\begin{array}{r} 0.926 \\ .934 \end{array}$	150	89	84	78	46	17
210	. 3709	. 630	$.940$	179	113	106	100	63	26
200	. 3838	. 670	. 945	191	128	121	114	76	34
190	. 3974	. 707	$\begin{array}{r} .949 \\ .953 \end{array}$	246	174	165	156	1 II	54
180	. 4127	. 743		396	294	280	267	- 198	105
170	. 4307	. 779	$\begin{array}{r} .953 \\ .957 \end{array}$	+52	352	337	323	252	144
160	. 4516	. 815	$\begin{aligned} & .957 \\ & .96 I \end{aligned}$	596	486	467	448	365	224
150	. 4753	. $8+7$		713	604	582	561	475	311
140	. 5026	. 876	$.968$	808	708	685	663	581	406
130	. 5344^{8}	. 902	.971	897	810	786	763	689	506
120	. $57+{ }^{2}$. 926	$\begin{aligned} & .974 \\ & .976 \end{aligned}$	1063	984	959	$93+$	865	666
115	. 5980	. 937		1177	1103	1077	1051	985	779
110	. 6238	. 947	$\begin{aligned} & .976 \\ & .978 \end{aligned}$	1248	II 81	1155	1130	1070	866
105	. 6530	. 955	. 980	1330	1271	1245	1220	1166	968
100	. 6858	. 963	. 981	$1+20$	1368	1342	1316	1268	1069
95	. 7222	. 970	. 982	$1+41$	1398	1373	134^{8}	1308	I II 7
90	. 7644	. 976	.984	$1+42$	1408	1385	1363	1330	1160
85	.8120	.981	.985	I 431	1404	1383	1362	1337	I 180
80	. 8634	. 985	$\begin{array}{r} .986 \\ .987 \end{array}$	1410	I 389	1370	1351	1331	1188
75	. 9220	. 989		1374	1358	1341	1324	1308	1181
70	. 9861	.991	$\begin{aligned} & .987 \\ & .988 \end{aligned}$	132 I	1307	1290	1273	1265	1144
65	1.062	. 994		1242	1234	1219	1205	1197	1093
60	1.146	. 995	$\begin{array}{r} .988 \\ .988 \end{array}$	1084	1079	1066	1053	1048	959
55	1.225	:996	. 988	956	952	941	930	926	848
50	1.302	. 997		826	824	814	804	802	735
45	1.377	. 998	$.988$	713	711	703	694	693	635
40	I. 452	. 998		629	628	620	613	612	561
35	1. 528	. 9985	$\begin{aligned} & .988 \\ & .988 \end{aligned}$	55^{8}	557	550	544	543	498
30	1.603	. 9988	$\begin{array}{r} .988 \\ .988 \end{array}$	504	503	497	491	491	450
25	1.670	. 9990	. 987	455	454	449	$4+3$	44^{2}	403
20	1.738	. 9992		412	412	406	401	40 I	365
+ 10	1.870	. 9993	$.987$	320	320	316	312	311	284
± 0	2.000	. 9995		233	233	230	226	226	205
- 10	2.123	. 9996	.986 .985	150	150	148	146	145	131
20	2.242	. 9997	.985	89	89	88	86	86	77
30	2.348	. 9997	$\begin{aligned} & .983 \\ & .982 \end{aligned}$	74	74	73	72	72	63
-40	2.442	1.9998		68	68	67	66	66	58
Cor. for u. v. not measured...				1118	435	346	264	123	8
Per cent of total				3.1	1.3	I. 2	1.0	0.5	0.0
Total, .346-. 405				1788	I I 49	1081	1018	659	284
Per cent of total.				5.0	3.5	3.7	3.7	2.7	${ }_{8} 1.5$
Total, .405-.704				$14+62$	I 2885	12501	I2 139	10874	8043
Per cent of total.				40.2	39.2	43.4	44.3	43.7	42.3
Total, .704-2.442				17855	17672	17432	17194	17030	15322
Cor. for i. r. not measured				705	698	575 3090	473 3665	468 4275	190 4814
Cor. for w. v. absorption				I 8560	18370	3090 14917	3665 14002	4275 13223	4814 10698
Per cent of total...............Absorbed by permanent gases.				185 51.7	1838.0 56	1 51.7	$\begin{array}{r}\text { 51.1 } \\ \\ \hline\end{array}$	53.1	56.2
					231	230	220	280	290 87
Total spectrum.				35928	32608	28615	27203	24599	18743
Atmospheric transmission . . .				100	90.8	79.7	75.8	68.5	52.2

The International Meteorological Symbols were adopted at the Viemia meteorological congress of 1873 . A few additions and modifications have been made at subsequent international meteorological meetings. The forms of these symbols are more or less flexible. Those shown in the accompanying table are the forms which have generally been used in the United States. The principal variants found in the meteorological publications of the different countries are given in the Monthly Weather Reviezw (Wash., D. C.), May, 1916, p. 268.

Exponents.-An exponent added to a symbol indicates the degree of intensity, ranging from ${ }^{\circ}$ weak (light, etc.) to ${ }^{2}$ strong (heavy, etc.). Thus, \bigcirc°, light rain; O^{2}, heavy rain. German and French observers use the exponent ${ }^{1}$ to denote medium intensity, in accordance with the German and French versions of the report of the Vienna congress, and the German editions of the Codex. The English version of the above-mentioned report and the English edition of the Codex provide for the use of only two exponents, ${ }^{\circ}$ and ${ }^{2}$; hence in English-speaking countries the omission of the exponent indicates medium intensity.

Time of occurrence.-When hours of occurrence are added to symbols, the abbreviation a is used for a.m., and p for p.m. Thus, \bigcirc roa $-\downarrow p$ denotes " rain from $10 \mathrm{a} . \mathrm{m}$. to $+\mathrm{p} . \mathrm{m} . " 12 a=$ noon : $12 p=$ midnight. The abbreviation n means " during night." Stations taking tri-daily observations may use a to mean between the first and second observation; p, between the second and third ; and n, between the third and the first.

For further information concerning the Intcrnational Symbols and other meteorological symbols, see " Meteorological Symbols," by C. Fitzhugh Talman, Monthly Weather Reriez" (Wash., D. C.), May, 1916, pp. 265-274.

SMITHSONIAN TABLES.

Table 112.
INTERNATIONAL METEOROLOGICAL SYMBOLS．

Symbol．	Meaning．	Remarks．
0	Rain．	
＊	Snow．	
宜	Rain and snow to－ gether（＂sleet＂ of British usage）．	
5	Thunderstorm．	Thunder and lightning．
T	Thunder．	Without hightning．
\leq	Lightning．	Without thunder；＂heat－lightning．＂
－		
\triangle	Graupel．	Sometimes called soft hail．＂French，gresil．Re－ sembles little snow－pellets．
$=$	Fog．	
三	Ground fog．	Not exceeding the height of a man．
三：	Wet fog．	One which wets exposed surfaces．
\square	Hoarfrost．	
－	Dew．	
\checkmark	Rime．	A rough frost deposit from fog．
∞	Glaze；Glazed frost．\dagger	Ice coating due to rain，＂ice－storm．＂In America often called＂sleet．＂
$\stackrel{+}{ }$	Driving snow．	Ger．，Schneegestöber；Fr．，bourrasque de neigc．
\leftarrow	Ice－crystals．	Ice－needles sometimes seen floating or slowly falling in the air in clear，cold weather．
河	Snow on ground．	Ground near station more than half covered．
－	Gale．	Wind of force 8－12，Beaufort scale．（Rept．Int．Met 1 Comm．，Berlin，1910，English ed．，p．17．）Formerly used for＂strong wind．＂A 3－barbed arrow is intro－ duced in the $2 d$ German ed．of the Int．Met＇l Codex to denote＂strong wind，＂but no authority is cited． According to the Observer＇s Handbook of the Britisin Met＇l Office＂the number of barbs on the arrow may conveniently be made to represent the strongest wind force noted，＂but there is no international sanction for such variants．
\odot	Sunshine．	In German edition of Int．Met＇l Codex，but has never been definitely recognized by the international or－ ganization．（See Rept．Int．Met＇l Comm．，South－ port，I903，Engl．ed．，pp．i9 and ioi．）Widely used in German and Austrian publications．
\oplus	Solar halo．	
（1）	Solar corona．	
\pm	Lunar halo．	
\cup	Lunar corona．	
\bigcirc	Rainbow	
\bigcirc	Aurora．	
∞	Zodiacal light． Haze．	Due to fine dust，or to the disturbance of atmospheric transparency by air－currents of different densities （＂optical turbidity＂），and not to water－drops．In practice，this is often difficult to distinguish from light fog $\left(\equiv^{\circ}\right)$ ，or＂mist＂of British observers． Prussian and Austrian observers underscore this symbol（ \simeq ）to denote a definitely smoky atmosphere （＂Moorrauch＂）．
χ	Mirage．	
\bigcirc	Exceptional visibil－ ity．	
$\equiv S:$	Sand storm or dust storm．	
$\begin{aligned} & \text { * Tru } \\ & \text { snowy } \\ & \text { particle } \\ & \text { national } \\ & 281-286 \\ & \dagger \text { Gla. } \end{aligned}$	a hail，which occurs chiefly pellets，like miniature sno s of clear ice，called slec symbol．On the history $z e$ is the official term in	y with summer thunderstorms，should be distinguished from the wballs，known as graupel，or soft hail（ Δ ）：also from the small t by the U．S．Weather Bureau，for which there is no inter－ of the word sleet see Monthly Weather Review＇，May，1916，pp． he United States；glazed frost in Great Britain．

The International Conference of Meteorologists held at Munich in I8gr recommended the following classification of clouds, elaborated by Messrs. Abercromby and Hildebrandsson:
a. Detached clouds with rounded upper outlines (most frequent in dry weather).
b. Clouds of great horizontal extent suggesting a layer or sheet (wet weather).
A. Upper Clouds, average altitude 9000^{m}.
a. ı. Cirrus.
b. 2. Cirro-stratus.
B. Intermediate Clouds, between 3000^{m} and 7000^{m}.
a. $\left\{\begin{array}{l}\text { 3. Cirro-cumulus. } \\ \text { 4. Alto-cumulus. }\end{array}\right.$
b. 5. Allo-cumulus.
C. Lower Clouds, below 2000^{m}.
a. 6. Strato-cumulus.
b. 7. Nimbus.
D. Clouds of diurnal ascending currents.
a. 8. Cumulus; top 1800^{m}; base 1400^{m}.
b. 9. Cumulo-nimbus; top 3000^{m} to 8000^{m}; base 1400^{m},
E. High Fogs, under 1000^{m}.

1o. Stralus.

DEFINITIONS AND DESCRIPTIONS OF CLOUD FORMS.

I. Cirrus (Ci.). - Detached clouds of delicate and fibrous appearance, often showing a featherlike structure, generally of a whitish color. Cirrus clouds take the most varied shapes, such as isolated tufts, thin filaments on a blue sky, threads spreading out in the form of feathers, curved filaments ending in tufts, sometimes called Cirrus uncinus, etc.; they are sometimes arranged in parallel belts which cross a portion of the sky in a great circle, and by an effect of perspective appear to converge towards a point on the horizon, or, if sufficiently extended, towards the opposite point also. (Ci.-St. and Ci.-Cu., etc., are also sometimes arranged in similar bands.)
2. Cirro-stratus (Ci.-St.). - A thin, whitish shect of clouds sometimes covering the sky completely and giving it only a milky appearance (it is then called Cirro-nebula), at other times presenting, more or less distinctly, a formation like a tangled web. This sheet often produces halos around the Sun and Moon.
3. Cirro-cumulus (Ci.-Cu.). Mackerel sky. - Small globular masses or white flakes without shadows, or showing very slight shadows, arranged in groups and often in lincs.
4. Alto-stratus (A.-St.). - A thick sheet of a gray or bluish color, sometimes forming a compact mass of dark gray color and fibrous structure. At other times the sheet is thin, resembling thick Ci.-St., and through it the Sun or the Moon may be seen dimly gleaming as through ground glass. This form exhibits all changes peculiar to Ci.-St., but from measurements its average altitude is found to be about one half that of $\mathrm{Ci} .-\mathrm{St}$.
5. Alto-cumulus (A.-Cu.). - Largish globular masses, white or grayish, partially shaded, arranged in groups or lines, and often so closely packed that their edges appear confused. The detached masses are generally larger and more compact (resembling St.-Cu.) at the center of the group, but the thickness of the layer varies. At times the masses spread themselves out and assume the appearance of small waves or thin slightly curved plates. At the margin they form into finer flakes (resembling Ci--Cu.). They often spread themselves out in lines in one or two directions.
6. Strato-cumulus (St.-Cu.). - Large globular masses or rolls of dark clouds often covering the whole sky, especially in winter. Generally St.-Cu. presents the appearance of a gray layer irregularly broken up into masses of which the edge is often formed of smaller masses, often of wavy appearance resembling A.-Cu. Sometimes this cloud-form presents the characteristic appearance of great rolls arranged in parallel lines and pressed close up against one another. In their centers these rolls are of a dark color. Blue sky may be seen through the intervening spaces which are of a much lighter color. (Roll-cumulus in England, Wulstcumulus in Germany.) St.-Cu. clouds may be distinguished from Nb. by their globular or rolled appearance, and by the fact that they are not generally associated with rain.
7. Nimbus (Nb.), Rain Clouds. - A thick layer of dark clouds, without shape and with ragged edges, from which steady rain or snow usually falls. Through the openings in these clouds an upper layer of Ci.-St. or A.-St. may be seen almost invariably. If a layer of Nb.
scparates up in a strong wind into shreds, or if small loose clouds are visible floating underneath a large Nb., the cloud may be described as Fracto-nimbus (Fr.-Nb.) ("Seud" of sailors).
8. Cumulus (Cu.), Wool pack Clouds.-Thick clonds of which the upper surface is dome-shaped and exhibits protuberances while the base is horizontal. These elouds appear to be formed by a diurnal ascensional movement which is almost always noticeable. When the cloud is opposite the Sun, the surfaces facing the observer have a greater brilliance than the margins of the protuberances. When the light falls aslant, as is usually the case, these clouds throw deep shadows; when, on the contrary, the clouds are on the same side of the observer as the Sun, they appear dark with bright edges.

True cumulus has well defined upper and lower limits, but in strong winds a broken cloud resembling Cumulus is often seen in which the detached portions undergo continual change. This form may be distinguished by the name Fractocumulus (Fr.-Cu.).
9. Cumulo-nimbus (Cu.-Nb.), The Thunder-Cloud; Shower-Cloud.-Heavy masses of cloud risiny in the form of mountains, turrets or anvils, generally surmounted by a shect or screen of fibrous appearance (false Cirrus) and having at its base a mass of cloud similar to nimburs. From the base local showers of rain or snow (occasionally of hail or soft hail) usually fall. Sometimes the upper edges assume the compact form of cumulus, and form massive peaks round which delicate "false Cirrus" floats. At other times the edges themselves separate into a fringe of filaments similar to Cirrus clouds. This last form is particularly common in spring showers.

The front of thunder-elonds of wide extent frequently presents the form of a large are spread over a portion of a uniformly brighter sky.
10. Stratus (St.).-A uniform layer of cloud resembling a fog but not resting on the ground. When this sheet is broken up into irregular shreds in a wind, or by the summits of mountains, it may be distinguished by the name Fracto-stratus (Fr.-St.).

During summer all low clouds tend to assume forms resembling Cumulus, and may be described accordingly as Stratus cumuliformis, Nimbus cumuliformis, etc.

The term Mammato-cumulus is applied to a cloud having a mammillated lower surface, occurring especially in connection with severe local storms.

The ovoid form, with sharp edges, assumed by certain clouds, particularly during the oecurrence of sirocco, mistral or foehn, is indicated by the adjective lenticularis, e. g., Cumulus lenticularis (Cu. lent.), Stratus Icnticularis (St. lent.). Such clouds frequently show irridescence.

For pictures of typical cloud forms see
Clarke, George A. Clouds. London. 1920.
Great Britain, Meteorological office. Cloud forms according to the international elassification. $2 d$ ed. London. Io2r
Humphreys, William J. Fogs and clouds. Baltimore. 1926.
International meteorological committee. International cloud-atlas. 2d ed. Paris. 1910. [Abridged edition for use of observers. 1930.]
U. S. Weather bureau. Cloud forms according to the international system of classification. 2d ed. Washington. 1928.

Especially intended for the use of mariners, but sometimes used at land stations. The original notation was devised in 1805 by Admiral Sir F. Beaufort; it has since been slightly altered and amplified by British and American meteorologists. The following symbols are used by the marine observers of the U. S. Weather Bureau:

Upper Atmosphere:
b.-Blue sky.
c.-Cloudy sky.
o.-Overcast sky.

Lower Atmosphere:
v.-Visibility (exceptionally clear).
z.-Haze.
m. -Mist.
f.-Fog.

Precipitation:
d.-Drizzling.
p.-Passing showers.
r.-Rain.
s.-Snow.
1.--Hail.

Electric phenomena:
1.-Lightning.
t.-Thunder.

Wind:
q.-Squally.

The British Meteorological Office also uses the following:
e.-Wet air without rain.
g.-Gloom.
u.-Ugly or threatening appearance of the weather.
w.-Dew.
tl.-Thunderstorm.
KQ.-Line squall.
rs.-Sleet (rain and snow together).
fe.-Wet fog.
y.-Dry air (less than 60% relative humidity).
x.-Hoarfrost.

According to instructions to the marine meteorological observers of the U. S. Weather Bureau, the underscoring of a letter denotes great intensity and double underscoring very great intensity.
The following instructions appear in the Meteorological Observer's Handbook of the British Meteorological Office (1926 edition):
"Capital letters are used to indicate occasions when the phenomenon to be noted is of unusual intensity. At the other end of the scale, occasions of slight intensity are distinguished by adding a small suffix .. Thus,
R.-Heavy rain.
r.-Moderate.
ro.-Slight rain.
and similarly with other phenomena.
"Continuity is indicated by repeating the letter; thus,
RR.-Continuous heavy rain.
rr.-Continuous moderate rain.
"The prefix ' i ' is used to indicate 'occasional' or 'intermittent'; thus,
if.-Occasional fog.
iro.-Intermittent slight rain."

INTERNATIONAL CODE FOR HORIZONTAL VISIBILITY.

SMITHSONIAN TABLES

LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

Table 116.
LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

CANADA (Continued)	Latitude	Longitude from Greenwich		Height	
				Feet	m.
Halifax.	$44^{\circ} 39^{\prime} \mathrm{N}$.		$36^{\prime} \mathrm{W}$.	88	27
*Hay River	6051	115	20	529	161
Hebron.	5812		21	49	15
Herschel Island	6930	139	15	15	5
*Kamloops.	5041		29	1262	385
Lac Seul....	$50 \quad 17$	92	12	11.40	347
Lake Harbor	6250	70	40	52	16
Lake Louise......	$\begin{array}{rrr}51 & 23 \\ 49 & 0\end{array}$		8	5670	1728
Le Pas.	5349	101	15	860	262
Mayo Landing.	6335	135	51	1900	579
Medicine Hat.	501	110	37	2144	653
*Minnedosa	5015	99	50	1690	515
*Mistassini Post	5015	73	55	1255	383
Montreal.	4530	73	35	187	57
*Moose Factory	$5 \mathrm{I} \quad 14$	80	30	30	9
Nain..	5633	61	41	13	4
* Natashquan	508	61	48	20	6
Northwest River	533	60	10		
Norway House.	$53 \quad 58$	97	51	720	219
Ottawa.	$45 \quad 24$	75	43	294	90
Pagwa..	503	85	18	620	189
Pangnirtung.	6530	66	9		...
Parry Sound	$45 \quad 19$	80	o	635	194
Ponds Inlet.	72 8	78	30	13	4
*Port Arthur	$48 \quad 27$	89	12	644	196
*Port aux Basques	$47 \quad 35$	59	10	30	9
Port Harrison...	$\begin{array}{ll}58 & 25\end{array}$		21	12	4
*Port Nelson.	57 o	92	51	49	15
*Prince Albert	5310	105	38	1450	442
*Prince Rupert	5+ 18	130	18	170	52
Qu'Appelle.	$50 \quad 30$	103	47	2115	645
Quebec.......... ${ }^{\text {Queen Charlotte City }}$	4648	71	13	296	90
Queen Charlotte City	$\begin{array}{ll}53 & 13\end{array}$	132	15	...	
*Sable Island	4357	60	6	25	8
*Saint John.	4517	66	4	119	36
*Saint Johns.	4734		$+^{2}$	125	38
*Southwest Point, Anticosti	$49 \quad 24$	63	33	30	9
Sudbury..	$46 \quad 27$	81	$\stackrel{2}{5}$	857	261
Swift Current	5020	107	45	2392	729
Sydney.	46 IO	60	10	48	15
*Toronto.	4340		24	379	116
Trout Lake	$53 \quad 52$	89	46	1128	344
Vancouver.	49 I7		5	136	41
*Victoria.	$48 \quad 24$	123	19	230	70
White River	$48 \quad 35$	85	16	1244	379
*Winnipeg.	$49 \quad 53$	97	7	760	232
CANAL ZONE					
Balboa Heights.	$8 \quad 58 \mathrm{~N}$.		33 W.		36
Cristobal (Colon). Culebra.	$\begin{array}{rr} 91 & 21 \\ 9 & 3 \end{array}$		$\begin{aligned} & 55 \\ & 39 \end{aligned}$	36 40 4	11 123

LIST OF METEOROLOGICAL STATIONS.

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

	Latitude		Longitude from Greenwich		Height	
					Feet	m.
Motozintla.	15°	$22^{\prime} \mathrm{N}$.		$14^{\prime} \mathrm{W}$	4774	${ }^{1} 455$
Oaxaca..	17	4		42	5128	1563
Pachuca.	20	8	98	45	7989	2435
Panuco.		24	105	58	2625	800
Parral.	26	58	105	40	5420	1652
Payo Obispo.	18	30	88	20	13	4
Progreso....		17	89	40	46	14
* Puerto Mexico	18	9	94	24	46	14
*Salina Cruz.... San Luis Potosi	16	12	95 100	$\begin{array}{r}12 \\ 58 \\ \hline\end{array}$	189 6158	56
*Tacubaya (Mexico City)	19	24	109 99	11	7575	1877
Tampico...	22	13	97	51	- 59	18
Tapachula.	14	54	92	16	551	168
Teapa.	17	33	92	57	148	45
Tehuacan.	18	28	97	23	5420	1652
Tenosique.	17	29	91	26	197	60
Tepic.	20	31	104	53	3025	922
Tuxtla Gutierrez.	16	45	93	6	1759	536
Valladolid.	20	41	88	13	72	22
Vera Cruz.	19	12	96	8	52	16
Victoria..	23	43	99	8	1040	317
Zacatecas	22	47	102	34	8570	2612
UNITED STATES						
*Abilene.	32	23 N.		40 W.	1738	530
Albany.	42	39	73	45	97	30
Alpena..	45	5	83	30	609	186
Amarillo.	35	13	101	50	3676	1120
Anniston.	33	39	85	50	741	226
Apalachicola	29	45	84	58	36	11
Asheville.	35	36	82	32	2253	687
Atlanta.	33	45	87	23	1173	358
Atlantic City.	39	22	74	25	52	16
Augusta.	33	28	81	54	182	55
Austin.	30	16	97	44	605	184
Baker..	44	46	117	50	3471	1058
Baltimore.	39	17	76	37	123	37
Bentonville..	36	22	94	12	1303	397
Binghamton.	42	6	75	55	871	265
Birmingham.	33	32	86	50	700	213
*Bismarck.	46	47	100	38	1674	510
Block Island.	41	10	71	36	26	8
Boise.	43	37	116	13	2739	835
Boston...	42	21	71	4	125	38
Broken Arrow	36	2	95	49	765	233
Brownsville.	26	\bigcirc	97	26	57	17
Buffalo...	42	53	78	53	767	234
Cairo	44	29	73	12	403	123
Cairo...	37	0	89	10	358	109
Canton. . .	44	36	75	10	448	137
Cape Henry..	36	56	76	\bigcirc	18	5
* Charles City.	43	4	92	38	1015	309
* Charleston.	32	47	79	56	48	15
Chattanooga.	35 35	13 4	85	51 14	779 762	237 232

LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

UNITED STATES (Continued)	Latitude		Longitude from Greenwich		Height	
					Feet	m .
Jacksonville.		$20^{\prime} \mathrm{N}$	81°	$39^{\prime} \mathrm{W}$.	43	I 3
Kalispell...	48		11.4	25	2973	906
K゙ansas City.	39	5	94	37	963	294
Keokuk.	40	22	91	26	614	I 87
*Key West.	24	33	81	48	22	7
Knoxville.	35	56	83	58	995	303
La Crosse.	43	49	91	15	714	218
Lander..	42	50	108	45	5372	1637
Lansing.	42	44	84	26	878	268
Lewiston.	46	25	117	2	757	231
Lexington	38	2	8.4	33	989	301
Lincoln...	40	49	96	45	1189	362
Little Rock.	$3+$	45	92	16	357	109
Los Angeles.	$3+$	3	118	15	338	103
Louisville. .	38	15	85	45	525	160
Ludington..	43	57	86	27	637	19.4
Lynchburg.	37	25	79	9	681	208
Macon.. . .	32	50	83	38	370	113
Madison.	43	5	89	23	974	297
Marquette	46	34	87	24	734	22.4
Memphis.	35	9	90	3	399	122
Meridian.	32	21	88	40	375	114
Miami.	25	48	80	12	25	8
Miles City.	46	25	105	49	2371	723
Mikwatkee.	43	2	87	54	681	208
Minneapolis.	44	59	93	18	918	280
*Mobile	30	41	88	2	57	17
*Modena..	37	48	113	54	5473	1668
Montgomery	32	23	86	18	223	68
Moorhead.	46	52	96	44	940	286
Nantucket.	41	17	70	6	12	4
*Nashville.	36	10	86	47	546	166
New llaven	41	18	72	56	106	32
* New Orleans.	29	57	90	4	53	16
New York.	40	43	74	0	314	96
Norfolk.	36	51	76	17	91	28
Northfield.	44	10	72	41	876	267
North Head.	46	16	124	4	211	64
*North Platte.	41	8	100	45	2821	860
Oklahoma City	35	26	97	33	1214	370
Omaha...	41	16	95	56	1105	337
Oswego.	43	29	76	35	335	102
Palestine.	31	45	95	40	510	155
Parkersburg	39	16	81	36	637	19.4
Pensacola. .	30	25	87	13	56	17
Peoria.	40	43	89	36	609	186
Philadelphia	39	57	75	9	114	35
Phoenix..	33	28	112	\bigcirc	1108	338
Pierre...	$4+$	22	100	21	1572	479
Pittsburgh.	40	26	80	0	842	257
Pocatello. .	42	52	112	29	4477	1365
Port Angeles.	48	7	123	6	29	9
Port Arthur.	29	52	93	55	634	10
Port Huron...	43	0	82	26	638	19.4
Portland, Me.	43	39	70	15	103	31

LIST OF METEOROLOGICAL STATIONS.

Note.-Stations with asterısk appear in the "Réseau Mondial" of the British
Meteorological Office for 1922. (London, 1929.)

UNITED STATES (Continued)	Latitude		Longitude from Greenwich		Height	
					Feet	m.
*Portland, Ore.	45°	$32^{\prime} \mathrm{N}$		$41^{\prime} \mathrm{W}$	1.53	47
Providence. .		50	71	25	160	49
Pueblo..		18	104	36	4685	1428
Raleigh..		45	78	37	376	115
Rapid City.	44	4	103	12	3259	993
Reading.		20	75	58	325	99
Red Bluff		10	122	15	332	101
Reno.	39	32	119	49	4532	1381
Richmond.	37	32	77	27	144	4
Rochester	43	8	77	42	523	159
Roseburg.	43	13	123	20	510	155
Roswell.	33	24	104	27	3566	1087
Royal Center		53	86	29	736	224
Sacramento.	38	35	121	30	69	21
St. Joseph.	39	49	94	51	967	295
*St. Louis.	38	${ }_{58}^{88}$	90	12	568	173
St. Paul..	44	58	93	3	837	255
*Salt Lake City..	40	46	111	54	4360	1329
San Antonio	29	27	98	28	693	211
*San Diego.	32	43	117	10	87	27
Sandusky	41	25	82	40	629	192
Sandy Hook.	40	28	74	1	22	7
*San Francisco.	37	48	122	26	155	47
San Jose.	37	20	121	54	141	43
*Santa Fe.	35	41	105	57	7013	2138
Sault Ste. Maric	46	30	84	21	614	187
Savannah	32	5	81	5	65	20
Scranton		24	75	4^{2}	805	245
Seattle.	47	38	122	20	125	38
Sheridan.	44	48	106	57	3790	1155
Shreveport	32	20	93	40	249	76
Sioux City	42	29	96	24	1135	$3+6$
Spokane.	47	40	117	25	1929	588
Springfield, III.	39	48	89	39	636	194
Springfield, Mo.	37	12	93	18	1324	404
Syracuse...	43	2	76	10	597	182
Tacoma..	47	16	122	23	194	59
Tampa..	27	57	82	27	35	11
Tatoosh Island.	4^{8}	23	124	$4+$	86	26
Taylor.	30	35	97	20	583	178
Terre Haute.	39	29	87	24	575	175
Thomasville		48	83	58	273	83
Toledo...	41	40	83	34	628	191
Tonopah.	38	4	117	4	6090	1856
Topeka.	39	3	95	41	987	301
Trenton..		14	74	45	190	58
Valentine.	42	50	100	32	2598	792
Vicksburg.	32	22	90	53	247	75
Walla Walla.	46	2	118	20	991	302
*Washington.	38	$5+$	77	3	112	34
Wichita.	37	41	97	20	1358	$4{ }^{1 / 4}$
Williston.	48	9	103	35	1878	572
Wilmington.	34	14	77	57	78	24
Winnemucca.		58	117	43	4344	1324
Wytheville. Yankton..		56 54			2304 1233	702 376
Yellowstone Park					6241	376 1902
Yuma.		45	114	36	141	43

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

LIST OF METEOROLOGICAL STATIONS.

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

BOLIVIALa Paz............	Latitude		Longitude from Greenwich		Height			
	$\begin{array}{lll}16^{\circ} & 30^{\prime} \mathrm{S} \\ 19 & 3\end{array}$			$\begin{gathered} 9^{\prime} \mathrm{W} . \\ 16 \end{gathered}$	$\begin{gathered} \text { Feet } \\ 11909 \\ 9344 \end{gathered}$	$\begin{aligned} & 3630 \\ & 2848 \end{aligned}$		
*Sucre.								
BRAZIL								
Alto Itatiaya.	$22 \quad 25 \mathrm{~S}$.		$44 \quad 50 \mathrm{~W}$.		$\begin{array}{r}7152 \\ \hline 20\end{array}$	21806		
*Aracaju...		55	37	3				
*Bahia (Ondina).			38 31		154266	4781		
* Barra do Corda.	530		45					
Belem (Para).		27	48	29	43	$\begin{array}{r} 13 \\ 895 \end{array}$		
*Bello Horizonte	19	55	4355		2936			
Boa Vista.		49 N.	60	4		$\begin{aligned} & 630 \\ & 897 \end{aligned}$		
* Brotas..	22	16 S .	48	4	2067			
*Caetite..	14	3	42	37	2943			
Coary.		22	63 3		509			
*Corumba.	1859		$\begin{array}{ll}57 & 39 \\ 49 & 17\end{array}$			155908		
*Curityba.		25			2979			
*Cuyaba.	15	36	56		541	165		
*Fernando Noronha	3	50	3225		348	106		
Floriano Peixoto.	9	1	$\begin{array}{ll}67 & 26 \\ 66\end{array}$		… $\quad \ldots$.			
Fonte Boa.		35						
Formosa.	15	32			299285	91226		
Fortaleza (Porongaba)		46	$38 \quad 32$					
Goyaz.....	15	55	60		1706	520		
*Manaos....		8			144	441080		
Morro do Chapeo	11	33	41.14		$\begin{aligned} & 35+3 \\ & 2326 \end{aligned}$			
Passo Fundo.	28	16	3646			709677		
Pesquira.		$2+$			2221			
Pirapora....	17	21	$\begin{array}{ll}44 & 57 \\ 51 & 13\end{array}$		1549	472		
*Porto Alegre...	30	1			$\begin{array}{r} 30 \\ 778 \\ 407 \end{array}$	11		
Porto Nacional	10	39	4820			237124		
Porto Velho. ${ }^{\text {P }}$	8	47	$\begin{array}{ll}63 & 55 \\ 39 & 15\end{array}$					
*Quixeramobim.......	5	16	$\begin{array}{ll}39 & 15 \\ 34 & 52\end{array}$		67998	207		
Recife (Pernambuco)	8	4			30			
Remate de Males..	4	21	$70 \quad 24$			98	\ldots	
Rio Grande do Sul.	32	2	52	6	10	361		
*Rio de Janeiro.	22	54	43 10		200			
S. Felippe.		43	$\begin{array}{rr}69 & 57 \\ 67 & 3\end{array}$		\% 279 66	8520		
S. Luiz (Maranhao)		32	$44 \quad 17$					
São Paulo.	23	33	46	38	2690	82020		
*Taperinha.		30	$54 \quad 20$		66			
Theophilo Ottoni.	17	50	41	26	1001	305		
Theresopolis	22	27	4255		3120	951350		
	20	47	$47 \quad 56$		11482493			
Uberaba.	19	41			760			
Uruguayana.		45	57	5		243	74	
CHILE								
Antofagasta.	$23 \quad 39 \mathrm{~S}$.		$70 \quad 25 \mathrm{~W}$.		308	94		
Arica....	18	28	$\begin{array}{ll}70 & 20 \\ 70\end{array}$		1649	515		
Bahia Felix.		58	74 4					
Cabo Raper		50		56	131	4028		
Caldera...............		3	$\begin{array}{rr}70 & 53 \\ 73 & 6\end{array}$		9239489			
${ }^{*}$ *Conceplion (P. Toumbes)		37 56			$\begin{array}{r} 120 \\ 27 \end{array}$			

Smithsonian Tables

Table 116.
LIST OF METEOROLOGICAL STATIONS.
Note.--Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

	Latitude		Longitude from Greenwich		Height	
					Feet	m .
El Teniente.	34°	$6^{\prime} \mathrm{S}$		$38^{\prime} \mathrm{VW}$.	7001	2134
* Evanjelistas.		24		6	180	55
*Iquique. . . .				11	30	9
*Juan Fernandez..			78	50	1132	345
Lonquimay.	38		71	14	3182	970
Melinka...	43	54	73	46	16	5
Potrerillos..	26	30	69	27	9350	2850
Puerto Montt.	41	28	72	57	328	100
* Punta Arenas....	53	10	70	54	92	28
* Punta Dungeness.		2.4	68	26	16	5
*Santiago.	33	27	70	42	1706	520
Talca.		26	71	40	322	98
Temuco.	38	45	72	38	361	110
Valdivia.............	39	48	73	14	30	9
*Valparaiso (P. Angeles).	33	1	7 I	38	135	41
COLOMBIA						
Andagoya.	5	4 N	76	55 W .	250	76
*Bogota...		36	74	5	8677	26.5
Bucaramanga.	6	52	73	34	3340	1018
Buenaventura.	3	53	77	10		. . .
Pasto..	I	13	77	28	8510	2594
Popayan	2		76	36	5709	1740
ECUADOR						
Ambato.	I	15 S.	78	37 W	8.19	2566
Banos..	1	24	78	2.4	5906	1800
Guay $\mathrm{Qu} \mathrm{S}^{\text {Quito. }}$	2	12	79	5 I	40	12
Quito.		14		30	9239	$28 \mathrm{I} 6$
GUIANA						
* Cayenne.		56 N.		2 I W.	20	6
Dadanawa.		48		26	. . .	
*Georgetown		50	58	12	6	2
*Paramaribo..		49	55	9	12	4
Placer R'Awa.			54	0		
PARAGUAY						
*Asuncion.		21 S.	57	37 WV .	305	93
Mision Inglesa.	23	23	58	23	361	110
Puerto Bertoni.		40	54	35	5 5	157
PERU						
*Arequipa.	16	22 S.	71	33 W	7874	2.400
Cerro de Pasco.	10	46	76	6	14272	4350
Cuzco..	13	31	72	3	I 1319	$3+50$
El Misti.	16	16	71	30	19200	5852
Lima.				3	512	I 56
Piura.	5	9	80	40	16.4	50
URUGUAI						
Durazno.		19 S.		33 W.	299	9 I
*Montevideo		5^{2}		32	95	29

[^30]

Table 116.
LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

CZECHO-SLOVAKIA	Latitude		Longitude from Greenwich		Height	
					Feet	m .
Brünn.		$11^{\prime} \mathrm{N}$.		$35^{\prime} \mathrm{E}$.	820	250
C. Budejovice.		58		27	1283	391
Cheb		4		26	I 585	483
Kosice.		44		15	689	210
Prague..	50	5	14	25	663	202
DENMARK						
* Copenhagen	55	4 IN.		33 E.	43	13
Fanö.......	55	27	8	24	20	6
Sand (Faroe Islands).	61	52	6	49	7	2
Tvingstrup.	55	53	9	55	217	66
Vestervig...		47	8	19	62	19
FINLAND						
*Helsingfors	60	12 N .	24	55 E .	157	48
Inari..	68	57	26	49	502	153
Kajaani.	64	I 3	27	46	479	146
*Kuopio.	62	55	27	40	761	233
Sodankyla.	67	22	26	39	591	180
Sortavala..	61	42	30	41	62	19
Tammerfors.	61	30	23	46	325	99
Vaasa..... .	63	5		37	30	9
FRANCE						
Aurillac...	44	56 N	2	26 E.	2247	685
Bordeaux.	44	50	0	42 W	243	74
Brest....	48	23	4	30	210	64
Charleville. . .	49	46	4	43 E.	476	145
Chateaureaux.	46	49	I	4 I	512	156
Cherbourg..	49	39	1	38 W.	59 -81	18
Dijon. . . .	47	19	5	2 E .	781	238
Dunkerque.	51	2	2	22	52	16
Gap. .	44	34	6	5	2425	739
Havre.	49	29	0	6	102	3 I
* Lyon. .	45	41	4	47	981	299
*Marseille..	43	${ }^{18}$	5	23	2.46	75
Mont Blanc (Des Bosses)	45	59	6	5 I	14301	4359
Mont Ventoux.	44	10	5	17	6234	1900
Nancy	48	42	6	11.	718	219
*Nantes...	47	15	1	34 W.	121	37
Nice (observatory) . . .	43	43	7	18 E .	1138	347
*Paris (Parc St. Maur).	48	48	2	30	164	50
Pic du Midi...	42	56	0	-8	9380	2859
Puy de Dome. Rennes.	45	46	2	58	4813	1467
Rennes. Toulouse	48	37	I	41 lV .	105	32
Toulouse.	43	37		27 E.	6.36	194
GERMANY						
Berlin...		31 N	13	22 E.	184	56
Bremen.	53	5	8	47	52	16

LIST OF METEOROLOGICAL STATIONS.

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

GERMANY (Continued)	Latitude		Longitude from Greenwich		Height	
					Feet	m.
Breslau.	51°	$7^{\prime} \mathrm{N}$	17°	$5^{\prime} \mathrm{E}$.	397	121
Brocken.		48		37	3785	1153
Cassel.		20		31	659	201
Cologne.		56		57	184	56
Dresden.		4		44	361	110
Flensburg		47		27	52	16
Frankfort on the Main		7	8	39	394	120
Freiburg.		59		51	912	278
*Hamburg.	53	33	9	5^{8}	131	40
Königsberg		43		30	75	23
Koslin. . . .	54	12	16	11	15 I	46
Leipzig.	51	20	12	23	404	123
Munich..		9	11	34	1726	526
Münster.		5^{8}		37	210	64
Nuremberg	49	27		3	1020	311
Osterode. .	53	42	19	58	367	112
*Potsdam.	52	23	I 3	4	279	85
Schneekoppe.	50	44	15	44	5282	1610
Stettin.. . .		26		34	85	26
Stuttgart.		47		10	883	269
Trier...		25	6	39	486	148
Zugspitze.		25		59	9718	2962
GREECE						
Adrianople.	4 I	40 N.	26	38 E .	279	85
*Athens... .	37	58	23	43	351	107
Corfu.	39	37		57	108	33
Mitylene	39	6	26	34	131	40
Naxos. .	37	6	25	23	13	4
Patras.	38	I 5	21	45	134	4 I
Salonika.	40	$3+$	22	59	230	70
Tripolitza.	37	3 I	22	23	2182	665
HUNGARY						
*Budapest.	47	3 I N.	19	1 E.	426	130
Debreczen..	47	23	21	38	423	129
Nagy-Kanizsa	46	28	17	0	535	163
Szeged...... .	46	15	20	9	312	95
ITALY						
Avellino..					1214	370
Bari. .	41	8	16	52	39	12
Belluno.	46	9	12	23	1325	404
Bologna..	44	30	11	18	180	55
Catanzaro.	38	55	16	36	1312	400
Chieti.	42	21		10	1119	341
Fiume. . .	45	20	14	24	79	24
Florence.	43	46		15	164	50
Genoa.	44	25		56	69	21
Lecce. .	40	21	18	10	256	78
Livorno.	43	33		I 8	10	3
Milan...	45	28		9 8	482	147
Naples..				18	489	149
Perugia.	43	7		2 I	1617	493

Table 116.
LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

	Latitude		Longitude from Greenwich		Height	
					Feet	m.
*Mehavn.		$\mathrm{I}^{\prime} \mathrm{N}$.		$47^{\prime} \mathrm{E}$.	33	10
Oslo.		55		43	82	25
Tromso.		39		57	374	114
*Trondhjem.		26		25	194	59
*Vardo....		22		8	46	14
POLAND						
Bialystok.	53	8 N.	23	\bigcirc E.	463	141
Cracow. .	50	4	19	58	725	221
Lemberg.	49	50	24	1	1093	333
Nowyport (Neufahrwasser)	54	24		40	36	11
Posen..		25		56	299	91
Sarny.	51	22		34	518	158
Vilna.	54	4	25	15	446	136
*Warsaw.		13		3	295	90
PORTUGAL						
Coimbra.	40	12 N.	8	25 W.	459	140
Lagos..	37	6	8	38	43	13
*Lisbon.	38	43	9	9	312	95
Montalegre.	41	49	7	45	3369	1027
Oporto........	41	9		34	328	100
Serra da Estrella		25	7	33	4547	1386
RUMANIA						
Baia Mare.	47	38 N	23	35 E.	741	226
Braila..	45	16		58	39	12
Brasov.	45	39	25	36	1870	570
*Bucharest.	44	25	26	6	269	82
Cernauti.	48	17		26	738	225
Cluj.	46	46	${ }^{2} 3$	35	1191	363
Constanta	44	11		39	13	4
Craiova.	44	19	23	48	361	110
Iasi.:	47	10	27	29	328	100
Sinaia.	45	21		34	2822	860
Sulina.	45	9	29	40	7	2
Timisoara.	45	47	21	17	299	91
SPAIN						
Albacete. .	39			51 W.	2251	686
Badajos..	38	54		$5^{8} \mathrm{~F}$	640	195
Barcelona	41	23	2	10 E .	${ }_{138}$	42
Burgos..	42	20	3	${ }^{42} \mathrm{~W}$ W.	2822	860
Cadiz.......	36 38	32 59	6	18 56	33 2060	10 628
Ciudad Real. Coruña . . .	38 43	59 23	3	${ }_{23}{ }^{6}$	2060 82	628 25
Granada	37	11	3	36	2260	689
*Madrid.	40	24	3	41	2188	667
Malaga .	36	43	4	25	131	40
Murcia.	37	59	1	8	197	60
Oviedo.	43	23	5	49	800	244
Pamplona..	42	49	1		1519	463
Salamanca.	40	58	5	40	2661	8 II
San Sebastian.	43	19	1	59	75	23

Table 116.
LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

SPAIN (Continued)	Latitude	Longitude from Greenwich	Height	
			Feet	m.
Seville.	$37^{\circ} 23^{\prime} \mathrm{N}$.	$5^{\circ} 59^{\prime} \mathrm{W}$.	98	30
Soria..	4140	229	3471	1058
Teruel.	$40 \quad 21$	17	3015	919
Tortosa.	$40 \quad 49$	o 30 E .	164	50
Valencia.	$\begin{array}{ll}39 & 28 \\ 41 & 39\end{array}$	$\begin{aligned} & \text { O } \\ & 0\end{aligned} 23 \mathrm{~W}$.	59	18
SWEDEN				
Abisko..	6821 N	1849 E .	1273	388
Göteborg.	5742	1158	52	16
*Haparanda.	$65 \quad 50$	$24 \quad 9$	30	9
Harnosand.	6238	$17 \quad 57$	30	9
Jönköping.	$57 \quad 47$	$14 \quad 10$	322	98
Kalmar..	$56 \quad 40$	1622	33	10
Karlstad.	5923	1330	174	53
Stensele.,	654	17 10	1076	328
Stockholm.	59 2I	184	144	44
Storlien.	$63 \quad 19$	126	1975	602
Sveg.	$62 \quad 2$	$14 \quad 19$	1191	363
*Uppsala.	59 5I	$17 \quad 38$	79	24
SWITZERLAND				
Basel.	$47 \quad 33 \mathrm{~N}$.	735 E.	909	277
Bern..	$46 \quad 57$	726	1877	572
Chaumont..	47 I	659	3697	1127
Davos Platz	4648	949	5121	1561
Geneva.	$46 \quad 12$	69	1329	405
Lugano.	46 o	857	906	276
Pilatus Kulm	$46 \quad 59$	8 I6	6785	2068
*äntis..	4715	920	8202	2500
*Zurich.	$47 \quad 23$	833	1617	493
TURKEY Istanbul (Constantinople).	412 N.	$28 \quad 47$ E.	423	129
UNION OF SOVIET SOCIALIST REPUBLICS				
Alexandrovsk.	6912 N.	$33 \quad 28$ E.	105	32
*Archangel.	6434	40	20	6
*Astrakhan..	$46 \quad 21$	$48 \quad 2$	-66	-20
Baku, Transcaucasia.	$40 \quad 21$	4950	30	9
Batum, Transcaucasia	4139	4138	11	3
Bezenchuk.	5259	$49 \quad 29$	154	47
Divnoe..	$45 \quad 51$	$43 \quad 21$	230	70
Dnepropetrovsk, Ukraire.	$48 \quad 27$	354	276	84
Erivan, Transcaucasia...	$40 \quad 10$	$44 \quad 30$	3253	992
Gandzha, Transcaucasia.	4140	$46 \quad 21$	1450	44^{2}
Genichesk, Ukraine.	46 II	3450	11	3
Kandalaksha.	678	3226	49	15
Kanin Nos.	$68 \quad 39$	4318	158	48
Kargopol.	6130	$38 \quad 57$		
*Kazan.	$55 \quad 47$	498	262	80
KKem...........	$64 \quad 57$	$34 \quad 39$	33	10
*Kharkov, Ukraine.	50 o	$36 \quad 14$	459	140

LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

Table 116.

LIST OF METEOROLOGICAL STATIONS.

Note.--Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

CHINA	Latitude	Longitude from Greenwich		Height	
				Feet	m.
*Amoy..	$24^{\circ} 27^{\prime} \mathrm{N}$.	$118{ }^{\circ}$	$5^{\prime} \mathrm{E}$.	13	4
Batang..	301	99	3	6562	2000
Changsha.	$28 \quad 12$		47	197	60
Chefoo...	3733		22	10	3
Chengku	3310	107	20	2000	610
Chungking	$\begin{array}{ll}30 & 38 \\ 29 & 34\end{array}$	104	2	1700	518
Foochow.	$\begin{array}{lll}25 & 34 \\ 25 & 59\end{array}$	119	37	66	$\begin{array}{r}23 \\ 20 \\ \hline\end{array}$
Fukow.	$34 \quad 9$	114	30		
Hangchow.	3011	120	12	33	10
*Hankow.	$30 \quad 35$	114	17	118	36
*Hongkong.	$22 \quad 18$	II4	10	105	32
Ichang...	$30 \quad 42$	111	16	1699	518
Kanchow.	$25 \quad 58$	114	46		
Kiukiang.	2945	116	8	66	20
Kweilin...	20.1	110	16	33	10
Kweiyang	2618	106	40	3527	1075
Lungchow:	$22 \quad 22$	106	45	,	
Nanking.	325	118	49	52	16
Ningyuenfu	$27 \quad 55$	102	18		
Pakhoi.	2159	109	7	16	5
Peiping (Peking)..	$39 \quad 54$	116	30	361	110
Samshui (Canton)...	236	112	53	33	10
*Shanghai (Zikawei).	3112	121	26	23	7
Silung.	$24 \quad 27$	105	30		
Siwantse.	$40 \quad 58$	115	18	3828	1167
Sunchow.	$23 \quad 17$	109	59	...	
Szengenfu	$23 \quad 22$	108	2		\cdots
Taiyuanfu.	3753	112	29	3051	930
Tamingfu	$36 \quad 19$	115	12		
Tatungfu.	407	113	13	4690	1430
*Tengueh.	2445	98	14	5357	1633
*Tientsin.	399	117	11	16	5
Wenchow	$\begin{array}{ll}36 \\ 28 & 4 \\ \end{array}$	120	19	253 10	77
Yunnanfu.	$25 \quad 2$	102	41	6211	1893
EASTERN TURKESTAN Kashgar.	3930 N.	75	$53 \mathrm{E}$.	4255	1297
FRENCH INDO-CHINA Battambang					
Cape Padaran	$\begin{array}{lll}13 & 5 \\ 11 & 35\end{array}$	103 109	10 E.	581	177
Honba.......	125	108	45	4869	1484
Kampot.	$10 \quad 37$	104	11	4	
Laokay..	2230	103	57	305	93
Luang Prabang	1950	102	4	1050	320
*Nhatrang. ${ }^{\text {P }}$	12 I	109	12	13	4
Phnom Penh.	1132	104	52	43	13
Phongsaly..	214	102	2	4619	1408
*Phu Lien.	2048	106	38	38 I	116
*Saigon.......	$10 \quad 47$	106	42	36	11
Savannakhet.	16 31	104	42	426	130
Stungtreng.	1328	105	59		
Tourane (Tientcha)..	168	108	18	509	155
Vien-tiane	1759	102	33	...	
Vinh..	$18 \quad 38$	105	39	20	6

LIST OF METEOROLOGICAL STATIONS.

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

Table 116.
LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

IRAQ (MESOPOTAMIA)*Bagdad..................	Latitude		Longitude from Greenwich		Height	
					Feet	m.
		21^{\prime} N		$28^{\prime} \mathrm{E}$.	106	32
Basra.. Mosul.					10	3
JAPAN						
Hakodate. Hiroshima	41	47 N	140	43 E .	13	4
Hiroshima Ibukasan.	34 35	23 25	132 136	27	10	3
Kanazawa.		25	136 136	24 39	4514 92	1376 28
Kobe. .	34	41	135	11	190	58
*Kyoto	35	1	135	44	141	43
Matumoto	36	14	137	59	1909	582
*Miyako..		38	141	59	98	30
Miyazaki.	31	55	131	26	26	8
*Nagasaki.	32	44	129	52	436	133
*Naha..		${ }^{13}$	127	41	26	8
*Nemuro.	43	20 20	1	35	13 89	4
Niigata.	37	55	I 39	3	85	26
Onahama	36	56	140	54	20	6
Otiai, Sakhalin.	47	20	142	47	89	27
Sakai..	35	33	133	14	10	3
*Sapporo...	43	4	141	21	56	17
* Syana, Kurile Islands.	45	14	147	53	128	39
*Taihoku, Taiwan..	25	$\stackrel{2}{0}$		31	30	9
*Tokyo... ${ }^{\text {a }}$.	23	${ }_{4}^{\text {I }}$		13	46 20	14 6
Tukubasan		13	I 40	6	2854	870
KOREA (CHOSEN)						
Gensan..... .				26 E.	118	36
Husan.		6		11	39	12
* Jinsen (Chemulpo)		29		37	226	69
Mokpo ...	34	47	126	20	92	28
Ryuganpo.	39	56	124	22	20	6
Tyukotin.	41	47	126	53	1030	314
*Yuki...	42	40	130	24	210	64
MALAY PENINSULA						
Malacca..	2	14	102	14	23	7
* Penang.	5	34	100	20	16	5
* Rhododendron Hill.	4	28	101	23	5120	1561
*Singapore.	1	18	103	51	36	11
MANCHURIA						
Changchun..						
Dairen. Harbin.	38	54	121	38	315	96
Harbin.	45	46	126	50	482	147 618
*Mukden.	4 4	48	119	43	$\begin{array}{r}2028 \\ 144 \\ \hline\end{array}$	618
Tsitsihar.	47	Io		49	499	44 152
MONGOLIA						
Chabernoor....		31 N.		42 E .	2854	870
Sungshutsuitze.		23		57	328	100

LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British
Meteorological Office for 1922. (London, 1929.)

PALESTINE	Latitude	Longitude from Greenwich	Height	
			Feet	m.
	$32^{\circ}+8^{\prime} N$.	$34^{\circ} 59^{\prime} \mathrm{E}$.	33	10
Jericho...	3 I 5 I	$\begin{array}{ll}35 & 27\end{array}$	820	250
Jerusalem.	3147	3513	2487	758
Kasr Hadschla.	3150	3530	--1083	-330
Tiberias.	$\begin{array}{ll}32 & 47\end{array}$	$35 \quad 32$	-653	-199
PERSIA				
*Bushire.	$28 \quad 59 \mathrm{~N}$.	5053 E.	14	4
Ispahan.	$\begin{array}{ll}32 & 38\end{array}$	5136	5817	1773
*Jask. . .	2544	5747	I3	4
Kerman.	. 3030	57 O	-	
Kermanshah.	3. ${ }^{\text {P }} 18$	$47 \quad 4$	4934	1504
*Meshed.	$36 \quad 16$	5935	3104	9.46
*Tehran.	3541	5125	4002	1220
SIAM				
Bandon.	93 N.	9520 E .	\cdots	. . .
Bangkok.	1343	10025	9	3
Bang Nara	$6 \quad 25$	10151	-	3
Chantaboun.	1235	1025	. . ${ }^{\text {a }}$	
Chiengmai	1845	9853	1003	306
Chiengrai.	1955	99 51	-	. . .
Konken.	$16 \quad 28$	10239		. . .
Korat........	1457	1024	105	in
Nakon Sawan.	$15+1$	1002	105	32
Nan.....	1846	10044	\cdots	. ${ }^{\text {a }}$
Pitsanoulok.	$16+8$	1007	48	15
SYRIA				
*Beirut. ...		$35 \quad 28$ E.	112	34
Deir-es-\%or	35	$40 \quad 2$	659	201
Ksara.	3349	3535	3028	923
Muslimie.	$36 \quad 22$	$37 \quad 2$	1483	452
Palmyre.	3434	383	I325	404
TIBET				
Gartok.	3 I 45 N.	$80 \quad 20$ E.	15100	4602
Gyantse...	2855	8933	13110	3996
Pharijong.	$27 \quad 39$	$89 \quad 14$	14400	4389
TURKEY				
Adana.	$36 \quad 58 \mathrm{~N}$.	3518 E.	125	38
Angora..	$\begin{array}{ll}39 & 58\end{array}$	3248	2825	861
Diarbekr.	$40 \quad 25$	$37 \quad 50$	2346	715 1931
Erzerum.	3955	415	6345	$193+$
Sinope. Smyrna.	$\begin{array}{lr}42 & 1 \\ 38 & 27\end{array}$	$\begin{array}{ll}35 & 19 \\ 27\end{array}$	59 115	18 35
Smyrna.	$38 \quad 27$	27 15	115	35
UNION OF SOVIET SOCIALIST REPUBLICS				
*Akmolinsk....			1158	353
Aktiubinsk.	$\begin{array}{ll}50 & 17 \\ 43 & 16\end{array}$	$\begin{array}{ll}57 & 15 \\ 76 & 53\end{array}$	731 2760	223 84
* Alma Ata	$\begin{array}{r}43 \\ \hline 64 \\ \hline\end{array}$	$\begin{array}{r}76 \\ 177 \\ \hline\end{array}$	2760	841 23
Anadyr.	$64 \quad 45$	$177 \quad 33$	74	23

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

LNION OF SOTIET SOCIALIST REPUBLICS (Continuea)	Latitude		Longitude from Greenwich		Height	
					Feet	m.
Askabad.		$57^{\prime} \mathrm{N}$.		$23^{\prime} \mathrm{E}$.	716	218
Ayan.		28	138	17	33	10
Barguzin.		27	109	38	161	49
* Barnaul.		20	83	47	519	158
* Beresov.		56	65	4	131	40
Bering Island.		12	165	59	17	5
* Blagovyeschensk		16	127	30	467	142
Bodaibo.		56	114	13		. .
Bokhara. . . .		43	64	33	729	222
Bratskii Ostrog		4	101	50		.
Bulun .	70	45	127	47	66	20
* Cherdyn.		24	56	31	685	209
Cherniaeva		47	126	o	693	211
Chimbai.		56	59	46	,	\ldots
*Chita.	52	2	113	30	2254	687
*Dickson.		30	80	23	75	23
Ekimchan	53	5	132	58	1558	475
Elgjai...	63	46	116	56	443	I 35
*Fort Alexandrovsk Guriev.........		31	50	16	-77	-23
Guriev.		7	51	55	-70	-21
Kazache		17	104	20	1531	467
Kharborovsk		45	135	58	46	14
Khatanga.	71	32	102	9	230	75
*Kirensk.	57	47	108	7	935	285
Kizil Orda.	44	51	65	27	426	130
Kolpashevo.	58	18	82	55	256	78
Koziravskaia	55	55	159	38		
*Krasnovodsk.	40	O	52	59	-19	-6
Krasnoyarsk.	56	1	92	5 I	518	158
Kurgan.		27	65	19	252	77
Markovo.	64	45	170	50	66	20
*Minusinsk	53	43	91	41	965	294
Mogocha...	53	4	119	47	2038	621
Morre Salle.	69	43	66	48	46	14
Muraviev Amurski	45	53	133	38	220	67
Nagornii Priisk.	55	52	125	O	. .	.
Naiakhan. . . .	61	55	158	59	95	29
* Nikolaiersk on the Amur	53	8	140	43	69	2 I
Nizhne Kolymsk.	68	32	160	59	16	5
Novi Port.	67	42	72	57	16	5
*()hdorsk.	66	31	66	35	115	35
()khotsk.	59	21	${ }^{1} 43$	17	20	6
()la.......	59	33	${ }^{1} 51$	13	16	5
()lekminsk		22	120	26	502	153
* ${ }^{\text {* }}$ (merm .	54	59	73	23	352	107
*Perm.	58	1	56	15	535	163
* Petropavlovsk	53	\bigcirc	158	39	44	13
Russkoe Uste.	71	1	149	26	20	6
Sagastyr. ...		23	126	35	16	5
Semipalatinsk. ...		24	80	13	776	237
Sovetskaia Gavan		58	1.40	17	56	17
* Sredne Kolymsk.	67	30	$15+$	50	99	30
*Surgut. . . . (Ekaterinbury)	61 56	15	73	24	131	40
*Sverdlovsk (Ekaterinburg)	56	50	60	38	922	281

LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial' of the British Meteorological Office for 1922. (London, 1929.)

UNION OF SOVIET SOCIALIST REPUBLICS (Continued)	Latitude	Longitude from Greenwich	Height	
			Feet	m.
*Tashkent	$4 \mathrm{I}^{\circ} 2 \mathrm{o}^{\prime} \mathrm{N}$.	$69^{\circ} 18^{\prime} \mathrm{E}$.		
*Tobolsk.	58 5 5	68 14	355	108
*Tomsk.	5630	8454	398	121
Turgai.	4938	$63 \quad 27$	427	131
Turkestan	$43 \quad 18$	$68 \quad 17$	279	85
*Turukhansk	$65 \quad 55$	$87 \quad 37$	131	40
Uralsk.	51 15	517	112	34
Ust Maiskoe	$60 \quad 25$	$134 \quad 29$	58.	177
Ust Yeniseisk.	$69 \quad 38$	$84 \quad 22$	79	24
Verkhne Inbatskoe	63 7	88 I	98	30
Verkhne Tamborskoe	5040	13720		
*Verkhoiansk.	6733	$133 \quad 34$	328	100
*Viluisk.	$63 \quad 45$	12135		\cdots
*Vladivostok	437	13155	95	29
*Yakutsk.	62 I	12943	358	109
* Yeniseisk	$\begin{array}{ll}58 & 27\end{array}$	92 10	254	77
Zaisan.	$47 \quad 28$	84 5	2139	652
MALAY ARCHIPELAGO EAST INDIES				
*Amboina...	$\begin{array}{lll}3 & 42 & \mathrm{~S} .\end{array}$	128 IO E.	13	5
Balikpapan.	15	11656	16	5
Bandoeng.	654	10738	2395	730
*Batavia.	6 II	10650	26	
Buitenzorg.	635	10647	$\begin{array}{r}787 \\ \hline 26\end{array}$	240 8
*Darı. .	943	14313	26	8
Dobo.	514	134 12 17		
Finschhafen	633	$147 \quad 52$	16	5
Hollandia	2 8 32	14047		
Kalisat.	$8{ }^{8}$	1148	3609	1100
*Kupang.	$\begin{array}{ll}10 & 16 \\ 5\end{array}$	12334	148	45
Konstantinhafen	$5 \quad 29$	$\begin{array}{ll} 145 & 51 \\ 119 & 28 \end{array}$		
Macasser *Manokwari.	$\begin{array}{rrr}5 & 5 \\ 0 & 52\end{array}$	$\begin{array}{ll} 119 & 28 \\ 134 & 20 \end{array}$	${ }^{7}$	2 19
*Medan...		${ }^{98} 41$	82	25
*Menado.	130	12450	30	7
*Padang.	- 56 S .	10022	23	7
Pangerango.	6 7 7	107 10 172	9908	3020
*Pasuruan..	$7 \quad 38$	112 55 109	16	5
*Pontianak	- 1	$\begin{array}{rrr}109 & 20 \\ 147 \\ 1480\end{array}$	10 130	3
* Port Moresby	9 10	$\begin{array}{rrr}147 \\ 150 & 9 \\ 150\end{array}$	130	39 15
*Samarai..	$\begin{array}{rrrr}10 & 37 & \\ 5 & 50 & \mathrm{~N} .\end{array}$	$\begin{array}{lr} 150 & 40 \\ 118 & 7 \end{array}$	$\begin{array}{r}49 \\ 105 \\ \hline\end{array}$	15 32
*Sandakan	$\begin{array}{lll} 5 & 50 & \mathrm{~N} . \\ 7 & 50 & \mathrm{~S} \end{array}$	$\begin{array}{rr} 118 \\ 112 & 7 \\ 56 \end{array}$	105 5692	32 1735
PHILIPPINE ISLANDS Aparri	$18 \quad 22 \mathrm{~N}$.	12 I 38 E .	13	4
Baguio...	$16 \quad 25$	$120 \quad 35$	4961	1512
Dagupan.	163	120 120 125	16	5
Davao... Iloilo.	$\begin{array}{rr}7 & 1 \\ 10 & 42\end{array}$	$\begin{array}{lll}125 & 35 \\ 122 & 34\end{array}$	10 20	3 6
*Iwahig.	944	11838	43	13
Legaspi.	139	12345	13	4
*Manila.	1435	$120 \quad 59$	46	14
*Surigao.	948	$125 \quad 29$	20	6
Tacloban.	11 15	1250	${ }_{6} 10$	I
*Tagbilaran.	$\begin{array}{ll}9 & 38 \\ 6 & 54\end{array}$	$\begin{array}{ll}123 & 51 \\ 122 & 5\end{array}$	69 10	21
Zamboanga		122	10	3

LIST OF METEOROLOGICAL STATIONS.

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

Table 116.
LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

GAMBIA	Latitude	Longitude from Greenwich	Height	
			Feet	m.
* Bathurst.	$13^{\circ} 27^{\prime} \mathrm{N}$.	$16^{\circ} 34^{\prime} \mathrm{W}$	7	2
*McCarthy Island.	$13 \quad 32$	1446	16	5
GOLD COAST COLONY				
* Accra.	533 N.	- 12 W .	60	18
Axim.	442	214	20	6
Coomassie	641	137	900	274
Tamale.	923	- 5^{2}	600	183
KENYA COLONY Fort Hall				
Fisumu............ . .		$\begin{array}{ll}37 & 10 \\ 34 & 45\end{array}$	4410 3880	1344 1183
*Lamu.	216	$40 \quad 50$	10	3
Limoru.	17	3639	7300	2225
Masongoleni	228	$37 \quad 59$...	
Mombasa.	$4{ }^{4}$	$39 \quad 42$	50	${ }^{1} 5$
Moyale.	3 31 N. I 18	$\begin{array}{rr}39 & 5 \\ 36\end{array}$		1661
* Nairobi.	$1 \mathrm{I}^{18} \mathrm{~S}$	$36 \quad 50$	5450	1661
LIBERIA Monrovia (Schieffen).	6 IIN	1033 W	25	8
LIBYA				
Azizia.	3232 N .	13 I E.	518	158
Bengazi.	326	204	82	25
Cirene.	3249	215	2067	630
Misda.	3139	13 I	I 345	410
Tobruk	323	$23 \quad 59$	151	46
Tripoli.	$32 \quad 54$	13 II	59	18
MADAGASCAR				
Antsirane . .	12125 25	4920 E.	89	27
Farafangana.	2253	$47 \quad 56$	33	10
Mandritsara.	1544	4850	945	288
Marovoay..	$16 \quad 3$	$46 \quad 42$	148	45
*Tamatave..	$\begin{array}{rr}20 & 15 \\ 18 & 9\end{array}$	$\begin{array}{ll}44 & 18 \\ 49 & 26\end{array}$	13	
*Tananarivo	$18 \quad 55$	47	4531	$138{ }^{4}$
MOROCCO				
Casablanca.	$33 \quad 37 \mathrm{~N}$.	$7 \begin{array}{lll}7 & 34\end{array}$	131	40
Fes.	340	453	1365	416
Marrakech	3138	759	${ }^{1} 509$	460
*Melilla.	$\begin{array}{ll}35 & 17\end{array}$	30	26	8
Mogador	31	$9{ }^{3} 6$	36	11
Oudja.	$34 \quad 39$	1 I 54	182 I	555
Rabat.	34	6 8	210	64
Safi.....	$\begin{array}{ll}32 & 18 \\ 35 & 49\end{array}$	$\begin{array}{ll}8 & 50 \\ 5 & 52\end{array}$	230 148	70 45
NIGERIA				
Całabar.		819 E.	${ }^{1} 57$	48
Debundja	$4{ }^{4} 5$	$8 \quad 59$	30	9
Forcados.	523	526	4	1

LIST OF METEOROLOGICAL STATIONS.

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British
Meteorological Office for 1922. (London, 1929.)

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

SOUTH WEST AFRICA	Latitude	Longitude from Greenwich	Height	
			Feet	m.
Bethany	$26^{\circ} 30^{\prime} \mathrm{S}$	$17^{\circ} 10^{\prime} \mathrm{E}$.	3067	935
Franzfontein	20 11	154	3773	1150
Gibeon.	258	$17 \quad 46$	3707	1130
Grootfontein.	1933	187	5020	1530
Luderitz Bay.	$26 \quad 39$	1510	13	4
Mlt. Brukkaros.	$\begin{array}{lll}25 & 52\end{array}$	$17 \quad 48$	5202	1586
Swakopmund Warmbad...	$\begin{array}{ll}22 & 41 \\ 28\end{array}$	$14 \quad 31$	26	8
*Windhuk.	$\begin{array}{ll}22 & 34\end{array}$	17	$5+63$	1665
TANGANYIKA TERRITORY				
Bismarckburg.	828 S.	3 l 8 E .	2658	810
Dar es Salaam.	649	$39 \quad 18$	26	8
Kondoa Irangi	+ 55	$35 \quad 57$	4626	1410
Lindi.	10 0	3944	26	8
Mahenge	841	363	3363	1025
Mwanza.......	231	$32 \quad 5+$	3740	1140
New Langenburg	$9{ }_{5} 16$	3338	5085	1550
Tabora..	5 I	3249	4058	1237
Tandala.	$9 \quad 23$	$34 \quad 14$	6729	2051
Tanga.	54	397	92	28
Ujiji.	455	29 41	2690	820
TUNIS				
Bizerte.	$37 \quad 17 \mathrm{~N}$	$9 \quad 52 \mathrm{E}$.	33	10
Dehibat.	$\begin{array}{ll}32 & 3 \\ 34 & \end{array}$	1043	1066	325
Metlaoui	$34 \quad 22$	$8 \quad 24$	735	224
*Tunis.	$\begin{array}{lll}3+ & 4+ \\ 36 & 48\end{array}$	10 10	105	3^{2}
UGANDA				
*Entebbe.	$0+\mathrm{N}$	$32 \quad 28$ E.	3850	1173
Fort Portal	- 40	$30 \quad 17$	5300	1615
Kitgum.	320	3253	3000	914
Mbale.	$1 \quad 6$	3411	4000	1219
Mbarara	- 37 S .	3039	4800	1463
UNION OF SOUTII AFRICA				
Barberton....	$\begin{array}{ll}30 & 42 \\ 25 & 47\end{array}$	$\begin{array}{ll}26 & 40 \\ 31 & \\ \\ \text { 2 }\end{array}$	+330 2885	1320 879
Beaufort West	32 21	$22 \quad 36$	2850	869
Bloemfontein	297	2613	4518	${ }^{1} 377$
* Cape Town.	$33 \quad 56$	$18 \quad 29$	40	12
* Clanwilliam.	$\begin{array}{ll}32 & 10 \\ 29 & 5\end{array}$	$18 \quad 55$	245	75
${ }^{\text {* }}$ Eurban.....	$\begin{array}{ll}29 & 52 \\ 33\end{array}$	$\begin{array}{ll}18 & 3\end{array}$	20	6
Graaf Reinet	$\begin{array}{rrr}33 & 1 \\ 32 & 16\end{array}$	$\begin{array}{ll}27 & 54 \\ 2+ & 32\end{array}$	150 $2+30$	$\begin{array}{r}46 \\ 7 \\ \hline 1\end{array}$
Grahamstown	3318	26 26	1700	518
Hlabisa.	288	$\begin{array}{ll}31 & 52\end{array}$	800	244
*Johannesburg	26 II	28 3	5750	1753
Kenhart...	29 21	$21 \quad 9$	$270+$	824
Kimberley.	$28 \quad 44$	2446	$40+2$	1232
Kokstad Komati Poort	$\begin{array}{ll}30 & 33 \\ 25 & 26\end{array}$	$29 \quad 26$ 31	4280	1304
Komati Poort	$25 \quad 26$	3156	620	189

[^31]Table 116.
LIST OF METEOROLOGICAL STATIONS.
Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

UNION OF SOUTH AFRICA (Continued)	Latitude	Longitude from Greenwich	Height	
			Feet	m.
Kuruman.	$27^{\circ} 35^{\prime} \mathrm{S}$.	$\begin{array}{ll}23^{\circ} & 37^{\prime} \mathrm{E} \text { E. } \\ 27 & 55\end{array}$	4500 5000	$\begin{aligned} & 1372 \\ & 152+ \end{aligned}$
Lindley...		27 25	4194	1278
Mafeking.	25 $3+$ 3 11	22 29	100	30 186
Mossel Bay	$\begin{array}{ll}37 & 4 \\ 27\end{array}$	$29 \quad 56$	3890	1186
Newcastle.	29 36	1752	3036	925 692
Ookiep..........	2935	$30 \quad 32$	2272	692 1302
Pietermaritzio. Pietersburg.	$\begin{array}{ll}23 & 54 \\ 33 & 58\end{array}$	$\begin{array}{ll}29 & 28 \\ 25 & 37\end{array}$	4276 17	54
Port Elizabeth	$\begin{array}{ll}33 & 5 \\ 29 & 14\end{array}$	28 28 12	25	8
$\underset{\text { Port Nolloth..... }}{\text { Pretoria.............. }}$	$25+5$	$28 \quad 12$	4350	1326
AUSTRALASIA				
AUSTRALIA		13835 E.	140	43
*Adelaide................	$\begin{array}{ll}3+ & 56 \\ 23 & 38\end{array}$	133 13	1926	587 1016
*Alice Spring Armidale. ${ }^{\text {a }}$	$30 \quad 32$	$\begin{array}{lll}151 & 38\end{array}$	3333	1016
Bendigo..	$\begin{array}{ll}36 & 46 \\ 22 & 55\end{array}$	$\begin{array}{lll}144 \\ 139 & 17 \\ 188\end{array}$	479	146
* Boulia.	30	145 8	364	111
* Bourke..	$27 \quad 28$	$153-2$	137	42 305
Broken Hill	$\begin{array}{ll}31 & 57 \\ 17 & 16\end{array}$	$\begin{array}{ll}141 & 28 \\ 139 & 3+\end{array}$	1000	305
Burketown	17 35 15	$\begin{array}{ll}139 & 3+ \\ 149 & 15\end{array}$	(2000)	(610)
Canberra....	$3+52$	1158	163	50
Cape Leeuwin	34 24	11339	15 645	5 197
Charlotte Waters	$\begin{array}{ll}25 & 56 \\ 20 & 3\end{array}$	$\begin{array}{lll}134 & 55 \\ 1+6 & 16\end{array}$	$6+5$ 1019	197 311
Chartertowers	20 20	11921	35	1 I
Condon...	15 15	14514	17	5
Cooktown.. *Coolgardie.	$30 \quad 57$	12110	1388	423
*Coolgardie...	1616	$133-23$	692 98	211 30
*Darwin....	1288	$\begin{array}{lll}130 & 51 \\ 123 & 40\end{array}$	52	16
*Derby.	$\begin{array}{ll}17 & 18 \\ 32 & 18\end{array}$	$\begin{array}{lll}123 & 40 \\ 148 & 35\end{array}$	863	263
Dubbo....	33	12155	14	4
Esperance..	1822	$143 \quad 3{ }^{2}$	302	92
* Georgetown	2846	11436	13	4 374
* ITalls Creek	$\begin{array}{rr}18 & 13 \\ 17\end{array}$	127 15	1227 55	374 17
Harvey Creek	$\begin{array}{rr}17 & 9 \\ 3+\quad 30\end{array}$	$\begin{array}{ll}1+5 & 55 \\ 1+4 & 56\end{array}$	305	93
Hay.....	$\begin{array}{ll}17 & 3 \\ 17 & 23\end{array}$	$\begin{array}{ll}1+4 \\ 145 & 23\end{array}$	2890	881
Herberton	42 4	$147 \quad 20$	177 650	54 198
* Inobart.	$\begin{array}{ll}24 & 15 \\ 34\end{array}$	$\begin{array}{lll}14+ & 2+ \\ 14 & 35\end{array}$	650 1017	198
*Katanning	$\begin{array}{ll}33 & 42 \\ 35 & 52\end{array}$	$\begin{array}{ll}117 & 35 \\ 148 & 32\end{array}$	4640	1414
Kiandra....	$\begin{array}{ll}35 & 52 \\ 41 & 27\end{array}$	147 10	33	10
*Launceston	2840	$122 \quad 23$	1529 +100	466 122
*Mein....	$\begin{array}{ll}13 & 13 \\ \\ 37 & 19\end{array}$	142 14 148	${ }_{1}^{+15}$	122 35
*Melbourne	$\begin{array}{ll}37 & 49 \\ 26 & 32\end{array}$	$\begin{array}{ll}1+4 & 5 \\ 1+7 & 52\end{array}$	1102	336
*Mitchell..	$\begin{array}{ll}26 & 32 \\ 21 & 53\end{array}$	1205	1266	386
*Nullagine. Oatlands.	4218	147 24	1400 2108	427 643
Oatlands Omeo.	376		2108	

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

LIST OF METEOROLOGICAL STATIONS.

Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

Smithsonian Tables

INDEX.

PAGE
Abbot, C. G., work cited......|xxxiii, lxxxiv, lexxv Absolute thermometric scale defined
Absorption, by atmospheric water-vapor bands
in infra-redxxxii, 238
Air, coefficient of expansion................xliv, xlvi
density of, at different humidities,
English 1 xxx-lxxxi, 229-231 Metric1xxx-lxxxi, 233^{-236}
density of, at different pressures,
Enghish|xxx-1xxxi, 228-231 Metric1xxx-lxxxi, 233-236
density of, at different temperatures,
English|xxx, 228
Metriclxxx-lxxxi, 232
mass of, corresponding to different zenith
distances of the sun..............1xxix, 226
weight in grams per cubic centimeter
xlvi, 1xxx-lxxxi, $228 \cdot 236$
Angle, conversion of days intn..........xxiv, $52-55$
Angot, Alfred, treatise cited..................1xxix
Approximate absolute thermometric scale de-
fined .xv-xvi
Approximate absolute temperature, conversion
into Centigrade, Fahrenheit, and Reaumur
XVi, $2-4$
Aqueous vapor, decrease of pressure with alti. tude at mountain stations.............1xxii, 202 precipitable water equivalent

1xvi-lxviii, ${ }^{176-178}$
pressure of, hy psychrometric observations,

Metriclxviii-lxxii, 194-201
pressure of saturated,
over ice
Dynamic1xi-1xvi, 173-174
Englishxi-1xv, 164
Metric $x i-1 x v i$, 169
over water,
Dynamic 1 i-lxvi, 175
English1xi-lxv, 165-i68
Metric1xi-Ixvi, $170-172$
(See also atmospheric water vapor.)
weight of,
English $1 \times$ vi-1xviii, 176
Metric1xvi-lxviii, 177-178
Arc, conversion into time.

Aschkinass, Rubens and, treatise cited........ 239
Astronomical twilight, defined................. 1 xxvii duration ofxxvii-lxxviii, 223
Itmospheric pressure, in units of force
xxi-xxii, 36-39
Atmospheric water vapor, absorption by, in infra-red .1xxxii, 238 lines in visible spectrum.......1xxxii, $237-238$
August, work cited.:......................................iii
Avoirdupois, conversion into metric......xxvii, 60

Babinet, barometric formula for determining

heights 1 viii, 160
Ball, Frederick, work cited......................................
Bar, value of defined....................................xxi Barometer,
correction for (in determining height),
gravity and weight of mercury,
Englishxviii. 139-1.40
Metric lii, 152 humidity,
Dynamicli-lii, ${ }_{51}$
Englishviii-xlix, 141
Metric 1 -lii, 148-150 temperature,
Englishxlvii-xlviii, 137^{-13} S
Metric-1li, 146-147 variation of gravity with altitude.

English|xix, 142
Metriclii, 153

Baxometer,
determination of height by,
Babinet's formulalviii-lix, 160
Laplace's formulaxliv-xlvi

namic \ldots..........x xlix-lv, 444

difference in height corresponding to,
a change of 0.01 inch...........Ivii, 158
a change of 1 mmviii, 159
pressures corresponding to temperature of
boiling water $\ldots l_{\text {lix-lxi, }} 6$ I reduced to,
sea level,
Englishxi-xliii
Metric .xliii
standard gravity 127
English …xli-xlii, 128-129
Metric \ldots. xlii, . ${ }^{130-13.1}$
standard temperaturexxxiii-xxxvii
Englishxxv-xxxvi, 8o-99
Metricxxxvi-xxxvii, 100-122
U-shaped manmeters.
Englishxxxvii-xxxviii, 123-124
Metricxxxviii, 125-126
value for auxiliary formula in determin-
ing height.

Barometric constant .xlv-xlvi
Kaumann, A., treatise cited . x xi
Beaufort, Admiral,
weather notation|xxxvi, 245
wind scalexxviii-xxx, 70
Belli, work cited. .
Bemporad, A., treatise cited.................. . 1 xxix
Bjerknes, Prof. V'., work cited................... . liv
Bowie, William, work cited................xxxix, 1xxiv
Broch, work cited.......................xxxv, Ixi-lxii
Buckingham, Edgar, work cited...................xix
Cederberg, 1. W., treatise cited...................xii Centigrade, conversion into Approximate Abso-
lute, Fahrenheit, and Reaumur.........xvi, $2-\frac{4}{4}$ conversion into Fahrenheit........xviii, 10-12 differences into differences Fahren-

near boiling point of water.......xviii, 13
thermometric scale defined.......................xy
Chappuis, Pierre, work cited....................xxii

Clarke, treatise cited.........................xyviv, lxxy

Clond classification, international. Axxxv, ${ }^{243-}$ ture xliv, xlvi
Commission Internationale de le haute Atmosphère
. 1 iii
Continental ineasures of length and equivalents
Conversion of,
barometric readings into standard units of
pressurexxi, ${ }_{3} 6-39$
linear measuresxx, 16-48
measures of time and angle.......xxiv, $50-58$
measures of weight................xxvii, $60-62$
thermometric scalesxv-xix, $2-13$
wind velocitiesxxviii, $6 \uparrow-70$

Correction,

in determining heights by barometer,
for gravity and weight of mercury,
Englishxlviii, I 39-1.40
Metriciii, 152

Correction,
in determining heights hy barometer, for humidity,

Dynamicli-lii, 151	
English	xlviii, 141
Metriclilit. 148-150	ii. $148 \cdot 150$
for temperature,	
English	lviii, $137-138$
Metric1-1i, 146-147	
for temperature of emergent mercurial	
colnmn of thermometers.	
for variatio	of gravity with altitude.
English	
Metric	

Davis. H. N., work cited.
. Ixvii
Days, conversion into decimals of year and
angle $52-55$
conversion of decimals of, into hours,
minutes, and seconds.................xvv, 56
Declination of the sun................. 1 .avii, 222
Defforges, G. E., work cited........................xxix
Degree, length of, at different latitudes.
of meridian . $\times x \times v, 209$
of any parallel................................... 210
Degrees, interconversion of Ahsolnte, Centi-
grade, Fahrenheit, and Reaumur...xvi-xvii, 2.4 Density of air..................1xxx. Ixxxi, 228-236
Depth of water corresponding to weioht of
snow or rain. $202-203$
)etermination of heights by barometer,
Dynamic xlix-liii. $14+4-145$, 151 5
English xlvi-xlix, $133-142$
Metric 143.146 -153
Pabinet's formula furlviii-lix, 160
Dew-point
vapor pressure corresponding "to,
English lxx, 180-190
Metric Ixxi, 194-199
Differences.
Centigrade to Fahrenheit.................. ${ }^{1 x}{ }^{1} 3$
Fahrenheit to Centigrade...............xviii, ${ }^{13}$
Differences, in height, corresponding to changes in barometer,

English
Ivii. 15^{8}
Metr
Duration of,
astronomical twilight
civil twilight
sunshine
Dynamic heights
Dynamic meters
Dyne

Fabrenheit, conversion into Approximate A -
solute, Centigrade, and Reaumur........vi, 2.4 conversion into Centigrade. xvii, 5-9 differences into differences Centigrade Fathom, Swerlish, value of.

13
48
Feet, conversion into meters...........xxiii, $40 \cdot 41$
per second into miles per hour.......xxviii, 65 Ferrel, V m., treatise cited.
xxx, xlvi, xlviii. lexviii, Ixxix Foot, value of, for different mationalities...... 48 Formula, Babinet's barometric.........viii-lix, 160 gradient windsxx-xxxii, 71-73 Laplace's barometric
vapor pressure,

over ice.

Fowle, F. E., work cited Ixxxii, Ixxxiii, 1xxxiv, 1xxxv
Geodetical tahleslxxiv-lxxx, 206-226
Geopotential iii-lv, 154-157
Gradient winds,
Englishxxx-xxxii, 71•72
Metricxx-xxxii, 72-73
Grains conversion into grams............xxvii, 61
Grams, conversion into grains. . . . xvii. xxviii, 62
Gravity potential liii-lv, $154-157$
Gravity, standard. defined......................xxix
correction of, for variation with altitude. sxxix to standard xxxix $-x$.
reduction of barometric readings to stand-
ardxl-xlii, 127-131
relative acceleration in different lati-

value of, at sea level.lxxiv, 206
Guyot, A., treatise cited..........................xxxy
Mann, J., Treatise cited....xlvi, Ixxii, lxxxii, 202
Hazen, II. A., treatise cited.................. . . xxviii Height, determination of
by barometer.
I)ynamicxlix-lii, 144-145, 151

English xlvi-xlix, $133-142$
Metricxlix-lii, 143, 146-150, 152 -153
thermometrical measurement of...lix-lx, 161
Helmert, work cited.
liv
llenning, F., treatise cited........................

Holborn, L., treatise cited
Hours, conversion into decimals of a day. $x \times v, 56$
minutes and seconds into decimals of.xxv, 57
Ilumidity,
correction for, in determining heights by
barometer.
Dynamici-lii, ${ }^{151}$
English xlviii-xlix. 141
Metric $1 \mathrm{i}-\mathrm{lii}, 14^{8-1} 50$ relative,

Fahrenheit 1xxi, 191-193
Centigrade $200 \cdot 201$ term for, in determining density of air,

English $229-231$
Metric $1 x x x i, ~ 233-236$
Ilygrometrical tables Ixi-lxxiv, $164-203$
Hypsometric formula xliv
Hypsometryiv-1xi, $133-16$ 1
Illumination intensities, relative........ Ixxx, 226
Inches, barometric, conversion into millibars
xxii, $36-37$
Inches, conversion into millimetersxxi, $16-22$
Infra-red spectrum, absorption by water vapor
hands in . ..xxii, 238
Interconversion, nautical and statute miles
sidereal and solar time...... xxiv, 48
International cloud classification. Ixxxvi, 243-244
International meteorological symhols
lxxxv, 241-242
Juhlin, T. T., work cited................................
Ktlvin, lord, work cited . xv
Kilogram prototypexvii
Kilograms, conversion into punnds.......xxvii, 61
Kilometers, into miles.
xxiii, 4^{6-47}
per hour into meters per second. . . .xxviii, 69
Kimball, Herbert H.. works cited..... Ixxvii, Ixxx
King, Louis Vessot, work cited. Ixxxiii
Klafter, Wienser (Vienna), value of.
Laplace, formula of . xliv
Latitude, correction for, in determining heights
by the barometer.
Englisli
xli-xlii, xlviii, 139-1 40
Metric
in reducing barometer to standard gravity,
English xli-xlii, $128-129$
Metric xli-xlii. $130-13$!
leduc, S. A.. work cited.................. xxii, xlvi
Length, arc of meridian.........................xxv, 209
are of parallel.............................xxv. 210
continental measures of, with metric and
British equivalentsxxiv. 48

$\begin{aligned} & \text { Lib } \\ & \text { Lin } \\ & \text { Lin } \end{aligned}$	

Manometer, U-shaped.
reduction to standard temperature.
Englisbxxxvii, 123-124
Metricxxviii, 125-126
Marks, L. S., work cited..........................vii
Marvin, C. F., work cited...........xxii, xxxiv, 1xi
Maxwell, work cited............................
Mean time, conversion of sular into sidereal.
xxvi, 58
at apparent 110011 xxvi, 57
Measures of angle.xxiv-xxy, 50-55
of length . xxiv, 48
of timexxiv-xxvii, $50-58$
Mercury, density ofxiii
Meridian, arcs of terrestrial.........................xv
length of a degree............................ 209
Meteorological stations, list of1xxxvi, 247-277.
Meter

- . . . NX11

Meters, conversion into feet...........xxiii, 4^{2-43} per second into kilometers jer hour . . xxviii, 68 per second into miles per hour.xxviii, 66
Mile, different values for..
Miles, conversion into kilometers. xili $44-45$
per hour into feet per second.xxviii, 65
kilometers per hour.xxviii, 64
meters per seccnd.xxviii, 67
Millimeters, conversion into inches.....xxi, 23.35
(barometric), into millibars.xxii, 38-39
Minutes of time, into arc. xxiv, 5 I
into decimals of a dayxv, 56
into decimals of an hourxxv, 57
Noon, zenithal full, relative illumination in-
tensity of 226
quarter, relative illumination intensity

Nautical mile, equivalent in statute......xxiv, 48
Newcomb, Simon, work cited. xxvi
Notation, Beaufort's weatherxxxvi, 245
Ounces, conversion into kilograms.......xxvii, 60 kilograms into xxvii, 61

Palm, Netherlands, value 48
Parallel, length of a legree on..................... 210
Paschen, F., treatise cited....................... . . 239
Pounds, conversion into kilograms.xxvii, 60 imperial standardxvii
Pressure of saturated aqueans vapor.
over ice,

> Dynamic
> English
> Metric
. x i-lxvi, 173-174 .1xi-lxvi11, 164 1xi-1xviii, 160
over water.
. 1xi-lxvi, 175
Englishlxviii, $165-168$
Metric|xi-lxviii, 170-172
decrease with altitude at mountain sta-
tions
Ixxii-1xaiii, 202
Pressure, standard units of,
conversion of barometric readings into,
xx1-xxil

(See also Barometer)

Prototype kilogramxxvii
Psychrometric formulaiii-lxxii
Psychrometric observations, reduction of,

Quantity of rainfall corresponding to different depths
lxxiv, 203
Rainfall, conversion of deptlo of, into gallons and tons

Ixxiv, 203
Reaumur, conversion to Approximate Absolute,
Centigrade and Fahrenheit
Reduction, of barometer to,
standard gravity ...
standard temperatire
.xxxviii-xlii, 127-131
standard temperatire . . .xxxiii-xxxvii, 80-122

Reduction,
PAGE
of psychronetric observations
 Metricxviii-Ixxii, 194-199
of snowfall measurements.....lxxiii, 202-203
of U-shaped manometers to standard tem-
perature,
Englishxxxvii, 123-124
Metric
xxxvii, $125-126$
Kegnault, treatise cited.........xxxv, Ix, |xi, lxviii
Relative humidity,
Centigrade temperature xxii, 200-201
Fahrenheit temperature Ixxi, 191-193
Kelative intensity of solar radiation
lxxviii-lxxix. 225-226
Pode, Danish, value of 48
Rctch, A. L.., work cited. xxx
Rowland, work cited....................................
Rubens and Aschkinass, treatise cited. 239
Ruthe, Prussian, value of 48
Norwegian, value of . 48
Sagene, Russian, value of .
. 48
Centigrade, Fahrenheit, and Reanmir.
Sea-level,
reduction of temperature to,

Seconds, conversion of decima's of a day into
xxv, 56
into arc .. 51
into decimals of a day xxv, 56
into decimals of an hour. xxv, 57
reduction for, sidereal or solar time..xxvi, 58
Sidereal time, conversion to mean solar....xxvi, 58
Simpson, Dr. G. C., work cited
siky, relative illumination intensity,
at sunset 226
at end of civil twilight 226
nowfall. weight corresponding to deptl of
water
Solar radiation
absorption by atmospheric gases... Ixxxy, 240
atmospheric transmission $x \times x \times i i$, 240
relative intensity of,
during year at surface of the earth
Ixxix, 220
for 24 hours at top of atmosphere
Jxxviii, 225
scattering by atmospleric gases. . lxxxy, 240 spectral distribution
lxxxii, 240
transmission percentages of, through moist
air ...ii, 239
Sclar time, mean, conversion into sidereal
xxvi-xxvii, 5^{8}
Specific gravity, of air. xlvi

Spectrum, water vapor lines in visible
1xxxii, $237-23^{8}$
absorption in infra-red. Ixxxii, 23^{8}
Spheroid, Clarke's ..
Starlight, relative illumination intensity of ...226
State of weather. Beanfort notation for
lxxxvi, 245
Stations, list of meteorological. . . Ixxxvi, $247-275$
Statute miles, conversion of, into nautical.xxiv, $4 \stackrel{\text { K }}{ }$
Stefan, work cited.
1....ix $x=11$

Surt, declination of
.1xxvii, 222
relative illumination intensity of zenithal. . 226
Sunrise, time of, defined.lxxvii
Sunset, time of, defined.xxvi
Sunshine, duration ofxxvi, $211-222$
Symbols, International Meteorological
1xxxv, 241-242

lemperature,

correction for, of thermometer stem...xix, it reduction to sea level...........xxxiii, 76, 77 term in determination of heights by
barometer xlvii-xlviii, ${ }^{1} 37-138,146-147$ term in determination of density of air
lxxx-lxxxi, 228, 232-233
Thermodynamic thermometric scale, defined....xs

Thermometer, hypsometricix-lx, PAGE 161 correction for temperature of mercury in sten1xx-xx, 14 Thermometric scales, defincd. xv-xvi interconversion of xvi, $2: 4$
Thiesen, M., work citel. x ii, lxiv
Time,
\qquad arc into arc ... 51 mean, at apparent noon.xxvi, 57 mean solar into sidereal...............xxvi, 58 sidereal into mean solar.xxvi, 58
Foise, value of . 48
Transmission percentages of radiation through
moist air
Twilight, duration of astronomical.... Ixxviii, 223 duration of civil.................. Ixxviii, 224

Vapor, aqueous, decrease of pressure with al
titude at mountain stations............ .xxii, 202 prccipitable water equivalent

Ixvi-lxviii. ${ }^{1776-178}$
pressure of, by psychrometric observations,
Englishiii-lxxi, 180-193
Metric x xviii-lxxii, 194-20 I pressure of saturated,
over ice,
Dynamic \times xi-lxvi, 173 -174
Englishxv, 164
Metrici-lxvi, 169
over water,
Dynamicixi-lx+i, 175
Englishixi-lxv, $165-168$
Metrici-lxvi, 170-172 (See also atmospheric water vapor)

Vapor, aqueous
Yage
specific gravity x vi-lxvii
weight of
English lxvi-lxviii, 1フ6
Metricxvi-lxviii, 177-178
Vara, values of,
Mexican
Spanish
4^{8}
. 4^{8}
erst. value 01......................... 48
Iisibility, horizontal cude for.........1xxxvi, 246
Visible spectrum, water vapor lines in
1xxxii, $237-238$
Waals, J. D. Van der. work cited..............
Water, vapor of (see Aqueons)
Weather, state of, Beaufort symbols for
lxxxvi. 245

Weight, of saturated afueons vapor
Cubic foot x vi-lxviii, 170
Cubic meter Ixvi-lxviii, $177-178$
in grams, of a culbic centimeter of air,
English Ixxx-lxxxi, 228-231
Metric1xxx-1xxxi, 232.236
Werst or versta, value of.........................48
Wind tablesxviii-xxxii, 64-73
Wind.
true direction and velucity at sea, determination of
gradient, velocity ofxxx-xxxii, 71-73 radius of critical curvature
xxx-xxx:i, 7 1-73
scale, Beaufort'sxxviii-xxix, 70
synoptic conversion of relocities.....xxviii, 64
Year, days into decimals of, and angle.xxiv, 52-55
tropical, length of .xxvi

[^0]: 1 The value of the bar as here defined is a pressure of $1,000,000$ dynes per square centimeter, and is that employed by meteorological services, and recommended by inter-

[^1]: national meteorological and aerological conferences. It is $1,000,000$ times greater than that given in the Smithsonian Physical Tables, 6th ed., 1914, p. 346 . The smaller value is generally employed by physicists and chemists. See Marvin, Charles F. Nomenclature of the Unit of Absolute Pressure. Monthly Weather Review, 1918, $46: 73$-75.
 ${ }^{1}$ Chappuis, Recueil de Constantes Physiques, Soc. Fr. Phys., 1913, p. 139. Leduc, Trav. et Mém., Bur. Int. Poids et Mes., xvi, p. 36, 1917.
 ${ }^{2}$ Comptes Rendus des Séances, Troisième Conférence Générale, p. 68. Trav. et Mém., Bur. Int. Poids et Mes., xir, igoz.

[^2]: ${ }^{1}$ Derived from the equation of time for Washington apparent noon for the year 1899. See the American Ephemeris and Nautical Almanac, I899, pages 377-84.
 ${ }^{2}$ The length of the tropical year is not absolutely constant. The value here given is for the year 1900. Its decrease in 100 years is about 0.5 s . (See the American Ephemeris and Nautical Almanac 1918, page xvi.)

[^3]: ${ }^{1}$ From Hand-Book of Metcorological Tables. By H. A. Hazen. Washington, 1888.

[^4]: ${ }^{1}$ Investigations of gravity and isostasy, by William Bowie. U. S. Coast and Geodetic Survey, Special Publication No. 40, 1917, p. 134.
 ${ }^{2}$ Op. cit., p. $50 . \quad{ }^{3}$ Op. cit., p. $59 . \quad{ }^{4}$ Op. cit., p. $50 . \quad{ }^{5}$ Op. cit., p. 59.
 ${ }^{6}$ Bowie, op. cit., p. 134 .
 ${ }^{7}$ Bowie, op. cit., p. 93 .

[^5]: ${ }^{1}$ In most cases the gravity anomaly may be obtained from Bowie's paper, op. cit., figure 1 I.
 ${ }^{2}$ In some cases this correction may be obtained from Bowie's paper, op. cit., pp. 50-52, but in many cases, and especially in mountainous districts, it must be separately computed for each station.

[^6]: ${ }^{1}$ Indicated values for latitude and gravity correction apply only to mercurial barometers. For the case of aneroid barometers the η is omitted (see pp. xlviii and xlix).

[^7]: ${ }^{1}$ Comptes Rendus, Quatrième Conférence Générale Poids et Mesures, 1907, pp. 60-6r.
 ${ }^{2}$ Leduc, A. La masse du litre d'air dans les conditions normales. Comite international des poids et mesures. Travaux et mémoires, T. 16, 1917.
 ${ }^{3}$ Lehrbuch der Meteorologie, dritte Auflage, 1915, s. 5.

[^8]: ${ }^{1}$ In accordance with the relation between the meter and the foot given on p . xxiii, this constant should be 60367 . (See Table 14.)

[^9]: ${ }^{1}$ A fuller account of this Règlement may be found in the Avant-Propos of the Commission Internationale de la Haute Atmosphère, Comptes Rendus des Jours Internationaux 1923, published in 1927. This may be had on application to the Secretary of this Commission, c/o the Royal Meteorological Society, London.

[^10]: ${ }^{1}$ The claim for the use of geopotential in measuring heights was set forth by Prof. V. Bjerknes and his collaborators in Vol. I of Dynamical Meteorology and Hydrography, published in English in 1910 by the Carnegie Institution of Washington. The terms "dynamic height" and "dynamic meter" were therein proposed.
 ${ }^{2}$ Helmert: Über die Reduction der auf der physischen Erdoberfläche beobachteten Schweerebeschleunigungen auf ein gemeinsames Niveau, Zweite Mitteilung. Sitzungsberichte der Akademie der Wissenschaften, Berlin, 1903, p. 650.

[^11]: ${ }^{1}$ Bjerknes, V., and colleagues, Carnegie Inst. Washington, 1910.

[^12]: ${ }^{1}$ Due to the use of a slightly different value for the coefficient of expansion, Prof. Ferrel's formula, upon which the table is computed, is

 $$
 d Z=-\frac{2628.4}{B}\left(\mathrm{I}+0.002034\left(\theta-32^{\circ}\right)\right)(\mathrm{I}+\beta)
 $$

[^13]: ${ }^{1}$ Comptes Rendus, Paris, 1850 , vol. xxx., page 300.

[^14]: ${ }^{1}$ Scheel, Karl und Heuse, Wilhelm. Bestimmung des Sättigungsdrucks von Wasserdampf unter 0°. Annalen der Physik, 1909, 29: 723-737.

 Bestimmung des Sättigungsdrucks von Wasserdampf zwischen 0° und $+50^{\circ}$. Annalen der Physik, 1910, 31: 715-736.

 Holborn, L. und Henning, F. Über das Platinthermometer und den Sättigungsdruck des Wasserdampfes zwischen 50 und 200°. Annalen der Physik, 1908, 26: 833-883.

 Holborn, L. und Baumann, A. Über den Sättigungsdruck des Wasserdampfes oberhall. 200°. Annalen der Physik, 1910, 31: 945-970.

[^15]: ${ }^{1}$ Annalen der Physik, 1907, 22: 609-630.
 ${ }^{2}$ Cederberg, Ivar W. Über eine exakte Dampfdruckberechnungsmethode. Physik. Zeitschr. xv: 697, 1914; Über die Temperaturabhängigkeit einiger physikalischen Eigenschaften des Wassers in seinen vershiedenen Aggregatzuständen. Physik. Zeitschr, xv: $824,1914$.

[^16]: ${ }^{1}$ Scheel, K., and Heuse, W., op. cit., p. 1xi.
 ${ }^{2}$ Nernst, W. Verhandlungen der Deutschen Physikalischen Gesellshaft, vol. ir, no. 15, p. 313, Aug. 15, 1909.

 Nernst, W. Kinetische Theorie fester Körper; Vorträge über die kinetische Theorie der Materie und der Elektrizität. B. G. Teubner.
 ${ }^{3}$ Weber, S. Communications from the Physical Laboratory at the University of Leiden, no. I50; p. 37.

[^17]: ${ }^{1}$ Thiesen, M. Die Dampfspannung über Eis. (Mitteilung aus der PhysikalischTechnischen Reichsanstalt.) Annalen der Plyysik, vol. 29, p. 1057, 1909.
 ${ }^{2}$ Weber, S. Loc. cit., pp. 50-52.
 Knudson, M. Annalen der Physik. Vierte Folge, Band 44, p. 536, 1914.

[^18]: ${ }^{1}$ Nernst, W. Verhandlungen der Deutschen Physikalischen Gesellshaft, vol. 12, p. 568, 1910.
 ${ }^{2}$ Washburn, E. W. Monthly Weather Review, vol. 52, p. 488, 1924.
 ${ }^{3}$ International Critical Tables, vol. III, p. 210, McGraw-Hill Book Company, 1928.
 ${ }^{4}$ Holborn, L., Scheel, K., and Henning, F. "Wärmetabellen der PhysikalischTechnischen Reichsanstalt," Braunschweig, i919.

[^19]: ${ }_{1}$ Marks, Lionel S., and Davis, Harvey N. Tables and diagrams of the thermal properties of saturated and superheated steam. New York, 1909.

[^20]: ${ }^{1}$ The latest adopted value of $\delta=1.2028$ makes this factor 1.05822 , and in a few cases, especially at high temperatures, increases $I V^{\prime}$ by 0.001 over the values given in Tables 81 and 80 . ${ }^{2} 564.95$ with $\delta=1.2928, \quad{ }^{3} 11.7461$ with $\delta=1.2928$.

[^21]: ${ }^{1}$ Gravity is here considered in terms of force (expressed in dynes) that is exerted on a mass of one gram rather than its numerical equivalent, acceleration (expressed in centimeters and seconds), for which there is no convenient expression.
 ${ }^{2}$ See Bowie, William, Investigations of Gravity and Isostasy. U.S. Coast and Geodetic Survey, Special Publication No. 40, 1917, page 134.

[^22]: ${ }^{1}$ Kimball, Herbert H. " Duration and Intensity of Twilight," Monthly Weather Review 1916, 44:614-620.

[^23]: ${ }^{1}$ Ball, Frederick. Altitude Tables for let. 31° to 60°. London, 1907 ; [same] for lat. 0° to 30°, London, 910.

[^24]: ${ }^{1}$ Abbot, C. G. Smithsonian Solar Researches. Gerland’s Beitrage zur Geophysik, Bd. XVI, Heft 4, pp. 344-353, 1927.
 ${ }^{2}$ Fowle, F. E. Water vapor transparency to low-temperature radiation. Smithsonian Misc. Coll., vol. 68, no. 8, 1917.

[^25]: ${ }^{1}$ Fowle, F. E. Atmospheric ozone: Its relation to some solar and terrestrial phenomena. Smithsonian Misc. Coll., vol. 81, No. 11, 1929.

[^26]: Smithsonian Tables.

[^27]: SMITHSONIAN TABLES.

[^28]: Smithbonian Tables.

[^29]: Smithsonian Tables

[^30]: Note.-Stations with asterisk appear in the "Réseau Mondial" of the British Meteorological Office for 1922. (London, 1929.)

[^31]: Smithsonian Tables

