TABLE 1.-TEMPERATURE CONVERSION TABLE .

The numbers in boldface type refer to the temperature either in degrees Centigrade or Fahrenheit which it is desired to convert into the other scale.

Centi-	0	F	4388	4406	4474	44460	4478	4486	4514	4532	4550	4568	4586	4604	4622	4640	4658	4676	4694	4712	4730	4748	4/60	4/84	4007	10204	4020	4650	40/4	4892	4910	4046	4964	4982	2000
converting from degrees	2420 to 3000		2420	2430	2440	2450	2470	2480	2490	2500	2510	2520	2530	2540	2550	2560	2570	2580	2590	2600	2610	2620	2630	2040	0007	0007	0/07	0807	000	2700	2720	2730	2740	2750	00/7
ng from	6	U	1327	1332	1338	1340	1354	1360	1366	1371	1377	1382	1388	1393	1399	1404	1410	1416	1421	1427	1432	1438	1443	1447	1454	1400	1400	14/1	14//	1482	1400	1400	150	1510	0101
converti	10	F	3020	3038	2020	3007	3110	3128	3146	3164	3182	3200	3218	3236	3254	3272	3290	3308	3326	3344	3362	3380	3378	2410	4040	2426	2470	2488	2200	3524	2550	3578	3596	3614	2000
while if	1660 to 2410		1660	1670	1000	1200	1710	1720	1730	1740	1750	1760	1770	1780	1790	1800	1810	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920	1930	1940	1050	1070	1980	1990	2000
he left,		U	8	910	250	921	932	938	943	949	954	8	996	971	977	385	88	993	666	100	1010	1016	1021	7201	1032	1038	1043	1049	1034	1000	1000	1071	1082	1088	1023
mn on t	o	E.	1652	1670	1000	1700	1742	1760	1778	1796	1814	1832	1850	1868	1886	1904	1922	1940	1958	1976	1994	2012	2030	2048	0007	4503	7017	2170	2138	2126	2102	2217	2228	2246	+077
be found in the column on the left,	900 to 1650		006	910	920	930	050	096	970	980	066	1000	1010	1020	1030	1040	1050	1060	1070	1080	1090	1100	1110	1120	1130	1140	1150	1160	1170	1180	1190	1210	1220	1230	1240
punoj		lu	482	88	255	4 7 5 5 5	210	516	521	527	532	538	543	549	554	260	200	571	577	585	588	593	265	604	019	919	170	729	937	638	043	040	099	999	1/0/
2		E.	302	320	250	326	307	410	414	428	446	464	482	200	518	536	554	572	88	809	929	644	662	089	869	716	734	752	770	788	2000	0.42	098	878	880
equivalent will on the right.	150 to 890		150	160	170	180	061	210	212	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390	400	410	420	430	044	460	470	480
ie equi		U	99	71		88	86	28	100	104	110	116	121	127	132	138	143	149	154	160	166	171	177	182	188	193	367	204	210	216	221	777	238	243	546
Centigrade, the	0	F	84.2	86.0	87.8	89.6	91.4	25.5	96.8	98.6	100.4	102.2	104.0	105.8	107.6	109.4	111.2	113.0	114.8	116.6	118.4	120.2	122.0	123.8	125.6	127.4	129.2	131.0	132.8	134.6	136.4	138.7	141.8	143.6	145.4
renheit to Centigrade, the equivalent will be found in the column on the right	29 to 140	{	29	30	31	32	20	2 6	36	37	80	39	40	41	42	43	44	45	46	47	48	49	20	51	25	53	54	55	26	57	200	5 C	9	62	63
enheit to		C	-1.67	-1.11	-0.56	0	0.20	1.11	222	2.78	3.33	3.89	44.4	2.00	5.56	6.11	6.67	7.22	7.78	8.33	8.89	9.44	10.0	10.6	11.1	11.7	12.2	12.8	13.3	13.9	14.4	15.0	15.0	16.7	17.2
		12.	:	:	:	:	:	:	:	• •		: :									-459.4	-454	-436	-418	904	-385	-364	-346	-328	-310	-292	-274	1538	-220	-205
If converting from degrees Fahrenheit to grade to Fahrenheit the answer will be four	- 459.4 to 28		459.4	-450	-440	-430	-420	014	200	380	_370	-360	350	-340	-330	-320	-310	-300	-290	-280	-273	-270	-260	-250	-240	-230	-220	-210	-200	-190	-180	-170	200	-140	130
If conver grade to			273	-268	-262	-257	-251	-240	7240	220		1218	212	202	1201	1961	100	184	-179	_173	1169	-168	-162	-157	-151	-146	-140	-134	-129	-123	-118	-112	107	95.6	0.06 –

\$018 \$034 \$037 \$036 \$037 \$037 \$037 \$037 \$037 \$037 \$037 \$037	F 3.6 3.6 3.6 3.6 3.6 3.6 10.8 10.8 11.6 116.7 116.2 116.2 116.2
2770 2780 2780 2810 2810 2810 2830 2840 2850 2850 2860 2890 2910 2910 2940 2940 2950 2950 2950 2950 2950 2950 2950 295	factors factors 1 2 3 4 4 5 6 0 10
1521 1527 1538 1538 1543 1549 1554 1556 1577 1571 1571 1571 1571 1571 1571	C C 0.56 1.111 1.112 2.722 2.728 3.338 9.560 5.56
3650 3668 3668 3722 3722 3776 3776 3812 3812 3812 3823 3844 386 3844 386 392 4010 4010 4010 4064	4110 4110 41136 41172 4226 4226 4226 4226 4226 4226 4226 42
2010 2020 2030 2040 2040 2050 2050 2080 2110 2110 2110 2110 2110 2110 211	22550 22750 22760 22300 23300 23350 23360 23380 23380 23380 23380
1099 11104 11110 11110 11110 11110 11110 11109 11109 11109 11109 11100 11000 1000 100	1238 1249 1254 1254 1256 1277 1277 1282 1283 1293 1293 1310 1311
2300 2300 23300 23354 23354 23354 2444 2444 2444 2555 2555	27.73 27.73
1250 1250 1270 1280 1280 1300 1310 1330 1340 1350 1350 1370 1470 1470 1470 1480	1490 1500 1500 1530 1530 1550 1550 1600 1610 1640 1640
677 6882 6882 6938 6938 771 772 772 773 773 774 774 774 774 774 774 774 774	888 882 882 882 882 883 884 884 887 887 888 888 888 888 888 888
914 927 928 928 928 928 928 928 928 928 928 928	1340 13840 13840 14364 14724 14724 1508 1508 1508 1508 1618 1618
490 530 530 530 530 540 550 550 610 610 620 620 630 640 650 650 650 650 650 650 650 650 650 65	730 740 740 740 740 740 740 740 740 740 74
254 256 266 277 277 277 277 277 337 337 337 337 337	3383 3393 3393 3393 3393 3393 4410 4410 4410 4410 4410 4410 4410 441
7447 7447 7447 7447 7447 7447 7447 744	1975 1975 1975 1975 1975 1975 1975 1975
440000017777777777777777777777777777777	888 888 888 888 890 890 890 890 890 890
23.20.20.20.20.20.20.20.20.20.20.20.20.20.	11.12.22.22.22.22.22.22.22.22.22.22.22.2
186 188 188 188 188 188 188 188 188 188	\$25.00 \$4.00 \$4.00 \$6.00
11100000000000000000000000000000000000	113 114 115 116 117 118 118 119 119 119 119 119 119 119 119
1 1 233.3 233.	111.1 1006 1006 1006 1006 1006 1006 1006

* Prepared by Alfred Sauveur; used by the kind permission of Mrs. Sauveur.

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 120 (WHOLE VOLUME)

MSC SI

SMITHSONIAN PHYSICAL TABLES

NINTH REVISED EDITION
(Fourth Reprint)

PREPARED BY
WILLIAM ELMER FORSYTHE

CITY OF WASHINGTON
PUBLISHED BY THE SMITHSONIAN INSTITUTION PRESS
1969

Standard Book Number 87474-015-0 Library of Congress Catalog Card Number 54-60067 Distributed in the United States and Canada by Random House, Inc.

Distributed in the United Kingdom and Europe by David & Charles (Publishers), Ltd. South Devon House, Newton Abbot, Devon

Printed in the United States of America

PREFACE TO THE NINTH REVISED EDITION

This edition of the Smithsonian Physical Tables consists of 901 tables giving data of general interest to scientists and engineers, and of particular interest to those concerned with physics in its broader sense. The increase in size over the Eighth Edition is due largely to new data on the subject of atomic physics. The tables have been prepared and arranged so as to be convenient and easy to use. The index has been extended. Each set of data given herein has been selected from the best sources available. Whenever possible an expert in each field has been consulted. This has entailed a great deal of correspondence with many scientists, and it is a pleasure to add that, almost without exception, all cooperated generously.

When work first started on this edition, Dr. E. U. Condon, then director of the National Bureau of Standards, kindly consented to furnish any assistance that the scientists of that institution were able to give. The extent of this help can be noted from an inspection of the book. Dr. Wallace R. Brode, associate director, National Bureau of Standards, gave valuable advice and constructive

criticism as to the arrangement of the tables.

D. H. Menzel and Edith Jenssen Tebo, Harvard University, Department of Astronomy, collected and arranged practically all the tables on astronomy.

A number of experts prepared and arranged groups of related data, and others either prepared one or two tables or furnished all or part of the data for certain tables. Care has been taken in each case to give the names of those responsible for both the data and the selection of it. A portion of the data was taken from other published sources, always with the consent and approval of the author and publisher of the tables consulted. Due credit has been given in all instances. Very old references have been omitted. Anyone in need of these should refer to the Eighth Edition.

It was our intention to mention in this preface the names of all who took part in the work, but the list proved too long for the space available. We wish, however, to express our appreciation and thanks to all the men and women from various laboratories and institutions who have been so helpful in con-

tributing to this Ninth Edition.

Finally, we shall be grateful for criticism, the notification of errors, and new data for use in reprints or a new edition.

W. E. FORSYTHE

Astrophysical Observatory Smithsonian Institution January 1951

EDITOR'S NOTE

The ninth edition of the Physical Tables was first published in June 1954. In the first reprint (1956), the second reprint (1959), and the third (1964) a few misprints and errata were corrected.

CONTENTS

(For detailed breakdown of tables, see index.)

	Lages
Temperature conversion table (Table 1)	nt cover
Preface to the ninth revised edition	111
Introduction	1
Units of measurement	1
Conversion factors and dimensional formulae	2
Some fundamental definitions (Table 2)	4
Part 1. Geometrical and mechanical units	4
Part 2. Heat units	7
Part 3. Electric and magnetic units	10
Fundamental standards (Table 3)	13
Part 1. Selection of fundamental quantities	13
Part 2. Some proposed systems of units	15
Part 3. Electric and magnetic units	16
Part 4. The ordinary and the ampere-turn magnetic units	18 10
The new (1948) system of electrical units (Table 4)	I.
Relative magnitude of the old international electrical units and the new 1948	20
absolute electrical units (Table 5)	20
Relative values of the three systems of electrical units (Table 6)	20
Conversion factors for units of energy (Table 7)	21
Former electrical equivalents (Table 8)	22
Some mathematical tables (Tables 9-15)	23- 36
Treatment of experimental data (Tables 16-25)	37- 45
General physical constants (Tables 26-28)	46- 55
Common units of measurement (Tables 29-36)	56- 69 70- 78
Constants for temperature measurement (1 ables 57-51)	79- 86
The blackbody and its radiant energy (Tables 52–57)	87- 97
Photometry (Tables 58–77). Emissivities of a number of materials (Tables 78–84)	98-101
Characteristics of a number of materials (1 ables 70-04)	90-101
Characteristics of some light-source materials, and some light sources (Tables	102-111
85–102)	112-116
Temperature characteristics of materials (Tables 111–125)	117 130
Changes in freezing and boiling points (Tables 126–129)	131 135
Heat flow and thermal conductivity (Tables 130–141)	136_144
Thermal expansion (Tables 142–146)	145_154
Specific heat (Tables 147–158)	155_164
Latent heat (Tables 159–164)	165_167
Latent heat (Tables 159–164)	168_178
Heats of combustion (Tables 171–183)	179-186
Heats of combustion (Tables 171–183)	187-228
Characteristics of some building materials (Tables 210–217)	229-231
Physical properties of leather (Tables 218–223)	232-233
Values of physical constants of different rubbers (Tables 224-229)	234-238
Characteristics of plastics (Tables 230-232)	239-240
Properties of fibers (Tables 233-236)	241-245
Properties of woods (Tables 237–240)	246-258
Temperature, pressure, volume, and weight relations of gases and vapors (Tables	
24Î-253) Thermal properties of gases (Tables 254-260)	259-267
Thermal properties of gases (Tables 254–260)	268-277
The Joule-Thomson effect in fluids (Tables 261–267)	278-281
Compressibility (Tables 268–280)	282-290
Densities (Tables 281-295)	
Velocity of sound (Tables 296–300)	306-308
Acoustics (Tables 301–310A)	309-317
Viscosity of fluids and solids (Tables 311–338)	318-336
Aeronautics (Tables 339–346A)	337-353
Diffusion, solubility, surface tension, and vapor pressure (Tables 347-369)	354-374
Various electrical characteristics of materials (Tables 370–406)	375-396
Electrolytics conduction (Tables 407–415)	397-403

	Pages
Electrical and mechanical characteristics of wire (Tables 416-428)	404-420
Some characteristics of dielectrics (Tables 429-452)	
Radio propagation data (Tables 453–465)	434-450
Magnetic properties of materials (Tables 466–494)	451–467
Geomagnetism (Tables 495-512)	468-502
Magneto-optic effects (Tables 513-521)	503-508
Optical glass and optical crystals (Tables 522–555)	509-534
Transmission of radiation (Tables 556–573)	333-348
Rotation of plane of polarized light (Tables 593–597)	
Media for determinations of refractive indices with the microscope (Tables	337-300
598–601)	561
Photography (Tables 602–609)	
Standard wavelengths and series relations in atomic spectra (Tables 610-624)	568-585
Molecular constants of diatomic molecules (Tables 625–625a)	
The atmosphere (Tables 626–630)	592-595
Densities and humidities of moist air (Tables 631–640)	596-605
The barometer (Tables 641-648)	606-613
Atmospheric electricity (Tables 649–653)	614-617
Atomic and molecular data (Tables 654-659)	
	625–629
	630–634
	635–637
	638-642
	643–650 651–671
Nuclear physics (Tables 713-730)	672-691
	692-705
Fission (Tables 785–793).	
Cosmic rays (Tables 794–801).	710-713
Gravitation (Tables 802-807)	714-718
Solar radiation (Tables 808–824)	719–727
Astronomy and astrophysics (Tables 825–884)	728–771
Oceanography (Tables 885–899)	772-779
The earth's rotation: its variation (Table 900)	780
General conversion factors (Table 901)	781–785
Index	787

INTRODUCTION

UNITS OF MEASUREMENT

The quantitative measure of anything is expressed by two factors—one, a certain definite amount of the kind of physical quantity measured, called the unit; the other, the number of times this unit is taken. A distance is stated as 5 meters. The purpose in such a statement is to convey an idea of this distance in terms of some familiar or standard unit distance. Similarly quantity of matter is referred to as so many grams; of time, as so many seconds, or minutes, or hours.

The numerical factor definitive of the magnitude of any quantity must depend on the size of the unit in terms of which the quantity is measured. For example, let the magnitude factor be 5 for a certain distance when the mile is used as the unit of measurement. A mile equals 1,760 yards or 5,280 feet. The numerical factor evidently becomes 8,800 and 26,400, respectively, when the yard or the foot is used as the unit. Hence, to obtain the magnitude factor for a quantity in terms of a new unit, multiply the old magnitude factor by the ratio of the magnitudes of the old and new units; that is, by the number of the new

units required to make one of the old.

The different kinds of quantities measured by physicists fall fairly definitely into two classes. In one class the magnitudes may be called extensive, in the other, intensive. To decide to which class a quantity belongs, it is often helpful to note the effect of the addition of two equal quantities of the kind in question. If twice the quantity results, then the quantity has extensive (additive) magnitude. For instance, two pieces of platinum, each weighing 5 grams, added together weigh 10 grams; on the other hand, the addition of one piece of platinum at 100° C to another at 100° C does not result in a system at 200° C. Volume, entropy, energy may be taken as typical of extensive magnitudes; density, temperature and magnetic permeability, of intensive magnitudes.

The measurement of quantities having extensive magnitude is a comparatively direct process. Those having intensive magnitude must be correlated with phenomena which may be measured extensively. In the case of temperature, a typical quantity with intensive magnitude, various methods of measurement have been devised, such as the correlation of magnitudes of temperature

with the varying lengths of a thread of mercury.

Fundamental units.—It is desirable that the fewest possible fundamental unit quantities should be chosen. Simplicity should regulate the choice—simplicity first, psychologically, in that they should be easy to grasp mentally, and second, physically, in permitting as straightforward and simple definition as possible of the complex relationships involving them. Further, it seems desirable that the units should be extensive in nature. It has been found possible to express all measurable physical quantities in terms of five such units: first, geometrical considerations—length, surface, etc.—lead to the need of a length; second, kinematical considerations—velocity, acceleration, etc.—introduce time; third, mechanics—treating of masses instead of immaterial points—in-

troduces matter with the need of a fundamental unit of mass; fourth, electrical, and fifth, thermal considerations require two more such quantities. The dis-

covery of new classes of phenomena may require further additions.

As to the first three fundamental quantities, simplicity and good use sanction the choice of a length, L, a time interval, T, and a mass, M. For the measurement of electrical quantities, good use has sanctioned two fundamental quantities—the dielectric constant, K, the basis of the "electrostatic" system, and the magnetic permeability, μ , the basis of the "electromagnetic" system. Besides these two systems involving electrical considerations, there is in common use a third one called the "absolute" system, which will be referred to later. For the fifth, or thermal fundamental unit, temperature is generally chosen.

Derived units.—Having selected the fundamental or basic units—namely, a measure of length, of time, of mass, of permeability or of the dielectric constant, and of temperature-it remains to express all other units for physical quantities in terms of these. Units depending on powers greater than unity of the basic units are called "derived units." Thus, the unit volume is the volume of a cube having each edge a unit of length. Suppose that the capacity of some volume is expressed in terms of the foot as fundamental unit and the volume number is wanted when the yard is taken as the unit. The yard is three times as long as the foot and therefore the volume of a cube whose edge is a yard is $3 \times 3 \times 3$ times as great as that whose edge is a foot. Thus the given volume will contain only 1/27 as many units of volume when the yard is the unit of length as it will contain when the foot is the unit. To transform from the foot as old unit to the yard as new unit, the old volume number must be multiplied by 1/27, or by the ratio of the magnitude of the old to that of the new unit of volume. This is the same rule as already given, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the present case, since, with the method of measurement here adopted, a volume number is the cube of a length number, the ratio of two units of volume is the cube of the ratio of the intrinsic values of the two units of length. Hence, if l is the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of volume is l^3 . Similarly the ratio of two units of area would be l^2 , and so on for other quantities.

CONVERSION FACTORS AND DIMENSIONAL FORMULAE

For the ratio of length, mass, time, temperature, dielectric constant, and permeability units the small bracketed letters, [l], [m], [t], $[\theta]$, [k], and $[\mu]$ will be adopted. These symbols will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by these small bracketed letters as well as the powers of them involved in any particular unit are known, the factor for the transformation is at once obtained. Thus, in the above example, the value of l was 1/3, and the power involved in the expression for volume was 3; hence the factor for transforming from cubic feet to cubic yards was l^3 or $1/3^3$ or 1/27 These factors will be called conversion factors.

¹ Because of its greater psychological and physical simplicity, and the desirability that the unit chosen should have extensive magnitude, it has been proposed to choose as the fourth fundamental quantity a quantity of electrical charge, e. The standard units of electrical charge would then be the electronic charge. For thermal needs, entropy has been proposed. While not generally so psychologically easy to grasp as temperature, entropy is of fundamental importance in thermodynamics and has extensive magnitude. (Tolman, R. C., The measurable quantities of physics, Phys. Rev., vol. 9, p. 237, 1917.)

To find the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities, length, mass, time, etc., are involved. Thus a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or $\lfloor L/T \rfloor$, and acceleration by a velocity number divided by an interval-of-time number, or $\lfloor L/T^2 \rfloor$, and so on, and the corresponding ratios of units must therefore enter in precisely the same degree. The factors would thus be for the just-stated cases, $\lfloor l/t \rfloor$ and $\lfloor l/t^2 \rfloor$. Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called *dimensional equations*. Thus $\lfloor E \rfloor = \lfloor ML^2T^{-2} \rfloor$ will be found to be the dimensional equation for energy, and $\lfloor ML^2T^{-2} \rfloor$ the dimensional formula for it. These expressions will be distinguished from the conversion factors by the use of bracketed capital letters.

In general, if we have an equation for a physical quantity,

$$Q = CL^aM^bT^c$$
,

where C is a constant and L, M, T represent length, mass, and time in terms of one set of units, and it is desired to transform to another set of units in terms of which the length, mass, and time are L_1 , M_1 , T_1 , we have to find the value of L_1/L , M_1/M , T_1/T , which, in accordance with the convention adopted above, will be l, m, t, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_1 = Ll$, $M_1 = Mm$, $T_1 = Tt$, and if Q_1 be the new quantity number,

$$Q_1 = CL_1{}^a M_1{}^b T_1{}^c, = CL^a l^a M^b m^b T^c t^c = Q l^a m^b t^c,$$

or the conversion factor is $[l^a m^b t^c]$, a quantity precisely of the same form as the dimension formula $[L^a M^b T^c]$.

Dimensional equations are useful for checking the validity of physical equations. Since physical equations must be homogeneous, each term appearing in them must be dimensionally equivalent. For example, the distance moved by a uniformly accelerated body is $s=v_0t+\frac{1}{2}at^2$. The corresponding dimensional equation is $[L] = [(L/T)T] + [(L/T^2)T^2]$, each term reducing to [L].

Dimensional considerations may often give insight into the laws regulating physical phenomena.² For instance, Lord Rayleigh, in discussing the intensity of light scattered from small particles, in so far as it depends upon the wavelength, reasons as follows:³

The object is to compare the intensities of the incident and scattered ray; for these will clearly be proportional. The number (i) expressing the ratio of the two amplitudes is a function of the following quantities:—V, the volume of the disturbing particle; r, the distance of the point under consideration from it; λ , the wavelength; c, the velocity of propagation of light; D and D', the original and altered densities: of which the first three depend only on space, the fourth on space and time, while the fifth and sixth introduce the consideration of mass. Other elements of the problem there are none, except mere numbers and angles, which do not depend upon the fundamental measurements of space, time, and mass. Since the ratio i, whose expression we seek, is of no dimensions in mass, it follows at once that D and D' occur only under the form D:D', which is a simple number and may therefore be omitted. It remains to find how i varies with V, r, λ, c .

Now, of these quantities, c is the only one depending on time; and therefore, as i is of no dimensions in time, c cannot occur in its expression. We are left, then, with V, r, and λ ; and from what we know of the dynamics of the question, we may be sure that i varies directly as V and inversely as r, and must therefore be proportional to $V \div \lambda^2 r$, V being of three di-

Buckingham, E., Phys. Rev., vol. 4, p. 345, 1914; also Philos. Mag., vol. 42, p. 696, 1921.
 Philos. Mag., ser. 4, vol. 41, p. 107, 1871. See also Robertson, Dimensional analysis, Gen. Electr. Rev., vol. 33, p. 207, 1930.

mensions in space. In passing from one part of the spectrum to another λ is the only

quantity which varies, and we have the important law:

When light is scattered by particles which are very small compared with any of the wavelengths, the ratio of the amplitudes of the vibrations of the scattered and incident light varies inversely as the square of the wavelength, and the intensity of the lights themselves as the inverse fourth power.

The dimensional and conversion-factor formulae for the more commonly occurring derived units are given in Table 30.

TABLE 2.—SOME FUNDAMENTAL DEFINITIONS

Part 1.—Geometrical and mechanical units 4

Activity (power).—Time rate of doing work; unit, the watt.

Angle (ϕ) .—The ratio of the length of its circular arc to its radius; unit, the radian.

Angstrom.—Unit of wavelength = 10⁻¹⁰ meter. (See Table 522.)

Angular acceleration $\left(a = \frac{d \omega}{d t}\right)$.—The rate of change of angular velocity.

Angular momentum (I_{ω}) .—The product of its moment of inertia about an axis through its center of mass perpendicular to its plane of rotation and its angular velocity.

Angular velocity.—The time rate of change of angle.

Area.—Extent of surface. Unit, a square whose side is the unit of length. The area of a surface is expressed as $S = CL^2$, where the constant C depends on the contour of the surface and L is a linear dimension. If the surface is a square and L the length of a side, C is unity; if a circle and L its diameter, C is $\pi/4$. (See Table 31.)

Atmosphere.—Unit of pressure. (See Table 260.)

English normal = $14.7 \text{ lb/in.}^2 = 29.929 \text{ in.Hg} = 760.18 \text{ mmHg} (32°F)$ U. S.= $760 \text{ nmHg} (0°C) = 29.921 \text{ in.Hg} = 14.70 \text{ lb/in.}^2$

Avogadro number.—Number of molecules per mole, 6.0228×10²³ molecules/mole.

Bar. 4a—International unit of pressure 106 dyne/cm².

Barye.—cgs pressure unit, one dyne/cm².

Carat.—The diamond carat standard in U. S.=200 mg. Old standard=205.3 mg=3.168 grains. The gold carat: pure gold is 24 carats; a carat is 1/24 part.

Circular area.—The square of the diameter = $1.2733 \times$ true area. True area = $0.785398 \times$ circular area.

Circular inch.—Area of circle 1 inch in diameter.

Cubit = 18 inches

⁴ For dimensional formula see Table 30, part 2.

⁴a Some writers have used this term for 1 dyne/cm².

Dalton (atomic mass unit M_0).—Unit of mass, 1/16 mass of oxygen ($_80^{16}$) atom, 1.66080 \times 10⁻²⁴ g (Phys. scale). (See Table 26.)

Density.—The mass per unit volume. The specific gravity of a body is the ratio of a density to the density of a standard substance. Water and air are commonly used as the standard substance.

Digit.—3/4 in.; 1/12 the apparent diameter of the sun or moon.

Diopter.—Unit of "power of a lens." The diopter = the reciprocal of the focal length in meters.

Dyne.—The cgs, unit of force = that unbalanced force which acting for 1 second on body of 1 gram mass produces a velocity change of 1 cm/sec.

Energy.—The work done by a force produces either a change in the velocity of a body or a change of its shape or position or both. In the first case it produces a change of kinetic energy, in the second, of potential energy.

Erg.—The cgs unit of work and energy = the work done by 1 dyne acting through 1 centimeter.

Fluidity.—Reciprocal of viscosity.

Foot-pound.—The work which will raise 1 pound body 1 foot high for standard g.

Foot-poundal.—The work done when a force of 1 poundal acts through 1 foot.

Force (f).—Force is the agent that changes the motion of bodies and is measured by the rate of change of momentum it produces on a free body.

Gal = gravity standard = an acceleration of 1 cm sec⁻².

 $Giga = 10^9.$

Gram.—The standard of mass in the metric system. (See Table 31.)

Gram-centimeter.—The cgs gravitation unit of work.

Gram-molecule.—The mass in grams of a substance numerically equal to its molecular weight.

Gravitation constant.—(G, in formula $F = Gm_1m_2/r^2$) = 6.670×10⁻⁸ dyne cm² g⁻².

Gravity (g).—The attraction of the earth for any mass. It is measured by the acceleration produced on the mass under standard conditions. This acceleration g equals 980.665 cm \sec^{-2} or 32.17 ft \sec^{-2} .

Horsepower.—A unit of mechanical power. The English and American horsepower is defined by some authorities as 550 foot-pounds/sec and by others as 746 watts. The continental horsepower is defined by some authorities as 75 kgm/sec and by others as 736 watts.

Joule.—Unit of work (energy) = 10^7 ergs. Joules = (volts² × sec)/ohms = watts × sec = amperes² × ohms × sec = volts × amperes × sec.

Kilodyne.—1,000 dynes. About 0.980 gram weight.

SMITHSONIAN PHYSICAL TABLES

Kinetic energy.—The energy associated with the motion $=\frac{mv^2}{2}$ in ergs if m is in grams and v in cm/sec.

Linear acceleration $\left(a = \frac{dv}{dt}\right)$.—The rate of change of velocity.

Liter.—See Table 32.

Loschmidt number.—The number of molecules per cm³ of an ideal gas at 0° C and normal pressure = 2.6870×10^{19} molecules/cm³.

Megabaryes.—Unit of pressure = 1,000,000 baryes = 1 bar = 0.987 atmosphere.

Meter.—See Table 31.

Micro.—A prefix indicating the millionth part. (See Table 901.)

Micron (μ) = one-millionth of a meter = one-thousandth of a millimeter.

Mil.—One-thousandth of an inch.

Mile.—Statute = 5,280 feet; nautical or geographical = 6,080.20 feet.

Milli.—A prefix denoting the thousandth part.

Modulus of elasticity.—Ratio of stress to strain. The dimension of strain, a change of length divided by a length, or change of volume divided by a volume, is unity.

Mole or mol.—Mass equal numerically to molecular weight of substance.

Momentum (M = mv).—The quantity of motion in the Newtonian sense; the product of the mass and velocity of the body.

Moment of inertia (I) of a body about an axis is the $\sum mr^2$, where m is the mass of a particle of the body and r its distance from the axis.

Newton.—The unit of force in the MKS system = 10⁵ dynes. (See Table 3, part 2.)

Pound weight.—A force equal to the earth's attraction for a mass of 1 pound. This force, acting on 1 lb mass, will produce an acceleration of 32.17 ft/sec².

Poundal.—The ft-lb sec unit of force. That unbalanced force which acting on a body of 1 lb mass produces an acceleration of 1 ft/sec².

Pi $(\pi) = 3.1416$. (See Table 11.)

Power.—Activity $\left(p = \frac{dW}{dt}\right)$ is the time rate of doing work.

Radian.—An angle subtended by an arc equal to the radius. This angle equals $180^{\circ}/\pi = 57.29578^{\circ} = 57^{\circ}17'45'' = 206265''$.

Resilience.—The work done per unit volume of a body in distorting it to the elastic limit or in producing rupture.

Slug.—Mass (32.17 lb) acquiring acceleration 1 ft sec⁻² when continuously acted upon by force of 1 lb weight.

SMITHSONIAN PHYSICAL TABLES

Strain.—The deformation produced by a stress divided by the original dimension.

Stress.—The force per unit area of a body that tends to produce a deformation.

Tenth-meter.— 10^{-10} meter = 1 angstrom.

Torque, moment of a couple, about an axis is the product of a force and the distance of its line of action from the axis.

Volume.—Extent of space. Unit, a cube whose edge is the unit of length. The volume of a body is expressed as $V = CL^3$. The constant C depends on the shape of the bounding surfaces.

Velocity
$$\left(\mathbf{v} = \frac{dL}{dt}\right)$$
 is distance traversed per unit time.

Viscosity.—The property of a liquid by virtue of which it offers resistance to flow. The coefficient of viscosity is the tangential force that must be applied to the upper surface of a 1-cm cube of the liquid on an edge to produce a velocity of 1 cm/sec in the face when the lower face is at rest.

Work (W).—The work done by an unbalanced force is the product of the force by the component of the resulting displacement produced in the direction of the force.

Young's modulus.—Ratio of longitudinal stress within the proportional limit to the corresponding longitudinal strain.

Part 2.-Heat Units 5

Blackbody.—A body that absorbs all the radiation that falls upon it. From this definition and certain assumptions it can be shown that its total radiation = σT^4 (Stefan-Boltzmann Law) and that the spectral distribution of the radiation is given by the Planck Law: ^{5a}

$$J_{\lambda} = \frac{Ac_1\lambda^{-5}}{e^{\frac{c_2}{\lambda \tau}} - 1}$$

Brightness temperature (S).—The temperature of a non-blackbody determined from its brightness (with an optical pyrometer, see Table 77) as if it were a blackbody. Such temperatures are always less than the true temperatures.

British thermal unit (Btu).—The amount of heat required to raise 1 pound of water at 60°F, 1°F. This unit is defined for various temperatures, but the general usage seems to be to take the Btu as equal to 252 calories. (See calorie. See Table 7.)

Calorie.—The amount of heat necessary to raise 1 gram of water at 15°C, 1°C.

5a An easier way to write this exponential term is:

.
$$J_{\lambda} = c_1 \lambda^{-5} / \left[\left(exp \left(\frac{c_2}{\lambda T} \right) \right) - 1 \right]$$

This form will be used hereafter.

⁵ For dimensional formulas see Table 30, part 2.

There are various calories depending upon the interval chosen. Sometimes the unit is written as the gram-calorie or the kilogram-calorie, the meaning of which is evident. There is some tendency to define the calorie in terms of its mechanical equivalent. Thus the National Bureau of Standards defines the calorie as 4.18400 joules. At the International Steam Table Conference held in London in 1929 the international calorie was defined as 1/860 of the international watt hour (see Table 7), which made it equal to 4.1860 international joules. With the adoption of the absolute system of electrical units, this becomes 1/859.858 watt hours or 4.18674 joules. The Btu was defined at the same time as 251.996 international calories. Thus, until such a time as these differences are taken care of, there will be some confusion.

Celsius temperature scale.—The present-day designation of the scale formerly known as the Centigrade scale.

Centigrade temperature scale.—The temperature scale that divides the interval between the ice point, taken as 0°C, and the boiling point of water with 100°.

Coefficient of thermal expansion.—Ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal), to the change of temperature.

Color temperature 6 (T_8).—The color temperature of a non-blackbody is the temperature at which it is necessary to operate the blackbody so that the color of its emitted light will match that of the source studied.

Emissivity.—Ratio of the energy radiated at any temperature by a non-blackbody to that radiated by a blackbody at the same temperature. The spectral emissivity is for a definite wavelength, and the total emissivity is for all wavelengths.

Enthalpy.—Total energy that a system possesses by virtue of its temperature. Thus, where U is the internal energy, then the enthalpy = U + PV where PV represents the external work.

Entropy.—A measure of the extent to which the energy of the system is unavailable.

Fahrenheit temperature scale.—A scale based on the freezing point of water taken as 32° and the boiling point of water taken as 212°.

Graybody.—A body that has a constant emissivity for all wavelengths.

Heat.—Energy transferred by a thermal process. Heat can be measured in terms of the dynamical units of energy, as the erg, joule, etc., or in terms of the amount of energy required to produce a definite thermal change in some substance, as for example the energy required per degree to raise the temperature of a unit mass of water at some temperature. The mechanical unit of heat has the dimensional formula of energy (ML^2T^{-2}) . The thermal unit (H), as used in many of these tables, is $(M\theta)$ where θ denotes a temperature interval.

Joule's equivalent (J) or the mechanical equivalent of heat.—Conversion factor for changing an expression of mechanical energy into an expression of thermal energy or vice versa (4.1855 J/cal).

⁶ Gen. Electr. Rev., vol. 47, p. 26, 1944.

Kelvin temperature scale.—Scale of temperature based on equal work for equal temperatures for a working substance in a carnot cycle = Celsius (Centigrade) scale + 273.16.

Langley (ly).—A new unit of radiation, surface density, has been suggested 7 which equals 1 calorie (15°C) per cm².

Latent heat.—Quantity of heat required to change the state of a unit mass of matter.

Pyron.—A unit of radiant intensity = 1 cal cm⁻² min⁻¹.

Radiant energy.—Energy traveling in the form of electromagnetic waves.

Radiant temperature.—The temperature obtained by use of a total radiation pyrometer when sighted upon a non-blackbody. This is always less than the true temperature.

Rankin temperature scale.—Absolute Fahrenheit scale = Fahrenheit scale + 459.7.

Reaumur temperature scale.—A scale based upon the freezing point of water taken as 0°R and the boiling point of water taken as 80°R.

Specific heat.—Ratio of the heat capacity of a substance to the heat capacity of an equal mass of water. When so expressed, the specific heat is a dimensionless number.

Standard temperature.—A temperature that depends upon some characteristic of some substance, such as the melting, boiling, or freezing point, that is used as a reference standard of temperature.

Thermal capacitance.—The heat capacity of a body is the limiting value, as T approaches zero, of the ratio $\frac{\Delta Q}{\Delta T}$, where ΔT is the rise in temperature

resulting from the addition to the body of a quantity of heat equal to ΔQ .

Thermal conductivity.—Quantity of heat, Q, which flows normally across a surface of unit area per unit of time and per unit of temperature gradient normal to the surface. In thermal units it has the dimensional formula $(H\theta^{-1}L^{-1}T^{-1})$ or $(ML^{-1}T^{-1})$, in mechanical units $(MLT^{-3}\theta^{-1})$.

Thermodynamic temperature.—See Kelvin temperature scale.

Thermodynamics.—Study of the flow of heat.

Thermodynamic laws: Zeroth law.—Two systems that are in thermal equilibrium with a third are in thermal equilibrium with each other. First law: When equal quantities of mechanical effect are produced by any means whatever from purely thermal effects, equal quantities of heat are put out of existence or are created. Second law: It is impossible to transfer heat from a cold body to a hot body without the performance of mechanical work. Third law: It is impossible by any means whatever to superpose only the images of several light sources to obtain an image brighter than the brightest of the source.

⁷ Aldrich et al., Science, vol. 106, p. 225, 1947.

A system of units of electric and magnetic quantities requires four fundamental quantities. A system in which length, mass, and time constitute three of the fundamental quantities is known as an "absolute" system. There are two absolute systems of electric and magnetic units. One is called the electrostatic, in which the fourth fundamental quantity is the dielectric constant, and one is called the electromagnetic, in which the fourth fundamental quantity is magnetic permeability. Besides these two systems there will be described a third, to be known as the absolute system, that was introduced January 1, 1948. (See Table 4.)

In the electrostatic system, unit quantity of electricity, Q, is the quantity which exerts unit mechanical force upon an equal quantity a unit distance from it in a vacuum. From this definition the dimensions and the units of all the other electric and magnetic quantities follow through the equations of the mathematical theory of electromagnetism. The mechanical force between two quantities of electricity in any medium is

$$F = \frac{QQ'}{Kr^2},$$

where K is the dielectric constant, characteristic of the medium, and r the distance between the two points at which the quantities Q and Q' are located. K is the fourth quantity entering into dimensional expressions in the electrostatic system. Since the dimensional formula for force is $[MLT^{-2}]$, that for Q is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}]$.

The electromagnetic system is based upon the unit of the magnetic pole strength (see Table 466). The dimensions and the units of the other quantities are built up from this in the same manner as for the electrostatic system. The mechanical force between two magnetic poles in any medium is

$$F=\frac{mm'}{\mu r^2},$$

in which μ is the permeability of the medium and r is the distance between two poles having the strengths m and m'. μ is the fourth quantity entering into dimensional expressions in the electromagnetic system. It follows that the dimensional expression for magnetic pole strength is $[M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

The symbols K and μ are sometimes omitted in the dimensional formulae so that only three fundamental quantities appear. There are a number of objections to this. Such formulae give no information as to the relative magnitudes of the units in the two systems. The omission is equivalent to assuming some relation between mechanical and electrical quantities, or to a mechanical explanation of electricity. Such a relation or explanation is not known.

The properties K and μ are connected by the equation $1/\sqrt{K\mu} = v$, where v is the velocity of an electromagnetic wave. For empty space or for air, K and μ being measured in the same units, $1\sqrt{K\mu} = c$, where c is the velocity of light in vacuo, 2.99776×10^{10} cm per sec. It is sometimes forgotten that the omission of the dimensions of K or μ is merely conventional. For instance, magnetic field intensity and magnetic induction apparently have the same dimensions when μ is omitted. This results in confusion and difficulty in understanding the theory of magnetism. The suppression of μ has also led to the use of the "centimeter" as a unit of capacity and of inductance; neither is physically the same as length.

SMITHSONIAN PHYSICAL TABLES

Capacitance of an insulated conductor is proportional to the ratio of the quantity of electricity in a charge to the potential of the charge. The dimensional formula is the ratio of the two formulae for electric quantity and potential or $[M^{3}L^{2}T^{-1}K^{3}/M^{3}L^{3}T^{-1}K^{-3}]$ or [LK].

Conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the current flowing through it to the difference of potential between its ends. The dimensional formula is the ratio of the formulae for current and potential or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}/M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}K^{-\frac{1}{2}}]$ or $[LT^{-1}K]$.

Electrical conductivity, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is $[M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{3}{2}}/L^{2}(M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}K^{-\frac{3}{2}}/L)T]$ or $[T^{-1}K]$.

Electric current (statampere-unit quantity) is quantity of electricity flowing through a cross section per unit of time. The dimensional formula is the ratio of the formulae for electric quantity and for time or $[M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{1}{2}}/T]$ or $[M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-2}K^{\frac{1}{2}}]$.

Electric field intensity strength at a point is the ratio of the force on a quantity of electricity at a point to the quantity of electricity. The dimensional formula is therefore the ratio of the formulae for force and electric quantity or $[MLT^{-2}/M^{3}L^{\frac{3}{2}}T^{-1}K^{\frac{3}{2}}]$ or $[M^{\frac{3}{2}}L^{-\frac{3}{2}}T^{-1}K^{-\frac{3}{2}}]$.

Electric potential difference and electromotive force (emf) (statvoltwork = 1 erg).—Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is the ratio of the formulae for work and electrical quantity or $[ML^2T^{-2}/M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}K^{\frac{3}{2}}]$ or $[M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}K^{-\frac{3}{2}}]$.

Electric surface density of an electrical distribution at any point on a surface is the quantity of electricity per unit area. The dimensional formula is the ratio of the formulae for quantity of electricity and for area or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}K^{\frac{1}{2}}]$.

Quantity of electricity has the dimensional formula $[M^{i}L^{i}T^{-i}K^{i}]$, as shown above.

Resistance is the reciprocal of conductance. The dimensional formula is $[L^{-1}TK^{-1}]$.

Resistivity is the reciprocal of conductivity. The dimensional formula is $[TK^{-1}]$.

Specific inductive capacity is the ratio of the inductive capacity of the substance to that of a standard substance and therefore is a number.

Exs.—Find the factor for converting quantity of electricity expressed in ft-grain-sec units to the same expressed in cgs units. The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-1}k^{\frac{1}{2}}]$, in which m=0.0648, l=30.48, t=1, k=1; the factor is $0.0648^{\frac{1}{2}}\times 30.48^{\frac{3}{2}}$, or 42.8.

Find the factor required to convert electric potential from mm-mg-sec units to cgs units. The formula is $[m^{i}l^{i}t^{-1}k^{-i}]$, in which m=0.001, l=0.1, t=1, k=1; the factor is $0.001^{i} \times 0.1^{i}$, or 0.01.

Find the factor required to convert electrostatic capacity from ft-grain-sec and specific-inductive capacity 6 units to cgs units. The formula is [lk] in which l = 30.48, k = 6: the factor is 30.48×6 , or 182.88.

Many of the magnetic quantities are analogues of certain electric quantities. The dimensions of such quantities in the electromagnetic system differ from those of the corresponding electrostatic quantities in the electrostatic system only in the substitution of permeability μ for K.

Conductance is the reciprocal of resistance, and the dimensional formula is $[L^{-1}T\mu^{-1}]$.

Conductivity is the quantity of electricity transmitted per unit area per unit potential gradient per unit of time. The dimensional formula is $[M^{\frac{3}{2}}L^{\frac{3}{2}}\mu^{-\frac{3}{2}}/L^2(M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{3}{2}}/L)T]$ or $[L^{-2}T\mu^{-1}]$.

Current, I (abampere-unit magnetic field, r=1 cm), flowing in circle, radius r, creates magnetic field at its center, $2\pi I/r$. Dimensional formula is product of formulae for magnetic field intensity and length or $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$.

Electric field intensity is the ratio of electric potential or electromotive force and length. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-2}\mu^{\frac{1}{2}}]$.

Electric potential, or electromotive force (emf) (abvolt-work=1 erg), as in the electrostatic system, is the ratio of work to quantity of electricity. The dimensional formula is $[ML^2T^{-2}/M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}]$.

Electrostatic capacity is the ratio of quantity of electricity to difference of potential. The dimensional formula is $[L^{-1}T^2\mu^{-1}]$.

Intensity of magnetization (I) of any portion of a magnetized body is the ratio of the magnetic moment of that portion and its volume. The dimensional formula is $[M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{3}{2}}/L^{3}]$ or $[M^{\frac{3}{2}}L^{-\frac{3}{2}}T^{-1}\mu^{\frac{3}{2}}]$.

Magnetic field strength, magnetic intensity or magnetizing force (J) is the ratio of the force on a magnetic pole placed at the point and the magnetic pole strength. The dimensional formula is therefore the ratio of the formulae for a force and magnetic quantity, or $[MLT^{-2}/M^{\frac{3}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$ or $[M^{\frac{3}{2}}L^{-\frac{3}{2}}T^{-1}\mu^{-\frac{3}{2}}]$.

Magnetic flux (Φ) characterizes the magnetized state of a magnetic circuit. Through a surface enclosing a magnetic pole it is proportional to the magnetic pole strength. The dimensional formula is that for magnetic pole strength.

Magnetic induction (B) is the magnetic flux per unit of area taken perpendicular to the direction of the magnetic flux. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}/L^2]$ or $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

Magnetic moment (M) is the product of the pole strength by the length of the magnet. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

Magnetic pole strength or quantity of magnetism (m) has already been shown to have the dimensional formula $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$.

Magnetic potential or magnetomotive force at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is the ratio of the formulae for work and magnetic quantity $[ML^2T^{-2}/M^3L^{\frac{3}{2}}T^{-1}\mu^{\frac{1}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$.

Magnetic reluctance is the ratio of magnetic potential difference to magnetic flux. The dimensional formula is $[L^{-1}\mu^{-1}]$.

SMITHSONIAN PHYSICAL TABLES

Magnetic susceptibility (κ) is the ratio of intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is $[M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{\frac{1}{2}}/M^{\frac{1}{2}}L^{-\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ or $[\mu]$.

Mutual inductance of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula is the same as for self-inductance.

Peltier effect, coefficient of, is measured by the ratio of the quantity of heat and quantity of electricity. The dimensional formula is $[ML^2T^{-2}/M^{\frac{3}{2}}L^{\frac{1}{2}}\mu^{-\frac{3}{2}}]$ or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}]$, the same as for electromotive force.

Quantity of electricity is the product of the current and time. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{1}{2}}\mu^{-\frac{1}{2}}].$

Resistance of a conductor is the ratio of the difference of potential between its ends and the constant current flowing. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}/M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ or $[LT^{-1}\mu]$.

Resistivity is the reciprocal of conductivity as just defined. The dimensional formula is $[L^2T^{-1}\mu]$.

Self-inductance is for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is the product of the formulae for electromotive force and time divided by that for current or $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}} \times T \div M^{\frac{1}{2}}L^{\frac{1}{2}}T^{-1}\mu^{-\frac{1}{2}}]$ or $[L\mu]$.

Thermoelectric power is measured by the ratio of electromotive force and temperature. The dimensional formula is $[M^{\frac{1}{2}}L^{\frac{3}{2}}T^{-2}\mu^{\frac{1}{2}}\theta^{-1}]$.

Exs.—Find the factor required to convert intensity of magnetic field from ft-grain-min units to cgs units. The formula is $[m^{\frac{3}{2}-1}t^{-1}\mu^{-\frac{1}{2}}]$; m=0.0648, l=30.48, t=60, and $\mu=1$; the factor is $0.0648^{1} \times 30.48^{-1}$, or 0.046108.

How many cgs units of magnetic moment make one ft-grain-sec unit of the same quantity? The formula is $[m^2l\ t^{-1}\mu^1]$; m=0.0648, l=30.48, t=1, and $\mu=1$; the number

is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{5}{2}}$, or 1305.6.

If the intensity of magnetization of a steel bar is 700 in cgs units, what will it be in mm-mg-sec units? The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}\mu^{\frac{1}{2}}]$; $m=1000,\ l=10,\ t=1,\ \mu=1$; the intensity is $700\times 1000^{\frac{1}{2}}\times 10^{\frac{1}{2}}$, or 70000. Find the factor required to convert current from cgs units to earth-quadrant- 10^{-11} gram-sec units. The formula is $[m^{\frac{1}{2}}l^{\frac{1}{2}}t^{-\frac{1}{2}}]$; $m=10^{11},\ l=10^{-9},\ \mu=1$; the factor is

 $10^{\frac{11}{2}} \times 10^{-\frac{9}{2}}$, or 10.

Find the factor required to convert resistance expressed in cgs units into the same expressed in earth-quadrant- 10^{-11} gram-sec units. The formula is $[lt^{-1}\mu]$; $l=10^{-6}$, t=1, $\mu = 1$; the factor is 10^{-0} .

TABLE 3.—FUNDAMENTAL STANDARDS

Part 1.—Selection of fundamental quantities

The choice of the nature of the fundamental quantities already made does not sufficiently define the system for measurements. Some definite unit or arbitrarily chosen standard must next be taken for each of the fundamental quantities. This fundamental standard should have the qualities of permanence, reproducibility, and availability and be suitable for accurate measures. Once chosen and made it is called the primary standard and is generally kept at some central bureau—for instance, the International Bureau of Weights and Measures at Sèvres, France. A primary standard may also be chosen and made for derived units (e.g., the new absolute (1948) ohm standard), when it is simply a standard closely representing the unit and accepted for practical purposes, its value having been fixed by certain measuring processes. Secondary or reference standards are accurately compared copies, not necessarily duplicates, of the primaries for use in the work of standardizing laboratories and the production of working standards for everyday use.

Standard of length.—The primary standard of length which now almost universally serves as the basis for physical measurements is the meter. It is defined as the distance between two lines at 0° C on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "métre des Archives," which was made by Borda. Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten-millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is now defined as above and not in terms of the meridian length; hence, subsequent measures of the length of the meridian have not affected the length of the meter.

Standard of mass.—The primary standard of mass now almost universally used as the basis for physical measurements is the kilogram. It is defined as the mass of a certain piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogram des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of 4° C.

Copies of the International Prototype Meter and Kilogram are possessed by

the various governments and are called National Prototypes.

Standard of time.—The unit of time universally used is the mean solar second, or the 86400th part of the mean solar day. It is based on the average time of one rotation of the earth on its axis relatively to the sun as a point of reference = 1.002 737 91 sidereal second.

Standard of temperature.—The standard scale of temperature, adopted by the International Committee of Weights and Measures (1887), depends on the constant-volume hydrogen thermometer. The hydrogen is taken at an initial pressure at 0° C of 1 meter of mercury, 0° C, sea-level at latitude 45°. The scale is defined by designating the temperature of melting ice as 0° and of condensing steam as 100° under standard atmospheric pressure.

Thermodynamic (Kelvin) Scale (Centigrade degrees).—Such a scale independent of the properties of any particular substance, and called the thermodynamic, or absolute scale, was proposed in 1848 by Lord Kelvin. The temperature is proportional to the average kinetic energy per molecule of a perfect gas.

International temperature scale.—See Table 37.

Numerically different systems of units.—The fundamental physical quantities which form the basis of a system for measurements have been chosen and the fundamental standards selected and made. Custom has not however SMITHSONIAN PHYSICAL TABLES

generally used these standards for the measurement of the magnitudes of quantities but rather multiples or submultiples of them. For instance, for very small quantities the micron (μ) or one-millionth of a meter is often used. The following table ⁸ gives some of the systems proposed, all built upon the fundamental standards already described. The centimeter-gram-second (cm-g-sec or cgs) system proposed by Kelvin is the only one generally accepted.

Part 2.—Some proposed systems of units

	Weber and Gauss	Kelvin cgs	Moon 1891	Giorgi MKS (Prim. Stds.)	France 1914	B. A. Com., 1863	Practical (B. A. Com., 1873)	Strout 1891
Length	mm	cm	dm	m	m	m	10° cm	10° cm
Mass	mg	g	Kg	Kg	10 ⁶ g	g	10 ⁻¹¹ g	10⁻° g
			sec					
Time	sec	sec	10	sec	sec	sec	sec	sec

Further, the choice of a set of fundamental physical quantities to form the basis of a system does not necessarily determine how that system shall be used in measurements. In fact, upon any sufficient set of fundamental quantities, a great many different systems of units may be built. The electrostatic and electromagnetic systems are really systems of electric quantities rather than units. They were based upon the relationships $F = QQ'/Kr^2$ and $mm'/\mu r^2$, respectively. Systems of units built upon a chosen set of fundamental physical quantities may differ in two ways: (1) the units chosen for the fundamental quantities may be different; (2) the defining equations by which the system is built may be different.

The electrostatic system generally used is based on the centimeter, gram, second, and dielectric constant of a vacuum. Other systems have appeared, differing from this in the first way—for instance using the foot, grain, and second in place of the centimeter, gram, and second. A system differing from it in the second way is that of Heaviside which introduces the factor 4π at different places than is usual in the equations. There are similarly several systems of electromagnetic units in use.

Gaussian systems.—"The complexity of the interrelations of the units is increased by the fact that not one of the systems is used as a whole, consistently for all electromagnetic quantities. The 'systems' at present used are therefore combinations of certain of the systems of units."

Some writers ⁹ on the theory of electricity prefer to use what is called a Gaussian system, a combination of electrostatic units for purely electrical quantities and electromagnetic units for magnetic quantities. There are two such Gaussian systems in vogue—one a combination of cgs electrostatic and cgs electromagnetic systems, and the other a combination of the two corresponding Heaviside systems.

When a Gaussian system is used, caution is necessary when an equation contains both electric and magnetic quantities. A factor expressing the ratio between the electrostatic and electromagnetic units of one of the quantities has to be introduced. This factor is the first or second power of c, the number

⁸ Circular 60 of the National Bureau of Standards, Electric Units and Standards, 1916. The subsequent matter in this introduction is based upon this circular.

⁹ For example, A. G. Webster, Theory of electricity and magnetism, 1897; J. H. Jeans, Electricity and magnetism, 1911; H. A. Lorentz, The theory of electrons, 1909; and O. W. Richardson, The electron theory of matter, 1914.

of electrostatic units of electric charge in one electromagnetic unit of the same. There is sometimes a question as to whether electric current is to be expressed in electrostatic or electromagnetic units, since it has both electric and magnetic attributes. It is usually expressed in electrostatic units in the Gaussian system.

It may be observed from the dimensions of K given in Table 2, part 3, that $[I/K\mu] = [L^2/T^2]$ which has the dimensions of a square of a velocity. This velocity was found experimentally to be equal to that of light, when K and μ were expressed in the same system of units. Maxwell proved theoretically that $1/\sqrt{K\mu}$ is the velocity of any electromagnetic wave. This was subsequently proved experimentally. When a Gaussian system is used, this equation becomes $c/\sqrt{K\mu} = v$. For the ether K=1 in electrostatic units and $\mu=1$ in electromagnetic units. Hence c=v for the ether, or the velocity of an electromagnetic wave in the ether is equal to the ratio of the cgs electromagnetic to the cgs electrostatic unit of electric charge. This constant c is of primary importance in electrical theory. Its most probable value is 2.99776×10^{10} centimeters per second.

Part 3.-Electrical and magnetic units

Absolute ("practical") electromagnetic system (1948).—This electromagnetic system is based upon the units of 10^9 cm, 10^{-11} g, the sec and μ of the ether. The principal quantities are the resistance unit, the ohm= 10^9 emu units; the current unit, the ampere= 10^{-1} emu units; and the electromotive force unit, the volt= 10^8 emu units. (See Table 6.)

The International electric units.—The units used before January 1, 1948, in practical electrical measurements, however, were the "International Units." They were derived from the "practical" system just described, or as the latter is sometimes called, the "absolute" system. These international units were based upon certain concrete standards that were defined and described. With such standards electrical comparisons can be more accurately and readily made than could absolute measurements in terms of the fundamental units. Two electric units, the international ohm and the international ampere, were chosen and made as nearly equal as possible to the ohm and ampere of the "practical" or "absolute" system.¹⁰

QUANTITY OF ELECTRICITY

The unit of quantity of electricity is the coulomb. The faraday is the quantity of electricity necessary to liberate 1 gram equivalent in electrolysis. It is equivalent to 96,488 absolute coulombs (Birge).

Standards.—There are no standards of electric quantity. The silver voltameter may be used for its measurement since under ideal conditions the mass of metal deposited is proportional to the amount of electricity which has flowed.

CAPACITY

The unit used for capacity is the microfarad or the one-millionth of the farad, which is the capacity of a condenser that is charged to a potential of 1 volt by 1 coulomb of electricity. Capacities are commonly measured by comparison with standard capacities. The values of the standards are determined by

¹⁰ There was, however, some slight error in these values that had to be taken into account for accurate work. (See Table 5.)

measurement in terms of resistance and time. The standard is some form of condenser consisting of two sets of metal plates separated by a dielectric. The condenser should be surrounded by a metal shield connected to one set of plates rendering the capacity independent of the surroundings. An ideal condenser would have a constant capacity under all circumstances, with zero resistance in its leads and plates, and no absorption in the dielectric. Actual condensers vary with the temperature, atmospheric pressure, and the voltage, frequency, and time of charge and discharge. A well-constructed air condenser with heavy metal plates and suitable insulating supports is practically free from these effects and is used as a standard of capacity.

Practically, air-condenser plates must be separated by 1 mm or more and so cannot be of great capacity. The more the capacity is increased by approaching the plates, the less the mechanical stability and the less constant the capacity. Condensers of great capacity use solid dielectrics, preferably mica sheets with conducting plates of tinfoil. At constant temperature the best mica condensers are excellent standards. The dielectric absorption is small but not quite zero, so that the capacity of these standards found varies with different methods of

measurement, so for accurate results care must be taken.

INDUCTANCE

The henry, the unit of self-inductance and also the unit of mutual inductance, is the inductance in a circuit when the electromotive force induced in this circuit is 1 volt, while the inducing current varies at the rate of 1 ampere per second.

Inductance standards.—Inductance standards are measured in international units in terms of resistance and time or resistance and capacity by alternate-current bridge methods. Inductances calculated from dimensions are in absolute electromagnetic units. The ratio of the international to the absolute

henry is the same as the ratio of the corresponding ohms.

Since inductance is measured in terms of capacity and resistance by the bridge method about as simply and as conveniently as by comparison with standard inductances, it is not necessary to maintain standard inductances. They are however of value in magnetic, alternating-current, and absolute electrical measurements. A standard inductance is a circuit so wound that when used in a circuit it adds a definite amount of inductance. It must have either such a form or so great an inductance that the mutual inductance of the rest of the circuit upon it may be negligible. It usually is a wire coil wound all in the same direction to make self-induction a maximum. A standard, the inductance of which may be calculated from its dimensions, should be a single layer coil of very simple geometrical form. Standards of very small inductance, calculable from their dimensions, are of some simple device, such as a pair of parallel wires or a single turn of wire. With such standards great care must be used that the mutual inductance upon them of the leads and other parts of the circuit is negligible. Any inductance standard should be separated by long leads from the measuring bridge or other apparatus. It must be wound so that the distributed capacity between its turns is negligible; otherwise the apparent inductance will vary with the frequency.

POWER AND ENERGY

Power and energy, although mechanical and not primarily electrical quantities, are measurable with greater precision by electrical methods than in any SMITHSONIAN PHYSICAL TABLES

other way. The watt and the electric units were so chosen in terms of the cgs units that the product of the current in amperes by the electromotive force in volts gives the power in watts (for continuous or instantaneous values). The watt is defined as the energy expended per second by an unvarying electric current of 1 ampere under an electric pressure of 1 volt.

Standards and measurements.—No standard is maintained for power or energy. Measurements are always made in electrical practice in terms of some of the purely electrical quantities represented by standards.

MAGNETIC UNITS

Cgs units are generally used for magnetic quantities. American practice is fairly uniform in names for these units: the cgs unit of magnetomotive force is called the *gilbert;* magnetic intensity, the *oersted;* magnetic induction, the *gauss;* magnetic flux, the *maxwell,* following the definitions of the American Institute of Electrical Engineers (1894).

Oersted, the cgs emu of magnetic intensity exists at a point where a force of 1 dyne acts upon a unit magnetic pole at that point, i.e., the intensity 1 cm from a unit magnetic pole.

Maxwell, the cgs emu magnetic flux is the flux through a cm² normal to a field at 1 cm from a unit magnetic pole.

Gauss, the cgs ernu of magnetic induction has such a value that if a conductor 1 cm long moves through the field at a velocity of 1 cm/sec, length and induction mutually perpendicular, the induced emf is 1 abvolt.

Gilbert, the cgs emu of magnetomotive force is a field such that it requires

1 erg of work to bring a unit magnetic pole to the point.

A unit frequently used is the ampere-turn. It is a convenient unit since it eliminates 4π in certain calculations. It is derived from the "ampere turn per cm." The following table shows the relations between a system built on the ampere-turn and the ordinary magnetic units.¹¹

Part 4.—The ordinary and the ampere-turn magnetic units

Quantity		Ordinary magnetic units	Ampere-turn units	Ordinary units in 1 ampere- turn unit
Magnetomotive force Magnetizing force	₹ H	gilbert gilbert per cm	ampere-turn ampere-turn per cm	$\frac{4\pi/10}{4\pi/10}$
Magnetic flux	В	maxwell maxwell per cm² gauss	maxwell { maxwell per cm² { gauss	1
Permeability	R	oersted	{ ampere-turn per maxwell	$\frac{1}{4\pi/10}$
Magnetization intensity Magnetic susceptibility Magnetic pole strength	κ		maxwell per cm² maxwell	$\frac{1/4\pi}{1/4\pi}$ $1/4\pi$

¹¹ Dellinger, International system of electric and magnetic units, Nat. Bur. Standards Bull., vol. 13, p. 599, 1916.

In pursuance of a decision of the International Committee on Weights and Measures, the National Bureau of Standards introduced, as of January 1, 1948, revised values of the units of electricity. This consummated a movement, initiated in 1927 by the American Institute of Electrical Engineers, asking that the National Bureau of Standards undertake the additional research necessary in order that the absolute ohm and absolute ampere based on the cgs electromagnetic system and the absolute volt, watt, and other units derived from them could be legalized in place of the international ohm and ampere and their derived units. This work was done, and the magnitude of the old international units in terms of the adopted absolute units is given in Table 5. This means that the electrical units now in use represent, as nearly as it is possible to make them, exact multiples of the cgs emu system, with the numerical relations shown in Table 6. Units of the new system will actually be maintained, as were the old international units, by groups of standard resistors and of standard cells, and consequently the change to be made is most simply represented by stating the relative magnitudes of the ohms and of the volts of the two systems.

During the period of transition to the new units, in order to avoid any doubt as to the units used in giving precise data, the International Committee on Weights and Measures recommended that the abbreviations *int*. and *abs*. be used with the names of the electrical units. In a few years this will be un-

necessary, except when referring to old data.

The international units were intended to be exact multiples of the units of the centimeter-gram-second electromagnetic system, but to facilitate their reproduction, the ampere, the ohm, and the volt were defined by reference to three physical standards, namely (1) the silver voltameter, (2) a specified column of mercury, and (3) the Clark standard cell. This procedure was recommended by the International Electrical Congress of 1893 in Chicago and was incorporated in an Act of Congress of July 12, 1894. However, modifications of the international system were found to be necessary or expedient for several reasons. The original proposals were not sufficiently specific to give the precision of values that soon came to be required, and the independent definitions of three units brought the system into conflict with the customary simple form of Ohm's Law, $I=E/\tilde{R}$. Furthermore, with the establishment of national standardizing laboratories in several of the larger countries, other laboratories no longer needed to set up their own primary standards, and facility of reproduction of those standards became less important than the reliability of the units.

In preparation for the expected change in units, laboratories in several countries made absolute measurements of resistance and of current. The results of these measurements and the magnitudes of the international units as maintained in the national laboratories of France, Great Britain, Germany, Japan, the U.S.S.R., and the United States were correlated by periodic comparisons of standard resistors and of standard cells sent to the International Bureau of Weights and Measures. Nearly all the absolute measurements at the National Bureau of Standards were carried out under the direct supervision of Harvey L. Curtis, and the results of such measurements at the Bureau accepted by the International Committee on Weights and Measures at its

meeting in Paris in October 1946 are as follows:

1 mean international ohm = 1.00049 absolute ohms 1 mean international volt = 1.00034 absolute volts

¹² Nat. Bur. Standards Circ. C-459, 1947.

The mean international units to which the above equations refer are the averages of units as maintained in the national laboratories of the six countries (France, Germany, Great Britain, Japan, U.S.S.R., and U.S.A.) which took part in this work before the war. The units maintained by the National Bureau of Standards differ from these average units by a few parts in a million, so that the conversion factors for adjusting values of standards in this country will be as follows:

1 mean international ohm U.S. = 1.000495 absolute ohms 1 mean international volt U.S. = 1.000333 absolute volts

Other electrical units will be changed by amounts shown in Table 5. The factors given should be used in converting values given in international units in National Bureau of Standards certificates to the new absolute system.

TABLE 5.—RELATIVE MAGNITUDE OF THE OLD INTERNATIONAL ELECTRICAL UNITS AND THE NEW 1948 ABSOLUTE ELECTRICAL UNITS

1 mean international ohm = 1.00049 absolute ohms 1 mean international volt = 1.00034 absolute volts 1 international ohm (U.S.) = 1.000495 absolute ohms 1 international volt (U.S.) = 1.00033 absolute volts 1 international ampere = 0.999835 absolute ampere 1 international coulomb = 0.999835 absolute coulomb 1 international henry = 1.000495 absolute henries 1 international farad = 0.999505 absolute farad 1 international watt = 1.000165 absolute watts 1 international joule = 1.000165 absolute joules

TABLE 6.—RELATIVE VALUES OF THE THREE SYSTEMS OF ELECTRICAL UNITS

Quantity Symbol	Absolute unit	Electromagnetic system emu	Electrostatic system * esu
Current strength I	1 ampere =	10 ⁻¹ abampere =	3 × 10 ^e statampere
Potential difference E	1 volt =	10 ⁸ abvolts =	1/300 statvolt
Resistance R	1 ohm =	10° abohms =	$(1/9) \times 10^{-11}$ statohm
Energy W	1 joule =	10^{7} ergs =	10 ⁷ ergs
Power P	1 watt =	10^{7} ergs/sec =	10 ⁷ ergs/sec
Capacitance C	1 farad =	10 ⁻⁹ abfarads =	9×10^{11} statafarad
Inductance L	1 henry =	10° abhenries =	$(1/9) \times 10^{-11}$ stata-
	•		henry
Charge Q	1 coulomb =	10 ⁻¹ abcoulomb =	3 × 10° statcoulomb

^{*} Where 3 occurs it is to be taken as 2.99776 (from velocity of light). Where 9 occurs (not as an exponent), it is the square of this number.

TABLE 7.—CONVERSION FACTORS FOR UNITS OF ENERGY *

kw-hr	$\begin{array}{c} 2.49627 \times 10^{7} \\ 2.77778 \times 10^{-7} \\ 1.16222 \times 10^{-8} \\ 1.162983 \times 10^{-8} \\ 2.93066 \times 10^{-4} \\ 1 \\ 3.7614 \times 10^{-7} \\ 3.7614 \times 10^{-7} \\ 5.4338 \times 10^{-5} \\ 2.81466 \times 10^{-5} \\ 9.19342 \times 10^{-56} \\ 444998 \times 10^{-56} \\ 4.14453 \times 10^{-17} \end{array}$	amu 6.02308 × 10°a 6.70232 × 10° 2.80425 × 10° 2.80435 × 10° 2.80435 × 10° 2.41283 × 10° 1.79926 × 10° 1.79926 × 10° 1.79926 × 10° 1.308711 × 10° 2.21839 × 10°³ 1.07371 × 10°³
Btu	8.51775×10^{10} 9.947831×10^{-3} 3.96573×10^{-3} 3.96832×10^{-3} 3.41220×10^{3} 2.54448×10^{3} 1.285689×10^{-3} 0.1850529 0.0860416 3.13676×10^{-32} 1.51845×10^{-13} 1.51845×10^{-13}	Mev 5.60961×10^{30} 6.2422×10^{12} 6.2422×10^{12} 2.61175×10^{13} 6.5858 0.24720×10^{10} $1.67574 \times 10^$
I.T. cal	$\begin{array}{c} 4 \\ 49 \\ 46 \\ 46 \\ 46 \\ 8 \\ \times 10^2 \\ 77 \\ \times 10^5 \\ 77 \\ 10^5 \\ 47 \\ 10^{-30} \\ 9 \\ 10^{-14} \\ 9 \\ 10^{-14} \\ \end{array}$	quantum ($\lambda = .6\mu$) 2.71503 × 10 ²² 3.02125 × 10 ¹⁸ 1.26409 × 10 ¹⁹ 1.26491 × 10 ¹⁹ 3.18754 × 10 ²⁴ 1.08765 × 10 ²⁵ 8.11062 × 10 ²⁵ 8.11062 × 10 ²⁵ 8.20862 × 10 ²⁵ 1.8764 × 10 ²⁵ 1.8765 × 10 ²⁵
	4.0	liter-atm 8.86880×10^{11} 9.86896×10^{-3} 4.12917×10^{-2} 4.13187×10^{-2} 10.41215 3.55282×10^{4} 2.64935×10^{4} 1.338054×10^{-2} 1.256520×10^{-21} 1.58100×10^{-21}
cal	$\begin{array}{c} 2.14784 \times 10^{18} \\ 0.239006 \\ 1.000654 \\ 1.000654 \\ 2.52161 \times 10^{2} \\ 8.60421 \times 10^{3} \\ 6.41617 \times 10^{5} \\ 0.324049 \\ 46.6630 \\ 24.2179 \\ 7.91021 \times 10^{-20} \\ 3.82894 \times 10^{-14} \\ 3.82894 \times 10^{-14} \\ 3.85616 \times 10^{-14} \end{array}$	ft ³ -lb (wt.)/in. ² 4.60287 × 10 ¹¹ 5.12195 × 10 ⁻² 2.14430 × 10 ⁻² 2.1443 × 10 ⁻² 5.40386 1.843902 × 10 ⁴ 1.3750 × 10 ⁴ 6.9444 × 10 ⁻³ 0.518996 1.69531 × 10 ⁻²¹ 8.20535 × 10 ⁻¹³ 7.64208 × 10 ⁻¹³
joule	8.98656 × 10 ¹³ 1 1840 [†] 4.18674 1.05500 × 10 ³ 3.6 × 10 ⁶ 2.684525 × 10 ⁶ 1.355821 1.952382 × 10 ² 1.013278 × 10 ² 3.3096 × 10 ⁻¹⁹ 1.60203 × 10 ⁻¹⁹ 1.49208 × 10 ⁻¹⁹	6.62814 × 10 ¹³ 4 0.737561 3.08595 3.08595 2.655218 × 10 ⁶ 1.98000 × 10 ⁶ 1.44 × 10 ² 2.44116 × 10 ⁻¹⁰ 1.18157 × 10 ⁻¹⁰ 1.18157 × 10 ⁻¹⁰
g mass (energy equiv.)	$\begin{array}{c} 1.112772 \times 10^{-14} \\ 4.65884 \times 10^{-14} \\ 4.65888 \times 10^{-14} \\ 1.174019 \times 10^{-3} \\ 2.98727 \times 10^{-3} \\ 1.50872 \times 10^{-14} \\ 2.17256 \times 10^{-12} \\ 1.127548 \times 10^{-12} \\ 1.127548 \times 10^{-12} \\ 1.8720 \times 10^{-24} \\ 1.66035 \times 10^{-24} \end{array}$	hp-hr 3.34754 × 10 ⁷ 3.72505 × 10 ⁻⁷ 1.559582 × 10 ⁻⁶ 3.93008 × 10 ⁻⁴ 1.341020 1.341020 2.05051 × 10 ⁻⁷ 7.27273 × 10 ⁻⁸ 5.95751 × 10 ⁻⁸⁰ 5.95751 × 10 ⁻⁸⁰ 5.95751 × 10 ⁻⁸⁰
Units	I g mass I g mass I genergy equiv.) I joule I cal I T. cal † I kw-hr I hp-hr I it-lb (wt.) /in. † I ite-lb (wt.) /in. † I ite-atm I quantum († = 6 †) I Mev I man †	Units 1 g mass (energy equiv.) = 1 joule = 1 I.T. cal # = 1 I.T. cal # = 1 I.T. cal # = 1 I.T. fine = 1 it-lb (wt.) /in. = 1 iter-atm

* Adapted from National Bureau of Standards Tables. + Definition of calorie and Btu. ‡ As defined for International Steam Tables. § Unit atomic weight energy equivalent.

Abbreviations: int., international; emu, electromagnetic units; esu, electrostatic units; cgs, centimeter-gram-second units.

```
CAPACITY:
RESISTANCE:
                                                         1 international farad =
1 international ohm =
                                                           0.99949 absolute farad
   1.00051 absolute ohms
  1.0001 int. ohms (France, before 1911)
1.00016 Board of Trade units (England,
                                                         1 absolute farad =
                                                           1.00051 int. farads
1 "practical" emu
10<sup>-0</sup> cgs emu
     1903)
  1.01358 B. A. units
1.00283 "legal ohms" of 1884
                                                           8.98776 \times 10^{11} \text{ cgs esu}
  1.06300 Siemens units
                                                        INDUCTANCE:
1 absolute ohm =
  0.99949 int. ohms

1 "practical" emu

10° cgs emu

1.11262 × 10<sup>-12</sup> cgs esu
                                                        1 international henry =
                                                           1.00051 absolute henries
                                                        1 absolute henry =
                                                           0.99949 int. henry
                                                           l "practical" emu
10° emu
CURRENT:
                                                           1.11262 \times 10^{-12} cgs esu
1 international ampere =
  0.99995 absolute ampere
  1.00084 int. amperes (U. S. before 1911)
1.00130 int. amperes (England, before
                                                        ENERGY AND POWER:
                                                        (standard gravity = 980.665 \text{ cm/sec}^{-2})-
                                                        1 international joule =
     1906)
  1.00106 int. amperes (England, 1906-
                                                           1.00041 absolute joules
                                                        1 absolute joule =
    08)
                                                           0.99959 int, joule
  1.00010 int. amperes (England, 1909-
                                                           107 ergs
     10)
                                                           0.737560 standard foot-pound
  1.00032 int. amperes (Germany, before
     1911)
                                                           0.101972 standard kilogram-meter
                                                           0.277778 \times 10^{-6} kilowatt-hour
  1.0002 int. amperes (France, before
     1911)
                                                        RESISTIVITY:
1 absolute ampere =
  1.00005 int. amperes
1 "practical" emu
                                                        1 ohm-cm = 0.393700 ohm-inch
                                                                     = 10,000 ohm (meter, mm<sup>2</sup>)
                                                                     = 12,732.4 ohm (meter, mm)
= 393,700 microhm-inch
  0.1 cgs emu
  2.99776 × 10<sup>o</sup> esu
                                                                     = 1,000,000 microhm-cm
= 6,015,290 ohm (mil, foot)
ELECTROMOTIVE FORCE:
1 international volt =
                                                        1 ohm (meter, gram) = 5710.0 ohm (mile,
  1.00046 absolute volts
                                                           pound)
  1.00084 int. volts (U. S. before 1911)
                                                        MAGNETIC QUANTITIES:
  1.00130 int. volts (England, before 1906)
                                                                                = 0.99995 absolute gil-
  1.00106 int. volts (England, 1906-08)
                                                        1 int. gilbert
  1.00010 int. volts (England, 1909-10)
                                                                                     bert
  1.00032 int. volts (Germany, before
                                                                               = 1.00005 int. gilberts
                                                        1 absolute gilbert
    1911)
                                                        1 int. maxwell
                                                                               = 1.00046 absolute
  1.00032 int. volts (France, before 1911)
                                                                                     maxwells
1 absolute volt =
                                                        1 absolute maxwell = 0.99954 int. max-
  0.99954 int. volt
1 "practical" emu
10" cgs emu
                                                                               well = 0.7958 ampere-turn
                                                           1 gilbert
                                                           1 gilbert per cm = 0.7958 ampere-turn
  0.00333560 cgs esu
                                                                                     per cm
                                                                               = 2.021 ampere-turns
QUANTITY OF ELECTRICITY:
                                                                                     per inch
(Same as current equivalents.)
                                                                               =1 line
                                                           1 maxwell
                                                                               =10^{-8} volt-second
  international coulomb =
                                                           1 \text{ maxwellper cm}^2 = 6.452 \text{ maxwells per}
  1/3600 ampere-hour
  1/96494 faraday
                                                                                     in.2
```

^{*} This table is now superseded by the adoption of the new system of electrical units in January 1948 and is given for reference only.

TABLE 9.- DERIVATIVES AND INTEGRALS

d ax	= a dx	$\int x^n dx$	$=\frac{x^{n+1}}{n+1}, \text{ unless } n=-1$
d u2'	$= \left(u \frac{dv}{dx} + v \frac{du}{dx}\right) dx$	$\int \frac{dx}{x}$	$= \log x$
$d\frac{u}{v}$	$= \left(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{u^2}\right) dx$	$\int c^x dx$	= e*
$d.v^n$	$= nx^{n-1} dx$	$\int c^{ax} dx$	$=\frac{1}{a}e^{ax}$
df(u)	$= d \frac{f(u)}{du} \cdot \frac{du}{dv} \cdot dx$	$\int x^m e^{ax} dx$	$=\frac{x^m e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} dx$
$d c^x$	$= c^x dx$	$\int \log x dx$	$= x \log x - x$
d cas	$= a e^{ax} dx$	Su dv	$= u v - \int v du$
$d \log_{e} x$	$=\frac{1}{x}dx$	$\int (a+bx)^n dx$	$=\frac{(a+bx)^{n+1}}{(n+1)b}$
$d x^x$	$= x^{s} \left(1 + \log_{\sigma} x\right) dx$		
d sin x	$=\cos xdx$		$= \frac{1}{a} \tan^{-1} \frac{x}{a} = \frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^2 + a^2}}$
$d\cos x$	$=-\sin xdx$	$\int (a^2 - x^2)^{-1} dx$	$= \frac{1}{2a} \log \frac{a+x}{a-x}$
d tan x	$= \sec^2 x dx$	$\int (a^2 - x^2)^{-\frac{1}{2}} dx$	$= \sin^{-1}\frac{x}{a}, \text{ or } - \cos^{-1}\frac{x}{a}$
$d \cot x$	$=-\csc^2 x dx$	$\int x(a^2 \pm x^2)^{-\frac{1}{2}} dx$	$= \pm (a^2 \pm x^2)^{\frac{1}{2}}$
d sec .r	$= \tan x \sec x dx$	$\int \sin^2 x dx$	$= -\frac{1}{2}\cos x \sin x + \frac{1}{2}x$
$d \csc x$	$=$ $-\cot x \cdot \csc x dx$	$\int \cos^2 x dx$	$= \frac{1}{2}\sin x \cos x + \frac{1}{2}x$
d sin-1 .r	$=(1-x^2)^{-\frac{1}{2}}dx$	$\int \sin x \cos x dx$	$=\frac{1}{2}\sin^2 x$
	$=-(1-x^2)^{-\frac{1}{2}}dx$	$\int (\sin x \cos x)^{-1} dx$	$r = \log \tan x$
d tan-1.x	$=(1+x^2)^{-1}dx$	∫tan x dx	$= -\log \cos x$
	$=-(1+x^2)^{-1}dx$	$\int \tan^2 x dx$	$= \tan x - x$
d sec-1 x	$=x^{-1}(x^2-1)^{-\frac{1}{2}}dx$	$\int \cot x dx$	$= \log \sin x$
$d \csc^{-1} x$	$=-x^{-1}(x^2-1)^{-\frac{1}{2}}dx$	$\int \cot^2 x dx$	$=-\cot x-x$
$d \sinh x$	$= \cosh x dx$	$\int \csc x dx$	$= \log \tan \frac{1}{2}x$
d cosh x	$= \sinh x dx$	$\int x \sin x dx$	$=\sin x - x\cos x$
d tanh .x	$= \operatorname{sech}^2 x dx$	$\int x \cos x dx$	$=\cos x + x\sin x$
d coth x	$=$ $- \operatorname{csch}^2 x dx$	∫tanh x dx	$= \log \cosh x$
	= - sech .r tanh .r d .r	$\int \coth x dx$	$= \log \sinh x$
d csch x	$=$ - csch $x \cdot$ coth $x \cdot dx$	$\int \operatorname{sech} x dx$	$= 2 \tan^{-1} c^x = gd u$
d sinh-1	$x = (x^2 + 1)^{-\frac{1}{2}} dx$	$\int \operatorname{csch} x dx$	$= \log \tanh \frac{x}{2}$
	$x = (x^2 - 1)^{-\frac{1}{2}} dx$	$\int x \sinh x dx$	$= r \cosh x - \sinh x$
d tanh-1.	$x = (1 - x^2)^{-1} dx$	$\int x \cosh x dx$	$= x \sinh x - \cosh x$
$d \coth^{-1}$.	$r = (1 - x^2)^{-1} dx$	$\int \sinh^2 x dx$	$= \frac{1}{2} \left(\sinh x \cosh x - x \right)$
d sech-1.	$x = -x^{-1}(1-x^2)^{-\frac{1}{2}} dx$	$\int \cosh^2 x dx$	$= \frac{1}{2} \left(\sinh x \cosh x + x \right)$
d csch-1.	$x = -x^{-1}(x^2+1)^{-\frac{1}{2}}dx$	$\int \sinh x \cosh x dx$	

$$(x+y)^{n} = x^{n} + \frac{x}{1}x^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \dots$$

$$\frac{n(n-1)\dots(n-m+1)}{m!}x^{n-m}y^{m} + \dots \qquad (y^{2} < x^{2})$$

$$(1 \pm x)^{n} = 1 \pm nx + \frac{n(n-1)x^{2}}{2!} \pm \frac{n(n-1)(n-2)x^{2}}{3!} + \dots + \frac{(\pm 1)^{k}n!x^{k}}{(n-k)!k!} + \dots (x^{2} < 1)$$

$$(1 \pm x)^{-n} = 1 \mp nx + \frac{n(n+1)}{2!}x^{3} \mp \frac{n(n+1)(n+2)x^{3}}{3!} + \dots$$

$$(\mp 1)^{k}\frac{(n+k-1)x^{k}}{(n-1)!k!} + \dots (x^{2} < 1)$$

$$(1 \pm x)^{-1} = 1 \mp x + x^{2} \mp x^{3} + x^{4} \mp x^{5} + \dots$$

$$(\pm 1)^{k}\frac{(n+k-1)x^{k}}{(n-1)!k!} + \dots (x^{2} < 1)$$

$$(1 \pm x)^{-2} = 1 \mp 2x + 3x^{2} \mp 4x^{3} + 5x^{4} \mp 6x^{5} + \dots$$

$$(x^{2} < 1)$$

$$f(x+h) = f(x) + hf'(x) + \frac{h^{2}}{2!}f''(x) + \dots + \frac{h^{n}}{n!}f^{(n)}(x) + \dots$$

$$f(x) = f(x) + \frac{x^{2}}{1!}f'(x) + \dots + \frac{h^{n}}{n!}f^{(n)}(x) + \dots$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

$$(x^{2} < \infty)$$

$$a^{x} = 1 + x \log a + \frac{(x \log a)^{2}}{2!} + \frac{(x \log a)^{3}}{3!} + \dots$$

$$(x^{2} < \infty)$$

$$\log x = \frac{x-1}{x} + \frac{1}{2}\left(\frac{x-1}{x}\right)^{2} + \frac{1}{3}\left(\frac{x-1}{x}\right)^{3} + \dots$$

$$(x > \frac{1}{2})$$

$$= (x-1) - \frac{1}{2}(x-1)^{2} + \frac{1}{3}(x-1)^{3} - \dots$$

$$= 2\left[\frac{x-1}{x+1} + \frac{1}{3}\left(\frac{x-1}{x+1}\right)^{3} + \frac{1}{5}\left(\frac{x-1}{x+1}\right)^{5} + \dots\right]$$

$$(x > 0)$$

 $\log(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots$ (x² < 1)

$$\sin x = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 (x² < \infty)

$$\cos x = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = 1 - \text{versin } x$$
 (x² < \infty)

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62}{2835} x^9 + \dots$$
 $\left(x^2 < \frac{\pi^2}{4}\right)$

$$\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x = x + \frac{x^3}{6} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{7} + \dots$$
 (x² < 1)

$$\tan^{-1} x = \frac{\pi}{2} - \cot^{-1} x = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \dots$$
 (x² < 1)

$$=\frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^8} - \frac{1}{5x^6} + \dots$$
 (x² > 1)

$$\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$
 (x² < \infty)

$$\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^0}{6!} + \dots \tag{x^2 < \infty}$$

(continued)

25

$$\tanh x = x - \frac{1}{3} x^3 + \frac{2}{15} x^5 - \frac{17}{315} x^7 + \dots$$
 $(x^2 < \frac{1}{4}\pi^2)$

$$\sinh^{-1} x = x - \frac{1}{2} \frac{x^3}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} - \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{7} + \dots$$
 (x² < 1)

$$= \log 2x + \frac{1}{2} \frac{1}{2x^2} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^4} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^6} - \dots$$
 (x²>1)

$$\cosh^{-1} x = \log 2x - \frac{1}{2} \frac{1}{2x^2} - \frac{1}{2} \frac{3}{4} \frac{1}{4x^4} - \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6x^6} - \dots$$
 (x²>1)

$$\tanh^{-1} x = x + \frac{1}{3} x^3 + \frac{1}{5} x^5 + \frac{1}{7} x^7 + \dots$$
 (x² < 1)

$$\operatorname{gd} x = \phi = x - \frac{1}{6} x^3 + \frac{1}{24} x^5 - \frac{61}{5040} x^7 + \dots$$
 (x small)

$$= \frac{\pi}{2} - \operatorname{sech} x - \frac{1}{2} \frac{\operatorname{sech}^3 x}{3} - \frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^5 x}{5} - \dots$$
 (x large)

$$x = \operatorname{gd}^{-1} \phi = \phi + \frac{1}{6} \phi^3 + \frac{1}{24} \phi^5 + \frac{61}{5040} \phi^7 + \dots$$
 $\left(\phi < \frac{\pi}{2}\right)$

$$f(x) = \frac{1}{2}b_0 + b_1 \cos \frac{\pi x}{c} + b_2 \cos \frac{2\pi x}{c} + \dots$$

$$+a_1\sin\frac{\pi x}{c}+a_2\cos\frac{2\pi x}{c}+\ldots(-c < x < c)$$

$$a_m = \frac{1}{c} \int \frac{+}{c} \frac{c}{c} f(x) \sin \frac{m\pi x}{c} dx$$

$$b_{\rm m} = \frac{1}{c} \int \frac{+c}{-c} f(x) \cos \frac{m\pi x}{c} dx$$

TABLE 11.-MATHEMATICAL CONSTANTS

$\epsilon = 2.71828 \ 18285$	Numbers $\pi = 3.14159 26536$	Logarithms 0.49714 98727
$e^{-1} = 0.36787 94412$	$\pi^2 = 9.86960 44011$	0.99429 97454
£ = 0.50707 71112		0.339429 37434
$M = \log_{10}e = 0.43429 \ 44819$	$\frac{1}{\pi} = 0.31830 98862$	9.50285 01273
$(M)^{-1} = \log_e 10 = 2.30258 50930$	$\sqrt{\pi} = 1.77245 38509$	0.24857 49363
$\log_{10}\log_{10}C = 9.63778 \ 43113$	$\frac{\sqrt{\pi}}{2} = 0.88622 \ 69255$	9.94754 49407
$\log_{10}2 = 0.30102 99957$	$\frac{1}{\sqrt{\pi}} = 0.56418 95835$	9.75142 50637
$\log_e 2 = 0.69314 71806$	$\frac{2}{\sqrt{\pi}} = 1.12837 \ 91671$	0.05245 50593
$\log_{10} x = \mathrm{M} \cdot \log_{e} x$	$\sqrt{\frac{\pi}{2}} = 1.25331 \ 41373$	0.09805 99385
$\log_B x = \log_e x \cdot \log_B c$	$\sqrt{\frac{2}{\pi}} = 0.79788 \ 45608$	9.90194 00615
$= \log_{\epsilon} x \div \log_{\epsilon} B$	$\frac{\pi}{4} = 0.78539 81634$	9.89508 98814
$\log_e \pi = 1.14472 \ 98858$	$\frac{\sqrt{\pi}}{4} = 0.44311 \ 34627$	9.64651 49450
$\rho = 0.47693 62762 *$	$\frac{4}{3}\pi = 4.18879 \ 02048$	0.62208 86093
$\log \rho = 9.67846 \ 03565$	$\frac{c}{\sqrt{2\pi}} = 1.08443 \ 75514$	0.03520 45477

^{*} Probable error, modulus of precision.

Part 1.-Numerical

n			$\frac{1}{n}$:				n:=1.2	.3.4n	ı	n
1 2 3 4 5	1. 0.5 .16666 .04166 .00833	66666 66666 33333	66666 66666 33333	66666 66666 33333	66667 66667 33333				1 2 6 24 120	1 2 3 4 5
6 7 8 9	0.00138 .00019 .00002 .00000 .00000	88888 84126 48015 27557 02755	88888 98412 87301 31922 73192	88888 69841 58730 39858 23985	88889 26984 15873 90653 89065			3 36	720 5040 40320 62880 28800	6 7 8 9 10
11 12 13 14 15	0.00000 .00000 .00000 .00000	00250 00020 00001 00000 00000	52108 87675 60590 11470 00764	38544 69878 43836 74559 71637	17188 68099 82161 77297 31820		8 130	399 4790 62270 71782 76743	16800 01600 20800 91200 68000	11 12 13 14 15
16 17 18 19 20	0.00000 .00000 .00000 .00000	00000 00000 00000 00000 00000	00047 00002 00000 00000 00000	79477 81145 15619 00822 00041	33239 72543 20697 06352 10318	12 243		27898 74280 37057 04088 81766	88000 96000 28000 32000 40000	16 17 18 19 20

Part 2.—Logarithmic Logarithms of the products 1.2.3....n, n from 1 to 100.

n	log (n!)	n	log (n!)	n	log (n!)	n	log (n!)
1	0.000000	26	26.605619	51	66.190645	76	111.275425
2	0.301030	27	28.036983	52	67.906648	77	113.161916
2 3 4 5	0.778151	28	29.484141	53	69.630924	78	115.054011
4	1.380211	29	30.946539	54	71.363318	79	116.951638
5	2.079181	30	32.423660	55	73.103681	80	118.854728
6	2.857332	31	33.915022	56	74.851869	81	120.763213
6 7	3.702431	32	35.420172	57	76.607744	82	122.677027
8	4.605521	33	36.938686	58	78.371172	83	124.596105
9	5.559763	34	38.470165	59	80.142024	84	126.520384
10	6.559763	35	40.014233	60	81.920175	85	128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
16	13.320620	41	49.524429	66	92.735874	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	148.014099
21	19.708344	46	57.740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	71	103.786996	97	151.983142
23	22.412494	48	61.093909	73	105.650319	98	153.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

TABLE 13.—FORMULAS FOR MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS OF VARIOUS SHAPED SOLIDS

In each case the axis is supposed to traverse the center of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is w.

symmetry. The mass of a di	01 /011			
Rody Sphere of radius r	Axis Diameter	Weight $\frac{4\pi v c r^3}{3}$	Moment of inertia I_0 $\frac{8\pi u r^5}{15}$	Square of radius of gyration ρ_0^2 $\frac{2r^2}{5}$
Spheroid of revolution, polar axis 2a, equatorial diameter 2r	Polar axis	$\frac{4\pi war^2}{3}$	8πιυαr ⁴ 15	$\frac{2r^2}{5}$
Ellipsoid, axis 2a, 2b, 2c	Axis 2a	$\frac{4\pi vabc}{3}$	$\frac{4\pi veabc(b^2+c^2)}{15}$	$\frac{b^2+c^2}{5}$
Spherical shell, external radius r, internal r'	Diameter	$\frac{4\pi\pi(r')(r^3-r'^3)}{3}$	$\frac{8\pi \pi v(r^5 - r'^5)}{15}$	$\frac{2(r^5 - r'^5)}{5(r^3 - r'^3)}$
Ditto, insensibly thin, radius r , thickness dr	Diameter	$4\pi w r^2 dr$	$\frac{8\pi v r^4 dr}{3}$	$\frac{2r^2}{3}$
Circular cylinder, length 2a, radius r	Longitudinal axis 2a	2πwar²	πιναr ⁴	$\frac{r^2}{2}$
Elliptic cylinder, length 2a, transverse axes 2b, 2c	Longitudinal axis 2a	$2\pi wabc$	$\frac{\pi c abc (b^2 + c^2)}{2}$	$\frac{b^2+c^2}{4}$
Hollow circular cylinder, length 2a, external ra- dius r, internal r'	Longitudinal axis 2a	$2\pi wa(r^2-r'^2)$	$\pi wa(r^4-r'^4)$	$\frac{r^2+r'^2}{2}$
Ditto, insensibly thin, thickness dr	Longitudinal axis 2a	4πæardr	$4\pi v a r^3 dr$	r^2
Circular cylinder, length 2a, radius r	Transverse diameter	$2\pi war^2$	$\frac{\pi war^2(3r^2+4a^2)}{6}$	$\frac{r^2}{4} + \frac{a^2}{3}$
Elliptic cylinder, length 2a, transverse axes 2a, 2b		2mwabc	$\frac{\pi wabc \left(3c^2+4a^2\right)}{6}$	$\frac{c^2}{4} + \frac{a^2}{3}$
Hollow circular cylinder, length 2a, external radius r, internal r'	Transverse diameter	$2\pi va(r^2-r'^2)$	$\frac{\pi \pi a}{6} \left\{ \begin{array}{l} 3(r^4 - r'^4) \\ +4a^2(r^2 - r'^2) \end{array} \right\}$	$\frac{r^2 + r'^2}{4} + \frac{a^2}{3}$
Ditto, insensibly thin, thickness dr		$4\pi z vardr$	$\pi w a \left(2r^3 + \frac{4}{3} a^2 r\right) dr$	$\frac{r^2}{2} + \frac{a^2}{3}$
Rectangular prism, dimensions 2a, 2b, 2c	Axis 2a	8wabc	$\frac{8wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{3}$
Rhombic prism, length 2a, diagonals 2b, 2c	Axis 2a	4reabc	$\frac{2wabc(b^2+c^2)}{3}$	$\frac{b^2+c^2}{6}$
Ditto	Diagonal 2b	42 <i>cabc</i>	$\frac{2wabc(c^2+2a^2)}{3}$	$\frac{c^2}{6} + \frac{a^2}{3}$

For further mathematical data see Smithsonian Mathematical Tables, Becker and Van Orstrand (Hyperbolic, Circular and Exponential Functions); Smithsonian Mathematical Formulae and Tables of Elliptic Functions, Adams and Hippisley; Smithsonian Elliptic Functions Tables, Spenceley; Smithsonian Logarithmic Tables, Spenceley and Epperson; Functionentafeln, Jahnke und Emde (xtgx, $x^{-1}tgx$, Roots of Transcendental Equations, a+bi and re^{ni} , Exponentials, Hyperbolic Functions,

$$\int_{-\pi}^{x} \frac{\sin u}{u} du, \int_{-x}^{\infty} \frac{\cos u}{u} du, \int_{-\infty}^{-x} \frac{c^{-u}}{u} du, \text{ Fresnel Integral, Gamma Function, Gauss Integral}$$

$$\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} dx, \text{ Pearson Function } e^{-\frac{1}{2}\pi\nu} \int_{0}^{\pi} \sin^{r} e^{\nu x} dx, \text{ Elliptic Integrals and Functions, Spherical and}$$

Cylindrical Functions, etc.). For further references see under Tables, Mathematical, in the 16th ed. Encyclopædia Britannica. See also Carr's Synopsis of Pure Mathematics and Mellor's Higher Mathematics for Students of Chemistry and Physics.

													P. P		
N 10 11 12 13 14	0 0000 0414 0792 1139 1461	1 0043 0453 0828 1173 1492	2 0086 0492 0864 1206 1523	3 0128 0531 0899 1239 1553	4 0170 0569 0934 1271 1584	5 0212 0607 0969 1303 1614	6 0253 0645 1004 1335 1644	7 0294 0682 1038 1367 1673	8 0334 0719 1072 1399 1703	9 0374 0755 1106 1430 1732	1 4 4 3 3 3	2 8 8 7 6 6	3 12 11 10 10 9	17 15 14 13 12	5 21 19 17 16 15
15 16 17 18 19	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 2833	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 2227 2480 2718 2945	1987 2253 2504 2742 2967	2014 2279 2529 2765 2989	3 3 2 2 2	6 5 5 5 4	8 7 7 7	11 11 10 9 9	14 13 12 12 11
20 21 22 23 24	3010 3222 3424 3617 3802	3032 3243 3444 3636 3820	3054 3263 3464 3655 3838	3075 3284 3483 3674 3856	3096 3304 3502 3692 3874	3118 3324 3522 3711 3892	3139 3345 3541 3729 3909	3160 3365 3560 3747 3927	3181 3385 3579 3766 3945	3201 3404 3598 3784 3962	2 2 2 2 2 2	4 4 4 4 4	6 6 6 5 5	8 8 8 7 7	11 10 10 9 9
25 26 27 28 29	3979 4150 4314 4472 4624	3997 4166 4330 4487 4639	4014 4183 4346 4502 4654	4031 4200 4362 4518 4669	4048 4216 4378 4533 4683	4055 4232 4393 4548 4698	4082 4249 4409 4564 4713	4099 4265 4425 4579 4728	4116 4281 4440 4594 4742	4133 4298 4456 4609 4757	2 2 2 2 1	3 3 3 3	5 5 5 4	7 7 6 6 6	9 8 8 8 7
30 31 32 33 34	4771 4914 5051 5185 5315	4786 4928 5065 5198 5328	4800 4942 5079 5211 5340	4814 4955 5092 5224 5353	4829 4969 5105 5237 5366	4843 4983 5119 5250 5378	4857 4997 5132 5263 5391	4871 5011 5145 5276 5403	4886 5024 5159 5289 5416	4900 5038 5172 5302 5428	1 1 1 1	3 3 3 3 3	4 4 4 4 4	6 5 5 5	7 7 7 6 6
35 36 37 38 39	5441 5563 5682 5798 5911	5453 5575 5694 5809 5922	5465 5587 5705 5821 5933	5478 5589 5717 5832 5944	5490 5611 5729 5843 5955	5502 5623 5740 5855 5966	5514 5635 5752 5866 5977	5527 5647 5763 5877 5988	5539 5658 5775 5888 5999	5551 5670 5786 5899 6010	1 1 1 1	2 2 2 2 2	4 4 3 3 3	5 5 5 4	6 6 6 6
40 41 42 43 44	6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 6454	6053 6160 6263 .6365 6464	6064 6170 6274 6375 6474	6075 6180 6284 6385 6484	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	1 1 1 1	2 2 2 2 2	3 3 3 3 3	4 4 4 4 4	5 5 5 5 5
45 46 47 48 49	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	1 1 1 1	2 2 2 2 2 2	3 3 3 3	4 4 4 4 4	5 5 4 4
50 51 52 53 54	6990 7076 7160 7243 7324	6998 7084 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7267 7348	7024 7110 7193 7275 7356	7033 7118 7202 7284 7364	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396	1 1 1 1	2 2 2 2 2 2	3 2 2 2	3 3 3 3	4 4 4 4 4

												P, P			
N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5
55 56 57 58 59	7404 7482 7559 7634 7709	7412 7490 7566 7642 7716	7419 7497 7574 7649 7723	7427 7505 7582 7657 7731	7435 7513 7589 7664 7738	7443 7520 7597 7672 7745	7451 7528 7604 7679 7752	7459 7536 7612 7686 7760	7466 7543 7619 7694 7767	7474 7551 7627 7701 7774	1 1 1 1 1	2 2 2 1 1	2 2 2 2 2	3 3 3 3	4 4 4 4 4
60 61 62 63 64	7782 7853 7924 7993 8062	7789 7860 7931 8000 8069	7796 7868 7938 8007 8075	7803 7875 7945 8014 8082	7810 7882 7952 8021 8089	7818 7889 7959 8028 8096	7825 7896 7966 8035 8102	7832 7903 7973 8041 8109	7839 7910 7980 8048 8116	7846 7917 7987 8055 8122	1 1 1 1 1	1 1 1 1	2 2 2 2 2	3 3 3 3	4 4 3 3 3
65 66 67 68 69	8129 8195 8261 8325 8388	8136 8202 8267 8331 8395	8142 8209 8274 8338 8401	8149 8215 8280 8344 8407	8156 8222 8287 8351 8414	8162 8228 8293 8357 8420	8169 8235 8299 8363 8426	8176 8241 8306 8370 8432	8182 8248 8312 8376 8439	8189 8254 8319 8382 8445	1 1 1 1 1	1 1 1 1	2 2 2 2 2	3 3 3 3	3 3 3 3
70 71 72 73 74	8451 8513 8573 8633 8692	8457 8519 8579 8639 8698	8463 8525 8585 8645 8704	8470 8531 8591 8651 8710	8476 8537 8597 8657 8716	8482 8543 8603 8663 8722	8488 8549 8609 8669 8727	8494 8555 8615 8675 8733	8500 8561 8621 8681 8739	8506 8567 8627 8686 8745	1 1 1 1	1 1 1 1	2 2 2 2 2	2 2 2 2 2	3 3 3 3
75 76 77 78 79	8751 8808 8865 8921 8976	8756 8814 8871 8927 8982	8762 8820 8876 8932 8987	8768 8825 8882 8938 8993	8774 8831 8887 8943 8998	8779 8837 8893 8949 9004	8785 8842 8899 8954 9009	8791 8848 8904 8960 9015	8797 8854 8910 8965 9020	8802 8859 8915 8971 9025	1 1 1 1 1	1 1 1 1	2 2 2 2 2	2 2 2 2 2	3 3 3 3
80 81 82 83 84	9031 9085 9138 9191 9243	9036 9090 9143 9196 9248	9042 9096 9149 9201 9253	9047 9101 9154 9206 9258	9053 9106 9159 9212 9263	9058 9112 9165 9217 9269	9063 9117 9170 9222 9274	9069 9122 9175 9227 9279	9074 9128 9180 9232 9284	9079 9133 9186 9238 9289	1 1 1 1 1	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2	3 3 3 3
85 86 87 88 89	9294 9345 9395 9445 9494	9299 9350 9400 9450 9499	9304 9355 9405 9455 9504	9309 9360 9410 9460 9509	9315 9365 9415 9465 9513	9320 9370 9420 9469 9518	9325 9375 9425 9474 9523	9330 9380 9430 9479 9528	9335 9385 9435 9484 9533	9340 9390 9440 9489 9538	1 1 0 0 0	1 1 1 1	2 2 1 1 1	2 2 2 2 2	3 2 2 2 2
90 91 92 93 94	9542 9590 9638 9685 9731	9547 9595 9643 9689 9736	9552 9600 9647 9694 9741	9557 9605 9652 9699 9745	9562 9609 9657 9703 9750	9566 9614 9661 9708 9754	9571 9619 9666 9713 9759	9576 9624 9671 9717 9763	9581 9628 9675 9722 9768	9586 9633 9680 9727 9773	0 0 0 0	1 1 1 1	1 1 1 1	2 2 2 2 2	2 2 2 2 2
95 96 97 98 99	9777 9823 9868 9912 9956	9782 9827 9872 9917 9961	9786 9832 9877 9921 9965	9791 9836 9881 9926 9969	9795 9841 9886 9930 9974	9800 9845 9890 9934 9978	9805 9850 9894 9939 9983	9809 9854 9899 9943 9987	9814 9859 9903 9948 9991	9818 9863 9908 9952 9996	0 0 0 0	1 1 1 1 1	1 1 1 1	2 2 2 2 2	2 2 2 2 2

30 TABLE 14.—LOGARITHMS (continued)												
N 100 101 102 103 104	0 0000 0043 0086 0128 0170	1 0004 0048 0090 0133 0175	2 0009 0052 0095 0137 0179	3 0013 0056 0099 0141 0183	00 00 01 01	103 145 187	5 0022 0065 0107 0149 0191	6 0026 0069 0111 0154 0195	7 0030 0073 0116 0158 0199	0077 0120 0162	9 0039 0082 0124 0166 0208	10 0043 0086 0128 0170 0212
105 106 107 108 109	0212 0253 0294 0334 0374	0216 0257 0298 0338 0378	0220 0261 0302 0342 0382	0224 0265 0306 0346 0386	02 03 03	228 269 310 350 390	0233 0273 0314 0354 0394	0237 0278 0318 0358 0398	0241 0282 0322 0362 0402	0286 0326 0366	0249 0290 0330 0370 0410	0253 0294 0334 0374 0414
110 111 112 113 114	0414 0453 0492 0531 0569	0418 0457 0496 0535 0573	0422 0461 0500 0538 0577	0426 0465 0504 0542 0580	04 05 05	130 169 508 546 584	0434 0473 0512 0550 0588	0438 0477 0515 0554 0592	0441 0481 0519 0558 0596	0484 0523 0561	0449 0488 0527 0565 0603	0453 0492 0531 0569 0607
115 116 117 118 119	0607 0645 0682 0719 0755	0611 0648 0686 0722 0759	0615 0652 0689 0726 0763	0618 0656 0693 0730 0766	06 06 07	522 560 597 734 770	0626 0663 0700 0737 0774	0630 0667 0704 0741 0777	0633 0671 0708 0745 0781	0674 0711 0748	0641 0678 0715 0752 0788	0645 0682 0719 0755 0792
120 121 122 123 124	0792 0828 0864 0899 0934	0795 0831 0867 0903 0938	0799 0835 0871 0906 0941	0803 0839 0874 0910 0945	08 08 09	306 342 378 913 948	0810 0846 0881 0917 0952	0813 0849 0885 0920 0955	0817 0853 0888 0924 0959	0856 0892 0927	0824 0860 0896 0931 0966	0828 0864 0899 0934 0969
125 126 127 128 129	0969 1004 1038 1072 1106	0973 1007 1041 1075 1109	0976 1011 1045 1079 1113	0980 1014 1048 1082 1116	10 10 10)83)17)52)86 19	0986 1021 1055 1089 1123	0990 1024 1059 1092 1126	0993 1028 1062 1096 1129	1031 1065 1099	1000 1035 1069 1103 1136	1004 1038 1072 1106 1139
130 131 132 133 134	1139 1173 1206 1239 1271	1143 1176 1209 1242 1274	1146 1179 1212 1245 1278	1149 1183 1216 1248 1281	11 12 12	.53 .86 .219 .252 .84	1156 1189 1222 1255 1287	1159 1193 1225 1258 1290	1163 1196 1229 1261 1294	1199 1232 1265	1169 1202 1235 1268 1300	1173 1206 1239 1271 1303
135 136 137 138 139	1303 1335 1367 1399 1430	1307 1339 1370 1402 1433	1310 1342 1374 1405 1436	1313 1345 1377 1408 1440	13 13 14	116 148 180 111 143	1319 1351 1383 1414 1446	1323 1355 1386 1418 1449	1326 1358 1389 1421 1452	1361 1392 1424	1332 1364 1396 1427 1458	1335 1367 1399 1430 1461
140 141 142 143 144	1461 1492 1523 1553 1584	1464 1495 1526 1556 1587	1467 1498 1529 1559 1590	1471 1501 1532 1562 1593	15 15 15	74 04 35 65 96	1477 1508 1538 1569 1599	1480 1511 1541 1572 1602	1483 1514 1544 1575 1605	1517 1547 1578	1489 1520 1550 1581 1611	1492 1523 1553 1584 1614
145 146 147 148 149	1614 1644 1673 1703 1732	1617 1647 1676 1706 1735	1620 1649 1679 1708 1738	1623 1652 1682 1711 1741	16 16 17	26 55 85 14 44	1629 1658 1688 1717 1746	1632 1661 1691 1720 1749	1635 1664 1694 1723 1752	1667 1697 1726	1641 1670 1700 1729 1758	1644 1673 1703 1732 1761

		Т	ABLE	14.—LOGARITHMS			S (concluded)				31
N	0	1	2	3	4	5	6	7	8	9	10
150	1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1790
151	1790	1793	1796	1798	1801	1804	1807	1810	1813	1816	1818
152	1818	1821	1824	1827	1830	1833	1836	1838	1841	1844	1847
153	1847	1850	1853	1855	1858	1861	1864	1867	1870	1872	1875
154	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119.	2122
163	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
171	2330	2333	2335	2338	2340	2343	2345	2348	2350	2353	2355
172	2355	2358	2360	2363	2365	2368	2370	2373	2375	2378	2380
173	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	2405
174	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2440	2443	2445	2448	2450	2453	2455
176	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	2480
177	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	2504
178	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	2529
179	2529	2531	2533	2536	2538	2541	2543	2545	2548	2550	2553
180	2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	2577
181	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	2601
182	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	2625
183	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	2648
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	2695
186	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	2718
187	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	2742
188	2742	2744	2746	2749	2751	2753	2755	2758	2760	2762	2765
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2788
190	2788	2790	2792	2794	2797	2799	2801	2804	2806	2808	2810
191	2810	2813	2815	2817	2819	2822	2824	2826	2828	2831	2833
192	2833	2835	2838	2840	2842	2844	2847	2849	2851	2853	2856
193	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876	2878
194	2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	2931	2934	2936	2938	2940	2942	2945
197	2945	2947	2949	2951	2953	2956	2958	2960	2962	2964	2967
198	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986	2989
199	2989	2991	2993	2995	2997	2999	3002	3004	3006	3008	3010

52			•				
	_	Sines	Cosines	Tangents	Cotangents		
Radi-	De-	Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.		
ans	grees		_			90°00′	1.5708
0.0000	0°00′	.0000 ∞	1.0000 0.0000	.0000 00	00 00		
0.0029	10	.0029 7.4637	1.0000 .0000	.0029 7.4637	343.77 2.5363	50	1.5679
0.0058	20	.0058 .7648	1.0000 .0000	.0058 .7648	171.89 .2352	40	1.5650
0.0087	30	.0087 .9408	1.0000 .0000	.0087 .9409	114.59 .0591	30	1.5621
0.0116	40	.0116 8.0658	.9999 .0000	.0116 8.0658	85.940 1.9342	20	1.5592
0.0145	50	.0145 .1627	.9999 .0000	.0145 .1627	68.750 .8373	10	1.5563
0.0175	1°00′	.0175 8.2419	.9998 9.9999	.0175 8.2419	57.290 1.7581	89°00′	1.5533
0.0204	10	.0204 .3088	.9998 .9999	.0204 .3089	49.104 .6911	50	1.5504
0.0233	20	.0233 .3668	.9997 .9999	.0233 .3669	42.964 .6331	40	1.5475
0.0262	30	.0262 .4179	.9997 .9999	.0262 .4181	38.188 .5819	30	1.5446
0.0291	40	.0291 .4637	.9996 .9998	.0291 .4638	34.368 .5362	20	1.5417
0.0320	50	.0320 .5050	.9995 .9998	.0320 .5053	31.242 .4947	10	1.5388
0.0349	2°00′	.0349 8.5428	.9994 9.9997	.0349 8.5431	28.636 1.4569	88°00′	1.5359
0.0378	10	.0378 .5776	.9993 .999 7	.0378 .5779	26.432 .4221	50	1.5330
0.0407	20	.0407 .6097	.9992 .9996	.0407 .6101	24.542 .3899	40	1.5301
0.0436	30	.0436 .6397	.9990 .9996	.0437 .6401	22.904 .3599	30	1.5272
0.0465	40	.0465 .6677	.9989 .9995	.0465 .6682	21.470 .3318	20	1.5243
0.0495	50	.0494 .6940	.9988 .9995	.0495 .6945	20.206 .3055	10	1.5213
0.0524	3°00′	.0523 8.7188	.9986 9.9994	.0524 8.7194	19.081 1.2806	87°00′	1.5184
0.0553	10	.0552 .7423	.9985 .9993	.0553 .7429	18.075 .2571	50	1.5155
0.0582	20	.0581 .7645	.9983 .9993	.0582 .7652	17.169 .2348	40	1.5126
0.0611	30	.0610 .7857	.9981 .9992	.0612 .7865	16.350 .2135	30	1.5097
0.0640	40	.0640 .8059	.9980 .9991	.0641 .8067	15.605 .1933	20	1.5068
0.0669	50	.0669 .8251	.9978 .9990	.0670 .8261	14.924 .1739	10	1.5039
0.0698	4°00′	.0698 8.8436	.9976 9.9989	.0699 8.8446	14.301 1.1554	86°00′	1.5010
0.0727	10	.0727 .8613	.9974 .9989	.0729 .8624	13.727 .1376	50	1.4981
0.0756	20	.0756 .8783	.9971 .9988	.0758 .8795	13.197 .1205	40	1.4952
0.0785	30	.0785 .8946	.9969 .9987	.0787 .8960	12.706 .1040	30	1.4923
0.0814	40	.0814 .9104	.9967 .9986	.0816 .9118	12.251 .0882	20	1.4893
0.0844	50	.0843 .9256	.9964 .9985	.0846 .9272	11.826 .0728	10	1.4864
0.0873	5°00′	.0872 8.9403	.9962 9.9983	.0875 8.9420	11.430 1.0580	85°00′	1.4835
0.0902	10	.0901 .9545	.9959 .9982	.0904 .9563	11.059 .0437	50	1.4806
0.0931	20	.0929 .9682	.9957 .9981	.0934 .9701	10.712 .0299	40	1.4777
0.0960	30	.0958 .9816	.9954 .9980	.0963 .9836	10.385 .0164	30	1.4748
0.0989	40	.0987 .9945	.9951 .9979	.0992 .9966	10.078 .0034	20	1.4719
0.1018	50	.1016 9.0070	.9948 .9977	.1022 9.0093	9.7882 0.9907	10	1.4690
0.1047	6°00′	.1045 9.0192	.9945 9.9976	.1051 9.0216	9.5144 0.9784	84°00′	1.4661
0.1076	10	.1074 .0311	.9942 .9975	.1080 .0336	9.2553 .9664	50	1.4632
0.1105	20	.1103 .0426	.9939 .9973	.1110 .0453	9.0098 .9547	40	1.4603
0.1134	30	.1132 .0539	.9936 .9972	.1139 .0567	8.7769 .9433	30	1.4574
0.1164	40	.1161 .0648	.9932 .9971	.1169 .0678	8.5555 .9322	20	1.4544
0.1193	50	.1190 .0755	.9929 .9969	.1198 .0786	8.3450 .9214	10	1.4515
0.1222	7°00′	.1219 9.0859	.9925 9.9968	.1228 9.0891	8.1443 0.9109	83°00′	1.4486
0.1251	10	.1248 .0961	.9922 .9966	.1257 .0995	7.9530 .9005	50	1.4457
0.1280	20	.1276 .1060	.9918 .9964	.1287 .1096	7.7704 .8904	40	1.4428
0.1309	30	.1305 .1157	.9914 .9963	.1317 .1194	7.5958 .8806	30	1.4399
0.1338	40	.1334 .1252	.9911 .9961	.1346 .1291	7.4287 .8709	20	1.4370
0.1367	50	.1363 .1345	.9907 .9959	.1376 .1385	7.2687 .8615	10	1.4341
0.1396	8°00′	.1392 9.1436	.9903 9.9958	.1405 9.1478	7.1154 0.8522	82°00′	1.4312
0.1425	10	.1421 .1525	.9899 .9956	.1435 .1569	6.9682 .9431	50	1.4283
0.1454	20	.1449 .1612	.9894 .9954	.1465 .1658	6.8269 .8342	40	1.4254
0.1484	30	.1478 .1697	.9890 .9952	.1495 .1745	6.6912 .8255	30	1.4224
0.1513	40	.1507 .1781	.9886 .9950	.1524 .1831	6.5606 .8169	20	1.4195
0.1542	50	.1536 .1863	.9881 .9948	.1554 .1915	6.4348 .8085	10	1.4166
0.1571	9°00′	.1564 9.1943	.9877 9.9946	.1584 9.1997	6.3138 0.8003	81°00′	1.4137
		Nat. Log.	Nat. Log.	Nat. Log.	Nat. Log.	De-	Radi-
		Cosines	Sines	Cotangents	Tangents	grees	ans
				.,,	9	0	

^{*} Taken from B. O. Peirce's Short table of integrals, Ginn & Co.

	INDEL	. 13.—OINOUL	AN (TRIGON	IOMETRIC) I	-UNCTIONS (C	ontinueu)	3.5
Radi-	De-	Sines	Cosines	Tangents	Cotangents		
ans 0.1571 0.1600 0.1629 0.1658 0.1687 0.1716	9°00′ 10 20 30 40	Nat. Log. .1564 9.1943 .1593 .2022 .1622 .2100 .1650 .2176 .1679 .2251 .1708 .2324	Cosines Nat. Log9877 9.9946 .9872 .9944 .9868 .9942 .9863 .9940 .9858 .9938 .9853 .9936	Nat. Log. 1584 9.1997 1614 .2078 1644 .2158 1673 .2236 1703 .2313 1733 .2389		81°00′ 50 40 30 20 10	1.4137 1.4108 1.4079 1.4050 1.4021 1.3992
0.1745 0.1774 0.1804 0.1833 0.1862 0.1891	10°00′ 10 20 30 40 50	.1736 9.2397 .1765 .2468 .1794 .2538 .1822 .2606 .1851 .2674 .1880 .2740	.9848 9.9934 .9843 .9931 .9838 .9929 .9833 .9927 .9827 .9924 .9822 .9922	.1763 9.2463 .1793 .2536 .1823 .2609 .1853 .2680 .1883 .2750 .1914 .2819	5.6713 0.7537 5.5764 .7464 5.4845 .7391 5.3955 .7320 5.3093 .7250 5.2257 .7181	80°00′ 50 40 30 20	1.3963 1.3934 1.3904 1.3875 1.3846 1.3817
0.1920	11°00′	.1908 9.2806	.9816 9.9919	.1944 9.2887	5.1446 0.7113	79°00′	1.3788
0.1949	10	.1937 .2870	.9811 .9917	.1974 .2953	5.0658 .7047	50	1.3759
0.1978	20	.1965 .2934	.9805 .9914	.2004 .3020	4.9894 .6980	40	1.3730
0.2007	30	.1994 .2997	.9799 .9912	.2035 .3085	4.9152 .6915	30	13.701
0.2036	40	.2022 .3058	.9793 .9909	.2065 .3149	4.8430 .6851	20	1.3672
0.2065	50	.2051 .3119	.9787 .9907	.2095 .3212	4.7729 .6788	10	1.3643
0.2094	12°00′	.2079 9.3179	.9781 9.9904	.2126 9.3275	4.7046 0.6725	78°00′	1.3614
0.2123	10	.2108 .3238	.9775 .9901	.2156 .3336	4.6382 .6664	50	1.3584
0.2153	20	.2136 .3296	.9769 .9899	.2186 .3397	4.5736 .6603	40	1.3555
0.2182	30	.2164 .3353	.9763 .9896	.2217 .3458	4.5107 .6542	30	1.3526
0.2211	40	.2193 .3410	.9757 .9893	.2247 .3517	4.4494 .6483	20	1.3497
0.2240	50	.2221 .3466	.9750 .9890	.2278 .3576	4.3897 .6424	10	1.3468
0.2269	13°00′	.2250 9.3521	.9744 9.9887	.2309 9.3634	4.3315 0.6366	77°00′	1.3439
0.2298	10	.2278 .3575	.9737 .9884	.2339 .3691	4.2747 .6309	50	1.3410
0.2327	20	.2306 .3629	.9730 .9881	.2370 .3748	4.2193 .6252	40	1.3381
0.2356	30	.2334 .3682	.9724 .9878	.2401 .3804	4.1653 .6196	30	1.3352
0.2385	40	.2363 .3734	.9717 .9875	.2432 .3859	4.1126 .6141	20	1.3323
0.2414	50	.2391 .3786	.9710 .9872	.2462 .3914	4.0611 .6086	10	1.3294
0.2443	14°00′	.2419 9.3837	.9703 9.9869	.2493 9.3968	4.0108 0.6032	76°00′	1.3265
0.2473	10	.2447 .3887	.9696 .9866	2524 .4021	3.9617 .5979	50	1.3235
0.2502	20	.2476 .3937	.9689 .9863	2555 .4074	3.9136 .5926	40	1.3206
0.2531	30	.2504 .3986	.9681 .9859	.2586 .4127	3.8667 .5873	30	1.3177
0.2560	40	.2532 .4035	.9674 .9856	.2617 .4178	3.8208 .5822	20	1.3148
0.2589	50	.2560 .4083	.9667 .9853	.2648 .4230	3.7760 .5770	10	1.3119
0.2618	15°00′	.2588 9.4130	.9659 9.9849	.2679 9.4281	3.7321 0.5719	75°00′	1.3090
0.2647	10	.2616 .4177	.9652 .9846	.2711 .4331	3.6891 .5669	50	1.3061
0.2676	20	.2644 .4223	.9644 .9843	.2742 .4381	3.6470 .5619	40	1.3032
0.2705	30	.2672 .4269	.9636 .9839	.2773 .4430	3.6059 .5570	30	1.3003
0.2734	40	.2700 .4314	.9628 .9836	.2805 .4479	3.5656 .5521	20	1.2974
0.2763	50	.2728 .4359	.9621 .9832	.2836 .4527	3.5261 .5473	10	1.2945
0.2793	16°00′	.2756 9.4403	.9613 9.9828	.2867 9.4575	3.4874 0.5425	74°00′	1.2915
0.2822	10	.2784 .4447	.9605 .9825	.2899 .4622	3.4495 .5378	50	1.2886
0.2851	20	.2812 .4491	.9596 .9821	.2931 .4669	3.4124 .5331	40	1.2857
0.2880	30	.2840 .4533	.9588 .9817	.2962 .4716	3.3759 .5284	30	1.2828
0.2909	40	.2868 .4576	.9580 .9814	.2994 .4762	3.3402 .5238	20	1.2799
0.2938	50	.2896 .4618	.9572 .9810	.3026 .4808	3.3052 .5192	10	1.2770
0.2967	17°00′	.2924 9.4659	.9563 9.9806	.3057 9.4853	3.2709 0.5147	20	1.2741
0.2996	10	.2952 .4700	.9555 .9802	.3089 .4898	3.2371 .5102		1.2712
0.3025	20	.2979 .4741	.9546 .9798	.3121 .4943	3.2041 .5057		1.2683
0.3054	30	.3007 .4781	.9537 .9794	.3153 .4987	3.1716 .5013		1.2654
0.3083	40	.3035 .4821	.9528 .9709	.3185 .5031	3.1397 .4969		1.2625
0.3113	50	.3062 .4861	.9520 .9786	.3217 .5075	3.1084 .4925		1.2595
0.3142	18°00′	.3090 9.4900 Nat. Log.	.9511 9.9782 Nat. Log.	.3249 9.5118 Nat. Log.	3.0777 0.4882 Nat. Log.	De-	1.2566 Radi-
		Cosines	Sines (conti	Cotangents [nued]	Tangents	grees	ans
			(00/111)				

34	TABLE	15.—CIRCUL	AR (TRIGON	OMETRIC)	FUNCTIONS (co	ntinued)	
Radi-	De-	Sines	Cosines	Tangents	Cotangents		
0.3142 0.3171 0.3200 0.3229 0.3258 0.3287	grees 18°00′ 10 20 30 40 50	Nat. Log. .3090 9.4900 .3118 .4939 .3145 .4977 .3173 .5015 .3201 .5052 .3228 .5090	Nat. Log. .9511 9.9782 .9502 .9778 .9492 .9774 .9483 .9770 .9474 .9765 .9465 .9761	Nat. Log. .3249 9.5118 .3281 .5161 .3314 .5203 .3346 .5245 .3378 .5287 .3411 .5329	3.0475 .4839 3.0178 .4797 5 2.9887 .4755 2.9600 .4713	72°00′ 50 40 30 20 10	1.2566 1.2537 1.2508 1.2479 1.2450 1.2421
0.3316 0.3345 0.3374 0.3403 0.3432 0.3462	19°00′ 10 20 30 40 50	.3256 9.5126 .3283 .5163 .3311 .5199 .3338 .5235 .3365 .5270 .3393 .5306	.9455 9.9757 .9446 .9752 .9436 .9748 .9426 .9743 .9417 .9739 .9407 .9734	.3443 9.5370 .3476 .5411 .3508 .5451 .3541 .5491 .3574 .5531 .3607 .5571	2.8770 .4589 2.8502 .4549 2.8239 .4509 2.7980 .4469	71°00′ 50 40 30 20 10	1.2392 1.2363 1.2334 1.2305 1.2275 1.2246
0.3491 0.3520 0.3549 0.3578 0.3607 0.3636	20°00′ 10 20 30 40 50	.3420 9.5341 .3448 .5375 .3475 .5409 .3502 .5443 .3529 .5477 .3557 .5510	.9397 9.9730 .9387 .9725 .9377 .9721 .9367 .9716 .9356 .9711 .9346 .9706	.3640 9.5611 .3673 .5650 .3706 .5689 .3739 .5727 .3772 .5766 .3805 .5804	2.7228 .4350 2.6985 .4311 2.6746 .4273 2.6511 .4234	70°00′ 50 40 30 20 10	1.2217 1.2188 1.2159 1.2130 1.2101 1.2072
0.3665 0.3694 0.3723 0.3752 0.3782 0.3811	21°00′ 10 20 30 40 50	.3584 9.5543 .3611 .5576 .3638 .5609 .3665 .5641 .3692 .5673 .3719 .5704	.9336 9.9702 .9325 .9697 .9315 .9692 .9304 .9687 .9293 .9682 .9283 .9677	.3839 9.5842 .3872 .5879 .3906 .5917 .3939 .5954 .3973 .5991 .4006 .6028	2.5826 .4121 2.5605 .4083 2.5386 .4046 2.5172 .4009	69°00′ 50 40 30 20 10	1.2043 1.2014 1.1985 1.1956 1.1926 1.1897
0.3840 0.3869 0.3898 0.3927 0.3956 0.3985	22°00′ 10 20 30 40 50	.3746 9.5736 .3773 .5767 .3800 .5798 .3827 .5828 .3854 .5859 .3881 .5889	.9272 9.9672 .9261 .9667 .9250 .9661 .9239 .9656 .9228 .9651 .9216 .9646	.4040 9.6064 .4074 .6100 .4108 .6136 .4142 .6172 .4176 .6208 .4210 .6243	2.4545 .3900 2.4342 .3864 2.4142 .3828 2.3945 .3792	68°00′ 50 40 30 20 10	1.1868 1.1839 1.1810 1.1781 1.1752 1.1723
0.4014 0.4043 0.4072 0.4102 0.4131 0.4160	23°00′ 10 20 30 40 50	.3907 9.5919 .3934 .5948 .3961 .5978 .3987 .6007 .4014 .6036 .4041 .6065	.9205 9.9640 .9194 .9635 .9182 .9629 .9171 .9624 .9159 .9618 .9147 .9613	.4245 9.6279 .4279 .6314 .4314 .6348 .4348 .6383 .4383 .6417 .4417 .6452	2.3369 .3686 2.3183 .3652 2.2998 .3617 2.2817 .3583	67°00′ 50 40 30 20 10	1.1694 1.1665 1.1636 1.1606 1.1577 1.1548
0.4189 0.4218 0.4247 0.4276 0.4305 0.4334	24°00′ 10 20 30 40 50	.4067 9.6093 .4094 .6121 .4120 .6149 .4147 .6177 .4173 .6205 .4200 .6232	.9135 9.9607 .9124 .9602 .9112 .9596 .9100 .9590 .9088 .9584 .9075 .9579	.4452 9.6486 .4487 .6520 .4522 .6553 .4557 .6587 .4592 .6620 .4628 .6654	2.2286 .3480 2.2113 .3447 2.1943 .3413 2.1775 .3380	66°00′ 50 40 30 20 10	1.1519 1.1490 1.1461 1.1432 1.1403 1.1374
0.4363 0.4392 0.4422 0.4451 0.4480 0.4509	25°00′ 10 20 30 40 50	.4226 9.6259 .4253 .6286 .4279 .6313 .4305 .6340 .4331 .6366 .4358 .6392	.9063 9.9573 .9051 .9567 .9038 .9561 .9026 .9555 .9013 .9549 .9001 .9543	.4663 9.6687 .4699 .6720 .4734 .6752 .4770 .6785 .4806 .6817 .4841 .6850	2.1283 .3280 2.1123 .3248 2.0965 .3215 2.0809 .3183	65°00′ 50 40 30 20 10	1.1345 1.1316 1.1286 1.1257 1.1228 1.1199
0.4538 0.4567 0.4596 0.4625 0.4654 0.4683	26°00′ 10 20 30 40 50	.4384 9.6418 .4410 .6444 .4436 .6470 .4462 .6495 .4488 .6521 .4514 .6546	.8988 9.9537 .8975 .9530 .8962 .9524 .8949 .9518 .8936 .9512 .8923 .9505	.4877 9.6882 .4913 .6914 .4950 .6946 .4986 .6977 .5022 .7009 .5059 .7040	2.0503 0.3118 2.0353 .3086 2.0204 .3054 2.0057 .3023 1.9912 .2991 1.9768 .2960	64°00′ 50 40 30 20 10	1.1170 1.1141 1.1112 1.1083 1.1054 1.1025
0.4712	27°00′	.4540 9.6570 Nat. Log.	.8910 9.9499 Nat. Log.	.5095 9.7072 Nat. Log.	1.9626 0.2928	63°00′	1.0996
		Nat. Log. Cosines	Nat. Log. Sines	Nat. Log. Cotangents	Nat. Log. Tangents	De- grees	Radi- ans
			(cont	inued)			

	IABLE				-UNCTIONS (co	ontinued)	35
Radi-	De-	Sines	Cosines	Tangents	Cotangents		
ans 0.4712 0.4741 0.4771 0.4800 0.4829 0.4858	27°00′ 10 20 30 40 50	Nat. Log. .4540 9.6570 .4566 .0595 .4592 .6620 .4617 .6644 .4643 .6668 .4669 .6692	Nat. Log. .8910 9.9499 .8897 9492 .8884 9486 .8870 9479 .8857 9473 .8843 9466	Nat. Log. .5095 9.7072 .5132 .7103 .5169 .7134 .5206 .7165 .5243 .7196 .5280 .7226	Nat. Log. 1.9626 0.2928 1.9486 .2897 1.9347 .2866 1.9210 .2835 1.9074 .2804 1.8940 .2774	63°00′ 50 40 30 20 10	1.0996 1.0966 1.0937 1.0908 1.0879 1.0850
0.4887	28°00′	.4695 9.6716	.8829 9,9459	.5317 9.7257	1.8807 0.2743	62°00′	1.0821
0.4916	10	.4720 .6740	.8816 .9453	.5354 .7287	1.8676 .2713	50	1.0792
0.4945	20	.4746 .6763	.8802 .9446	.5392 .7317	1.8546 .2683	40	1.0763
0.4974	30	.4772 .6787	.8788 .9439	.5430 .7348	1.8418 .2652	30	1.0734
0.5003	40	.4797 .6810	.8774 .9432	.5467 .7378	1.8291 .2622	20	1.0705
0.5032	50	.4823 .6833	.8760 .9425	.5505 .7408	1.8165 .2592	10	1.0676
0.5061	29°00′	.4848 9.6856	.8746 9,9418	.5543 9.7438	1.8040 0.2562	61°00′	1.0647
0.5091	10	.4874 .6878	.8732 .9411	.5581 .7467	1.7917 .2533	50	1.0617
0.5120	20	.4899 .6901	.8718 .9404	.5619 .7497	1.7796 .2503	40	1.0588
0.5149	30	.4924 .6923	.8704 .9397	.5658 .7526	1.7675 .2474	30	1.0559
0.5178	40	.4950 .6946	.8689 .9390	.5696 .7556	1.7556 .2444	20	1.0530
0.5207	50	.4975 .6968	.8675 .9383	.5735 .7585	1.7437 .2415	10	1.0501
0.5236	30°00′	.5000 9.6990	.8660 9.9375	.5774 9.7614	1.7321 0.2386	60°00′	1.0472
0.5265	10	.5025 .7012	.8646 .9368	.5812 .7644	1.7205 .2356	50	1.0443
0.5294	20	.5050 .7033	.8631 .9361	.5851 .7673	1.7090 .2327	40	1.0414
0.5323	30	.5075 .7055	.8616 .9353	.5890 .7701	1.6977 .2299	30	1.0385
0.5352	40	.5100 .7076	.8601 .9346	.5930 .7730	1.6864 .2270	20	1.0356
0.5381	50	.5125 .7097	.8587 .9338	.5969 .7759	1.6753 .2241	10	1.0327
0.5411	31°00′	.5150 9.7118	.8572 9.9331	.6009 9.7788	1.6643 0.2212	59°00′	1.0297
0.5440	10	.5175 .7139	.8557 .9323	.6048 .7816	1.6534 .2184	50	1.0268
0.5469	20	.5200 .7160	.8542 .9315	.6088 .7845	1.6426 .2155	40	1.0239
0.5498	30	.5225 .7181	.8526 .9308	.6128 .7873	1.6319 .2127	30	1.0210
0.5527	40	.5250 .7201	.8511 .9300	.6168 .7902	1.6212 .2098	20	1.0181
0.5556	50	.5275 .7222	.8496 .9292	.6208 .7930	1.6107 .2070	10	1.0152
0.5585	32°00′	.5299 9.7242	.8480 9.9284	.6249 9.7958	1.6003 0.2042	58°00′	1.0123
0.5614	10	.5324 .7262	.8465 .9276	.6289 .7986	1.5900 .2014	50	1.0094
0.5643	20	.5348 .7282	.8450 .9268	.6330 .8014	1.5798 .1986	40	1.0065
0.5672	30	.5373 .7302	.8434 .9260	.6371 .8042	1.5697 .1958	30	1.0036
0.5701	40	.5398 .7322	.8418 .9252	.6412 .8070	1.5597 .1930	20	1.0007
0.5730	50	.5422 .7342	.8403 .9244	.6453 .8097	1.5497 .1903	10	0.9977
0.5760	33°00′	.5446 9.7361	.8387 9.9236	.6494 9.8125	1.5399 0.1875	57°00′	0.9948
0.5789	10	.5471 .7380	.8371 .9228	.6536 .8153	1.5301 .1847	50	0.9919
0.5818	20	.5495 .7400	.8355 .9219	.6577 .8180	1.5204 .1820	40	0.9890
0.5847	30	.5519 .7419	.8339 .9211	.6619 .8208	1.5108 .1792	30	0.9861
0.5876	40	.5544 .7438	.8323 .9203	.6661 .8235	1.5013 .1765	20	0.9832
0.5905	50	.5568 .7457	.8307 .9194	.6703 .8263	1.4919 .1737	10	0.9803
0.5934	34°00′	.5592 9.7476	.8290 9.9186	.6745 9.8290	1.4826 0.1710	56°00′	0.9774
0.5963	10	.5616 .7494	.8274 .9177	.6787 .8317	1.4733 .1683	50	0.9745
0.5992	20	.5640 .7513	.8258 .9169	.6830 .8344	1.4641 .1656	40	0.9716
0.6021	30	.5664 .7531	.8241 .9160	.6873 .8371	1.4550 .1629	30	0.9687
0.6050	40	.5688 .7550	.8225 .9151	.6916 .8398	1.4460 .1602	20	0.9657
0.6080	50	.5712 .7568	.8208 .9142	.6959 .8425	1.4370 .1575	10	0.9628
0.6109	35°00′	.5736 9.7586	.8192 9.9134	.7002 9.8452	1.4281 0.1548	55°00′	0.9599
0.6138	10	.5760 .7604	.8175 .9125	.7046 .8479	1.4193 .1521	50	0.9570
0.6167	20	.5783 .7622	.8158 .9116	.7089 .8506	1.4106 .1494	40	0.9541
0.6196	30	.5807 .7640	.8141 .9107	.7133 .8533	1.4019 .1467	30	0.9512
0.6225	40	.5831 .7657	.8124 .9098	.7177 .8559	1.3934 .1441	20	0.9483
0.6254	50	.5854 .7675	.8107 .9089	.7221 .8586	1.3848 .1414	10	0.9454
0.6283	36°00′	.5878 9.7692 Nat. Log.	.8090 9.9080 Nat. Log.	.7265 9.8613 Nat. Log.	1.3764 0.1387 Nat. Log.	54°00′	0.9425
		Cosines	Sines	Cotangents	Tangents	De- grees	Radi- ans
			(con	tinucd)			

30	.,,,,,,,	C:	Carina	Tanganta	Cotomorate	,	
Radi- ans 0.6283 0.6312 0.6341 0.6370 0.6400 0.6429	De- grees 36°00′ 10 20 30 40 50	Sines Nat. Log5878 9.7692 .5901 .7710 .5925 .7727 .5948 .7744 .5972 .7761 .5995 .7778	Cosines Nat. Log8090 9.9080 .8073 .9070 .8056 .9061 .8039 .9052 .8021 .9042 .8004 .9033	Tangents Nat. Log7265 9.8613 .7310 .86639 .7355 .8666 .7400 .8692 .7445 .8718 .7490 .8745	Cotangents Nat. Log. 1.3764 0.1387 1.3680 .1361 1.3597 .1334 1.3514 .1308 1.3432 .1282 1.3351 .1255	54°00′ 50 40 30 20 10	0.9425 0.9396 0.9367 0.9338 0.9308 0.9279
0.6458	37°00′	.6018 9.7795	.7986 9.9023	.7536 9.8771	1.3270 0.1229	53°00′	0.9250
0.6487	10	.6041 .7811	.7969 .9014	.7581 .8797	1.3190 .1203	50	0.9221
0.6516	20	.6065 .7828	.7951 .9004	.7627 .8824	1.3111 .1176	40	0.9192
0.6545	30	.6088 .7844	.7934 .8995	.7673 .8850	1.3032 .1150	30	0.9163
0.6574	40	.6111 .7861	.7916 .8985	.7720 .8876	1.2954 .1124	20	0.9134
0.6603	50	.6134 .7877	.7898 .8975	.7766 .8902	1.2876 .1098	10	0.9105
0.6632	38°00′	.6157 9.7893	.7880 9.8965	.7813 9.8928	1.2799 0.1072	52°00′	0.9076
0.6661	10	.6180 .7910	.7862 .8955	.7860 .8954	1.2723 .1046	50	0.9047
0.6690	20	.6202 .7926	.7844 .8945	.7907 .8980	1.2647 .1020	40	0.9018
0.6720	30	.6225 .7941	.7826 .8935	.7954 .9006	1.2572 .0994	30	0.8988
0.6749	40	.6248 .7957	.7808 .8925	.8002 .9032	1.2497 .0968	20	0.8959
0.6778	50	.6271 .7973	.7790 .8915	.8050 .9058	1.2423 .0942	10	0.8930
0.6807	39°00′	.6293 9.7989	.7771 0.8905	.8098 9.9084	1.2349 0.0916	51°00′	0.8901
0.6836	10	.6316 .8004	.7753 .8895	.8146 .9110	1.2276 .0890	50	0.8872
0.6865	20	.6338 .8020	.7735 .8884	.8195 .9135	1.2203 .0865	40	0.8843
0.6894	30	.6361 .8035	.7716 .8874	.8243 .9161	1.2131 .0839	30	0.8814
0.6923	40	.6383 .8050	.7698 .8864	.8292 .9187	1.2059 .0813	20	0.8785
0.6952	50	.6406 .8066	.7679 .8853	.8342 .9212	1.1988 .0788	10	0.8756
0.6981	40°00′	.6428 9.8081	.7660 9.8843	.8391 9.9238	1.1918 0.0762	50°00′	0.8727
0.7010	10	.6450 .8096	.7642 .8832	.8441 .9264	1.1847 .0736	50	0.8698
0.7039	20	.6472 .8111	.7623 .8821	.8491 .9289	1.1778 .0711	40	0.8668
0.7069	30	.6494 .8125	.7604 .8810	.8541 .9315	1.1708 .0685	30	0.8639
0.7098	40	.6517 .8140	.7585 .8800	.8591 .9341	1.1640 .0659	20	0.8610
0.7127	50	.6539 .8155	.7566 .8789	.8642 .9366	1.1571 .0634	10	0.8581
0.7156	41°00′	.6561 9.8169	.7547 9.8778	.8693 9.9392	1.1504 0.0608	49°00′	0.8552
0.7185	10	.6583 .8184	.7528 .8767	.8744 .9417	1.1436 .0583	50	0.8523
0.7214	20	.6604 .8198	.7509 .8756	.8796 .9443	1.1369 .0557	40	0.8494
0.7243	30	.6626 .8213	.7490 .8745	.8847 .9468	1.1303 .0532	30	0.8465
0.7272	40	.6648 .8227	.7470 .8733	.8899 .9494	1.1237 .0506	20	0.8436
0.7301	50	.6670 .8241	.7451 .8722	.8952 .9519	1.1171 .0481	10	0.8407
0.7330	42°00′	.6691 9.8255	.7431 9.8711	.9004 9.9544	1.1106 0.0456	48°00′	0.8378
0.7359	10	.6713 .8269	.7412 .8699	.9057 .9570	1.1041 .0430	50	0.8348
0.7389	20	.6734 .8283	.7392 .8688	.9110 .9595	1.0977 .0405	40	0.8319
0.7418	30	.6756 .8297	.7373 .8676	.9163 .9621	1.0913 .0379	30	0.8290
0.7447	40	.6777 .8311	.7353 .8665	.9217 .9646	1.0850 .0354	20	0.8261
0.7476	50	.6799 .8324	.7333 .8653	.9271 .9671	1.0786 .0329	10	0.8232
0.7505	43°00′	.6820 9.8338	.7314 9.8641	.9325 9.9697	1.0724 0.0303	47°00′	0.8203
0.7534	10	.6841 .8351	.7294 .8629	.9380 .9722	1.0661 .0278	50	0.8174
0.7563	20	.6862 .8365	.7274 .8618	.9435 .9747	1.0599 .0253	40	0.8145
0.7592	30	.6884 .8378	.7254 .8606	.9490 .9772	1.0538 .0228	30	0.8116
0.7621	40	.6905 .8391	.7234 .8594	.9545 .9798	1.0477 .0202	20	0.8087
0.7650	50	.6926 .8405	.7214 .8582	.9601 .9823	1.0416 .0177	10	0.8058
0.7679	44°00′	.6947 9.8418	.7193 0.8569	.9657 9.9848	1.0355 0.0152	46°00′	0.8029
0.7709	10	.6967 .8431	.7173 .8557	.9713 .9874	1.0295 .0126	50	0.7999
0.7738	20	.6988 .8444	.7153 .8545	.9770 .9899	1.0235 .0101	40	0.7970
0.7767	30	.7009 .8457	.7133 .8532	.9827 .9924	1.0176 .0076	30	0.7941
0.7796	40	.7030 .8469	.7112 .8520	.9884 .9949	1.0117 .0051	20	0.7912
0.7825	50	.7050 .8482	.7092 .8507	.9942 .9975	1.0058 .0025	10	0.7883
0.7854	45°00′	.7071 9.8495 Nat. Log. Cosines	.7071 9.8495 Nat. Log. Sines	1.0000 0.0000 Nat. Log. Cotangents	1.0000 0.0000 Nat. Log. Tangents	45°00′ De- grees	0.7854 Radi- ans

TABLE 16 -- METHODS OF AVERAGING DATA

When a number of measurements are made of any quantity variations will be found. The question is: What is the best representative value for the quantity thus measured: and how shall the precision of the measurements be stated? The arithmetic mean of all the readings is generally taken as the best value. To tell something about the precision of the final result any one of five measures of variation which are discussed in books dealing with this subject may be given. These measures of deviation are:

p = probable error

a = the average deviation (from the arithmetic mean)

 σ = the standard deviation

1/h = the reciprocal of the modulus of precision

k/w = the reciprocal of the "precision constant"

Of these precision indexes the standard deviation, σ , is most easily computed. For the set of observed values $x_1, x_2...x_n$ of equal weight, the σ for a single observation is given by

$$\sigma = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n - 1}} \cong \sqrt{\frac{\Sigma(x - \bar{x})^2}{n}}$$

and for the mean by

$$\sigma = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n(n-1)}} \cong \sqrt{\frac{\Sigma(x - \bar{x})^2}{n^2}}$$

The ratios of these precision indexes to one another for a normal (or Gaussian) distribution are:

$$p: a: \sigma: 1 \ h: k \ w: : 0.476936: 1 \ \sqrt{\pi}: \sqrt{(1 \ 2)}: 1.000: \sqrt{\pi}$$
 or roughly as $p: a: \sigma: 1 \ h: k \ w: : 7: 8: 10: 14: 25$

Most experimental data can be represented by an equation of some form. One of the recommended methods for determining the coefficients of such equations is the use of a least-squares solution. This means that an attempt is made to find values for the coefficients such that the sum of the squares of the deviations of the experimental points from the resulting curve has the least possible value. Certain tables are of help in making such solutions (Tables 16-26), and reference should be made to books or papers on this subject for their use.

An example of one method of finding the coefficients of such selected equations (based on "Treatment of Experimental Data," by Worthing and Geffner, published by Wiley. 1943) follows.

Part 1.-Least squares adjustment of measurements of linearly related quantities

Let $Q_1, Q_2, \dots Q_k$ be the k adjusted, but initially unknown, values of the linearly related quantities. Let $X_1, X_2, \dots X_n$ be n(>k) measured values of Q's or of linear combinations of two or more, Q's.

Let $\Delta_1, \Delta_2, \dots \Delta_n$ be the adjustments or corrections that must be applied to the measured X's to yield consistent least-squares values for the Q's. See below for a simple illustration.

As observation equations we have

of which $a_1, b_1 \dots k_k$ are constants, whose values are frequently +1, -1, or 0.

From the observation equations k normal equations are formed. For equally weighted observed values of X, they are

$$[a_{i}a_{i}]Q_{1} + [a_{i}b_{i}]Q_{2} + [a_{i}c_{i}]Q_{3} + \dots [a_{i}k_{i}]Q_{k} - [a_{i}X_{i}] = 0$$

$$[b_{i}a_{i}]Q_{1} + [b_{i}b_{i}]Q_{2} + [b_{i}c_{i}]Q_{3} + \dots [b_{i}k_{i}]Q_{k} - [b_{i}X_{i}] = 0$$

$$[k_{i}a_{i}]Q_{1} + [k_{i}b_{i}]Q_{2} + [k_{i}c_{i}]Q_{3} + \dots [k_{i}k_{i}]Q_{k} - [k_{i}X_{i}] = 0$$
(2)

^{*} Prepared by the late A. G. Worthing, of the University of Pittsburgh.

of which, as representative bracketed [] coefficients, we have

Solutions of equation (2) yield the least-squares adjusted values of $Q_1, Q_2...Q_k$.

For unequally weighted values of X, that is $w_1, w_2, \ldots w_n$ for $X_1X_2 \ldots X_n$, the normal equations become

$$[w_{1}a_{1}a_{1}]Q_{1} + [w_{1}a_{1}b_{1}]Q_{2} + [w_{1}a_{1}c_{1}]Q_{3} + \dots [w_{1}a_{1}k_{1}]Q_{k} - [w_{1}a_{1}X_{1}] = 0$$

$$[w_{1}b_{1}a_{1}]Q_{1} + [w_{1}b_{1}b_{1}]Q_{2} + [w_{1}b_{1}c_{1}]Q_{3} + \dots [w_{1}b_{1}k_{1}]Q_{k} - [w_{1}b_{1}X_{1}] = 0$$

$$(4)$$

 $[w_1k_1a_1]Q_1 + [w_1k_1b_1]Q_2 + [w_1k_1c_1]Q_3 + \dots [w_1k_1k_1]Q_k - [w_1k_1X_1] = 0$

of which

The weights $w_1, w_2...w_n$ associated with the $X_1, X_2...X_n$ and with the successive observation equations are taken as inversely proportional to the squares of the probable errors (or of the standard deviations) of the corresponding X's. It is customary to take simple rounded numbers for the proportional values. A precise set of 28, 50, 41, and 78 may be rounded to 3, 5, 4, and 8.

As a simple application, consider the elevations of stations B, C, and D above A. Let those elevations in order be Q_1 , Q_2 , and Q_3 . Let the quantities measured and the observed elevations be such as to yield the following observation equations:

$$Q_{1} - 10 \text{ ft} = \Delta_{1}$$

$$Q_{2} - 18 \text{ ft} = \Delta_{2}$$

$$Q_{3} - 4 \text{ ft} = \Delta_{3}$$

$$-Q_{1} + Q_{2} - 9 \text{ ft} = \Delta_{4}$$

$$Q_{2} - Q_{3} - 12 \text{ ft} = \Delta_{5}$$

$$Q_{1} - Q_{3} - 5 \text{ ft} = \Delta_{6}$$
(6)

The coefficients a_1 , b_1 , and c_1 are seen to be 1, 0, and 0. The values of the other coefficients are obvious. Substitution in equation (2) yields for the normal equations

$$3Q_2 - Q_2 - Q_3 - 6 \text{ ft} = 0$$

$$-Q_1 + 3Q_2 - Q_3 - 39 \text{ ft} = 0$$

$$-Q_1 - Q_2 + 3Q_3 + 13 \text{ ft} = 0$$
(7)

Solutions of equation (7) yield $9\frac{1}{2}$ ft, $17\frac{3}{4}$ ft, and $4\frac{3}{4}$ ft for the elevations of B, C, and D above A.

Part 2.—Least-squares equations of the type y = a + bx, to represent a series of observed (x,y) values

For equally weighted pairs of (x,y) of which the errors of measurement are associated with the determinations of the y's

$$a = \frac{\sum x^2 \sum y - \sum x \sum x y}{n \sum x^2 - (\sum x)^2} = \frac{\overline{x^2} y - \overline{x} \overline{x} y}{\overline{x^2} - \overline{x}^2}$$

$$b = \frac{n \sum x y - \sum x \sum y}{n \sum x^2 - (\sum x)^2} = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2}$$
(8)

of which

$$nx = \Sigma x$$
, $n\overline{x^2} = \Sigma x^2$, $\overline{xy} = n\Sigma xy$
 $\bar{n}^2\bar{x}^2 = (\Sigma x)^2$, etc.

The probable errors of the a and the b of equation (8) are given by

$$p_{a} = 0.675 \sqrt{\frac{1}{n-2} \left[\frac{\bar{x}^{2} \bar{y}^{2} - 2\bar{x} \, \bar{y} \, \bar{x} \bar{y} + \bar{x}^{2} \bar{y}^{2}}{\bar{x}^{2} - \bar{x}^{2}} - a^{2} \right]}$$

$$p_{b} = 0.675 \sqrt{\frac{1}{n-2} \left[\frac{\bar{y}^{2} - \bar{y}^{2}}{\bar{x}^{2} - \bar{x}^{2}} - b^{2} \right]}$$
(9)

For unequally weighted measurements of which the errors of measurement are associated with the determinations of the y's,

$$a = \frac{\sum w_i x_i^2 \sum w_i y_i - \sum w_i x_i \sum w_i x_i y_i}{\sum w_i \sum w_i x_i^2 - (\sum w_i x_i)^2}$$

$$b = \frac{\sum w_i \sum w_i x_i y_i - \sum w_i x_i \sum w_i y_i}{\sum w_i \sum w_i x_i^2 - (\sum w_i x_i)^2}$$
(10)

Where the errors of measurement are associated with the x-determination only, the corresponding coefficients of an equation of the type x = a' + b'y can be obtained by merely interchanging x and y in equation (8).

Where the errors of measurement are associated with both the x- and the y- determinations, the expressions are complicated.13

¹³ Worthing, A. G., and Geffner, J., Treatment of experimental data, p. 259, John Wiley and Sons, New York, 1943. Used by permission.

Part 3.—Least-squares equation of the type $y = a + bx + cx^2 + dx^3$ to represent a series of observed (x, y) values

For the general case involving irregularly spaced x-values, the formulae for a, b, c, etc., are very complex. However, for the case of equally weighted observations with errors of measurement associated entirely with the y-values in which succeeding x-values are equally spaced, the mechanics of the computations for least-squares constants are very greatly simplified, thanks to tables computed by Baily ¹⁶ and by Cox and Matuschak. ¹⁸ The procedure requires a change of the x-variable to yield a new X-variable with a zero-value at the midpoint of the series. In case of an even number of terms, the shift is given by

$$X_{\bullet} = \frac{x - \overline{x}}{\Delta x} \tag{11}$$

of which Δx is the even spacing between successive x-values; and, if the number of terms is odd, the shift is given by

$$X_0 = \frac{x - \bar{x}}{\Delta x/2} \tag{12}$$

The further procedure consists in determining the appropriate summations indicated in Table 17, the appropriate k-terms given as a function of the number of terms n in Tables 19 and 20, combining the appropriate summations and k-terms, to give parameters for the equation y = f(X), and finally transferring the function to the original coordinate system to yield $y = f_2(x)$.

How to apply the simplified procedure to determine the coefficient of x^2 in the least-squares equation $y = a + bx + cx^2$ to represent the xy values of the first two columns of the following tabulations is shown in the remainder of the tabulation.

$\frac{x}{(\text{sec})}$	y (cm)	X	$\frac{X^2y}{(cm)}$	$c' = k_5 \Sigma X^2 y - k_4 \Sigma y$
3	12.0	 5	300.0	n = 6
6	20.6	- 3	185.4	$k_5 = 16,741,071 \times 10^{-10}$
9	33.7	— 1	33.7	$k_4 = 19,531,250 \times 10^{-9}$
12	51.1	+1	51.1	$k_5 \Sigma X^2 y = 6.2005 \text{ cm}$
15	72.9	+ 3	656.1	$k_4\Sigma y = 5.6523 \text{ cm}$
18	99.1	+5	2477.5	c' = 0.5482 cm
				$\Delta x = 3 \sec$
	289.4		3703.8	$c = 4c'/(\Delta x)^2 = 0.244 \text{ cm/sec}^2$

Birge, R. T., and Shea, J. D., Univ. California Publ. Math., vol. 2, p. 67, 192/; Worthing, A. G., and Geffner, J., Treatment of experimental data, p. 250, John Wiley and Sons, New York, 1943.
 Baily, J. L., Ann. Math. Statistics, vol. 2, p. 355, 1931.
 Cox, G. C., and Matuschak, Margaret, Journ. Phys. Chem., vol. 45, p. 362, 1941.

TABLE 17.—SHOWING THE MAKE-UP OF THE CONSTANTS OF THE LEAST-SQUARES EQUATION OF THE TYPE $y=a+bx+cx^2+dx^3$ for equations of varying degrees when the abbreviated method of bailey and of cox and matuschak is used*

This method is applicable only when succeeding values of x have a common difference and are equally weighted. The independent variable, changed if necessary, must have a zero value at the midpoint of the scries with succeeding values differing by unity if the number of terms is odd and by two if even. Values for the various k's, as computed by Cox and Matuschak, are to be found in Tables 14 and 20.

Degree of		Para	meters	
equation	a	b	С	d
1	$k_1\Sigma y$	$k_2 \Sigma x y$,	
2	$k_3 \Sigma y - k_4 \Sigma x^2 y$	$k_2 \Sigma x y$	$k_5\Sigma x^2y - k_4\Sigma y$	
3	$k_3 \Sigma y - k_4 \Sigma x^2 y$	$k_0 \Sigma x y - k_7 \Sigma x^3 y$	$k_5 \Sigma x^2 y - k_4 \Sigma y$	$k_8\Sigma x^3y - k_7\Sigma xy$

^{*} For references, see footnotes 15 and 16, p. 39.

TABLE 18.—VALUES OF
$$P = \frac{2}{\sqrt{\pi}} \int_{0}^{hx} e^{-(hx)^2} d(hx)$$

P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $P = \frac{2}{\sqrt{\pi}} \int_{0}^{hx} e^{-(hx)^2} d(hx) \cdot h^2 = (\frac{1}{2}m\Delta x^2)$ where m = no, obs. of deviation Δx .

hx	0	1	2	3	4	5	6	7	8	9
0.0		.01128	.02256	.03384	.04511	.05637	.06762	.07886	.09008	.10128
.1 .2	.11246	.12362	.13476	.14587 .25502	.15695 .26570	.16800 .27633	.17901 .28690	.18999	.20094	.21184
.3	.32863	.33891	.34913	.35928	.36936	.37938	.38933	.39921	.40901	.41874
.4	.42839	.43797	.44747	.45689	.46623	.47548	.48466	.49375	.50275	.51167
0.5	.52050	.52924	.53790	.54646	.55494	.56332	.57162	.57982	.58792	.59594
.6	.60386	.61168	.61941	.62705	.63459	.64203	.64938	.65663	.66378	.67084
.7 .8	.67780 .74210	.68467 .74800	.69143 .75381	.69810 .75952	.70468 .76514	.71116 .77067	.71754 .77610	.72382 .78144	.73001 .78669	.73610 .79184
.9	.79691	.80188	.80677	.81156	.81627	.82089	.82542	.82987	.83423	.83851
1.0	.84270	.84681	.85084	.85478	.85865	.86244	.86614	.86977	.87333	.87680
.1	.88021	.88353	.88679	.88997	.89308	.89612	.89910	.90200	.90484	.90761
.2 .3	.91031 .93401	.91296 .93606	.91553	.91805 .94002	.92051 .94191	.92290	.92524 .94556	.92751 .94731	.92973 .94902	.93190 .95067
.4	.95229	.95385	.95538	.95686	.95830	.95970	.96105	.96237	.96365	.96490
1.5	.96611	.96728	.96841	.96952	.97059	.97162	.97263	.97360	.97455	.97546
.6	.97635	.97721	.97804	.97884	.97962	.98038	.98110	.98181	.98249	.98315
.7 .8	.98379 .98909	.98441 .98952	.98500 .98994	.98558 .99035	.98613 .99074	.98667 .99111	.98719 .99147	.98769 .99182	.98817 .99216	.98864
.9	.99279	.99309	.99338	.99366	.99392	.99418	.99443	.99466	.99489	.99511
2.0	.99532	.99552	.99572	.99591	.99609	.99626	.99642	.99658	.99673	.99688
.1	.99702	.99715	.99728	.99741	.99753	.99764	.99775	.99785	.99795	.99805
.2 .3	.99814 .99886	.99822	.99831	.99839	.99846	.99854	.99861 .99915	.99867 .99920	.99874 .99924	.99880
.4	.99931	.99935	.99938	.99941	.99944	.99947	.99950	.99952	.99955	.99957
2.5	.99959	.99961	.99963	.99965	.99967	.99969	.99971	.99972	.99974	.99975
.6	.99976	.99978	.99979	.99980	.99981	.99982	99983	.99984	.99985	.99986
.7	.99987 .99992	.99987	.99988	.99989 .99994	.99989	.99990	.99991	.99991 .99995	.9999 <u>2</u> .99995	.99992 .99996
.8 .9	.99992	.99993	.99993	.99994	.99994	.99994	.99995	.99995	.99995	.99996
3.0	.99998	.99999	.99999	1.00000		.,,,,,	.,,,,,	.,,,,,		.,,,,

TABLE 19.--VALUES OF THE CONSTANTS, k., ENTERING LEAST-SQUARES SOLUTIONS, USING THE ABBREVIATED METHOD OF BAILY AND OF COX AND MATUSCHAK, WHEN THE NUMBER OF TERMS, n, IS ODD *

The numbers in parentheses show the negative powers of 10 by which the adjacent numbers must be multiplied in order to obtain appropriate k_n 's. To illustrate, k_2 for n = 13 is $54,945,055 \times 10^{-10}$.

ks 6944 4444(9) 46.29 6226(10) 7014 5903(11) 1618 7516	4856 2549(12) 1745 7125 7166 6093(13) 3257 5497 1605 1694	8445 6606 (14) 4692 0337 2728 9299 1650 5625 1032 7049	6655 2091(15) 4402 0942 2979 8791 2059 2661 1449 7581	1037 9428 7545 3288(16) 5561 9852 4152 6134 3136 9497
_	1214 0637 5830 6799(11) 3081 6420 1752 5617 1056 2015			
~~	3584 6098 2304 5899 1570 2041 1118 3168 8248 5070(10)			9474 1490(11) 8263 1159 7250 1033 6396 2170 5671 3855
h _E 1500 0000(7) 7142 8571(9) 1150 4762 3246 7532(10) 1165 5012	4995 0050(11) 2424 0465 1289 9897 7371 3696(12) 4457 7848	2823 2637 1858 0453 1263 1047 8828 1512(13) 6320 1537	4620 6166 3441 1799 2605 2658 2001 6066 1558 2829	1227 7380 9778 7451(14) 7866 2362 6385 5329 5227 0545
	6993 0070(10) 4524 8869 3095 9752 2211 4109 1634 5211			1890 7166 1649 3485 1447 3875 1277 1066 1132 5285
k ₃ 1000 0000(7) 4857 1429(8) 3333 3333 2554 1126 2074 5921	1748 2517 1511 3122 1331 2693 1189 7391 1075 5149	9813 6646(9) 9024 1546 8352 4904 7774 0700 7270 7048	6828 6552 6437 3464 6088 5061 5775 5692 5493 2589	5237 2849 5004 1234 4790 8525 4595 0295 4414 5960
5000 0000(8) 1000 0000 3571 4286(9) 1666 6667 9090 9091(10)	5494 5055 3571 4286 2450 9803 1754 3860 1298 7013	9881 4229(11) 7692 3077 6105 0061 4926 1084 4032 2581	3342 2460 2801 1204 2370 7918 2024 2915 1742 1603	1510 1178 1317 5231 1156 3367 1020 4082 9049 7738(12)
333 333(8) 2000 0000 1428 5714 1111 1111 9090 9091(9)	7692 3077 6666 6667 5882 3529 5263 1579 4761 9048			2325 5814 2222 2222 2127 6596 2040 8163 1960 7843
3 3 3 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 17 19 21	23 27 29 31	33 35 37 41	43 45 47 49 51

* For references, see footnotes 15 and 16, p. 39.

TABLE 20.-VALUES OF THE CONSTANTS, k,, ENTERING LEAST-SQUARES SOLUTIONS, USING THE ABBREVIATED METHOD OF BAILY AND OF COX AND MATUSCHAK, WHEN THE NUMBER OF TERMS, n, IS EVEN *

The numbers in parentheses show the negative powers of 10 by which the adjacent numbers must be multiplied in order to obtain appropriate k_n's.

		1805 8156 9775 0702(16) 5561 6779 3301 1249 2031 9424	1290 8811 8431 4304(17) 5643 7105 3861 1239 2693 8074	
_		5218 8071 3364 5781 2248 0302 1548 2276 1094 4042	7913 1009(14) 5836 2361 4380 6481 3339 8722 2582 2837	
		1790 5616 1375 4794 1079 5940 8629 5508(11) 7006 8080		2542 3116 2210 2564 1933 6316 1701 3314 1504 8177
		2205 6748 1425 2052 9539 0720(14) 6578 6704 4655 4704	3369 1596 2486 7902 1867 7458 1424 7547 1102 0751	8632 5332(15) 6839 3016 5475 0792 4424 7580 3607 2121
k_4 7812 5030(9) 1953 1250 7812 5000(10) 3906 2500	2232 1429 1395 0893 9300 5952(11) 6510 4167 4734 8485	3551 1364 2731 6434 2146 2912 1717 0330 1395 0893	1148 8971 9574 1423(12) 8062 4358 6853 0703 5774 0602	
_		1026 2784 9402 3164(9) 8675 3091 8052 8846 7513 9509	7042 7390 6627 2213 6258 0624 5927 9058 5630 8741	1 -
$\begin{array}{c} k_2 \\ 5000 & 0000(9) \\ 1428 & 5714 \\ 5952 & 3810(10) \\ 3030 & 3030 \end{array}$	1748 2517 1098 9011 7352 9412(11) 5159 9587 3759 3985	2823 2637 2173 9130 1709 4017 1368 3634 1112 3471	9164 2229(12) 7639 4194 6435 0064 5471 0581 4690 4315	4051 5355 3523 6081 3083 5646 2713 8515 2400 9604
$\begin{array}{c} k_1 \\ 2500 \ 0000(8) \\ 1666 \ 6667 \\ 1250 \ 0000 \\ 1000 \ 0000 \end{array}$	8333 3333(9) 7142 8571 6250 0000 5555 5556 5000 0000	4545 4545 4166 6667 3846 1538 3571 4286 3333 3333		2380 9524 2272 7273 2173 9130 2083 3333 2000 0000
2 4 4 9 10 10 10 10 10 10 10 10 10 10 10 10 10	71 11 11 12 13 14 17 17 17 17 17 17 17 17 17 17 17 17 17	308 308 308 308	27,5 28,8 4,3 8,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4,0 4	244480

* For references, see footnotes 15 and 16, p. 39.

x	e*	log ex	e-x	x	ez	log ex	e-*
1/64	1.0157	0.00679	0.98450	1/3	1.3956	0.14476	0.71653
1/32	.0317	.01357	.96923	1/2	.6487	.21715	.60653
1/16	.0645	.02714	.93941	3/4	2.1170	.32572	.47237
1/10	.1052	.04343	.90484	1	.7183	.43429	.36788
1/9	.1175	.04825	.89484	5/4	3.4903	.54287	.28650
1 /0	1 1 2 2 1	0.05420	0.00250	2./2	4 4017	0.65144	0.22212
1/8	1.1331	0.05429	0.88250	3/2	4.4817	0.65144	0.22313
1/7	.1536	.06204	.86688	7/4	5.7546	.76002	.17377
1/6	.1814	.07238	.84648	2	7.3891	.86859	.13534
1/5	.2214	.08686	.81873	9/4	9.4877	.97716	.10540
1/4	.2840	.10857	.77880	5/2	12.1825	1.08574	.08208

TABLE 22.-FURTHER VALUES OF P

This table gives the values of the probability P, as defined in Table 18, corresponding to different values of x/r where r is the "probable error." The probable error r is equal to 0.47694/h.

0.1 .05378 .05914 .06451 .06987 .07523 .08059 .08594 .09129 .0 0.2 .10731 .11264 .11796 .12328 .12860 .13391 .13921 .14451 .1 0.3 .16035 .16562 .17088 .17614 .18138 .18662 .19185 .19707 .2 0.4 .21268 .21787 .22304 .22821 .23336 .23851 .24364 .24876 .2 0.5 .26407 .26915 .27421 .27927 .28431 .28934 .29436 .29936 .3 0.6 .31430 .31925 .32419 .32911 .33402 .33892 .34380 .34866 .3 0.7 .36317 .36798 .37277 .37755 .38231 .38705 .39178 .39649 .4 0.8 .41052 .41517 .41979 .42440 .42899 .43357 .43813 .44267 .4 1.0 <th>09663 14980 20229 25388 30435 35352 40118 44719 49139</th> <th>9 .04840 .10197 .15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570</th>	09663 14980 20229 25388 30435 35352 40118 44719 49139	9 .04840 .10197 .15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570
0.0 .00000 .00538 .01076 .01614 .02152 .02690 .03228 .03766 .0 0.1 .05378 .05914 .06451 .06987 .07523 .08059 .08594 .09129 .0 0.2 .10731 .11264 .11796 .12328 .12860 .13391 .13921 .14451 .1 0.3 .16035 .16562 .17088 .17614 .18138 .18662 .19185 .19707 .2 0.4 .21268 .21787 .22304 .22821 .23336 .23851 .24364 .24876 .2 0.5 .26407 .26915 .27421 .27927 .28431 .28934 .29436 .29936 .3 0.6 .31430 .31925 .32419 .32911 .33402 .33892 .34380 .34866 .3 0.7 .36317 .36798 .37277 .37755 .38231 .38705 .39178 .39649 .4 0.8 <th>09663 14980 20229 25388 30435 35352 40118 44719 49139</th> <th>.10197 .15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570</th>	09663 14980 20229 25388 30435 35352 40118 44719 49139	.10197 .15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570
0.2 .10731 .11264 .11796 .12328 .12860 .13391 .13921 .14451 .1 0.3 .16035 .16562 .17088 .17614 .18138 .18662 .19185 .19707 .2 0.4 .21268 .21787 .22304 .22821 .23336 .23851 .24364 .24876 .2 0.5 .26407 .26915 .27421 .27927 .28431 .28934 .29436 .29936 .3 0.6 .31430 .31925 .32419 .32911 .33402 .33892 .34380 .34866 .3 0.7 .36317 .36798 .37277 .37755 .38231 .38705 .39178 .39649 .4 0.8 .41052 .41517 .41979 .42440 .42899 .43357 .43813 .44267 .4 0.9 .45618 .46064 .46509 .46952 .47393 .47832 .48270 .48705 .4 1.0 .50000 .50428 .50853 .51277 .51699 .52119 .52537 </td <td>14980 20229 25388 30435 35352 40118 44719 49139</td> <td>.15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570</td>	14980 20229 25388 30435 35352 40118 44719 49139	.15508 .20749 .25898 .30933 .35835 .40586 .45169 .49570
0.3 .16035 .16562 .17088 .17614 .18138 .18662 .19185 .19707 .2 0.4 .21268 .21787 .22304 .22821 .23336 .23851 .24364 .24876 .2 0.5 .26407 .26915 .27421 .27927 .28431 .28934 .29436 .29936 .3 0.6 .31430 .31925 .32419 .32911 .33402 .33892 .34380 .34866 .3 0.7 .36317 .36798 .37277 .37755 .38231 .38705 .39178 .39649 .4 0.8 .41052 .41517 .41979 .42440 .42899 .43357 .43813 .44267 .4 0.9 .45618 .46064 .46509 .46952 .47393 .47832 .48270 .48705 .4 1.0 .50000 .50428 .50853 .51277 .51699 .52119 .52537 .52952 .5 1.1 .54188 .54595 .55001 .55404 .55806 .56205 .56602 </td <td>20229 25388 30435 35352 40118 44719 49139</td> <td>.20749 .25898 .30933 .35835 .40586 .45169 .49570</td>	20229 25388 30435 35352 40118 44719 49139	.20749 .25898 .30933 .35835 .40586 .45169 .49570
0.4 .21268 .21787 .22304 .22821 .23336 .23851 .24364 .24876 .2 0.5 .26407 .26915 .27421 .27927 .28431 .28934 .29436 .29936 .3 0.6 .31430 .31925 .32419 .32911 .33402 .33892 .34380 .34866 .3 0.7 .36317 .36798 .37277 .37755 .38231 .38705 .39178 .39649 .4 0.8 .41052 .41517 .41979 .42440 .42899 .43357 .43813 .44267 .4 0.9 .45618 .46064 .46509 .46952 .47393 .47832 .48270 .48705 .4 1.0 .50000 .50428 .50853 .51277 .51699 .52119 .52537 .52952 .5 1.1 .54188 .54595 .55001 .55404 .55806 .56205 .56022 .56998 .5 1.2 <td>25388 30435 35352 40118 44719 49139</td> <td>.25898 .30933 .35835 .40586 .45169 .49570</td>	25388 30435 35352 40118 44719 49139	.25898 .30933 .35835 .40586 .45169 .49570
0.6 .31430 .31925 .32419 .32911 .33402 .33892 .34380 .34866 .3 0.7 .36317 .36798 .37277 .37755 .38231 .38705 .39178 .39649 .4 0.8 .41052 .41517 .41979 .42440 .42899 .43357 .43813 .44267 .4 0.9 .45618 .46064 .46509 .46952 .47393 .47832 .48270 .48705 .4 1.0 .50000 .50428 .50853 .51277 .51699 .52119 .52537 .52952 .5 1.1 .54188 .54595 .55001 .55404 .55806 .56205 .56602 .56998 .5 1.2 .58171 .58558 .58942 .59325 .59705 .60083 .60460 .60833 .6 1.3 .61942 .62308 .62671 .63032 .63391 .63747 .64102 .64454 .6 1.4 .65498 .65841 .66182 .66521 .66858 .67193 .67526 </td <td>35352 40118 44719 49139</td> <td>.35835 .40586 .45169 .49570</td>	35352 40118 44719 49139	.35835 .40586 .45169 .49570
0.7 .36317 .36798 .37277 .37755 .38231 .38705 .39178 .39649 .4 0.8 .41052 .41517 .41979 .42440 .42899 .43357 .43813 .44267 .4 0.9 .45618 .46064 .46509 .46952 .47393 .47832 .48270 .48705 .4 1.0 .50000 .50428 .50853 .51277 .51699 .52119 .52537 .52952 .5 1.1 .54188 .54595 .55001 .55404 .55806 .56205 .56602 .56998 .5 1.2 .58171 .58558 .58942 .59325 .59705 .60083 .60460 .60833 .6 1.3 .61942 .62308 .62671 .63032 .63391 .63747 .64102 .64454 .6 1.4 .65498 .65841 .66182 .66521 .66858 .67193 .67526 .67856 .6 1.5 .68833 .69155 .69474 .69791 .70106 .70419 .70729 </td <td>40118 44719 49139</td> <td>.40586 .45169 .49570</td>	40118 44719 49139	.40586 .45169 .49570
0.8 .41052 .41517 .41979 .42440 .42899 .43357 .43813 .44267 .4 0.9 .45618 .46064 .46509 .46952 .47393 .47832 .48270 .48705 .4 1.0 .50000 .50428 .50853 .51277 .51699 .52119 .52537 .52952 .5 1.1 .54188 .54595 .55001 .55404 .55806 .56205 .56602 .56998 .5 1.2 .58171 .58558 .58942 .59325 .59705 .60083 .60460 .60833 .6 1.3 .61942 .62308 .62671 .63032 .63391 .63747 .64102 .64454 .6 1.4 .65498 .65841 .66182 .66521 .66858 .67193 .67526 .67856 .6 1.5 .68833 .69155 .69474 .69791 .70106 .70419 .70729 .71038 .7 1.6 .71949 .72249 .72546 .72841 .73134 .73425 .73714 </td <td>44719 49139</td> <td>.45169 .49570</td>	44719 49139	.45169 .49570
0.9 .45618 .46064 .46509 .46952 .47393 .47832 .48270 .48705 .4 1.0 .50000 .50428 .50853 .51277 .51699 .52119 .52537 .52952 .5 1.1 .54188 .54595 .55001 .55404 .55806 .56205 .56002 .56998 .5 1.2 .58171 .58558 .58942 .59325 .59705 .60083 .60460 .60833 .6 1.3 .61942 .62308 .62671 .63032 .63391 .63747 .64102 .64454 .6 1.4 .65498 .65841 .66182 .66521 .66858 .67193 .67526 .67856 .6 1.5 .68833 .69155 .69474 .69791 .70106 .70419 .70729 .71038 .7 1.6 .71949 .72249 .72546 .72841 .73134 .73425 .73714 .74000 .7 1.7 .74847 .75124 .75400 .75674 .75945 .76214 .76481 </td <td>49139</td> <td>.49570</td>	49139	.49570
1.1 .54188 .54595 .55001 .55404 .55806 .56205 .56602 .56998 .5 1.2 .58171 .58558 .58942 .59325 .59705 .60083 .60460 .60833 .6 1.3 .61942 .62308 .62671 .63032 .63391 .63747 .64102 .64454 .6 1.4 .65498 .65841 .66182 .66521 .66858 .67193 .67526 .67856 .6 1.5 .68833 .69155 .69474 .69791 .70106 .70419 .70729 .71038 .7 1.6 .71949 .72249 .72546 .72841 .73134 .73425 .73714 .74000 .7 1.7 .74847 .75124 .75400 .75674 .75945 .76214 .76481 .76746 .7 1.8 .77528 .77785 .78039 .78291 .78542 .78790 .79036 .79280 .7 1.9 .79999 .80235 .80469 .80700 .80930 .81158 .81383 </td <td>53366</td> <td>C 2770</td>	53366	C 2770
1.2 .58171 .58558 .58942 .59325 .59705 .60083 .60460 .60833 .6 1.3 .61942 .62308 .62671 .63032 .63391 .63747 .64102 .64454 .6 1.4 .65498 .65841 .66182 .66521 .66858 .67193 .67526 .67856 .6 1.5 .68833 .69155 .69474 .69791 .70106 .70419 .70729 .71038 .7 1.6 .71949 .72249 .72546 .72841 .73134 .73425 .73714 .74000 .7 1.7 .74847 .75124 .75400 .75674 .75945 .76214 .76481 .76746 .7 1.8 .77528 .77785 .78039 .78291 .78542 .78790 .79036 .79280 .7 1.9 .79999 .80235 .80469 .80700 .80930 .81158 .81383 .81607 .8 2.0 .82266 .82481 .82695 .82907 .83117 .83324 .83530 </td <td></td> <td>.53778</td>		.53778
1.3 .61942 .62308 .62671 .63032 .63391 .63747 .64102 .64454 .6 1.4 .65498 .65841 .66182 .66521 .66858 .67193 .67526 .67856 .6 1.5 .68833 .69155 .69474 .69791 .70106 .70419 .70729 .71038 .7 1.6 .71949 .72249 .72546 .72841 .73134 .73425 .73714 .74000 .7 1.7 .74847 .75124 .75400 .75674 .75945 .76214 .76481 .76746 .7 1.8 .77528 .77785 .78039 .78291 .78542 .78790 .79036 .79280 .7 1.9 .79999 .80235 .80469 .80700 .80930 .81158 .81383 .81607 .8 2.0 .82266 .82481 .82695 .82907 .83117 .83324 .83530 .83734 .8 2.1 .84335 .84531 .84726 .84919 .85109 .85298 .85486 </td <td></td> <td>.57782 .61575</td>		.57782 .61575
1.4 .65498 .65841 .66182 .66521 .66858 .67193 .67526 .67856 .6 1.5 .68833 .69155 .69474 .69791 .70106 .70419 .70729 .71038 .7 1.6 .71949 .72249 .72546 .72841 .73134 .73425 .73714 .74000 .7 1.7 .74847 .75124 .75400 .75674 .75945 .76214 .76481 .76746 .7 1.8 .77528 .77785 .78039 .78291 .78542 .78790 .79036 .79280 .7 1.9 .79999 .80235 .80469 .80700 .80930 .81158 .81383 .81607 .8 2.0 .82266 .82481 .82695 .82907 .83117 .83324 .83530 .83734 .8 2.1 .84335 .84531 .84726 .84919 .85109 .85298 .85486 .85671 .8 2.2 .86216 .86394 .86570 .86745 .86917 .87088 .87258 </td <td></td> <td>.65152</td>		.65152
1.6 .71949 .72249 .72546 .72841 .73134 .73425 .73714 .74000 .7 1.7 .74847 .75124 .75400 .75674 .75945 .76214 .76481 .76746 .7 1.8 .77528 .77785 .78039 .78291 .78542 .78790 .79036 .79280 .7 1.9 .79999 .80235 .80469 .80700 .80930 .81158 .81383 .81607 .8 2.0 .82266 .82481 .82695 .82907 .83117 .83324 .83530 .83734 .8 2.1 .84335 .84531 .84726 .84919 .85109 .85298 .85486 .85671 .8 2.2 .86216 .86394 .86570 .86745 .86917 .87088 .87258 .87425 .8 2.3 .87918 .88078 .88237 .88395 .88550 .88705 .88857 .89008 .8 2.4 .89450 .89595 .89738 .89879 .90019 .90157 .90293 </td <td>58184</td> <td>.68510</td>	58184	.68510
1.7 .74847 .75124 .75400 .75674 .75945 .76214 .76481 .76746 .7 1.8 .77528 .77785 .78039 .78291 .78542 .78790 .79036 .79280 .7 1.9 .79999 .80235 .80469 .80700 .80930 .81158 .81383 .81607 .8 2.0 .82266 .82481 .82695 .82907 .83117 .83324 .83530 .83734 .8 2.1 .84335 .84531 .84726 .84919 .85109 .85298 .85486 .85671 .8 2.2 .86216 .86394 .86570 .86745 .86917 .87088 .87258 .87425 .8 2.3 .87918 .88078 .88237 .88395 .88550 .88705 .88857 .89008 .8 2.4 .89450 .89595 .89738 .89879 .90019 .90157 .90293 .90428 .9		.71648
1.8 .77528 .77785 .78039 .78291 .78542 .78790 .79036 .79280 .7 1.9 .79999 .80235 .80469 .80700 .80930 .81158 .81383 .81607 .8 2.0 .82266 .82481 .82695 .82907 .83117 .83324 .83530 .83734 .8 2.1 .84335 .84531 .84726 .84919 .85109 .85298 .85486 .85671 .8 2.2 .86216 .86394 .86570 .86745 .86917 .87088 .87258 .87425 .8 2.3 .87918 .88078 .88237 .88395 .88550 .88705 .88857 .89008 .8 2.4 .89450 .89595 .89738 .89879 .90019 .90157 .90293 .90428 .9		.74567 .77270
1.9 .79999 .80235 .80469 .80700 .80930 .81158 .81383 .81607 .8 2.0 .82266 .82481 .82695 .82907 .83117 .83324 .83530 .83734 .8 2.1 .84335 .84531 .84726 .84919 .85109 .85298 .85486 .85671 .8 2.2 .86216 .86394 .86570 .86745 .86917 .87088 .87258 .87425 .8 2.3 .87918 .88078 .88237 .88395 .88550 .88705 .88857 .89008 .8 2.4 .89450 .89595 .89738 .89879 .90019 .90157 .90293 .90428 .9		.79761
2.1 .84335 .84531 .84726 .84919 .85109 .85298 .85486 .85671 .8 2.2 .86216 .86394 .86570 .86745 .86917 .87088 .87258 .87425 .8 2.3 .87918 .88078 .88237 .88395 .88550 .88705 .88857 .89008 .8 2.4 .89450 .89595 .89738 .89879 .90019 .90157 .90293 .90428 .9	31828	.82048
2.2 .86216 .86394 .86570 .86745 .86917 .87088 .87258 .87425 .8 2.3 .87918 .88078 .88237 .88395 .88550 .88705 .88857 .89008 .8 2.4 .89450 .89595 .89738 .89879 .90019 .90157 .90293 .90428 .9		.84137
2.3 .87918 .88078 .88237 .88395 .88550 .88705 .88857 .89008 .8 2.4 .89450 .89595 .89738 .89879 .90019 .90157 .90293 .90428 .9		.86036
2.4 .89450 .89595 .89738 .89879 .90019 .90157 .90293 .90428 .9		.87755 .89304
25 90825 90954 91082 91208 91332 91456 91578 91698 9		.90694
		.91935
		.93038
		.94014
		.95628
0 1 2 3 4 5 6 7	8	9
		.99147
		.99905
V. 886К. С.		לעלעלי.

This factor occurs in the equation $r_s = 0.6745 \sqrt{\frac{\Sigma v^2}{n-1}}$ for the probable error of a single observation, and other similar equations.

22	0	1	2	3	4	5	6	7	8	9
00			0.6745	0.4769	0.3894	0.3372	0.3016	0.2754	0.2549	0.2385
10	0.2248	0.2133	.2034	.1947	.1871	.1803	.1742	.1686	.1636	.1590
20	.1547	.1508	.1472	.1438	.1406	.1377	.1349	.1323	.1298	.1275
30	.1252	.1231	.1211	.1192	.1174	.1157	.1140	.1124	.1109	.1094
40	.1080	.1066	.1053	.1041	.1029	.1017	.1005	.0994	.0984	.0974
50	0.0964	0.0954	0.0944	0.0935	0.0926	0.0918	0.0909	0.0901	0.0893	0.0886
60	.0878	.0871	.0864	.0857	.0850	.0843	.0837	.0830	.0824	.0818
70	.0812	.0806	.0800	.0795	.0789	.0784	.0779	.0774	.0769	.0764
80	.0759	.0754	.0749	.0745	.0740	.0736	.0732	.0727	.0723	.0719
90	.0715	.0711	.0707	.0703	.0699	.0696	.0692	.0688	.0685	.0681

TABLE 24.—VALUES OF THE FACTOR 0.6745
$$\sqrt{\frac{1}{n(n-1)}}$$

This factor occurs in the equation $r_0 = 0.6745 \sqrt{\frac{\Sigma v^2}{n(n-1)}}$ for the probable error of the arithmetical mean.

n		1	2	3	4	5	6	7	8	9
00			0.4769	0.2754	0.1947	0.1508	0.1231	0.1041	0.0901	0.0795
10	0.0711	0.0643	.0587	.0540	.0500	.0465	.0435	.0409	.0386	.0365
20	.0346	.0329	.0314	.0300	.0287	.0275	.0265	.0255	.0245	.0237
30	.0229	.0221	.0214	.0208	.0201	.0196	.0190	.0185	.0180	.0175
40	.0171	.0167	.0163	.0159	.0155	.0152	.0148	.0145	.0142	.0139
50	0.0136	0.0134	0.0131	0.0128	0.0126	0.0124	0.0122	0.0119	0.0117	0.0115
60	.0113	.0111	.0110	.0108	.0106	.0105	.0103	.0101	.0100	.0098
70	.0097	.0096	.0094	.0093	.0092	.0091	.0089	.0088	.0087	.0086
80	.0085	.0084	.0083	.0082	.0081	.0080	.0079	.0078	.0077	.0076
90	.0075	.0075	.0074	.0073	.0072	.0071	.0071	.0070	.0069	.0068

Part 1.—Values of the factor 0.8453
$$\sqrt{\frac{1}{n(n-1)}}$$

This factor occurs in the approximate equation $r = 0.8453 \frac{\Sigma |v|}{\sqrt{n(n-1)}}$ for the probable error of a single observation.

32		1	2	3	4	5	6	7	8	9
00			0.5978	0.3451	0.2440	0.1890	0.1543	0.1304	0.1130	0.0996
10	0.0891	0.0806	.0736	.0677	.0627	.0583	.0546	.0513	.0483	.0457
20	.0434	.0412	.0393	.0376	.0360	.0345	.0332	.0319	.0307	.0297
30	.0287	.0277	.0268	.0260	.0252	.0245	.0238	.0232	.0225	.0220
40	.0214	.0209	.0204	.0199	.0194	.0190	.0186	.0182	.0178	.0174
50	0.0171	0.0167	0.0164	0.0161	0.0158	0.0155	0.0152	0.0150	0.0147	0.0145
60	.0142	.0140	.0137	.0135	.0133	.0131	.0129	.0127	.0125	.0123
70	.0122	.0120	.0118	.0117	.0115	.0113	.0112	.0111	.0109	.0108
80	.0106	.0105	.0104	.0102	.0101	.0100	.0099	.0098	.0097	.0096
90	.0094	.0093	.0092	.0091	.0090	.0089	.0089	.0088	.0087	.0086

Part 2.—Values of 0.8453
$$\frac{1}{n\sqrt{n-1}}$$

This factor occurs in the approximate equation $r_0 = 0.8453 \frac{\Sigma |v|}{n\sqrt{n-1}}$ for the probable error of the arithmetical mean.

11		1	2	3	4	5	6	7	8	9
00			0.4227	0.1993	0.1220	0.0845	0.0630	0.0493	0.0399	0.0332
10	0.0282	0.0243	.0212	.0188	.0167	.0151	.0136	.0124	.0114	.0105
20	.0097	.0090	.0084	.0078	.0073	.0069	.0065	.0061	.0058	.0055
30	.0052	.0050	.0047	.0045	.0043	.0041	.0040	.0038	.0037	.0035
40	.0034	.0033	.0031	.0030	.0029	.0028	.0027	.0027	.0026	.0025
50 60 70 80 90	0.0024 .0018 .0015 .0012 .0010	0.0023 .0018 .0014 .0012 .0010	0.0023 .0017 .0014 .0011 .0010	0.0022 .0017 .0014 .0011 .0009	0.0022 .0017 .0013 .0011 .0009	0.0021 .0016 .0013 .0011 .0009	0.0020 .0016 .0013 .0011 .0009	0.0020 .0016 .0013 .0010 .0009	0.0019 .0015 .0012 .0010 .0009	0.0019 .0015 .0012 .0010 .0009

Some of the most important results of physical science are embodied in the numerical magnitudes of various universal physical constants. The accurate determination of such constants has engaged the time and labor of many of the most eminent scientists. Some of these constants can be evaluated by various methods. The experiments used to study and measure these constants, in many instances have yielded some function of two or more of the constants (see Table 26) such as h/e; e/m, F/N, h/m, mN, F(e/m), $e^2/(m/h)$, etc., rather than the direct value of the constant. Each of the many relations has been investigated by various experimenters at various times, and each investigation normally produces a result more or less different from that of any other investigation. Under such conditions there arises a general and continuous need for a searching examination of the most probable value of each important constant. This makes necessary some comparison and analysis of all these experimental data to arrive at the most probable value. An important factor in such work is that there are but few of the constants that do not require for their evaluation a knowledge of certain other constants. These relations are so extensive that most of the physical constants can be calculated from the value of five or six of the selected principal constants and certain ratios.

Many such critical reviews of these natural constants and conversion factors have appeared in the last 30 to 40 years. The data and discussion given here for the constants and their probable errors are the values arrived at by three physicists, R. T. Birge, 17 J. W. DuMond, and J. A. Bearden, and their associates, who have made some very careful reviews and critical studies of the published experimental data on these general physical constants and have published several papers giving what they consider as the most probable value. Reference

should be made to their original papers for details.

Birge says in his 1941 paper that as a result of such critical work the situation in respect to these constants has vastly improved over values of about 10 years ago, and again one can say that such studies have resulted in more work

and thus a more accurate set of constants.

In 1941 Birge 17 published a very extended list of physical constants and gave calculated values of many other physical constants that depend upon the fundamental constants. Because of the extent of this list, and also because so many of the relations among these constants are given therein, this 1941 list is given here. Almost all these constants in this table (Table 26) are accurate within the limits given.

DuMond and Cohen 18 prepared a table of some of these constants for the Atomic Energy Commission. A part of this appeared in the July 1953 issue of the Review of Modern Physics. Table 27 gives their values of a number

of these physical constants.

Bearden and Watts 18th in 1950 made a study of values of a number of physical constants, using some new values in their calculations. They are continuing this work and are now 18h offering some new and more accurate values. Table 28 contains their 1950 values (corrected for their newer values) and newer

calculated values of some additional constants.

A comparison of the final values of these fundamental physical constants arrived at by these physicists shows in a real manner the accuracy that may now be claimed. A number of the principal radiation constants were taken from these tables (Tables 26-28) and are given in Table 53. These values have been used for the calculations in the tables in this book since they were available when the work was started and since the newer values would make no practical changes.

Phys. Rev. Suppl., vol. 1, p. 1, 1929; Rev. Mod. Phys., vol. 13, p. 233, 1941; Amer. Journ. Phys., vol. 13, p. 63, 1945.
 Phys. Rev., vol. 58, p. 457, 1940; Rev. Mod. Phys., vol. 20, p. 82, 1948.
 Bearden, J. A., and Watts, H. M., Phys. Rev., vol. 81, p. 73, 1951.
 Bearden, Earle, Minkowski, and Thomsen, private communication from J. A. Bearden.

TABLE 26.-GENERAL PHYSICAL CONSTANTS ACCORDING TO BIRGE *

Part 1.—Principal constants and ratios

Part 2.—Atomic weights

```
(1) Physical scale (O^{16} = 16.0000)
        _{1}H^{1} = 1.00813 \pm 0.00001_{7}
                                                           _{1}H^{2} = 2.01473 \pm 0.00001_{9}
         _{1}H = 1.00827_{6} \pm 0.00001_{7}
                                  (from H^1/H^2 abundance = 6900 ± 100)
       _{2}\text{He}^{4} = 4.00389 \pm 0.00007
        _{0}C^{12} = 12.00386 \pm 0.0004
                                                          _{6}C^{13} = 13.00761 \pm 0.00015
          C = 12.01465 \pm 0.00023
                                  (from C^{12}/C^{13} abundance = 92 \pm 2)
        _{7}N^{14} = 14.00753 \pm 0.00005
                                                          _{7}N^{18} = 15.0049 \pm 0.0002
          N = 14.01121 \pm 0.00009_{5}
                                 (from N^{14}/N^{15} abundance = 270 ± 6)
                                 _{8}O^{17} = 17.0045
                                                        _8O^{18} = 18.0049
        _{8}O^{16} = 16.0000
          O = 16.00435_7 \pm 0.00008_0
                            [from abundance O^{16}: O^{18}: O^{17} = (506 \pm 10): 1: (0.204 \pm 0.008)]
(2) Chemical scale (0 = 16.0000)
       Ratio physical to chemical scale:
           r = (16.004357 \pm 0.000086)/16 = 1.00272 \pm 0.000005
          H^1 = 1.00785_6 \pm 0.00001_8 (from physical scale)
         H^2 = 2.01418_2 \pm 0.00002_1 (from physical scale)
          H = 1.00800_2 \pm 0.00001_8 (from physical scale)
        He^4 = 4.00280 \pm 0.00007 (from physical scale)
          C = 12.01139 \pm 0.00024 (from physical scale)
          N = 14.00740 \pm 0.00012 (from physical scale)
          N = 14.0086 \pm 0.0007 (direct observation)
         Na = 22.994 \pm 0.003
          C1 = 35.457 \pm 0.001
         Ca = 40.080 \pm 0.005
         Ag = 107.880 \pm 0.002
           I = 126.915 \pm 0.004
```

^{*} Unless otherwise specified, all quantities in this table that involve the mol or the gram equivalent are on the chemical scale of atomic weights.

TABLE 26.—GENERAL PHYSICAL CONSTANTS ACCORDING TO BIRGE (continued)

Part 3.—Additional quantities evaluated or used in connection with Part 1

```
Ratio of esu to emu (direct) = (2.9978_4 \pm 0.0001_6) \times 10^{10} cm/sec
Ratio of esu to emu (indirect) . . . . . c' = c = (2.99776 \pm 0.0004) \times 10^{10} cm/sec
Acceleration of gravity (standard)....g_0 = 980.665 \text{ cm/sec}^2
L_{lim} = 1.427609 \pm 0.000037 g/liter
Factor converting oxygen (0°C, A45)
ferred to air-free water at maximum
density \rho_0 = 13.59542 \pm 0.00005
Density of Hg (0°C, A_0) D_0 = 13.59504_0 \pm 0.00005_7 g/cm<sup>3</sup>
Electrochemical equivalents (chemical
  scale):
     Silver (apparent) .....E_{Ag} = (1.11800 \pm 0.00012) \times 10^{-8} \text{ g/int coul}
     (corrected) E_{Ag} = (1.11807 \pm 0.00012) \times 10^{-8} \text{g/mb coul}

Iodine (apparent) E_{1} = (1.315026 \pm 0.000025) \times 10^{-8} \text{g/int coul}

(corrected) E_{1} = (1.31535 \pm 0.00014) \times 10^{-8} \text{g/abs coul}
True calcite grating space (20^{\circ}\text{C}) \dots d'_{20} = 3.02951_2 \times 10^{-8} \text{ cm}
     Siegbahn system
True calcite grating space (20^{\circ}\text{C}) \dots d_{20} = (3.03567, \pm 0.00018) \times 10^{-8} \text{ cm}
     cgs system
Ratio of grating and Siegbahn scales of
wavelengths ... ... ... \lambda_{\rho}/\lambda_{r} = 1.002034 \pm 0.000060
Density of calcite (20°C) ... ... \rho = 2.71029 \pm 0.00003 g/cm³
Structural constant of calcite (20°C) ... \Phi = 1.09594 \pm 0.00001
Molecular weight of calcite (chemical
  Rydberg constant for hydrogen (H^1) ... R_H = 109677.581_2 \pm 0.007_5 cm<sup>-1</sup> (I.A. scale)
Rydberg constant for deuterium (H^2) \cdot R_b = 109707.419_3 \pm 0.007_5 \text{ cm}^{-1} (I.A. scale) Rydberg constant for helium \cdot \cdot \cdot \cdot \cdot R_{H^c} = 109722.263 \pm 0.012 \text{ cm}^{-1} (I.A. scale) Rydberg constant for infinite mass \cdot \cdot \cdot \cdot \cdot R_x = 109737.303 \pm 0.017 \text{ cm}^{-1} (I.A. scale)
                                                        or \pm 0.05 cm<sup>-1</sup> (cgs system)
```

TABLE 26.—GENERAL PHYSICAL CONSTANTS ACCORDING TO BIRGE (continued)

Part 4 .-- Partial list of derived quantities

Planck's constant:

$$h = \left\{ \frac{2\pi^2 c^3 F^5}{R_z N_0^5 (c/m)} \right\}^{1/3} \dots = (6.624_2 \pm 0.002_4) \times 10^{-27} \text{ erg sec}$$

$$h/c = \left\{ \frac{2\pi^2 c^3 F^2}{R_z N_0^2 (c/m)} \right\}^{1/3} \dots = (4.1349_0 \pm 0.0007_1) \times 10^{-7} \text{ erg sec abs emu}^{-1}$$

$$h/c' = h/(ec) = \left\{ \frac{2\pi^2 F^2}{R_z N_0^2 (c/m)} \right\}^{1/3} = (1.3793_3 \pm 0.0002_3) \times 10^{-17} \text{ erg sec abs esu}^{-1}$$

Atomic weight of electron: ...E = F/(e/m)(Physical scale) ...E = F/(e/m)(Chemical scale) ...E = F/(e/m) ...E = F/(e/m)...

Band spectra constant connecting wave number and moment of inertia:

$$h/(8\pi^2c) = \left\{\frac{F^5}{256\pi^4R_*N_\circ^5(e/m)}\right\}^{1/3}.... = (27.98_{\rm GS} \pm 0.01_\circ) \times 10^{-40} \text{ g cm}$$

Boltzmann constant:

$$K = R_0/N_0 = V_0 A_0/(T_0 N_0) \dots = (1.38047_4 \pm 0.00026) \times 10^{-16} \text{ erg/deg}$$

Charge in electrolysis of 1 gram of H $F/H = 9572.1_{73} \pm 1.0$ abs. emu/g

Charge in electrolysis of one gram of $H^1 ext{...} c/M_H^1 = FH' = 9573.5_{60} \pm 1.0$ abs emu/g

Compton shift at 90°:

$$h/(mc) = \left\{ \frac{2\pi^2 F^2 (e/m)^2}{R_z N_0^2} \right\}^{1/3} \dots = (0.024265_{14} \pm 0.000005_7) \times 10^{-8} \text{ cm}$$

Energy in ergs of one abs volt-electron: $E_0 = 10^8 c = 10^8 F/N_0 \dots = (1.60203_3 \pm 0.00034) \times 10^{-12} \text{ erg}$

Energy in calories per mole for one abs volt-electron per molecule:
$$\frac{F(\text{abs coul/gram-equiv.})}{J_{15}(\text{abs joules/cal})} \dots = 23052._{85} \pm 3._{2} \text{ cal}_{15} \text{ mole}^{-1}$$

Fine structure constant:

$$a = 2\pi (c')^{2}/(hc) = \left\{\frac{4\pi R_{x}F(c/m)}{N_{0}}\right\}^{1/3} = (7.2976_{6} \pm 0.0008_{6}) \times 10^{-3}$$

$$1/a = 137.030_{x} \pm 0.016$$

$$a^{2} = (5.3256 \pm 0.0013) \times 10^{-5}$$

Gas constant per mole:

$$\begin{array}{lll} R_0 = I'_0 A_0 / T_0 & = (8.31436 \pm 0.00038) \times 10^7 \text{ erg deg}^{-1} \text{ mole}^{-1} \\ R'_0 = R_0 \times 10^{-7} / J_{15} & = 1.98646_7 \pm 0.00021 \text{ cal}_{15} \text{ deg}^{-1} \text{ mole}^{-1} \\ R''_0 = I''_0 / T_0 & = (8.20544_7 \pm 0.00037) \times 10^{-2} \text{ 1 atm deg}^{-1} \text{ mole}^{-1} \\ R'''_0 = R_0 / A_0 = V_0 / T_0 & = 82.0566_7 \pm 0.0037 \text{ cm}^3 \text{ atm deg}^{-1} \text{ mole}^{-1} \end{array}$$

also:

$$\mu_1 = (h/4\pi)(c/m) = \frac{1}{4\pi} \left\{ \frac{2\pi^2 c^3 F^5(c/m)^2}{R_x N_0^5} \right\}^{-1/3} \dots = (0.9273_{45} \pm 0.0003_7) \times 10^{-20} \text{ erg/gauss}$$

Magnetic moment per mole for one Bohr magneton per molecule:

$$\mu_1 N_0 = \frac{1}{4\pi} \left\{ \frac{2\pi^2 c^3 F^5 (c/m)^2}{R_x N_0^2} \right\}^{1/3} \dots = 5585.24 \pm 1.6 \text{ erg gauss}^{-1} \text{ mole}^{-1}$$

Mass of a-particle. . Ma = $(He-2E)/N_0 = (6.6442_2 \pm 0.0012) \times 10^{-24}$ g

TABLE 26.-GENERAL PHYSICAL CONSTANTS ACCORDING TO BIRGE (concluded)

Mass of atom of unit atomic weight,

$$M_0 = 1/N_0 = (1.66035 \pm 0.00031) \times 10^{-24} \text{ g}$$

Mass of electron;

$$m = e/(e/m) = (F/N_0)/(e/m) = (9.1066_0 \pm 0.0032) \times 10^{-28} \text{ g}$$

Mass of H¹ atom..... $M_H 1 = H^1/N_0 = (1.67339_3 \pm 0.0031) \times 10^{-24} \text{ g}$
Mass of proton.... $M_P = (H^1 - E)/N_0 = (1.67248_2 \pm 0.00031) \times 10^{-24} \text{ g}$

Ratio mass H1 atom to mass electron:

$$M_H 1/m = (e/m)(H^1/F)$$
 = 1837.5₀₁ ± 0.5₆

Ratio mass proton to mass electron:

Ratio mass proton to mass electron:
$$M_p/m = (e/m) \left(\frac{(H^1 - E)}{F} \right) \dots = 1836.5_{e_1} \pm 0.5_{e}$$
 First radiation constant.... $c_1^{**} = 8\pi hc = (4.9908 \pm 0.0024) \times 10^{-15}$ erg cm
$$= hc^2 = (0.59542 \pm 0.0024) \times 10^{-5}$$
 erg cm² sec⁻¹ Second radiation constant:

Second radiation constant:

$$c_2 = hc/k = \frac{T_0c^2}{V_0A_0} \left\{ \frac{2\pi^2 F^6}{R_\infty N_0^2(c/m)} \right\}^{1/3} = 1.4384_8 \pm 0.0003_4 \text{ cm deg}$$

Specific charge of a-particle:

$$2e/M_a = \frac{2F}{He - 2E} \dots = 4822.3_3 \pm 0.5_1$$
 abs emu/g

Specific charge of proton:

$$e/M_P = \frac{F}{H^1 - E} \dots = 9578.7_7 \pm 1.0$$
 abs emu/g

Radiation density constant,

$$a = 8\pi^5 k^4/(15c^8 h^8) =$$

$$\left(\frac{V_0 A_0}{T_0}\right)^{\frac{4}{3}} \frac{4\pi^3 N_0 R_{\infty}(c/m)}{15c^8 F^6} \cdots = (7.569_{42} \pm 0.004_9) \times 10^{-15} \,\mathrm{erg} \,\mathrm{cm}^{-8} \,\mathrm{deg}^{-4}$$

Stefan-Boltzmann constant: +

$$\sigma = ac/4 = 2\pi^5 k^4 / (15c^2 h^5) \qquad \dots = \left(\frac{V_0 A_0}{T_0}\right)^4 \frac{\pi^3 N_0 R_\infty(e/m)}{15(Fc)^5}$$
$$= (5.672_{83} \pm 0.003_7) \times 10^{-5} \text{ erg cm}^{-2} \text{ deg}^{-4} \text{ sec}^{-1}$$

Wien's displacement-law constant..... $A = c_2/4.965114 = 0.28971_8 \pm 0.00007$ cm deg

Wavelength associated with 1 abs volt:
$$\lambda_0 = 10^{-8}c^2(h/e') = \frac{c^2}{10^8} \left\{ \frac{2\pi^2 F^2}{R_\infty N_0^2(e/m)} \right\}^{1/3} = (12395.4 \pm 2.1) \times 10^{-8} \, \text{cm abs volt}$$

Wave number associated with 1 abs volt:

$$s_0 = 1/\lambda_0 = \frac{10^8}{c^2} \left\{ \frac{R_{\infty} N_0^2 (e/m)}{2\pi^2 F^2} \right\}^{1/3} = 8067.4_{\rm v} \pm 1.4 \,{\rm cm/abs~volt}$$

Zeeman displacement per gauss $(e/m)/(4\pi c) = 4.6699_1 \pm 0.0013) \times 10^{-5}$ cm/gauss

† For 2π solid angle.

Part 5.-Birge's 1944 values of 3 constants

e, Electronic charge
$$= (4.8021 \pm 0.0006) \times 10^{-10}$$
 abs esu N_0 , Avogadro number $= (6.02338 \pm 0.00043) \times 10^{28}$ molecules mole⁻¹ (chemical scale)

F, Faraday constant $= 96487.7 \pm 10$ abs esu (chemical scale)

^{**} I_{λ} may be defined in several ways and this determines the value of c_1 . If $I_{\lambda}d\lambda$ gives the energy density of unpolarized radiation in range $d\lambda$, then $c_1 = 8\pi hc$. If $J_{\lambda}d\lambda$ gives the emission of linearly polarized light, in range $d\lambda$ per unit solid angles perpendicular to the surface, then $c_1 = hc^2$. If this expression $J_\lambda d\lambda$ denotes the emission of radiation in range $d\lambda$, per unit surface from one side in all directions (2π solid angle) then $c_1 = 2\pi hc^2$. See Table 53.

TABLE 27.—TABLE OF LEAST-SQUARES ADJUSTED OUTPUT VALUES OF PHYSICAL CONSTANTS (BY DUMOND AND ASSOCIATES)

(November 1952)

Part 1 .- Auxiliary constants used

These auxiliary constants are quantities which are uncorrelated (observationally) with the variables of the least-squares adjustment. Rydberg wave number for infinite mass. $R_x = 109737.309 \pm 0.012 \, \mathrm{cm^{-1}}$ Rydberg wave numbers for the light nuclei $R_H = 109677.576 \pm 0.012 \, \mathrm{cm^{-1}}$ $R_D = 109707.419 \pm 0.012 \, \mathrm{cm^{-1}}$ $R_{B} = 109717.345 \pm 0.012 \, \mathrm{cm^{-1}}$ $R_{B} = 109717.345 \pm 0.012 \, \mathrm{cm^{-1}}$ Atomic mass of neutron. $n = 1.008982 \pm 0.000003$ Atomic mass of hydrogen. $H = 1.008142 \pm 0.000003$ Atomic mass of deuterium. $D = 2.014735 \pm 0.000006$ Gas constant per mole (physical scale) $R_0 = (8.31662 \pm 0.00038) \times 10^7 \, \mathrm{erg \ mole^{-1} \ deg^{-1}C}$ Standard volume of a perfect gas (physical scale) ... $V_0 = 22420.7 \pm 0.6 \, \mathrm{cm^8 \ atmos^{-1} \ mole^{-1}}$

Part 2.-Least-squares adjusted output values

```
(The quantity following each \pm sign is the standard error by external consistency)
Avogadro's constant (physical scale)...N = (6.02472 \pm 0.00036) \times 10^{23} (molecules mol)<sup>-1</sup>
Loschmidt's constant (physical scale)...
                                L_0 = N/V_0 = (2.68713 \pm 0.00016) \times 10^{19} molecules cm<sup>-3</sup>
Electronic charge ... e = (4.80288 \pm 0.00021) \times 10^{-10} esu e' = e/c = (1.60207 \pm 0.00007) \times 10^{-20} emu
Electron rest mass. m = (9.1085 \pm 0.0006) \times 10^{-26} \text{ g}

Proton rest mass. m_p = M_p/N = (1.67243 \pm 0.00010) \times 10^{-26} \text{ g}

Neutron rest mass. m_n = m/N = (1.67474 \pm 0.00010) \times 10^{-24} \text{ g}

Planck's constant h = (6.6252 \pm 0.0005) \times 10^{-27} \text{ erg sec}

f = h/(2\pi) = (1.05444 \pm 0.00009) \times 10^{-27} \text{ erg sec}
Conversion factor from Siegbahn X-units
F' = Ne/c = (9652.01 \pm 0.25) \text{ emu (gm mol)}^{-1}
Charge-to-mass ratio of the electron. e/m = (5.27299 \pm 0.00016) \times 10^{17} \text{ esu g}^{-1}
                            e'/m = e/(mc) = (1.7588 \pm 0.00005) \times 10^7 \text{ emu g}^{-1}
\alpha/2\pi = (1.161396 \pm 0.000013) \times 10^{-3}
                              a^{2} = (5.32501 \pm 0.00013) \times 10^{-5}
1 - (1 - a^{2})^{\frac{1}{2}} = (0.266254 \pm 0.000006) \times 10^{-4}
Atomic mass of the electron (physical
                        .....Nm = (5.48760 \pm 0.00013) \times 10^{-4}
  scale) ...
Ratio of mass of hydrogen to mass of
  proton a
         H/H^{+} = \left[1 - \frac{Nm}{H}(1 - \frac{1}{2}a^{2})\right]^{-1} = 1.000544610 \pm 0.000000013
Ratio of proton mass to electron mass.
                                   H^+/Nm = 1836.13 \pm 0.04
Reduced mass of electron in hydrogen
 atom ...... \mu = mH^+/H = (9.1035 \pm 0.0006) \times 10^{-28} \,\mathrm{g}
Schrödinger constant for a fixed nucleus
                                      2m/\tilde{n}^2 = (1.63844 \pm 0.00016) \times 10^{27} \,\mathrm{erg^{-1} \,cm^{-2}}
Schrödinger constant for the hydrogen
```

^{*} The binding energy of the electron in the hydrogen atom has been included in the quantity. The mass of the electron when found in the hydrogen atom is not m but more correctly m $(1-1/2 a^2 + \cdots)$.

TABLE 27.—TABLE OF LEAST-SQUARES ADJUSTED OUTPUT VALUES OF PHYSICAL CONSTANTS (continued)

```
Radius of electron orbit in normal H^1,
   referred to center of mass....
                                  a_0' = a_0(1 - \alpha^2)^{\frac{1}{2}} = (5.29157 \pm 0.00006) \times 10^{-6} \text{ cm}
Separation of proton and electron in nor-
   mal H^1 \dots a_0'' = a_0' R_{\alpha}/R_{II} = (5.29445 \pm 0.00006) \times 10^{-0} \text{ cm}
Compton wavelength of the electron....
                                      \chi_{ce} = h/(mc) = (24.2625 \pm 0.0006) \times 10^{-11} \text{ cm} = a^2/(2R_x)
                                     \chi_{ce} = \lambda_{ce}/(2\pi) = (3.86150 \pm 0.00009) \times 10^{-11} \text{ cm} = a^2/(4\pi R_{\infty})
Compton wavelength of the proton....
                                     \lambda_{cp} = h/m_p c = (13.2139 \pm 0.0004) \times 10^{-14} \text{ cm}
\chi_{cp} = \lambda_{cp}/(2\pi) = (2.10307 \pm 0.00007) \times 10^{-14} \text{ cm}
Compton wavelength of the neutron.
                                       \lambda_{cn} = h/m_n c = (13.1958 \pm 0.0004) \times 10^{-14} \text{ cm}
\frac{\kappa_{en} = \lambda_{en}/(2\pi)}{\kappa_{en} = \lambda_{en}/(2\pi)} = (2.10017 \pm 0.00007) \times 10^{-14} \text{ cm}
Classical electron radius... r_0 = e^2/(mc^2) = (2.81784 \pm 0.00010) \times 10^{-18} \text{ cm} = a^3/(4\pi R_x)
                                                     r_0^2 = (7.9402 \pm 0.0005) \times 10^{-20} \text{ cm}^2
                                                 \frac{6}{3} \pi r_0^2 = (6.65196 \pm 0.0005) \times 10^{-25} \text{ cm}^2
Thompson cross section.....
Fine structure doublet separation in
  = 10968.49 \pm 0.25 \,\mathrm{Mg \, sec^{-1}}
Fine structure separation in deuterium.
                              \Delta E_D = \Delta E_H R_D/R_H = 0.365969 \pm 0.000008 \text{ cm}^{-1}
                                                        = 10971.48 \pm 0.25 \,\mathrm{Mg/sec^{-1}}
Zeeman displacement per gauss...
                                     (e/mc)/(4\pi c) = (4.66879 \pm 0.00015) \times 10^{-5} \,\mathrm{cm^{-1} \,gauss^{-1}}
Boltzmann's constant ......k = R_0/N = (1.38042 \pm 0.00010) \times 10^{-16} \text{ ergs deg}^{-1}
                                                       k = (8.6164 \pm 0.0004) \times 10^{-8} \text{ ev deg}^{-1}
                                                    1/k = 11605.7 \pm 0.5 \deg ev^{-1}
First radiation constant.....c_1 = 8 \pi hc = (4.9919 \pm 0.0004) \times 10^{-16} \, \text{erg cm}

Second radiation constant....c_2 = hc/k = (1.43884 \pm 0.00008) \, \text{cm deg}

Atomic specific heat constant.....c_2/c = (4.79946 \pm 0.00027) \times 10^{-11} \, \text{sec deg}

Wien displacement law constant ^b ... \lambda_{\text{max}} T = c_2/(4.96511423) = 0.28979 \pm 0.00005 \, \text{cm deg}
= -5.57324 \pm 0.00011
                                                     S_0 = -(46.3505 \pm 0.0017) \times 10^7 \,\mathrm{erg \, mole^{-1} \, deg^{-1}}
Bohr magneton .....
                    \mu_0 = he/(4\pi mc) = \frac{1}{2} e \chi_{co} = (0.92732 \pm 0.00006) \times 10^{-80} \text{ erg gauss}^{-1}
Anomalous electron moment correction...
                \left[1 + \frac{\alpha}{2\pi} - 2.973 \frac{\alpha^2}{\pi^2}\right] = \mu_e/\mu_0 = 1.001145356 \pm 0.000000013
Magnetic moment of the electron.....\mu_{\sigma} = (0.92838 \pm 0.00006) \times 10^{-20} erg gauss<sup>-1</sup>
Nuclear magneton ......
= (1.41045 \pm 0.00009) \times 10^{-23} \text{ erg gauss}^{-1}
Gyromagnetic ratio of the proton in hy-
   drogen (uncorrected for diamagnetism)
                                                     \gamma' = (2.67520 \pm 0.00008) \times 10^4 \text{ radians sec}^{-1} \text{ gauss}^{-1}
Gyromagnetic ratio of the proton (cor-
                                                     .\gamma = (2.67527 \pm 0.00008) \times 10^4 \text{ radians sec}^{-1} \text{ gauss}^{-1}
Multiplier of (Curie constant) to give
  magnetic moment per molecule. (3k/N)^{\frac{1}{2}} = (2.62178 \pm 0.00017) \times 10^{-20} (erg mole deg<sup>-1</sup>)<sup>\frac{1}{2}</sup>
```

^b The numerical constant 4.96511423 is the root of the transcendental equation $x = 5 (1 - e^{-x})$.

TABLE 27.—TABLE OF LEAST-SQUARES ADJUSTED OUTPUT VALUES OF PHYSICAL CONSTANTS (concluded)

```
Mass-energy conversion factors......1 g = (5.60999 \pm 0.00025) \times 10^{20} MeV
                                        1 electron mass = 0.510984 \pm 0.000016 Mev
                                  1 atomic mass unit = 931.162 \pm 0.024 MeV
1 proton mass = 938.232 \pm 0.024 MeV
                                        1 neutron mass = 939.526 \pm 0.024 Mey
Quantum energy conversion factors. .1 ev = (1.60207 \pm 0.00007) \times 10^{-12} \text{ erg}

E/\bar{\nu} = (1.98620 \pm 0.00016) \times 10^{-16} \text{ erg cm}
                                                         E \lambda_g = (12397.8 \pm 0.5) \times 10^{-8} \text{ ev-cm}
                                                        E \lambda_{\nu} = (12372.2 \pm 0.4 \text{ k volt-x units})

E \lambda_{\nu} = (2372.2 \pm 0.4 \text{ k volt-x units})

E/\nu = (6.6252 \pm 0.0005) \times 10^{-27} \text{ erg sec}

E/\nu = (4.13544 \pm 0.00015) \times 10^{-15} \text{ ev-sec}
                                                         \tilde{\nu}/E = (5.0347 \pm 0.0004) \times 10^{15} \,\mathrm{cm}^{-1} \,\mathrm{erg}^{-1}
                                                         \tilde{\nu}/E = (8065.98 \pm 0.30) \text{ cm}^{-1} \text{ ev}^{-1}
                                                         \nu/E = (1.50938 \pm 0.00012) \times 10^{26} \text{ sec}^{-1} \text{ erg}^{-1}

\nu/E = (2.41812 \pm 0.00009) \times 10^{14} \text{ sec}^{-1} \text{ ev}^{-1}
de Broglie wavelengths, λ<sub>D</sub> of elementary
   particles °
       = (1.55226 \pm 0.00008) \times 10^{-13} \text{ cm (erg)}^{\frac{1}{2}} / \sqrt{E}
      = (3.62261 \pm 0.00020) \times 10^{-15} \text{ cm (erg)}^{\frac{1}{2}} / \sqrt{E}
                                                               = (2.86208 \pm 0.00012) \times 10^{-9} \text{ cm (ev)}^{\frac{3}{2}}/\sqrt{E}
      = (3.62005 \pm 0.00020) \times 10^{-15} \text{ cm (erg)}^{\frac{1}{2}} / \sqrt{E}
= (2.86005 \pm 0.00012) \times 10^{-9} cm (ev)^{\frac{1}{2}}/\sqrt{E}
Energy of 2200 m/sec neutron....E_{2200} = 0.0252977 \pm 0.0000006 ev
Velocity of 1/40 ev neutron.....v_{0.025} = 2187.017 \pm 0.028 \text{ m/sec}
The Rydberg and related derived constants
                                                         R_{\rm x} = 109737.309 \pm 0.012 \, \rm cm^{-1}
                                                         R_{\star}c = (3.289847 \pm 0.000008) \times 10^{15} \,\mathrm{sec^{-1}}
                                                      R_{\star}hc = (2.17961 \pm 0.00018) \times 10^{-11} \text{ ergs}
                                           R_{\star}hc^2 \times 10^{-8} = 13.6050 \pm 0.0005 \text{ eV}
Hydrogen ionization potential..........I_0 = 13.5978 \pm 0.0005 ev
                                                               = R_H \frac{hc^2}{e} \left[ 1 + \frac{\alpha^2}{4} + \cdots \right] \times 10^{-8}
```

[°] These formulas apply only to non-relativistic velocities. If the velocity of the particle is not negligible compared to the velocity of light, c, or the energy not negligible compared to the rest mass energy, we must use $\lambda b = \lambda e [\epsilon(\epsilon+2)]^{-1/2}$ where λc is the appropriate Compton wavelength and ϵ is the kinetic energy measured in units of the particle rest mass.

TABLE 28.—GENERAL PHYSICAL CONSTANTS ACCORDING TO BEARDEN AND ASSOCIATES*

Part 1† (atomic weights according to the physical scale unless otherwise indicated)

```
Least-squares adjusted values of the fundamental atomic constants
Atomic mass of proton M = (1.007593 \pm .000003)

Atomic mass of electron Nm = (5.48756 \pm .00018) \times 10^{-4}

Electron mass m = (9.10818 \pm .00079) \times 10^{-28} g
Reduced electron mass in hydrogen atom
                                                               \mu = (9.10322 \pm .00072) \times 10^{-28} \,\mathrm{g}
Ratio proton mass to electron mass....
                                                       M/mN = (1836.139 \pm .054)
Ratio of Siegbahn X-unit to milliangstrom
                                                          \lambda_g/\lambda_s = (1.002058 \pm .000039)
Ratio of physical to chemical scales of
atomic weights r = (1.0002783 \pm .0000005)

Faraday F = (9652.14 \pm .33) \text{ emu (g-equiv)}^{-1}

Electron charge e = (4.80283 \pm .00022) \times 10^{-10} \text{ esu}
Specific electronic charge ......e/m = (5.27309 \pm .00024) \times 10^{17} esu g<sup>-1</sup>
Planck's constant h = (6.62509 \pm .00059) \times 10^{-27} erg sec Planck's constant \times 1/2 \pi \pi = (1.05442 \pm .00009) \times 10^{-27} erg sec h/e = (1.37941 \pm .00006) \times 10^{-17} erg sec (esu)<sup>-1</sup>
                                                          h/m = (7.27377 \pm .00017) \text{ cm}^2 \text{ sec}^{-1}
Avogadro's number N = (0.02487 \pm .00045) \times 10^{25} molecules (g-m Boltzmann's constant k = (1.38039 \pm .00010) \times 10^{-16} erg deg<sup>-1</sup> Loschmidt's number n_0 = (2.68719 \pm .00020) \times 10^{16} molecules cm<sup>-8</sup> Rydberg for infinite mass R_x = (109737.311 \pm .012) cm<sup>-1</sup> Rydberg for hydrogen R_H = (109677.578 \pm .012) cm<sup>-1</sup> Rydberg for deuterium R_D = (109707.419 \pm .012) cm<sup>-1</sup> Gas constant per mole. R_0 = (8.31665 \pm .00034) \times 10^7 erg mol<sup>-1</sup> deg<sup>-1</sup> Molar volume V_0 = (2.24207 \pm .00004) \times 10^4 cm<sup>8</sup> mol<sup>-1</sup> Fine structure constant n_0 = (7.29729 \pm .00008) \times 10^{-8} n_0 = (1.37.0371 \pm .0016)
1/\alpha = (137.0371 \pm .0016)
Velocity of light ... c = (2.997225 \pm .000008) \times 10^{16} \text{ cm sec}^{-1}
Stefan-Boltzmann constant \sigma = (5.66858 \pm .00053) \times 10^{-5} \, \text{erg cm}^{-2} \, \text{deg}^{-4} \, \text{sec}^{-1} Wien displacement law constant \lambda_{\text{max}} T = (.289789 \pm .000009) \, \text{cm deg} Bohr magneton \mu_0 = (.927313 \pm .000055) \times 10^{-20} \, \text{erg gauss}^{-1}
Theoretical magnetic moment of electron
First Bohr radius. \mu_e = (.928375 \pm .000055) \times 10^{-20} \text{ erg gauss}^{-1}
a_0 = (5.29173 \pm .00006) \times 10^{-9} \text{ cm}
Conversion factor for atomic mass units
    to Mev ......E_0 = (9.31145 \pm .0032) \times 10^2 \,\text{Mev (amu)}^{-1}
Conversion factor for grams to Mev. E_0 = (5.61003 \pm .00026) \times 10^{26} Mev g<sup>-1</sup> Wavelength associated with 1 ev. . . . \lambda_0 = (1.23976 \pm .00025) \times 10^{-4} cm
 Wave number associated with 1 ev.....\nu_0 = (8.05611 \pm .00035) \times 10^3 \text{ cm}^{-1} \text{ ev}^{-1}
```

Part 2‡

^{*} For reference, see footnote 18a, p. 46. † Private communication by J. A. Bearden. Data presented at May 1953 meeting of Physical Society at Washington by Bearden, Earle, Minkowski, Thomsen, Johns Hopkins University.

[‡] For reference, see footnote 18a, p. 46.

TABLE 28.—GENERAL PHYSICAL CONSTANTS ACCORDING TO BEARDEN AND ASSOCIATES (concluded)

TABLE 29.—SPELLING AND ABBREVIATIONS OF THE COMMON UNITS OF WEIGHT AND MEASURE

The spelling of the metric units is that adopted by the International Committee on Weights and Measures and given in the law legalizing the metric system in the United States (1866). The use of the same abbreviation for singular and plural is recommended. It is also suggested that only small letters be used for abbreviations except in the case of A for acre, where the use of the capital letter is general.

Unit	Abbreviation	Unit	Abbreviation
acre	A	kilogram	kg
are	a	kiloliter	kĺ
avoirdupois	av	kilometer	km
barrel	bbl	link	1i.
poard foot	bd ft	liquid	lig
bushel	bu	liter	1
carat, metric	C	meter	-
			m
centare	ca	metric ton	t
centigram	cg	micron	$^{\mu}$.
centiliter	cl	mile	mi
centimeter	cm	milligram	mg
chain	ch	milliliter	ml
cubic centimeter	cm ⁸	millimeter	mm
cubic decimeter	dm³	millimicron	$m\mu$
cubic dekameter	dkm³	minim	min. or M
cubic foot	ft ⁸	ounce	oz
cubic hectometer	hm³	ounce, apothecaries'	oz ap or 3
cubic inch	in. ⁸	ounce, avoirdupois	oz av
cubic kilometer	km³	ounce, fluid	fl oz
cubic meter	m³	ounce, troy	oz t
cubic mile	mi³	peck	pk
cubic millimeter	mm ⁸	pennyweight	dwt
cubic yard	yd ⁸	pint	nt
decigram	dg	pound	ib
deciliter	d l		
	dm	pound, apothecaries'	lb ap
decimeter		pound, avoirdupois	lb av
decistere	ds	pound, troy	lb t
dekagram	dkg	quart	qt
dekaliter	dkl	rod	rd
dekameter	dkm	scruple, apothecaries'	s ap or Э
dekastere	dks	square centimeter	cm ²
dram	dr	square chain	ch²
dram, apothecaries'	dr ap <i>or</i> 3	square decimeter	dm²
dram, avoirdupois	dr av	square dekameter	dkm²
dram, fluid	fl dr	square foot	ft²
fathom	fath	square hectometer	hm²
foot	ft	square inch	in.²
firkin	fir	square kilometer	km²
furlong	fur	squaré meter	m²
gallon	gal	square mile	mi²
grain	gr	square millimeter	mm²
gram	g g	· ·	rd²
hectare	ha	square rod	yd²
hectogram	hg	square yard	
hectoliter	hl	stere	S
hectometer		ton	tn
	hm	ton, metric	t
hogshead	hhd	troy	t.
hundredweight	cwt	yard	yd
inch	in.		

TABLE 30.—DIMENSIONAL EQUATIONS OF FUNDAMENTAL AND DERIVED UNITS

Conversion factors.—The dimensional formulas given in this table have many uses. One is to assist in changing a quantity from one system of units to another (see page 2). A simple scheme for transforming an expression from one set of units to another is given in Weniger's text, "Fundamentals of College Physics." Place the known number of the quantity with its units properly given, equal to an unknown number, x, of the same quantity properly expressed in the desired units. Proceed to cancel, treating the units just like algebraic quantities. Suppose it be desired to express 60 meters per second in miles per hour. Write:

 $\frac{60 \text{ m}}{\text{sec}} = \frac{x \text{ mi}}{\text{hr}}$

Cancel sec and hr and write 3600 near the larger unit. Cancel m and mi and write 1609.3 near the larger unit. This gives:

 $\frac{60 \text{ m}}{\text{sec}} = \frac{x \text{ mi}}{\text{hr}} = \frac{1609.3}{3600}$

Solving, X = 134, and the desired expression is 134 mi/hr.

More complicated expressions are handled in a similar manner. In a heat-flow problem, suppose it becomes necessary to express 15 Btu hr⁻¹ ft⁻² with a temperature gradient of 1°F per ft in terms of cal sec⁻¹ cm⁻² with a gradient of 1°C/cm. Write:

$$\frac{15 \,\mathrm{Btu}}{\mathrm{hr} \,\mathrm{ft}^2} \times \frac{\mathrm{ft}}{\mathrm{°F}} = \frac{x \,\mathrm{cal}}{\mathrm{sec} \,\mathrm{cm}^2} \times \frac{\mathrm{cm}}{\mathrm{°C}}$$

Cancel ft in numerator and denominator, and cm similarly. Remember that 1 Btu is 252 cal, and cancel. A scc goes into 1 hr 3600 times. Cancel cm and ft and write 30.48. Remember that 9°F equal 5°C. Solving, x=0.062. (See Table 2.)

If the numeric before the known quantity is unity, x comes out as the conversion factor

for these units.

The dimensional formulæ lack one quality which is needed for completeness, an indication of their vector characteristics; such characteristics distinguish plane and solid angle, torque and energy, illumination and brightness.

Part 1.-Fundamental units

The fundamental units most commonly used are: length [l]; mass [m]; time [t]; temperature $[\theta]$; and for the electrostatic system, dielectric constant [k]; for the electromagnetic system, permeability $[\mu]$. The formulæ will also be given for the International System of electric and magnetic units based on the units length, resistance [r], current [i], and time.

When writing fractions, using the solidus, care is required to make the meaning definite: i.e., $Btu/hr/ft^2(°F/m)$, or $Btu/(hr)(ft^2)(°F/m)$ is not clear, but $Btu/[hr \times ft^2 \times (°F/m]]$ is definite.

TABLE 30.—DIMENSIONAL EQUATIONS OF FUNDAMENTAL AND DERIVED UNITS (continued)

Part 2.—Derived units (geometric and heat)

		Convers factor [m²l½t²		Name of units	Conversion factor [m*lyt*ef*]			
Name of unit	x	у	z	(Heat and light)	.r	у	z	υ
Area, surface	0 0 0	2 3 0	0 0 0	Quantity of heat: thermal units thermometric units. dynamical units	1 0	0 3 2	0 0 -2	1 1 0
Solid angle	0 0 0	$\begin{array}{c} 0 \\ -1 \\ 0 \end{array}$	$0 \\ 0 \\ -1$	Coefficient of thermal expansion	0	0	0	— 1
Linear velocity Angular acceleration Linear acceleration	0 0 0	1 0 1	-1 -2 -2	Thermal conductivity: thermal units thermometric units	_	-1	_	0
Density	1 1 0	$-3 \\ 2 \\ 1$	0 0 —2	or diffusivity dynamical units Thermal capacity	0 1	1 0	$-1 \\ -3 \\ 0$	$-1 \\ 0$
Momentum	1 1 1	1 2 2	$-1 \\ -1 \\ -1$	Latent heat: thermal units dynamical units	0	0 2	0 2	1 0
Force	1	1	_2	Joule's equivalent	0	2	_2	-1
Moment of couple, torque Work energy	1	2 2	$-2 \\ -2$	Entropy: heat in thermal units. heat in dynamical	1	0	0	0
Power, activity	1	2	-3	units	1	2	_2	1
Intensity of stress Modulus of elasticity	1	$-1 \\ -1$	$-2 \\ -2$	Luminous intensity	0		0	1* 1*
Compressibility Resilience Viscosity	$-1 \\ 1 \\ 1$	$-1 \\ -1 \\ -1$	$-\frac{2}{-1}$	Brightness Visibility Luminous efficiency.	0 -1		0 3 3	1* 1* 1*

^{*} For these formulæ the numbers in the last column are the exponents of F where F refers to the luminous flux. For definitions of these quantities see Tables 70 and 72.

TABLE 30 .- DIMENSIONAL EQUATIONS OF FUNDAMENTAL AND DERIVED UNITS (concluded)

Part 3.—Derived units (electrical and magnetic)

		Conversion factor	
	Electrostatic system m*l*t*k*	Electromagnetic emu system esu m*!"!: "	Absolute system rrugizto
Name of unit Quantity of electricity Q Electric displacement D Electric surface density D	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Electric field intensity F Electric potential V Electromotive force E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Electrostatic capacity C Dielectric constant K Specific inductive capacity. —	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Current I Electric conductivity γ Resistivity ρ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Conductance	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Quantity of magnetism m Magnetic flux 4 Magnetic field intensity H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Magnetizing force H Magnetic potential Ω Magnetomotive force \mathcal{F}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Magnetic moment	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Magnetic susceptibility κ Magnetic permeability μ Current density	$\begin{array}{cccccc} 0 & -2 & 2 & -1 \\ 0 & -2 & 2 & -1 \\ \frac{1}{2} & -\frac{1}{2} & -2 & \frac{1}{2} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Self-inductance	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0 & 1 & 0 & 1 & 1/c^2 \\ 0 & 1 & 0 & 1 & 1/c^2 \\ 0 & -1 & 0 & -1 & c^2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Thermoelectric power‡ — Peltier coefficient‡ —	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^{*} As adopted by American Institute of Electrical Engineers, 1915, to is the velocity of an electromagnetic wave in the ether = 3×10^{10} approximately, \$\frac{1}{2}\$ This conversion factor should include [\$\theta^{-1}\$].

TABLE 31.-FUNDAMENTAL UNITS OF LENGTH, AREA, VOLUME, AND MASS (As established by administrative action, National Bureau of Standards)

							2.6417047 × 10- 4.3290643 × 10- 7.4805195 2.641779 × 10 ⁴ 0.2641779		
			yd 0.010936111 1.0936111 0.02777778 0.33333333		yd² 1.1959853 × 10 ⁻⁴ 1.1959853 7.7160494 × 10 ⁻⁴ 0.11111111		liter 0.9999720 × 10 ⁻⁸ 1.638670 × 10 ⁻² 28.31622 0.001 1 3.785329		ton 1.1023112 × 10-8 1.1023112 × 10-8 0.0005 1.1023112
egal relations	: 2.54000508 cm 29 liter	nits of length	ft 0.032808333 3.2808333 0.0833333333 1	units of area	$\begin{array}{c} ^{\mathrm{ft^2}} \\ 1.0763867 \times 10^{-8} \\ 10.763867 \\ 6.944444 \times 10^{-8} \\ 1 \\ 9 \end{array}$	its of volume	$\begin{array}{c} \text{ml} \\ 0.9999720 \\ 16.38670 \\ 2.831622 \times 10^4 \\ 1 \\ 10^3 \\ 3.785329 \times 10^3 \end{array}$	inits of mass	metric ton 10-8 10-8 4.5359243 × 10-4 1 0.90718486
Part 1.—Some definitions and legal relations	1 in.* = (1/0.3937) cm = 2.54000508 cm 1 lb * = 453.5924277 g 1 gal * = 231 in.³ = 3.785329 liter T. cal * = 4.18674 joules = 1.000654 cal _{1s} 1 Btu † = 251.996 l.T. cal = 252.161 cal _{1s}	Part 2Conversion factors, units of length	in. 0.3937 39.37 1.2 36	Part 3.—Conversion factors, units of area	in.² 0.15499969 1549.9969 1 144 1296	Part 4Conversion factors, units of volume	$\begin{array}{c} \text{ft}^{8} \\ 3.5314455 \times 10^{-8} \\ 5.7870370 \times 10^{-4} \\ 1.531544 \times 10^{-8} \\ 0.03531544 \\ 0.13368056 \end{array}$	Part 5Conversion factors, units of mass	1 $^{2.2046223} \times 10^{-8} \cdot 10^{-8}$ $^{2.2046223} \cdot 10^{-8} \cdot 10^{-8}$ 1 $^{4.53}$ $^{2.204.6223} \cdot 10^{-8}$ 1 $^{2.2000}$ $^{0.900}$
Part 1So	1 in.* = 1 lb * = 1 lb * = 1 lb * = 1 lf lf 1 lf lf lf 1 lf	Part 2.—Co	m 0.01 0.025400051 0.30480061 0.91440183	Part 3.—($^{\text{m}^2}$ $^{10^{-4}}$ 1 $^{6.4516258} \times 10^{-4}$ $^{0.092903412}$ $^{0.83613070}$	Part 4.—Co	in.3 0.061023378 1.728 × 10³ 0.06102509 61.02509 231	Part 5.—C	kg 10 ⁻³ 1 0.45359243 10 ³ 907.18486
			cm 100 2.5400051 30,480061 91,440183		cm² 1 10° 6.4516258 929.03412 8361.3070		$\begin{array}{c} \text{cm}^3 \\ 1 \\ 16.387162 \\ 2.8317017 \times 10^4 \\ 1.000028 \\ 1.000028 \times 10^3 \\ 3.7854345 \times 10^3 \end{array}$		$\begin{array}{c} 1\\ 10^{3}\\ 4.5359243\times 10^{2}\\ 10^{6}\\ 9.0718486\times 10^{5}\\ \end{array}$
			1 cm 1 m == 1 ii. == 1 ft == 1 yd ==		$\begin{array}{c} 1 \text{ cm}^2 = \\ 1 \text{ m}^2 = \\ 1 \text{ in}^2 = \\ 1 \text{ ff}^2 = \\ 1 \text{ yd}^2 = \end{array}$		l cm³ = 1 in.³ = 1 ft³ = 1 ft² = 1 ft² = 1 liter = 1 gal = 1 gal = 1		1 g = 1 kg = 1 lb = 1 metric ton = 1 ton = 1

7 %

* Legal relation. † As defined by International Steam Table Conference, London, 1929.

TABLE 32.—TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES *

Part 1.- Metric to customary

							Capacity					
1 2 3 4 5	Meters to inches 39.3700 78.7400 118.1100 157.4800 196.8500	Meters to feet 3.28083 6.56167 9.84250 13.12333 16.40417	Meters to yards 1.093611 2.187222 3.280833 4.374444 5.468056	Kilometers to miles 0.62137 1.24274 1.86411 2.48548 3.10685	S	1 2 3 4 5	Milliliters or cubic centimeters to fluid drams 0.27 0.54 0.81 1.08 1.35	Centiliters to fluid ounces 0.338 0.676 1.014 1.353 1.691	Liters to quarts 1.0567 2.1134 3.1701 4.2268 5.2836	5.2836 7.9253 10.5673	liters bushels 8 2.8378 6 5.6756 3 8.5135 1 11.3513	
6 7 8 9	236.2200 275.5900 314.9600 354.3300	19.68500 22.96583 26.24667 29.52750	6.561667 7.655278 8.748889 9.842500	3.72822 4.34959 4.97096 5.59233		6 7 8 9	1.62 1.89 2.16 2.43	2.029 2.367 2.705 3.043	6.3403 7.3970 8.4537 9.5104	18.4924 21.1342	4 19.8647 2 22.7026	
	Square											
1 2 3 4 5	Square centimeters to square inches 0.1550 0.3100 0.4650 0.6200 0.7750	meters no square to feet 10.764 21.528 32.292 43.055	yards to: 1.196 2 2.392 4 3.588 7 4.784 9	ctares acres 2.471 1.942 7.413 0.884 2.355	1 2 3 4 5		Milli- trams to grains).01543).03086).04630).06173).07716	Kilo grams grair 15432 30864 46297 61729 77161	to as .36 .71 .07 1 .43 1	Hecto- rams to ounces avoir- dupois 3.5274 7.0548 0.5822 4.1096 7.6370	Kilograms to pounds avoir-dupois 2.20462 4.40924 6.61387 8.81849 11.02311	
6 7 8 9	0.9300 1.0850 1.2400 1.3950	75.347 8 86.111	8.372 17 9.568 19	1.826 7.297 9.768 2.230	6 7 8 9	(0.09259 0.10803 0.12346 0.13889	92594 108026 123458 138891	.49 2 .85 2	21.1644 24.6918 28.2192 31.7466	13.22773 15.43236 17.63698 19.84160	
			Cubic							Mass		
1 2 3 4 5	Cubic centimeters to cubic inches 0.0610 0.1220 0.1831 0.2441 0.3051	Cubic decimeters to cubic inches 61.023 122.047 183.070 244.094 305.117	Cubic meters cubic feet 35.31 70.26 105.94 141.25 176.57	to meters cubic yards 4 1.308 69 2.616 13 3.92 18 5.23	3 3 5 4		1 2 3 4 5	Ouintal pounds 220.4 440.9 661.3 881.8 1102.3	s to t av. po 16 12 19	Milliers or onnes to ounds av. 2204.6 4409.2 6613.9 8818.5 1023.1	Kilo- grams to ounces troy 32.1507 64.3015 96.4522 128.6030 160.7537	
6 7 8 9	0.3661 0.4272 0.4882 0.5492	366.140 427.164 488.187 549.210	211.88 247.20 282.51 317.83	9.150 6 10.46	5 4		6 7 8 9	1322.7 1543.2 1763.7 1984.1	24 1 '0 1	3227.7 5432.4 7637.0 9841.6	192.9045 225.0552 257.2059 289.3567	

In the United States since 1893 all units in the above table have been derived from the same standards of length and mass. Therefore all equivalents (except those involving the liter) depend only on numerical definitions. The liter is the volume of one kilogram of pure water at the temperature of its maximum density and under a pressure equivalent to 760 millimeters of mercury. The liter was determined by the International Bureau of Weights and Measures in 1910 to equal 1.000027 dm³. (National Bureau of Standards.)

^{*} Quoted from sheets issued by the National Bureau of Standards.

TABLE 32.—TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES (continued)

Part 2.—Customary to metric

							Capacity			
1 2 3 4	Inches to milli- meters 25.4001 50.8001 76.2002 101.6002	Feet to meters 0.304801 0.609601 0.914402 1.219202		Mile to ki mete 1.609 3.218 4.828 6.437	lo- ers 935 369 304	1 2 3 4	Fluid drams to milliliters or cubic centimeters 3.70 7.39 11.09 14.79	Fluid ounces to milli- liters 29.57 59.15 88.72 118.29	Liquid quarts to liters 0.94633 1.89267 2.83900 3.78533	Gallons to liters 3.78533 7.57066 11.35600 15.14133
5	127.0003	1.524003		8.046		5	18.48	147.87	4.73167	18.92666
6 7 8 9	152.4003 177.8004 203.2004 228.6005	1.828804 2.133604 2.438405 2.743205	6.400813 7.315215	9.656 11.265 12.874 14.484	543 178	6 7 8 9	22.18 25.88 29.57 33.27	177.44 207.01 236.58 266.16	5.67800 6.62433 7.57066 8.51700	22.71199 26.49733 30.28266 34.06799
		Square				Mass				
1 2 3 4 5	Square inches to square centimeters 6.452 12.903 19.355 25.807 32.258	square yaddeci- meters n 9.290 (18.581 27.871 (27.871) 37.161	iquare ards to quare neters 0.836 0.40 1.672 0.80 2.508 1.21 3.345 1.61 4.181 2.02	res 47 94 41 87	1 2 3 4 5	Grain mill gran 64.79 129.59 194.39 259.19 323.99	disto of or	voir- upois unces to rams 3.3495 5.6991 5.0486 3.3981 1.7476	Avoir- dupois pounds to kilo- grams 0.45359 0.90718 1.36078 1.81437 2.26796	Troy ounces to grams 31.10348 62.20696 93.31044 124.41392 155.51740
6 7 8 9	38.710 45.161 51.613 58.065	65.032 74.323	5.017 2.42 5.853 2.83 6.689 3.23 7.525 3.64	28 75	6 7 8 9	388.79 453.59 518.39 583.19	924 198 913 226	0.0972 3.4467 6.7962 5.1457	2.72155 3.17515 3.62874 4.08233	186.62088 217.72437 248.82785 279.93133
1 2 3 4 5 6 7 8 9	Cubic inches to cubic centimeters 16.387 32.774 49.161 65.549 81.936 98.323 114.710 131.097 147.484	inches to cubic cubic centicmeters Cubic cent cubic centicmeters Cubic cubi		to hecto- liters 3.35239 3.70479 .05718 .40957 .76196 2.11436 2.46675 2.81914		1 m 1 G 1 sc 1 fa 1 na 1 fc 1 a 154	q. statute mile = 259.00 athom = 1.82 nautical mile = 1853.25 oot = 0.30 avoir. pound = 453.59 432.356 grains = 1.00			meters hectares meters

The length of the nautical mile given above, and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

TABLE 32.-TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES

(concluded)

Part 3.—Miscellaneous equivalents of U. S. and metric weights and measures ¹⁰ (For other equivalents than those below, see Tables 30, 31, and 33.)

```
LINEAR MEASURES
1 mil (.001 in.) = 25.4001 \mu
1 \text{ in.} = .000015783 \text{ mile}
1 hand (4 \text{ in.}) = 10.16002 \text{ cm}
1 \text{ link } (.66 \text{ ft}) = 20.11684 \text{ cm}
1 span (9 \text{ in.}) = 22.86005 \text{ cm}
1 fathom (6 \text{ ft}) = 1.828804 \text{ m}
1 \text{ rod } (5\frac{1}{2} \text{ yd}) (25 \text{ links}) = 5.02910 \text{ m}
1 chain (4 \text{ rods}) = 20.11684 \text{ m}
1 light year (9.5 \times 10^{12} \text{ km}) = 5.9 \times 10^{12}
     miles
1 parsec (31 \times 10^{12} \text{ km}) = 19 \times 10^{12} \text{ miles}
^{1}_{16} in. = 3.97 mm ^{1}_{16} in. = 1.588 mm ^{1}_{16} in. = 1.588 mm ^{1}_{16} in. = 6.350 mm ^{1}_{2} in. = 3.175 mm ^{1}_{2} in. = 12.700 mm
\frac{1}{4} in. = 6.350 mm
1 angstrom unit = .00000000001 m
1 micron (\mu) = .000001 m = .00003937 in.
1 millimicron (m\mu) = .000000001 m
1 \text{ m} = 4.970960 \text{ links} = 1.093611 \text{ yd}
      = .198838 rod = .0497096 chain
                SQUARE MEASURES
1 sq. link (62.7264 \text{ in.}^2) = 404.6873 \text{ cm}^2
1 sq. rod (625 \text{ sq. links}) = 25.29295 \text{ m}^2
1 sq. chain (16 sq. rods) = 404.6873 \text{ m}^2
1 acre (10 sq. chains) = 4046.873 \text{ m}^2
1 sq. mile (640 acres) = 2.589998 \text{ km}^2
1 \text{ km}^2 = .3861006 \text{ sq. mile}
1 \text{ m}^2 = 24.7104 \text{ sq. links} = 10.76387 \text{ ft}^2
       = .039537 sq. rod = .00247104 sq.
               chain
                  CUBIC MEASURES
1 board foot (144 in.^{8}) = 2359.8 cm^{8}
1 \text{ cord } (128 \text{ ft}^3) = 3.625 \text{ m}^3
              CAPACITY MEASURES
1 minim (m) = .0616102 \text{ ml}
1 fl. dram (60 \text{ m}) = 3.69661 \text{ ml}
1 fl. oz (8 \text{ fl. dr}) = 1.80469 \text{ in.}^3
         = 29.5729 ml
1 gill (4 fl. oz.) = 7.21875 in.<sup>3</sup> = 118.292
1 liq. pt (28.875 \text{ in.}^3) = .473167 \text{ 1}
1 liq. qt (57.75 \text{ in.}^3) = .946333 \text{ 1}
1 gallon (4 qt, 231 in.^{8}) = 3.785332 1
1 dry pt (33.6003125 \text{ in.}^3) = .550599 \text{ 1}
1 dry qt (67.200625 \text{ in.}^3) = 1.101198 \text{ 1}
1 pk (8 dry qt, 537.605 in.*) = 8.80958 1
1 bu (4 pk, 2150.42 in.*) = 35.2383 1
1 firkin (9 gallons) = 34.06799 1
1 liter = .264178 gal = 1.05671 liq. qt
= 33.8147 fl. oz = 270.518 fl. dr
1 \text{ ml.} = 16.2311 \text{ minims.}
1 \text{ dkl.} = 18.1620 \text{ dry pt} = 9.08102 \text{ dry qt}
```

MASS MEASURES Avoirdupois weights 1 grain = .064798918 g $1 \operatorname{dram} \operatorname{av.} (27.34375 \operatorname{gr}) = 1.771845 \operatorname{g}$ 1 oz av. (16 dr av.) = 28.349527 g1 lb av. (16 oz av. or 7000 gr) = 14.583333 oz ap. (3) or oz t. = 1.2152778 or 7000/5760 lb ap. or t. = 453.5924277 g 1 kg = 2.204622341 lb av.1 g = 15.432356 gr = .5643833 dr av.= .03527396 oz av. 1 short hundred weight (100 lb) =45.359243 kg1 long hundred weight (112 lb) = 50.802352 kg 1 short ton (2000 lb) = 907.18486 kg 1 long ton (2240 lb) = 1016.04704 kg1 metric ton = 0.98420640 long ton= 1.1023112 short tons Troy weights

44 24

1 pennyweight (dwt 24 gr) = 1.555174 g gr, oz, pd are same as apothecary

Apothecaries' weights

1 metric carat = 200 mg = 3.0864712 gr

U. S. ½ dollar should weigh 12.5 g and the smaller silver coins in proportion.

= 1.13513 pk = .28378 bu

¹⁹ Taken from Circular 47 of the National Bureau of Standards, 1915, which see for more complete tables.

TABLE 33.—EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES *

(For U. S. Weights and Measures, see Table 32.)

Part 1.—Metri	c to imperial
LINEAR MEASURE	MEASURE OF CAPACITY
$ \begin{array}{lll} 1 \text{ millimeter (mm)} \\ & (.001 \text{ m}) \end{array} \} = & 0.03937 \text{ in.} \\ 1 \text{ centimeter } (.01 \text{ m}) = & 0.39370 \text{ in.} \\ 1 \text{ decimeter } (.1 \text{ m}) = & 3.93701 \text{ in.} \\ 3.9370113 \text{ in.} \\ 3.280843 \text{ ft} \\ 1.09361425 \text{ yd} \end{array} $ $ \begin{array}{lll} 1 \text{ dekameter} \\ & (10 \text{ m}) \end{array} \} \cdot \cdot = & 10.93614 \text{ yd} \\ 1 \text{ hectometer} \\ & (100 \text{ m}) \end{array} \} \cdot \cdot = & 109.361425 \text{ yd} \\ 1 \text{ kilometer} \end{cases} $	1 milliliter (ml) (.001 liter) = 0.0610 in.3 1 centiliter (.01 liter) = {0.61024 in.3 (0.0710 gill)} 1 deciliter (.1 liter) = 0.176 pint 1 LITER (1,000 cu. centimeters or 1 cu. decimeter) 1 dekaliter (10 liters) = 2.200 gallons 1 hectoliter (100 ") = 2.75 bushels 1 kiloliter (1,000 ") = 3.437 quarters
(1,000 m) \ . = 0.62137 mile	APOTHECARIES' MEASURE 1 cm ⁸
1 micron = 0.21372 miles 0.001 mm	$ \begin{cases} 1 \text{ cm}^8 \\ (1 \text{ gram } \\ w't) \end{cases} = \begin{cases} 0.03520 \text{ fluid ounce} \\ 0.28157 \text{ fluid drachm} \\ 15.43236 \text{ grains weight} \\ 0.01693 \text{ minim} \end{cases} $
	AVOIRDUPOIS WEIGHT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 milligram (mg) = 0.01543 grain 1 centigram (.01 gram) = 0.15432 grain 1 decigram (.1 ") = 1.54324 grains 1 GRAM = 15.43236 grains 1 dekagram (10 grams) = 5.64383 drams 1 hectogram (100 ") = 3.52739 oz 2.2046223 lb 15432.3564 grains 1 myriagram (10 kg) = 22.04622 lb 1 quintal (100 ") = 1.96841 cwt
CUBIC MEASURE	$\frac{1 \text{ millier or tonne}}{(1,000 \text{ kg})}$ = 0.9842 ton
$1 \text{ cm}^8 (1.000 \text{ mm}^8) = 0.0610 \text{ in}^3$	TROY WEIGHT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1_{\text{ GRAM}} \ . \ . \ . = \begin{cases} 0.03215 \text{ oz troy.} \\ 0.64301 \text{ pennyweight} \\ 15.43236 \text{ grains} \end{cases}$
	APOTHECARIES' WEIGHT
	6 0 25721 1 1

Note.—The Meter is the length, at the temperature of 0°C, of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at Sèvres, near Paris, France.

0.25721 drachm 0.77162 scruple 15.43236 grains

The present legal equivalent of the meter is 39.370113 inches, as above stated.

The KILOGRAM is the mass of a platinum-iridium weight deposited at the same place. The LITER contains 1 kilogram weight of distilled water at its maximum density (4°C), the barometer being at 760 millimeters.

^{*} In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897.

TABLE 33.—EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES (continued)

(For U. S. Weights and Measures, see Table 32.)

Part 2.-Metric to imperial, multiples

Linear measure				Measure of capacity				,	
1 2 3 4 5	Millimeters to inches 0.03937011 0.07874023 0.11811034 0.15748045 0.19685056	9.84253 13.12337	Meters to yards 1.09361 2.18723 3.28084 4.37446 5.46807	Kilo- meters to miles 0.62137 1.24274 1.86412 2.48549 3.10686	1 2 3 4 5	Liters to pints 1.75980 3.51961 5.27941 7.03921 8.79902	Deka- liters to gallons 2.19975 4.39951 6.59926 8.79902 10.99877	Hecto- liters to bushels 2.74969 5.49938 8.24908 10.99877 13.74846	Kilo- liters to quarters 3.43712 6.87423 10.31135 13.74846 17.18558
6 7 8 9	0.23622068 0.27559079 0.31496090 0.35433102	22.96590 26.24674	6.56169 7.65530 8.74891 9.84253	3.72823 4.34960 4.97097 5.59235	6 7 8 9	10.55882 12.31862 14.07842 15.83823	13.19852 15.39828 17.59803 19.79778	16.49815 19.24785 21.99754 24.74723	20.62269 24.05981 27.49692 30.93404
		Square r	neasure						
1 2 3 4 5	0.31000 0.46500 0.62000	Square meters to square feet 10.76393 21.52786 32.29179 43.05572 53.81965	Square meters to square yards 1.19599 2.39198 3.58798 4.78397 5.97996	Hectares to acres 2.4711 4.9421 7.4132 9.8842 12.3553	1 2 3 4 5	Milli- grams to grains 0.01543 0.03086 0.04630 0.06173 0.07716	Kilo- grams to grains 15432.356 30864.713 46297.069 61729.426 77161.782	Kilo- grams to pounds 2.20462 4.40924 6.61387 8.81849 11.02311	Quintals to hundred- weights 1.96841 3.93683 5.90524 7.87365 9.84206
6 7 8 9	1.08500 1.24000	64.58357 75.34750 86.11143 96.87536	7.17595 8.37194 9.56794 10.76393	14.8263 17.2974 19.7685 22.2395	6 7 8 9	0.09259 0.10803 0.12346 0.13889	92594.138 108026.495 123458.851 138891.208	13.22773 15.43236 17.63698 19.84160	11.81048 13.77889 15.74730 17.71572
	Cı	ubic measure		Apothe- caries' measure		Avoirdupo			Apothe- caries'
1 2 3 4 5	Cubic decimeters to cubic inches 61.02390 122.04781 183.07171 244.09561 305.11952	Cubic meters to cubic feet 35.31476 70.62952 105.94428 141.25904 176.57379	Cubic meters to cubic yards 1.30795 2.61591 3.92386 5.23182 6.53977	Cubic centimeters to fluid drachms 0.28157 0.56314 0.84471 1.12627 1.40784	1 2 3 4 5	(cont.) Milliers or tonnes to tons 0.98421 1.96841 2.95262 3.93683 4.92103	0.03215 0.06430 0.09645 0.12860	Grams to penny- weights 0.64301 1.28603 1.92904 2.57206 3.21507	Grams to scruples 0.77162 1.54324 2.31485 3.08647 3.85809
6 7 8 9	366.14342 427.16732 488.19123 549.21513	211.88855 247.20331 282.51807 317.83283	7.84772 9.15568 10.46363 11.77159	1.68941 1.97098 2.25255 2.53412	6 7 8 9	5.90524 6.88944 7.87365 8.85786	0.22506 0.25721	3.85809 4.50110 5.14412 5.78713	4.62971 5.40132 6.17294 6.94456

TABLE 33.—EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES (continued)

(For U. S. Weights and Measures, see Table 32.)

Part 3.-Imperial to metric

LINEAR MEASURE — 25 400

1 inch		25.400 millimeters
1 foot (12 in.)	=	0.30480 meter
1 YARD (3 ft)	=	0.914399 meter
1 pole $(5\frac{1}{2} \text{ yd})$	=	5.0292 meters
1 chain (22 yd 100 links)	or $=$	20.1168 meters
1 furlong (220	vd) = i	201.168 meters
1 mile (1,760 y	d) (=	1.6093 kilometers
1 vard		(1420210. × Cd _r λ (Tutton 1932)
Tyalu	—	1 (Tutton 1932)

SQUARE MEASURE

1 in. ²	$= 6.4516 \text{ cm}^2$
1 ft ² (144 in. ²)	$= 9.2903 \text{ dm}^2$
$1 \text{ yD}^2 (9 \text{ ft}^2)$	$= 0.836126 \text{ m}^2$
1 perch $(30\frac{1}{4} \text{ yd}^2)$	
1 rood (40 perches)	
$1 \text{ ACRE } (4840 \text{ yd}^2)$	= 0.40468 hectare
1 mi ² (640 acres)	= 259.00 hectares

CUBIC MEASURE

1 in.^3 = 16.387 cm ⁸
1 ft ⁸ (1728 in. ³) = $\begin{cases} 0.028317 \text{ m}^3 \text{ or } 28.317 \\ \text{dm}^3 \end{cases}$
$1 \text{ yp}^{8} (27 \text{ ft}^{3}). = 0.76455 \text{ m}^{3}$

APOTHECARIES' MEASURE

$ \frac{1 \text{ gallon (8 pints or}}{160 \text{ fluid ounces)}} = 4.5459631 \text{ liter} $
1 fluid ounce, f $\frac{3}{8}$ (8) = 28.4123 cm ⁸
1 fluid drachm, f 3 = 3.5515 cm ³
$\begin{cases} 1 \text{ minim, } m & (0.91146) \\ \text{grain weight)} \end{cases} = 0.05919 \text{ cm}^3$

Note.—The apothecaries' gallon is of the same capacity as the Imperial gallon.

MEASURE OF CAPACITY

s
rs

AVOIRDUPOIS WEIGHT

1 grain = 64.8 milligrams 1 dram = 1.772 grams
1 ounce (16 dr) . $= 28.350 \text{grams}$
1 porrore (16)
$\frac{1 \text{ POUND (16 oz or }}{7,000 \text{ grains}} = 0.45359243 \text{ kg}$
1 stone (14 lb) . $.= 6.350 \mathrm{kg}$
1 quarter (28 lb) = 12.70 kg
$ \begin{array}{c} 1 \text{ hundredweight} \\ (112 \text{ lb}) \end{array} = \begin{cases} 50.80 \text{ kg} \\ 0.5080 \text{ quintal} \end{cases} $
(112 lb)
(1.0160 tonnes or
1.0100 tonnes or
1 ton (20 cwt) = $\{$ 1016 kilo-
grams
6 8

TROY WEIGHT

1 troy ounce (480 grains av)	= 31.1035 grams
1 pennyweight (24 grains)	= 1.5552 grams

Note.—The troy grain is of the same weight as the avoirdupois grain.

APOTHECARIES' WEIGHT

1 ounce (8 drachms) . . = 31.1035 grams 1 drachm, 3i (3 scruples) = 3.888 grams 1 scruple, \Im i (20 grains) = 1.296 grams

Note.—The apothecaries' ounce is of the same weight as the troy ounce. The apothecaries' grain is also of the same weight as the avoirdupois grain.

Note.—The Yard is the length at 62°F, marked on a bronze bar deposited with the Board of Trade.

The POUND is the weight of a piece of platinum weighed in vacuo at the temperature of 0°C, and which is also deposited with the Board of Trade.

The GALLON contains 10 lb weight of distilled water at the temperature of 62°F, the barometer being at 30 inches.

TABLE 33.—EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES (concluded)

(For U. S. Weights and Measures, see Table 32.)

Part 4.—Imperial to metric, multiples

	Linear measure						Measure	of capacity	city
	Inches to centi- meters	Feet to meters	Yards to meters	Miles to kilo- meters		Quarts to liters	Gallons to liters	Bushels to deka- liters	Quarters to hecto- liters
1 2 3 4	2.539998 5.079996 7.619993 10.159991	0.30480 0.60960 0.91440 1.21920	0.91440 1.82880 2.74320 3.65760	1.60934 3.21869 4.82803 6.43737	1 2 3 4	1.13649 2.27298 3.40947 4.54596	4.54596 9.09193 13.63789 18.18385	3.63677 7.27354 10.91031 14.54708	2.90942 5.81883 8.72825 11.63767
5 6 7	12.699989 15.239987 17.779984	1.52400	4.57200 5.48640	9.65606	5 6 7	5.68245 6.81894 7.95544	22.72982 27.27578	18.18385 21.82062 25.45739	14.54708 17.45650 20.36591
8 9	20.319982 22.859980	2.13360 2.43840 2.74320	6.40080 7.31519 8.22959	11.26540 12.87474 14.48408	8	9.09193 10.22842	31.82174 36.36770 40.91367	29.09416 32.73093	23.27533 26.18475
		Square	measure				Weight (voirdupois)	
1 2 3 4 5	Square inches to square centimeters 6.45159 12.90318 19.35477 25.80636 32.25794	Square feet to square deci- meters 9.29029 18.58058 27.87086 37.16115 46.45144	1.67225 2.50838 3.34450	Acres to hectares 0.40468 0.80937 1.21405 1.61874 2.02342	1 2 3 4 5	Grains to milligrams 64.79892 129.59784 194.39675 259.19567 323.99459	56.6990 85.0485 113.3981	to kilograms 3 0.45359 5 0.90718 8 1.36078 1 1.81437	Hundred- weights to quintals 0.50802 1.01605 1.52407 2.03209 2.54012
6 7 8 9	38.70953 45.16112 51.61271 58.06430	55.74173 65.03201 74.32230 83.61259	5.85288 6.68901	2.42811 2.83279 3.23748 3.64216	6 7 8 9	388.79351 453.59243 518.39135 583.19026	3 198.4466 5 226.7962	9 3.17515 1 3.62874	
		Cubic measi	ıre	Apothe- caries' Measure		Avoirdupois (cont.)	Trov	weight	Apothe- caries' weight
1 2 3 4 5	Cubic inches to cubic centimeters 16.38702 32.77404 49.16106 65.54808 81.93511	Cubic feet to cubic meters 0.02832 0.05663 0.08495 0.11327 0.14158	Cubic yards to cubic meters 0.76455 1.52911 2.29366 3.05821 3.82276	Fluid drachms to cubic centimeters 3.55153 7.10307 10.65460 14.20613 17.75767	1 2 3 4 5	Tons to millers or tonnes 1.01605 2.03209 3.04814 4.06419 5.08024	Ounces to grams 31.10348 62.20696 93.31044 124.41392 155.51740	Penny- weights to grams 1.55517 3.11035 4.66552 6.22070 7.77587	Scruples to grams 1.29598 2.59196 3.88794 5.18391 6.47989
6 7 8 9	98.32213 114.70915 131.09617 147.48319	0.16990 0.19822 0.22653 0.25485	4.58732 5.35187 6.11642 6.88098	21.30920 24.86074 28.41227 31.96380	6 7 8 9	6.09628 7.11233 8.12838 9.14442	186.62088 217.72437 248.82785 279.93133	9.33104 10.88622 12.44139 13.99657	7.77587 9.07185 10.36783 11.66381

TABLE 34.—VOLUME OF A GLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER

If a glass vessel contains at $t^{\circ}C$, P grams of mercury, weighed with brass weights in air at 760 mmHg pressure, then its volume in cm³

at the same temperature,
$$t: V = PR = P\frac{p}{d}$$

at another temperature,
$$t_1: V = PR_1 = P \frac{p}{d} \{1 + \gamma (t_1 - t)\}$$

p = the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram;
 a = the density of mercury or water at t°C, and γ the cubical expansion coefficient of glass.

Tempera- ture		Water		Mercury
t	R	$R_1, t_1 = 10^{\circ}$	$R_1, t_1 = 20^{\circ}$	R $R_1, t_1 = 10^{\circ}$ $R_2, t_1 = 20^{\circ}$
0°	1.001192	1.001443	1.001693	0.0735499 0.0735683 0.0735867
-	1133	1358	1609	5633 5798 5982
2	1092	1292	1542	5766 5914 6098
3	1068	1243	1493	5900 6029 6213
4	1060	1210	1460	6033 6144 6328
1 2 3 4 5	1068	1193	1443	6167 6259 6443
, and the second	2000	1170	1110	0107 0207 0110
6	1.001092	1.001192	1.001442	0.0736301 0.0736374 0.0736558
7	1131	1206	1456	6434 6490 6674
7 8 9	1184	1234	1485	6568 6605 6789
9	1252	1277	1527	6702 6720 6904
10	1333	1333	1584	6835 6835 7020
-		1000	1504	7020
11	1.001428	1.001403	1.001653	0.0736969 0.0736951 0.0737135
12	1536	1486	1736	7103 7066 7250
13	1657	1582	1832	7236 7181 7365
14	1790	1690	1940	7370 7297 7481
15	1935	1810	2060	7504 7412 7596
		.0.0	_000	7001 711
16	1.002092	1.001942	1.002193	0.0737637 0.0737527 0.0737711
17	2261	2086	2337	7771 7642 7826
18	2441	2241	2491	7905 7757 7941
19	2633	2407	2658	8039 7872 8057
20	2835	2584	2835	8172 7988 8172
				7,00
21	1.003048	1.002772	1.003023	0.0738306
22	3271	2970	3220	8440 8218 8403
23	3504	3178	3429	8573 8333 8518
24	3748	3396	3647	8707 8449 8633
25	4001	3624	3875	8841 8564 8748
				3.70
26	1.004264	1.003862	1.004113	0.0738974
27	4537	4110	4361	9108 8794 8979
28	4818	4366	4616	9242 8910 9094
29	5110	4632	4884	9376 9025 9210
30	5410	4908	5159	9510 9140 9325

Reductions of weighings in air to vacuo

When the weight M in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to $M\delta(1/d-1/d_1)$ where $\delta =$ the density (wt. of 1 cm³ in grams = 0.0012) of the air during the weighing, d the density of the body, d_1 that of the weights. δ for various barometric values and humidities may be determined from Tables 631-632. The following table is computed for $\delta = 0.0012$. The corrected weight = M + kM/1000.

Density	Cor	rection facto	or, k	Density	Correction factor, k		
of body weighed d	Pt. Ir. weights $d_1 = 21.5$	Brass weights 8.4	Quartz or Al. weights 2.65	of body weighed d	Pt. Ir. weights $d_1 = 21.5$	Brass weights 8.4	Quartz or Al. weights 2.65
.5 .6 .7	+2.34 $+1.94$ $+1.66$	+2.26 $+1.86$ $+1.57$	+1.95 $+1.55$ $+1.26$	1.6 1.7 1.8	+ 0.69 + .65 + .62	+ 0.61 + .56 + .52	+ 0.30 + .25 + .21
.75 .80	+ 1.55 + 1.44	+1.46 + 1.36	+1.15 + 1.05	1.9 2.0	+ .58 + .54	+ .49 + .46	+ .18 + .15
.85 .90 .95	+ 1.36 + 1.28 + 1.21	+ 1.27 + 1.19 + 1.12	+ 0.96 + .88 + .81	2.5 3.0 4.0	+ .43 + .34 + .24	+ .34 + .26 + .16	+ .03 05 15
1.00 1.1 1.2	+1.14 +1.04 +0.94	+1.06 + 0.95 + .86	+ .75 + .64 + .55	6.0 8.0 10.0	+ .14 + .09 + .06	+ .06 + .01 02	25 30 33
1.3 1.4 1.5	+ .87 + .80 + .75	+ .78 + .71 + .66	+ .47 + .40 + .35	15.0 20.0 22.0	+ .03 + .004 001	06 08 09	37 39 40

TABLE 36.—REDUCTIONS OF DENSITIES IN AIR TO VACUO

(This correction may be accomplished through the use of the above table for each separate weighing.)

If s is the density of the substance as calculated from the uncorrected weights, S its true density, and L the true density of the liquid used, then the vacuum correction to be applied

to the uncorrected density, s_i is 0.0012 (1-s/L). Let $W_i =$ uncorrected weight of substance, $W_i =$ uncorrected weight of the liquid displaced by the substance, then by definition, $s = LW_i/W_i$. Assuming D to be the density of the balance of weights, $W_i\{1 + 0.0012(1/S - 1/D)\}$ and $W_i\{1 + 0.0012(1/L - 1/D)\}$ are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of 1 cm⁸ of air is 0.0012 gram).

Then the true density
$$S = \frac{W_s\{1 + 0.0012(1/S - 1/D)\}}{W_t\{1 + 0.0012(1/L - 1/D)\}} L$$

But from above $W_s/W_t = s/L$, and since L is always large compared with 0.0012, S-s=0.0012(1-s/L)

The values of 0.0012(1-s/L) for densities up to 20 and for liquids of density 1 (water), 0.852 (xylene), and 13.55 (mercury) follow:

Density of sub-	,	Corrections		Density of sub-	Corre	ctions
stance	L=1 Water	L = 0.852 Xylene	L = 13.55 Mercury	stance s	L=1 Water	L = 13.55 Mercury
0.8	+ 0.00024			11.	- 0.0120	+ 0.0002
0.9	+ .00012	_	_	12.	0132	÷ .0001
1.	0.0000	0.0002	+0.0011	13.	— .0144	0.0000
2.	— .0012	— .0016	+ .0010	14.	— .0156	0.0000
3.	0024	0030	+ .0009	15.	— .0168	— .0001
4. 5.	— .0036	0044	+ .0008	16.	.0180	0002
	.0048	— .0058	+ .0008	1 7 .	— .0192	— .0003
6.	0060	— .0073	+ .0007	18.	— .0204	— .0004
7.	0072	— .0087	+ .0006	19.	— .0216	0005
8.	0084	— .0101	+ .0005	20.	0228	— .0006
9.	— .0096	— .0115	+ .0004			
10.	.0108	— .0129	+ .0003			

TABLE 37.—THE INTERNATIONAL TEMPERATURE SCALE OF 1948 20

The International Temperature Scale that was adopted in 1927 was revised during 1948 and is designed to conform as nearly as practicable to the thermodynamic Celsius 21 (Centigrade) scale as now known. This 1948 International Temperature Scale incorporates certain refinements based on experience to make it more uniform and reproducible than its predecessor. The new scale is essentially the same as the one it displaces, but it was improved

by changing certain formulas and values for temperatures and constants.

by changing certain formulas and values for temperatures and constants.

Only three of the revisions in the definition of the scale result in appreciable changes in the numerical values assigned to measured temperatures. The change in the value for the silver point from 960.5°C to 960.8°C changes temperatures measured with the standard thermocouple. The adoption of a different value for the radiation constant c₂ changes all temperatures above the gold point, while the use of the Planck radiation formula instead of the Wien formula affects the very high temperatures. (See Table 40 for the magnitude of the changes due to these two causes for high temperatures.) The 1948 temperature scale, like the 1927 scale, is based upon six fixed points (Table 38) and upon specified formulas for the relations between temperature and the indications of the instruments calibrated at for the relations between temperature and the indications of the instruments calibrated at these fixed points. Temperature on the 1948 scale will be designated as $^{\circ}C$, or $^{\circ}C$ (Int. 1948) and denoted by the symbol t.

The means available for interpolation between the fixed points lead to a division of the

scale into four parts:
(a) From 0° C to the freezing points of antimony the temperature t is defined by the formula

$$R_t = R_0(1 + At + Bt^2)$$

where R_t is the resistance, at temperature t, of a standard platinum resistance ther-

(b) From the oxygen point (Table 38) to 0° C the temperature t is similarly defined by the formula

 $R_t = R_0[1 + At + Bt^2 + C(t - 100)t^8]$

(c) From the freezing point of antimony to the gold point (Table 38) the temperature t is defined by the formula

 $E = a + bt + ct^2.$

where E is the electromotive force of a standard thermocouple of platinum and platinumrhodium alloy, when one junction is at 0° C and the other at temperature t.

Recommendations are given for the construction, calibration, and use of these two types

of measuring devices. (d) Above the gold point the temperature t is defined by the formula

$$\frac{J_{t}}{J_{\Delta u}} = \frac{\exp\left[c_{2}/(\lambda(t_{\Delta u} + T_{0}))\right] - 1 *}{\exp\left[c_{2}/(\lambda(t + T_{0}))\right] - 1}$$

where J_t and J_{Au} are the radiant energies per unit wavelength interval at wavelength λ , emitted per unit time by unit area of a blackbody at temperature t, and at the gold point t_{Au}, respectively. c₂ is 1.438 cm degrees.

 T_{\bullet} is the temperature of the ice point in °K. λ is a wavelength of the visible spectrum. e is the base of Naperian logarithms.

Secondary fixed points.—In addition to the six fundamental and primary fixed points (Table 38), a number of secondary fixed points are available and may be useful for various purposes. Some of the more constant and reproducible of these fixed points and their temperatures on the International Temperature Scale of 1948 are listed in Table 41. The relation between this new temperature scale and the thermodynamic Celsius scale is discussed in this paper also.

The resulting changes in the 1927 International Temperature Scale below the gold point (1063°C) to correct it to the 1948 International Temperature Scale are given in Table 39. The use of the Planck formula and a wavelength interval within the visible spectrum to determine temperatures presupposes the use of an optical pyrometer. (See Table 77.)

²⁰ Nat. Bur. Standards Journ. Res., vol. 42, p. 209, 1949.
²¹ The General Conference, held in October 1948, decided to discontinue the use of the words "Centesimal" and "Centigrade" and to replace them by "Celsius." See also Nat. Bur. Standards Techn. News Bull., vol. 33, p. 110, 1949.

* See footnote 5a, p. 7.

TABLE 38.—FUNDAMENTAL AND PRIMARY FIXED POINTS UNDER THE STANDARD PRESSURE OF 1013250 DYNES/CM²

	Temperature °C
Temperature of equilibrium between liquid oxygen and its vapor (oxygen point)	— 182.970
(ice point) fundamental fixed point	0
(steam point) fundamental fixed point	100
Temperature of equilibrium between liquid sulfur and its vapor (sulfur point)	444.600
Temperature of equilibrium between solid and liquid silver (silver point)	960.8
Temperature of equilibrium between solid and liquid gold (gold point)	1063.0

TABLE 39.—DIFFERENCES BETWEEN THE INTERNATIONAL TEMPERATURE SCALES OF 1948 AND 1927 IN THE THERMOCOUPLE RANGE

		Tempe	rature		
°C (Int. 1948) 630.5 650 700 750	°C (Int. 1948) minus °C (Int. 1927) .00 +.08 .24 .35	°C (Int. 1948) 800 839.5 850 900	°C (Int. 1948) minus °C (Int. 1927) .42 .43 ₀ (max.) .43	°C (Int. 1948) 950 960.8 1000 1050 1063	°C (Int. 1948) minus °C (Int. 1927) .32 .30 .20 .05 .00

TABLE 40.—CORRESPONDING TEMPERATURES ON THE INTERNATIONAL TEMPERATURE SCALES OF 1948 AND 1927

	• •	Fahr	ponding enheit ratures	°C	°C	Corresp Fahre temper	nheit
°C (Int. 1948)	°C (Int. 1927)	(1948)	(1927)		(Int. 1927)	(1948)	(1927)
630.50	630.50	1166.9	1166.9	2100	2107	3812	3825
650	649.92	1202	1201.9	2200	2208	3992	4007
700	699.76	1292	1201.9	2300	2310	4172	4189
750	749.65	1382	1381.4	2400	2411	4352	4372
730	749.03	1302	1301.4	2500	2512	4532	4554
800	799.58	1472	1471.2	2300	2312	4332	4334
850	849.57	1562	1561.2	2600	2613	4712	4736
900	899.60	1652	1651.3	2700	2715	4892	4919
950	949.68	1742	1741.4	2800	2816	5072	5102
930	949.00	1742	1/41.4	2900	2918	5252	5285
960.80	960.50	1761.4	1760.9	3000	3020	5432	5468
1000	999.80	1832	1831.6	3000	3020	3432	J700
1050	1049.95	1922	1921.9	3100	3122	5612	5651
1063.00	1043.93	1945.4	1945.4	3200	3223	5792	5834
1005.00	1005.00	1943.4	1943.4	3300	3325	5972	6018
1100	1100:2	2012	2012	3400	3428	6152	6202
1200	1200.6	2192	2193	3500	3530	6332	6386
1300	1301.1	2372	2374	3300	3330	0332	0300
1400	1401.7	2552	2555	3600	3632	6512	6570
1500	1502.3	2732	2736	3700	3735	6692	6754
1300	1302.3	2/32	2/30	3800	3837	6872	6939
1600	1603.0	2912	2917	3900	3940	7052	7124
1700	1703.8	3092	3099	4000	4043	7032	7309
1800	1804.6	3272	3280	4000	4043	1232	7509
1900	1905.5	3452	3462	4100	4146	7412	7495
2000	2006.4	3632	3644	4200	4249	7592	7681
2000	2000.4	3032	3077	4300	4353	777 2	7867

•	
	Temperature °C (Int. 1948)
Temperature of equilibrium between solid carbon dioxide and its vapo	r — /8.3
$t_{\nu} = -78.5 + 12.12 \left(\frac{p}{p_0} - 1\right) - 6.4 \left(\frac{p}{p_0} - 1\right)^2$	
Temperature of freezing mercury Temperature of equilibrium between ice, water and its vapor (true)	iple
point) Temperature of transition of sodium sulfate decahydrate Temperature of triple point of benzoic acid Temperature of equilibrium between naphthalene and its vapor	32.38 122.36
$t_p = 218.0 + 44.4 \left(\frac{p}{p_0} - 1\right) - 19 \left(\frac{p}{p_0} - 1\right)^2$	
Temperature of freezing tin	231.9 305.9
$t_p = 305.9 + 48.8 \left(\frac{p}{p_0} - 1\right) - 21 \left(\frac{p}{p_0} - 1\right)^2$	
Temperature of freezing cadmium	327.3
$t_p = 356.58 + 55.552 \left(\frac{p}{p_0} - 1\right) - 23.03 \left(\frac{p}{P_0} - 1\right)^2 + 14.0 \left(\frac{p}{p_0}\right)^2$	-1) ^s
Temperature of freezing zinc	
Temperature of freezing antimony	
Temperature of freezing aluminum Temperature of freezing copper in a reducing atmosphere	
Temperature of freezing copper in a reducing atmosphere Temperature of freezing nickel	4.000
Temperature of freezing cobalt	1.100
Temperature of freezing palladium	
Temperature of freezing platinum	
Temperature of freezing rhodium Temperature of freezing iridium	
Temperature of melting tungsten	2200

TABLE 42.—CORRESPONDING TEMPERATURES ON THE INTERNATIONAL TEMPERATURE SCALE OF 1948 AND RESULTS USING WIEN'S EQUATION

t, °C (Int. 1948)	tw,°C	t, °C (Int. 1948)	tw,°C	t, °C (Int. 1948)	tw,°C
1063	1063.0	2500	2500.2	4000	4005.4
1500 2000	1500.0 2000.0	3000 3500	3000.7 3502.1	4500 5000	4511.3 5021.5

TABLE 43.—CORRECTION FOR TEMPERATURE OF EMERGENT MERCURIAL THERMOMETER THREAD

When the temperature of a portion of a thermometer stem with its mercury thread differs much from that of the bulb, a correction is necessary to the observed temperature unless the instrument has been calibrated for the experimental conditions. This stem correction is proportional to $n\beta(T-t)$, where n is the number of degrees in the exposed stem, β the apparent coefficient of expansion of mercury in the glass, T the measured temperature, and t the mean temperature of the exposed stem. For temperatures up to 100°C , the value of β is for Jena 16^{111} or Greiner and Friedrich resistance glass, 0.000159, for Jena 59^{111} , 0.000164, and when of unknown composition it is best to use a value of about 0.000155. The formula requires a knowledge of the temperature of the emergent stem. This may be approximated in one of three ways: (1) by a "fadenthermometer"; (2) by exploring the temperature distribution of the stem and calculating its mean temperature; and (3) by suspending along the side of, or attaching to, the stem, a single thermometer.

		•	Values of	0.000155n(T-t			
				(T -	- t)			
n	10°	20°	30°	40°	50°	60°	70°	80°
10°C	0.02	0.03	0.05	0.06	0.08	0.09	0.11	0.12
20	0.03	0.06	0.09	0.12	0.16	0.19	0.22	0.25
30	0.05	0.09	0.14	0.19	0.23	0.28	0.33	0.37
40	0.06	0.12	0.19	0.25	0.31	0.37	0.43	0.50
50	0.08	0.16	0.23	0.31	0.39	0.46	0.54	0.62
60	0.09	0.19	0.28	0.37	0.46	0.56	0.65	0.74
70	0.11	0.22	0.33	0.43	0.54	0.65	0.76	0.87
80	0.12	0.25	0.37	0.50	0.62	0.74	0.87	0.99
90	0.14	0.28	0.42	0.56	0.70	0.84	0.98	1.12
100	0.16	0.31	0.46	0.62	0.78	0.93	1.08	1.24

²² Taken from Smithsonian Meteorological Tables.

TABLE 45.—REDUCTION OF GAS THERMOMETERS TO THERMODYNAMIC SCALE

The final standard scale is Kelvin's thermodynamic scale, independent of the properties of any substance, a scale resulting from the use of a gas thermometer using a perfect gas. A discussion of this is given by Buckingham, 228 "The thermodynamic correction of the centigrade constant-pressure scale at the given temperature is very nearly proportional to the constant pressure at which the gas is kept" and "the thermodynamic correction to the centigrade constant-volume scale is approximately proportional to the initial pressure at the ice point." These two rules are very convenient, since from the corrections for any one pressure, one can calculate approximately those for the same gas at any other pressure.

The highest temperature possible is limited by the container for the gas. Day and Sosman carried a platinum-rhodium gas thermometer up to the melting point of palladium. For most work, however, the region of the gas thermometer should be considered as ending at about 1000°C (1273°K).

Note: All corrections in the following table are to be added algebraically.

		27	3.16°K (ice po	oint)		
Temp.	Consta	int pressure =	: 100 cm	Constant vo	ol., $p_0 = 100 \text{ cm}$	$n, t_0 = 0^{\circ} C$
°C	He	Н	N	He	Н	N
- 240	_	+1.0	_	+ 0.02	+0.18	
— 200	+ 0.13	+ .26	_	+ .01	+ .06	_
— 100	+ .04	+ .03	+ 0.40	.000	+ .010	+0.06
— 50	+ .012	+ .02	+ .12	.000	+ .004	+ .02
+ 25	003	003	020	.000	.000	006
+ 50	003	003	025	.000	.000	006
+ 75	003	003	017	.000	.000	004
+ 150	+ .007	+ .01	+ .04	+ .000	+ .001	+ .01
+ 200	+ .01	+ .02	+ .11	.000	+ .002	+ .04
+ 450	+ .1	+0.04	+ .5	0.00	+ 0.01	+ .2
+ 1000	+ 0.3	_	$+\frac{1.7}{2}$	_	_	+ ./
+1500	-		+ 3.	_	_	+1.3

^{22a} Bull. Nat. Bur. Standards, vol. 8, p. 239, 1912.

Comparisons

Prior to the adoption of the 1927 International Temperature Scale, the Pt-Pt10% Rh thermocouple was almost universally used for scales 450° to 1100°C, and defining equations

were quadratic or cubic depending upon the number of calibration points.

The scale based on the work of Holborn and Day was calibrated at the freezing point of Zn (419.0°C), Sb (630.6°C), and Cu (1084.1°C), and a quadratic equation, E = a + vt + vtct², for interpolation. This was almost universally used from 1900-1909. Work of Waidner, Burgess, 1909, and Day, Sosman, 1910-1912, necessitated a readjustment. In 1912 the Bureau of Standards redefined its scale, assigning values determined with the resistance thermometer to the Zn and Sb points, while the freezing point of Cu was taken as 1083.0°C. This 1912 scale, used from 1912-1916, will be called the Zn, Sb, Cu temperature scale.

A scale proposed by Sosman and revised by Adams was realized by using a standard reference table, giving the average t-emf relation for thermocouple used by Day and Sosman. A deviation curve, determined by any other couple by calibration at several points would be plotted relating the difference between observed emf and the emf from the reference table against the obs. emf of the couple. This scale, although very convenient,

is not completely defined and no comparison is made here.

In 1916, the Physikalische-Technische Reichsanstalt adopted a scale with the couple a calibrated at the Sd point (320.9°C), Sb (630°C), Au (1063°C), and Pd (1557°C). No

comparison will be made here.

A scale adopted by the Bureau of Standards in 1916 was defined by calibration at the Zn and Al points with a Cu point (1083.0°C). This was used from 1916-1926 and is here designated the Zn, Al, Cu scale.

The scale adopted by the P.-T.R. and the Bureau of Standards in 1924 was calibrated at Zn and Sb points (determined by resistance thermometer), the Ag point (960.5°C),

and the Au point (1063.0°C). It will be designated the Zn, Sb, Ag, Au scale.

The 1927 7th Annual Conference of Weights and Measures (31 nations) unanimously adopted what is between 660° and 1063°C the Zn, Sb, Ag, Cu scale with the Zn point omitted. The table below shows a comparison of the various scales. The following values for the freezing points were used:

> Zn 419.47°C A1 659.23°C 1063.0°C Αu Sb 630.52°C Ag 960.5°C Cu (reducing atm^c) 1083.0°C

Temperature differences between 1927 I.T.S. and various older scales

	I.T.S ZnSb- Cu		ZnSb-		ZnSb-	I.T.S ZnAl- Cu	ZnSb-		I.T.S ZnSb- Cu	ZnA1-	ZnSb-
600	-°.08	°.00	-°.04	900	-°.26	-°.21	—°.03	1050	_°.04	—°.03	°.00
700	— .16	— .08	— .08	950	— .23	— .18	— .01	1063	01	.00	.00
750	— .24	— .16	— .09	960.5	— .21	— .16	.00	1083	+ .04	+ .03	— .01
800	— .28	— .20	— .08	1000	— .15	— .12	.01	1100	+ .08	+ .08	— .03
850	_ 29	22	- 06								

REFERENCE TABLES FOR THERMOCOUPLES 23

The emf developed by thermocouples of the same materials, even very carefully made, differ slightly for the same temperature. It has been found convenient to compare the emf of a couple being calibrated with that of a standard thermocouple of the same materials. If the differences in emf's between the standard and the calibrated couple be plotted against the temperature, the temperature for an observed emf can be read very accurately. Reference tables for three types of thermocouples follow.

^{*} These values are now superseded by the introduction of the 1948 International Temperature Scale and are given for reference only.

23 Taken from Nat. Bur. Standards Res. Papers RP 1080, RP 767, and RP 530.

TABLE 47.—REFERENCE TABLE FOR Pt TO Pt-10 PERCENT Rh THERMOCOUPLE

(Emf's are expressed in microvolts and temperatures in °C. Cold junctions at 0°C)

17,000	124.0	32.5	=	9.6	00	, o	5	3	Ci	$\tilde{\circ}$	
	16	16.	164	164	165	166	1675.1	168.	169	170	1709.
16,000	1539.5	1547.9	1556.4	1564.8	1573.3	1581.7	1590.2	1598.6	1607.0	1615.5	1624.0
15,000	1455.4	1463.8	1472.2	1480.6	1489.0	1497.4	1505.8	1514.2	1522.6	1531.0	1539.5
14,000	1371.8	1380.2	1388.5	1396.9	1405.2	1413.6	1421.9	1430.3	1438.6	1447.0	1455.4
13,000	1288.5	1296.8	1305.1	1313.5	1321.8	1330.1	1338.4	1346.8	1355.1	1363.5	1371.8
12,000	1205.4	1213.7	1222.1	1230.4	1238.7	1247.0	1255.3	1263.6	1271.9	1280.2	1288.5
11,000	1121.8	1130.2	1138.6	1147.0	1155.3	1163.7	.1172.0	1180.4	1188.7	1197.1	1205.4
10,000	1037.0	1045.6	1054.1	1062.2	1071.1	1079.6	1088.1	1096.6	1105.0	1113.4	1121.8
0006	950.2	959.0	967.8	976.5	985.2	993.9	1002.6	1011.2	1019.8	1028.4	1037.0
8000	861.2	870.2	879.2	888.7	897.2	906.1	914.9	923.8	932.6	941.4	950.2
2000	7.69.7	779.0	788.2	797.4	9.908	815.8	824.9	834.0	843.1	852.2	861.2
0009	675.2	684.8	694.3	703.8	713.3	722.8	732.2	741.7	751.1	760.4	7.697
2000	578.0	587.9	597.7	607.5	617.3	627.0	636.7	646.4	656.0	9.599	675.2
4000	477.6	487.8	498.0	508.1	518.2	528.3	538.3	548.3	558.2	568.1	578.0
3000	373.6	384.1	394.6	405.1	415.6	426.0	436.4	446.7	457.0	467.3	477.6
2000	264.9	276.1	287.2	238.2	309.2	320.1	330.9	341.6	352.3	363.0	373.6
1000	146.9	159.4	171.7	183.8	195.8	207.5	219.2	230.8	242.3	253.6	264.9
0	0	17.7	34.4	50.2	65.4	80.0	94.1	107.8	121.7	134.1	146.9
volts	0	9	200	300	400	200	009	200	800	006	1000
	0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 11,000 12,000 13,000 14,000 15,000	0 146.9 264.9 373.6 477.6 578.0 675.2 769.7 861.2 950.2 1037.0 1121.8 1205.4 1288.5 1371.8 1455.4 1	0 146.9 264.9 373.6 477.6 578.0 675.2 769.7 861.2 950.2 1037.0 1121.8 1205.4 1288.5 1371.8 1455.4 1 17.7 159.4 276.1 384.1 487.8 587.9 684.8 779.0 870.2 959.0 1045.6 1130.2 1213.7 1296.8 1380.2 1463.8 1	1000 2000 3000 4000 5000 6000 7000 8000 10,000 11,000 12,000 13,000 14,000 15,000 15,000 10,0	100 2000 3000 4000 5000 6000 7000 8000 10,000 11,000 12,000 13,000 14,000 15,000 15,000 10,00	Volts 0 1000 2000 3000 4000 7000 8000 9000 10,000 11,000 13,000 14,000 15,	100 2000 2000 3000 4000 5000 5000 5000 5000 10,000 11,000 12,000 13,000 15,000 15,000 15,000 10,000	0 1000 2000 3000 4000 8000 9000 10,000 11,000 13,000 14,000 15,000	0 1000 2000 3000 4000 5000 9000 10,000 11,000 13,000 14,000 15,000	0 1000 2000 3000 4000 8000 9000 10,000 11,000 13,000 14,000 15,000	1900 2000 3000 4000 5000 9000 10,000 11,000 12,000 13,000 14,000 15,000

TABLE 48.—REFERENCE TABLE FOR Pt TO Pt-10 PERCENT Rh THERMOCOUPLE

(Emf's are expressed in microvolts and temperatures in °F. Cold junctions at 32°F)

												/5)
	17,000	2955 6	2970.9	2986.2	3001.6	3016.9	3032.2	3047.6	3063.0	3078.4	3093.8	3109.2	
	16,000	2803 5	28187	2833.9	2849.1	2864.3	2879.5	2894.8	2910.0	2925.2	2940.4	2955.6	
	15,000	2652.1	2667.1	2682.2	2697.3	2712.5	2727.6	2742.8	2758.0	2773.1	2788.3	2803.5	
	14,000	2501.4	2516.5	2531.6	2546.6	2561.6	2576.6	2591.7	2606.8	2621.9	2637.0	2652.1	
	13,000	2351.5	2366.4	2381.4	2396.4	2411.4	2426.4	2441.4	2456.4	2471.4	2486.4	2501.4	
	12,000	2201.9	2216.8	2231.7	2246.7	2261.7	2276.6	2291.5	2306.5	2321.5	2336.5	2351.5	
	11,000	2051.3	2066.4	2081.5	2096.6	2111.7	2126.7	2141.8	2156.9	2171.9	2186.9	2201.9	
	10,000	1898.8	1914.2	1929.6	1945.0	1960.3	1975.6	1990.8	2006.0	2021.1	2036.2	2051.3	
	0006	1742.5	1758.3	1774.0	1789.8	1805.4	1821.1	1836.7	1852.3	1867.8	1883.3	1898.8	
	8000	1582.2	1598.4	1614.6	1630.7	1646.8	1662.8	1678.8	1694.8	1710.7	1726.6	1742.5	
	2000	1417.4	1434.1	1450.7	1467.3	1483.9	1500.4	1516.9	1533.3	1549.6	1565.9	1582.2	
	0009	1247.4	1264.6	1281.8	1290.0	1316.1	1333.1	1350.0	1366.9	1383.8	1400.6	1417.4	
	5000	1072.3	1090.0	1107.7	1125.4	1143.0	1160.5	1178.0	1195.5	1212.9	1230.2	1247.4	
	4000	891.7	910.1	928.4	946.6	964.7	982.8	1000.8	1018.8	1036.7	1054.5	1072.3	
	3000	704.5	723.5	742.4	761.2	780.0	798.8	817.5	836.1	854.7	873.2	891.7	
	2000	508.9	529.0	549.0	568.9	588.7	608.3	627.6	646.9	666.2	685.4	704.5	
	1000	296.3	318.8	340.9	362.7	384.3	405.6	426.6	447.5	468.2	488.6	508.9	
	0	32.0	63.9	93.9	122.4	149.7	176.0	201.4	225.9	249.9	273.3	296.3	
E micro-	volts	0	100	200	300	904	200	009	200	800	006	1000	

75

TABLE 49.—CORRESPONDING VALUES OF TEMPERATURE AND ELECTRO-MOTIVE FORCE FOR IRON-CONSTANTAN THERMOCOUPLES

(Reference junctions at 0°C)

Temp.	Electro- motive force	Temp.	Electro- motive force	Temp.	Electro- motive force	Temp.	Electro- motive force
°C	mv	°C'	mv	°C	mv	Temp.	mv
		0	.00	400	22.06	800	45.68
		10	.52	410	22.61	810	46.33
		20 30	1.05 1.58	420 430	23.16 23.71	820 830	46.99 47.65
		40	2.12	440	24.26	840	48.30
					,		
		50	2.66	450	24.81	850	48.96 49.62
		60 7 0	3.20 3.75	460 470	25.36 25.91	860 870	50.28
		80	4.30	480	26.46	880	50.28
		90	4.85	490	27.01	890	51.59
		100	F 40	500	27.57	000	F2 22
		100 110	5.40 5.95	500 510	27.57 28.13	900 910	52.22 52.84
		120	6.51	520	28.69	920	53.43
		130	7.07	530	29.25	930	54.02
		140	7.63	540	29.81	940	54.61
		150	0.10	550	20.20	050	EE 21
		150 160	8.19 8.75	560	30.38 30.95	9 5 0 960	55.21 55.80
		170	9.31	570	31.52	970	56.39
		180	9.87	580	32.10	980	56.99
		190	10.43	590	32,68	990	57.59
_ 200	8.27	200	10.99	600	33.26	1000	58.19
<u> 190</u>	8.02	210	11.55	610	33.85	1000	30.17
— 180	- 7.75	220	12.11	620	34.44		
— 170	— 7.46	230	12.67	630	35.02		
— 160	— 7.14	240	13.23	640	35.62		
— 150	6.80	250	13.79	650	36.22		
- 140	- 6.44	260	14.35	660	36.82		
— 130	- 6.06	270	14.90	670	37.43		
— 120	- 5.66	280	15.45	680	38.04		
— 110	— 5.25	290	16.00	690	38.66		
— 100	— 4.82	300	16.55	700	39.28		
— 90	 4.38	310	17.11	710	39.90		
- 80	- 3.93	320	17.66	720	40.53		
- 70	-3.47	330	18.21	730	41.16		
— 60	— 3.00	340	18.76	740	41.80		
— 50	- 2.52	350	19.31	750	42.45		
- 40	-2.03	360	19.86	760	43.09		
- 30	- 1.53	370	20.41	770	43.74		
- 20 10	- 1.03 - 0.52	380 390	20.96 21.51	780 790	44.39 45.04		
0	.00	400	22.06	800	45.68		

TABLE 50.—CORRESPONDING VALUES OF TEMPERATURE AND ELECTRO-MOTIVE FORCE FOR IRON-CONSTANTAN THERMOCOUPLES

(Reference junctions at 32°F)

			(=						
Temp.	Electro- motive force mv	Temp. f		Temp. °F 500 510 520 530 540	Electro- motive force mv 14.35 14.65 14.96 15.27 15.57	Temp. °F 1000 1010 1020 1030 1040	Electro- motive force mv 29.69 30.00 30.32 30.63 30.95	Temp. °F 1500 1510 1520 1530 1540	Electro- motive force mv 46.70 47.06 47.43 47.79 48.16
		50 60 70 80 90	.52 .82 1.11 1.41 1.70	550 560 570 580 590	15.88 16.19 16.49 16.80 17.11	1050 1060 1070 1080 1090	31.27 31.59 31.91 32.23 32.55	1550 1560 1570 1580 1590	48.52 48.89 49.25 49.62 49.98
		110 120	2.00 2.30 2.60 2.90 3.20	600 610 620 630 640	17.42 17.72 18.03 18.33 18.64	1100 1110 1129 1130 1140	32.87 33.19 33.52 33.85 34.17	1600 1610 1620 1630 1640	50.35 50.71 51.08 51.45 51.81
		150 160 170 180 190	3.50 3.81 4.11 4.42 4.72	650 660 670 680 690	18.94 19.25 19.55 19.86 20.17	1150 1160 1170 1180 1190	34.50 34.83 35.16 35.48 35.82	1650 1660 1670 1680 1690	52.17 52.51 52.84 53.17 53.50
- 300 - 290 - 280 - 270 - 260	- 7.87 - 7.75 - 7.55 - 7.38 - 7.20	200 210 220 230 240	5.03 5.34 5.64 5.95 6.26	700 710 720 730 740	20.47 20.78 21.08 21.39 21.69	1200 1210 1220 1230 1240	36.15 36.48 36.82 37.16 37.50	1700 1710 1720 1730 1740	53.83 54.16 54.48 54.81 55.14
250 240 230 220 210	- 7.02 - 6.83 - 6.63 - 6.43 - 6.22	250 260 270 280 290	6.57 6.88 7.19 7.50 7.81	750 760 770 780 790	22.00 22.30 22.61 22.91 23.22	1250 1260 1270 1280 1290	37.84 38.18 38.52 38.86 39.21	1750 1760 1770 1780 1790	55.47 55.80 56.13 56.46 56.79
- 200 - 190 - 180 - 170 - 160	- 6.01 - 5.79 - 5.57 - 5.34 - 5.11	300 310 320 330 340	8.12 8.43 8.75 9.06 9.37	800 810 820 830 840	23.52 23.83 24.13 24.44 24.74	1300 1310 1320 1330 1340	39.55 39.89 40.24 40.59 40.94	1800	57.12
- 150 140 130 120 110	4.87 4.63 4.38 4.13 3.88	370 380	9.68 10.00 10.31 10.62 10.93	850 860 870 880 890	25.05 25.36 25.66 25.97 26.28	1350 1360 1370 1380 1390	41.30 41.65 42.01 42.36 42.72		
100 90 80 70 60	- 3.63 - 3.37 - 3.11 - 2.85 - 2.58	410 420 430	11.24 11.56 11.87 12.18 12.49	900 910 920 930 940	26.58 26.89 27.20 27.51 27.82	1400 1410 1420 1430 1440	43.08 43.44 43.80 44.16 44.52		
- 50 - 40 - 30 - 20 - 10	- 2.31 - 2.04 - 1.76 - 1.48 - 1.20	460 470 480	12.80 13.11 13.42 13.73 14.04	950 960 970 980 990	28.13 28.44 28.75 29.06 29.38	1450 1460 1470 1480 1490	44.88 45.24 45.61 45.97 46.33		
0	92	500	14.35	1000	29.69	1500	46.70		

TABLE 51.—STANDARD FAHRENHEIT TABLE FOR CHROMEL-ALUMEL* THERMOCOUPLES

	Electromotive force in millivolts (reference junction at 32°F)														
Temp.	0	10	20	30	40	50	60	70	80	90	100				
0	68	— .47	— .26	04	+ .18	.40	.62	.84	1.06	1.29	1.52				
100	1.52	1.74	1.97	2.20	2.43	2.66	2.89	3.12	3.36	3.59	3.82				
200	3.82	4.05	4.28	4.51	4.74	4.97	5.19	5.42	5.64	5.87	6.09				
300	6.09	6.31	6.53	6.75	6.98	7.20	7.42 9.66	7.64 9.88	7.87 10.11	8.09 10.33	8.31 10.56				
400	8.31	8.53 10.79	8. 7 6 11.02	8.98 11.25	9.20 11.47	9.43 11.70	11.93	12.16	12.39	12.62	12.85				
500	10.56	10.79	11.02	11.23	11.4/	11.70	11.75	12.10	12.09	12.02	12.03				
600	12.85	13.08	13.31	13.55	13.78	14.01	14.24	14.48	14.71	14.94	15.18				
700	15.19	15.42	15.65	15.89	16.12	16.36	16.59	16.83	17.06	17.30	17.53				
800	17.53	17.76	18.00	18.23	18.47	18.71	18.94	19.18	19.42	19.65	19.89				
900	19.89	20.13	20.37	20.60	20.84	21.08	21.31	21.55	21.79	22.02	22.26				
1000	22.26	22.50	22.73	22.97	23.21	23.44	23.68	23.92	24.15	24.39	24.63				
1100	24.63	24.86	25.10	25.34	25.58	25.81	26.05	26.28	26.52	26.76	26.99				
1200	26.99	27.22	27.46	27.69	27.92	28.15	28.38	28.62	28.86	29.10	29.34				
1300	29.34	29.57	29.80	30.03	30.26	30.49	30.72	30.95	31.18	31.41	31.54				
1400	31.64	31.87	32.10	32.33	32.56	32.79	33.02	33.25	33.48	33.70	33.93				
1500	33.93	34.16	34.39	34.61	34.84	35.07	35.29	35.52	35.74	35.97	36.19				
1600	36.19	36.41	36.64	36.86	37.09	37.31	37.54	37.76	37.99	38.21	38,43				
1700	38.43	38.65	38.87	39.09	39.31	39.53	39.75	39.96	40.18	40.40	40.62				
1800	40.62	40.83	41.05	41.27	41.48	41.70	41.91	42.13	42.34	42.56	42.78				
1900	42.78	42.99	43.21	43.42	43.63	43.84	44.05	44.27	44.48	44.69	44.90				
2000	44.90	45.11	45.32	45.53	45.74	45.95	46.16	46.37	46.58	46.79	47.00				
2100	47.00	47.21	47.41	47.62	47.83	48.03	48.24	48.44	48.65	48.85	49.05				
2200	49.05	49.25	49.46	49.66	49.86	50.06	50.26	50.46	50.66	50.86	51.06				
2300	51.06	51.25	51.45	51.65	51.84	52.04	52.23	52.43	52.62	52.81	53.01				
2400	53.01	53.20	53.39	53.58	53.78	53.97	54.16	54.35	54.54	54.73	54.92				
2500	54.92														

^{*} Hoskins Thermocouple.

TABLE 52.—SYMBOLS AND DEFINING EXPRESSIONS FOR RADIANT ENERGY 254

Radiant energy is energy traveling in the form of electromagnetic waves. It is measured in units of energy such as ergs, joules, calories, and kilowatt hours. Some units, symbols, and abbreviations used in discussing radiant energy are as follows:

	Symbol and defining		Proposed
Designation	expression	Unit	term 28a
Radiant energy	U		Radiant energy
Spectral radiant energy.	un		Spectral radiant energy
Radiant energy density.	$u = \frac{dU}{dV}$	erg/cm ⁸	Radiant energy density
Radiant flux			Radiant flux (radi- ance *)
Radiant flux density	$W = \frac{d\phi}{dA}$	watt/cm²	Radiant flux density (radiancy *)
Radiant intensity of a source	$J = \frac{d\phi}{d\omega}$	watt/steradian	Radiant intensity
Spectral radiant intensity	$J_{\lambda} = \frac{dJ}{d\lambda}$	watt/steradian	Spectral radiant intensity
Radiant flux density of a source per unit solid angle	$B_{r}(N) = \frac{dW}{d\omega}$	watt/(steradian cm³)	
Radiant intensity of a source per unit area	$B = \frac{dJ}{dA}$	watt/(steradian cm³)	Steradiancy *
Radiant flux per unit area	$E = \frac{d\phi}{dA}$		Irradiancy

The standard radiator is the blackbody, which may be defined as a body that absorbs all the radiation that falls upon it, i.e., it neither reflects nor transmits any of the incident radiation. From this simple definition and some very plausible assumptions it can be shown that the blackbody radiates more energy than any other temperature radiator when both are at the same temperature. The total amount of energy (i.e., for all wavelengths) radiated by a blackbody depends upon the temperature raised to the fourth power and a constant σ that had to be measured:

 $W = \sigma T^4$

If a blackbody is radiating to another blackbody it will at the same time receive radiation from the second blackbody and, under the proper geometrical conditions, the net radiation lost by the first blackbody is

$$W = \sigma(T_1^4 - T_2^4)$$

The spectral distribution of this radiation is given by the Planck equation:

$$J_{\lambda} = c_1 \lambda^{-6} / [\exp(c_2/\lambda T) - 1]^{\dagger}$$

For values of the product λT less than 3000 μ deg, the Wien equation

$$J_{\lambda} = c_1 \lambda^{-5} / [\exp(c_2/\lambda T)]$$

gives values that are correct to better than 1 percent.

The values of a number of the radiation constants have been selected from Table 26 and are given in Table 53. All the blackbody calculations given were made with these constants. Some calculated results 24 for the total radiation W for a series of temperatures and of J_{λ} for a range of temperatures and for wavelengths have been calculated and are given in Tables 54-56.

^{23a} Rev. Sci. Instr., vol. 7, p. 322, 1936. *These terms apply only to a source. The term "radiance" is not recommended as a substitute for radiant flux; however, if a single term is desired to express the radiant flux from a source, the word "radiance" is suggested as the most logical. † See footnote 5a,

 $^{^{24}}$ For a more extensive list of values of J_{λ} reference should be made to two papers by Parry Moon: Journ. Math. and Phys., vol. 16, p. 133, 1937; Publ. Electr. Eng., Massachusetts Institute of Technology, 1947.

Velocity of light	$c = 2.99776 \times 10^{10} \mathrm{cm \ sec^{-1}}$
Planck's constant	$h = 6.6242 \times 10^{-27} \text{ erg_sec}$
Boltzmann's constant	$k = 1.3805 \times 10^{-16} \mathrm{erg \ deg^{-1}}$
Stefan-Boltzmann constant *	$\sigma = 5.673 \times 10^{-5} \text{ erg cm}^{-2} \text{ deg}^{-4} \text{ sec}^{-1}$
Wien's displacement law	$J_{\lambda} = A c_1 \lambda^{-6} F(\lambda T)$
The principal corollaries are:	$\lambda_m T = b$
	$\frac{J_m}{AT^5} = b_1$
The first corollary is sometimes given as the displacement constant.	Wien's displacement law, and b as the
Wien displacement constant	h - 0.2807 am dog

Wien displacement constant..... b = 0.2897 cm deg First radiation constant † $c_1 = 3.740 \times 10^{-5} \text{ erg sec}^{-1} \text{ cm}^2$ All lengths in cm, $d\lambda = 1$ cm..... Area cm², λ in μ , $d\lambda = 0.01\mu$ $c_1 = 3.740 \times 10^9 \text{ erg sec}^{-1} \text{ cm}^2$ Second radiation constant..... $c_2 = 1.4380 \text{ cm deg}$

The unit of energy chosen for the above values is the erg. Any other unit of energy (or power) may be used if the proper conversion factor is used (Table 7).

Values of c2 used at different times.—This second radiation constant has been determined many times in the last 40 years. Shown below are the values used at different times. [A new determination of the value of c_2 by G. A. W. Rutgers (Physica, vol. 15, p. 985, 1949) gives two values: $14325. \pm 20$ and $14310. \pm 20 \mu \deg$.]

Date	National Bureau of Standards	Nela Park
1911		14500μ°K
1915		14460
1917		14350
1922	14320 ‡	14350
1925	14320 §	14320
1936	14320	14320
1944	14320	14320
1949	14380	_

[†] For the general case, c1 may be written in the following symbolic form: (wavelength unit)⁵ × power unit $c_1 = \text{numeric} \frac{(\text{was constant})}{\text{area} \times \text{wavelength interval} \times \text{solid angle}}$

This form shows that the value of the numeric depends upon the several units used—in this case 5. If J_{λ_0} is the normal intensity, i.e., per unit solid angle perpendicular to the surface, πJ_{λ_0} gives the radiation per 2π solid angle. The energy radiated within a unit solid angle around the normal, is $0.92~J_0$. The above values are for a plane blackbody; for a spherical blackbody the radiation for 2π solid angle equals $2\pi J_0$.

For calculations the use of the radiation constants σ and c_2 as given follows directly and causes but little trouble. The numeric for c_2 must be expressed in the unit of wavelength times the absolute temperature. If the wavelength is expressed in μ the numeric becomes 14380. When Planck's equation is used for calculations, it may be written as follows for blackbody of area A:

 $J_{\lambda}d\lambda = (Ac_1\lambda^{-5}/[\exp(c_2/\lambda T) - 1])d\lambda$

where $d\lambda$ is the wavelength interval for which the radiation is to be calculated. The first value of c_1 given in the table is for all dimensions in centimeters—a condition almost never met in practice. The second value is for the wavelength expressed in microns and $d\lambda = 0.01\mu$.

If this second value of c_2 be used in calculation with Planck's equation and summed step by step, the results will be the total energy per second, per 2π solid angle, per unit area for the wavelength interval covered, λ expressed in μ .

‡ I. G. Priest, in January 1922, used $c_2 = 14350$ in his work on color temperature.

§ J. F. Skogland, in 1929, used $c_2 = 14330$ in his tables of spectral energy distribution of a blackbody.

Judd, in 1933, used $c_2 = 14350$ in his calculations related to the I.C.I. standard observer.

TABLE 54.—RADIATION IN ERGS (W imes 10") AND GRAM-CALORIES (W' imes 10") PER CM2 PER SEC, FOR 2 π SOLID ANGLE, FROM A PERFECT RADIATOR AT to FROM _270°C TO +56°C AND FOR T FROM 300°K TO 5500°K

	sec-1	n,	75	2	75	7-5	ī	ī	Τ.	7	0	0	_	- '	7	71														
	cal cm ⁻² sec ⁻¹	M	1.0978	2.6280	3.4700	8.4707	1.7565	3.2542	5.5515	8.8922	1.3553	6.8614	2.1685	5.2942	2.0338	5.5577	1.2402													
	sec-1	, z	rv.	9	9	9	9	7	7	_	7	∞	∞ :	6	6 ;	10	10													
	erg cm ⁻² sec ⁻¹	M	4.5944	1.0998	1.4520	3.5450	7.3509	1.3619	2.3233	3.7214	5.6720	2.8715	9.0752	2.2156	8.5115	2.3259	5.1902													
	E	°K	300 *	373.16	400	200	009	200	800	006	1000	1500	2000	2500	3500	4500	2200													
-4 sec ⁻¹	2 sec ⁻¹	, 'x	-3	-3	-3	-3	-3	-3	-13	-3	2	-5	2	2	2	-2	2	-2	-2	<u></u> 2	_2	<u>-2</u>	-2	-5	2	-5	2	-2	2	
5.672 × 10-5 erg cm-2 deg-	cal cm ⁻² sec ⁻¹	, M	7.998	8.231	8.470	8.713	8.962	9.216	9.475	9.740	1.001	1.029	1.057	1.086	1.115	1.145	1.175	1.206	1.238	1.271	1.304	1.337	1.371	1.406	1.442	1.478	1.515	1.553	1.591	
10-5 erg	-2 sec-1	~	Ŋ	Ŋ	rv	rv	v	ĸ	w	rv	Ŋ	Ŋ	r	v	Ŋ	S	Ŋ	v.	ı,	w.	w.	rv.	S	ιO	Ŋ	Ŋ	Ŋ	ı,	S	
5.672 ×	erg cm-2 sec-1	⋛≱	3.347	3.445	3.545	3.646	3.751	3.857	3.965	4.076	4.189	4.305	4.423	4.543	4.666	4.791	4.919	5.049	5.182	5.317	5.455	5.596	5.739	5.885	6.034	6.186	6.341	6.498	6.658	
θ	E	I emp.	4	9	∞	10	12	14	16	18	20	22	24	56	78	30	32	34	36	38	40	45	4	46	48	20	52	54	20	
	-	(**	10	7	'n	ĸ	4	4	4	4	4	4	4	3	3	3	S	8	3	n	3	3	3	3	3	3	3	3	3	
	cal cm-2 sec-1	{	1		1	1	1		1	1		1	1	}		i	1	1	1	1	1	1	1			1		1	1	
	cal c	×	1.351	3.899	3.883	6.482	1.021	2.222	3.118	4.261	5.693	7.458	9.605	1.219	1.525	1.887	2.309	2.798	3.361	4.006	4.738	5.567	6.500	6.700	6.904	7.114	7.327	7.546	7.769	
	sec-1	(=	-3	-	8	3	3	3	4	4	4	4	4	4	4	4	4	ĸ	S	Ŋ	Ŋ	S	Ŋ	Ŋ	ro	v	Ŋ	Ŋ	S	
	erg cm-2 sec-	\	5.656	1.632	1.625	2.713	4.272	9.301	1.305	1.783	2.382	3.121	4.020	5.100	6.383	7.896	9.662	1.171	1.407	1.676	1.983	2.330	2.720	2.804	2.890	2.977	3.067	3.158	3.252	
		Temp.	-270	-250	-200	-190	-180	-160	-150	-140	-130	-120	-110	-100	8	08	- 70	09	- 50	1 40	- 30	- 20	10	∞ 	9	1	- 2	0	2	

* Energy radiated from 3000°K can be obtained from the value for this temperature by multiplying it by 104. Likewise for other temperatures that are 10 times the values given in the table.

TABLE 55.—CALCULATED SPECTRAL INTENSITIES J_x FOR A RANGE OF WAVELENGTHS FOR A BLACKBODY OF UNIT AREA FOR A RANGE OF TEMPERATURES FROM 50°K TO 25,000°K*

These values have been calculated for $c_1 = \frac{3740 \, \text{micron}^5 \, \text{watts}}{\text{cm}^2 \, d\lambda \, 2\pi \, \text{solid angles}}$; $c_2 = 14380 \mu$: deg; $d\lambda = 0.1 \mu$, $J_{\lambda} = \text{tabular } J_{\lambda} \times 10^n \, \text{watts for cm}^2$ for $2\pi \, \text{solid angle per } 0.1 \mu$.

	50°	75°	100°	150°	200°
λ	J_{λ} n	J_{λ} n	J_{λ} n	J_{λ} n	J_{λ} n
1.0	4.675 —122	2.0145 —80	1.3224 —59	8.679 —39	2.2235 —28
1.5	2.6529 — 81	1.5131 —53	1.1427 —39	8.634 —26	7.503 —19
2.0	4.133 — 61	2.7124 —40	6.949 —30	1.7803 —19	2.8499 —14
2.5	4.186 — 49	1.8865 —32	4.005 —24	8.501 —16	1.2384 —11
3.0	3.5716 — 41	2.6982 —27	2.344 —20	2.0377 —13	6.007 —10
3.5	1.4652 — 35	1.1519 —23	1.0214 —17	9.057 —12	8.529 — 9
4.0	2.1714 — 31	5.564 —21	8.906 —16	1.4255 —10	5.703 — 8
5.0	1.2515 — 25	2.6566 —17	3.8701 —13	5.638 — 9	6.806 — 7
6.0	7.326 — 22	6.367 —15	1.8773 —11	5.534 — 8	3.0050 — 6
7.0	3.1917 — 19	2.8304 —13	2.6652 —10	2.5096 — 7	7.701 — 6
8.0	2.7831 — 17	4.455 —12	1.7823 — 9	7.131 — 7	1.4265 — 5
9.0	8.386 — 16	3.5449 —11	7.288 — 9	1.4984 — 6	2.1492 — 5
10.0	1.2094 — 14	1.7620 —10	2.1269 — 8	2.5671 — 6	2.8224 — 5
12.0	5.867 — 13	1.7294 — 9	9.391 — 8	5.100 — 6	3.7662 — 5
14.0	8.3288 — 12	7.843 — 9	2.4062 — 7	7.393 — 6	4.115 — 5
16.0	5.570 — 11	2.2284 — 8	4.458 — 7	8.937 — 6	4.032 — 5
18.0	2.2775 — 10	4.682 — 8	6.716 — 7	9.674 — 6	3.7137 — 5
20.0	6.647 — 10	8.022 — 8	8.820 — 7	9.763 — 6	3.3001 — 5
25.0	3.8640 — 9	1.7882 — 7	1.2204 — 6	8.458 — 6	2.2874 — 5
30.0	1.0564 — 8	2.5801 — 7	1.2857 — 6	6.571 — 6	1.5411 — 5
40.0	2.7563 — 8	3.0513 — 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.6674 — 6	7.255 — 6
50.0	3.8137 — 8	2.6437 — 7		2.0625 — 6	3.7257 — 6
75.0	3.4809 — 8	1.3255 — 7		6.084 — 7	9.800 — 7
100.0	2.2338 — 8	6.445 — 7		2.3256 — 7	3.5536 — 7
	273.16°	300°	373.16°	500°	600°
λ 1.0 1.5 2.0 2.5 3.0	$ \begin{array}{c ccccc} \hline J_{\lambda} & n \\ \hline 5.132 & - 20 \\ 2.8227 & - 13 \\ 4.329 & - 10 \\ 2.7422 & - 8 \\ 3.6847 & - 7 \\ \end{array} $		$\begin{array}{c cccc} J_{\lambda} & n \\ 6.870 & -14 \\ 3.4290 & -9 \\ 5.009 & -7 \\ 7.741 & -6 \\ 4.061 & -5 \end{array}$		
3.5	2.0910 — 6	8.031 — 6	1.1772 — 4	1.9230 — 3	7.570 — 3
4.0	7.029 — 6	2.2819 — 5	2.3911 — 4	2.7563 — 3	9.152 — 3
5.0	3.2026 — 5	8.215 — 5	5.383 — 4	3.8137 — 3	9.9983 — 3
6.0	7.443 — 5	1.6321 — 4	7.825 — 4	4.018 — 3	9.024 — 3
7.0	1.2065 — 4	2.3657 — 4	9.085 — 4	3.7175 — 3	7.496 — 3
8.0	1.5856 — 4	2.8600 — 4	9.310 — 4	3.2227 — 3	6.007 — 3
9.0	1.8307 — 4	3.0957 — 4	8.875 — 4	2.7040 — 3	4.748 — 3
10.0	1.9447 — 4	3.1245 — 4	8.102 — 4	2.2338 — 3	3.7449 — 3
12.0	1.8931 — 4	2.8201 — 4	6.312 — 4	1.5050 — 3	2.3601 — 3
14.0	1.6573 — 4	2.3425 — 4	4.736 — 4	1.0224 — 3	1.5319 — 3
16.0	1.3798 — 4	1.8770 — 4	3.5255 — 4	7.085 — 4	1.0272 — 3
18.0	1.1229 — 4	1.4838 — 4	2.6366 — 4	5.021 — 4	7.103 — 4
20.0	9.057 — 5	1.1703 — 4	1.9919 — 4	3.6384 — 4	5.049 — 4
25.0	5.309 — 5	6.600 — 5	1.0432 — 4	1.7735 — 4	2.3814 — 4
30.0	3.2185 — 5	3.9044 — 5	5.890 — 5	9.570 — 5	1.2584 — 4
40.0 50.0	1.3385 — 5 6.414 — 6 1.5488 — 6 5.398 — 7	1.5780 — 5 7.442 — 6	2.2537 — 5 1.0306 — 5 2.3463 — 6 7.954 — 7	3.4705 — 5 1.5393 — 5	4.451 — 5 1.9460 — 5

^{*} For reference, see footnote 23, p. 74.

TABLE 55.—CALCULATED SPECTRAL INTENSITIES J_A FOR A RANGE OF WAVELENGTHS FOR A BLACKBODY OF UNIT AREA FOR A RANGE OF TEMPERATURES FROM 50°K TO 25,000°K (continued)

	800°	1000°	1200)°	1400°	1600°
λ .10 .20 .30 .40 .45	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} J_{\lambda} & n \\ 1.3224 & -5 \\ 6.949 & -2 \\ 2.3444 & -11 \\ 8.906 & -11 \\ 2.6834 & -9 \end{array}$	5 1.1123 5 6.9122 1 3.5633	n -44 -19 -12 - 8 - 7		
.50 .55 .60 .65	2.9182 — 11 4.759 — 10 4.692 — 9 3.1506 — 8 1.5675 — 7	3.8701 — 8 3.2828 — 7 1.8773 — 6 7.950 — 6 2.6652 — 9	7 2.5627 6 1.0193	6 5 4 4 4	1.4334 — 4 5.761 — 4 1.7677 — 3 4.421 — 3 9.435 — 3	1.8689 — 3 5.947 — 3 1.5023 — 2 3.1867 — 2 5.907 — 2
.75 .80 .90 1.00 1.50	6.1514 — 6 1.9924 — 6 1.3423 — 5 5.840 — 5 3.0769 — 3	1.7823 —	5 1.8135 4 3.5650 4 1.0450 3 2.3367 2 1.6712	- 3 - 3 - 2 - 2 - 1	1.7774 — 2 3.0296 — 2 7.001 — 2 1.2943 — 1 5.236 — 1	9.847 — 2 1.5079 — 1 2.9157 — 1 4.674 — 1 1.2341 0
2.00 2.50 3.00 4.00 5.00	1.4607 — 2 2.8902 — 2 3.8565 — 2 4.129 — 2 3.3793 — 2	1.2204 — 1.2857 — 1.0313 —		1 1 1 1	6.916 — 1 6.398 — 1 5.185 — 1 3.0340 — 1 1.7597 — 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10.00 50.00 100.00	7.429 — 3 2.7665 — 5 1.8994 — 6	1.1643 — 1 3.5918 — 1 2.4184 — 6	2 1.6158 5 4.419 6 2.9379	— 2 — 5 — 6	2.0858 — 2 5.2487 — 5 3.4566 — 6	2.5678 — 2 6.0751 — 5 3.9787 — 6
	1800°	2000°	2200°	2400°	2600°	2800°
λ .10 .20 .30 .40 .45	$\begin{array}{c cccc} J_{\lambda} & n \\ \hline 7.543 & -27 \\ 5.249 & -11 \\ 4.190 & -6 \\ 7.740 & -4 \\ 3.9513 & -3 \\ \end{array}$	2.8499 — 9 6.007 — 5 5.703 — 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		^	$ \begin{array}{c cccc} J_{\lambda} & n \\ 1.8569 & -14 \\ 8.235 & -5 \\ 5.657 & -2 \\ 9.695 & -1 \\ 2.2404 & 0 \\ \end{array} $
.50 .55 .60 .65	1.3771 — 2 3.6546 — 2 7.935 — 2 1.4810 — 1 2.4599 — 1	$ \begin{array}{rrrr} 1.5618 & - & 1 \\ 3.0050 & - & 1 \\ 5.0622 & - & 1 \end{array} $	2.5154 — 1 5.126 — 1 8.932 — 1 1.3838 0 1.9592 0	7.477 — 1.3800 2.2141 3.1988 4.267	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.142 0 6.543 0 9.222 0 1.1941 1 1.4500 1
.75 .80 .90 1.00 1.50	3.7284 — 1 5.254 — 1 8.845 — 1 1.2691 0 2.4072 0	1.4265 0 2.1492 0 2.8224 0	2.5864 0 3.2297 0 4.444 0 5.430 0 6.391 0	5.348 6.382 8.146 9.371 9.241	0 9.890 0 0 1.1360 1 0 1.3606 1 0 1.4880 1 0 1.2651 1	1.6755 1 1.8625 1 2.1128 1 2.2133 1 1.6591 1
2.00 2.50 3.00 4.00 5.00	2.1930 0 1.6350 0 1.1538 0 5.735 — 1 3.0360 — 1	2.2874 0 1.5411 0	4.626 0 3.025 0 1.964 0 8.855 — 1 4.439 — 1	6.151 3.8351 2.4167 1.0518 5.171 —	$\begin{array}{ccccc} 0 & 7.852 & 0 \\ 0 & 4.707 & 0 \\ 0 & 2.8935 & 0 \\ 0 & 1.2233 & 0 \\ 1 & 5.917 & 1 \end{array}$	9.709 0 5.631 0 3.3905 0 1.3989 0 6.674 — 1
10.00 50.00 100.00	3.0578 — 2 6.908 — 5 4.497 — 6		4.054 — 2 8.570 — 5 5.537 — 6	4.558 — 9.401 — 6.062 —	2 5.064 — 2 5 1.0229 — 4 6 6.573 — 6	5.571 — 2 1.1061 — 4 7.097 — 6

TABLE 55.—CALCULATED SPECTRAL INTENSITIES J_x FOR A RANGE OF WAVELENGTHS FOR A BLACKBODY OF UNIT AREA FOR A RANGE OF TEMPERATURES FROM 50°K TO 25,000°K (concluded)

	30	3000° 3200°			35	00°		4000°	5000°		
λ .10 .20 .30 .40 .45	J _λ 5.698 4.562 1.7710 2.2819 4.795	n -13 - 4 - 1 0 0	J_{λ} 1.1396 2.0402 4.807 4.825 9.330	n11 3 1 0 0	J_{λ} 5.3650 1.3998 1.7358 1.2640 2.1962	-10 -2 0 1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
.50 .55 .60 .65 .70	8.215 1.2195 1.6321 2.0227 2.3657	0 1 1 1	1.4957 2.1028 2.6895 3.2083 3.6313	1 1 1 1	3.2321 4.237 5.113 5.807 6.303	1 1 1 1 1		9.032 1 1.0789 2 1.2052 2 1.2825 2 1.3168 2	3.8137 2 4.004 2 4.018 2 3.9080 2 3.7175 2		
.75 .80 .90 1.00 1.50	2.6465 2.8600 3.0957 3.1245 2.1026	1 1 1 1 1	3.9491 4.164 4.327 4.228 2.5919	1 1 1 1 1	6.611 6.754 6.662 6.248 3.4032	1 1 1 1		1.3165 2 1.2903 2 1.1884 2 1.0561 2 4.9320 1	3.4810 2 3.2227 2 2.7040 2 2.2338 2 8.487 1		
2.00 2.50 3.00 4.00 5.00	1.1703 6.600 3.9044 1.5780 7.442	1 0 0 0 1	1.3818 7.607 4.432 1.7598 8.217	1 0 0 0 1	1.7181 9.178 5.247 2.0369 9.391	1 0 0 0 1		2.3215 1 1.1922 1 6.650 0 2.5076 0 1.1372 0	3.6384 1 1.7735 1 9.570 0 3.4705 0 1.5393 0		
10.00 50.00 100.00	6.081 1.1897 1.9581	— 2 — 4 — 5	6.593 1.2732 8.130	— 2 — 4 — 6	7.361 1.3978 8.926	— 2 — 4 — 6		8.657 —2 1.6064 —4 1.0219 —5	1.1225 —1 2.0216 —4 1.2808 —5		
	6000°	800	0°	10,000	•	15,00	00°	20,000°	25,000°		
λ .10 .20 .30 .40 .45	$\begin{array}{c cccc} J_{\lambda} & n \\ 1.4597 & -2 \\ 7.302 & 1 \\ 5.223 & 2 \\ 9.152 & 2 \\ 9.906 & 2 \end{array}$	1.4607	n 0 3 3 3 3	J_{λ} 2.1268 8.820 1.2857 1.0313 8.653	n 2 3 4 4 4 3 3	J_{λ} 2.5671 9,763 6.571 3.6571 2.7323	n 4 4 4 4 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
.50 .55 .60 .65	9,9983 2 9,6424 2 9,024 2 8,279 2 7,496 2	3.3793 2.9415 2.5311 2.1601 1.8485	3 3 3 3 3	7.148 5.869 4.816 3.9614 3.2718	3 3 3 3 3	2.0625 1.5762 1.2201 9.563 7.586	4 4 4 3 3	3.7257 4 2.7563 4 2.0780 4 1.5936 4 1.2456 4	5.542 4 4.026 4 2.9907 4 2.2654 4 1.7461 4		
.75 .80 .90 1.00 1.50	6.728 2 6.007 2 4.748 2 3.7449 2 1.2494 2	1.5780 1.3494 9.945 7.429 2.1278	3 3 2 2 2	2.7160 2.2670 1.6067 1.1643 3.0625	3 3 3 3 2	6.084 4.931 3.3311 2.3256 5.505	3 3 3 2	9.800 3 7.836 3 5.178 3 3.5536 3 8.008 2	1.3667 4 1.0845 4 7.078 3 4.810 3 1.0537 3		
2.00 2.50 3.00 4.00 5.00	5.049 1 2.3814 1 1.2584 1 4.451 0	3.6391 1.8756 6.438	1 1 1 0	1.1106 4.926 2.5026 8.443 3.5918	2 1 1 0 0	1.9004 8.194 4.088 1.3487 5.664	2 1 1 1 0	2.7017 2 1.1494 2 5.684 1 1.8549 1 7.741 0	3.5077 2 1.4804 2 7.280 1 2.3625 1 9.818 0		
3.00	1.9460 0	2.7665	0	3.3910	· ·	3.004	v	7.741	9.818		

Auxiliary table for a short method of calculating J_{λ} for any temperature. (Menzel, Harvard University.)

Let $J_0 =$ intensity for $T_0 = 10,000$ °K; for another temperature T °K:

$$J/J_0 = [\lambda_0^6(\exp(c_2/\lambda_0 T_0) - 1)]/[\lambda^6(\exp(c_2/\lambda T) - 1)]$$

For ease of calculation T_0 was taken as 10,000 °K. $J_{\lambda}=$ tabular $J_{\lambda}\times 10^n$ watts, for cm² for 2π solid angle per 0.1μ . Choose $\lambda=\lambda_0T_0/T$; then $J_{\lambda}=J_0(T/T_0)^6$. As an example find J_{λ} for 0.5μ and 6000 °K from value of J_{λ} for 0.3μ given in Table 55. $0.5\mu=0.3\mu$ 10,000/6000. J_{λ} for $0.3\mu=1.2857\times 10^4$. J_{λ} for $\lambda=0.5\mu=1.2857\times 10^4\times (6,000/10,000)^6=9.998\times 10^2$.

	10,000°													
λ	J_{λ}	71	λ	J_{λ}	25	λ	J_{λ}	22	λ	J_{λ}	11			
.0100	1.3224	— 49	.1450	2.8776	3	.5500	5.869	3	4.500	5.383	0			
.0150	1.1427	-29	.1500	3.3806	3	.6000	4.816	3 3 3	5.000	3.5918	0			
.0200	6.949	-20	.1600	4.458	3	.6500	3.9614	3	6.000	1.7761	0			
.0250	4.005	-14	.1700	5.586	3	.7000	3.2718	3	7.000	9.756	-1			
.0300	2.3444	— 10	.1800	6.716	3	.7500	2.7160	3	8.000	5.797	—1			
.0350	1.0214	— 7	.1900	7.805	3	.8000	2.2670	3	9.000	3.6548	-1			
.0400	8.906	— 6	.2000	8.820	3	.8500	1.9031	3	10.00	2.4184	-1			
.0450	2.6833	- 4	.2100	9.735	3	.9000	1.6067	3	12.00	1.1807	-1			
.0500	3.8700	— 3	.2200	1.0536	4	.9500	1.3641	3	14.00	6.433	$-\frac{2}{-2}$			
.0550	3.2828	— 2	.2300	1.1215	4	1.000	1.1643	3	16.00	3.7904	— 2			
.0600	1.8773	- 1	.2400	1.1769	4	1.100	8.613	2	18.00	2.3790	-2			
.0650	7.950	— 1	.2500	1.2204	4	1.200	6.494	2 2 2	20.00	1.5667	$-\frac{2}{-3}$			
.0700	2.6652	0	.2600	1.2524	4	1.300	4.980	2	25.00	6.4692	— 3			
.0750	7.427	0	.2700	1.2739	4	1.400	3.8782	2 2	30.00	3.1346	-3			
.0800	1.7823	1	.2800	1.2859	4	1.500	3.0625	2	35.00	1.6954	— 3			
.0850	3.7891	1	.2900	1.2895	4	1.600	2.4487	2	40.00	9.979	_4			
.0900	7.288	1 2 2 2	.3000	1.2857	4	1.700	1.9805	2 2 2 2 2	45.00	6.236	— 4			
.0950	1.2894	2	.3200	1.2601	4	1.800	1.6183	2	50.00	4.099	-4			
.1000	2.1269	2	.3400	1.2163	4	1.900	1.3348	2	55.00	2.8042	-4			
.1050	3.3049	2	.3600	1.1606	4	2.000	1.1106	2	60.00	1.9793	-4			
.1100	4.881	2	.3800	1.0977	4	2.200	7.867	1	65.00	1.4390	— 4			
.1150	6.899	2 2 2 3 3	.4000	1.0313	4	2.400	5.724	1	70.00	1.0698	-4			
.1200	9.391	2	.4200	9.640	3	2.600	4.262	1	80.00	6.306	 5			
.1250	1.2365	3	.4400	8.977	3	2.800	3.2372	1	90.00	3.9340	— 5			
.1300	1.5819	3	.4600	8.335	3	3.000	2.5026	1	100.00	2.5793	— 5			
.1350	1.9732	3	.4800	7.724	3	3.500	1.4015	1						
.1400	2.4062	3	.5000	7.148	3	4.000	8,443	0						

The adoption of a new value for c_2 changes the calculated values for J_{λ} by an amount that varies indirectly with both the wavelength and the temperature for values of λT < 3000, as follows:

$$\frac{dJ_{\lambda}}{J_{\lambda}} = \frac{-dc_2}{\lambda T}$$

that is, a larger value of c_2 results in a smaller value of J_{λ} . Values of this correction factor for this change in c_2 have been calculated and are given in the tables for five temperatures and a range of wavelengths that cover the visible spectrum. As these percentage correction factors are given they are the percentage of the J_{λ} for 14320μ deg that must be subtracted from it to give J_{14380} .

A change in c2 also results in a different value of the extrapolated temperature as meas-

ured with an optical pyrometer for a definite ratio of brightness. Thus

$$\left(\frac{1}{T_0} - \frac{1}{T_1}\right) = \frac{c_2^1}{c_2} \left(\frac{1}{T_0} - \frac{1}{T_0^1}\right)$$

To the accuracy necessary for most work, values for other wavelengths, other temperatures, or other values of c_2 within these ranges can be found by interpolation.

Part 1.—Percentage change in J_{\(\lambda\)} for a change in c₂ from 14320 to 14380_{\(\mu\)} degrees

λinμ	2000 °K	2300 °K	2600 °K	2900 °K	3200 °K	λin	μ ²⁰⁰⁰ K	2300 °K	2600 °K	2900 °K	3200 °K
.32	9.8	8.5	7.5	6.7	6.0	.58	3 5.3	4.6	4.1	3.6	3.3
.34	9.2	7.9	7.0	6.3	5.7	.60		4.4	3.9	3.5	3.2
.36	8.7	7.5	6.6	5.9	5.3	.62		4.3	3.8	3.4	3.1
.38	8.2	7.1	6.3	5.6	5.0	.64		4.1	3.7	3.3	3.0
.40	7.8	6.7	5.9	5.3	4.8	.66		4.0	3.6	3.2	2.9
.42	7.4	6.4	5.7	5.0	4.6	.68		3.9	3.5	3.1	2.8
.44	7.0	6.1	5.4	4.8	4.4	.70		3.8	3.4	3.0	2.7
.46	6.7	5.8	5.1	4.6	4.2	.72		3.7	3.3	2.9	2.6
.48	6.4	5.6	4.9	4.4	4.0	.72			3.3		2.0
.40								3.6		2.8	2.6
.50	6.2	5.3	4.7	4.2	3.8	.76		3.5	3.1	2.8	2.5
.52	5.9	5.1	4.5	4.1	3.7	.78	3.9	3.4	3.0	2.7	2.4
.54	5.7	4.9	4.4	3.9	3.5	.80	3.8	3.3	2.9	2.6	2.3
.56	5.5	4.8	4.2	3.8	3.4						
.50	0.0	1.0	1.2	0.0	0.7						

Part 2.—Change in temperatures, ΔT , extrapolated from 1336 to the temperature T given, c_2 changed from 14320 to 14380 μ degrees

Г°К	1500° K	1800°K	2000°K	2500°K	3000°K	3500°K	4000°K	5000°K
ΔT	— .6	-2.4	-4.1	-8.7	-15.5	-22.3	-33.0	-56.4

Photometry is the measurement of light, and light has been defined by the Illuminating Engineering Society as radiant energy evaluated according to its capacity to produce visual sensations.

TABLE 58.—THE EYE AS A MEASURING INSTRUMENT FOR RADIATION

Part 1.-Theory

As a measuring instrument for radiation, the eye is very selective, that is, it does not respond equally to radiation of various wavelengths. The data in Part 2 give the relative sensitivity of the eye to radiation of different wavelengths. Another peculiarity of the eye is that its relative sensitivity changes with the intensity of the radiation that falls upon it. This is shown by the data in Table 59. Also the absolute sensitivity of the eye varies with the intensity of the radiation that falls upon it. This is shown by the data given in Table 60.

The data 25 on which Table 60 is based are not very extensive, but inasmuch as there is now some active work on this subject by Lowry of the Eastman Kodak Co. there should soon be available data for a wider range of field brightness. The data in Table 59 show that the sensitivity of the eye to radiation of lower intensity increases faster toward the blue end of the spectrum than in the red end. This is called the Purkinje effect.

For light measurement at very low brightness care must be taken as to the standards used. From the data given in Table 59 it can be shown that sources giving light of different colors that were rated as equal by the average eye adapted to a field brightness of about 1 to 2 millilamberts would be rated quite differently for low field brightness, that is, for the eye adapted to a field brightness of 10⁻⁵ millilamberts.

If the brightness given by two sources such as daylight and a carbon lamp be set equal for a field brightness 1 to 2 millilamberts and then these brightnesses both reduced mechanically to about 10⁻⁵ millilamberts, the field of the daylight source would seem to be

about 2½ times as bright as that of the carbon lamp.

Part 2.—Relative luminosity factors 29 [K] (unity at wavelength of maximum luminosity)

λin	Standard			Values in	terpolated a	at intervals	of one mil	limicron		
mμ	factors	1	2	3	4	5	6	7	8	9
380	.00004	.000045	.000049	.000054	.000059	.000064	.000071	.000080	.000090	.000104
390	.00012	.000138	.000155	.000173	.000193	.000215	.000241	.000272	.000308	.000350
400	.0004	.00045	.00049	.00054	.00059	.00064	.00071	.00080	.00090	.00104
410	.0012	.00138	.00156	.00174	.00195	.00218	.00244	.00274	.00310	.00352
420	.0040	.00455	.00515	.00581	.00651	.00726	.00806	.00889	.00976	.01066
430 440	.0116	.01257 .0243	.01358	.01463	.01571	.01684	.01800	.01920	.02043	.02170
450	.038	.0399	.0418	.0270	.0459	.0298	.0313	.0329	.0345	.0362
460	.060	.0627	.0654	.0681	.0709	.0739	.0769	.0802	.0836	.0872
470	.091	.0950	.0992	.1035	.1080	.1126	.1175	.1225	.1278	.1333
480	.139	.1448	.1507	.1567	.1629	.1693	.1761	.1833	.1909	.1991
490	.208	.2173	.2270	.2371	.2476	.2586	.2701	.2823	.2951	.3087
500	.323	.3382	.3544	.3714	.3890	.4073	.4259	.4450	.4642	.4836
510	.503	.5229	.5436	.5648	.5865	.6082	.6299	.6511	.6717	.6914
520	.710	.7277	.7449	.7615	.7776	.7932	.8082	.8225	.8363	.8495
530 540	.862	.8739	.8851	.8956	.9056	.9149	.9238	.9320	.9398	.9471
550	.954 .995	.9604	.9661	.9713	.9760	.9803	.9840	.9873	.9902	.9928
560	.995	.9969 .9926	.9983	.9994 .9865	1.0000	1.0002 .9786	1.0001	.9995	.9984	.9969
570	.952	.9455	.9386	.9312	.9235	.9786	.9741	.9691 .8981	.9638 .8890	.9581
580	.870	.8600	.8496	.8388	.8277	.8163	.8046	.7928	.7809	.8796 .7690
590	.757	.7449	.7327	.7202	.7076	.6949	.6822	.6694	.6565	.6437
600	.631	.6182	.6054	.5926	.5797	.5668	.5539	.5410	.5282	.5156
610	.503	.4905	.4781	.4658	.4535	.4412	.4291	.4170	.4049	.3929
620	.381	.3690	.3570	.3449	.3329	.3210	.3092	.2977	.2864	.2755
630	.265	.2548	.2450	.2354	.2261	.2170	.2082	.1996	.1912	.1830
640	.175	.1672	.1596	.1523	.1452	.1382	.1316	.1251	.1188	.1128
650	.107	.1014	.0961	.0910	.0862	.0816	.0771	.0729	.0688	.0648
660 670	.032	.0574	.0539	.0506	.0475	.0446	.0418	.0391	.0366	.0343
680	.032	.0299	.0280	.0263	.0247	.0232	.0219	.0206	.0194	.0182
690	.0082	.00759	.00705	.00656	.00612	.01192	.01108	.01030	.00956	.00886
700	.0041	.00381	.00355	.00332	.00310	.00372	.00536 .00273	.00503	.00471	.00440
710	.0021	.001954	.001821	.001699	.001587	.001483	.00273	.00236	.00241	.00225
720	.00105	.000975	.000907	.000845	.000788	.000736	.000688	.000644	.001212	.000560
730	.00052	.000482	.000447	.000415	.000387	.000360	.000335	.000313	.000291	.000380
740	.00025	.000231	.000214	.000198	.000185	.000172	.000160	.000149	.000139	.000130
750	.00012	.000111	.000103	.000096	.000090	.000084	.000078	.000074	.000069	,000064
760	.00006	.000056	.000052	.000048	.000045	.000042	.000039	.000037	.000035	.000032

²⁸ I.E.S. Nomenclature and photometric standards, American Standards Association, ASA C-42, 1941.

²⁵ Blanchard, Phys. Rev., vol. 11, p. 81, 1918; Stiles and Crawford, Proc. Roy. Soc. London, ser. B, vol. 112, p. 428, 1933; Lowry, Journ. Opt. Soc. Amer., vol. 18, p. 29, 1929.

TABLE 59.—RELATIVE LUMINOSITY DATA FOR VARIOUS FIELD BRIGHTNESSES

(Logarithms of field brightness in first line)

Wave- length mµ	ICI	-0.5	1.0	—1.5	-2.0	2.5	-3.0	3.5	—4.0 -	4.187 *	4.50	5.00
350 360 370 380 390	.00004	.0000	.0001	.0002	.0002 .0008 .0022	.0005 .0015 .0040	.0003 .0009 .0025 .0063	.0004 .0013 .0034 .0083	.0002 .0007 .0018 .0045 .0104	.000265 .00073 .0019 .0048 .0112	.0003 .0008 .0020 .0051 .0119	.0003 .0008 .0022 .0055 .0127
400 410 420 430 440	.0004 .0012 .0040 .0116 .023	.0004 .0014 .0044 .0121 .0240	.0008 .0023 .0069 .0165 .0300	.0022 .0062 .0152 .0292 .0496	.0059 .0140 .0280 .0505 .0850	.0098 .0227 .0427 .0755 .123	.0147 .0305 .0580 .101 .160	.0185 .0370 .0690 .118 .183	.0228 .0452 .0820 .138 .216	.0243 .0485 .087 .145 .225	.0253 .0500 .0900 .149 .230	.0270 .0530 .0950 .157 .239
450 460 470 480 490	.038 .060 .091 .139 .208	.0395 .0627 .0960 .146 .220	.0490 .0775 .118 .180 .274	.0810 .127 .191 .288 .426	.136 .202 .301 .432 .592	.187 .277 .394 .540 .688	.237 .339 .467 .604 .734	.268 .376 .510 .649 .782	.310 .423 .551 .685 .814	.321 .434 .560 .695 .827	.326 .441 .568 .702 .830	.339 .455 .576 .714 .842
500 510 520 530 540	.323 .503 .710 .862 .954	.340 .524 .726 .872 .959	.416 .617 .792 .910 .979	.603 .766 .894 .972 1.000	.744 .876 .965 1.000 .969	.826 .935 .992 .982 .909	.864 .962 .999 .951 .842	.902 .977 .988 .924 .796	.930 .992 .974 .883 .744	.932 .997 .963 .871 .734	.941 .997 .960 .862 .715	.948 .999 .953 .848 .697
550 560 570 580 590	.995 .995 .952 .870 .757	.997 .992 .944 .860 .742	1.000 .973 .907 .802 .673	.971 .898 .782 .648 .509	.886 .760 .617 .468 .333	.785 .640 .485 .340 .227	.698 .543 .384 .259 .166	.642 .478 .330 .218 .137	.583 .419 .281 .182 .112	.555 .390 .263 .167 .102	.552 .388 .260 .164 .101	.531 .365 .243 .155 .0945
600 610 620 630 640	.631 .503 .381 .265	.616 .490 .366 .250 .162	.544 .416 .296 .197 .122	.374 .257 .168 .102 .0590	.224 .142 .0845 .0480 .0270	.145 .0870 .0504 .0282 .0146	.101 .0600 .0344 .0194 .0107	.0830 .0488 .0280 .0156 .0085	.0670 .0388 .0225 .0127 .0070	.0613 .0366 .0212 .0118 .00653	.060 .0348 .0202 .0114 .0062	.0560 .0324 .0188 .0105 .0058
650 660 670 680 690	.107 .061 .032 .017 .0082	.0990 .0560 .0303 .0153 .0076	.0710 .0390 .0206 .0103 .0052	.0327 .0174 .0090 .0046 .0024	.0147 .0078 .0041 .0022 .0011	.0084 .0045 .0024 .0014 .0007	.0058 .0031 .0017 .0009 .0004	.0046 .0025 .0013 .0007 .0003	.0037 .0020 .0011 .0006 .0003	.00353 .00189 .00098 .00050	.0034 .0018 .0010 .0005 .0002	.0032 .0017 .0009 .0005 .0002
700 710 720 730 740	.0041 .0021 .00105 .00052 .00025	.0038 .0019 .0010 .0005 .0002	.0026 .0014 .0007 .0003 .0002	.0012 .0006 .0003 .0001	.0006 .0003 .0001	.0003	.0002	.0002	.00016	.00013	.0001	.0001
750 760 770	.00012 .00006 .00003	.0001					• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				

TABLE 60.-BLANCHARD'S DATA RELATING INSTANTANEOUS THRESHOLD TO FIELD BRIGHTNESS **

Field bright- ness *	Instantaneous threshold †	Relative sensitivity ‡ (n)	Ratio §	Relative value of maximum
millilamberts				
100	1.9×10^{-1}	.047	4.6	.04/
10	1 4.2×10^{-2}	.21	4.7	.21
1	8.9×10^{-3}	1.0	4.7	1.00
.1	1.9×10^{-3}	4.67	4.6	4.95
.032	1 8.9 \times 10 ⁻⁴	10.0		12.0
	4.2×10^{-4}	21.4	4.7	29.5
	1.9×10^{-4}	46.7		70.0
	8.9×10^{-5}	100.0	4.7	161.0
	1.9×10^{-5}	467.0	4.6	822.0
	4.2×10^{-6}	2140.		3900.
.0	1.8×10^{-7}	48600.		88500.

 ²⁷ L. A. Jones, private communication.
 * Average of Weaver and Hecht's values.

^{**} For reference, see footnote 25, p. 87.

* The field brightnesses are values obtained by mechanically increasing or reducing values measured at photopic levels. † Taken from smooth curve drawn through Blanchard's data. The unit will depend upon definition. As these figures stand they are brightnesses for this radiation measured at photopic levels and reduced mechanically to values given. † For radiation from a source at a color temperature of 2680 °K. § This is the ratio of the eye sensitivity to that of the eye adapted to the next lower (one-tenth) field brightness for this radiation. | Minimum threshold from Taylor's value.

Part 1.-Contrast or photometric sensibility

For the following table the eye was adapted to a field of 0.1 millilambert and the sensitizing field flashed off. A neutral gray test spot (angular size at eye, $5 \times 2.5^{\circ}$) the two halves of which had the contrast indicated ($\frac{1}{2}$ transparent, $\frac{1}{2}$ covered with neutral screen of transparency = contrast indicated) was then observed and the brightness of the transparent part measured necessary to just perceive the contrast after the lapse of the various times. One eye only used, natural pupil. Values are log brightness of brighter field in millilamberts.

Time in seconds 0	1	2	5	10	20	40	60
Contrast: 0.002.80	-3.47	-3.82	-4.30	-4.49	-4.60	-4.89	-5.03
0.392.63	-3.36	-3.58	-3.74	-3.85	-3.97	-4.06	-4.23
0.67 —2.40	-3.00	-3.13	-3.22	-3.21	-3.33	-3.46	-3.48
0.87 —2.10	-2.46	-2.49	-2.48	-2.55	-2.54	-2.67	-2.73
0.97 —1.20	-1.57	-1.67	-1.69	-1.59	-1.63	-1.73	-1.78

Part 2.-Glare Sensibility

When an eye is adapted to a certain brightness and is then exposed suddenly to a much greater brightness, the latter may be called glaring if uncomfortable and instinctively avoided. Observers naturally differ widely. The data are the means of three observers, and are log brightnesses in millilamberts. The glare intensity may be taken as roughly 1700 times the cube root of the field intensity in millilamberts. Angle of glare spot, 4°.

Log.	field	-6.0	-4.0	-2.0	-1.0	.0	+1.0	2.0	3.0	4.0
Log.	glare	1.35	1.90	2.60	2.90	3.28	3.60	3.90	4.18	4.48

Part 3.-Rate of adaptation of sensibility

This table furnishes a measure of the rate of increase of sensibility after going from light into darkness, and the values were obtained immediately from the instant of turning off the sensitizing field. Both eyes were used, natural pupil, angular size of test spot, 4.9°, viewed at 35 cm. Retinal light persists only 10 to 20 minutes when one has been recently in darkness, then in a dimly lighted room; it persists fully an hour when a subject has been in bright sunlight for some time. A person who has worked much in the dark "gets his eyes" quicker than one who has not, but his final sensitiveness may be no greater.

Sensitizing				Logarith	mic thre	sholds i	n millila	mberts a	fter		
field	0 sec	1 sec	2 sec	5 sec	10 sec	20 sec	40 sec	60 sec	5 min	30 min	60 min
White 0.1 ml	-2.79	3.82	-4.13	-4.50	-4.75	-4.96	-5.16	-5.32	5.68	5.91	6.06
1.0 ml	-2.20	2.99	3.27	-3.79	-4.15	-4.51	-4.82	5.06	-5.52	5.86	6.04
10.0 ml											
100.0 ml	-0.90	-1.66	2.00	2.46	2.64	-2.88	-3.20	-3.84	-4.76	5.77	5.97
Blue 0.1 ml	-2.82	-3.92	-4.36	-4.91	5.27	5.53	5.68	5.81	-6.23		
Green 0.1 ml											
Yellow 0.1 ml	-2.61	-3.84	4.17	-4.41	-4.65	-4.78	5.02	5.09	-5.39		—
Red 0.1 ml	2.32	-2.69	-2.98	-3.37	-3.57	-3.65	-3.73	-3.80	-4.02	_	-

^{*} For reference, see footnote 25, p. 87.

TABLE 62.—MINIMUM ENERGY NECESSARY TO PRODUCE THE SENSATION OF LIGHT

Ives38 $\times 10^{-10}$ erg sec	Astrophys. Journ., vol. 44, p. 124, 1916.
Russell 7.7×10^{-10} ""	Astrophys. Journ., vol. 45, p. 60, 1917.
Reeves 19.5×10^{-10} " "	Astrophys. Journ., vol. 46, p. 167, 1917.
Buisson 12.6 × 10 ⁻¹⁰ " "	Journ. de phys., vol. 7, p. 68, 1917.
Taylor Minimum threshold for dark-adapted	Journ. Opt. Soc. Amer., vol. 32, p. 506,
eye, a surface, at a brightness of	1942.
1.8×10^{-7} millilamberts, source	
color temperature 2850 °K.	
Hecht2.2-5.7 \times 10 ⁻¹⁰ ergs at cornea, con-	Journ. Opt. Soc. Amer., vol. 32, p. 42,
sidering losses the amount of	1942.
energy that reaches the retina is	
such that I quanta is absorbed by	
from 5-14 retinal rods.	

TABLE 63.—APPARENT DIAMETER OF PUPIL AND FLUX DENSITY AT RETINA

Flashlight measures of the pupil (both eyes open) viewed through the eye lens and adapted to various field intensities. For eye accommodated to 25 cm, ratio apparent to true pupil, 1.02, for the unaccommodated eye, 1.14. The pupil size varies considerably with the individual. It is greater with one eye closed; e.g., it was found to be for 0.01 millilambert, 6.7 and 7.2 mm; for 0.6 ml, 5.3 and 6.5; for 6.3 ml, 4.1 and 5.7; for 12.6 ml, 4.1 and 5.7 mm for both eyes and one eye open respectively for a certain individual. At the extreme intensities the two values approach each other. The ratio of the extreme pupil openings is about $\frac{1}{16}$, whereas the light intensities investigated vary over 1,000,000-fold.

Field millilamberts	Observed	(1.14/1.02) × obs.	Effective area	Flux at retina, lumens per mm ²
.00001	8 mm	8.96 mm	64 mm ²	$\begin{array}{c} 8.4 \times 10^{-12} \\ 7.6 \times 10^{-10} \\ 5.6 \times 10^{-8} \\ 2.1 \times 10^{-6} \\ 5.8 \times 10^{-5} \end{array}$
.001	7.6	8.51	57	
.1	6.5	7.28	42	
10	4.0	4.48	16	
1000	2.07	2.35	4.3	

TABLE 64.-MISCELLANEOUS EYE DATA

Light passing to the retina traverses in succession (a) front surface of the cornea (curvature, 7.9 mm); (b) cornea (equivalent water path for energy absorption, 0.06 cm); (c) back surface cornea (curv., 7.9 mm); (d) aqueous humour (equiv. H_2O , 0.34 cm, n=1.337); (c) front surface lens (c, 10 mm); (f) lens (equiv. H_2O , 0.42 cm, n=1.445); (g) back surface lens (c, 6 mm); (h) vitreous humour (equiv. H_2O , 1.46 cm, n=1.337). An equivalent simple lens has its principal point 2.34 mm behind (a), nodal point 0.48 mm in front of (g), posterior principal focus 22.73 mm behind (a), anterior principal focus 12.83 mm in front of (a), curvature, 5.125 mm. At the rear surface of the retina (0.15 mm thick) are the rods (30 \times 2 μ) and cones (10 (6 outside fovea) μ long). Rods are more numerous, 2 to 3 between 2 cones, over 3,000,000 cones in eye. Macula lutea, yellow spot, on temporal side, 4 mm from center of retina, long axis 2 mm. Central depression, fovea centralis, 0.3 mm diameter, 7000 cones alone present, 6 \times 2 or 3 μ . In region of distinct vision (fovea centralis) smallest angle at which two objects are seen separate is 50" to 70" = 3.65 to 5.14 μ at retina; 50 cones in 100μ here; 4μ between centers, 3μ to cone, 1μ to interval. Distance apart for separation greater as depart from fovea. No vision in blind spot, nasal side, 2.5 mm from center of eye, 15 mm in diameter.

Persistence of vision as related to color and intensity is measured by increasing speed

Persistence of vision as related to color and intensity is measured by increasing speed of rotating sector until flicker disappears: for color, 0.4μ , 0.031 sec; 0.45μ , 0.020 sec; 0.52μ , 0.015 sec; 0.57μ , 0.012 sec; 0.68μ , 0.014 sec; 0.76μ , 0.018 sec; for intensity, 0.06 metercandle, 0.028 sec; 1 mc, 0.020 sec; 6 mc, 0.014 sec; 100 mc, 0.010 sec; 142 mc, 0.007 sec.

Sensibility to small differences in color has two pronounced maxima (in yellow and green) and two slight ones (extreme blue, extreme red). The sensibility to small differences in intensity is nearly independent of the intensity (Fechner's law) as indicated by the following data due to König:

I/I ₀ dI/I, white60 μ	_	100,000	.018	1000 .018 .020	100 .030 .028	50 .032 .038	10 .048 .061	5 .059 .103	1 .123 .212	0.1	I ₆ in mc .00072 .0056 .00017
$.50 \mu \dots$.018	.018	.024	.025	.036	.049	.080	.133	.00017
.43 μ		_	_	.018	.025	.027	.040	.049	.074	.137	.00012

TABLE 65.—DISTRIBUTION COEFFICIENTS FOR EQUAL-ENERGY STIMULUS 1931 I.C.I. standard observer 28

The fact that almost any color can be produced by the proper mixture of red, green, and blue light, has been used as a basis of a system of color specifications that has been adopted by the International Commission on Illumination. In the system adopted by that Commission in 1931, the primaries are called the X, Y, and Z stimuli. The properties of the standard observer are given by his tristimulus specifications of the spectrum stimuli as a function of wavelength. This table gives this specification for the equal energy spectrum.

²⁸ Judd, D. B., Journ. Opt. Soc. Amer., vol. 23, p. 359, 1933.

Wave- length		Coefficients		Wave- length		Coefficients	
(mµ)	Ŧ	3	2	$(m\mu)$, £	ŷ	ž `
380	.0014	.0000	.0065	580	.9163	.8700	.0017
385	.0022	.0001	.0105	585	.9786	.8163	.0014
390	.0042	.0001	.0201	590	1.0263	.7570	.0011
395	.0076	.0002	.0362	595	1.0567	.6949	.0010
400	.0143	.0004	.0679	600	1.0622	.6310	.0008
405	.0232	.0006	.1102	605	1.0456	.5668	.0006
410 415	.0435 .0776	.0012 .0022	.2074 .3713	610 615	1.0026 .9384	.5030 .4412	.0003
420	:0776	.0022	.6456	620	.936 4 .8544	.3810	.0002
425	(2148	.0073	1.0391	625	.7514	.3210	.0001
430	.2839	.0116	1.3856	630	.6424	.2650 .2170	.0000
435 440	.3285 .3483	.0168 .0230	1.6230 1.7471	635 640	.5419 .4479	.1750	.0000
445	.3481	.0230	1.7826	645	.3608	.1382	.0000
450	.3362	.0380	1.7721	650	.2835	.1070	.0000
455	.3187	.0480	1.7441 1.6692	655 660	.2187 .1649	.0816 .0610	.0000
460 465	.2908 .2511	.0600 .0739	1.5281	665	.1049	.0610	.0000
403	.1954	.0910	1.2876	670	.0874	.0320	.0000
	.1421	.1126	1.0419	675	.0636	.0232	.0000
475 480	.0956	.1120	.8130	680	.0468	.0232	.0000
485	.0580	.1693	.6162	685	.0329	.0119	.0000
490	.0320	.2080	.4652	690	.0227	,0082	.0000
495	.0147	.2586	.3533	695	.0158	.0057	.0000
500	.0049	.3230	.2720	700	.0114	.0041	.0000
505	.0024	.4073	.2123	705	.0081	.0029	.0000
510	.0093	.5030	.1582	710	.0058	.0021	.0000
515	.0291	.6082	.1117	715	.0041	.0015	.0000
520	.0633	.7100	.0782	720	.0029	.0010	.0000
525	.1096	.7932	.0573	725	.0020	.0007	.0000
530	.1655	.8620	.0422	730	.0014	.0005	.0000
535	.2257	.9149	.0298	735	.0010	.0004	.0000
540 545	.2904 .3597	.9540 .9803	.0203 .0134	740 745	.0007 .0005	.0003	.0000
550	.4334	.9950	.0087	750	.0003	.0001	.0000
555	.5121 .5945	1.0002 .9950	.0057 .0039	755 760	.0002	.0001	.0000
560 565	.6784	.9786	.0039	765	.0002	.0001	.0000
570	.7621	.9520	.0027	770	.0001	.0000	.0000
575	.8425	.9154	.0018	775	.0000	.0000	.0000
580	.9163	.8700	.0017	780	.0000	.0000	.0000
						21.071.1	21 2515
Totals					21.3713	21.3714	21.3715

TABLE 66.—RELATIVE MAGNITUDE OF UNITS OF ILLUMINATION

Units	Lux	Phot	Milliphot	Foot-candle
1 lux	= 1	.0001	.1 ·	.0929
1 phot	=10,000	1.	1000.	929.
1 milliphot		.001	1.	.929
1 foot-cand	lle 10.76	.001076	1.076	1.

Candlepower c candles at visual threshold of steady point source of white light seen against white background brightness b millimicrolambert ($m\mu L$) at range r sea miles through an atmosphere of attenuation a per sea mile is given by

$$C = 3.7 \times 10^{-3} (1 + b)! r^2 a^{-r}$$

which is valid within a factor of 3 for b from total darkness to full daylight. For practical signaling or navigation multiply c by at least 100.

Range r sea mile	a = 1	a = 0.8	a = 0.6	a = 0.4
1	04	.05	.06	.09
2		.23	.41	.9
3		.65	1.5	5.2
5		2.9	12	90
7	1.8	8.6	. 62	1100
10	3.6	34	610	35000

²⁹ Knoll, H. A., Tousey, R., and Hulburt, E. O., Journ. Opt. Soc. Amer., vol. 36, p. 480, 1946.

TABLE 68.—THE BRIGHTNESS OF THE SUN

From the definition of a lumen, the lumen output from a point source within a unit solid angle is numerically equal to the candlepower of the source. This also holds for any radiating source that behaves as a point, such as a spherical blackbody,* or any spherical radiator of uniform brightness that obeys the Lambert cosine law of radiation, providing the measurements are made at such a distance from the source that the inverse square law is obeyed. (See Table 74.) As an example of this, consider the brightness of the sun. The sun when directly overhead on a clear day gives an illumination of about 10,000 foot-candles. This is equal to 10,000 lumens per ft.² (See Table 73.) To change this to lumens candles. This is equal to 10,000 lumens per it. (See Table 73.) To change this to lumens for a unit solid angle, multiply by the radius of the earth's orbit squared (i.e., 2.41×10^{23} ft²). Thus, the candlepower of the sun is 2.41×10^{27} . To get the brightness per cm² divide this by the projected area of the sun in cm² (i.e., 1.52×10^{27}), which gives about 160,000 c/cm² for the brightness of the sun as observed at the earth's surface. This, of course, assumes that the sun's surface is of uniform brightness and that its radiation obeys the Lambert cosine law. The data (Table 813) on the distribution of energy of the solar reseature gives the charge of the sun of $146.000 \text{ a}/\text{cm}^2$ spectrum give a brightness of the sun of 146,000 c/cm².

TABLE 69.—SOME OBSOLETE PHOTOMETRIC STANDARDS

(In use prior to 1948.)

In Germany the Hefner lamp was most used; in England the Pentane lamp and sperm candles; in France the Carcel lamp was preferred; in America the Pentane and Hefner lamps were used to some extent, but candles were largely employed in gas photometry. For the photometry of electric lamps, and in accurate photometric work, electric lamps, standardized at a national standardizing institution, were employed.

The "international candle" designated the value of the candle as maintained by co-operative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this is given in the following table

(Circular No. 15 of the Bureau of Standards):

1 international candle = 1 Pentane candle. 1 international candle = 1 Bougie decimale. 1 international candle = 1 American candle. 1 international candle = 1.11 Hefner unit. 1 international candle = 0.104 Carcel unit.

- 1. StandardPentane lamp, burning pentane.10.0 candles.2. StandardHefner lamp, burning amyl acetate.0.9 candles.3. StandardCarcel lamp, burning colza oil.9.6 candles.4. StandardEnglish sperm candle, approximately1.0 candles.

The international candle was in reality taken from the candlepower of a number of incandescent lamps, operated under definite conditions and kept at the standard laboratories of France, Britain, and the United States.

^{*} The lumens within a unit solid angle around the normal from a plane blackbody is equal to 0.92 times the normal intensity.

(Adapted from Reports of Committee on Nomenclature and Standards of Illuminating Engineering Society, 1942.)

Apostilb = 0.1 millilambert.

Brightness of a luminous surface may be expressed in two ways:

(1) $b_I = dI/dA \cos \theta$ where θ is the angle between normal to surface and the line of sight; normal brightness when θ is zero.

(2) $b_F = dF/dA$ assuming that the surface is a perfect diffuser, obeying cos law of emission or reflection. Unit, the lambert.

Candle per cm² = 3.1416 lamberts = 1 stilb. Candle per in.² = .4868 lambert = 486.8 millilamberts.

Foot-candle = 1 lumen incident per $ft^2 = 1.076$ milliphots = 10.76 lux.

Illumination on surface = E = flux density on surface = dF/dA (A is surface area) =

F/A when uniform. Units, meter-candle, foot-candle, phot, lux. Lambert, the cgs unit of brightness, is the brightness of a perfectly diffusing surface radiating or reflecting one lumen per cm². Equivalent to a perfectly diffusing surface with illumination of one phot. A perfectly diffusing surface emitting one lumen per ft² has a brightness of 1.076 millilamberts. Brightness in candles per cm² is reduced to lamberts by multiplying by π .

Lambert = 1 lumen emitted per cm² of a perfectly diffusing surface. Lambert = .3183 candle per cm² = 2.054 candles per in².

Lumen is emitted by .07958 spherical candle. Lumen emitted per $\mathrm{ft^2} = 1.076$ millilamberts (perfect diffusion).

Luminous efficiency = F/Φ expressed in lumens/watt. Luminous flux = F or Ψ = rate of flow of radiation measured according to power to produce visual sensation. Although strictly thus defined, for photometric purposes it may be regarded as an entity, since the rate of flow for such purposes is invariable. Unit is the lumen, the flux emitted in a unit solid angle (steradian) by a point source of unit candle power.

Luminous intensity of (approximate) point source = $I = \text{solid-angle}(\omega)$ density of luminous flux in direction considered = $dF/d\omega$, or F/ω when the intensity is uniform.

Unit, the candle.

Luminosity factor of radiation of wave-length $\lambda = K_{\lambda} = \text{ratio of luminous to radiant}$ flux for that $\lambda_1 = F_{\lambda}/\Phi_{\lambda}$.

Lux = 1 lumen incident per m² = .0001 phot = .1 milliphot.

Mechanical equivalent of light = ratio of Φ/F for the λ of max. visibility expressed in (ergs/sec)/lumen or watts/lumen; it is the reciprocal of max. luminosity. See Table 58.

Millilambert = .929 lumen per ft² (perfect diffusion).

Milliphot = .001 phot = .929 foot-candle.

Phot = 1 lumen incident per $cm^2 = 10,000 lux = 1000 milliphots$. Photon = small bundle of energy (hv), also called a quantum.

Radiant flux = Φ = rate of flow of radiation as energy, measured as ergs per second or watts.

Specific luminous radiation, E' = luminous flux density emitted by a surface, or the fluxemitted per unit of emissive area, expressed in lumens per cm². For surfaces obeying Lambert's cosine law, $E' = \pi b_0$. Spectral luminous flux at wavelength $\lambda = (K_{\lambda})(\Phi_{\lambda})$. Spectral luminous curve expresses this as a function of λ and is different for various sources.

One spherical candle emits 12.57 lumens.

Uniform point source of one candle emits 4π lumens.

TABLE 71.—RELATIVE MAGNITUDES OF UNITS OF BRIGHTNESS

Candle per cm ² (Stilb) 1 candle per cm ² = 1.	Lambert 3.142	Milli- lambert 3142.	Candle per in. ²	Foot- lambert 2919.
1 lambert = .3183	1.	1000.	2.054	929.
1 millilambert = .000318	.001	1.	.00205	929
1 candle per in. $^2 = .1550$.487	487.	1.	452.
1 foot-lambert = .000342	.001076	1.076	.00221	1.

¹ candle per ft.² = 3.142 foot-lamberts. 1 stilb = 1 candle per cm² 1 apostilb = 0.1 millilambert.

This standard of light intensity is the brightness of a blackbody at the temperature of freezing platinum. The blackbody used was made of thorium oxide and was immersed in the melting platinum; very pure platinum (99.997 percent) was used. Reproducible to 0.1 percent, the brightness was found to be 58.84 international candles per cm.² This Waidner-Burgess standard, taking the brightness of the blackbody at the freezing point of platinum as 60 candles per cm², was adopted by the International Committee on Weights and Measures in 1937 as the new unit of light intensity and was put into effect January. 1 and Measures in 1937 as the new unit of light intensity and was put into effect January 1, 1948.31

The light from the blackbody at the temperature of freezing platinum is not greatly different in color from that given by carbon-filament standard lamps, as the color temperature of the lamp filaments is about 2100 °K, whereas the freezing point of platinum is 2042 °K. In this range of color the new unit of intensity is about 1.9 percent smaller than the old international candle, and sources of light are correspondingly given higher numerical ratings. However, when light sources of higher color temperature are compared with these basic standards, the accepted spectral luminosity factors give slightly lower values for the "whiter" sources than were obtained by visual measurements when the present international units were established. The difference between the two scales therefore grows less as the color temperature of the sources measured is increased, and for sources in the range of ordinary vacuum tungsten-filament lamps, around 2500 °K, the new scale crosses the international scale as used in the United States. Furthermore, when the range of standards was extended to gas-filled tungsten-filament lamps and other new types, the measurements were made by methods nearly in accord with the luminosity factors. Consequently the present ratings of tungsten-filament lamps in this country will be practically unaffected by the change, no type being changed by more than 1 percent.

TABLE 73.—SYMBOLS AND DEFINING EXPRESSIONS FOR PHOTOMETRY*

Designation Luminous flux	Symbol and defining equation	Unit Lumen	Proposed term
Lummous mux	1	Lumen	*****
Luminous intensity (candlepower)	$I = \frac{dF}{d\omega}$	Candle	c
Illumination †	$E = \frac{dF}{dA}$	Foot-candle Lux, Phot	ft-c lx, ph
Quantity of light	Q = F dt $t = time in hours$	Lumen-hour	lm-hr
Brightness ‡	$B = \frac{dI}{dA\cos\phi}$	Candle per unit area Stilb	$c/in.^2$ c/cm^2 $sb = c/cm^2$

The mechanical equivalent of light m is the least amount of mechanical energy in watts necessary to produce 1 lumen. This energy must, of course, produce light at the wavelength ($\lambda=0.556\mu$) where the average eye has its maximum sensitivity. Suppose B_0 is the brightness of a blackbody in candles per cm², then

$$B_0 = \frac{1}{m\pi} \int \left[c_1 \lambda^{-5} / (\exp(c_2/\lambda T) - 1) \right] K_{\lambda} d\lambda$$

where K_{λ} is the relative luminosity factor (Table 58). The integration is taken over the visible spectrum. The constant c_1 is to be so chosen as to give the energy per unit wavelength for a 2π solid angle, then m is the mechanical equivalent of light. Using the new value of the brightness of the blackbody at the platinum point (60 candles/cm²) and making the above calculation for the platinum point (2042.16 °K) using the new radiation constants (Table 53), gives m = 0.00147 watts/lumen. The reciprocal of this, 680 lumens/ watt, is the value generally given.

Equivalents and conversion factors for photometry.—The total flux from a source of unit spherical candlepower is 12.57 lumens.

> $1 \text{ lux} = 1 \text{ lumen incident per m}^2$ 1 phot = 1 lumen incident per cm² 1 foot-candle = 1 lumen incident per ft²

³⁰ Wensel, Roeser, Barbrow, and Caldwell, Nat. Bur. Standards Journ. Res., vol. 6, p. 1103, 1931. 31 Nat. Bur. Standards Circ. C-459, 1947.

^{*} For reference, see footnote 26, p. 87. † See Table 66. ‡ See Table 71.

TABLE 74.—APPARENT CANDLEPOWER OF DISK OR LINE SOURCE AT VARIOUS DISTANCES

	d = distance; $L = length or diameter of (disk) source$.										
	Candlepow	er, percent		Candlepower, percent							
d/L	Line	Disk	d/L	Line	Disk						
5	99.31	99.0	12	99.88	99.83						
10	99.83	99.74	15	99.94	99.90						
			20	99.98	99.95						

TABLE 75.—SPECTRAL LUMINOUS INTENSITIES

From Planck's equation and constants given in Table 53 and the relative luminosity factors (Table 58) the spectral luminous intensities were calculated for a series of wavelengths $(d\lambda = .01\mu)$, and for a number of temperatures and then reduced to equal total luminous intensities. These relative values for the brightness (photometric) of the black-body at different temperatures hold for measurements made with a field brightness above about 1 millilambert but do not hold for measurements made for low field brightness. Some time ago some engineers engaged in photometry found a need for agreement for a standard for low intensity. It was then decided ³² to use a source at a color temperature of 2360 °K. Recently ³³ the International Committee on Weights and Measures adopted the blackbody at the freezing point of platinum (2042°K) as the standard for low-intensity brightness in photometry.

	2000	2042.16	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
λinμ	°K	°K *	°K	°К	°K	°K						
.38	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
.39	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
.40	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00001
.41	,00000	.00000	.00001	.00001	.00001	.00001	.00001	.00001	.00002	.00002	.00002	.00002
.42	.00002	.00002	.00002	.00003	.00004	.00004	.00005	.00006	.00007	.00007	.00008	.00009
.43	.00008	.00008	.00009	.00011	.00013	.00015	.00018	.00020	.00023	.00025	.00028	.00030
.44	.00019	.00021	.00023	.00028	.00032	.00037	.00042	.00047	.00053	.00058	.00064	.00069
.45	.00041	.00044	.00049	.00057	.00065	.00074	.00083	.00093	.00102	.00111	.00121	.00131
.46	.00083	.00088	.00096	.00111	.00125	.00140	.00155	.00171	.00186	.00202	.00217	.00233
.47	.00157	.00167	.00180	.00204	.00228	.00252	.00276	.00301	.00325	.00349	.00372	.00396
.48	.00297	.00313	.00336	.00374	.00413	.00452	.00490	.00528	.00565	.00602	.00638	.00673
.49	.00544	.00570	.00606	.00667	.00728	.00786	.00845	.00902	.00957	.01011	.01063	.01114
.50	.01024	.01067	.01125	.01223	.01318	.01411	.01501	.01587	.01670	.01750	.01827	.01901
.51	.01915	.01983	.02075	.02229	.02376	.02517	.02652	.02780	.02903	.03019	.03131	.03237
.52	.03217	.03313	.03442	.03654	.03853	.04042	.04220	.04387	.04545	.04694	.04834	.04967
.53	.04609	.04721	.04871	.05112	.05336	.05544	.05739	.05919	.06087	.06243	.06388	.06524
.54	.05972	.06086	.06236	.06475	.06692	.06890	.07072	.07238	.07390	.07530	.07659	.07776
.55	.07240	.07341	.07473	.07678	.07861	.08022	.08168	.08297	.08412	.08517	.08613	.08695
.56	.08356	.08432	.08528	.08675	.08800	.08905	.08996	.09073	.09139	.09198	.09243	.09284
.57	.09167	.09207	.09255	.09323	.09374	.09409	.09433	.09449	.09457	.09459	.09455	.09447
.58	.09545	.09544	.09539	.09518	.09488	.09449	.09405	.09358	.09307	.09256	.09203	.09150
.59	.09408	.09366	.09307	.09203	.09098	.08992	.08889	.08786	.08686	.08591	.08498	.08409
.60	.08833	.08757	.08654	.08483	.08319	.08163	.08013	.07873	.07739	.07611	.07491	.07379
.61			.07658	.07443	.07243	.07056	.05595	.05432	.06570	.06428	.05012	,04893
.62	.06663	.06554	.06409	.06178	.03966	.04322	.03393	.04018	.03281	.03765	.03654	.03552
.63 .64	.05143	.05039	.03547	.04689	.03204	.03061	.02930	.02813	.02708	.02610	.02522	.03332
.65	.02523	.02455	.02366	.02228	.02107	.02000	.01904	.01818	.01741	.01671	.01608	.01550
.66	.01576	.01528	.01466	.01371	.01287	.01215	,01150	.01092	.01041	.00995	.00953	.00916
.67	.00902	.00872	.00833	.00773	.00721	.00677	.00637	.00602	,00571	.00544	.00519	.00497
.68	.00521	.00502	.00477	.00440	.00408	.00381	.00357	.00335	.00317	.00300	.00285	.00272
.69	.00272	,00262	.00248	.00227	.00209	.00194	.00181	.00169	.00159	.00150	.00142	.00135
.70	.00147	.00141	.00133	.00121	.00111	.00102	.00095	.00088	.00083	.00078	.00073	.00069
.71	.00081	.00077	.00073	.00066	.00060	.00055	.00051	.00047	.00044	.00041	.00039	.00037
.72	.00044	.00041	.00039	.00035	.00032	.00029	.00026	.00024	.00023	.00021	,00020	.00019
.73	.00023	.00022	.00020	.00018	.00016	.00015	.00014	.00013	.00012	.00011	.00010	.00009
.74	.00012	.00011	.00010	,00009	.00008	.00007	.00007	.00006	.00006	.00005	.00005	.00005
.75	.00006	.00006	.00005	.00005	.00004	.00004	.00003	.00003	.00003	.00003	.00002	.00002
.76	.00003	.00003	,00003	,00002	.00002	,00002	.00002	.00002	.00001	.00001	.00001	.00001
		.0-000	.00000	,00000	,0000	,	,					
Relative												
light	77.	1 000	1 100	2 200	2 0 17	(170	0.202	12.010	1076	27 504	37,661	50.372
output:	.775	1.000	1.399	2.398	3.927	6.178	9.383	13.810	19.765	27.594		
λ max:	.5825	.5820	.5805	.5785	.5770	.5755	.5745	.5730	.5715	.5705	.5695	.5685

 ^{**}Weaver, K. S., Journ. Opt. Soc. Amer., vol. 38, p. 278, 1949; vol. 40, p. 60, 1950.
 * Terrien, Journ. Opt. Soc. Amer., vol. 39, p. 888, 1949.
 * Platinum point.

TABLE 76.-BRIGHTNESS OF BLACKBODY, CROVA WAVELENGTH, MECHANICAL EQUIVALENT OF LIGHT, LUMINOUS INTENSITY, AND LUMINOUS EFFICIENCY OF BLACKBODY

The values of the luminous intensity I in candles and the luminous flux F in lumens have been calculated using Planck's equation and the values of the luminosity factors K_{λ} given in Table 58. The basis of these values is the value of the Waidner-Burgess standard of light intensity.

The following equation is used:

$$B_0 = \frac{1}{m\pi} \int J(\lambda T) K_{\lambda} d\lambda,$$

where $B_0 = 60$ candles per cm², T = 2042.16 °K, and m = the minimum mechanical equiva-

lent of light expressed in watts per lumen.

The radiation constants (Table 53) used in these calculations and the value given in the table as the brightness of the blackbody at this temperature (2042.16) give for the reciprocal of the mechanical equivalent of light 680 lumens per watt. This means that 1 watt of radiated energy at about $\lambda = 0.555\mu$ will give 680 lumens.

White light has sometimes been defined as that emitted by a blackbody at a temperature

of 6000 °K.

The crova wavelength for a blackbody is that wavelength λ_c , at which the spectral luminous intensity varies at the same rate as the total luminous intensity varies for a change in the temperature.

Temperature	Total intensity	Brightness			Crova wave-
°K	watts/cm2 *	candles/cm ²	Lumens/cm ²	Lumens/watt	length
1200	11.16	.0140	.04	003s	
1400	21.79	.245	.77	.035	
1600	37.18	2.145	6.74	.18	
1700	47.38	5.28	16.57	.35	.584μ
1800	59.55	11.78	37.00	,62	
1900	73.92	24.23	76.11	1.03	
2000	90.76	46.47	1.460×10^{2}	1.61	.578
2042.16	98.65	60.00 †	1.885×10^{2}	1.91	
2200	1.3288×10^{2}	1.439×10^{2}	4.520×10^{2}	3.40	
2500	2.2158×10^{2}	5.628×10^{2}	1.7679×10^{3}	7.98	.572
2700	3.0146×10^{2}	1.186×10^{3}	3.726×10^{8}	12.36	.072
3000	4.5946×10^{2}	3.021×10^{3}	9.491×10^{8}	20.7	.568
3500	8.5122×10^{2}	1.031×10^{4}	3.183 × 104	37.4	.564
4000	1.4521×10^{3}	2.525×10^4	7.932 × 10 ⁴	54.6	.562
4500	2.3260×10^{3}	5.158×10^4	1.620×10^{5}	69.7	.560
5000	3.5453×10^{3}	9.164×10^4	2.879×10^{5}	81.2	.558
5500	5.1906×10^{3}	1.4705×10^{5}	4.620×10^{5}	89.0	.557
6000	7.3514×10^{3}	2.186×10^{5}	6.868×10^{5}	93.4	.556
			9.629×10^{5}	95.1	.555
6500	1.0126×10^4	3.065×10^{5}		94.6	.555
7000	1.3619×10^4	4.103×10^{5}	1.289×10^6	92.7	.333
7500	1.7948×10^4	5.294×10^{5}	1.663×10^{6}		.554
8000	23234×10^4	6.630×10^{5}	2.083×10^{6}	89.6	.554
10,000	5.6724×10^4	1.3221×10^{6}	4.153×10^{6}	73.2	

^{*} Calculated, $\sigma = 5.6724 \times 10^{-12}$, watts cm⁻² deg⁻⁴. † Brightness, Waidner-Burgess standard. See Table 69.

An optical pyrometer is a device for measuring the temperature of a high-temperature radiating body by comparing its brightness for a selected wavelength interval (within the visible spectrum to be sure) with that of some standard selected source. The wavelength, or wavelength interval, is generally selected by the use of a red glass in the eyepiece. This gives rise to the term effective wavelength. (See Table 562.) The effective wavelength of a monochromatic screen for a definite temperature interval has been defined as the wavelength for which the relative brightness, as calculated from Wien's equation for this temperature interval, is the same as the ratio of the integral luminosities for these two temperatures, as measured through the red screen.

Various devices are used to make these comparisons, and different devices have been used as the comparison source. It seems that most users of the optical pyrometer today prefer to use the disappearing-filament type, which has a small filament as the comparison

source.

The optical pyrometer as generally calibrated gives the true temperature of blackbodies but not of other radiators. If one radiating characteristic of any other radiator—e.g., its emissivity—is known, true temperatures can be determined of such radiators, e.g., an incandescent tungsten filament, by the use of the optical pyrometer. The emissivities of a number of sources are given in Table 78.

The true temperature T of a non-blackbody may be determined from its brightness temperature, S_{λ} (the apparent temperature), and its emissivity c_{λ} from the following

relation:

$$\frac{1}{T} - \frac{1}{S_{\lambda}} = \frac{\lambda \log c_{\lambda}}{c_2 \log c}$$

For some calculated values see Table 79.

This entire subject is extensively treated in "Temperature, Its Measurement and Control," a report of a symposium on this subject published by the Reinhold Publishing Co. in 1941.

TABLE 78.—NORMAL SPECTRAL EMISSIVITIES FOR SOME ELEMENTS AND ALLOYS

The emissivity, spectral or total, of any non-blackbody shows the relation between the intensity of its radiation and that of the blackbody when both are at the same temperature. Spectral emissivities have been measured for a number of materials for different temperatures and different wavelength intervals and are shown in Part 1.

Part 1.—At temperatures generally above 1000 °K 84

Room temperature values are given in a few instances where they, along with values at higher temperatures, form a connected series and where the values given for the higher temperatures depend on those given for low temperatures.

т	emperature	Red	Red		n	Blu	ie	Remarks
Material Carbon	°K 1600 2500	λ in μ .66 .66	.89 .84	λinμ	e_{λ}	λinμ	e_{λ}	
Copper	1275 1350 1375 1450 1500	.66 .66 .66 .66	.105 .120 .150 .140 .13					Solid Solid Liquid Liquid Liquid
Iron	1000 1480-1500	.66 .65	.27 .37					Solid Solid and liquid
Konal	1200	.665	.43					
Molybdenum	300 1300 2000 2750	.665 .665 .665	.420 .378 .353 .332			.467 .467 .467 .467	.425 .395 .380 .365	
Nickel	1200-1650	.665	.375	.535	.425	.460	.450	Solid
Tantalum	300 1400 2100 2800	.665 .665 .665	.493 .442 .415 .390			.467 .467 .467 .467	.565 .505 .460	

³⁴ Worthing, A. G., Temperature radiation emissivities and emittances, Temperature, Its Measurement and Control, p. 1184, Reinhold Publishing Co., 1941.

Part 2.—Emissivity of a number of metals at their melting point 35

 $(c_{\lambda} \text{ expressed in percent})$

	$\lambda = 0.55 \mu$		$\lambda = .65\mu$			λ=	.55μ	$\lambda = .65\mu$	
Metal	Solid	Liquid	Solid	Liquid	Metal	Solid	Liquid	Solid	Liquid
Beryllium	61	81	61	61	Niobium	61		49	40
Chromium	53		39	39	Palladium	38		33	37
Cobalt			36	37	Platinum	38		33	38
Copper		36	10	15	Rhodium	• •	• •	29	30
Erbium		30	55	38	Silver		<35	4	7
Gold	<38	<38	14	22	Thorium			36	40
Iridium			30		Titanium	75	75	63	65
Iron			37	37	Uranium	77		54	34
Manganese			59	59	Vanadium	29		35	32
Molybdenum		• •	43	40	Ytterbium			35	35
Nickel	44	46	36	37	Zirconium	• •	• •	32	30

⁸⁵ International Critical Tables.

TABLE 78.—NORMAL SPECTRAL EMISSIVITIES FOR SOME ELEMENTS AND ALLOYS (concluded)

Part 3.- Emissivities of tungsten 36

Tempera						Wavel	ength						Total emis-
ture °K	.30μ	.38	.467	.665	.8	1.0	1.5	1.8	2.0	2.5	3.0	4.0	sivity
1200	.503	.495	.482	.452	.428	.390	.275	.177	.148	.127	.116	.100	.138
1500 1800	.502	.492	.476 .472	.445	.422	.385	.280	.191	.164	.145	.132	.115	.192
2000	.498	.485	.469	.435	.414	.380	.287	.215	.191	.170	.158	.135	.259
2200 2500	.496	.482	.466	.431	.410	.378	.290	.225	.201	.180	.167 .180	.144	.278
2600	.492	.476	.460	.423	.403	.373	.297	.245	.222	.200	.184	.159	.309
2700 2800	.491 .490	.475 .473	.459 .458	.421	.401	.372	.298	.249	.228	.205	.188	.163	.315
2900	.489	.472	.456	.417	.398	.370	.300	.259	.239	.215	.197	.170	.329
3000 3200	.488	.470	.455 .452	.415	.396	.368 .366	.305	.273	.255	.231	.208	.180	.341
3400	.484	.465	.450	.407	.388	.363	.308	.283	.265	.241	.216	.186	.348

³⁰ Forsythe, W. E., and Adams, E. Q., Journ. Opt. Soc. Amer., vol. 35, p. 108, 1945.

For $\lambda = 1.27 \mu$ the spectral emissivity is constant and equals 0.335.

Part 4.—Emissivities of some metals specially prepared by heat-treating and out-gassing ³⁷

Element	λinμ	Emis- sivity	Tempera- ture °K	Element)	λinμ	Emis- sivity	Tempera- ture °K
Chromium	.66	.334	1050-1560	Palladium		.311	1200-1400
Cobalt		.327	1240-1378			.291	1200-1400
		.342	1378-1450	Platinum		.295310	1200-1800
Iron a		.344	below 1178	Rhodium		.242	1300-2000
γ		.325	1178-1677	Tantalum		.439384	1200-2400
δ		.337	1677-1725	Thorium		.380	1300-1700
Molybdenum		.382	1300-2100	Tungsten		.46	1200 2200
Nickel		.350	1200-1400	Uranium6	5605	.453	1180-1320
Niobium		.374	1300-2200			.416	1325-1370

³⁷ Private communication from Wahlin, taken from data by Wahlin and Knop, L. V. Whitney, Wahlin and Wright, Worthing, Fiske, Phys. Rev.

TABLE 79.—CORRECTIONS IN °C TO ADD TO BRIGHTNESS TEMPERATURE READINGS, FOR DIFFERENT EMISSIVITY, TO OBTAIN THE TRUE TEMPERATURE *

Emis-	Pyron	neter using	red light,	wavelengtl emperature:	h, λ = .665 s degrees h	μ , and $c_2 =$ Kelvin, of	= 14380μ°	K at observ	ved
sivity	1000	1100	1200	1300	1400	1500	1600	1700	1800
.10	119.2	145.9	175.8	208.9	245.3	285.1	328.6	375.7	426.8
.20	80.4	98.1	117.7	139.3	162.8	188.5	216.3	246.2	278.4
.30	59.0	71.8	85.9	101.4	118.3	136.7	156.5	177.7	200.5
.40	44.2	53.8	64.3	75.8	88.3	101.8	116.4	132.0	148.6
.50	33.1	40.2	48.0	56.5	65.8	75.8	86.5	98.0	110.2
.60	24.2	29.3	35.0	41.2	47.9	55.1	62.9	71.1	79.9
.70	16.8	20.3	24.2	28.5	33.1	38.0	43.4	49.0	55.1
.80	10.4	12.6	15.1	17.7	20.5	23.6	26.9	30.3	34.1
.85	7.5	9.3	10.9	12.6	14.9	17.1	19.5	22.0	24.7
.90	4.9	5.9	7.1	8.3	9.6	11.0	12.6	14.2	15.9
.95	2.4	2.9	3.4	4.0	4.7	5.3	6.1	6.9	7.7

^{*} The values given in this table also give the correction for a window having a transmission given in column 1 for different temperatures of the source when this window is used between the source and the pyrometer.

TABLE 79.—CORRECTIONS IN °C TO ADD TO BRIGHTNESS TEMPERATURE READINGS, FOR DIFFERENT EMISSIVITY, TO OBTAIN THE TRUE TEMPERATURE (concluded)

	Pyromete	er using re		velength, λ eratures de			4380μ °K	at observed
Emis- sivity	1900	2000	2200	2400	2600	2800	3000	3600
.10	481.9	541.2	673.0	823.9	995.2	1189.5	1408.3	2237.8
.20	312.9	349.8	430.7	521.9	623.8	737.2	862.5	1317.6
.30	224.8	250.6	307.0	370.1	440.0	517.2	601.6	902.4
.40	166.3	185.2	226.1	271.7	330.4	377.0	436.9	648.0
.50	123.2	137.0	166.9	200.0	236.4	276.1	319.2	469.6
.60	89.3	99.2	120.6	144.2	170.1	198.3	228.9	334.6
.7 0	61.5	68.2	82.8	98.9	116.5	135.6	156.2	227.2
.80	38.0	42.1	51.1	60.9	71.6	83.3	95.9	138.9
.85	27.5	30,5	37.0	44.1	51.8	60.2	69.2	100.1
.90	17.7	19.7	23.8	28.4	33.3	38.7	44.5	64.2
.95	8.6	9.5	11.5	13.7	16.1	18.7	21.5	31.0

TABLE 80.—COMPUTATION OF TOTAL EMISSIVITY VALUES FOR VARIOUS GLASS SAMPLES AT LOW TEMPERATURES **

	Thick-	em	Appare:	у *		Compute nsmittar			mpera erenti			orrect missivi	
Sample	ness (mm)	500 °C	320 °C	100 °C	500	320	100	500	320	100	475	320	100
Fused quartz Corex D Nonex	1.96 3.40 1.57	.78 .80 .82	.80 .80 .82	.75 .76 .78	.266 .113 .145	.134 .041 .041	.023 .002 .004	19 49 31	8 18 12	1 2 1.5	.67 .91 .82	.76 .90 .87	.775 .83 .835

Dissipating of energy by lamp bulbs.—The bulb of a 120-volt 500-watt lamp dissipates 18.5 percent of the input energy to the lamp. About 10 percent is lost by radiation and 8.5 percent by conduction and convection by the surrounding air. The losses from other similar lamp bulbs probably agree with this.

TABLE 81.—RELATIVE EMISSIVITIES FOR TOTAL RADIATION

Emissive power of blackbody = 1. Receiving surface platinum black at 25° C; oxidized at $600 + {^{\circ}}$ C.

		Temperature, °C	
	200	400	600
Silver	.020	.030	.038
Platinum (1)	.060	.086	.110
Oxidized zinc	_	.110	_
Oxidized aluminum	.113	.153	.192
Calorized copper, oxidized	.180	.185	.190
Cast iron	.210	_	_
Oxidized nickel	.369	.424	.478
Oxidized monel	.411	.439	.463
Calorized steel, oxidized	.521	.547	.570
Oxidized copper	.568	.568	.568
Oxidized brass	.610	.600	.589
Oxidized lead	.631	_	_
Oxidized cast iron	.643	.710	.777
Oxidized steel	.790	.788	.787

For radiation properties of bodies at temperatures so low that the radiations of wavelength greater than 20 \mu or thereabouts are important, doubt must exist because of the possible and perhaps probable lack of blackness of the receiving body to radiations of those wavelengths or greater. For instance, see Tables 568 and 573 for the transparency of soot.

Barnes, B. T., Forsythe, W. E., and Adams, E. Q. Journ. Opt. Soc. Amer., vol. 37, p. 804, 1947.
 Assuming no radiation transmitted through sample from heater and no temperature gradient.
 Assuming all of sample at heater temperature.
 Between front and back surfaces.

TABLE 82.—TOTAL EMISSIVITY VALUES OF VARIOUS MATERIALS AT LOW TEMPERATURES *

Material	Condition	At 100°C	320°C	500°C
Alleghany alloy No. 66	Polished	.11		
Alleghany metal	No. 4 polish	.13		
Aluminum	Commercial sheet	.09		
Aluminum	Polish	.095		
Aluminum	Rough polish	.18		
Aluminum paint		.29		
Brass	Polished	.059		
Carbon	Rough plate	.77	.77	.72
Carbon, graphitized	Rough plate	.76	.75	.71
Chromium	Polished	.075		
Copper	Polished	.052		
Copper-nickel	Polished	.059		
Iron	Dark gray surface	.31		
Iron	Roughly polished	.27		
Lamp black	Rough deposit	.84		.78
Molybdenum	Polished	.071		
Nickel	Polished	.072		
Nickel-silver	Polished	.135		
Radiator paint, black		.84		
Radiator paint, bronze		.51		
Radiator paint, cream		.77		
Radiator paint, white		.79		
Silver	Polished	.052		
Stainless steel	Polished	.074		
Steel	Polished	.066		
Tin	Polished	.069		
Tin	Commercial coat	.084		
Tungsten	Polished coat	.066		
Zinc	Commercial coat	.21		
		·-·		

^{*} For reference, see footnote 38, p. 100.

TABLE 83.—PERCENTAGE EMISSIVITIES OF METALS AND OXIDES

500	600	70	00	800	900	1000	0 1	100	1200
85	85	8	6	87	87	88	8	38	89
_	_	-	_	98	97	95	Ģ	93	92
_	54	6	2	68	72	75	8	31	86
_	_	9	8	96	94	92	8	38	87
200	300	400	500	750		1200	1400	1600	1700
									1005
5.1	0.1	7.0	8.0	10.5	12.4	14.0	15.5	10.9	17.5
			_				_		
					37	71	69		30
53	4/	51	69	• •				• •	31
	85 - - 200 5.1 Fe ₃ O ₄	85 85 54 - 54 - 200 300 5.1 6.1 Fe ₃ O ₄ Mn ₃ O ₄ 63	85 85 8 54 6 - 54 6 - 9 200 300 400 5.1 6.1 7.0 Fe ₃ O ₄ Mn ₃ O ₄ TiO ₂ 63 52	85 85 86 - 54 62 - 98 200 300 400 500 5.1 6.1 7.0 8.0 Fe ₃ O ₄ Mn ₃ O ₄ TiO ₂ ThO ₂ 63 52 57	85 85 86 87 — — — 98 — 54 62 68 — 98 96 200 300 400 500 750 5.1 6.1 7.0 8.0 10.3 Fe ₃ O ₄ Mn ₃ O ₄ TiO ₂ ThO ₂ Y ₂ O ₃ 63 52 57 61	85 85 86 87 87 — — — 98 97 — 54 62 68 72 — 98 96 94 200 300 400 500 750 1000 — — — 486 5.1 6.1 7.0 8.0 10.3 12.4 Fe ₃ O ₄ Mn ₃ O ₄ TiO ₂ ThO ₂ Y ₂ O ₃ BeO 63 52 57 61 37	85 85 86 87 87 88 98 97 95 - 54 62 68 72 75 - 98 96 94 92 200 300 400 500 750 1000 1200 486 630 5.1 6.1 7.0 8.0 10.3 12.4 14.0 Fe ₃ O ₄ Mn ₃ O ₄ TiO ₂ ThO ₂ V ₂ O ₃ BeO NhO _x 63 52 57 61 37 71	85 85 86 87 87 88 8 98 97 95 9 54 62 68 72 75 8 98 96 94 92 8 200 300 400 500 750 1000 1200 1400 486 630 780 5.1 6.1 7.0 8.0 10.3 12.4 14.0 15.5 Fe ₃ O ₄ Mn ₃ O ₄ TiO ₂ ThO ₂ Y ₂ O ₃ BeO NbO _x V ₂ O ₃ 63 52 57 61 37 71 69	85 85 86 87 87 88 88 98 97 95 93 - 54 62 68 72 75 81 - 98 96 94 92 88 200 300 400 500 750 1000 1200 1400 1600 486 630 780 930 5.1 6.1 7.0 8.0 10.3 12.4 14.0 15.5 16.9 Fe ₃ O ₄ Mn ₃ O ₄ TiO ₂ ThO ₂ V ₂ O ₃ BeO NbO _x V ₂ O ₃ Cr ₂ O ₃ 63 52 57 61 37 71 69 60

^{*} As observed with total radiation pyrometer sighted on the platinum.

TABLE 84.—TOTAL RADIATION FROM BARE AND SOOT-COVERED NICKEL 30 (watts/cm²)

°K	400	500	600	700	800	900	1000	1200	1400
Soot-covered Ni Polished Ni initial heat " "after above	.0092	.032	.59 .079 .058	1.87 .166 .123	3 .31 .24	3 .55 .44	4.8 .91 .76	2.17	4.49 4.49

³⁹ Barnes, Phys. Rev., vol. 34, p. 1026, 1929.

TABLE 85.—CHARACTERISTICS OF TUNGSTEN **

room temperatures.

TABLES 85-102.—CHARACTERISTICS OF SOME LIGHT-SOURCE MATERIALS AND SOME LIGHT SOURCES

	MAT	RIALS, AND SOME LIGHT SOURCES	
	$\frac{ap}{L^p} \frac{a}{L}$	22222284444488888	
	n and was s	"	
	Rate of vaporization g cm ⁻² sec ⁻¹	3. 3. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	
	$\frac{T}{Tb} \frac{d(eff.)}{dT}$	1100 000 8800 1100 8800 1100 8800 1100 10	
	Luminous efficiency lumens/watt eff.	.09 .09 .20 .27 .71 .115 .118 .27 .27 .27 .27 .27 .27 .27 .27 .27 .27	
	$\frac{\mu p}{Lp} \frac{\mu}{L}$	7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	
	Total radiation intensity (watts/cm²) & n	00110 00495 00855 00856 00856 00856 00856 1730 1.63	
	$\frac{BP}{LP} \frac{B}{L}$	23.1 13.7 13.0 10.8 10.8 10.8 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9	
	seandraird lsmroN (sandles/cm²) "A	2.27 2.27 5.06 10.19 19.54 35.0 59.1 97.00 151.0 226.0 333 480 665 910	
	$\frac{d\rho}{Tb} \frac{T}{a}$	1.209 1.209	pp. 108-113, 1945
	Resistivity ‡ microhms-cm q		
	Thomson effect silovoroim esuse		Amer., vol. 35,
	stead oimotA leo O° mote-3	6.52 6.53 6.65 6.65 6.65 6.65 6.65 6.65 7.75 7.75	Soc. Amer
	Thermal conductivity watts cm °K	### ### ### ### ### ### #### #########	Opt.
	Relative lengths at different temperatures $L/L_{\rm 0}$		Q., Journ.
	Radiation temperature ${\bf x}_T$	@ \cup \cup \cup \cup \cup \cup \cup \cup	ams, E.
	$\Gamma_{\sigma}^{ m olor}$ temperature	1006 1108 11108 11210 11312 11312 11312 11312 11323 1132 11323 11323 11323 11323 11323 11323 11323 11323 11323 11323 113	and Adams,
	Brightness temperature S	22222222222222222222222222222222222222	, W. E.,
	Average luminous emissivity a ⁹	466666767674644444444444444444444444444	40 Forsythe,
15	Temperature oK	300 500 500 500 500 500 500 500	0#

SMITHSONIAN PHYSICAL TABLES

			1	`emperatur	e	Resis- tivity	Radia-		
°K	Emis	sivity .463μ	Bright- ness .665µ	Color °K	Radia- tion °K	μ-ohm- cm	tion watt/ cm ²	$\frac{Tdn}{ndT}$	Total emis- sivity
300	.493	.56							
1000	.459	.52	966						
1200	.450	.51	1149						
1400	.442	.50	1329						
1600	.434	.49	1506	1642	1062	67.6	7.3	4.80	.194
1800	.426	.48	1680	1859	1222	74.1	12.8	4.80	.213
2000	.418	.47	1851	2075	1390	80.5	21.2	4.80	.232
2200	.411	.46	2018	2288	1556	86.9	33.4	4.80	.251
2400	.404	.45	2180	2497	1730	92.9	50.7	4.80	.269
2600	.397	.44	2339	2705	1901	99.1	7 5	4.80	.287
2800	.390		2495	2911	2080	105.0	106	4.80	.304
3000	.384		2647						
3300 mp	.375		2870						• • • •

⁴¹ Worthing, A. G., Phys. Rev., vol. 28, p. 190, 1926.

TABLE 87 .- RADIATION AND OTHER PROPERTIES OF MOLYBDENUM *

				emperatu	re	Resis- tivity	Bright- ness	Radia- tion in-	Lumi- nous
	Emis	sivity	Bright-		Radia-	μ-ohm-	normally candles/	tensity watts/	efficiency lumens/
°K	.665μ	.475µ	ness S _{.665μ}	Color	tion	cm	cm ²	cm ²	watt
			°K	°K	°K				
273	.420	.425				5.14			
1000	.390	.403	958	1004	557	23.9	.0001	.55	
1400	.375	.393	1316	1411	864	35.2	.089	3.18	.093
1600	.367	.388	1489	1616	1024	41.1	.7 65	6.30	.40
1800	.360	.383	1658	1823	1187	47.0	4.13	11.3	1.22
2000	.353	.379	1824	2032	1354	53.1	15.9	19.2	2.75
2200	.347	.375	1986	2244	1523	59.2	48.5	30.7	5.28
2400	.341	.371	2143	2456	1693	65.5	123	47.0	8.70
2600	.336	.368	2297	2672	1866	71.8	270	69.5	13.0
2800	.331	.365	2448	2891	2039	78.2	540	98	18.4
2895	.328	.363	2519	2997	2122	81.4	730	116	

^{*} For reference, see footnote 41, above.

TABLE 88.—RELATION BETWEEN BRIGHTNESS TEMPERATURE AND COLOR TEMPERATURE FOR VARIOUS SUBSTANCES

Brightness	Untreated Nernst											
tempera- ture	carbon	Gem	Platinum	glower	Osmium	Tantalum	Tungster					
1400°K	1414		1568°K	1538	1444	1507	1492					
1500	1515		1692	1642	1562	1631	1607					
1600	1616	1620	1821	1747	1680	1758	1723					
1700	1718	1735	1952	1852	1 7 99	1883	1841					
1800	1820	1852	2086	1954	1919	2010	1961					
1900	1923	1962		2053	2045	2137	2082					
2000	2028	2064		2146	2168	2265	2206					
2200	2240	2255		2310	2427	2500	2457					
2400					2688	2785	2718					
2600							2988					
3000							3564					

TABLE 89.—COLOR MINUS BRIGHTNESS TEMPERATURE FOR CARBON

Brightness temp. °K	. 1600°	1700°	1800°	1900°	2000°	2100°	2200°
Color—brightness							

TABLE 90.—RELATIVE BLUE BRIGHTNESS, B, AND BRIGHTNESS IN CANDLES PER CM 2 C, OF SOME INCANDESCENT OXIDES AT VARIOUS RED (0.665 μ) BRIGHTNESS TEMPERATURES, S $_{\lambda}$

3 <i>C</i> .9 47.0 .3 74
2 71
.0 /4
.5 78
.0 62
.0 88
.5 68
.0 71
.0 64
.5 64
.6 63
.3 63
.9 75
.0 30
.3 63
.6 103
.4 104
.2 79
.4 90
.7 93
.5 93
.5 56
.3 56
08805

TABLE 91.—COLOR TEMPERATURE, BRIGHTNESS TEMPERATURE, AND BRIGHTNESS OF VARIOUS ILLUMINANTS

Source	T_{σ}	$S(\lambda = .665)$	Brightness c/cm ²
Gas flame:			
Batswing	2160		
Candle shape about 10 cm high	1875		
Hefner as a whole	1880		
Candle:			
Sperm	1930		
Paraffin	1925		
Pentane 10-cp. std	1920		
Cerosene:	•		
Flat wick	2055	1500	1.2
Round wick	1920	1530	1.5
wpc carbon	2080	2030	54.9
.1 wpc treated carbon	2165	2065	70.6
2.5 wpc gem	2195	2130	78.1
wpc osmium	2185	2035	60.8
wpc tantalum	2260	2000	53.1
Acetylene as a whole	2380	2000	00.1
One spot	2465	1660	6.6
Mees burner	2360	1730	10.8
.25 wpc tungsten	2400	2150	125
2.3 wpc Nernst	2400	2320	258
Sun:	2100	2020	200
Outside atmosphere	6500		224000
At earth's surface	5600		165000
Clear sky	3000		.4
Moon			5
Welsbach mantle			9.0

arc watt

60.5

61.5

68.5

Low intensity	and high	intensity carbon as	cs	
Positive carbon	Amperes	Arc † volts		Lumens per arc watt
Low-intensity carbons	20			140
10 mm low intensity	20	55 55		14.9 15.7
13 " " "	32 40	55 55		16.3
High-intensity projection carbons	40	33		10.0
6 mm "suprex"	40	37		28.6
7 " "	50	37		29.7
8 " "	70	40		34.6
9 rotating positive	85	58		26.4 32.5
11 " " " "	115 125	55 68		32.3 27.0
13.0	150	78		35.0
	170	75		33.6
16 " " "	225	75		32.2
High-intensity searchlight carbons				
10 mm rotating positive	100	75		32.3
12 " " "	120	75		33.0
10	150	78 90		32.0 31.5
16 " " "	195	90		31.3
Vertical Carbons	trim ac an	d de flame ares		
		Arc	Upper	Lumens per
Upper Lower	Amperes	volts	polarity	arc watt
½" WF Photo ‡ Photo ‡	40	55 ac	+	39
Photo ‡ Photo ‡	40	55 ac 55 dc	1	55
"	40	55 dc	<u> </u>	50
½" 2F § "	40	55 dc	_	44
-	1 1 1			
Alternating-ci	irrent nigh	-intensity carbon a	rcs	T
		Arc		Lumens per

volts

26 ac

29 ac

26 ac

Amperes

65

80

95

TABLE 93.—EFFICIENCIES OF SOME EARLY INCANDESCENT LAMPS OF ABOUT 60-WATT SIZE 12

	Lumens per watt	Life
Edison's early carbon lamp	. 1.8	600 hr
Treated carbon lamp		600
Gem lamp		600
Nernst glower	. 5.0	600
Tantalum lamp	. 4.9	900
Osmium lamp		
Tungsten lamp (1907)		1,000
Tungsten lamp (1949) coiled coil	. 14.0	1,000

⁴² Forsythe, W. E., and Adams, E. Q., Bull. Denison Sci. Lab., vol. 32, p. 70, 1937.

Carbon

 $7 \, \mathrm{mm}$

8 mm

9 mm

^{*} Data furnished by W. W. Lozier of National Carbon Co. † All direct-current power. ‡ "National" white flame photographic carbons, rare earth cored. § "National" 2F carbon, neutral cored.

TABLE 94.—INCREASE IN TUNGSTEN LAMP EFFICIENCY OVER A PERIOD OF YEARS

Lamp	Date measured	Temperature °K	Efficiency in lumens per watt
100-watt squirted filament	1908 †	2.355	8.8
100-watt drawn wire		2,360	9.3
100-watt drawn wire		2,475	10.3
100-watt gas-filled	1921	2,740	12.6
100-watt gas-filled	1932	2,800	14.3
100-watt gas-filled	1936	2,845	14.9
100-watt gas-filled *	1936	2,855	15.5
100-watt gas-filled * coiled coil	1948	2,860	16.3

TABLE 95.—TEMPERATURE AND EFFICIENCY OF SOME TUNGSTEN-FILAMENT LAMPS *

			General	service		Max. b	270	
Lamp watts	Li	fe (hrs)	lpw		Temperature °K	bulb Temp	†	Base † Temp. °C
6 ‡ 25 ‡ 40 60 coiled coil 100 coiled coil 500 1000		1500 1000 1000 1000 750 1000 1000	6.9 10.5 11.9 14.0 16.3 20.3 21.0 22.0		2400 2585 2750 2770 2850 2940 3000 3050	34 43 127 122 127 198		31 § 42 105 90 94 100
Lamp Street series	Volts	Curren 6.6 6.6 20.0 20.0	t Watts	Life (hrs) 2000 2000 2000 2000	Lumens 1000 6000 6000 15,000	1pw 16.0 19.2 20.1 21.0	Temp. °K 2870 2940 2995 3010	Candle- power ¶
CX	120 120		60 500	500 500		13.6 21.8	2840 3030	
Studio or airport lighting	120 120		5000 10,000	75 75		32.7 32.7	3350 a 3350 a	
Floodlight	120 120		500 1500	800 800		17.6 20.8	2925 3170	
		Area	Projection	on lamp	s			
Monoplane	120	151	500	50	13,250	26.5	3270 *	1545
Biplane	120 120	65 135	500 1000	25 25		26.0 27.6	3270 * 3360 *	1700 4045
Coiled coil 4 seg. 3 seg. 3 seg.	120 120 120	19 41 55	50 100 200	50 50 50	790 1850 4240	15.8 19.2 21.2	2920 2950 2985	80 185 390
Photoflood			Photograp					
No. 1 R2 4	120 120 120		250 500 1000	2 6 10	8650 33,500		3430 ° 3350 ° 3410 °	
		Two	large lam ı	s (mon	_			
10 kw. 50 kw.	120 120	83.3 416	10,000 50,000		280,000 1,400,000	28 28	3300 3300	33,000 166,000

^{*} Data furnished by W. E. Forsythe and E. M. Watson, of the General Electric Co. † These values furnished by W. H. Fisher, Nela Park. ‡ Vacuum lamps, all others are gas-filled. \$ Temperature at junction of base and bulb. || Area of coil in mm². \$ Candlepower in direction used. \$ Color temperature.

(continued)

TABLE 95 .- TEMPERATURE AND EFFICIENCY OF SOME TUNGSTEN-FILAMENT LAMPS (concluded)

Lamp for type B Kodachrome

Lamp Volts 120 120 120	Current Wat 50 150 500	0 60 0 100	Lumens 13,300 41,000 138,000	lpw	Temp. *K 3200 a 3200 a 3200 a	Candle- power ¶
Sewing machine 120 Sign (clear) 120 Photocell exciter 10 10 8.5 8	Some	small lamps	122 80 1000 1600 680 160 30	7.5 8.0	2345 * 2400 * 3100 * 3200 * 2660 * 2935 *	
Lamp Flashlight PR2 Flashlight PR3 Flashlight 136 Flashlight 31 Hand lantern 248 Flashlight 605 Radio Panel No. 44 Grain-o-wheat surgical Christmas tree	3.57 1.25 6.15 2.50 6.15 6.15	Cand powe .8(1.55 .19 2.15 1.45 4.2 .6(.02 4.7	er) 5 5 5 5	Watts per spherical candle 1.45 1.17 4.10 .87 1.35 .88 1.5 6.0 1.0		Temp. °K 2735 2770 2550 2745 2620 3030 2400 2115 2625
	Auto	nobile lamps	5			
Rear, instrument bd	13.5 6.9 6.75	2.9 2.9 6.3 14.4 6.3		1.32 1.27 1.01 .80 .99		2820 2810 2915 2980 2870

TABLE 96 .- SOME CHARACTERISTICS OF FLUORESCENT CHEMICALS *

Phosphor	Lamp color	Exciting range,† A	Sensitivity peak, A	Emitted range, A	Emitted peak, A
Calcium tungstate	blue	2200-3000	2720	3100-7000	4400
	blue-white	2200-3200	2850	3600-7200	4800
Zinc silicate	green	2200-2960	2537	4600-6400	5250
Calcium halophosphates	white	2000-2600	2500	3500-6800	4800, 5800
Cadmium silicate	yellow-pink	2200-3200	2400	4800-7400	5950
Cadmium borate BL phosphor BaSi ₂ O ₅ with		2200-3600	2500	5200-7500	6150
Pb	blue ultra	2200-2700	2500	3100-4100	3500
Ce and Mn	red	2200-3400	3130	5600-8100 plus UV	6500

^{*} Data furnished by H. C. Froelich, of Nela Park. † 2200 A was lower limit of measurements.

TABLE 97.—ENGINEERING DATA ON SOME LAMPS OF THE INTEGRAL, ALL-GLASS SEALED BEAM TYPE *

						Approx.	spread		
				Design	Approx.	to 10% max. (degrees)	max. ees)	Fila- ment	
Number of	Bulb	Design volts	Watts	lite (hrs)	max.7 beam cp.	Hor.	Vert.	ing ing	Service
4015	PAR-36	6.2	35	300	8,000	40	vo v	ON CONTRACT	Auto fog Airolane landing
4509 4510	: 2 :	6.4	255	300	000,01	185	20 44	None	Auto utility
4515	: 6	4.0	000	000 6	10500	r 02	, 05	None	General service spot
150PAR/SP 150PAR/FL	PAR-38	113	130	7,000	3,400 ‡	209	09		General service flood
4012A	PAR-46	6.2	35	300	8,800	040	2002	None None	Auto fog (amber)
4013	: :	12.8	322	300	8,000	000	240	C	Auto fog (amber)
4435	: :	\$ %	30	100	85,000	17	9 [1	M &	Auto spot Airplane landing
4523	: 3	49	30	100	000,06	5.	4	æ	Auto spot
4537	*	13	100	25	200,000	12	rv č	A.W	Airplane landing
4570	3	28	150	300	30,000	20	10	N one	Airpiane taxinus
4030	PAR-56	6.4	45/35	300/500	32,000 \$	30	9:	None	Sealed beam headlam
4430	: :	30.8	20/40	300/300	200.000	12	6	:	Locomotive headlamp
250PAR	:	12.5	250	100	80,000	36	7	;	Airport approach
4560	PAR-64	28	009	25	600,000	12	00	A	Airplane landing Flashing signal
300FAR64/2		611	200	700	200,002	:			

du

† Individual lamps may * Data furnished by Application Engineering Department, Lamp Division, General Electric Co., Nela Park, Cleveland, Ohio. vary from the values listed.

‡ Approx. initial mean cp. in 10° cone.

\$ Driving beam (major filament).

A, 120° cylindrical shield to side of filament. B, Hemispherical shield in front of filament masking all direct light. C, 90° spherical shield in front of filament masking all upward direct light.

TABLE 98.-MERCURY ARCS *

			~		d	_			175
	A-H9 3000 3165	120,000	37.8	5000 T-9}	clear s.c. term any	55	535	9.3	230-460-575 850 90 8 min 7 min
sdu	A-H6 1000 1085		59.8	75 T-2	clear %%" sleeve horiz.	34 110 2	840	2.5	118–236 1200 4 sec 2 sec
General lighting lamps	D-H1 E-H1 400 450	438/lamp 20,000	50 	3000 T-20	clear mogul any	11 7	135	3.2	118–236 220 60–90–95 8 min 5 min
General	A-H1 B-H1 450 452	438/lamp 15,000		4000 T-16	clear mogul (see note)	13 74 1.2	135	3.2	118–236 220 60–90–95 7 min 7 min
	A-H5 250 290	280/lamp 11,000	39.3	4000 T-18	clear mogul any	∞n :w	135	2.9	118–236 250 50–90–95 10 min 4 min
	A-H4 100 120	3300	33	1000 T-10	clear any admed.	55 37/16 3	130	1.3	118–236 245 50–90 3 min 3 min
Blacklight lamps	C-H4(Spot) E-H4(Flood) 100 123	not	lumens	1000 PAR-38	um, renecto k clear lens tdmed, skt, any	57/16	130	1.3	118–236 245 50–90 3 to 8 min 3 to 8 min
Black	B-H4 100 120	black	light bulb	1000 T-16	natural all red purple & admed.	3.716	130	1.3	118-236 245 50-90 3 min 3 min
	S-1 8-00 500	7200	18	S-22	I.F. nogul ase up	67/16 5 .9	14	30	115 33 50 5 min 0
1 1	RS 275	reflector	not rated in lumens	R-40	flector type medium rany	7 :08	110–125 (50–60)	3.2 2.5	110-125 no trans. 90 3 min 5 min
	S-4 100 120	3300	33	N-21	clear admed. any	51 37/16 8 3	130	1.3	118–236 245 50–90 3 min 3 min
	Lamp watts (rated)	Watts, with tulamp transformer Lumens at 100 hours Lumens (approx. initial)	Lamp lpw at 100 hours. Initial lpw Overall lumens per watt		Finish Base Burning position	Max. over-all length, inches. Light center length, inches. Pressure, arm. Number of electrodes.	Lamp operating volts	Lamp starting current, amps	Supply voltage (primary volts). Transformer secondary open circuit voltage. Power factor, percent. Starting time to full output. Restarting time

Nore.—Rated lives of black-light and general-lighting lamps listed above are based on specified test conditions with the lamps turned off and restarted no oftener than once every 5 burning hours. The life rating of the A-H1, B-H1, and A-H9 lamps is 6,000 hours for 10 hours per start. At 10 hours per start, the rated life of the A-H5 is 5,000 hours, and the E-Hi 4,000 hours. If the A-H9 lamp is started once every 144 burning hours (six 24-hour days), the life rating is 0,000 hours. The life of S-4, RS, and S-1 lamps is estimated to be 1,000, 600, and 800 applications respectively. A-Hi is for base-up burning. B-Hi base down.

* Prepared by C. L. Amick, General Electric Co., Nela Park.

			Dir	nensio	ns, elec	trical d	ata						
					15	15				40	40		
Nominal lamp watts † 4	6	8	13	14	(T 9)	(T-12)	20	25	30 (T-12)	(T 17)	85	100
											• •		
Nom. length ‡ 6"	9"	12"	21"	15"	18"	18"	24"	33"	36"	48"	60"	60"	60"
Diameter §"	5"	5″ T-5	§" T-5	13"	1	1½" T-12	1½" T-12	1 1 "	1	1½"	21"	21"	21"
Bulb T-5	T-5	Ť-5	T-5	T-12	T-8			T-12	T-8	T-12	T-17	T-17	T-17
Lamp amps §125	.145	.16	.16	.395	.31	.33	.36	.52	.355	.42	.40	1.6	1.50
Lamp volts § 36	48	57	100	38	55	46	59	53	98	106	110	57	71
	L	umen o	utput	and br	ightnes	ss—4500	white	lamps					
Lumens	200	310	545	460	585	555	860		1380	2100	2100	4000	4000
Lumens/watt		39	42	33	39	37	43		46	53	53	47	40
Brightness:	33	37	72	33	37	37	73		40	33	33	7/	70
Footlamberts	2500	2770	2520	1310	1980	1250	1360		2120	1610	920	1760	1760
		6.1	5.6	2.9	4.4	2.8	3.0		4.7	3.6	2.0	3.9	3.9
Candles/in.2	3.3	0.1	5.0	2.9	7.7	2.0	3,0		4.7	3.0	2.0	3.9	3.9

4500 white slimline lamps for multiple operation

Nominal length, inches	Dim.	Bulb	Lamp current, Ma	Nominal lamp watts	Lamp volts	Rec. min. starting voltage	Footlamberts and (candles/in.2)	Lumen output and lpw
42	3	T-6	120 200 300	18 25 33	175 150 130	450	1570(3.5) 2090(4.7) 2570(5.7)	990(55) 1320(53) 1620(49)
64	3	T-6	120 200 300	27.5 39 51	270 230 200	600	1580 (3.5) 2170 (4.8) 2620 (5.8)	1570(57) 2150(55) 2600(57)
72	1	T-8	120 200 300	26 38 51	240 220 200	600	1200(2.7) 1700(3.8) 2200(4.9)	1590(61) 2250(59) 2850(56)
96	1	T-8	120 200 300	34 51 69	320 295 265	750	1200(2.7) 1700(3.8) 2200(4.9)	2100(62) 3050(60) 3950(57)

^{*} Data taken from reports by General Electric Lamp Department and from reports by Sylvania Electric Products. † Add auxiliary watts for total. ‡ Nominal length includes the lamp and two standard lampholders. § Approximate. || See Table 96.

TABLE 100.—CHARACTERISTICS * OF TYPICAL PHOTOFLASH LAMPS

Lamp class	Lamp designation	Voltage range for operation	Time to full peak	Flash duration at ½ peak †	Total light (lumen seconds)	Peak lumens	Mean color temp °K	Bulb	Maximum over-all length (inches)	Base
Fast	SM	3 3–9	6	7	4.7		3300	B11	23	S.S.Bay
Medium Slow Focal plane	SF 5 Press 25 0 11 Press 40 22 2 50 3 6 26 31 2A	3-9 3-9 3-125 3-125 3-125 3-125 3-125 3-125 3-125 3-125 3-125	6 21 20 20 21 20 21 20 30 30 	5 13 14 14 13 17 14 18 17 18 30 24 53 64	5.0 16 20 20 30 30 63 62 95 110 16 15 77 77	.80 1.2 1.25 1.2 1.8 1.6 4.0 3.0 5.0 5.0 62 .60 1.5	3400 3800 4000 3800 4000 3800 4000 3800 4000 3800 38	B12 B11 B12 S13 A15 A19 A21 A23 B11 	222234354562 · 555	S.C.Bay S.C.Bay S.C.Bay Medium Medium Medium Medium Medium Medium S.C.Bay Medium Medium
Blue for color photography	5B Press 25B 11B Press 40B 22B 2B 50B 3B	3 3–9 3–125 3–125 3–125 3–125	21 20 21 20 21 20 21 20 30 30	13 14 14 17 14 18 17 18	7.5 8.0 13.0 14 29 28 43 50	.55 .50 .82 .75 1.8 1.35 2.3 2.25	6000 6000 6000 6000 6000 6000 6000	B11 B12 A19 A19 A21 A23	25 5 5 5 5 5 5 5 5 5 6 5 6 5 6 5 6 5 6 5	S.C.Bay S.C.Bay Medium Medium Medium Medium

^{*}The data given for the light and time characteristics and for the color temperature of the lamps are average values for a large number of lamps. Individual lamps may differ considerably from these averages. Prepared by Adelaide Easley, General Electric Lamp Division. † Milliseconds. ‡ x 10°s. § x 10°s.

TABLE 101.—PHYSICAL AND ELECTRICAL CHARACTERISTICS OF FLASHTUBES AND FLASHLAMPS DESIGNED PRIMARILY FOR PHOTOGRAPHIC APPLICATIONS

Flashtube * Outer bulb	Base	Approx. he source din	ien.	Max. watt- sec at design voltage Approx. lumen-	sec at max. rating & design volts Approx. peak mega-lumens	at max. rating & design volts Approx. micro-sec flash duration above § peak	Approx. micro-sec flash duration above 4 peak
FT-210 T-10 I FT-214 T-121	F Octal 3-Pin Giant 5-Pin	$\frac{1\frac{1}{8}''}{1\frac{1}{8}}$ $\frac{1}{8}$	" 2,000 2,000	200 200		5.0 300 5.0 300	200 200
FT-220 PAR-4		18 18	2,000			5.0 300	200
FT-403 T-18 I		$1\frac{7}{8}$ $2\frac{7}{8}$	2,000	480 1	18,000 4.	5.0 475	350
FT-503 T-18 I	F Large 3-Pin	$1\frac{7}{8}$ 2	4,000	2,000 † 10	00,000 150	0.0 700	550
Flash- lamps ‡	Bulb diameter Base	ene:	aximum gy input att-sec.	Volts	Light dura		Peak mens
5804X	1¼" 4 Pi		100	2250-2850	.09		million
48U4X			600		.27		
68N9T·	ii en		200 300	900-1000 2000-2500	.3 -1.2 .120		
1TZ	Sac.		000	2000-2850	24.	35	

^{*} Data furnished by L. R. Benjamin, General Electric Co., Nela Park, Cleveland, Ohio. † With approximately 0.5 millihenry of inductance in series with each 100 microfarads of capacity. ‡ Data taken from circular of Amglo Corporation, Chicago, Ill.

TABLE 102.—COLOR OF LIGHT EMITTED BY VARIOUS SOURCES

Source Sunlight	Color, percent white	Hue	Source N-filled tungsten, .50 wpc	Color, percent white 45	Hue 584
Average clear sky		472	N-filled tungsten, .35 wpc		584
Standard candle	. 13	593	Mercury vapor arc		490
Hefner lamp	. 14	593	Helium tube	32	598
Pentane lamp	. 15	592	Neon tube	6	605
Tungsten glow lamp, 1.25 wpc.	. 35	588	Crater of carbon arc, 1.8 amp	59	585
Carbon glow lamp, 3.8 wpc	. 25	592	Crater of carbon arc, 3.2 amp	62	585
Nernst glower, 1.50 wpc	. 31	587	Crater of carbon arc, 5.0 amp		583
N-filled tungsten, 1.00 wpc		586	Acetylene flame (flat)		586

TABLE 103.—AT ORDINARY PRESSURES

According to McFarlane the rate of loss of heat by a sphere placed in the center of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about 14° C, can be expressed by the equations

 $e = .000238 + 3.06 \times 10^{-8}t - 2.6 \times 10^{-8}t^2$, when the surface of the sphere is blackened, or $e = .000168 + 1.98 \times 10^{-8}t - 1.7 \times 10^{-8}t^2$,

when the surface is that of polished copper. In these equations, e is the amount of heat lost in cgs units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature t, and t is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The

following table gives the results.

Differ- ence of	Valı	ne of e	
temper- ature	Polished surface	Blackened	Ratio
5	.000178	.000252	.707
10	.000186	.000266	.699
15	.000193	.000279	.692
20	.000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	.000220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	.690
55	.000226	.000328	.690
60	.000226	.000328	.690

TABLE 104.—AT DIFFERENT PRESSURES

Experiments made in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about 8°C.

6 cmHg 61.2 50.2 41.6 34.4 27.3 20.5	.01746 .01360 .01078 .00860 .00455
61.2 50.2 41.6 34.4 27.3	.01360 .01078 .00860 .00640
50.2 41.6 34.4 27.3	.01360 .01078 .00860 .00640
41.6 34.4 27.3	.01078 .00860 .00640
34.4 27.3	.00860 .00640
27.3	.00640
20.5	00455
-	.00455
	_
	_
_	_
.2 cmHg	
62.5	.01298
	.01158
	.01048
	.00898
	.00791
28.5	.00490
cmHg	
62.5	.01182
	.01074
	.01003
	.00726
	.00639
	.00569
	.003446
	.00391
	62.5 57.5 53.2 47.5 43.0 28.5

TABLE 105,-COOLING OF PLATINUM WIRE IN COPPER ENVELOPE

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:

$$t = 408^{\circ}$$
 C, $et = 378.8 \times 10^{-4}$, temperature of enclosure 16° C. $t = 505^{\circ}$ C, $et = 726.1 \times 10^{-4}$, " 17° C.

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosure	e 16° C, t = 408° C	Temp. of enclosure	17° C, t = 505° C
Pressure in mm	et	Pressure in mm	et
740.	8137.0×10^{-4}	.094	1688.0×10^{-4}
440.	7971.0 "	.053	1255.0 "
140.	7875.0 "	.034	1126.0 "
42.	7591.0 "	.013	920.4 "
4.	6036.0 "	.0046	831.4 "
.444	2683.0 "	.00052	767.4 "
.070	1045.0 "	.00019	746.4 "
.034	727.3 "	Lowest reached	726.1 "
.012	539.2 "	but not measured∫	/20.1
.0051	436.4 "		
.00007	378.8 "		

TABLE 106.—EFFECT OF PRESSURE ON LOSS OF HEAT AT DIFFERENT TEMPERATURES

The temperature of the enclosure was about 15° C. The numbers give the total radiation in calories per square centimeter per second.

		1	Pressure in mm	Hg	
Temp. of wire in °C	10,0	1.0	.25	.025	About
100	.14	.11	.05	.01	.005
	.31	.24	.11	.02	.0055
200 300	.50	.38	.18	.04	.0105
400 500	.75	.53	.25	.07	.025
500		.69	.33	.13	.055
600	_	.85	.45	.23	.13
700	_	w/w/w	_	.37	.24
800		_	_	.56	.40
900	_	_		-	.61

Note.—An interesting feature (because of its practical importance in electric lighting) is the effect of difference of surface condition on the radiation of heat. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard carbon, was found to be as follows:

Dull black filament, 57.9 watts. Bright " 39.8 watts.

Loss of heat by air from surfaces takes place by radiation, conduction, and convection. The two latter are generally inextricably mixed. For horizontal air spaces, upper surface warm, the loss is all radiation and conduction; with warm lower surface the loss is

greater than for similar vertical space.

Vertical spaces: The following table shows that for spaces of less than 1 cm width the loss is nearly proportional to the space width, when the radiation is allowed for; for greater widths the increase is less rapid, then reaches a maximum, and for yet greater widths is slightly less.

Heat conduction and thermal resistances, radiation eliminated, air space 20 cm high

Air	1	Heat cor cal hr-1 c remperatur		<u>, </u>		eciprocal of	resistance f conductan re differenc	
space, cm	10°	15°	20°	25°	10°	15°	20°	25°
.5	.46	.46	.46	.46	2.17	2.17	2.17	2.17
1.0	.24	.24	.24	.24	4.25	4.20	4.15	4.10
1.5	.160	.172	.182	.192	6.25	5.80	5.50	5.20
2.0	.161	.178-	.200	.217	6.20	5.60	5.00	4.60
3.0	.172	.196	.208	.217	5.80	5.10	4.80	4.60

Variation with height of air space: Max. thermal resistance \pm 4.0 at 1.4 cm air space, 10 cm high; 6.0 at 1.6 cm, 20 cm high; 8.9 at 2.5 cm, 60 cm high.

TABLE 108.—CONVECTION OF HEAT IN AIR AT ORDINARY TEMPERATURES *

In very narrow layers of air between vertical surfaces at different temperatures the convection currents, in the main, flow up one side and down the other, with eddyless (streamline) motion. It follows that these currents transport heat to or from the surfaces only when they turn and flow horizontally, from which fact it follows, in turn, that the convective heat transfer is independent of the height of the surface. It is, according to the laws of eddyless flow, proportional to the square of the temperature difference, and to the cube of the distance between the surfaces. As the flow becomes more rapid (e.g., for a 20° difference and a distance of 1.2 cm) turbulence enters, and the above relations begin to change. For the dimensions tested, convection in horizontal layers was a little over twice that in vertical.

Heat transfer, in the usual cgs unit, i.e., calories per second per degree of thermal head per cm² of flat surface at 22.8° mean temperature

Where two values are given, they show the range among determinations with different methods of getting the temperature of the outer plate. It will be seen that the value of the convection is practically unaffected by this difference of method.

Thermal	8 mm gap		12 mm gap	24 mm gap		
head	Total	Convection	Total Convection	Total	Convection	
.99°	-	_	.000 083 9	.000 065	_	
1.98°	$\left\{ \begin{smallmatrix} .000 & 109 \\ & 110 \end{smallmatrix} \right.$	-	.000 084 0 .000 000 1 .000 085 2 000 4	_		
4.95°	.000 111	.000 001	$\left\{ \begin{matrix} .000 & 086 & 6 & .000 & 002 & 8 \\ & 88 & 1 & & 003 & 7 \end{matrix} \right\}$.000 090	over .000 025	
9.89°	$\left\{ \begin{smallmatrix} .000 & 112 \\ & 113 \end{smallmatrix} \right.$.000 003 003	.000 093 7 .000 010 95 2 .000 011 }	.000 106	over .000 040	
19.76°	.000 116	.000 007	$ \left\{ \begin{array}{cccc} .000 & 107 & 7 & .000 & 024 \\ & 109 & 4 & & 026 \end{array} \right\} $.000 126	over .000 060	

^{*} See Table 80.

TABLE 109.—CONVECTION AND CONDUCTION OF HEAT BY GASES AT HIGH TEMPERATURES

The loss of heat from wires at high temperatures occurs as if by conduction across a thin film of stationary gas adhering to the wire (vertical and horizontal losses very similar). Thickness of film is apparently independent of temperature of wire, but probably increases with the temperature of the gas and varies with the diameter of the wire according to the formula $b \log (b/a) = 2B$, where B = constant for any gas, b = diameter of film, a, of wire. The rate of convection (conduction) of heat is the product of two factors, one the shape factor, s, involving only a and b, the other a function a of the heat conductivity of the gas. If b = the energy loss in watts/cm, then b = s(a - a), b may be found from the relation

$$\frac{s}{\pi} e^{-\frac{2\pi}{s}} = \frac{a}{B}; \ \phi = 4.19 \int_{0}^{\tau} k dt,$$

where k is the heat conductivity of the gas at temperature T in calories/cm° C. ϕ_2 is taken at the temperature T_2 of the wire, ϕ_1 at that of the atmosphere. The following may be taken as the conductivities of the corresponding gases at high temperatures:

To obtain the heat loss: B may be assumed proportional to the viscosity of the gas and inversely proportional to the density. For air [see Table 110 part 2] B may be taken as 0.43 cm; for H_2 , 3.05 cm; for H_3 vapor as 0.078. Obtain s from Part 1 below from a/B; then from Part 2 obtain ϕ_2 and ϕ_1 for the proper temperatures; the loss will be $s(\phi_2 - \phi_1)$ in watts/cm.

Part 1.-s as function of a/B

s	a/B	s	a/B	s	a/B	s	a/B
.0	.0	5.0	.453	10	1.696	30	7.738
.5	$.735 \times 10^{-6}$	5.5	.558	12	2.263	32	8.370
1.0	$.584 \times 10^{-3}$	6.0	.671	14	2.844	34	8.995
1.5	$.725 \times 10^{-2}$	6.5	.788	16	3.438	36	9.622
2.0 2.5	2.75×10^{-2}	7.0	.908	18	4.040	38	10.25
2.5	.0644	7.5	1.032	20	4.645	40	10.87
3.0	.1176	8.0	1.160	22	5.263	42	11.50
3.5	.185	8.5	1.291	24	5.877	44	12.14
4.0	.265	9.0	1.424	26	6.505	46	12.77
4.5	.354	9.5	1.561	28	7.122	48	13.14
5.0	.453	10.0	1.696	30	7.738	50	14.03

Part 2.—Table of ϕ in watts per cm as function of absolute temp. (°K)

T° K	H_2	Air	Hg	T° K	H_2	Air	Hg
0	.0000	.0000	_	1500°	4.787	.744	.1783
100	.0329	.0041	_	1700	5.945	.931	.228
200	.1294	.0168		1900	7.255	1.138	.284
300	.278	.0387	_	2100	8.655	1.363	.345
400	.470	.0669		2300	10.18	1.608	.411
			0.4.6	0500	11.00	1.071	401
500	.700	.1017	.0165	2500	11.82	1.871	.481
700	1.261	.189	.0356	2700	13.56	_	.556
900	1.961	.297	.0621	2900	15.54	_	.636
1100	2.787	.426	.0941	3100	17.42		.719
1300	3.726	.576	.1333	3300	19.50	_	.807
	J = 0						
1500	4.787	.744	.1783	3500	21.79	_	.898

116 TABLE 110.—HEAT LOSSES FROM INCANDESCENT FILAMENTS

Part 1.—Wires of platinum sponge served as radiators to room-temperature surroundings

Diameter wire, cm 900° 1000° 1100° 1200° 1300° 1400° 1500° 1600° 1700° 1800° .0690 1.70 2.26 3.01 3.88 4.92 6.18 7.70 9.63 12.15 15.33 .0420 1.35 1.75 2.26 2.84 3.53 4.29 5.33 6.60 8.25 10.20 .0275 1.12 1.40 1.76 2.23 2.73 3.23 3.91 4.67 5.72 7.00 .0194 .92 1.15 1.39 1.74 2.12 2.54 3.04 3.64 4.32 5.10	1900° 19.25 12.45 8.64 6.10	2000° 23.75 14.75 10.45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.25 12.45 8.64	23.75 14.75 10.45
cm 900° 1000° 1100° 1200° 1300° 1400° 1500° 1600° 1700° 1800° .0690 1,70 2.26 3.01 3.88 4.92 6.18 7,70 9.63 12.15 15.33 .0420 1.35 1.75 2.26 2.84 3.53 4.29 5.33 6.60 8.25 10.20 .0275 1.12 1,40 1,76 2.23 2,73 3.23 3.91 4.67 5,72 7.00 .0194 .92 1.15 1.39 1.74 2.12 2.54 3.04 3.64 4.32 5.10	19.25 12.45 8.64	23.75 14.75 10.45
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.25 12.45 8.64	23.75 14.75 10.45
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.45 8.64	14.75 10.45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Heat losses corrected for radiation, watts per cm (A-C) .0690 .91 1.05 1.23 1.36 1.45 1.51 1.54 1.66 2.00 2.56 .0420 .87 1.02 1.17 1.31 1.42 1.45 1.57 1.76 2.08 2.43 .0275 .80 .92 1.05 1.22 1.35 1.37 1.46 1.50 1.67 1.91 .0194 .70 .81 .89 1.03 1.15 1.23 1.31 1.40 1.47 1.51 Computed radiation, watts per cm, $\sigma = 5.61 \times 10^{-12} \times 10^{-12}$.0690 .79 1.21 1.78 2.52 3.47 4.67 6.16 7.97 10.15 12.77 .0420 .48 .73 1.09 1.53 2.11 2.84 3.74 4.84 6.17 7.77 .0275 .32 .48 .71 1.01 1.38 1.86 2.45 3.17 4.05 5.09	6.10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
.0275	3.40	4.30
.0194 .70 .81 .89 1.03 1.15 1.23 1.31 1.40 1.47 1.51	2.80	3.26
Computed radiation, watts per cm, $\sigma = 5.61 \times 10^{-12} *$.0690 .79 1.21 1.78 2.52 3.47 4.67 6.16 7.97 10.15 12.77 .0420 .48 .73 1.09 1.53 2.11 2.84 3.74 4.84 6.17 7.77 .0275 .32 .48 .71 1.01 1.38 1.86 2.45 3.17 4.05 5.09	2.32	2.70
.0690	1.64	1.88
.0420		
.0275 .32 .48 .71 1.01 1.38 1.86 2.45 3.17 4.05 5.09	15.85	19.45
	9.65	11.85
.0195 .22 .34 .50 .71 97 1.31 1.73 2.24 2.85 3.59	6.32	7.75
	4.46	5.47
Conduction loss by silver leads, watts per cm		
.0420 .42 .46 .49 .61 .75 .88 1.00 1.07 1.13 1.22	_	_
.0275 .18 .21 .28 .35 .43 .48 .55 .57 .60 .67	_	_
.0195 .06 .08 .08 .09 .11 .12 .14 .15 .22 .23	_	_
Convection loss by air, watts per cm		
.0420 .45 .56 .68 .70 .67 .57 .59 .69 .95 1.21	_	
.0275 .62 .71 .77 .87 .92 .89 .91 .93 1.07 1.24	_	_
.0195 .64 .73 .81 .94 1.04 1.11 1.17 1.25 1.29 1.30		_

^{*} This value is lower than the presently (1950) accepted value of 5.67.

Part 2.—Wires of bright platinum 40-50 cm long served as radiators to surroundings at 300° K

Diam-		Obse	erved ener	gy losse	es in v	watts per	cm		
eter				Absol	ute ten	nperatures			
wire, cm	500°	700°	900°	1100	•	1300°	1500°	1700°	1900°
.0510	.22	.52	.90	1.42		2.03	2.89	4.10	5.65
.02508	.17	.39	.68	1.02		1.45	2.00	2.68	3.55
.01262	.13	.31	.53	.79		1.11	1.46	1.95	2.71
.00691	.12	.29	.48	.72		.99	1.33	1.79	2.48
.00404	.11	.24	.41	.61		.84	1.14	1.54	2.13
		Eı	nergy rad	iated in	watts	s per cm'	k		
.0510	.002	.013	.049	.13	7	.323	.67	1.25	2.15
.02508	.001	.007	.024	.06		.159	.33	.62	1.06
.01262	.001	.003	.012	.03		.080	.17	.31	.53
.00691	.000	.002	.007	.01		.044	.09	.17	.29
.00404	.000	.001	.004	.01		.026	.05	.10	.17
		"C	onvection	" losses	in wa	atts per cr	n		
.0510	.22	.51	.85	1.28		1.71	2.22	2.85	3.50
.02508	.17	.38	.66	.95		1.29	1.67	2.06	2.49
.01262	.13	.31	.52	.75		1.03	1.29	1.64	2.18
.00691	.12	.29	.47	.70		.95	1.24	1.62	2.19
.00404	.11	.24	.41	.60		.81	1.09	1.44	1.96
		Thickness	of theore	tical co	nducti	ing air fil	m in cm		
.0510	.28	.30	.33	.33	.36	.37	.35	.36	Means .34
.02508	.30	.37	.37	.41	.45	.45	.51	.56	.43
.01262	.42	.42	.44	.49	.56	.69	.69	.47	.54
.00691	.31	.32	.38	.40	.43	.47	.38	.26	.37
.00404	.27	.43	.43	.47	.56	.47	.40	.25	.41
Means	.31	.37	.39	.42	.49	.49	.47	.38	.43†

^{*} Computed with $\sigma=5.32$, blackbody efficiency of platinum as follows (Lummer and Kurlbaum): 492°K, .039; 654°, .060; 795°, .075; 1108°, .112; 1481°, .154; 1761°K, .180. † Weighted mean.

TABLES 111-125—TEMPERATURE CHARACTERISTICS OF MATERIALS

TABLE 111.-MELTING AND BOILING POINTS OF THE CHEMICAL ELEMENTS

(Metals in boldface type are often used as standard melting points.)

	(1.1010101	bordrace t	pe are often	used as standard men	mg h	omes.)	
	Symbol	Melting	Boiling	Svi	nbol	Melting	Boiling
Element	and atomic No	point °C	point °C	a	nd	point	point
Actinium		1197			ic No.		°C
Aluminum		660.1	2450	Neodymium Nd		1024	246.00
Antimony	Sb 51	630.5	1637	Neon Ne Nickel Ni	10	- 248.59	— 246.08
Argon		- 189.37	— 185.86	NiobiumNb	28 41	1453 2480	2850 5000
Arsenic		817	613	NitrogenN	7	— 209.97	- 195.80
Astatine		017	015		76	2700	4400
Barium		710	1637	OsmiumOs OxygenO	8	— 218.79	— 182.97
Beryllium		1283	2480	PalladiumPd	46	1552	3100
Bismuth		271.3	1560	PhosphorusP	15	44.2	280
Boron		271.0	1500	PlatinumPt	78	1769	3800
Bromine		- 7.20	59	PlutoniumPu	94	639	3000
Cadmium		321.03	765	PoloniumPo	84	254	960
Calcium		850	1492	PotassiumK	19	63.2	766
Carbon		550	1472	PraseodymiumPr	59	935	3000
Cerium	Ce 58	804	2900	PromethiumPm		755	3000
Cesium		28.64	685	ProtactiniumPa	91		
Chlorine		- 100.99	- 34.06	RadiumRa	88	700	
Chromium		1903	2640	RadonRn	86	— 71	— 62
Cobalt	Co 27	1492	3150	RheniumRe	75	3150	5600
Copper	Cu 29	1083.0	2580	RhodiumRh	45	1960	3960
Dysprosium		1500	2300	RubidiumRb	37	38.8	701
Erbium	Er 68	1500	2600	RutheniumRu	44	2400	4000
Europium	Eu 63	2000	-000	SamariumSm	62	1050	1600
Fluorine		- 219.61	— 188.44	ScandiumSc	21	1400	3900
Francium	Fr 87		200	Selenium Se	34	217.4	684.8
Gadolinium	Gd 64	1420		SiliconSi	14	1410	
Gallium	Ga 31	29.80	2240	SilverAg	47	960.8	2190
Germanium	Ge 32	938	2800	SodiumNa	11	97.82	890
Gold	Au 79	1063.0	2700	StrontiumSr	38	770	1370
Hafnium	Hf 72	2220	5200	SulfurS	16	119	444.60
Helium	He 2		— 269.93	TantalumTa	73	2980	5500
Holmium	Ho 67	1500	207.70	TechnetiumTc	43		
Hydrogen	H 1	- 259.19	- 252.76	TelluriumTe	52	450	990
Indium	In 49	156.61	2000	TerbiumTb	65	1450	
Iodine	I 53	113.6	183	ThalliumTl	81	303.6	1460
Iridium	Ir 77	2443	100	ThoriumTh	90	1695	4250
Iron	Fe 26	1535	2900	ThuliumTm	69	1650	
Krypton	Kr 36	— 157.3	— 153.35	TinSn	50	231.91	2600
Lanthanum	La 57	920	3370	TitaniumTi	22	1675	3300
Lead	La 37	327.3	1750	Tungsten W	74	3380	5500
Lithium	Pb 82		1331	UraniumU	92	1132	4000
Lutetium	I., 71	180.55	1331	VanadiumV	23	1890	3400
		1700	1120	XenonXe		— 112.5	— 108.1
Magnesium	Mg 12	650	1120	YtterbiumYb	70	824	
Manganese	Mn 25	1244	2050	YttriumY	39	410.50	000
Mercury	Hg 80	38.87	356.57	ZincZn	30	419.50	908
Molybdenum .	Mo 42	2610		ZirconiumZr	40	1852	4400

TABLE 112.-MELTING PARAMETERS OF ARGON 48

Pressure, kg/cm²	Melting point	$\frac{dT}{dp}$	$\frac{\Delta^v}{(cm^3/g)}$	Latent heat kg cal/g
1	83.9° K.	.0238	.0795	280
1,000	106.4	.0211	.0555	280
2,000	126.3	.0192	.0425	279
3,000	144.9	.0178	.0340	277
4,000	161.9	.0165	.0280	275
5,000	177.8	.0155	.0240	276
6,000	192.9	.0146	.0210	277

⁴⁸ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 70, p. 25, 1935.

TABLE 113.-MELTING TEMPERATURES IN °C FOR A NUMBER OF LIQUIDS AS A **FUNCTION OF PRESSURE "**

Pres- sure kg/cm ² 0 5,000	Ethyl alcohol —117.3°C — 76	n-Butyl alcohol —89.8°C —33	Ethyl bromide —119°C — 70	n-Propyl bromide 110°C 56	Chloro- form - 63.5°C + 10	Carbon bisulfide 	Chloro- benzene - 45.2°C + 25 + 80	Methylene chloride -96.7°C -46	Water
10,000 15,000 20,000	- 39 - 5 + 25	+12 +49 +80	- 29 + 5 + 34	- 8 + 34 + 71	+ 76 +137 +192	+ 46 + 89	+ 30 5* +130 +166	+42 +82	+52.5°C +72.8
25,000 30,000	54 82	108 132	58 80	105 138	243	130 170	222	120 157	102.8 137.1
35,000 40,000	109	155		169 197	••	209	• •	••	166.6 192.3

Bridgman, P. W., Journ. Phys. Chem., vol. 9, p. 795, 1941.
 Second modification of the solid.

TABLE 114.--VOLUME-PRESSURE RELATION FOR ARGON *

Volume, cm8

Pres-									
sure kg/cm²	+55°C	+25°C	0°C	−90°C	-101.4°C	—117°C	−135.1°C	-153.5°C	−172°C
700	_	1.262	1.179	_	_	_	_	_	_
800	-	1.175	1.105	_	_	_	_	.724	.690
1,000	_	1.060	1.006	_		_	_	.697	_
1,300	_	.962	.920	_		_	_	.677	_
1,600	_	.898	.864		_	_	_	.657	-
2,000	.880	.846	.818	_	_	_	_	_	_
2,500	.831	.808	.785	_	.687	_	.653	_	_
3,500	.772	.751	.733	.661	.656	.638			_
4,500	.730	.712	.697	.641	.632	_	_	_	_
5,500	.698	.682	.669	.624	_	_	_	_	_
6,000	.685	_		_	_		_	_	_
10,000	.617	_	_	_	_	_	_	_	_
12,000	.596	_	_	_	_	_	_	_	_
15,000	.573	-	_	_		_	_	_	_

^{*} For reference, see footnote 43, p. 117.

TABLE 115.-MELTING PARAMETERS OF NITROGEN *

Pressure kg/cm² p p 1 1,000 2,000 3,000 4,000 5,000 6,000	Melting point 63.2° K 82.3 98.6 113.0 125.8 137.8 149.2	$\begin{array}{c} \frac{dT}{dp} \\ 0209 \\ 0176 \\ 0153 \\ 0135 \\ 0124 \\ 0117 \\ 0112 \end{array}$	ΔV (cm³/g) .072 .058 .047 .040 .033 .029	Latent heat kg cal/g 218 271 302 334 335 342 346
---	---	--	---	--

^{*} For reference, see footnote 43, p. 117.

Volume, cm3

Pressure kg/cm²	+23.5°C	0°C	−50°C	−100°C	—140°C
3,000 4,000 5,000 6,000	1.2374 1.1615 1.1061 1.0652	1.2069 1.1391 1.0870 1.0487	1.1422 1.0881 1.0451 1.0117	1.0754 1.0327 .9997 .9729	1.0226 .9876 .9613 .9412

^{*} For reference, see footnote 43, p. 117.

TABLE 117.--EFFECT OF PRESSURE ON MELTING POINT

Substance	Melting point at 1 kg/cm ²	Highest experimental pressure kg/cm ²	dt/d⊅ at 1 kg/cm²	Δt (observed) for 1000 kg/cm²
Hg	38.85	12,000	.00511	5.1 *
Κ	59.7	2,800	.0136	13.8
Na	97.62	12,000	.00860	+12.3 †
Bi	271.0	12,000	00342	- 3.5 †
Sn		2,000	.00317	3.17
Bi		2,000	00344	— 3.44
Cd	320.9	2,000	.00609	6.09
Pb	207.4	2,000	.00777	7.77

^{*} Δt (observed) for 10,000 kg/cm² is 50.8°. † Na melts at 177.5° at 12,000 kg/cm²; K at 179.6°; Bi at 218.3°; Pb at 644°. Luckey obtains melting point for tungsten as follows: 1 atm, 3623°K; 8, 3594; 18, 3572; 28, 3564.

TABLE 118.—EFFECT OF PRESSURE ON FREEZING OF WATER*

Pressure kg/cm ²	Freezing point	Phases in equilibrium
1	.0	Ice I—liquid
1,000	- 8.8	Ice I—liquid
2,000	20.15	Ice I—liquid
2,115	22.0	Ice I—ice III—liquid (triple point)
3,000	18.40	Ice III—liquid
3,530	17.0	Ice III—ice V—liquid (triple point)
4,000	—13.7	Ice V—liquid
6,000	— 1.6	Ice V—liquid
6,380	+ .16	Ice V-ice VI-liquid (triple point)
8,000	12.8	Ice VI—liquid
12,000	37.9	Ice VI—liquid
16,000	57.2	Ice VI—liquid
20,000	73.6	Ice VI—liquid

^{*} For reference, see footnote 43, p. 117.

TABLE 119.-EFFECT OF PRESSURE ON BOILING POINT

Metal	Pressure	° C	Metal Pressure	° C	Metal Pressure	° C
Bi	10.2 cmHg	1200	Ag 26.3 cmHg	1780	Pb 20.6 cmHg	1410
Bi	25.7 cmHg	1310	Cu 10.0 cmHg	1980	Pb 6.3 atm	1870
Bi	6.3 atm	1740	Cu 25.7 cmHg	2180	Pb 11.7 atm	2100
Bi	11.7 atm	1950	Sn 10.1 cmHg	1970	Zn 11.7 atm	1230
Bi	16.5 atm	2060	Sn 26.2 cmHg	2100	Zn 21.5 atm	1280
Ag	$10.3 \mathrm{cmHg}$	1660	Pb 10.5 cmHg	1315	Zn 53.0 atm	1510

TABLE 120.—DENSITIES AND MELTING AND BOILING POINTS OF INORGANIC COMPOUNDS *

		Density about	Melting point, °C	Boiling point, °C	Pressure
Substance	Chemical formula	20°C			mmHg
Aluminum chloride	AlCl ₂		190‡	182.7	752
nitrate	$A1(NO_3)_3 + 9H_2O \dots$		70.0	134†	.::
oxide	Al ₂ O ₃		2050	2580	53
Ammonia	NH ₃	1.70	- 77.7	33.35	760
Ammonium nitrate	NH,NO,	. 1.72	169.6	210†	• • •
	NH ₄ H ₂ PO ₃		123	145 †	• • •
sulfate	(NH ₄) ₂ SO ₄	. 1.77	146.9 †	140	
Antimony pentachloride	SbCl ₃	2.35	2.8	140	68
trichloride	SbCl ₂		73.4 —113.5	223	760
trichloride	AsCl ₃		—113.5 — 18	- 54.8 130.2	760 760
Barium chloride	BaCl ₂		962	1560	2.7.7
nitrate	$Ba(NO_3)_2$		592		760
perchlorate	$Ba(ClO_4)_2$		505	• • •	• • •
Bismuth trichloride	BiCl ₃		232.5	447	760
Boric acid	H ₂ BO ₂		185		
anhydride	B_2O_3		450	• • •	• • •
Borax (sodium borate)	Na ₂ B ₄ O ₇		741	1570 †	
Cadmium chloride	CdCl ₂		561	1370	
nitrate	$Cd(NO_3)_2 + 4H_2O$		59.5		• • •
Calcium chloride	CaCl ₂	. 2.26	774.0	• • •	
chloride	$CaCl_2 + 6H_2O$		29.6	200	• • •
nitrate	$Ca(NO_3)_2$		561		
nitrate	$Ca(NO_3)_2 + 4H_2O\alpha$		42.3	• • •	
oxide	CaO		2570	2850	
Carbon tetrachloride	CCl ₄		- 24	76.7	760
dioxide	CO ₂		- 56.6 \$	— 78.5	subl.
disulfide	CS ₂		111.6	46.2	760
monoxide	CO		207	192	760
trichloride	C ₂ Cl ₆		184	185	
Chloric (per) acid	HC1O4	. 1.764	-112	39 t	56
Chlorine dioxide	C1O ₂		— 59	9.9	731
Chrome alum	$KCr(SO_4)_2 + 12 H_2O$.	. 1.83	89		
nitrate			37	170	760
Chromium oxide	CrO ₃	. 5.21	1990		
Cobalt sulfate	CoSO ₄	. 3.710	989		
Cupric chloride	C11Cl2	. 3.05	498	Ť	
nitrate	$Cu(NO_3)_2 + 3 H_2O$	2.05	114.5	170†	760
Cuprous chloride	Cu ₂ Cl ₂	. 3.7	421	$1366 \pm$	7 60
Hydrogen bromide	HBr		— 88.5	— 67.0	760
chloride	HC1		-111.3	— 83.7	755
fluoride	HF	99	— 92.3	19.4	755
iodide	HI		50.8	- 35.7	760
peroxide	H_2O_2		_ 2	152.1	47
phosphide	PH ₃		133.5	— 87.4	
sulfide	H ₂ S		82.9	- 62	• • •
Iron chloride	FeCl ₃		282	315	• • •
nitrate	$Fe(NO_3)_3 + 9 H_2O \dots$		47.2	+	
sulfate	FeSO ₄ + 7 H ₂ O		64		760
Lead chloride	PbCl ₂		501	950±	760
Magnesium chloride	MgCl ₂		708 2800	1412	• • •
oxide	$MgO \dots MgO$			· · · · · · · · · · · · · · · · · · ·	760
nitrate	$Mg(NO_3)_2 + 6 H_2O \dots$		100 1124 †		700
sulfate	MgSO ₄		58	•••	760
Manganese chloride	$MnCl_2 + 4 H_2O \dots$ $Mn(NO_2)_2 + 6 H_2O \dots$		26	129†	760
nitrate	$Mn(NO_3)_2 + 6 H_2O$ $MnSO_4$		700	850†	
sulfate Mercuric chloride	HgCl ₂		276	302	
Mercure emoride	115 C12	. 5.72	2,0	002	

^{*} Prepared by F. C. Kracek, Geophysical Laboratory, Carnegie Institution of Washington. † Decomposes. ‡ At 2.5 atm pressure. § At 5.2 atm pressure.

(continued)

TABLE 120.—DENSITIES AND MELTING AND BOILING POINTS OF INORGANIC COMPOUNDS (concluded)

		Density	3.6.1.1	T	
Substance	Chemical formula	about 20°C	Melting point, °C	Boiling point, °C	Pressure mmHg
Mercurous chloride			302±	384	***************************************
Nickel carbonyl	NiC ₄ O ₄	1.32	- 25	43	760
	$Ni((NO_3)_2 + 6 H_2O \dots$		56.7	136.7†	760
oxide	NiO		2090	150.7	700
	HNO ₃		- 42	86	760
	N ₂ O ₅		30	48†	760
oxide	NO	, 1.01	—1 63.6	-151.8	760
	N_2O_4		- 9.3	21.3†	760
Nitrous anhydride	N_2O_3		-102	3.5†	760
oxide	N_2O	1.10	-102.4	3.5†	7 60
Phosphoric acid (ortho)			42.45		
Phosphorous acid			73.6	• • •	
disulfide			298	337	760
	POCl ₃		1.3	108	7 60
	P_2S_5		276	514	760
	PCl ₃		- 91	75.5	750
trisulfide			172.5	407.5	760
Potassium acid phosphate	KH₂PO₁		252.6 †		
carbonate	K ₂ CO ₃		891	• • •	• • •
chlorate			368.4	400 †	• • •
chloride			776	1500	760
chromate	K ₂ CrO ₄		968.3	†	
cyanide	KCN		634		• • •
dichromate			398	• • •	• • •
hydroxide			360	1320	760
nitrate	KNO ₃		334	400†	
	KClO ₄		610	410 †	760
sulfate	K ₂ SO ₄		1076	†	760
Silver chloride			455	1550	• • •
	AgNO ₃		212	444†	• • •
	AgClO ₄		486 †		
	Ag ₃ PO ₄		849	• • •	
metaphosphate			482	• • •	
	AgSO ₄		652	1085†	• • •
Sodium carbonate			851	1005	• • •
chlorate			248	†	• • •
	NaCl		801	1413	760
		2.17	318	1413	
hydroxide	$Na_2O_4 + 2 H_2O \dots$	2.13	52 †	†	760
hyposume	Na ₂ O ₄ + 2 11 ₂ O		32 !	subl.	760
metaphosphate	NaPO ₃	2.18	640	>1100	
metaphosphate	NaNO ₃		310	380†	
perchlorate	NaClO ₄	2.53	482 †	†	• • •
	$Na_4P_2O_7$	2.33	880	'	• • •
pyrophosphate sulfate			884	· · · ·	• • •
sulfate			32.88	'	
tetraborate	$Na_2SO_4 + 10 H_2O \dots Na_2B_4O_7 \dots$	2.36	741	1570	760
Sulfur dioxide			-72.7	 10	760
	SO ₃ α		16.8	44.9	760
	H ₂ SO ₄		10.5	338†	760
acid	$H_2SO_4 + H_2O$	1.79	8.61	290 †	760
acid (syro)	$H_2S_2O_7$	1.89	35	290 i	700
Tin, stannic chloride			— 33	114	760
	SnCl ₂			623	760
Water		0.000	0	100	760
Zinc chloride	ZnCl ₂		262	732	760
nitrate	$Zn(NO_3)_2 + 6 H_2O \dots$		36.4†	131	760 760
sulfate	$ZnSO_4 + 7 H_2O \dots$	1.97	39 †	131	
Surface	211504 - / 1120	1.77	05 1	,	• • •
# At 10.5 mmHg pressure					

TABLE 121.—DENSITIES AND MELTING AND BOILING POINTS OF ORGANIC COMPOUNDS

Substance	Chemical formula	Density g/cm ³	Temp.	Melting point °C	Boiling point °C	Pressure 1 atm unless otherwise stated
Methane Ethane Propane Butane Pentane Hexane Heptane Octane Nonane Decane Undecane Tridecane Tetradecane Heptadecane Heptadecane Hendecane Heradecane Totadecane Tricosane Tricosane Tricosane Tricosane Pentacosane Pentacosane Heptacosane Pentacosane Heptacosane Nonacosane	Paraffin series: CH4 C2H8 C3H8 C4H10 C8H12 C6H14 C7H18 C8H15 C9H20 C10H22 C11H24 C12H20 C13H23 C16H34 C17H36 C17H36 C18H38 C19H40 C29H44 C22H46 C22H46 C22H46 C22H46 C22H46 C22H46 C22H46 C22H58 C28H54 C21H58 C28H58 C28H58 C29H80 C30H62 C31H64 C21H66 C31H64 C21H68 C21H58 C21H58 C21H58 C21H68 C21H68	C _n H _{2n+2} 415 . 5465956011631660684704718747741768757775778778778779779779779779779779779779779779779779779779	-164 88 44 0 20	compounds -184 -172.0 -189.9 -135.0 -138.0 -94.3 -90.0 -56.5 -53 -32.0 -26.5 -12 -6.2 +5.5 +10 20 22.5 28 32 38 40.4 44.4 47.7 54 60 59.5 65 63.6 70 68.1	161.4	15 mmHg 15 mmHg 15 mmHg 15 mmHg 40 mmHg 40 mmHg 40 mmHg 10 mmHg 10 mmHg 10 mmHg 10 mmHg 15 mmHg
Tetratriacontane Pentatriacontane Hexatriacontane	C ₃₅ H ₇₂	781 782 782	20 75 76	76.5 74.7 76.5	255 331 265	1.0 mmHg 15 mmHg 1.0 mmHg
Olefin Ethylene Propylene Butylene Amylene	es or the Ethylen C ₂ H ₄ C ₃ H ₆	e series : 566 609 635 651	C _n H _{2n} . 1 -102 - 47 - 13.5 20 0	Normal com —169.4 —185.2 —139 — 98	pounds o -103.8 - 47.0 + 36.4	
Heptylene	~		20	— 10	96–99	
Octylene	$ \begin{array}{ccccc} \dots & C_8H_{16} & \dots & \\ \dots & C_9H_{18} & \dots & \\ \dots & C_{10}H_{20} & \dots & \end{array} $	722 73 763	17 15 0 20	104 — 87	123 149.9 172 193	
Dodecylene Tridecylene Tetradecylene Pentadecylene Hexadecylene	$\begin{array}{ccccc} \dots & C_{12}H_{24} & \dots & \\ \dots & C_{13}H_{28} & \dots & \\ \dots & C_{14}H_{28} & \dots & \\ \dots & C_{15}H_{30} & \dots & \end{array}$		15 0 20 20	- 31.5 - 12 + 4	96 232.7 246 247 274	15 mmHg
Octadecylene Eicosylene Cerotene Melene	$ \begin{array}{ccccc} \dots & C_{18}H_{36} & \dots & \\ \dots & C_{20}H_{40} & \dots & \\ \dots & C_{27}H_{54} & \dots & \end{array} $	791 871	20 0 20	+ 19 58 63	179 395 380	15 mmHg
		(conti	nued)			

TABLE 121.—DENSITIES AND MELTING AND BOILING POINTS OF ORGANIC COMPOUNDS (continued)

Substance	Chemical formula	Density g/cm³	Temp.	Melting point °C	Boiling point °C	Pressure 1 atm unless otherwise stated
Allylene Ethylacetylene	C ₈ H ₈ C ₈ H ₁₀ C ₇ H ₁₂ C ₈ H ₁₄	613 660 668 722	Normal — 80 — 13 0 0 0 13 0 0 - 9 + 6.5 20 30	compounds	s only - 83.6 - 27.5 + 18.5 + 40 71.5 110.5 125 213 105 134 160 184	15 mmHg " " " " " "
	natomic alcohols: CH ₃ OH C ₂ H ₃ OH C ₃ H ₇ OH C ₄ H ₉ OH C ₅ H ₁₁ OH C ₅ H ₁₁ OH C ₇ H ₁₅ OH C ₇ H ₁₅ OH C ₈ H ₁₇ OH C ₁ H ₂ OH	C _n H _{2n+1} C . 792 . 789 . 804 . 810 . 817 . 820 . 817 . 827 . 828 . 829 . 833 . 831 . 822 . 824				
Dimethyl ether Diethyl ether Dipropyl ether Di-n-butyl ether Di-sec-butyl ether Di-iso-butyl ether Di-iso-amyl ether Dihexyl ether Diheptyl ether Dioctyl ether	C ₂ H ₆ O C ₄ H ₁₀ O C ₆ H ₁₄ O C ₈ H ₁₈ O " " C ₁₀ H ₂₂ O " C ₁₂ H ₂₆ O C ₁₄ H ₃₀ O C ₁₆ H ₃₄ O	.756 .762	20 20 20 20 21 20 21 20 20 12	—138 —116.3 —122	- 24.9 + 34.5 89 149 121 122.5 190 172.2 208.8 260 291.8	β—123.3 b. pt.
Ethyl-methyl "-propyl "-isopropyl "-iso-butyl "-iso-amyl "-n. hexyl "-n. heptyl "-n. octyl	C ₅ H ₁₂ O C ₆ H ₁₄ O C ₇ H ₁₆ O C ₈ H ₁₈ O C ₉ H ₂₀ O	747 .745 752 .751 764 63 790	0 20 20 18 16 17	< — 79	+ 7.9 61.4 54 91.4 80 112 137 166.6 183	

TABLE 121.—DENSITIES AND MELTING AND BOILING POINTS OF ORGANIC COMPOUNDS (concluded)

Miscellaneous

	Miscellaneous				
		Density a	ınd	25.11	75 111
	Chemical	temperati °C	ure	Melting	Boiling
Substance	formula			point °C	point °C
		1 115	0	16.7	118.5
Acetic acid	CH₃COOH	1.115			
Acetone	CH ₃ COCH ₃	.792	0	— 94.6	56.1
Aldehyde	C_2H_4O	.783	0	-124	20.8
Aniline	$C_0H_5NH_2$	1.038	0	— 6	183.9
Beeswax		.96±		62	
Benzene	C ₆ H ₆	.879	20	5.48	80.2
Benzoic acid	$C_7H_6O_2$	1.293	4	121	249
Benzophenone	$(C_0H_5)_2CO$	1.090	50	48	305.9
Butter	,	.90	50	25	
	С Н О	.99	10	176	209
Camphor	$C_{10}H_{16}O$				_ 0 /
Carbolic acid		1.060	21	41	182
Carbon bisulfide	CS ₂	1.292	0	-108	46.2
tetrachloride	CCl ₄	1.582	21	— 2 8	76.7
Chlorobenzene	C ₆ H ₅ Cl	1.111	15	— 40	132
Chloroform	CHCl ₃	1.4989	15	— 63.3	61.2
Cvanogen	C_2N_2			— 35	21
Ethyl bromide	C ₂ H ₅ Br	1.45	15	-117	38.4
		.918	8	-141.6	12
		.716	ő	-116 -116	34.6
ether	C ₄ H ₁₀ O				
_ iodide	C ₂ H ₆ I	1.944	14	108	72
Formic acid	НСООН	1.242	0	8.6	100.8
Gasoline		.68±			70-90
Glucose	CHO(HCOH)₄CH₂OH	1.56		146	
Glycerine	C ₃ H ₈ O ₃	1.269	0	17	290
Iodoform		4.01	25	119	
Lard		.90		29±	
Methyl chloride	CH ₃ Cl	.0992 -	_24	— 98	-24.1
		2.285	15	<u> 64</u>	42.3
iodide		1.152	15	80	218
Naphthalene	C ₆ H ₄ ·C ₄ H ₄				
Nitrobenzene		1.212	7.5	5	211
Nitroglycerine	$C_3H_5N_3O_9$	1.60	• • • •	3	
Oleomargarine		.92–.93	20	35–38	:::
Olive oil		.92		20±	$300 \pm$
Oxalic acid	$C_2H_2O_4 \cdot 2H_2O$	1.68		190	
Paraffin wax, soft				35-52	350-390
hard				52-56	390-430
Pyrogallol	C ₆ H ₃ (OH) ₃	1.46	40	133	293
	, ,	.95	15	45±	
Spermaceti		1.56			• • •
Starch	$C_6H_{10}O_5$.::	none	• • •
Stearine		.925	65	71	• • •
Sugar, cane		1.588	20	160	
Tallow, beef		.94	15	27–38	
mutton		.94	15	32-41	
Tartaric acid	C ₄ H ₄ O ₆	1.754		170	
Toluene	a a	.822	0	— 92	110.31
Xylene (o)	$C_6H_4(CH_3)_2$.863	20	 28	142
(m)		.864	20 20	54	140
, , , , , , , , , , , , , , , , , , , ,	O TT (OTT)	.861	20	15	138
(p)	C6114(C113/2	1001	20	10	100

					Melt	ing poin	ts, °C				
				Percer	ntage of	metal in	second	column			
Metals	0	10	20	30	40	50	60	70	80	90	100
Pb Sn	327	295	276	262	240	220	190	185	200	216	232
<u>B</u> i	327	290			179	145	126	168	205		271
Te	327	710	790	880	917	760	600	480	410	425	452
Ag	327	460	545	590	620	650	705	775	840	905	961 97.5
Na Cu	327 327	360 870	420 920	400 925	370 945	330 950	290 955	250 985	200 1005	130 1020	1083
Sb	327	250	275	330	395	440	490	525	560	600	630
A1 Sb	660	750	840	925	945	950	970	1000	1040	1010	630
Cu	660	630	600	560	540	580	610	755	930	1055	1083
Au	660	675	740	800	855	915	970	1025	1055	675	1063
Ag	660	625	615	600	590	580	575	570	650	750	961
<u>Z</u> n	660	640	620	600	580	560	530	510	475	425	419
Fe	660	860	1015	1110	1145	1145	1220	1315	1425	1500	1533
Sn	660 631	645 610	635 590	625 575	620 555	605 540	590 520	570 470	560 405	540 330	232 271
Sb Bi Ag	631	595	570	545	520	500	505	545	680	850	961
Ag Sn	631	600	570	525	480	430	395	350	310	255	232
Zn	631	555	510	540	570	565	540	525	510	470	419
Ni Sn	1453	1380	1290	1200	1235	1290	1305	1230	1060	800	232
Na Bi	97.5	425	520	590	645	690	720	730	715	570	271
_ Cd	97.5	125	185	245	285	325	330	340	360	390	321
Cd Ag	321	420	520	610	700	760	805	850	895	940	961
Ţ1	321	300	285	270	262	258	245	230	210.	235	303 419
Zn Au Cu	321 1063	280 910	270 890	295 895	313 905	327 925	340 975	355 1000	370 1025	390 1060	1083
	1063	1062	1061	1058	1054	1049	1039	1025	1006	982	961
	1063	1125	1190	1250	1320	1380	1455	1530	1610	1685	1769
K Na	63	17.5		-3.5		11	26	41	58	77	97.5
Hg	63	_	_	_		90	110	135	162	265	_
T1	63	133	165	188	205	215	220	240	280	305	303
	1083	1180	1240	1290	1320	1335	1380	1410	1430	1440	1453
	1083	1035	990	945	910	870	830	788	814	875	961
	1083 1083	1005 1040	890 995	755 930	725 900	680 880	630 820	580 780	530 700	440 580	232 419
Zn Ag Zn	961	850	755	705	690	660	630	610	570	505	419
Sn	961	870	750	630	550	495	450	420	375	300	232
Na Hg	97.5	90	80	70	60	45	22	55	95	215	

TABLE 123.-MELTING POINT °C OF LOW-MELTING-POINT ALLOYS *

				Percent						
Cadmium Tin Lead Bismuth	14.2 24.9	10.2 14.3 25.1 50.4	14.8 7.0 26.0 52.2	13.1 13.8 24.3 48.8	6.2 9.4 34.4 50.0	7.1 39.7 53.2	6.7 - 43.4 49.9			
Solidification at	65.5°	67.5°	68.5°	68.5°	76.5°	89.5°	95°			
	Percent									
Lead		25.8 19.8 54.4	25.0 15.0 60.0	43.0 14.0 43.0	33.3 33.3 33.3	10.7 23.1 66.2	50.0 33.0 17.0	35.8 52.1 12.1	20.0 60.0 20.0	70.9 9.1 20.0
Solidification at	96°	101°	125°	128°	145°	148°	161°	181°	182°	234°

^{*} See Table 201.

Values are given, for the more important crystals, of the inversion temperature in °C, the heat of inversion in cal/g and the inversion volume change in cm³/g. No monotropic inversions have been included.

hi, inversion temperature on heating; m, metastable inversion temperature; e, estimated;

g, gradual inversion (not to be confused with slow retarded inversions).

Substance	Phases	$rac{Transition}{t^{\circ}C}$	Pressure atm	Transition heat cal/g	Transition volume change cm³/g
AgC1O ₄		158			
AgBrO₃		98.5			
AgI	I-II	<i>S</i> 146	1	5.72	.0086
71g1		€ 99.4	2720	4.95	.0101
	I-III	99.4	2720	4.22	.0140
	II-III	99.4	2720	.76	.0241
Ag ₂ S	• • • •	175		3.85	• • • •
Ag ₂ Se		133		5.65	• • • •
Ag ₂ SO ₄	• • • •	412 159.5	• • • •	3.37	0025
AgNO ₃	• • • •	70			.0025
AlBr ₃ , As ₂ O ₃	• • • •	275		6	• • • •
As ₂ O ₃	red-black	267	• • • •	_	
As ₂ S ₃	red-yellow	170			
Bi ₂ O ₃	rea-yenow	704 †	• • • •	• • • •	• • • •
BaCl ₂	• • • •	924		• • • •	• • • •
BaClO ₄		284			
BaSO ₄		1149			
BaCO ₃		811 & 982			
Br ₃ O ₈					
CO	ø	- 35 212.8		5.4	
CH	g	— 252.7		1.15	
CH₃OH	ø	—112		4.8	
CCI4	I-II	∫ — 48.5	1	7.1	.026°
CC14		115	8460	9.8	.0173
	II-III	115	8460	.9	.0054
	I-III	115	8460	10.7	.0227
CBr4	I-II	{ 46.2	1	5.04	.0205
	I-III	\112.6 112.6	2110 2110	4.58 .25	.0150 .0029
	11-111	112.6	2110	.25 4.66	.0029
CH₂I₂	L-I-III	8.6	180	4.00	.0121
CI1212	L-II-III	42.8	1930		• • • •
	I-II-IV	9.4	325		• • • •
	II-III-IV	38	1825	••••	
CH4N2O	I-II	102.3	6535	2.34	.0480
(Urea)	Ī-ĪĪI	102.3	6535	10.14	.0486
(2104)	II-III	102 3	6535	7.80	.0006
CH ₃ COOH	L-I	∫ 16. 6 8	1	45	.1560
сп₃соон		₹ 55.7	2033	46.4	.0862
	L-II	55.7	2033	48.2	.0992
	I-II	55.7	2033	1.85	.0130
CH ₃ CONH ₂	Ĩ-Ĩ	127	5220	60.9	.0319
(Acetamide)	ŗ-ĨĬ	127	5220	58.5	.0649
(CII.) CO †	I-II	127	5220	2.41	.0330
(CH ₃) ₂ CO ‡	I-II I-II	—140 to —150 71.1	0	<.5	.0280
C₂Cl₀(Perchlor ethane)	II-III	42.7	1	6.93 2.63	.0280
(Ferenior ethane)		(47.9	1	40.7	.0599
$C_3H_7NO_2$ (Urethane)	L-I	66.2	2270	37.9	.0253
		66.2	2270	35.9	.0255
	L-II	76.8	4090	34.4	.0184
	L-III	76.8	4090	40.6	.0640
	I-II	66.2	2270	2.07	.0102
	1-11	25.5	3290	1.64	.0092
	II-III	<i>§</i> 76.8	4090	6.12	.0456
			2200	F F0	
	I-III	\ 25.5 25.5	3290 3290	5.50 3.8 7	.0482 .0574

^{*} Arranged by F. C. Kracek, Geophysical Laboratory, Carnegie Institution. All other footnotes at end of table.

(continued)

TABLE 124.—REVERSIBLE TRANSITIONS IN CRYSTALS (continued)

Substance C ₆ H ₆ (Benzene) C ₆ H ₅ OH (Phenol) CH ₃ C ₆ H ₄ OH (o.Cresol). Camphor § C ₆ H ₁₁ OH C ₆ H ₁₁ OH C ₈ H ₂ NH ₂ HNO ₃ CaCO ₁ ° CaCO ₂ ° CaO.SiO ₂ CoO CoO CoO CoO CoO CoOH	Phases I-II L-I L-II L-II L-II I-II I-II I-II	Transition 1°C { 100	atm 11680 11680 1 11680 1 11680 1 1 2015 2015 2015 2015 1 5900 5900 1 1 nigh CO ₂	Transition heat cal/g 8.68 7.73 ° 30.2 33.25 ° 25.5 ° 29.8 24.8 30 5.2 33.8 34.2 35 .8 .25 9.38 Ca. 10 11.8	Transition volume change cm ⁸ /g .0105 .0132 °0507 °0567 .0270 .0825 .0555 .0838 .0317 .0555 .0238 .00187
CsCl	• • • •	460 219		8	
CsC1O ₄	• • • •	660 153.5	· · · · · · · · · · · · · · · · · · ·	 13	.00405
CsNO ₃		722		4.3	
Cu_2Br_2	I-II-III I-II-III	390, 470 402, 440	1	1.001	00405
<i>C C</i>	II-III II-III	200 100	9600 11560	1.091 .948	.00485 .00535
Cu ₂ S	• • • •	91 110		5.6 5.4	
Cu₂Te Fe	Curie point	351, 387 730		6.7 ±	
	β - γ γ - δ	920 1400		6.7 ± 2	
Fe ₃ O ₄	Curie point II-III	$570 \pm -163 \text{ to } -148$		2.25	
F. C	I-II	500 ±			
FeS	pyrite, marcasite	140			
Fe ₂ P	• • • •	80 440			• • • •
FeTiO ₃	• • • •	215			
HgI_2	red-yellow green-yellow	127.5		1.3 .5 ±	.00342
Hg ₂ I ₂ HgS	{cinnabar }	386 ±			
IC1	(metacinnabar) ruby-brown	****			
KOH	Ĭ-ĬĬ	248 255	5500	27.1	
	$ \begin{array}{c} \text{II-III} \\ \Delta v_i = .0251002510 \end{array} $	P = 5500			t 200°
KC104		295	;		
K_2S	I-II	$\begin{cases} 146.4 \\ t = 146.4 \end{cases}$	+.0124p	.765	.00095
KNO ₃	I-II	(127.7 128	1 81	10.5 10.3	.00484
	I-III	128	81	5.6	.0138
	II-III	{ 128 21.3	81 2840	4.7 1.3	.0089 .0156
	III-IV	21.3	2840	5.1	.0284
	II-IV (cont	21.3 inucd)	2840	3.8	.0440

TABLE 124.—REVERSIBLE TRANSITIONS IN CRYSTALS (continued)

TABLE 124.—NEVENO	IDEL INAN	31110113 111	un i u	ALS (COIIL	·
		Tunnisian 1	D	Transition	Transition volume
Substance	Phases	Fransition t°C	atm	heat cal/g	change cm ⁸ /g
K₂SO₄		588		13	::::.
KHSO4	I-II	{180.5	1773	.71 2.29	.00066 .00197
	** ***	\ 198.6 (164.2	1//3	3.61	.00566
	II-III	118.2	2810	3.30	.00570
	II-IV	{ 198.6	1773	.166	.00113
	I-IV	\ 118.2 198.6	2810 1773	.134 2.03	.00110
	IIÎ-ÎV	118.2	2810	3.44	.00680
KPO₃	• • • •	450			• • • •
$K_4P_2O_7$ K_2CO_3	• • • •	278 410			
KCNS		143	i	3.10	.00306
$K_2Pb(SO_4)_2$		544	• • • •	• • • •	• • • •
K₂CdI₄	• • • •	215 666		12.6	
K ₂ Cr ₂ O ₇		243		1.40	
K ₂ MoO ₄		327, 454, 477		0.2	• • • •
K ₂ WO₄		388 575		8.2 1.6	
$K_2Ca_2(SO_4)_3$		937			
$K_2Sr(SO_4)_3$		775			• • • •
KLiSO,		435 (.3	5000	11.7	.0315
KNO ₂	I-II	122.3	10000	7.15	.0378
$K_2O(SiO_2)_2 \dots \dots $ $2K_2O(Al_2O_3)(SiO_2)_4$	• • • •	290 714	• • • •	• • • •	• • • •
LiClO ₃	• • • •	41.5, 99			
Li ₂ SO ₄		580		55 ± 1	
(MgO) ₆ (B ₂ O ₃) ₈ MgCl	• • • •	266	• • • •	1.8	• • • •
MgO.SiO ₂ b		742, 1191	• • • •	• • • •	
MnSO4		860			
MnO ₂		—185 to —175 —153 to —163		.88 2.08	• • • •
MnO	• • • •	-237.6		1.90	
NH₄Cl		-30.5°			0005
NH ₄ Br	I-II	184.3 —38 °		16.3	.0985
WII4DI	I-II	137.8	i	7.78	.0647
NH4I	Ï-II	42.5° 17.6	····i	4.80	.0561
NH4C1O4	1-11	240		7.00	.0301
NH ₄ HSO ₄	I-II-III	126.2	1800		
(NH ₄) ₃ H(SO ₄) ₂	II-III-IV	176.9 134	5480		
NH ₄ CNS	I-II	120			
MILNO	II-III	87.7 169.5	1	10.36 16	.0409 .051
NH₄NO₃	L-I	(125.5	1	12.9	.01351
	I-II	186.7	8730	12.6	.00475
	I-VI II-VI	186. 7 (169.2	8730 8870	12.3 .27	.00855
	11- 1	186.7	8730	.33	.00380
	II-III	£ 84	1	4	.00758
		63.3	830 1	2.48 4.67	.00925
	III-IV	(63.3	830	4.03	.02135
	II-IV	63.3 169.2	830 8870	6.51 11.84	.01210 .01267
	IV-VI	169.2	8870	12.1	.00958
N. O.I.	ĨŸ-Ÿ	18	1	1.6	.017
NaOH NaClO ₄		300 308		24.7	• • • •
NaClO ₃	• • • •	248			1111
Na ₂ SO ₄	IV-III	185		8.6	.0034
	III-I	241		15.5	.0070

(continued)

TABLE 124.—REVERSIBLE TRANSITIONS IN CRYSTALS (concluded)

				Transition	Transition volume
Substance	Phases	Transition t°C	Pressure	heat cal/g	change cm ³ /g
NaF.Na ₂ SO ₄		105			
Na ₂ CO ₂		430			
NaNO ₂	• • • •	275 °		(8±2)	(.0081)
Na ₂ AlF ₆		568		59	
Na₂MoO₄	· · · ·	424, 585, 623		25.1	010
Na₂WO₄	I-L II-I	581.6 588.8		3.3	.018 .00
	111-11	695.5		19.4	.035
NaAlSiO4	nephcarn.	1250			
	carnegieite	226, 650–690)	ca1	
NaC₂H₃O₂°	Comition	1984		• • • •	
Ni Ni ₂ S ₂	Curie point	355 545	• • • •		• • • •
Ni ₅ As ₂	• • • •	9 7 0			
Oxygen	Ï-II	-229.5		6.2	
• 0	II-III	-249.5		.75	::::
Phosphorus	L-I	{ 44.2	(000	4.90	.0193
1 noophords 1111111111		196	6000 6000	6.53 43.9	.0120 .00846
	I-II	$\left\{ \begin{array}{c} .1 \\ 68.4 \end{array} \right.$	12000	55.2	.00684
PbO	red-yellow	587	12000	33.2	.00004
PbSO4		8 7 0		13.4	
PbCrO ₄		707, 783			
PbWO	• • • •	877	• • • •	16.8	
RbOH		245 279	• • • •	10.6	• • • •
Rb ₂ SO ₄		653			
Rb ₂ Ca ₂ (SO ₄) ₃		787, 915			
RbLiSO	i-ii	142			
RbNO ₃		219		7.10	00699
	II-III	164.4 218.6	5810	7.12 5.93	.00688 .00434
RbCl		50	5525		.00101
RbBr		50	4925		
RbI		50	4050		
Sulphur	I-II	95.5	1410	2.7	• • • •
Sb ₂ O ₃	L-I-II rhombreg.	155 570	1410		
SbCl ₂	I-II-III	65, 69.5			
SiO. °	I-II	573		2.6	
SiO ₂ '	I-II	215		2.7	
SiO ₂ ^h	I-II	150 *		.63	
SiO ₂	II-III	104 h 867	• • • •	.96 8.7 °	
3102	o, f	1250		25°	
	h, f	1470		7.5°	
Sn		161		.2	small
02	• • • •	18		4.4	
SnO₂ SrSO₁		430, 540 1152			
SrCO ₂	• • • •	925	high CO ₂		
TICIO4	• • • •	226			
T1I		173			
T1NO ₃	I-II	144.6 75	1	2.86	.00244
Tl picrate	II-III	75 44	1	.89	.00073 .018
T1		230		.3 ±	.010
TiBr ₄	• • • •	—15			
W ₂ C	• • • •	2400			
ZnS	• • • •	1020 ca 1000		• • • •	
ZrO ₂	• • • •	Ca 1000			• • • •

[†] Third modification at room temperature. ‡ Acetone. § Five other modifications; not accurately located. ¶ Very heautiful for demonstration purposes. a Leucite. b Probably pentamorphic, inv. at 1150° and 1300°C. c Acetate. d Sluggish. e Quartz. f Cristobalite. g Zincblende and wurtzite.

TABLE 125.—TRANSFORMATION AND MELTING TEMPERATURES OF LIME-ALUMINA-SILICA COMPOUNDS AND EUTECTIC MIXTURES *

			Percent	1		
Substance		CaO	Al ₂ O ₃	SiO ₂	Transformation	Cemp. °C
CaSiO₂		48.2	_	51.8	Melting † 1	540±2
CaSiO₂		48.2	_	51.8		200±2
Ca₂SiO₄		65.	_	35.	Melting 2	130 ± 10
			_	35.		675±5
	• • • • •	65.	_	35.	β to α and reverse	
Ca ₂ Si ₂ O ₇	• • • • •	58,2	-	41.8		475±5
Ca₂SiO₅		73.6	27.0	26.4	Dissociation into Ca ₂ SiO ₄ and CaO 1	
$Ca_2Al_2O_0$ $Ca_5Al_6O_{14}$		62.2 47.8	37.8 52.2	_		535±5
CaAl ₂ O ₄		35.4	64.6	_	3.5.4.9	455±5 600±5
Ca ₃ Al ₁₀ O ₁₈			75.2			720±3
Al ₂ SiO ₅		24.0	62.8	37.1		816±10
CaAl ₂ Si ₂ O ₈		20.1	36.6	43.3		550±2
Ca ₂ Al ₂ SiO ₇		40.8	37.2	22.0		590±2
Ca ₂ Al ₂ SiO ₈			30.9	18.2	Dissociation into Ca ₂ SiO ₄ +Ca ₂ Al ₂ SiO ₇	-,
						335±5
	Trace	4!			•	
	Eute	ectics Percen	t	Meltin	Eutectics Percent	Melting
Crystalline	<u> </u>			temp,	Crystalline	temp.
phases	CaO	Al ₂ O ₂	SiO ₂		phases CaO Al ₂ O ₃ SiO ₂	°C
CaSiO ₂ ,SiO ₂	37	_	63.	1436	$CaAl_2Si_2O_8$	1005
Ca,SiO_2 $3CaO,2SiO_2$	54.5	_	45.5	1455±	$Ca_2Al_2SiO_7$ 38. 20. 42.	1265
Ca ₂ SiO ₄					Ca ₂ SiO ₄	
CaO. }	67.5	_	32.5	2065±	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1380
Al ₂ SiO ₅ ,SiO ₂	_	13.	87.	1610	Al ₂ O ₃	1000
Al ₂ SiO ₅ , Al ₂ O ₃	_	64.	36.	1810	Ca ₂ SiO ₄	
CaAl ₂ Si ₂ O ₈ \	34.1	18.6	47.3	1299	$CaAl_2O_4$ } 49.5 43.7 6.8	1335
CaSiO₃ ∫	34.1	10.0	47.3	1299	Ca ₅ Al ₈ O ₁₄	
CaAl ₂ Si ₂ O ₈	10.5	19.5	70.	1359		
SiO ₂	20.0	17.0		1007		
$CaAl_2Si_2O_8$ SiO ₂ ,CaSiO ₂	23.2	14.8	62.	1165		
Ca ₂ Al ₂ SiO ₂					Quintuple points	
Ca ₂ SiO ₄	49.6	23.7	26.7	1545	Ca ₂ Al ₂ SiO ₇	
Al ₂ O ₂	10.0	20.2			$Ca_2Si_2O_7$ } 48.2 11.9 39.9	1335
CaAl ₂ Si ₂ O ₈	19.3	39.3	41.4	1547	Ca ₂ SiO ₄	
CaAl ₂ Si ₂ O ₈	9.8	19.8	70.4	1345	$Ca_2Al_2SiO_1$	
Al ₂ SiO ₅ ,SiO ₂	9.0	19.0	70.4	1343	Ca ₂ SiO ₄ } 48.3 42. 9.7	1380
Ca ₂ Al ₂ SiO ₇	35.	50.8	14.2	1552	CaAl ₂ O ₄	
Ca ₃ Al ₁₀ O ₁₈ 5	001	00.0	2	1002	$CaAl_2Si_2O_8$	1510
Ca ₂ Al ₂ SiO ₇	37.8	52.9	9.3	1512	$A1_2O_3$ } 15.6 36.5 47.9	1512
$CaAl_2O_4$ $\int Ca_2Al_2SiO_7$ \int					Al ₂ SiO ₅	
CaAl ₂ O ₄	37.5	53.2	9.3	1505	$Ca_2Al_2SiO_7$ 31.2 44.5 24.3	1475
Ca ₃ Al ₁₀ O ₁₈	37.5	33.2	9.3	1303	Al ₂ O ₂	11/3
CaAl ₂ Si ₂ O ₈	20.0	24.0	22	1205	, , , ,	
Ca ₂ Al ₂ SiO ₇	30.2	36.8	33.	1385		
Ca ₂ Al ₂ SiO ₇						
Ca ₂ Si ₂ O ₇	47.2	11.8	41.	1310	Our description of the	
CaSiO ₃					Quadruple points	
Ca ₂ Al ₂ SiO ₇	45.7	13.2	41.1	1316	$3CaO.2SiO_2$ 55.5 - 44.5	1475
CaSiO₂ ∫	,			-0-0	2CaO.SiO ₂) 35.5 — 44.5	1175

^{*} The majority of these determinations are by G. A. Rankin. † The accuracy of the melting points is 5 to 10 units. (Geophysical Laboratory.)

TABLE 126.-LOWERING OF FREEZING POINTS BY SALTS IN SOLUTION

In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 g of water; the second contains the molecular lowering of the freezing point; the freezing point depression is the product of these two columns. After the chemical formula is given the molecular weight. Temperatures in °C.

g			
+ ac	± №	<u> </u>	F 60
Molecular low & H2O	$\begin{array}{cc} \frac{1000 \text{ g H}_{20}}{\text{Molecular}} \\ \text{lowering} \end{array}$	Molecular lowering	Molecular Oo'H 8 0001
, ec	, ec	, Lec	g mol 5 5 5 €
g mol o	g mol jo s	g mol	1000 - H O
1000 g H ₂ O ≥		1000 g H ₂ O Z	
$Pb(NO_3)_2, 331.0$.0500 3.47°	.4978 2.02°	MgCl ₂ , 95.26
.000362 5.5°	.1000 3.42	.8112 2.01	.0100 5.1°
.001204 5.30	.2000 3.32	1.5233 2.28	.0500 4.98
.002805 5.17	.500 3.26	BaCl ₂ , 208.3	.1500 4.96
.005570 4.97	1.000 3.14	.00200 5.5°	.3000 5.186
.01737 4.69	LiNO ₃ , 69.07	.00498 5.2	.6099 5.69
.5015 2.99	.0398 3.4°	.0100 5.0	KC1, 74.60
Ba(NO ₃) ₂ , 261.5	.1671 3.35	.0200 4.95	.02910 3.54°
.000383 5.6°	.4728 3.35	.04805 4.80	.05845 3.46
.001259 5.28	1.0164 3.49	.100 4.69	.112 3.43
.002681 5.23	Al ₂ (SO ₄) ₃ , 342.4	.200 4.66	.3139 3.41
.005422 5.13	.0131 5.6°	.500 4.82	.476 3.37
.003422 5.13	.0261 4.9	.586 5.03	1.000 3.286
	.0543 4.5	.750 5.21	1.989 3.25
Cd(NO ₃) ₂ , 236.5			3.269 3.25
.00298 5.4°		CdCl ₂ , 183.3	
.00689 5.25	.217 3.83	.00299 5.0°	NaCl, 58.50
.01997 5.18	CdSO ₄ , 208.5	.00690 4.8	.00399 3.7°
.04873 5.15	.000704 3 35°	.0200 4.64	.0100 3.67
AgNO ₃ , 167.0	.002685 3.05	.0541 4.11	.0221 3.55
.1506 3.32°	.01151 2.69	.0818 3.93	.04949 3.51
.5001 2.96	.03120 2.42	.214 3.39	.1081 3.48
.8645 2.87	.1473 2.13	.429 3.03	.2325 3.42
1.749 2.27	.4129 1.80	.858 2.71	.4293 3.37
2.953 1.85	.7501 1.76	1.072 2.75	.700 3.43
3.856 1.64	1.253 1.86	CuCl ₂ , 134.5	NH ₄ C1, 53.52
.0560 3.82	K₂SO₄, 174.4	.0350 4.9°	.0100 3.6°
.1401 3.58	.00200 5.4°	.1337 4.81	.0200 3.56
.3490 3.28	.00398 5.3	.3380 4.92	.0350 3.50
KNO ₃ , 101.9	.00865 4.9	.7149 5.32	.1000 3.43
.0100 3.5	.0200 4.76		.2000 3.396
.0200 3.5	.0500 4.60	CoCl ₂ , 129.9 .0276 5.0°	.4000 3.393
.0500 3.41	.1000 4.32		.7000 3.41
.100 3.31	.200 4.07	.1094 4.9	
.200 3.19	.454 3.87	.2369 5.03	LiCl, 42.48 .00992 3.7°
.250 3.08	CuSO ₄ , 159.7	.4399 5.30	
.500 2.94	.000286 3.3°	.538 5.5	.0455 3.5
.750 2.81	.000843 3.15	CaCl ₂ , 111.0	.09952 3.53
1.000 2.66	.002279 3.03	.0100 5.1°	.2474 3.50
NaNO ₃ , 85.09	.006670 2.79	.05028 4.85	.5012 3.61
.0100 3.6°	.01463 2.59	.1006 4.79	.7939 3.71
.0250 3.46	.1051 2.28	.5077 5.33	BaBr ₂ , 297.3
	.2074 1.95	.946 5.3	.100 5.1°
.0500 3.44	.4043 1.84	2.432 8.2	.150 4.9
.2000 3.345		3.469 11.5	.200 5.00
.500 3.24		3.829 14.4	.500 5.18
.5015 3.30	MgSO ₄ , 120.4	.0478 5.2	A1Br ₃ , 267.0
1.000 3.15	.000675 3.29	.153 4.91	.0078 1.4°
1.0030 3.03	.002381 3.10		.0559 1.2
NH ₄ NO ₃ , 80.11	.01263 2.72		*
.0100 3.6°	.0580 2.65	.612 5.47	
.0250 3.50	.2104 2.23	.998 6.34	.4355 1.07

(continued)

TABLE 126.—LOWERING OF FREEZING POINTS BY SALTS IN SOLUTION (concluded)

			,	,			
	F 25		Molecular lowering		F 50		F 50
	ol Tolecular Iowering		B-E		folecular Iowering		3.5
g mol	se ve	g mol	» e	g mol	ec Ne	a mal	Ve.
1000 g H ₂	O Molecular Iowering	1000 g H ₂ O	100	1000 g H ₂ O	Molecular Iowering	g mol	Molecular lowering
			_ ^			1000 g H ₂ O	
CdBr ₂ , 27		KOH, 56.1		Na ₂ SiO ₃ , 122		.472	2.20°
.00324		.00352	3.60°	.01052	6.4°	.944	2.27
.00718	4.6	.00770	3.59	.05239	5.86	1.620	2.60
.03627	3.84	.02002	3.44	.1048	5.28	(COOH)2, 9	0.02
.0719	3.39	.05006	3.43	.2099	4.66	.01002	3.3°
.1122	3.18	.1001	3.42	.5233	3.99	.02005	3.19
.220	2.96	.2003	3.424	HC1, 36.46	3.77		
	2.76		3.444		2 600	.05019	3.03
.440	2.70	.230	3.50	.00305	3.68°	.1006	2.83
.800	2.59	.465	3.57	.00695	3.66	.2022	2.64
CuBr ₂ , 22	3.5	CH ₃ OH, 32		.0100	3.6	.366	2.56
.0242	5.1°	.0100	1.8°	.01703	3.59	.648	2.3
.0817	5.1	.0301	1.82	.9500	3.59	$C_3H_5(OH)_3$	92.06
.2255	5.27	.2018	1.811	.1025	3.56	.0200	1.86°
.6003	5.89	1.046	1.86	.2000	3.57	.1008	1.86
CaBr2, 20		3.41	1.88	.3000	3 612		
.0871	5.1°	6.200	1.944	.464	3.68	.2031	1.85
.1742	5.18	C ₂ H ₅ OH, 40		.516	3.79	.535	1.91
						2.40	1.98
.3484	5.30	.000402	1.67°	1.003	3.95	5.24	2.13
.5226	5.64	.004993	1.67	1.032	4.10	$(C_2H_5)_2O,74$	1.08
MgBr ₂ , 18		.0100	1.81	1.500	4.42	.0100	1.6°
.0517	5.4°	.02892	1.707	2.000	4.97	.0201	1.67
.103	5.16	.0705	1.85	2.115	4.52	.1011	1.72
.207	5.26	.1292	1.829	3.000	6.03		
.517	5.85	.2024	1.832	3.053	4.90	.2038	1.702
KBr, 119.		.5252	1.834	4.065	5.67	Dextrose, 18	
.0305	3.61°	1.0891	1.826	4.657	6.19	.0198	1.84°
.1850	3.49	1.760	1.83	HNO ₃ , 63.05		.0470	1.85
						.1326	1.87
.6801	3.30	3.901	1.92	.02004	3.55°	.4076	1.894
.250	3.78	7.91	2.02	.05015	3.50	1.102	1.921
500	3 56	11.11	2.12	.0510	3.71		
CdI ₂ , 366.		18.76	1.81	.1004	3.48	Levulose, 18	
.00210	4.5°	.0173	1.80	.1059	3.53	.0201	1.87°
.00626	4.0	.0778	1.79	.2015	3.45	.2050	1.871
.02062	3.52	K ₂ CO ₃ , 138.	30	.250	3.50	.554	2.01
.04857	2.70	.0100	5.1°	.500	3.62	1.384	2.32
.1360	2.35	.0200	4.93	1.000	3.80	2.77	3.04
.333	2.13	.0500	4.71	2.000	4.17	C12H22O11, 34	2.2
.684	2.13			3.000	4.64	.000332	1.90°
		.100	4.54		4.04	.001410	1.87
.888	2.51	.200	4.39	H ₃ PO ₂ , 66.0	0.000		
KI, 166.0		Na ₂ CO ₃ , 100	5.10	.1260	2.90°	.009978	1.86
.0651	3.5°	.0100	5.1°	.2542	2.75	.0201	1.88
.2782	3.50	.0200	4.93	.5171	2.59	.1305	1.88
.6030	3.42	.0500	4.64	1.071	2.45	H ₂ SO ₄ , 98.08	
1.003	3.37	.1000	4.42	H ₃ PO ₃ , 82.0		.00461	4.8°
SrI ₂ , 341.3		.2000	4.17	.0745	3.0°	.0100	4.49
.054	5.1°	Na ₂ SO ₃ , 12		.1241	2.8	.0200	4.32
.108	5.2	.1044	4.51°	.2482	2.6	.0461	4.10
		2207					
.216	5.35	.3397	3.74	1.00	2.39	.100	3.96
.327	5.52	.7080	3.38	H₃PO₄, 98.0	0.01	.200	3.85
NaOH, 40		Na ₂ HPO ₄ , 1		.0100	2.8°	.400	3.98
.02002	3.45°	.01001	5.0°	.0200	2.68	1.000	4.19
			101	0.500	2 40	1 500	4.96
.05005	3.45	.02003	4.84	.0500	2.49	1.500	
.05005 .1001	3.45 3.41	.02003 .05008	4.84	.1000	2.49	2.000	5.65

TABLE 127.—RISE OF BOILING POINT PRODUCED BY SALTS DISSOLVED IN WATER

This tables gives the number of g of the salt which, when dissolved in $100~\rm g$ of water, will raise the boiling point by the amount stated in the headings of the different columns. The pressure is supposed to be $76~\rm cmHg$.

Salt	1°C	2°	3°	4°	5°	7°	10°	15°	20°	25°
BaCl ₂ +2H ₂ O	15.0	31.1	47.3	63.5	(71.6 g		.5 rise	of temp.		
CaCl ₂	6.0	11.5	16.5	21.0	25.0	32.0	41.5	55.5	69.0	84.5
$Ca(NO_3)_2+2H_2O \dots$		25.5	39.5	53.5	68.5	101.0	152.5	240.0	331.5	443.5
КОН	4.7	9.3	13.6	17.4	20.5	26.4	34.5	47.0	57.5	67.3
$KC_2H_3O_2$	6.0	12.0	18.0	24.5	31.0	44.0	63.5	98.0	134.0	171.5
KCI	9.2	16.7	23.4	29.9	36.2	48.4	(57.4	gives a	rise of 8°	5)
K ₂ CO ₃		22.5	32.0	40.0	47.5	60.5	78.5	103.5	127.5	152.5
KCIO ₃		27.8	44.6	62.2		0				
KI	15.0	30.0	45.0	60.0	74.0	99.5	134.	185.0	(220 giv	ves 18°.5)
KNO ₃	15.2	31.0	47.5	64.5	82.0	120.5	188.5	338.5		
V C H O L HI O	100	26.0	540	72.0	00.0	126 5	102.0	2040		
$K_2C_4H_4O_6+\frac{1}{2}H_2O$	17.3	36.0 34.5	54.0 51.3	68.1	90.0 84.8	126.5 119.0	182.0 171.0	284.0 272.5	390.0	510.0
$KNaC_4H_4O_6$ $KNaC_4H_4O_6+4H_2O$.		53.5	84.0	118.0	157.0	266.0	554.0	5510.0	390.0	310.0
LiCl	3.5	7.0	10.0	12.5	15.0	20.0	26.0	35.0	42.5	50.0
LiCl+2H₂O	6.5	13.0	19.5	26.0	32.0	44.0	62.0	92.0	123.0	160.5
$MgCl_2+6H_2O$	11.0	22.0	33.0	44.0	55.0	77.0	110.0	170.0	241.0	334.5
MgSO₄+7H₂O	41.5	87.5	138.0	196.0	262.0	22.4		44.0	#A 0	40.4
NaOH	4.3	8.0	11.3	14.3	17.0	22.4	30.0	41.0	51.0	60.1
NaCl	6.6 9.0	12.4 18.5	17.2 28.0	21.5 38.0	25.5 48.0	33.5 68.0	99.5	gives 8° 156.0	.8 rise) 222.0	
NanO ₃	9.0	10.5	20.0	30.0	40.0	00.0	99.3	150.0	222.0	
$NaC_2H_3O_2+3H_2O$	14.9	30.0	46.1	62.5	79.7	118.1	194.0	480.0	6250.0	
$Na_2S_2O_3$		27.0	39.0	49.5	59.0	77.0	104.0	152.0	214.5	311.0
Na ₂ HPO ₄	17.2	34.4	51.4	68.4	85.3					
$Na_2C_4H_4O_6+2H_2O$	21.4	44.4	68.2	93.9	121.3			gives 8°	.4 rise)	
$Na_2S_2O_3+5H_2O$	23.8	50.0	78.6	108.1	139.3	216.0	400.0	1765.0		
Na ₂ CO ₃ +10H ₂ O	3/1 1	86.7	177.6	369.4	1052.9					
$Na_2B_4O_7+10H_2O$		93.2	254.2	898.5	(5555.5	gives	4° 5 ric	e)		
NH ₄ Cl		12.8	19.0	24.7	29.7	39.6	56.2	88.5		
NH ₄ NO ₃		20.0	30.0	41.0	52.0	74.0	108.0	172.0	248.0	337.0
(NH ₄) ₂ SO ₄		30.1	44.2	58.0	71.8	99.1	(115.3	gives 1	08.2)	
		40.0		04.0	1000					
SrCl ₂ +6H ₂ O	20.0	40.0	60.0	81.0	103.0	150.0	234.0	524.0		
$Sr(NO_3)_2$	17.0	45.0 34.4	63.6 52.0	81.4 70.0	97.6 87.0	123.0	177.0	272.0	274.0	404.0
$C_{1}H_{1}O_{1}$ $C_{2}H_{2}O_{4}+2H_{2}O$		40.0	62.0	86.0	112.0	169.0	262.0	540.0	374.0 1316.0	484.0 50000.0
$C_0H_*O_7+H_2O$		58.0	87.0	116.0	145.0	208.0	320.0	553.0	952.0	30000.0
·				2.0.0	1 10.0	_00.0	520.0	300.0	752.0	
Salt 40°C		60°	80°	100°	120°	140°	16	0° 18	0° 200°	240°
CaCl ₂ 137.		22.0	314.0	405	240.2	0.15				
KOH 92.		21.7	152.6	185.0	219.8	263.				
NaOH 93.		50.8	230.0	345.0	526.3	800.		3.0 235	3.0 6452.	0 —
NH ₄ NO ₃ 682. C ₄ H ₆ O ₆ 980.		70.0 74.0	2400.0	4099.0 y gives	8547.0	C	Ю			
C4116U6 980.	.0 3/	74.0	(minnit	y gives	170)					

Column 1 gives the name of the principal refrigerating substance, A the proportion of that substance, B the proportion of a second substance named in the column, C the proportion of a third substance, D the temperature of the substances before mixture, E the temperature of the mixture, E the lowering of temperature, E the temperature when all snow is melted, when snow is used, and E the amount of heat absorbed in heat units (calories when E is grams). Temperatures are in E columns of the proportion of that substance, E the temperature when all snow is melted, when snow is used, and E the amount of heat absorbed in heat units (calories when E is grams).

tures are in °C.						
Substance A	В	С	.D E	F	G	Н
NaC ₂ H ₃ O ₂ (cryst.) 85	H ₂ O-100	_	10.7 4.7	15.4	_	_
NH ₄ C1 30	" "		13.3 - 5.1 $13.2 - 5.3$	18.4 18.5	_	_
NaNO ₃ 75 Na ₂ S ₂ O ₃ (cryst.) 110	"	_	13.2 - 5.3 $10.7 - 8.0$	18.7	_	_
Na ₂ S ₂ O ₃ (cryst.) 110 KI 140	"	_	10.8 —11.7	22.5	_	_
CaCl ₂ (cryst.) 250	"	_	10.8 —12.4	23.2	_	_
NH ₄ NO ₃ 60	" "		13.6 - 13.6	27.2 26.0	_	_
(NH ₄) ₂ SO ₄ 25 NH ₄ Cl 25	" 50 " "	NH ₄ NO ₃ -25		22.0	_	_
NH ₄ Cl	44	" "		20.0	_	_
KNO ₃ 25	44 44	NH₄C1–25		20.0	_	_
Na ₂ SO ₄ 25 Na ₁ NO ₂ 25	" "	"		19.0 17.0		_
NaNO ₃	Snow 100		-1 -1.9	.9		_
Na ₂ CO ₃ (cryst.) 20	"		- 1 — 2.0	1.0	_	
KNO ₃ 13			- 1 — 2.85 - 1 —10.9	1.85	_	_
CaCl ₂ 30 NH ₄ Cl 25	"			9.9 14.4	_	_
NH ₄ Cl 25 NH ₄ NO ₃ 45	" "		- 1 —16.75	15.75	_	_
NaNO ₃ 50	44 44		- 1 —17.75	16.75	_	_
NaCl	" 1.097		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.3 36.0	-37. 0	0
1	" 1.26		- 1 -36.0	35.0	-30.2	17.0
1150 140 1	" 1.38		- 1 —35.0	34.0	-25.0	27.0
$H_2SO_4 + H_2O$ 1 1 (66.1% H_2SO_4)	" 2.52 " 4.32		- 1 —30.0 - 1 —25.0	29.0	-12.4 -7.0	133.0 273.0
(00.1% H ₂ SO ₄) 1	" 4.32 " 7.92			24.0 19.0	- 7.0 - 3.1	553.0
li	" 13.08		- 1 —16.0	15.0	- 2.1	967.0
	" .35	_	0 —	_	.0	52.1
1 1	" .49 " .61	_	0 — 0 —	_	-19.7 -39.0	49.5 40.3
1 1	" .70	_	0 -	_	-54.9*	30.0
$CaCl_2 + 6H_2O$	" .81	_	0 —		-40.3	46.8
1	" 1.23	_	0 —	_	-21.5 -9.0	88.5 192.3
	" 2.46 " 4.92	_	0 -	_	- 4.0	392.3
(77	" 73	_	0 —30.0		_	_
Alcohol at 4° { //	CO ₂ solid	_	- -72.0	_	-	_
Chloroform — Ether —	" "	_	$\begin{array}{ccc} - & -77.0 \\ - & -77.0 \end{array}$	_	_	_
Liquid SO ₂	"	_	82.0	_	_	_
(1	H ₂ O75		20 5.0	_	_	33.0
1 1	" .94	_	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_	21.0 34.0
	"	_	$\frac{10}{5} - \frac{4.0}{4.0}$	_		40.5
1	Snow "	_	0 - 4.0	_		122.2
NH ₄ NO ₃ { 1	H ₂ O−1.20	_	$\frac{10}{0}$ $-\frac{14.0}{14.0}$	_	_	17.9 129.5
	Snow " H₂O–1.31		$\begin{array}{ccc} 0 & -14.0 \\ 10 & -17.5* \end{array}$	_	_	10.6
1	Snow "	_	0 —17.5*	—	_	131.9
1	H₂O-3.61	-	$\frac{10}{0}$ - $\frac{8.0}{9.0}$	_	-	.4
1	Snow "	_	0 — 8.0	_	_	327.0

^{*} Lowest temperature obtained.

TABLE 129.—ANTIFREEZING SOLUTIONS *

(For automobile radiators, etc.)

	Percent by volume in water with freezing points and specific gravities						
Percent by volume	10	20	30	40	50		
Typical commercial methanol antifreeze Sp. gr. at 15°C/15°C	− 5.2°C .986	— 12.0°С .975		− 32.2°C .950	— 45.0°C .935		
Typical commercial ethanol antifreeze Sp. gr. at 15°C/15°C	− 3.3°C .988	— 7.7°C .977	14.2°C .967		− 30.6°C .938		
Commercial glycerine † antifreeze Sp. gr. at 15°C/15°C	− 1.6°C 1.023	- 4.7°C 1.048	- 9.5°C 1.074	— 15.4°C 1.101	23.0°C 1.128		
Typical commercial ethylene glycol + antifreeze Sp. gr. at 15°C/15°C	− 3.8°C 1.015	- 8.8°C	15.5°C 1.045	24.3°C 1.060	− 36.5°C 1.074		

^{*} This table was prepared from data furnished by F. G. Church, of the National Carbon Co., and A. J. Kathman, of Procter & Gamble Co. † Glycerine and ethylene glycol are practically nonvolatile. All types must be suitably inhibited to prevent cooling-system corrosion. Commercial antifreeze solutions based on ethylene glycol (Prestone) and on glycerine (Zerex) are in use at the present time.

TABLES 130-141.—HEAT FLOW AND THERMAL CONDUCTIVITY

TABLE 130.—CONVERSION FACTORS BETWEEN UNITS OF HEAT FLOW

$\frac{\frac{\text{joules}}{\text{sec cm}^2}}{\text{sec cm}^2}$ or watts/cm ² 1 watts/cm ² = 1	cal sec cm ² .2390	kilocal hr m² 8602.	Btu hr ft ² 3171.	hp/ft² 1.246	watts/in.² 6.452
$\frac{\text{cal}}{\text{sec cm}^2} = 4.185$	1	36000.	1.327×10^{4}	5.212	27.00
$1 \frac{\text{kilocal}}{\text{hr m}^2} = 1.163 \times 10^{-4}$	2.778×10^{-6}	1	.3687	1.448 × 10 ⁻⁴	7.500×10^{-4}
$\frac{Btu}{hr ft^2} = 3.153 \times 10^{-4}$	7.535×10^{-5}	2.713	1	3.928×10^{-4}	$2.035 imes 10^{-8}$
$1 \text{ hp/ft}^2 = .8027$.1918	6905.	2546.	1	5.179
$\frac{1 \text{ watt/in.}^2}{} = .1550$	3.704×10^{-2}	1333.	491.5	.1931	1

TABLE 131.—THERMAL CONDUCTIVITY OF VARIOUS SUBSTANCES Part 1.—Various Substances

	Substance, kt temperature °C cgs	Substance, kt temperature °C cgs
Aniline BP 183, — 160 000112 Carbon, gas		Quartz ⊥ to axis, −190 .0586 " , 0 .0173 " , 100 .0133 Quartz to axis, 0 .0325 Rock salt, 0 .0167 Rock salt, 30 .0150 Rubber, vulcanized, −160 .00033 Rubber, 0 .00037 Rubber, para .00045 Sawdust .00012 Snow, fresh, dens

Part 2.-Rocks 45

	Conduc- tivity, K			Conduc- tivity, K			Conduc- tivity, K
Temp.	watts cm deg	7	Temp.	watts		Temp	watts
Rock °C	cm deg	Rock	°C	cm deg		°C	cm deg
Granite 100	23.8×10^{-3}	Limestone:			Slate:		
_ 500	15.9	Japan			Wales	30	20×10^{-8}
	27.9			9×10^{-3}	Penna.		
50	26.2	Penna.			⊥ to bed	0	19.4
100	24.7	to hed	0	34.5	Madoc	120	16
200	23.0	L to bed	0	25.5	Shale		17-10
Granite gneiss	28-18	Chalk		9.2	Silty clay		15.4
Granite schist	27.2	Marble (17 vari-			Fireclay, Bore-		
Quartz monzon-		eties)	3.0	32-21	land hore		18.3
ite, Calif 0	31.6	Black		16	Rocksalt, Hol-		
100	29.2	White		14	ford	17	72
Basalt	22-18	Sandstone, Bore-		•			· -
		land hore		41.8			
		Soapstone					

⁴⁵ Birch, Francis, Handhook of physical constants, Geological Society of Λmerica, 1942. Used by permission.

TABLE 132.—THERMAL CONDUCTIVITY OF WATER AND SALT SOLUTIONS

	k t	Solution			k+	Solution			k t
Substance °C	cgs	in water	Density	°C	cgs	in water De	nsity	°C	cgs
(0	.00150	CuSO ₄	1.160	4.4	.00118	H ₂ SO ₄ 1.	054	20.5	.00126
Water \ \frac{11}{25}	.00147	KCl '	1.026	13.	.00116	44 1.	180	21.	.00130
23	.00136	NaCl	1.178	4.4	.00115		134	4.5	.00118
(20	.00143	46	_	26.3	.00135	" 1.	136	4.5	.00115

TABLE 133.—CONVERSION FACTORS BETWEEN UNITS OF HEAT FLOW FOR DIFFERENT GRADIENTS

s in.	m	40	2.953 × 10-	94	8/		91	
watts in.2	10.63	2.540	2.9	4.394	5.178	111.8	9.316	1.
hp in. ft² °F	1.141	7272.	3.170×10^{-8}	4.717×10^{-8}	.5558	12.00	1.	.1073
hp ft ft² °F	9.503×10^{-2}	2.271×10^{-2}	2.640×10^{-4}	3.929×10^{-4}	4.629×10^{-2}	ı;	8.333×10^{-2}	8.939 × 10-8
hp in. ft² °C	2.053	.4907	5.703×10^{-8}	8.487×10^{-8}	1.	21.60	1.8	.1931
Btu ft ft2 hr °F	241.9	57.78	6.720×10^{-1}	1.	117.8	2546.	212.0	22.76
kg cal m hr m ² °C	360	86.02		1.488	175.4	3787.	315.5	33.87
watts cm cm² °C	4.185	1.	1.163×10^{-2}	1.730×10^{-2}	2.039	44.03	3.668	.3937
cal cm sec cm ² °C	$\frac{cm}{\sqrt{C}} = 1.$	$\frac{\text{cm}}{\text{\circ}\text{C}} = .2390$	$\frac{m}{^{\circ}C} = 2.778 \times 10^{-8}$	$\frac{ft}{^{\circ}F} = 4.134 \times 10^{-3}$	$\frac{\mathrm{in.}}{\mathrm{°C}} = .4871$	$\frac{\mathrm{ft}}{^{\circ}\mathrm{F}} = 10.52$	$\frac{\mathrm{in.}}{\mathrm{o}\mathrm{F}} = .8764$	$\frac{\text{in.}}{^{\circ}\text{C}} = 9.407 \times 10^{-2}$
	$\frac{\text{cal}}{\text{sec cm}^2} \frac{\text{cm}}{^{\circ}\text{C}} = 1$	cm ²	kg cal	Btu ft²hr	l hp	l hp	l hp	watts in. = $\frac{\text{watts}}{\text{in.}^2} \cdot \frac{\text{in.}}{\text{oC}} =$
	-	-	_	_	_	_	_	- 1

138 TABLE 134.—THERMAL CONDUCTIVITY, METALS AND ALLOYS

The coefficient k is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is 1°C. The coefficient k is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_t = k_0[1 + \alpha(t - t_0)]$. k_0 is the conductivity at t_0 , the lower temperature of the bracketed pairs in the table, k_t that at temperature t, and α is a constant. k_t in g-cal per degree C per sec across cm³ = 0.239 $\times k_t$ in watts per degree C per sec across cm³.

Substance	t°C	k t cgs	а	Substance	t°C	k t cgs	а
4.4	-190	.497	u	3.6	0		а
Aluminum	30	.497	+.0030	"	50	.0148	+.0055
	76.4		7.0030	Molybdenum	17	.346	0001
Λ				371 4	-160	.129	0001
Antimony	100	.0442}	00104	"	18	.1420	
D' 4	100	.03965			0	.1425	_
Bismuth	186	.025	_		100	.1380	00032
"	18	.0194	0021		200	.1325	
n	100	.0161		"	700	.069	00095
Brass	-160	.181	_	"	1000	.064 \	
66 -41	17	.260	1 0024	"	1200	.058 }	00047
", yellow	0	.204	+.0024	Palladium	18	.1683	
" , red	0	.246	+.0015		100	.182	+.0010
Cadmium, pure		.239	_	Platinum	18	.1664)	
	18	.222}	00038	"	100	.1733 }	+.00051
	100	.215 \	.00000	Pt 10% Ir	17	.074	+.0002
Constantan	18	.0540 }	+.00227	Pt 10% Rh	17	.072	+.0002
(60 Cu + 40 Ni)	100	.0640 ∫	-1.00227	Platinoid	18	.060	_
Copper,* pure	-160	1.079	-	Potassium	5.0	232	0012
	18	.918\	00013	46	57.4	.216	0013
44 44	100	.908∫		Rhodium	17	.210	0010
German silver	0	.070	+.0027	Silver, pure	-160	.998	
Gold	-190	.793	00007		18	1.006	00017
	17	.705		"	100	.992 ∫	00017
Graphite	17	.037	+.0003	Sodium	5.7	.321	0012
Iridium	17	.141	0005		88.1	.288 \$	0012
Iron, pure	18	.161	0000	Steel	18	.110	
" "	100	.151	0008	Tantalum	17	.130	0001
Iron, wrought	-160	.152	_		1700	.174	_
Iron,)			1900	.186	+.00032
polycrystalline	30	.173			2100	.198 \	1
Iron,				Tin	100	.155)	00069
polycrystalline	100	.163	0008	"	100	.145	
Iron,		ſ	0000		-160	.192 .476	0001
polycrystalline	200	.147		Tungsten	17 1600	.249	
Iron,				"	2000	.272	+.00023
polycrystalline	800	.071		"	2400	.294	
Iron, steel, 1% C	18	.108	0001	"	2800	.313	+.00016
" " " " " " " · · ·	100	.107 \	0001	Wood's alloy	2000	.319	
Lead, pure	-160	.092	_	Zinc, pure	-160	.278	
44 44	18	.083 \	0001	Zinc, pure	100	ີ້ າ	_
" "	100	.081 \$	0001	polycrystalline	0	.280	
Magnosium	0 to \	.376		Zinc.	Ü	.200	
Magnesium	100 }		_	polycrystalline	200	.250	_
Manganin	-160	.035	_	Zinc,			
" (84 Cu + 4	18	.05197	+.0026	polycrystalline	400	.231	
Ni 12 Mn)	100	.0630 \	7.0020	Zinc, liquid	500	.144	_
				•			

^{*} Copper: 100.197°C, $k_t = 1.043$; 100.268°, 0.969; 100.370°, 0.931; 100.541°, 0.902. † Iron: 100.727°C, $k_t = 0.202$; 100.912°, 0.184; 100.1245°, 0.191.

			Conductivity			
	Density		joule/ (cm² sec °C/	cal/ (cm² sec °C/		
Material	g/cm ³	t°C	cm)	cm)		
Air, 76 cmHg	.00129	0	.00023	.000055		
Asbestos wool	.40	— 100	.00068	.000162		
66 66	.40	1.100	.00090	.000215		
" with 85 percent MgO	.40	$+\ ^{100}_{30}$.00101 .00075	.00024 .000179		
Brick, very porous, dry	.3 .71	20	.00174	.00042		
" machine-made, dry	1.54	0	.00038	.000091		
" " moist, 1.2%						
vol		50	.00096	.00023		
Calorox, fluffy mineral matter	.064	30	.00032	.000076		
Celluloid, white	1.4	30	.00021	.000050		
Cement mortar	2.0	90	.0055 .0092	.0013 .0022		
Chalk	.18	20	.0092	.00013		
Coke dust	1.0	20	.0015	.00036		
Concrete	1.6	0	.008	.002		
Cork	.05	0	.00032	.000076		
46	.05	100	.00041	.000098		
4	.35	100	.00061	.000146		
Cotton tightly padend	.35 .08		.00079	.000189 .000091		
Cotton, tightly packed	.08	- 130 0	.00056	.000133		
46 46	.08	+150	.00076	.00018		
Cotton wool tightly packed	.08	30	.00042	.00010		
Diatomite (binders may increase						
100%)	.20	0	.00052	.00012		
Diatomite, ditto	.20 .50	400	.00094	.00022		
" "	.50	0 400	.00086 .00157	.00021		
Ebonite	1.19	- 190	.00137	.00037		
44	1.19	— 78	.00157	.00038		
44	1.19	0	.00160	.00038		
Felt, flax fibers	.18	30	.00047	.00011		
" hair	.27	30	.00036	.000086		
" wool	.15 .33	40 30	.00063 .00052	.000151 .000124		
Flannel	.33	30	.00032	.000124		
Fuller's earth	.53	30	.00101	.00023		
Glass, lead		15	.0060	.00143		
" soda	2.59	20	.0072	.00172		
	2.59	100	.0076	.00182		
W001	.22 .22	50	.00042	.000100		
" "	.22	100 200	.00050 .00065	.000120 .000155		
66 66	.22	300	.00081	.000133		
Graphite, 100 mesh	.48	40	.0018	.00044		
" 40 "	.42	40	.0038	.00093		
" 20 to 40 mesh	.70	40	.0129	.0031		
Horsehair, compressed	.17	20	.00051	.000122		
Leather, chamois	.92	0 85	.022 .00063	.0053 .000151		
" cowhide		85	.00176	.000421		
" sole	1.0	30	.0016	.00038		
Linen		20	.00086	.00021		
Linoleum, cork	.54	20	.00080	.000191		
Mica, average		50	.0050	.0012		

^{*} Compiled from the International Critical Tables, which see for more complete data.

TABLE 135.—THERMAL CONDUCTIVITY OF INSULATING MATERIALS (continued)

	•	,	Conductivity		
Material	Density g/cm ³	t°C	joule/ (cm² sec °C/ cm)	cal/ (cm² sec °C/ cm)	
Micanite	87 0	30	.0021-	.00050-	
		00	.0042	.00010	
Mineral wool	.15	30	.00042	.00010	
	.30		.00052	.00012	
Paper, rice		40	.00046	.00011	
" blotting	.89	20 30	.00063 .0023	.00015 .00055	
Peat, dry	.19	30	.00052	.00033	
" blocks	.84	20	.0017	.00041	
Poreclain		90	.0104	.0025	
Rubber, rigid sponge, hard	.09	25	.00037	.000088	
" sponge, vulcanized	.22	20	.00054 .0028	.00013 .00067	
" commercial, 40% rubber " 92% "		25 25	.0028	.00038	
Sawdust	.20	30	.00060	.000143	
Shellac			.0023	.0006	
Silk			.00040	.00010	
" scrap from spinning mill	.10	200	.00023	.000055	
	.10	100	.00037	.000088	
	.10 .10	0 50	.000495 .00056	.000118 .000134	
Snow	.25	0	.0016	.00038	
Steel wool	.15	55	.00080	.000191	
" "	.08	55	.00090	.00022	
Wool, pure	.09	30	.00036	.000086	
" very loose packing	.04 .74	30 20	.00042 .0017	.00010 .00041	
Woods: Ash \(\perp\) to grain	.74	20	.0017	.00041	
Balsa L to grain	.11	30	.00045	.000084	
Boxwood	.90	20	.0015	.00036	
Cedar ⊥ to grain	.48		.0011	.00027	
Cypress 1 to grain	.46	30	.00096	.00023	
Fir 1 to grain	.54 .54	20 20	.0014	.00033	
" ∥ to grain Lignum vitae	1.16	20	.0025	.00061	
""	1.16	100	.0030	.00072	
Mahogany, 1 to grain	.70	20	.0016	.00038	
" to grain	.70	20	.0031	.00074	
Oak, 1 to grain " to grain	.82 .82	15 15	.0021 .0036	.00050 .00086	
" to grain Pine, pitch, \(\pm\) to grain	.02	30	.0015	.00036	
" Virginia, ditto	.55	30	.0014	.00033	
" white, ditto,	.45	60	.0011	.00026	
" " to grain	.45	60	.0026	.00062	
Sprtice, 1 to grain	.41	15	.0011	.00026	
Teak, 1 to grain	.64 .64	15 15	.00175 .00 3 8	.00042 .00091	
" to grain Walnut, \(\perp\) to grain	.65	20	.0014	.00031	
Rocks: Basalt	.00	20	.020	.0048	
Chalk			.0092	.0022	
Granite	2.8	20	.022	.0053	
Limestone, very variable	2.0	20 95	.010	.0024	
Slate, \(\perp\) to cleavage		95 95	.014 .025	.0033	
" to cleavage Sandstone, air-dried	2.2	20	.013	.0031	
" freshly cut	2.3	20	.017	.0041	

TABLE 135.—THERMAL CONDUCTIVITY OF INSULATING MATERIALS (concluded)

Density	k ı			k t
Substance g/cm³ °C	cgs		tance	cgs
Asbestos fiber	.00019		aper	.00043
85% magnesia asbestos216 $\begin{cases} 100 \\ 500 \end{cases}$.00016		per	.00015
, (300	.00017		ement	.00071
Cotton	.000111		400	.0020
	.000071		49°	.00037
Eiderdown	.00015		1	.002
	.000046			.00042
Lampblack, Cabot number 5193 $\begin{cases} 100 \\ 500 \end{cases}$.000074		w-hide	.00042
1 /	.000107		ımois	.00013
Quartz, mesh 200 1.05 500	.00024			.000021
Poplox, popped Na ₂ SiO ₃ 093 { 500	.000160		limestone	.0043
(300	.000100		sandstone	.0021
		Free Storie,	sandstone	.0021
k t			k t	
Density cgs		Dens	sity cg	5
Substance g/cm³ at 20°C at 100°C	Substa			at 100°C
Brick, fire 1.73 .00110 .00109	Boxwo	od 0.9	0 .00036	.00041
Carbon, gas 1.42 .0085 .0095		eart 1.0		.00110
Ebonite 1.19 .00014 .00013	Lignur	nvitæ 1.1	.00060	.00072
Fiber, red 1.29 .00112 .00119	Mahog	any 0.5		.00060
Glass, soda 2.59 .00172 .00182	Oak .	0.6		.00061
Silica, fused 2.17 .00237 .00255	Whitev	wood 0.5	8 .00041	.00045
		Conductivity		(2.5
Substance g/cm ³	100°C 20	00°C 300°C	400°C 500°C	Safe temp.
		0043 .00050	400 C 300 C	320
Air-cell asbestos		0019 —		180
9,11, 8,11,11,11,11,11,11,11,11,11,11,11,11,11			.00042 .0004	-00
		0032 .00037	.00042 .00040	, 000
Infusorial earth, natural			.00036 —	400
Magnesium carbonate		0025 .00035		300
Vitribestos		0066 .00079	.00090 .0010	
VIIII0C3103	.00017 .0			

TABLE 136.—THERMAL CONDUCTIVITY OF VARIOUS SUBSTANCES 40

Material	Tempera- ture °C	k cgs		λ			Tempera		t gs
Amorphous carbon	37-163 100-360	.028003 .089		Brick: carborundum . building graphite			150-120 15-110 300-700	0 .0032- 0 .0018-	.027
Concrete:	100-842 250 -7 50	.0004500		l n	ight diat nagnesia		200-600 50-113	.00025	
sand cement Graphite (artificial)	400-900 100-390 100-914	.0025003 .338 .291	1	Glass si	.05	sity 5 3	15 17	.00009	
Limestone	2800-3200 500-700 40	.002 .3122 .0046005	7	Granite	.21		9 10 100	.00007 .00007 .0045-	5
Linestone	40		cent comp	Stonewa	re mixt	ures	70-100		
Description	Sili	Tita- nium ca oxide	Alumina	Ferric oxide	Cal- cium oxide	Mag- nesium oxide	Alkali oxides	Density g/cm ³	k,
Fireclay, pottery qual Fireclay, fine quality.	ity 56.4	1.84 16 1.84	36.79 36. 7 9	2.58 2.58	.38	.60	1.24 1.24	2.0 2.05 2.0	.0025
Aluminous	52.0		41.3 1.46	2.5 .85	1.96	.08	.21	1.81	.0036

⁴⁶ Griffiths, E., Journ. Inst. Fuel, vol. 15, p. 111, 1942.

TABLE 137.—THERMAL CONDUCTIVITY OF ORGANIC MATERIALS AND WATER

Part 1

		k t			k t			k ı
Substance	°C	cgs	Substance	°C	cgs	Substance	°C	cgs
Acetic acid Alcohols: methyl ethyl amyl Aniline Benzene	11 11 0 0	.0 ₃ 52 .0 ₃ 46 .0 ₃ 345 .0 ₃ 434	Carbon disulfide	9-15 9-15 25 13	$.0_{3}303$ $.0_{3}68$	Oils: olive castor Toluene Vaseline Xylene	0 25	.0 ₃ 395 .0 ₃ 425 .0 ₃ 349 .0 ₃ 44 .0 ₃ 343

Part 2 *

Substance	Temp °C	Conduc- tivity at 1 atm watt cm ⁻¹ deg ⁻¹	Substance	Γemp °C	Conductivity at 1 atm watt cm ⁻¹ deg ⁻¹	Substance	Temp. °C	Conduc- tivity at 1 atm watt cm ⁻¹ deg ⁻¹
Normal pentane	. 30 75	1.347×10 ⁻⁸ 1.285	Carbon disulfide.		1.599×10 ⁻⁸ 1.515	Water	30 75	6.026×10 ⁻³ 6.445
Sulfuric ether.		1.377 1.347	Petroleum ether.		1.306 1.264	Water	0 10 20	5.524 5.692 5.859
Acetone	30 75	1.795 1.687	Kerosene	30 75	1.494 1.394		30 40 50 60 70 80	6.026 6.194 6.361 6.529 6.696 6.863

^{*} For reference, see footnote 45, p. 136.

TABLE 138.-THERMAL CONDUCTIVITY OF GASES

The conductivity of gases, $k_i = \frac{1}{4}(9\gamma - 5)\mu C_v$, where γ is the ratio of the specific heats, C_p/C_v , and μ is the viscosity coefficient (Jeans, Dynamical theory of gases, 1916). Theoretically k_i should be independent of the density and has been found to be so by Kundt and Warburg and others within a wide range of pressure below one atm. It increases with the temperature.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	kt cgs .0000496 .0000395 .000146 .000398 .000133 .000416 .000499 .0000720	"	t°C 203 —191 0 100 —191 0 100 8	kt cgs .0000185 .0000183 .0000568 .0000718 .000072 .0000570 .0000743 .000046
--	---	--	---	---------------------------------	---

^{*} Air: $k_0 = 5.22$ (10-5) cal cm⁻¹ sec ⁻¹ deg C⁻¹; 5.74 at 22°; temp. coef. = .0029.

The diffusivity of a substance $=h^2=k/c\rho$, where k is the conductivity for heat, c the specific heat and ρ the density (Kelvin). The values are mostly for room temperatures, about 18° C.

Material	Diffusivity	Material	Diffusivity
duminum	860	Coal	
Intimony	135	Concrete (cinder)	
ismuth		Concrete (stone)	
Brass (yellow)		Concrete (light slag)	
admium		Cork (ground)	
opper		Ebonite	
iold		Glass (ordinary)	
ron (wrought, also mild steel)		Granite	
ion (cast, also 1% carbon steel)		lce	
ead		Limestone	
lagnesium		Marble (white)	
lercury		Paraffin	
ickel		Rock material (earth aver.)	
alladium		Rock material (crustal rocks)	
latinum		Sandstone	
ilver		Snow (fresh)	0033
in	41.0	Soil (clay or sand, slightly damp)	
inc		Soil (very dry)	
ir 1 atm		Water	
sbestos (loose)		Wood (pine, cross grain)	
rick (average fire)		Wood (pine with grain)	0023

TABLE 140.—THERMAL CONDUCTIVITY—LIQUIDS, PRESSURE EFFECT "

	•		Conduc- tivity at	Со	nductivit			ty (0 kg		s function	on of
No.*	Liquid	°C	0 kg/cm ² (cgs)	1000	2000	4000	6000	8000	10000	11000	12000
1	Methyl	30	.000505	1.201	1.342	1.557	1.724	1.864	1.986	2.043	2.097
•	alcohol	75	.000493	1.212	1.365	1.601	1.785	1.939	2.072	2.133	2.191
2	Ethyl	30	.000430	1.221	1.363	1.574	1.744	1.888	2.014	2.070	2.122
_	alcohol	75	.000416	1.233	1.400	1.650	1.845	2.007	2.152	2.217	2.278
3	Isopropy1	30	.000367	1.205	1.352	1.570	1.743	1.894	2.028	2.091	2.150
	alcohol	75	.000363	1.230	1.399	1.638	1.812	1.962	2.093	2.154	2.211
4	Normal butyl	30	.000400	1.181	1.307	1.495	1.648	1.780	1.900	1.955	2.008
	alcohol	75	.000391	1.218	1.358	1.559	1.720	1.859	1.985	2.043	2.099
5	Isoamyl	30	.000354	1.184	1.320	1.524	1.686	1.828	1.955	2.013	2.069
	alcohol	75	.000348	1.207	1.348	1.557	1.724	1.868	1.998	2.063	2.126
6	Ether	30	.000329	1.305	1.509	1.800	2.009	2.177	2.322	2.388	2.451
		75	.000322	1.313	1.518	1.814	2.043	2.231	2.394	2.469	2.537
7	Acetone	30	.000429	1.184	1.315	1.511	1.659	1.786	1.900	Free	
		75	.000403	1.181	1.325	1.554	1.738	1.891	2.024	2.083	2.137
8	Carbon	30	.000382	1.174	1.310	1.512	1.663	1.783	1.880	1.923	1.962
	bisulphide	75	.000362	1.208	1.366	1.607	1.789	1.935	2.054	2.107	2.154
9	Ethyl	30	.000286	1.193	1.327	1.517	1.657	1.768	1.858	1.895	1.928
	bromide	75	.000273	1.230	1.390	1.609	1.772	1.907	2.022	2.073	2.121
10	Ethyl	30	.000265	1.125	1.232	1.394	1.509	1.592	1.662	1.694	1.724
	iodide	75	.000261	1.148	1.265	1.442	1.570	1.671	1.757	1.799	1.837
11	Water	30	.00144	1.058	1.113	1.210	1.293	1.366	1.428	1.456 1.476	Freeze:
10	T 1 1	75	.00154	1.065	1.123	1.225	1.308	1.379	1.445	(2.394†	
12	Toluol	30	.000364	1.159	1.286	1.470	1.604 1.738	1.716 1.872	1.987	2.039	2.089
12	37 1	75	.000339	1.210	1.355	1.573 1.777	1.736	2.163	2.325	2.404	2.481
13	Normal	30	.000322	1.281 1.319	1.483 1.534	1.855	2.112	2.103	2.543	2.642	2.740
1.4	pentane	75 30	.000307	1.266	1.334	1.752	1.970	2.333	2.279	2.333	2.379
14	Petroleum	75	.000312	1.268	1.466	1.780	2.026	2.232	2.409	2.488	2.561
15	ether		.000302	1.185	1.314	1.502	1.654	1.792	1.925	1.990	2.054
13	Kerosene	13	.000000	1.103	1.314	1.302	1.057	1.,) =	1.720	1.770	

⁴⁷ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 59, p. 158, 1923.
* 1. 2, 6, 8, 12, 13, extreme purity; 3, 4, 5, 7, 9, 10, 11, very pure; 14, 15, commercial.
† Toluol freezes at 9900 kg/cm² at 30°. The figure at 11000 is for the solid.

TABLE 141.—THERMAL RESISTIVITIES AT 20°C EXPRESSED IN FOURIERS FOR A cm³

The fourier 48 is defined as that thermal resistance that will transfer heat energy at the rate of 1 joule per sec (1 watt) for each degree (C) temperature difference between the terminal surfaces (equivalent roughly to a prism of Ag or Cu 4 cm long by 1 cm² cross section).

In preparing this table, the author has consulted vol. 2, I.C.T. For still other materials, grateful acknowledgment is made to the staff of the National Bureau of Standards for advice in selecting most probable values in the light of present information.

^{*8} Harper, D. R., Journ. Washington Acad. Sci., vol. 18, p. 469, 1928.

* Substances marked with the asterisk vary widely in thermal conductivity according to composition. For limits of such variation, consult International Critical Tables, vol. 2. The figure listed above for any such material represents the author's estimate of the "best guess" for use in those cases where the composition of the material is not specified.

TABLE 142.-EXPANSION OF THE ELEMENTS *

Part 1.—Coefficients of linear † thermal expansion of chemical elements (Polycrystalline)

Element	Temperature or temperature range °C	Coefficient of linear thermal expansion × 10 ⁶ per °C	Authority	Element	Temperature or temperature range °C	Coefficient of linear thermal expansion ×106 per °C	1,5, 30,32
Aluminum	-191 to 0 + 20 to 100 20 to 300 20 to 600	18.0 23.8 25.7 28.7	1,3**	Gold		13.1 14.2 14.9 15.8 16.5	1,5, 30,32
Antimony ‡	-190 to 20 + 20 to 100 20 to 300 20 to 500	8. to 10. 8.4 to 11.0 9.2 to 11.4 9.5 to 11.6	4,5,6	Indium	-180 to 20 + 20 to 100	26.7 30.5	33
Arsenic	40	5.6	7	Iridium	-183 to 19 + 18 to 100	5.7 6.6	5,34
Barium	0 to 300	18.1 to 21.0	8		0 to 1000 0 to 1700	7.9 8.7	
Beryllium	-120 to 0 + 20 to 100 20 to 300 20 to 700 1200	8.1 12.3 14.0 16.8 23.7	9,10	Iron		9.1 10.4 11.6 12.1 13.4	1,35 30,36
Bismuth ‡	-190 to 17 - 15 to 100 + 75 to 265	13. to 17. 13. to 14. 17.4	5,11		20 to 600 20 to 900	14.7 15.0	
Boron	20 to 750	8.3	12	Lead	-190 to 20 + 20 to 100	26.7 29.2	2,5, 37,38, 39,40,
Cadmium	$-220 \\ -160$	20.6 27.4	13,4		20 to 200 20 to 300	30.0 31.3	39,40, 41,42
	+ 10 20 to 100	29.7 31.8		Lithium	_ 98	17.0 36.3	43,44
Calcium	-150 -50	18.0 20.9	8,14, 15		- 3 0 to 95	45.7 56.	
	- 50 + 30 20 to 100 0 to 300	22.5 25.2 22.0		Magnesium	-190 to 20 20 to 100 20 to 300	21.3 25.9 28.0	5,30, 32,39, 45,46,
Carbon Diamond	-180 to 0 0 to 78	.4 1.2	16.17, 18		20 to 500	29.8	47
Diamond	0 to 400 0 to 750	2.8 4.5		Manganese: Alpha phase.	100 to 0	15.9	46,48
Graphite	20 to 100 20 to 400 20 to 800	.6 to 4.3 1.3 to 4.8 1.8 to 5.3		Alpha phase.	-183 to 0 0 to 20 0 to 100	17.6 22.3 22.8 25.2	
Chromium		4.1	19,20	Beta phase	0 to 300 -183 to 0	12.8 to 20.4	
	-100 to 0 0 to 100 0 to 300 0 to 700	5.1 5.7 to 8.3 7.8 to 8.9 9.1 to 10.3		Gamma phase.	- 70 to 20 - 70 to 0 0 to 20	18.7 to 24.9 13.6 14.8	
Cobalt	20 to 100 20 to 400	12.4 14.0	21,22	Molybdenum § .	-190 to 0 -100 to 0 20 to 100	4.2 4.8 3.7 to 5.3	2,19, 46, 49 50, 51
Copper	-253 to 10 -191 to 16 + 25 to 100 25 to 300	11.7 14.1 16.8 17.8	1,25, 26,27, 28,29, 30	Neodymium	25 to 500 27 to 2127 100 to 260	4.7 to 5.8 7.2 .4	52
	0 to 500 0 to 1000	18.2 20.3	30	Nickel	-253 to 10 -192 to 16 0 to 100	8.1 10.0 13.1	1,36, 5,26,27, 46,53a,
Germanium	20 to 230 230 to 450 450 to 840	6.0 7.3 7.5	31		0 to 300 25 to 600 25 to 900	14.4 15.5 16.3	118

^{*}Compiled by Peter Hidnert and H. S. Krider, of the National Bureau of Standards.
† The coefficient of cubical expansion of an isotropic solid element may be taken as 3 times the coefficient of linear expansion within a high degree of approximation (See Part 3 for determined coefficients of cubical expansion of some chemical elements.)

**Numbers refer to authorities given at end of table.

‡ The coefficients of expansion depend upon the orientation of the constituent crystals.

§ The coefficients of expansion depend upon coarseness of grains and treatment of metal.

140	TABLE 172	EXFAIN	SION OF I	HE ELEWEN	15 (continu	iea)	
Element	Temperature or temperature range °C	Coefficient of linear thermal expansion × 10 ⁶ per °C	Authority	Element	Temperature or temperature range °C	thermal	Authority
Niobium	-212 to 0 -100 to 0 0 to 100 0 to 300 20 to 1500	5.8 6.9 7.2 7.5 10.0	14,23, 24	Sodium	-193 to 0 0 to 17 0 to 50 0 to 95	59.8 68.2 70. 71.	44,68 69
Osmium	40	6.6	7	Tantalum	-190 to 20 + 20 to 100	6.2 6.6	2,46, 51,70
Palladium	-191 to 16 + 16 to 100 16 to 500 16 to 1000	10.3 12.4 12.8 13.8	2,26, 54,55		20 to 300 20 to 500 27 to 1400 27 to 2400	6.6 6.6 7.3 7.8	
Platinum	-191 to 16 - 90 to 0	8.0	2,26,	Tellurium'	40	16.8	7
	0 to 100 0 to 300 0 to 500 0 to 1000	8.7 9.0 9.2 9.6 10.2	30,32, 54,56	Thallium	0 to 100 0 to 200	29.4 30.0	64
Potassium	0 to 50	85.	57	Thorium	-216 to 20 + 20 to 100 20 to 300 20 to 600	9.8 11.3 12.1 13.7	14,71, 72
Rhodium	-174 - 92 - 28 0 to 100 0 to 500 0 to 1000	5.0 7.4 7.9 8.4 9.7 10.8	19,58, 59,60	Tin		15.8 to 22.6 23.8 to 27.0 24.	4,5, 73,74
	0 to 1500	12.1		Titanium	-195 to 20 + 20 to 200	6.8 8.9	14,72, 75,76.
Rubidium		66,	61		20 to 400 20 to 600	9.4 9.9	75,76, 77
Ruthenium	+ 13 to 32 40 50	6.8 9.6 9.9	7,62	Tungsten	20 to 800 -190 to 0	3.8	2,46, 78,79,
Selenium: Polycrystal- line	+ 20 to 100 205	20.3 22.9 45.2 42.7	63,37	(Wolfram)	-100 to 0 0 to 100 0 to 300 0 to 650 27 to 1000 27 to 1750	4.2 4.4 4.6 4.6 4.7 5.2	78,79, 80,81
Amorphous,	0 to 21	48.7			27 to 2400	5.8	
melted & cast	-160 to 0	37.3 43.9		Vanadium	0 to 40	6.6 7.8	14
Silicon	- 87 + 20 to 50 100	-0.4 + .9 2.4 2.0 3.0	14,58, 64	Zinc ‡	-183 to 18 + 20 to 100 20 to 200 20 to 300	9. to 10. 17. to 40. 30. to 40. 34. to 39.	5.13, 32,38, 47,82 83
	500 1000	3.0 3.3		Zirconium	0 to 20	4.0 to 5.1 4.6 to 5.9	14,19, 72
Silver	-250 to 0 -191 to 16 0 to 100 20 to 300 20 to 500 0 to 900	14.9 17.0 19.4 20.2 20.7 22.4	2,30, 39 26,65, 66,67		+ 20 to 200 20 to 400 20 to 700	5.4 6.1 7.1	

Part 2.—Coefficients of linear 1 thermal expansion of chemical elements (crystals)

	Temperature	thermal	nt of linear expansion er °C		
Element Antimony	temperature range °C -215 to +20 + 15 to 25 0 to 100 20 to 200 20 to 400	Parallel to axis 16.0×10-6 15.6 16.8	Perpendicular to axis 7.0×10-6 8.4 8.1	Authority 6,7,19,84	
Arsenic	30 to 75	3.2 to 6.8		62	
Beryllium	-150 + 10 18 to 220 18 to 454	1.6 8.6 10.4 13.1	2.8 11.7 15.0 15.7	19,85	
Bismuth	-140 + 30 20 to 260 20 to 240	15.9 16.2 16.5	10.5 11.6 12.0	19,86,87	
Cadmium	190 to 18 + 20 to 100	48.2 50.4	18.5 18.9	13,88,89,90	
Carbon Graphite	-195 to 0 0 to 40 0 to 500 0 to 1000 0 to 1500 0 to 2300 20 to 870	17.2 18.8 20.7 23.1 26.7	4.8 6.6 1.3 1.8 2.0 2.4	19,91,92	
Cobalt	33 to 100	16.1	12.6	89	
Indium	- 17 to 9 + 23 to 87	56. 45.0	13. 11.7	93 94	
Magnesium	20 to 100 20 to 200	26.4 27.7	25.6 26.6	95	
Mercury	-190 to -160 -188 to -79 -120	42.6 47.0 49.6	33.4 37.5 37.5	96,97	
Osmium	+ 50 250 500	5.8 6.6 8.3	4.0 4.6 5.8	98	
Rhenium	20 to 1917	12.4	4.7	99	
Ruthenium	50 250 550	8.8 9.8 11.7	5.9 6.4 7.6	98	
Selenium	15 to 55 20 to 60	−17.9 ···	74.1	100	
Tellurium	20 20 to 60	- 1.6 - 1.7	27.2 27.0	100,101	
Thallium	32 to 91	+72.	9.	94	
Tin	-195 to 20 0 to 20 + 14 to 25 34 to 194	25.9 29.0 32.2 45.8	14.1 15.8 16.8 25.7	19,94,102	
Zinc	-190 to 18 + 20 to 100 0 to 250 20 to 400	49.5 64.0 56. 59.	11.3 14.1 15. 16.	13,32,88,103,104	
Zirconium	0 to 100	4.	13.	89,105	

[¶] If there is random orientation of the crystals in a polycrystalline element such as antimony or cadmium, the coefficient of linear expansion of the polycrystalline element may be computed from the following equation:

$$a = \frac{1}{3} (a + 2a \perp)$$

where $a\parallel$ is the coefficient of linear expansion of the crystal parallel to its axis, and $a\perp$ is the coefficient of linear expansion of the crystal in the direction perpendicular to its axis. (See Part 1 for determined coefficients of linear expansion of polycrystalline elements.)

Part 3.—Coefficients of cubical thermal expansion of chemical elements

Element	Temperature or temperature range °C	Coefficient of cubical thermal expansion ×10° per °C	Authority	Element	Temperature or temperature range °C	Coefficient of cubical thermal expansion ×10° per °C	Authority
Cadmium	100 210 250	91. 105. 110.	106	Potassium	0 to 55	240	57, 108, 114
Carbon: Diamond	27 25 to 650	3.2 9.1	107	Rubidium Selenium:	0 to 38	270	108
Cesium	0 to 23	291.	108	Compressed . Not com- pressed	0 to 100 0 to 100	175 198	116
Cobalt	100 300	35.6 39.4	106	•	-186 to 17 0 to 53	186 207	111, 69,
Gallium	- 78 to 18 0 to 29.6	53. 55.	109, 110		0 to 79 20 to 95	208 226	114, 108, 117
Iodine	-195 to 25 + 10 to 40	204. to 251. 264.	111, 112, 113	Sulfur Rhombic	-273 to 18	139	112
Lithium	0 to 100 0 to 178	162. 170.	114	Crystallized .	-195 to 18 - 79 to 18 0 to 100 0 to 100	164 180 354 260	116
Nickel	100 200 300	38.2 41.9 46.5	106	Sicilian	80 140 190	68 78 89	106
Phosphorus	-273 to 19 -195 to 19 - 79 to 19 0 to 44	317. 398. 362. 372.	112, 115	Zinc	50 200 300	89 104 110	32, 106

Authorities

1. Nix and MacNair, 1941; 2. Nix and MacNair, 1942; 3. Hidnert, 1923; 4. Dorsey, 1907; 5. Grüneisen, 1910; 6. Hidnert, 1935; 7. Fizeau, 1869; 8. Cath and Steenis, 1936; 9. Hidnert and Sweeney, 1927; 10. Losana, 1939; 11. Jacobs and Goetz, 1937; 12. Dupuy & Hackspill, 1933; 13. Grüneisen & Goens, 1924; 14. Erfling, 1942; 15. Bastien, 1934; 16. Röntgen, 1912; 17. Joly, 1898; 18. Hidnert, 1934; 19. Erfling, 1939; 20. Hidnert, 1941; 21. Schulze, 1927; 22. Masumoto, 1931; 23. Hidnert and Krider, 1933; 24. Matthies, 1936; 25. Krupkowski, 1929; 26. Henning, 1907; 27. Aoyama and Ito, 1939; 28. Hidnert, 1922; 29. Dittenberger, 1902; 30. Esser and Eusterbrock, 1941; 31. Nitka, 1937; 32. Austin, 1932; 33. Hidnert and Blair, 1943; 34. Holborn and Valentiner, 1907; 35. Hidnert, 1942; 36. Souder and Hidnert, 1922; 37. Dorsey, 1908; 38. Lindemann, 1911; 39. Ebert, 1928; 40. Rauramo and Saarialho, 1911; 41. Friend and Vallance, 1924; 42. Hidnert and Sweeney, 1932; 43. Simon and Bergman, 1930; 44. Bridgman, 1936; 45. Hidnert and Sweeney, 1928; 46. Disch, 1921; 47. Schulze, 1921; 48. Erfling, 1940; 49. Schad and Hidnert, 1919; 50. Hidnert and Gero, 1924; 51. Worthing, 1926; 52. Jaeger, Bottema, and Rosenbohm, 1938; 53. Souder and Hidnert, 1922; 53a. Hidnert, 1930; 54. Scheel, 1907; 55. Holzmann, 1931; 56. Scheel and Heuse, 1907; 57. Hagan, 1911; 58. Valentiner and Wallot, 1915; 59. Sweeney, 1929; 60. Ebert, 1938; 61. Hume-Rothery and Lonsdale, 1945; 62. Bridgman, 1933; 63. Borelius and Paulson, 1946; 64. Schulze, 1930; 65. Keesom and Jansen, 1927; 66. Scheel, 1921; 67. Owen and Roberts, 1939; 68. Siegel and Quimby, 1938; 69. Hagan, 1883; 70. Hidnert, 1929; 71. Hidnert and Sweeney, 1933; 72. Kroll, 1939; 73. Grube and Voskihler, 1934; 74. Bochvar and Maurakh, 1930; 75. Hidnert, 1943; 76. Greiner and Ellis, 1948; 77. Adenstedt, 1949; 78. Hidnert and Sweeney, 1933; 72. Kroll, 1939; 73. Grube and Voskihler, 1934; 74. Bochvar and Maurakh, 1930; 75. Fridnert, 1942; 87. Goetz and Hergenrother, 1932; 88. McLennan and Monkman, 1929; 89.

TABLE 143.—COEFFICIENTS OF LINEAR THERMAL EXPANSION OF SOME ALLOYS *

Alloy †	Temperature or tempera- ture range	Coefficient ‡ of linear thermal ex- pansion × 106 per °C	Authority
Aluminum-beryllium, 4.2 to 32.7 Be	20 to 100 20 to 500	22.4 to 17.8 26.6 to 22.2	1 **
Aluminum-copper, 9.9 Cu	20 to 100 20 to 300 20 to 100 20 to 300	22.0 23.8 19.7 20.8	2
Aluminum-nickel, 3.4 Ni	20 to 100 20 to 300 20 to 100 20 to 300	21.9 23.7 18.2 19.5	2
Aluminum-silicon, 4.2 to 12.6 Si	20 to 100 20 to 300 20 to 100 20 to 300 20 to 100 20 to 300	22.2 to 19.4 24.8 to 22.1 18.5 19.0 14.7 17.1	3, 2
Aluminum-zinc, 0 to 50 Zn	20 to 100	23.6 to 26.5	4
Brass, 3 to 40 Zn	25 to 100 25 to 300	16.9 to 19.7 17.7 to 21.2	5
Bronze, 4.2 to 10.1 Sn	25 to 100 25 to 300	17.1 to 17.8 17.8 to 19.0	5
Cast iron	20 to 100 20 to 400	8.7 to 11.1 11.5 to 12.7	6
Cobalt-iron-chromium, 53.0 to 55.5 Co, 35.0 to 37.5 Fe, 9.0 to 10.5 Cr	20 to 60	-1.1 to $+1.7$	7
Copper-beryllium, 3.0 Cu	20 to 100 20 to 300	15.9 to 17.3 16.4 to 17.4	8
Copper-nickel, 19.5 Ni	0 to 40	13.0 14.7 11.8 13.7	9
Copper-tin (see Bronze)			
Copper-zinc (see Brass)			
Dumet : Axial Radial	20 to 300 20 to 300	6.1 to 6.8 8.0 to 10.0	10
Duralumin	20 to 100 20 to 500	21.9 to 23.8 25.4 to 27.6	3
Fernico, 54 Fe, 31 Ni, 15 Co	25 to 300	5.0	11
Invar, 64 Fe, 36 Ni	0 to 100	0 to 2	12
Iron-aluminum, .5 to 10.5 Al	20 to 100	11.6 to 12.2	13
Iron-chromium, 1 to 40 Cr	20 to 100	12.4 to 9.4	12

^{*} Compiled by Peter Hidnert and H. S. Krider, National Bureau of Standards.
† Chemical composition is given in percent by weight.

** Numbers refer to authorities given at end of table.

TABLE 143.—COEFFICIENTS OF LINEAR THERMAL EXPANSION OF SOME ALLOYS (continued)

Allov	Temperature or tempera- ture range °C	Coefficient of linear thermal ex- pansion × 10° per °C	Authority
Iron-cobalt 9.9 to 49.4 Co	30 to 100	11.2 to 9.3	14
Iron-manganese, 2.8 to 14.4 Mn	20 to 100	12.7 to 16.9	13
Iron-nickel, 3.6 Ni 34.5 Ni 36 Ni 40 to 50 Ni	20 to 100 20 to 100 0 to 100 30 to 100	10.9 3.7 0 to 2 4.1 to 9.7	15, 12, 14
Iron-nickel-chromium, 6.6 to 74.7 Fe, 1.3 to 70.1 Ni, 4.9 to 26.7 Cr	20 to 100 20 to 1000	8.7 to 18.4 13.1 to 20.6	16
Iron-nickel-cobalt, 62.5 to 64.0 Fe, 30.5 to 34.0 Ni, 3.5 to 6.0 Co	20 20 to 100	.0 to .5	14, 17
58.7 Fe, 32.4 Ni, 8.2 Co	20 to 240 20 to 200 20 to 295	2.4 1.7 2.6	
Iron-silicon, 1.0 to 8.4 Si	20 to 100	12.2 to 11.3	13
Kanthal (A, A-1, and D) §	20 to 100 20 to 900	11.4 to 11.7 13.9 to 15.1	18
Kovar (see Fernico)	20 (0)00	13.5 to 13.1	
Lead-antimony, 2.9 to 39.6 Sb	20 to 100	28.2 to 20.4	8
Magnesium-aluminum, 10.4 A1	20 to 100 20 to 200 0 to 100 0 to 200	25.9 27.2 23.7 25.1	19, 20
Magnesium-tin, 20.4 Sn	30 to 100 30 to 300 30 to 100 30 to 300	24.3 24.7 21.1 21.3	21
Magnesium-zinc, 20 Zn	40 to 100 40 to 100	29.5 30.2	22
Manganin	20 to 100 0 to 400 0 to 800	18.1 18.9 21.1	23, 24
Monel Metal	25 to 100 25 to 600	13.5 to 14.5 15.9 to 16.7	15, 13
Nickel-chromium, 20.4 Cr	20 to 100 20 to 1000 20 to 100 20 to 1000	13.0 17.2 13.5 17.7	16, 25
Nickel silver, 62.0 to 63.2 Cu, 10.0 to 20.2 Ni, 17.4 to 27.1 Zn	0 to 100 0 to 400	14.8 to 15.4 16.8 to 17.4	26

^{\$} Composition of Kanthal: A: 68.5 Fe, 23.4 Cr, 6.2 Al, 1.9 Co, 0.06 C; A-1: 69.0 Fe, 23.4 Cr, 5.7 Al, 1.9 Co, 0.06 C; D: 70.9 Fe, 22.6 Cr, 4.5 Al, 2.0 Co, 0.09 C.

TABLE 143.—COEFFICIENTS OF LINEAR THERMAL EXPANSION OF SOME ALLOYS (concluded)

Alloy Platinum-iridium, 20 Ir	Temperature or tempera- ture range °C —190 to 0 0 to 100	Coefficient of linear thermal ex- pansion × 10 ⁶ per °C 7.5 8,3	Authority 27
	0 to 1000 0 to 1600	9.6 10.5	
Platinum-rhodium, 20 Rh	0 to 500 0 to 1000 0 to 1400	9.6 10.4 11.0	28
SAE carbon steels	20 to 100	8.8 to 14.4	12
SAE stainless chromium irons	20 to 100	9.4 to 10.7	12
Speculum metal	20 to 100	16.0	29
Stainless steel, 12 Cr	20 to 100	10.0	30, 16
18 Cr, 8 Ni	20 to 100	16.4	
Stellite, 55 to 80 Co, 20 to 40 Cr, 0 to 10 W, 0 to 2 C	20 to 100 20 to 600	11.0 to 14.1 13.6 to 16.5	31
Tantalum carbide	20 to 2377	8.2	32
Tungsten carbide +5.9 Co	20 to 100	4.5 5.2	33
+13.0 Co	20 to 400 20 to 100 20 to 400	5.2 5.0 6.0	
Zinc-aluminum, 22.6 Al	20 to 100	26.0 28.3	34, 4
50 A1	20 to 200 20 to 100 20 to 200	26.5 27.6	

^{||} Coefficients of expansion of other SAE steels (free-cutting, manganese, nickel, nickel-chromium, molyb-denum, chromium-vanadium and chromium-nickel austenitic steels) are given in Metals Handbook of the American Society for Metals.

Authorities

^{1.} Hidnert and Sweeney, 1927; 2. Kempf, 1933; 3. Hidnert, 1925; 4. Schulze, 1921; 5. Hidnert, 1921; 6. Bolton, 1936; 7. Masumoto, 1934; 8. Hidnert, 1936; 9. Aoyama and Ito, 1938; 10. Hull and Burger, 1934; 11. Hull, Burger, and Navias, 1941; 12. Various; 13. Schulze, 1928; 14. Masumoto, 1931; 15. Souder and Hidnert, 1922; 16. Hidnert, 1931; 7. Scott, 1930; 18. Hidnert, 1938; 19. Hidnert and Sweeney, 1928; 20. Takahasi and Kikuti, 1936; 21. Grube and Vosskuhler, 1934; 22. Grube and Burkhardt, 1929; 23. Schulze, 1933; 24. Ebert, 1935; 25. Dean, 1930; 26. Cook, 1936; 27. Physikalische-Technische Reichanstalt, 1920; 28. Day and Sosman, 1910; 29. Scheel, 1921; 30. Hidnert, 1928; 31. Souder and Hidnert, 1921; 32. Becker and Ewest, 1930; 33. Hidnert, 1937; 34. Hidnert, 1924.

TABLE 144.—COEFFICIENTS OF LINEAR THERMAL EXPANSION OF SOME MISCELLANEOUS MATERIALS *

Material	Tempera- ture or tempera- ture range °C	Coefficient of linear thermal expansion × 10 ⁶ per °C	Au- thority	Material	Tempera- ture or tempera- ture range °C	Coefficient of linear thermal expansion × 10 ⁶ per °C	Au- thority
Alum: Ammonium	20 to 50	9.5	1**	Mica, muscovite: Parallel to			
Ammonium chrome Potassium	20 to 50 20 to 50	10.6 11.0		cleavage plane Perpendicular	0 to 100	8.5	14
Thallium	20 to 50 0 to 50	13.1	2	to cleavage plane †	20 to 300	8 to 25	15
Bakelite	20 to 60	21 to 33	3	Mica, phlogopite: # to cleavage plane	0 to 100	13.5	14
Beryl Brick, clay build-	20 to 100	.3 to 1.6	4	1 to cleavage plane †	20 to 100	1 to 179	15
ing	- 10 to + 40	3.0 to 12.4	5	Porcelain	20 to 200	1.6 to 19.6	3
Carborundum	0 to 500 0 to 1000 0 to 1800	7.3 8.4 9.2	6	Quartz, crystal-			16
Concrete		6.8 to 12.7 7.5 to 14.0	7	to axis	0 to 100 0 to 300 0 to 500	8.0 9.6 12.2	
Dental amalgam.	20 to 50	22 to 28	8	⊥ to axis	0 to 100 0 to 300	14.4 16.9	
Glass: Miscellaneous. Pyrex	0 to 300 20 to 100 20 to 300	.8 to 12.8 3.1 to 3.5 3.0 to 3.6	9	Quartz, fused (silica)	0 to 500 20 to 100 20 to 1000	20.9 .5 .5	9
Granites (American)	- 20 to 60	4.8 to 8.3	10	Rocks (American):			17
	-200 -	- 6.1 + .8 16.8	11	Igneous Sedimentary Metamorphic	20 to 100 20 to 100 20 to 100	3.4 to 11.9 2.7 to 12.2 2.3 to 11.0	
-	-100	33.9		Rubber (hard)‡.	§	50 to 84	9
_	- 50 0	45.6 52.7		Slate	20 to 100	6.3 to 8.3	17
Magnesia	20 to 500 20 to 1000	12.4 13.7	6,12,	Tooth: Root Across crown .	20 to 50 20 to 50	8.3 11.4	8
Marble	25 to 100	5 to 16	3	Root and crown	20 to 50	7.8	
				Wood: Along grain Across grain	§	1 to 11 32 to 73	9

^{*}Compiled by Peter Hidnert and H. S. Krider, National Bureau of Standards.

**Numbers refer to authorities given helow. † With load of 30 lh/in.² ‡ includes terms "ebonite" and "vulcanite." \$ Various temperature ranges between 0°C and 100°C.

Authorities

1. Klug and Alexander, 1942; 2. Sweeney, 1928; 3. Souder and Hidnert, 1919; 4. Geller and Insley, 1932; 5. Ross, 1941; 6. Ebert and Tingwaldt, 1936; 7. Koenitzer, 1936; 8. Souder and Peters, 1920; 9. Various; 10. Hockman and Kessler, 1950; 11. Jakob and Erk, 1928; 12. White, 1938; 13. Austin, 1931; 14. Ebert, 1935; 15. Hidnert and Dickson, 1945; 16. Compiled by Sosman, 1927; 17. Griffith, 1936.

If V_0 is the volume at 0° then at t° the expansion formula is $V_t = V_0 (1 + \alpha t + \beta t^2 + \gamma t^3)$. The table gives values of α , β and γ and k, the true coefficient of cubical expansion, at 20° for some liquids and solutions. Δt is the temperature range of the observation.

Liquid	Δt °C	a 10 ⁸	β 10 ³	γ 10 ⁸	k 10 ³ at 20°
Acetic acid	16-107	1.0630	.12636	1.0876	1.071
Acetone	0-54	1.3240	3.8090	87983	1.487
Alcohol:	0-34	1.3240	3.0090	07900	1.707
Amyl	15-80	.9001	.6573	1.18458	.902
	18-39	.2928	10.790	—11.87	.902
	0-39	.7450	1.85	.730	_
and the second second	27-46	1.012	2.20	./30	1.12
				_	1.12
500 atm press	0-40	.866	_	_	
3000	0-40	.524	1 2625	.8741	1 100
Methyl	0-61	1.1342	1.3635		1.199
Benzene	11-81	1.17626	1.27776	.80648	1.237
Bromine	0–59	1.06218	1.87714	— .30854	1.132
Calcium chloride:	40.05				
5.8% solution	18-25	.07878	4.2742		.250
40.9% "	17-24	.42383	.8571	-	.458
Carbon disulfide	—34-60	1.13980	1.37065	1.91225	1.218
500 atm pressure	0-50	.940	-		_
3000 " "	0-50	.581		_	
Carbon tetrachloride	0-76	1.18384	.89881	1.35135	1.236
Chloroform	0-63	1.10715	4.66473	— 1. 7432 8	1.273
Ether	-15-38	1.51324	2.35918	4.00512	1.656
Glycerine	_	.4853	.4895		.505
Hydrochloric acid:					
33.2% solution	0-33	.4460	.215		.455
Mercury	0-100	.18182	.0078		.1818
Olive oil	-	.6821	1.1405	539	.721
Pentane	0-33	1,4646	3.09319	1.6084	1.608
Potassium chloride:					
24.3% solution	16-25	.2695	2.080	_	.353
Phenol	36-157	.8340	.10732	.4446	1.090
Petroleum:	00 101	100 10			
Density .8467	24-120	.8994	1.396	_	.955
Sodium chloride:	21 120	.0771	1.070		.755
20.6% solution	0-29	.3640	1.237	_	.414
Sodium sulfate:	0-27	.5040	1.207		.717
24% solution	11-40	.3599	1.258		.410
Sulfuric acid:	11-40	.0077	1.230	_	.410
10.9% solution	0-30	.2835	2.580		.387
	0-30	.5758	432	_	.558
100.0%	- 9-106	.9003	1.9595	44998	.973
Turpentine	0-33	06427	8.5053	44998 - 6.7900	.207
Water	0-33	00427	0.3033	- 0.7900	.207

Temperatures in °C

Coefficient at con	stant volume		Coefficient at constant pressure				
Substance	Pressure cmHg	Coeffi- cient × 100	Pressure cmHg	Coeffi- cient × 100			
Air	.6	.37666	Air 76.	.3671			
44	1.3	.37172	"	.3693			
44	10.0	.36630	" 0°-100° 100.1	.36728			
	25.4	.36580	Hydrogen 0°-100° 100.0	.36600			
66	75.2	.36660	" 200 Atm.	.332			
" 0°-100°	100.1	.36744	" 400 "				
"	76.0	.36650		.295			
44	200.0	.36903		.261			
66			000	.242			
46	2000.	.38866	Carbon dioxide 76.	.3710			
	10000.	.4100	0 -20 31.8	.37128			
Argon	51.7	.3668	0-40 31.8	.37100			
Carbon dioxide	76.0	.36856	0100. 21.0	.37073			
**	1.8	.36753	020 99.8	.37602			
" "	5.6	.36641	0-100 99.8	.37410			
" "	74.9	.37264	0-20 13/./	.37972			
" " 0°-20°	51.8	.36985	" " 0°-100°. 137.7	.37703			
" 0°-40°	51.8	.36972	" 0°-7.5° 2621.	.1097			
" 0°-100°.	51.8	.36981	" "64°-100°. 2621.	.6574			
" 0°-20°	99.8	.37335	Carbon monoxide 76.	.3669			
" 0°-100°.	99.8	.37262	Nitrous oxide 76.	.3719			
" 0°-100°.	100.0	.37248	Sulfur dioxide 76.	.3903			
Carbon monoxide	76.	.36667	" " 98.	.3980			
Helium	56.7	.3665	(0°-119° 76.	.4187			
Hydrogen 16°-132°	.0077	.3328	0°-141° 76.	.4189			
" 15°-132°	.025	.3623	Water-vapor { 0°-162° 76.	.4071			
" 12°-185°	.47	.3656	0°-200° 76.	.3938			
44	.93	.37002					
	11.2	.36548	(0°−247° 76.	.3799			
"	76.4	.36504					
" 0°-100°	100.0	.36626	Thomson has given (Encycl.	Brit.			
Nitrogen 13°-132°	.06	.3021	"Heat") the following for the calc	ulation			
" 9°-133°	.53		of the expansion, E, between (
" 0° 20°		.3290	100°C. Expansion is to be taken				
11 -20	100.2	.36754	change of volume under constan	t pres-			
" 0°-100°	100.2	.36744	sure:				
	76.	.36682	Hydrogen, $E = .3662(100049)$	V/n			
Oxygen 11°-132°	.007	.4161		V/v			
" 9°-132°	.25	.3984		V/v			
" 11°-132°	.51	.3831		V/v)			
46	1.9	.36683		V/v			
	18.5	.36690	· ·				
"	75.9	.36681	V/v is the ratio of the actual der	isity of			
Nitrous oxide	76.	.3676	the gas at 0°C to what it would I	nave at			
	76.	.3845	0°C and 1 atm pressure.				

TABLE 147.—SPECIFIC HEAT OF THE CHEMICAL ELEMENTS

When one temperature is given the true specific heat is given, otherwise the mean specific heat cal ${}^{\circ}C^{-1}g^{-1}$ between the given limits.

Element t°C	Sp ht	Element t°C	Sp ht
Aluminum —250	.0039	Cerium -253 , -196	.033
-200 -150	.076 .1367	20, 100	.0511
—130 —100	.1676	Chromium 0, 24	.226 .0599
_ 50	.1914	Chromium —150 —100	.0797
0	.2079	— 50	.0941
100 300	.225 .248	0	.1044
600	.277	100 500	.112
16, 100	.212	600	.150 .187
Antimony	.0322	18, 100	.111
-150	.0412	Cobalt —150	.0672
$-100 \\ -50$.0448 .04 7 6	-100	.0809
0	.0494	- 50 0	.0914
28	.0477	20	.1028
20, 100	.0504	100	.1067
500 Arsenic —216	.054 .032	200	.1134
—117.6	.0666	Copper	.0506
18	.078	$-150 \\ -100$.0674 .0783
Barium —185, +20	.068		.0862
Beryllium —202 45, 50	.017 .445	0	.0910
0, 100	.425	100	.0939
Bismuth	.0264	900 18, 100	.1259
—100	.0273	18, 600	.0994
- 50 0	.0282 .0291	Gallium—258.1	.0049
20	.0294	—213.1	.044
100	.0304	_ 73.1	.084
fluid 297	.0292	Germanium 0, 100	.074
Boron 100 500	.287 .4 7 2	Gold	.0018
900	.510	-209.5	.0211
-76, 0	.168	-150	.0266
0, 100	.307	-100	.0281
Bromine, (s) —253.1 (s) —173.1	.0205 .0659	- 50 0	.0293
(s) - 731	.080	18	.0312
(s) — 13.1	.088	100	.0314
(1)	.107	Indium	.057
Cadmium	.0019 .0415	Iodine	.0037
—203.1 —103.1	.0518	-255.9 -221.1	.0118
27.9	.0552	-90, +17	.0485
107.9	.0569	Iridium —186, +18 18, 100	.0282
277 Cesium 0, 26	.060 .0482	18, 100	.0323
Calcium 24	.168	Iron, pure —256.2	.00067
100	.1625	-240.7 -214.0	.00355 .0194
300	.1832	—172.6	.0512
Carbon graph 101 70	.188 .057	— 67.5	.0939
Carbon, graph —191, —79 —76, 0	.126	0	.1043
—183	.0025	α, β, γ	.115 .163
- 66	.053	760	.320
11 85	.112 .177	1000	.162
896	.454	γ 100	.127
C, diamond 0	.1044	700	.157
223	.264	1000	.162
823	.428	Lanthanum 0, 100	.0448
	(conti	inued)	

TABLE 147.—SPECIFIC HEAT OF THE CHEMICAL ELEMENTS (continued)

	01110 1127	(1 OF 1R	E CHEMICAL ELE	MENTS (c	ontinued)
Element	t°C	Sp ht	Element	t°C	Sp ht
Lead		.00001	Phosphorus, yello		.124
	—267	.00086	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	— 40	.165
	-259	.0073		+ 9	.189
	-150	.0279	red .	136	.107
	-100	.0283		— 40	.182
	— 50	.0289		+ 9	.190
	0 100	.0297	Platinum	255.6	.0012
	300	.0320 .0356		237.7	.0073
(1)	. 360	.0375		—191.7	.0211
(-)	500	.0370		-152.1	.0261
Lithium		.3		— 64.8	.0307
	-100	.600	•	0	.0316
	50	.96		500	.0349
	+190	1.374		750 1000	.0365 .0381
Magnesium	. —150	.1767		1300	.0400
	-100	.2025		20, 100	.0319
	- 50	.2228		20, 1000	.0346
	0	.2316	Potassium		.032
	100 300	.257		-255.8	.045
	600	.279 .311		-201.3	.140
(1)	550 775	.284		— 53.1	.172
Manganese —18	38. —79	.0820	/45	+ 3.4	.177
	79, +15	.1091	(1)		.200
	60	.1211	Dt'	181	.196
	325	.1783	Rhenium		.035
	20, 100	.1211	Rhodium		.058
	-100	.0979	Rubidium (s) (1)		.0802
	0	.1072	Ruthenium		.0611
Mercury(s)	100	.1143	Selenium		.072
Mercury(s)	. —263.3 —267.2	.00552	Scientini	16.5	.075
	-259.8	.00620		20.5	.077
	-245.6	.00783 .0172		29.5	.085
	-220.2	.0255		32	.127
	-163.7	.0298		38	.131
	— 81.4	.0324		41.7	.130
(4)	— 43.1	.0337	a	20	.09
(1)		.0338	Silicon		.029
	— <u>3.1</u>	.0335		-143.3	.087
Molybdenum	+ 17	.0333		- 86.2 + 13.9	.126 .168
Molybdenulli	257 239.1	.0004		18.2, 99.1	.181
	-239.1 -181.5	.0034		18.0, 900.6	.210
	-151.5 -152.7	.0399	Silver	—238	.0146
	- 34.5	.0561		—150	.0461
	0	.0589		-100	.0505
	+ 5.3	.0589		— 50	.0537
	+100	.0612		0	.0557
Nickel	250	.0632		100	.0564
Nickel		.0008		300	.0601
	-247.9	.0024		900 20–900	.0685 .0650
	-201.2 -150	.0363 .0660		20-1200	.0880
	-100	.0817	Sodium		.026
	50	.0940	Bodium	-238.5	.108
	0	.1032		-155.5	.245
	100	.1146	(1)		.32
	500	.1270	Sulfur —		.137
Osmium	800	.1413	(1)		.220
Palladium —18	19, 98	.0311	rhom		.176
± 4adıum —18		.0528	monoclinic		.181
	100	.0538	Tantalum		.0205
	500	.0564		+380	.035
	900	.0717		900 1100	.036 .043
	1500	.0766		1400	.043
		, ,	7)	1.00	1011

TABLE 147.—SPECIF	IC HEAT	OF	THE	CHEMICAL	ELEMENTS	(concluded)
Element	t°C	Sp ht		Element	t° (C Sp ht
Tellurium —188,	+18	.047		Tungsten	—24	7.1 .0012
		.0483			-21	
15	, 200	.0487			—17	
Thallium		.288			<u> </u>	
	28	.311			+ 2	
	, 100	.0326			50	
Thorium —253,	—196 100	.0197			100	
Tin	, 100	.0276			150	
		.0385		Uranium	0, 9	
	—186. 7 —150	.0422			0, 10	
		.0483		Zinc	0, 10	
		.0512			-25	
		.0536			-20	
	+ 25	.0548			-15	
	100	.0577			—10 — 5	
		.0758			-	0 .0913
Titanium —185,		.082			10	
		.1125			30	
· ·	,				40	

TABLE 148.-FORMULAE FOR TRUE SPECIFIC HEATS

Element			Range °C
Antimony	0493 +	.000012 t	0-500
Bismuth		.000012 t	0-200
Chromium		$.00010 \ t00000015 \ t^2$	0 - 400
Cobalt		.000067 t	0-400
Copper		.000024 t	0-300
Iron		.000096 t	0-400
Lead	.0295 +	.00002 t	0-300
Magnesium		$.000142 \ t0000001 \ t^2$	0-400
Nickel		$.000118 \ t00000006 \ t^2$	0-300
Platinum			0-1625
Silver		.000008 t	0-400
Tin		.000052 t	0-200
Zinc	.0913 +	.000044 t	0-300

TABLE 149.-HEAT CAPACITIES, TRUE AND MEAN SPECIFIC HEATS, AND LATENT HEATS AT FUSION

The constants a, b, and c of the equations for the heat capacity: $W = a + bt + ct^2$; for the mean specific heat: $s = at^{-1} + b + ct$; and for the true specific heat: s' = b + 2ct; the latent heats at fusion are also given.

	Tempera-						Tempera				
	ture				Latent		ture				Latent
Ele-	range				heat	Ele.	range				heat
ment	°C	а	b	$c \times 10^{6}$	cal/g	ment	°C	a	ь	$c \times 10^{6}$	cal/g
Cr	0-1500	_	.10233	33.47		Ag			.05725	5.48	26.0
Mo	0-1500		.06162	10.99	_	**5 **	961-1300	53.17	.00710	28.30	_
W	0-1500		.03325	1.07		Au			.03171	1.30	15.9
Pt	0-1500	_	.03121	3.54	_		1064-1300	26.35	.01420	8.52	
Ŝn			.06829	_	13.8	Cu	0-1084	_	.10079	3.05	41.0
o	232-1000	14,33	.07020	-18.30			1084-1300	130.74	04150	65.6	
Ві			.03141	5.22	10.2	Mn	0-1070		.12037	25.41	36.6
	270-1000	10.31	.03107	5.41	_		1130-1210	— 7.41	.17700		24.14*
Cd	0-321		.05550	6.28	10.8		1230-1250	3.83	.19800		
	321-1000	6.30	.06952	6.37	—	Ni	0-320		.10950	52.40	56.1
Pb	0-327		.03591	11.47	5.47		330-1451	.41	.12931	.11	1.33*
	327-1000	6.07	.02920	-3.30	. —	_	1451-1520	50.21	.13380		
Zn	0-419		.08777	43.48	23.0	Со	0-950		.09119	40.77	58.2
	419-1000	14.34	.13340	-16.10			1100-1478	22.00	.11043	14.57	14.70*
Sb			.05179	3.00	38.9	73	1478–1600	57.7 2	.14720	56.04	40.4
	630-1000	39.42	.05090	2.96	-	re	0-725	1.62	.10545	56.84	49.4 6.56*
AI	0-657		.22200	38.57	94.0		785-919	-1.63	.1592	0.5	6.67*
	657-1000	102.39	.21870	24.00	_		919-1404	18.31	.14472	.05	1,94*
							1405-1528 1528-1600	-77.18 70.03	.15012	_	1.54
							1320-1000	70.03	.13012		

^{*} Allotropic heat of transformation: Mn, 1070-1130°; Ni, 320-330°; Co, 950-1100°; Fe, 725-785°; 919° ± 1;

Part 1

Solid Alloys:	Temperature °C	Specific heat cal/(g °C)
Bell metal	15-98	.0858
Brass. red	0	.0899
" vellow	ő	.0883
80 $Cu + 20$ Sn.	14–98	.0862
Constantan 60 Cu 40 Ni	18	.0977
Constantan, 60 Cu, 40 Ni	100	.1018
	0-100	.0946
German silver	5-50	.0345
Lipowitz alloy	100-150	.0426
Manganin: 84 Cu, 4 Ni, 12 Mn	18	.0973
ŭ u'u'u	100	.1004
Monel metal	20-1300	.127
Rose's alloy: 27.5 Pb + 48.9 Bi + 23.6 Sn	— 77–20	.0356
	20-89	.0552
" Wood's alloy: 25.85 Pb + 6.99 Cd + 52.43 Bi + 14.73 Sn	5-50	.0352
Wood's alloy: (fluid)	100-150	.0426
Miscellaneous alloys:		
17.5 Sb + 29.9 Bi + 18.7 Zn + 33.9 Sn	20–99	.0566
37.1 Sb + 62.9 Pb	10-98	.0388
39.9 Pb + 60.1 Bi	16–99	.0316
63.8 Bi + 36.2 Sn	20-99	.0400
46.9 Bi + 53.1 Sn	20-99	.0450
Gas coal	20-1040	.3145
Glass, normal thermometer 16 ¹¹¹	19–100	.1988
French hard thermometer		.1869
crown	10-50	.161
flint	10-50	.117
Ice	80	.350
	 40	.434
	- 20	.465
	0	.487
India rubber (Para)	?-100	.481
Mica	20	.10
Paraffin	-20-+3 $-19-+20$.377 .525
"	0-20	.525 .694
	35-40	.622
• • • • • • • • • • • • • • • • • • • •	60-63	.022
" fluid	20	.327
γγ υυας	_	.021

Part 2*

			C _p (joules	per gram) f	or temperatu	ıres in °C	
Compound	Mineral	-200°	0°	200°	400°	800°	1200°
Al ₂ O ₃		0.00	.72	1.00	1.10	1.19	1.26
Al ₂ Si ₂ O ₇ ·2H ₂ O * .			.99	1.17	1.35		1.20
2(A1F)O·SiO ₂			(.83 at				
Be ₃ Al ₂ Si ₆ O ₁₈			(.84 at				
CaAl ₂ Si ₂ O ₈		• • •	.70	.95	1.05	1.17	1.27
CaCO₃		.28	.793	1.00	1.13	1.01	1.10
CaF ₂		.22	.85 .69	.89 .98	.93	1.01	1.10
$CaMgSi_2O_6$ $CaSO_4 \cdot 2H_2O$.322	1.03		1.06	1.15	1.20
CaWO ₄		.022	(.40 at	50°)		• • •	
Fe ₂ O ₃			.61	.79	.90	1.08	
FeS		.238	.606				
	β troilite			.635	.66	.71	
FeS ₂		.075	.500	.594	.69		
H ₂ O		.653	2.06	225	240		
HgS		410	.214	.227	.240		
KCl		.418	.682	.715	.749		
KNO ₃	β niter	.320	1.19			• • •	• • •
	liquid		1.17	1.22			
Mg ₃ Al ₂ Si ₃ O ₁₂			(.74 at				
MgCO₃		.161	.864				
MgO		.066	.870	1.09	1.16	1.24	1.30
$Mg_3H_2Si_4O_{12}$	talc	:::	(.87 at		111	. :::	
NaCl		.466	.855	.915	.975	1.095	
Na ₂ B ₄ O ₇ ·10 H ₂ O .	liquid		(.161 a	250\	• • •	1.14	• • •
PbS		.142	.207	.221	.235	• • •	
SiO ₂		.173	.698	.969	1.129		
5102	β quartz	.170			1.12/	1.174	1.327
	a cristobalite .	.186	.69	1.01			
	β cristobalite .				1.074	1.171	1.21
	glass	.184	.70	.95	1.06	1.21	1.34
ZnS	α wurtzite β sphalerite β	.430	.45	.53	.56	.587	• • •
* For reference, see	footnote 45, p. 136						

Part 3

	$C_{\mathfrak{p}}$	(joules per a	gram) for ter	nperatures i	n °C
Rock	0°	200°	400°	800°	1200°
Igneous					
Granite: 65% orthoclase 25% quartz 9% albite 1% magnetite	.65	.95	1.07	1.13	
Basalt: Syracuse Aetna Kilauea	.85	1.04	1.145	1.32	1.49
Metamorphic Gneiss	.74	1.01			
Sandstone: Micaceous Japanese (mean of 4) English (mean of 8)	(.93 at (.73 at (.81 at (.81 at	50°) 65°)			
Clay, amorphous	.75	.94	1.13	1.51	
Limestone	(.08 at	50°)			

TABLE 151.—ATOMIC HEATS (50°K), SPECIFIC HEATS (50°K), ATOMIC VOLUMES OF THE ELEMENTS

Li 1924 Be 0137 C** 0028 Na 1519 Mg 0713 AI 0413 Si* 0303 Si* 0373	1.74 1.12 .86 .77	13.0 4.5 5.1 3.4 23.6 14.1 10.0 14.2 11.4	Ni Co Cu Zn As Se Br Rb	0175 0208 0207 0245 0384 0258 0361 0453 0711 0550	98 1.22 1.22 1.25 1.94 2.86 3.62 6.05 4.82	omnon 7.1 6.7 6.8 7.1 9.2 15.9 18.5 24.9 34.8	Te Cs Ba La Ce W Os Ir		2.89 4.59 3.68 4.60 4.64 1.75 1.49 2.63	sumpor 18.2 25.7 21.2 71.0 36.0 22.6 20.3 9.8 8.5 8.6
				0384			Ba∥			
	3.50	23.6								
Mg0713	1.74									
								0.000		
								0000		
								0125		
P, yel0774	2.40	17.0			2.38	21.8		0135	2.63	9.2
P, red0431	1.34	13.5		0141	1.36	9.3	Au	0160	3.16	10.2
S0546	1.75	16.		0109	1.11	9.0	Hg		4.65	14.8 17.2
Cl0967	3.43	24.6		0134 0190	1.38 2.03	8.5 9.2	TI Pb	0235	4.80 4.96	18.3
K1280	5.01	44.7 25.9			2.62	10.2	Bi	0010	4.54	21.3
Ca0714 Ti0205	2.86 .99	10.7			3.46	13.0	Th	0218	4.58	21.1
Ti0205 Cr0142		7.6		0286	3.41	20.3	Ü	0138	3.30	12.8
Mn0229		7.4	SII	0200	0.71	20.0	O		0.00	12.0
* cal g-1 °C-1.	† cal g a	atom-1 °C	-1. ** Grapl	nite. ‡	Diamon	id.	Fused.	¶ Crystallize	ed.	Impure.

(1 cal = 4.1840 J)

		Specific I	heat of water		Specific heat of mercury				
	С,		C_p		C_p		C_p		C_p
Temp.	cal g-1 °C-1	Temp. °C	$\overset{\text{cal } g^{-1}}{\circ C^{-1}}$	Temp. °C	cal g-1 °C-1	Temp. °C	$\operatorname*{cal}_{^{\circ}C^{-1}}^{g^{-1}}$	Temp. °C	cal g-1 °C-1
0	1.0080	25	.9989	70	1.0013	0	.03346	90	.03277
5	1.0043	26	.9989	75	1.0021	5	.03340	100	.03269
10	1.0019	27	.9988	80	1.0029	10	.03335	110	.03262
15	1.0004	28	.9987	85	1.0039	15	.03330	120	.03255
16	1.0002	29	.9987	90	1.0050	20	.03325	130	.03248
17	1.0000	30	.9987	95	1.0063	25	.03320	140	.03241
18	.9998	35	.9986	100	1.0076	30	.03316	150	.0324
19	.9996	40	.9987	120	1.0162*	35	.03312	170	.0322
20	.9995	45	.9989	140	1.0223*	40	.03308	190	.0320
21	.9993	50	.9992	160	1.0285*	50	.03300	210	.0319
22	.9992	55	.9996	180	1.0348*	60	.03294		
23	.9991	60	1.0001	200	1.0410*	70	.03289		
24	.9990	65	1.0006	220	1.0476*	80	.03284		

 ⁴⁰ Nat. Bur. Standards Journ. Res., RP 1228, vol. 23, p. 197, 1939.
 Barnes-Regnault.

TABLE 153.—SPECIFIC HEAT OF VARIOUS LIQUIDS

	m	Spec		T.	Spec
Liquid	Temp °C	heat cgs	Liquid	Temp °C	heat cgs
		-		0	_
Alcohol, ethyl	— 20	.505	Ethyl ether		.529
" "	0	.548		5-50	.576
"	40	.648	KOH + 30 H ₂ O	18	.876
Alcohol, methyl	5–10	.590	" + 100 "	18	.975
"	15-20	.601	NaOH + 50 H₂O	18	.942
Anilin	15	.514	" + 100 "	18	.983
66	30	.520	$NaCl + 10 H2O \dots$	18	.791
44	50	.529	" + 200 "	18	.978
Benzole, C ₆ H ₆	10	.340	Naphthalene, C10H3	80-85	.396
" " "	40	.423	46	90-95	.409
" C ₆ H ₆	65	.482	Nitrobenzole	14	.350
	— 15	.764	44	28	.362
" " " "	-15	.775	Oils: Castor	20	.434
" " " "	1.30	.787		5.4	.438
	+20		Citron		.471
1.20	20	.695	Olive	6.6	
	0	.712	Sesame	_	.387
	+20	.725	Turpentine	0	.411
1.20	20	.651	Petroleum	21-58	.511
" " " " "	0	.663	Sea water, sp. gr. 1.0043.	17.5	.980
	+20	.676	" " " 1.0235.	17.5	.938
$CuSo_4 + 50 H_2O \dots$	12–15	.848	" " " 1.0463.	17.5	.903
" + 200 "	12-14	.951	Toluol, C ₆ H ₈	10	.364
" + 400 "	13-17	.975	44	65	.490
Diphenylamine,			"	85	.534
C ₁₂ H ₁₁ N	53	.464	$ZnSO_4 + 50 H_2O \dots$	20-52	.842
"	65	.482	+ 200 "	20-52	.952
	33	. 102		20 02	.,,,,

Expressed in calories20 per gram per degree C

Temp °C	0	1	2	3	4	5	6	7	8	9
40	1.062	1.061	1.060	1.059	1.058	1.058	1.057	1.056	1.055	1.055
— 30	1.070	1.069	1.068	1.067	1.066	1.065	1.064	1.064	1.063	1.062
— 20	1.078	1.077	1.076	1.075	1.074	1.074	1.073	1.072	1.071	1.070
— 10	1.088	1.087	1.086	1.085	1.084	1.083	1.082	1.081	1.080	1.079
— 0	1.099	1.098	1.097	1.096	1.094	1.093	1.092	1.091	1.090	1.089
+ 0	1.099	1.100	1.101	1.103	1.104	1.105	1.106	1.108	1.109	1.110
+10	1.112	1.113	1.114	1.116	1.117	1.118	1.120	1.122	1.123	1.125
+20	1.126	1.128	1.129	1.131	1.132	1.134	1.136	1.137	1.139	1.141
+30	1.142	1.144	1.146	1.148	1.150	1.152	1.154	1.156	1.158	1.160
+40	1.162	1.164	1.166	1.169	1.171	1.173	1.176	1.178	1.181	1.183

TABLE 155.—HEAT CONTENT OF SATURATED LIQUID AMMONIA

Heat content $= H = \epsilon + pv$, where ϵ is the internal or intrinsic energy.

Temperature °C...
$$-50^{\circ}$$
 -40° -30° -20° -10° 0° $+10^{\circ}$ $+20^{\circ}$ $+30^{\circ}$ $+40^{\circ}$ $+50^{\circ}$ $H=\epsilon+pv$ -53.8 -43.3 -32.6 -21.8 -11.0 0.0 $+11.1$ $+22.4$ -33.9 -45.5 -57.4

TABLE 156.—SPECIFIC HEAT OF MINERALS AND ROCKS

	Specific mpera- heat			Specific
Substance tu			Tempera.	heat
	re °C cgs	Substance	ture °C	cgs
Andalusite 0-	-100 .168	Rock-salt	13-45	.219
Anhydrite, CaSO ₄ 0-	-100 .175	Serpentine	16-98	.259
Apatite 15-	-99 .190	Siderite	9-98	.193
Asbestos 20-	-98 .195	Spinel	15-47	.194
	-98 .193	Talc	20-98	.209
Barite, BaSO, 10-	-98 .113	Topaz	0-100	.210
Beryl 15-	-99 .198	Wollastonite	19-51	.178
Borax, Na ₂ B ₄ O ₇ fused 16-	-98 .238	Zinc blende, ZnS	0-100	.115
Calcite, CaCO ₃ 0-	-50 .188	Zircon	21-51	.132
0-	-100 .200	Rocks:		
	-300 .220	Basalt, fine, black	12-100	.200
	-98 .093		20-470	.199
	-99 .129		470–750	.243
	-98 .198		750-880	.626
Cryolite, Al ₂ F ₆ ·6NaF 16-			880-1190	.323
	-99 .215	Dolomite	20-98	.222
	-100 .047	Gneiss	17–99	.196
	-100 .175		17–213	.214
Hematite, Fe ₂ O ₃ 15-		Granite	12-100	.192
Hornblende 20-		Kaolin	20-98	.224
Hypersthene 20-		Lava, Aetna	23–100	.201
Labradorite 20-		T714	31–776	.259
Magnetite 18-		Kilauea	25-100	.197
Malachite, Cu ₂ CO ₄ H ₂ O 15-		Limestone	15-100	.216
Mica (Mg) 20-		Marble	0-100	.21
(K) 20-		Quartz sand	20–98	.191
Oligoclase 20-		Sandstone	_	.22
Orthoclase 15-		Aluminum oxide 50	0	1721
Pyrolusite, MnO ₂ 17-	-48 .159 -100 .188	(Corundum)	0	.1731
Quartz, SiO ₂ 12- 0	.174		100 200	.2157
350	.279		200 300	.2438
	-1200 .305		300 400	.2719
400-	-1200 .303		500	.2719
			500 600	.2799
			700	.2919
			800	.2960
			900	.2995

⁵⁰ Nat. Bur. Standards Journ. Res., vol. 38, p. 593, 1947.

Part 1

						_				
							onstant			
		н	Heat capacity,					$-cT^{-2}$		
			C_p in J/g				_ J/g			
	Density		nperature			Temperature = ° absolute			pera-	
	g/liter	161	nperature				abson	ite	ture range	
Gases	(normal)	. 0	400	1200	′ (ı	$10^{3}b$	10-5c	°C	
Air	1.2920	1.004	1.057	1.16	.90	58	.132	0	0-2000	
Ammonia	.7598	2.06	2,74	3.86	1.8.		1.395	.1102	0-1500	
Argon *	1.782	.521	.521	.521	.5)	0	0-	
Bromine	7.1308	.225	.232	.236	.22	23	.01	ŏ	0-1400	
Carbon dioxide	1.9630	.82	1.12	1.32	.89		.7	.197	0-2000	
Carbon monoxide	1.2492	1.04	1.103	1.245	.98		.18	0	0-2000	
Chlorine	3.1638	.497	.511	.537	.48		.033	0	0-1700	
Fluorine	1.6954	.774	.818	.906	.7-		.11	ő	0-2700	
Helium *	.1785	5.2	5.2	5.2	5.2	. (Ö	0-	
Hydrogen * H	.045	20.6	20.6	20.6	20.6	(Ŏ	0-	
H ₂	.0899	14.23	14.87	16.14	13.79		.59	Ö	0-2000	
Hydrogen bromide	3.6104	.363	.381	.416	.3.		.434	ŏ	0-1700	
Hydrogen chloride	1.6269	.795	.834	.911	.70		.096	ŏ	0-1700	
Hydrogen fluoride	.8926	1.431	1.50	1.634	1.38		.169	ŏ	0-1700	
Hydrogen iodide	5.7075	.234	.245	.266	.22		.027	Ŏ	0-1700	
Hydrogen sulfide	1.5203	1.025	1.21	1.527	.96		.385	.0314	0-1500	
Iodine	11.3250	.15	.15	.15	.1.			0	0-	
Krypton *	3.7365	.25	.25	.25	.2.			ŏ	0-	
Mercury * Hg	8.9501	.104	.104	.104	.10			ŏ	ŏ-	
Hg ₂	17,9003	.094	.094	.094	.09			Õ	0-	
Neon *	.9005	1.03	1.03	1.03	1.03			Ö	0-	
Nitric oxide	1.3388	1.00	1.047	1.142	.96		.118	0	0-2000	
Nitrogen	1.2499	1.037	1.08	1.21	.96		.167	021	0-1500	
Nitrous oxide	1.9638	.85	.954	1.162	.77		.26	0	0-2000	
Oxygen	1.4277	.916	1.025	1.143	.94		.136	.0486	0-2000	
Phosphorus pentaoxide.	6.3371	_	1.084	1.084	1.08	34 (0	360-1100	
Potassium * K	1.744	.532	.532	.532	.5.			Ö	0-	
K ₂	3.4889	.482	.482	.482	.48			ŏ	0-1700	
Sodium * Na	1.026	.904	.904	.904	.90)	0	0-	
Na ₂	2.052	.82	.82	.82	.82	? ()	0	0-	
Sulfur	2.8607	.565	.573	.589	.56		.0196	ŏ	30-2000	
Sulfur dioxide	2.858	.61	.79	.875	.76		.082	.132	0-2000	
Water		1.847	2.052	2.478	1.69		.535	008	0-2000	
Xenon *	5.8579	.158	.158	.158	.13			0	0-	

^{**} For reference, see footnote 45, p. 136. * The heat capacity of an ideal monatomic gas (at constant pressure) is equal to (5/2)R.

Part 2

Substance te Acetone, C_3H_6O	Range of mperature °C 26-110	Specific heat (cgs) constant pressure C_p	Range of temperature °C	Mean ratio of specific heats C_p/C_v
Alcohol, C ₂ H ₅ OH	108–220	.4534	53 100	1.133 1.134
Alcohol, CH ₃ OH	101-223	.4580	100	1.256
Benzene, C ₆ H ₆	34–115	.2990	20	1.403
	35–180	.3325	60	1.403
	116–218	.3754	99.7	1.105
Chloroform, CHCl ₃	27-118	.1441	22-78	1.102
	28-189	.1489	99.8	1.150
Ether, C ₄ H ₁₀ O	69–224	.4797	42-45	1.029
	25–111	.4280	12-20	1.024
Hydrochloric acid, HC1	13–100	.1940	20	1.389
	22–214	.1867	100	1.400
Mercury			310	1.666
Water vapor, H ₂ O	0	.4655	78	1.274
	100	.421	94	1.33
	180	.51	100	1.305

TABLE 158.—SPECIFIC HEAT OF SILICATES

	Mean specific heats cgs 0° C to				True-specific heats				
Silicate	100°	500°	900°	1400°	0°C	100°	500°	1000°	1300
Albite	.1948	.236	.256	_	.178	.211	.269	.294	_
" glass	.1977	.241	.264	_	_	_	_	_	_
Amphibole, Mg silicate.	.2033	.246	.266	.273*	.185	.219	.279	.304	_
" glass	.2040	.247	_	_	_	_	_	_	_
Andesine	.1925	.233	.252	_	_	_	.265	_	_
" glass	.1934	_	.261	_	_	_	_	_	
Anorthite	.1901	.229	.248	.267	.174	.205	.260	.286	.318
" glass	.1883	.230	_	_	_	_	_	_	_
Cristobalite		.242	.256	.268	_	_	_	_	_
Diopside		.231	.250	.260†	.176	.207	.262	.284	_
" glass	.1939	.233	_	_	_	_		_	_
Microcline	.1871	.226	.245	_	.171	.201	.258	.279	_
" glass		.232	.251	.259*	.176	.206	.264	.299	_
Pyroxene		.248							
Quartz	.1868	.237	.259	.264*	.168	.204	.294	.285	-
Silica glass	.1845	.230	.251	_	.166	.202	.266	.29	
Wollastonite	_	_	.234	_	_	_	_		
" glass	.1852	.220	_	. 	. —				
" pseudo	.1844	.217	.232	.244	.171	.197	.243	.262	.272

TABLE 159.—LATENT HEAT OF FUSION AND VAPORIZATION 51

(Kg cal/mol)

Part 1

Metals L. Al	70 03 51	67.6 69.4 90.7 47.8	lonic substances AgBr AgCl BaCl ₂ CaCl ₂	3.15 2.76 5.75		CH ₄	Lm L _v .280 1.88 .577 8.0 .224 2.33 .2.35 8.3 .2.64 20,3
Cs Cu	11	81.7 96.5 21.9 34.4 69.7 26.2 98.1 46.7 25. 20.6 54.4 68.0 43.0	KBr KCl KyCr ₂ O ₇ KF KNO ₃ KOH LiNO ₃ NaCl NaF NaClO ₃ NaNO ₃ NaNO ₃ NaOd PbBr ₂ PbCl ₂ PbCl ₂ TlBr TlCl	6.41 8.77 6.28 2.57 1.61 6.06 7.22 7.81 1.60 4.29 5.5.5 5.18 5.99	165 190 183 213 	CO CO ₂ H ₂ HBr HCI H2O N ₂ NH ₃ NO	.1.63

Part 2

Substance	Composition	$T^{\circ}C$	Lm Cal/g
Alloys: 30.5Pb + 69.5Sn	PbSn ₄	183	17
36.9 Pb + 63.1 Sn	PbSn ₂	179	15.5
63.7 Pb + 36.3 Sn	PbSn	177.5	11.6
77.8Pb + 22.2Sn	Pb ₂ Sn	176.5	9.54
Britannia metal, 9Sn + 1Pb	1 102011	236	28.01
Rose's alloy, $24\text{Pb} + 27.3\text{Sn} + 48.7\text{Bi}$		98.8	6.85
Wood's alloy $\begin{cases} 25.8\text{Pb} + 14.7\text{Sn} \\ +52.4\text{Bi} + 7\text{Cd} \end{cases}$		75.5	8.40
	NH_3	75	108
Ammonia	C_6H_6	5.4	30.6
Benzole			
Ice	H ₂ O	0	79.63
	TI () : 2 5253	U	79.59
" (from sea water)	$H_2O + 3.535$	- 8.7	54.0
	. Or somus	70.07	27.62
Naphthalene	$C_{10}H_8$	79.87	35.62
Potassium nitrate	KNO_3	333.5	48.9
Phenol	C_6H_6O	25.37	24.93
Paraffin		52.40	35.10
Sodium	Na	97	31.7
" nitrate	NaNO₃	305.8	64.87
" phosphate	Na ₂ HPO ₄	36.1	66.8
	121120	43.9	36.98
		61.8	42.3
Wax (bees)		01.0	42.0

⁵¹ From Slater, John C., Introduction to chemical physics, McGraw-Hill Book Co., copyright 1939. Used by permission.

166 TABLE 160.—LATENT HEAT OF VAPORIZATION OF ELEMENTS

Element	t°C	Cal/g	Element	t°C	Cal/g
Sb	755	320	I	174	24
Α	1 atm.	37.6	Kr	— 151	28
Ba	1537	308	Pb	1170	175
Bi	920	190	Li	1336	511
Br	60±	43	Mg		136
Cd	778	240	Hg		71
Ca	143.9	101	N	— 195.6	47.6
<u>C</u> 1		63	O ₂		50.9
F		40.5	<u>S</u> r		410
He		5.6	<u>X</u> e	— 108.6	25.1
H ₂	— 253	108	Zn	918	475

TABLE 161.—LATENT HEAT OF VAPORIZATION OF LIQUIDS

Substance	Formula	t°C	Latent heat vaporization cal/g	Total heat from 0°C cal/g
Alcohol: Ethyl	C ₂ H ₀ O	78.1	205	255
conor. Ziny	"	0	236	236
	"	100		267
	"	150		285
Methyl	CH ₄ O	64.5	267	307
	"	0	289	
		100	246	• • •
	66	150 200	206 152	• • •
	46	238.5	44.2	• • •
Aniline	C ₀ H ₇ N	184	110	• • •
Benzene	C ₆ H ₆	80.1	92.9	127.9
Carbon dioxide, solid	CO ₂			138.7
liquid	"	-25	72.23	
·	"	0	57.48	
	44	12.35	44.97	
	"	22.04	31.8	
4110-1		30.82	3.72	****
disulfide	CS ₂	46.1 0	83.8 90	94.8 90
	46	100		100.5
Chloroform	CHCl ₃	60.9	58.5	72.8
Ether	C ₄ H ₁₀ O	34.5	88.4	107
	"	0	94	94
	44	50		115.1
	"	120		140
Ethyl bromide	C₂H₅Br	38.2	60.4	
chloride	C₂H₅C1	12.5	* 1.2	98
iodide	C₂H₅I	71	47	
Heptane	C ₇ H ₁₆	90	77.8 79.2	• • •
Octane	C ₈ H ₁₈	70 130	79.2 70.0	
Pentane	C ₅ H ₁₂	30	85.8	
Sulfur dioxide	SO ₂	0	91.2	• • •
2.0	502	65	68.4	
Toluol	C_7H_8	111	86.0	
Turpentine	C10H10	159.3	74.04	

TABLE 162.—LATENT AND TOTAL HEAT OF VAPORIZATION, FORMULAE

r = latent heat of vaporization at t° C; H =total heat from fluid at 0° to vapor at t° C. T° refers to Kelvin scale. Same units as preceding table.

Acetone, C ₃ H ₆ O H		- 3° to 147°
r	$= 139.9 + .23356t + .00055358t^{2}$ = 139.927287t + .0001571t ²	$\begin{array}{cccc} & -3 & 147 \\ & -3 & 147 \end{array}$
Benzene, CoHo H	$I = 109.0 + .24429t0001315t^2$	7 215
Carbon dioxide r^2	$t = 118.485(31 - t)4707(31 - t)^2$	-25 31
Carbon bisulfide, CS2	$I = 90.0 + .14601t0004123t^2$	-6 143
H	$t = 89.5 + .16993t0010161t^2 + .05342t^3$	-6 143
r	$= 89.506530t0010976t^2 + .05342t^3$	-6 143
Carbon tetrachloride, CCl ₄ H	$t = 52.0 + .14625t000172t^2$	8 163
H	$t = 51.9 + .17867t0009599t^2 + .053733t^3$	8 163
r	$= 51.901931t0010505t^2 + .053733t^3$	8 163
Chloroform, CHCl₃ H	t = 67.0 + .1375t	- 5 159
	$t = 67.0 + .14716t0000937t^2$	-5 159
	$= 67.008519t0001444t^2$	-5 159
Ether, C ₄ H ₁₀ O H	$t = 94.0 + .45000t0005556t^2$	— 4 121
	$= 94.007900t0008514t^2$	- 4 121
Molybdenum r	= 177000 - 2.5T (cal/g-atom)	
Nitrogen, N ₂ r		
	$= 131.75(36.4 - t)928(36.4 - t)^{2}$	-20 36
Oxygen, O ₂ r		
Platinumr		
Sulfur dioxide r		0 20
Tungsten r		
	$t = 638.9 + .3745(t - 100)00099(t - 100)^2$	
	$= 94.210(365 - t)^{.31210}$ (See Table 165)	0 100

TABLE 163.-LATENT HEAT OF VAPORIZATION OF AMMONIA

Calories per gram

°C	0	1	2	3	4	5	6	7	8	9
-40	331.7	332.3	333.0	333.6	334.3	334.9	335.5	336.2	336.8	337.5
-30	324.8	325.5	326.2	326.9	327.6	328.3	329.0	329.7	330.3	331.0
-20	317.6	318.3	319.1	319.8	320.6	321.3	322.0	322.7	323.4	324.1
-10	309.9	310.7	311.5	312.2	313.0	313.8	314.6	315.3	316.1	316.8
- 0	301.8	302.6	303.4	304.3	305.1	305.9	306.7	307.5	308.3	309.1
+ 0	301.8	300.9	300.1	299.2	298.4	297.5	296.6	295.7	294.9	294.0
+10	293.1	292.2	291.3	290.4	289.5	288.6	287.6	286.7	285.7	284.8
+20	283.8	282.8	281.8	280.9	279.9	278.9	277.9	276.9	275.9	274.9
+30	273.9	272.8	271.8	270.7	269.7	268.6	267.5	266.4	265.3	264.2
+40	263.1	262.0	260.8	259.7	258.5	257.4	256.2	255.0	253.8	252.6

TABLE 164.—"LATENT HEAT OF PRESSURE VARIATION" OF LIQUID AMMONIA

When a fluid undergoes a change of pressure, there occurs a transformation of energy into heat or vice versa, which results in a change of temperature of the substance unless a like amount of heat is abstracted or added. This change expressed as the heat so transformed per unit change of pressure is the "latent heat of pressure variation." It is expressed below as J g⁻¹ kg⁻¹ cm².

Temperature °C.
$$-44.1$$
 -39.0 -24.2 $-.2$ $+16.5$ $+26.5$ $+35.4$ $+40.3$ Latent heat $-$.055 $-$.057 $-$.068 $-$.088 $-$.107 $-$.123 $-$.140 $-$.150

TABLE 165.—THERMAL PROPERTIES OF SATURATED WATER AND STEAM

Accuracy: It is estimated that there is only 1 chance in 100 that the values given for H differ from the truth by as much as 1 part in 2000; it is equally unlikely that the values for L and H' are as much as 1.5 joules/g from the truth in the range of the experiments, $100^{\circ}-270^{\circ}$ C.

	Heat con-		TT .	Entropy-		
Temperature °C 0	tent of liquid, H joules/g	Latent heat, L joules/g 2494.02	Heat content of vapor, H' joules/g 2494.02	of liquid p joules/g°C	of vapor of vapor joules/g°C 9.132	
10	42.02	2472.26	2514.28	.1511	8.884	
	83.83	2450.17	2534.00	.2962	8.656	
	125.59	2427.73	2553.32	.4363	8.446	
	167.34	2404.90	2572.24	.5719	8.253	
	209.11	2381.64	2590.75	.7032	8.074	
60	250.90	2357.91	2608.81	.8305	7.909	
	292.75	2333.65	2626.40	.9543	7.756	
	334.66	2308.32	2643.48	1.0746	7.613	
	376.65	2283.38	2660.03	1.1918	7.480	
	418.75	2257.24	2675.99	1.3064	7.356	
110.	460.97	2230,35	2691.32	1.4177	7.240	
120.	503.36	2202,65	2706.01	1.5268	7.130	
130.	545.93	2174,04	2719.97	1.6335	7.027	
140.	588.71	2144,44	2733.15	1.7381	6.929	
150.	631.75	2113,76	2745.51	1.8407	6.837	
160	675.06	2081.89	2756.95	1.9416	6.749	
	718.66	2048.72	2767.38	2.0406	6.664	
	762.72	2014.10	2776.82	2.1384	6.584	
	807.15	1977.89	2785.04	2.2348	6.506	
	. 852.02	1939.93	2791.95	2.3299	6.430	
210	897.35	1900.00	2797.35	2.4239	6.357	
	943.24	1857.89	2801.13	2.5169	6.285	
	989.75	1813.33	2803.08	2.6091	6.213	
	1036.97	1766.02	2802.99	2.7007	6.143	
	1084.97	1715.59	2800.56	2.7919	6.072	
260	1133.87	1661.60	2795.47	2.8828	6.000	
270	1184.32	1603.51	2787.83	2.9746	5.927	

Metric and common units, 0° to 220°C

Heat of liquid, q, heat required to raise 1 kg (1 lb) to corresponding temperature from 0°C. Heat of vaporization, r, heat required to vaporize 1 kg (1 lb) at corresponding temperature to dry saturated vapor against corresponding pressure. Total heat, H=r+q.

Temperature degrees C		Pressure		Heat of the liquid		Heat of vaporization		Heat equivalent of internal works		Temperature degrees F
t 0 5 10 15 20	mmHg \$\frac{p}{p}\$ 4.579 6.541 9.205 12.779 17.51	kg/cm² p .00623 .00889 .01252 .01737 .02381	lb/in.² p .0886 .1265 .1780 .2471 .3396	kg cal q .00 5.04 10.06 15.06 20.06	Btu q .0 9.1 18.1 27.1 36.1	kg cal 7 595.4 592.8 590.2 587.6 584.9	Btu r 1071.7 1067.1 1062.3 1057.6 1052.8	kg cal p 565.3 562.2 559.0 555.9 552.7	Btu	32.0 41.0 50.0 59.0 68.0
25	23.69	.03221	.4581	25.05	45.1	582.3	1048.1	549.5	989.7	77.0
30	31.71	.04311	.6132	30.04	54.1	579.6	1043.3	546.3	983.4	86.0
35	42.02	.05713	.8126	35.03	63.1	576.9	1038.5	543.1	977.6	95.0
40	55.13	.07495	1.0661	40.02	72.0	574.2	1033.5	539.9	971.7	104.0
45	71.66	.09743	1.3858	45.00	81.0	571.3	1028.4	536.5	965.7	113.0
50	92.30	.12549	1.7849	49.99	90.0	568.4	1023.2	533.0	959.6	122.0
55	117.85	.16023	2.279	54.98	99.0	565.6	1018.1	529.7	953.5	131.0
60	149.19	.20284	2.885	59.97	108.0	562.8	1013.1	526.4	947.5	140.0
65	187.36	.2547	3.623	64.98	117.0	559.9	1007.8	523.0	941.3	149.0
70	233.53	.3175	4.516	69.98	126.0	556.9	1002.5	519.5	935.0	158.9
75	289.0	.3929	5.589	74.99	135.0	554.0	997.3	516.0	928.8	167.0
80	355.1	.4828	6.867	80.01	144.0	551.1	991.9	512.6	922.6	176.0
85	433.5	.5894	8.383	85.04	153.1	548.1	986.5	509.1	916.3	185.0
90	525.8	.7149	10.167	90.07	162.1	544.9	980.9	505.4	909.9	194.0
91	546.1	.7425	10.560	91.08	163.9	544.3	979.8	504.7	908.5	195.8
92	567.1	.7710	10.966	92.08	165.7	543.7	978.7	504.0	907.2	197.6
93	588.7	.8004	11.384	93.09	167.5	543.1	977.6	503.3	906.0	199.4
94	611.0	.8307	11.815	94.10	169.3	542.5	976.5	502.6	904.7	201.2
95	634.0	.8620	12.260	95.11	171.2	541.9	975.4	501.9	903.4	203.0
96	657.7	.8942	12.718	96.12	173.0	541.2	974.2	501.1	902.1	204.8
97	682.1	.9274	13.190	97.12	174.8	540.6	973.1	500.4	900.8	206.6
98	707.3	.9616	13.678	98.13	176.6	539.9	971.9	499.6	899.4	208.4
99	733.2	.9970	14.180	99.14	178.5	539.3	970.8	498.9	898.2	210.2
100	760.0	1.0333	14.697	100.2	180.3	538.7	969.7	498.2	896.9	212.0
101	787.5	1.0707	15.229	101.2	182.1	538.1	968.5	497.5	895.5	213.8
102	815.9	1.1093	15.778	102.2	183.9	537.4	967.3	496.8	894.1	215.6
103	845.1	1.1490	16.342	103.2	185.7	536.8	966.2	496.1	892.9	217.4
104	8 7 5.1	1.1898	16.923	104.2	187.6	536.2	965.1	495.4	891.6	219.2
105	906.1	1.2319	17.522	105.2	189.4	535.6	964.0	494.7	890.3	221.0
106	937.9	1.2752	18.137	106.2	191.2	534.9	962.8	493.9	889.0	222.8
107	970.6	1.3196	18.769	107.2	193.0	534.2	961.6	493.1	887.6	224.6
108	1004.3	1.3653	19.420	108.2	194.8	533.6	960.5	492.4	886.3	226.4
109	1038.8	1.4123	20.089	109.3	196.7	532.9	959.3	491.6	885.0	228.2
110	1074.5	1.4608	20.777	110.3	198.5	532.3	958.1	490.9	883.6	230.6
111	1111.1	1.5106	21.486	111.3	200.3	531.6	956.9	490.2	882.3	231.8
112	1148.7	1.5617	22.214	112.3	202.1	530.9	955.7	489.4	880.9	233.6
113	1187.4	1.6144	22.962	113.3	203.9	530.3	954.5	488.7	879.5	235.4
114	1227.1	1.6684	23.729	114.3	205.8	529.6	953.3	487.9	878.2	237.2
115	1267.9	1.7238	24.518	115.3	207.6	528.9	952.1	487.1	876.8	239.0
116	1309.8	1.7808	25.328	116.4	209.4	528.2	950.8	486.3	875.4	240.8
117	1352.8	1.8393	26.160	117.4	211.2	527.5	949.5	485.5	873.9	242.6
118	1397.0	1.8993	27.015	118.4	213.0	526.9	948.4	484.8	872.6	244.4
119	1442.4	1.9611	27.893	119.4	214.9	526.2	947.2	484.0	871.3	246.2

Metric and common units, 0° to 220°C

If A is the reciprocal of the mechanical equivalent of heat, p the pressure, s and σ the specific volumes of the liquid and the saturated vapor, $s-\sigma$, the change of volume, then the heat equivalent of the external work is $Apu = Ap(s-\sigma)$. Heat equivalent of internal work, $\rho = r - Apu$, Entropy = $\int dQ/T$, where dQ = amount of heat added at absolute temperature T.

tempe	rature 1.	•							4)
Ifeat equiva- lent of exter- nal work		Entropy	Entropy of evapo- ration	Specific v	volume	Der	Temperature degrees F		
Ten	kg cal	Btu	of the liquid	ration	m³/kg	ft³/lb	kg/m³ 1	1b/ft³ 1	Ten
t 0 5 10 15 20	30.1 30.6 31.2 31.7 32.2	Apu 54.2 55.2 56.1 57.1 58.0	θ .0000 .0183 .0361 .0537 .0709	7 2.1804 2.1320 2.0850 2.0396 1.9959	206.3 147.1 106.3 77.9 57.8	3304. 2356. 1703. 1248. 926.	$\begin{array}{c} \frac{1}{s} \\ .00485 \\ .00680 \\ .00941 \\ .01283 \\ .01730 \end{array}$	$\begin{array}{c} \frac{1}{s} \\ .000303 \\ .000424 \\ .000587 \\ .000801 \\ .001080 \end{array}$	32.0 41.0 50.0 59.0 68.0
25	32.8	59.0	.0878	1.9536	43.40	695.	.02304	.001439	77.0
30	33.3	59.9	.1044	1.9126	32.95	528.	.03035	.001894	86.0
35	33.8	60.9	.1207	1.8728	25.25	404.7	.03960	.002471	95.0
40	34.3	61.8	.1368	1.8341	19.57	313.5	.0511	.003190	104.0
45	34.8	62.7	.1526	1.7963	15.25	244.4	.0656	.004092	113.0
50	35.4	63.6	.1682	1.7597	12.02	192.6	.0832	.00519	122.0
55	35.9	64.6	.1835	1.7242	9.56	153.2	.1046	.00653	131.0
60	36.4	65.6	.1986	1.6899	7.66	122.8	.1305	.00814	140.0
65	36.9	66.5	.2135	1.6563	6.19	99.2	.1615	.01008	149.0
70	37.4	67.4	.2282	1.6235	5.04	80.7	.1984	.01239	158.0
75	38.0	68.5	.2427	1.5918	4.130	66.2	.2421	.01510	167.0
80	38.5	69.3	.2570	1.5609	3.404	54.5	.2938	.01835	176.0
85	39.0	70.2	.2711	1.5307	2.824	45.23	.3541	.02211	185.0
90	39.5	71.0	.2851	1.5010	2.358	37.77	.4241	.02648	194.0
91	39.6	71.3	.2879	1.4952	2.275	36.45	.4395	.02743	195.8
92	39.7	71.5	.2906	1.4894	2.197	35.19	.4552	.02842	197.6
93	39.8	71.6	.2934	1.4836	2.122	34.00	.4713	.02941	199.4
94	39.9	71.8	.2961	1.4779	2.050	32.86	.4878	.03043	201.2
95	40.0	72.0	.2989	1.4723	1.980	31.75	.505	.03149	203.0
96	40.1	72.1	.3016	1.4666	1.913	30.67	.523	.03260	204.8
97	40.2	72.3	.3043	1.4609	1.849	29.63	.541	.03375	206.6
98	40.3	72.5	.3070	1.4552	1.787	28.64	.560	.03492	208.4
99	40.4	72.6	.3097	1.4496	1.728	27.69	.579	.03611	210.2
100	40.5	72.8	.3125	1.4441	1.671	26.78	.598	.03734	212.0
101	40.6	73.0	.3152	1.4386	1.617	25.90	.618	.03861	213.8
102	40.6	73.2	.3179	1.4330	1.564	25.06	.639	.03990	215.6
103	40.7	73.3	.3205	1.4275	1.514	24.25	.661	.04124	217.4
104	40.8	73.5	.3232	1.4220	1.465	23.47	.683	.04261	219.2
105	40.9	73.7	.3259	1.4165	1.419	22.73	.705	.04400	221.0
106	41.0	73.8	.3286	1.4111	1.374	22.01	.728	.04543	222.8
107	41.1	74.0	.3312	1.4057	1.331	21.31	.751	.04692	224.6
108	41.2	74.2	.3339	1.4003	1.289	20.64	.776	.04845	226.4
109	41.3	74.3	.3365	1.3949	1.248	19.99	.801	.0500	228.2
110	41.4	74.5	.3392	1.3895	1.209	19.37	.827	.0516	230.0
111	41.4	74.6	.3418	1.3842	1.172	18.77	.853	.0533	231.8
112	41.5	74.8	.3445	1.3789	1.136	18.20	.880	.0550	233.6
113	41.6	75.0	.3471	1.3736	1.101	17.64	.908	.0567	235.4
114	41.7	75.1	.3498	1.3683	1.068	17.10	.936	.0585	237.2
115	41.8	75.3	.3524	1.3631	1.036	16.59	.965	.0603	239.0
116	41.9	75.4	.3550	1.3579	1.005	16.09	.995	.0622	240.8
117	42.0	75.6	.3576	1.3527	.9746	15.61	1.026	.0641	242.6
118	42.1	75.8	.3602	1.3475	.9460	15.16	1.057	.0659	244.4
119	42.2	75.9	.3628	1.3423	.9183	14.72	1.089	.0679	246.2

Metric and common units, 0° to 220°C

Temperature degrees C	Pressure			Heat of the liquid			Heat of vaporization		Heat equivalent of internal works	
Ten de	mmHg	kg/cm ²	lb/in.2	kg cal	Btu	kg cal	Btu	kg cal	Btu	Temperature degrees F
120	1489	2.024	28.79	120.4	216.7	525.6	946.0	483.4	870.0	248.0
121	1537	2.089	29.72	121.4	218.5	524.9	944.8	482.6	868.6	249.8
122	1586	2.156	30.66	122.5	220.4	524.2	943.5	481.8	867.1	251.6
123	1636	2.224	31.64	123.5	222.2	523.5	942.3	481.0	865.8	253.4
124	1688	2.294	32.64	124.5	224.1	522.8	941.0	480.2	864.3	255.2
125	1740	2.366	33.66	125.5	225.9	522.1	939.9	479.4	863.0	257.0
126	1795	2.440	34.71	126.5	227.7	521.4	938.6	478.6	861.6	258.8
127	1850	2.516	35.78	127.5	229.5	520.7	937.3	477.8	860.2	260.6
128	1907	2.593	36.88	128.6	231.4	520.0	936.1	477.0	858.8	262.4
129	1966	2.673	38.01	129.6	233.3	519.3	934.8	476.3	857.4	264.2
130	2026	2.754	39.17	130.6	235.1	518.6	933.6	475.5	856.0	266.0
131	2087	2.837	40.36	131.6	236.9	517.9	932.3	474.7	854.6	267.8
132	2150	2.923	41.57	132.6	238.7	517.3	931.1	474.0	853.2	269.6
133	2214	3.010	42.81	133.7	240.6	516.6	929.8	473.3	851.8	271.4
134	2280	3.100	44.09	134.7	242.4	515.9	928.5	472.5	850.4	273.2
135	2348	3.192	45.39	135.7	244.2	515.1	927.2	471.6	848.9	275.0
136	2416	3.285	46.73	136.7	246.0	514.4	925.9	470.8	847.5	276.8
137	2487	3.382	48.10	137.7	247.9	513.7	524.6	470.1	846.1	278.6
138	2560	3.480	49.50	138.8	249.7	513.0	923.3	469.3	844.6	280.4
139	2634	3.581	50.93	139.8	251.6	512.3	922.1	468.5	843.3	282.2
140	2710	3.684	52.39	140.8	253.4	511.5	920.7	467.6	841.8	284.0
141	2787	•3.789	53.89	141.8	255.3	510.7	919.3	466.8	840.2	285.8
142	2866	3.897	55.43	142.8	257.1	510.1	918.1	466.1	838.9	287.6
143	2948	4.008	57.00	143.9	259.0	509.3	916.7	465.3	837.4	289.4
144	3030	4.121	58.60	144.9	260.8	508.6	915.4	464.4	835.9	291.2
145	3115	4.236	60.24	145.9	262.7	507.8	914.1	463.6	834.5	293.0
146	3202	4.354	61.92	146.9	264.5	507.1	912.8	462.8	833.1	294.8
147	3291	4.474	63.64	148.0	266.4	506.4	911.5	462.0	831.6	296.6
148	3381	4.597	65.39	149.0	268.2	505.6	910.1	461.2	830.1	298.4
149	3474	4.723	67.18	150.0	270.1	504.9	908.8	460.4	828.7	300.2
150	3569	4.852	69.01	151.0	271.9	504.1	907.4	459.5	827.2	302.0
151	3665	4.984	70.88	152.1	273.8	503.4	906.1	458.7	825.7	303.8
152	3764	5.118	72.79	153.1	275.6	502.6	904.7	457.9	824.2	305.6
153	3865	5.255	74.74	154.1	277.4	501.9	903.3	457.1	822.7	307.4
154	3968	5.395	76.73	155.1	279.2	501.1	901.9	456.3	821.2	309.2
155	4073	5.538	78.76	156.2	281.1	500.3	900.5	455.4	819.6	311.0
156	4181	5.684	80.84	157.2	283.0	499.6	899.2	454.6	818.2	312.8
157	4290	5.833	82.96	158.2	284.8	498.8	897.8	453.8	816.7	314.6
158	4402	5.985	85.12	159.3	286.7	498.1	896.5	453.0	815.3	316.4
159	4517	6.141	87.33	160.3	288.5	497.3	895.1	452.1	813.7	318.2
160	4633	6.300	89.59	161.3	290.4	496.5	893.7	451.2	812.2	320.0
161	4752	6.462	91.89	162.3	292.2	495.7	892.3	450.4	810.7	321.8
162	4874	6.628	94.25	163.4	294.1	494.9	890.9	449.5	809.2	323.6
163	4998	6.796	96.65	164.4	295.9	494.2	889.5	448.7	807.7	325.4
164	5124	6.967	99.09	165.4	297.7	493.4	888.1	447.9	806.2	327.2
165	5253	7.142	101.6	166.5	299.6	492.6	886.7	447.0	804.7	329.0
166	5384	7.320	104.1	167.5	301.5	491.9	885.4	446.3	803.3	330.8
167	5518	7.502	106.7	168.5	303.3	491.1	883.9	445.4	801.7	332.6
168	5655	7.688	109.4	169.5	305.1	490.3	882.5	444.6	800.1	334.4
169	5794	7.877	112.0	170.6	307.0	489.5	881.0	443.7	798.5	336.2

Metric and common units, 0° to 220°C

Temperature degrees C	nal	equiva- f exter- work	Entropy of the	Entropy of evapo- ration	Specific		Dens kg/m³	lb/ft ³	Temperature degrees F
t t	kg cal Apu	Btu Apu	liquid $ heta$	$\frac{r}{T}$	m³/kg s	ft³/lb s	$\frac{1}{s}$	$\frac{1}{s}$	ř t
120	42.2	76.0	.3654	1.3372	.8914	14.28	1.122	.0700	248.0
121	42.3	76.2	.3680	1.3321	.8653	13.86	1.156	.0721	249.8
122	42.4	76.4	.3705	1.3269	.8401	13.46	1.190	.0743	251.6
123	42.5	76.5	.3731	1.3218	.8158	13.07	1.226	.0765	253.4
124	42.6	76.7	.3756	1.3167	.7924	12.69	1.262	.0788	255.2
125	42.7	76.8	.3782	1.3117	.7698	12.33	1.299	.0811	257.0
126	42.8	77.0	.3807	1.3067	.7479	11.98	1.337	.0835	258.8
127	42.9	77.1	.3833	1.3017	.7267	11.64	1.376	.0859	260.6
128	43.0	77.3	.3858	1.2967	.7063	11.32	1.416	.0883	262.4
129	43.0	77.4	.3884	1.2917	.6867	11.00	1.456	.0909	264.2
130	43.1	77.6	.3909	1.2868	.6677	10.70	1.498	.0935	266.0
131	43.2	77.7	.3934	1.2818	.6493	10.40	1.540	.0961	267.8
132	43.3	77.9	.3959	1.2769	.6315	10.12	1.583	.0988	269.6
133	43.3	78.0	.3985	1.2720	.6142	9.839	1.628	.1016	271.4
134	43.4	78.1	.4010	1.2672	.5974	9.569	1.674	.1045	273.2
135	43.5	78.3	.4035	1.2623	.5812	9.309	1.721	.1074	275.0
136	43.6	78.4	.4060	1.2574	.5656	9.060	1.768	.1104	276.8
137	43.6	78.5	.4085	1.2526	.5506	8.820	1.816	.1134	278.6
138	43.7	78.7	.4110	1.2479	.5361	8.587	1.865	.1165	280.4
139	43.8	78.8	.4135	1.2431	.5219	8.360	1.916	.1196	282.2
140	43.9	78.9	.4160	1.2383	.5081	8.140	1.968	.1229	284.0
141	43.9	79.1	.4185	1.2335	.4948	7.926	2.021	.1262	285.8
142	44.0	79.2	.4209	1.2288	.4819	7.719	2.075	.1296	287.6
143	44.0	79.3	.4234	1.2241	.4694	7.519	2.130	.1330	289.4
144	44.2	79.5	.4259	1.2194	.4574	7.326	2.186	.1365	291.2
145	44.2	79.6	.4283	1.2147	.4457	7.139	2.244	.1401	293.0
146	44.3	79.7	.4307	1.2100	.4343	6.957	2.303	.1437	294.8
147	44.4	79.9	.4332	1.2054	.4232	6.780	2.363	.1475	296.6
148	44.4	80.0	.4356	1.2008	.4125	6.609	2.424	.1513	298.4
149	44.5	80.1	.4380	1.1962	.4022	6.443	2.486	.1552	300.2
150	44.6	80.2	.4405	1.1916	.3921	6.282	2.550	.1592	302.0
151	44.6	80.4	.4429	1.1870	.3824	6.126	2.615	.1632	303.8
152	44.7	80.5	.4453	1.1824	.3729	5.974	2.682	.1674	305.6
153	44.8	80.6	.4477	1.1778	.3637	5.826	2.750	.1716	307.4
154	44.8	80.7	.4501	1.1733	.3548	5.683	2.818	.1759	309.2
155	44.9	80.9	.4525	1.1688	.3463	5.546	2.888	.1803	311.0
156	45.0	81.0	.4549	1.1644	.3380	5.413	2.959	.1847	312.8
157	45.0	81.1	.4573	1.1599	.3298	5.282	3.032	.1893	314.6
158	45.1	81.2	.4596	1.1554	.3218	5.154	3.108	.1940	316.4
159	45.2	81.4	.4620	1.1509	.3140	5.029	3.185	.1988	318.2
160 161 162 163 164	45.3 45.4 45.5 45.5	81.5 81.6 81.7 81.8 81.9	.4644 .4668 .4692 .4715 .4739	1.1465 1.1421 1.1377 1.1333 1.1289	.3063 .2989 .2920 .2855 .2792	4.906 4.789 4.677 4.571 4.469	3.265 3.345 3.425 3.503 3.582	.2038 .2088 .2138 .2188 .2238	320.0 321.8 323.6 325.4 327.2
165	45.6	82.0	.4763	1.1245	.2729	4.368	3.664	.2289	329.0
166	45.6	82.1	.4786	1.1202	.2666	4.268	3.751	.2343	330.8
167	45.7	82.2	.4810	1.1159	.2603	4.168	3.842	.2399	332.6
168	45.7	82.4	.4833	1.1115	.2540	4.070	3.937	.2457	334.4
169	45.8	82.5	.4857	1.1072	.2480	3.975	4.032	.2516	336.2

(continued)

Metric and common units, 0° to 220°C

t p p p p q q q r r p p t t 170 5937 8.071 114.8 171.6 308.9 488.7 879.6 442.8 797.0 338.1 171 6081 8.268 117.6 172.6 310.7 487.9 878.3 441.9 795.6 339. 172 6229 8.469 120.4 173.7 312.6 487.1 876.9 441.1 794.1 341.1 173 6379 8.673 123.4 174.7 314.5 486.3 875.4 440.2 792.5 343.1 174 6533 8.882 126.3 175.7 316.3 485.5 873.9 439.4 790.9 345. 175 6689 9.094 129.4 176.8 318.2 484.7 872.4 438.5 789.3 347.4 176 6848 9.310 132.4 177.8 320.0	Temperature degrees F	
170 5937 8.071 114.8 171.6 308.9 488.7 879.6 442.8 797.0 338.1 171 6081 8.268 117.6 172.6 310.7 487.9 878.3 441.9 795.6 339. 172 6229 8.469 120.4 173.7 312.6 487.1 876.9 441.1 794.1 341. 173 6379 8.673 123.4 174.7 314.5 486.3 875.4 440.2 792.5 343. 174 6533 8.882 126.3 175.7 316.3 485.5 873.9 439.4 790.9 345. 175 6689 9.094 129.4 176.8 318.2 484.7 872.4 438.5 789.3 347. 176 6848 9.310 132.4 177.8 320.0 483.9 871.0 437.7 787.8 348. 177 7010 9.531 135.6 178.8 321.8 483.1		
176 6848 9.310 132.4 177.8 320.0 483.9 871.0 437.7 787.8 348. 177 7010 9.531 135.6 178.8 321.8 483.1 869.5 436.8 786.2 350. 178 7175 9.755 138.8 179.9 323.7 482.3 868.1 436.0 784.7 352. 179 7343 9.983 142.0 180.9 325.6 481.4 866.6 435.0 783.1 354.	.8 .6 .4	
	.8 .6 .4	
180 7514 10.216 145.3 181.9 327.5 480.6 865.1 434.2 781.5 356. 181 7688 10.453 148.7 183.0 329.3 479.8 863.6 433.3 779.9 357. 182 7866 10.695 152.1 184.0 331.2 479.0 862.2 432.5 778.4 359. 183 8046 10.940 155.6 185.0 333.0 478.2 860.7 431.6 776.9 361. 184 8230 11.189 159.2 186.1 334.9 477.4 859.2 430.8 775.3 363.	.8 .6 .4	
185 8417 11.44 162.8 187.1 336.8 476.6 857.7 429.9 773.7 365. 186 8608 11.70 166.5 188.1 338.6 475.7 856.3 429.0 772.2 366. 187 8802 11.97 170.2 189.2 340.5 474.8 854.7 428.0 770.5 368. 188 8999* 12.24 174.0 190.2 342.4 474.0 853.2 427.2 768.9 370. 189 9200 12.51 177.9 191.2 344.2 473.2 851.7 426.3 767.4 372.	.8 .6 .4	
190 9404 12.79 181.8 192.3 346.1 472.3 850.2 425.4 765.8 374. 191 9612 13.07 185.9 193.3 347.9 471.5 848.7 424.5 764.2 375. 192 9823 13.36 190.0 194.4 349.8 470.6 847.1 423.6 762.5 377. 193 10038 13.65 194.1 195.4 351.7 469.8 845.6 422.8 761.0 379. 194 10256 13.94 198.3 196.4 353.5 468.9 844.1 421.9 759.4 381.	.8 .6 .4	
195 10480 14.25 202.6 197.5 355.4 468.1 842.5 421.0 757.7 383. 196 10700 14.55 207.0 198.5 357.3 467.2 841.0 420.1 756.1 384. 197 10930 14.87 211.4 199.5 359.2 466.4 839.5 419.2 754.6 386. 198 11170 15.18 216.0 200.6 361.1 465.6 838.0 418.4 753.4 388. 199 11410 15.51 220.6 201.6 362.9 464.7 836.4 417.4 751.3 390.	.8 .6 .4	
200 11650 15.84 225.2 202.7 364.8 463.8 834.8 416.5 749.7 392.1 201 11890 16.17 230.0 203.7 366.7 462.9 833.8 415.6 748.1 393. 202 12140 16.51 234.8 204.7 368.5 462.1 831.8 414.8 746.6 395. 203 12400 16.85 239.7 205.8 370.4 461.2 830.2 413.8 744.9 397. 204 12650 17.20 244.7 206.8 372.3 460.3 828.6 412.9 743.3 399.	.8 .6 .4	
205 12920 17.56 249.8 207.9 374.1 459.4 827.0 412.0 741.6 401.2 206 13180 17.92 254.9 208.9 376.0 458.6 825.4 411.1 740.0 402.2 207 13450 18.29 260.1 210.0 377.9 457.7 823.8 410.2 738.3 404.2 208 13730 18.66 265.4 211.0 379.8 456.8 822.2 409.3 736.7 406.2 209 14010 19.04 270.8 212.0 381.6 455.9 820.6 408.4 735.1 408.2	.8 .6 .4	
210 14290 19.43 276.3 213.1 383.5 455.0 819.1 407.5 733.6 410.1 211 14580 19.82 281.9 214.1 385.4 454.1 817.4 406.6 731.9 411. 212 14870 20.22 287.6 215.2 387.3 453.2 815.8 405.7 730.2 413. 213 15170 20.62 293.3 216.2 389.2 452.4 814.3 404.9 728.7 415. 214 15470 21.03 299.2 217.3 391.1 451.5 812.7 404.0 727.1 417.	.8 .6 .4	
215 15780 21.45 305.1 218.3 392.9 450.6 811.0 403.1 725.4 419.2 216 16090 21.88 311.1 219.3 394.8 449.6 809.3 402.1 723.7 420.2 217 16410 22.31 317.3 220.4 396.7 448.7 807.7 401.2 722.1 422.2 218 16730 22.74 323.5 221.4 398.5 447.8 806.1 400.3 720.5 424.2 219 17060 23.19 329.8 222.5 400.4 446.9 804.5 399.4 718.9 426.3	.8 .6 .4	
220 17390 23.64 336.2 223.5 402.3 446.0 802.9 398.5 717.3 428.6 (continued)	.0	

174 TABLE 166.—PROPERTIES OF SATURATED STEAM (concluded)

Metric and common units, 0° to 220°C

Temperature degrees C	Heat e lent of	quiva- exter-	E	Entropy of evapo-	S		De	nsity	Temperature degrees F
Тетр	hg cal	Btu	Entropy of the liquid	ration r	Specific m³/kg	ft ³ /1b	kg/m³	$\frac{1}{s}$	Temp
170 171 172 173 174	45.9 46.0 46.0 46.1 46.1	Apu 82.6 82.7 82.8 82.9 83.0	.4880 .4903 .4926 .4949 .4972	1.1029 1.0987 1.0944 1.0901 1.0859	.2423 .2368 .2314 .2262 .2212	3.883 3.794 3.709 3.626 3.545	4.127 4.223 4.322 4.421 4.521	.2575 .2636 .2696 .2758 .2821	338.0 339.8 341.6 343.4 345.2
175 176 177 178 179	46.2 46.3 46.3 46.4	83.1 83.2 83.3 83.4 83.5	.4995 .5018 .5041 .5064 .5087	1.0817 1.0775 1.0733 1.0691 1.0649	.2164 .2117 .2072 .2027 .1983	3.467 3.391 3.318 3.247 3.177	4.621 4.724 4.826 4.933 5.04	.2884 .2949 .3014 .3080 .3148	347.0 348.8 350.6 352.4 354.2
180	46.4	83.6	.5110	1.0608	.1941	3.109	5.15	.3217	356.0
181	46.5	83.7	.5133	1.0567	.1899	3.041	5.27	.3288	357.8
182	46.5	83.8	.5156	1.0525	.1857	2.974	5.38	.3362	359.6
183	46.6	83.8	.5178	1.0484	.1817	2.911	5.50	.3435	361.4
184	46.6	83.9	.5201	1.0443	.1778	2.849	5.62	.3510	363.2
185 186 187 188 189	46.7 46.8 46.8 46.9	84.0 84.1 84.2 84.3 84.3	.5224 .5246 .5269 .5291 .5314	1.0403 1.0362 1.0321 1.0280 1.0240	.1740 .1702 .1666 .1632 .1598	2.787 2.727 2.669 2.614 2.560	5.75 5.88 6.00 6.13 6.26	.3588 .3667 .3746 .3826 .3906	365.0 366.8 368.6 370.4 372.2
190	46.9	84.4	.5336	1.0200	.1565	2.507	6.39	.3989	374.0
191	47.0	84.5	.5358	1.0160	.1533	2.456	6.52	.4072	375.8
192	47.0	84.6	.5381	1.0120	.1501	2.405	6.66	.4158	377.6
193	47.0	84.6	.5403	1.0080	.1470	2.355	6.80	.4246	379.4
194	47.0	84.7	.5426	1.0040	.1440	2.306	6.94	.4336	381.2
195	47.1	84.8	.5448	1.0000	.1411	2.259	7.09	.4426	383.0
196	47.1	84.9	.5470	.9961	.1382	2.214	7.23	.4516	384.8
197	47.2	84.9	.5492	.9922	.1354	2.169	7.38	.4610	386.6
198	47.2	85.0	.5514	.9882	.1327	2.126	7.53	.4704	388.4
199	47.3	85.1	.5536	.9843	.1300	2.083	7.69	.4801	390.2
200	47.3	85.1	.5558	.9804	.1274	2.041	7.84	.4900	392.0
201	47.3	85.2	.5580	.9765	.1249	2.001	8.00	.4998	393.8
202	47.3	85.2	.5602	.9727	.1225	1.962	8.16	.510	395.6
203	47.4	85.3	.5624	.9688	.1201	1.923	8.33	.520	397.4
204	47.4	85.3	.5646	.9650	.1177	1.885	8.50	.531	399.2
205	47.4	85.4	.5668	.9611	.1153	1.847	8.67	.541	401.0
206	47.5	85.4	.5690	.9572	.1130	1.810	8.85	.552	402.8
207	47.5	85.5	.5712	.9534	.1108	1.774	9.03	.564	404.6
208	47.5	85.5	.5733	.9496	.1086	1.739	9.21	.575	406.4
209	47.5	85.5	.5755	.9458	.1065	1.705	9.39	.587	408.2
210	47.5	85.5	.5777	.9420	.1044	1.673	9.58	.598	410.0
211	47.5	85.5	.5799	.9382	.1024	1.640	9.77	.610	411.8
212	47.5	85.6	.5820	.9344	.1004	1.608	9.96	.622	413.6
213	47.5	85.6	.5842	.9307	.0984	1.577	10.16	.634	415.4
214	47.5	85.6	.5863	.9269	.0965	1.546	10.36	.647	417.2
215	47.5	85.6	.5885	.9232	.0947	1.516	10.56	.660	419.0
216	47.5	85.6	.5906	.9195	.0928	1.486	10.78	.673	420.8
217	47.5	85.6	.5927	.9157	.0910	1.458	10.99	.686	422.6
218	47.5	85.6	.5948	.9120	.0893	1.430	11.20	.699	424.4
219	47.5	85.6	.5969	.9084	.0876	1.403	11.41	.713	426.2
220	47.5	85.6	.5991	.9047	.0860	1.376	11.62	.727	428.0

Common units, 400° to 700°F

Abridged from Steam tables and Mollier's diagram, by Keenan. Printed by permission of the publisher, The American Society of Mechanical Engineers. For detailed discussion see Mechanical Engineering, February, 1929, v, specific vol., ft³/lb; h, total heat, enthalpy, Btu/lb; s, entropy, Btu lb¹ °F¹. The strict definition of total heat (internal energy + 144/J) is adhered to; zeros of both h and s are arbitrarily placed on the sat, liq. line at 32°F. No internal energy values are tabulated but may be easily found by subtracting 144 pv/J from the total heat, The energy unit, the Btu, is 778.57 ft-lb (J) is 1/180 of the change in total heat along the saturated liquid line between 32° and 212°F.

		S	pecific vol	ume	7	otal hea	it		Entropy	
Temp.	Abs. p. lb/in.2	Sat. liq.	Evap.	Sat. vapor	Sat. liq.	Evap.	Sat.	Sat. liq.	Evap.	Sat. vapor
400	247.25	.01865	1.8421	1.8608	375.0	826	1200	.5668	.9602	1.5270
405	261.67	.01873	1.7428 1.6493	1.7615 1.6681	380.4 385.9	821 816	1201 1202	.5730 .5792	.9491 .9381	1.5221 1.5173
410 415	276.72 292.44	.01880 .01888	1.5615	1.5804	391.3	811	1202	.5854	.9271	1.5125
420	308.82	.01896	1.4792	1.4982	396.8	806	1203	.5916	.9161	1.5077
425	325.91	.01904	1.4022	1.4212	402.4	801	1203	.5978	.9052	1.5029
430	343.71	.01911	1.3295	1.3486	407.9	7 96	1203	.6039	.8942	1.4982
435 440	362.27 381.59	.01919	1.2610 1.1965	1.2802 1.2158	413.5 419.1	790 785	1204 1204	.6101 .6162	.8833 .8724	1.4934 1.4887
445	401.70	.01926	1.1356	1.1550	424.7	779	1204	.6224	.8616	1,4839
450	422.61	.0195	1.0782	1.0977	430	774	1204	.6284	.8507	1.4792
455	444.35	.0195	1.0241	1.0436	436	768	1204	.6346	.8398	1.4744
460	466.94	.0196	.9730	.9927	442	762	1204	.6407	.8290	1.4696
465 470	490.40 514.76	.0197 .0198	.9249 .8793	.9446 .8991	447 453	756 750	1204 1204	.6468 .6530	.8180 .8071	1.4649 1.4601
475	540.04	.0199	.8361	.8560	459	744	1203	.6592	.7962	1.4554
480	566.26	.0200	.7951	.8151	465	738	1203	.6654	.7852	1.4506
485	593.47	.0201	.7563	.7764	471	731	1202	.6716	.7742	1.4458
490	621.67	.0202	.7195	.7398	477 483	725 718	1202	.6779 .6842	.7632 .7521	1.4410
495 500	650.87 681.09	.0204 .0205	.6847 .6516	.7050 .6721	489	711	1201 1200	.6904	.7321	1.4314
505	712.40	.0206	.6201	.6408	495	704	1199	.6968	.7299	1.4266
510	744.74	.0207	.5903	.6110	502	697	1198	.7031	.7187	1.4218
515	778.16	.0209	.5618	.5826	508	690	1197	.7094	.7075	1.4170
520 525	812.72 848.43	.0210 .0211	.5347	.5557 .5301	514 521	682 675	1196 1195	.7158 .7222	.6963 .6851	1.4121 1.4073
530	885.31	.0211	.3090	.5058	527	667	1193	.7286	.6738	1.4024
535	923.39	.0214	.4614	.4828	533	659	1192	.7350	.6625	1.3975
540	962.73	.0216	.4394	.4610	540	651	1191	.7414	.6512	1.3926
545	1003.4	.0218	.4184	.4401	547	643	1189	.7478	.6399	1.3877 1.3828
550 555	1045.4 1088.7	.0219 .0221	.3982 .3789	.4201 .4010	553 560	634 626	1188 1186	.7543 .7607	.6285 .6170	1.3020
560	1133.4	.0223	.3605	.3828	567	618	1184	.7672	.6056	1.3728
565	1179.7	.0225	.3429	.3654	574	609	1182	.7737	.5940	1.3677
570	1227.6	.0227	.3261	.3488	580	600	1180	.7802	.5825	1.3626
575	1276.7 1327.2	.0229 .0231	.3101	.3330 .3180	587 594	591 581	1178 1176	.7867 .7932	.5709 .5592	1.3576 1.3524
580 585	1379.2	.0231	.2804	.3037	602	572	1173	.7998	.5474	1.3472
590	1432.7	.0236	.2664	.2900	609	562	1171	.8064	.5356	1.3420
595	1487.8	.0239	.2530	.2769	616	552	1168	.8131	.5237	1.3368
600	1544.6	.0241	.2401	.2642	623	542 521	1166 1160	.8198 .8332	.5118 .4875	1.3316 1.3208
610 620	1663.2 1788.8	.0247 .0254	.2159 .1933	.2406 .2186	638 653	499	1153	.8470	.4623	1.3208
630	1921.9	.0261	.1721	.1982	670	475	1144	.8612	.4358	1.2970
640	2062.8	.0269	.1522	.1791	687	448	1135	.8763	.4073	1.2836
650	2211.4	.0278	.1331	.1610	705	417	1122	.8924	.3764	1.2688
660 670	2368.6 2534.2	.0290 .0304	.1148 .0966	.1437 .1269	725 748	384 344	1109 1092	.9097 .9287	.3426	1.2523 1.2336
680	2534.2 2709.7	.0304	.0781	.1102	773	299	1071	.9499	.2619	1.2119
690	2896.8	.0347	.0589	.0936	803	241	1044	.9755	.2098	1.1852
700	3096.4	.0394	.0353	.0747	846	157	1003	1.0117	.1354	1.1471
705	3202.0	.0462	.0135	.0597	888 925	73 0	962 925	1.0472 1.0785	.0630	1.1102 1.0785
706.1	3226.0	.0522	0	.0522	923	U	923	1.0703	U	1.0763

Common units, 212° to 3000°F

Abs. P. 1b/in.² (Sat. t.	S	at.	Sat.	200	300 °F	400 °F	500	600	700 ° F) (300	900	1000
(Sat. t. °F)	v	.02			°F 30.52 1192.	°F 34.65 1239.	°F 38.75 1286.	°F 42.83 1334	3 46.	91 5	°F 0.97 432.	°F 55.03 1483.	°F 59.09 1535.
14.696 (212.00)	s .3	119 1			1.815 8.78	1.873 10.06	1.925 11.30	1.972	2.0	16 2	.057 4.93	2.096 16.14	2.133 17.34
50 (281.01)	25 .4	0.0 1 111 1	173.5 .6580	S	1184. 1.672	1234. 1.734	1283. 1.787	1331 1.836	5 1.8	80 1	431. .922	1482. 1.961	1534. 1.998
100	29	8.3 1	4.426 186.6 .6022	v h s		4.93 1227. 1.651	5.58 1278. 1.708	1328	. 137	8. 1	7.44 429. .844	8.04 1481. 1.884	8.64 1533. 1.921
(327.83)		018	3.010 1194.	v h		3.22 1219.	3.68 1273.	4.1 1324	1 4. . 137	53 '6. 1	4.94 427.	5.34 1479.	5.75 1532.
(358.43)		018	1.569 2.285	s v		1.599 2.358	1.659 2.722	3.0	5 3	38	.799 3.69	1.838	1.876
200 (381.82)		543	1198. 1.545 1.541	h s v		1210. 1.559	1268. 1.623 1.765	1.67	5 1.7	23 1	426. .766 .438	1478. 1.806 2.646	1531. 1.8438 2.849
300 (417.33)	.58	94. 883	1202. 1.510	h s			1257. 1.569	1313 1.62	. 136 6 1.6	58. 1 75 1	422. .719	1475. 1.760	1529. 1.798
400 (444.58)	4	24.	1.160 1204. 1.484	h s			1.283 1244. 1.528	1306	. 136	52. 1	.812 418. .685	1.970 1472. 1.727	2.125 1527. 1.766
500	.0.	198	.926 1204.	v = s	p. vol. otal hea	at	.991 1230.	1.150 1297	5 1.3 '. 135	01 1 57. 1	.436 414.	1.566 1469.	1.690 1525.
	.0	549	1.463		ntropy 600	650	1.491 700	1.550	8 1.6	11 1 850	.659 900	950	1.740
	.0202	.768	500 °F .792	550 °F .873	°F	°F 1.008	°F 1.069	°F	°F	°F	1.295	°F	°F 1.400
600 (486.17)	472. .673	1202. 1.445	1215. 1.458	1255. 1.499	1289. 1.532	1329. 1.561	1351. 1.587		1409. 1.636	h s	1466. 1.679		1523. 1.720
700	.0206 493. .694	.653 1200. 1.429	h	.725 1242. 1.472	.791 1280. 1.508	.849 1313. 1.539	.904 1345. 1.567		1.006 1405. 1.617	• • • •	1.103 1463. 1.661	• • • •	1.193 1521. 1.702
(503.04)	.0209	.565	s v h	.613	.675 1270.	.729 1305.	.779 1338.		.872 1400.	.916 1430.	.958 1460.	.998 1489.	1.037 1519.
(518.18)	.714 .0213	1.414 .497	s z	1.446 .523	1.486 .584	1.519	1.548		1.599 .768	1.623	1.645 .845	1.666	1.686
900 (531.95)	530. .731 .0217	1193. 1.401 .442	$h \\ s \\ v$	1214. 1.421 .450	1260. 1.466 .511	1297. 1.500 .560	1332. 1.530 .604	.645	1396. 1.583 .684	1427. 1.607 .720	1457. 1.630 .755	1487. 1.652 .788	1517. 1.672 .820
1000 (544.58)	546. .747	1190. 1.388	h s	1197. 1.395	1249. 1.446	1289. 1.483	1325. 1.514	1358. 1.538	1391. 1.569	1423. 1.593	1454. 1.617	1484. 1.639	1515. 1.660
1500	.0239	.274		r' h	.279 1174.	.330	.368	.401 1327.	.432 1365.	.459 1402.	.484 1438.	.508 1472.	.530 1505. 1.612
596.08) 2000	.815 .0265 679.	1.336 .188 1139.		<i>s</i>	1.342 v h	1.403 .204 1169.	1.444 .247 1241.	1.478 .278 1291.	1.509 .305 1337.	1.537 .327 1380.	1.564 .349 1421.	1.589 .367 1459.	.384 1495.
(635.61)	.870 .0301	1.290 .130			\$	1.317	1.389	1.423	1.460	1.493 .248	1.524 .267	1.552 .282	1.577 .298
2500 (667.98)	743. .925	1096. 1.238				h s	1178.	1250. 1.371	1306. 1.416 .1742	1357. 1.456 .1947	1404. 1.491 .212	1446. 1.521 .227	1484. 1.548 .240
3000 (695.25)	.0367 823. .992	.084 1026. 1.168				v h s	.0983 1066. 1.203	.1476 1199. 1.316	1271. 1.374	1331. 1.420	1384. 1.460	1432.	1473. 1.523

^{*} Abridged from Steam tables and Mollier's diagram, by Keenan, 1930. Printed by permission of publisher, The American Society of Mechanical Engineers.

402° to 1000° F

Pressure (abs.) lb/in. ² .4 .8 1.0 1.5 2.0 4.0	Tem- pera- ture °F 402 444 458 485 505 558	Heat of liquid above 32 °F Btu 13.81 15.36 15.89 16.90 17.65 19.62	Heat of vaporization Btu 128.15 127.24 126.92 126.33 125.89 124.72	Total heat Btu 141.96 142.60 142.81 143.23 143.54 144.34	Entropy of liquid above 32 °F .0209 .0227 .0233 .0244 .0251 .0271	Entropy of vapori- zation .1487 .1408 .1383 .1337 .1305 .1226	Total entropy .1696 .1635 .1616 .1581 .1556	Specific volume ft ³ /lb 114.50 59.72 48.45 33.14 25.32 13.26	Weight 1b/ft ³ .008733 .016745 .02064 .03017 .03948 .07540
6.0	591	20.87	123.99	144.86	.0271	.1179	.1462	9.096	.10993
8.0	617	21.81	123.43	145.24	.0203	.1147	.1439	6,9630	.14361
10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0	637 676 706 730 751 769 785 799	22.58 24.04 25.15 26.05 26.81 27.49 28.08 28.62	122.98 122.12 121.46 120.93 120.48 120.08 119.73 119.42	145.24 145.56 146.16 146.61 146.98 147.29 147.57 147.81 148.04	.0292 .0299 .0312 .0322 .0330 .0336 .0342 .0346	.1121 .1075 .1042 .1016 .0995 .0977 .0962	.1420 .1387 .1364 .1346 .1331 .1319 .1308	5.6610 3.8923 2.983 2.429 2.053 1.7815 1.5762 1.4147	.17664 .25691 .3352 .4117 .4871 .5613 .6344 .7069
50	812	29.11	119.13	148.24	.0355	.0936	.1291	1.284	.7788
60	836	29.99	118.61	148.60	.0361	.0915	.1276	1.086	.9204
70	857	30.75	118.15	148.90	.0367	.0898	.1265	.9436	1.0597
80	875	31.44	117.75	149.19	.0372	.0882	.1254	.8349	1.1977
90	892	32.06	117.38	149.44	.0377	.0870	.1247		1.3338
100	907	32.63	117.05	149.68	.0381	.0856	.1237	.6811	1.4682
110	921	33.16	116.74	149.90	.0385	.0845	.1230	.6242	1.6020
120	934	33.66	116.44	150.10	.0389	.0835	.1224	.5767	1.7340
130	947	34.12	116.17	150.29	.0392	.0826	.1218	.5360	1.8656
140	958	34.55	115.92	150.47	.0395	.0818	.1213	.5012	1.9952
150 180	969 1000	34.96 36.09	115.67 115.01	150.63 151.10	.0398 .0406	.0809 .0788	.1207 .1194	.4706 .3990	2.125 2.506

 -100° to $+250^{\circ}$ F

			Satura	tion			Latent heat of	Variation of h with p	Com- pressi-
l'emp. °F	Pressure (abs.) lb/in.2	Volume ft³/lb	Density $\frac{1}{v}$	Specific heat Btu/lb °F	Heat content Btu/lb	Latent heat Btu/lb L	pressure variation Btu/lb lb/in.2	$\frac{t \text{ constant}}{\text{Btu/lb}}$ $\frac{\text{Btu/lb}}{\text{lb/in.}^2}$ $\left(\frac{\partial h}{\partial x}\right)$	bility per lb/in.2 $\times 10^6$ $-\frac{1}{v} \left(\frac{\partial v}{\partial p}\right)$
-100 - 90 - 80	1.24 1.86 2.74	.02197 .02216 .02236	45.52 45.12 44.72	(1.040) (1.043) (1.046)	h (-63.0) (-52.6) (-42.2)	(633) (628) (622)	l	(∂p)t	υ (ορ
- 70 - 60 - 50 - 40	3.94 5.55 7.67 10.41	.02256 .02278 .02299 .02322	44.32 43.91 43.49 43.08	(1.050) 1.054 1.058 1.062	(-31.7) -21.18 -10.61	(616) 610.8 604.3 597.6	0016 0017 0018	.0026 .0026 .0025	4.4 4.6 4.8
- 30 - 20 - 10	13.90 18.30 23.74	.02345 .02369 .02393	42.65 42.22 41.78	1.066 1.070 1.075	+10.66 $+21.36$ 32.11	597.6 590.7 583.6 576.4	0018 0019 0020 0021	.0025 .0025 .0024 .0023	5.1 5.4 5.7
0 - 10 - 20	30.42 38.51 48.21	.02419 .02446 .02474	41.34 40.89 40.43	1.080 1.085 1.091	42.92 53.79 64.71	568.9 561.1 553.1	0022 0024 0025	.0022 .0021 .0020	6.0 6.4 6.8
30 40 50 60	59.74 73.32 89.19 107.6	.02503 .02533 .02564 .02597	39.96 39.49 39.00 38.50	1.097 1.104 1.112 1.120	75.71 86.77 97.93 109.18	544.8 536.2 527.3 518.1	0027 0029 0031 0033	.0019 .0018 .0017 .0015	7.3 7.8 8.4 9.1
70 80 90	128.8 153.0 180.6	.02632 .02668 .02707	38.00 37.48 36.95	1.129 1.138 1.147	120.54 131.99 143.54	508.6 498.7 488.5	0035 0038 0041	.0013 .0011 .0009	10.0 10.9 12.0
100 125 150	211,9 307.8 433.2	.02747 .02860 .02995	36.40 34.96 33.39	1.156 (1.189) (1.23)	155.21 (185) (216)	477.8 (449) (416)	0045	.0006	13.3
175 200 250	593.5 794.7 1347	.03160 .03375 .0422	31.65 29.63 23.7	(1.29) (1.38) (1.90)	(248) (283) (365)	(377) (332) (192)			

TABLE 171.—COMBUSTION CONSTANTS OF SOME SUBSTANCES 52

		Reciprocal of	S	. Heat of	combustion
Substance	Formula	density m³/100 kg	Spec. gravity air = 1.000	Btu/ft ³	kg cal/m³
Carbon	H ₂	1172.	6.959×10 ⁻²	275.0	7840.* 2445.
Oxygen Carbon monoxide		73.7 84.4	1.1053 .9672	321.8	2860.
	Paraffii	series: C _n H	2n+2		
Methane Ethane Propane Isobutane	C ₂ H ₆ C ₃ H ₈	147.0 77.6 52.2 39.5	.5543 1.04882 1.5617 2.06654	913.1 1641. 2385. 3105.	8120. 14,600 21,200 27,600
	Olefin	series: C _n H ₂	an and		
Ethylene	C ₂ H ₄ C ₃ H ₆	83.6 56.3 42.2	.9740 1.4504 1.9336	1513.2 2186. 2869.	13,450 19,400 25,500
	Aromat	ic series : C _n H	I _{2n-6}		
Benzene	C ₇ H ₈	30.3 25.6 22.2	2.6920 3.1760 3.6618	3601. 4284. 4980.	32,000 38,100 44,300
	Misce	ellaneous gases	3		
Acetylene Naphthalene Methyl alcohol Ethyl alcohol Ammonia Sulfur	C ₂ H ₂ C ₁₀ H ₈ CH ₃ OH C ₂ H ₅ OH NH ₃	89.5 18.4 73.7 51.3 136.5	.9107 4.4208 1.1052 1.5890 .5961	1448. 5654. 768.0 1450.5 365.1	12,870 50,300 6830. 12,900 3245. 2210.*
Hydrogen sulfide	H ₂ S	68.5	1.1898	596.	5300.

 $^{^{52}}$ Shnidman, Louis (ed.), Gaseous fuels, p. 118, Amer. Gas Assoc., 1948. * Expressed in cal/g.

TABLE 172.—FLAME TEMPERATURES AS MEASURED BY VARIOUS METHODS *

Gas	Burner	Temp °C
Amyl acetate	Bunsen	1420
	Meker (center flame)	
	(edge of flame)	1850
Propane	Meker	1680
City gas	Bunsen	1760
City gas + air		
City gas + oxygen		2300
Carbon monoxide + air		
16% [methane (CH ₄)] + air		
$10\% (90 \text{ CH}_4 + 10\% 0) + \text{air} \dots$		
$16\% (80 \text{ CH}_4 + 20\% 0) + \text{air} \dots$		
$10.8\% (75 \text{ CH}_4 + 25\% 0) + \text{air} \dots$		2005
$\frac{22\%}{60}$ (60 CH ₄ + 40 H ₂) + air		1910
$32\% (26 \text{ CH}_4 + 94 \text{ H}_2) + \text{air} \dots$		2045
$H_2 + air \dots \dots$		1070
$9\% (80 \text{ CH}_4 + 20 \text{ C}_2\text{H}_2) + \text{air} \dots$		
$(15 \text{ CH}_4 + 85 \text{ C}_2\text{H}_2) + \text{air} \dots$		2275
Pittsburgh natural gas with air Butane-air		
	46	2000
Oxy-hydrogen		
Oxy-acetylene	• • • • • • • • • • • • • • • • • • • •	

^{*} See also Table 175.

TABLE 173.—HEATS OF COMBUSTION OF SOME CARBON COMPOUNDS ™

Given in kg cal₁₆ at constant pressure per gram-molecular weight in vacuo. When reterred to constant volume the values should be 0.58 kg cal₁₅ smaller (at about 18°C) for each condensed gaseous molecule. Combustion products are CO₂, liquid H₂O, etc. Benzoic acid was adopted at Lyons as a primary standard, its heat of combustion, 6324 g cal₁₅ per gram in air, 6319 in vacuo. This is tacitly assumed as heat of isothermal combustion at 20°C. In absolute joules, 26,466 and 26,445 respectively. The following ratios may be taken as standard: Naphthalene/benzoic acid = 1.5201 (air); benzoic acid/sucrose = 1.6028 (air); naphthalene/sucrose = 2.4364 (air).

		Molec-	kg cal ₁₅		_	Molec-	kg cal ₁₆
6	For-	ular	per .	C 1	For-	ular	per .
Compound	mula	weight	g mol	Compound	mula	weight	g mol
Isobutane (g)	C ₄ H ₁₀	58	683.4	Starch			4178.8
n-Hexane		86.11	990.6	Glycogen			4186.8
n-Heptane		100.13	1143.6	Cellulose			4180.8
n-Octane		114.14	1304.2	Formic acid	CH_2O_2	46.02	62.8
Decane		142.18	1610.2	Acetic "	$C_2H_4O_2$	60.03	208.2
Hexadecane (s)		226.27	2559.1	Propionic acid	$C_3H_6O_2$	74.05	367.2
Eicosane (s)		282.34	3183.1	n-butyric "	$C_4H_8O_2$	88.06	524.3
Amylene		70	803.4	n-valeric "		102.08	681.6
Hexylene	C_6H_{12}	84.10	952.6	Palmitic " (s)		256.26	2391
Acetylene (g)	C_2H_2	26.02	312.0	Stearic " (s)		284.29	2700
Allylene (g)	C_3H_4	40	469	Lactic " (s)	C-H ₆ O ₃	90.05	326.0
Trimethylene (g)	C_3H_6	42	496.8	Aniline	C_0H_7O	60.05	151.6
Benzene	C_6H_6	78.05	782.8	Urea (s)	CH ₄ N ₂ O	60.05	151.6
Naphthalene (s)	$C_{10}H_{S}$	128.06	1231.4	Nicotine	$C_{10}H_{14}N_2$	162.13	1427.7
Methyl-chloride (g)	CH ₃ Cl	50.5	168.7	Cyanogen (g)	C_2N_2	52.0	260.0
Methylene-chloride (♥)		85.0	106.8	Trinitrotoluene (s)	$C_7H_6N_3O_6$	227.06	826
Chloroform (1)	CHCl ₃	119.5	89.2	n-propyl "	C ₃ H ₈ O	60.06	482.0
" (v)	••	••	70.3	n-outyl	C4H10O	74.08	639.4
Carbon-tetrachloride				n-heptyl "		116.13	1104.9
(1)	CCI ₄	154.0	37.3	Octyl	$C_8H_{18}O$	130.14	1262.0
Carbon-tetrachloride	"	**		Cetyl " (s)		242.27	2504.5
_ (y) .,,			44.5	Menthol (s)	$C_{10}H_{20}O$	156.16	1508.8
Carbon di-sulfide (1)	CS_2	76.0	394.5	Phenoi (s)	C ₆ H ₀ O	94.05	732.2
" (v)			246.6	Thymol	$C_{10}H_{14}O$	150.11	1353.4
Allyl alcohol	C_8H_6O	58.05	442.4	Dimethyl ether (g).	C_2H_6O	46	347.6
Formaldehyde (g)		30.02	134.1	Methylethyl " (v).	C_3H_8O	60	503.4
Acetone (v)		58	435.8	Diethyl " (v).	$C_4H_{10}O$	74.08	660.3
Camphor (s)		152.13	1411				
Sucrose: cane (s)	C ₁₂ H ₂₂ O ₁₁	342.18	1349.6				
milk (s),	"	**					
anhd	"	"	1350.8				
malt (s)	••	••	1351				

⁵³ Karasch, Nat. Bur. Standards Journ. Res., vol. 2, p. 359, 1929.

TABLE 174.—HEATS OF COMBUSTION OF MISCELLANEOUS COMPOUNDS

Substance	Calories per g substance	Substance	Calories per g substance
Asphalt	9530	Oils:	
Butter	9200	petroleum:	
Carbon: amorphous	8080	crude	11500
charcoal	8100	light	10000
diamond	7860	heavy	10200
graphite	7 900	rape	9500
Copper (to CuO)	590	sperm	10000
Dynamite, 75%	1290	Paraffin (to CO ₂ , H ₂ O 1)	11140
Egg, white of	5700	Paraffin (to CO ₂ , H ₂ O g)	10340
Egg, yolk of	8100	Pitch	8400
Fats, animal	9500	Sulfur, rhombic	2200
Hemoglobin	5900	Sulfur, monoclinic	2240
Hydrogen	33900	Tallow	9500
Iron (to Fe_2O_3)	1582	Woods: beech, 13% H2O	417 0
Magnesium (to MgO)	6080	birch, 12% H ₂ O	4210
Oils: cotton-seed	9500	oak, 13% H ₂ O	3990
lard	9300	pine, 12% H ₂ O	4420
olive	9400		

Part 1.--Coals

	Coal	Moisture	Volatile matter	Fixed	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Cal/g	Btu/lb
	Low grade	38.81	25.48	27.29	8.42	.97	7.09	37.45	.50	45.57	3526	6347
Ligilite	High grade	33.38	27.44	29.62	9.56	.94	6.77	41.31	.67	40.75	3994	7189
Sub-bitu-	Low grade	22.71	34.78	36.60	5.91	.29	6.14	52.54	1.03	34.09	5115	9207
	High grade	15.54	33.03	46.06	5.37	.58	5.89	60.08	1.05	27.03	5865	10557
Bitu-	Low grade	11.44	33.93	43.92	10.71	4.94	5.39	60.06	1.02	17.88	6088	10958
	High grade	3.42	34.36	58.83	3.39	.58	5.25	77.98	1.29	11.51	7852	14134
Semi-bitu-	Low grade	2.7	14.5	75.5	7.3	.99	4.58	80.65	1.82	4.66	7845	14121
	High grade	3,26	14.57	78.20	3.97	.54	4.76	84.62	1.02	5.09	8166	14699
Semi-anthrac	cite	2.07	9.81	78.82	9.30	1.74	3.62	80.28	1.47	3.59	7612	13702
Anthra- 5	Low grade	2.76	2.48	82.07	12.69	.54	2.23	79.22	.68	4.64	6987	12577
cite l	High grade	3.33	3.27	84.28	9.12	.60	3.08	81.35	.79	5.06	7417	13351
	Low grade	1.92	1.58	88.87	8.99	1.18	_	_	_	_	7946	14300
coke (High grade	1.14	.04	94.66	3.57	.69	_	_	_	_	8006	14410
Semi-anthrac Anthra- { cite { Oven }	Low grade High grade Low grade	2.07 2.76 3.33 1.92	9.81 2.48 3.27 1.58	78.82 82.07 84.28 88.87	9.30 12.69 9.12 8.99	1.74 .54 .60 1.18	3.62	80.28	1.47	3.59 4.64	7612 6987 7417 7946	1370 1257 1335 1430

Part 2.—Peats and Woods (air dried)

		Fixed	A -h	Sul-	Hydro-	Carbon	Nitro-	Оху-	Calories	Btu per pound
	carbon	carbon	Ash	iur	gen	Carbon	gen	gen	per g	pound
Peats: Franklin County, N. Y Sawyer County, Wis										
Woods: Oak, dry Birch, dry Pine, dry	_		.37 .29 .37		6.06	50.16 48.88 50.31	.10		4620 4771 5085	8316 8588 9153

Part 3.-Liquid fuels *

Fuel Aviation gasoline	Gravity API †	Btu per pound 20,420	Btu per gallon 120,700
Motor gasoline	58	20,120	125,800
Kerosene	42	19,810	134,700
Domestic fuel oil	32	19,450	141,200
Diesel fuel oil	28	19,350	143,100
Medium industrial fuel oil	18	18,930	149,400
Heavy industrial fuel oil	11	18,590	153,900
Petroleum ether	68‡	22,000	12,220\$
Alcohol, fuel or denatured with 7-9% was and denaturing material		11,600	6,450\$

^{*} Prepared by E. W. Dean, Standard Oil Co. of New Jersey. † API (American Petroleum Industry) unit = $\frac{141.5}{\text{sp.g.}60^{\circ}/60^{\circ}}$ - 131.5. ‡ Spec. gravity 15°C. § Calories per gram.

(continued)

TABLE 175.—HEAT VALUES AND ANALYSES OF VARIOUS FUELS (concluded)

Part 4.-Gases **

Substance Natural gas	Spec. gravity Air = 1.000 	Heat of combustion kg cal/m ^a 8040-17,400	Flame temperature °C (no excess air) 1965
Propane (commercial) natural	gas 1.55	20,950	2015
Propane (commercial) refinery	gas 1. 7 7	20,600	_
Butane (commercial) natural	gas 2.04	26,350	2005
Butane (commercial) refinery	gas 2.00	26,100	_
Butane-air	1.16	4590.	_
Oil gas		4535.	2000
Coal gas		4320.	1980
Producer gas		1182.	1655
Blue gas	57	2330.	_
** For reference, see footnote 52,	p. 179.		

Part 5.—Gross calorific values of crude petroleum ⁶⁴

Area Density 20°/4°C Borneo898	Btu/lb 19,370	Cal/g 10,760	Area Density 20°/4°C Btu/lb California960 18,590	Cal/g 10,330
India	18,800	10,490	Ohio	10,950
Japan	20,670	11,480	Oklahoma886 19,420	10,790
Poland	20,010	11.120	Pennsylvania828 19,780	10,990
Rumania	18,920	10,510	Texas	10,520
Canada	19,420	10,790	Argentina989 18,540	10,300
Mexico	18,180	10,100	Patagonia948 18,970	10,540
Trinidad	18,360	10,200		
64 Science of Petroleum, vo	1. 2.			

Part 6.—Sugars ¶

Sugar l-Sorbose		Sugar kg cal/mol α-d-Glucose
β-d-Levulose	. 671.70	α-d-Glucose hydrate 666.73
α-d-Galactose	. 666. 7 6	α-Monopalmitin
β-Lactose	. 1345.47	β -Monopalmitin
β-Maltose monohydrate	. 1360.50	Ascorbic acid 560.60
α-Lactose monohydrate	. 1354.66	α-D-Glucose pentaacetate 1718.62
Sucrose	. 1349.00	β -D-Glucose pentaacetate 1722.63

[¶] Prepared by G. Stegeman, University of Pittsburgh.

Liquid Freezing point .	°C —	23 -		4* 81	C₂H₅l —119		32 139	39* —145		o. 40 150±
Compositions: *	No. 4; CCl ₄ , No. 32; CH 21.6%.	49.4% ; [Cl₃, 1	; CHCl 9.7% ;	3, 50.6% C₂H₅Br	, 44.9%	; C ₂ F	H ₂ Cl ₂ ,	13.8%;	C ₂ H	Cl₃,
	No. 39; CH			C ₂ H ₅ Br	, 33.4%	; C₂F	I2Cl2,	10.4%;	C ₂ H	Cl₃,
	16.4%; CI No. 40; CHC C₂HCl₃, 19	7₃, 17.9	25.3%. % ; C₂]	H₅Cl, 9.3	3% ; C₂I	H₅Br, 4	0.7%;	C₂H₂C1	2, 12.5	%;
		-80°C	.06-	-100°	-110°	-120°	-130°	-140°	-145°	-150°
Viscosities in centipoises:	No. 32 No. 34		2.25 3.03 2.57 2.88	2.89 4.57 3.69 3.89	3.86 7.4 5.6 5.9	5.6 13.7 10 10.2	29.3 22.3 22.5	81 85 71	242 170	1480 631

^{*} Because of volatility and oxidation of some, these liquids should be kept in well-stoppered bottles when not in use.

TABLE 177 .- DATA ON EXPLOSIVES

	Vol. gas per g in cm ⁸	Calories	Coefficient	Coefficient GP	Calculated temperature Q/C C, sp. ht. gases = .24
Explosive	=V	g = Q	÷ 1000	= 1	
Gunpowder		738	207	1	2240° C
Nitroglycerine	. 741	1652	1224	6	6880
Nitrocellulose, 13% N ₂	. 923	931	859	4.3	3876
Cordite, Mk. I. (NG, 57; NC, 38; Vaseline, 5)). 871	1242	1082	5.2	5175
Cordite, MD (NG, 30; NC, 65; Vaseline, 5).	. 888	1031	915	4.4	4225
Ballistite (NG, 50; NC, 50; Stabilizer, 5)	. 817	1349	1102	5.3	5621
Picric acid (Lyddite)		810	710	3.4	3375

Shattering power of explosive = vol. gas per $g \times cals/g \times V_d \times density$ where V_d is the velocity of

Trinitrotoluene: $V_d = 7000 \text{ m/sec.}$ Shattering effect = .87 picric acid.

Amatol (ammonium nitrate + trinitrotoluene, TNT): $V_d = 4500 \text{ m/sec.}$

Ammonal (ammonium nitrate, TNT, Al): 1578 cal/g; 682 cm³ gas; $V_d=4000$ m/sec. Sabulite (ammonium nitrate, 78, TNT 8, Ca silicide 14): about same as ammonal.

TABLE 178.-TIME OF HEATING FOR EXPLOSIVE DECOMPOSITION

Temperature °C	170	180	190	200	220	Ignition tem	perature
Time	sec	sec	sec	sec	sec	°C†	°C‡
Black powder	12	n	n	n	12	440	_
Smokeless powder A	600	195	130	45	23	{ 300	_
Smokeless powder B	190	130	_	90	25	1300	
Celluloid pyroxylin	170	60	_	21	9		_
Collodion cotton	870	165	67	5 6	18	300	
Celluloid *	160	100	60	50	30	590	450
Safety matches	12	340	240	150	60	_	_
Parlor matches	n	n	n	590	480	_	_
Cotton wool	_	_	_	_	_	900	_

n, failure to explode in twenty minutes.

* The decomposition of nitrocellulose in celluloid commences at about 100° C; above that the heat of decomposition may raise the mass to the ignition point if loss of heat is prevented. Above 170°, decomposition occurs with explosive violence as with nitrocellulose. Rate of combustion is 5 to 10 times that of poplar, pine, or paper of the same size and conditions.

† Measured by contact with molten lead. Average.

TABLE 179.—CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES

Explosive	Specific gravity	Number of large calories developed by 1 kg of the explosive	Pressure developed in own volume after elimination of surface influence	м Unit disruptive charge by ballistic pendulum	Rate of detonation a cartridges 14 in. diam.	Duration of flame from 100 g of explosive	H Length of flame from 100 g	ur Cartridge 14 in. transmitted explosion at a distance of	Products of combustion from 200 g; gaseous, solid, and liquid, respectively	Ignition occurred in 4% fire damp & coal od dust mixture with
glycerin dynamite.	1.22	1221.4	8235	227*	4688	.358	24.63	12	88.4 79.7 14.5	25
powder	1.25	789.4	4817	374† 458*	469.4‡	925.	54.32	-	154.4 126.9 4.1	25
sive; nitroglycerin class	1.10	760.5	5912	301*	3008	.471	27.79	4	103.9 65.1 15.4	1000
Permissible explosive; ammonium nitrate class	.97	992.8	7300	279*	3438\$.483	25.68	1	89.8 27.5 75.5	800
Permissible explosive; hydrated class.	1.54	610.6	6597	434*	2479	.338	17.49	3	86.1 56.0 33.0	Over 1000
			Chemica	l analyses	5					
Nitroglycerin Sodium nitrate Wood pulp Calcium carbonate Moisture			42.46 13.58 3.37	(D)	Ammo Sulfur Starch Wood Poison	pulp .	itrate .			83.10 .46 2.61 1.89 2.54
Charcoal			17.74	(E)	Sand	• • • • • •		• • • • •		6.53
Nitroglycerin Sodium nitrate Wood pulp and crud grains Starch	le fibe	er from	36.25 9.20	(15)	Nitrog Ammo Sand Coal . Clay Ammo Zinc s	lycerin nium i nium s	nitrate sulfate (7HO)			30.85 9.94 1.75 11.98 7.64 8.96 6.89
	Forty percent nitroglycerin dynamite. FFF black blasting powder	Forty percent nitroglycerin dynamite. 1.22 FFF black blasting powder	Forty percent nitroglycerin dynamite. 1.22 1221.4 FFF black blasting powder	Reg/cm² Forty percent nitro-glycerin dynamite. 1.22 1221.4 8235	Forty percent nitroglycerin dynamite. 1.22 1221.4 8235 227* FFF black blasting powder	Forty percent nitroglycerin dynamite. 1.22 1221.4 8235 227* 4688	Forty percent nitroglycerin dynamite. 1.22 1221.4 8235 227* 4688 .358	Forty percent nitroglycerin dynamite. 1.22 1221.4 8235 227* 4688 .358 24.63	Forty percent nitroglycerin dynamite. 1.22 1221.4 8235 227* 4688 .358 24.63 12	Forty percent nitroglycerin dynamite. 1.22 1221.4 8235 227* 4688 .358 24.63 12 88.4 79.7 14.5 FFF black blasting powder 1.25 789.4 4817 374† 469.4‡ 925. 54.32 154.4 458* 126.9 Permissible explosive; nitroglycerin class 1.10 760.5 5912 301* 3008 .471 27.79 4 103.9 65.1 Permissible explosive; ammonium nitrate class .97 992.8 7300 279* 3438* .483 25.68 1 89.8 27.5 75.5 Permissible explosive; hydrated class 1.54 610.6 6597 434* 2479 .338 17.49 3 86.1 56.0 33.0 Chemical analyses

The total heat generated in a chemical reaction is independent of the steps from initial to final state. Heats of formation may therefore be calculated from steps chemically impracticable. Chemical symbols now represent the chemical energy in a gram-molecule or mol(c); treat reaction equations like algebraic equations: $CO + O = CO_2 + 68$ kg cal; subtract $C + 2O = CO_2 + 97$ kg cal, then C + O = CO 29 kg cal. We may substitute the negative values of the formation heats in an energy equation and solve $MgCl_2 + 2Na = 2NaCl + Mg + x kg cal$; -151 = -196 + x; x = 45 kg cal. Heats of formation of organic compounds can be found from the heats of combustion since burned to H_2O and CO_2 . When changes are at constant volume, energy of external work is negligible; also generally for solid or liquid changes in volume. When a gas forms a solid or liquid at constant pressure, or vice versa, it must be allowed for. For N mols of gas formed (disappearing) at T_K° the energy of the substance is decreased (increased) by $0.002\cdot N\cdot T_K$ kg cal $H_2+O=H_2O+67.5$ kg cal at $18^\circ C$ at constant volume; $\frac{1}{2}(2\ H_2+O_2-2\ H_2O=135.0+0.002\times 3\times 291=136.7)=68.4$ kg cal.

The heat of solution is the heat, + or -, liberated by the solution of 1 mol of substance in so much water that the addition of more water will produce no additional heat effects. Aq signifies

this amount of water; H₂O, one mol; NH₃ + Aq = NH₄OH·Aq + 8 kg cal.

Part 1.—Heats of formation from elements in kilogram-calories

At ordinary temperatures

	Heat of		Heat of		Heat of forma-		Heat of
Compound	tion	Compound	tion	Compound	tion	Compound	tion
Al ₂ O ₃	380.		21.4	KC1	105.7	Li ₂ SO ₄	334.2
Ag ₂ O	6.5	Na ₂ O		LiCl		$(NH_4)_2SO_4$	
BaO	126.	Nd_2O_3		MgCl ₂		Na ₂ SO ₄	
BaO ₂	142.	NiO		MnCl ₂		MgSO,	301.6
Bi ₂ O ₃	138.	P ₂ O ₅ sgs		NaCl		PbSO ₄	
CO am	29.0	PbO		NdCl ₃	250.	Tl ₂ SO ₄	221.0
CO di	26.1	PbO ₂		NH ₄ Cl	76.3	ZnSO ₄	
CO ₂ am	97.0	Pr ₂ O ₃	412.	NiCl ₂	74.5	CaCO₃	270.
CO ₂ gr	94.8	Rb₂O	89.2	PbCl ₂	83.4	CuCO ₃	. 143.
CO₂ di	94.3	So2 rh sgg .	70.	PdCl ₂	40.5	FeCO ₃	179.
CaO	152.	SiO ₂	191.0	PtCl4	60.4	K ₂ CO ₃	
CeO ₂	225.	SnO		SnCl ₂		MgCO₃	
Cl₂O g	-16.5	SnO₂ cr	137.5	SnCl ₄	. 128.	Na₂CO₃	
CoO am	50.5	SrO₂		SrCl ₂		ZnCO ₃	
CoO cr	57.5	ThO ₂		ThCl4		AgNO₃	28.7
Co ₃ O ₄	193.4	TiO₂ am		T1C1		$Ca(NO_3)_2 \dots$	209.
CrO ₃	140.		218.4	RbCl		Cu(NO ₃) ₂ 6 H ₂ O	
Cs ₂ O	91.3	T1O ₂		ZnCl₂		NHO₃ gggl	
Cu₂O	42.3	$WO_2 \dots$		HBr glg		KNO ₃	
CuO	37.2	WO3		NH₄Br		LiNO ₃	
FeO	65.7	ZnO		HI gsg		NH ₄ NO ₃	
Fe ₂ O ₃	196.5	AgCl		HF ggg	. 38.	NaNO ₃	
Fe₃O₄	270.8	Ag ₂ Cl	29.5	Ag ₂ S	3.3	T1NO ₃	
H ₂ O ggl	68.4	$A1Cl_3 \dots$	161.4		_26.0	CH ₄ sgg	20.
H_2O_2 ggl	46.8	AuCly	5.81	CaS		C ₂ H ₆ sgg	
Hg ₂ O	22.2	AuCl₃ y	22.8	(NH ₄) ₂ S		C ₂ H ₂ sgg	
HgO	21.4	BaCl₂		Cu₂S		HCN di gsgg	
K ₂ O	91.	BeCl₂		CuS		NH₃ ggg	
La ₂ O ₃	447.	BiCl₃	90.6	H₂S gsg		Ca(OH) ₂	
LiO ₂	141.6	CCl ₄ am		K ₂ S		NH₄OH	
MgO	143.6	CaCl ₂		MgS		NaOH	
MnO	90.8	CdCl₂	93.2	Na ₂ S		Na·H ₂ O·Aq—H	
MnO_2	123.	CoCl ₂	76.5	PbS		$\frac{1}{2}$ (2 Na·O·H ₂ O)	
Mn ₃ O ₄		CuCl ₂	51.5	CaSO ₄		$\frac{1}{2}(Na_2O \cdot H_2O \cdot Aq)$.	
MoO ₂		CuCl	34.1		. 111.5	KOH	
$MoO_3 \dots$		FeCl ₂	82.1	H₂SO₄ sggg		K·H₂O·Aq−H	
N₂O ggg	-18.2	FeCl ₃	96.0	—SO₃·H₂O*.		¹ / ₂ (2 K·O·H ₂ O)	
NO ggg		HCl ggl	22.	Hg₂SO₄		$\frac{1}{2}(K_2O \cdot H_2O \cdot Aq)$	35.5*
$NO_2 \dots$		HgCl	31.3	HgSO₄			
Na ₂ O ₄	- 2.0	HgCl ₂	53.3	K ₂ SO ₄	344.3		

am = amorphous: di = diamond; cr = crystal; g = gas; gr = graphite; l = liquid; rh = rhombic (sulfur); s = solid; y = yellow (gold).

* Heats of formation not from elements but as indicated.

TABLE 180.—THERMOCHEMISTRY. CHEMICAL ENERGY DATA (concluded)

Part 2.-Heats of formation of ions in kilogram-calories

+ and - signs indicate signs of ions and the number of these signs the valency. For the ionization of each gram-molecule of an element divide the numbers in the table by the valency, e. g., 9.00 g AI = 9.00 g AI + 40.3 kg cal. When a solution is of such dilution that further dilution does not increase its conductivity, then the heats of formation of substances in such solutions may be found as follows: FeCl₂Aq = $+22.2 + 2 \times 39.1 = 100.4$ kg cal. CuSO₄Aq = -15.8 + 214.0 = 198.2 kg cal.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K +	+ 61.8			HPO ₄ — — HS — NO ₂ — NO ₃ —	+304.8 $+ 1.2$ $+ 27.0$ $+ 48.9$	SeO ₄ — — Te — — TeO ₃ — — TeO ₄ — —	+ 55.8 + 46.5 + 54.4 +298.0 +138.6 +278.2 +260.8 +151.0 +214.0 - 35.6 +119.6 +144.8 - 34.8 + 77.0 + 98.4 - 12.6
--	-----	--------	--	--	--	----------------------------------	--	--

TABLE 181.—IGNITION TEMPERATURES OF GASEOUS MIXTURES

Ignition temperature taken as temperature necessary for hot body immersed in gas to cause ignition; slow combination may take place at lower temperatures. Gases were mixed with air. Practically same temperatures as with O_z .

Coal gas and air 878 Ethylene and	1033° C air
-----------------------------------	-------------

TABLE 182.—HEATS OF NEUTRALIZATION IN KILOGRAM-CALORIES

The heat generated by the neutralization of an acid by a base is equal, for each gram-molecule of water formed, to 13.7 kg cal plus the heat produced by the amount of un-ionized salt formed, plus the sum of the heats produced in the completion of the ionizations of the acid and the base.

HCl·aq	HNO₃·aq	H ₂ SO ₄ ·aq	HCN-aq	CH ₃ COOH·aq	H ₂ ·CO ₃ ·aq
13.7	13.8	15.7	2.9	13.3	10.1
	13.7	15.7	2.9	13.3	10.2
	12.5	14.5	1.3	12.0	8.
14.0	13.9	15.6	3.2	13.4	9.5
9.9	9.9	11.7	8.1	8.9	5.5
7.5	7.5	9.2	—	6.2	_
	13.7 13.7 12.4 14.0 9.9	13.7 13.8 13.7 13.7 12.4 12.5 14.0 13.9 9.9 9.9	13.7 13.8 15.7 13.7 13.7 15.7 12.4 12.5 14.5 14.0 13.9 15.6 9.9 9.9 11.7	13.7 13.8 15.7 2.9 13.7 13.7 15.7 2.9 12.4 12.5 14.5 1.3 14.0 13.9 15.6 3.2 9.9 9.9 11.7 8.1	13.7 13.8 15.7 2.9 13.3 13.7 13.7 15.7 2.9 13.3 12.4 12.5 14.5 1.3 12.0 14.0 13.9 15.6 3.2 13.4 9.9 9.9 11.7 8.1 8.9

TABLE 183.-HEATS OF DILUTION OF H2SO4

In kilogram-calories by the dilution of 1 gram-molecule of sulfuric acid by m gram molecules of water.

m 1 kg cal 6.38									
--------------------	--	--	--	--	--	--	--	--	--

TABLES 184-209.—PHYSICAL AND MECHANICAL PROPERTIES OF MATERIALS

Introduction and definitions.—The mechanical properties of most materials vary between wide limits; the following figures are given as being representative rather than what may be expected from an individual sample. Figures denoting such properties are commonly given either as specification or experimental values. Unless otherwise shown, the values below are experimental.

Credit for the information included on metals is due to the National Bureau of Standards 55 and the publications of the Aluminum Co. of America, 56 the

American Brass Co., and the Chase Brass & Copper Co.⁵⁷

Most of the data shown in these tables are as determined at ordinary room temperature, averaging 20°C (68°F). The properties of most metals and alloys vary considerably from the values shown when the tests are conducted

at higher or lower temperatures.

The following definitions govern the more commonly confused terms shown in the tables. In all cases the stress referred to in the definitions is equal to the total load at that stage of the test divided by the original cross-sectional area of the specimen (or the corresponding stress in the extreme fiber as computed from the flexure formula for transverse tests).

Brinell hardness numeral (abbreviated B. h. n.).—Ratio of pressure on a sphere used to indent the material to be tested to the area of the spherical indention produced. The standard sphere used is a 10-mm-diameter hardened steel ball. The pressures used are 3000 kg for steel and 500 kg for softer metals, and the time of application of pressure is 30 seconds. Values shown in the tables are based on spherical areas computed in the main from measurements of the diameters of the spherical indentations, by the following formula:

B. h. n. =
$$P \div \pi t D = P \div \pi D \left(D/2 - \sqrt{D^2/4 - d^2/4} \right)$$
.

P = pressure in kg, t = depth of indentation, D = diameter of ball, and d = diameter of indentation—all lengths being expressed in mm. Brinell hardness values have a direct relation to tensile strength, and hardness determinations may be used to define tensile strengths by employing the proper conversion factor for the material under consideration.

Elastic limit.—Stress which produces a permanent elongation (or shortening) of 0.001 percent of the gage length, as shown by an instrument capable of this degree of precision (determined from set readings with extensometer or compressometer). In transverse tests the extreme fiber stress at an appreciable permanent deflection.

Erichsen value.—Index of forming quality of sheet metal. The test is conducted by supporting the sheet on a circular ring and deforming it at the center of the ring by a spherical pointed tool. The depth of impression (or cup) in mm required to obtain fracture is the Erichsen value for the metal. Erichsen standard values for trade qualities of soft metal sheets are furnished by the manufacturer of the machine corresponding to various sheet thicknesses.

Alloy steels are commonly used in the heat-treated condition, as strength increases are not commensurate with increases in production costs for annealed alloy steels. Corresponding strength values are accordingly shown for annealed alloy steels and for such steels after having been given certain recommended heat treatments of the Society of Automotive Engineers. The heat

⁶⁶ Everhart, Lindlief, Kanegis, Weissler, and Siegel, Nat. Bur. Standards Circ. C-447,

So Selected from Nat. Bur. Standards Circ. C-447, Mechanical properties of metals and alloys, and from Alcoa's circular, Aluminum and its alloys.

The Chase Brass & Copper Co.'s circular, Copper and commercially important copper alloys, 1948; American Brass Co., Copper and copper alloys, 1945.

treatments followed in obtaining the properties shown are outlined on the pages immediately following the tables on steel. It will be noted that considerable latitude is allowed in the indicated drawing temperatures and corresponding wide variations in physical properties may be obtained with each heat treatment. The properties vary also with the size of the specimens heat treated. The drawing temperature is shown with the letter denoting the heat treatment, wherever the information is available.

Modulus of elasticity (Young's modulus).—Ratio of stress within the proportional limit to the corresponding strain—as determined with an extensometer. Note.—All moduli shown are obtained from tensile tests of materials, unless otherwise stated.

Modulus of rupture.—Maximum stress in the extreme fiber of a beam tested to rupture, as computed by the empirical application of the flexure formula to stresses above the transverse proportional limit.

Proportional limit (abbreviated P-limit).—Stress at which the deformation (or deflection) ceases to be proportional to the load (determined with extensometer for tension, compressometer for compression, and deflectometer for transverse tests).

Shore scleroscope hardness.—Height of rebound of diamond-pointed hammer falling by its own weight on the object. The hardness is measured on an empirical scale on which the average hardness of martensitic high carbon steel equals 100. On very soft metals a "magnifier" hammer is used in place of the commonly used "universal" hammer and values may be converted to the corresponding "universal" value by multiplying the reading by 4/7. The scleroscope hardness, when accurately determined, is an index of the tensile elastic limit of the metal tested.

Ultimate strength in tension or compression.—Maximum stress developed in the material during test.

Yield point.—Stress at which marked increase in deformation (or deflection) of specimen occurs without increase in load (determined usually by drop of beam or with dividers for tension, compression, or transverse tests).

TABLE 184.-INDUSTRIAL WOVEN-WIRE SCREENS *

Industrial wire cloth may be specified in any malleable metal, the physical characteristics of which will permit of its being commercially drawn into wire and woven into cloth. This industrial wire screen is manufactured with openings from about 15 inches to a very fine wire cloth with openings of .0017 inch, using for larger screens rods 2 inches in diameter and for the smaller-opening cloth, wire .0014 inch in diameter.

		Industria	l wire cloth	specification, market	grade		
Mesh				Mesh			
per	Wire	Open-	Percent	per	Wire	Open-	Percent
lineal	diameter	ing	open	lineal	diameter	ing	open
inch	inch	inch	area	inch	inch	inch	area
$1 \times 1 \dots$	080	.920	84.6	$30 \times 30 \dots$	013	.0203	37.1
$2 \times 2 \dots$	063	.437	76.4	$35 \times 35 \dots$	011	.0176	37.9
$3 \times 3 \dots$.279	70.1	$40 \times 40 \dots$.0150	36.0
$4 \times 4 \dots$	047	.203	65.9	$50 \times 50 \dots$	009	.0110	30.3
$5 \times 5 \dots$	041	.159	63.2	$60 \times 60 \dots$	0075	.0092	30.5
$6 \times 6 \dots$	035	.132	62.7	$80 \times 80 \dots$	0055	.0070	31.4
$8 \times 8 \dots$	028	.097	60.2	100×100	0045	.0055	30.3
$10 \times 10 \dots$	025	.075	56.3	120×120	0037	.0046	30.7
12×12	023	.060	51.8	150×150	0026	.0041	37.4
14×14	020	.051	51.0	180×180	0023	.0033	34.7
16×16	018	.0445	50.7	200×200	0021	.0029	33.6
18×18	017	.0386	48.3	250×250	0016	.0024	36.0
$20 \times 20 \dots$	016	.0340	46.2	270×270	0016	.0021	32.2
24×24	014	.0277	44.2	325×325	0014	.0017	30.0

^{*} Data furnished by the W. S. Tyler Co., Cleveland.

Tensile strength kg/mm²	6.3 (annealed) 1.05 (wire)	 12.0 (chill cast) 	7.2 5.7 (extruded) 9.05 (rolled)	24.4 (cast) 22.5 (annealed)	11.5 (rod cast)	30 (cast)	.00°C. ¶ At 30 atm.
Modulus of elas- ticity kg/mm²	7250 7900	30000	5500 2100 500	21000	7300	52500	From 30° to 100°C.
Electrical resistivity microhm-cm	2.65(20°C) 39.0(0°C)	35(20°C) 5.88(0°C) 106.8(0°C) 1.8×10°2(0°C)	 6.83(0°C) 3.43(0°C) 78(20°C) 18.83(0°C)	14.1(20°C) 5.60(0°C) 1.67(20°C)	53.4(0°C) 89×10³(0°C) 2.19(0°C)	8.37(0°C) 1.3×10 ¹⁵ (20°C) 5.3(20°C) 9.71(20°C)	§ At 36 atm. Fr
Thermal conduc- tivity at rt. watts cm-1	2.18 .19 1.70°	1.64		.720° .69 3.94	2.96	17.0° 24 43.5° .59 .79	o 60°C.
Coeff. of linear thermal expansion °C at rt.	22.9 8.5–10.8†‡	4.7 .:. 11.4 13.3	29.8 25 .6-4.3	6.2 12.3 16.5	18	33 93 6.5 11.7	‡ From 20° to 60°C.
Latent heat of fusion cal/g	93 38.3 6.7	12.5	13.2	23.0 75.6 58.4 50.6	19.2	15.0	iterial.
Specific heat at rt. cal g-1			.070 .055 .055 .05 .052	.092	.079 .073 .031	3.415 .052 .052 .032 .108	talline ma
Melting point °C	$1197*$ $660.1 \pm .1$ $630.5 \pm .1$ $-189.37 \pm .5$	8178 710 ± 20 1283 ± 40 271.3 ± .1 2300 ± 300	321.03 ± 1.1 850 ± 20 3700 ± 100 864 ± 50 28.64 ± 2	-101.99 ± 2 1903 ± 50 1492 ± 20 $1083.0 \pm .1$ -219.61 ± 10	29.80±.02 938 ±10 1063.0 ±.0 2220*	259.19±.1 156.61±.1 113.6 ±1 2443 ±3 1535 ±3	tation in polycrys
Density at 20°C g/cm³	2.70 6.62 1.6626	5.73 3.5 1.82 9.80 2.3	3.12 8.65 1.54 2.22 6.9	7.14 8.9 8.96	5.91 5.36 19.3 11.4	.08375 ⁴ 7.31 4.93 22.4 7.87	crystal orien
Rela- tive hard- ness	3.9	3.5 2.5 9.5	2.0 10 ^a 2.5 .2	 5 3.0		1.2	s on the
Element	Actinium Aluminum Antimony Argon	Arsenic Barium Beryllium Bismuth	Bromme Cadmium Calcium Carbon (graphite) Cerium Cesium	Chlorine Chromium Cobalt Copper	Gallium Germanium Gold Hafnium Hejium	Hydrogen Indium Iodine Iridium Iron	* Computed. The Value depends on the crystal orientation in polycrystalline material. • Diamond. * 4 X10-3. • X10-4.

Tensile strength kg/mm²	1.33					::						::		
Modulus of elas- ticity kg/mm²	1800	4600 16000	35000	• • • • • • • • • • • • • • • • • • • •	21000	::	12000	15000		: :	: :	30000		
Electrical resistivity microhm-cm	.59(18°C) 20.65(20°C)	8.55(0°C) 4.33(18°C) 	94.1(0°C) 5.17(0°C)	79(18°C)	6.84(20°C)		10.8(20°C)	9.81(0°C)	6.15(0°C) 88(18°C)		• • •	4.3(0°C) 12.5(20°C)	10(18°C)	
Thermal conductivity at r.t. watts cm-1	\$:5; \$	1.55	.084	4.57 °	06: :	2.51	.70	. 69:	.66	: :	: :		:	
Coeff. of linear thermal expansion °C at rt. \times 10°	28.7	25.2 23.2	4.91	::	13.3 7.1	6.1	11.8	125 8.9	83.	: :	: :		9.1	
Latent heat of fusion cal/g	6.3	159 70.0 84.8	2.7	: :	73.8	6.2	34.2	5.0 27.1	14.5	: :	::	:::9	:	
Specific heat at rt. cal g-1				Ť	.112	.031	.218 .059	.032	.177				.061	
Melting point °C	$-157.3 \pm .5$ 920 ± 5 $327.3 \pm .1$	180.55±5 650 ±2	1244 -38.87±.02 2610 ±50	1024 ± 40	1453 +1	2700 + 200 2700 + 200	$-218.79 \pm .3$	44.2 ±.1 1769 ±1	254* 63.2 ±1	935 3000* 1	- 700 - 71	3150* 1960 ±3	38.8 ±1 2400 ±100	
Density at 20°C g/cm³	3.488 ⁴ 6.15 11.34	1.74	13.55	7.05	8.9	1.1649 ^d	1.33184	21.45	.86	6.63	5.0 4.40°	20 12.44	12.2	
Rela- tive hard- ness	:::5	9. 2.	0.5	:	:20	7.0	. 4	4	.73	: :	: :		. 6.5	10 50°C.
Flament	Krypton Lanthanum	Lithium Magnesium	Manganese Mercury Molybdenum	Neodymium	Nickel	Nitrogen Osmium	Oxygen	Phosphorus (yellow)	Polonium Potassium Potassium	PraseodymiumProtactinium	RadiumRadon	Rhenium Rhodium	Ruthenium	^b At -62°C. c From 20° t

TABLE 185.—SOME PHYSICAL PROPERTIES OF THE ELEMENTS (concluded)

							(P
	Tensile strength kg/mm²	 	annealed) 50 (wire)	1.12 (wire)	56.0 (wire) 1.4 270 (wire)	, 	10.5 30.0 (rod, anneale
	Modulus of elas- ticity kg/mm²	11000					8400 7500
(concined)	Electrical resistivity microhm-cm	 1.20(20°C) 85×10*(20°C) 1.62(20°C)	4.2(0°C) 22.76(20°C) 2×10²²(20°C) 14.6(18°C)	 .17.65(0°C)	18.62(20°C) 11.5(20°C) 80(0°C) 5.5(20°C)	60(18°C) (;32(20°C) 41.0(0°C)
	Thermal conductivity at rt. watts cm-1	84	1.35 26.4° .54	.060		5.19	:11
	Coeff. of linear thermal expansion °C at rt. × 10°	37. 2.8-7.3 18.9	71 64# 6.6	16.8‡ 28.	11.1# 23 8.5 4.3	::::	17-39† 5.6
	Latent heat of fusion cal/g	24.3	27.5 25 9.3			::::	24.1
	Specific heat at rt. cal g-1 °C-1	 .084 .176 .056	.295 .175 .036	.047 .031	.028 .054 .034		.00.
	Melting point °C	>1050 1400 217.4 ± 5 1410 ± 20 $960.8 \pm .0$	$97.82\pm .2$ 770 ± 10 $119 \pm .2$ 2980 ± 100	450 ±10 1450 ±5 303.6 ±5	1695 ± 150 $231.91 \pm .1$ 1675 ± 100 3380 ± 20	1132 ±1 1890 ±50 -112.5 ±1	1490 ± 200 419.50 ± 1 1852 ± 700
	Density at 20°C g/cm³	7.7 2.5 4.81 2.4 10.49	.97 2.6 2.07 16.6	6.24	7.30 7.30 4.54 19.3	18.7 5.68 5.495 ^a	5.51 7.14 6.4
	Rela- tive hard- ness	2.0 7.0 2.7	4 1.8 2.0 7	2.3	1.8	: : : :	2.5
	Element	Samarium Scandium Selenium Silicon	Sodium Strontium Sulfur (rhombic)	Tetlurium Terbium Thallium	Thorium Tin Titanium Tungsten	Uranium Vanadium Xenon Ytterbium	Zirconium

Hardness number	15	:	20	45	120	:	135	116	8
Endurance limit and	4.6 t	:	9.5†	7.7†	18	:	111	:	5.6†
noitegnolA	60 (2 in.) 5 (2 in.)	2 (2 in.)	27*	22* (2 in.)	20	19.7 (4√area)	14 (2 in.)	13 (2 in.)	.5 (2 in.)
Tensile strength	6.3 25	34	30	18	48	42.0	46	49	23
Yield Strength	(.2% offset) (.2% perm.)		(.2% perm.)	(.2% perm.)		(.1% perm.)	(.2% perm.)	(.2% perm.)	(.2% perm.)
Proportional jimit	.70 2.1 15.5	:	17	7.0	34.0	26.4 29.4	39	39	20
Modulus of elasticity	кв/тт-	:	7200	7200	:	2600	7200	7200	7200
Thermal ex- pansion×10 ⁸	cgs 22.8	23.6	23.5	23.5	23.2	÷	23.0	23.2	22.5
Resistivity mɔ-mdorɔim	2.8 3.45	3.75	4.3	3.8	5.7	:	4.3	:	5.1
Thermal conductivity	.33 .33	.53	.37	ys .41	.29	:	.37	:	.32
Density	cgs 2.75	2.71	2.74	se allo	2.77	•	2.80	:	2.78
noitibnoO	ercial aluminum Annealed Sand-cast; ht. and aged	(195-T6) Al (commercial) Hard-drawn (93% red)	Aluminum-copper-magnesium alloys Cu-2.5, Mg3 Wrought; ht. and aged (A17S-T)	Aluminum-copper-magnesium-manganese alloys Cu-4.0, Mg5, Wrought; annealed 2.79 Mn5 (175-0)	Plate, ½ in. wq. from 920° F (24S-T)	Rod, ½ in. diam. ht. , and aged	Forged; ht. and aged (14S-T)	Sheet, ht. and cold- worked (24S-RT)	Sand-cast; aged (142-T571)
noitieoqmoO	Pure and commercial A1-99.95 Anne Cu-4.5 Sand-	Al (commercial)	Aluminum-coppe Cu-2.5, Mg3	Aluminum-coppe Cu-4.0, Mg5, Mn5	Cu-4.32, Mg-1.44, Plate, Mn48, Fe16 920°	Cu-4.4, Fe81, Mg67, Mn64, Si22	Cu-4.4, Mn8, Si8, Mg4	Cu-4.5, Mg-1.5, Mn6	Aluminum-copper-nickel alloys Cu-4.0, Ni-2.0, Sand-cast; aged Mg-1.51 (142-T571)

 $†5 \times 10^{8}$. ** For reference, see footnote 56, p. 187.

* Values apply in general to all wrought forms except large-sized extrusions; elongations apply to ½ in. diameter test specimens.

(continued)

	TABLE 186.	186.—MECHANICAL PROPERTIES	CAL	PROPE	ERTIE	O IT	AL UMI	V ∑ ⊃	QN	ALUMINUM AND ALUMINUM ALLOYS (continued)	ALLOYS	(continued	_	
noitieoqmoO	Condition		Density	Thermal conductivity	Resistivity microhm-cm	Thermal ex- pansion×10 ⁶	Modulus of elasticity	Isnoitroport jimil		Vield drength	Tensile strength	Elongation	Endurance limit and cycles	Hardness
inum-copp	Aluminum-copper-silicon alloys	lloys	cgs	cgs		cgs	kg/mm²	kg/mm²		kg/mm²	kg/mm²	percent	kg/mm²	
Cu-4.0, Si-3.0	Sand-cast ((108)	2.73	.29	5.6	22.0	7200	:	10 ((.2% perm.)	15	2 (2 in.)	49	55
Cu-4.5, Si-2.5	Chill-cast: ht. (B195–T4)	ht.	2.78	.33	4.9	22.0	7200	:	13 ((.2% perm.)	56	10 (2 in.)	6.7†	75
Cu-7.0, Si-2.0, Zn-1.5, Fe-1.2	Sand-cast		2.85	:	:	÷	7200	:	9.8	(.2% offset)	13–16	0-1.5 (2 in.)	6.0 †	55–80
Aluminum-copper-zinc Cu-7.0, Zn-1.7, Sand-c Fe-1.2	er-zinc alloys Sand-cast (112)	ys (112)	2.85	.29	5.7	22.0	7200	:	10.5 (10.5 (.2% perm.)	17	1.5 (2 in.)	6.3 †	70
Aluminum-magnesium Mg-1.0, Si6 Wrou Cr25, Cu25 (61)	Wrought; ann. (61S-O)	rs ann.	2.70	.41	3.8	23.5	7200	:	5.6 (5.6 (.2% perm.)	13	22 (2 in.)*	5.6†	30
Mg-1.3, Si7 Cr25	Wrought; (53S-T)	Wrought; ht. and aged (53S-T)	2.69	.37	4.3	23.5	7200	:	23 ((.2% perm.)	27	20 (2 in.)*	7.7 †	80
Mg-2.5, Cr25	Wrought; hard (52S-H)	hard	2.68	.33	4.9	23.7	7200		25 ((.2% perm.)	59	8 (2 in.)*	14.5+	82
Mg-3.8	Sand-cast (214)	(214)	2.61	.33	4.9	23.9	7200	:	8.4	(.2% perm.)	18	9 (2 in.)	3.9†	20
Mg-3.8, Zn-1.8	Chill-cast (A 214)	A 214)	2.66	.32	5.1	23.9	:	:	11 ((.2% perm.)	19	5 (2 in.)	:	09
Mg-10.00	Sand-cast ht. (220-T4)	1t.	2.52	.21	8.2	24.5	7200	:	18 ((.2% perm.)	32	14 (2 in.)	4.9 t	75
Auminum-manga Mn-1.2	Auminum-manganese alloys Mn-1.2 Wrought; a	nese alloys Wrought; ann. (3S-0)	2.73	.46	3.4	23.6	7200	÷	4.2 (4.2 (.2% perm.)	11	40 (2 in.)*	4.9‡	28
Mn-1.25, Mg-1.0 Annealed	Annealed		2.72	:	:	:	:	:	7		18	20 (2 in.)	8.6	45
						(00)	(continued)							

TABLE 186.--MECHANICAL PROPERTIES OF ALUMINUM AND ALUMINUM ALLOYS (concluded)

Hardness number	Ţ.	40	:	:		90	:	95	? ?	3	105	160–180	:
Endurance limit and cycles	kg/mm ²	4.6†	10.5†	:		€.0 †	12†		. 7 . 2	5.5	:	19.5- 20.5 (2×10°)	
noitsynolन	percent	6 (2 in.)	1.8 (2 in.)	:		3.5 (2 in.)	2.7 (2 in.)	14 (2 in.)	2 (2 in)	2 (2 m.)	.5 (2 in.)	10-16	21 (2 in.)
Fensile dignerit	kg/mm²	13	23	:		25	25	24	<u> </u>	10	25	20-60	50
Vield Strength	kg/mm²	6.3 (.2% perm.)	(.2% perm.)			(.2% perm.)	(.2% perm.)	(.2% perm.)			(.2% perm.)	44–52 (.1% offset)	43.0 (yld. pt.)
211111	nm²	9	13	:		18	13	28	14	-	20	4	43
Proportional jimit	kg/mm²	:	:	:		:	:			:	:	:	:
Modulus of elasticity	kg/mm²	7200	7200	÷		7200	7200	:	7200	0071	7200	2000	2000
Thermal ex- pansion×10 ⁶	cgs	22.0	20.0	:		22.0	20.9	:	21.4	1.1.7	18.9	:	:
Resistivity mo-mdoroim		4.7	4.4	8.8		4.8	6.1	:	4.0	?	0.9	:	:
Thermal conductivity	cgs	.35	.37	.33		.34	.27	:	.40	2	.28	÷	:
Density	cgs	2.64	2.69	:		5.66	2.79	:	2.66	i	2.70	:	3.29
Condition	on alloys	Sand-cast (43)	Die-cast; 4 in. diam. (13)	Die-cast (13)	on-copper alloys	Sand-cast; ht. and aged (355-T6)	Die-cast, 4 in. diam. (85)	Aluminum-silicon-magnesium alloys Si-1.0, Mg6 Heat-treated and aged	Sand-cast; aged	(356-T51)	Aluminum-silicon-nickel alloys Si-12, Ni-2.5, Chill-cast; aged Mg-1.0, Cu8, (A132-T551) Fe8	: alloys Wrought; ht. and , artificially aged	Bar, ½ in. hot-rolled
Composition	Aluminum-silicon alloys	Si-5.0	Si-12	Si-13	Aluminum-silicon-copp	51-5.0, Cu-1.3, Mg5	Si-5.0, Cu-4.0	Aluminum-silico Si-1.0, Mg6	Si-7.0, Mg3)	Aluminum-silico Si-12, Ni-2.5, Mg-1.0, Cu8, Fe8	Aluminum-zinc alloys Zn-5.0, Mg-2.5, Wrou, Cu-2.3, Ni-1.0, artii Ti1	Zn-25.0, Cu-3.0

8

N Hardness	F 80	FF 73 BB 88 E F 73 E F 74 E F 75 E F	F 73 F 60 B 83 B 90	F 75 F 60 B 83 B 90	F 68 F 61 B 73 B 82	
Flongation	2 8 8 9 9 9 9	33 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	56 7 3 3	37 255	3545	244°E
7 Tensile E strength 2 strength	38.0	36.5 32.3 52.7 63.2 87.8	36.6 32.3 53.4 65.4 90.0	33.1 30.2 51.3 63.2 84.3	30.2 28.1 47.1 55.5	28.8 26.7 43.6 51.3
% Yield strength at # # # # # # # # # # # # # # # # # #	14.1	14.1 10.5 42.2 45.7 31.6 47.8	14.1 10.5 42.2 45.7 47.8	12.6 10.5 42.2 45.7 47.8	17.6 9.15 40.1 44.3	21.1 8.43 38.7 44.3
g. Thermal noisnagxs %	2.07×10-8	2.02×10-6	1.98×10-5	1.91×10-8	1.85×10-6	1.84×10-5
Resistivity moronim	6.25	6.38	6.25	5.38	4.20	3.92
Thermal con-	.294	277	.294	.335	.413	5.
o Density	8.48	8.47	8.52	8.67	8.77	8.80
Condition	.040" strip; hot-rolled .040" strip; cold-rolled	.040" strip; .025mm ann040" strip; .070mm ann040" strip; hard (37%) .040" strip; spring (60%) .100" wire; rivet (10%) .100" wire; spring (84%)	.040" strip; .025mm ann040" strip; .070mm ann040" strip; hard (37%) .040" strip; spring (60%) .100" wire; spring (84%)	.040" strip; .015mm ann040" strip; .050mm ann040" strip; hard (37%) .040" strip; spring (60%) .100" wire; spring (84%)	.040" strip; .015mm ann040" strip; .030mm ann040" strip; hard (37%) .040" strip; spring (60%)	.040" strip; .015mm ann040" strip; .030mm ann040" strip; hard (37%) .040" strip; spring (60%)
g G G G G G G G G G G G G G G G G G G G	Cu-61; Zn-39	Cu-66; Zn-34	Cu-70; Zn-30	Cu-80; Zn-20	Cu-87.5; Zn-12.5	Cu-90; Zn-10
Z Name	Muntz metal	Yellow brass	Cartridge brass, 70%	Low brass, 80%	Jewelry bronze	Commercial bronze, 90% Cu-90; Zn-10

^{*} For reference, see footnote 57, p. 187.

TABLE 187.-MECHANICAL PROPERTIES OF BRASSES AND BRONZES (continued)

Hardness	No. F 60 F 52 B 62 B 72	:	:	÷		838 832 832 832 832 832 832 832 832 832	F 75 B 88	B 20 B 20 F 20	
Elongation in 2 in.	42 44 44 5	:	:	:		288 288 20 20 20 20 20	70	12.5 5 2.5 40	
Tensile strength		58.6	52.8	63.3		43.6 49.2 49.2 44.3 52.8	37.3 59.8	33.4 42.2 49.2 28.1	
Yeleld strength at noisgnole % eserts rebnu	N. 00 01	:	÷	:		21.1 40.8 17.6 17.6 21.1 35.2 37.3	: :	31.6 40.1 44.0 7.03	
Thermal expansion	1.80×10^{-6}	:	:	:		2.17×10-5	2.02×10-5	1.84×10-5	
Resistivity mo-mdo10im	3.08	2.15	2.65	3.13		6.62	68.9	4.53	
Thermal con- ductivity at 20°C	.55	÷	:	:		.278	.265	.45	
Density	g/cm³ 8.86	8.88	88.88	8.88		8.42	8.52	8.80	
noitibnoO	.040" strip; .015mm ann040" strip; .030mm ann040" strip; hard (37%) .040" strip; spring (60%)	Hard-drawn	Hard-drawn	Hard-drawn		.040" strip; light ann040" strip; quarter hard (11%) .50" strip; as hot-rolled 1" rod; soft ann. 1" rod; light ann. 1" rod; quarter hard (9%) 1" rod; half hard (18%)	1"×.05" tube; .025mm ann. 1"×.05" tube; hard (35%)	.040" strip; half hard hard hard extra hard light ann.	(continued)
Name Composition	percent Gilding, 95% Cu-95; Zn-5	Conductivity bronzes 80% conductivity bronze Cu-99; Cd-1.0	65% conductivity bronze Cu-99.5; Sn5	55% conductivity bronze Cu-98.7; Cd8; Sn5	Special brasses	Naval brass Cu-60; Zn-39.25; Sn-,75	Antimonial	Bushing bronze Cu-90; Zn-9.5; Sn5	

TABLE 187.--MECHANICAL PROPERTIES OF BRASSES AND BRONZES (concluded)

	1/10d strength at 1/10d strength ander stress Tensile strength atrength in 2 in.	/mm2 kg/mm2 percent	14.1 34.5 58 F 75. B 28	52.7 56.9 10 B 87 56.2 70.3 4 B 93 98.2 2	16.9 40.8 65 F-80; B-50 50.6 65.4 10 B 93 B 98 78.7 3 B 98	98.2 31.6 55 F 65	14.75 39.4 63 F 75 43.8 77.3 4 B 97 42.2 75.9 13 B 95 45.7 87.9 5	28.8 30.9 15
ב= (בפוופותתבת)	ism19hT noizn6qx9	s	1.78×10 ⁻⁵		1.82×10^{-5}	1.72×10 ⁻⁵	1.80×10-5	1.915 1.79×10-5
	Resistivity mo-mdoroim		12.28		15.65	9.07	24.6	1.915
	Thermal con- ductivity at 20°C	cgs	.157		.120	.206	.087	.848
	Density	g/cm³	8.85		8.80	8.88	8.52	8.94
	noiribnoO			.040" strip; hard (37%) .040" strip; spring (60%) .100" wire; spring (84%)	.040" strip; .035mm ann040" strip; hard (37%) .040" strip; spring (60%) .00"	wire; spring strip; .035mm !; hard (20%)	.040" strip; .070mm ann040" strip; spring (60%) 1" rod; extra hard (50%) .100" wire; hard (60%) .100" wire; spring (80%)	1, rod, 1 hard (20%)
	Composition	percent	Cu-95; Sn-4.75;		Cu-92; Sn-7.75; P25	444 Bronze Cu-88; Sn-4; Zn-4; Pb-4	oe A Cu-96; Si-3; Zn-1	Special engineering alloy Tellurium copper Cu-99.5; Te5
	Увте	Tin bronzes	Phosphor bronze 5% (grade A)		Phosphor bronze 8% (grade C)	444 Bronze	Olympic bronze, type A Cu	Special engineering alloy Tellurium copper

Hardness number	į	K _B 3/	:	:	:	RB 33	:	4	:	:	: :	Rs 30	R ₈ 99	
g Endurance g cycles g cycles	i i	12.0(3×10°)	:	•	$7.7(10^8)$	9.1(10%)	:	2.8 ‡	11.0		: :	:	:	
Elongation	11000	+	20‡	298	35 t	7.81	328	591	13†	\$ 4	811	09 €	44	
əliznəT / dignəriz g	111111111111111111111111111111111111111	36.0	33.5	29.0	22.0	31.2	26.0	22.0	36.5	24.3	33.0	42	84	
astrength ZVield	- NS/ IIIIII	34.5(.5% extn.)	33 (.5% extn.)	12.7(.01%)	:	:	10.0(.01%)	4.55(.01% perm.)	15 (.01% perm.)	61(50, extn)	8.8(.5% extn.)	17 (.5% extn.)	42 (.5% extn.)	
lsnoitroqor¶	KB/ IIIII	:	:	3.45	8.4	11.0	3.4	:	7.0	4 30	5.75	:	:	
Modulus of elasticity	Kg/mm-	12,500	12,300	13,000	:	÷	12,100	9,300	÷		: :	:	10,500	(bouniture)
Thermal expansion	cgs	17.6*	:	:	:	:	:	17.6*	÷		: :	17.8*	:	,,,,
Resistivity mo-mdoroim		1.706*	:	:	:	:	:	1.706*	:		: :	11.8*	:	
Thermal conductivity	cgs	.93	:	:	:	:	:	.93	:		: :	.17	:	rea.
Density	cgs	8.95	:	:	:	:	:	8.92	÷		: :	7.78	:	87. § 4Varea.
noitibnoƏ	ial copper	Rod, ½ in. diam., cold-drawn (29% red) from .125 mm grain size	Rod, ½ in. diam., cold-drawn (36% red) from .135 mm grain size	Rod, hard-drawn	Sheet, .020 in., soft	Sheet, .020 in., cold- worked (21% red)	Rod, drawn (37% red)	Rod, 1 in. diam., hot-rolled	Cold-rolled		Cast, annealed Forged, annealed	Sheet or plate, soft	Sheet or plate, hard	** For references, see footnotes 55 and 57, p. 187 * X 10-0, † 2 in. ‡ Alternating torsion.
noitieoqmoƏ	Pure and commercial copper	Oxygen-free copper (OFHC); Cu-99.997	Oxygen-free copper (OFHC); Cu-99.996	Oxygen-free copper (OFHC); Cu-99.99	Cu-99.95	3	Cu-99.94; 0030	Electrotough-pitch copper	Electrotough-pitch copper	Copper-aluminum alloys	AI-3.90	A1-8.0	3	** For references, se * × 10-0, † 2 in.

TABLE 188.-MECHANICAL PROPERTIES OF COPPER AND COPPER ALLOYS (continued)

Hardness number	1	142	90-100	128		119	RB 52	109-124	130	69	:	130	:	190-217	
Endurance limit cycles	kg/mm ²	18.0(7×10°)	÷	24.0(6×10°)		:	:	:	:	:	:	:	:	:	
noitegnolA	percent	14	15-25†	36		32†	₹05	22-27 t	42+	52†	10+	34 †	11 \$	10-15†	
Tensile strength	kg/mm ²	54.5	42–53	54.5	;	0.19	51	42-50	0.09	39.0	63.0	51.0	82	67-72	
Yield strength	nm²	:	14-17.5 (.5% perm.)	:		34.0(yld. pt.)	20.2(.5% extn.)	15-19	23.6 (yld. pt.)	12.3(yld. pt.)	22.5(.15% perm.)	25.2(yld. pt.)	54.5(.1% perm.)	39-42	
lenoitroqor Jimil	kg/mm ²	17.5	2-8	11.9		:	:	8.6	12.6	:	÷	:	3.8	21	
Modulus of clasticity	kg/mm ²	13,600	8,500- 10,500	14,000		:	:	:	:	:	÷	:	13,200	:	(continued)
Thermal noisnagxs	cgs	÷	:	:		:	:	:	:	:	:	•	:	:	(сон
Resistivity moroiniem		÷	:	•		:	:	:	:	:	:	:	:	:	
Thermal conductivity	cgs	÷	:	:		:	:	:	:	÷	:	:	:	:	
Density	cgs	:	7.5	7.57		:	7.75	:	:	; ;	7.42	:	÷	7.75	
Condition		Cast; wq. from 1650°F, ½ hr at 1200°F, f.c.	Cast	Extruded to 1952 in. diam., wq. from 1650°F at 1150°F, f.c.	iron alloys	Forged	Rod, soft	Sand-cast	Forged	Copper-aluminum-iron-manganese alloys Al-7.18, Fe62, Sand-cast Mn58	Round bar, die-cast at 2155°F	iron-nickel alloys Rod, 14 in., diam., forged (75% red)	Rod, 4 in. diam., forged	Forged, ht.	
noirieoqmoƏ	percent	A1-9.78	A1-10	Al-10.06, Fe13	Copper-aluminum-iron alloys	AI-5.39, Fe-5.14	A1-8, Fe-2.5	A1-8.6, Fe-2.9	Al-9, Fe-3	Copper-aluminum-i Al-7.18, Fe62, Mn58	A1–9.9, Fe–3.2 Mn–2.9	Copper-aluminum-iron-nick Al-5.0, Fe-3.07, Rod, 14 Ni-1.91, Mn33 forged	A1-9.73, Fe-5.42, Ni-4.97	Al-10.7, Fe-4, Ni-4	8 in.

p
(continue
ALLOYS
R AND COPPER
AND
М
OF
PROPERTIES OF COPE
NICAL
188.—MECHA
TABLE

Hardness number	:	:	÷	188	÷	139	186	:		:	
Endurance limit cycles	kg/mm²	÷	÷	÷	:	:	:	÷	÷	:	
noiteguold	percent	25†	61	52	21	19ª	25 a	37 \$	47 \$	468	
əliznəT fiynəriz	kg/mm² 74	62.5	80.0	29	63.5	53.0	69.5	25.2	25.2	24.7	
Vield dignerit	kg/mm²	25.0(yld. pt.)	:	4.03(.15% perm.)	44 (.15% perm.)	22.0(yld. pt.)	42 (yld. pt.)	29.3(.01% perm.)	7.7(.01% perm.)	:	
lsnoitrogor4 timit	kg/mm ² 54.0	:	0.09	:	:	:	:	12.4	20.4	10.4	
Modulus of elasticity	kg/mm²	:	:	:	:	:	:	12,300	:	:	(continued)
Thermal noisnagxs	cgs :	:	:	:	:	:	:	:	:	:	100)
Resistivity microhm-en	:	:	:	÷	÷	:	÷	÷	:	÷	
Thermal conductivity	cgs .	:	:	÷	÷	•	:	:	:	:	
Density	cgs ·	:	:	7.57	7.58	:	:	:	:	:	
Rondition	Copper-aluminum-manganese alloys Al-7, Mn-1 Sheet, .2 in, cold- rolled (50% red)	Chill-cast	-nickel alloys Sheet, .2 in., cold- rolled (50% red)	Rod, 1 in. diam., chill-cast	Rod, 1 in. diam., chill-cast	-silicon alloys Rod, 1 in. square, chill-cast from 2055°F	Rod, ³ in. diam., forged	-zinc alloys Rod, 4 in. diam., ex- truded and drawn	lloys Rod, ½ in. diam., drawn (7% red)	Rod, § in. diam., drawn (7% red) ann. 100 hr at 390°F	
Composition	Copper-aluminum. Al-7, Mn-1	Al-10, Mn-1	Copper-aluminum-nickel Al-7, Ni-1 Sheet	Al-9.4, Ni-7.4, Fe-4.1	Al-10.1, Ni-7.6, Si4	Copper-aluminum-silicon Al-7.2, Si-1.88, Rod, Fe11 chil	Al-7.2, Si-1.88, Fe11	Copper-aluminum-zinc alloys Al-8.89, Zn-1.40, Rod, ½ in. Fe15	Copper-arsenic alloys As33, Ag10 Ro	3	a 1.3 in.

TABLE 188.-MECHANICAL PROPERTIES OF COPPER AND COPPER ALLOYS (continued)

	Hardness number		65-70	200	109	400		:	:	:	:		:	:	Ro 104	
•	Endurance limit cycles	kg/mm²	:	:	:	:		:			:	4	• :	:	19.5	
	Flongation	percent	50-551	19	14†	+		50+	8↑	4	3†		111	2.8	2.0 +	
	Tensile strength	kg/mm ²	30-35	75	44.0	83.5		46.5	123	135	141		77	150	136	
	Yield Strength	kg/mm^2	14.7 (yld. pt.)	71.5(yld. pt.)	30.0	66.1		18.3(.2% extn.)	102 (.2% extn.)	121 (.2% extn.)	126 (.2% extn.)		56.0(.5% extn.)	64.5(.5% extn.)	÷	
	Proportional limit	kg/mm ²	:	:	:	:		12.6	60.5	83	73		:	:	39.0	
	Modulus of elasticity	kg/mm²	:	:	:	:		12,600	13,300	12,700	12,600		11,900	13,000	12,900	(continued)
	Thermal noisnagxs	cgs	:	:	:	÷		:	:	:	:		•	:	:	100)
	Resistivity mo-mdotoim		:	:	:	:		:	:	:	:		•	:	:	
	Thermal conductivity	cgs	:	:	:	:		:	:	:	:		:	:	:	
	Density	cgs	9.8	:	:	÷		:	:	:	:		:	:	:	
	Condition	alloys	Quenched	Quenched and work- hardened	Cast	Cast, quenched from 1470°F, aged at 645°F	-cobalt alloys	Soft, annealed	Heat-treated	Rolled (21% red), ht.	Rolled (37% red), ht.	-nickel alloys	Rod, ‡ in. diam., quenched from 1515°F, cold- drawn (15% red)	Rod, \(\frac{1}{2}\) in. diam., quenched from 1515°F, cold- drawn (15% red) 3 hr at 570°F	Sheet, .040 in., wq. from 1470°F, cold- rolled (37% red) 2 hr at 525°F	
	noitieomoO	Copper-beryllium alloys	Be-1.0	3	Be-2.2	3	Copper-beryllium-cobalt alloys	Be-2, Co2	"	3 7	"	Copper-beryllium-nickel al	Be-2.16, Ni22, Fe11	Be-2.16, Ni22, Fe11	Be-2.14, Ni28 Fe06	¶ 10 diam.

	Hardness number	:	RB 73	8 8	220	220	210	÷	÷	130
(par	- Endurance limit cycles	-шш /8х	18.1(3×10°)	:	:	:	:	:	•	:
(contin	Flongation	percent	7.5 t	10-15	10↑	20 t	151	:	÷	25†
LLOYS	Tensile dignerite	кв/ mm-	51.0	21-25	63.0	70.3	75	26	136	39.0
AND COPPER ALLOYS (continued)	Yield Strength		46.5(.5% extn.)	÷	:	:	57.5 (yld. pt.)	:	:	22.5(yld. pt.)
PER AN	lsnoitroport		:	10.5-	31.6	31.6	÷	:	:	:
OF COPPER	Modulus of	12,700	13,900	:	12,000	12,000	11,500	:	:	÷
	Thermal noisnagxs &		:	:	:	:	:	•	:	:
PROPERTIES	Resistivity microhm-cm	÷	:	•	:	•	:	•	:	:
	Thermal conductivity		÷	:	:	:	:	:	÷	:
ANICA	S Density	:	:	÷	:	•	:	:	:	:
ECH		п		aged	cast,	r at F		am.,	am.,	
TABLE 188MECHANICAL	Condition	lloys Wire, cold-drawn	Rod, ½ in. diam., cold-worked (92% red)	Rod, 1 in. diam., cast, quenched from 1700°F, aged 1 hr at 935°F	Rod, 1 in. diam., cast, 1 hr at 1650°F, wq. 2-4 hr at 930°F	Rod, forged, 1 hr at 1650°F., wq. 2-4 hr at 930°F	Quenched, work- hardened, ht.	Wire, .040 in. diam., cold-drawn (96% red)	Wire, .040 in. diam., cold-drawn (96% red)	Sand-cast
	Pre Composition	Copper-cadmium alloys	Copper-chromium alloys Cr88, Si09 Rod, cold (92	Copper-chromium-beryllium alloys Cr4, Be1 Rod, 1 in. diam., cast, quenched from 1700°F, a 1 hr at 935°F	Copper-cobalt-beryllium alloys Co-2.6, Be4 Rod, 1 in. dis 1 hr at 165 wq. 2-4 h 930°F	Co-2.6, Be4	3	Copper-iron alloys Fe-25	Fe-50	29

_
e
2
Ξ
5
ق
S
ALLOYS
Ļ
ᆜ
_
ď
М
PPER
O
O
۵
ON
~
_
PPER
٥
Ē
COPPER
OF
OPERTIES
Ш
H
~
Ш
ö
č
<u>α</u>
IICAL PR
4
<u>ပ</u>
Z
⋖
ᆽ
1EC
Σ
MEC
œ.
188.
Щ
BL
TABI
-

Hardness rumber		25	50-70	300	510	÷		:		80	R _B 54	86	159	
Endurance limit cycles	kg/mm²	:	:	:	:	:		:	**	•	:	19.6	30.2(4×10°)	
Elongation	percent	171	7-12†	19	1	23†		30 ↑		32†	46†	48 t	15†	
Tensile dignerte	kg/mm²	21.4	19–23	29	95.5	47.3		46.2		39.4	46.8	48.6	72.5	
Yield Strength	kg/mm²	10.3(.1% offset)	13–14	;	:	44.8(.5% extn.)		38.4(.5% extn.)		14.8(.2% offset)	18.3(yld. pt.)	17.8(.01% perm.)	38.5(.01% perm.)	
Isnoitroport jimil	kg/mm²	:	6.7-	:	:	:		:		:	14.2	14.8	:	
Modulus of elasticity	kg/mm²	7,650	000'9	:	:	15,200		15,600		:	17,400	:	:	(continued)
Thermal expansion	cgs	:	:	:	:	÷		:		:	:	:	:	(00)
Resistivity microhm-cm		:	:	:	:	:		:		:	:	:	:	
Thermal conductivity	sgo	:	:	:	:	:		:		:	:	:	:	
Density	cgs	8.83	8.9	7.2	:	:		:		9.8	÷	:	÷	
Rondition	SAC	Cast from 2040°F	Sand-cast from 1750- 1900°F	alloys Soft	Hard-rolled	Rod, 3 in. diam.	red) from .030 mm grain size	Rod, ⁴ / ₄ in. diam, cold-drawn (15% red) from .030 mm grain size 2 hr at 840°F.	4	Sand-cast	Rod, ann. 4 hr at 1400°F	Rod, 1 hr at 1450° F, fc.	Rod, cold-rolled	
noišisogmoO	Percent Copper-lead-tin allovs	Pb-8.61, Sn-5.36, Zn-82, Sb34, Ni14	Pb-10; Sn-10	Copper-manganese alloys Mn-13; Al-9 Soft	"	Copper-nickel alloys Ni-30.48, Mn22, F	re0/	Ni-30.48, Mn22, Fe07	Constantan	Ni-45	Ni-45, Mn5-1.0, Fe27, C05	Ni-44.77, Mn89, Fe66, C078	Ni-44.77, Mn89, Fe66, CU78	

	Натdmess пиmber	÷	:	V 157	V 240	:	143	R _B 25	3 :	
led)	Endurance m cycles m 2	÷	:	:	:	9.8(108)	23.5(5×10²)	:	: :	
ALLOYS (continued)	per Elongation	4.3†	2.5†	36†	21 †	4.01	3.8 +	35 †	32 +	
YLLOYS	əliznəT k H Hignəris E	46.8	85.5	48.6	77.0	72.5	61.3	35.1	41.0	
COPPER	K. Vield 3 strength	:	:	35.4(.2%)	60.0(.2%)	:	39.0(.01% perm.)	14.0(.5% extn.)	32.0(.5% extn.)	
PER AND	Isnoirroport / m timil # # #	:	:	12.6	49.0	37.4	:		: :	
OF COPPER	Modulus of	÷	:	:	:	11,500	15,000		14,600	(continued)
	Thermal and a son sion	÷	:	•	:	÷	:	:	: :	(con
PROPERTIES	Resistivity mo-mhoroim	:	•	:	•	:	:	:		
	Conductivity conductivity	:	:	:	:	:	:	i	: :	
ANICA	g Density	:	:	:	:	÷	:	8.86	: :	
TABLE 188.—MECHANICAL	Condition	Quenched from 1650°F, cold-drawn, (56% red)	Quenched from 1650°F, ½ hr at 930°F, cold-drawn (56% red)	Rod, 1 in. diam., extruded, cold- drawn (10% red)	Rod, 1 in. diam., cold-drawn, 2 hr at 1110°F	con alloys Sheet, .020 in., soft	alloys Rod, 1 in. diam., cold-drawn	c alloys Sheet or plate, soft	Rod, 4 in. diam., cold-drawn (15% red) from .060 mm grain size, 2 hr	
	Condition Condition Condition Condition	Ni-2.0, Be2	u u	Copper-nickel-manganese Ni-13.5, Mn-5, Rod, 1 Al-1.5 extr drav	ä	Copper-nickel-silicon alloys Cu-94.15, Ni-5.14, Sheet, .02 Si-rem.	Copper-nickel-tin alloys Ni-29.08, Sn95, Rod, Fe25, C07	Copper-nickel-zinc alloys Ni-20, Zn-5 Sheet of S	Ni-20.22, Zn-5.26, Mn25, Fe08, Mg06	

TABLE 188.-MECHANICAL PROPERTIES OF COPPER AND COPPER ALLOYS (continued)

	ואבר ואפיים ווייבר ואפיים ווייבר ו) -) 		ì	
noitisoqmoƏ	Roitition	Density	Thermal conductivity	Resistivity microhm-cm	IsmrədT noisnaqxə	Modulus of elasticity	Proportional imit	hield fignestie	Tensile frength	Rlongation	Endurance fimit cycles	Hardness Tadmun
percent		cgs	cgs		cgs	kg/mm²	kg/mm²	kg/mm²	kg/mm²	percent	kg/mm^2	
Copper-Sincon-manganese Si-1.41, Mn21, Rod, ½ Fe06 cold- (72%)	nganese anoys Rod, ½ in. diam., cold-worked (72% red)	:	:	:	:	12,000	÷	48.0(.5% extn.)	61.8	10 †	$21.4(3\times10^{8})$	R _B 86
Si-3, Mn-1	Sheet, .040 in., ann.	8.53	:	:	:	10,500	:	17 (.5% extn.)	42	65†		Rr 45
Copper-silver alloys Ag093, Fe007	ys Rod, 1 in. diam., drawn (10% red)	:	*	:	:	:	1.9	:	24.2	518	•	÷
2	Rod, 1 in. diam., drawn (10% red) 2 hr at 570°F	:	:	:	:	14,000	5.7	:	24.1	51 \$	•	:
Copper-tin alloys Sn48	Rod, 1 in. diam.,	:	:	:	:	13,600	3.16	:	32.4	33 %	:	:
3	Rod, 1 in. diam., drawn (10% red) 2 hr at 570°F	:	:	:	•	13,800	20.2	:	31.6	37 \$:	:
Sn-4.23, P13	Rod, ³ / ₄ in. diam., drawn ¹ / ₂ hr at 525°F	:	:	:	:	12,400	17.3	40.2(.1% extn.)	43.5	33 %	15.5(5×107)	138
Copper-tin-lead alloys Sn-5.0, Pb-1, P1 She	loys Sheet, .04 in. hard	÷	:	:	:	10,500	:	42.0(.5% extn.)	57.5	***	:	R _B 90
Copper-tin-nickel alloys Sn-3.88, Ni-2.33, Sheet, S58, P37	alloys Sheet, cold-rolled, quenched from	÷	:	•	•	12,300	26.6	<u>:</u>	51.4	22 †	÷	R _B 80
	at 930°F				ноэ)	(continucd)						

_
(continued)
ALLOYS
COPPER
AND
COPPER
OF
PROPERTIES
188.—MECHANICAL
FABLE 1

Findurance minit mit minit min		:	RB 78	Rr 45	Rr 53	13.3(10 ⁸) R _B 82	55	153	:	101		:	179	159	185	,	28	
Percent		49 8	5+	44 †	54†	7.5†	58†	44	62†	40 t	45 t	28†	10	12†	6.0†		36†	
π π Tensile π strength ω		24.2	50	25	26	52.8	26.2	59.5	35.7	36.9	39.2	64.0	69.5	20.0	8.99		23.1	
X X Yield E strength		:	:	:	8.1(.5% extn.)	:	10.2(yld. pt.)	:	:	29.2(yld. pt.)	13.8(yld. pt.)	÷	41.8(.5% perm.)	36.8(.5% perm.)	41.0(.5% perm.)		8.35(yld. pt.)	
Isnoirtoportional pimil gr		1.27	:	:	:	16.2	:	:	:	:	:	16.1	:	÷	÷		:	
k Modulus of Masticity g		13,900	:	:	:	11,200	:	:	:	:	:	:	6,800	:	÷		÷	(continued)
Thermal noiznagxs &		:	18.6*	18.1*	18.3*	:	19.8*	:	:	:	:	:	:	:	:		:	(con
Resistivity microhm-cm		:	4.7*	3.1*	4.1*	:	6.4*	:	:	:	:	:	:	:	÷		:	
Thermal conductivity		:	.38	.57	.45	:	.29	:	:	:	:	÷	:	:	÷		:	
g Density		:	8.5	8.85	8.8	:	8.2	:	:	:	:	:	7.90	:	:		:	
Condition		Rod, 1 in. diam., drawn (10% red)	Sheet, .040 in., cold-drawn (37% red)	Sheet, .040 in. soft	Rod, ½ in. diam., ann.	Sheet, .020 in., cold-worked (37% red)	Cast	Sheet, hard	Sheet, .025 in. (grain size, .035 mm)	Rod, rolled	Cast	n um alloys Sand-cast	Cast from 2,100°F	Bar, 2½ in. square, cast	Bar, 2½ in. square, cast	c alloys	Cast	
Per Composition	Copper-zinc alloys	Zn48	Zn-15	Gilding metal; Z_{n-5}	Cu-90.10, Zn-rem	Cu-71.68, Fe02, Pb01, Zn-rem	Zn-30.2	Zn-33	Cu-66.12, Zn-rem	Zn-34.6, Fe < .1	Zn-41.04	Copper-zinc-aluminum alloys Zn-16.35, Al-6.16, Sand-cast Mn-4.39, Fe-2.30	Cu-63.35, Al-4.12, Mn-2.74, Fe-1.73, Pb25, Ni2, Zn-rem.	Zn-31.45, Al-4.10, Ni-3.0, Fe-1.45	Zn-33.57, Al-3.95, Ni-3.13	Copper-zinc-arsenic alloys	Zn-29.41, As49	

Hardness number		178	93	187	RB 86	R _B 85	Rв 98		50-65	÷	:	120-130
Endurance limit cycles	kg/mm²	:	12.0(2.5×10°)	:	13.0(10%)	11.2(108)	:	•	:	:	14.8(108)	:
Flongation	percent	12†	33	7+	14+	22 †	2.5†		3060	09 €	27	15-20†
SliznsT Afgnettz	kg/mm²	62.0	49.0	0.99	63.5	60.5	98.5		25–30	31.6	48.0	39–42
Yield strength	kg/mm²	57.0	:	44.0(.15% perm.)		:	:		11.2-12.6 (yld. pt.)	:	:	21-25(yld. pt.)
Proportional limit	kg/mm²	÷	9.15	:	31.3	26.2	33.8		:	:	23.5	:
Modulus of elasticity	kg/mm²	10,900	10,000	:	13,900	12,100	9,800		÷	10,500	10,800	:
Thermal noisnaqxə	cgs	:	÷	•	÷	:	:		:	:	:	:
Resistivity mo-microlim		:	:	:	:	:	:		:	:	: .	
Thermal conductivity	cgs	:	:	:	÷	:	:		:	:	:	:
Density	cgs	:	8.26	7.79	:	:	:		8.65	8.53	8.42	8.47
Condition	allovs	Rod, ½ in., hard- drawn	Cast	anese alloys Round bar, die-cast from 1930°F	Sheet, .020 in., quenched from 1470°F, aged 1 hr at 930°F	Sheet, .020 in., quenched from 1470°F, aged 1 hr at 930°F	Sheet, .040 in., hard-rolled	loys	Sand-cast	Sheet, ann.	Rod, $\frac{3}{4}$ in. diam., rolled	Die-cast
noitisogmoJ	Percent Copper-zinc-iron allovs	Zn-38.48, Fe-1.21, Sn72, Al1, Pb09	Cu-56.85, Fe-1.50, Sn32, Al23, Mn20, Zn-rem.	Copper-zinc-manganese alloys Zn-33.1, Mn-4.2, Round bar, Al-3.5 from 193	Copper-zinc-nickel alloys Zn-9.89, Ni-2.32, Sheet, Si57 quen 1470	Zn-19.8, Ni-2.37, Si57	Zn-30.12, Ni-2.36, Si66	Copper-zinc-tin alloys	Zn-6, Sn-6	Admiralty brass: Zn-28, Sn-1	Naval brass: Cu-61.20, Sn43, Pb10, Zn-rem.	Zn-41, Sn-1

Copper wire: Hard-drawn (and hard-rolled flat copper of thicknesses corresponding to diameter of wire). Specification values. (A. S. T. M. B1-15, U. S. Navy Dept.) Specific gravity 8.89 at 20°C (68°F).

000 2.75 000 3.25 800 2.80 500 2.40 100 2.17 500 1.98	lb/in. ² 49,000 51,000 52,800 54,500 56,100 57,600	kg/mm ² 34.5 35.9 37.1 38.3 39.4	in. .460 .410 .365 .325	mm 11.68 10.41 9.27
3.25 300 2.80 500 2.40 100 2.17 500 1.98 900 1.79	51,000 52,800 54,500 56,100	35.9 37.1 38.3	.410 .365	10.41
3.25 800 2.80 500 2.40 100 2.17 500 1.98 900 1.79	51,000 52,800 54,500 56,100	35.9 37.1 38.3	.410 .365	10.41
2.80 500 2.40 1.00 2.17 500 1.98 1.79	52,800 54,500 56,100	37.1 38.3	.365	
500 2.40 100 2.17 500 1.98 000 1.79	54,500 56,100	38.3		
100 2.17 500 1.98 000 1.79	56,100			8.25
500 1.98 000 1.79			.289	7.34
000 1.79		40.5	.258	6.55
	59,000	41.5	.229	5.82
	02,000	1110	,	5.02
	60,100	42.2	.204	5.18
	61,200	43.0	.182	4.62
	62,100	43.7	.162	4.12
	63,000	44.3	.144	3.66
	63,700	44.8	.128	3.25
	64,300	45.2	.114	2.90
	64,900	45.7	.102	2.59
	65,400	46.0	.091	2.31
	65,700	46.2	.081	2.06
	65,900	46.3	.072	1.83
	66,200	46.5	.064	1.63
	66,400	46.7	.057	1.45
	66,600	46.8	.051	1.30
	66,800	47.0	.045	1.14
	67,000	47.1	.040	1.02

Note.—P-limit of hard-drawn copper wire must average 55 percent of ultimate tensile strength for four largest-size wires in table, and 60 percent of tensile strength for smaller sizes.

TABLE 190.—COPPER WIRE—MEDIUM HARD-DRAWN

(A. S. T. M. B2-15) Minimum and maximum strengths.

			Tensile	strength		
Dian	neter	Mini	mum	Max	imum	Elongation, minimum percent
mm	in.	kg/mm²	lb/in.2	kg/mm²	lb/in.2	in 254 mm (10 in.)
11.70	.460	29.5	42,000	34.5	49,000	3.75
6.55	.258	33.0	47,000	38.0	54,000	2.50
						in 1524 mm (60 in.)
4.12	.162	34.5	49,000	39.5	56,000	1.15
2.59	.102	35.5	50,330	40.5	57,330	1.04
1.02	.040	37.0	53,000	42.0	60,000	.88

Note.—Representative values only from table in specifications are shown above. P-limit of medium hard-drawn copper averages 50 percent of ultimate strength.

TABLE 191.—COPPER WIRE—SOFT OR ANNEALED

(A. S. T. M. B3-15) Minimum values.

Diar	neter	Minim	Elongation in 254 mm (10 in.),		
mm 11.70 to 7.37	in. .460 to .290	kg/mm² 25.5	1b/in. ² 36,000	percent 35	
7.34 to 2.62	.289 to .103	26.0	37,000	30	
2.59 to .53	.102 to .021	27.0	38,500	25	
.51 to .08	.020 to .003	28.0	40,000	20	

Note.—Experimental results show tensile strength of concentric-lay copper cable to approximate 90 percent of combined strengths of wires forming the cable.

TABLE 192.--MECHANICAL PROPERTIES OF IRON AND STEEL **

SS			ນ		S					2	0	2		7	J C	,			470	
Hardness		310	R_B 55		V205	1	153	191		Rc 16	Rc 20	Rc 2.		Re 2	Rc 29 Rs 20	, 293	;	44	430–470	
Endurance limit kg/mm²	0	1	1		I	37.3	I	1		1	i	j		I		i	,	36.2* 36.5* 71.7†	68.8 86.5†	
Elongation	1	15(2 in.)	35(2 in.)		18(2 in.)	11(10 in.)	46(2 in.)	42(2 in.)		17(2 in.)		16(2 in.)		12(2 in.)	14(2 in)	16(2 in.)		/(2 in.)	5(2 in.)	
Tensile strength kg/mm²		109	37.0		58.5	81.5	47.4	64.0		79.5	13	91.5		92.0	106.5			n.)	166.5 n.)	•
Yield strength kg/mm²	ò	96	27.0 (yld. pt.)	(.001% offset)	53.4	76.0	26.4	38.6		4.4	1 3	52.0		88	5.50	68.5	(yid. pt.)	(.01% perm.)	 101.5 (.01% perm.) 136.5 (?% perm.)	
Propor- tional limit kg/mm ²	;	I	I	٠	I	I	I	1		I	Ι	I		I	ii	l		1	1	
Modulus of elasticity kg/mm²	i	1	I		21,400	21,100	19,300	20,800		20,500	1 8	20,000		20,800	20.200		23 200	21,200	21,000	† Zero to maximim torsion
Condition		quenched from 1750°F, tempered at 1100°F	strip, .104 in., rolled	bar, 11/8 in. diam., cold-rolled		rod, ‡ in., cold-drawn	wrought, ann., at 1450°F; fc.	wrought, wq. from 1600°F, tempered at 1100°F	normalized 1 hr at 1600°F:	room:	— 40°F	-108°F	$\frac{3}{4}$ hr at 1475°F, wq., tempered 1 hr at 1000°F;	room:	— 40°F — 108°F	oil-quenched from 1490°F,	tempered at 600 F	oil-quenched from 15/5°F, tempered at 940°F	⁴ hr at 1550°F, quenched in oil at 120°F, tempered ⁴ hr at 800°F	* Reversed torsion
Composition percent	Aluminum steel	C3040, Al90-1.40, Cr90-1.40, Mn4060, Mo1525	C08, Mn41 (open-hearth rimming)	C12, Mn84, S12, P099 (free-	cutting steel)	C1525, Mn3050	C27, Mn72, Si21	¥	C45, Mn77, Si21				*			C57, Mn65, Si17		C91, Mn38, Si10 (acid open- hearth)	C-1.04, Mn36, Si16	** For reference see footnote 55, p. 187.

** For reference, see footnote 55, p. 187. * Reversed torsion. † Zero to maximum torsion. (Continued)

SMITHSONIAN PHYSICAL TABLES

continued)
, TE
STEEL
AND
PROPERTIES OF IRON
S OF
RTIE
ROPE
_
MECHANICA
MEC
192.—
TABLE 192.
TA

Hardness	131	286	192	1	149	152	217	112	300	163	351	477–488	
Endurance limit kg/mm²	1	1	1	I	1	30.3	39.0	1	1	1	ı	73 52.7* 90.0†	
Elongation percent	35	7(2 in.)	16(2 in.)	29(2 in.)	29(2 in.)	30(2 in.)	20(2 in.)	37(2 in.)	5(2 in.)	28(2 in.)	14(2 in.)	11(2 in.)	
Tensile strength kg/mm²	53.5	101.5	77.3	28	60.5	52.7	73.8	43.0	90.6	65.0	127.5	167	÷
Yield strength kg/mm ²		0.09	69.0	39.7 (yld. pt.)	39.4 (yld. pt.)	32.0 (.2% perm.)	58.0 (.2% perm.)	19.7	1	1	98.5	98.5 (.01% perm.)	(.01% perm.)
Propor- tional limit kg/mm²	1	1	1	1	I	1	1	I	71.0	34.8	1	1	_
Modulus of elasticity kg/mm2	ı	1	1	1	1	I	I	1	I	I	1	21,200	(continued)
Condition	bar, ½ in. diam., normalized at 1700°F	forged	bar, 1 in. diam., rolled	Si82, bar, 1 in. diam., normalized	bar, ² / ₄ in. diam., 4 hr at 1380°F, ac.	annealed	heat-treated	bar, 1 in. diam., rolled 4 hr at 1380°F, ac.	oil-quenched from 1875°F, tempered at 1470°F	annealed at 1500°F	water-quenched from 1650°F, tempered at 1050°F	³ hr at 1600°F, quenched in oil at 130°F, tempered 1 hr at 810°F	
Composition percent	Chromium steel C20, Cr75, Mn57, Si21	C59, Cr82, Mn83, Si35	Chromium-niobium steels C09, Cr-5.62, Nb-1.04	Chromium-copper steels C11, Cr53, Cu37, Si82, P08	Chromium-molybdenum steels C08, Cr-5.81, Mo45	C10, Cr-12.75, Mo35, Mn40, Si40, S30, Ni25		Chromium-titanium steels C11, Cr-5.41, Ti75	Chromium-tungsten steels C46, Cr-11.94, W-4.80, Si-2.89, Mn49	Chromium-vanadium steels C58, Cr73, V18, Mn68	79	C52, Cr88, V21, Mn66	

TABLE 192.--MECHANICAL PROPERTIES OF IRON AND STEEL (continued)

Hardness	RB 60	197	159	270	110-170	110–145	09	I	15	179	1	194	388	
Endurance limit kg/mm²	I	1	09.9	17.0	ł	17.6–18.6	I	21.5	19.7	22.5	1	1	1	
Elongation percent	: 31(8 in.)	25(2 in.)	I	I	1–4(2 in.)	22(2 in.)	36–46(2 in.)	15(2 in.)	17(2 in.)	2.1(2 in.)	31(5 diam.)	30(2 in.)	6.5(2 in.)	
Tensile strength kg/mm²	36.0	59.4	14.1	36.1	12.9	40.0	20-21	33.0	32.9	56.8	57.8	62.0	149	
Yield strength kg/mm²		34.8	(yid. pt.)	1	1	26.3 (yld. pt.)	5.7-6.1 (.2% offset)	21.0	20.1	1	38.0	42.5 (vld pt)	116.5	
Propor- tional limit kg/mm²	1	I	I	1	l	l	ı	ı	1	27.4	I	Į	1	
Modulus of elasticity kg/mm²	1	I	5,620 (at ½ load)	11,400 (at ½ load)	I	17,550	20,000	1	1	I	I	I	1	(continued)
Condition	sheet, .062 in., rolled	annealed	cast	cast	cast	cast, annealed	rod, 4 in., swaged ann. 4 hr at 1600°F	longitudinal	transverse	cast	annealed at 1650°F	plate, 💈 in., rolled	oil-quenched from 1625°F, tempered at 500°F	
Composition percent	Copper steels C08, Cu25, Mn38	Graphitic steel C-1.50, Si-1.0, Mo25	Iron TC-3.41, GC-2.85, CC56, Si-2.44, P63, Mn57, S070, Ti10	Alloy cast iron: TC-2.61, GC-1.73, CC88, Si-2.38, Ni-1.08, Mn77, S105, Cr09	Alloy cast iron: TC-2, Ni-18, Si-5, Cr-2, Mn-1, P01, S1	Malleable cast iron: TC-1.75-2.30, Si85-1.20, Mn-<.40, P-<.20, S-<.12	Pure iron: Fe-99.99	Wrought iron: C017, Si122, P084	Wrought iron: C017, Si122, P084	Manganese steels C35, Mn-1.71, Si30	Molybdenum steels C23, Mo17, Mn67, Si52, Cu10	C24, Mo22, Mn85, Si19	C39, Cr86, Mo17, Mn56	

_
(continued)
STEEL
RON AND
ES OF IR
ROPERTI
NICAL P
-MECHA
3LE 192
TAB

Endurance limit	it kg/mm² number	in.) — 187	n.) — 226	in.) — 195	in.) –	n.)	in.) – –	in.) 31.0* —		in.) – 285	in.) –	in.)	in.) –	in.) — 202	in.) — 229
ঘ	kg/mm² percent	66.4 33(2 in.)	82.2 34(2 in.)	70.0 26(2 in.)	55.0 30(2 in.)	32.7 39(2 in.)	92 18(2 in.)	.) 81 25(2 in.)		99 19(2 in.)	62.5 22(2 in.)	43.6 20(2 in.)	21.3 51(2 in.)	67.6 37(2 in.)	98.5 32(2 in.)
Yield strength	kg/mm²	37.3	57.8			(yid. pt.) 3 17.6 (wid.ge.)	17.6	(.001% on set 52.1 (yld. pt.)			_		.70 (.2% perm.) (.2% perm.)		73.8
·	kg/mm² kg/mm²	21,000 —	19,800 —	- 41.4	- 14.0	_ 7.73	20,000	I		_ 83.0	_ 12.3	_ 3.87	 	20,200	20,000
Condition		wrought, fc., from 1450°F	wrought, oq., from 1450°F, tempered at 1100°F	bar, 4 in. diam., wrought;	ann, at 1350 F: 70 F 800°F	1000°F	bar, 1½ in. diam., ht.	hot-rolled	bar, $\frac{4}{3}$ in. diam., wrought; I hr at 1550°F, oq. tem- pered at 1000°F, grain size 7-8 (ASTM std.), nor-	mal: 85°F	900°F	1000°F	1200°F	lenum steel Mo30, wrought, fc., from 1450°F	wrought, oq. from 1530°F, tempered at 1100°F
Composition	percent Percent	C43, Ni-3.47, Mn64, Si20	n n n	C42, Ni-3.41, Mn66, Si21			Nickel-chromium steels C37, Ni-1.28, Cr52, Mn55	C37, Ni-1.33, Cr65, Mn75, Si18	C36, Ni-1.33, Mn60, Cr56, Si26, (basic open-hearth, deoxidized with Si and Al)					Nickel-chromium-molybdenum steel C32, Ni-1.92, Cr86, Mo30, wr. Mn60, Si16	C32, Ni-1.92, Cr86, Mo30, Mn60, Si16

TABLE 192.-MECHANICAL PROPERTIES OF IRON AND STEEL (continued)

Hardness number	252	1	1	130	ı	438-457	170 ,	302	R _B 92	I		
Endurance limit kg/mm²	47.2	1	28.1	1	67.7	78.7 97.0†	26.7	59.8	I	1		
Elongation percent	23	19	25(8 in.)	30(3 in.)	15(2 in.)	12(2 in.)	68(2 in.)	21(1.5 in.)	40(2 in.)	48(2 in.)	55(2 in.)	
Tensile strength kg/mm²	91.5	0.06	52.8	47.5	139	166	65.4	100.5	61.8	65.8	155	
Yield strength kg/mm²	85.0 (vld. pt.)	74.0 (yld. pt.)	38.7 (yld. pt.)	33.4	102.5 (.1% perm.)	92.8 (.01% perm.) 148 (.1% perm.)	l	I	28.1 (yld. pt.)	31.5	83.0 (yld. pt.)	
Propor- tional limit kg/mm²	67.7	42.8	I	1	١	1	21.1	9.14	1	I	11	
Modulus of elasticity kg/mm²	I	I	I	I	I	20,500	I	17,600	1	I	1 1	(continued)
Condition	oil-quenched from 1525°F, tempered at 1200°F	quenched from 1525°F into lead at 840°F (austem- pered)	plate, ½-½ in., rolled	rolled	oil-quenched from 1600°F, tempered at 970°F	3 hr at 1600°F, quenched in oil at 130°F, tempered 1 hr at 860°F	water-quenched from 1100°F	bar, 3 in. diam., cold-rolled	Si85, bar, 1 in. diam., rolled	water-quenched from $2010^{\circ}F$; room:	— 85°F —292°	
Composition percent	Nickel-molybdenum steels C41, Ni-1.96, Mo31	2 2 2	Nickel-copper steels C-08, Ni-2.00, Cu-1.00, Mn55, plate, ½-¾ in., rolled Si-<.3	Silicon steels C07, Si-1.17, Mn32	Silicon-manganese steels C52, Si-1.95, Mn-1.05, Cr05	C53, Si-1.96, Mn83	Stainless steel C17, Cr-18, Ni-8	C07, Cr-18.95, Ni-7.69	3,	C11, Cr-16.2, Ni-11.5		

TABLE 192.-MECHANICAL PROPERTIES OF IRON AND STEEL (concluded)

Hardness number —	137	I	357	285	506	$R_{\rm E}$ 103	RB 82	I	149	ı
Endurance limit kg/mm²	I	42.0	1	Ι,	I	ı	ı	30.9	1	ı
Elongation percent 59(2 in.)	60(2 in.)	20(2 in.)	10(2 in.)	21(2 in.)	28(2 in.)	4.5(8 in.)	20(8 in.)	28(2 in.)	29(2 in.)	19(2 in.)
Tensile strength kg/mm² 60.8	62.9	81.5	133	92.8	68.5	93.5	49.2	56.9	60.4	65
Yield strength kg/mm² 26.8	25.3	1	62.5	77.3	50.7	73.0	34.5	31.3	39.4 (yld. pt.)	62 (yld. pt.)
Proportional limit kg/mm²	1	36.4	35.7	57.8	42.3	1	I	18.5	I	ı
Modulus of elasticity kg/mm²	1	1	23,100	22,000	22,200	I	1	i	I	1
Condition air-cooled from 1920°F	water-quenched from 2100°F	bar, 1 in. diam., 1 hr at 1650°F, wq., tempered 1 hr at 1200°F	oil-quenched from 1740°F, tempered 3 hr at 840°F	oil-quenched from 1740°F, tempered at 1110°F	oil-quenched from 1740°F, tempered at 1290°F	sheet, .18 in., hot-rolled	sheet, .18 in., ann.	Si28, annealed	bar, \(\frac{4}{2} \) in. diam., 4 hr at 1380°F, ac.	normalized at 1740°F; tempered at 1470°F
Composition percent C08, Cr-18.58, Ni-9.68, Ti42	C07, Cr-18.2, Ni-9.42, Nb51	C40, Cr-15.21, Si59, Mn28, Ni18	C20, Cr-16.17, Mn-1.06, Si30	C15, Cr-13.50, Si11	т п п	C09, Cr-16.53	3	C20, Cr-27.37, Mn32, Si28, Ni19	C08, Cr-5.81, Mo45	Tungsten steels C71, W-17.30, Cr-3.86, V75

S. A. E. carbon steel, No. 1050 or higher number specified (see carbon steels above). Steel used to be manufactured by acid open-hearth process, to be rolled, drawn, and then uniformly coated with pure tin to solder readily.

American or B. and S. wire	Dian	neter	Req'd twists in 203.2	We	ight lb/100	Req'd bends	Spe	c. minimı	ım tensile s	trength
gage	mm	in.	mm or 8 in.	m m	ft	thru 90°	kg	lb	kg/mm ²	lb/in.2
6	4.115	.162	16	10.44	7.01	5	2040	4500	154	219,000
7	3.665	.144	19	8,28	5.56	6	1680	3700	161	229,000
8	3.264	.129	21	6.55	4.40	8	1360	3000	164	233,000
9	2,906	.114	23	5.21	3.50	9	1135	2500	172	244,000
10	2.588	.102	26	4.12	2.77	11	910	2000	172	244,000
11 12 13 14 15	2.305 2.053 1.828 1.628 1.450	.091 .081 .072 .064 .057	30 33 37 42 47	3.28 2.60 2.06 1.64 1.30	2.20 1.74 1.38 1.10 .87	14 17 21 25 29	735 590 470 375 300	1620 1300 1040 830 660	179 177 179 181 182	254,000 252,000 255,000 258,000 259,000
16 17 18 19 20	1.291 1.150 1.024 .912 .812	.051 .045 .040 .036 .032	53 60 67 75 85	1.03 .81 .65 .51	.69 .55 .43 .34 .27	34 42 52 70 85	245 195 155 125 100	540 425 340 280 225	186 188 190 193 197	264,000 267,000 270,000 275,000 280,000
21	.723	.028	96	.32	.22	105	80	175	200	284,000

Note.—Number of 90° bends specified above to be obtained by bending sample about 4.76 mm (.188 in.) radius, alternately, in opposite directions.

TABLE 194.—STEEL WIRE—EXPERIMENTAL VALUES

Data from tests at General Electric Co. laboratories. Commercial steel music wire (hardened).

Diam	Diameter		te strength ension m² lb/in.²	Diame	eter	Ultimate strength tension kg/mm² lb/in.²			
mm	in.			mm	in.				
12.95	.051	226.0	321,500	6.35	.025	262.0	372,500		
11.70	.046	249.0	354,000	4.55	.018	265.5	378,000		
9.15	.036	253.0	360,000	2.55*	.010	386.5	550,000		
7.60	.030	260.0	370,000	1.65*	.0065	527.0	750,000		
		_	·	4.55†	.018	49.2	70,000		

^{*} For 4.55 mm wire drawn cold to indicated sizes. † For 4.55 mm (.018 in.) wire annealed in H₂ at 850°C.

TABLE 195.—PLOW-STEEL HOISTING ROPE (BRIGHT)

Wire rope to be of best plow-steel grade, and to be composed of 6 strands, 19 wires to the strand, with hemp center. Wires entering into construction of rope to have an elongation in 203.2 mm or 8 in. of about 2½ percent.

Dian	neter	Spec. minim	ım strength	Diam	neter	Spec. minimum strength					
mm	in.	kg	1b `	mm	in.	kg	1b '				
9.5	3	5,215	11,500	38.1	1½	74,390	164,000				
12.7	1/2	9,070	20,000	50.8	2	127,000	280,000				
19.0	$\frac{3}{4}$	20,860	46,000	63.5	$2\frac{1}{2}$	207,740	458,000				
25.4	1	34,470	76,000	69.9	$2\frac{3}{4}$	249,350	550,000				

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 kg/mm² or 220,000 lb/in.² and minimum elongation of 2 percent in 254 mm (10 in.).

Plow steel wire to be of hard crucible steel with minimum tensile strength of 183 kg/mm² or 260,000 lb/in.² and minimum elongation of 2 percent in 254 mm (10 in.).

Annealed steel wire to be of crucible cast steel, annealed, with minimum tensile strength of 77 kg/mm² or 110,000 lb/in.² and minimum elongation of 7 percent in 254 mm (10 in.). Type A:6 strands with hemp core and 19 wires to a strand ($=6 \times 19$), or 6 strands

with hemp core and 18 wires to a strand with jute, cotton, or hemp center. Type B: 6 strands with hemp core, and 12 wires to a strand with hemp center.

Type C: 6 strands with hemp core, and 14 wires to a strand with hemp or jute center. Type AA: 6 strands with hemp core, and 37 wires to a strand ($=6 \times 37$) or 6 strands with hemp core and 36 wires to a strand with jute, cotton, or hemp center.

				Dian	neter	Approx.	weight	Minimun	strength
	Descripti	on		mm	in.	kg/m	lb/ft	kg	1b
Galv.	cast stee	el, Type	A	. 9.5	3 8	.31	.21	3,965	8,740
64		44	"	. 12.7	3 8 1 2	.55	.37	6,910	15,230
44	46 66	66	"	. 25.4	1	2.23	1.50	27,650	60,960
4.6	46 66	44	44	. 38.1	$1\frac{1}{2}$	5.06	3.40	63,485	139,960
Galv.	cast ste	el. Type	AA	9.5	3	.35	.22	3,840	8,460
44	"	,,	44	. 12.7	$1\frac{1}{2}$ $\frac{3}{8}$ $\frac{1}{2}$.58	.39	7,410	16,330
64	46 14	64	44	. 25.4	1	2.23	1.50	27,650	60,960
+4	46 66	64	44	. 38.1	1 1/2	5.28	3.55	59.735	131,690
Galv.	cast ste	el. Type	В	. 9.5	$1\frac{1}{2}$ $\frac{3}{8}$ $\frac{1}{2}$.25	.17	2.995	6,600
"	**	., - 5,1-	"	107	1/2	.42	.28	5,210	11,500
4.4	** **	66	"	27.4	1	1.68	1.13	20,890	46,060
4.6	46 46	44	46	. 38.1	$1\frac{1}{2}$	3.94	2.65	47.965	105,740
Galv.	cast ste	el. Type	C	. 25.4	1	1.59	1.07	18,825	41,500
**	"	46	"	. 41.3	15	4.35	2.92	51.575	113,700
Galv.	plow ste	el. Type	A	. 9.5	$1\frac{5}{8}$ $\frac{3}{8}$ $\frac{1}{2}$.31	.21	4,690	10,340
66	16 6	11, -3, -1	14	. 12.7	1/2	.55	.37	8,165	18,000
44	44 41	44	"	. 25.4	1	2.23	1.50	32,675	72,040
66	"	4.6	"	. 36.5	176	4.66	3.13	69,140	152,430
Galv.	plow ste	el. Type	AA	. 9.5		.33	.22	4,540	10,000
"	44 44	"	"	. 12.7	3 8 1 2	.58	.39	8.750	19,300
"		- 44	"	. 25.4	1	2.35	1.58	32,250	71,100
44	66 66	44	"	. 41.3	15	6.18	4.15	83,010	183,000

TABLE 197.—STEEL-WIRE ROPE—EXPERIMENTAL VALUES

Wire rope purchased under Panama Canal Spec. 302 and tested by National Bureau of Standards, Washington, D. C.

Description and analysis	Dian	neter	Ultimate	strength	Ultimate strength (net area)			
	mm	in.	kg	1b	kg/mm²	lb/in.2		
Plow steel, 6 strands × 19 wires C .90, S .034, P .024, Mn								
.48, Si .172	50.8	2	137,900	304,000	129.5	184,200		
Plow steel, 6 strands × 25 wires C .77, S .036, P .027, Mn								
.46, Si .152	69.9	$2\frac{3}{4}$	314,800	694,000	151.2	214,900		
Plow steel, 6×37 plus 6×19 C .58, S .032, P .033, Mn								
.41, Si .160	82.6	$3\frac{1}{4}$	392,800	866,000	132.2	187,900		
Monitor plow steel, 6×61 plus 6×19 , C .82, S .025, P .019,								
Mn .23, Si .169		$3\frac{1}{4}$	425,000	937,000	142.5	202,400		

Recommended allowable load for wire rope running over sheave is one-fifth of specified minimum strength.

TABLE 198.--MECHANICAL PROPERTIES OF MISCELLANEOUS ALLOYS **

Hardness number	42	32	:	R_c 61	44	:	:	:	R _B 94	:	
Endurance limit kg/mm²	3.8	:	:	:	:	:	:	:	:	:	
Elongation percent	8.8(10 diam.)	6.5(1.25 in.)	:	0(2 in.)	55(2 in.)	35	4(3 in.)	44(2 in.)	19(1.25 in.)	43(2 in.)	
Tensile strength kg/mm²	15.77	9.2(rate of strain 6%/minute)	:	45.7	30.8	32.1	48.5	72.4	63.5	73.8	
Yield strength kg/mm²	5.48 (.02% offset) 9.84 (.2% offset)	:	:	÷	:	:	:	45.0 (yld. pt.)	49.3 (yld. pt.)	45.3 (yld. pt.)	
Propor- tional limit kg/mm²	:	:	:	:	9.28	13.2	37.6	:	:	:	nucd)
Modulus of elasticity kg/mm²	5,600	÷	20,800	24,900	:	:	9,140	:	:	:	(continued)
Density g/cm³	:	8.55	:	8.76	:	÷	:	÷	:	:	
Condition	Cast	Rod, 1 in. diam., chill-cast from 660°F; aged one month at rt.	Cast, ann. 2 hr at 1,650°F	Cast	i	Strip, \(\frac{3}{8}\) in., ann. \(\frac{1}{3}\) hr at \(1365^{\circ}\)F	Rod, ½ in. diam., cast, wq. from 1290°F	Sheet, .050 in., rolled (50% red) ½ hr at 1290°F, ac.	Sheet, .045 in., rolled (50% red), ann. ³ hr at 1300°F, ac.	Sheet, .05 in., rolled (50% red), ½ hr at 1380°F, ac.	te 55, p. 187.
Composition	Cadmium alloys Cu-1.5; Mg95	Zn-5.0	Cobalt alloys Fe-1.4; Ni-1.1; C24	Co-45-55; Cr-30-35; W-12-17	Gold alloys Cd-4.6; Cu-2.8; Zn-1.0	Cu-6.3; Ag-2.1	Cu-15.6; Ag-6.0; Pt-2.78; Zn-2.38; Ni-1.98	Cu-17.95; Ni-17.60; Zn-6.0; Mn4	Cu-34.9; Ni-12.14; Ag-11.11	Ni-17.0; Cu-16.0; Zn-8.65	** For reference, see footnote 55, p. 187.

For reference, see footnote 55, p. 18/.

(급
ne
2
nt
၀
_
ELLANEOUS ALLOYS
0
ᆸ
₹
ဟ
\supset
ЕС
z
۲
ī
Щ
SC
Ξ
≥ L
ö
S
Щ
E
H
ROPERTIE
0
ď
_
4
2
Z
ì
O
Z
ī
00
198
щ
BL
AE
F

Hardness number	:	:	V 10	21	22	3.9	28	69	:	:	
Endurance limit kg/mm²	:	:	.722(10 ⁷)	:	:	:	10.5(108)	(5×10^{8})	:	:	
Elongation percent 4.6(8 in.)	24(8 in.)	18(3 in.)	32(2.5 in.)	9.0(2 in.)	4.0(2 in.)	47	16(8 in.)	2(2 in.)	2.5(4V area)	6.5	
Tensile strength kg/mm² 61.8	24.6	33.7	3.09(rate of strain) .1(in./in.)/min	8.22	8.4	1.34	27.4	25.3	27.4	77.0	
Yield strength kg/mm²	:	:	.: 1)(÷	:	:	:	13.4 (.2% offset)	:	÷	
Proportional limit kg/mm ² 35.1	6.32	15.8	:	:	:	:	9.48	÷	5.2	÷	ned)
Modulus of elasticity kg/mm ² 14,050	2,000	7,700	:	:	:	:	4,290	4,570	4,640	12,240	(continued)
Density g/cm³	:	÷	:	:	÷	:	1.77	:	:	:	
Condition Strip, .006 in., wq. from 1290°F	Strip, .006 in., wq. from 1290°F	Rod, ½ in. diam., cast, wq. from 1290°F	Cable sheath, 1 in. od. $\times \frac{1}{8}$ in. wall, extruded, aged 131 days at rt.	Cast	Cast	Cable sheath, 2.87 in. od. X.159 in. wall (ring specimen)	Rod, extruded from 2 ^{†§} in. to ³ / ₄ in. diam. at 350-400°F	Cast, ht. and aged	Rod, 1 in. diam., hot-rolled	:	
	$P_{t-9.3}$; A_{g1} ; Z_{n02} ; N_{i01}	••	Lead alloys Sb80	Linotype: Sb-11.5; Sn-4.4; Cu08	Monotype: Sb-15.3; Sn-8.3	Sb0015	Magnesium alloys Al-4.40; Mn26	Al-10; Mn>.1; Si<.5; Zn<.3	Cu-13	Manganese alloys Cu-18; Ni-10	

TABLE 198.-MECHANICAL PROPERTIES OF MISCELLANEOUS ALLOYS (concluded)

Hardness	:	:	:	140	195	190-230	73	23	27
Endurance limit kg/mm ⁸	÷	:	:	:	:	:	:	2.39	2.32
Elongation percent	43(4√ <u>area</u>)	:	30(10 in.)	30(2 in.)	30(4 in.)	6-9(2 in.)	40(2 in.)	5.2(10 diam.)	.6(10 diam.)
Tensile strength kg/mm²	61.6	55.0	77.4	49.0	88.0	53-58	20.7	8.4	7.5
Yield strength kg/mm²	18.75 (.01% offset)	:	44.5 (yld. pt.)	24.5 (.2% offset)	41.8 (yld. pt.)	38.5-40.0	(yid. pt.) 9.9	5.76 (.2% offset)	6.88 (.2% offset)
Propor- tional limit kg/mm²	9.4	:	:	:	:	:	3.6	:	:
Modulus of elasticity kg/mm²	21,500	21,800	21,800	18,300	15,500	21,600	:	6,120	2,980
Density g/cm³	:	:	8.4	8.80	8.3	9.24	:	÷	:
Condition	Rod, § in. diam., hot-rolled, ann. 2 hr at 1650°F, slowly cooled	Sheet ann.	Wrought	Sand-cast	Quenched	Cast	Sand-cast	Cast	Cast
Composition percent Nickel alloys	Al-4.78; Mn26; C17; Fe07; Si05	Ni-80; Cr-13; Fe-rem.	Cr-20	Cu-29; Fe-1.5; Si-1.25; Mn.9; C2; S<.015	Ni-60; Cr-15; Mo-7; Be6-1.0; Fe-rem.	Mo-30; Fe-5	Silver alloys Cu-5.75; Cd-1.75	Tin alloys Sb-6.87; Cu-5.69; Pb19; Fe03; As02	Sb-10.01; Cu-9.88; Pb19; Fe08

TABLE 199.—PHYSICAL PROPERTIES OF SOME SPECIAL-PURPOSE ALLOYS*

Elongation 2 in. percent				.0-2.5	10–15			.3550	c heat .2)
Hardness number Rockwell	20	120		90-110	C23-28	C38	C37-42	C85-95	(Specific heat
Young's modulus kg/mm²	7200	7200	4.6	2.6×10	1.26×108		1.33×10^{3}	1.12×10	14.7×10³
Yield strength kg/mm²				18.7	63.	63.	86	21.	
Tensile strength kg/mm²	30	20	23	35	81.	112.	115.	49.	70.3
Thermal expansion per °C		20-200	01 × 5.71	20-200°	12.4 ×10	20-200°	17×10-		$0-200^{\circ}$ 5.4 \times 10- $^{\circ}$
Thermal conduc- tivity cgs	.37	.29		.385	.50	.18	.30	.16	03
Temperature coeff. of resistance									:
Resistivity microhms.	4.3	5.7	13	4.3	3.4	7.8	6.5	12.7	7.0
Composition Density Alloys for strength with light	Duralumin (A 17 S) Al 97, Cu 2.5, Mg .3 2.74	Super duralumin (24 S) Al 93, Cu 4.5, Mn .6 Mg 1.5 2.77	Dow metal Mg 92, Al 8 1.81	Beryllium alloys Beryllium † 1.83	Alloys † Be .45, Co 2.6, Bal Cu wrought 8.75	Be 2.60, Ni 1.10, Bal Cu 7.6	Be 2.0, Co .5, Bal Cu cast	Be 2.0, Co .3, Bal Cu wrought 8.21	Alloys for sealing to glass 42% nickel iron § Fe 57, Ni 42, Mn 1 8.1

^{*} For reference, see footnote 55, p. 187. For low-melting-point alloys, see Table 201; for special magnetic alloys, see Tables 470-476.

† Annealed and heat treated. A number of alloys with beryllium are made by different manufacturers with about these same compositions and properties. These alloys are valuable due to their endurance and wear resistance, for a nonmagnetic material, and, in addition, good heat and electrical conductivity and corrosion resistance. Most of the data are taken from a special American Machinist report, McGraw-Hill.

(continued)

TABLE 199.—PHYSICAL PROPERTIES OF SOME SPECIAL-PURPOSE ALLOYS (continued)

Hardness Elongation number 2 in. Rockwell percent			(Specific heat cgs.15)			100		`	160 (Specific heat
Young's Har modulus nu kg/mm² Roc			20.3×10^3 (25.000	17,900		21.000
Yield strength kg/mm²									
Tensile strength kg/mm²			53.0			70			80
Thermal expansion per °C	20-600° 11.4×10-6	$100-500^{\circ}$ $4.2-5.4\times10^{-8}$	$20-100^{\circ}$ 10.3×10^{-6}	Radial 8.0- 10×10-6 Axial 6.1- 65×10-6		15	18	12	1.6
Thermal conduc- tivity, cgs			90.	÷		.23			
Temperature coeff. of resistance	:		:	÷		8×10-°	<10 ⁻⁶ at 25°C	4×10-4	1.08×10^{-3}
Resistivity microhms- cm	:		6.4	÷		49	4	100	81
Composition Density	Chrom iron Fe 70-72, Cr 28-30, Mn .58 7.8	Fernico Fe 54, Ni 28, Co 18	Sealmet 7.6	Dumet core Ni 42, Fe 58, Cu 20-30 total weight	Miscellaneous Constantin § *	Cu 53.3, Ni 45, Mn 1, Fe .6 8.4	Manganin 8 b Cu 84, Mn 12, Ni 4 8.5	Nichrome § * 59.9 Ni, 25 Fe, 15 Cr, 8.08	Invar * Fe 63.8, Ni 36, C .2 8.05

§ There are several alloys of about this same composition that are made by different manufacturers. They all have alouf the same characteristics,

(continued)

^{*} Heater and resistance.

Standard resistances. Low thermal expansion.

Thermocouples.

Mirrors, its an exceedingly hard untarnishable metal.
 Mirrors and reflecting gratings; takes good polish and does not tarnish easily.
 An alloy sometimes used as a getter for clearing off last traces of gas in an evacuated vessel.
 Used for making special easting and in art work.

TABLE 199.-PHYSICAL PROPERTIES OF SOME SPECIAL-PURPOSE ALLOYS (continued)

Composition percent Chromel R # d	Density	Tensile strength kg/mm²	Linear thermal expansion per °C	Specific heat cgs	Resistivity microhm-cm	Thermal conductivity cgs	Temperature coeff. of resistance
r elements	8.73	/9	13.1×10° 20-100°C	701.	C7:+	1.92 walls	20-100
Alumel # d 94.1 Ni 3, Mn 2, Al and other elements	8.60	09	12×10-° 20–100°C	.125	25.	.297 watts	24.5
Stellite ** Co 59.5, Mo 7.25, Cr 10.8, Fe 31,	c c		Brinell hardness-512 at 3000 kg	-512 at 3000 kg			
ο .	x Z		Spectral reflecting factor: A .15, .20, .30, .50, .75, 1.00, 2.00, 3.00, 4.00, 5.00, 8.00 .32, .42, .50, .64, .67, .689, .747, .792, .825, .848, .880	ng factor: .50, .75, 1.00, 2.0 .64, .67, .689, .74	10, 3.00, 4.00, 5.0 17, .792, .825, .84	0, 8.00 8, .880	
			Spectral reflecting factor: 357, 385, 420, 450, 500 A.188, 200, 251, 288, 305, 357, 381, 564, 600, 632 23, 25, 299, 377, 417, 51, 51, 531, 564, 600, 632	ig factor: 51, .288, .305, .35 .377, .417, .51, .	57, .385, .420, .45 .531, .564, .600, .	50, .500 .632	
			λ.550, .600, .6. .64, .648, .65	λ. 550, .600, .650, .700, 1.00, 1.50, 2.00, 3.00, 4.00, 5.00 .64, .648, .654, .668, .705, .750, .804, .862, .885, .891	50, 2.00, 3.00, 4.0 0, .804, .862, .885	30, 5.00 5, .891	
			λ 7.00, 9.00, 11.00, 14.00 .901, .922, .929, 936	1.00, 14.00 29, 936			
Misch metal 8 " Ce 50-70, Fe 1-5, La, Nd Pr							
ewter h 85 Sn, 6.8 Cu, 6 Bi, 1.7 Sb							
# Hoskins Thermocouple (see Table 51).			(continued)				

TABLE 199.--PHYSICAL PROPERTIES OF SOME SPECIAL-PURPOSE ALLOYS (continued)

							Used for	ron	copper	brass	aluminum	gold		Used for	iteel	rass	ron	
		Used for	copper	brass iron	zinc lead							corrosive §				,,,		
		Flux	resin	zinc chloride	zinc chloride +	10H 0/.C7	Soldering temperature	820°C	695	740				Soldering temperature	870°C	870	750	
							Λu					20						
							Pb											
	-	Soldering	170°C	2/1	190		Sp				2							(continued)
							ΑI				13							
							Sn				63							
							Ag	10	20	80		30		Cu	50-53	Rem	Rem	
ng alloys	ition					sition	Zn	38	38	4	18		position	Sn			5-9	
and brazin	r-compos	Sn	29	3	20	r-compo	Cu	52	34	16	3	70	loys—com	Zn	Rem	55-60	20-05	
Soldering and brazing alloys	Soft solder—composition	Pb	30	0+	20	Hard solder—composition	Cd	rvi					Brazing al	Ni Zn Sn		7-9		

TABLE 199.--PHYSICAL PROPERTIES OF SOME SPECIAL-PURPOSE ALLOYS (concluded)

	n limit in Torsion	psi	700 1	610	610	:	725 36.0		172 11.5			1	83.3 81.7					
F	ng's expansion						.5 3.89		30 8.2			1000	84,3	82.5	79.0	85.5	79.5	
	rupture Young's										ੇ ਜੂ ਜ	800	89.5	86.0	82.5	86.5	83.0	°S.
		g/cm³							8.7.8		sus temperature, °	009	9.06	0.68	82.8	88.0	85.5	Trepared by N. A. Waldrop, Carboloy Co.
	Hardness	60 kg load	91.0	88.2					39R _e	04Ne	Hardness ver	400	92.3	4.06	85.8	0.06	87.1	Tepared by N. A
		C TiC	:		•	8						0	7		0	r,	0	1 × 10-6.
ides	Composition	Co TaC	9		16 27	10	7		P, .05 S			20	93.7	.06	87.	.06	88.	0s. k × 106.
Carboloy cemented carbi		WC				82		d steel	SAE 10959 C, .3 Mn, .04	W, 4 Cf, 1 V		80°F	92.8	91.0	87.4	6.05	88.0	parison. 1 × 10 ³ .
Carboloy co	Grade	desig- nation	44A	55A	77B	78B	831	Heat-treated steel	SAE 1095—.	H.S.S.—I/		Grade	831	78B	77B	44A	55A	1 For comparison.

		Den	sitv		nsion, /mm²		ension, b/in.2	Perc	ent	Hard	ness
Metal or alloy approx. comp.		gm per	lb per	P-limit	Ultimate strength	P-limit	Ultimate strength	Elong. in 50.8 mm (2 in.)	Reduct.	Brinell @ 500 kg	Sclero.
percent	Condition [Ingot sintered,	cm ³	ft ⁸	ъ	D °	പ്	D °	豆。	20	m"	νς «
	D = 5.7 mm or .22	18.0	1124	_	12.7	_	18,000	0.0	0.0	_	
	Swaged rod, D = .7 mm or .03				,		10,000	0.0	0.0		
T	in		_	_	151.0	_	215,000	4.0	28.0	-	
Tungsten, W 99.2*	D = .029 mm or .00114 in	-		_	415.0	-	590,000	_	65.0	_	-
	hot 97.5% reduction	-		_	164.0	_	233,500	3.2	14.0	_	-
	equiaxed at 2000° C in H ₂ †		_	_	118.0	_	168,000	0.0	0.0	_	_
	(Cast	7.0	437	(Im			and Cd)		_	_	
	Coarse crystalline.	_	_	_	2.8 to 8.4	_	4,000 to 12,000	- -	=		o 8to 10
Zinc,‡ Zn:	Rolled (with grain or direction of rolling) Rolled (across grain or direction of	_	_	2.0	19.0	2,900	27,000	_	-		_
	rolling) Drawn hard	7.1	443	4.1	25.3 7.0	5,800 —	36,000 10,000	_	_	_	

* Commercial composition for some incandeseent electric lamp filaments containing thoria (ThO2) approx. 0.75

m or 0.025 in.

† Compression on cylinder 25.4 mm (1 in.) by 65.1 mm (2.6 in.), at 20 percent deformation:
For spelter (cast zinc) free from Cd, av. 17.2 kg/mm² or 24,500 lb/in.²
For spelter with Cd 0.26, av. 27.4 kg/mm² or 39,000 lb/in.²
Modulus of rupture averages twice the corresponding tensile strength.
Shearing strength: rolled, averages 13.6 kg/mm² or 194,000 lb/in.²
Modulus of elasticity: cast, 7.750 kg/mm² or 11,025,000 lb/in.²
Modulus of elasticity: rolled, 8450 kg/mm² or 12,000,000 lb/in.²

TABLE 201.--LOW-MELTING ALLOYS *

	Cor		Melting point			
Name B	i Cd	Pb	Sn	Other	°F	°C
Anatomical alloy 53	.5	17	19	Hg 10.5	140	60
Wood's alloy 50	12.5	25	12.5	· ·	154.4	68
Quaternary eutectic alloy 49	.5 10.10	27.27	13.13		158	70
Fusible alloy 38	.4 15.4	3 0.8	15.4	_	159.8	71
Eutectic alloy (Bi-Cd-Pb) 51	.6 8.1	40.2	_	_	196.7	91.
Alloy for fine castings 50	_	32.2	17.8	_	212	100
Rose's alloy 50		28	22	_	212	100
Bismuth solder 40	_	40	20		235.4	113
Eutectic alloy(Bi-Sn) 57	_		43	_	280.4	138
Eutectic alloy(Bi-Cd) 60	40		_	_	291.2	144
Eutectic alloy(Bi-Pb-Sn) 13	.7 —	44.8	41.5	_	320	160
Eutectic alloy(Cd-Sn)	_ 32		68	_	350.6	177
Eutectic alloy (Pb-Sn)		3 8	62	_	361.4	183

^{*} See also Table 123.

percent.

† Ordinary annealing treatment makes W hrittle, and severe working, below recrystallization or equiaxing temperature, produces ductility. W rods which have been worked and recrystallized are stronger than sintered rods. The equiaxing temperature of worked tungsten, with a 5-min exposure, varies from 2200°C for a work rod with 24 percent reduction, to 1350°C for a fine wire with 100 percent reduction. Tungsten wire, D = 0.635 mm or 0.025 in.

TABLE 202.—MECHANICAL PROPERTIES OF WHITE METAL BEARING ALLOYS (BABBITT METAL)

Experimental permanent deformation values from compression tests on cylinders 31.8 mm ($1\frac{1}{4}$ in.) diam. by 63.5 mm ($2\frac{1}{2}$ in.) long, tested at 21°C (70°F). (Set readings after removing loads.)

										Perman	ent de	formatio	n @ 21	°C	Hard	
Λlloy No.	Sn		mula, cent	Pb		ring np.	We g/cm³	ight lb/ ft3		154 kg 000 lb		268 kg 000 lb		536 kg ,000 lb	Brinell @ 21°C	@ 500 kg @ 100°C
									Base							
1 2 * 3 4 5	91.0 89.0 83.3 75.0 65.0	4.5 7.5 8.3 12.0 15.0	4.5 3.5 8.3 3.0 2.0	 10.0 18.0	440 432 491 360 350	824 808 916 680 661	7.34 7.39 7.46 7.52 7.75	458 461 465 469 484	.000 .000 .025 .013 .025	.0000 .0000 .0010 .0005 .0010	.025 .038 .114 .064 .076	.0010 .0015 .0045 .0025 .0030	.380 .305 .180 .230 .230	.0150 .0120 .0070 .0090 .0090	28.6 28.3 34.4 29.6 29.6	12.8 12.7 15.7 12.8 11.8
								Lead	Base							
6 7 8 9 10 11 12	20.0 10.0 5.0 5.0 2.0	15.0 15.0 15.0 10.0 15.0 15.0 10.0	1.5	63.5 75.0 80.0 85.0 83.0 85.0 90.0	337 329 329 319 325 325 334	638 625 625 616 625 625 634	9.33 9.73 10.04 10.24 10.07 10.28 10.67	582 607 627 640 629 642 666	.038 .025 .051 .102 .025 .025	.0015 .0010 .0020 .0040 .0010 .0010	.127 .127 .229 .305 .254 .254 .432	.0050 .0050 .0090 .0120 .0100 .0100	.457 .583 1.575 2.130 3.910 3.020 7.240	.0180 .0230 .0620 .0840 .1540 .1190 .2850	24.3 24.1 20.9 19.5 17.0 17.0 14.3	11.1 11.7 10.3 8.6 8.9 9.9 6.4

 $^{^{*}}$ U. S. Navy Spec. 46M2b (Cu 3 to 4.5, Sn 88 to 89.5, Sb 7.0 to 8.0) covers manufacture of antifriction-metal castings. (Composition W.)

TABLE 203 .- RIGIDITY MODULUS FOR A NUMBER OF MATERIALS

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area (kg/mm²) by the number representing the change of angles on the nonstressed faces, measured in radians.

Substance	Rigidity modulus	Substance	Rigidity modulus	Substance	Rigidity modulus
Aluminum		Iron, cast		Steel cast	
Brass		"	6940	" cast, coarse gr " silver	
"		46	8108	Tin, cast	
" cast, 60 Cu+12 Sr Bismuth, slowly cooled		Magnesium, cast		Zinc	
Bronze, cast, 88 Cu+12 S Cadmium, cast		Nickel		Platinum	
Copper, cast	4780	Quartz fiber	2888	66	6220
********	4213	Silver	2380	Glass	
*****	4664	"	2650	Clay rock	1770
Gold	2850	" hard-drawn .		Granite	
Iron, cast		Steel		Slate	

TABLE 204.—VARIATION OF THE RIGIDITY MODULUS WITH THE TEMPERATURE

 $n_t = n_o (1 - \alpha t - \beta t^2 - \gamma t^3)$, where t = temperature Centigrade

Substance	n ₀ a 10 ⁶	$\beta 10^8$	$\gamma 10^{10}$	Substance	n_0	a10 ⁶	$\beta 10^{8}$	$\gamma 10^{10}$
Brass 26	552 2158	48	32	Iron	8108	206	19	-11
" 32	200 455	36	_		6940	483	12	_
Copper 39	72 2716	-23	47	Platinum	6632	111	50	— 8
39	900 572	28	_	Silver		387	38	11
				Steel	8290	187	59	- 9
		n:*:	= n ₁₅ [1 -	-a(t-15)]				
Copper 4.3	7* a = .00039	Platin	um 6.	46* a=.00012	Tin	1	.50* a=	.00416
Copper (com-		Gold	2.	.45 .00031	Lead		.80	.00164
mercial) . 3.8				.00048	Cadn	nium 2	2.31	.0058
Iron 8.2		Alumi	num . 2.	.55 .00148	Quar	tz 3	3.00	.00012
Steel 8.4	5 .00026							

^{*} Modulus of rigidity in 1011 dynes per cm2,

TABLE 205.-INTERIOR FRICTION AT LOW TEMPERATURES

C is the damping coefficient for infinitely small oscillations; T, the period of oscillation in seconds; N, the modulus of rigidity dynes/cm².

Substance C Length of wire in cm. 22 Diameter in mm	.5 22.2	Au 22.3 .609	Pd 22.2 .553	Pt 23.0 .812	Ag 17.2 .601	Quartz 17.3 .612
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 7.54 8 .417 36 3.754 5 7.85 4 .556 74 3.577	27.5 3.010 2.55 4.82 2.969 2.62 6.36 2.902 2.74	1.67 2.579 5.08 1.25 2.571 5.12 .744 2.552	2.98 1.143 5.77 4.60 1.133 3.02 1.111 6.10	55.8 1.808 2.71 7.19 1.759 2.87 1.64 1.694 3.18	

TABLE 206.—RATIO, ρ , OF TRANSVERSE CONTRACTION TO LONGITUDINAL EXTENSION UNDER TENSILE STRESS

(Poisson's Ratio)

Metal	Pb	.\u	Pd	Pt	Ag	Cu	Al	Bi	Sn	Ni	Cd	Fe	
ρ	.45	.42	.39	.39	.38	.35	.34	.33	.33	.31	.30	.28	

ρ for: marbles, .27; granites, .24; basic-intrusives, .26; glass, .23.

TABLE 207.—A SCALE OF HARDNESS BASED UPON THE RELATIVE HARDNESS OF SELECTED MATERIALS

Each material will scratch the one following it in the table.

10 Diamond	8 Topaz	6 Feldspar	4 Fluorite	2 Rock salt
9 Corundum	7 Quartz	5 Apatite	3 Calcite	or gypsum 1 Talc

Agate	Barite	Fluorite 4. Galena 2.5 Garnet 7. Glass 4.5-6.5 Gold 2.5-3. Graphite 5-1. Gypsum 6-2. Hematite 6. Hornblende 5.5 Iridium 6.5 Iridosmium 7. Iron 4-5.	Marble	Ross' metal. 2.5–3.0 Serpentine .3–4. Silver .2.5–3. Silver .5–8.5 Steel .5–8.5 Stibnite .2. Sulfur .1.5–2.5 Talc .1. Tin .1.5 Topaz .8. Tourmaline .7.3
Arsenic3.5				
Asphalt1-2. Augite6.	Feldspar6. Flint7.	Kaolin1. Loess (0°)3 Magnetite6.	Quartz7. Rock-salt2.	Wax (0°)2 Wood's metal3.

TABLE 209.—RELATIVE HARDNESS OF THE ELEMENTS (MEANS)

				Mg 2.0 Se 2.0	
Cr 9.	Rh 6.	Ti 4.0	$Z_n \dots 2.5$	Cd 2.0	Li6
				Sr 1.8	
				Sn 1.8	
				Pb 1.5 Ga 1.5	
				Hg 1.5	
1tu 0.5		Cu 5.0	5 2.0	116 1.5	

^{*} Diamond.

MORTARS MASONRY OF 210.—PROPERTIES TABLE

Т	`ABI	LE	S	210)-2	17.	∟ СНА		CT: AT	ER ER			CS S	OF	SON	ИE	В	UIL	LDI	NG
Shrinkage,	180 days in air percent	.12	.15	.16	.14	.23		8 -		1 yr		360	440	380	400		490	530	490	480
		3		3	0	3		CEME) at—	3 mo.		360	400	340	400		490	200	440	480
	n retentivity	73	81	83	80	83		ES OF	* (lb/in.²	28 days		360	390	360	480 280		490	200	440	510
Brick assemblage Bond	strength in tension psi	69	46	40	40	24		IS TYP	Tensile strength * (lb/in.2) at-	7 days		260	260	230	440 290		390	390	310	500
	Compressive strength psi *	6400	1900	800	1200	1100	,	MADE WITH VARIOUS TYPES OF CEMENT**	Tensil	3 days		180	170	150	320 330		260	260	220	400
	ů "							WITH		1 day	/el	1	1		300	avel	1	1	1	220
ght	Sand	2.5	5	7.5	3.5	4.5				1 yr	d and grav	2900	6300	2000	5700 4100	nd and gra	7500	7800	6100	7300
Proportions by weight	Lime	Τ:	ινi	_	0	8:	. Mat. Bull., August 1947, p. 77 practice will tend to be lower than these laboratory values.	CONCRETES) at—	3 mo.	By weight—I part cement to 6 parts sand and gravel	5400	5400	4700		part cement to 4.5 parts sand and gravel	0059	0099	5700	
Propor	Cement		-	-	-	_	these labora		Compressive strength * (lb/in.2) at-	28 days	ment to 6	4600	4200	3800	5700 5500	ment to 4.	5700	5500	2000	6100
		3	9	6	3	10	7, p. 77 lower than	STRENGTH OF	ssive strengt	7 days	-l part ce	2500	2200	2000	4000 5000		3600	3300	2700	4800
volume	Sand					4.5	ugust 194 nd to be		Compres	3 days	weight-	1500	1200	1000	2900 4300	By weight-1	2300	1900	1600	3600
Proportions by volume	Lime	5:	1	2	0	κż	Bull., A	D TENSILE		1 day	By				1100	By				1700
Propo	Type of cement in mortar Cement	Portland1	Portland	Portland1	Masonry1	Slag 1	68 Watstein and Seese, 'Amer. Soc. Test. Mat. Strength developed in actual building practi	TABLE 211, COMPRESSIVE AND		Type of cement	Normal Portland	(average of 5 brands)	Moderate heat Portland (average of 4 brands)	Fortland-Pozzolan (average of 2 brands)	(average of 3 brands)	Nounal Dartland	(average of 5 brands)	Moderate heat Portland (average of 4 brands)	Fortland-Pozzolan (average of 2 brands)	High-early strength Portland (average of 3 brands)

August 1947, p. 77 tend to be lower than these laboratory values. ⁶⁸ Watstein and Seese, 'Amer. Soc. Test. Mat. Bull., * Strength developed in actual building practice will

3 MADE WITH VARIOUS TYPES OF CEMENT CONCRETES H0 STRENGTH AND TENSILE TABLE 211, -- COMPRESSIVE

	1 yr		360	440	380	400		490	530	490	480
) at—	3 mo.		360	400	340	400		490	200	440	180
Tensile strength * (lb/in.2) at-	28 days		360	390	360	480 280		490	200	440	510 350
le strength	7 days		260	260	230	440 290		390	390	310	500 440
Tensi	3 days		180	170	150	320 330		260	260	220	400
	1 day	vel	1	1	1	300	avel	1	1	[220 380
	1 yr	By weight—I part cement to 6 parts sand and gravel	2900	6300	2000	5700 4100	By weight-1 part cement to 4.5 parts sand and gravel	7500	7800	6100	7300 4600
at—	3 mo.	parts sand	5400	2400	4700		5 parts sai	9059	0099	5700	
n * (lb/in.²)	28 days	ment to 6	4600	4200	3800	5700 5500	nent to 4.	5700	5500	2000	6100
Compressive strength * (lb/in.2) at-	7 days	-l part ce	2500	2200	2000	4000	1 part cer	3600	3300	2700	4800 5200
Compres	3 days	y weight-	1500	1200	1000	2900 4300	weight-	2300	1900	1600	3600
	1 day	B.				1100	By				1700 4600
	Type of cement	Normal Portland	(average of 5 brands)	Moderate heat Portland (average of 4 brands)	(average of 2 brands)	High-early strength Portland (average of 3 brands)	Normal Dartland	(average of 5 brands)	Moderate heat Portland (average of 4 brands)	Fortland-Fozzolan (average of 2 brands)	High-early strength Fortland (average of 3 brands)

²⁰ Schuman and Tucker, Nat. Bur. Standards Journ. Res., vol. 31, p. 107, 1943.
* Strength developed in actual building practice will tend to be lower than these laboratory values.

TABLE 212.—EFFECT OF QUANTITY OF MIXING WATER ON STRENGTH OF CONCRETE ®

W/C ratio, U. S. gal. per sack of cement (94#) 5.0	5.5	6.0	6.5	7.0	7.5
Compressive strength at 28 days—lb/in. ² 5000.0	4500.0	4100.0	3600.0	3300.0	2900.0

⁶⁰ Portland Cement Association, Design and control of concrete mixtures, 9th ed., p. 7.

TABLE 213.—COMPARISON OF STRENGTH AND ELASTIC PROPERTIES OF CONCRETE 61

Modulus of elasticity psi × 10⁻⁶

Compressive strength psi *	Modulus of rupture psi	Compressive (secant)	Flexural (secant)	Dynamic (sonic)
2000	400	2.5	3.5	4.5
4000 6000	600 750	4. 5.5	5. 6.	5.5 6.5
8000	850	6.5	6.5	7.

Values given are approximations only since the ratios between the different properties depend on age, aggregates, cement, and other factors.

TABLE 214.—EFFECT OF ENTRAINED AIR ON COMPRESSIVE STRENGTH OF CONCRETE 62

Cement	Percent change in strength due to 5 percent added air *		
Sacks per yd ⁸	7-day	28-day	
4.5 5.5	+ 9 -12	$^{+\ 4}_{-16}$	
6.5	—17	— 20	

Walker and Bloem, Journ. Amer. Concrete Inst., vol. 42, p. 629, 1946.
 Strengths given are for mixes in which full advantage was taken of the sand and water-content reductions made possible by the increased workability resulting from entrained air.

TABLE 215.—WEIGHTED AVERAGE STRENGTH AND WATER ABSORPTION FOR HARD AND SALMON BRICKS MADE IN U. S. A.⁵³

Compr	essive strength	Modul	us of rupture	Wa	ter abso	
Weighted average	Range	Average		5 hr cold	48 hr cold	5 hr boiling
all samples 7250	(16,000–4000) (6500–2300)	1150 1180 680	(2350–740) (1440–300)	10 10 16	11 11 17	14 13.5 19

⁶⁸ McBurney and Lovewell, Proc. Amer. Soc. Test. Mat., vol. 33, p. 1, 1933.

⁶¹ Stanton, T. E., Amer. Soc. Test. Mat. Bull. No. 131, p. 17, 1944; Witte and Price, ibid., p. 20; Schuman and Tucker, Nat. Bur. Standards Journ. Res., vol. 31, p. 107, 1943; Gonnerman and Shuman, Proc. Amer. Soc. Test. Mat., vol. 28, p. 527, 1928.
* As determined on specimens with length to diameter ratio of 2.

Brick strength lb/in. ² 8000+	Cement mortar 1C:1/4- L:3S * 2000	Cement- lime mortar 1C:1L;6S 1200	Lime mortar 1L:3S 800	Brick morts strength 1C:1/ lb/in.2 L:3S 2500-4500 700	# 1C:1L;6S 560	Lime mortar 1L:3S 275
4500-8000	1000	800	400	1500–2500 500	400	150

⁶⁴ Nat. Bur. Standards Res. Pap. RP 108.
* C—portland cement; L—Lime; S—sand, proportions by volume. ciations Building Code Requirements for Masonry (A41.1-1944).
See American Standard Associations

TABLE 217.—STRENGTH AND STIFFNESS OF AMERICAN BUILDING STONE*

(All values in pounds per square inch.)

Stone lb/ft ³	Compressive y strength (dry) psi	Flexure strength psi	Shear psi	Flexural modulus of elasticity psi	Compressive modulus of elasticity psi
Granite 165	24500 (7700-53,000)† (116 samples)	2810 (1430-5190) (5 samples)	4350 (3900-4600) (4 samples)	2,526,000- 12,950,000	4,545,000-8,333,000
Limestone 148	2600-28,400	640-2000‡ 470-1900§	830-3840† 800-3100§	700,000- 10,400,000‡	1,600,000-11,200,000‡
Marble 170	7850-29,530	900-4270		1,840,000- 11,780,000	
Sandstone . 135	4470-34,900+	260-6570+			
Slate 170		500-14,100		9,800,000- 18,000,000	

^{*} Furnished by Herbert Insley, National Bureau of Standards. † Wet samples 12 percent less. ‡ Perpendicular to bed. § Parallel to bed.

TABLES 218-223.—PHYSICAL PROPERTIES OF LEATHER *

Most physical properties of leathers not only depend on the kind of skin and method of tannage but also vary widely from one hide to another of the same kind, from one location to another within the same hide, and in local random fashion. For example, the tensile strength of vegetable-tanned cattle hides shows coefficients of variation of 6 percent among bends (from different hides), 9 percent among locations (within a hide), and 11 percent for local random fluctuations. The Federal Specifications Board in the United States requires that at least 7 pieces of leather be sampled for most physical tests. In any use of a physical property of leather, such as designing an experiment or acceptance testing for commercial purchase, these variations and the consequent statistical precautions must be observed. The figures below, then, are illustrative, not precise values for any given type of leather.

* Prepared by R. Hobbs, National Bureau of Standards.

TABLE 218,--TENSILE STRENGTH AND ELONGATION OF LEATHER "

	Tensile	Elongation, p	ercent
Thicknes Kind of leather $\frac{1}{64}$ in.		at 1000 lb/in.²	at break
Belting, vegetable-tanned steer 11	6000	6	25
Calfskin, chrome-tanned	4500	8	36
Calfskin, vegetable-tanned 3	6000	5	29
Cordovan, horsehide butt	2000	22	28 58
Deerskin, chrome-tanned 5	6500	26	58
Garment, chrome-tanned horse 4	6000	14	60
Kangaroo, chrome-tanned 2	7000	15	40
Kid, chrome-tanned 2	5000	19	59
Sheepskin, shearling 3	1500	25	38
Shoe upper, chrome retan	4500	15	40
Sole, vegetable-tanned steerhide 13	3500	4	15

⁶⁷ Wilson, J. A., Modern practice in leather manufacture, Reinhold Publishing Co., New York, 1941.

TABLE 219.—DIFFUSION CONSTANTS OF WATER VAPOR THROUGH LEATHER, AS FRACTIONS OF THE DIFFUSION CONSTANT THROUGH AIR (20°C) 65

				
Heavy chrome upper	Box calf	Glove capeskin	Patent leather	Vegetable-tanned insole
.12	.2126	.1726	.004	.09

⁰⁸ Progress in leather science, 1920-1945, British Leather Manufacturers' Res. Assoc., London, 1948.

⁶⁵ Beek, J., and Hobbs, R. B., Journ. Amer. Leather Chem. Assoc., vol. 36, p. 190, 1941. ⁶⁶ Federal specification for leather and leather products, K_k-L-311. Government Printing Office, Washington, D. C., March 1945.

TABLE 220.—REAL AND APPARENT DENSITIES OF LEATHER (70°F AND 65 PERCENT, RELATIVE HUMIDITY) **

Kind of leather	Apparent density	Real density
Raw bated skin		1.43
Formaldehyde tanned buckskin		1.52
Chrome-tanned shoe upper		1.34
Vegetable-tanned sole	1.03–1.15	1.46-1.49
Chrome-tanned sole	1.17	1.46
Formaldehyde-tanned suede	50– .58	1.55-1.62
Vegetable-tanned goatskin	65	1.52

⁶⁰ Kanagy, J. R., and Wallace, E. L., Journ. Amer. Leather Chem. Assoc., vol. 38, p. 314, 1943; Rose, H., ibid., p. 107.

TABLE 221.—COEFFICIENT OF CUBICAL EXPANSION OF LEATHER

(Measured in water between 25° and 75°C) 70

Chrome 496-565 × 10 ⁻⁶	Chrome-vegetable $339-298 \times 10^{-6}$	Vegetable 502-543 × 10 ⁻⁶	Alum-vegetable 590–599 $ imes 10^{-6}$
1ron 592 × 10 ⁻⁶		ormaldehyde $532 imes10^{-6}$	Tendon collagen 538×10^{-6}

Compressibility. 71—The lower limit of the coefficient of compressibility of vegetable-tanned sole leather has been estimated at 33×10^{-6} bar⁻¹. Commercial sole leathers subjected to 3000 lb/in. 2 pressure for 3 minutes were compressed from 4 to 17 percent.

TABLE 222.—EFFECT OF RELATIVE HUMIDITY OF ATMOSPHERE AT 21°C ON PROPERTIES OF LEATHER 72

Percent relative humidity	Tensile strength lb/in. ²	Stretch at 2000 lb/in, ² percent	Increase in thickness percent	Increase in area percent
	Ve	getable-tanned calfs	kin	·
0 33 52 76 97	4630 5210 5220 5280	16 19 19 21 21	.0 2.3 2.9 4.6 9.6	.0 5.2 5.7 6.4 7.3
	CI	nrome-tanned calfsk	in	
0 33 52 76 97	3170 4550 4840 5080 5420	19 25 23 24 25	.0 1.6 1.9 4.2 14.0	.0 7.8 8.9 10.2 14.0

⁷² Evans, W. D., and Critchfield, C. L., Nat. Bur. Standards Journ. Res., vol. 11, p. 147, 1933.

TABLE 223.—THERMAL CONDUCTIVITY OF LEATHER *

cal cm⁻¹ sec⁻¹ °C⁻¹

Vegetable sole leather	Calfskin upper	Kid suede	Hide bellies
4.2×10^{-4}	2.0×10^{-4}	1.5×10^{-4}	2.3×10^{-4}

^{*} For reference, see footnote 68, p. 232.

Weir, C. E., Journ. Amer. Leather Chem. Assoc., vol. 44, p. 79, 1949.
 Weir, C. E., Journ. Amer. Leather Chem. Assoc., vol. 40, p. 404, 1945.

TABLES 224-229.—VALUES OF PHYSICAL CONSTANTS OF DIFFERENT RUBBERS*

Where a range is given, there are available several observations that differ. In most cases the differences are thought to be real, arising from differences in the rubber rather than from errors of observation. Where a single value is given, it is either because no other observations are available or because there seems to be no significant disagreement among values within the errors of observation. The latter values are marked with an asterisk (*). Where no values are given, no data have been found. Where dashes are shown, either the physical measurement is impossible or the values obtained are not significant. Values at 25°C and 1 atmosphere pressure.

Since these data were compiled from a number of sources, no specific

references are given. A list of references follows:

Ball, J. M., and Maasen, G. C., American Society for Testing Materials Symposium on the Applications of Synthetic Rubbers, March 2, 1944. Bekkerahl, Norman, Natural rubbers—a general summary of their composition, properties, and uses, India Rubber World, Noe York, 1947. Bekkerahl, N., and Roth, F. L., Unpublished by India Rubber World, New York, 1947. Bekkerahl, N., and Roth, F. L., Unpublished observations of density and expansivity, 1948. Boonstra, B. B. S. T., Properties of elastomers, chap. 4 of vol. 3 of Elastomers and plastomers, their chemistry, physics, and technology, edited by R. Houwink, Elsevier Publishing Co., New York, 1948. Dawson, T. R., and Porrit, B. D., Rubber physical and chemical properties, Research Association of British Rubber Manufacturers, Croydon, England, 1935. Dillon, J. H., Prettyman, I. B., and Hall, G. L., Hysteretic and elastic properties of rubberlike materials under dynamic shear stresses, Journ. Appl. Phys., vol. 15, p. 309, 1944; Rubber Chem. Techn., vol. 17, p. 597, 1944. Hamill, W. H., Mrowca, B. A., and Anthony, R. L., Specific heats of hevea, GR-S, and GR-I stocks, Ind. Eng. Chem., vol. 38, p. 106, 1946; Rubber Chem. Techn., vol. 19, p. 622, 1946. Kemp, A. R., and Mall, F. S., Hard rubber (ebonite), chap. 18 in Chemistry and technology of rubber, edited by C. C. Davis and J. T. Blake, Reinhold Publishing Corporation, New York, 1937. Prettyman, I. B., Physical properties of natural and synthetic rubber stocks, Handbook of Chemistry and Physics, 30th ed., p. 1301, Chemical Rubber Publishing Co., Cleveland, Ohio, 1947. Rands, Robert D., Jr., Ferguson, W. Jullan, and Prather, John L., Specific heat and increases of entropy and enthalpy of the synthetic rubber GR-S from 0° to 330° K, Nat. Bur. Standards Journ. Res., vol. 33, p. 63, 1944 (RP1595). Selker, Alan H., Scott, Arnold H., and McPherson, Archibald Journ. Res., vol. 31, p. 141, 1943 (RP1554). Wildschult, A. J., Technological and physical investigations on natural and synthetic rubbers. Elsevier Publishing Co., New York

^{*} Prepared by Lawrence A. Wood, National Bureau of Standards.

Density	Unit g cm ⁻⁸	Unvulcanized	Pure-gum vulcanizate .92-1.0	Vulcanizate containing about 33% carbon black 1.12-1.15	Ebonite (hard rubber) 1.13-1.18
Expansivity (1/V)(dV/dT)	(deg C) ⁻¹	67×10 ⁻⁵	66×10 ⁻⁵	53×10 ⁻⁵	19×10 ⁻⁵
Thermal Thermal conductivity		32×10 ⁻⁵	34×10 ⁻⁵	39-45×10 ⁻⁵	39-42×10 ⁻⁶
Specific heat	$(\deg C)^{-1}$ $cal g^{-1}$ $(\deg C)^{-1}$.45	.44—.51	.36	.34
Heat of combustion Second-order transition		10.82×10^{8}	10.63×10³	9.61×10 ⁸	7.92×10³
temperature	deg C	−69 to −74	—72		+80
Optical Refractive index, n _D dn _D /dT	(deg C) ⁻¹	1.5191 —37×10⁻⁵	1.5264 —37×10⁻⁵	==	1.6
Electrical Dielectric constant		2 27 2 45	2.7		
(1000 cps)		$2.37-2.45$ $.002$ $2-40\times10^{-17}$	2.7 .002 10 ⁻¹⁷		2.8-2.9 .005 10 ⁻¹⁷
Mechanical	o cin	2 10/(10	10		10
Compressibility (1/V)(dV/dP) Shear modulus Initial slope of stress-strain	dynes cm ⁻²	54×10 ⁻⁶	51×10 ⁻⁶ 4×10 ⁶	37×10^{-6} 20×10^{6}	24×10 ⁻⁶
Curve Ultimate elongation Tensile strength Complex dynamic shear mod-	dynes cm ⁻² percent	==	10-20×10° 750-850 170-250	30-60×10 ⁶ 550-650 250-350	55×10° 3-8 600-800
ulus (60 cps), $\frac{\sigma' + i\sigma''}{\epsilon} \dots$					
Real part G' , $\frac{\sigma'}{\epsilon}$			3-10×10 ⁶	25×10 ⁶	
Imaginary part G", $\frac{\sigma''}{\epsilon}$ Resilience (ball rebound)		75	.36×10°	3×10 ⁶ 45-55	
	1			.5 00	

TABLE 225.—PROPERTIES OF GR-S (HYDROCARBON OF ABOUT 23.5 PERCENT BOUND STYRENE CONTENT)

Density Expansivity (1/V)(dV/dT)	Unit g cm ⁻³ (deg C) ⁻¹	Unvulcanized .93259335 66×10 ⁻⁵	Pure-gum vulcanizate .961 66×10 ⁻⁵	Vulcanizate containing about 33% carbon black 1.15 53×10 ⁻⁵
Thermal Specific heat Second-order transition temperature	cal g^{-1} (deg C) ⁻¹ deg C	.45 —59 to —64	.43	.36
Optical Refractive index, n _D	(deg C) ⁻¹	1.534-1.535 -37×10 ⁻⁵		==
Electrical Dielectric constant (1000 cps) Loss factor, tan $(90^{\circ}-\theta)$ (1000 cps)			2.85 .003	
Mechanical Shear modulus Initial slope of stress-strain curve Ultimate elongation Tensile strength Complex dynamic shear modulus (60 cps), $\frac{\sigma' + i\sigma''}{\epsilon}$	dynes cm ⁻² percent kg cm ⁻²		10-20×10 ⁶ 400-600 14-28	25×10 ⁶ 30-60×10 ⁶ 400-600 170-280
Real part G' , $\frac{\sigma'}{\epsilon}$	dynes cm ⁻²		5×10 ^e	55×10 ^e
Imaginary part G'' , $\frac{\sigma''}{\epsilon}$			1-2×10 ⁶ 65	9×10° 40-50

TABLE 226.—PROPERTIES OF NEOPRENE (CHLOROBUTADIENE POLYMER)

Density	Unit g cm ⁻³ (deg C) ⁻¹	Unvulcanized 1.23	Pure-gum vulcanizate 1.30 61×10 ⁻⁵	Vulcanizate containing about 33% carbon black
Thermal Second-order transition temperature	deg C	—38 to —41		
$\begin{array}{lll} \textit{Optical} \\ \textit{Refractive Index } n_D & \dots \\ dn_D/dT & \dots & \dots \end{array}$	(deg C) ⁻¹	1.558 -36×10 ⁻⁵		==
$ \begin{array}{c} \textit{Mechanical} \\ \textit{Shear modulus} \\ \textit{Initial slope of stress-strain curve} \\ \textit{Ultimate elongation} \\ \textit{Tensile strength} \\ \textit{Complex dynamic shear modulus (60 cps),} \\ \underline{\sigma' + i\sigma''}_{\epsilon} \\ \end{array} $	dynes cm ⁻² percent		15-30×10° 800-1000 250-375	14×10°
ϵ Real part G', $\frac{\sigma'}{\epsilon}$	dynes cm ⁻²		6×10 ⁶	30-36×10 ⁶
Imaginary part $G'', \frac{\sigma''}{\epsilon}$			1×10 ^e	6×10°
Resilience (ball rebound)			65	40-50

TABLE 227.—PROPERTIES OF GR-1 (BUTYL RUBBER, ISOBUTENE-ISOPRENE COPOLYMER)

Density	Unit g cm ⁻³ (deg C) ⁻¹	Unvulcanized .92	Pure-gum vulcanizate .93 57×10 ⁻⁵	Vulcanizate containing about 33% carbon black 1.13 46×10 ⁻⁵
Thermal Second-order transition temperature	deg C	−67 to −73		
Optical Refractive Index np		1.5091		
Electrical Dielectric constant			2.1-2.6	
Mechanical Shear modulus Initial slope of stress-strain curve Ultimate elongation Tensile strength Complex dynamic shear modulus (60 cps), $\frac{\sigma' + i\sigma''}{\epsilon}$	percent kg cm ⁻²	==	7-15×10° 750-950 180-210	18×10° 30-40×10° 650-850 180-210
Real part $G', \frac{\sigma'}{\epsilon}$			4-10×10°	36×10 ^e
Imaginary part G", $\frac{\sigma''}{\epsilon}$	dynes cm ⁻²		2-3×10 ⁶	16×10 ⁶
Resilience (ball rebound)			8	7

TABLE 228.—COMPRESSION OF RUBBER 73

Commercial soft-packing, black, density about 1.9 g/cm³ and $V_0 = 1$ cm³

 ΔV

Pressure kg/cm ² 20°C 5,000 .1300 10,000 .1800 15,000 .2146	-78.8°C .0794 .1235 .1538	Pressure kg/cm ² 20,000 25,000 30,000	20°C .2345 .2535 .2700	-78.8°C .1772 .1958 .2119	Pressure kg/cm ² 35,000 40,000 45,000 50,000	20°C .2845 .2960 .3050 .3124	-78.8°C .2254 .2364 .2460 .2540
--	------------------------------------	--	---------------------------------	------------------------------------	--	--	---

⁷⁸ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 74, p. 50, 1940.

TABLE 229,—COMPRESSION OF SYNTHETIC AND NATURAL RUBBERS 22

Hevea gum 950 .0535 .1017 .1422 .1697 .1929 Butyl tread 1.125 .0423 .0807 .1129 .1334 .1510 060 5×10-Butyl gum 967 .0519 .0945 .1303 .1543 .1744 6,200 1083 083 Goodrich D-453 I.309 .0432 .0842 .1208 .1480 .1692 .1862 077 Goodrich D-453 1.514 .0329 .0636 .0938 .1162 .1347 103 Goodrich D-420 D-420 .0385 .0745 .0745 .1128 .1378 .1378 080 Goodrich D-402 D-402 .0422 .0837 .1194 .1454 .1670 .1847 3×10-4,800 0851 072 Hood 844A 1.176 .0407 .0792 .1163 .1445 .1645 290 5.3×10-° 3.4×10-° 1.5×10-° .0707 Buna S No. 8774 1.376 .0465 .0872 .1238 .1493 .1715 .1012 Neoprene No. 832 1.357 .0460 .0956 .1294 .1567 .1793 .0939 4,800 082 .0511 .0511 .0967 .1403 .1679 .1891 Duprene 2.0×10-° .0516 .589 .0302 .0615 .0898 .1198 .1301 083 Pressure of dis-continuity hysteresis loop to maximum dis-Amount of discon-ΔV/V_o at discontinuity Ratio of width of Pressure / Density kg/cm² tinuity 15,000 20,000 25,000

2×10-6

.1026

074

6,500

Hevea tread 1.122 .0462 .0870 .1250 .1490 .1707

74 Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 76, p. 22, 1942.

TABLE 230.—CHARACTERISTICS OF A NUMBER OF PLASTICS73

				_			0	_
Hardness,	M88-M92	R-118	M80-M90	M85-M119	R95-R115	M85-M95	M110-M120	R100-R110
Modulus of elasticity, psi x 10-5	3.3-4.5	4	56	3-8.2	1.9-2.2	45.	812.	1.3-3.5
blaiv ot seart?	11000-14000	13000	9000-17000	21000-23000†	6000-11000	11000-16000	÷	11000-13000† 1.3-3.5
Dielectric constant, eqo 00	3.5-4.5	4.1	3.6-3.7	3.4-5.	77.5	2.4-2.6	59.	:
Dielectric strength, \mm\v	450-500	385	300-600	380	300-600	500-700	:	350-500
Resistivity mə-mdo	$>10^{15}$	4.5×10^{13}		$>4\times10^{14}$	$10-15{\times}10^{10}$	10^{17} - 10^{19}	$1-100\times10^{11}$	1012-1014
Specific heat g\lso	.35	4.	:	.2655	.34	.32	.3540	.375
Thermal con- ductivity×104 cgs	4-6	5.8	3.7	4.8-5.0	5.5	2.4-3.3	4.7	3.8-7
Thermal ex- pansion×10 ⁵ cgs	6	10	7.7	8.0-10.	812.	68.	34.5	10-20
Refractive andex n _D 25	1.485-1.500	1.53	1.5	1.53-1.56	1.49-1.51	1.59-1.60	:	1.47
Luminous transmission \$" thick	.91	:	.8591	:	.8992	:	:	:
Specific gravity	1.18-1.19	1.14-1.09	1.2-1.3	1.10-1.46	1.35-1.40	1.05-1.06	1.3-1.5	1.12-1.14
Material	Acrylic plastic	Nylon	Polyvinyl formal	Allyl and polyester	Cellulose nitrate	Polysterene	Phenolic molding	Ethyl cellulose

78 Taken from Technical data on plastics, Plastic Mfg. Assoc., Inc., May 1948. For trade names see original reference. * Compression. † To fracture.

	Poly	mer	Monomer	Boiling point
Name	$^{\prime}$ N_{D}^{20}	ν * `	N _D ²⁰	v
Allyl methacrylate	1.5196	49.0	1.4340 at 23°	55/30 mm
Benzyl mellacrylate	1.5680	36.5	1.514	233
4-cyctolaxyl-cyclohexyl metharcylate	1.5250	53.	1.4913	111/1 mm
Menthyl metharcylate	1.5064	54.5		
Ethylene dimethacrylate	1.5063	53.4	1.4547	92/3 mm
Methyl methacrylate	1,490	56.25	1.417	100
Styrene	1.5916	31.0	1.5434	146
O-chlorostyrene	1.6098	31.0	1.567	47/37 mm
Pentachlorophenol methacrylate	1.608	22.5		(MP 88.5°C)
Vinyl naphthalene	1.6818	20.9	•	92–95/mm

 $^{^{76}}$ Polaroid Corporation, NDRC Report, Library of Congress PB 28553. * See Table 523.

TABLE 232.—GENERAL PROPERTIES OF OPTICAL PLASTICS

	Cyclo- hexyl- metha- crylate	Sterene		Cyclo- hexyl- metha- crylate	Sterene
Index N _D 20°C	1.50645	1.59165	Thermal exp. coeff	9.0×10 ⁻⁵ /°C	$8.0 \times 10^{-5} / ^{\circ} \text{C}$
Index tolerance.	+.0015	+.0015	Thermal conductivity.		2.21×10^{-4}
	500	21.0	T 1 1 0C	(cgs)	cal sec ⁻¹ cm ⁻¹ °C
ν values		31.0	Index charge per °C		000136
" " tolerance.	+.5	+.3	Max. operating temp	150°F	150°F
Partial dispersion					
N_{F} - N_{C}	.00895	.01920	Density	1.095 g/cm ⁸	1.049 g/cm ³
N_D - N_C	.00258	.00536	Moles hardness	2-3	2-3
$N_{F}-N_{D}$.00638	.01384	Over-all visual trans-		
			mittancethrough sam- ple 💰 in. thick	99.1%	99.9%

The values of the properties of natural fibers are influenced by their source, extent of processing or purification, age, temperature and moisture content when tested, and method of test. Those of man-made fibers not only reflect these influences but they can be and commonly are varied to meet the requirements of use by suitable modifications in composition and manipulation of the fibers during production. These facts and the lack of strictly comparable data for all the principal fibers led to the decision to show in the tables the range in values of the properties reported in recent literature rather than selected values. The azlons, made from different proteins, are lumped together and so are the ordinary, medium, and high-tenacity rayons and the several varieties of resin fibers of each kind. References to literature giving more information and more detailed information are as follows:

Textile World's synthetic fiber table, 1949 rev., compiled by C. W. Bendigo, editor, Textile World, September 1949. Chemical engineering materials of construction, Ind. and Eng. Chem., 2d ed., vol. 40, p. 1773, 1948; 3d ed., vol. 41, p. 2091, 1949. Fiber properties chart—1948, Plastics Catalogue Corporation, New York. Smith, H. DeWitt, Textile fibers—an engineering approach to an understanding of their properties and utilization, Proc. Amer. Soc. Test. Mat., vol. 44, p. 543, 1944. A. S. T. M. standards on textile materials. Amer. Soc. Test. Mat., October 1949. Die Unterscheidung der Textilfasern, 2d ed., Verlag Leeman, Zurich, 1949. Morehead, F. F., Some comparative data on the cross-sectional swelling of textile fibers, Textile Res. Journ., vol. 17, p. 96, 1947. Preston, J. M., The temperature of contraction of fibers as an aid to identification, Journ. Textile Inst., vol. 40, p. T767, 1949. Abbott, N. J., and Goodings, A. C., Moisture absorption, density, and swelling properties of nylon filaments, Journ. Textile Inst., vol. 40, p. T232, 1949. Hutton, E. A., and Gartside, Joan, The moisture regain of silk, Journ. Textile Inst., vol. 40, p. T161, 1949. Hutton, E. A., and Gartside, Joan, The adsorption and desorption of water by nylon at 25° C, Journ. Textile Inst., vol. 40, p. T170, 1949. MacMillan, W. G., Mukherjee, R. R., and Sen, M. K., The moisture relationships of jute, Journ. Textile Inst., vol. 37, p. T13, 1946. Albright, J. G., "Spider Silk," Science Teacher, October 1944.

^{*} Prepared by W. D. Appel, of the National Bureau of Standards.

10

TABLE 233.—PHYSICAL PROPERTIES OF NATURAL FIBERS

Density (g/cm³)	Cotton	Flax	Hemp	Jute	Ramie	Silk §	Wool
(g) (m) (g) (m)	1.00-1.00	00:1	2.1	1.10	1.71	1.43-1.33	1.20-1.33
Refractive index: epsilson	1.573-1.581 1.529-1.534	1.594-1.596 1.528-1.532	1.585–1.591 1.526–1.530	1.577 1.536	1.595–1.599 1.527–1.540	1.591–1.595	1.553–1.556
Tensile strength (1000 lb/in.²)	42-125	:	:	:	:	45–83	15-28
Tenacity: dry (g/denier *)	2.1-6.3 110-130	::	::	: :	::	2.9–5.2 75–95	1.0-1.7 76-97
Elongation to break (%)	3-10	:	:	:	:	13–31	20-50
Recovery from strain Elongation (%). Recovery Elongation " Recovery	22 45 45	::::	::::	::::	::::	2 20 33	63 83 83 83
Average stiffness †	57	270	200	185	167	15	4
Toughness index †	14	9	4	2	∞	40	20
Moisture regain at 65% R. H. and 70°F (% of bone-dry weight)	6.0–8.5 7.0–8.5 (8.–11. mercerized) 21	7.0–8.5 zed) 47	8.0	10.6–13.6	6.0	8.1–15.5	13.0–16.2
Heat stability; temperature °C at or above which fiber contracts	: :	::	: :	: :	: :	Does not contract	240
softens	. :	:	•	:	:	:	: :
decomposes	: :		• •	:	:	chars	chare.
		•		:	:	Cilar	Cliais

* "Denier" is the weight in grams of 9,000 meters of the fiber. † The value for stiffness is a measure of the ability of the abstance to absorb work. § Spider silk has a density of 1,30-1,37 and tensile strength of 60 (from golden garden spider).

TABLE 234,—PHYSICAL PROPERTIES OF RESIN AND RAYON FIBERS

		Vinylidine 1.68-1.75	1.60–1.63 1.60–1.63	15–60 1.1–2.9 100	15-30	::::	18	56	0.	0.	71–155 116–163 150–160	\$ The value rr substance to
4	Vinyl	acrylonitrile copolymer † 1.22-1.28	1.536 1.536	65–75	•	::::	:	:	.05	:	70-145 170 190-200	rs of the fiber ability of the fibe
Resins	Vinul oblo	ride acetate copolymer † 1.33–1.36	1.536 1.536	34–80 * 2.0–4.4 100	14-35	20 20 63	7-22	25–30	50.	.2-4.3	66–83 77. 200–260	ms of 9000 mete measure of the
		Acrylic 1.17	::	59–75	:	::::	:	:	.9–2.0 b	:	Does not contract 125 235 chars	#"Denier" is the weight in grams of 9000 meters of the fiber on. #The toughness index is a measure of the ability of the fiber
		Viscose * 1,50-1.54	1.539–1.550 1.514–1.523	29-88 1.5-4.0 44-65	9-30	2 82 15-20 30-37	10-23	17-20	11.5–16.6	35–66	i.i. i77–204	s. #"Denier" is t rmation. The tou
	Rayons	Saponified acetate 1.50-1.52	1.547	136–138 7.0 85	9	28 82 67	105	19	9.8-11.5	22	: : : :	nacity varieties. † Including several varieties. † "' the ability of the fiber substance to resist deformation.
		Cupra- ammonium 1.52-1.54	1.548-1.552 1.520-1.527	33-42 1.7-2.3 59	10-17	5 15 32	14	13	11.0–12.5	41–62	149	s. † Including the fiber substan
		Density (g/cm³)	Refractive index: epsilon	Tensile strength (1000 lb/in.²) Tenacity: dry (g denier ‡) wet (% of dry)	Elongation to break (%)	Recovery from strain Elongation (%). Recovery Elongation " Recovery	Average stiffness §	Toughness index	Moisture regain at 65% R. H. and 70°F (% of bone-dry weight)	Swelling in water, cross-section swelling (%)	Heat stability; temperature °C at or above which fiber contracts loses strength softens melts decomposes	* Including regular and high-tenacity varieties, given, for stiffness is a measure of the ability of th

Density (g/cm³)	Acetate * (cellulose) 1.30-1.35	Azlon (casein, soybean pro- tein, zein 1.25-1.31	Glass 2.54–2.56	Nylon † 1 1.14	Polyethylene
Refractive index: epsilon omega		1.537–1.545 1.537–1.545	1.541–1.548 1.541–1.548	1.570-1.580 1.520-1.530	• • •
Tensile strength (1000 lb/in.2).	20-30	10–19	204-220	65–117	11-30
Tenacity: dry (g/denier ‡) wet (% of dry)	1.2-1.5 60-65	.6-1.0 35-50	6.3–6.9 99	4.5–8.0 85–90	
Elongation to break (%)	23-50	12-15	2.0-3.7	14-25	
Recovery from strain Elongation (%) Recovery " Elongation " Recovery "	94 20	5 60 20 30	3 100 	2 100 20 75	•••
Average stiffness §	3–7	2	290	22-41	
Toughnens index	16–32	14	6	45	
Moisture regain at 65% R. H. and 70°F (% of bone-dry weight)		10.0–15.5	.0	3.5-4.5	.0
Swelling in water, cross-section swelling (%)		5.0–10.0	.0	3.2	•••
Heat stability; temperature °C at or above which fiber contractsloses strength		 100–171	316	Does not contract 140	74
softens	177–208	232-246	816	220	104

^{*}Acetate rayon or estron. † Including regular and high-tenacity varieties. ‡ "Denier" is the weight in grams of 9000 meters of the fiber. § The value given for stiffness is a measure of the ability of the fiber substance to resist deformation. || The toughness index is a measure of the ability of the fiber substance to absorb work.

	Linen y	acht rope	Manila l		Nylon ya	<u> </u>	Saran	rope †	Sisa	l rope	Cotton
Diameter	Net wt 1b/100ft	Min. tensile strength lb	Net wt lb/100ft	Min. tensile strength lb	Net wt lb/100ft	Min. tensile strength lb	Net wt lb/100ft	Min. tensile strength lb	Net wt lb/100ft	Min. tensile strength lb	Tensile strength 1b
36" "" " " " " " " " " " " " " " " " " "	2.02 2.98 4.42 6.00 8.00 10.3 12.4 15.4 19.0 23.2 27.3 32.9 37.8 43.5	925 1400 1950 2425 3200 4050 4920 5910 7075 8460 11,000 12,300 14,500	1.27 1.71 2.32 3.56 5.59 7.05 8.61 11.0 16.2 19.2 23.0 27.0 31.8 36.9 42.5 53.5 82.0 98.0 143. 163. 235.	460 605 1045 1400 1925 2920 3800 4850 5950 7150 8470 9900 11,550 13,200 14,850 16,500 29,200 34,100 45,000 70,000	929 1.66 2.59 3.75 5.15 6.71 8.41 10.2 15.0 17.7 20.3 27.0 30.0 34.0 41.0	850 1200 1900 2700 3700 4700 6000 7500 11,000 13,300 15,600 23,000 26,000 32,000	1.47 2.73 3.93 5.66 —— 10.3 14.0 17.7 23.2 —— 32.0 42.5 —— —— —— —— —— —— —— ——	260 560 730 990 —— 1770 2630 3120 4020 —— 5700 8000 —— 12,000 —— ——	1.47 1.96 2.84 4.02 5.15 7.35 10.2 13.1 16.3 19.1 22.0 26.5 30.7 35.2 40.8 46.9 58.8 87.7 105. 143. 163. 237.	360 480 800 1080 11400 2120 2760 3520 4320 5200 6160 7200 8400 9600 10,800 12,000 14,800 21,200 24,800 37,200 51,200	120 (18") 250 460 650 850 1000 1250
$\frac{3''}{3\frac{1}{4}''}$			235. 289.	70,000 85,000					237. 292.	51,200 61,600	

^{*} Data from the Plymouth Rope Co. and Mr. Axelsson of Columbian Rope Co. Data on cotton rope furnished by Mr. Moss, Southeastern Cordage Co. † Excellent resistance to acids, alkalis, and most chemicals.

		TABL		23/	-24().—	PRO	JPI	ŁK I	TE;	SU	F V	VOO	DS			
	dicular mum	noin perpen grain; magg sile strengt in. ²	noT g of not	420		710	200	1	200	720	770	940	390	260	350	1,010	
	gth, am o	ar parallel t mixsm inin mering stren in. ²	Shes srg she eds \df	1,080	1,740	1,630	1,570	2,030	1,910	1,790	1,720	1,950	1,080	850	066	2,010	
	ession	pendicular t imit P-limit in.²	Perl grs lb\	540	1,300	1,510	940	1,760	1,620	1,540	1,800	1,410	260	460	450	1,250	
	Compression	allel to grain mit, lb/in.²		4,530	3,120	2,670	4,520	5,460	5,120	4,100	3,950	5,790	4,090	3,040	3,800	4,880	
	Impact bending	s.ni\dl ,tim	iil- q	11,600	15,700	16,500	1	18,400	16,400	13,300	13,600	17,000	11,400	000'6	008'6	16,000	
	· [°.ni\dl ,1im	II- d	1.85	2.31	2.97	1.57	2.68	2.72	2.08	1.91	2.60	1.25	1.53	1.37	2.63	
Static bending	-oite s.ni	alə do sulub , 1000Xlb	Mod	1,380	1,270	1,600	1,600	1,400	1,660	1,360	1,270	1,770	1,430	1,180	1,460	1,720	
Sta	8.4	dulus of Josephire, Johin	ooM iur	9,800	12,800	13,000	12,600	13,800	14,100	12,700	11,100	15,400	9,100	8,400	8,700	14,900	
	oi	ight per cub spinoq ,to		28	47	38	34	40	40	38	36	42	27	26	56	45	(continued)
	uo pa	cińc gravity en dry, base lume at test	AO	.4	29.	.55	.49	.57	.56	.55	.52	09.	.39	.38	.37	.64	(cont.
	'şu	isture conte een, %		86	45	42	82	39	48	84	21	45	66	94	105	54	
		, ,	Flace of growth of material tested	Wash.	Va.	Tenn.	Mich., Wis.	Ky.	La., Mo.	Oreg.	Mo.	Ark., N. Y., W. Va., Vt., Mass.	Wis., Vt.	Wis., N. Mex.	Wis., Pa.	Ind., Pa., Vt.	Bull. 479, U. S. Dept. Agr.
			Common and botanical name	(Alnus rubra)	(Malus pumila var.)	(Fraxinus biltmoreana)	(Fraxinus nigra)	:	(F. pennsylvanica lanceolata)	:	(Fraxinus profunda)	s americana)	Aspen, bigtooth (Populus grandidentata)	(Populus tremuloides)		folia)	77 Data taken from Forest Service B

(continued)

TABLE 237.-MECHANICAL PROPERTIES OF HARDWOODS GROWN IN UNITED STATES (continued)

	រពនៃរ ពោ	sion perpendic grain; maximu sile strength 'in;²	neT of iet (dl	099	1	1	950	920	1	520		j		440	1	870	570	
	*1	ar parallel to ain; maximum earing strength in. ²	212	1,400	1,340	1,210	2,240	1,880		096	1,610		2,260	1,170		1,860	1,130	
	ession	pendicular to gin, P-limit in.2	Pers gra ld[820	920	740	1,340	1,190	2,360	440	1,310	1	2,530	5,110	1,630	1,400	570	
	Compression	allel to grain. s.ni\dl tim		5,290	2,670	3,610	6,330	6,130	1	3,010	3,460	4,950	4,520	4,200		3,520	2,740	
	Impact	on on on on on on on on on on on on on o	il.q	13,700	10,400	12,400	24,800	17,200		10,000	10,200	18,400	1	11,200		10,700	11,000	
		s.ni\dl ,iim	ŀŀ!	1.85	1.46	1.80	2.72	2.89	2.03	1.26	2.14		2.34	1.59	1.70	1.85	1.08	
Static bending		oitsele of elastic. 2.mi\di×0001,	Moo Vii	1,900	1,150	1,590	2,170	2,010	2,090	1,170	096	1	1,910	1,180	1,580	940	1,210	
Stat		lulus of stare, lb/in. ²	boM qur	13,600	008'6	12,300	16,900	16,600	16,400	7,500	8,700		14,900	8,100	10,260	8,000	9,400	
		ght per cubic t, pounds	ijeW ooî	38	35	38	46	43	28	25	36	62	26	27	20	39	29	
	τ	cific gravity, in dry, based or ume at test	940	.55	.51	.55	.65	.62	.83	.36	.52	88.	.80	.38	.71	.55	.41	
		sture content, en, %	ioM erg	28	63	65	53	29	42	141	61	4	26	104	47	70	72	
			Place of growth of material tested	Alaska	М. Н.	Wis., NH.	Pa., N. H.	Pa., Vt., Wis.	Fla.	Tenn.	Oreg.	Fla.	3	Tenn., Wis.	Fla.	Oreg.	Ind.	esentative of species.
			Common and botanical name	Birch, Alaska paper (Betula papyrifera neolaskana). Alaska	(Betula populifolia)	(Betula papyrifera)	:		ida)	a)	ıra * rshiana)	Bustic, willow * (Dipholis salicifolia)	(Exothea paniculata)	Butternut (Juglans cinerea)		:	(Catalpa, northern (Catalpa speciosa)]	* Meager data, may not be fully representative of species.

					Stati	Static bending	ſ	Impact	Compression	ssion		Tal r
		ure content, n, %	he gravity, dry, based on me at test	oiduo red th spunod	lus of are, lb/in.º	of elastic-saric-s	s.ni\dl ,ti	bending sini, lb (in	lel to grain, it, lb/in,2	of indicular to a.s. a.s. a.s. a.s. a.s. a.s. a.s. a.s	r parallel to n; maximum ring strength, n.º	non perpendicu an; maximum ile strength a.s
Common and botanical name	Place of growth of material tested	tsioM 9918	oven	Weigl toot	Modu rupt	Modu,	mil-q	mil-q		Perpe grai lb/i	grai	12 o 2
Cherry, black (Prunus serotina)	Pa.	55	.50	35	12,300	1,490	3.11	13,600	2,960	850	1,700	260
anica)	Tenn,	46	.39	27	8,500	1,270	1.51	10,100	3,900	520	1,030	320
Chestnut, American (Castanea dentata)	Md., Tenn.	122	.43	30	8,600	1,230	1.78	10,700	3,780	260	1,080	460
ohylla)	Oreg.	134	.46	32	10,700	1,240	3.11	10,900	4,150	089	1,260	
Cottonwood, eastern (Populus deltoides)	Mo.	111	.40	28	8,500	1,370	1.39	7,300	3,490	470	930	580
Cottonwood, northern black (Populus trichocarpa hastata).	Wash.	132	.35	24	8,300	1,260	1.25	008'6	3,270	370	1,020	330
Cucumber tree (Magnolia accuminata)	Tenn.	80	.48	33	12,300	1,820	1.98	14,700	4,840	710	1,340	099
Dogwood, flowering (Cornus florida)	19	62	.73	51	14,900	1,530	3.10	14,600	1	1,920	2,260	1
	Oreg.	52	.64	45	10,500	1,470	2.02	10,500	4,300	1,650	1,720	1,040
Doveplum * (Coccolobis laurifolia)	Fla.	52	.78	55	13,000	1,290	2.67	1	4,640	2,920	1	1
(Sambucus glauca)	,	124	.52	36	9,200	1,030	1.56	10,500	3,860	260	1	1
Elm, American (Ulmus americana)	N. H., Pa., Wis.	. 68	.50	35	11,800	1,340	2.53	1	4,030	850	1,510	099
Elm, rock (Ulmus thomasi)	Wis.	48	.63	44	14,800	1,540	2.45	1	4,700	1,520	1,920	
Elm, slippery (Ulmus fulva)	Ind., Wis.	85	.53	37	13,000	1,490	2.35	15,300	4,760	1,010	1,630	530
Eucalyptus, bluegum (Eucalyptus globulus)	Calif.	26	.74	22	16,000	2,370	3.28	20,500	8,190	1,720	1,840	l
			(conti	(continued)								

TABLE 237.-MECHANICAL PROPERTIES OF HARDWOODS GROWN IN UNITED STATES (continued)

	n perpendiculai ain; maximum e strength .²	to gr:	1	710	1	360	580	ļ	1	Ì			1		1	089	006	
		grain shear ni\dl	1,850	1,470	1	800	1,590	1		1,740	1	2,150	2,430	2,110	ļ		2,250	
	ndicular to a Simil-T.,	Perper nisry ni\dl	2,790	2,830	1	260	1,100	1,580	2,070	2,140	1,930	2,450	2,170	2,220	1,910	1,130	2,280	
	el to grain. 2, ini\di ,1 2, ini\di oni 4, lb\init oni 4, lb\init oni 6, lb\init oni 7, P-limit		1	3,940	1	1,720	3,710	1	1	1	[5,400	3,380	5,250	
	Impact bending t, lb/in.2	imil-4	1	14,100		6,300	13,700	1	23,600	20,200	1	25,200	19,300	22,800		12,500	15,400	
ſ	2.ni/dl ,t	imil-4	ļ	1.39	1.03	.85	1.72	2.50	2.73	3.41	2.04	3.23	3.01	2.29	2.88	1.88	2.74	
Static bending	-sitsele fo sul	Modu ity, l	2,040	1,780	800	740	1,190	1,270	1,790	2,220	1,700	2,260	2,160	1,890	2,020	1,110	1,630	
Stat	lus of ire, lh/in.²	Modu	16,200	10,200	7,200	4,800	11,000	14,600	17,100	19,200	16,600	20,100	20,200	18,100	17,800	10,300	14,700	
	it per cubic pounds		61	65	31	21	37	47	46	51	42	52	20	48	43	40	l	(continued)
	ic gravity, dry, based on me at test	OVen	.87	.93	44.	.31	.53	89.	99.	.72	09.	.75	.72	69:	.62	.57	I	(cont
	ure content, n, %	isioM esees	41	39	88	66	65	63	99	59	74	54	09	61	80	82	63	
		Place of growth of material tested	Fla.	3	z	77	Ind., Wis.	Wis.	Ohio	Pa., Miss., W. Va.	Miss.	W. Va., Miss., Ohio, Pa.	Miss., Ohio, W. Va., Pa.	Ohio, Miss.	Miss.	Tenn.	Ind., Mo.	
		Common and botanical name	Eugenia, redberry * (Eugenia confusa) False-mastic	(Sideroxylon foctidissimum)	(Ficus surea)	(Bursera simaruba)	(Celtis occidentalis)	(Crateagus calpodendron)	(Carya cordiformis)	(Carya tomentosa)	(Carya myristicaeformis)	(Carya glabra) Hickory, shaphark	(Carya ovata) Hickory, shellbark	(Carya laciniosa)	(Carya aquatica)	(Ilex obaca)	(Gleditsia tricanthos)	

TABLE 237.-MECHANICAL PROPERTIES OF HARDWOODS GROWN IN UNITED STATES (continued)

TABLE 237.-MECHANICAL PROPERTIES OF HARDWOODS GROWN IN UNITED STATES (continued)

	Tension perpendicular to grain; maximum tensile strength lo/in. ²	920		089	220	1	1	1	290	1,010	800	830	1,050	780	870	510	
	Shear parallel to grain; maximum shearing strength, lb/in. ⁸	2,020	1,910	1,820	1,470	2,290	1,490		1,830	2,660	1,780	2,020	2,080	1,840	1,890	1,390	
	Perpendicular to a grown of minit of a grown	1,260	1,150	1,480	1,440	2,260	1,040	2,070	1,310	3,510	1,250	2,110	1,260	1,760	1,380	1,080	
	Parallel to grain. Palmit, lb/in.2 Perpendicular to grain. Perpendicular to grain. Perpendicular to grain.	3,960	4,750	3,580	3,300	6,110	4,420		4,640	5,120	4,580	3,960	4,620	3,700	5,550	2,910	
	Impact bending P-limit, lb/in.2	18,800	14,400	14,600	8,800	13,000	18,600	14,100	14,700	21,300	17,600	11,900	12,300	17,600	16,100	15,300	
	P-limit, lb/in.2	2.24	2.15	2.37	2.28	3.15	2.88	2.30	2.02	2.19	2.33	2.28	2.22	2.25	2.92	1.44	
Static bending	Modulus of elastic- ity, 1000×lb/in. ²	2,020	1,640	1,030	066	1,610	1,590	089	1,690	1,980	1,820	1,100	1,730	1,510	1,910	1,490	
Stat	Nodulus of suruptur.	15,400	13,900	10,300	8,700	12,900	13,300	8,500	12,600	18,400	14,300	10,300	14,000	13,200	17,400	10,900	
	Weight per cubic foot, pounds	4	43	45	40	54	46	51	44	62	44	20	44	47	47	41	(continued)
	Specific gravity, oven dry, based on volume at test	.63	19.	2 i	.57	77.	99.	.73	.63	68.	.63	.72	.63	.67	.67	.59	(con
	Moisture content, green, %	81	80	20	106	62	72	61	84	20	80	72	75	69	65	06	
	Place of growth of material tested	Oak, black (<i>Ouercus nigra)</i> La.	Juricus velutina) Ark., Wis.	(Quercus macrocarpa) Wis.	Oak, California black (Quercus Kelloggii) Oreg., Calif.	Oak, canyon live (Quercus chrysolepsis) Calif.	Oak, chestnut (Quercus montana) Tenn.	Oak, Gambel (Quercus gambelli) Ariz.	Oak, laurel (Quercus laurifolia) La.	Oak, Ilve (Quercus virginiana) Fla.	Oak, northern red (Quercus borealis) Ark., Ind., La., N. H., Tenn.	Oak, Oregon white (Quercus garryana) Oreg.	Oak, pin (Quercus palustris) Mass.	Oak, post (Quercus stellata) Ark, La.	Oak, scarlet (Quercus coccinca) Mass.	Oak, southern red (Quercus falcata) La.	

TABLE 237.—MECHANICAL PROPERTIES OF HARDWOODS GROWN IN UNITED STATES (continued)

	Tension perpendicular to grain; maximum tensile strength ld/in. ⁸	069	840	830	800	1		130	330	1	1,200	1	350		290	
	Shear parallel to grain; maximum shearing atrength, lb/in. ²	1,990	2,000	2,000	2,000	1,650	1	410	620	2,080	2,160	1	230		1,240	
	Rerpendicular to a simil-q. in size of real size of real size of real size of the size of	1,370	1,540	1,470	1,320	1,400	1	180	400	2,130	2,460	800	370	1,400	1,050	
	Parallel to grain. 9. Himit, lb/in.2 9. Perpendicular to grain. 9. Perpendicular to grain. 1. Perpendicular to grain. 1. State of the grain.	4,400	6,350	5,830	4,760	4,380		1,450	2,160	5.180	0,390		2,920	1	3,260	
	Vending, lb/in.s of graph of the limit, lb/in.s	19,000	23,900	22,300	17,100	15,600	1	6,200	5,500	17,400	18,400	1	8,000		10,600	
bs	P-limit, lb/in.2	1.68	3.09	2.88	2.27	2.61	-	.94	88.	2.81	3.49	1.25	86.	2.30	1.91	
Static bending	Modulus of elastic- ity, 1000Xlh/in.2	1,770	2,280	2.050	1,780	1,900		200	850	1,730	2,010	1,290	1,100	1,110	1,120	
Sta	Nodulus of sin, 18. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	13,900	18,100	17,700	15,200	14,500	1	4,700	5,300	13,700	17,700	10,600	008'9	11,000	000'6	
	Weight per cubic foot, pounds	47	47	20	48	48	1	27	24	46	52	37	23	40	31	(continued)
	Specific gravity, oven dry, based on volume at test	29.	89.	.72	89.	69:	1	.39	.34	99.	.74	.53	.33	.57	.45	(cont
	Moisture content, green, %	92	78	74	89	94	31	134	81	63	28	7	112	66	29	
	Place of growth of material tested	La.	3	Ind.	Ark., Ind., La.	La.	Ind.	Fla.	3	Mo.	3	Fla.	Alaska, Vt.	Tenn.	3	
	Common and botanical name	Oak, swamp cnestnut (Quercus prinus)	(Q. falcata pagodacfolia)	(Quercus bicolor)	(Quercus alba)	(Quercus phellos)	(Maclura pomiferum)	(Sabal palmetto)	(Simarouba glauca)	(Carya illinoensis)	(Diospyros virginiana)	(Metopium toxiferum)	(Populus tacamahaca)	(Rhododendron, maximum)	(Sassafras albidum)	

TABLE 237.-MECHANICAL PROPERTIES OF HARDWOODS GROWN IN UNITED STATES (concluded)

					Stat	Static bending						
							(Impact	Compression	ssion		lar n
		ure content, 7, %	se gravity, dry, based on me at test	oiduo req tr pounds	lus of are, lb/in.²	osties of elastic- oni\dix0001	².ni\dl ,ii	bending s.ni\dl ,ii	lel to grain. it, lb/in.²	of islusibation to simil. T. r.	parallel to n; maximum ring strength, 1,2	on perpendicu an; maximun ile strength 2.2
Common and botanical name	Place of growth of material tested	tsioM 19978	uəvo	Weigl , toot	uboM nqun	Modu ity, I	F-lim	mil-4		Perpe is18 ii\dl	grain	12 03
(Amelanchier arborea)	Tenn.	48	.74	52	16,900	1,880	3.44	21,000	6,340	1,790	1,590	1
Silverbell, Carolina (Halesia carolina)	ä	70	.45	32	8,600	1.320	1.46	13,300	3,580	089	1,180	480
Sourwood (Oxydendrum arboreum)	*	69	.55	38	11,600	1,540	2.44	17,200	4,400	1,080	1,500	520
Sugarberry (Celtis laevigata)	Mo.	62	.51	36	006'6	1,140	2.18	11,600	3,970	1,240	1,280	
Sumach, staghorn * (Rhus typhina)	Wis.	45	.47	33	10,200	1,190	2.84		1	1,010		1
Sweetgum (Liquidambar styracifiua)	Mo.	81	.49	34	11,900	1,490	2.57	16,800	4,700	860	1,610	800
Sycamore, American (Platanus occidentalis)	Ind., Tenn.	83	.49	34	10,000	1,420	1.66	10,500	3,710	860	1,470	720
Tupelo, black; blackgum (Nyssa sylvatica)	Tenn.	55	.50	34	009'6	1,200	2.54	14,500	3,470	1,150	1,340	200
Tupelo, water (Nyssa_aquatica)	La., Mo.	26	.50	35	009'6	1,260	2.41	12,500	4,280	1,070	1,590	200
(a)	Ky.	81	.55	38	14,600	1,680	3.70	16,400	5,780	1,250	1,370	069
Walnut, little * (Juglans rupestris)	Ariz.	29	.57	40	14,200	1,480	2.60	11,100		1	1	-
Willow, black (Salix nigra)	Mo., Wis.	139	.37	26	6,200	720	1.94	7,700	2,020	480	1.050	460
lra)	Oreg.	105	44.	31	8,500	1,310	1.37	11,000	3,120	630	1,160	530
Witch-hazel T (Hamamelis virginiana)	Tenn.	70	.61	43	15,200	1,460	3.17	1	1	1,370	-	1
Yellow-poplar (Liriodendron tulipifera)	Ky., Tenn.	64	.40	28	9,200	1,500	1.43	13,500	3,550	280	1,100	520

	njer.	nsion perpendici grain; maximu nsile strength in. ²	01 91	360	270	300	340	330	1	180	390	280	240	220	1	260	1	
		ear parallel to sin; maximum searing strength /in.²	13	1,130	1,000	1,140	1,130	1,070	1,020	710	1,090	840	930	086	1,050	930	1,060	
	ssion	ot relucibred rimil-9, nis: s.ni\	Per Per	220	006	910	920	820	009	380	650	470	620	640	490	009	800	
	Compression	rallel to grain. simit, lb/in.²		5,210	4,470	6,450	5,540	4,660	3,740	3,970	4,160	3,820	4,420	4,960	4,660	3,590	4,020	
	Impact	s.ni/dl , timi	l•d	12,200	10,400	12,700	11,600	12,100	2,000	7,800	10,900	8,200	12,000	11,200	11,400	10,800	10,700	
hr.	ſ	s.ni\dl ,3imi	l-d	5.06	2.15	1.96	1.87	1.60	1	1.23	1.48	1.09	1.22	1.59	1.40	1.72	1.79	
Static bending]]	of elastic. y, 1000Xlb/in. ²)M ti	1,420	1,440	1,920	1,640	1,400	006	1,230	1,540	1,030	1,630	1,580	1,530	1,380	1,200	
Stat		odulus of apture, lb/in. ²	Mo	11,100	10,600	11,700	11,200	6,600	7,100	2,600	10,800	006'9	9,300	10,100	9,400	9,300	8,900	
		eight per cubic oot, pounds	W.	31	32	34	31	30	23	25	27	21	28	26	27	56	78	
	tt	ecific gravity, ven dry, based o olume at test	v o	44.	.46	.48	4.	.43	.33	.36	.39	.30	.40	.38	.38	.37	.40	
		oisture content, reen, %		38	91	36	48	38	47	117	116	62	94	36	99	115	111	
		Place of growth of	material tested	Alaska, Oreg.	La., Mo.	Wash., Oreg., Calif.	Mont., Idaho, Calif.	Wyo., Mont.	Colo.	Wis.	Calif.	N. Mex.	Mont., Oreg.	Oreg.	Wash.	Calif., N. Mex.	Wis., Tenn., N. H., Vt.	246.
				nsis) .	:	(Pseudotsuga taxifolia)	:			(Abies balsamea) Fir. California red	a)	onica)	(Abies grandis)	rocera)		oncolor)	(sis)	** For reference, see footnote 77, p. 246.

TABLE 238.—MECHANICAL PROPERTIES OF SOFT WOODS GROWN IN UNITED STATES (continued)

					Sta	Static bending						
			1				[Impact	Compression	ssion		n ຖອາ.
		ture content,	inc gravity, n dry, based on ime at test	tht per cubic ,, pounds	o sulu o sulu in:².ni/dl ,arut	ulus of elastic- 1000×lb/in.²	s.ni\dl ,tit	bending s.ni\dl.ti.	llel to grain. s.ni\dl tit, lb\in.2	or relucibne timil-q ,ni	r parallel to in; maximum iring strength, n.º	n,s rain; maximur ile strength ile strength
Common and botanical name	Place of growth of material tested	sioM ere	1970	gisW tool	Mod	bol/ ,yii	nil-4	mi!-q		Perp gra lb/i	gra	g of
Hemlock, mountain (Tsuga mertensiana)	Mont., Alaska	62	.47	33	11,200	1,320	2.36	13,300	4,620	1,030	1,230	320
(Tsuga heterophylla)	Wash., Alaska, Oreg.	74	.42	53	10,100	1,490	1.82	12,400	5,340	089	1,170	310
(Libocedrus decurrens)	Oreg., Calif.	108	.37	1	8,000	1,040	1.67	009'6	4,760	730	880	270
Juniper (Juniperus pachyphloea)	Ariz.	40	.51	36	002'9	650	2.74	2,600		1,700		1
(Larix occidentalis)	Mont., Idaho, Wash.	28	.55	38	13,900	1,960	1.99	15,600	5,620	086	1,410	430
(Pinus strobus)	Wis., Minn., N. H.	73	.35	25	8,600	1,240	1.51	9,700	3,670	510	0006	310
(Pinus banksiana)	Wis., Minn.	09	.43	30	006'6	1,350	1.43	12,200	3,380	009	1,170	420
(Pinus jeffreyi)	Calif.	101	.40	28	9,300	1,240	2.43	12,500	4,240	790	1,210	380
(Pinus flexilis)	N. Mex.	89	0+.	28	9,100	1,170	2.13	11,400	-	720	800	220
(Pinus tacda)	Fla., Md., N. C., S. C.,	81	.51	36	12,800	1,800	1.92	12,100	4,820	086	1,370	470
(Pinus contorta latifolia)	Wyo., Colo., Mont.	65	.41	29	9,400	1,340	1.97	009'6	4,310	750	880	290
(Pinus palustris)	La., Miss., Fla., S. C.	63	.58	41	14,700	1,990	2.44	15,400	6,150	1,190	1,500	470
(Pinus rigida)	Tenn., Mass.	26	.49	34	10,800	1,430	1,62	12,600	3,960	1,010	1,360	480
* Manager date man not be fully as	and desired the desired of the desir											

* Meager data, may not be fully representative of species.

(continued)

TABLE 238.—MECHANICAL PROPERTIES OF SOFT WOODS GROWN IN UNITED STATES (continued)

					Sta	Static bending	ho					
Common and hotenical name	Place of growth of	Moisture content, green, %	specific gravity, oven dry, based on volume at test	Veight per cubic foot, pounds	do sulubolv ani\dl ,91u3qu1	odulus of elastic- ity, 1000Xllv/in. ²	² .ni\d! ,timil-9	Impact bending bending ding.2	Omerand of serain of serai	or pendicular to serpendicular to serpen	ohear parallel to grain: maximum shearing strength, lb/in. ²	Pension perpendicular to grain: maximum tensile strength diviv. ²
Pine, pond (Pinus rigida serotina)	Fla.	56	.54	38	11,600	1,750	2.21	13,200		1,120	1,380	360
Pine, ponderosa (Pinus ponderosa)	Colo., Wash., Ariz., Mont., Calif.	91	.40	28	9,200	1,260	1.85	008'6	4,060	740	1,160	400
(Pinus resinosa)	Wis., Minn.	92	7.	31	11,000	1,630	1.77	13,400	4,160	650	1,210	460
(Pinus clausa)	Fla.	36	.48	34	11,600	1,410	1.83	12,400	3,900	1,030	1,100	300
(Pinus eschinata)	Ark., La., N. C., N. J., Ga.	81	.51	36	12,800	1,760	1.93	13,600	2,090	1,000	1,310	470
Pine, slash (Pinus caribaea)	Fla., La.	99	19.	43	15,900	2,060	2.76	15,800	6,280	1,390	1,730	570
Pine, sugar (Pinus lambertiana)	Calif.	137	.36	25	8,000	1,200	1.53	10,700	4,140	290	1,050	350
(Pinus pungens)	Tenn.	75	.52	36	11,600	1,550	2.30	14,200	4,260	1,210	1,200	360
(Pinus monticola)	Mont., Idaho	54	.38	27	9,500	1,510	1.47	11,900	4,480	540	850	1
(Pinus edulis)	Ariz.	09	.51	36	9,400	1,100	1.64	12,100	3,400	066	1,510	280
(Chamaedyparis lawsoniana)	Oreg.	43	.42	29	11,300	1,730	1.97	13,500	2,890	260	1,080	400
(Juniperus virginiana)	Vt.	35	.47	33	8,800	880	1.01	8,500		1,140		1
(Juniperus silicicola)	Fla.	26	.44	31	9,400	1,170	1.88	10,200	5,190	1,000	750	1
			(cont	(continued)								

TABLE 238.--MECHANICAL PROPERTIES OF SOFT WOODS GROWN IN UNITED STATES (concluded)

	ular m	Cension perpendic to grain; maximu tensile strength lb/in. ²	220	240	280	240		350	350	370	360	400	220	240	
		bhear parallel to grain; maximum shearing strength li) in.²	00	860	930	940	1,030	1,030	1,080	1,150	1,080	1,280	800	850	2,230
	ssion	ot relucidat to grain, P. Imit s.ni\dl	e 10	550	640	860	650	540	580	710	570	066	200	380	2,110
	Compression	oriallel to grain. ² .ni\dl tjimil- ²		2,660	3,750	4,550	4,520	3,589	4,610	4,780	3,700	4,780	2,740	2,630	4,730
	Impact	g s.ni\dl ,≀imil-′	8,600	6,800	9,100	10,200	13,400	10,400	11,900	11,400	10,300	12,500	2,600	7,100	12,100
		2.ni/dl ,timil-	1.4	1.35	1.50	2.04	1.34	1.34	1.73	1.62	1.76	2.19	1.46	1.72	3.59
Static bending		olodulus of elastic ity, 1000×llb/in.²	1,120	760	1,120	1,340	1,530	1,280	1,520	1,570	1,340	1,640	930	800	1,350
Stat		o sulus of	7,700	6,400	8,300	10,000	10,300	8,700	10,200	10,200	008'6	11,600	008'9	6,500	15.200
		Veight per cubic foot, pounds	, 83	21	24	28	28	24	28	28	58	37	23	22	44
	ti	pecific gravity, oven dry, based or volume at test	.33	.30	.34	0+.	.40	.34	.38	.40	.40	.53	.32	.31	.62
		Aoisture content, green, %	3, 7,	146	112	112	38	80	43	42	50	52	35	55	44
		Place of growth of	Mont., Alaska, Wash.	Calif.	Calif.	Calif.	N. H.	Mont., Idaho, Colo.	Tenn., N. H.	Wash., Alaska, Oreg.	N. H., Alaska, Wis.	Wis.	N. H., N. C.	Wis.	Wash.
		owww.	Redecdar western (Thuja plicata) Redecodar western Reway (Steadar) Redwood (Second growth.	•	(Sequoia sempereirens)	:	:	Spruce, Engelmann (Picca engelmannii)	(Picca rubens)	Spruce, Sitka (Picea sitchensia)	Spruce, white (Picca glauca)	Tamarack (Larix laricina)	White-cedar, Atlantic (Chanaccyparis thyoides)	White-cedar, northern (Thuja occidentalis)	Yew, Pacinc (Taxus brevifolia)

TABLE 239.—DENSITY IN g/cm 3 AND IN lb/ft 3 OF DIFFERENT KINDS OF WOOD

Wood is to be seasoned and of average dryness. See also Tables 237 and 238.

Wood	g/cm ³	lb/ft ³	Wood	g/cm³	lb/ft3
Alder	268	26-42	Lancewood	.68-1.00	42-62
Apple	684	41-52	Lignum vitae		73-83
		40-53	Linden or lime-tree	.3259	20–37
	Cork	10 30	Locust	.6771	42-44
		19-25	Logwood	.91	57
Basswood	140	19-23	Mahagany Handuras	.65	41
			Mahogany, Honduras.		53
(See Linden)	0 00	43-56	Mahogany, Spanish	.85	
Beech			Maple	.6275	39-47
		32–48	Oak	.6090	37-56
Blue gum 1.0		52	Pear-tree	.6173	38-45
		59–72	Pine, eastern white	.3550	22–31
Bullet-tree 1.0		55	Pine, larch	.5056	31–35
Butternut		24	Pine, pitch	.8385	52–53
and the second s		30–35	Pine, red	.48– .70	30-44
		43-56	Pine, Scotch	.43– .53	27–33
	226 1	14–16	Pine, spruce	.48– .70	30-44
Dogwood	6 4	47	Pine, yellow	,3760	23-37
Ebony 1.1	1–1.33	59-83	Plum-tree	.6678	41–49
Elm	460 3	34–37	Poplar	.355	22-31
Greenheart	3-1.04	58–65	Satinwood	.95	59
Hazel	080 3	37–49	Sycamore	.4060	24-37
	093 3	37–58	Teak, African	.98	61
Holly	6 4	17	Teak, Indian	.6688	41-55
Iron-bark 1.0	3 6	54	Walnut	.6470	40-43
Juniper	6	35		1.00	62
Laburnum	2	57	Willow	.4060	24-37

TABLE 240.—DENSITY (g/cm 3) OF SOME FOREIGN WOODS ON THE AMERICAN MARKET *

Almon	.464	Olive
Balsa	.11	Orangewood
Boxwood, West Indian	.8388	Padouk
Bullet-wood, Guiana		Prima vera
Carreto		Purple-heart
Cedar, Spanish		Quebracho 1.25
Cocobola		Rosewood, Brazil
Cocus		Rosewood, Honduras 1.09–1.23
Fustic		Sabicu
Koa		Snakewood 1.05–1.33
Lauaan, red		Tamarind 1.32
Mahogany, African		Tanguile
Mahogany, E. Indian	38	Wallaba
Mora	1.07_1.00	Zebrawood 1.03
Oak, English		Zebiawood 1.00

^{*} Table prepared by W. N. Watkins, U. S. National Museum.

TABLES 241-253.—TEMPERATURE, PRESSURE, VOLUME, AND WEIGHT RELATIONS OF GASES AND VAPORS

TABLE 241.—SIMPLE GAS LAWS

Any amount of gas completely fills the space in which it is confined. The pressure it exerts upon the confining walls depends upon the temperature. A quantity of gas can not be specified by volume only; all three factors—volume, temperature, and pressure—must be stated. The relations between these three factors are expressed by means of the following equation,

 $pv = KT \tag{1}$

in which p, v, and T represent simultaneous values of the pressure, volume, and absolute temperature of any definite quantity of gas, while K is a constant, the numerical value of which depends upon the quantity of gas considered and the units in which pressure, volume, and temperature are measured.

While the behavior of gases at atmospheric pressure closely approximates the equation (1), the relation is not exact. The expansion of air is nearer one-272d of its volume at

273.16°K per degree. For most practical purposes such errors may be neglected.

If we take weights of gases proportional to their molecular weights, a new relation of the greatest importance develops: The value of the constant in equation (1) is the same for each gas. It is customary to use as the unit of quantity, the mol, the number of grams of gas equal to the molecular weight. When 1 mol is the quantity considered, the resulting value of K is designated R.

Values of R in PV = RT for one mol of ideal gas.—1 bar = 10^6 dyne/cm² = 0.987 atm. 1 kg/cm² = 0.968 atm. Gram molar volume of ideal gas at 0° C = 22,414.1 cm³. Pound molar volume of ideal gas at 32° F = 359.05 ft³. Ice point, 0° C = 273.16° K; 32° F = 491.7° R. 1 liter = 1000.027 cm³.

	Temperature in deg	rees Kelvin, °K	(per gram mol)	
°C + 273.16°	Pressure atm atm bar kg/m² kg/cm² mmHg Temperature in degr	Volume cm³ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Energy calories abs joules	R 1.98719 8.3144 82.057 .08206 .08315 847.87 .084787 62.365
°F + 459.7°	Pressure atm cmHg inHg lb/in.² abs lb/in.² abs	Volume ft ³ ft ³ ft ³ in. ³	Energy Btu hp-hr kw-hr	R 1.98588 .00078047 .00058189 .73008 55.486 21.845 10.729 18540.2

With the mol the unit of quantity, N the number of mol of gas, equation (1) becomes

 $pv = NRT \tag{2}$

By the use of equation (2), the above table, and a table of molecular weights, the solution of any problem involving volumes, temperatures, pressures, and weights of gases is very simple.

Mixtures of gases.—Any quantity of gas fills the space in which it is confined and exerts a pressure upon the confining walls. If an additional quantity is added, the pressure is increased in direct proportion to the quantity added. One can regard the pressure exerted by each portion of the total quantity of gas as independent of the presence of the rest. This is true if the second portion of gas is different chemically from the first (Dalton's law), provided the gases do not react chemically.

(continued)

Vapor pressure and the effect of vapor pressure upon the measurement of gas.— If a volatile liquid is introduced, a portion evaporates and exerts a pressure on the confining walls. The amount evaporated and the pressure exerted are independent of the presence of any other gas. If there is enough so that not all evaporates and if time is allowed for equilibrium, the pressure is independent of the volume of space and of the amount of liquid left unevaporated; but it does depend upon the temperature. For each volatile liquid there is therefore a definite saturation pressure or vapor pressure corresponding to every temperature. See Tables 360-369.

When any gas is in contact with a volatile substance, the measured pressure is the pressure exerted by the gas plus the vapor pressure of the volatile material. With no change of temperature, this vapor pressure remains constant no matter how we change the total pressure. Hence for the purposes of volume conversion the saturated gas may be considered as a dry gas, the pressure of which is the partial pressure of the gas, or its equivalent, the difference between the total pressure and the saturated vapor pressure of

the volatile material.

TABLE 242.-VOLUME CONVERSIONS, FACTOR Z, FOR HIGH PRESSURES *

In the measurement of gases at high pressures the quantity PV is no longer constant at constant temperature but varies with the pressure by amounts that differ for each gas. Consequently the relation $\frac{P_1V_1}{RT_1} = \frac{P_2V_2}{RT_2}$ no longer holds. As a correction factor, $Z = \frac{PV}{RT}$ is given for different values of some one or more of the variables. The values of Z for different gases as given in the table are for different pressures and temperatures. The values extend to pressures of 100-200 atm and to temperatures of 200°C. Values of this factor of hydrogen for temperatures ranging from 16°K to 600°K and for pressures ranging from a small fraction of an atmosphere (.01) to 100 atm are given in Table 254, Part 2.19 The value of this factor can be calculated for a wide range of pressures using the data given in some of the following tables.

This tables gives values of volume correcting factor Z (V = 1 at 1 atm pressure and 0°C).

			.\ir				Λ	rgon			Neon
Atm	0°C	50°C	100°C	200°	·c	0°C	50°C	100°C	200°C		0°C
10	.9952	.9997	7 1.0021	1.000	61	.9921	.9973	1.0000	1.0023	1	.0045
25	.9877	.9987	7 1.0044	1.008	84	.9784	.9918	.9984	1.0044	1	.0119
50 75	.9782		5 1.0100	1.013	77	.9577	.9842	.9971	1.0084	1	.0235
	.9722		1.0191	1.02		.9403	.9783	.9971	1.0138		.0358
100	.9712	1.0077	7 1.0253	1.03	82	.9262	.9746	.9990	1.0197	(1	.0492)
		Helium			Hyd	rogen			Oxy	gen	
Atm	0°C	50°C	100°C	0°C	50°C	100°C	200°C	0°C	20°C	50°C	100 C
10	1.0050	1.0042	1.0035	1.0062	1.0056	1.0051	1.0042	.9908	.9933	.9965	.9993
25 50 75	1.0129	1.0108	1.0092	1.0156	1.0141	1.0127	1.0105	.9771	.9835	.9908	.9980
50	1.0260	1.0218	1.0185	1.0316	1.0285	.1.025.5	1.0209	.9562	.9685	.9831	.9968
	1.0392	1.0329	1.0279	1.0480	1.0429	1.0384	1.0315	.9378		.9771	.9971
100	1.0524	1.0440	1.0372	1.0646	1.0575	1.0514	1.0419	.9231	_	.9733	.9983
200				1.1333	1.1168	1.1036	1.0839	_	_	_	_
		Nitrogen	ı		Met	hane					
Atm	0°C	50°C	100°C	0°C	50°C	100°C	200°C				
10	.9975	1.0015	1.0035	.978	.989	.993	.999				
50	.9835	1.0035	1.0125	.883	.941	.971	.997				
100	.9835	1.0145	1.0295	.781	.896	.951	.998				
150	1.0015	1.0385	1.0546	(.730)	.873	.943	1.004				
200	-	1.0686	1.0836	_	.873	.950	1.020				

Adapted from data furnished by J. Hilsenrath, National Bureau of Standards.
 Woolley, Scott, and Brickwedde, Nat. Bur. Standards Res. Pap. RP 1932, vol. 41, 1948.

TABLE 243.—RELATIVE GAS VOLUMES AT VARIOUS PRESSURES

(Deduced by Cochrane, from the pv curves of Amagat and other observers.)

Relative volumes when the pressure is reduced from the value given at the head of the column to 1 atmosphere; see also Nat. Bur. Standards Circ. 279.

	Relative volu		vill occupy whatmospheric f		ire is
Gas (Temp. = 16°C) 1 atm	50 atm	100 atm	120 atm	150 atm	200 atm
"Perfect" gas 1	50	100	120	150	200
Helium 1		94.6	112.5	141	
Hydrogen 1	48.5	93.6	111.3	136.3	176.4
Nitrogen 1	50.5	100.6	120.0	147.6	190.8
Air 1	50.9	101.8	121.9	150.3	194.8
Argon		106.3	127.6	161	
Oxygen 1		105.2			212.6
Oxygen (at 0°C)	52.3	107.9	128.6	161.9	218.8
Carbon dioxide 1	69	477*	485*	498*	515*

^{*} Carbon dioxide is liquid at pressures greater than 90 atmospheres.

TABLE 244.—VAN DER WAAL'S CONSTANTS FOR IMPERFECT GASES 70

Van der Waal developed an equation to represent the pressure, temperature, and volume relation of a real gas. One form of this equation is

$$\left[P + a\left(\frac{u}{V}\right)^2\right](V - nb) = nRt$$

$$n = \text{number of molecules}$$

$$(V - nb) = \text{effective volume}$$

$$a = \text{internal pressure constant [(dynes/cm²) × (cm²/mol)]}$$

$$b = \text{reduction in effective volume } (V) \text{ per molecule } (\text{cm}³/\text{mol})$$

P (dynes/cm²), V (cm³/mol), R, and T have their usual meanings. The value of these constants (a and b) for various gases are given in the table. If Van der Waal's equation were correct, $V_c/3 = b$ (V_c critical volume).

(continued)

⁷⁹ Slater, J. C., Introduction to chemical physics, page 408, 1939, McGraw-Hill Book Co. Used by permission of the publishers.

TABLE 244.—VAN DER WAAL'S CONSTANTS FOR IMPERFECT GASES (concluded)

C	72		,	** **	Molecular volume of	Electric
Gas	Formula	a	b	Vc/3	liquid	moment
Neon	Ne	0.21×10^{12}		14.7	16.7	0×10^{-1}
Helium	He	.035	23.6	20.5	27.4	0
Hydrogen		0.25	26.5	21.6	26.4	0
Nitric oxide	NO	1.36	27.8	19.1	23.7	
Water	H_2O	5.53	30.4	18.9	18.0	1.85
Oxygen	O_2	1.40	32.2	24.8	25.7	0
Argon	A	1.36	32.2	26.1	28.1	Ö
Ammonia		4.22	36.9	24.2	24.5	1.44
Nitrogen		1.36	38.3	30.0	32.8	0
Carbon monoxide	CO	1.50	39.7	30.0	32.7	0.10
		2.35	39.7	36.0	38.9	0.10
Krypton	HC1	3.72	40.7	29.8	30.8	
Hydrogen chloride		3.61				1.03
Nitrous oxide			41.1	32.3	44.0	.25
Carbon dioxide		3.64	42.5	32.8	41.7	0
Methane		2.28	42.6	32.9	49.5	0
Hydrogen sulfide		4.49	42.7		35.4	.93
Hydrogen bromide .		4.51	44.1		37.5	.78
Xenon	Xe	4.15	50.8	38.0	47.5	0
Acetylene	C_2H_2	4.43	51.3	37.5	50.2	0
Phosphine	PH_3	4.69	51.4	37.7	49.2	.55
Chlorine		6.57	56.0	41.0	41.2	0
Sulfur dioxide		6.80	56.1	41.0	43.8	1.61
Ethylene		4.46	56.1	42.3	49.3	0
Silicon hydride	SiH.	4.38	57.6	12.0	47	ŏ
Mothylomine	CH ₃ NH ₂	7.23	59.6		44.5	1.31
Methylamine Ethane		5.46	63.5	47.6	54.9	0
Ethane		9.65	66.8	39.0		1.73
Methyl alcohol	CH₃OH				40.1	
Methyl chloride	CH ₃ Cl	7.56	64.5	45.4	49.2	1.97
Methyl ether	(CH ₃) ₂ O	8.17	72.2	- Pro 18	# 0.0	1.29
Carbon bisulfide	CS ₂	11.75	76.6	67.5	59.0	
Dimethylamine	$(CH_3)_2NH$	9.77	79.6		66.2	
Propylene	C₃H₀	8.49	82.4		69.0	0
Ethyl alcohol	C₂H₅OH	12.17	83.8	41.0	57.2	1.63
Propane	CH ₃ -CH ₂ -CH ₃	8.77	84.1		75.3	0
Chloroform	CHCl₃	15.38	102	77.1	80.2	1.05
Acetic acid	CH₃COOH	17.81	106	57.0	56.1	
Trimethylamine	$(CH_3)_3N$	13.20	108		89.3	
so-Butane	CH(CH ₃) ₃	13.10	114		96.3	
Benzene		18.92	120	85.5	86.7	0
1-Butane	CH ₃ (CH ₂) ₂ CH ₃	14.66	122	00.0	96.5	ŏ
Ethyl other	$(C_2H_5)_2O$	17.60	134	94.0	100	1.2
Ethyl ether	10 1	27.5	183	94.0	139	1.2
Triethylamine		40.3	193		139	60
Naphthalene	C ₁₀ H ₈			1/2		.69
n-Octane	CH ₃ (CH ₂) ₆ CH ₃	37.8	236	162	162	0
Decane	$CH_3(CH_2)_*CH_3$	49.1	289		195	0

TABLE 245.—CORRECTING FACTORS: SATURATED GAS VOLUME TO VOLUME AT 760 mmHg AND 0°C *

Multiply observed volumes of saturated gas by factor to correct to volume of dry gas at 760 mmHg pressure (0°C)

Tem- pera-		-				Pressu	re mmH	3				
5° 6 7 8	.916 .912 .908 .904 .900	720 .922 .918 .914 .910 .906	725 .928 .924 .920 .916 .912	730 .935 .931 .927 .923 .919	735 .942 .937 .933 .929	740 .948 .944 .940 .936 .932	745 .954 .950 .946 .942 .938	750 .961 .957 .952 .948 .944	755 .967 .963 .959 .955 .951	760 .974 .970 .965 .961 .957	765 .980 .976 .972 .967 .963	770 .986 .982 .978 .974 .970
10	.896	.902	.908	.915	.921	.928	.934	.940	.946	.953	.959	.966
11	.892	.898	.904	.911	.917	.924	.920	.936	.942	.949	.955	.962
12	.888	.894	.900	.907	.913	.919	.925	.932	.939	.945	.951	.957
13	.884	.890	.896	.903	.909	.915	.921	.928	.934	.940	.947	.953
14	.880	.886	.892	.899	.905	.911	.917	.924	.930	.936	.942	.949
15	.876	.882	.888	.895	.901	.907	.913	.920	.925	.932	.938	.944
16	.872	.878	.884	.890	.896	.903	.939	.915	.921	.928	.934	.940
17	.868	.874	.880	.886	.892	.898	.905	.911	.917	.923	.929	.936
18	.864	.870	.875	.882	.888	.894	.900	.907	.913	.919	.925	.931
19	.859	.865	.871	.878	.884	.890	.896	.902	.908	.915	.920	.927
20	.855	.861	.867	.874	.879	.886	.892	.898	.904	.910	.916	.922
21	.851	.857	.863	.869	.875	.881	.887	.893	.899	.906	.912	.918
22	.847	.853	.858	.865	.871	.877	.883	.888	.894	.901	.907	.913
23	.842	.848	.854	.860	.866	.872	.878	.884	.890	.897	.903	.909
24	.838	.844	.849	.856	.862	.868	.874	.880	.886	.892	.898	.904
25 26 27 28 29	.833 .829 .824 .820 .815	.839 .835 .830 .825 .821	.845 .841 .836 .831 .826	.851 .847 .842 .837 .832	.857 .853 .848 .843 .838	.863 .859 .854 .849	.869 .865 .860 .855 .850	.875 .871 .866 .861 .856	.881 .877 .872 .867 .862	.888 .883 .878 .873 .868	.893 .889 .884 .879 .874	.899 .895 .890 .885 .880
30	.810	.816	.822	.828	.833	.840	.845	.851	.857	.863	.869	.875
31	.805	.811	.817	.823	.829	.835	.840	.846	.852	.858	.864	.870
32	.800	.806	.812	.818	.823	.830	.835	.841	.847	.853	.859	.865
33	.795	.801	.807	.813	.818	.824	.830	.836	.842	.848	.853	.860
34	.790	.796	.801	.807	.813	.819	.825	.831	.837	.842	.848	.854
35	.785	.790	.796	.802	.808	.814	.819	.825	.831	.837	.843	.849
36	.780	.785	.791	.797	.802	.808	.814	.820	.826	.832	.836	.843
37	.774	.780	.785	.791	.797	.803	.809	.814	.820	.826	.832	.838
38	.769	.774	.780	.786	.791	.796	.803	.809	.814	.820	.826	.832
39	.763	.768	.774	.780	.785	.790	.797	.803	.809	.814	.820	.826
40	.756	.763	.768	.774	.780	.786	.792	.797	.803	.809	.814	.820
41	.751	.757	.762	.768	.774	.780	.786	.791	.797	.803	.808	.814
42	.745	.751	.756	.762	.768	.774	.779	.785	.791	.796	.802	.808
43	.739	.745	.750	.756	.762	.767	.773	.779	.784	.790	.796	.802
44	.733	.738	.744	.750	.755	.761	.766	.772	.778	.784	.789	.795
45	.726	.732	.737	.743	.749	.754	.760	.766	.771	.777	.783	.788
46	.720	.725	.731	.737	.742	.748	.754	.759	.765	.770	.776	.782
47	.713	.719	.724	.730	.735	.741	.746	.752	.758	.764	.769	.775
48	.706	.712	.717	.723	.728	.734	.739	.745	.751	.756	.762	.768
49	.700	.705	.710	.716	.721	.727	.732	.738	.744	.750	.755	.761

^{*} Abridged from Nat. Bur. Standards Circ. 279, 1926.

Part 1.-Ordinary temperatures

As a measure of the compressibility, it is customary to use a coefficient, $1+\lambda=p_{\nu}v_{0}/p_{1}v_{1},\;p_{0}v_{0}\;\text{being at }0^{\circ}\text{C}.$

H ₂ N ₂ O ₂ He	$1 + \lambda = .99939 \pm .00001$ 1.00044 .00001 1.00094 .000013 .99948 .000005	CO CO ₂ N ₂ O	$1 + \lambda = 1.00081 \\ 1.00668 \\ 1.00747$
He Ne A	.99948 .000005 .99951 .000025 1.00099 .000026		

Part 2.-Low temperatures .

pv = 1 for 0°C, 1 atmosphere

	Н	elium			Hyd	rogen	
*°C .00	26.66 38.95 58.58 24.13 49.96 .232 .353 .0308	5v 1.0146 1.0196 1.0294 .6337 .6479 .01126 .01041 .00911	Density 26.28 38.20 56.91 38.07 77.08 20.63 33.92 3 381 7,535	*°C .00 .00 103.57 .58 204.70 257.26	p atm 32.313 44.119 38.41 51.49 16.75 37.00 44.63 .06698 .13153	9v 1.0188 1.0266 .6376 .6433 .2404 .2316 .2300 .05783	Density 31.715 43.284 38.41 80.04 69.68 159.7 194.0 1.1582 2.3031
		leon	7.503			gon	2.0001
-200.1 -217.5	atm 23.06 30.79 84.66 61.66 79.92 49.93 64.97 79.42	1.0089 1.0147 1.0408 2.337 2.293 1.1393 1.1269 1.1256	Density 21.87 30.34 81.35 763.8 348.6 358.5 511.8 632.2	**C .0 .0	20.58 31.57 14.86 45.09 62.24 12.77 11.99 11.15	9856 .9856 .9774 .5813 .4706 .3939 .4663 .4262 .3821	Density 20.88 32.30 25.57 95.80 158.01 27.39 28.12 29.18
	Ox	ygen			Nitr	ogen	
**C 0 0	20.92 49.79 21.01 34.18 61.88 22.30 43.95 55.05	9813 9573 .6550 .6213 .5464 .4835 .3541	Density 21.32 52.01 32.09 55.02 13.23 46.12 124.1 330.2	**C 0	P atm 33.14 43.08 58.63 30.17 45.47 56.71 22.92 30.14 36.49	.9886 .9860 .9834 .6516 .6270 .6109 .3340 .2656	Density 33.52 43.70 59.62 46.13 72.52 92.84 68.62 113.48 344.5

TABLE 247.—RELATIVE VOLUMES FOR O, AIR, N, AND H AT VARIOUS PRESSURES AND TEMPERATURES

(Volume at 0°C and 1 atm being taken as 1,000,000)

		Oxyge	n		Air			Nitrog	en	1	Hydroge	n
Atm	0°	99°.5	199°.5	0°	99°.4	200°.4	0°	99°.5	199°.6	0°	99°.3	200°.5
100	9265			9730			9910					
200	4570	7000	9095	5050	7360	9430	5195	7445	9532	5690	7567	9420
300	3208	4843	6283	3658	5170	6622	3786	5301	6715	4030	5286	6520
400	2629	3830	4900	3036	4170	5240	3142	4265	5331	3207	4147	5075
500	2312	3244	4100	2680	3565	4422	2780	3655	4515	2713	3462	4210
600	2115	2867	3570	2450	3180	3883	2543	3258	3973	2387	3006	3627
700	1979	2610	3202	2288	2904	3502	2374	2980	3589	2149	2680	3212
800	18 7 9	2417	2929	2168	2699	3219	2240	2775	3300	1972	2444	2900
900	1800	2268	2718	2070	2544	3000	2149	2616	3085	1832	2244	2657
1000	1735	2151	_	1992	2415	2828	2068			1720	2093	

TABLE 248.-RELATIVE VALUES OF pv FOR ETHYLENE

		pv at 0°C and 1 atm = 1									
Atm	0°	10°	20°	30°	40°	60°	80°	100°	137°.5	198°.	
46		.562	.684	-							
48		.508		-							
50	.176	.420	.629	.731	.814	.954	1.077	1.192	1.374	1.652	
52		,240	.598	-							
54		.229	.561								
56		.227	.524								
100	.310	.331	.360	.403	.471	.668	.847	1.005	1.247	1.580	
150	.441	.459	.485	.515	.551	.649	.776	.924	1.178	1.540	
200	.565	.585	.610	.638	.669	.744	.838	.946	1.174	1.537	
300	.806	.827	.852	.878	.908	.972	1.048	1.133	1.310	1.628	
500	1.256	1.280	1.308	1.337	1.367	1.431	1.500	1.578	1.721	1.985	
1000	2.289	2.321	2.354	2.387	2.422	2.493	2.566	2.643	2.798		

TABLE 249.—RELATIVE VALUES OF pv FOR CARBON DIOXIDE

Pressure in	1				Relative	values o	f pv at—				
mercury	18.	2°C	35.1	40.2	50.0	60.0	70.0	80.	.0	90.0	100.0°C
30	liq	uid	2360	2460	2590	2730	2870	299	95 3	120	3225
50			1725	1900	2145	2330	2525	268	35 2	845	2980
80		625	750	825	1200	1650	1975			440	2635
110		825	930	980	1090	1275	1550			105	2325
140		020	1120	1175	1250	1360	1525			950	2160
170		210	1310	1360	1430	1520	1645			975	2135
200		405	1500	1550	1615	1705	1810			075	2215
230		590	1690	1730	1800	1890	1990			210	2340
260 290		770 950	1870 2060	1920 2100	1985 2170	2070 2260	2166 2340			375 550	2490 2655
320		135	2240	2280	2360	2440	2540 2525			725	2830
320	4	133	2240	2200	2300	2440	4343	202	20 2	123	2000
				Relative	values of	pv: pv :	at 0°C an	d 1 atm	= 1		
Atm	0°	10°	20°	30°	40°	60°	80°	100°	137°	198°	258°
50	.105	.114	.680	.775	.750	.984	1.096	1.206	1.380		
100	.202	.213	.229	.255	.309	.661	.873	1.030	1.259	1.582	
150	.295	.309	.326	.346	.377	.485	.681	.878	1.159	1.530	
300	.559	.578	.599	.623	.649	.710	.790	.890	1.108	1.493	
500	.891	.913	.938	.963	.990	1.054	1.124	1.201	1.362	1.678	
1000	1.656	1.685	1.716	1.748	1.780	1.848	1.921	1.999			

Original volume 100000 under one atmosphere of pressure and the temperature $^{\circ}$ C of the experiments as indicated at the top of the different columns.

T)		onding volu nts at tempe			Pressure in atmospheres for experiments at temperature—			
Pressure in atm	58°.0	99°.6	183°.2	Volume	58°.0	99°.6	183°.2	
10	8560	9440						
12	6360	7800		10000		9.60		
14	4040	6420		9000	9.60	10.35		
16		5310		8000	10.40	11.85		
18		4405		7000	11.55	13.05		
20		4030		6000	12.30	14.70		
24		3345		5000	13.15	16.70	_	
28		2780	3180	4000	14.00	20.15		
32		2305	2640	3500	14.40	23.00		
36		1935	2260	3000		26.40	29.10	
40	—	1450	2040	2500		30.15	33.25	
50			1640	2000		35.20	40.95	
60			1375	1500		39.60	55.20	
70			1130	1000			76.00	
80			930	500			117.20	
90			790					
100	—	—	680					
120			545					
140			430					
160			325					

TABLE 251.—COMPRESSIBILITY OF AMMONIA

Original volume 100000 under one atmosphere of pressure and the temperature °C of the experiments as indicated at the top of the different columns.

Droome		nding volu ts at tempe	me for ex- erature—	Volume	Pressure	in atmosph at tempe	eres for exp	periments
Pressure in atm	46°.6	99°.6	183°.6	voiume	30°.2	46°.6	99°.6	183°.0
10	9500			10000	8.85	9.50		
12.5	7245	7635		9000	9.60	10.45		
15	5880	6305	Services .	8000	10.40	11.50	12.00	
20		4645	4875	7000	11.05	13.00	13.60	
25		3560	3835	6000	11.80	14.75	15.55	
30		2875	3185	5000	12.00	16.60	18.60	19.50
35		2440	2680	4000		18.35	22.70	24.00
40		2080	2345	3500		18.30	25.40	27.20
45		1795	2035	3000			29.20	31.50
50		1490	1775	2500			34.25	37.35
55		1250	1590	2000			41.45	45.50
60		975	1450	1500		—	49.70	58.00
70			1245	1000			59.65	93.60
80			1125					
90			1035					
100			950					

Actual volumes rest upon Amagat's doubtful values at 3000kg/cm². Densities at highest pressures indicate that the molecules or atoms are very nearly in contact in the sense of the kinetic theory.

		Hydi	rogen						Nitroge	n	
	Vol. change cm³ g from 3000 kg/cm	Vo	lume 1 ³ /g	þυ	Vol. c	cm³/mol		change 58°C		ime at	pv
kg/cm²	30°C 65°C	30°C	65°C	at 65°C	30°C	65°C	cm³/g	cm ³ / mol	cm³/g	cm ³ / mol	at 68°C
3000	.00 .00	11.64	12.17	3.18	23.47	24.53	.000	.00	1.290	36.13	4.68
4000	1.12 1.14	10.52	11.03	3.83	21.21	22,24	.089	2.49	1.201	33.64	5.82
5000	1.84 1.88	9.80	10.29	4.50	19.76	20.74	.152	4.25	1.138	31.88	6.89
7000	2.77 2.88	8.87	9.29	5.65	17.88	18.73	.234	6.56	1.056	29.57	8.95
10000	3.63 3.68	8.01	8.49	7.29	16.15	17.12	.308	8.61	.982	27.52	11.91
13000	4.32 4.21	7.32	7.96	8.66	14.76	16.05	.357	10.00	.933	26.13	14.70
15000							.382	10.70	.908	25.43	16.50

		Heli	ium			Λ	rgon		Ammoni	2
	Vol.	Total vol. change		65°C at 55		change 55°C			change	
kg/cm²	cm³/g 65°C	30-95° cm³/g	cm ³ /g	cm ³ / mol	65°C	cm ³ /g	cm ³ / g atom	kg/cm²	cm ³ /g	cm³/mol
3000	.00	.613	5.54	22.16	2.31	.000	.00	1000	827	-14.1
4000 5000	.77 1.23	.598 .589	4.77 4.31	19.08 17.24	2.64 2.99	.049 .085	1.96 3.39	2000 3000	217 .000	- 3.70 .00
7000	1.77	.581	3.77	15.08	3.66	.134	5.34	5000	+.200	+ 3.41
10000	2.22	.576	3.32	13.27	4.60	.180	7.18	7000	.310	5.28
13000 15000	2.48 2.60	.572 .570	3.06 2.94	12.24 11.76	5.52 6.11	.209 .224	8.34 8.94	10000 12000	.409 .461	6.97 7. 85
13000	2.00	.570	2.94	11.70	0.11	.224	0.94	12000	.401	7.05

⁸⁰ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 59, p. 173, 1924.

TABLE 253.—GAGE PRESSURE (Ib/in.2) TO ATMOSPHERES (ABSOLUTE)*

lb/in.2	0	10	20	30	40	50	60	70	80	90	
0	1.00	1.68	2.36	3.04	3.72	4.40 11.21	5.08 11.89	5.76 12.57	6.44 13.25	7.12 13.93	
100 200	7.80 14.61	8.48 15.29	9.17 15.97	9.85 16.65	10.53 17.33	18.01	18.69	19.37	20.05	20.73	
300	21.41	22.09	22.77	23.45	24.14	24.82	25.50	26.18	26.86	27.54	
400	28.22	28.90	29.58	30.26	30.94	31.62	32.30	32.98	33.66	34.34	
500	35.02	35.70	36.38	37.06	37.74	38.42	39.11	39.79	40.47	41.15	
600	41.83	42.51	43.19	43.87	44.55	45.23	45.91	46.59	47.27	47.95	
700 800	48.63	49.31 56.12	49.99	50.67	51.35 58.16	52.03 58.84	52.71 59.52	53.39 60.20	54.08 60.88	54.76 61.56	
900	55.44 62.24	62.92	56.80 63.60	57.48 64.28	64.96	65.64	66.32	67.00	67.68	68.36	
1.000	69.04	69.73	79.41	71.09	71.77	72.45	73.13	73.81	74.49	75.17	
1,100	75.85	76.53	77.21	77.89	78.57	79.25	79.93	80.61	81.29	81.97	
1,200	82.65	83.34	84.01	84.70	85.38	86.06	86.74	87.42	88.10	88.78	
1,300	89.46	90.14	90.82	91.50	92.18	92.86	93.54	94.22	94.90	95.58	
1,400	96.27	96.95	97.63	98.31	98.98	99.67	100.3	101.0	101.7	102.4	
1,500	103.1	103.8	104.4	105.1	105.8	106.5	107.1	107.8	108.5	109.2	
1,600 1,700	109.9 116. 7	110.6 117.4	111.3 118.0	111.9 118.7	112.6 119.4	113.3 120.1	114.0 120.8	114.6 121.4	115.3 122.1	116.0 122.8	
1,800	123.5	124.2	124.8	125.5	126.2	126.9	127.6	128.2	128.9	129.6	
1,900	130.3	131.0	131.6	132.3	133.0	133.7	134.4	135.0	135.7	136.4	
2,000	137.1	137.8	138.4	139.1	139.8	140.5	141.2	141.9	142.5	143.2	
2,100	143.9	144.6	145.2	145.9	146.6	147.3	148.0	148.7	149.3	150.0	
2,200	150.7	151.4	152.1	152.7	153.4	154.1	154.8	155.5	156.1	156.8	
2,300 2,400	157.5 164.3	158.2 165.0	158.9 165.7	159.5 166.3	160.2 167.0	160.9 167.7	161.6 168.4	162.3 169.1	162.9 169.8	163.6 170.4	
		171.8	172.5	173.2	173.8	174.5	175.2	175.9	176.6	177.2	
2,500 2,600	171.1 177.9	171.8	172.3	180.0	180.6	181.3	182.0	182.7	183.4	184.0	
2,700	184.7	185.4	186.1	186.8	187.4	188.1	188.8	189.5	190.2	190.8	
2,800	191.5	192.2	192.9	193.6	194.2	194.9	195.6	196.3	197.0	197.7	
2,900	198.3	199.0	199.7	200.4	201.1	201.7	202.4	203.1	203.8	204.4	

^{*} Taken from Nat. Bur. Standards Circ. 279, 1926.

TABLES 254-260.—THERMAL PROPERTIES OF GASES 81

The properties given in Tables 254 and 256-258 are taken from a series of tables of thermal properties of gases being compiled at the National Bureau of Standards at the suggestion of and with the cooperation of the National Advisory Committee for Aeronautics. The functions in these tables have been expressed in dimensionless form in order that they may be converted readily to any system of units. Conversion factors are listed for the most often used units. For more extensive data on various gases reference should be made to these tables.⁸²

TABLE 254.—PROPERTIES OF MOLECULAR HYDROGEN Part 1.—Density, ρ/ρ_0

T°K/P	.01 atm	.1 atm	1 atm	10 atm	100 atm	$T \circ R$
20	.13679	1.3792				36
50	.054671	.54710	5.5112	59.510		90
100	.027333	27333	2.7338	27.379	258.83	180
150	.018222	.18220	1.8211	18.117	168.78	270
150	.010222	.10220	1.0511	10,11,	100.70	2,0
200	.013666	.13665	1.3657	13.574	127.01	360
250	.010933	.10932	1.0927	10.863	102.35	450
300	.0091110	.091100	.91055	9.0575	85.896	540
350	.0078094	.078086	.78055	7.7682	74.086	630
330	,007007	.070000	., 0000	7.7005	, 1,000	000
400	.0068332	.068332	.68298	6.8006	65.165	720
450	.0060740	.060740	.60715	6.0474	58.185	810
500	.0054666	.054666	.54644	5.4448	52.563	930
550	.0034000	.049696	.49676	4.9518	47.941	990
	.0045555	.045555	.45541	4.5400	44.070	1080
600	.0043333	.043333	.43341	4.5400	77.070	1000

To convert tabulated value of	to	dimensions indicated below	multiply by
$ ho/ ho_0$	ρ	g cm ⁻³ g liter ⁻¹ lb in. ⁻³ lb ft ⁻³	8.98854×10^{-5} $.89888$ 3.24734×10^{-6} 5.61140×10^{-3}

Part 2.—Compressibility factor, Z = PV/RT

T°K/P	.01 atm	.1 atm	1 atm	10 atm	100 atm	T °R
20	.9991	.9909				36
50	9999	.9992	.9919	.9186		90
100	1.0000	1.0000	.9998	.9983	1.0560	180
150	1.0000	1.0001	1.0006	1.0058	1.0796	270
200	1.0000	1.0001	1.0007	1.0068	1.0760	360
250	1.0000	1.0001	1.0006	1.0065	1.0682	450
300	1.0000	1.0001	1.0006	1.0059	1.0607	540
350	1.0000	1.0001	1.0005	1.0053	1.0541	630
400	1.0000	1.0000	1.0005	1.0048	1.0486	720
450	1.0000	1.0000	1.0004	1.0044	1.0439	810
500	1.0000	1.0000	1.0004	1.0040	1.0400	900
550	1.0000	1.0000	1.0004	1.0036	1.0366	990
600	1.0000	1.0000	1.0003	1.0034	1.0377	1080

(continued)

Adapted from NBS-NACA Tables on thermal properties of gases, July 1949.
 Joseph Hilsenrath, Heat and Power Division, National Bureau of Standards.

TABLE 254.—PROPERTIES OF MOLECULAR HYDROGEN (concluded)

Part 3.-Values of R for hydrogen for temperatures in °K

Pressure Density g/cm³ mole/cm³ mole/liter lb/ft³ lb mole/ft³	atm 40.7027 82.0567 .0820544 .651994 1.31442	kg/cm ² 42.0551 84.7832 .0847809 .673658	mmHg 30934.0 62363.1 62.3613 495.515 908 959	1b/in. ² 598.167 1205.91 1.20587 9.58171
Ib mole/it ^a	1.31442	1.35809	998.959	19.3167

TABLE 255.—DENSITY OF GASES AND VAPORS **

The following table gives the density as the weight in grams of a liter (normal liter) of the gas at 0₂°C, 76 cmHg pressure, also the weight in lb/ft³, and standard gravity 930.655 cm/sec² (sea level, 45° latitude), the specific gravity referred to dry, carbon-dioxide-free air, and to pure oxygen. Dry, carbon-dioxide-free air is of remarkably uniform density; Guye, Kovacs, and Wourtzel found maximum variations in the density of only 7 to 8 parts in 10,000. For highest accuracy pure oxygen should be used as the standard gas for specific gravities. Observed densities are closely proportional to the molecular weights.

			Weight of		Specific	gravity
Gas	Formula	Molecular weight	liter in grams	ft ^s in pounds	Air = 1	$0_2 = 1$
Acetylene	C_2H_2	26,036	1.173	.07323	.912	.825
Air	C2112	20.000	1.2920	.0805	1.000	.9047
Ammonia	NH_3	17.032	.7598	.04742	.5963	.5395
Argon		39.944	1.782	.1112	1.3787	1.2482
	- "	77.93	3.48	.217	2.69	2.434
Arsene	C_4H_{10}	58.12	2.673	.1669	2.067	1.870
Butane-iso	C ₄ H ₁₀	58.12	2.519*	.15725*	2.085*	1.8868*
Butane-n	CO_2	44.01	1.9630	.13725	1.5290	1.3834
Carbon dioxide	CO ₂	28.010	1.2492	.0779	.9671	.8750
Carbon monoxide		60.076	2.72	.0779		1.90
Carbon oxysulfide	COS	70.914	3.1638	.170	2.10	
Chlorine	Cl ₂				2.486	2.249
Chlorine monoxide	Cl ₂ O	86 914	3.89	.243	3.01	2.721
Ethane	C ₂ H ₆	30.068	1.3566	.08469	1.0493	.9493
Ethylene	C₃H₄	28.052	1.2604	.07860	.9749	.8820
Fluorine	F ₂	38.00	1.6954	.1058	1.311	1.187
Helium	He	4.003	.1785	.01114	.1381	.1249
Hydrogen	H_2	2.016	.08988	.005611	.06952	.06290
Hydrogen bromide	HBr	80.924	3 6104	.2252	2.8189	2.5503
Hydrogen chloride	HCI	36.465	1.6269	.1016	1.2678	1.1471
Hydrogen iodide	HI	127.93	5.7075	.3562	4.480	4.052
Hydrogen selenide	H ₂ Se	80.976	3.670	.229	2.839	2.568
Hydrogen sulfide	H₂S	34.082	1.5203	.0949	1.190	1.077
Krypton	Kr	83.7	3.7365	.2332	2 868	2.595
Methane	CH.	16.042	.7152	.04462	.5544	.5016
Methyl chloride	CH₃Cl	50.491	2.3076	.1440	1.7825	1.6125
Methyl ether	$(CH_{3}3)_{2}O$	46.068	2.1098	.13171	1.6318	1.4764
Methyl fluoride	CH₃F	34.034	1.5452	.09646	1.1951	1.0813
Mono methylamine	CH₃NH₂	31.058	1.396	.08715	1.080	.9769
Neon	Ne	20.183	.9005	.05621	.6963	.63004
Nitric oxide	NO	30.008	1.3388	.0836	1.0366	.9378
Nitrogen (chem.)	N_2	28.016	1.2499	.07803	.9672	.8751
Nitrogen (atm)			1.2568	.07846	.9722	.8795
Nitrosyl chloride	NOCI	65.465	2.992	.1868	2.314	2.094
Nitrous oxide	N_2O	44.016	1.9638	.123255	1.5297	1.3840
Oxygen	O_2	32.000	1 4277	.08915	1.10527	1.0000
Phosphine	PH_3	34.004	1.5294	.09548	1.1829	1.0702
Propane	C_3H_8	44.094	2.020	.1261	1.562	1.414
Silicon tetrafluoride	SiF ₄	104.06	4.684	.2924	3.623	3.278
Sulfur dioxide	SO ₂	64.066	2.858	.1784	2.2638	2.0482
Xenon	Xe	131.3	5.8579	.3657	4.525	4.094

^{**} For reference, see footnote 45, p. 136.

* At 710 mmHg.

°K	Specific heat $\frac{C_{\mathbf{p}}^{\circ}}{R}$	$\frac{\text{Enthalpy}}{(\text{H}^{\circ}-\text{E}_{_{0}}{}^{\circ})}$ $\frac{\text{RT}_{_{0}}}{}$	Entropy S° R		°K	Specific heat $\frac{C_p^{\circ}}{R}$	$\frac{\text{Enthalpy}}{(\text{H}^{\circ} - \text{E}_{0}^{\circ})}$ $\frac{\text{RT}_{0}}{\text{R}}$	Entropy S° R
10 20 30 40	3.5009 3.4941 3.4926 3.4918	.1238 .2518 .3796 .5075	12.0382 14.4622 15.8748 16.8832	4 4 4	100 100 120 130 140	3.5305 3.5349 3.5397 3.5447 3.5499	5.1182 5.2476 5.3771 5.5067 5.6366	24.9301 25.0173 25.1026 25.1859 25.2675
50 60 70 80 90	3.4915 3.4914 3.4914 3.4913 3.4913	.6353 .7631 .8909 1.0188 1.1466	17.6633 18.2990 18.8367 19.3034 19.7145	4 4 4	50 60 70 80 90	3.5555 3.5613 3.5673 3.5735 3.5799	5.7667 5.8969 6.0274 6.1581 6.2891	25.3473 25.4255 25.5022 25.5773 25.6511
100 110 120 130 140	3.4913 3.4914 3.4914 3.4914 3.4914	1.2744 1.4022 1.5300 1.6578 1.7856	20.0824 20.4152 20.7190 20.9984 21.2572	5 5 5	00 10 20 30 40	3.5865 3.5933 3.6003 3.6075 3.6149	6.4202 6.5517 6.6833 6.8153 6.9475	25.7235 25.7946 25.8644 25.9330 26.0005
150 160 170 180 190	3.4915 3.4916 3.4916 3.4917 3.4919	1.9134 2.0413 2.1691 2.2969 2.4247	21.4980 21.7234 21.9351 22.1346 22.3234	5 5 5	50 60 70 80 90	3.6224 3.6300 3.6377 3.6456 3.6535	7.0799 7.2127 7.3456 7.4790 7.6126	26.0669 26.1323 26.1966 26.2599 26.3223
200 210 220 230 240	3.4922 3.4924 3.4927 3.4932 3.4937	2.5526 2.6804 2.8083 2.9362 3.0641	22.5026 22.6729 22.8354 22.9907 23.1394	6 6 6	00 10 20 30 40	3.6615 3.6696 3.6778 3.6860 3.6943	7.7465 7.8807 8.0152 8.1500 8.2851	26.3838 26.4444 26.5041 26.5630 26.6211
250 260 270 280 290	3.4945 3.4953 3.4963 3.4975 3.4989	3.1920 3.3199 3.4479 3.5759 3.7040	23.2820 23.4191 23.5510 23.6782 23.8009	6 6 6	50 60 70 80 90	3.7027 3.7111 3.7195 3.7279 3.7363	8.4205 8.5562 8.6922 8.8285 8.9651	26.6785 26.7351 26.7910 26.8461 26.9006
300 310 320 330 340	3.5005 3.5024 3.5044 3.5068 3.5093	3.8321 3.9603 4.0885 4.2169 4.3453	23.9196 24.0344 24.1456 24.2535 24.3582	7 7 7	00 10 20 30 40	3.7447 3.7531 3.7614 3.7698 3.7782	9.1021 9.2393 9.3768 9.5147 9.6528	26.9544 27.0076 27.0601 27.1121 27.1634
350 360 370 380 390	3.5122 3.5153 3.5186 3.5224 3.5263	4.4738 4.6024 4.7312 4.8601 4.9891	24.4600 24.5590 24.6553 24.7492 24.8408	7- 7- 7:	50 60 70 80 90	3.7865 3.7947 3.8030 3.8112 3.8194	9.7913 9.9301 10.0692 10.2085 10.3482	27.2142 27.2644 27.3141 27.3632 27.4118
400	3.5305	5.1182	24.9301	8	00	3.8275	10.4882	27.4599

Conversion factors

To convert tabulated value of C_{ρ}°/R , S°/R

to C_ρ°.S° having the dimensions indicated below cal mol-1 $^{\circ}$ K⁻¹(or $^{\circ}$ C⁻¹) cal g^{-1} $^{\circ}$ K⁻¹(or $^{\circ}$ C⁻¹) joules g^{-1} $^{\circ}$ K⁻¹ (or $^{\circ}$ C⁻¹) Btu (lb mol)⁻¹ $^{\circ}$ R⁻¹ (or $^{\circ}$ F⁻¹) Btu lb⁻¹ $^{\circ}$ R⁻¹ (or $^{\circ}$ F⁻¹)

multiply by 1.98719 .0686042 .287040 1.98588 .0685590

(continued)

TABLE 256.—THERMAL PROPERTIES OF DRY AIR (IDEAL GAS STATE) (concluded)

°K 800 850 900 950 1000	Specific heat Cp° R 3.8275 3.8670 3.9049 3.9409 3.9750	Enthalpy (H°-E ₀ °) RT ₀ 10.4882 11.1924 11.9037 12.6218 13.3463	Entropy S° R 27.4599 27.6931 27.9152 28.1273 28.3303	°K 1900 1950 2000 2050 2100	Specific heat Cp° R 4.3337 4.3452 4.3561 4.3666 4.3767	Enthalpy (H°-E ₀ °) RT ₀ 27.1375 27.9318 28.7281 29.5264 30.3267	Entropy \$\frac{\sigma^{\circ}}{R}\$ 31.0047 31.1175 31.2276 31.3353 31.4407
1050	4.0070	14.0769	28.5250	2150	4.3864	31.1287	31.5438
1100	4.0371	14.8131	28.7121	2200	4.3958	31.9324	31.6447
1150	4.0653	15.5547	28.8922	2250	4.4048	32.7379	31.7436
1200	4.0917	16.3013	29.0658	2300	4.4135	33.5449	31.8405
1250	4.1166	17.0525	29.2333	2350	4.4219	34.3536	31.9355
1300	4.1398	17.8082	29.3953	2400	4.4301	35.1637	32.0287
1350	4.1615	18.5679	29.5519	2450	4.4380	35.9754	32.1201
1400	4.1820	19.3315	29.7036	2500	4.4456	36.7884	32.2099
1450	4.2012	20.0988	29.8507	2550	4.4530	37.6028	32.2980
1500	4.2193	20.8695	29.9935	2600	4.4602	38.4186	32.2845
1550	4.2364	21.6434	30.1321	2650	4.4672	39.2357	32.4695
1600	4.2525	22.4203	30.2669	2700	4.4740	40.0540	32.5531
1650	4.2678	23.2001	30.3979	2750	4.4807	40.8735	32.6353
1700	4.2823	23.9826	30.5255	2800	4.4871	41.6943	32.7160
1750	4.2962	24.7678	30.6499	2850	4.4933	42.5162	32.7955
1800	4.3093	25.5553	30.7711	2900	4.4994	43.3392	32.8737
1850	4.3218	26.3453	30.8893	2950	4.5053	44.1633	32.9507
1900	4.3337	27.1375	31.0047	3000	4.5109	44.9884	33.0264

Conversion factors

To convert tabulated value of	to	having the dimensions indicated below	multiply by
$(H^{\circ}-E_{0}^{\circ})/RT_{0}$	(H°—E₀°)	cal mol ⁻¹ cal g ⁻¹	542.821 18.7399
		joules g ⁻¹	78.4079
		Btu (lb mol) ⁻¹	976.437
		Btu lb ⁻¹	33.7098

	Specific heat C _p °	Enthalpy (H°-E ₀ °)	Entropy S°		Specific heat C _p °	Enthalpy (H°-E ₀ °)	Entropy S°
°K	R	RT_0	R	° K	R	RT ₀	R
10 20 30 40	3.5019 3.5006 3.5004 3.5003	.1246 .2527 .3809 .5090	11.1440 13.5707 14.9903 15.9970	400 410 420 430 440	3.5179 3.5206 3.5237 3.5270 3.5306	5.1257 5.2546 5.3835 5.5126 5.6417	24.0598 24.1467 24.2316 24.3154 24.3956
50	3.5003	.6372	16.7781	450	3.5344	5.7711	24.4750
60	3.5003	.7653	17.4163	460	3.5386	5.9005	24.5527
70	3.5003	.8934	17.9559	470	3.5430	6.0301	24.6289
80	3.5004	1.0216	18.4233	480	3.5476	6.1599	24.7035
90	3.5004	1.1497	18.8355	490	3.5526	6.2899	24.7767
100	3.5004	1.2779	19.2043	500	3.5578	6.4200	24.8486
110	3.5005	1.4060	19.5380	510	3.5632	6.5504	24.9191
120	3.5005	1.5342	19.8426	520	3.5688	6.6809	24.9883
130	3.5005	1.6623	20.1227	530	3.5747	6.8117	25.0563
140	3.5006	1.7905	20.3822	540	3.5808	6.9427	25.1232
150	3.5006	1.9186	20.6237	550	3.5871	7.0739	25.1890
160	3.5007	2.0468	20.8496	560	3.5936	7.2053	25.2537
170	3.5007	2.1749	21.0619	570	3.6003	7.3370	25.3173
180	3.5007	2.3031	21.2619	580	3.6072	7.4689	25.3800
190	3.5008	2.4312	21.4512	590	3.6142	7.6011	25.4417
200	3.5008	2.5594	21.6308	600	3.6214	7.7335	25.5025
210	3.5009	2.6876	21.8016	610	3.6287	7.8662	25.5625
220	3.5010	2.8157	21.9645	620	3.6362	7.9992	25.6215
230	3.5010	2.9439	22.1201	630	3.6437	8.1325	25.6798
240	3.5012	3.0721	22.2691	640	3.6514	8.2660	25.7372
250	3.5013	3.2002	22.4120	650	3.6591	8.3998	25.7939
260	3.5015	3.3284	22.5493	660	3.6670	8.5339	25.8498
270	3.5017	3.4566	22.6815	670	3.6749	8.6683	25.9050
280	3.5021	3.5848	22.8088	680	3.6829	8.8030	25.9595
290	3.5025	3.7130	22.9317	690	3.6909	8.9379	26.0133
300	3.5030	3.8412	23.0505	700	3.6990	9.0732	26.0665
310	3.5036	3.9695	23.1654	710	3.7071	9.2088	26.1190
320	3.5044	4.0978	23.2766	720	3.7152	9.3446	26.1709
330	3.5054	4,2261	23.3845	730	3.7234	9.4808	26.2222
340	3.5065	4.3544	23.4891	740	3.7316	9.6172	26.2729
350	3.5078	4.4828	23.5908	750	3.7398	9.7540	26.3231
360	3.5094	4.6113	23.6896	760	3.7480	9.8910	26.3727
370	3.5111	4.7398	23.7858	770	3.7562	10.0284	26.4217
380	3.5131	4.8683	23.8795	780	3.7643	10.1660	26.4702
390	3.5154	4.9970	23.9707	790	3.7725	10.3040	26.5183
400	3.5179	5.1257	24.0598	800	3.7806	10.4423	26.5658

To convert tabulated value of C_p°/R , S°/R

Conversion factors

to dimensions indicated below cal $\text{mol}^{-1} \circ K^{-1}$ (or $^{\circ}C^{-1}$) $\text{cal } g^{-1} \circ K^{-1}$ (or $^{\circ}C^{-1}$) $\text{joules } g^{-1} \circ K^{-1}$ (or $^{\circ}C^{-1}$) $\text{Btu } (\text{lb } \text{mol})^{-1} \circ R^{-1}$ (or $^{\circ}F^{-1}$) $\text{Btu } \text{lb}^{-1} \circ R^{-1}$ (or $^{\circ}F^{-1}$)

(continued)

multiply by 1.98719 .0709305 .296774 1.98588 .0708837

°K 800 850 900 950 1000	Specific heat Cp° R 3.7806 3.8207 3.8596 3.8970 3.9326	Enthalpy (H°-E ₀ °) RT ₀ 10.4423 11.1380 11.8409 12.5508 13.2674	S°/R 26.5658 26.7962 27.0156 27.2253 27.4261	°K 2900 2950 3000 3050 3100	Specific heat Cp° R 4.4460 4.4503 4.4545 4.4585 4.4624	Enthalpy (H°-E ₀ °) RT ₀ 43.0145 43.8287 44.6437 45.4595 46,2759	S° R 31.9327 32.0088 32.0836 32.1573 32.2298
1050	3.9664	13.9904	27.6188	3150	4.4663	47.0931	32.3013
1100	3.9982	14.7193	27.8040	3200	4.4699	47.9109	32.3716
1150	4.0281	15.4539	27.9824	3250	4.4735	48.7295	32.4409
1200	4.0562	16.1939	28.1544	3300	4.4770	49.5486	32.5093
1250	4.0825	16.9388	28.3206	3350	4.4804	50.3684	32.5766
1300	4.1072	17.6883	28.4812	3400	4.4836	51.1888	32.6430
1350	4.1303	18.4422	28.6366	3450	4.4868	52.0098	32.7085
1400	4.1518	19.2002	28.7872	3500	4.4900	52.8314	32.7731
1450	4.1720	19.9621	28.9333	3550	4.4930	53.6535	32.8368
1500	4.1909	20.7275	29.0751	3600	4.4960	54.4762	32.8996
1550	4.2086	21.4963	29.2128	3650	4.4988	55.2994	32.9617
1600	4.2252	22.2682	29.3467	3700	4.5016	56.1232	33.0229
1650	4.2408	23.0430	29.4769	3750	4.5044	56.9474	33.0834
1700	4.2554	23.8206	29.6037	3800	4.5071	57.7722	33.1431
1750	4.2692	24.6008	29.7273	3850	4.5097	58.5974	33.2020
1800	4.2821	25.3834	29.8477	3900	4.5123	59.4231	33.2602
1850	4.2943	26.1684	29.9652	3950	4.5148	60.2493	33.3177
1900	4.3057	26.9554	30.0799	4000	4.5173	61.0759	33.3745
1950	4.3166	27.7446	30.1919	4050	4.5197	61.9030	33.4306
2000	4.3268	28.5356	30.3013	4100	4.5221	62.7306	33.4861
2050	4.3365	29.3285	30.4083	4150	4.5245	63.5585	33.5409
2100	4.3457	30.1232	30.5129	4200	4.5268	64.3868	33.5951
2150	4.3544	30.9194	30.6152	4250	4.5290	65.2156	33.6487
2200	4.3627	31.7172	30.7154	4300	4.5312	66.0448	33.7017
2250	4.3705	32.5165	30.8135	4350	4.5334	66.8745	33.7541
2300	4.3780	33.3172	30.9097	4400	4.5356	67.7045	33.8059
2350	4.3852	34.1192	31.0039	4450	4.5377	68.5349	33.8572
2400	4.3920	34.9225	31.0963	4500	4.5398	69.3657	33.9079
2450	4.3985	35.7270	31.1869	4550	4.5419	70.1968	33.9581
2500	4.4047	36.5327	31.2759	4600	4.5440	71.0284	34.0077
2550	4.4106	37.3395	31.3631	4650	4.5460	71.8603	34.0569
2600	4.4163	38.1473	31.4488	4700	4.5480	72.6927	34.1055
2650	4.4218	38.9562	31.5330	4750	4.5500	73.5253	34.1536
2700	4.4270	39.7661	31.6157	4800	4.5520	74.3583	34.2013
2750	4.4320	40.5769	31.6970	4850	4.5540	75.1917	34.2484
2800	4.4369	41.3886	31.7769	4900	4.5559	76.0255	34.2952
28 5 0	4.4415	42.2011	31.8554	4950	4.5579	76.8497	34.3415
2900	4.4460	43.0145	31.9327	5000	4.5598	77.6941	34.3873

Conversion factors

To convert tabulated value of $(H^{\circ}-E_{\circ}^{\circ})/RT_{\circ}$

to dimensions indicated below	multiply by
cal mol ⁻¹	542.821
cal g ⁻¹	19.3754
joules g ⁻¹	81.0699
Btu (lb mol) ⁻¹	976.437
Btu 1b-1	34.8528

°K	Specific heat $\frac{C_{\mathfrak{p}}^{\circ}}{R}$	Enthalpy (H°-E ₀ °) RT ₀	Entropy S° R	°K	Specific heat $\frac{C_{\mathfrak{p}}^{\circ}}{R}$	Enthalpy (H°-E ₀ °) RT ₀	Entropy S° R
10 20 30 40	3.5424 3.5145 3.5077 3.5044	.1222 .2513 .3798 .5081	12.7490 15.1937 16.5980 17.6256	400 410 420 430 440	3.6212 3.7322 3.6435 3.6550 3.6668	5.1542 5.2869 5.4201 5.5537 5.6877	25.7140 25.8036 25.8912 25.9771 26.0612
50	3.5029	.6364	18.4116	450	3.6787	5.8222	26.1438
60	3.5023	.7646	19.0461	460	3.6907	5.9571	26.2248
70	3.5019	.8928	19.5837	470	3.7029	6.0924	26.3043
80	3.5016	1.0210	20.0535	480	3.7151	6.2282	26.3823
90	3.5015	1.1492	20.4656	490	3.7274	6.3644	26.4591
100	3.5014	1.2774	20.8348	500	3.7396	6.5011	26.5345
110	3.5013	1.4056	21.1684	510	3.7520	6.6382	26.6087
120	3.5013	1.5337	21.4732	520	3.7643	6.7758	26.6817
130	3.5013	1.6619	21.7534	530	3.7765	6.9138	26.7535
140	3.5013	1.7901	22.0129	540	3.7887	7.0523	26.8242
150	3.5013	1.9183	22.2545	550	3.8008	7.1912	26.8938
160	3.5015	2.0464	22.4804	560	3.8129	7.3306	26.9624
170	3.5017	2.1746	22.6927	570	3.8248	7.4704	27.0300
180	3.5020	2.3028	22.8929	580	3.8366	7.6106	27.0966
190	3.5025	2.4310	23.0823	590	3.8483	7.7513	27.1623
200	3.5032	2.5593	23.2619	600	3.8599	7.8924	27.2271
210	3.5042	2.6875	23.4329	610	3.8713	8.0339	27.2910
220	3.5056	2.8158	23.5959	620	3.8826	8.1758	27.3540
230	3.5073	2.9442	23.7518	630	3.8937	8.3181	27.4162
240	3.5095	3.0726	23.9011	640	3.9047	8.4609	27.4776
250	3.5122	3.2012	24.0444	650	3.9155	8.6040	27.5383
260	3.5155	3.3289	24.1822	660	3.9262	8.7476	27.5981
270	3.5193	3.4586	24.3150	670	3.9367	8.8915	27.6572
280	3.5238	3.5875	24.4430	680	3.9470	9.0358	27.7156
290	3.5288	3.7166	24.5668	690	3.9571	9.1805	27.7733
300	3.5344	3.8459	24.6865	700	3.9672	9.3255	27.8303
310	3.5407	3.9754	24.8025	710	3.9770	9.4709	27.8867
320	3.5476	4.1051	24.9150	720	3.9866	9.6167	27.9424
330	3.5551	4.2351	25.0243	730	3.9961	9.7628	27.9974
340	3.5631	4.3654	25.1305	740	4.0054	9.9093	28.0519
350	3.5717	4.4960	25.2340	750	4.0145	10.0561	28.1057
360	3.5807	4.6269	25.3347	760	4.0235	10.2032	28.1589
370	3.5902	4.8782	25.4329	770	4.0323	10.3507	28.2116
380	3.6002	4.8898	25.5288	780	4.0409	10.4985	28.2637
390	3.6105	5.0218	25.6224	790	4.0494	10.6466	28.3152
400	3.6212	5.1542	25.7140	800	4.0577	10.7950	28.3662

To convert tabulated value of

 $\frac{C_{\mathfrak{p}}^{\, \circ}}{R}$, $\frac{S^{\, \circ}}{R}$

Conversion factors

to dimensions indicated below cal mol^-1 ° K^-1 (or ° C^-1) cal g^{-1} ° K^-1 (or ° C^-1) joules g^{-1} ° K^-1 (or ° C^-1) Btu (lb mol)^-1 ° R^-1 (or ° F^-1) Btu lb^-1 ° R^-1 (or ° F^-1)

(continued)

multiply by 1.98719 .0620996 .259825 1.98588 .0620587

TABLE 258.—THERMAL PROPERTIES OF MOLECULAR OXYGEN 275 (IDEAL GAS STATE) (concluded)

°K 800 850 900 950 1000	Specific heat Cp° R 4.0577 4.0577 4.1327 4.1652 4.1948	Enthalpy (H°-E₀°) RT₀ 10.7950 11.5414 12.2946 13.0541 13.8193	S° R 28.3662 28.6134 28.8486 29.0729 29.2874	°K 2900 2950 3000 3050 3100	Specific heat Cp° R 4.7824 4.7944 4.8062 4.8177 4.8291	Enthalpy (H°-E ₀ °) RT ₀ 45.2601 46.1366 47.0152 47.8961 48.7790	Entropy S°/R 34.0470 34.1289 34.2096 34.2891 34.3675
1050	4.2219	14.5896	29.4927	3150	4.8402	49.6640	34.4449
1100	4.2469	15.3647	29.6897	3200	4.8512	50.5509	34.5212
1150	4.2698	16.1442	29.8790	3250	4.8619	51.4398	34.5965
1200	4.2912	16.9278	30.0611	3300	4.8724	52.3307	34.6708
1250	4.3112	17.7151	30.2367	3350	4.8827	53.2236	34.7442
1300	4.3300	18.5059	30.4062	3400	4.8929	54.1183	34.8166
1350	4.3479	19.3002	30.5700	3450	4.9028	55.0148	34.8881
1400	4.3651	20.0976	30.7284	3500	4.9125	55.9130	34.9587
1450	4.3815	20.8981	30.8819	3550	4.9220	56.8132	35.0285
1500	4.3975	21.7016	31.0307	3600	4.9312	57.7150	35.0974
1550	4.4130	22.5080	31.1751	3650	4.9403	58.6183	35.1654
1600	4.4282	23.3171	31.3155	3700	4.9491	59.5233	35.2327
1650	4.4431	24.1290	31.4519	3750	4.9578	60.4301	35.2992
1700	4.4578	24.9437	31.5848	3800	4.9662	61.3384	35.3649
1750	4.4724	25.7609	31.7142	3850	4.9744	62.2482	35.4299
1800	4.4868	26.5809	31.8404	3900	4.9825	63.1594	35.4941
1850	4.5011	27.4036	31.9636	3950	4.9903	64.0721	35.5576
1900	4.5153	28.2288	32.0838	4000	4.9979	64.9862	35.6204
1950	4.5295	29.0565	32.2013	4050	5.0054	65.9022	35.6826
2000	4.5436	29.8869	32.3161	4100	5.0126	66.8193	35.7441
2050	4.5576	30.7198	32.4285	4150	5.0197	67.7371	35.8049
2100	4.5715	31.5554	32.5385	4200	5.0265	68.6561	35.8650
2150	4.5854	32.3935	32.6462	4250	5.0332	69.5765	35.9245
2200	4.5993	33.2341	32.7518	4300	5.0397	70.4983	35.9835
2250	4.6130	34.0771	32.8553	4350	5.0460	71.4217	36.0418
2300	4.6267	34.9227	32.9568	4400	5.0521	72.3461	36.0995
2350	4.6404	35.7709	33.0565	4450	5.0580	73.2715	36.1566
2400	4.6540	36.6217	33.1543	4500	5.0638	74.1976	36.2132
2450	4.6674	37.4747	33.2504	4550	5.0693	75.1246	36.2691
2500	4.6808	38.3302	33.3449	4600	5.0746	76.0528	36.3246
2550	4.6940	39.1882	33.4377	4650	5.0797	76.9827	36.3794
2600	4.7071	40.0487	33.5289	4700	5.0847	77.9135	36.4338
2650	4.7200	40.9114	33.6187	4750	5.0896	78.8445	36.4876
2700	4.7328	41.7765	33.7071	4800	5.0943	79.7760	36.5410
2750	4.7454	42.6440	33.7940	4850	5.0987	80.7086	36.5938
2800 2850 2900	4.7579 4.7703 4.7824	43.5138 44.3858 45.2601	33.8796 33.9640 34.0470	4900 4950 5000 version factors	5.1028 5.1068 5.1109	81.6423 82.5770 83.5122	36.6461 36.6980 36.7493
	To convert tab value of <u>H°-E₀</u> <u>RT₀</u>		to di C C J I	mensions indicated below cal mol ⁻¹ cal g ⁻¹ oules g ⁻¹ Stu (lb mol) ⁻¹		multiply by 542.821 16.9632 70.9742 976.437 30.5137	

TABLE 259.—CRITICAL TEMPERATURES, PRESSURES, AND DENSITIES OF GASES **

	Critical	Critical	Critical
Cubatana	temperature	pressure	density
Substance	(0°C)	(kg/cm²)	(g/cm³)
Acetylene	36	62	.231
Air	-140.7	37.2	.35* .31†
Alcohol (C ₂ H ₆ O)	243.1	63.1	.2755
Alcohol (CH ₄ O)	240.0	78.7	.272
Allylene	128		
Ammonia	132.4	115.5	.235
Argon	-122	49.7	.531
Benzene	288.5	47.7	.304
Bromine	302		1.18
iso-Butane	134	37	•••
n-Butane	153	36	• • • •
Carbon dioxide	31.1	75.5	.46
Carbon disulfide	273	76	
Carbon monoxide	—139	36.2	.311
Chlorine	144.0	78.7	.573
	263	70.7	.516
Chloroform	128	59	
Cyanogen	32.1	48.8	.21?
Ethane			
Ether (ethyl)	193.8	35.5	.2625
Ethyl chloride	187.2	52	.33
Ethylene	9.7	50.9	.2159
Helium	— 267.9	2.34	.0693
Hydrogen	-239.9	13.2	.0310
Hydrogen bromide	90	84	***
Hydrogen chloride	51.4	84.5	.42
Hydrogen iodide	151	82	
Hydrogen sulfide	100.4	92	•••
Iodine	553		
Krypton	-63?	56?	.78?
Mercury	1460 ± 20	1640 ± 50	.5
Methane	82.5	47.4	.162
Methyl chloride	143.1	65.8	.37 ?
Neon	-228.7	26.8	.484
Nitric oxide	—94 ?	65	.52?
Nitrogen	-147.1	34.7	.3110
Nitrous oxide	36.5	71.7	.45?
Oxygen	-118.8	51.4	.430
Phosgene	182	56	.52
Propane	95.6	43	.52
Radon	104	64.1	•••
	-3.5	49.7	•••
Silicon hydride			• • •
Sulfur	1040	00.1	523
Sulfur dioxide	157.2	80.1	.52?
Sulfur trioxide	218.3	86.5	.630
Water	374.0	224.9	.4
Xenon	16.6	60.2	1.155

^{**} For reference, see footnote 45, p. 136.
* Plait point. † Critical point of contact.

TABLE 260.—CONVERSION FACTORS FOR VARIOUS PRESSURE UNITS *

(Equivalent value in various units)

	dyne/cm²	bar	mmHg 0°C	in.Hg 0°C	millibars	lb/in.²	lb/ft²	g/cm²	cm water 20°C	in. water 20°C	atm
1 dyne/cm² (barye)	II	10-0	7 501×10-4	2.953×10-5	10-3	1.4506×10^{-5}	2.0883×10^{-3}	1.0197×10-3	$1.0197 \times 10^{-3} \ 1.0216 \times 10^{-3}$	4.022×10→	9.869×10-7
1 bar	$=10^{6}$	1	$7.5006\!\times\!10^2$	29.53	10^{3}	14.51	2.0883×10^3	1.0197×10^3	1.0197×103 1.0216×108	$4.022\!\times\!10^2$	6986.
1 mmHg (Tor)	=1.3332×10 ³	1.3332×10^{-3}	1	3.937×10^{-2}	1.3332	1.9339×10^{-2}	2.7847	1.3594	1.3620	.5363	1.3157×10-8
1 in.Hg	$=3.386 \times 10^4$	$3.386\!\times\!10^{-2}$	25.400	1	33.864	.4912	70.732	34.530	34.590	13.620	3.3417×10-2
1 millibar	$=10^{3}$	10-3	.7501	2.953×10^{-2}	1	1.4506×10^{-2}	2.0888	1.0197	1.0216	.4022	9.869×10→
1 lb/in.^2	$=6.894 \times 10^4$	6.894×10^{-2}	51.71	2.0368	68.95	1	1.44×10^2	70.30	70.43	27.731	6.804×10^{-2}
$1 - 16/ft^2$	$=4.788 \times 10^{2}$	4.788×10^{-4}	.3591	1.414×10^{-2}	.4788	6.945×10^{-8}	1	.4882	.4891	.1926	4.725×10-4
1 g/cm^2	$=9.807 \times 10^{2}$	9.807×10-4	.7356	$2.8961\!\times\!10^{-2}$.9807	1.4226×10^{-2}	2.0484	1	1.0018	.3945	9.678×10-4
1 cm water 20	1 cm water $20^{\circ}\text{C}=9.789\times10^{2}$	9.789×10-4	.7342	2.891×10^{-2}	.9789	1.4198×10^{-2}	2.0446	.9981	1	.3937	9.661×10-4
1 in. water 20	1 in. water 20°C=2.486×10³	2.486×10^{-3}	1.865	7.343×10^{-2}	2.486	3.607×10^{-2}	5.193	2.535	2.5400	1	2.453×10^{-8}
1 atm	$=1.01325\times10^{6}$	1.01325	$7.60\!\times\!10^2$	29.921	1.0133×10^{3}	14.70	2.1164×10^{3}	$1.0332\!\times\!10^3 1.0351\!\times\!10^3$	1.0351×10^{3}	4.0758×10^{2}	1

* The table is based primarily upon the following data and assumptions: a, One atm pressure equals 760 mmHg at 0°C under standard gravity of 980.665 cm/sec². b, The density of mercury at 0°C is 13.5951 g/cm³. c, The density of water at 20°C is .99820.

TABLES 261-267.—THE JOULE-THOMSON EFFECT IN FLUIDS *

The Joule-Thomson effect is defined as the ratio of the change in temperature to the drop in pressure of a fluid driven by the drop in pressure through a porous partial blockage in the fluid flow tube. The space between the reading thermometers on each side of the porous obstruction is to be isolated as to exchange of heat energy but not as to work energy. Nor must the fluid gain a significant amount of directed kinetic energy between the thermometers. Under these circumstances the Joule-Thomson effect, $\mu = \left(\frac{dt}{dp}\right)_k$, where h = u - pv = enthalpy, and since μ is a function of both t and p, the steps are preferably represented as infinitesimals. Since Δp is always negative, μ is positive when

TABLE 261.—THE JOULE-THOMSON EFFECT ON AIR (WATER AND CARBON DIOXIDE FREE) ™

 μ as a function of t and p, t in °C, p in atm, μ in °C/atm.

p/t	0°	25°	50°	75°	100°	125°	150°	200°	250°	280°
1 atm	.2746	.2320	.1956	.1614	.1355	.1140	.0961	.0645	.0409	.0303
20 "	.2577	.2173	.1830	.1508	.1258	.1060	.0883	.0580	.0356	.0255
60 "	.2200	.1852	.1571	.1293	.1062	.0886	.0732	.0453	.0254	.0162
100 "	.1822	.1550	.1310	.1087	.0884	.0731	.0600	.0343	.0165	
140 "	.1446	.1249	1070	.0889	.0726	.0599	.0482	.0250	.0092	+.0008
180 "	.1697	.0959	.0829	.0707	.0580	.0474	.0376	.0174	+.0027	0058
220 "	.0795	.0697	.0609	.0536	.0449	.0366	.0291	.0116	0025	
p/t	—150°	-140°		120°	-100°	-75°	—50°	_	25°	0°
1 atm		1.0755	.7	370	.5895	.4795	.3910	.32	225	.2745
20 "		1.0240	.7	155	.5700	.4555	.3690	.30	010	.2580
40 "	.0710	.4600	.6	945	.5370	.4235	.3480	.28	305	.2375
60 "	.0450	.1125	.5	150	.4820	.3835	.3195	.26	510	.2200
80 "	.0295	.0685	.2	855	.3900	.3360	.2830	.23	385	.2105
100 "	.0185	.0440	.1	535	.2775	.2880	.2505	.21	130	.1820
120 "	+.0045	.0265	.0	940	.1955	.2325	.2165	.19	905	.1620
140 "	0070	.0120	.0	590	.1360	.1855	.1825	.16	550	.1450
160 "	0145	+.0015	.0	375	.0950	.1435	.1525	.14	120	.1250
180 "	0255	0115	.0	200	.0655	.1136	.1270	.12	240	.1100
200 "	0330	0205	+.0	080	.0440	.0855	.1065	.10)90	.0950
220 "	0405	0290	<u> </u>	030	.0265	.0630	.0880	.09	50	.0825

⁸³ Proc. Amer. Acad. Arts and Sci., vol. 60, p. 535, 1025; vol. 64, p. 287, 1930 (both corrected).

TABLE 262.—THE JOULE-THOMSON EFFECT ON HELIUM 81

 μ as a function to t (and independent of pressure up to 200 atm), t in °C, μ in °C/atm.

t°C 300	$-\mu \times 10^2$ 5.97		$-\mu \times 10^{2}$ 6.45		$-\mu \times 10^{2}$ 6.31	t°C — 50	$-\mu \times 10^{2}$ 6.05	t°C −155	$-\mu \times 10^{2}$ 5.03
250	6.29	100	6.38	25	6.24	100	5.84	—180	4.12
200	6.41	75	6.35	0	6.16	—140	5.40	-190	3.80

⁸⁴ Phys. Rev., vol. 43, p. 60, 1933 (corrected).

Δt is negative. For all the gases yet measured, μ is zero along a line in the tp plane called the inversion line.
 * The material on the Joule-Thomson effect was supplied by J. R. Roebuck, of the University of Wisconsin.

 μ as a function of t and p, t in °C, p in atm, μ in °C/atm.

t/p	1 atm	20	60	100	140	180	200
300°	.0643	.0607	.0530	.0445	.0370	.0370	.0276
250	.0980	.0910	.0785	.0665	.0555	.0485	.0468
200	.1377	.1280	.1102	.0950	.0823	.0715	.0675
150	.1845	.1720	.1485	.1285	.1123	.0998	.0945
125	.2105	.1980	.1707	.1480	.1300	.1153	.1100
100	.2413	.2277	.1975	.1715	.1490	.1320	.1255
75	.2695	.2557	.2285	.1993	.1710	.1505	.1415
50	.3220	.3015	.2650	.2297	.1947	.1700	.1580
25	.3720	.3490	.3077	.2628	.2213	.1890	.1745
0	.4307	.4080	.3600	.3010	.2505	.2050	.1883
— 25	.5045	.4805	.4210	.3460	.2763	.2140	.1950
— 50	.5960	.5720	.4963	.3970	.2840	.2037	.1860
— 75	.7100	.6895	.5910	.4225	.2480	.1537	.1215
— 87.5	. 77 80	.7610	.6450	.3910	.1903	.1027	.0773
-100	.8605	.8485	.6900	.2820	.1137	.0560	.0395
-112.5	.9680	.9560	.6530	.1240	.0515	+.0198	+.0087
-125	1.112	1.102	.1250	+.0415	+.0090	0100	0165
-137.5	1.333	1.342	+.0210	0020	— .0203	0350	0402
-150	1.812		0025	— .0277	— .0403	0595	— .0640
-160	2.385						
—17 0	3.017						

⁸⁵ Phys. Rev., vol. 46, p. 785, 1934 (corrected).

TABLE 264.—THE JOULE-THOMSON EFFECT IN NITROGEN 80

 μ as a function of t and p, t in °C, p in atm, μ in °C/atm.

t/p	1 atm	20	33.5	60	100	140	180	200
300°C	.0140	.0096	.0050	0013	—.0075	0129	0160	0171
250	.0331	.0256	.0230	+.0160	+.0071	+.0009	0037	0058
200	.0558	.0472	.0430	.0372	.0262	.0168	+.0094	+.0070
150	.0868	.0776	.0734	.0628	.0482	.0348	.0248	.0228
125	.1070	.0973	.0904	.0786	.0621	.0459	.0347	.0326
100	.1292	.1173	.1100	.0975	.0768	.0582	.0462	.0419
75	.1555	.1421	.1336	.1191	.0941	.0740	.0583	.0543
50	.1855	.1709	.1621	.1449	.1164	.0915	.0732	.0666
25	.2217	.2060	.1961	.1729	.1400	.1105	.0874	.0779
0	.2656	.2494	.2377	.2088	.1679	.1316	.1015	.0891
— 25	.3224	.3013	.2854	.2528	.2001	.1506	.1101	.0932
- 50	.3968	.3734	.3467	.3059	.2332	.1676	.1120	.0902
— 75	.5033	.4671	.4318	.3712	.2682	.1735	.1026	.0800
- 87.5	.5710	.5247	.4854	.4096	.2808	.1619	.0933	.0733
	.6490	.5958	.5494	.4506	.2754	.1373	.0765	.0587
-100					.2754	.0932	.0488	.0346
-112.5	.7430	.6841	.6208	.4923				
-125	.8557	.7948	.7025	.4940	.1314	.0498	+.0167	+.0032
-137.5	.9972	.9364	.7964	.2364	.0638	+.0177	0181	0175
-150	1.2659	1.1246	.1704	.0601	+.0202	0056	0211	0284
-160	1.6328	+.0724	+.0311	+.0068	0088	— .0175	0263	0315
-170	2.0048	- .0108	0382					
-180	2.3923							

⁸⁶ Phys. Rev., vol. 48, p. 45, 1935 (corrected).

TABLE 265.—THE JOULE-THOMSON EFFECT ON MIXTURES OF HELIUM AND ARGON ($\mu \times 10^2)^{~\rm st}$

 μ as a function of t and p, t in °C, p in atm, μ in °C/atm.

	· ·			C, p	, ,	,	
# °C/p 250 200 150 100 50 0 	1 -5.83 5.55 5.11 4.47 3.61 2.40 69 +3.37	Mixture N 20 -5.95 5.66 5.24 4.61 3.76 2.5792 +2.82	60 -6.15 5.90 5.52 4.91 4.08 2.92 -1.32	8 percent, A 100 -6.37 6.13 5.77 5.18 4.40 3.30 -1.75 + .79	140 6.56 6.34 5.99 5.45 4.68 3.65 2.21	180 6.77 6.55 6.21 5.72 5.01 4.03 2.66 65	200 6.85 6.63 6.34 5.88 5.19 4.22 2.82 78
		Mixture N	o. 2: He 50.0	percent, A	49.4 percent		
250 200 150 100 50 0 	-2.84 1.67 13 +1.84 4.50 8.19 13.84	-3.19 2.0767 +1.15 3.66 7.20 12.61	$\begin{array}{r} -3.65 \\ 2.71 \\ -1.50 \\ + .11 \\ 2.37 \\ 5.51 \\ 10.27 \\ +17.79 \end{array}$	-4.04 3.15 2.0159 +1.39 4.12 8.14	4.21 3.40 2.32 1.01 + .70 2.96 6.28	-4.33 3.55 2.56 -1.32 + .14 1.99 4.53 +6.90	-4.34 3.57 2.62 1.48 07 +1.57 3.63 +5.40
		Mixture N	o. 3; He 33.	5 percent, A	66.5 percent		
250 200 150 100 50 0 - 50 100	+1.34 2.94 5.05 7.80 12.12 18.40 27.90 43.30	+ .72 2.32 4.41 7.10 11.28 17.18 25.82 41.15	38 +1.25 3.23 5.69 9.40 14.43 21.93 34.30	-1.03 + .45 2.22 4.55 7.73 12.05 17.96 27.20	-1.48 13 +1.41 3.63 6.32 9.88 13.83 17.55	-1.68 38 + .92 2.86 5.41 7.93 9.63 10.07	-1.68 38 + .83 2.54 5.01 6.88 7.73 7.10
		Mixture N	o. 4; He 16.0	percent, A	83.4 percent		
250 200 150 100 50 0 	5.75 8.45 11.70 15.50 21.05 29.85 44.15 70.80	5.15 7.63 10.80 14.50 20.10 28.49 41.80 66.10	3.85 6.05 8.95 12.60 17.75 25.00 36.15 51.00	2.70 4.75 7.45 10.80 15.35 21.15 30.10 29.95	1.90 3.85 6.10 9.05 13.00 17.35 22.90 19.75	1.20 3.00 5.20 7.70 10.65 14.50 17.55 11.35	.95 2.60 4.60 7.05 9.55 13.05 15.60 8.00

⁸⁷ Journ. Chem. Phys., vol. 8, p. 627, 1940.

TABLE 266.—THE JOULE-THOMSON EFFECT IN CARBON DIOXIDE **

 μ as a function of t and p, t in °C, p in atm, μ in °C/atm.

				• 1	*			
t/p	1 atm	20	60	73	100	140	180	200
300	.2650	.2425	.2080	.2002	.1872	.1700	.1540	.1505
250	.3075	.2885	.2625	.2565	.2420	.2235	.2045	.1975
200	.3770	.3575	.3400	.3325	.3150	.2890	.2600	.2455
150	.4890	.4695	.4430	.4380	.4155	.3760	.3102	.2910
125	.5600	.5450	.5160	.5068	.4750	.4130	.3230	.2915
100	.6490	.6375	.6080	.5920	.5405	.4320	.3000	.2555
90	.6900	.6785	.6500	.6300	.5680	.4290	.2738	.2300
80	.7350	.7240	.6955	.6725	.5973	.4050	.2343	.1960
70	.7855	.7750	.7465	.7175	.6192	.3505	.1875	.1600
60	.8375	.8325	.8060	.7675	.6250	.2625	.1405	.1245
50	.8950	.8950	.8800	.8225	.5570	.1720	.1025	.0930
40	.9575	.9655	.9705	.8760	.2620	.1075	.0723	.0660
30	1.0265	1.0430	1.0835	.2870	.1215	.0678	.0495	.0445
20	1.1050	1.1355	.1435	.1075	.0700	.0420	.0320	.0272
10	1.1910	1.2520	.0720	.0578	.0407	.0235	.018?	.0142
0	1.2900	1.4020	.0370	.0310	.0215	.0115	.0085	.0045
—25	1.6500	.0000	0028	0030	0050	0062	0080	0115
— 50	2.4130	0140	0150	0165	0160	0183	0228	0248
 75		0200	0200	0232	0228	0240	0250	0290

⁸⁸ Journ. Amer. Chem. Soc., vol. 64, p. 400, 1942.

TABLE 267.—THE JOULE-THOMSON EFFECT IN MIXTURES OF HELIUM AND NITROGEN ($\mu \times 10^2$) *0

 μ as a function of t and p, t in °C, p in atm, μ in °C/atm.

t°C/p	1 atm	20	60	100	140	180	200
250 200 150 100 50 0 	6.95 6.52 6.03 5.44 4.67 3.62 1.98 +1.01 3.61	Mixture No. -6.90 6.51 6.10 5.58 4.84 3.79 -2.19 + .52 2.72	1; He 75.5 -6.84 6.53 6.20 5.76 5.18 4.22 2.72 33 +1.45	percent; N ₂ 6.83 6.53 6.21 5.83 5.28 4.46 3.131.13 + .23	24.5 percent -6.80 6.53 6.22 5.85 5.36 4.61 3.55 -1.96 1.02	-6.77 6.53 6.28 5.90 5.47 4.81 3.90 -2.69 1.89	6.66 6.48 6.24 5.96 5.55 4.98 4.17 3.152.52
250 200 150 100 50 0 	-4.98 3.80 2.43 .83 +1.25 4.06 8.28 13.44	Mixture No -4.93 3.84 2.60 1.07 + .89 3.50 7.42 11.83	-5.06 -5.06 4.14 3.10 1.74 + .06 2.50 5.96 9.37	percent; N ₂ -5.06 4.39 3.54 2.40 .86 +1.22 4.00 6.75	49.0 percent -5.08 4.58 3.88 2.95 1.63 + .14 2.55 4.78	+5.20 4.79 4.22 3.46 2.25 .71 +1.29 3.19	-5.23 4.89 4.37 3.67 2.56 1.14 + .76 2.50
250 200 150 100 50 0 50 87.5	-2.34 .96 + .81 3.07 6.20 10.62 18.00 27.53	Mixture No2.51 1.27 + .38 2.59 5.49 9.66 16.31 24.74	3; He 33.2 -3.12 1.92 .39 +1.52 4.10 7.60 12.91 19.14	percent; N ₂ -3.69 2.65 1.28 + .51 2.83 5.99 10.22 14.75	66.8 percent -3.93 2.94 1.65 .20 +1.80 4.34 7.68 10.80	-4.18 3.22 2.11 .74 + .75 2.62 4.77 6.63	-4.18 3.37 2.36 1.14 + .28 1.84 3.69 5.26
250 200 150 100 50 0 - 50 - 87.5	+ .27 2.25 4.54 7.57 11.77 17.97 28.52 42.02	Mixture No04 +1.78 4.03 6.86 10.88 16.77 26.18 37.86	4; He 16.6 82 + .78 2.76 5.32 8.87 14.04 21.46 28.95	percent; N ₂ -1.51 .06 +1.61 4.00 7.11 11.30 16.80 21.75	83.4 percent -2.05 .72 + .78 2.78 5.38 8.59 12.56 15.89	-2.26 1.27 + .11 1.78 3.89 6.29 9.47 12.10	-2.34 1.43 .30 +1.24 3.10 5.33 7.98 10.26

⁸⁹ Journ. Amer. Chem. Soc., vol. 60, p. 341, 1938 (corrected).

TABLE 268.—COMPRESSIBILITY OF LIQUIDS ™

Part 1.—Relative volumes

	Ethyl alcohol C ₂ H ₅ OH	Isobutyl alcohol C ₄ H ₀ OH	Ether (C2H5)2O	n-Proply alcohol C ₃ H ₇ OH	Amyl alcohol C ₅ H ₁₁ OH	Ethyl iodide C2H5I
P						
atm	20°C 80°C	20°C 80°C	20°C 80°C	20°C 80°C	20°C 80°C	20°C 80°C
1	1.0212 1.0934	1.0195 1.0880	1.0315	1.0173 1.0865	1.0181 1.0814	1.0214 1.0935
500	.9782 1.0319	.9740 1.0262	.9668. 1.0369	.9770 1.0305	.9788 1.0288	.9774 1.0351
1000	.9479 .9922	.9470 .9883	.9337 .9874	.9483 .9913	.9511 .9915	.9475 .9946
2000	.9059 .9380	.9078 .9385	.8850 .9189	.9124 .9424	.9138 .9427	.9070 .9397
3000	.8760 .9025 .8517 .8756	.8798 .9052 .8575 .8802	.8503 .8776 .8246 .8481	.8876 .9120 .8677 .8893	.8869 .9110 .8658 .8877	.8777 .9034 .8555 .8760
4000 6000	.8149 .8354	.8242 .8433	.7883 .8070	.8365 .8548	.8348 .8531	.8555 .8760 .8207 .8381
8000	.7888 .8061	.8001 .8181	.7613 .7779	.8138 .8301	.8116 .8273	.7937 .8099
10.000	.7671 .7830	.7802 .7976	.7380 .7535	.7958 .8114	.7918 .8060	.7725 .7877
12,000	.7485 .7648	.7631 .7799	.7178 .7326	.7814 .7952	.7754 .7902	.7554 .7706
12,000	./403 ./040	.7031 .7799	./1/6 ./320	.7014 .7932	.7734 .7902	.7334 .7700
	THE RESERVE	M at 1 at 1 at	P. L. 1. 11. 11.	C 1 11 1C1	P.1 11 11	A
	Phosphorus tri- chloride PCl ₃	Methyl alcohol CH3OH	Ethyl chloride C ₂ H ₅ Cl	Carbon disulfide CS ₂	Ethyl hromide C ₂ H ₅ Br	Acetone (CH ₃) ₂ CO
P						
atm	20°C 80°C	20°C 80°C	20°C 80°C	20°C 80°C	20°C 80°C	20°C 80°C
1	1.0234 1.1032	1.0238 1.1005		1.0235 1.1092	1.0275 —	1.0279 —
500	.9852 1.0443	.9811 1.0400	.9696 1.0358	.9854 1.0458	.9776 —	.9818 —
1000	.9577 1.0040	.9494 .9993	.9253 .9797	.9567 1.0061	.9460 .9988	.9526 1.0082
2000	.9184 .9531	.9064 .9429	.8749 .9128	.9151 .9525	.9022 .9381	.9076 .9467
3000	.8902 .9192	.8763 .9065	.8415 .8715	.8852 .9154	.8714 .9020	.8748 .9073
4000	.8679 .8933	.8523 .8782	.8167 .8422	.8620 .8870	.8479 .8742	.8504 .8786
6000	.8348 .8561	.8163 .8381	.7796 .8008 .7533 .7728	.8265 .8468	.8131 .8339	.8143 .8370
8000 10.000	.8105 .8292 .7902 .8077	.7907 .8102 .7696 .7875	.7533 .7728 .7320 .7501	.7990 .8188 .7774 .7962	.7868 .8056 .7656 .7825	.7866 .8066 freezes .7821
10,000	.7902 .8077					
12,000	.7741 .7898	.7527 .7709	.7148 .7301	.7609 .7758	.7495 .7648	" .7617

Part 2.— $\beta = (1/V_0)(dV/dP)$

Substance Temp °C	Pressure mega- baryes	Compressibility per mega- baryes $\beta \times 10^{4}$	Pressure mega- Substance Temp°C baryes	Compressibility per mega- baryes $\beta \times 10^6$
Benzene 17	5	89	Mercury 22 1,000	3.91
20	200	77	22 12.000	2,37
20	400	57	Oils: almond 15 5	53
Chloroform 20	200	83	castor 15 5	46
20	400	70	linseed 15 5	51
Glycerine 15	5		olive 15 5	55
Kerosene 20	500	22 55	rapeseed 20 —	55 59
20	1,000	45	Toluene	74
20	12,000	8	20 400	64
Mercury 20 22	300 500	3.95 3.97	Turpentine 20 —	74

[∞] Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 47, p. 345, 1911; vol. 48, p. 309, 1912; vol. 49, p. 3, 1913.

TABLE 269.—RELATIVE VOLUMES OF WATER FOR DIFFERENT PRESSURES 91

TABLE 270.—RELATIVE VOL-UMES OF ETHER FOR DIF-FERENT PRESSURES **1

D		Temperatures		Pressure	Temper	atures
Pressure kg/cm ²	0°C	50°C	95°C	kg/cm ²	30°C	75°C
0	1.0000			0	1.0495	
500	.9771			500	.9761	
1,000	.9567	.9741	.9984	1,000	.9364	
1,500	.9396	.9582	.9812	1,500	.9085	
2,000	.9248	.9439	.9661	2,000	.8858	
3,000	.8996	.9201	.9409	2,500	.8671	.8909
4,000	.8795	.8997	.9194	3,000	.8511	.8726
5,000	.8626	.8824	.9009	4,000	.8255	.8446
6,000		.8668	.8849	5,000	.8055	.8225
7,000		.8530	.8705	6,000	.7 888	.803 8
8,000		.8407	.8577	7,000	.7742	.7884
9,000		.8296	.8461	8,000	.7616	.7747
10,000		.8192	.8352	9,000	.7504	.7629
11,000			.8256	10,000	.7399	.7519
, -				11,000	.7305	.7418
				12,000	.7225	.7329

⁹¹ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 66, p. 219, 1931.

TABLE 271.—COMPRESSIBILITY OF SOLIDS

If V is the volume of the material under a pressure P megabaryes and V_0 is the volume at atmospheric pressure, then the compressibility $\beta = -(1/V_0) \ (dV/dP)$. Its unit is cm²/megadynes (reciprocal megabaryes). $10^6/\beta$ is the bulk modulus in absolute units (dynes/cm^2) . The following values of β , arranged in order of increasing compressibility, are for P=0 and room temperature. 1 megabarye = 10^6 dynes/cm² = $1.020 \ \text{kg/cm}^2 = 0.987$ atm.

	Compression	75 11	Compression	- ·
	per unit	Bulk	per unit	Bulk modulus,
	vol. per megabarye	modulus, dynes/	vol. per megabarye	dynes/
Substance	×106	$cm^2 \times 10^{12}$	Substance ×106	$cm^2 \times 10^{12}$
Tungsten	27	3.7	Gallium 2.09	.48
Boron		3.0	Cadmium 2.17	.46
Silicon	22	3.1	Plate glass 2.23	.45
Platinum		2.6	Lead 2.27	.44
Nickel		23	Thallium 2.3	.43
Molybdenum		2.2	Antimony 2.4	.42
Tantalum		1.9	Quartz 2.7	.37
Palladium		1.9	Magnesium 2.9	.34
Cobalt		1.82	Bismuth 3 0	.33
Nichrome		1.79	Graphite 3.0	.33
Iron		1.67	Silica glass 3.1	.32
Gold	60	1.67	Arsenic 4.5	.22
Pyrite	7	1.4	Calcium 5.7	.175
Copper		1.33	Strontium 8.4	.120
Manganese		1.19	Phosphorus (red) 9.2	.109
Brass	89	1.12	Selenium 12.0	.083
Chromium		1.12	Ice 120	.083
Silver	99	1.01	Sulfur 12.9	.078
Mg. silicate, crys	. 1.03	.91	Iodine 13.0	.077
Mg. silicate	. 1.21	.82	Sodium 15.6	.064
Aluminum		.75	Hard rubber 19.4	
Calcite		.72	Phosphorus (white). 20.5	.049
Tin	. 1.89	.53		

TABLE 272.—COMPRESSIBILITY AND THERMAL EXPANSION OF PETROLEUM OILS *2

It was found that the compressibility and thermal expansion of two samples of the same specific gravity, but from different sources, differed more than 30 percent at the higher temperatures, whereas oils of the same specific gravity and the same viscosity had the same compressibility and thermal expansion within rather narrow limits. In other words, with a knowledge of the specific gravity and viscosity of the oils, it was possible to represent all the measured volumes within less than .5 percent over the entire range of temperature and pressure covered by the measurements.

Kinematic viscosity	Specific	Pressure			Re	elative vo	lumes		
100°F, cgs	gravity 60°/60°F	kg/cm²	0°C	20°	50°	100°	200°	300°	400°
.020	.80	0	1.000	1.018	1.045	1.096	1.222	1.422	(1.62)
		50 0	.996	1.014	1.041	1.089	1.205	1.370	(1.63)
41	.85	50	1.000 .997	1.017 1.014	1 044 1.040	1.093 1.086	1.213 1.197	1.396 1.352	(1.71) (1.58)
44	.90	0	1.000	1.017	1.043	1.090	1.204	1.375	(1.67)
"	.,,	50	.997	1.013	1.038	1.084	1.191	1.337	(1.55)
.050	.80	0	1.000	1.017	1.043	1.089	1.202	1.369	(1.71)
64	44	50	.997	1.013	1.038	1.083	1.189	1.333	(1.56)
44	.85	0	1.000	1.016	1.041	1.087	1.194	1.349	(1.63)
64	.90	50 0	.99 7 1.000	1.013 1.016	1.037 1.040	1.081 1.084	1.182 1.188	1.318 1.331	(1.51) (1.56)
"	.90	50	.997	1.012	1.046	1.078	1.176	1.304	(1.48)
.100	.85	0	1.000	1.016	1.040	1.083	1.185	1.325	(1.54)
44	44	50	.997	1.012	1.036	1.078	1.174	1.299	(1.47)
44	.95	0	1.000	1.015	1.038	1.079	1.174	1.297	(1.47)
		50	.997	1.012	1.034	1.074	1.164	1.276	(1.43)
.500	.85	0 50	1.000	1.015	1.038	1.078	1.170 1.161	1.289 1.269	(1.45) (1.41)
44	.95	0	.997 1.000	1.012 1.014	1.034 1.036	1.073 1.074	1.161	1.269	(1.41) (1.40)
"		50	.998	1.012	1.033	1.070	1.152	1.252	(1.37)
1.000	.85	0	1.000	1.015	1.037	1.076	1.165	1.279	(1.43)
"	66	50	.997	1.012	1.034	1.071	1.157	1.260	(1.39)
66	.95	0	1.000	1.014	1.035	1.073	1.157	1.261	(1.39)
		50	.998	1.011	1.032	1.068	1.149	1.244	(1.36)
2.000	.85	0 50	1.000 .998	1.014	1.036 1.033	1.075 1.070	1.162 1.153	1.270 1.253	(1.41)
"	.95	0	1.000	1.014	1.035	1.071	1.153	1.254	(1.37)
44	44	50	.998	1.011	1.032	1.067	1.145	1.239	(1.35)
5.000	.85	0	1.000	1.014	1.035	1.073	1.157	1.261	(1.39)
"	05	50	.998	1.011	1.032	1.068	1.149	1.245	(1.36)
"	.95	0 50	1.000 .998	1.013	1.034 1.031	1.069 1.065	1.148 1.141	1.244 1.229	(1.36) (1.33)
210°F, cgs	60°/60°F	kg/cm²	0°C	20°	50°	100°	200°	300°	400°
.100	.90	0	1.000	1.014	1.036	1.074	1.161	1.269	(1.41)
44	""	50	.998	1.011	1.032	1.070	1.152	1.252	(1.37)
"	.95	0	1.000	1.014	1.035	1.071	1.154	1.256	(1.38)
66		50	.998	1.011	1.032	1.067	1.147	1.241	(1.35)
44	1.00	0 50	1.000 .998	1.014 1.011	1.034 1.031	1.070 1.066	1.149 1.142	1.247 1.232	(1.37) (1.34)
.200	.90	0	1.000	1.014	1.035	1.072	1.155	1.258	(1.39)
44		50	.998	1.011	1.031	1.067	1.147	1.241	(1.35)
"	1.00	0	1.000	1.013	1.033	1.067	1.144	1.237	(1.35)
	"	50	.998	1.011	1.030	1.064	1.137	1.223	(1.32)
.440	.90	0	1.000	1.013	1.034	1.070	1.151	1.248	(1.36)
44	1.00	50 0	.998 1.000	1.011	1.031 1.032	1.066 1.066	1.143 1.140	1.234 1.228	(1.34) (1.33)
46	""	50	.998	1.010	1.029	1.063	1.134	1.214	(1.31)
1.100	.90	0	1.000	1.013	1.033	1.068	1.146	1.241	(1.35)
44	1.00	50	.998	1.010	1.030	1.065	1.139	1.225	(1.33)
44	1.00	0 50	1.000 .998	1.012 1.010	1.031 1.028	1.063 1.060	1.134 1.128	1.218 1.205	(1.32) (1.29)
		30	.990	1.010	1.020	1.000	1.120	1.205	(1.29)

⁹² Jessup, R. S., Nat. Bur. Standards Journ. Res., vol. 5, p. 985, 1930.

 $-\Delta V/V_0=aP-bP^2$, where P is in bars (106 dyne/cm²) and V_0 is the volume at 1 atm and 30°C (or room temp.). Pressure range, 1—12,000 bars unless otherwise noted. $a=\beta_0=$ initial compressibility. See also Table 271.

		30°C	759	CC
Element	$a \times 10^7$	b×1012	a×107	b×10 ¹²
Aluminum	13.65	4.9	13.98	4.9
Arsenic	31.6			
Beryllium	7.95	2.2	8.06	2.3
Bismuth	29.70	22	30.44	31
Boron	5.58	.8		
Cadmium (20°C)	22.5 1.8			
Carbon (diamond) (25°C) Carbon (graphite) (20°C)	30			
Cerium (below 4000 bars)	46.49	-169	45.88	-159
Chromium	5.25	.9	5.37	.9
Cobalt	5.46	.8	5.54	.8
Copper	7.29	1.6	7.44	1.6
Germanium	14.35	4.8	14.63	5.7
Gold	5.84	2.0	5.77	.8
Hafnium	9.15	1.1	8.94	1.1
	127	_		
Iridium	2.69	0	2.82	.9
Iron	5.949	.83	6.007	.83
Lanthanum	35.78	13.9 27.5	35.66 30.02	16.4 24.0
Magnesium	30.08 8.03	4.2	8.20	3.6
Manganese	3.63	3	3.64	— .4
Molybdenum	5.35	5 .9	5.41	7
Niobium	5.77	.9	5.85	.9
Palladium	5.34	.9	5.37	.8
Platinum	3.63	.3	3.67	.3
Rhodium	3.64	1.5	3.73	1.5
Ruthenium	3.48	1.7	3.51	1.7
Silicon (20°C to 500 bars)	3.1			
Silver	10.02	3.7	10.20	3.1
Tantalum	4.84	-1.1	4.98	-1.0
Thallium	35.5 18.50	12.0	37.4 18.78	12.5
Thorium	8.09	—1.5	8.81	3.3
Tungsten	3.20	-1.3	3.20	.2
Vanadium	6.17	1.35	6.20	1.35
Zinc	16.93	8.6		
Zirconium	11.15	6.3	11.24	6.8
Steel (20°C)	6.42	3.2		
Manganin (20°C)	8.41	6.5		
			Pressure, kg/cm ²	
	emp °C	4000	8000	12,000
Phosphorus	30	.0190*	.0342*	.0469*
red	75	.0189	.0344	.0476
Phosphorus	30	.0095	.0158	.0205
black	75	.0095	.0158	.0209
Mercury (liquid)	20 20	$.01485*$ $\beta_0 = 20$.02754*	.03795
	6.11	0 = ZU	X III	
Gallium (solid)	30	$\beta_0 = 40$	√ 10-7	

TABLE 274.—VARIATION ($\Delta V/V_{\circ}$) OF THE VOLUME OF A NUMBER OF METALS WITH PRESSURE $^{\circ\circ}$

Pressure kg/cm²	Lithium	Sodium	Potassium	Rubidium	Cesium	Beryllium	Titanium	Zinc	Germanium	Zirconium	Lanthanum	Cerium	Praseodymium	Neodymium	Uranium
2,500	.0204	.0334	.0677	.0696	.0999	.0024	.0027	.0040	.0040	.0026	.0100	.0109	.0090	.0078	.0024
5,000	.0389	.0624	.1152	.1224	.1585	.0047	.0052	.0079	.0078	.0054	.0194	.0234	.0174	.0152	.0048
10,000	.0715	.1115	.1862	.1982	.2392	.0094	.0099	.0154	.0152	.0111	.0370	.0549	.0329	.0289	.0095
15,000	.1005	.1511	.2374	.2506	.2981	.0139	.0143	.0225	.0213	.0168	.0526	.1655‡		.0416	.0139
20,000	.1261	.1836	.2772	.2920	.3442	.0181	.0185	.0293	.0268	.0220	.0665	.1864	.0604	.0536	.0181
25,000	.1485	.2111	.3093	.3254	.3908*		.0224	.0358	.0323	.0267	.08271		.0729	.0650	.0219
30,000	.1689	.2350	.3360	.3530	.4261	.0256	.0261	.0420	.0375	.0312	.0952	.2154	.0848	.0757	.0255
35,000	.1872	.2559	.3584	.3760	.4559	.0294	.0297	.0480	.0426	.0356	.1072	.2257	.0961	.0858	.0290
40,000	.2040	.2740	.3774	.3954	.4816	.0329	.0332	.0537	.0476	.0399	.1189	.2342	.1069	.0955	.0324

^{*} Transition at 23,300. Compressions .3716 and .3776. † Transition at 23,370. Compressions .0755 and .0781. ‡ Transition at 12,430. Compressions .0736 and .1504.

TABLE 275.—VARIATION OF THE VOLUME ($\Delta V/V_o$) FOR A NUMBER OF COMPOUNDS WITH PRESSURE FOR TWO TEMPERATURES o4

Pres-	NH ₄ C1 cm ³ /1.536 g	NH ₄ Br cm ³ /2.548 g	NH ₄ I cm ³ /2.887 g	AgCl cm ³ /5.589 g	AgBr cm ³ /6.548 g	AgI cm ³ /5.709 g
kg/cm ² 5,000	20°C -78.8°C .0269 .0217	20°C -78.8°C .0257 .0244	20°C -78.8°C .0316 .0321	20°C -78.8°C .0113 .0107	20°C -78.8°C .0111 .0103	20°C -78.8°C .1769* .1753*
10,000	.0489 .0395 .0668 .0545	.0487 .0462	.0590 .0582 .0822 .0804	.0216 .0207 .0312 .0301	.0215 .0202 .0313 .0297	.1896 .1868
20,000 25,000 30,000	.0818 .0675 .0949 .0794 .1070 .0906	.0880 .0829 .1049 .0984 .1203 .1124	.1019 .0989 .1188 .1144 .1332 .1279	.0401 .0389 .0484 .0471 .0562 .0549	.0404 .0386 .0496 .0476 .0584 .0562	.2095 .2061 .2180 .2145 .2257 .2222
35,000 40,000	.1176 .1010 .1278 .1111	.1340 .1250 .1465 .1364	.1456 .1397 .1570 .1504	.0634 .0621 .0704 .0690	.0665 .0641 .0743 .0716	.2326 .2291 .2396 .2362
45,000 50,000	.1372 .1207 .1462 .1301	.1576 .1466 .1676 .1557	.1676 .1608 .1775 .1702	.0772 .0755 .0838 .0818	.0818 .0789 .0890 .0858	.2462 .2428 .2525 .2490
Pres-	NaCl cm ³ /2,163 g	NaBr cm ³ /3.205 g	NaI cm ³ /3.667 g	KC1 cm ³ /1.988 g	KBr cm ³ /2.75 g	KI cm ³ /3.123 g
sure kg/cm²	20° -78.8°C	20° -78.8°C	20° -78.8°C	20° -78.8°C	20° -78.8°C	20° -78.8°C
5,000 10,000	.0192 .0177 .0365 .0341	.0228 .0216 .0430 .0413	.0296 .0290 .0553 .0547	.0257 .0241	.0295 .0272	.0351 .0335
		.0430 .0413	.0555 .0547	.0478 .0452	.0547 .0511	.0648 .0623
15,000 20,000	.0523 .0494 .0664 .0634	.0610 .0594	.0778 .0772 .0974 .0966	.0478 .0452 .0667 .0645 .0841 .0807	.0547 .0511 .0758 .0720 .1989 .1933	.0648 .0623 .0905 .0868 .1970 .1932
20,000 25,000 30,000	.0523 .0494 .0664 .0634 .0798 .0763 .0919 .0880	.0610 .0594 .0771 .0756 .0916 .0904 .1047 .1037	.0778 .0772 .0974 .0966 .1145 .1139 .1294 .1288	.0667 .0645 .0841 .0807 .2111 .2055 .2225 .2158	.0758 .0720 .1989 .1933 .2138 .2078 .2267 .2202	.0905 .0868 .1970 .1932 .2149 .2105 .2296 .2244
20,000 25,000 30,000 35,000 40,000	.0523 .0494 .0664 .0634 .0798 .0763 .0919 .0880 .1029 .0987 .1130 .1084	.0610 .0594 .0771 .0756 .0916 .0904 .1047 .1037 .1166 .1157 .1274 .1263	.0778 .0772 .0974 .0966 .1145 .1139 .1294 .1288 .1424 .1421 .1538 .1538	.0667 .0645 .0841 .0807 .2111 .2055 .2225 .2158 .2324 .2255 .2419 .2340	.0758 .0720 .1989 .1933 .2138 .2078 .2267 .2202 .2379 .2308 .2479 .2399	.0905 .0868 .1970 .1932 .2149 .2105 .2296 .2244 .2421 .2363 .2532 .2466
20,000 25,000 30,000 35,000	.0523 .0494 .0664 .0634 .0798 .0763 .0919 .0880 .1029 .0987	.0610 .0594 .0771 .0756 .0916 .0904 .1047 .1037 .1166 .1157	.0778 .0772 .0974 .0966 .1145 .1139 .1294 .1288 .1424 .1421	.0667 .0645 .0841 .0807 .2111 .2055 .2225 .2158 .2324 .2255	.0758 .0720 .1989 .1933 .2138 .2078 .2267 .2202 .2379 .2308	.0905 .0868 .1970 .1932 .2149 .2105 .2296 .2244 .2421 .2363
20,000 25,000 30,000 35,000 40,000 45,000	.0523 .0494 .0664 .0634 .0798 .0763 .0919 .0880 .1029 .0987 .1130 .1084 .1223 .1172	.0610 .0594 .0771 .0756 .0916 .0904 .1047 .1037 .1166 .1157 .1274 .1263 .1373 .1357	.0778 .0772 .0974 .0966 .1145 .1139 .1294 .1288 .1424 .1421 .1538 .1538 .1638 .1642	.0667 .0645 .0841 .0807 .2111 .2055 .2225 .2158 .2324 .2255 .2419 .2340 .2501 .2418 .2579 .2497	.0758 .0720 .1989 .1933 .2138 .2078 .2267 .2202 .2379 .2308 .2479 .2399 .2569 .2481	.0905 .0868 .1970 .1932 .2149 .2105 .2296 .2244 .2421 .2363 .2532 .2466 .2629 .2554

Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 74, October 1940.
 Transition below this point.

Part 1.— $-\Delta V/V_0=aP-bP^2$ where P is in bars (10° dyne/cm²) and V_0 is the volume at 1 atm and 30°C (or room temp.)

Pressure range, 1-12,000 bars

		0°C	3(0°C	75	°C
Crystal and formulae	System	a×107	a×107	b×1012	a×107	
Andradite:	System	a × 10.	a×10.	D X 10-2	a × 10.	b×1012
3CaO·Fe ₂ O ₃ ·3SiO ₂	Cubic		6.73	.86	6.70	.86
Apatite: 3Ca ₃ P ₂ O ₈ ·CaF ₂			10.91	4.1	11.09	3.8
Argentite: Ag ₂ S		30			25.1	33.5
Barite: BaSO ₄	Orthorhombic	17.1-18.1	17.60	11.9	17.92	12.6
Beryl: 3BeO·Al ₂ O ₃ ·6SiO ₂ .		5.7	5.403	.94	5.407	.94
Calcite: CaCO ₃	Trigonal	13.5	13.67	3.9	13.93	4.2
Cobaltite: CoAs·S		10.6	7.67	1.88	7.79	1.88
Fluorite: CaF ₂		12.6	12.26	6.49 7.43	12.59	6.61
Galena: PbS	Cubic	19.5–19.7	18.69	7.43	18.97	8.41
Garnet (pyrope): 3MgO·Al ₂ O ₃ ·3SiO ₂	Cubic		5.45	.91	5.51	.91
Halite (Rock Salt): NaCl.			42.60	51	44.26	52.6
Hanksite:	Cubic		12.00	51	11.20	52.0
KC1.2Na ₂ CO ₃ .9Na ₂ SO ₄ .	Hexagonal		24.57	24.5	25.54	26.7
Jeffersonite			9.088	3.94	9.551	5.56
Lithium fluoride: LiF	Cubic		15.20	5.5	15.91	5.7
Lithium iodide: LiI			60.0	110.		
Magnetite: Fe₃O₄		5.4-5.7	5.47	.82	5.45	.82
Orthoclase: KA1·Si ₃ O ₈		7.0	21.23	14.5	21.16	13.9
Periclase: MgO	Cubic	7.2	5.98	1 105.3	6.06	105.2
Potassium bromide: KBr . Potassium fluoride: KF	Cubic Cubic		67.0 33.0	31.9	68.8 33.2	105.2
Potassium iodide: KI			85.3	155.4	87.7	31.9 155.4
Pyrite: FeS ₂		7.1	6.80	.87	6.82	.87
Quartz: a SiO2			27.06	24.0	27.54	24.7
Rochelle salt (see end of pa						
Sapphire (synthetic): Al ₂ O ₃	,	3.8	3.36			
Sphalerite: ZnS		12.9–12.2	13.03	1.28	12.79	1.26
Spodumene: LiAl·Si ₂ O ₆			7.033	1.49	7.073	2.28
Sylvite: KCl	Cubic		56.2	75.1	57.5	75.1
Tourmaline (black)	Trigonal		8.16	1.95	8.62	2.15
TopazZircon: ZrO ₂ ·SiO ₂		8.6	6.109	1.06	6.075	1.06
ZIFCOII: ZFO ₂ ·SiO ₂		0.0		_		
	Pressures	$-\Delta V/V_0$				
Rochelle salt: C4H4O6KNa		- 4 v / v ₀				
Rochelle Salt: C4F14O6KNa	2000	.01080				
	4000	.02016				
	6000	.02885				
	8000	.03716				
	10,000	.04501				
	12,000	.05237				

^{**} For reference, see footnote 45, p. 136.

(continued)

Part 2.—Elastic constants of rocks at ordinary pressure and temperature.

E = Young's modulus, in dynes cm⁻² G = Modulus of rigidity, in dynes cm⁻² σ = Poisson's ratio, dimensionless

The density is given, when known, in parentheses in the first column.

Rock	E dynes cm ⁻²	G dynes cm-2	σ	Stress or stress range kg cm ⁻²
Granite, coarse gray, Quincy, Mass	4.64×10 ¹¹	(1.92)×10 ¹¹	.215	70–600
depth (2.67)	3.48		• • •	11.2
Basalt, Ostritz	11.15	• • •		100-900
Diabase Westfield, Mass. (2.95)	8.00*		•••	
Marble Proctor, Vt. (2.71)	3.43 4.60 4.95*	2.17	.141 .190	11.2 56
Limestone Knoxville, Tenn. Montreal	6.21 6.35	(2.48) (2.50)	.251 .252	70–600 70–600
Dolomite, Pennsylvania (2.83)	7.10*	3.23		
Sandstone Quartzitic, Penna. (2.66) Feldspathic, Ohio	6.36 1.58	(.61)	.115 .290	11.2 70–600
Slate, Pennsylvania, to cleavage plane	11.29*	4.65	• • •	
Shale (2.63)	4.4 dry 1.9 wet	•••	• • •	200
Schist, Mica, Japan	1–6	• • •		
Tuff, Japan	.3-3.6			
Ice (.917) —5°C	.917*	.336	(.365)	
* Dynamical measurements.				

TABLE 277.—RELATIVE VOLUME OF QUARTZ CRYSTALS AND SIX GLASSES FOR DIFFERENT PRESSURES **5

Pressure	Qua	ırtz		Pyrex			Borax
kg/cm ²	crystal	glass	Glass A*	glass	Glass C†	Glass D ‡	glass
1	1.000	1.000	1.000	1.000	1.000	1.000	1.000
25.000	.946	.923	.934	.921	.945	.932	.877
30,000	.939	.909	.923	.907	.936	.924	.866
40,000	.926	.885	.905	.885	.920	.909	.845
50,000	.914	.864	.890	.867	.905	.894	.825
60,000	.902	.847	.875	.851	.891	.880	.808
70,000	.892	.832	.862	.83 8	.878	.867	.792
80,000	.883	.819	.849	.827	.866	.855	.7 78
90,000	.875	.808	.838	.817	.854	.844	.765
100,000	.868	.798	.828	.809	.842	.834	.753

Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 76, p. 68, 1948.
 Glass A is a potash lead silicate of very high lead content.
 Glass C is a soda potash lime silicate.

Δ	V/	٧
----------	----	---

Pressure kg/cm²	Quartz glass	Pyrex	A *	C †	D ‡	Borax glass
5,000	.0141	.0153	.0159	.0121	.0144	.0345
10,000	.0295	.0308	.0300	.0239	.0281	.0631
15,000	.0452	.0465	.0425	.0352	.0411	.0857
20,000	.0610	.0622	.0535	.0449	.0542	.1054
25,000	.0772	.0786	.0656	.0549	.0678	.1228
30,000	.0933	.0920	.0770	.0654	.0806	.1376
35,000	.1068	.1032	.0866	.0742	.0927	.1518
40,000	.1194	.1133	.0964	.0830	.1049	.1648

Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 73, p. 74, 1938.
 Glass A is a potash lead silicate of very high lead content.
 Glass C is a soda potash lime silicate.
 Glass D is a lead zinc borosilicate.

TABLE 279.—SPECIFIC GRAVITIES CORRESPONDING TO THE BAUMÉ SCALE

The specific gravities are for 15.56°C (60°F) referred to water at the same temperature as unity. For specific gravities less than unity the values are calculated from the formula:

Degrees Baumé =
$$\frac{140}{\text{specific gravity}}$$
 -130.

For specific gravities greater than unity from:

Degrees Baumé =
$$145 - \frac{145}{\text{specific gravity}}$$

C			S	pecific g	ravities	less than	n 1			
Specific gravity	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
					Degrees	Baumé				
.60	103.33	99.51	95.81	92.22	88.75	85.38	82.12	78.95	75.88	72.90
.70	70.00	67.18	64.44	61.78	59.19	56.67	54.21	51.82	49.49	47.22
.80 .90	45.00 25.56	42.84 23.85	40.73 22.17	38.68 20.54	36.67 18.94	34.71 17.37	32.79 15.83	30.92 14.33	29.09 12.86	27.30
1.00	10.00	23.03	22.17	20.34	10.94	17.57	13.03	14.55	14.00	11.41
1.00	10.00		Spe	cific gra	vities gr	eater th	an 1			
Specific gravity	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
					Degrees	Baumé				
1.00	.00	1.44	2.84	4.22	5.58	6.91	8.21	9.49	10.74	11.97
1.10	13.18	14.37	15.54	16.68	17.81	18.91	20.00	21.07	22.12	23.15
1.20	24.17	25.16	26.15	27.11	28.06	29.00	29.92	30.83	31.72	32.60
1.30	33.46	34.31 42.16	35.15	35.98	36.79	37.59	38.38	39.16	39.93 47.03	40.68 47.68
1.40 1.50	41.43 48.33	42.16	42.89 49.60	43.60 50.23	44.31 50.84	45.00 51.45	45.68 52.05	46.36 52.64	53.23	53.80
1.60	54.38	54.94	55.49	56.04	56.58	57.12	57.65	58.17	58.69	59.20
1.70	59.71	60.20	60.70	61.18	61.67	62.14	62.61	63.08	63.54	63.99
1.80	64.44	64.89	65.33	65.76	66.20	66.62				

TABLE 280.—DEGREES API CORRESPONDING TO SPECIFIC GRAVITIES $60^{\circ}/60^{\circ}\text{F}$

(15-56°/15.56°C) for petroleum oils.

In order to avoid confusion and misunderstanding the American Petroleum Institute, the Bureau of Mines, and the National Bureau of Standards have agreed that a scale based on the modulus 141.5 shall be used in the United States Petroleum Industry and shall be known as the API scale. The United States Baumé scale based on the modulus 140 will continue to be used for other liquids lighter than water.

Calculated from the formula, degrees API =
$$\frac{141.5}{\text{sp. gr. }60^{\circ}/60^{\circ}\,\text{F}}$$
 - 131.5.

Degrees API 60°/60°F .00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.6 104. .7 70. .8 45. .9 25. 1.0 10.	64 67.80 38 43.19 72 23.99	96.73 65.03 44.06 22.30	93.10 62.34 38.98 20.65	89.59 59.72 36.95 19.03	86.19 57.17 34.97 17.45	82.89 54.68 33.03 15.90	79.69 52.27 31.14 14.38	79.59 49.91 29.30 12.89	73.57 47.61 27.49 11.43

TABLE 281.—DENSITY OF THE ELEMENTS, LIQUID OR SOLID

The density may depend considerably on previous treatment. To reduce to lb/ft³ multiply by 62.4.

				10 100000 10 10		
Element	Physical state	g/cm³	°C*	Element Physical state Lead solid liquid Lithium Magnesium Manganese Mercury liquid solid Molybdenum Neodymium Neodymium Nickel Niobium Nitrogen liquid solid Osmium Oxygen liquid Palladium Phosphorus white red	g/cm³	°C*
Aluminum	commercial	2.70	20°	Lead solid	11.005	325
"	h'd d'n liquid	2.43	740	" liquid	10.597	400 850
"	6.6	2.29	1000	Lithium	.534	20
Antimony	vacuo-distilled ditto-com-	6.618 6.691	20 20	Manganese .	1.741 7.3	
	pressed			Mercury liquid	13.596	0
	solid crystallized amorph. br	6.22	631		13.546	$-{}^{20}_{38.8}$
Argon	41	1.40	-186	" solid	14.193	— 38.8
Arsenic	solid	1.65	-233 14	Molyhdenum.	14.383	— 188
"	amorph. br	3.70	• •	Neodymium .	7.00	
**	black	3.88		Neon Vickel	1.204	-245
Barium Beryllium	solid	3.78		Niobium	8.4	15
Beryllium	solid electrolytic	1.85 9.747		Nitrogen liquid	.810 854	-195 -205
17131114111	vacuo-distilled liquid solid crystal	9.781	20	" solid	1.0265	-252.5
	liquid	10.09	271 271	Osminm	1.14	—273
Boron	crystal	2.535	2,1	Oxygen liquid	1.132	-183.6
Bromina	amorph, pure liquid solid	2.45		" solid	1.426	-252.5 -273
brounde	solid	4.2	-273	Palladium	12.16	-273
Cadmium	solid wrought vacuo-distilled solid	8.67	20	l'hosphorus white	1.83	
"	solid	8.37	318	" metallic	2.34	15
Calcium	solid liquid	7.99 1.54	318	Palladium Phosphorus white red metallic black Platinum black Potassium policy	2.69	20
Calcium	diamond	3.52		" black	2.70	
Cerium	graphite	2.25		Potassium solid " solid Praseo-	.870 .851	20 62.1
Cerium	pure	7.02		" liquid	.830	62.1
Cesium	solid	1.873	20 2 7	Praseo-		25
Chlorine	liquid	1.507	- 33.6	Rhodium	12.44	25
Chromium	diamond graphite electrolytic pure solid liquid liquid solid pure cast annealed hard drawn vacuo-distilled	2.2 6.52–6.73	— 273	dymium Rhodium Rubidium Ruthenium Samarium Selenium Selenium Silicon " amorph. Silver cast " vacuo-distilled	1.532	20
Chromium	pure	6.93	25	Samarium	7.7-7.8	19
Cobalt		8.71	21.	Selenium	4.82	20
Copper	annealed	8.89	20	" amorph.	2.42	20 15
"	hard drawn	8.89 8.9326	20 20	Silver cast	10.42-10.53	20
"	ditto-com-	8.9376	20			
"	pressed	0.217		sodium solid Strontium solid Sulfur liquid Strontium liquid Strontium liquid Tantalum	10.503	20
Erhium	pressed liquid liquid solid	4.77		Sodium	.9712	20
Fluorine	liquid	1.14	-200 273	" solid	.9519	97.6
Gallium	Solid	5.93	-273 23	" nquid	1.0066	97.6 —188
Germanium .		5.46	20	Strontium solid	2.60	
Gold	vacuo-distilled	19.3 18.88	20	Sunur liquid	1.811	113
	vacuo-distilled ditto-com-		20	Tantalum	16.6	
Hafnium	pressed solid liquid solid liquid solid	13.3		Tantalum Tellurium crystallized 44 amorphous Thallium	6.02	20
Helium	liquid	.15	-269 -273 -252	Thallium	11.86	17
Hydrogen	liquid	.070	-273 -252	Thorium white, cast	11.00 7.29	17
Tendium.	solid	.0763	-260	wrough	t 7.30	226
Iodine		4.940	20	" liquid	6.99	226
1.121	liquid	3.71	184	Titopium gray	5.8	18
Iron	pure	7.86	17	Tungsten	19.3	18
66	gray cast	7.03-7.13		Thorium white, cast " " wrough " " solid " liquid " gray Titanium Tungsten Uranium Vanadium Xenon liquid	18.7	13
	write cast wrought	7.80-7.90		Xenon liquid	5.6 3.52	109
"	liquid	6.88	1200	Yttrium	3.8 7.04-7.16	
Krypton	**	2.16	-146	Xenon liquid Yttrium Zinccast	4.32	-273
Tanaha	solid	3.4	-273	" solid " vacuo-distilled	6.92	20
Lead	vacuo-distilled	11.342	20	pressed	7.13	20
"	ditto-com-	11 247	20	" liquid	6.48	
	solid liquid solid liquid pure gray cast white cast wrought liquid "solid vacuo-distilled ditto-compressed	11.34/	20	Zirconium	6.44	

^{*} Where the temperature is not given, ordinary temperature is understood.

292 TABLE 282.—DENSITY IN g/cm3 AND lb/ft3 OF VARIOUS SOLIDS

Note.—The density of a specimen depends considerably on its state and previous treatment; especially is this the case with porous materials.

Material	g/cm³	lb/ft ³	Material g/cm ³ lb/ft ³
Agate	2.5 -2.7	156-168	Gum arabic 1.3 –1.4 80– 85
Alabaster:			Gypsum 2.31–2.33 144–145
Carbonate	2.69-2.78	168-173	Hematite 4.9 –5.3 306–330
Sulphate		141-145	Hornblende 3.0 187
Albite		163-165	Ice
Amber	1.06-1.11	66- 69	Ilmenite 4.5 –5. 280–310
Amphiboles	2.9 - 3.2	180-200	Ivory 1.83–1.92 114–120
Anorthite	2.74-2.76	171-172	Labradorite 2.7 –2.72 168–170
Anthracite	1.4 - 1.8	87-112	Lava, basaltic 2.8 -3.0 175-185
Asbestos	2.0 - 2.8	125-175	" trachytic 2.0 -2.7 125-168
Asphalt	1.1 - 1.5	69- 94	Leather, dry86 54
Basalt		150-190	" greased 1.02 64
Beeswax		60- 61	Lime, mortar 1.65–1.78 103–111
Beryl		168–168	" slaked 1.3 -1.4 81- 87
Biotite		170–190	Limestone 2.68–2.76 167–171
Bone		106-125	Litharge:
Brick		87–137	Artificial 9.3 –9.4 580–585
Butter		53- 54	Natural 7.8 -8.0 490-500
Calamine		255–280	Magnetite 4.9 –5.2 306–324
Camphor		62	Malachite 3.7 -4.1 231-256
Caoutchouc		57- 62	Marble 2.6 -2.84 160-177
Celluloid		87	Meerschaum99–1.28 62 –80
Cement, set		170–190	Mica 2.6 –3.2 165–200
Chalk		118-175	Muscovite 2.76–3.00 172–225
Charcoal, oak		35	Ochre
" pine		18- 28	Oligoclase 2.65–2.67 165–167
Chrome yellow		374	Olivine 3.27–3.37 204–210
Chromite		270–285 507	Opal
Cinnabar		122–162	Paper
Clay		75- 94	Paraffin
Coal, soft		56- 57	Peat
Coke		62-105	Pitch
Copal		65- 71	Porcelain 2.3 –2.5 143–156
Cork		14- 16	Porphyry 2.6 –2.9 162–181
Cork linoleum		34	Pyrite 4.95–5.1 309–318
Corundum	39 -40	245-250	Quartz 2.65 165
Diamond:	0.20	2.0 200	Quartzite 2.73 170
Anthracitic	1.66	104	Resin 1.07 67
Carbonado		188-203	Rock salt 2.18 136
Diorite		157	Rubber, hard 1.19 74
Dolomite		177	" soft 1.1 69
Ebonite		72	Rutile 4.2 260
Emery		250	Sandstone 2.14–2.36 134–147
Epidote		203-218	Serpentine 2.50–2.65 156–165
Feldspar		159-172	Slag, furnace 2.0 -3.9 125-240
Flint		164	Slate 2.6 -3.3 162-205
Fluorite	3.18	198	Soapstone 2.6 –2.8 162–175
Gamboge		75	Starch 1.53 95
Garnet		197-268	Sugar 1.61 100
Gas carbon		117	Talc 2.7 -2.8 168-174
Gelatine		180	Tallow
Glass, common		150–175	Tar 1.02 66
" flint		180-370	Topaz 3.5 -3.6 219-223
Glue		80	Tourmaline 3.0 –3.2 190–200
Granite		165–172	Wax, sealing 1.8 112 Zircon 4.68-4.70 292-293
Graphite	2.30-2.72	144–170	Zircon 4.68-4.70 292-293

Alloy	g/cm³	lb/ft³
Brasses: yellow, 70Cu + 30Zn, cast	8.44	527
TORCU	8.56	534
" " drawn	8.70	542
" red. 90Cu + 10Zn	8.60	536
" white, 50Cu + 50Zn	8.20	511
Bronzes: 90Cu + 10Sn	8.78	548
" 85Cu + 15Sn	8.89	555
" 80Cu + 20Sn	8.74	545
" 75Cu + 25Sn	8.83	551
German silver: Chinese, 26.3 Cu + 36.6 Zn + 36.8 Ni	8.30	518
" Berlin (1) $52Cu + 26Zn + 22Ni$	8.45	527
" " (2) $59Cu + 30Zn + 11Ni$	8.34	520
" " (3) $63Cu + 30Zn + 6Ni$	8.30	518
" nickelin	8.77	547
Lead and tin: 87.5Pb + 12.5Sn	10.60	661
" " 84Pb + 16Sn	10.33	644
" " 77.8Pb + 22.2Sn	10.05	627
" " 63.7Pb + 36.3Sn	9.43	588
" " 46.7Pb + 53.3Sn	8.73	545
" " 30.5Pb + 69.5Sn	8.24	514
Bismuth, lead, and cadmium: $53Bi + 40Pb + 7Cd$	10.56	659
Wood's metal: $50Bi + 25Pb + 12.5Cd + 12.5Sn$	9.70	605
Cadmium and tin: 32Cd + 68Sn	7.70	480
Gold and copper: 98Au + 2Cu	18.84	1176
" " 96Au + 4Cu	18.36	1145
" " 94Au + 6Cu	17.95	1120
" " 90Au + 10Cu	17.16	1071
80Au + 14Cu	16.47	1027
Aluminum and copper: 10Al + 90Cu	7.69	480
" " 5A1 + 95Cu	8.37	522
3AI + 9/Cu	8.69	542
Aluminum and zinc: 91A1 + 9Zn	2.80	175
Platinum and iridium: 90Pt + 10Ir	21.62	1348
03Ft + 131F	21.62	1348
***************************************	21.87	1364
Carboloy	14.3	895
Constantan: 60Cu + 40Ni	8.88	554 125
Magnalium: 70Al + 30Mg	2.0	
Manganin: 84Cu + 12Mn + 4Ni	8.5	530 554
Monel metal	8.87	554 560
Platinoid: German silver + little tungsten	9.0 8.3	518
Stellite: Co 59.5; Mo 22.5; Cr 10.8; Fe 3.1; Mn 2.0; C .9; Si .8	03	310

TABLE 284.—PHYSICAL PROPERTIES OF SOME LIGHT HYDROCARBONS OF

Hydrocarbon Formula	Molecular weight	Temperature Jointain	Pressure Jsus	ts Specific C _p	heats C _v	Specific gravity $Air = 1.000$	Density	Volume gas per kl liquid	Vapor pressure at 20°K	Maximum flame temperature	Heating value after vaporization
		°C	atm	cal g-1	° C-1		kg/m³	m³/kl	atm	°C	cal/m ³
Methane CH4 1	6.04	82.1	45.8	.526	.400	.555	.678		—–	1880	9,000
	28.05	9.72	50.9	.363	.296	.977	1.19			1975	14,350
EthaneC ₂ H ₀ 3	30.07	32.3	48.2	.409	.347	1.048	1.282	294.2	38.3	1895	15,900
Propylene C ₃ H ₆ 4	12.08	91.4	45.4	.363	.316	1.476	1.805	289	10.3	1935	21,100
PropaneC₃H ₈ 4	14.09	96.8	42.0	.388	.343	1.550	1.892	268	8.45	1925	22,800
Butadiene-1,3C ₄ H ₆ 5	54.09	152.0	42.8	.349	.312	1.922	2.35	267	2.45		26,400
	56.10	143.9	39.2	.371	.334	1.998	2.44	246	2.6		28,200
cis-Butene-2 C ₄ H ₈ 5	6.10	160	41.5	.350	.315	2.004	2.45	255.5	18.5	1930	28,300
trans-Butene-2. C ₄ H ₈ 5	56.10	155.0	40.5	.376	.342	2.004	2.45	249.0	2.00		28,200
	6.10	144.7	39.5	.375	.335	1.998	2.44	245.5	2.57		28,100
	58.12	133.7	36.5	.387	.348	2.077	2.54	222	3.06	1900	30,000
11-Butane C ₄ H ₁₀ 5	58.12	152.2	37.5	.397	.361	2.084	2.55	229.5	2.13	1895	30,100

⁶⁷ Shnidman, Louis (ed.), Gaseous fuels, p. 34, American Gas Assoc., 1948.

Name and formula	°C	Density in g/cm³	Sp. vol. cm³/g
Oxides			
Corundum Al ₂ O ₃ *	(0)	4.02	.249
Corundum Al ₂ O ₃ *	(25)	3.42	.292
Magnesia MgO *	(25)	3.603	.2775
Ferrous oxide FeO *	(20)	5.7	.175
Hematite Fe ₂ O ₃	(20)	5.25 5.172	.1905 .1933
Magnetite Fe ₃ O ₄	(0)	2.649	.1933
Quartz SiO ₂ †	(25)	2.648	.3776
Cristobalite SiO ₂	(25)	2.325	.4301
Vitreous silica	(0)	2,203	.4539
Rutile TiO2	(0)	4.250	.2353
Ilmenite (FeTi) ₂ O ₃	(0)	5.088	.1965
Silicates			
	(25)	3.247	.3080
Sillimanite Al ₂ O ₃ ·SiO ₂	(25) (25)	3.156	.3169
Mullite 3Al ₂ O ₃ ·2SiO ₂ * Albite NaAlSi ₃ O ₈ *	(25)	2.62	.382
Anorthite CaAl ₂ Si ₃ O ₈ *	(25)	2.757	.3627
Nephelite NaAlSiO ₄ *	(21)	2.619	.3818
Nephelite NaAlSiO ₄ * Labradorite Ab ₄₈ An ₅₂ ‡	(26)	2.695	.3711
Oligoclase Ab ₇₈ An ₂₂ ‡	(25)	2.638	.3791
Orthoclase KAlSi ₃ O ₈	(15)	2.554	.3915
" adularia	(15)	2.566	.3897
Microcline	(25)	2.557	.3911
Calcium orthosilicates			
α — Ca ₂ SiO ₄	(25)	3.26	.307
$\beta - \text{Ca}_2\text{SiO}_4$	(25)	3.27	.306
γ — Ca ₂ SiO ₄	(25)	2.965	.3373
Calcium metasilicates			
$a - \text{CaSiO}_3 (\psi - \text{Wollastonite})^* \dots$	(25)	2.904	.3444
$\beta - \text{CaSiO}_3$ (pseudo-Wollastonite)	(25)	2.906	.3441
Diopside CaMgSi ₂ O ₆	(28)	3.257	.3070
" CaMgSi ₂ O ₂ *	(25)	3.265	.3063
Enstatite MgSiO ₃ *	(25)	3.166	.3159
" $(MgSiO_3)_{88}$ $(FeSiO_3)_{12}$	(25)	3.254	.3073
Hypersthene (MgSiO ₃) ₇₀ (FeSiO ₃) ₃₀	(29)	3.415	.2928
Forsterite Mg ₂ SiO ₄	(20)	3.223 4.28	.3103 .234
Fayalite Fe ₂ SiO ₄ * Garnet—grossularite	(15) (31)	3.544	.2822
" almandite	(31)	4.160	.2404
Jadeite	(31)	3.328	.3005
	(01)	0.020	
Miscellaneous substances		0.05	4.40
Borax, anhydrous, Na ₂ B ₄ O ₇ *	(0)	2.27	.440
CaCO ₃ ; aragonite	(0)	2.932	.3411
CaCO ₃ ; calcite	(20) (10)	2.7102 3.180	.3688 .3145
CaF ₂ ; fluorite	(25)	3.516	.2844
NaCl: rock salt	(20)	2.1632	.4623
Na ₂ SO ₄ V: thenardite *	(25)	2.664	.3754
Na ₂ SO ₄ III *	(25)	2.697	.3708
KC1: fine powder *	(30)	1.984	.5040
Pyrite FeS ₂	(25)	5.012	.1995
Marcasite FeS ₂	(25)	4.873	.2052
* Artificial. † Natural. ‡ Ab = albite; An =	Anorthite.		
ritinetal. Ivatural. 4 · iii = ainte, · iii =			

Density or mass in g/cm⁸ and in lb/ft³ of various liquids.

Liquid	g/cm ⁸	1b/ft ⁸	Temp. °C
Acetone	.792	49.4	20°
Alcohol, ethyl	.807	50.4	0
" methyl	.810	50.5	0
Aniline	1.035	64.5	0
Benzene	.899	56.1	0
Bromine	3.187	199.0	0
Carbolic acid (crude)	.950965	59.2–60.2	15
Carbon disulfide	1.293	80.6	0
Chloroform	1.489	93.0	20
Cocoa butter	.857	53.5	100
Ether	.736	45.9	0
Gasoline	.6669	41.0-43.0	
Glycerine	1.260	78.6	0
Japan wax	.875	54.6	100
Mercury	13.595	849	0
	1.028-1.035	64.2-64.6	
Naphtha (wood)	.848– .810	52.9–50.5	0
Naphtha (petroleum ether)	.665	41.5	15
Oils: Amber	.800	49.9	15
Anise-seed	.996	62.1	16
Beef-tallow	.931- 938	58.	
Butterfat	.91 – .92	56.	
Camphor	.910	56.8	
Castor	.969	60.5	15
Clove	1.04 - 1.06	65. –66.	25
Cocoanut	.925	57.7	15
Cod-liver	.9293	58.	
Cottonseed	.926	57.8	16
Creosote	1.040-1.100	64.9–68.6	15
	.82	51.2	13
Kerosene		57.4	15
Ļard	.920		
Lavender	.877	54.7	16
Lemon	.844	52.7	16
Linseed (boiled)	.942	58.8	15
Neat's-foot	.913917	57.0-57.2	
Oleomargarine	.9293		
Olive	.918	57.3	15
Palm	.905	56.5	15
Pentane	.650	40.6	0
	.623	38.9	25
Peppermint	.9092	56-57	25
Petroleum	.878	54.8	0
" (light)	.795805	49.6-50.2	15
Pine	.850860	53.0-54.0	15
	.924	57.7	15
Poppy	.915	57.1	15
Rapeseed (crude)			
" (refined)	.913	57.0	15
Resin	.955	59.6	15
Sperm	.88	55.	25
Soya-bean	.919	57.3	30
"	.906	56.5	90
Train or whale	.918925	57.3–57.7	15
Turpentine	.873	54.2	16
Valerian	.965	60.2	16
Wintergreen	1.18	74.	25
Pyroligneous acid	.800	49.9	0
Water	1.000	62.4	4
Sea water	1.025	64.0	
oca mater	-10-0		

TABLE 287.—DENSITY OF PURE WATER FREE FROM AIR, 0° TO 41°C

Under standard pressure (76cmHg) at every tenth part of a degree from 0° to 41° C, in g/ml.*

				T	enths of	degrees			-		Mean
Degrees C 0 1 2 3 4	0 .999 8681 9267 9679 9922 1.000 0000	9711 9937	2 8812 9363 9741 9951 9996	3 8875 9408 9769 9962 9992	4 8936 9452 9796 9973 9986	5 8996 9494 9821 9981 9979	6 9053 9534 9844 9988 9970	7 9109 9573 9866 9994 9960	8 9163 9610 9887 9998 9947	9 9216 9645 9905 0000 9934	differences + 59 + 41 + 24 + 8 - 8
5 6 7 8 9	.999 9919 9682 9296 8764 8091	9650 9249	9884 9617 9201 8641 7940	9864 9582 9151 8577 7863	9842 9545 9100 8512 7784	9819 9507 9048 8445 7704	9795 9468 8994 8377 7622	9769 9427 8938 8308 7539	9742 9385 8881 8237 7455	9713 9341 8823 8165 7369	- 24 - 39 - 53 - 67 - 81
10 11 12 13 14	7282 6331 5248 4040 2 7 12	6228 5132 3912	7105 6124 5016 3784 2431	7014 6020 4898 3654 2289	6921 5913 4780 3523 2147	6826 5805 4660 3391 2003	6729 5696 4538 3257 1858	6632 5586 4415 3122 1711	6533 5474 4291 2986 1564	6432 5362 4166 2850 1416	- 95 -108 -121 -133 -145
15 16 17 18 19	1266 .998 9705 8029 6244 4347	9542 7856 6058	0962 9378 7681 5873 3955	0809 9214 7505 5686 3757	0655 9048 7328 5498 3558	0499 8881 7150 5309 3358	0343 8713 6971 5119 3158	0185 8544 6791 4927 2955	0026 8373 6610 4735 2752	9865 8202 6427 4541 2549	-156 -168 -178 -190 -200
20 21 22 23 24	2343 0233 .997 8019 5702 3286	0016 7792 5466	1930 9799 7564 5227 2790	1722 9580 7335 4988 2541	1511 9359 7104 4747 2291	1301 9139 6873 4506 2040	1090 8917 6641 4264 1788	0878 8694 6408 4021 1535	0663 8470 6173 3777 1280	0449 8245 5938 3531 1026	-211 -221 -232 -242 -252
25 26 27 28 29	.996 8158 5451 2652 .995 9761	7892 5176	0255 7624 4898 2080 9171	9997 7356 4620 1793 8876	9736 7087 4342 1505 8579	9476 6817 4062 1217 8282	9214 6545 3782 0928 7983	8951 6273 3500 0637 7684	8688 6000 3218 0346 7383	8423 5726 2935 0053 7083	-261 -271 -280 -289 -298
30 31 32 33 34	6780 3714 0561 .994 7325 4007	3401 0241 6997	6174 3089 9920 6668 3335	5869 2776 9599 6338 2997	5564 2462 9276 6007 2659	5258 2147 8954 5676 2318	4950 1832 8630 5345 1978	4642 1515 8304 5011 1638	4334 1198 7979 4678 1296	4024 0880 7653 4343 0953	-307 -315 -324 -332 -340
35 36 37 38 39	0610 .993 7136 3585 .992 9960 6263	6784 3226 9593	9922 6432 2866 9227 5516	9576 6078 2505 8859 5140	9230 5725 2144 8490 4765	8883 5369 1782 8120 4389	8534 5014 1419 7751 4011	8186 4658 1055 7380 3634	7837 4301 0691 7008 3255	7486 3943 0326 6636 2876	-347 -355 -362 -370 -377
40 41	.991 8661		1734	1352	0971	0587	0203	9818	9433	9047	—384

^{*} According to P. Chappuis, Bureau International des Poids et Mesures.

TABLE 288.—VOLUME IN cm³ AT VARIOUS TEMPERATURES OF A cm³ OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY, 0° to 36°C

Temp.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0	1.000132	125	118	112	106	100	095	089	084	079
1	073	069	064	059	055	051	047	043	039	035
2	032	029	026	023	020	018	016	013	011	009
2 3 4	008 000	006 000	005 000	004 001	003 001	002 002	001 003	001 004	000 005	000 007
5 6	008 032	010 035	012 039	014 042 085	016 046 090	018 050 095	021 054 101	023 058 106	026 062 112	029 066 118
7 8 9	070 124 191	075 130 198	080 137 206	142 214	149 222	156 230	162 238	169 246	176 254	184 263
10	272	281	290	299	308	317	327	337	347	357
11	367	377	388	398	409	420	430	441	453	464
12	476	487	499	511	522	534	547	559	571	584
13	596	609	623	636	649	661	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15	873	890	905	920	935	951	967	983	998	015
16	1.001031	047	063	080	097	113	130	147	164	182
17	198	216	233	252	269	287	305	323	341	358
18	378	396	415	433	452	471	490	510	529	548
19	568	588	606	626	646	667	687	707	728	748
20	769	790	811	832	853	874	895	916	938	960
21	981	002	024	046	068	091	113	135	158	181
22 23	1.002203 436	226 459	249 483	271 507	295 532	319 556	342 581 829	364 605	389 629	412 654
24	6 7 9	704	729	754	779	804	088	854	879	905
25	9 3 2	958	983	010	036	061		115	141	168
26	1.003195	221	248	275	302	330	357	384	412	439
27	467	495	523	550	579	607	635	663	692	720
28	749	776	806	836	865	893	922	951	981	011
29	1.004041	069	100	129	160	189	220	250	280	310
30	341	371	403	432	464	494	526	557	588	619
31	651	682	713	744	777	808	840	872	904	936
32	968	001	033	066	098	132	163	197	229	263
33	1.005296	328	361	395	427	461	496	530	562	597
34	631	665	698	732	768	802	836	871	904	940
35	975	009	044	078	115	150	185	219	255	290

TABLE 289.—INFLUENCE OF PRESSURE ON VOLUME OF WATER*

kg/cm ²	0°C	20°C	40°C	kg/cm ²	20°C	40°C
1	1.0000	1.0016	1.0076	7,000	.8404	.8485
500	.9771	.9808	.9873	8,000	.8275	.8360
1.000	.9578	.9630	.9700	9,000	.8160	.8249
2,000	.9260	.9327	.9403	10,000		.8149
3,000	.9015	.9087	.9164	11,000		.8056
5,000	.8632	.8702	.8778	12,000		.7966
6,000	.8480	.8545	.8623	12,500		.7922

^{*} Cf. Table 269.

The mass of 1 cm³ at 4°C is taken as unity.

Temp. °C -10 - 9 - 8 - 7 - 6	Density .99815 843 869 892 912	Volume 1.00186 157 131 108 088	Temp. °C +20 21 22 23 24	Density .99823 802 780 757 733	Volume 1.00177 198 220 244 268	Temp. °C +50 51 52 53 54	Density .98807 762 715 669 621	Volume 1.01207 254 301 349 398
- 5 - 4 - 3 - 2 - 1	.99930 945 958 970 979	1.00070 055 042 031 021	25 26 27 28 29	.99708 682 655 627 598	1.00293 320 347 375 404	55 60 65 70 75	.98573 324 059 .97781 489	1.01448 705 979 1.02270 576
+ 0 1 2 3 4	.99987	1.00013	30	.99568	1.00434	80	.97183	1.02899
	993	007	31	537	465	85	.96865	1.03237
	997	003	32	506	497	90	534	590
	999	001	33	473	530	95	192	959
	1.00000	1.00000	34	440	563	100	.95838	1.04343
5	.99999	1.00001	35 36 37 38 39	.99406	1.00598	110	.9510	1.0515
6	997	003		371	633	120	.9434	1.0601
7	993	007		336	669	130	.9352	1.0693
8	988	012		300	706	140	.9264	1.0794
9	981	019		263	743	150	.9173	1.0902
10	.99973	1.00027	40 41 42 43 44	.99225	1.00782	160	.9075	1.1019
11	963	037		187	821	170	.8973	1.1145
12	952	048		147	861	180	.8866	1.1279
13	940	060		107	901	190	.8750	1.1429
14	927	073		066	943	200	.8628	1.1590
15	.99913	1.00087	45	.99025	1.00985	210	.850	1.177
16	897	103	46	.98982	1.01028	220	.837	1.195
17	880	120	47	940	072	230	.823	1.215
18	862	138	48	896	116	240	.809	1.236
19	843	157	49	852	162	250	.794	1.259

Density or mass in g/cm³ and the volume in cm³ of 1 g of mercury.

Temp. °C -10 - 9 - 8 - 7 - 6	Mass g/cm ³ 13.6198 6173 6148 6124 6099	Volume of 1 g in cm ⁸ .0734225 4358 4492 4626 4759	Temp. °C 20 21 22 23 24	Mass g/cm³ 13.5458 5434 5409 5385 5360	Volume of 1 g in cm ³ .0738233 8367 8501 8635 8768	Temp. °C 140 150 160 170 180	Mass g/cm³ 13.2563 2326 2090 1853 1617	Volume of 1 g in cm ³ .0754354 5708 7064 8422 9784
- 5 - 4 - 3 - 2 - 1	13.6074 6050 6025 6000 5976	.0734893 5026 5160 5293 5427	25 26 27 28 29	13.5336 5311 5287 5262 5238	.0738902 9036 9170 9304 9437	190 200 210 220 230	13.1381 1145 0910 0677 0440	.0761149 2516 3886 5260 6637
- 0 1 2 3 4	13.5951 5926 5901 5877 5852	.0735560 5694 5828 5961 6095	30 31 32 33 34	13.5213 5189 5164 5140 5116	.0739572 9705 9839 9973 40107	240 250 260 270 280	13.0206 12.9972 9738 9504 9270	.0768017 9402 7090 2182 3579
5 6 7 8 9	13.5827 5803 5778 5754 5729	.0736228 6362 6496 6629 6763	35 36 37 38 39	13.5091 5066 5042 5018 4994	.0740241 0374 0508 0642 0776	290 300 310 320 330	12.9036 8803 8569 8336 8102	.0774979 6385 7795 9210 80630
10 11 12 13 14	13.5704 5680 5655 5630 5606	.0736893 7030 7164 7298 7431	40 50 60 70 80	13.4969 4725 4482 4240 3998	.0740910 2250 3592 4936 6282	340 350 360	12.7869 7635 7402	.0782054 3485 4921
15 16 17 18 19	13.5581 5557 5532 5507 5483	.0737565 7699 7832 7966 8100	90 100 110 120 130	13.3723 3515 3279 3040 2801	.0747631 8981 50305 1653 3002			

The following table gives the density of solutions of various salts in water. The numbers give the weight in g/cm³. For brevity the substance is indicated by formula only.

	Weight of the dissolved substance in 100 parts by weight of the solution									
Substance K ₂ O KOH Na ₂ O NaOH NH ₃	1.040 1.073 1.058	1.098 1.082 1.144 1.114 .959	1.153 1.127 1.218 1.169 .940	20 1.214 1.176 1.284 1.224 .924	25 1.284 1.229 1.354 1.279 .909	30 1.354 1.286 1.421 1.331 .896	1.503 1.410 1.557 1.436	1.659 1.538 1.689 1.539	1.809 1.666 1.829 1.642	15. 15. 15. 16.
NH,CI KCI NaCI LiCI CaCl ₂	1.031 1.035 1.029	1.030 1.065 1.072 1.057 1.086	1.044 1.099 1.110 1.085 1.132	1.058 1.135 1.150 1.116 1.181	1.072 1.191 1.147 1.232	1.181 1.286	1.255 1.402	=	=======================================	15. 15. 15. 15. 15.
CaCl ₂ +6H ₂ O AlCl ₃ MgCl ₂ MgCl ₂ +6H ₂ O ZnCl ₂	1.030 1.041 1.014	1.040 1.072 1.085 1.032 1.089	1.061 1.111 1.130 1.049 1.135	1.083 1.153 1.177 1.067 1.184	1.105 1.196 1.226 1.085 1.236	1.128 1.241 1.278 1.103 1.289	1.176 1.340 	1.225 1.183 1.563	1.276 1.222 1.737	18. 15. 15. 24. 19.5
CdCl ₃ SrCl ₂ SrCl ₂ +6H ₄ O BaCl ₂ BaCl ₂ +2H ₂ O	1.044 1.027 1.045	1.087 1.092 1.053 1.094 1.075	1.138 1.143 1.082 1.147 1.119	1.193 1.198 1.111 1.205 1.166	1.254 1.257 1.042 1.269 1.217	1.319 1.321 1.174 1.273	1.469	1.653	1.887	19.5 15. 15. 15. 21.
CuCl ₂ NiCl ₂ HgCl ₂ Fe ₂ Cl ₆ PtCl ₄	1.048 1.041 1.041	1.091 1.098 1.092 1.086 1.097	1.155 1.157 1.130 1.153	1.221 1.223 1.179 1.214	1.291 1.299 1.232 1.285	1.360 1.290 1.362	1.527 ————————————————————————————————————	1.545 1.785	1.668	17.5 17.5 20. 17.5
SnCl ₂ +2H ₂ O SnCl ₄ +5H ₂ O LiBr KBr NaBr	1.029 1.033 1.035	1.067 1.058 1.070 1.073 1.078	1.104 1.089 1.111 1.114 1.123	1.143 1.122 1.154 1.157 1.172	1.185 1.157 1.202 1.205 1.224	1.229 1.193 1.252 1.254 1.279	1.329 1.274 1.366 1.364 1.408	1.444 1.365 1.489 ————————————————————————————————————	1.580 1.467 ————————————————————————————————————	15. 15. 19.5 19.5 19.5
MgBr ₂ ZnBr ₂ CdBr ₃ CaBr ₂ BaBr ₂	1.043 1.041 1.042	1.085 1.091 1.088 1.087 1.090	1.135 1.144 1.139 1.137 1.142	1.189 1.202 1.197 1.192 1.199	1.245 1.263 1.258 1.250 1.260	1.308 1.328 1.324 1.313 1.327	1.449 1.473 1.479 1.459 1.483	1.623 1.648 1.678 1.639 1.683	1.873	19.5 19.5 19.5 19.5 19.5
SrBr ₂ KI LiI NaI ZnI ₂	1.036 1.036 1.038	1.089 1.076 1.077 1.080 1.089	1.140 1.118 1.122 1.126 1.138	1.198 1.164 1.170 1.177 1.194	1.260 1.216 1.222 1.232 1.253	1.328 1.269 1.278 1.292 1.316	1.489 1.394 1.412 1.430 1.467	1.693 1.544 1.573 1.598 1.648	1.953 1.732 1.775 1.808 1.873	19.5 19.5 19.5 19.5 19.5
CdI ₂ MgI ₂ CaI ₂ SrI ₂ BaI ₂	1.041 1.042 1.043	1.086 1.086 1.088 1.089 1.089	1.135 1.137 1.138 1.140 1.141	1.192 1.192 1.196 1.198 1.199	1.251 1.252 1.258 1.260 1.263	1.317 1.318 1.319 1.328 1.331	1.474 1.472 1.475 1.489 1.493	1.678 1.666 1.663 1.693 1.702	1.913 1.908 1.953 1.968	19.5 19.5 19.5 19.5 19.5
NaClO ₃ NaBrO ₃ KNO ₃ NaNO ₃ AgNO ₃	1.039 1.031 1.031	1.068 1.081 1.064 1.065 1.090	1.106 1.127 1.099 1.101 1.140	1.145 1.176 1.135 1.140 1.195	1.188 1.229 1.180 1.255	1.233 1.287 ————————————————————————————————————	1.329 1.313 1.479	1.416 1.675	1.918	19.5 19.5 15. 20.2 15.

(continued)

Weight of the dissolved substance in 100 parts by weight of

		weight	or the gr		ne solutio		arts by v	veignt of		C C
Substance NH ₄ NO ₃ Zn(NO ₃) ₂ Zn(NO ₃) ₂ +6H ₂ O Ca(NO ₃) ₂ Cu(NO ₃) ₂	1.048	1.041 1.095 1.054 1.075 1.093	1.063 1.140 1.118 1.143	20 1.085 1.201 1.113 1.162 1.203	1.263 1.263 1.211 1.263	30 1.131 1.325 1.178 1.260 1.328	1.178 1.456 1.250 1.367 1.471	1.229 1.597 1.329 1.482	1.282 — 1.604	17.5 17.5 14. 17.5 17.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.043 1.052 1.045	1.083 1.091 1.097 1.090 1.090	1.129 1.143 1.150 1.137 1.137	1.179 1.199 1.212 1.192 1.192	1.262 1.283 1.252 1.252	1.332 1.355 1.318 1.318	1.536 1.465 1.465	1.759	=	19.5 17.5 17.5 17.5 17.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.025 1.044	1.076 1.038 1 052 1.092 1.072	1.117 1.060 1.079 1.141 1.110	1.160 1.082 1.108 1.192 1.150	1.210 1.105 1.138 1.245 1.191	1.261 1.129 1.169 1.300 1.233	1.373 1.179 1.235 1.417 1.320	1.496 1 232 1.307 1.543 1.415	1.657 1.386 1.511	17.5 21. 8. 15. 15.
Na ₂ CO ₃ 10H ₂ O (NH ₄) ₂ SO ₄ Fe ₂ (SO ₄) ₃ FeSO ₄ +7H ₂ O MgSO ₄	1.027 1.045 1.025	1.038 1.055 1.096 1.053 1.104	1.057 1.084 1.150 1.081 1.161	1.077 1.113 1.207 1.111 1.221	1.098 1.142 1.270 1.141 1.284	1.118 1.170 1.336 1.173	1.226 1.489 1.238	1.287		15. 19. 18. 17.2 15.
MgSO ₄ +7H ₂ O Na ₂ SO ₄ +10H ₂ O CuSO ₄ +5H ₂ O MnSO ₄ +4H ₂ O ZnSO ₄ +7H ₂ O	1.019 1.031 1.031	1.050 1.039 1.064 1.064 1.057	1.075 1.059 1.098 1.099 1.089	1.101 1.081 1.134 1.135 1.122	1.129 1.102 1.173 1.174 1.156	1.155 1.124 1.213 1.214 1.191	1.215 — 1.303 1.269	1.278 — 1.398 1.351	1.443	15. 15. 18. 15. 20.5
Fe ₂ (SO ₄) ₃ · K ₂ SO ₄ + 24H ₂ O Cr ₂ (SO ₄) ₃ · K ₂ SO ₄ + 24H ₂ O		1.045 1.033	1.066 1.051	1.088 1.073	1.112 1.099	1.141 1.126	1.188	1.287	1.454	17.5 17.5
MgSO ₄ +K ₂ SO ₄ + 6H ₂ O	1.032	1.066	1.101	1.138						15.
(NH ₄) ₂ SO ₄ + FeSO ₄ +6H ₂ O K ₂ CrO ₄ K ₂ Cr ₂ O ₇ Fe(Cy) ₆ K ₄ Fe(Cy) ₆ K ₃	1.028 1.039 1.035 1.028	1.058 1.082 1.071 1.059 1.053	1.090 1.127 1.108 1.092 1.070	1.122 1.174 ————————————————————————————————————	1.154 1.225 —	1.191 1.279 —	1.397	=		19. 19.5 19.5 15. 13.
$Pb(C_2H_3O_2)_2+3H_2O$	1.031	1.064	1.100	1.137	1.177	1.220	1.315	1.426		15.
2NaOH+As ₂ O ₅ +24H ₂ O	1.020	1.042	1.066	1.089	1.114	1.140	1.194			14.
SO ₃ SO ₂ N ₂ O ₅ C ₄ H ₈ O ₆ C ₆ H ₈ O ₇	1.013 1.033 1.021	10 1.084 1.028 1.069 1.047 1.038	15 1.132 1.045 1.104 1.070 1.058	20 1.179 1.063 1.141 1.096 1.079	30 1.277 1.217 1.150 1.123	1.389 1.294 1.207 1.170	1.564 1.422 1.273	1.840 1.506	100	15. 4. 15. 15. 15.
Cane sugar HCI HBr HI HZSO4	1.025 1.035 1.037	1.039 1.050 1.073 1.077 1.069	1.060 1.075 1.114 1.118 1.106	1.082 1.101 1.158 1.165 1.145	1.129 1.151 1.257 1.271 1.223	1.178 1.200 1.376 1.400 1.307	1.289	1.732	1.838	17.5 15. 14. 13. 15.
H ₂ SiF ₆ P ₂ O ₅ P ₂ O ₅ +3H ₂ O HNO ₃ C ₂ H ₄ O ₂	1.035 1.027 1.028	1.082 1.077 1.057 1.056 1.014	1.127 1.119 1.086 1.088 1.021	1.174 1.167 1.119 1.119 1.028	1.273 1.271 1.188 1.184 1.041	1.385 1.264 1.250 1.052	1.676 1.438 1.373 1.068	1.459 1.075	1.528 1.055	17.5 17.5 15. 15. 15.

TABLE 293.—DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN $\mathbf{g}/\mathbf{m}\mathbf{i}$

The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at $4^{\circ}C$ as unity. Based upon work done at the National Bureau of Standards.

Percent C2H5OH				Temperatures			
0 1 2 3 4	10°C .99973 785 602 426 258	15°C .99913 725 542 365 195	20°C .99823 636 453 275 103	25°C .99708 520 336 157 .98984	30°C .99568 379 194 014 .98839	35°C .99406 217 031 .98849 672	40°C .99225 034 .98846 663 485
5	098	032	.98938	817	670	501	311
6	.98946	.98877	780	656	507	335	142
7	801	729	627	500	347	172	.97975
8	660	584	478	346	189	009	808
9	524	442	331	193	031	.97846	641
10	393	304	187	043	.97875	685	475
11	267	171	047	.97897	723	527	312
12	145	041	.97910	753	573	371	150
13	026	.97914	775	611	424	216	.96989
14	.97911	790	643	472	278	063	829
15	800	669	514	334	133	.96911	670
16	692	552	387	199	.96990	760	512
17	583	433	259	062	844	607	352
18	473	313	129	.96923	697	452	189
19	363	191	.96997	782	547	294	023
20	252	068	864	639	395	134	.95856
21	139	.96944	729	495	242	.95973	687
22	024	818	592	348	087	809	516
23	.96907	689	453	199	.95929	643	343
24	787	558	312	048	769	476	168
25	665	424	168	.95895	607	306	.94991
26	539	287	020	738	442	133	810
27	406	144	.95867	576	272	.94955	625
28	268	.95996	710	410	098	774	438
29	125	844	548	241	.94922	590	248
30	.95977	686	382	067	741	403	055
31	823	524	212	.94890	557	214	.93860
32	665	357	038	709	370	021	662
33	502	186	.94860	525	180	.93825	461
34	334	011	679	337	.93986	626	257
35	162	.94832	494	146	790	425	051
36	.94986	650	306	.93952	591	221	.92843
37	805	464	114	756	390	016	634
38	620	273	.93910	556	186	.92808	422
39	431	079	720	353	.92979	597	208
40	238	.93882	518	148	770	385	.91992
41	042	682	314	.92940	558	170	774
42	.93842	478	107	729	344	.91952	554
43	639	271	.92897	516	128	733	332
44	433	062	685	301	.91910	513	108
45	226	.92852	472	085	692	291	.90884
46	017	640	257	.91868	472	069	660
47	.92806	426	041	649	250	.90845	434
48	593	211	.91823	429	028	621	207
49	379	.91995	604	208	.90805	396	.89979
50	162	77 6	384	.90985	580	168	750

(continued)

TABLE 293.—DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN g/mI (concluded)

Percent			•	Γemperatures			
C ₂ H ₅ OH by weight 50 51 52 53 54	10°C .92162 .91943 723 502 279	15°C .91776 555 333 110 .90885	20°C .91384 160 .90936 711 485	25°C .90985 760 534 307 079	30°C .90580 353 125 .89896 667	35°C .90168 .89940 710 479 248	40°C .89750 519 288 056 .88823
55	055	659	258	.89850	437	016	589
56	.90831	433	031	621	206	.88784	356
57	607	207	.89803	392	.88975	552	122
58	381	.89980	574	162	744	319	.87888
59	154	752	344	.88931	512	085	653
60	.89927	523	113	699	278	.87851	417
61	698	293	.88882	466	044	615	180
62	468	062	650	233	.87809	379	.86943
63	237	.88830	417	.87998	574	142	705
64	006	597	183	763	337	.86905	466
65	.88774	364	.87948	527	100	667	227
66	541	130	713	291	.86863	429	.85987
67	308	.87895	477	054	625	190	747
68	074	660	241	.86817	387	.85950	507
69	.87839	424	004	579	148	710	266
70	602	187	.86766	340	.85908	470	025
71	365	.86949	527	100	667	228	.84783
72	127	710	287	.85859	426	.84986	540
73	.86888	470	047	618	184	743	297
74	648	229	.85806	376	.84941	500	053
75	408	.85988	564	134	698	257	.83809
76	168	747	322	.84891	455	013	564
77	.85927	505	079	647	211	.83768	319
78	685	262	.84835	403	.83966	523	074
79	442	018	590	158	720	277	.82827
80	197	.84772	344	.83911	473	029	578
81	.84950	525	096	664	224	.82780	329
82	702	277	.83848	415	.82974	530	079
83	453	028	599	164	724	279	.81828
84	203	.83777	348	.82913	473	027	576
85	.83951	525	095	660	220	.81774	322
86	697	271	.82840	405	.81965	519	067
87	441	014	583	148	708	262	.80811
88	181	.82754	323	.81888	448	003	552
89	.82919	492	062	626	186	.80742	291
90	654	227	.81797	362	.80922	478	028
91	386	.81959	529	094	655	211	.79761
92	114	688	257	.80823	384	.79941	491
93	.81839	413	.80983	549	111	669	220
94	561	134	705	272	.79835	393	.78947
95	278	.80852	424	.79991	555	114	670
96	.80991	566	138	706	271	.78831	388
97	698	274	.79846	415	.78981	542	100
98	399	.79975	547	117	684	247	.77806
99	094	670	243	.78814	382	.77946	507
100	.79784	360	.78934	506	075	641	203

TABLE 294.—DENSITY OF AQUEOUS MIXTURES OF METHYL ALCOHOL, CANE SUGAR, OR SULFURIC ACID

Percent by weight of substance	Methyl alcohol D 15° C	Cane sugar 20°	Sulfuric acid D 20° 4° C	Percent by weight of substance	Methyl alcohol D 15° C	Cane sugar 20°	Sulfuric acid D 20° 4° C
0	.99913	.998234	.99823	50	.91852	1.229567	1.39505
1	.99727	1.002120	1.00506	51	.91653	1.235085	1.40487
2	.99543	1.006015	1.01178	52	.91451	1.240641	1.41481
3	.99370	1.009934	1.01839	53	.91248	1.246234	1.42487
4	.99198	1.013881	1.02500	54	.91044	1.251866	1.43503
5	.99029	1.017854	1.03168	55	.90839	1.257535	1.44530
6	.98864	1.021855	1.03843	56	.90631	1.263243	1.45568
7	.98701	1.025885	1.04527	57	.90421	1.268989	1.46615
8	.98547	1.029942	1.05216	58	.90210	1.274774	1.47673
9	.98394	1.034029	1.05909	59	.89996	1.280595	1.48740
10	.98241	1.038143	1.06609	60	.89781	1.286456	1.49818
11	.98093	1.042288	1.07314	61	.89563	1.292354	1.50904
12	.97945	1.046462	1.08026	62	.89341	1.298291	1.51999
13	.97802	1.050665	1.08744	63	.89117	1.304267	1.53102
14	.9 7 650	1.054900	1.09468	64	.88890	1.310282	1.54213
15	.97518	1.059165	1.10199	65	.88662	1.316334	1.55333
16	.97377	1.063460	1.10936	66	.88433	1.322425	1.56460
17	.97237	1.067789	1.11679	67	.88203	1.328554	1.57595
18	.97096	1.072147	1.12428	68	.87971	1.334722	1.58739
19	.96955	1.076537	1.13183	69	.87739	1.340928	1.59890
20	.96814	1.080959	1.13943	70	.87507	1.347174	1.61048
21	.96673	1.085414	1.14709	71	.87271	1.353456	1.62213
22	.96533	1.089900	1.15480	72	.87033	1.359778	1.63384
23	.96392	1.094420	1.16258	73	.86792	1.366139	1.64560
24	.96251	1.098971	1.17041	74	.86546	1.372536	1.65738
25	.96108	1.103557	1.17830	75	.86300	1.378971	1.66917
26	.95963	1.108175	1.18624	76	.86051	1.385446	1.68095
27	.95817	1.112828	1.19423	77	.85801	1.391956	1.69268
28	.95668	1.117512	1.20227	78	.85551	1.398505	1.70433
29	.95518	1.122231	1.21036	79	.85300	1.405091	1.71585
30	.95366	1.126984	1.21850	80	.85048	1.411715	1.72717
31	.95213	1.131773	1.22669	81	.84794	1.418374	1.73827
32	.95056	1.136596	1.23492	82	.84536	1.425072	1.74904
33	.94896	1.141453	1.24320	83	.84274	1.431807	1.75943
34	.94734	1.146345	1.25154	84	.84009	1.438579	1.76932
35	.94570	1.151275	1.25992	85	.83742	1.445388	1.77860
36	.94404	1.156238	1.26836	86	.83475	1.452232	1.78721
37	.94237	1.161236	1.27685	87	.83207	1.459114	1.79509
38	.94067	1.166269	1.28543	88	.82937	1.466032	1.80223
39	.93894	1.171340	1.29407	89	.82667	1.472986	1.80864
40	.93720	1.176447	1.30278	90	.82396	1.479976	1.81438
41	.93543	1.181592	1.31157	91	.82124	1.487002	1.81950
42	.93365	1.186773	1.32043	92	.81849	1.494063	1.82401
43	.93185	1.191993	1.32938	93	.81568	1.501158	1.82790
44	.93001	1.197247	1.33843	94	.81285	1.508289	1.83115
45 46 47 48 49	.92815 .92627 .92436 .92242 .92048	1.202540 1.207870 1.213238 1.218643 1.224086	1.34759 1.35686 1.36625 1.37574 1.38533	95 96 97 98 99	.80999 .80713 .80428 .80143 .79859	1.515455 1.522656 1.529891 1.537161 1.544462	1.83368 1.83548 1.83637 1.83605
50	.91852	1.229567	1.39505	100	.79577	1.551800	

TABLE 295.—DENSITY, BRIX, AND BAUMÉ DEGREES, OF CANE-SUGAR SOLUTIONS

Degrees Brix, specific gravity, and degrees Baumé of sugar solutions. Degrees Brix = percent sucrose by weight.

Specific gravities and degrees Baumé corresponding to the degrees Brix are for $\frac{20^{\circ}}{20^{\circ}}$ C.

The relation between the specific gravity and degrees Baumé is given by degrees Baumé = 145

145 — The specific gravity

Degrees Brix or percent sucrose by	Specific gravity at	Degrees Baumé (modu-	Degrees Brix or percent sucrose by	Specific gravity at	Degrees Baumé (modu-	Degrees Brix or percent sucrose by	Specific gravity at	Degrees Baumé (modu-
weight	20°/20°C	lus 145)	weight	20°/20°C	lus 145)	weight	20°/20°C	lus 145
.0	1.00000	.00	40.0	1.17853	21.97	80.0	1.41421 1.42088	42.47 42.95
1.0 2.0	1.00389 1.00779	.56 1.12	41.0 42.0	1.18368 1.18887	22.50 23.04	81.0 82.0	1.42066	43.43
3.0	1.01172	1.68	43.0	1.19410	23.57	83.0	1.43434	43.91
4.0	1.01567	2.24	44.0	1.19936	24.10	84.0	1.44112	44.38
5.0	1.01965	2.79	45.0 46.0	1.20467 1.21001	24.63 25.17	85.0 86.0	1.44794 1.45480	44.86 45.33
6.0 7.0	1.02366 1.02770	3.35 3.91	47.0	1.21538	25.70	87.0	1.46170	45.80
8.0	1.03176	4.46	48.0	1.22080	26.23	88.0	1.46862	46.27
9.0	1.03586	5.02	49.0	1.22625	26.75	89.0	1.47559	46.73
10.0	1.03998	5.57	50.0	1.23174	27.28	90.0	1.48259	47.20
11.0	1.04413	6.13	51.0	1.23727	27.81	91.0 92.0	1.48963 1.49671	47.66 48.12
12.0 13.0	1.04831 1.05252	6.68 7.24	52.0 53.0	1.24284 1.24844	28.33 28.86	92.0	1.49071	48.58
14.0	1.05677	7.24	54.0	1.25408	29.38	94.0	1.51096	49.03
15.0	1.06104	8.34	55.0	1.25976	29.90	95.0	1.51814	49.49
16.0	1.06534	8.89	56.0	1.26548	30.42	96.0	1.52535	49.94
17.0 18.0	1.06968	9.45	57.0 58.0	1.27123 1.27703	30.94 31.46	97.0 98.0	1.53260 1.53988	50.39 50.84
19.0	1.07404 1.07844	10.00 10.55	59.0	1.27703	31.40	99.0	1.54719	51.28
				1.28873	32.49	100.0	1.55454	51.73
20.0 21.0	1.08287 1.08733	11.10 11.65	60.0 61.0	1.29464	33.00	100.0	1.55757	31.73
22.0	1.09183	12.20	62.0	1.30059	33.51			
23.0	1.09636	12.74	63.0	1.30657	34.02			
24.0	1.10092	13.29	64.0	1.31260	34.53			
25.0 26.0	1.10551 1.11014	13.84 14.39	65.0 66.0	1.31866 1.32476	35.04 35.55			
27.0	1.11480	14.59	67.0	1.33090	36.05			
28.0	1.11949	15.48	68.0	1.33708	36.55			
29.0	1.12422	16.02	69.0	1.34330	37.06			
30.0	1.12898	16.57	70.0	1.34956	37.56			
31.0	1.13378	17.11	71.0	1.35585	38.06			
32.0 33.0	1.13861 1.14347	17.65 18.19	72.0 73.0	1.36218 1.36856	38.55 39.05			
34.0	1.14347	18.73	73.0 74.0	1.37496	39.54			
35.0	1.15331	19.28	75.0	1.38141	40.03			
36.0	1.15828	19.81	76.0	1.38790	40.53			
37.0	1.16329	20.35	77.0	1.39442	41.01			
38.0 39.0	1.16833 1.17341	20.89 21.43	78.0 79.0	1.40098 1.40758	41.50 41.99			
39.0	1.1/341	41.40	19.0	1.707.30	71.77			

TABLE 296.--VELOCITY OF SOUND IN GASES **

Gas	Temp. °C	Velocity m/sec	Gas	Temp.	Velocity m/sec
Air, dry, 1 atm	0	331.7	Hydrogen bromide	0	200
" " 25 "	0	332.0	Hydrogen chloride	Õ	296
" " 50 "	0	334.7	Hydrogen iodide	Ŏ	157
" " 100 "	0	350.6	Hydrogen sulfide	0	289
44 44	100	386	Illuminating gas	0	490.4
"	500	553	Methane	0	430
** **	1000	700	Neon	0	435
Ammonia	0	415	Nitric oxide	10	324
Argon	0	319	Nitrogen	0	334
Carbon dioxide	0	259	Nitrous oxide	0	263
Carbon monoxide	0	338	Oxygen	0	316
Chlorine	0	206	Silicon tetrafluoride	0	167
Ethane	10	308	Sulfur dioxide	0	213
Ethylene	0	317	Vapors:		
Helium	0	965	alcohol	0	230.6
Hydrogen (heavy)	0	890	ether	0	179.2
Hydrogen (light)	0	1284	water	0	401
			"	100	404.8

^{*} Tables 296 and 298-300 prepared by Urick and Weissler, Naval Research Laboratory.

⁰⁸ Bergmann, Ultrasonics, 3d ed., p. 223, Edwards Brothers, Λnn Arbor, Mich., 1944.

TABLE 297.—VELOCITY OF SOUND IN SOLIDS

The velocity of sounds in solids varies as $\sqrt{E/\rho}$, where E is Young's modulus of elasticity and ρ the density. These constants for most materials vary through a somewhat wide range. The numbers can be taken only as rough approximations to the velocity in any particular case. When temperatures are not marked, between 10° and 20° is to be understood.

		ν			ν
Substance	t°C	m/sec	Substance	t°C	m/sec
Ag hard	20	2678	Fe	200	4720
· · · · · · · · · · · · · · · · · · ·	100	2640		20	4990
(6 61	200	2480	46	100	4920
A1		5104	"	200	4790
Au hard	20	1743	Mg		4602
66 66	100	1720	Ni		4973
Cd		2307	Pb		1322
Co		4724	Pd		3150
Cu	20	3560	Pt	20	2690
44	100	3290	"	100	2570
"	200	2950	"	200	2460
Fe	20	5130	Sn		2500
"	100	5300	Zn		3700
		0000			0.00
Ash, along the fiber		4670	Brick		3652
" across the rings		1390	Clay rock		3480
" along the rings		1260	Cork		500
Beech, along the fiber		3340	Granite		3950
" across the rings		1840	Marble		3810
" along the rings		1415	Paraffin	15	1304
Elm, along the fiber		4120	Slate	10	4510
" across the rings		1420	Tallow	16	390
" along the rings		1013	Tuff	10	2850
Fir, along the fiber		4640	(from		5000
Mahogany, along the fiber		4135	Glass		6000
Maple, along the fiber		4110	Ivory		3013
Oak, along the fiber		3850		0	54
Pine, along the fiber		3320	Vul. rubber (black)	1 50	31
Poplar, along the fiber		4280	" " (red)	0	69
Sycamore, along the fiber		4460	" " "	70	34
by carrier of arong the insertion		1100	Wax	17	880
			"	28	441
				20	111

	ature	Sound velocity	Density		Temper- ature °C	velocity	Density
Liquid	°C	m/sec	g/ml	Liquid	• C	m/sec	g/ml
Acetone c	. 30	1146	.7788	Silicon tetrachloride '	. 30	766.2	1.4622
Alcohol, abs. ethyl a	. 30	1127.4	.7809	Silicone			
Alcohol methyl a	. 30	1088.9	.7816	DC 50065 cs a	30	873.2	.7535
Alcohol, n-dodecyl a .		1388.0	.8269	DC 500-5.0 cs a	30	953.8	.9083
Benzene d		1276.4	.8685	DC 500-50 cs *		981.6	.9540
Carbon disulfide b	. 23	1149	1.258	Sorbitol, 83% soluti			
Carbon tetrachloride a		905.8	1.5746	in water *		2040	1.31
Chloroform "		1002	1.488	Turpentine b	27	1280	.893
Ether °		949	.7019	Water (distilled) .	0	1403.5	
Ethylene glycol *	. 30	1643.5	1.1068	(=,	10	1448.0	
Glycerine		1905	1.2553		20	1483.1	
Heptane °	. 30	1112	.6751		30	1509.9	
Heptene d	. 30	1082	.6910		40	1529.5	
Heptyne a	. 30	1159.3	.7243		50	1543.5	
Hexadecafluoro-					60	1551.5	
heptane d	. 30	528.8	1.64		70	1555.3	
Mercury b	. 20	1451	13.595		80	1554.6	
Methylene iodide d	. 20	973.3	3.325		86	1552.4	
					94	1549.0	

⁶⁰ References: a, Weissler, A., Journ. Amer. Chem. Soc., 1948 and 1949; also unpublished work with V. A. Del Grosso. b, Bergmann, L., Ultrasonics, 3d ed., p. 175, Edwards Brothers, Ann Arbor, Mich., 1944, c, Rao, M. R., Ind. Journ. Phys., vol. 14, p. 109, 1940. d, Lagemann, R. J., et al., Journ. Chem. Phys., vol. 16, p. 247, 1948; Journ. Amer. Chem. Soc., vol. 70, p. 2994, 1948. e, Randall, C. R., Nat. Bur. Standards Journ. Res., vol. 8, p. 95, 1932.

TABLE 299.—VELOCITY OF SOUND IN SEA WATER

(From various tables and formulae)

Depth			Meters per second							
in meters	°C	Sal.	Heck & Service	Wood	Br. Adm. 1927	Br. Adm. 1939	Kuwahara			
0	0	31	1445	1445	1440.3	1440.2	1440.3			
	10	4.6	1482	1484	1481.9	1481.9	1482.0			
64	20	4.6	1508	1515	1514.3	1514.3	1514.3			
**	30	**		1538	1539.0	1538.9	1539.1			
0	0	35	1450	1450	1445.3	1445.4	1445.5			
4.6	10	4.6	1489	1488	1486.6	1486.7	1486.8			
44	20	4.6	1514	1519	1518.6	1518.7	1518.7			
44	30	44		1543	1543.0	1543.1	1543.2			
400	0	35	1454		1452.6	1452.7	1452.8			
64	10	44	1492		1493.8	1493.9	1494.1			
44	20	44	1518		1525.8	1525.9	1525.9			
44	30	44	_		1550.3	1550.4	1550.6			
3000	0	31	1490		1494.7	1494.6	1494.4			
4.4	4.6	35	1498		1499.7	1499.8	1499.8			

(From Kuwahara)

		Meters per second										
°C	S* = 31 ppt	S = 31 ppt	S = 35 ppt	S = 37 ppt	S = 39 ppt							
0	1440.3	1442.9	1445.5	1448.1	1450.7							
1	44.8	47.4	50.0	52.6	55.2							
2	49.4	51.9	54.5	57.1	59.6							
3	53.8	56.4	58.9	61.4	64.0							
4	58.1	60.6	63.1	65.6	68.1							
5	1462.3	1464.8	1467.3	1469.8	1472.3							
6	66.5	68.9	71.4	73.9	76.3							
7	70.5	73.0	75.4	77.9	80.3							
8	74.5	76.9	79.3	81.7	84.2							
9	78.3	80.7	83.1	85.5	87.9							
10	1482.0	1484.4	1486.8	1489.2	1491.6							
11	85.7	88.0	90.4	92.8	95.1							
12	89.2	91.6	93.9	96.3	98.6							
13	92.7	95.0	97.3	99.6	1502.0							
14	96.0	98.3	1500.6	1502.9	05.2							
15	1499.3	1501.6	1503.9	1506.2	1508.5							
16	1502.5	04.7	07.0	09.3	11.5							
17	05.6	07.9	10.1	12.3	14.6							
18	08.6	10.8	13.0	15.2	17.5							
19	11.5	13.7	15.9	18.1	20.3							
20	1514.3	1516.5	1518.7	1520.9	1523.1							
21	17.2	19.3	21.5	23.7	25.9							
22	19.8	22.0	24.1	26.3	28.4							
23	22.4	24.6	26.7	28.8	31.0							
24	25.0	27.1	29.2	31.3	33.5							
25	152 7 .5	1529.6	1531.7	1533.8	1535.9							
26	29.9	32.0	34.1	36.2	38.3							
27	32.3	34.3	36.4	38.5	40.6							
28	34.6	36.6	38.7	40.8	42.9							
29	36.9	39.0	41.0	43.1	45.1							
30	1539.1	1541.2	1543.2	1545.3	1547.3							

^{*} Salinity (parts per thousand).

TABLE 301.—RELATIVE POWER AND FREQUENCY OF OCCURRENCE OF VOWEL AND CONSONANT SOUNDS 100

Vowels

	lative Vowel	Relative frequency
by italics Relative of	occur- by italics ence in words	Relative of occur- power rence
see 220 sit 260 hate 370 let 350 sat 490 father 600	6.4 saw 0.3 tone 4.8 foot 6.6 soon 6.9 sun	470 4.7 460 3.0 310 6.3

Initial and final consonants

Consonaut	Rela- tive	Relat frequer occur Initial	ncy of	Consonant	Rela- tive	Relat frequen occurr Initial	cy of
Consonant	power			Consonant			
p	6	2.5	1.2	S	16	5.5	3.1
b	7	4.6	.4	Z	16	.3	6.0
k	13	5.6	2.9	zh (azure)	20	.02	.01
g	15	4.3	.4	sh	80	1.7	.3
t	15	7.9	14.3	m	52	5.9	5.5
d	7	6.2	4.4	n	36	5.0	12.5
f	5	5.0	12.5	ng	73		3.6
V	12	1.3	4.2	1	100	4.3	8.4
th (voiced)	11	6.7	1.3	r	210	2.8	13.1
th (unvoiced).	1	6.7	1.3	ch	42	.6	.5
				j	23	.8	.1

^{*} Data selected and arranged by Cyril M. Harris, Bell Telephone Laboratories.

100 Fletcher, H., Speech and hearing, p. 74, D. VanNostrand, 1929. French.
Bell System Techn. Journ., vol. 9, p. 290, 1930. French, Carter, and Koenig,

TABLE 302.—SOUND LEVELS OF NOISE IN VARIOUS LOCATIONS

It is customary to compare the pressure of all sounds in air with 0.0002 dynes/cm2. The sound-pressure level of waves having a r.m.s. sound pressure of p dynes/cm2 is defined as 20 $\log_{10} (p/0.0002)$ decibels.

The following table gives some typical values of sound levels of noise in the locations

indicated:

Location	Sound level in db	Location	Sound level in db
Electric power station, generating room Boiler factory Subway station, train passing Streetcar Factory Large store	110 100 85 75	Average office Average residence with radio Average residence without radio Quiet residence Radio broadcast studio Reference level, .0002 dynes/cm²	50 43 35 30

20 log (p_1/p_2) db

where p_1/p_2 represents the scalar ratio. This relationship is frequently applied where the scalar ratio is not the square root of the corresponding power ratio, but such usage should be accompanied by a specific statement of application.

[†] The bel is a dimensionless unit for expressing the ratio of two values of power, the number of bels being the logarithm to the base 10 of the power ratio.

The decibel, abbreviated db, is one-tenth of a bel. When conditions are such that scalar ratios of pressure amplitudes or particle velocities are the square roots of the corresponding power ratios, the number of decibels by which the corresponding powers differ is expressed by

In a study conducted by Dunn and White, 101 the "long-time-interval average" power of speech, obtained by averaging data over time intervals of more than a minute of continuous speech, for the average of a group of male speakers was found to be 34 microwatts. The corresponding value for female speakers was 18 microwatts. At least 1 percent of the \frac{1}{8}-second intervals had an average power in excess of 230 microwatts for men and 150 microwatts for women, and a peak power in excess of 3600 microwatts for men and 1800 microwatts for women. The figure shows how the total power of average conversational speech is distributed with respect to frequency. These data give the power per cycles versus frequency and also the percentage power lying below a given frequency.

Fig. 1.—Speech power for men (continuous curves) and women (dotted curves) given in percentage power below any frequency. Curves A and B, power per cycle, curves C and D, O db = 1 microwatt.

TABLE 303.—PEAK POWER OF MUSICAL INSTRUMENTS 102

Watts	Watts		117-44-
Orchestra, 75 pieces 70 Bass drum, large 25 Pipe organ 13 Snare drum 12	Cymbals 10 Trombone 6 Piano .3 Trumpet .3 Bass viol .2	Piccolo Flute Clarinet French horn Triangle	.06 .05 .05

¹⁰² Sivian, L. J., Dunn, H. K., and White, S. D., Journ. Acoust. Soc. Amer., vol. 2, p. 330, 1931.

¹⁰¹ Dunn, H. K., and White, S. D., Journ. Accoust. Soc. Amer., vol. 11, p. 278, 1940.

The "pitch" of one's voice, i.e., his fundamental frequency, fluctuates considerably during conversational speech, and there is a great deal of variation from individual to individual. The average fundamental frequency for the average male voice in conversational English speech is in the neighborhood of 130 cps, while the corresponding value for the female voice

is 230 cps.

The vocal cords, housed in the larynx, emit a pressure wave that is essentially "sawtooth" in character. The numerous harmonics that result from this complex wave form are selectively transmitted to the open air. The throat, mouth, nose, and constrictions formed by the tongue and lips are most important in determining the frequency characteristics of the transmission system. The pressure spectrum of speech has many peaks. Apparently vowel sounds are distinguished by the position of these resonant peaks. The following table gives representative frequencies of the first two principal resonant peaks for different vowel sounds spoken by the average male adult:

¹⁰³ Potter, R. K., and Peterson, G. E., Journ. Acoust. Soc. Amer., vol. 20, p. 528, 1948.

TABLE 305.—APPROXIMATE RANGE OF FUNDAMENTAL FREQUENCY ON ORCHESTRAL INSTRUMENTS

The values given are for average instruments in tune with A440 cps. The lower frequency limits of some special instruments are indicated in brackets.

	rar	quency ige in cps		ran	uency ge in ps
Instrument Violin Viola Cello Bass (32 Piccolo Flute Oboe English horn Clarinet (138 Bass clarinet (65 Bassoon Contra bassoon Eb alto saxophone	. 131 . 65) 41 . 587 . 261 . 233 . 164) 146) 73 . 58	Upper limit 2093 1318 880 262 4186 2043 1397 934 1568 467 623 175 831	Instrument Bb tenor saxophone Eb baritone saxophone Trumpet French horn Trombone (51) Bass tuba Piano Organ (16) Harp Soprano voice Tenor voice Alto voice Baritone voice	69	Upper limit 623 416 1047 699 524 4186 4186 3136 1568 1174 933 416

The following definitions and Tables 307 and 308 are taken from the American Standard Acoustical Terminology Z24.1, 1949.

Just scale.—A just scale is a musical scale such that the frequency intervals are represented by the ratios of small integers.

Equally tempered scale.—An equally tempered scale is a series of notes selected from a division of the octave (usually) into 12 equal intervals.

Equally tempered semitone (half-step).—An equally tempered semitone is the interval between two sounds whose basic frequency ratio is the twelfth root of two.

Note.—The interval, in semitones, between any two frequencies is 12 times the logarithm on the base 2 of the frequency ratio.

Cent.—A cent is the interval between two sounds whose basic frequency ratio is the twelve-hundredth root of two.

Note.—The interval, in cents, between any two frequencies is 1200 times the logarithm on the base 2 of the frequency ratio. Thus, 1200 cents = 12 semitones = 1 octave.

TABLE 306.—FREQUENCY RATIOS AND INTERVALS FOR JUST AND EQUALLY TEMPERED SCALES

	Just temp	perament	Equal temp	perament
Interval from starting point	Frequency ratio from starting point	Cents from starting point	Frequency ratio from starting point	Cents from starting point
Unison	. 1:1	0	1:1	0
Minor second or semitone	. 16:15	111.731	1.059463:1	100
Minor tone	. 10:9	182.404		
Major second or whole tone		203.910	1.122462:1	200
Minor third	. 6:5	315.641	1.189207:1	300
Major third	5:4	386.314	1.259921:1	400
Perfect fourth	. 4:3	398.045	1.334840:1	500
Augmented fourth	45:32	590.224	1.414214:1	600
Diminished fifth	64:45	609 .777	1.414214:1	600
Perfect fifth	2 2	701.955	1.498397:1	700
Minor sixth	8:5	813.687	1.587401:1	800
Major sixth		884.359	1.681793:1	900
Harmonic minor seventh	. 7:4	968.826	_	
Grave minor seventh	16:9	996.091		
Minor seventh	. 9:5	1017.597	1.781797:1	1000
Major seventh		1088.269	1.887749:1	1100
Octave	2:1	1200.000	2:1	1200

TABLE 307.—FREQUENCIES OF THE TONES OF THE USUAL EQUALLY TEMPERED SCALE, ARRANGED BY CORRESPONDING STATE ACCOUNT OF THE PARTY ACCOUNTS AND STATE AND STATE ACCOUNTS OF THE PARTY AND STATE ACCOUNTS OF THE PARTY ACCOUNTS OF THE PARTY

ote	-Bb	р Од †	n n	- 일 -	ഥ	90	-Ab
			<u>*</u>	#0		#	#5
Freq.	3520.000 3729.310	3951.000 4186.009					
	882						
Freq.	1760.000	2093.005	2349.318	2489.016	2793.826	2959.955	3322.438
Key No.	243	19 2	%	82	81	828	8 8
Freq.	880.000 932.328	1046.502	1174.659	1244.508	1396.913	1479.978	1661.219
Key No.	62	3 4 4	88	67	69	22	22
Freq.	440.000 466.164	523.251	587.330	622.254	698.456	739.989	830.609
Key No.	50	52 31	84	55	57	20.23	09
Freq.	220.000 233.082	261.626	293.665	311.127	349.228	369.994	415.305
Key No.	38	6 9 4	42	4 4 2 4	45	46	48
Freq.	110.000	130.813	146.832	155.563 164.814	174.614	184.997	207.652
Key No.	52 26 27	3 88 8	300	31	33	35	36
	55.000		73.416	77.782 82.407	87.307	92.499	103.826
Key No.	217	16	18	20	21	225	24
Freq.	27.500 29.135	32.703	36.708	38.891 41.203	43.654	46.249	51.913
Key No.	77) 4 г	9	~ ∞	6	10	12
Note	A#-Bb		a D	D#-E} E	Ţ	F#-Gb	G#-Ab

TABLE 308.—PRESSURE FIELD AROUND THE HUMAN HEAD DURING SPEECH 304

The following data describe the pressure field around the head of a speaker at a radius of 30 cm from the speaker's lips. The sound-pressure level is given for 13 frequency bands, and for all the bands, i.e., "whole speech," in db above the sound-pressure level in the same bands at the point (30 cm, O, O). These data give the pressure distribution in the horizontal plane $\phi = 0$, and the relative pressures overhead.

Band No. 13 8000- 12000
Band No. 12 S600- 8000 000 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Band No. 11 No. 11 Section 11 No. 11 Section
Band No. 10 2800- 4000 +6 12.5 17.2 2.5
Band No. 9 2800 2800 0 0 0 0 0 0 0 0 0 0 0 0 14.8 3.2
Band No. 8 1400-2000 8 8 4.1 5.4 5.4 4.1 5.4 4.5
Band 1000- 1400 .0 .1.2 3.7 5.1
Band No. 6 700. 1000 0 0 0 0 0 0 0 0 0 1.7 1.7 1.7 1.3
Band Band No. 5 700
Band Band 250. 4 250. 550. 1 1.2 1.2 1.2 1.2 1.2 1.4 1.2 1.2 1.3 1.5 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Band No.3 125.3 250 250 .0 .0 .1 .5 .1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3
Band No. 2 65.5. 125
Whole-speech 1 1 4 4 4 4 4 4 4 4 4 6 5.6
Alti- tude ces 0 0 0 0 0 +90
Azi: muth

104 Dunn, H. K., and Farnsworth, D. W., Journ. Acoust. Soc. Amer., vol. 10, p. 184, 1939.

The minimum effective sound pressure of a specified signal that is capable of evoking an auditory sensation is called the threshold of audibility for that signal. The characteristics of the signal, the manner in which it is presented to the listener, and the point at which the sound pressure is measured must be specified. Two classes of ear-sensitivity determinations are shown in figure 2. M.A.P. is just-audible sound pressure measured at the observer's ear drum. M.A.F. is the sound pressure level that is just audible to an observer in an acoustical field free of reflecting surfaces (the sound-pressure level is measured after the observer's head is withdrawn from the field); the observer faces the source of sound and listens binaurally. These curves were derived by Sivian and White from measurements on young adult observers all having very good hearing. The average person cannot detect pressures as low as those given. He will have a threshold curve displaced upward on the chart. (See Table 309A for data on hearing losses.)

Fig. 2.—The variation of two classes of ear sensitivity. Curve 1, Monaural M.A.P. The ordinate for curve 1 is 20 $\log_{10} p/p_0$ where p = M.A.P. at ear drum (dyne/cm²) and $p_0 = 2 \times 10^{-4}$ (dyne/cm²). Curve 2, Binaural M.A.F. Observer facing source. (0 db = 10^{-16} watts/cm²).

The term "differential sensitivity of frequency and intensity" refers to the smallest changes in frequency and intensity, respectively, that can be perceived by an observer with normal hearing. The values depend to some extent on the method of presentation of the test stimuli. For pure tones above 500 cps having levels greater than 40 db above threshold, the measurements of Shower and Biddulph indicate that the smallest perceptible difference in frequency has the approximate constant value of 0.3 percent. For levels greater than 40 db above threshold and for frequencies between 200 and 7000 cps, the measurements of Riesz and others indicate that the smallest perceptible difference in intensity varies from one-quarter to three-quarters of a decibel.

The range of frequency perceived by the average ear varies considerably; however, the figures of 20-20,000 cycles are frequently quoted as covering the range heard by the average

of a group of young adults having no hearing impairments

¹⁰⁶ Sivian, L. J., and White, S. D., Journ. Acoust. Soc. Amer., vol. 4, p. 228, 1933.

TABLE 309A.-DISTRIBUTION OF LOSS OF HEARING ACUITY 100

The following data are part of the results of the hearing tests conducted by the Bell System at the New York and San Francisco World's Fairs in 1939. The first four columns indicate the percentages of the population having hearing losses of 25 db or more at various frequencies. A person having a loss of 25 db at all frequencies below 2000 cps may experience difficulty in understanding unamplified speech, as in an auditorium or church. The second four columns indicate the corresponding percentages for losses of 45 db or more. A person having such a loss experiences difficulty in understanding ordinary conversational speech at distances greater than 2 or 3 feet.

	25-db loss Frequency in cps				45-db loss Frequency in cps		
Age group	40;880	1760	3520	7040	440;880	1760	3520
10–19 men	1.7	1.6	4.5	8.0	.6	.6	1.8
women	1.8	1.2	1.2	2.5	.6	.4	
20–29 men	1.1	1.2	7.0	9.5	.1	.3	2.7
	1.8	1.6	2.2	3.5	.4	.3	.7
30–39 men	1.8	3.5	15.	19.	.3	.6	6.0
	3.5	3.5	5.5	10.	1.2	.8	1.6
40–49 men	5.5	9.5	32.	39.	1.4	2.6	16.
women	7.0	7.0	11.	24.	2.1	1.5	3.
50–59 men	9.5	17.	48.	58.	2.6	6.0	27.
women	13.	14.	22.	43.	4.0	3.0	7 .

¹⁰⁸ Steinberg, Montgomery, and Gardner, Journ. Acoust. Soc. Amer., vol. 12, p. 291, 1940.

TABLE 310.—ARCHITECTURAL ACOUSTICS 107

Planning for good acoustics in a building requires careful consideration of noise control. This includes consideration of the selection of a site, the arrangement of the rooms within the building, the selection of the proper sound-insulation constructions, and the control of noise sources within the building. The design of a room where people gather to listen to speech or music should be such that its shape and size will ensure the most advantageous flow of properly diffused sound to all auditors. Absorptive and reflective materials and constructions should be selected and distributed to provide the optimum conditions for the growth, decay, and steady-state distribution of sound in the room. The reverberation characteristics of the room are controlled by the amount and placement of the absorptive material.

Reverberation time calculations.—Because of the importance of the proper control of reverberation in rooms, a standard of measure called reverberation time has been established. This is the time required for a specified sound to die away to one-thousandth of its initial pressure, which corresponds to a drop in sound-pressure level of 60 db. The reverberation time of a room is given by the following equation:

$$T = \frac{0.049V - 6}{-2.30 S \log_{10} (1 - \overline{\infty}) + 4mV}$$

where V is the volume of the room, S is the total surface area in square feet, and $\overline{\infty}$ is the average absorption coefficient for the room given by

$$\overline{\alpha} = \frac{\alpha_1 S_1 + \alpha_2 S_2 + \alpha_3 S_3 + \dots}{S_1 + S_2 + S_3 + \dots} = \frac{a}{S}$$

The second term in the denominator, 4mV, represents the effective absorption in the room contributed by the air. The attenuation coefficient m at each frequency depends upon the humidity and temperature of the air. Except in very large rooms the absorption in air can be neglected below about 2000 cps. The values of m for a temperature $68^{\circ}F$ are given in figure 3 as a function of relative humidity for a number of frequencies.

(continued)

¹⁰⁷ Taken from Acoustical designing in architecture, by V. O. Knudsen and C. M. Harris, John Wiley & Sons, 1949. Used by permission of the publishers.

Fig. 3.—Attenuation coefficient m per foot as a function of humidity.

TABLE 310A .-- OPTIMUM REVERBERATION TIME (FIGS. 4 AND 5)

The following figures give the recommendations of Knudsen and Harris for optimum reverberation time for different types of rooms as a function of room volume. The optimum times for speech rooms, motion-picture theaters, and school auditoriums are given by a single line; the optimum time for music by a broad band. The optimum reverberation time is not the same for all kinds of music. For example, slow organ and choral music require more reverberation than does a brilliant allegro composition played on woodwinds, piano, or harpsicord.

The optimum reverberation time vs. frequency characteristic for a room can be obtained from these charts in the following manner: After having specified the volume and purpose of the room, determine the optimum reverberation time at 512 cycles from the upper chart. Then, to obtain optimum reverberation time at any other frequencies multiply the 512-cycle value by the appropriate ratio R which is given in the lower chart. Note that R is unity for frequencies above 500 cycles, and is given by a band for frequencies below 500 cycles. The ratio R for large rooms may have any value within the indicated band; preferred ratios for small rooms are given by the lower part of the band.

(continued)

TABLE 310A.—OPTIMUM REVERBERATION TIME (FIGS. 4 AND 5) (concluded)

Fig. 4.—Optimum reverberation time as a function of volume of rooms for various types of sound for a frequency of about 512 cycles per second.

Fig. 5.—Ratio of the reverberation time for various frequencies as a function of the reverberation for 512 cycles per second.

TABLES 311-338.—VISCOSITY OF FLUIDS AND SOLIDS *

The coefficient of viscosity of a substance is the tangential force required to move a unit area of a plane surface with unit speed relative to another parallel plane surface from which it is separated by a layer of the substance a unit thick. Viscosity measures the temporary rigidity it gives to the substance.

Fluidity is the reciprocal of viscosity expressed in poises. Kinematic viscosity is absolute viscosity divided by density. Specific viscosity is viscosity relative to that of some standard substance, generally water at some definite temperature. The dimensions of viscosity are $ML^{-1}T^{-1}$. It is generally ex-

pressed in cgs units as dyne-second per cm² or poises.

The viscosity of fluids is generally measured by one of several methods depending on the magnitude of the viscosity value to be measured. For vapors and gases as well as for liquids of low viscosity, measurements of viscosity are made by the rate of flow of the fluid through a capillary tube whose length is great in comparison with its diameter. The equation generally used is

$$\eta$$
, the viscosity, $=\frac{\gamma\pi g d^4t}{128Q\left(l+\lambda\right)}\left(h-\frac{mv^2}{g}\right)$

where γ is the density (g/cm³), d and l are respectively the diameter and length in cm of the tube, Q the volume in cm³ discharged in t sec, λ the Couette correction to the measured length of the tube, h the average head in cm, m the coefficient of kinetic energy correction, mv^2/g , necessary for the loss of energy due to turbulent, in distinction from viscous, flow, g being the acceleration of gravity (cm/sec²), v the mean velocity in cm/sec. (See Herschel, Nat. Bur. Standards Techn. Pap. Nos. 100 and 112, 1917-1918, for discussion of this correction and λ .)

For liquids of medium and high values of viscosity measurements are made by Margule's method of observing the torque on the inner of two concentric cylinders while the outer is rotated with constant angular speed with the viscous liquid filling the space between, or by noting the rate of fall of a solid

sphere through the liquid.

For the method of concentric cylinders the equation is

$$\eta$$
, the viscosity, = $\frac{K\theta(R_1^2 - R_2^2)}{4\pi\Omega R_1^2 R_2^2 L}$,

where K denotes the elastic constant of the torsion member supporting the inner cylinder of radius R_2 cm and length L cm, θ is the angular displacement of the inner cylinder from its position of equilibrium, Ω the angular speed of the outer rotating cylinder of radius R_1 cm in the corresponding units employed to measure θ . The necessary corrections due to end effects of cylinders of finite length are given in the reference.¹⁰⁸

For the falling sphere method, the equation is that of Stokes law as modified

by R. G. Hunter: 109

$$\eta, \text{ the viscosity, } = \frac{2}{9} \frac{R^2 (d_1 - d_2)}{V} \left(\frac{1 - \frac{R^{2 \cdot 25}}{\gamma}}{(1 + 3.3 \frac{R}{h})} \right)$$

where γ denotes the radius in cm of the crucible containing the liquid of density d_2 (g/cm³), to a depth of h cm, R the radius in cm of the sphere of density d_1 (g/cm³), and V the velocity (cm/sec) of the falling sphere.

^{*} The data on viscosity were selected and arranged by George V. McCauley, Corning Glass Works.

Lillie, H. R., Journ. Amer. Cer. Soc., vol. 12, p. 505, 1929.
 Hunter, R. G., Journ. Amer. Cer. Soc., vol. 17, p. 123, 1934; Ann. d. Phys., ser. 4, vol. 22, p. 287, 1907; vol. 23, p. 447, 1907.

For very viscous materials, measurements of viscosity are made by noting the rate of elongation of fibers under load or by observing the aperiodic motion of an elastic system displaced from its position of equilibrium and damped by the viscous material.

The formula for the rate of elongation of fibers as employed by H. R.

Lillie 110 is

$$\eta$$
, the viscosity, $=\frac{L\times g\times k}{3\pi R^2 E}$,

where R is the radius in cm of the fiber of effective length, L (cm), g the mass in grams of the attached load, k the acceleration of gravity (cm/sec²), and E the rate of elongation in cm/sec.

For the aperiodic motion of the system consisting of the suspended inner

cylinder of Margule's apparatus described above, the formula is

$$\eta, \text{ the viscosity, } = \frac{K(t_2 - t_1) \log e}{4\pi L \log_{10} \frac{\theta_1}{\theta_2}} \left(\frac{R_2^2 - R_1^2}{R_1^2 R_2^2} \right),$$

where t_2 and t_1 denote the times in seconds of angular positions θ_2 and θ_1 of the suspended system from its position of equilibrium. The other characters have the same significance as in the formula above for the rotating cylinder method of measuring viscosity. (For reference, see footnote 108.)

The viscosity of solids may be measured in relative terms by the damping of the oscillations of suspended wires (see Table 323). Ladenburg (1906) gives the viscosity of Venice turpentine at 18.3° as 1300 poises; Trouton and Andrews (1904) of pitch at 0° , 51×10^{10} , at 15° , 1.3×10^{10} ; of shoemaker's wax at 8° , 4.7×10^{6} ; of soda glass at 575° , 11×10^{12} ; Deeley (1908) of glacier ice as 12×10^{13} .

TABLE 311.—VISCOSITY OF WATER IN CENTIPOISES

(Temperature variation)

Part 1.-Low temperature

°C 0 1 2 3 4	Vis- cosity cp 1.7921 1.7313 1.6728 1.6191 1.5674	°C 10 11 12 13 14	Vis- cosity cp 1.3077 1.2713 1.2363 1.2028 1.1709	°C 20 21 22 23 24	Vis- cosity cp 1.0050 .9810 .9579 .9358 .9142	°C 30 31 32 33 34	Vis- cosity cp .8007 .7840 .7679 .7523 .7371	°C 40 41 42 43 44	Vis- cosity cp .6560 .6439 .6321 .6207 .6097	°C 50 51 52 53 54	Vis- cosity cp .5494 .5404 .5315 .5229 .5146	°C 60 65 70 75 80	Vis- cosity cp .4688 .4355 .4061 .3799 .3565
5	1.5188	15	1.1404	25	.8937	35	.7225	45	.5988	55	.5064	85	.3355
6	1.4728	16	1.1111	26	.8737	36	.7085	46	.5883	56	.4985	90	.3165
7	1.4284	17	1.0828	27	.8545	37	.6947	47	.5782	57	.4907	95	.2994
8	1.3860	18	1.0559	28	.8360	38	.6814	48	.5683	58	.4832	100	.2838
9	1.3462	19	1.0299	29	.8180	39	.6685	49	.5588	59	.4759	153	.181

(continued)

¹¹⁰ Lillie, H. R., Journ. Amer. Cer. Soc., vol. 14, p. 502, 1931.

TABLE 311.—VISCOSITY OF WATER IN CENTIPOISES (concluded)

Part 2.—High temperature 111

°C	Vis- cosity cp	°C	Vis- cosity cp	°C	Vis- cosity cp	°C	Vis- cosity cp
130	ср	155	.184	180	.155	205	.136
135		160	.178	185	.151	210	.134
140	***	165	.173	190	.146	215	.131
145 150	.199 .191	170 175	.166 .160	195 200	.143 .139	220 225	.129 .128

¹¹¹ Based on measurements by Shugayev, V., Journ. Exp. and Theoret. Phys. (U.S.S.R.), vol. 4, p. 760, 1934.

Part 3.—Viscosity of heavy water in centipoises 112

99.65% D_2O ; $d_4^{20} = 1.10495$

Vis- cosity cp 4 2.25 5 2.10 9 6 1.99 10 7 1.90	Vis- cosity cp 1.81 1.73 1.67 1.61 1.5	Vis- cosity cp 1.56 16 1.51 17 1.46 18 1.41 19	Vis- cosity cp 1.37 1.33 1.29 1.25
---	--	--	--

¹¹² Data by Lemond, Henri, Compt. Rend., vol. 212, p. 81, 1941.

TABLE 312.—VISCOSITY OF ALCOHOL-WATER MIXTURES IN CENTIPOISES

(Temperature variation)

					Percer	ntage by	weight o	of ethyl	alcohol				
°C	0	10	20	30	35	40	45	50	60	70	80	90	100
0	1.792	3.311	5.319	6.94	7.25	7.14	6.94	6.58	5.75	4.762	3.690	2.732	1.773
5	1.519	2.577	4.065	5.29	5.62	5.59	5.50	5.26	4.63	3.906	3.125	2.309	1.623
10	1.308	2.179	3.165	4.05	4.39	4.39	4.35	4.18	3.77	3.268	2.710	2.101	1.466
15	1.140	1.792	2.618	3.26	3.52	3.53	3.51	3.44	3.14	2.770	2.309	1.802	1.332
20	1.005	1.538	2.183	2.71	2.88	2.91	2.88	2.87	2.67	2.370	2.008	1.610	1.200
25	.894	1.323	1.815	2.18	2.35	2.35	2.39	2.40	2.24	2.037	1.748	1.424	1.096
30	.801	1.160	1.553	1.87	2.00	2.02	2.02	2.02	1.93	1.767	1.531	1.279	1.003
35	.722	1.006	1.332	1.58	1.71	1.72	1.73	1.72	1.66	1.529	1.355	1.147	.914
40	.656	.907	1.160	1.368	1.473	1.482	1.495	1.499	1.447	1.344	1.203	1.035	.834
45	.599	.812	1.015	1.189	1.284	1.289	1.307	1.294	1.271	1.189	1.081	.939	.764
50	.549	.734	.907	1.050	1.124	1.132	1.148	1.155	1.127	1.062	.968	.848	.702
60	.469	.609	.736	.834	.885	.893	.907	.913	.902	.856	.789	.704	.592
70	.406	.514	.608	.683	.725	.727	.740	.740	.729	.695	.650	.589	.504
80	.356	.430	.505	.567	.598	.601	.609	.612	.604				

Viscosity values given as log₁₀ η (poises)

Temp.		Temp.		Temp.	
°C	$Log_{10} \eta$	°C'	$Log_{10} \eta$	°C	Log ₁₀ η
22	13.96	50	7.48	100	2.40
24	13.41	55	6.67	105	2.15
26	12.86	60	5.97	110	1.90
28	12.34	65	5.35	115	1.70
30	11.82	70	4.80	120	1.50
32	11.32	75	4.29	125	1.32
34	10.83	80	3.82	130	1.16
36	10.35	85	3.40	135	1.01
40	9.44	90	3.02	140	
45	8.40	95	2.69	145	.88 . 7 5

As with other liquids in the temperature interval of high viscosities, measured values for glucose depend on the thermal treatment to which the sample is subjected prior to and during measurement. Prolonged holding at a given temperature followed by rapid cooling to a lower temperature at which viscosity is measured will result in increasing values with time. Decreasing viscosity values with time will result from the reverse temperature treatment. At temperatures of high viscosity, constant, or equilibrium, viscosity values will be found only after long holding at the given temperature or after slow and controlled cooling from conditions of low viscosity to the desired temperature.

TABLE 314.—VISCOSITY AND DENSITY OF GLYCEROL IN AQUEOUS SOLUTION AT 20°C *

% Glycerol 5 10 15 20	Density g/cm ³ 1.0098 1.0217 1.0337	Viscosity in centi- poises 1.181 1.364 1.580 1.846	Kinematic viscosity † in centi- stokes 1.170 1.335 1.529 1.765	C	Gly- erol 50 55 60 65	Density g/cm ⁸ 1.1258 1.1393 1.1528 1.1662	Viscosity in centi- poises 5.908 7.664 10.31 14.51	Kinematic viscosity † in centi- stokes 5.248 6.727 8.943 12.44
25	1.0590	2.176	2.055		70	1.1797	21.49	18.22
30	1.0720	2.585	2.411		75	1.1932	33.71	28.25
35	1.0855	3.115	2.870		80	1.2066	55.34	45.86
40	1.0989	3.791	3.450		85	1.2201	102.5	84.01
45	1.1124	4.692	4.218		90	1.2335	207.6	168.3

^{*} Tables 314 and 315 taken from Nat. Bur. Standards Techn. Pap. No. 112, 1918. Glycerol data, Table 314, from Archbutt. Deeley, and Gerlack; castor oil data, Table 315, from Kahlhaum and Raher. Archbutt and Deeley give for the density and viscosity of castor oil at 65.6°C, 0.9284 and 0.605, respectively; at 100°C, 0.9050 and 0.169.

† The kinematic viscosity is the ordinary viscosity in cgs units (poises) divided by the density in g/cm³. The cgs unit of kinematic viscosity is the stoke.

¹¹³ Barton, Spaght, and Richardson, Journ. Appl. Phys., vol. 5, p. 156, 1934.

°C	Density g/cm ³	Viscosity in poises	Kinematic viscosity in stokes	°C	Density g/cm ³	Viscosity in poises	Kinemation viscosity in stokes
5	.9707	37.6	38.7	23	.9583	7.67	8.00
6	.9700	34.5	35.5	24	.9576	7.06	7.37
7	.9693	31.6	32.6	25	.9569	6.51	6.80
8	.9686	28.9	29.8	26	.9562	6.04	6.32
9	.9679	26.4	27.3	27	.9555	5.61	5.87
10	.9672	24.2	25.0	28	.9548	5.21	5.46
11	.9665	22.1	22.8	29	.9541	4.85	5.08
12	.9659	20.1	20.8	30	.9534	4.51	4.73
13	.9652	18.2	18.9	31	.9527	4.21	4.42
14	.9645	16.61	17.22	32	.9520	3.94	4.14
15	.9638	15.14	15.71	33	.9513	3.65	3.84
16	.9631	13.80	14.33	34	.9506	3.40	3.58
17	.9624	12.65	13.14	35	.9499	3.16	3.33
18	.9617	11.62	12.09	36	.9492	2.94	3.10
19	.9610	10.71	11.15	37	.9485	2.74	2.89
20	.9603	9.86	10.27	38	.9478	2.58	2.72
21	.9596	9.06	9.44	39	.9471	2.44	2.58
22	.9589	8.34	8.70	40	.9464	2.31	2.44

TABLE 316.-VISCOSITY OF GLYCERINE-WATER MIXTURES 114

(Temperature variation)

			Viscosity in centipois	es
Sp. gravity	% Glycerol	20°C	25°C	30°C
1.00000	0	1.005	.893	.800
1.02370	10	1.311	1.153	1.024
1.04840	20	1.769	1.542	1.360
1.07395	30	2.501	2.157	1.876
1.10040	40	3.750	3.180	2.731
1.12720	50	6.050	5.041	4.247
1.15460	60	10.96	8.823	7.312
1.18210	70	22.94	17.96	14.32
1.20925	80	62.0	45.86	34.92
1.23585	90	234.6	163.6	115.3
1.26201	100	1499.	945.	624.

¹¹⁴ Landolt and Börnstein, 1935. Data by Sheely, Ind. Eng. Chem., vol. 24, p. 1060, 1932.

TABLE 317.—VISCOSITY OF GASOLINE AND KEROSENE IN CENTIPOISES 115

6 "	Sp. gr. 15.6°			Temp	erature		
Gasoline No.	15.6°	5°C	15°C	25°C	35°C	45°C	55°C
1	.757	.690	.603	.518	.472	.426	.382
2	.748	.769	.663	.588	.516	.467	.412
3	.743	.775	.641	.541	.493	.441	
4	.726	.495	.429	.379	.341	.309	.278
5	.722	.529	.457	.410	.360	.325	.293
6	.717	.568	.481	.418	.361	.339	
7	.716	.508	.461	.391	.346	.312	.294
8	.708	.493	.435	.389	.336	.301	.278
9	.702	.429	.383	.338	.312	.279	.250
10	.701	.435	.382	.349	.300	.268	.251
11	.699	.429	.372	.327	.299	.269	.236
12	.694	.399	.350	.317	.283	.259	.234
13	.680	.347	.310	.274	.242	.227	.211
Kerosene	.813	2.57	2.13	1.64	1.41	1.19	

¹¹⁶ Herschel, Nat. Bur. Standards Techn. Pap. No. 125, 1919.

Compiled from Landolt and Börnstein, 1923. Based principally on work of Thorpe and Rogers, 1894–1897. Viscosity given in centipoises. One centipoise = 0.01 dyne-second per cm².

0°C solid	10°C	Vise 20°C	cosity i	n centin			
solid		20°C	30°C	4000			
	00.5			40-0	50°C	70°C	100°C
30114	2.247 solid	1.784 1.222	1.460 1.040	1.219 .905	1.036 .796	.780 .631	.549 .465
1.245 1.521	1.053 1.289	.907 1.102	.792 .960	.699 .845	.62 3 .752	.507 .607	.387 .495
1.610 2.286 1.887	1.330 1.751 1.568	1.119 1.540 1.318	.961 1.304 1.129	.836 1.121 .980	.735 .975 .862	.584 .760 .683	.438 .551 .501
.817 1.772 3.883 4.565 5.186 8.038 2.145	.690 1.451 2.918 3.246 3.873 5.548 1.705	.596 1.194 2.256 2.370 2.948 3.907 1.363	.520 .992 1.779 1.757 2.267 2.864 1.168	.457 .831 1.405 1.331 2.782 2.122 .914	.403 .701 1.131 1.029 1.411 1.611 .763	.510 .761 .646 .930 .976	.540 .527
.906 .772 1.105 .806 solid .877	.763 .671 .937 .702 .739 .761	.654 .590 .810 .620 .648	.567 .525 .709 .553 .574 .595	.498 .471 .627 .497 .513	.444 .426 .560 .451 .463 .481	.359 .354 .458 .375 .383 .399	.278 .352 .297 .300 .311
.487 ,651 .611 .828 .626 2.438	.441 .582 .545 .726 .560 2.039	.402 .524 .489 .643 .504 1.721	.368 .475 .443 .575 .458 1.475	.433 .403 .518 .419 1.286	.397 .368 .470 .384 1.131	.338 .390 .328 .903	.679
1.267	1.120	1.005	.911	.831	.761		
.442 .408 .568 .413 .543 1.132 .706 1.351	.396 .365 .519 .372 .488 .966 .633 1.138	.359 .329 .462 .337 .444 .839 .571	.326 .299 .414 .307 .406 .736 .519	.299 .373 .283 .373 .652 .474 .746	.339 .584 .435 .662	.479 .534	
.295 .314 .402 .387 .544 .487	.268 .285 .360 .346 .479 .430	.245 .260 .324 .313 .425 .384	.223 .237 .294 .284 .381 .345	.268 .260 .344 .311	.245 .239 .311 .284	.260 .237	
	,651 ,611 ,828 ,626 ,626 ,2438 ,1.267 ,442 ,408 ,568 ,413 ,543 ,1.132 ,706 ,1.351 ,706 ,314 ,402 ,387 ,544	,651 .582 .611 .545 .828 .626 .560 .2.438 2.039 1.267 1.120 .442 .396 .408 .365 .568 .519 .413 .372 .543 .488 1.132 .966 .706 .633 1.351 1.138 .295 .268 .314 .285 .402 .387 .346 .544 .479	,651 .582 .524 .611 .545 .489 .828 .726 .643 .626 .560 .504 2.438 2.039 1.721 1.267 1.120 1.005 .442 .396 .359 .408 .365 .329 .568 .519 .462 .413 .372 .337 .543 .488 .444 1.132 .966 .839 .706 .633 .571 1.351 1.138 .975 .295 .268 .245 .314 .285 .260 .402 .360 .324 .387 .346 .313 .544 .479 .425	,651 .582 .524 .475 .611 .545 .489 .443 .828 .726 .643 .575 .626 .560 .504 .458 2.438 2.039 1.721 1.475 1.267 1.120 1.005 .911 .442 .396 .359 .326 .408 .365 .329 .299 .568 .519 .462 .414 .413 .372 .337 .307 .543 .488 .444 .406 1.132 .966 .839 .736 .706 .633 .571 .519 1.351 1.138 .975 .848 .295 .268 .245 .223 .314 .285 .260 .237 .402 .360 .324 .294 .387 .346 .313 .284 .544 .479 .425 .381 <	,651 .582 .524 .475 .433 .611 .545 .489 .443 .403 .828 .726 .643 .575 .518 .626 .560 .504 .458 .419 2.438 2.039 1.721 1.475 1.286 1.267 1.120 1.005 .911 .831 .442 .396 .359 .326 .299 .408 .365 .329 .299 .568 .519 .462 .414 .373 .413 .372 .337 .307 .283 .543 .488 .444 .406 .373 1.132 .966 .839 .736 .652 .706 .633 .571 .519 .474 1.351 1.138 .975 .848 .746 .295 .268 .245 .223 .314 .285 .260 .237 .402	,651 .582 .524 .475 .433 .397 .611 .545 .489 .443 .403 .368 .828 .726 .643 .575 .518 .470 .626 .560 .504 .458 .419 .384 2.438 2.039 1.721 1.475 1.286 1.131 1.267 1.120 1.005 .911 .831 .761 .442 .396 .359 .326 .299 .408 .365 .329 .299 .568 .519 .462 .414 .373 .339 .413 .372 .337 .307 .283 .543 .488 .444 .406 .373 1.132 .966 .839 .736 .652 .584 .706 .633 .571 .519 .474 .435 1.351 1.138 .975 .848 .746 .662 .295 <td>,651 .582 .524 .475 .433 .397 .338 .611 .545 .489 .443 .403 .368 .828 .726 .643 .575 .518 .470 .390 .626 .560 .504 .458 .419 .384 .328 2.438 2.039 1.721 1.475 1.286 1.131 .903 1.267 1.120 1.005 .911 .831 .761 .442 .396 .359 .326 .299 .408 .365 .329 .299 .408 .365 .329 .299 .568 .519 .462 .414 .373 .339 .413 .372 .337 .307 .283 .543 .488 .444 .406 .373 1.132 .966 .839 .736 .652 .584 .479 .706 .633 .571 .519 .474<!--</td--></td>	,651 .582 .524 .475 .433 .397 .338 .611 .545 .489 .443 .403 .368 .828 .726 .643 .575 .518 .470 .390 .626 .560 .504 .458 .419 .384 .328 2.438 2.039 1.721 1.475 1.286 1.131 .903 1.267 1.120 1.005 .911 .831 .761 .442 .396 .359 .326 .299 .408 .365 .329 .299 .408 .365 .329 .299 .568 .519 .462 .414 .373 .339 .413 .372 .337 .307 .283 .543 .488 .444 .406 .373 1.132 .966 .839 .736 .652 .584 .479 .706 .633 .571 .519 .474 </td

			Vis	cosity i	n centig	oises		
Liquid Formula	0°C	10°C	20°C	30°C	40°C	50°C	70°C	100°C
Esters: Methyl-formate C ₂ H ₄ O ₂	.436	.391	.355	.325				
Ethyl-formate C ₃ H ₆ O ₂	.510	.454	.409	.369	.336	.308		
Propyl-formate C ₄ H ₈ O ₂	.672	.589	.521	.465	.417	.378	.314	
Methyl-acetate C₃H₀O₂	.484	.431	.388	.352	.320	.293	250	
Ethyl-acetate C ₄ H ₈ O ₂	.583 .773	.512	.455 .585	.407	.367	.333	.279	250
Propyl-acetate C ₅ H ₁₀ O ₂ Methyl-propionate. C ₄ H ₈ O ₂	.587	.517	.363	.516 .414	.460 .375	.414	.341	.259
Ethyl-propionate . C ₅ H ₁₀ O ₂	.697	.608	.537	.477	.428	.387	.321	
Methyl-butyrate C ₅ H ₁₀ O ₂ Methyl-iso-	.763	.661	.580	.513	.459	.413	.341	.265
butyrate C ₅ H ₁₀ O ₂	.676	.591	.523	.466	.419	.375	.315	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.606 .727 .944 .884 1.166	.548 .654 .833 .781 1.001	.500 .593 .744 .697 .875	.460 .540 .669 .627	.424 .495 .607 .568	.456 .552 .516 .629	.391 .466 .435	.371
i-Butyl C₁H₀I Allyl C₂H₂I	.936	.826	.734	.660	.597	.544	.522 .459	.365
Paraffins: * 116 Pentane Octane Hexane Heptane			.274 .707 .382 .521	.227 .542 .308 .411	vapor .429 .254 .333		,,,,,	.550
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.361 .563 .438	.329 .501 .405	.301 .450 .376	.277 .407 .352	.369 .330	.338	.287	
Turpentine	2.248	1.783	1.487	1.272	1.071	.926	.728	
* Very pure.	Ind En	or Chem	2021	ad vol	10 n 6	11 1046		

¹¹⁸ Geist, J. M., and Cannon, M. R., Ind. Eng. Chem., anal. ed., vol. 18, p. 611, 1946.

TABLE 319.-VISCOSITY OF SODIUM SILICATES 117

(Temperature variation)

Log₁₀ η (poises) at

Wt. %	00000	100000	110000	10000	120000	1.1000.0
Na ₂ O	900°C	1000°C	1100°C	1200°C	1300°C	1400°C
18.4				3.15	2.77	2.47
21.91	4.55	3.83	3.28	2.82	2.44	2.11
24.89	4.29	3.62	3.08	2.63	2,26	1.95
25.78	4.22	3.55	3.02	2.58	2.22	1.91
26.57	4.19	3.52	2.98	2.55	2.19	1.88
26.79	4.18	3.49	2.97	2.54	2.18	1.87
28.46	4.07	3.41	2.90	2.48	2.12	1.79
29.79	3.98	3.32	2.81	2.39	2.03	1.72
31.74	3.84	3.21	2.70	2.28	1.93	1.62
32.91	3.76	3.15	2.64	2.23	1.88	1.57
33.24	3.74	3.12	2.62	2.21	1.87	1.55
33.77						
	3.71	3.08	2.58	2.18	1.83	1.52
34.27	3.70	3.08	2.59	2.16	1.82	1.53
34.92	3.66	3.04	2.54	2.15	1.80	1.50
36.73	3.57	2.94	2.45	2.05	1.70	1.40
39.2	3.46	2.81	2.33	1.93	1.56	
39.74	3.34	2.74	2.25	1.86	1.51	1.20
52.1		1.66	1.21	.91	.66	.47

¹¹⁷ Babcock, C. L., Journ. Amer. Cer. Soc., vol. 17, p. 319, 1934. Lillie, H. R., Journ. Amer. Cer. Soc., vol. 22, p. 367, 1939.

Based on data by Dow Corning Corporation for DC 200 fluids.

Fluid designation	Viscosity in poises									
(centistokes at 25° C)	-25°C	0°C	25°C	50°C	75°C	100°C	150°C			
1	.0163	.0118	.0083	.0064	.0052					
2	.0472	.0287	.0173	.0129	.0100	.0079	.0056			
2 5	.145	.077	.0452	.0301	.0221	.0173	.0116			
10	.323	.159	.090	.059	.043	.032	.026			
20	.683	.328	.184	.105	.082	.062	.040			
50	2.39	.820	.467	.298	.208	.153	.094			
100	3.22	1.61	.94	.59	.398	.285	.172			
200	6. 7 0	3.40	1.92	1.19	.798	.580	.346			
500	15.9	8.15	4.84	2.89	1.94	1.36	.82			
1000	34.4	17.00	9.70	6.04	4.02	2.80	1.57			
12500	368.5	183.7	119.3	73.9	53.0	39.7	24.3			
30000	1035.	517.	291.5	186.2	126.4	90.2	50.7			
200,000	5820.	3265.	1940.	1256.	839.	604.	345.			

TABLE 321.-VISCOSITY IN THE SYSTEM ORTHOCLASE-ALBITE

(Temperature variation)

Values given as $\log_{10} \eta$, where $\eta = \text{viscosity in poises}$.

Wt. % Orthoclase	100	80	60	40	20	0
Wt. % Albite	0	20	40	60	80	100
1300°C						6.04
1350°C			6.30	6.18	6.00	5.63
1400°C	7.00	6.23	5.88	5.81	5.65	5.26
1450°C	6.00	5.85	5.51	5.40	5.26	
1300°C 1350°C 1400°C	7.00	6.23	6.30 5.88	6.18 5.81	6.00 5.65	6.04 5.63

TABLE 322.—VISCOSITY OF SILICON DIOXIDE 118

(Temperature variation)

Values given as $\log_{10} \eta$; $\eta = \text{viscosity in poises}$.

Temperature °C	1250 13.40	1300 12.19	1350 11.46	1400 10.69	1450 10.02	1500 9.42
Log ₁₀ η	13.40	12.19	11.40	10.09	10.02	9.44

¹¹⁸ Volarovich, M. P., and Leontieva, A. A., Journ. Soc. Glass Techn., vol. 20, p. 139, 1936.

TABLE 323.—VISCOSITY OF MISCELLANEOUS MOLTEN OXIDES 110

(Temperature variation)

Values given as $\log_{10} \eta$, where $\eta = \text{viscosity}$ in poises.

Material	1100°C	1200°C	1300°C	1400°C	1500°C	1600°C
Silica	15.57	13.68	12.06	10.66	9.20	
Wollastonite (CaSiO ₃)	• • •	• • •	• • •	• • •	.486	.387
Diopside	• • •	• • •	1.52	1.43	.267	.079
Akermanite (Ca ₂ MgSi ₂ O ₇)	• • •	• • •	1.48	.656	.362	.146
Monticellite (CaMgSiO ₄)	• • •	• • •	• • •	• • •	.241	.053
Albite	• • •	7.17	5.82 6.04	4.60 5.25	• • •	
Orthoclase (KAlSi ₃ O ₈)	•••	• • •	• • •	7.0	6.2	
Anorthite	• • •			2.32	1.78	1.40
Gehlenite (Ca₂AlSiO₁)		• • •	• • •	• • •	.911	.549

¹¹⁰ Birch, Handbook of physical constants, 1942. Measurements by: Volarovich and Leontieva, Trans. Soc. Glass Techn., vol. 20, p. 139, 1936. McCaffery, Trans. Amer. Inst. Min. and Met. Eng., vol. 100, pp. 64, 86, 122, 125, 1932. Bowen, Trans. Anier. Geophys. Union, pt. 1, p. 249, 1934. Kani, Proc. Imp. Acad. (Tokyo), vol. 11, p. 334, 1935. Kani and Kuzu, Proc. Imp. Acad. (Tokyo), vol. 11, p. 383, 1935.

TABLE 324.-VISCOSITY OF BORON TRIOXIDE 120

(Temperature variation)

T	$Log_{10} \eta$ (poises)								
Temperature °C	*	†	‡	§					
300		9.64							
400		6.20			6.30				
500	4.59		4.40		4.47				
600	3.68				3.49				
700	2.93			2.90	2.89				
800	2.42			2.53	2.49				
900	2.08			2.27	2.19				
1000	1.87			2.10	1.96				
1100	1.63			1.92	1.78				
1200					1.62				

¹²⁰ Dane and Birch, Journ. Appl. Phys., vol. 9, p. 669, 1938, have shown that for pressures not in excess of 2000 kg/cm² the viscosity of boron trioxide is given for various pressures by the relation $\eta = \eta_0 \ e^{\alpha p}$; and at 359°C, $\alpha = 15.10^{-4} \ cm^2/kg$, and at 516°C, $\alpha = 4.6 \times 10^{-4} \ cm^2/kg$. Data from Birch, Handbook of physical constants, 1942, and from unpublished measurements by H. R. Lillie.

Observers of data by columns:

Lillie, unpublished data.

^{*} Arndt, Zeit. Elektrotechn., vol. 13, p. 578, 1907.
† Parks and Spaght, Physics, vol. 6, p. 67, 1935.
‡ Volarovich and Tolstoi, Trans. Soc. Glass Techn., vol. 18, p. 209, 1934.
§ Volarovich and Fridman, Acta Phys. (U.S.S.R.), vol. 6, p. 393, 1937.

TABLE 325 .- VISCOSITY IN THE SYSTEM DIOPSIDE-ALBITE-ANORTHITE *

(Temperature variation)

Values given as $\log_{10} \eta$, where $\eta = \text{viscosity in poises}$.

100	20 80 5.08	40 60 3.99	60 40	80 20	100	Wt. % diopside Wt. % albite
6.04	4.30	3.99	2.45			1200°C 1300°C
5.26	3.63	2.64	2.04	1.93	1.60	1400°C
		80 20	60 40	40 60	20 80	Wt. % diopside
		20	2.18	3.77	80	Wt. % anorthite 1300°C
		1.92	1.96	2.00	2.04	1400°C
					2.04	1500°C
	100	20 80	40 60	60 40	80 20	Wt. % albite
				4.67	5.51	1300°C
		2 28		3.89	4.63	
	2.04	2.11	2.00			1555°C
20 20	20	20	40	40	60	Wt. % diopside
60	40	20	40	20	20	Wt. % anorthite
	3 57	4.83	2.67	3.65	2 23	1200°C
2.56	2.79	3.18	2.11	2.36	1.99	1400°C
	2.04 20 40 40 3.57	20 80 2.28 2.11 20 60 20 4.83 3.88	1.96 40 60 3.40 2.66 40 20 40 2.67	2.00 60 40 4.67 3.89 40 40 20 3.65 2.92	20 5.51 4.63	1400°C 1500°C Wt. % albite Wt. % anorthite 1300°C 1400°C 1500°C 1555°C Wt. % diopside Wt. % albite Wt. % anorthite 1200°C 1300°C

^{*} For reference, see footnote 45, p. 136.

TABLE 326.—VISCOSITY OF MOLTEN METALS 121

(Temperature variation)

Temp.		Т	in	Temp.		
°C	Lead	*	†	°C	Antimony	
300		1.73	1.67	650	1.50	
350	2.58	1.58	1.51	700	1.26	
400	2.33	1.43	1.38	750	1.16	
450	2.07	1.30	1.27	800	1.08	
500	1.84	1.20	1.18	850	1.05	
550	1.58	1.14	1.11			
600	1.38	1.08	1.05	Temp.		
650			.99	°C .	Copper	
700			.94	1100	3.33	
750			.91	1150	3.22	
800			.87	1200	3.12	

Landolt and Börnstein, 1935. Based on data by Esser, Greis, and Brundgart, Arch. Eisenhütten, vol. 7, p. 385, 1934. Viscosity in centipoises. Data on tin by Stott, Proc. Phys. Soc., vol. 45, p. 530, 1933, included.
 Esser, Greis, and Brundgart. † Stott.

Viscosities are given in cgs units, dyne-seconds per cm², or poises.

Liquid	°C	Viscosity	Liquid	°C	Viscosity
Acetaldehyde	0.	.00275	Oils:		
	10.	.00252	* Filtered cylinder	37.8	2.406
	20.	.00231	"	100.0	.187
Air	— 192.3	.00172	* Dark cylinder	37.8	4.224
Aniline	20.	.04467	"	100.0	.240
"	60.	.0156	" "	37.8	7.324
Bismuth	285.	.0161	" "	100.0	.341
	365.	.0146	*"Extra L. L."	37.8	11.156
Black treacle	12.3	.400	44 44 44	100.0	.451
Copal lac	22.	4.80	‡ Linseed .925	30.	.331
Hydrogen, liquid	_	.00011	" .922	50.	.176
Menthol, solid	14.9	2×1012	" .914	90.	.071
" liquid	56.9	.069	Olive .9195	10.	1.38
Mercury	20.	.0184		15.	1.075
	0.	.01661	" .9130	20.	.840
"	20.	.01547	" .9065	30.	.540
"	34.	.01476	" .9000	40.	.363
44	98.	.01263	" .8935	50.	.258
"	193.	.010 7 9		70.	.124
"	299.	.00975	† Rape	15.6	1.118
Oils:			46	37.8	.422
Dogfish-liver .923	30.	.414		100.0	.080
" " .918	50.	.211	(another)	15.6	1.176
.200	90.	.080	(another)	100.0	.085
Linseed .925	30.	.331	‡ Soya bean .919	30.0	.406
" .922	50.	.176	.915	50.0	.206
.914	90.	.071	.900	90.0	.078
* Spindle oil .885	15.6	.453	† Sperm	15.6	.420
	37.8	.162	"	37.8	.185
47.1.	100.0	.033		100.0	.046
* Light machinery	15/	1 110	Phenol	18.3	.1274
.907‡	15.6	1.138		90.0	.0126
* Light machinery	37.8	.342	Sulfur	170.	320.0
	100.0	.049	"	180.	550.0
*"Solar red" engine	15.6	1.915		187.	560.0
	37.8	.496		200.	500.0
	100.0	.058		250.	104.0
*"Bayonne" engine	15.6	2.172		300.	24.0
	37.8	.572	"	340.	6.2
• •	100.0	.063		380.	2.5
*"Queen's red" engine	15.6	2.995		420.	1.13
" " "	37.8	.711 .070		448.	.80 .00973
*"Galena" axle	100.0		Sulfuric acid ($\rho = 1.03$)	25. 66	
"Galena" axle	15.6 37.8	4.366 .909	† Tallow	66.	.176 .078
	37.8 15.6	6.606	Zinc	100. 280.	.078
* Heavy machinery	37.8	1.274	11	357.	.0108
••	37.0	1.2/4	"	389.	.0142
				309.	.0131

^{*} American mineral oils; based on water as .01028 at 20°C. ‡ Densities.

TABLE 328.—RATIO OF VISCOSITY AT HIGH TO THAT AT ATMOSPHERIC PRESSURE

Pre	essure	D "	FFF	m	Rape	Castor	
tons/in2	kg/cm ²	Bayonne oil (mineral)	cylinder (mineral)	Trotter (animal)	(vege	table)	Sperm (fish)
1	157.5	1.3	1.4	1.2	1.1	1.2	1.2
2	315.	2.0	2.0	1.6	1.4	1.6	1.5
4	630.	4.0	4.5	2.4	2.3	2.7	2.4
6	945.	7.8	8.9	3.5	3.5	4.2	3.5
8	1260.	16.1	_	5.0		5.8	-

[†] Based on water as per 1st footnote.

TABLE 329.—VISCOSITY OF LIQUEFIED PURE GASES AND VAPORS 122

Viscosities in millipoises.

(Temperature variation)

Temp.	0.11	C **	0.**		Temp.	
°K	C ₂ H ₄	C_2H_6	C_3H_6	C_8H_8	°K .	N_2
85				118.5	66	2.49
90			125.5	74.2	68	2.26
95			72.5	52.5	70	2.08
100	• • •	9.15	45.5	38.3	72	1.93
105	6.60	7.48	31.1	29.0	74	1.80
110	5.60	6.37	22.3	22.3	76	1.67
115	4.86	5.66	17.0	18.2	78	1.56
120	4.24	5.06	13.3	15.2	80	1.47
125	3.73	4.52			00	1.47
			11.1	13.2		
130	3.32	4.00	9.4	11.6	Temp.	~
135	2.96	3.58	8.2	10.3	°K	CH,
140	2.66	3.23	7.2	9.3	95	1.82
145	2.43	2.92	6.2	8.2	100	1.53
150	2.22	2.66	5.6	7.3	105	1.34
155	2.03	2.44	5.0	6.5	110	1.21
160	1.86	2,27	4.5	5.5	**0	1.01
165	1.71	2.12	4.0	5.0		
170	1.58	2.00	3.5	4.5		

¹²² Gerf, S. F., and Galkov, G. I., Journ. Techn. Phys. (U.S.S.R.), vol. 10, p. 725, 1940.

TABLE 330.—VISCOSITY OF PURE HYDROCARBONS 123

Viscosities in centipoises; densities referred to water at 4°C.

Temp.	Propan	e, C ₃ H ₈	n-Buta	ne, C ₄ H ₁₀	iso-Butane, C,H10	
°C	Density	Viscosity	Density	Viscosity	Density	Viscosity
7 0	.614	.287	.671	.460	.657	.533
60	.604	.253	.661	.403	.647	.455
— 50	.592	.227	.652	.354	.637	.393
40	.580	.205	.642	.314	.626	.343
-30	.568	.184	.632	.281	.615	.301
20	.556	.168	.622	.253	.605	.267
10	.543	.152	.611	.229	.593	.239
0	.531	,138	.601	.209	.582	.215
+10	.517	.126	.590	.191	.571	.195
+20	.502	.116	.579	.174	.559	.176
+30	.487	.108	.56 7	.159	.547	.160
+40	.471	.099	.555	.146	.534	.146

¹²⁸ Lipkin, M. R., Davison, J. A., and Kurtz, S. S., Ind. Eng. Chem., vol. 34, p. 976, 1942.

Part 1.

Log₁₀ η (poises) at

Glass	500°C	600°C	700°C	800°C	900°C	1000°C	1100°C	1200°C	1300°C
1	13.76	9.85	7.03	5.42	4.37	3.52	2.93	2.47	2.09
2				5.84	4.79	3.99	3.41	2.93	2.50
3				5.38	4.29	3.52	2.94	2.48	2.08
4				5.74	4.48	3.60	2.96	2.47	2.03
5	15.20	12.35	9.82	7.87	6.48	5.52	4.77	4.16	3.67
6	13.82	10.85	8.55	6.81	5.68	4.88	4.20	3.65	3.22
7					1.55	1.24	1.00	.83	.69
8					2.17	1.81	1.55	1.33	1.16
9						4.20	3.54	3.02	
10						4.00	3.37	2.85	
11					4.71	3.85	3.24	2.74	
12						3.89	3.34	2.91	
13						4.06	3.47	3.01	2.67
14				6.02	5.79	3.97	3.35	2.89	2.31
15		9.49	7.30	5.70	4.48	3.70	3.08	2.60	2.40
10	• • • •	2.12	7.00	0.,0	1, 10	0.70	0.00	2.00	

Part 2. Composition (weight percentages)

Glass	SiO ₂	B_2O_3	Na ₂ O	K ₂ O	MgO	CaO	ZnO	PbO	Al ₂ O ₃
1	69.73		20.96	trace		9.05			.18*
2	72.6	1.43	16.0	.68	1.7	6.40			1.0 *
3	70.12		21.1	trace		8.77			.02
4	67.3	2.00	14.0			7.0	7.0		2.50
5	81.0	13.00	4.00						2.0
6	75.0	15.00	5.0					5.0	
7	65.0		7.5	7.5				20.0	
8	60.0		5.0	5.0				30.0	
9	73.97		15.30		3.57	5.69			.91*
10	74.35		15.30		.18	9.03			.85*
11	72.27		16.88		.35	8.79			1.72*
12	62.50		7.50	6.70				22.00	1.30*
13	75.0	10	10						5
14†	56	7.5	4	10					2.5
15	73.18		19.38		.21	6.26			1.19*

Part 3.—Commercial glass ‡

Log₁₀ η (poises) at

Glass designation	Manufa	acturer	700 °C	800 °C	900 °C	1000 °C	1100 °C	1200 °C	1300 °C	1400 °C
Code 0010-Potash soda lead. " 0120-Potash soda lead. "1710-Hard lime "7720-Borosilicate "7740-Pyrex Plate glass Window glass	" " Blue Ridge (Glass Corp.	6.51 6.62 9.82	5.35 5.41 10.45 6.80 7.87	4.52 4.57 7.95 5.66 6.48 5.00 5.06	3.86 3.89 6.28 4.82 5.52 4.03 4.14	3.36 3.36 4.93 4.16 4.77 3.41 3.41	2.91 2.91 3.92 3.65 4.16 2.87 2.90	2.53 2.53 3.22 3.20 3.67 2.46 2.48	2.22 2.22 2.62 2.86 2.07 2.14

¹²⁴ Babcock, C. L., Journ. Amer. Cer. Soc., vol. 17, p. 329, 1934; English Journ. Soc. Glass Techn., vol. 7, p. 25, 1923; vol. 8, p. 205, 1924; vol. 9, p. 83, 1925; vol. 10, p. 52, 1926; Lillie, H. R., Journ. Amer. Cer. Soc., vol. 14, p. 502, 1931; Hunter, Journ. Amer. Cer. Soc., vol. 17, p. 121, 1934; Lillie, H. R., unpublished data.
* R₂O₃. Glasses 11 and 12 contained 0.50 and 0.34 percent BaO.
† Glass 14 contains 20 percent BaO.
‡ Data by H. R. Lillie, Corning Glass Works Laboratory.

Variation of viscosity with pressure and temperature

According to the kinetic theory of gases the coefficient of viscosity $\eta=\frac{1}{3}(\rho c \overline{l}), \, \rho$ being the density, \overline{c} the average velocity of the molecules, l the average path. Since l varies inversely as the number of molecules per unit volume, ρl is a constant and η should be independent of the density and pressure of a gas (Maxwell's law). This has been found true for ordinary pressures; below $\frac{1}{60}$ atmosphere it may fail, and for certain gases it has been proved untrue for high pressures, e.g., CO_2 at 33° and above 50 atm. See Jeans, "Dynamical Theory of Gases."

If B is the amount of momentum transferred from a plane moving with velocity U and parallel to a stationary plane distant d, and s is a quantity (coefficient of slip) to allow for the slipping of the gas molecules over the plane, then $\eta = (B/U) (d+2s)$; s is of the same magnitude as l, probably between .7 (Timiriazeff) and .9 (Knudsen) of it; at low pressures d becomes negligible compared with 2s and the viscosity should vary inversely as the pressure.

 \overline{c} depends only on the temperature and the molecular weight. \overline{c} varies as the \sqrt{T} , but η has been found to increase much more rapidly. Meyer's formula, $\eta_t = \eta_0(1+at)$, where a is a constant and η_0 the viscosity at 0°C, is a convenient approximate relation. Sutherland's formula

$$\eta_i = \eta_0 \; \frac{273 + C}{T + C} \left(\frac{T}{273} \right)^{\frac{3}{2}}$$

is the most accurate formula in use, taking into account the effect of molecular forces. It holds for temperatures above the critical and for pressures following approximately Boyle's law. It may be thrown into the form $T = KT^{\frac{3}{2}}/\eta - C$ which is linear of T and $T^{\frac{3}{2}}/\eta$, with a slope equal to K and the ordinate intercept equal to K ones (see Jeans) shows that this formula does not represent helium at low temperatures with anything like the accuracy of the simpler formula $\eta = \eta_0 (T/273.1)^n = AT^n$.

The following table 125 contains the constant a of Meyers formula, C and K of Sutherland's formula, n and A of the exponential formula, and the temperature range for which the constants of the latter two are applicable.

Gas		perature ge °C	$a \times 10^3$	С	K×106	n	A×106
Air	23	to 750	2.90	117.9	14.82	.754	2,490
Ammonia	— 77	to 441		472	15.42	1.041	.274
Argon	-183		1.78	133	19.00	.766	2.782
Benzene		to 313		403	10.33	.974	.299
Carbon dioxide			3.48	233	15.52	.868	1.057
Carbon monoxide			2.69	102	13.5	.74	
Chloroform				454	15.9		
Ethylene			3.50	226	10.6		
Helium	-258			97.6	15.13	.653	4.894
Hydrogen				70.6	6.48	.678	1.860
Krypton				188			
Mercury	-218			996	63.00	1.082	.573
Methane	18			155	9.82	.770	1.360
Neon				252			
Nitrogen	-191		2.69	102	13.85	.702	3.213
Nitrous oxide			3.45	313	17.2	.93	
Oxygen	-191			110	16.49	.721	3.355
Water vapor		to 407		659	18.31	1.116	.170
Xenon				252			

¹²⁵ Dushman, S., Vacuum technique, p. 37, John Wiley & Sons, New York, 1949; Banerjea, G. B., and Plattanaik, B., Zeit. Physik, vol. 110, p. 676, 1938; Partington, J. R., Phys. Zeit., vol. 34, p. 289, 1933; Fisher, Phys. Rev., vol. 24, 1907.

Part 1.—Viscosity of vapors

The values of η given in the table are 10° times the coefficients of viscosity in cgs units.

Substance	Temp.	n	Substance	'emp. °C η
	18.0	78.		16.1 73.2
Acetone	66.8	135.	Editer interested	36.5 79.3
Alcohol, Methyl	78.4	142.	Ethyl chloride	0. 93.5
Alcohol, Ethyl				72.3 216.0
Alcohol, Propyl, norm	97.4	142.	Edity: Iodiae IIIIII	0.0 96.1
Alcohol, Isopropyl	82.8	162.	Ethylene	
Alcohol, Butyl, norm		143.	inciculty ittition =	70.0 489.
Alcohol, Isobutyl	108.4	144.		00.0 532.
Alcohol, Tert. butyl	82.9	160.	***********	30.0 582.
Ammonia	20.0	108.		60.0 627.
Benzene	0.	70.	" 3	90.0 671.
66	19.0	79.	Methane	20.0 120.1
44	100.0	118.	Methyl chloride	0.0 98.8
Carbon bisulfide	16.9	92.4		15.0 105.2
Carbon monoxide	20.0	184.0		02.0 213.9
	0.0	95.9		44.0 232.
Chloroform	17.4	102.9	methy: lodide illimite.	0.0 90.4
"		189.0	***	16.7 96.7
	61.2			00.0 132.0
Ether	0.0	68.9	" " 1	00.0 152.0

Part 2.—Viscosity of gases and vapors 126

(Temperature variation)

					Viscosity	in millip	oises		
Temp.	Air	Argon	Carbon dioxide	Chlo- rine	Helium	Hydro- gen	Nitro- gen	Oxygen	Xenon
200	.053					.033			.222 (15°C)
-150	.081					.047			•
-100	.111		.087			.061			Nitric oxide
— 50	.139		.112			.073			.179 (0°C)
0	.175		.135			.083			
50	.193	.241	.159	.147	.207	.093	.189	.217	Nitrous oxide
100	.216	.269	.181	.167	.228	.102	.207	.241	.138 (0°C)
150	.237	.297	.203	.189	.247	.111	.226	.264	
200	.256	.321	.225	.208	.267	.120	.245	.287	Krypton
250	.275	.346	.245	.228	.285	.129	.263	.309	.246 (15°C)
300	.293	.367	.262		.305	.137	.280	.330	
350	.310	.389	.280		.323	.145	.296	.349	Carbon monoxi
400	.327	.410	.299		.341	.153	.311	.368	.163 (0°C)
500	.357	.450	.331		.375	.167	.341	.403	
600	.384	.488	.362		.408	.181	.367	.435	Ammonia
700	.411	.521	.391		.438	.195	.391	.466	.096 (0°C)
800	.437	.554	.417		.467	.208	.414	.494	
900	.463		.421						
1000	.499		.465		• • •			• • •	
1100	.511								

¹²⁰ Based on data from Landolt and Börnstein, 3d supplementary vol., pt. 1, p. 184, 1935.

TABLE 334.-PRESSURE EFFECT ON VISCOSITY OF PURE LIQUIDS 127

This table gives \log_{10} of the relative viscosity as a function of pressure and density, the viscosity at 30°C and atmospheric pressure taken as unity. For each compound first line $\log \eta/\eta_0$ at 30°C, second line at 75°C, third line η_{30}/η_{75} .

Scond line at 75°C, dired line 450, 415										
				Pr	essure k	g/cm ²				
Substance	1	500	1000	2000	4000	6000	8000	10000	12000	η_{30}
Methy1	000.	.094	.167	.286	.471	.616	.750	.874	.998	00520
alcohol	9.769	9.862	9.933	.043	.208	.334	.448	.555	.655	.00520
7.4	1.702	1.706	1.714	1.750	1.832	1.914	2.004 1.023	2.084 1.211	2.203 1.390	
Ethyl alcohol	.000	.107 9.772	.200 9.873	.363	.289	.473	.634	.778	.919	.01003
alcohol	9.657 2.203	2.163	2.123	2.080	2.128	2.270	2.449	2.710	2.958	.01000
n-Propyl	2 000	.151	.283	.494	.836	1.131	1.402	1.667	1.915	
n-Propyl alcohol	000 9.598	9.754	9,880	.074	.368	.610	.827	1.033	1.223	.01779
alcohor	2.523	2.495	2.529	2.630	.368 2.938	3.319	3.758	4.305	4.920	
n-Butvl	000.	.175	.321	.554	.934	1.289	1.609	1.912	2.208	
alcohol	9.548	9.724	9.867	.089	.312	.690	.941	1.172	1.396	.02237
	2.845	2.838	2.858	2.932	3.343	3.991	4.679	5.521 2.164	6.518	
n-Amyl	.000	.188	.341	.607	1.060	1.448	1.811	1.313	2.495 1.562	
alcohol	9.540 2.884	9.723 2.917	9.871 2.951	.105 3.177	.466 3.926	.772 4.742	1.049 5.781	7.096	8.570	
	(.000	.181	.315	.524	.847	1.112	1.360	1.615	1.846	
n-Pentane	9.811	.014	.163	.380	.676	.908	1.119	1.313	1.493	.00220
	1.545	1.469	1.419	1.393	1.483	1.600	1.742	2.004	2.254	
	.000	.184	.332	.561	.914	1.224	1.514	1.803		
n-Hexane	9.803	.028	.171	.379	.701	.961	1.198	1.426	1.646	.00296
	1.574	1.432	1.449	1.521	1.633	1.832	2.070	2.382		
Ethyl	.000	.134	.242	.405	.649	.837	1.008	1.172	1.323	
chloride	9.850	.017	.131	.285	.514	.683	.834	.977	1.111	
	1.413	1.309	1.291	1.318	1.365	1.426	1.493	1.567 1.223	1.633	
Ethyl	000.	.121	.222	.387	.631 .472	.854 .653	1.043	.978	1.123	.00368
bromide	9.806 1.567	9.959 1.452	.072 1.413	.235	1.442	1.589	1.687	1.758	1.892	.00500
Extent	(1.307	.115	.218	.385	.656	.888	1.108	1.330	1.549	
Ethyl iodide	9.837	9.954	.057	.227	.467	.672	.854	1.030	1.200	.00540
loulde	1.455	1.449	1.445	1.439	1.545	1.644	1.795	1.995	2.234	
	.000	.135	.226	.373	.605	.804	.987	1.160		
Acetone	9.895	.017	.113	.245	.445	.610	.762	.898	1.031	.00285
	1.274	1.312	1.297	1.343	1.445	1.563	1.679	1.828		
Glycerine	.000	.134	.260	.497	.936	1.346	1.741	2.133	(20	3.8
diyeerine	8.810	8.920	9.023	9.204	9.529	9.818	.094	.369	.628	3.8
	15.49	16.37	17.26	19.63	25.53	33.73	44.36	58.08		
CCI	.000	.190	.351	.493	kg/cn	n²				
CC1	9.760	9.949	.100	.349	.542					.00845
	1.738	1.742	1.782	.017	.0 16					
CII	000.	.110	.211	.386	.660	.884				
Chloroform	9.858	9.985	.094	.251	.480	.691	.914	1.141		.00519
	1.387	1.334	1.309	1.365	1.514	1.560			4.400	
CS ₂	.000	.090	.160	.307	.509	.674	.840	1.010	1.189	00.252
3	9.875	9.972	.051	.180	.372	.527	.671	.808	.946 1.750	.00352
	1.334	1.312	1.285	1.340	1.371	1.403	1.476 1.261	1.592 1.469	1.670	
Ether	000 9.878	.189	.324 .149	.514 .344	.792 .601	1.042	.986	1.155	1.311	.00212
×	1.324	1.462	1.496	1.479	1.552	1.722	1.884	2.061	2.286	.00010
	.000	.173	.347	1,472	1.552	1., 22	1.00			
Benzene	9.765	9.938	.081	.308	.498), ,	2			.00566
*) " "	,,,,,,			(3000)	$\left. \left. \right\} $ kg/cn	n-			.00300
	1.718	1.718	1.845							
Toluene	.000 9.796	.145	.274	.497	.897	1.285	1.699	2.177	1.022	00522
	9.796	9.939	.065	.267	.597	.896	1.186	1.504	1.832	.00523
	1.600	1.607	1.618	1.698	1.995	2.449	3.258	4.710		
Eugenol	.000	.288	.541	1.081	(3000)	3.007	lear/am	22		
Eugenol	9.429	9.616	9.810	1.652	.805	(5000) 1.520	kg/cn 2.343	.1		
	3.724	4.699			29.38	1.550	2.040			
	0.727	1.077	0.000	0.070						

¹²⁷ Bridgman, P. W., Proc. Acad. Arts and Sci., vol. 61, p. 59, 1926.

The SAE viscosity numbers constitute a classification of crankcase lubricating oils in terms of viscosity only. Other facts of oil quality or character are not considered.

Part 1.--Crankcase oil classification

SAE recommended practice

		Viscosity range, Sa	ybolt univ., sec	2		
SAE viscosity		At 130° F		At 210° F		
number	Min.	Max.	Min.	Max		
10 20	90 120	Less than 120 " " 185	• • •			
30	185	" " 255				
40 50	255	• • • • • • • • • • • • • • • • • • • •	80	Less than 80 " 105		
60	• • •		105	" " 125		
70	• • •	• • • • • • • • • • • • •	125	" " 150		

Part 2.—Automotive Manufacturers' viscosity classification

SAE general information

7/:	Viscosity range at 0°F, Saybolt univ., sec				
Viscosity number	Min.	Max.			
10W	6,000	12,000			
20W	12,000	48,000			

¹²⁸ SAE Handbook, 1949 ed., p. 580, Soc. Automot. Eng., New York.

TABLE 336.—EFFECT OF PRESSURE UPON VISCOSITY 120

	Temper-				lative visco		
Substance	ature °C	at 1 atm centipoises	1	1000	4000	8000	12,000
i-Pentane	30	.198	1.0	2.208	7.834	26.98	88.51
	75		.662	1.560	5.188	15.10	38.55
Acetone		.285	1.0	1.683	4.027	9.705	
	75		.785	1.297	2.786	5.781	10.74
CS ₂		.352	1.0	1.445	3.228	6.918	15.45
	75		.750	1.125	2.355	4.688	8.83
Sulfuric ether	30	.212	1.0	2.109	6.194	18.24	46.77
	75		.755	1.409	3.990	9.683	20.46
Petroleum ether			1.0	1.995	8.51	38.9	151.4
	80				3.63	11.5	30.9
Kerosene	30		1.0	2.88	5.13		
	80				8.13	75.9	631
Water	0	1.792	1.0	.921	1.111	freezes	
	10.3	1.297	.779	.743	.842	1.152	
	30	.801	.488	.514	.658	.923	1.206
	75	.380	.222	.239	.302	.445	
	100	.284					
Mercury		1.516	1.0	1.023	1.097	1.202	1.324
	75	1.340	.884	.883	.880	.877	.876

¹²⁰ Bridgman, P. W., The physics of high pressure. Macmillan, New York, 1931.

With very few exceptions present-day lubricants are petroleum products or blends of petroleum products with various compounding or addition agents such as fatty oils, diversified types of soap, and in rare instances solid materials such as graphite. Addition agents are more costly than petroleum derivatives; hence they are used as sparingly as possible. The addition agents are generally employed when conditions of use require greater "oiliness" (higher film strength) than is attainable with unblended petroleum oils. The latter usually deteriorate more slowly in service than blended products, which is an advantage supplementing that of low relative cost. There are a few jobs of lubrication for which fatty oils have never been entirely supplanted, as for example the use of porpoise-jaw oil in fine watches.

Lubricants for Cutting Tools 130

Various types of oils have been used as lubricants for cutting tools. These are fatty oils, kerosene, turpentine, mineral oils and various blends of these oils. Sulfur has been combined with some of these oils to increase the film strength. Such mixtures and blends are furnished by the various manufacturers under their trade names such as Pennex, Dortan, Fanox, and Kutwell by the Standard Oil Co. of New Jersey.

Severity	Type of operation	Ferrous (more than 70%)	Ferrous (50-65%)	Ferrous (less than 40%)	Nonferrous (more than 100%)	Nonferrous (less than 100%)
1 (greatest) 3 2 3 4 4	Broaching, internal Tapping, plain Threading, pipe Threading, plain Gear shaving Gear cutting	Em Sulf Sulf Sulf Sulf Sulf L Sulf ML Em	Sulf Em Sulf Sulf ML Sulf Sulf L Sulf	Sulf Em Sulf Sulf Sulf Sulf Sulf L Sulf ML	MO Em Em Dry Em Sulf	Sulf ML Sulf ML Sulf Sulf
5 7 8	Drilling, deep Boring, multiple head High-speed, light- feed, automatic	Em ML Sulf Em	Sulf Em Sulf Em	Sulf Sulf Em	MO ML Em K Dry Em	Sulf ML Sulf Em
9	screw machines Turning; single- point tool, form tools	Sulf Em ML Em Sulf ML	Sulf Em ML Em Sulf ML	Sulf ML Em Em Sulf ML	Em Dry ML	Sulf Em Sulf

¹³⁰ Metals Handbook, 1948 ed., p. 69, American Society for Metals, Cleveland.

Symbols: Dry = no cutting fluid, Em = soluble or emulsifiable oils and compounds, K = kerosene, L = lard oil, ML = mineral-lard oils, MO = mineral oils, Sulf = sulfurized oils.

The required force F necessary to just move an object along a horizontal plane =fN where N is the normal pressure on the plane and f the "coefficient of friction." The angle of repose Φ (tan $\Phi = F/N$) is the angle at which the plane must be tilted before the object will move from its own weight. The following table of coefficients was compiled by Rankine from the results of General Morin and other authorities and is sufficient for ordinary purposes.

M			
Material Wood on wood days	of fo	1/f	φ
Wood on wood, dry	.2550	4.00-2.00	14.0–26.5
Motels are sale day	.20	5.00	11.5
Metals on oak, dry	.5060	2.00-1.67	26.5–31.0
" " wet	.24–.26	4.17–3.85	13.5–14.5
SU4DY	.20	5.00	11.5
" "elm, dry	.20–.25	5.00-4.00	11.5–14.0
Hemp on oak, dry	.53	1.89	28.0
" " wet	.33	3.00	18.5
Leather on oak	.2738	3.70–2.86	15.0-19.5
" metals, dry	.56	1.79	29.5
" " wet	.36	2.78	20.0
" " greasy	.23 .15	4.35	13.0
" " oily	.1520	6.67 6.67–5.00	8.5
Metals on metals, dry		3.33	8.5–11.5
" " wet	.3 .07–.08	14.3-12.50	16.5 4.0-4.5
" " " continually greased	.07=.08	20.00	3.0
" continually greased " best results	.03–.036	33.3-27.6	1.75-2.0
	.20	5.00	11.5
Steel on agate, dry	.107	9.35	6.1
Iron on stone	.30–.70	3.33–1.43	16.7–35.0
Wood on stone	About .40	2.50	22.0
Masonry on brick work, dry	.6070	1.67-1.43	33.0–35.0
" " damp mortar	.74	1.35	36.5
" dry clay	.51	1.96	27.0
" " moist clay	.33	3.00	18.25
Earth on earth	.25–1.00	4.00-1.00	14.0-45.0
" " dry sand, clay, and mixed earth	.38–.75	2.63-1.33	21.0-37.0
" " damp clay	1.00	1.00	45.0
" " wet clay	.31	3.23	17.0
" " shingle and gravel	.81–1.11	1.239	39.0-48.0

TABLE 339.—DYNAMIC PRESSURE AT DIFFERENT AIR SPEEDS

The force on a body moving through a fluid may be expressed in the form

$$F = C_F q A$$

where F is the force, C_F a nondimensional force coefficient, q the dynamic pressure $(q = \frac{1}{2}\rho V^2$, definition), and A an area. In general, the value of the coefficient C_F is dependent on several nondimensional parameters. When the medium is air, C_F depends on the Reynolds number $\frac{Vl_\rho}{\eta}$, the Mach number $\frac{U}{a}$, the body shape and attitude to the relative wind, the relative surface roughness, and the degree of turbulence of the air stream. The quantity ρ denotes the fluid density, V the velocity of the body relative to the fluid, η the coefficient of fluid viscosity, I a linear dimension of the body fixing the scale, and a the speed of sound in the ambient fluid.

speed of sound in the ambient fluid.

The table gives values of dynamic pressure q for a wide range of speeds. In conjunction with the values of the force coefficient in subsequent tables, this table can be used for computation of lift, drag, and moment under specified conditions. The values in the table are computed for standard air density: dry air, normal CO₂ content, 15°C, one atmosphere. Standard air density is 0.12497 metric slugs or 0.002378 slugs For standard gravity, the weight of one metric slug (MKS) is 9.807 kilograms and the weight of one slug is 32.174 pounds. For other densities the values must be multiplied by the ratio of the actual density to the standard density.

(continued)

^{*} Tables 339 to 346 and figures 6 to 15 were prepared under the direction of C. H. Helms, assistant director of aeronautical research, National Advisory Committee for Aeronautics.

TABLE 339,-DYNAMIC PRESSURE AT DIFFERENT AIR SPEEDS (concluded)

Dynamic pressure, q kg/m² 1206 2024 2024 2499 3905 3624 7654 7654 7654 12653 115651	Dynamic pressure, q 1b/ft² 428.0 502.4 502.4 582.6 668.8 761.0 859.0 963.1 1073 1189 2675
Air speed m/sec 170 190 2200 2200 3300 350 450 450 500 500 500 500 500 500 500 5	Air speed ft/sec 600 650 700 750 850 850 950 1500 1500
Dynamic pressure, q kg/m² 451.4 563.9 624.8 756.1 899.8 1056.0 1225 1406	Dynamic pressure, q 1b/ft² 57.55 62.90 68.49 74.31 107.01 145.6 190.2 297.2 297.2 359.7
Air speed m/sec 85 90 95 110 110 120 130 150 160 160 160 160 160 160 160 160 160 16	Air Speed ft/sec 220 230 240 240 250 350 400 450 550 550
Dynamic pressure, q kfm² 76,54 99.98 126.5 1186.2 189.0 224.9 264.0 306.2 351.5 399.9	Dynamic pressure, q 15.12 20.09 23.30 26.75 30.44 34.36 38.52 47.56 52.43
Air speed m/sec 33 50 55 55 55 55 55 55 55 55 55 55 55 55	Air speed ft/sec 120 130 140 150 160 170 180 190 200 210
Dynamic pressure, q k.g/m² 8.998 12.25 16.00 20.24 24.99 30.24 35.99 42.24 48.99 56.24	Dynamic pressure, q 1,0701 1,002 2,972 4,280 5,826 5,826 7,610 9,631 11,890 14,39
Air speed m/sec 112 116 12 22 22 22 28 26 28 26 26 26 26 26 26 26 26 26 26 26 26 26	Air speed ft/sec 20 30 40 40 50 50 50 50 90 110 110
Dynamic pressure, q kgm² (6625 .2499 .5624 .9988 1.562 2.249 3.062 3.999 5.061 6.248	Dynamic pressure, q 1b/ft² .0012 .0048 .0107 .0190 .0297 .0428 .0583 .0761 .0963 .1189
Air speed m/sec 1 2 2 3 4 4 4 5 5 5 6 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9	Air speed ft/sec 1/2 2/2 3/3 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4

TABLE 340.—FORCES ON THIN FLAT PLATES AT ANGLES TO THE WIND (FIG. 6)

For plates at angles to the wind (angle of attack, α) the force is usually resolved into components at right angles and parallel to the direction of the relative wind. The components, termed the lift and drag, respectively, are expressed in the form of coefficients, the forces being divided by the product of the dynamic pressure and the area of the plate (not the projected area on a plane normal to the wind). The ratio of the distance between the leading edge and the center of pressure to the chord length is called the center of pressure coefficient, CP. The center of pressure is defined as the intersection of the line of action of the resultant force, F, with the plate. The forces on a plate vary with "aspect ratio," a term defined for a rectangular plate as the ratio of the span to the chord length.

The lift (C_L) , drag (C_D) , and center of pressure coefficients (CP) are given as functions

of angle of attack a for thin plates of aspect ratio 1, 3, and 6.

Fig. 6.—The lift coefficient (C_L) , the drag coefficient (C_D) , and the center of pressure (CP) for thin plates for aspect ratios 1, 3, and 6, as a function of the angle α with the wind. (See small figure in upper center.) $D = C_D Aq$, $L = C_L Aq$, $X = CP \times c$.

(continued)

TABLE 340.—FORCES ON THIN FLAT PLATES AT ANGLES TO THE WIND (FIG. 6) (concluded)

					Con	ditions	ofex	perime	nts			
	Aspect ratio 1			Aspect ratio 3			Aspect ratio 6					
Authority 131	1	2	3	4	1	3	5	1	3	6	6a	7
Span, cm	25	30.5	12	12	45	7.6	36	90	.72	30.5		45.7 to 91.4
Chord, cm	25	30.5	12 .17	12	15	2.5 .025	.17	15 .3	.17	5.08	5.08	7.6 to 15.2
Tunnel diam., cm	150	.52	200	120	150	60	200	150	200	137	137	152,4
Reynolds No. \times 10 ⁻³ .	210	382	55	42	126	10	55	126	55	64	64	153

131 Authorities: 1, Eiffel G., Resistance de l'air et l'aviation, 2d ed., p. 231, Dunod et Pinat, Paris. 2, Dines, Proc. Roy. Soc. London, A, Math. and Phys. Sci., vol. 48, p. 233, 1890. 3, Fóppl, Jahrb. Motorfulftschiff-Studiengesellsch., vol. 4, p. 51, 1910. 4, Riabouchinski, Bull. Inst. Aerodynam. de Koutchino, Petrograd, vol. 4, p. 113, 1912. 5, Stanton, T. E., Air resistance of plane surfaces, Minutes of Proc. Inst. Civil Eng., vol. 156, p. 78, 1903. 6 and 6a, National Bureau of Standards, private communication, 7, Knight, Montgomery, and Wenzinger, Carl J., Wind tunnel tests on a series of wing models through a large angle of attack range, Pt. 1, Force tests. NACA Rep. No. 317, 1929.

TABLE 340A.—VALUES OF DRAG COEFFICIENT $C_{\it D}$ FOR FLAT PLATES OF DIFFERENT ASPECT RATIO NORMAL TO THE WIND ($\alpha = 90^{\circ}$)

Values of CD for circular disks are practically the same as for a square plate.

Aspect ratio 1 2 3			
C_D 1.12 1.18 1.22			

TABLE 340B.—FORCES ON NONROTATING CIRCULAR CYLINDERS (FIG. 7) 1392

The drag coefficient C_D for cylinders whose axes are perpendicular to the relative wind, the area A being taken as the product of the length L and diameter d, depends to a marked degree on the aspect ratio $\frac{L}{d}$, the Reynolds number R, and the Mach number M. The figure shows the variation of the drag coefficient C_D with R for cylinders of infinite aspect ratio at very low Mach numbers. The drag coefficient C_D varies with Mach number in a manner quite similar to that of the sphere on Table 340C (figures 8 and 10).

Fig. 7.—The drag coefficient C_D as a function of the Reynolds number R at low Mach numbers for cylinders of infinite aspect ratios with axes perpendicular to the wind.

Drag = $C_D A q$, Reynolds number, $R = \frac{V d\rho}{\eta}$, Mach number, $M = \frac{V}{a}$. For q see Table 339, V = air speed, $\rho =$ air density, $\eta =$ coefficient of air viscosity.

¹⁹² Wieselberger, C., New data on the laws of fluid resistance. NACA TN No. 84, 1922. Relf, E. F., Discussion of the results of measurements of the resistance of wires with some additional tests on the resistance of wires of small diameter. R. & M. No. 102, British ACA, March 1914. Wieselsberger, C., Further information on the laws of fluid resistance. NACA TN No. 121, December 1922.

TABLE 340B.—FORCES ON NONROTATING CIRCULAR CYLINDERS (FIG. 7) (concluded)

The variation of C_D with aspect ratio for Reynolds number of 80,000 is as follows.

Aspect ratio $\frac{L}{d}$	1	2	3	5	10	20	40	∞
C_D	.63	.69	.75	.75	.83	.92	1.00	1.20

If the axis of the cylinder is inclined to the wind direction, the force remains approximately at right angles to the axis of the cylinder, its magnitude falling off approximately as the square of the sine of the angle of the axis to the wind.

TABLE 340C,-FORCES ON SPHERES (FIGS. 8-10)133

For spheres, the linear dimension l is taken as the diameter of the sphere d and the area A as $\frac{\pi d^2}{4}$. For values of Reynolds number between 80,000 and 400,000 at low values of

Mach number the value of the drag coefficient C_D depends in large measure on the turbulence of the air stream. As the Reynolds number is increased in this range the drag coefficient of the sphere and the pressure coefficient at the rear of the sphere decrease rapidly. The pressure coefficient is equal to the ratio of the difference between free stream stagnation pressure and local static pressure to the dynamic pressure q. The Reynolds number at which the pressure coefficient at the rear of the sphere is 1.22 is defined as the critical Reynolds number, R_{cr} . This value of pressure coefficient corresponds very nearly to $C_D = .3$. The value of R_{cr} represented by point d in the figure is considered to be typical of turbulence-free air.

Fig. 8.—The drag coefficient C_D on spheres as a function of the Reynolds number.

Drag,
$$D = C_D A q R = \frac{V d\rho}{\eta}$$

Sphere tests in wind tunnels indicate different values of R_{er} for different sphere sizes.

Correlation of the data may be obtained if values of $\frac{\sqrt{u^2}}{V} \left(\frac{d}{L}\right)^{\frac{1}{6}} = (K)$ are plotted as a

function of $R_{\rm cr}$. The value $\sqrt{u^2}$ is the root-mean-square of the fluctuation velocity in the direction of the relative wind, I' the velocity of the relative wind, d the sphere diameter, and L is the scale of the turbulence as defined in the reference. The figure shows a correlation (K) obtained with two sizes of spheres and several values of L.

¹³³ Allen, H. S., The motion of a sphere in a viscous fluid, Phil. Mag., vol. 50, p. 323, 1900. Wieselberger, C., Further information on the laws of fluid resistance, NACA TN No. 121, December 1922. Millikan, C. B., and Klein, A. L., The effect of turbulence, Aircraft Eng., vol. 5, p. 169, 1933. Platt, Robert C., Turbulence factors of NACA wind tunnels as determined by sphere tests, NACA Rep. No. 558, 1936. Dryden, Hugh L., Schubauer, G. B., Mock, W. C., Jr., and Skramstad, H. K., Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres, NACA Rep. No. 581, 1937. Ferri, Antonio, The influence of Reynolds numbers at high Mach numbers, Atti di Guidonia, n. 67/69, Mar. 10, 1942.

TABLE 340C .- FORCES ON SPHERES (FIGS. 8-10) (concluded)

Fig. 9.—The value of $\frac{\sqrt{\bar{u}^2}}{V} \left(\frac{d}{L}\right)^{\frac{1}{6}} = K$ plotted as a function of the critical Reynolds number, R_{cr} .

At Mach numbers greater than about 0.3 the drag coefficient C_D depends on the values of both Reynolds number and Mach number.

Fig. 10.—The drag coefficient for a sphere as a function of the Reynolds number for several Mach numbers.

SMITHSONIAN PHYSICAL TABLES

The values of the drag coefficients in this table are based on the area of the projection of the body on a plane normal to the wind direction. Where this projection is a circle, the diameter is used as the linear dimension l in the Reynolds number. Where the projection is rectangular, the shortest side of the rectangle is taken as l.

Body	Съ	Reynolds number
Streamline bodies of revolution	.0506	3.000,000
Rectangular prism $1 \times 1 \times 5$ normal to 1×5 face	1.56	180,000
Rectangular prism $1 \times 1 \times 5$, long axis perpendicular to	1.00	200,000
the relative wind and 1×5 face at 45°	.92	254,000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Γ about ∃
Automobile	.78	300,000
Automobile	., 0	[about]
Cone, angle 60°, point to wind, solid	.51	270,000
Cone, angle 30°, point to wind, solid	.34	270.000
Hemispherical cup, open back	.41	100.000
Hemispherical cup, open front	1.40	100,000
Sphero-conic body, cone 20° point forward	.16	135.000
Sphero-conic body, cone 20° point to rear	.09	135,000
Cylinder 120 cm long, spherical ends with	.09	133,000
axis parallel to the relative wind	.19	100.000

TABLE 341A.—SKIN FRICTION ON FLAT PLATES (FIGS. 11, 12) 184

If the flat plate is in a uniform stream of fluid and the flow is parallel to the plate the skin friction coefficient, C_t , is dependent mainly on the Reynolds number, $R = \frac{VL\rho}{r}$. The skin

friction coefficient $C_t = \frac{D_t}{qL}$ where D_t is the friction drag per unit width of one side of the plate, q the dynamic pressure (see Table 339), and L the length from the leading edge of the plate.

For laminar flow

$$C_t = \frac{1.328}{\sqrt{R}}$$
 (Blasius)

For turbulent flow

$$C_I = \frac{0.455}{(\log_{10} R)^{2.68}}$$
 (Schlichting)

The Reynolds number for transition from laminar to turbulent flow depends on the roughness of the plate and the turbulence of the airstream. The figure shows the variation of the skin friction (C_f) with R for laminar and tur-

bulent flow.

(continued)

¹⁸⁴ Tetervin, Neal, A method for the rapid estimation of turbulent boundary-layer thickness for calculating profile drag, NACA ACR No. L4G14, July 1944

Fig. 11.—A log-log plot of the skin-friction coefficient C_I on a flat plate as a function of the Reynolds number for laminar and turbulent flow.

The local skin-friction coefficient $\frac{\tau_0}{2q}$ may be approximated by a power function of the Reynolds number based on the momentum thickness, $R_{\Theta} = \frac{V \bigoplus \rho}{\eta}$. When the boundary layer is laminar

$$\frac{\tau_0}{2q} = \frac{0.2205}{R_{\Theta}}$$

When the boundary layer is turbulent

$$\frac{\tau_0}{2q} = \frac{1}{\left[2.5 \log_{\bullet} \frac{R_{\Theta}}{2.5(1-5\sqrt{\tau_0/2q})} + 5.5\right]^2},$$

The momentum thickness

$$\theta = \int_{0}^{\delta} \frac{u}{V} \left(1 - \frac{u}{V} \right) dy,$$

where u is the local velocity inside the boundary layer, V the local velocity outside the boundary layer, and δ the boundary-layer thickness. The local skin-friction coefficient is plotted against Reynolds number for the case of a turbulent boundary layer.

(continued)

TABLE 341A,-SKIN FRICTION ON FLAT PLATES (FIGS. 11, 12) (concluded)

Fig. 12.—The local skin-friction coefficient on a flat plate plotted against the Reynolds number for a turbulent boundary layer.

TABLE 342.—STANDARD ATMOSPHERE 135

Standard atmospheric values are given up to altitudes of 65,000 feet, and quantities that have been found to be of use in the interpretation of airspeed and related factors are included (Table 343). These quantities are the pressure p in pounds per square foot, the pressure p in inches of water, the speed of sound a, the coefficient of viscosity η , and the kinematic viscosity ν . The values for the coefficient of viscosity η and the kinematic viscosity v are not standard values since a standardization of air viscosity has not been agreed upon as yet. The values listed for η and ν are believed to be sufficiently accurate, however, to be useful in calculations requiring viscosity of air. The coefficient of viscosity η was computed from the formula

 $\eta = \frac{2.318}{10^8} \frac{T^{8/2}}{T + 216} \cdot$

The kinematic viscosity of air ν was obtained from the definition $\nu = \frac{\eta}{\rho}$. The quantity $1/\sqrt{\sigma}$ is given to facilitate the computation of the true airspeed V from the equivalent airspeed V_{\bullet} .

 $V = \frac{1}{\sqrt{s}} V_{\bullet}$

The speed of sound in miles per hour is computed from $a = 33.42 \,\mathrm{VT}$ where T is the temperature in degrees Fahrenheit absolute. A value of $\gamma = 1.4$ was assumed to hold throughout the temperature range.

The values of the standard atmosphere are based upon the following values:

Sea-level pressure $\rho_0 = 29.921$ in Hg $= 407.1 \text{ in H}_2\text{O}$ $= 2116.2 \, lb/ft^2$

Sea-level temperature $t_0 = 59^{\circ}$ F

Sea-level absolute temperature $T_0 = 518.4$ °F abs

Sea-level density $\rho_0 = 0.002378 \text{ slug/ft}^3$ Gravity $g = 32.1740 \text{ ft/sec}^2$

Temperature gradient $\frac{dT}{dh} = 0.00356617^{\circ} \text{F/ft}$

The altitude of the lower limit of the isothermal atmosphere = 35,332 it Specific weight of mercury at $32^{\circ}F = 848.7149 \text{ lb/ft}^{\circ}$ Specific weight of water at $59^{\circ}F = 62.3724 \text{ lb/ft}^{\circ}$

¹⁸⁵ Aiken, William S., Jr., Standard nomenclature for airspeeds with tables and charts for use in calculation of airspeed, NACA Rep. No. 837, 1947. Warfield, Calvin N., Tentative tables for the properties of the upper atmosphere, NACA TN No. 1200, January 1947.

Up to the lower limit of the isothermal atmosphere (-67°F corresponding to 35,332 ft) the temperature is assumed to decrease linearly according to the equation

$$T = T_0 - \frac{dT}{dh} h$$

Further, the atmosphere is assumed to be a dry perfect gas that obeys the laws of Charles and Boyle, so that the mass density corresponding to the pressure and temperature is

$$\rho = \rho_0 \, \frac{p}{p_0} \, \frac{T_0}{T}$$

The pressure and altitude are related by

$$h = \frac{p_0}{\rho_0 g} \frac{T_m}{T_0} \log_e \frac{p_0}{p}$$

The harmonic mean temperature T_m is given by

$$T_{\rm m} = \frac{\sum \Delta h}{\sum \frac{\Delta h}{T_{\rm av}}} = \frac{\frac{\Delta h_1 + \Delta h_2 + \cdots}{\Delta h_1 + \frac{\Delta h_2}{T_{\rm av_2}} + \cdots}}{\frac{\Delta h_1}{T_{\rm av_1}} + \frac{\Delta h_2}{T_{\rm av_2}} + \cdots}$$

where T_{av1} , T_{av2} , ... are the average temperatures for the altitude increments Δh_1 , Δh_2 , ... The NACA Special Subcommittee on the Upper Atmosphere, at a meeting on June 24, 1946, resolved that a tentative extension of the standard atmosphere from 65,000 to 100,000 feet be based upon a constant composition of the atmosphere and an isothermal temperature which are the same as standard conditions at 65,000 feet. This tentative extended isothermal region (Table 344) ends at 32 kilometers (approximately 105,000 ft). It is possible that as results of higher altitude temperature soundings become available and the standard atmosphere is extended to very high altitudes the present recommendations may be modified.

The Subcommittee also recommended that the values of temperature given in the following table be considered as maximum and minimum values occurring for the given altitudes

with the variations between the specified points to be linear:

Altitude	Temperature (°C abs)					
(km)	Minimum	Maximum				
20	180	250				
25		250				
45	200	380				

A tentative extension of the standard atmosphere computed from the equations using the recommended isothermal temperature and constant gravity altitudes from 65,000 to 100,000 feet are included in the table. Calculations have been made ¹⁸⁵ by assuming that the acceleration of gravity varies inversely as the square of the distance from the center of the earth. Up to 100,000 feet this assumption does not greatly affect the tabulated values.

					Density		Tem-	Speed	Coefficient of viscosity,	V:
Alti- tude, h		ressure, p		Density	ratio $\sigma = \frac{\rho}{\rho}$	$\frac{1}{\sqrt{\sigma}}$	per- ature, T	of sound,	η slugs	Kinematic viscosity,
ft 0	1b/ft ² 2116	inH ₂ O 407.1	inHg 29.92	slugs/ft ⁸ .002378	1.0000	1.000	°F abs 518.4	mi/hr 760.9		ft^2/sec $10^{-7} 1.566 \times 10^{-4}$
2,000 4,000 6,000	1968 1828 1696	351.6	27.82 25.84 23.98	.002242 .002112 .001988	.9428 .8881 .8358	1.030 1.061 1.094	511.2 504.1 497.0	755.7 750.4 745.1	3.685 3.644 3.602	1.644 1.725 1.812
8,000	1572		22.22	.001988	.7859	1.128	489.9	739.7	3.561	1.905
10,000 12,000	1455 1346	279.9	20.58 19.03	.001756	.7384	1.164 1.201	482.7 475.6	734.3 728.8	3.519 3.476	2.004 2.109
14,000	1243		17.57	.001545	.6499	1.240	468.5	723.4	3.434	2.223
16,000 18,000	1146 1056	203.2	16.21 14.94	.001448 .001355	.6088 .5698	1.282 1.325	461.3 454.2	718.7 712.2	3.391 3.348	2.342 2.471
20,000 22,000	972.1 893.3	187.0 171.9	13.75 12.63	.001267 .001183	.5327 .4974	1.370 1.418	447.1 439.9	706.6 701.1	3.305 3.261	2.608 2.756
24,000 26,000	819.8 751.2	157.7 144.5	11.59 10.62	.001103	.4640 .4323	1.468 1.521	432.8 425.7	695.3 689.5	3.217 3.173	2.916 3.086
28,000 30,000	687.4 628.0	132.2 120.8	9.720 8.880	.001028	.4023	1.577 1.635	418.5 411.4	683.7 677.9	3.128 3.083	3.268 3.468
32,000	572.9	110.2	8.101	.000826	.3472	1.697	404.3	672.0	3.038	3.678
34,000 35,332	521.7 489.8	100.4 94.24	7.377 6.926	.000765 .000727	.3218 .3058	1.763 1.808	397.2 392.4	666.0 662.0	2.992 2.962	3.911 4.073
36,000	474.4	91.31	6.711	.000705	.2963	1.837	392.4	662.0	2.962	4.204
38,000 40,000	431.1 391.9	82.97 75.44	6.098 5.544	.000640	.2692	1.927 2.021	392.4 392.4	662.0	2.962 2.962	4.625 5.089
42,000 44,000	356.2 323.7	68.56 62.29	5.038 4.578	.000529 .000480	.2225 .2021	2.120 2.224	392.4 392.4	662.0 662.0	2.962 2.962	5.599 6.161
46,000 48,000	294.2 267.4	56.63 51.46	4.162 3.782	.000437	.1838 .1670	2.333 2.447	392.4 392.4	662.0 662.0	2.962 2.962	6.778 7.459
50,000 52,000	243.1 220.9	46.78 42.52	3.438 3.124	.000361	.1518	2.567 2.692	392.4 392.4	662.0 662.0	2.962 2.962	8.206 9.028
54,000	200.8	38.64	2.840	.000298	1.1254	2.824	392.4	662.0	2.962	9.933
56,000 58,000	182.5 165.9	35.12 31.92	2.581 2.346	.000271 .000246	.1140 .1036	2.962 3.107	392.4 392.4	662.0 662.0	2.962 2.962	10.93 12.02
60,000	150.8	29.01	2.132	.000224	.09415		392.4	662.0	2.962	13.23
62,000 64,000	137.1 124.6	26.37 23.96	1.938	.000203	.08557	3.586	392.4 392.4	662.0 662.0	2.962 2.962	14.56 16.02
65,000	118.7	22.85	1.679	.000176	.07414	3.672	392.4	662.0	2.962	16.80

^{*} For metric values see Table 628.

TABLE 344.—PROPERTIES OF THE TENTATIVE STANDARD-ATMOSPHERE EXTENSION

									Coefficient	
					Density		Tem-	Speed	of viscosity,	Kinematic
Altitude	1	Pressure.	р	Density,	ratio.	1	per- ature,	sound,	η slugs	viscosity,
h ft	lb/ft²	inH ₂ O	inHg	ρ slugs/ft³	$\sigma = \frac{\rho}{\rho_0}$	Vσ	°F abs	a mi/hr	ft-sec	ν ft²/sec
65,000	118.7	22.85	1.679	.000176	.07414	3.672	392.4	662.0		$0^{-7}16.80\times10^{-4}$
70,000	93.53	17.99	1.322	.000139	.05839	4.138	392.4	662.0	2.962	21.33
75,000	73.66	14.17	1.042	.000109	.04599	4.663	392.4	662.0	2.962	27.09
80,000	58.01	11.16	.8202	.0000861	.03621	5.255	392.4	662.0	2.962	34.39
85,000	45.68	8.789	.6460	.0000678	.02852	5.921	392.4	662.0	2.962	43.67
90,000	35.97	6.921	.5086	.0000534	.02246	6.672	392.4	662.0	2.962	55.45
95,000	28.33	5.451	.4006	.0000421	.01769	7.519	392.4	662.0	2.962	70.41
100,000	22.31	4.293	.3156	.0000331	.01394	8.472	392.4	662.0	2.962	89.41

In high speed research, use is frequently made of the theoretical relationships existing between the Mach number and various flow parameters. Two types of flow are tabulated: isentropic flow and normal-shock flow. Isentropic flow is generally valid for a subsonic or supersonic expanding flow and may be used for subsonic compression flow. Normal-shock flow is valid for supersonic compression flow when the deviation of the flow through the shock is zero. Oblique-shock flow may be obtained from the normal-shock flow by superimposing a velocity tangential to the shock.

The assumption that air is a perfect gas with a value of γ of 1.400 is valid for the conditions used to the shock of the shock of the same than the same that the shock is the same that the shock of the same than the same tha

The assumption that air is a perfect gas with a value of γ of 1.400 is valid for the conditions usually encountered in the subsonic and lower supersonic regions for normal stagnation conditions. For Mach numbers greater than about 4.0 or for unusual stagnation conditions, however, the behavior of air will depart appreciably from that of a perfect gas if the liquefaction condition is approached, and caution should be used in applying the

results in the table at the higher Mach numbers.

The formulas for isentropic flow are:

$$\frac{p_1}{p_0} = \left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{\frac{\gamma}{1 - \gamma}}$$

$$\frac{p_1}{p_0} = \left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{-\frac{1}{1 - \gamma}}$$

$$\frac{T_1}{T_0} = \left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{-1}$$

$$\frac{A_{cr}}{A_1} = M_1 \left(\frac{1 + \frac{\gamma - 1}{2}}{1 + \frac{\gamma - 1}{2} M_1^2}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

$$\frac{C_1}{a_0} = \left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{-\frac{1}{2}}$$

$$V_1 = M_1 \left(\frac{a_1}{a_0}\right) a_0$$

$$F_c = \frac{2}{\gamma M_1^2} \left[\left(1 + \frac{\gamma - 1}{2} M_1^2\right)^{\frac{\gamma}{\gamma - 1}} - 1\right]$$

$$\phi = \sin^{-1}\left(\frac{1}{M_1}\right)$$

$$\nu = \left(\frac{\gamma + 1}{\gamma - 1}\right)^{\frac{1}{2}} \cos^{-1}\left[\frac{\gamma + 1}{2\left(1 + \frac{\gamma - 1}{2} M_1^2\right)}\right]^{\frac{1}{2}} + \phi - 90^{\circ},$$

and the formulas for normal-shock flow are:

$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} M_1^2 - \frac{\gamma - 1}{\gamma + 1}$$

$$\frac{p_2}{p_0} = \left(\frac{p_2}{p_1}\right) \left(\frac{p_1}{p_0}\right)$$

$$\frac{p_3}{p_2} = \left(\frac{\gamma - 1}{2} M_2^2 + 1\right)^{\frac{\gamma}{\gamma - 1}}$$

$$\frac{p_3}{p_0} = \left(\frac{p_3}{p_2}\right) \left(\frac{p_2}{p_0}\right)$$

$$M_2 = \left[\left(\frac{\gamma + 1}{2\gamma}\right)^2 \left(\frac{1}{M_1^2 - \frac{\gamma - 1}{2\gamma}}\right) + \frac{\gamma - 1}{2\gamma}\right]^{\frac{\gamma}{2}}$$

¹⁰⁰ Burcher, Marie A., Compressible flow tables for air, NACA TN No. 1592, August 1948.

TABLE 345 .- COMPRESSIBLE FLOW TABLES FOR AIR (concluded)

$$\frac{\rho_2}{\rho_1} = \left(\frac{M_1}{M_2}\right)^2 \left(\frac{\rho_1}{\rho_2}\right)$$

$$\frac{V_2}{V_1} = \frac{\rho_1}{\rho_2}$$

where

a = speed of sound in air.

A =cross-sectional area of the stream tube.

 $A_{er} =$ cross-sectional area of the stream tube for $M_1 = 1.0$.

 F_c = compressibility factor, increase in pressure above the static pressure set up in a tube whose open end is pointed into the relative wind divided by the dynamic pressure.

M =Mach number $\left(\frac{V}{a}\right)$:

 $\phi =$ Mach angle, degrees.

p = absolute pressure.

T = temperature, °F absolute.

V = airspeed, feet per second, computed for $T_0 = 520^{\circ}\text{F}$ absolute and $a_0 = 1117.372$ feet per second.

 γ = ratio of specific heats, taken as 1.400.

 $\nu =$ expansion angle required to change Mach number from 1.0 to M_1 , degrees.

 $\rho = \text{mass density of air.}$

Subscripts:

0 =stagnation conditions before shock.

1 = air stream conditions before shock.

2 = air stream conditions behind shock.

3 = stagnation conditions behind shock.

Fig. 13.—Illustrating three types of flow,

TWO-DIMENSIONAL SUPERSONIC FLOW AROUND A CORNER

F F _c 1004 1.003 1.003 1.109 1.110 1.129 1.110 1.1104 1.1219 1.1219 1.1219	$\frac{V_2}{V_1}$ 1.000 .8554 .7454 6598 .5918	.5370 .4922 .4550 .4239 .3975	.3750 .3556 .3388 .3242 .3113	.3000 .2899 .2810 .2730 .2658	2593 2534 2480 2432 2388
$(T_0 \underset{abs.}{\overset{V_1}{=}} 520^\circ$ $^{abs.}$ $^{abs.}$ $^{596.8}$ $^{647.5}$ $^{647.5}$ $^{697.4}$ $^{746.4}$ $^{746.4}$ $^{794.5}$ $^{887.8}$ $^{887.8}$ $^{932.9}$ $^{977.0}$	M_2 1.000 .9118 .8422 .7860	.7011 .6684 .6405 .6165 .5956	.5774 .5613 .5471 .5344 .5231	.5130 .5039 .4956 .4882 .4814	.4752 .4695 .4643 .4596
about 100 about	ρ ₂ 1.000 1.169 1.342 1.516 1.690	1.862 2.032 2.198 2.359 2.516	2.667 2.812 2.951 3.085 3.212	3.333 3.449 3.559 3.664 3.763	3.857 3.947 4.031 4.112 4.188
$\begin{array}{c} A_{cr} \\ A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_4 \\ A_5 \\ A_5 \\ A_5 \\ A_7 \\ A_$	$\frac{\rho_3}{\rho_0}$ 1.000 9989 9928 9794	.9298 .8952 .8557 .8127	.7209 .6742 .6281 .5833	.4990 .4601 .4236 .3895	.3283 .3012 .2762 .2533 .2322
77. 9524 9430 9430 9328 9328 9321 9107 8888 8886 8737 8737 8737 8737 8737 873	25833 .5833 .6514 .662	.6697 .6635 .6493 .6289	.5751 .5444 .5125 .4802	.4170 .3869 .3581 .3309 .3053	2813 2590 2383 2191 2015
2009 2009 2009 2009 2009 2009 2009 2009	$\frac{\rho_2}{\rho_1}$ 1.000 1.245 1.513 1.805 2.120	2.458 2.820 3.205 3.613 4.045	4.500 4.978 5.480 5.005 6.553	7.125 7.720 8.338 8.980	1.33 1.05 1.78 2.54 3.32
2528 2528 2528 2528 2528 2528 2528 2528	7 0 1.34 3.56 6.17 8.99				
M. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					
Fe 1.000 1.000 1.006 1.016 1.033 1.052 1.052 1.052	90.00 65.38 56.44 50.28 45.58	41.81 38.68 36.03 33.75 31.76	30.00 28.44 27.04 25.77 24.62	23.58 22.62 21.74 20.92 20.17	19.47 18.82 18.21 17.64 17.10
$\begin{array}{c} V_1 \\ = 520^{\circ} \text{ F} \\ = 55.85 \\ 111.6 \\ 1167.2 \\ 1167.2 \\ 117.6 \\ 117.2 \\ 117.6 \\ 117.2 \\ 117$	$(T_0 = 520^{\circ})$ abs.) 1020 1103 1181 1256 1326	1392 1454 1512 1567 1618	1666 1710 1752 1791 1828	1862 1894 1924 1952 1979	2003 2026 2048 2068 2068
T ₀ T ₀	$\frac{a_1}{a_0}$.9129 .8973 .8811 .8645	.8305 .8133 .7961 .7790 .7620	.7454 .7289 .7128 .6971	.6567 .6521 .6378 .6240	.5976 .5850 .5728 .5609 .5495
464 7464 7464 7464 7464 7464 7467 7464 7467 7464	$\begin{array}{c} A_1 \\ A_{c\tau} \\ 1.000 \\ 1.008 \\ 1.030 \\ 1.065 \\ 1.115 \end{array}$	1.176 1.250 1.338 1.439 1.555	1.688 1.837 2.005 2.193 2.403	2.637 2.896 3.183 3.500 3.850	4.235 4.657 5.121 5.629 6.184
71. 70. 70. 9995 9985 9921 9821 9823 9771 9823 9761 9524	T ₁ , T ₂ , 8333 .8333 .7764 .7764 .7184	.6897 .6614 .6337 .6068 .5807	.5556 .5313 .5081 .4859	.4444 .4252 .4068 .3894 .3729	.3571 .3422 .3281 .3147
1.000 1.000 1.988898039803969494139413943955596559	ρη 6339 5817 5311 4829 4374	.3950 .3557 .3197 .2868 .2570	2300 .2058 .1841 .1646 .1472	.1317 .1179 .1056 .09463	.07623 .06852 .06165 .05554
\$\partial \partial \part	Po Po 15283 14124 13609 3142	.2724 .2353 .2026 .1740	.1278 .1094 .09352 .07997 .06840	.05853 .05012 .04295 .03685	.02722 .02345 .02023 .01748
M C 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	M ₁ 1.00 1.20 1.30 1.40	1.50 1.70 1.80 1.90	2.00 2.10 2.20 2.30 2.40	2.50 2.60 2.70 2.80 2.90	3.00 3.10 3.20 3.30 3.40

$\frac{V_2}{V_1}$ $\frac{V_2}{V_1}$ $\frac{2347}{2310}$ $\frac{2275}{2275}$.2188 ,2139 .2097 .2060 .2028	.2000 .1975 .1952 .1932	.1898 .1883 .1870 .1858	.1837 .1827 .1819 .1811	.1797 .1791 .1785 .1779	.1770 .1765 .1761 .1757	.1750
M ₂ .4512 .4474 .4439 .4407	.4350 .4299 .4255 .4217	.4152 .4125 .4101 .4079	.4042 .4025 .4011 .3997 .3985	.3974 .3963 .3954 .3945	.3929 .3922 .3915 .3909	.3898 .3893 .3888 .3884 .3884	.3876
φ ₁ φ ₂ φ ₁ φ ₁ φ ₂ φ ₃	4.571 4.675 4.768 4.853 4.930	5.000 5.064 5.122 5.175 5.224	5.268 5.309 5.347 5.382 5.415	5.444 5.472 5.498 5.522 5.544	5.565 5.585 5.603 5.620 5.636	5.651 5.665 5.679 5.703	5.714
$\frac{p_3}{p_0}$ 2129 .1953 .1792 .1645	.1388 .1173 .09948 .08459	.06172 .05297 .04560 .03938	.02965 .02584 .02259 .01981	.01535 .01357 .01202 .01068	.008488 .007592 .006806 .006114 .005504	.004964 .004486 .004061 .003683	.003045
1852 1702 1565 1339 1324	.1218 .1033 .08783 .07485	.05481 .04711 .04061 .03512	.02650 .02312 .02022 .01774 .01561	.01377 .01218 .01080 .009594 .008547	.007631 .006828 .006123 .005503	.004470 .004040 .003659 .003319	.002745
 μ₂ μ₁ 14.13 14.95 15.81 16.68 17.58 	18.50 20.41 22.42 24.52 26.71	29.00 31.38 33.85 36.42 39.08	41.83 44.68 47.62 50.65 53.78	57.00 60.31 63.72 67.22 70.81	74.50 78.28 82.15 86.12 90.18	94.33 98.58 102.9 107.4 111.9	116.5
58.53 60.09 61.60 63.04 64.44	65.78 68.33 70.71 72.92 74.99	76.92 78.73 80.43 82.03 83.54	84.96 86.29 87.56 88.76 89.90	90.97 92.00 92.97 93.90 94.78	95.62 96.43 97.20 97.94 98.64	99.32 99.97 100.6 101.2 101.8	102.3
16.60 16.13 15.68 15.26 14.86	14.48 13.77 13.14 12.56	11.54 11.09 10.67 10.29 9.93	9.59 9.28 8.99 8.71 8.46	8.21 7.98 7.77 7.56 7.37	7.18 7.00 6.84 6.68 6.53	6.38 6.24 6.11 5.98 5.86	5.74
$\begin{array}{c} V_1 \\ & \sum_{abs.} \\ 2106 \\ 2122 \\ 2138 \\ 2138 \\ 2153 \\ 2168 \end{array}$	2181 2205 2227 2247 2265	2281 2295 2308 2320 2331	2341 2350 2359 2366 2373	2380 2386 2392 2397 2402	2406 2411 2414 2418 2422	2425 2428 2431 2433 2436	2438
a ₀ 5384 5276 5172 5072 5072	.4880 .4699 .4531 .4372 .4223	.4082 .3950 .3826 .3708	.3492 .3393 .3298 .3209 .3124	.3043 .2966 .2893 .2823 .2756	.2692 .2631 .2572 .2516 .2463	.2411 .2362 .2314 .2269	.2182
4. 4cr 6.790 7.450 8.169 8.951 9.799	10.72 12.79 15.21 18.02 21.26	25.00 29.28 34.17 39.74 46.05	53.18 61.21 70.23 80.32 91.59	104.1 118.1 133.5 150.6 169.4	190.1 212.8 237.8 265.0 294.8	327.2 362.5 400.8 442.3 487.3	535.9
T_0 T_0 T_0 Z_0	.2381 .2208 .2053 .1911 .1783	.1667 .1561 .1464 .1375	.1220 .1151 .1088 .1030 .09758	.09259 .08797 .08367 .07967 .07594	.07246 .06921 .06617 .06332 .06065	.05814 .05578 .05356 .05146 .04949	.04762
$\frac{\rho_1}{\rho_2}$.04523 .04089 .03702 .03355	.02766 .02292 .01909 .01597	.01134 .009620 .008197 .007012	.005194 .004495 .003904 .003402	.002609 .002295 .002025 .001792	.001414 .001260 .001126 .001009	.0008150 .0007348 .0006638 .0006008	.0004948
$\frac{p_1}{p_0}$.01311 .01138 .009903 .008629	.006586 .005062 .003918 .003053	.001890 .001501 .001200 .0009643	.0006334 .0005173 .0004247 .0003503	.0002416 .0002019 .0001694 .0001427	.0001024 .00008723 .00007454 .00006390 .00005494	.00004739 .00004099 .00003555 .00003092	.00002356 .0004948
M ₁ 3.50 3.50 3.70 3.80 3.90	4.20 4.24 4.40 4.60 6.60	5.20 5.20 5.40 5.60 5.80	6.00 6.20 6.40 6.80	7.00 7.20 7.40 7.60 7.80	8.00 8.20 8.40 8.60 8.80	9.00 9.20 9.40 9.60 9.80	10.00

TABLE 346A.—FORCES ON AIRFOILS AT ANGLES TO THE WIND (FIGS. 14, 15) 187

By suitably proportioning the thickness distribution over the chord of a plate, an airfoil may be derived around which the flow will adhere even when the angle of attack is large. Because the flow remains attached to the airfoil, high lift coefficients may be obtained with

low drag coefficients.

The flow around a particular airfoil at a given angle of attack depends on the Reynolds number, R, the Mach number, M, and the degree of surface roughness. The main effect of increasing the Reynolds number is to change the maximum-lift coefficient and the minimum-drag coefficient. When the surface of the airfoil is made rough, simulating the surface of an actual airplane wing, the flow breaks away from the upper surface of the airfoil at a smaller angle of attack and therefore results in a considerably smaller value of maximum-lift coefficient. A rough surface increases the percentage of the chord over which the flow is turbulent and tends to make the drag coefficient much higher (see figure 11). As the Mach number is increased the variation of the local velocity from the stream velocity is increased.

On figure 14 are shown the force coefficients for two symmetrical NACA airfoils of infinite aspect ratio plotted against angle of attack, α , for a Reynolds number of $6 \times 10^{\circ}$. Methods exist (see Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data, by James C. Sivells and Robert H. Neely, NACA TN No. 1269, April 1947) for converting infinite aspect ratio data to finite wing characteristics. The force coefficients of a 21-percent thick airfoil in the smooth condition and a 12-percent thick

airfoil in both the rough and smooth conditions are given.

Figure 15 shows the variation in the force coefficients with Mach number for a symmetrical 9-percent thick airfoil at an angle of attack of 2° and at Reynolds numbers from $.35 \times 10^{\circ}$ to $.75 \times 10^{\circ}$.

¹⁸⁷ Abbott, Ira H., von Doenhoff, Albert E., and Stivers, Louis S., Jr., Summary of airfoil data. NACA Rep. No. 824, 1945. Stack, John, and von Doenhoff, Albert E., Tests of 16 related airfoils at high speeds, NACA Rep. No. 492, 1934.

TABLE 346A.—FORCES ON AIRFOILS AT ANGLES TO THE WIND (FIGS. 14, 15) (concluded)

Fig. 14.—Force coefficients for two symmetrical airfoils of infinite aspect ratio plotted against angle of attack, α , for Reynolds number $6 \times 10^{\circ}$.

Fig. 15.—The force coefficients, C_L , C_D , and CP, plotted against Mach number for a 9-percent thick airfoil at an angle of attack of 2° and Reynolds number from $.35 \times 10^6$ to $.75 \times 10^6$.

TABLES 347-369.—DIFFFUSION, SOLUBILITY, SURFACE TENSION, AND VAPOR PRESSURE

TABLE 347.—DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER

If k is the coefficient of diffusion, dS the amount of the substance which passes in the time dt, at the place x, through q cm² of a diffusion cylinder under the influence of a drop of concentration dc/dx, then

$$dS = -kq \frac{dc}{dx} dt$$

k depends on the temperature and the concentration. c gives the gram-molecules per liter. The unit of time is a day.

	t°		0.1		t°	
Substance c	°C	k	Substance	С	°C	k
Bromine		.8	Calcium chloride	.864	8.5	.70
Chlorine "	12. 1.	.22	"	1.22	9.	.72
Copper sulfate "	17.	.39	" "	.060	9.	.64
Glycerine "		.357	"	.047	9.	.68
Hydrochloric acid "		.21	Copper sulfate	1.95	17.	.23
Iodine"	12. (11	.95	17.	.26
Nitric acid "	19.5	.07	44 44	.30	17.	.33
Potassium chloride "		.38	66 66	.005	17.	.47
		.72	Glycerine	2/8	10.14	.354
" hydroxide "			Grycerine			
Silver nitrate		.985	46	6/8	10.14	.345
Soulum chloride		.94		10/8	10.14	.329
Olea		.97		14/8	10.14	.300
Acetic acid		.77	Hydrochloric acid.	4.52	11.5	2.93
Barium chloride "		.66	" .	3.16	11.	2.67
Glycerine "	10.1 3.	.55	"	.945	11.	2.12
Sodium acetate "	12.	.67	46 66	.387	11.	2.02
" chloride "	15.0	94	"	.250	11.	1.84
Urea"		.969	Magnesium sulfate.	2.18	5.5	.28
Acetic acid 1.0		.74	"	.541	5.5	.32
Ammonia		.54	66 66	3.23	10.	.27
		.97		.402	10.	.34
Formic acid		.339	Datassium hudmavida	.75	12.	1.72
Glycerine			Potassium hydroxide		12.	
Hydrochioric acid		.09	"	.49		1.70
Magnesium suitate		.30		.375	12.	1.70
Potassium bromide "		.13	nitrate	3.9	17.6	.89
" hydroxide . "		.72	**	1.4	17.6	1.10
Sodium chloride "	15.0	.94		.3	17.6	1.26
46 44 44	14.3	.964	66 66	.02	17.6	1.28
" hydroxide "	12. 1	.11	" sulfate	.95	19.6	.79
" iodide "	10.	.80	" "	.28	19.6	.86
Sugar"		.254	"	.05	19.6	.97
Sulfuric acid		.12		.02	19.6	1.01
Zinc sulfate"		.236	Silver nitrate	3.9	12.	.535
Acetic acid 2.0		.69		.9	12.	.88
Treetire della TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT			" "	.02	12.	1.035
Calcium chioride		.68	C 1: 11 '1.		14.33	1.013
Cadmium suitate	19.04	.246	Sodium chloride	2/8	14.33	.996
Hydrochioric acid		.21	44 44	4/8		
Sodium iodide "		.90	" "	6/8	14.33	.980
Sulfuric acid "		.16		10/8	14.33	.948
Zinc acetate "	18.05	.210	" "	14/8	14.33	.917
	.04	.120	Sulfuric acid	9.85	18.	2.36
Acetic acid 3.0		.68	44	4.85	18.	1.90
Potassium carbonate "		.60	"	2.85	18.	1.60
" hydroxide . "		.89	"	.85	18.	1.34
Acetic acid 4.0	12.	.66	"	.35	18.	1.32
Potassium chloride "		.27	" "	.005	18.	1.30
1 Otassium Chioride	10. 1					

Coefficients of diffusion of vapors in cgs units. The coefficients are for the temperatures given in the table and a pressure of 76 cmHg.

Vapor	Temp. °C	kt for vapor diffusing into hydrogen	kr for vapor diffusing into air	kt for vapor diffusing into carbon dioxide
Acids: Formic	0	.5131	.1315	.0879
"		.7873	.2035	.1343
	84.9	.8830	.2244	.1519
Acetic	0	.4040	.1061	.0713
44	65.5	.6211	.1578	.1048
46	98.5	.7481	.1965	.1321
Isovaleric	0	.2118	.0555	.0375
"	98.0	.3934	.1031	.0696
Alcohols: Methyl		.5001	.1325	.0880
	25.6	.6015	.1620	.1046
*	49.6	.6738	.1809	.1234
Ethyl	0	.3806	.0994	.0693
	40.4	.5030	.1372	.0898
	66.9	.5430 .3153	.1475 .0803	.1026 .0577
Propyl	66.9	.3153 .4832	.0803	.0577
"	0.0 #	.5434	.1379	.0976
Butyl	0	.2716	.0681	.0476
Butyl	99.0	.5045	.1265	.0884
Amyl	0	.2351	.0589	.0422
"	99.1	.4362	.1094	.0784
Hexyl		.1998	.0499	.0351
	99.0	.3712	.0927	.0651
Benzene		.2940	.0751	.0527
44		.3409	.0877	.0609
"	45.0	.3993	.1011	.0715
Carbon disulfide		.3690	.0883	.0629
46 46	19.9	.4255	.1015	.0726
	32.8	.4626	.1120	.0789
Esters: Methyl acetate		.3277	.0840	.0557
	20.3	.3928	.1013	.0679
Ethyl "	0	.2373	.0630	.0450
	46.1	.3729	.0970	.0666
Methyl butyrate	92.1	.2422 .4308	.0640 .1139	.0438
Ethyl "	92.1	.2238	.0573	.0809 .0406
" " "	96.5	.4112	.1064	.0406
" valerate	0	.2050	.0505	.0366
valerate	97.6	.3784	.0932	.0676
Ether		.2960	.0775	.0552
"	19.9	.3410	.0893	.0636
Water		.6870	.1980	.1310
"	49.5	1.0000	.2827	.1811
44	92.4	1.1794	.3451	.2384

TABLE 349.—COEFFICIENTS OF DIFFUSION FOR VARIOUS GASES AND VAPORS

Gas or vapor diffusing	Gas or vapor diffused into	Temp. °C	Coefficient of diffusion
Air	Hydrogen	. 0	.661
44	Oxygen		.1775
Carbon dioxide	Air	. 0	.1423
" " "	44	. 0	.1360
	Carbon monoxide	. 0	.1405
	" "	. 0	.1314
	Hudrogen	. 0	.5437
	Hydrogen	. 0	.1465
		. 0	.0983
	Nitrous oxide	7	.1802
	Oxygen	. 0	
Carbon disulfide	Air	. 0	.0995
Carbon monoxide	Carbon dioxide	. 0	.1314
" "	Lethylene	. 0	.101
" " …	Hydrogen	. 0	.6422
	Oxygen	. 0	.1802
		. 0	.1872
Ether	Air	. 0	.0827
	Hydrogen	. 0	.3054
Hydrogen	Air	. 0	.6340
	Carbon dioxide	. 0	.5384
44	" monoxide	. 0	.6488
"	Ethane	. 0	.4593
"	Ethylene	. 0	.4863
44	Methane	. 0	.6254
44	Nitrous oxide	. 0	.5347
44	Oxygen	. 0	.6788
Nitrogen	"	. 0	.1787
Oxygen	Carbon dioxide	. 0	.1357
"	Hydrogen	. ŏ	.7217
"	Nitrogen	. 0	.1710
Sulfur dioxide	Hydrogen	_	.4828
Water	Air	. 8	.2390
Water	44	. 18	.2475
"	Undrogen	. 18	.8710
	Hydrogen	. 10	.0710

TABLE 350.-DIFFUSION OF METALS INTO METALS

 $\frac{dv}{dt} = k \frac{d^2v}{dx^2}$; where x is the distance in direction of diffusion; v, the degree of concentration of the diffusing metal; t, the time; k, the diffusion constant = the quantity of metal in grams diffusing through a cm² in a day when unit difference of concentration (g/cm³) is maintained between two sides of a layer one cm thick.

D.a	Dis- solving Temper-	,	Dis- solving Temper-
Diffusing metal	metal ature °C	k	Diffusing metal metal ature °C k
	Lead 555	3.19	Platinum Lead 492 1.69
	" 492	3.00	Lead Tin 555 3.18
	" 251	.03	Rhodium Lead 550 3.04
	" 200	.008	Tin Mercury. 15 1.22
	" 165	.004	Lead " . 15 1.0
46	" 100	.00002	Zinc " . 15 1.0
	Bismuth . 555	4.52	Sodium " . 15 .45
	Tin 555	4.65	Potassium " . 15 .40
Silver	" 555	4.14	Gold " . 15 .72

(Temperature variation)

The numbers give the number of grams of the anhydrous salt soluble in $1000~{\rm g}$ of water at the given temperatures.

					Te	mperatu	re °C				
Salt	0	10	20	30	40	50	60	70	80	90	100
AgNO ₃	1150	1600	2150	2700	3350	4000	4700	5500	6500	7600	9100
$Al_2(SO_4)_3$ $Al_2K_2(SO_4)_4$	313 30	335	362	404 84	457	521	591 248	662	731	808	891 1540
$Al_2K_2(SO_4)_4$ $Al_2(NH_4)_2(SO_4)_4$.	26	45	66	91	124	159	211	270	352		1540
B ₂ O ₃	11	15	22		40		62		95		157
BaCl ₂	316	333	357	382	408	436	464	494	524	556	588
$Ba(NO_3)_2 \dots$	50 595	70	92 745	116	142	171	203	236	270	306	342 1590
CaCl ₂	405	650 450	500	1010 565	1153 650	935	1368 940	1417 950	1470 960	1527	1030
CsCl	1614	1747	1865	1973	2080	2185	2290	2395	2500	2601	2705
CsNO₃	93	149	230	339	472	644	838	1070	1340	1630	1970
Cs ₂ SO ₄	1671	1731	1787	1841	1899	1949	1999	2050	2103	2149	2203
Cu(NO ₃) ₂ CuSO ₄	818 149		1250	255	1598 295	336	1791 390	457	2078 535	627	735
FeCl ₂			685			820			1040	1050	1060
Fe ₂ Cl ₆	744	819	918			3151			5258		5357
FeSO ₄	156	208	264	330	402	486	550	560	506	430	<u></u>
HgCl₂ KBr	43 540	-66 - 	74 650	84	96 760	113	139 860	173	243 955	371	540 1050
KBr K₂CO₃	1050			1140	1170	1210	1270	1330	1400	1470	1560
KC1	285	312	343	373	401	429	455	483	510	538	566
KClO₃	33	50	71	101	145	197	260	325	396	475	560
K ₂ CrO₄	589 50	609 85	629 131	650	670 292	690	710 505	730	751 730	771	791 1020
K ₂ Cr ₂ O ₇ KHCO ₃	225	277	332	390	453	522	600		730		1020
KI	1279	1361	1442	1523	1600	1680	1760	1840	1920	2010	2090
KNO ₃	133	209	316	458	639	855	1099	1380	1690	2040	2460
KOH	970 7	1030	1120	1260 14	1360 18	1400 22	1460 26	1510	1590	1680	1780 52
K ₂ PtCl ₆ K ₂ SO ₄	74	92	111	130	148	165	182	32 198	38 214	45 228	241
LiOH	127	127	128	129	130	133	138	144	153		175
MgCl ₂	528	535	545		575		610		660		730
$MgSO_{\bullet} \dots (7aq)$	260	309	356	409	456	<u></u>			<u></u>		720
"(6aq) NH ₄ Cl	408 297	422 333	439 372	453 414	458	504 504	550 552	596 602	642 656	689 713	738 773
NH4HCO3	119	159	210	270							
NH ₄ NO ₃	1183			2418	2970	3540?	4300?	5130?	5800	7400	8710
(NH ₄) ₂ SO ₄	706	730	754	7 80	810	844	880	916	953	992	1033
NaBr Na ₂ B ₄ O ₇	795	845 16	903	39	1058	1160 105	1170 200	244	1185 314	408	1205 523
Na ₂ CO ₃ (10aq)	71	126	214	409		103	200				J=J
"(7ag)	204	263	335		(1aq)	475	464	458	452	452	452
NaCl	356	357	358	360	363	367	371	375	380	385	391
NaClO ₃	820 317	890 502	990 900		1235 960	1050	1470 1150		1750 1240		2040 1260
Na ₂ CrO ₄ Na ₂ Cr ₂ O ₇	1630	1700	1800	1970	2200	2480	2830	3230	3860		4330
NaHCO ₃	69	82	96	111	127	145	164				
Na₂HPO₄	25	39	93	241	639			949			988
					00 -0	0000	0.450				
NaI NaNO ₃	1590 730	1690 805	1790 880	1900 962	2050 1049	2280 1140	2570 1246	1360	2950 1480	1610	3020 1755

TABLE 351.—SOLUBILITY OF INORGANIC SALTS IN WATER (concluded)

	Temperature °C										
Salt	0	10	20	30	40	50	60	70	80	90	100
NaOH	420	515	1090	1190	1290	1450	1740		3130		
Na ₄ P ₂ O ₇	32	39	62	99	135	174	220	255	300		
Na ₂ SO ₃	141		287		495						330
$Na_2SO_4 \dots (10aq)$	50	90	194	400	- 482	468	455	445	437	429	427
" $(7aq)$	196	305	447	J				115			
Na ₂ S ₂ O ₃	525	610	700	847	1026	1697	2067		2488	2542	2660
NiCl ₂		600	640	680	720	760	810	=			
NiSO ₄	272			425		502	548	594	632	688	776
PbBr ₂	5	6	8	12	15	20	24	28	33	1174	48
Pb(NO ₃) ₂	365	444	523	607	694	787	880	977	1076	1174	1270
RbCl	770	844	911	976	1035	1093	1155	1214	1272	1331	1389
RbNO ₃	195	330	533	813	1167	1556	2000	2510	3090	3750	4520
Rb₂SO₄	364	426	482	535	585	631	674	714	750	787	818
SrCl ₂	442	483	539	600 12	667	744 17	831	896 25	924 30	962 34	1019
SnI_2	395	549	10 708	876	14 913	926	21 940	956	972	990	40 1011
$Th(SO_4)_2$ (9aq)	7	10	14	20	30	51	940	930	912	990	1011
"(4aq)	′	10	14	20	40	25	16	11			
T1C1	2	2	3	5	6	8	10	13	16	20	
TiNO ₃	39	62	96	143	209	304	462	695	1110	2000	4140
Tl ₂ SO ₄	27	37	49	62	76	92	109	127	146	165	
$Yb_2(SO_4)_3$	442						104	72	69	58	47
$Zn(NO_3)_2$	948				2069						
ZnSO ₄					700	768		890	860	920	785

TABLE 352.—SOLUBILITY OF A FEW ORGANIC SALTS IN WATER

(Temperature variation °C)

Salt	0	10	20	30	40	50	60	70	80	90	100
$H_2(CO_2)_2 \dots$	36	53	102	159	228	321	445	635	978	1200	
$H_2(CH_2 \cdot CO_2)_2$	28	45	69	106	162	244	358	511	708		1209
Tartaric acid		1260	1390	1560	1760	1950	2180	2440	2730	3070	3430
Racemic "		140		291	433	595	783	999	1250	1530	1850
$K(HCO_2)$	2900		3350		3810		4550		5750		7900
KH(C₄H₄O ₆)	3	4	6	9	13	18	24	32	45	57	69

TABLE 353.—SOLUBILITY OF GASES IN WATER

(Temperature variation °C)

The table gives the weight in grams of the gas which will be absorbed in 1000 g of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mmHg.

Gas	0	10	20	30	40	50	60	70	80
O_2	.0705	.0551	.0443	.0368	.0311	.0263	.0221	.0181	.0135
H_2	.00192	2 .00174	.00160	.00147	.00138	.00129	.00118	.00102	.00079
N_2	.0293	.0230	.0189	.0161	.0139	.0121	.0105	.0089	.0069
$\mathrm{Br_2}$	431.	248.	148.	94.	62.	40.	28.	18.	11.
Cl_2	_	9.97	7.29	5.72	4.59	3.93	3.30	2.79	2.23
CO_2	3.35	2.32	1.69	1.26	.97	.76	.58		—
H₂S	7.10	5.30	3.98	—				_	
NH ₃	987.	689.		422.		_	_		
SO_2	228.	162.	113.	78.	54.	_	_	_	_

	CdSO ₄ 8	3/3H ₂ O 5° C	ZnSO ₄ .	7H₂O ° C	Mannite a	t 24.05° C	NaCl at	24.05° C
Pressure in atm	Conc. of satd. soln.) 08' g CdSO, per 08' H ₂ O	Percentage change	G Conc. of satd. soln. Section of Satd. soln. Section of Section 100g. H ₂ O	Percentage change	Conc. of satd. soln.) 99 100g H ₂ O	Percentage change	22 Conc. of satd. soln. 66 100g H ₂ O	Percentage change
500	78.01	+1.57	57.87	14	21.14	+2.32	36.55	+1.81
1000	78.84	+2.68	57.65	52	21.40	+3.57	37.02	+3.12
1500	_	_	_	_	21.64	+4.72	37.36	+4.07

TABLE 355.—COMMONLY USED ORGANIC SOLVENTS *

Arranged in the order of their boiling points

	Boiling	Boiling
Name	point °C	Name point °C
Ethyl ether	34.54	Xylene (o)
Carbon disulfide		Amyl acetate
Acetone		Ethyl lactate
Methyl acetate		Cellosolve acetate
Chloroform		Cyclohexanone
Methyl alcohol		Furfural
Carbon tetrachloride		Butyl cellosolve
Ethyl acetate		Ethyl acetoacetate 180.0
Ethyl alcohol		Diethyl oxalate
Benzol	79.6	Ethylene glycol
Isopropyl alcohol		Carbitol
Ethylene dichloride	83.5	Benzyl alcohol
Trichlorethylene		Ethyl benzoate
Ethyl propionate	99.1	Butyl stearate223 (25mm)
Toluene	110.7	Butyl carbitol
Butyl alcohol (n)		Diethylene glycol
Ethyl butyrate	121.3	Triphenyl phosphate245 (11mm)
Methyl cellosolve		Triacetin
Diethyl carbonate		Diacetin
Butyl acetate		Dimethyl phthalate
Tetrachlorethane		Diethyl phthalate
Cellosolve		Dibutyl phthalate
Ethyl benzene		Diamyl phthalate 344
Amyl alcohol (n)		Diamy: phenalace

^{*} Table by J. W. H. Randall, reprinted with permission of Chemical Catalog Co.

	Absorption coefficient, at, for gases in water										
Tempera- ture °C	Carbon dioxide CO ₂	mon	rbon oxide O	Hydrogen H	Nitrogen N	Niti oxio N(le	Nitrous oxide N ₂ O	Oxygen		
0	1.797	.03	54	.02110	.02399	.073	8	1.048	.04925		
5	1.450	.03	15	.02022	.02134	.064	6	.8778	.04335		
10	1.185	.02	82	.01944	.01918	.057	1	.7377	.03852		
15	1.002	.02	54	.01875	.01742	.051	5	.6294	.03456		
20	.901	.02		.01809	.01599	.047	1	.5443	.03137		
25	.772	.02		.01745	.01481	.043	2	_	.02874		
30		.02		.01690	.01370	.040		_	.02646		
40	.506	.01		.01644	.01195	035		_	.02316		
50	- 	.01		.01608	.01074	.031			.02080		
100	.244	.01	41	.01600	.01011	.026	3	-	.01690		
Tempera-		Amm	onia	Chlorine	Ethylene	Metha		ydrogen sulfide	Sulfur dioxide		
ture °C	Air	NE		Cl	C ₂ H ₄	CH ₄		H ₂ S	SO ₂		
0	.02471	1174	.6	3.036	.2563	.0547	3	4.371	79.79		
5	.02179	971	.5	2.808	.2153	.0488	9	3.965	67.48		
10	.01953	840	.2	2.585	.1837	.0436	7	3.586	56.65		
15	.01795	756	.0	2.388	.1615	.0390	3	3.233	47.28		
20	.01704	683		2.156	.1488	.0349	9	2.905	39.37		
25	_	610	.8	1.950	_	.0254	2	2.604	32.79		
		A	bsorption	coefficients	at,for gas	es in alcoh	ol, C ₂ H ₅	он			
	Carbon					Nitric		Hydrogen	Sulfur		
Tempera- ture °C	dioxide CO ₂	Ethylene C ₂ H ₄	Methane CH ₄	Hydrogen	Nitrogen N	oxide NO	oxide N ₂ O	sulfide H ₂ S	dioxide SO ₂		
0	4.329	3.595	.5226	.0692	.1263	.3161	4.190	17.89	328.6		
5	3.891	3.323	.5086	.0685	.1203	.2998	3.838	14.78	251.7		
10	3.514	3.086	.4953	.0679	.1228	.2861	5.525	11.99	190.3		
15	3.199	2.882	.4828	.0673	.1214	.2748	3.215	9.54	144.5		
20	2.946	2.713	.4710	.0667	.1204	.2659	3.015	7.41	114.5		
25	2.756	2.578	.4598	.0662	.1196	.2595	2.819	5.62	99.8		

^{*} This table contains the volumes of different gases, supposed measured at 0°C and 76 cmHg pressure, which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficient for the gases in water, or in alcohol, at the temperature t and under 1 atm of pressure.

TABLE 357.—VAPOR PRESSURE OF SOME ELEMENTS

(Over liquid unless otherwise noted.)

Hydrogen	Helium	Neon	Argon	Krypton	Xenon	Ozone
°K mmHg	°K mmHg	°K atm	°K mmHg	°K mmHg	°K mmHg	°K mmHg
20.48 787 20.36 760 19.65 611 18.03 552 16.49 192 14.10 59.5	5.16 16680 4.9 1329 4.20 758 3.52 360 1.48 4.2	41.38 17.43 36.27 7.97 31.32 2.98 27.17 1.00 20.4 12.8 mm 15.6 2.4	90.35 1026 87.31 746 83.93 512 77.48 201	210.5 41240 201.5 31620 170.9 11970 112.7 387 88.6 17.4 84.2 9	287.7 44110 255.6 21970 244.2 15870 231.4 11130 237.4 13500 183.2 2020	120 34 162 760 89.94 .089 86.01 .042 83.24 .0152 81.36 .0068
Radon °K mmHg 377.5 62	Oxygen °K mmHg 62.37 9.59	Nitrogen °K mmHg 77.33 760	Chlorine °C atm +100 41.7	+58.75 760	+ 55 3.084	70.6 .66
364.4 53 321.7 26.4 290.3 13.2 262.8 6.6 212.4 1.05 202.6 .66	68.57 36.1 71.71 64 77.59 162.2 86.18 493 90.13 760 90.47 786.6	76.65 700 74.03 500 72.39 400 70.42 300 67.80 200 63.65 100	- 80 62 r	66 40.45 400 nm 23.45 200		+17.1 13.2 +91.2 52.8

TABLE 358.—SURFACE TENSION OF LIQUIDS

Part 1.—Water and alcohol in contact with moist air

Values represent means. See I.C.T. and L. and B. for more elaborate tables. Tension (γ) in dynes/cm.

H ₂ O	C₂H₅OH	°C	H ₂ O C	C ₂ H ₅ OH	°C	H ₂ O
76.4		35	70.3	21.0	75	64.3
75.6	24.0	40	69.5	20.6	80	62.5
74.8	23.5	45	68.7	20.2	85	61.6
74.2	23.1	50	67.9	19.8	90	60.7
73.4	22.7	55	67.0	19.4	95	59.8
72.7	22.3	60	66.1	19.0	100	58.8
71.9	21.8	65	65.7	18.6		
71.1	21.4	70	64.3	18.2		
	76.4 75.6 74.8 74.2 73.4 72.7 71.9	75.6 24.0 74.8 23.5 74.2 23.1 73.4 22.7 72.7 22.3 71.9 21.8	76.4 35 75.6 24.0 40 74.8 23.5 45 74.2 23.1 50 73.4 22.7 55 72.7 22.3 60 71.9 21.8 65	76.4 35 70.3 75.6 24.0 40 69.5 74.8 23.5 45 68.7 74.2 23.1 50 67.9 73.4 22.7 55 67.0 72.7 22.3 60 66.1 71.9 21.8 65 65.7	76.4 35 70.3 21.0 75.6 24.0 40 69.5 20.6 74.8 23.5 45 68.7 20.2 74.2 23.1 50 67.9 19.8 73.4 22.7 55 67.0 19.4 72.7 22.3 60 66.1 19.0 71.9 21.8 65 65.7 18.6	76.4 35 70.3 21.0 75 75.6 24.0 40 69.5 20.6 80 74.8 23.5 45 68.7 20.2 85 74.2 23.1 50 67.9 19.8 90 73.4 22.7 55 67.0 19.4 95 72.7 22.3 60 66.1 19.0 100 71.9 21.8 65 65.7 18.6

Part 2.—Miscellaneous liquids In contact with air

		γ	
		Dynes	
Liquid	°C	per cm	Formula
Acetone	20	23.7	(CH ₃) ₂ CO
Acetic acid	20	27.6	ČH₃CO₂H
Amyl alcohol	20	24	C ₅ H ₁₂ O
Aniline		43	C ₅ H ₇ N
		27	C ₆ H ₆
Benzene	0		C6II6
		28.9	CLID
Bromoform		41.5	CHBr _s
Butyric acid	15	26.7	CH ₃ (CH ₂) ₂ CO ₂ H
Carbon disulfide	20	32.3	CS ₂
Carbon tetrachloride.	20	26.8	CCI.
Chloroform	20	27.2	CHCl _a
Ether		17.01	C ₄ H ₁₀ O
Ethyl chloride		16.2	CH ₃ Cl
Glycerine	18	63	C ₃ H ₅ (OH) ₃
Mathul alashal	20	22.6	CH ₃ OH
Methyl alcohol	10		CH ₃ OH
Olive oil		33.1	• • •
Petroleum		26	a ::: ·a
Phenol		41.0	C₀H₀O
Propyl alcohol		23	CH ₂ (CH ₂) ₁ OH
Silicon tetrachloride.	19	17.0	SiCl ₄
Toluene	20	28.4	C ₁ H ₈
Turpentine		27	

TABLE 359.—SURFACE TENSION OF SOLUTIONS OF SALTS IN WATER

			Dynes
Salt	% Salt	°C	per cm
BaCl ₂	0	30	71.1
CaCl ₂	24.6	30 30	75.6 71.1
	12.3	30	75.7
HC1	31.9	30 20	86.4 73.0
	15	20	72.0
KC1	25 0	20 30	70.7 71.1
	23.3	30	76.8
NaCl	21.1	18 18	77.7 72.4
	7.6	18	74.8
NH ₄ Cl	13.7	18 18	76.9 72.5
	11	18	74.9
K₂CO₃	0 39.4	30 30	71.1 89.4
	53.6	30	107.2
Na ₂ CO ₃	0	30	71.1
	10.5 24.4	30 30	73.9 76.5
ZNO	63.1	30	80.6
KNO ₃	0 15.2	18 18	72.6 74.5
	21.5	18	75.4
NaNO₃	0 35.6	30 30	71.1 78.4
	50.9	30	82.8
CuSO₄	0 25.4	30 30	71.1 74.1
H,SO,	0	18	72.8
	12.7	18 18	73.5
	47.6 80.3	18	76.7 71.2
W CO	90	18	63.6
K₂SO₄	9.1	18 18	72.7 74.6
HNO ₃	7.2	20	73.1
	50 70	20 20	65.4 59.4
NaOH	Ŏ	20	72.8
	10 20	20 20	77.3 85.8
	30	20	95.1
кон	0 3.8	18 18	72.8 74.1
	7.8	18	75.5

	Specific	Surfac of li	e tension in dyr quid in contact	nes per cm with—
Liquid	gravity	Air	Water	Mercury
Water	1.0	75.0	.0	(392)
Mercury	13.595	513.0	392.0	0
Bisulfide of carbon	1.2687	30.5	41.7	(387)
Chloroform	1.498	(31.8)	26.8	(415)
Ethyl alcohol	.807	(24.1)		364
Olive oil	.918	34.6	18.6	317
Turpentine	.873	28.8	11.5	241
Petroleum	.870	29.7	(28.9)	271
Hydrochloric acid	1.10	(72.9)		(392)
Hyposulfite of soda solution		69.9		429

TABLE 361.—SURFACE TENSION OF LIQUIDS AT SOLIDIFYING POINT

TABLE 362.—VAPOR PRESSURE AND RATE OF EVAPORATION

	Мо	W	Evapora g cm-	tion rate 2 sec-1		Platinum	
°K	mmHg	mmHg	Mo	W	°K	mm	g cm ⁻² sec ⁻¹
1800	.0,643		.010863		1000	.017324	.010832
2000	.0,789	.011645	$.0_7100$.012114	1200	$.0_{12}111$.014260
2200	.04396	.0,849	$.0_{6}480$.010144	1400	.0₀188	.0-4401
2400	.021027	.07492	.0,120	.0₀798	1600	.0,484	.0,966
2600	.0160	.0₅151	.0₃179	.07236	1800	.0₅350	.0₁667
2800	.1679	.04286	.02181	.0₀429	2000	.0₃107	.0₅195
3000		.0₃362		.0₅523	4180	760 mm	
3200	3890° `	.02333		.0₄467			
3500	760 mm	.0572		.0₃769			

 $p=K,T^{-\frac{1}{2}}e^{-\lambda 0/RT}$ dynes/cm² (Egerton). Zn, $\lambda_0=3.28\times 10^4$; $K=1.17\times 10^{14}$; Cd, $\lambda_0=2.77\times 10^4$; $K=5.27\times 10^{18}$; Hg, $\lambda_0=1.60\times 10^4$; $K=3.72\times 10^{18}$ (Knudsen).

For the range of pressures for which the corresponding values of $t^{\circ}C$ are given in the table (Part 2), the pressure as a function of T(=t+273) may be represented to a satisfactory degree of approximation by the relation

$$\log p = A - B/T. \tag{1}$$

Part 1 gives values of A and B used in calculating the values of $t^{\circ}C$ in Part 2, where p is expressed in microns of mercury. The symbols (s) and (l) refer to the solid and liquid states, respectively.

The rate of evaporation is given by the relation

$$\log W = \overline{5.7660} + 0.5 \log M + \log p - 0.5 \log T \tag{2}$$

$$= c + \log p - 0.5 \log T, \tag{3}$$

where W is expressed in g cm⁻² sec⁻¹, and p in microns.

Explanation of data in Part 2.—The first row for each metal, which is designated t, gives the temperatures in °C corresponding to the pressures in microns at the head of each column. These were calculated by means of equation 1. The second row, designated the control of the W, gives the rates of evaporation (in a good vacuum) in grams per square centimeter per second (g cm⁻² sec⁻¹), at the values of t immediately above in the same column. These were calculated by means of equation 3.

In addition to the values of t given in the first row, which are to be regarded as, in the writer's opinion, the more reliable, there are also given, in the case of a number of the metals, a series of other values of t, which have been observed by some investigators: The fact that for the same value of the vapor pressure in microns two or more values of t are quoted by different authorities indicates the degree of uncertainty that exists for some of the data given in the tables. For metals for which the data are very questionable, it has not been considered worth while even to calculate values of W.

The column headed t_m gives the melting point in degrees C, and p_m gives the vapor pressure in microns at the melting point. For values of t below t_m , the metal is obviously in the solid state, and for values of t above t_m , the metal is in the liquid state.

Part 1.-Constants in relations for evaporation of metals

Metal A	10-3 × B	c + 4	Metal A		c + 4
Li 10.50(1)	7.480	.1867	Si 13.20(.4900
Na 10.71(1)	5.480	.4468	12.55(.4900
K 10.36(1)	4.503	.5621	Ti 11.25(s) 18.64	.6061
Rb 10.42(1)	4.132	.7319	11.98(1) 20.11	
	4.2911		Zr 12.38(s) 25.87	.7460
Cs [10.53(1) 9.86(1)	3.774	.8278	13.04(1) 27.43	
[10.02(1)	3.883]		Th 12.52(1) 28,44	.9488
	•		Ge 10.94(.6965
Cu 12.81(s)	18.06	.6678			
11.72(1)	16.58		Sn 9.97(.8032
Ag 12.28(s)	14.85	.7825	Pb 10.69(.9242
11.66(1)	14.09		V 13.32	26.62	.6195
Au 11.65(1)	18.52	.9135	Nb 14.37((s) 40.40	.7500
Be 12.99(s)	18.22	.2436	Ta 13.00(s) 40.21	.8947
11 05 (1)	16.59				
Mg 11.82(s)	7.741	.4590	Sb ₂ 11.42	9.913	.9592
			Bi 11.14(.9260
Ca 11.30(s)	9.055	.5675	Cr 12.88(.6240
Sr 11.13(s)	8.324	.7373	Mo 11.80		.7570
Ba 10.88	8.908	.8349	W 12.24((s) 40.26	.8983
$Zn \dots 11.94(s)$	6.744	.6737	12.00/	25.00	0544
Cd 11.78(s)	5.798	.7914	U 12.88(.9544
D 1412/)	21.27	2021	Mn 12.25(.6359
B 14.13(s)	21.37	.2831	Fe 12.630		.6395
A1 11.99(1)	15.63	.4814	13,41		6510
Sc 11.94	18.57	.5931	Co 12.43	21.96	.6512
Y 12.43	21.97	.7405	Ni 13.28(.6503
La 11.88(1)	18.00	.8374	12.55((1) 20.60	
Co. 12.74(1)	20.10	0202	D., 12.50	33.80	.7696
Ce 13.74(1)	20.10 13.36	.8392 .6877	Ru 13.50	30.40	.7722
Ga 10.79(1)			Rh 13.55		.7801
In 10.93(1)	12.15	.7959	Pd 11.46	19.23	
TI 11.15(1)	8.92	.9212	Os 13.59	37.00	.9056
C 14.06(s)	38.57	.3056	Ir 13.06	34.11	.9089
			Pt 12.633	3 27.50	.9112

^{*} Prepared by Saul Dushman, General Electric Research Laboratory, Schenectady, N. Y.

Part 2.—Temperatures for given values p in microns of mercury and rates of evaporation (W, g cm-2 sec-1)

Metal Ref. ¹³⁸ Lia b	$f(\mu Hg)$ $f^{\circ}C:$ W: $t^{\circ}C:$	$\begin{array}{c} 10^{-2} \\ 325 \\ 6.28 \times 10^{-8} \\ 353 \end{array}$	377 6.03×10^{-7} 406	$^{1}_{439}$ 5.76×10^{-6} 467	$\begin{array}{c} 10\\ 514\\ 5.48 \times 10^{-5}\\ 541 \end{array}$	100 607 5.18×10⁴ 632	725 4.87×10^{-3} 745	tm 179	ρ ^m 9×10 ⁻⁷
Naa	f°C: W:	$^{158}_{1.35\times10^{-7}}$	195 1.29×10^{-6}	$^{238}_{1.24\times10^{-6}}$	$^{291}_{1.18\times10^{-4}}$	$^{356}_{1.12\times10^{-3}}$	$^{437}_{1.05\times10^{-2}}$	88	8.2×10-5
Ка	t°C: W.:	$^{91}_{1.91\times10^{-7}}$	123 1.83×10^{-6}	$^{161}_{1.75\times10^{-5}}$	$^{207}_{1.67\times10^{-4}}$	$^{265}_{1.57\times10^{-8}}$	$^{338}_{1.48\times10^{-2}}$	64	9.8×10-4
Rbd	f°C: IV: f°C:	2.96×10^{-7} 70	2.84×10^{-6}	$2.71 \underset{135}{\times} 10^{-6}$	165 2.58×10 ⁻⁴ 177	2.43×10^{-3} 2.43×10^{-3}	$\begin{array}{c} 283 \\ 2.29 \times 10^{-2} \\ 297 \end{array}$	38.5	1.5×10-5
Cse	t°C: W: '°C:	3.77×10^{-7} 50	3.61×10^{-6}	3.44×10^{-6} 115	3.18×10 ⁻⁴ 158	3.07×10^{-8} 2.07×10^{-8}	$\begin{array}{c} 277 \\ 2.87 \times 10^{-2} \\ 280 \end{array}$	29	1.5×10-8
Cuf, c	t°C: IV:	946 1.33×10-7	1035 1.29×10^{-6}	$^{1141}_{1.24\times10^{-6}}$	1273 1.18×10^{-4}	$^{1432}_{1.13\times10^{-8}}$	1628 1.07×10^{-2}	1083	.31
Aga	ι*C: W:	$^{767}_{1.88\times10^{-7}}$	$^{848}_{1.81\times10^{-6}}$	$^{936}_{1.74\times10^{-6}}$	1047 1.67×10^{-4}	1184 1.59×10^{-8}	$^{1353}_{1.50\times10^{-2}}$	961	1.78
Aua	t°C: W∕:	1083 2.22×10^{-7}	1190 2.14×10^{-6}	$^{1316}_{2.05\times10^{-6}}$	1465 1.96×10^{-4}	1646 1.87×10^{-8}	1867 1.77×10^{-2}	1063	6×10-3
Be	<i>t</i> °C: <i>W</i> :	$^{942}_{5.03\times10^{-8}}$	1029 4.86×10^{-7}	$^{1130}_{4.68\times10^{-6}}$	1246 4.49×10^{-5}	1395	1582	1284	19.5
Mga	f°C: W.:	$^{287}_{1.21\times10^{-7}}$	$^{331}_{1.17\times10^{-6}}$	$^{383}_{1.12\times10^{-8}}$	443 1.08×10 ⁻⁴	$^{515}_{1.02\times10^{-8}}$	605 9.71×10^{-3}	651	2.2×10^{3}
Caa	f°C: WV: f°C:	$^{408}_{1.42\times10^{-7}}$	$^{463}_{1.37\times10^{-6}}_{523}$	$\begin{array}{c} 528 \\ 1.31 \times 10^{-5} \\ 594 \end{array}$	605 1.25×10^{-4} 680	1.19×10^{-5} 784	817 1.12×10-2	810	8.75×10²
Src	t°C: W:	$^{361}_{2.17\times10^{-7}}$	$^{413}_{2.08\times10^{-6}}$	$^{475}_{2.00\times10^{-5}}$	549 1.91×10-4	639 1.81×10^{-3}	$^{750}_{1.71\times10^{-2}}$	771	1.44×10³
138 For references, see p. 367.	. 367.								

(continued)

SMITHSONIAN PHYSICAL TABLES

	fm 76.	1.6×10^{2}	$1.0 \times 10^{\circ}$	2.5×10	:	1.2×10	1.8×10	9.9	.76	2.3×10	5.5×10	0	0	5.0×10
	tm 717	419	321	-38.9	2000- 2080	099	099	1397	1477	887	785	30	157	304
	1000 858 2.03×10 ⁻² 861	: :	::	$^{126}_{4.14\times10^{-2}}$	1648 4.38×10^{-8}	1279 7.60×10^{-3}	7.27×10-8	1804 8.40×10^{-3}	2056 1.14×10^{-2}	1754 1.53×10^{-2}	1599 1.60×10^{-2}	1443 1.18×10^{-2}	1260 1.60×10^{-2}	821 2.52×10^{-2}
(continued)	100 730 2.16×10-8 829 851	$^{405}_{1.81\times10^{-3}}$	$^{321}_{2.54\times10^{-3}}$	$^{82.0}_{4.39\times10^{-3}}$	1489 4.57×10-4	1123	7.66×10-4	$^{1595}_{9.07\times10^{-4}}$	$^{1833}_{1.20\times10^{-3}}$	1549 1.61×10^{-3}	$^{1439}_{1.67\times10^{-3}}$	1248 1.25×10^{-3}	1088 1.69×10^{-8}	702 2.67×10^{-3}
OF METALS	10 629 2.28×10 ⁻⁴ 716 726	343 1.90×10-4	264 2.67×10^{-4}	$^{48.0}_{4.61\times10^{-4}}$	1355 4.76×10^{-6}	996	1148 8.04×10^{-5}	$^{1423}_{9.51\times10^{-8}}$	1649 1.25×10^{-4}	$^{1381}_{1.69\times10^{-4}}$	$\frac{1305}{1.74 \times 10^{-4}}$	$^{1093}_{1.32\times10^{-4}}$	$^{952}_{1.79\times10^{-4}}$	606 2.81×10-4
APORATION	2.39×10-5 625 626		220 2.79×10^{-6}	$\frac{18.0}{4.84 \times 10^{-5}}$	1239 4.94×10^{-8}	889	1030 8.40×10^{-8}	1282 9.94×10^{-8}	1494 1.31×10^{-5}	$^{1242}_{1.77\times10^{-5}}$	1190 1.80×10^{-5}	965 1.38×10^{-6}	$^{840}_{1.87\times10^{-5}}$	527 2.95×10^{-6}
TABLE 363.—EVAPORATION			$^{180}_{2.91\times10^{-6}}$	$\frac{-5.5}{5.50 \times 10^{-6}}$	1140 5.11×10^{-7}	808	929 8.74×10 ⁻⁷	1161 1.04×10^{-6}	1362 1.36×10^{-6}	1125 1.84×10^{-6}	1091 1.87×10^{-6}	859 1.45×10^{-6}	746 1.96×10^{-6}	$^{461}_{3.08\times10^{-6}}$
TAB	$ \begin{array}{c} 10^{-2} \\ 418 \\ 2.60 \times 10^{-7} \\ 485 \\ 476 \end{array} $	211 2.15×10^{-7}	$^{148}_{3.01\times10^{-7}}$	$\frac{-23.9}{5.23\times10^{-7}}$	1052 5.27×10^{-8}	724 9.60×10-8	843 9.07×10^{-6}	1058 1.07×10^{-7}	$^{1249}_{1.41\times10^{-\prime}}$	1023 1.91×10^{-7}	1004 1.93×10^{-7}	$^{771}_{1.51\times10^{-7}}$	667 2.04×10^{-7}	$^{405}_{3.20\times10^{-7}}$
	ρ(μHg) γ°C: ΙΨ': γ°C: γ°C:	t°C: IV:	f*C:	t°C: IV:	t°C: IV:	f°C:	1°C: 1W:	t°C: IV:	t°C: IIV:	t°C: IV:	f°C: IV:	t°C: IV:	f°C: IΨ:	1°C:
	etal Ref. a	na	da	k	3	a	c, 1	ວ	J	ac	o	م	1c, m	Tla
	Metal Ba .	Zn .	. Cd	Hg	: B	ΑΙ .		Sc .		La .	Ce	Ga .	In	

	pm	31.6	84.3	40.7	9.3×10^{-2}	4.5×10^{-2}	0	5.4×10-6	.65	9.	5.0	2.82	1.20×10-7	6.35×10*
	t w	1410	1727	2127	1827	959	232	328	1697	2500	2996	630	271	1900
	$^{1000}_{3214}_{3.42\times10^{-3}}$	$^{1670}_{7.01\times10^{-3}}$	1965 8.53×10-3	$^{2459}_{1.07\times10^{-2}}$	$^{2715}_{1.63\times10^{-2}}$	$^{1635}_{1.14\times10^{-2}}$	$^{1609}_{1.47\times10^{-2}}$	$^{975}_{2.38\times10^{-2}}$	2207 8.2×10 ⁻³			904 2.65×10^{-2}	934 2.43×10^{-2}	1504 1.00×10^{-2}
(continued)	$^{100}_{2926}$ $^{3.58}\times10^{-4}$	$^{1485}_{7.37\times10^{-4}}$	1742 9.00×10^{-4}	$^{2212}_{1.12\times10^{-8}}$	$^{2431}_{1.71\times10^{-8}}$	$^{1421}_{1.21\times10^{-3}}$	$^{1373}_{1.57\times10^{-3}}$	832 2.53×10^{-8}	2079 8.6×10⁴			$^{779}_{2.81\times10^{-8}}$	$^{802}_{2.57\times10^{-8}}$	1342 1.05×10^{-3}
- METALS ($^{10}_{2681}$ $^{3.72}\times10^{-5}$	1343 7.68×10^{-5}	$^{1546}_{9.47\times10^{-5}}$			$^{1251}_{1.27\times10^{-4}}$	1189 1.66×10^{-4}	718 2.67×10-4	1888 8.9×10-5			678 2.95×10 ⁻⁴	698 2.71×10-4	1205 1.09×10-
DRATION OF	$^{1}_{2471}$ $^{3.86}\times10^{-6}$		1384 9.92×10^{-6}	1816 1.22×10^{-5}	1999 1.86×10^{-5}	1112 1.34×10^{-6}	1042 1.75×10^{-6}	$^{625}_{2.80\times10^{-5}}$	$^{1725}_{9.3\times10^{-6}}$	2539 1.06×10^{-5}	2820 1.41×10^{-5}	595 3.09×10^{-6}	609 2.84×10-6	1090 1.14×10^{-6}
TABLE 363.—EVAPORATION OF METALS	2288 1.00×10^{-1}	1116 3.29×10-7	1249 1.04×10-8	1660 1.27×10-8		996 1.40×10^{-6}		548 2.93×10^{-8}			2599 1.48×10-8	525 3.22×10-8		992 1.18×10-
TABLE	$\frac{10^{-2}}{2129}$	1024 8.58×10^{-8}	1134 1.08×10^{-7}	1527 1.31×10^{-7}	1686 2.01×10^{-7}	$^{897}_{1.45\times10^{-7}}$	823 1.92×10^{-7}	$^{483}_{3.05\times10^{-7}}$		2194 1.16×10^{-7}	2407 1.55×10^{-7}	$^{466}_{3.35\times10^{-7}}$	$^{474}_{3.08\times10^{-7}}$	907 1.22×10-7
	ρ(μHg) τ°C: W:		t°C: IV:	t°C: IV:	t°C: IV:	f°C: IV:	t°C. W:	t°C: IV:	t°C: IV:	f°C: W:	t°C: <i>W</i> :	t°C: W:		f°C:
	Ref.	э····	3·····	3·····	э	3	э. 		э····	u	0, p	o	э	c, 1
	Metal C	Si	Ti	Zr	Th	Ge	Sn	Pb	: : >	Nb	Та	Sb2	Bi	

TABLE 363.—EVAPORATION OF METALS (concluded)

pm 22.0	17.5	3.24×10-6	9.04×10^{2}	37.2	.76	4.37	8.6	1.0	8.71	13.5	3.55	.16
tm 2622	3382	1132	1244	1535	1478	1455	2427	1967	1555	2697	2454	1774
1000		2338 1.76×10^{-2}	1251 1.11×10^{-2}	1783 9.6×10^{-2}	2056 9.28×10^{-3}	1884 9.62×10^{-3}	2946 1.04×10^{-2}	2607 1.10×10^{-2}	2000 1.26×10^{-2}	$^{3221}_{1.36\times10^{-2}}$	$^{3118}_{1.39\times10^{-2}}$	2582 1.52×10^{-2}
100		2098 1.85×10^{-8}	1103 1.17×10^{-8}	1602 1.01×10^{-8}	1833 9.76×10^{-4}	1679 1.01×10^{-8}	2666 1.08×10^{-3}	2358 1.15×10^{-8}	1759 1.34×10^{-8}	2920 1.42×10^{-8}	2811 1.46×10^{-3}	2313 1.60×10^{-8}
$^{10}_{2533}$ $^{1.05}\times10^{-4}$	$^{3309}_{1.43\times10^{-4}}$	1898 1.93×10^{-4}	980 1.22×10-4	1447 1.02×10^{-4}	1649 1.02×10^{-4}	1510 1.06×10^{-4}	2431 1.13×10^{-4}	2149 1.20×10^{-4}	1566 1.41×10-4	2667 1.48×10^{-4}	$^{2556}_{1.52\times10^{-4}}$	2090 1.68×10⁴
$^{2295}_{1.12\times10^{-6}}$	$^{3016}_{1.45\times10^{-6}}$	1730 2.01×10^{-6}	$^{878}_{1.27\times10^{-6}}$	1310 1.10×10^{-6}	1494 1.06×10^{-5}	1371 1.10×10^{-5}	$^{2230}_{1.18\times10^{-5}}$	$^{1971}_{1.25\times10^{-6}}$	$^{1405}_{1.47\times10^{-6}}$	$^{2451}_{1.54\times10^{-6}}$	2340 1.59×10^{-6}	$^{1904}_{1.75\times10^{-5}}$
$^{10^{-1}}_{2095}$ $^{1.18}\times10^{-6}$	2767 1.46×10^{-6}	1585 2.09×10^{-6}	791 1.32×10^{-6}	$^{1195}_{1.20\times10^{-6}}$	1362 1.11×10^{-6}	1257 1.14×10^{-6}	2058 1.22×10^{-6}	1815 1.29×10^{-6}	1271 1.53×10^{-6}	2264 1.60×10^{-6}	2154 1.65×10^{-8}	1744 1.81×10^{-6}
$^{10^{-2}}_{1923}$ $^{1.29}\times10^{-7}$	2554 1.47×10^{-7}	1461 2.16×10^{-7}	$^{717}_{1.38\times10^{-7}}$	1094 1.29×10^{-7}	1249 1.15×10^{-7}	1157 1.18×10^{-7}	1913 1.26×10^{-7}	1681 1.34×10^{-7}	1156 1.59×10^{-7}	2101 1.65×10^{-7}	1993 1.70×10^{-7}	1606 1.88×10^{-7}
$t^{(\mu Hg)}$ $t^{\circ}C:$ W:	f°C: W:	f°C: W:	f°C: W:	f°C: IV:	f°C: W:	f°C: W:	f°C: IV:	f°C: W:	f°C:	f°C: IV:	f°C: W:	f°C: W:
Metal Ref. Mor	Ws	Uc	Mnc	Fe f	Coc	Ni q	Ruc	Rhc	Рdс	Osc	Irc	Pt

modynamic and physical properties of the elements, Report for the Manhattan Project, 1946. d, Killian, T. J. Phys. Rev., vol. 27, p. 578, 1926. e, Taylor, J. B., and Langmuir, I., Phys. Rev., vol. 51, p. 753, 1937. f, Marshall, A. L., Dornte, R. W., and Norton, F. J., Journ. Amer. Chem. Soc., vol. 65, p. 161, 1937. g, Schumann, J. A. M., Rec. Trav. Chem. d. Pays-Bas. vol. 55, p. 468, 1936. j, Rudberg, E., and Lempert, J., Journ. Chem. Phys., vol. 3, p. 627, 1935. g, Int. National Critical Tables, vol. 3, p. 306, 1928. l, Baur. E., and Bruner, R., Hev. Chim. Acta, vol. 17, p. 958, 1934. m, Anderson, J. S., Journ. Chem. Soc. (London), vol. 141, 1943. h, Rev., vol. 55, p. 46, 1936. o, Langmuir, D. B., and Malter, L., Phys. Rev., vol. 55, p. 748, 1939. p, Fiske, M. D., Phys. Rev., vol. 30, p. 201, 1927. s, Jones, H. A., and Langmuir, I., Gen. Electric Rev., vol. 30, p. 354, 1927. r, Jones, H. A., Langmuir, I., and Mackay,

The vapor pressures on this page are in mmHg over a liquid phase unless distinguished by the subscript $_{a}$. They are generally means from various determinations.

°C -90 -57 -40 -30 -20 -10 0 + 5 10 15 20 30 40 50 60 70 80 90 110 120 130	Aceton C ₃ H ₆ C .0 1.2 116 185 283 422 612 860 1190 1860 2140 2800 3590 4550 5670	C ₃ H ₆ 22 6 {-50°	Camphor C ₁₀ H _{1e} O	Carbon bisulfide CS2	33 43 56 71 90 141 213 315 448 620 843 1120 1460 1880 2390 3000	Chloro- form CHCls 3 4.8 10 19 61.0 100 247 370 540 750 1025 1400 2130 2420 3900 4000	Ethane C ₂ H ₈ -100° 390 - 90° 700 - 80° 1180 - 75° 1500	Ethyl ether (4H100 - 101.3° - 0.58 - 60°) - 40°) - 186.1	Ethyl bromide C ₂ H ₆ Br	Turpentine C ₁₀ H ₆
140 150	6970	3500 4300	170	9100	3700 4500	6000 7300	• • •	160° \		
		4300		7100		7300	, • • •	15800 \ 180° \	• • •	• • •
200	• • •	• • •	625	• • •	10900	• • •		21800	• • •	• • •
	ylene H4	Glycerine C ₃ H ₈ O	°C	Iethane CH4		vl ether I ₃) ₂ O		Naphthalene C ₁₀ H ₈	e Ethvl Cs	chloride H₅Cl
-150 -190 -145 -135 -130 -120 -110 -103	14.9 45.6 26.7 74.4 117.2 260 519 792	118 .2 161 6.5 175 13 190 32 220 100 260 385	4 —18	0 119 5 212 0 353 5 559 0 848 5 1229	- 67 - 60 - 41.4 - 30.9 -241 0 25.4 49.75 80.1	78 120 326 524 782 2.52 3 6.05 11.2 22.1	atm " 1 " 1	0 .02 20 .06 50 .81 70 4.0 _s 80 10 90 13 00 20 10 29 20 43	-30 -20	110 188 302 465 691 1000 1400 2850 4980

(continued)

99.9

125.9

66

150 119

200 490

100 8720

32.1

51

								•	,	000
°C	Ammonia NH3	Carbon dioxide CO ₂	Ethyl iodide	Ethyl	Hydrogen sulfide	chloride	Nap- thalin	Sulfur dioxide SO ₂	Tol C ₁₀	
	•		C ₂ H ₅ I	acetate	H ₂ S	CH ₃ Cl	C ₁₀ H ₈	_	°C	
Ē0	atm	atm	mm	mm	mm	mm	mm	mm	_	mm
-50	.403	6.74	• • •		1216			86	-91.9	.002
-30	1.180	14.10		• • •	2840	579		286	-81.7	.005
-25	1.496	16.61	• • •		4100	718	• • •	379	—77.4	.007
-20	1.877	19.44	• • •	6.5	4100	883	• • •	474	-67.5	.020
-15	2.332	22.60	• • •	****	5720	1079		7.00	—57.7	.060
-10°	2.870	26.13	• • •	12.9	5720	1310		760	-38.0	.39
— 5	3.502	30.05	41.5	24.2	7750	1579	• • •	1155	-24.2	1.47
. 0	4.238	34.38	41.5	24.3	7750	1891		1155	- 2.9	5.72
+ 5	5.090	39.16	53.5	42.7	10200	2250	• • •	1714	0	6.86
10	6.068	44.41	68.6	42.7	10300	2660	• • •	1714	+15.0	16.8
15	7.188	50.17	100 5	72.0	1 4000	3134	• • •	2460	+25.8	28.7
20	8.458 9.896	56.50	108.5	72.8	14000	3667	• • •	2460	• • •	• • •
25		63.45	1676	110	17500	4267	• • •	2420		• • •
30	11.512	71.4	167.6	119	17500	4940	• • •	3420		• • •
35 40	13.321	(I.C.T.	250	106	22000	5700	• • •	4650	• • •	• • •
	15.339 17.580		250	186	22000	6650	• • •	4650		
45 50	20.060	1928)	262	202	27500	0510	• • •	6210		
60	25.80	• • •	362	282	27500	8510	• • •	6210		
70	32.69		510	415 596	40400	10900 14300	• • •	8150		
80	40.90	• • •	• • •					10540		
90	50.56	• • •	• • •	833 1130	• • •	16800	9.6	• • •		
100	61.82		• • •	1515	• • •	21000	13.0	27	0 -4	
100			• • •		• • •	25800	19.7		8 atm	
	Cragoe		<	200°		∫ 141°	∫200°	{150°	"	
	1920			15600		\53600	₹ 490	71.4		
									-	

TABLE 365.—VAPOR PRESSURE AT LOW TEMPERATURES

Many of the following values are extrapolations made by Langmuir by means of plots of log p against 1/T. 1 barye = 0.00000987 atm = 0.000750 mmHg.

Gas	°C	mmHg	Gas	°C	Baryes
O ₂	. —182.9	760	CO ₂	—148	100
N	-211.2	7.75		— 168	1
N ₂	. —195.8 —210.5	760 86		182 193	.01 .0001
CO		863	Ice		9.6
	-200	249		— 75	1.0
СН		79.8		- 89	.1
Α	-201.5	50.2 760		$-100 \\ -110$.01 .001
11	—194.2	300	Hg		3.7
C ₂ H ₄		.76	J	+ 20	1.6
	—188 —197	.076 .0076		$+\ ^{10}_{0}$.65 .25
		.0076		-10°	.087
C ₂ H ₆		7.6		-20	.029
	-180	.076		- 40	.0023
	—190 —198	.0076		— 78 —180	4.3×10^{-6} 2.3×10^{-24}
	198	.00076		-100	4.5 X 10

Temp. °C	0	1	2	3 Vapor	4 pressure	5 in mmHg	6 at 0°C	7	8	9
10 20 30	12.24 23.78 44.00 78.06	13.18 25.31 46.66 82.50	14.15 27.94 49.47 87.17	15.16 28.67 52.44 92.07	16.21 30.50 55.56 97.21	17.31 32.44 58.86 102.60	18.46 34.49 62.33 108.24	19.68 36.67 65.97 114.15	20.98 38.97 69.80 120.35	22.34 41.40 73.83 126.86
40 50 60 70	133.70 220.00 350.30 541.20	140.75 230.80 366.40 564.35	148.10 242.50 383.10 588.35	155.80 253.80 400.40 613.20	163.80 265.90 418.35 638.95	172.20 278.60 437.00 665.55	181.00 291.85 456.45 693.10	190.10 305.65 476.45 721.55	199.65 319.95 497.25 751.00	209.60 334.85 518.85 781.45

From the formula $\log p = a + b\alpha^t + c\beta^t$ Ramsay and Young obtain the following numbers:

Temp. °C	0	10	20	30 Vapo	40 r pressure	50 in mmHg	60 at 0°C	70	80	90
100 200	12.24 1692.3 22182.	23.73 2359.8 26825.	43.97 3223.0 32196.	78.11 4318.7 38389.	133.42 5686.6 45519.	219.82 7368.7	350.21 9409.9	540.91 11858.	811.81 14764.	1186.5 18185.

TABLE 367.—VAPOR PRESSURE OF METHYL ALCOHOL

. °C	0	1	2	3	4	5	6	7	8	9
Temp.				Vapor	r pressure	in mmHg	at 0°C			
0 10 20	29.97 53.8 94.0	31.6 57.0 99.2	33.6 60.3 104.7	35.6 63.8 110.4	37.8 67.5 116.5	40.2 71.4 122.7	42.6 75.5 129.3	45.2 79.8 136.2	47.9 84.3 143.4	50.8 89.0 151.0
30 40 50 60	158.9 259.4 409.4 624.3	167.1 271.9 427.7 650.0	175.7 285.0 446.6 676.5	184.7 298.5 466.3 703.8	194.1 312.6 486.6 732.0	203.9 327.3 507.7 761.1	214.1 342.5 529.5 791.1	224.7 358.3 552.0 822.0	235.8 374.7 575.3	247.4 391.7 599.4

TABLE 368.—VAPOR PRESSURE OF A NUMBER OF LIQUIDS (mmHg)

Carbon disulfide, chlorobenzene, bromobenzene, and aniline

Temp.	0	1	2	3	4	5	6	7	8	9
Ü				Ca	rbon dist	ulfide				
10 20 30 40	127.90 198.45 298.05 434.60 617.50	133.85 207.00 309.90 450.65 638.70	140.05 215.80 322.10 467.15 660.50	146.45 224.95 334.70 484.15 682.90	153.10 234.40 347.70 501.65 705.90	160.00 244.15 361.10 519.65 729.50	167.15 254.25 374.95 538.15 753.75	174.60 264.65 389.20 557.15 778.60	182.25 275.40 403.90 576.75 804.10	190.20 286.55 419.00 596.85 830.25
				С	hloroben:	zene				
20 30 40	8.65 14.95 25.10	9.14 15.77 26.38	9.66 16.63 27.72	10.21 17.53 29.12	10.79 18.47 30.58	11.40 19.45 32.10	12.04 20.48 33.69	12.71 21.56 35.35	13.42 22.69 37.08	14.17 23.87 38.88
50 60 70 80 90	40.75 64.20 97.90 144.80 208.35	42.69 67.06 101.95 150.30 215.80	44.72 70.03 106.10 156.05 223.45	46.84 73.11 110.41 161.95 231.30	49.05 76.30 114.85 168.00 239.35	51.35 79.60 119.45 174.25 247.70	53.74 83.02 124.20 181.70 256.20	56.22 86.56 129.10 187.30 265.00	58.79 90.22 134.15 194.10 274.00	61.45 94.00 139.40 201.15 283.25
100 110 120 130	292.75 402.55 542.80 718.95	302.50 415.10 558.70 738.65	312.50 427.95 575.05 758.80	322.80 441.15 591.70	333.35 454.65 608.75	344.15 468.50 626.15	355.15 482.65 643.95	366.65 497.20 662.15	378.30 512.05 680.75	390.25 527.25 699.65
				В	romoben					
40						12.40	13.06	13.75	14.47	15.22
50 60 70 80 90	16.00 26.10 41.40 63.90 96.00	16.82 27.36 43.28 66.64 99.84	17.68 28.68 45.24 69.48 103.80	18.58 30.06 47.28 72.42 107.88	19.52 31.50 49.40 75.46 112.08	20.50 33.00 51.60 78.60 116.40	21.52 34.56 53.88 81.84 120.86	22.59 36.18 56.25 85.20 125.46	23.71 37.86 58.71 88.68 130.20	24.88 39.60 61.26 92.28 135.08
100 110 120 130 140	140.10 198.70 274.90 372.65 495.80	145.26 205.48 283.65 383.75 509.70	150.57 212.44 292.60 395.10 523.90	156.03 219.58 301.75 406.70 538.40	161.64 226.90 311.15 418.60 553.20	167.40 234.40 320.80 430.75 568.35	173.32 242.10 330.70 443.20 583.85	179.41 250.00 340.80 455.90 599.65	185.67 258.10 351.15 468.90 615.75	192.10 266.40 361.80 482.20 632.25
150	649.05	666.25	683.80	701.65	719.95	738.55	757.55	776.95	796.70	816.90
					Aniline	2				
80 90	18.80 30.10	19.78 31.44	20.79 32.83	21.83 34.27	22.90 35.76	24.00 37.30	25.14 38.90	26.32 40.56	27.54 42.28	28.80 44.06
100 110 120 130 140	45.90 68.50 100.40 144.70 204.60	47.80 71.22 104.22 149.94 211.58	49.78 74.04 108.17 155.34 218.76	51.84 76.96 112.25 160.90 226.14	53.98 79.98 116.46 166.62 233.72	56.20 83.10 120.80 172.50 241.50	58.50 86.32 125.28 178.56 249.50	60.88 89.66 129.91 184.80 257.72	63.34 93.12 134.69 191.22 266.16	65.88 96.70 139.62 197.82 274.82
150 160 170 180	283.70 386.00 515.60 677.15	292.80 397.65 530.20 695.30	302.15 409.60 545.20 713.75	311.75 421.80 560.45 732.65	321.60 434.30 576.10 751.90	331.70 447.10 592.05 771.50	342.05 460.20 608.35	352.65 473.60 625.05	363.50 487.25 642.05	374.60 501.25 659.45

TABLE 368.—VAPOR PRESSURE OF A NUMBER OF LIQUIDS (mmHg) (concluded)

Methyl salicylate, bromonaphthalene, and mercury

T				Me	thyl salid	cylate				
Temp. °C 70 80	2.40 4.60 7.80	1 2.58 4.87 8.20	2 2.77 5.15 8.62	3 2.97 5.44 9.06	3.18 5.74 9.52	5 3.40 6.05 9.95	3.62 6.37 10.44	3.85 6.70 10.95	8 4.09 7.05 11.48	9 4.34 7.42 12.03
90 100 110 120 130 140	12.60 19.80 30.25 45.30 66.55	13.20 20.68 31.52 47.12 69.08	13.82 21.60 32.84 49.01 71.69	14.47 22.55 34.21 50.96 74.38	15.15 23.53 35.63 52.97 77.15	15.85 24.55 37.10 55.05 80.00	16.58 25.61 38.67 57.20 82.94	17.34 26.71 40.24 59.43 85.97	18.13 27.85 41.84 61.73 89.09	18.95 29.03 43.54 64.10 92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168.19	173.56	179.06
170	184.70	190.48	196.41	202.49	208.72	215.10	221.65	228.30	235.15	242.15
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304.48	313.05	321.85
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399.60	410.30	421.20
200 210 220	432.35 557.50 710.10	443.75 571.45 727.05	455.35 585.70 744.35	467.25 600.25 761.90	479.35 615.05 779.85	491.70 630.15 798.10	504.35 645.55	517.25 661.25	530.40 677.25	543.80 693.60
				Bro	monapht	halene				
110	3.60	3.74	3.89	4.05	4.22	4.40	4.59	4.79	5.00	5.22
120	5.45	5.70	5.96	6.23	6.51	6.80	7.10	7.42	7.76	8.12
130	8.50	8.89	9.29	9.71	10.15	10.60	11.07	11.56	12.07	12.60
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03
150	19.80	20.59	21.41	22.25	23.11	24.00	24.92	25.86	26.83	27.83
160	28.85	29.90	30.98	32.09	33.23	34.40	35.60	36.83	38.10	39.41
170	40.75	42.12	43.53	44.99	46.50	48.05	49.64	51.28	52.96	54.68
180	56.45	58.27	60.14	62.04	64.06	66.10	68.19	70.34	72.55	74.82
190	77.15	79.54	81.99	84.51	87.10	89.75	92.47	95.26	98.12	101.05
200	104.05	107.12	110.27	113.50	116.81	120.20	123.67	127.22	130.86	134.59
210	138.40	142.30	146.29	150.38	154.57	158.85	163.25	167.70	172.30	176.95
220	181.75	186.65	191.65	196.75	202.00	207.35	212.80	218.40	224.15	230.00
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95
240	303.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	377.30
250 260 270	386.35	395.60	405.05	414.65	424.45	434.45	444.65	455.00	465.60	476.35
	487.35	498.55	509.90	521.50	533.35	545.35	557.60	570.05	582.70	595.60
	608.75	622.10	635.70	649.50	663.55	677.85	692.40	707.15	722.15	737.45
					Mercur	-				
270	123.92	126.97	130.08	133.26	136.50	139.81	143.18	146.61	150.12	153.70
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	189.30	193.63
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	304.93	311.30	317.78	324.37	331.08	337.89	344.81	351.85	359.00	366.28
320	373.67	381.18	388.81	396.56	404.43	412.44	420.58	428.83	437.22	445.75
330	454.41	463.20	472.12	481.19	490.40	499.74	509.22	518.85	528 63	538.56
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36
350 360	658.03 784.31	669.86	681.86	694.04	706.40	718.94	731.65	744.54	757.61	770.87

TABLE 369.—VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gram-molecules of the salt in a liter of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 cmHg.

Nulstance	peractare or bonning	water	under 7	cilling.						
AICL. 22.5 61.0 179.0 318.0 BaS,OO .66 15.4 34.4 Ba(OH) 12.3 22.5 39.0 Ba(ClO ₂): 15.8 33.3 70.5 108.2 BaCL: 16.4 36.7 77.6 BaBr: 16.8 38.8 91.4 150.0 204.7 CaCs,O. 9.9 23.0 56.0 106.0 Ca(NO ₂): 16.4 34.8 74.6 139.3 161.7 205.4 CaCl: 17.0 39.8 95.3 166.6 241.5 319.5 CaBr: 17.7 44.2 105.8 191.0 283.3 368.5 CdSOO .41 8.9 18.1 Cdl: 7.6 14.8 33.5 52.7 CdBr: 8.6 17.8 36.7 55.7 80.0 Cd(NO ₂): 15.9 36.1 78.0 122.2 Cd(ClO ₂): 15.5 10.7 22.9 45.5 CoCl: 15.0 34.8 83.0 136.0 186.4 Co(NO ₂): 17.3 39.2 89.0 152.0 218.7 282.0 332.0 FeSOO. 5.8 10.7 24.0 42.4 H.BO. 6.0 12.3 25.1 38.0 51.0 H.PO. 6.6 14.0 28.6 45.2 60.0 H.PO. 6.6 12.3 25.1 38.0 51.0 H.PO. 6.6 12.3 25.1 38.0 51.0 H.PO. 6.6 12.3 25.1 38.0 51.0 H.PO. 10.2 19.5 33.3 47.8 60.5 73.1 85.2 KH.PO. 10.2 19.5 33.3 47.8 60.5 73.1 85.2 KH.PO. 10.3 21.1 40.1 57.6 74.5 88.2 102.1 126.3 148.0 KNO ₃ 10.3 21.1 40.1 57.6 74.5 88.2 102.1 126.3 148.0 KNO ₃ 10.3 21.1 40.1 57.6 74.5 88.2 102.1 126.3 148.0 KNO ₃ 10.3 21.1 40.1 57.6 74.5 88.2 102.1 126.3 148.0 KNO ₃ 10.1 11.5 22.3 KCI 12.2 244 48.8 74.1 100.9 128.5 152.2 KHCO ₃ 10.9 22.4 45.0 KHSO ₄ 10.9 22.9 44.5 60.5 73.1 85.2 KHCO ₄ 11.5 22.3 KC 1 12.2 24.4 48.8 74.1 100.9 128.5 152.2 KHCO ₄ 11.5 22.3 KC 1 12.2 25.9 55.7 88.9 12.2 155.1 188.0 253.4 39.2 KHSO ₄ 10.9 21.9 43.3 65.3 85.5 107.8 129.2 170.0 88.0 KHSO ₄ 10.9 22.9 56.0 60.0 LINO ₅ 12.2 25.9 55.7 88.9 12.2 155.1 188.0 253.4 39.2 KIL 12.5 25.3 52.2 82.6 112.2 141.5 171.8 225.5 278.5 KLCO ₆ 13.9 28.3 59.8 94.2 131.0 188.3 23.0 39.5 387.8 KILINO ₅ 12.2 25.9 55.7 88.9 122.2 155.1 188.0 253.4 39.2 LIHSO ₆ 12.8 27.0 57.0 93.0 130.0 168.0 LIHSO ₆ 13.6 28.				2.0	3.0	4.0	5.0	6.0	8.0	10.0
Ba(ClO ₁): 12.3 22.5 39.0 Ba(ClO ₂): 13.5 27.0 Ba(ClO ₃): 15.8 33.3 70.5 108.2 BaCl: 16.4 36.7 77.6 BaBr. 16.8 38.8 91.4 150.0 204.7 CaS ₂ O.9 9.9 23.0 56.0 106.0 Ca(NO ₃): 16.4 34.8 74.6 139.3 161.7 205.4 CaCl: 17.0 39.8 95.3 166.6 28.3 368.5 CdS ₂ 17.7 44.2 105.8 191.0 283.3 368.5 CdS ₂ 17.7 44.2 105.8 191.0 283.3 368.5 CdS ₂ 17.7 44.2 105.8 191.0 283.3 368.5 CdS ₃ 4.1 8.9 18.1 CdI ₁ 7.6 14.8 33.5 52.7 CdBr ₁ 8.6 17.8 36.7 55.7 80.0 CdCl ₂ 9.9 6 18.8 36.7 55.7 80.0 CdCl ₃ 9.9 6 18.8 36.7 55.7 80.0 CdCl ₃ 9.9 6 18.8 36.7 55.7 80.0 CdCl ₃ 15.9 36.1 78.0 122.2 CdCl ₄ 15.0 34.8 83.0 136.0 186.4 CoC ₁ 15.0 34.8 83.0 136.0 186.4 CoC ₁ 15.0 34.8 83.0 136.0 186.4 CoC ₁ 15.0 34.8 83.0 136.0 186.4 Co(NO ₃): 17.3 39.2 89.0 152.0 218.7 282.0 332.0 FeSO ₄ 5.8 10.7 24.0 42.4 H ₃ BO ₃ 6.0 6.0 12.3 25.1 38.0 51.0 H ₃ PO ₄ 6.6 6.0 12.3 25.1 38.0 51.0 H ₃ PO ₄ 6.6 6.0 12.3 32.1 38.0 51.0 H ₃ PO ₄ 6.6 6.0 12.3 32.1 38.0 51.0 H ₃ PO ₄ 6.6 6.1 2.3 32.1 38.0 51.0 H ₃ PO ₄ 10.2 19.5 33.3 47.8 60.5 73.1 85.2 KNO ₄ 10.2 19.5 33.3 47.8 60.5 73.1 85.2 KNO ₅ 10.2 19.5 33.3 47.8 60.5 73.1 85.2 KNO ₆ 10.2 19.5 33.3 47.8 60.5 73.1 85.2 KNO ₆ 10.2 19.5 33.3 47.8 60.5 73.1 85.2 KNO ₆ 10.9 22.4 45.0 KHSO ₄ 10.9 22.4 45.0 KHSO ₄ 10.9 22.4 45.0 KHSO ₄ 11.1 22.8 44.8 67.0 90.0 110.5 130.7 167.0 198.8 KClO ₆ 11.5 22.3 KClO ₆ 11.6 23.6 59.0 77.6 104.2 132.0 160.0 210.0 255.0 KI 12.2 24.4 48.8 74.1 100.9 128.5 152.2 KHCO ₆ 11.1 22.8 44.8 8.74.1 100.9 128.5 152.2 KHCO ₆ 11.1 22.8 5.5 57.1 95.0 132.5 175.5 219.5 311.5 393.5 K ₂ CO ₆ 14.4 31.0 68.3 105.5 152.0 209.0 258.8 350.0 K ₃ CO ₆ 11.4 31.0 68.3 105.5 152.0 209.0 258.8 350.0 K ₃ CO ₆ 11.4 31.0 68.3 105.5 152.0 209.0 258.8 350.0 K ₄ CO ₆ 16.2 20.5 60.0 LiNO ₅ 12.2 25.5 60.0 LiNO ₅ 12.2 25.5 60.0 LiNO ₅ 12.2 25.5 60.0 LiNO ₅ 12.2 25.6 60.0 97.0 140.0 181.8 233.0 30.5 387.8 K ₄ CCO ₆ 16.4 32.6 64.7 105.0 140.0 181.5 231.5 341.5 341.5 341.5 341.5 138.0 11.5 341.5 341.5 341.5 341.5 341.5 341.5 341.5 341	AlCl ₃				318.0					
BaCls 16.4 36.7 77.6 BaBrs 16.8 38.8 91.4 150.0 204.7 CaS,O2 9.9 23.0 56.0 106.0 Ca(NO2)2 16.4 34.8 74.6 139.3 161.7 205.4 CaCls 17.0 39.8 95.3 166.6 241.5 319.5 CdSO4 41 8.9 18.1 18.1 18.1 18.1 CdSO4 41 8.9 18.3 36.7 55.7 80.0 CdCl1 9.6 18.8 36.7 75.0 77.3 99.0 CdCl2 9.6 18.8 36.7 75.7 80.0 CdCl2 9.6 18.8 36.7 77.3 99.0 CdCl3 9.6 18.8 36.7 77.3 99.0 CdCl2 9.6 18.8 38.0 136.0 186.4 CoCl3 15.0 34.8 83.0 136.0 186.4 <	Ba(OH) ₂			39.0						
BaBr	Ba(ClO ₃) ₂				108.2					
Ca(NO ₂) ₂ 16.4 34.8 74.6 139.3 161.7 205.4 CaCl ₂ 17.0 39.8 95.3 166.6 241.5 319.5 CaBr ₂ 17.7 44.2 105.8 191.0 283.3 368.5 CdSO ₄ 4.1 8.9 18.1 CdI ₂ 7.6 14.8 33.5 52.7 80.0 CdCl ₃ 8.6 17.8 36.7 55.7 80.0 CdCl ₄ 9.6 18.8 36.7 55.7 80.0 CdCl ₂ 9.6 18.8 36.7 78.0 122.2 Cd(ClO ₃) ₂ 15.5 15.5 10.7 22.9 45.5 CoCl ₂ 15.0 34.8 83.0 136.0 186.4 Co(NO ₃) ₂ 17.5 CoSO ₄ 5.5 10.7 22.9 45.5 CoCl ₂ 15.0 34.8 83.0 136.0 186.4 Co(NO ₃) ₂ 17.3 39.2 89.0 152.0 218.7 282.0 332.0 FeSO ₄ 5.8 10.7 24.0 42.4 H ₃ BO ₃ 6.0 12.3 25.1 38.0 51.0 H ₃ PO ₄ 6.6 14.0 28.6 45.2 62.0 81.5 103.0 146.9 189.5 H ₃ ASO ₄ 7.3 15.0 30.2 46.4 64.9 49.4 49.4 A ₃ ASO ₄ 7.3 15.0 30.2 46.4 64.9 49.4 A ₄ ASO ₄ 7.3 15.0 30.2 46.4 64.9 189.5 K ₁ PO ₂ 10.2 19.5 33.3 47.8 60.5 73.1 85.2 K ₁ PO ₂ 10.6 21.6 42.8 62.1 80.0 10.2 19.5 33.3 47.8 60.5 73.1 85.2 K ₁ NO ₃ 10.3 21.1 40.1 57.6 74.5 88.2 102.1 126.3 148.0 K ₂ CO ₃ 10.6 21.6 42.8 62.1 80.0 10.5 10.6 21.6 42.8 62.1 80.0 10.5 10.6 21.6 42.8 62.1 80.0 10.5 10.5 130.7 167.0 198.8 K ₂ CO ₃ 10.9 22.4 45.0 10.9 22.4 45.0 10.9 11.5 22.3 K ₁ CO ₃ 10.9 22.4 45.0 11.5 22.3 K ₁ CO ₃ 11.1 22.2 24.4 48.8 74.1 100.9 128.5 152.2 K ₂ CO ₃ 11.1 22.2 24.4 48.8 74.1 100.9 128.5 152.2 K ₃ CO ₃ 11.1 22.2 24.4 48.8 74.1 100.9 128.5 152.2 K ₄ CO ₃ 11.6 23.6 59.0 77.6 104.2 132.0 160.0 210.0 255.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.0 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.0 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.0 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.5 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.5 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.5 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.5 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.5 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.5 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.5 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.5 209.0 258.8 350.0 K ₃ CO ₃ 14.4 31.0 68.3 105.5 152.5 209.0 258.8 350.0 K ₃ CO ₃ 14.5 34.5 56.8 89.0 122.2 155.1 188.0	BaBr ₂	16.8	38.8	91.4		204.7				
CaBr _p 177 44.2 105.8 191.0 283.3 368.5 CdSO ₄ 4.1 8.9 18.1 CdL 7.6 14.8 33.5 52.7 CdBr 8.6 17.8 36.7 55.7 80.0 80 80 18.8 36.7 55.7 80.0 80 80 18.8 36.7 55.7 80.0 80.0 80.0 18.8 36.7 57.0 77.3 99.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>161.7</td> <td>205.4</td> <td></td> <td></td> <td></td>						161.7	205.4			
CdSO ₄ 4.1 8.9 18.1 CdI ₂ 7.6 14.8 33.5 52.7 80.0 CdCI ₃ 8.6 17.8 36.7 55.7 80.0 CdCI ₃ 9.6 18.8 36.7 55.7 80.0 CdCI ₃ 15.9 36.1 78.0 122.2 CoSO ₄ 5.5 10.7 22.9 45.5 CoCl ₂ 15.0 34.8 83.0 136.0 186.4 Co(NO ₃) ₂ 17.3 39.2 89.0 152.0 218.7 282.0 332.0 FeSO ₄ 5.8 10.7 24.0 42.4 41.4										
CdBr ₂ 8.6 17.8 36.7 55.7 80.0 CdCl ₂ 9.6 18.8 36.7 57.0 77.3 99.0 Cd(NO ₃) ₂ 15.9 36.1 78.0 122.2 Cd(ClO ₃) ₂ 17.5 22.9 45.5 CoCl ₂ 15.0 34.8 83.0 136.0 186.4 Co(NO ₃) ₂ 17.3 39.2 89.0 152.0 218.7 282.0 332.0 FeSO ₄ 5.8 10.7 24.0 42.4 41.80 36.0 12.3 25.1 38.0 51.0 H ₃ BO ₃ 6.0 12.3 25.1 38.0 51.0 41.6	CdSO ₄	4.1	8.9	18.1		200.0	300.3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						80.0				
Cd(ClO ₃) ₂ 17.5 CoSO ₄ 5.5 10.7 22.9 45.5 CoCl ₂ 15.0 34.8 83.0 136.0 186.4 Co(NO ₃) ₂ 17.3 39.2 89.0 152.0 218.7 282.0 332.0 FeSO ₄ 5.8 10.7 24.0 42.4 H ₃ BO ₃ 6.0 12.3 25.1 38.0 51.0 H ₃ PO ₄ 6.6 14.0 28.6 45.2 62.0 81.5 103.0 146.9 189.5 H ₃ SO ₄ 7.3 15.0 30.2 46.4 64.9 H ₄ SO ₄ 10.2 19.5 33.3 47.8 60.5 73.1 85.2 KN ₃ Co ₄ 10.3 21.1 40.1 57.6 74.5 88.2 102.1 126.3 148.0 KClO ₃ 10.6 21.6 42.8 62.1 80.0 KBrO ₃ 10.9 22.4 45.0 KHSO ₄ 10.9 21.9 43.3 65.3 85.5 107.8 129.2 170.0 KNO ₂ 11.1 22.8 44.8 67.0 90.0 110.5 130.7 167.0 198.8 KClO ₄ 11.5 22.3 KClO ₄ 11.5 22.3 KClO ₄ 11.6 23.6 59.0 77.6 104.2 132.0 160.0 210.0 255.0 KI 12.2 24.4 48.8 74.1 100.9 128.5 152.2 KHCO ₅ 11.6 23.6 59.0 77.6 104.2 132.0 160.0 210.0 255.0 KI 12.2 24.4 48.8 74.1 100.9 128.5 152.2 KHCO ₅ 11.6 23.6 59.0 77.6 104.2 132.0 160.0 210.0 255.0 KI 12.2 24.4 48.8 74.1 100.9 128.5 152.2 KHCO ₅ 11.6 23.6 59.0 77.6 104.2 132.0 160.0 210.0 255.0 KI 12.2 25.3 52.2 82.6 112.2 141.5 171.8 225.5 278.5 K ₃ C ₃ C ₄ 13.9 28.3 59.8 94.2 131.0 K ₃ WO ₄ 13.9 33.0 75.0 123.8 175.4 226.4 K ₃ CO ₅ 14.4 31.0 68.3 105.5 152.0 209.0 258.8 350.0 KOH 15.0 29.5 64.0 99.2 140.0 181.8 223.0 309.5 387.8 K ₄ CrO ₄ 16.2 29.5 60.0 LiNO ₃ 12.2 25.9 55.7 88.9 122.2 155.1 188.0 253.4 309.2 LiGl 12.1 25.5 57.1 95.0 132.5 175.5 219.5 311.5 393.5 Li ₂ SO ₄ 13.3 28.1 56.8 89.0 LiHSO ₄ 12.8 27.0 57.0 93.0 130.0 168.0 LiHSO ₄ 15.9 37.4 78.1 Li ₂ CrO ₄ 16.4 32.6 74.0 120.0 171.0	$CdCl_2$ $Cd(NO_3)_2$					77.3	99.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Cd(ClO_3)_2 \dots$	5.5			45.5					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FeSO ₄	5.8	10.7	24.0	42.4		282.0	332.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H₃PO₁	6.6	14.0	28.6	45.2	62.0	81.5	103.0	146.9	189.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							100.4	2470	242.0	
KCIO2 10.6 21.6 42.8 62.1 80.0 KBrO3 10.9 22.4 45.0 80.0 KHSO4 10.9 21.9 43.3 65.3 85.5 107.8 129.2 170.0 KNO2 11.1 22.8 44.8 67.0 90.0 110.5 130.7 167.0 198.8 KCIO4 11.5 22.3 44.8 74.1 100.9 128.5 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.2 152.0	KH₂PO₁	10.2	19.5	33.3	47.8	60.5	73:1	85.2		140.0
KHSO ₄ 10.9 21.9 43.3 65.3 85.5 107.8 129.2 170.0 KNO ₂ 11.1 22.8 44.8 67.0 90.0 110.5 130.7 167.0 198.8 KClO ₄ 11.5 22.3 KCl 12.2 24.4 48.8 74.1 100.9 128.5 152.2 KHCO ₃ 11.6 23.6 59.0 77.6 104.2 132.0 160.0 210.0 255.0 KI 12.5 25.3 52.2 82.6 112.2 141.5 171.8 225.5 278.5 K ₂ C ₂ O ₄ 13.9 28.3 59.8 94.2 131.0 K ₂ WO ₄ 13.9 33.0 75.0 123.8 175.4 226.4 K ₂ CO ₂ 14.4 31.0 68.3 105.5 152.0 209.0 258.8 350.0 KOH 15.0 29.5 64.0 99.2 140.0 181.8 223.0 309.5 387.8 K ₂ CrO ₄ 16.2 29.5 55.7 88.9 122.2 <td< td=""><td>KClO₃</td><td>10.6</td><td>21.6</td><td>42.8</td><td></td><td></td><td>00.2</td><td>102.1</td><td>120.3</td><td>140.0</td></td<>	KClO₃	10.6	21.6	42.8			00.2	102.1	120.3	140.0
KNO2 11.1 22.8 44.8 67.0 90.0 110.5 130.7 167.0 198.8 KCIO4 11.5 22.3 44.8 74.1 100.9 128.5 152.2 KCI 12.2 24.4 48.8 74.1 100.9 128.5 152.2 KHCO3 11.6 23.6 59.0 77.6 104.2 132.0 160.0 210.0 255.0 KI 12.5 25.3 52.2 82.6 112.2 141.5 171.8 225.5 278.5 K2CO4 13.9 28.3 59.8 94.2 131.0 225.5 278.5 K2CO3 14.4 31.0 68.3 105.5 152.0 209.0 258.8 350.0 350.0 87.8 K2CrO4 16.2 29.5 60.0 99.2 140.0 181.8 223.0 309.5 387.8 K2CrO4 16.2 29.5 60.0 97.0 140.0 181.8 223.0 309.5 387.8 LiBr 12.2 25.5 57.1 95.0 <td< td=""><td></td><td></td><td></td><td></td><td>65.3</td><td>85.5</td><td>107.8</td><td>129.2</td><td>170.0</td><td></td></td<>					65.3	85.5	107.8	129.2	170.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KNO ₂	11.1	22.8							198.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KCI								210.0	255.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							141.5			278.5.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$K_2C_2O_4$ K_2WO_4	13.9 13.9	33.0	75.0	123.8	175.4		0.00		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										387.8
LiCl 12.1 25.5 57.1 95.0 132.5 175.5 219.5 311.5 393.5 LiBr 12.2 26.2 60.0 97.0 140.0 186.3 241.5 341.5 438.0 LigsO4 13.3 28.1 56.8 89.0 LiHSO4 12.8 27.0 57.0 93.0 130.0 168.0 LiI 13.6 28.6 64.7 105.2 154.5 206.0 264.0 357.0 445.0 LigSiFe 15.4 34.0 70.0 106.0					88.0	122.2	155 1	1800	252 1	300.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LiCl	12.1	25.5	57.1	95.0	132.5	175.5	219.5	311.5	393.5
LiI 13.6 28.6 64.7 105.2 154.5 206.0 264.0 357.0 445.0 Li ₂ SiF _e 15.4 34.0 70.0 106.0 LiOH 15.9 37.4 78.1 Li ₂ CrO ₄ 16.4 32.6 74.0 120.0 171.0	Li ₂ SO ₄					140.0	100.3	241.3	341.3	430.0
Li ₂ SiF ₆ 15.4 34.0 70.0 106.0 LiOH 15.9 37.4 78.1 Li ₂ CrO ₄ 16.4 32.6 74.0 120.0 171.0			27.0 28.6					264.0	357.0	445.0
Li ₂ CrO ₄ 16.4 32.6 74.0 120.0 171.0	Li ₂ SiF ₆	15.4	34.0	70.0		10	200.0	201.0	307.0	110.0
				74.0						

TABLE 369.—VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER (concluded)

			(co	ncluded)				
Substance MgSO ₄	0.5 6.5	1.0 12.0	2.0 24.5	3.0 47.5	4.0	5.0	6.0	8.0	10.0
$MgCl_2$	16.8 17.6	39.0 42.0	100.5 101.0	183.3 174.8	277.0	377.0			
$MgBr_2$ $MgH_2(SO_4)_2$	17.9 18.3	44.0 46.0	115.8 116.0	205.3	298.5				
MnSO ₄	6.0 15.0	10.5 34.0	21.0 76.0	122.3	167.0	209.0			
MnCl ₂ NaH ₂ PO ₄	10.5	20.0	36.5	51.7	66.8	82.0	96.5	126.7	157.1
NaHSO ₄ NaNO ₃	10.9 10.6	22.1 22.5	47.3 46.2	75.0 68.1	100.2 90.3	126.1 111.5	148.5 131.7	189.7 167.8	231.4 198.8
NaClO ₃ (NaPO ₃) ₆	10.5 11.6	23.0	48.4	73.5	98.5	123.3	147.5	196.5	223.5
NaOH NaNO ₂	11.8 11.6	22.8 24.4	48.2 50.0	77.3 75.0	107.5 98.2	139.1 122.5	172.5 146.5	243.3 189.0	314.0 226.2
Na ₂ HPO ₄	12.1	23.5	43.0	60.0	78.7	99.8	122.1	102.0	220.2
NaHCO ₃ Na ₂ SO ₄	12.9 12.6	24.1 25.0	48.2 48.9	77.6 74.2	102.2	127.8	152.0	198.0	239.4
NaCl NaBrO ₃	12.3 12.1	25.2 25.0	52.1 54.1	80.0 81.3	111.0 108.8	143.0 136.0	176.5		
NaBr	12.6	25.9	57.0	89.2	124.2	159.5	197.5	268.0	
NaI	12.1 13.2	25.6 22.0	60.2	99.5	136.7	177.5	221.0	301.5	370.0
Na ₂ CO ₃	14.3 14.5	27.3 30.0	53.5 65.8	80.2 105.8	111.0 146.0				
Na ₂ C ₂ O ₄ Na ₂ WO ₄	14.8	33.6	71.6	115.7	162.6				
Na ₃ PO ₄	16.5	30.0	52.5						
(NaPO₃)₃ NH₄NO₃	17.1 12.8	36.5 22.0	42.1	62.7	82.9	103.8	121.0	152.2	180.0
(NH ₄) ₂ SiF ₆ NH ₄ Cl	11.5 12.0	25.0 23.7	44.5 45.1	69.3	94.2	118.5	138.2	179.0	213.8
NH ₄ HSO ₄	11.5	22.0	46.8	71.0	94.5	118.	139.0	181.2	218.0
(NH ₄) ₂ SO ₄ NH ₄ Br	11.0 11.9	24.0 23.9	46.5 48.8	69.5 74.1	93.0 99.4	117.0 121.5	141.8 145.5	190.2	228.5
NH4I NiSO4	12.9 5.0	25.1 10.2	49.8 21.5	78.5	104.5	132.3	156.0	200.0	243.5
NiCl ₂	16.1	37.0	86.7 91.3	147.0 156.2	212.8 235.0				
$Ni(NO_3)_2$ $Pb(NO_3)_2$	16.1 12.3	37.3 23.5	45.0	63.0	235.0				
$Sr(SO_3)_2 \dots Sr(NO_3)_2 \dots$	7.2 15.8	20.3 31.0	47.0 64.0	97.4	131.4				
SrCl ₂	16.8	38.8	91.4	156.8	223.3	281.5			
SrBr ₂ ZnSO ₄	17.8 4.9	42.0 10.4	101.1 21.5	179.0 42.1	267.0 66.2	4.50.0	1076		
$ZnCl_2 \dots Zn(NO_3)_2 \dots$	9.2 16.6	18.7 39.0	46.2 93.5	75.0 157.5	107.0 223.8	153.0	195.0		

TABLES 370-406.—VARIOUS ELECTRICAL CHARACTERISTICS OF MATERIALS

The fundamental electrical and magnetic definitions and the values of the practical units of current, voltage, and other electrical quantities, have been given (Tables 2-5). Some data will now be presented on electrical characteristics of various materials.

TABLE 370.—THE EFFECT OF ELECTRIC CURRENT ON THE HUMAN BODY 189a

Some thought must be given to the electrical characteristics of the human body, since careless handling of electric circuits is very dangerous. The regular 120-volt circuit is dangerous, and any voltage above this increases the hazard. No bare contacts should be permitted where anyone might come in contact with them.

	AC (60 cycles) DC
Threshold of perception	1 ma 5 ma
muscular decontrol	15<70
danger to life	
fibrillation (almost certain death)	100

Since the resistance of the human body for direct current (hand to foot or hand to hand), neglecting the contact resistance, is 5,000-10,000 ohms, good contact with electric circuits must be avoided. For alternating current the resistance is much lower.

^{138a} Cromwell, J. C., Origins and prevention of laboratory accidents, 1950; Bell Laboratories Rec., p. 318, June 1936; Johns Hopkins University, Report of Electrician, November 1934; Journ. Franklin Inst., vol. 215, p. 1, 1933.

TABLE 371.—TRIBOELECTRICITY

Part 1.-The tribo-electric series

The following table is so arranged that any material in the list becomes positively electrified when rubbed by one lower in the list. The phenomenom depends upon surface conditions and circumstances may alter the relative positions in the list.

2	Asbestos (sheet). Rabbit's fur, hair (Hg).	13 Silk. 14 Al, Mn, Zn, Cd, Cr, felt,	24 Amber. 25 Slate, chrome-alum.
	Glass (combn. tubing). Vitreous silica, oppossum's	hand, wash-leather.	26 Shellac, resin, sealing-wax. 27 Ebonite.
7	fur.	15 Filter paper. 16 Vulcanized fiber.	28 Co, Ni, Sn, Cu, As, Bi,
5	Glass (fusn.).	17 Cotton.	Sh, Ag, Pd, C, Te,
	Mica.	18 Magnalium	Eureka, straw, copper
7	Wool.	19 K-alum, rock-salt, satin	sulfate, brass.
8	Glass (pol.), quartz (pol.),	spar.	29 Para rubber, iron alum.
	glazed porcelain.	20 Woods, Fe.	30 Guttapercha.
	Glass (broken edge), ivory.	21 Unglazed porcelain, sal-	31 Sulfur.
	Calcite.	ammoniac.	32 Pt. Ag. Au.
	Cat's fur.	22 K-bichromate, paraffin,	33 Celluloid.
12	Ca, Mg, Pb, fluorspar,	tinned-Fe.	34 Indiarubber.
	borax.	23 Cork, ebony.	

Part 2.—Triboelectric series in voltage of a number of metals as compared with silica (as O) 180

¹⁸⁹ Shaw, P. E., and Leavey, E. W. L., Proc. Roy. Soc., vol. 138, p. 506, 1932.

+1.699.

Solids with liquids and liquids with liquids in air

Temperature of substances during experiment about 16°C

	С	Cu	Fe	Pb				.\malg. Zn		Distilled water
H_2O	.01 to	.269 to .100	.148	.171	.285 to .345	.177	\[\to \ \to \\ \to \ \to \to	.100	.231	
Alum. sat.sol CuSO ₄ sol.		—.127	653	139	.246	—.225	(+.156 536		.014	
sp.gr. 1.087 CuSO ₄ sat.sol		.103 .070	• • •							
Sea salt sol. 1.18 at 20°C NH ₄ Cl, sat.sol				i89					435 348	
ZnSO ₄ sol. 1.125 at 4°C		570	032	107	.039		238		540	
ZnSO₄ sat.sol One part H₂O +	• • •	• • •					430	—.284	• • •	
3, sat. ZnSO₄ Strong H₂SO₄ in water:	• • •		• • •	• • • •		• • •	—.444	• • •	• • •	•••
1 to 20 by wt	about	• • •			• • • •		344			
1 to 5 by wt	035							358 .429		
5 to 1 by wt	.01 to 3.0			120		—.25			— .016	
Con. H ₂ SO ₄	.55 to	1.113		$\begin{cases} .72 \\ to \\ 1.252 \end{cases}$	1.3 to			.848		1.298
Con. HNO ₃	.85			(1.252	1.6 .672					• • •

Mercurous sulfate paste, Hg, + .475. Sat.CuSO₄sol., H₂O, - .043; sat.ZnSO₄sol., + .095; 1 pt. H_2O , 3 pt. $ZnSO_4 + .102$. Concentrated H_2SO_4 , H_2O , + 1.298; sat.alum.sol., + 1.456; $CnSO_4sat. +$ 1.269; $ZnSO_4sat.sol.$,

TABLE 373.—THERMAL ELECTROMOTIVE FORCE OF ALUMINUM VERSUS PLATINUM 140

Temperature versus emf

°C	mv	°C	mv	°C	mv
0	.000	240	1.374	480	3.703
20	+.062	260	1.538	500	3.931
40	.135	280	1.708	520	4.164
60	.218	300	1.884	540	4,403
80	.312	320	2.065	560	4.647
100	.416	340	2.252	580	4.896
120	.529	360	2.444	600	5.150
140	.651	380	2.641	620	5.409
160	.781	400	2.843	640	5.673
180	.919	420	3.050	660	5.942
200	1.064	440	3.262		
220	1.216	460	3.480		

¹⁴⁰ Nat. Bur. Standards Circ. 346, 1927.

^{*} Everett, Units and physical constants: Table of Ayrton and Perry's results, prepared by Ayrton.

TABLE 374.—COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but, with the exception of the standard cells, all of them are subject to considerable variation.

Part 1.- Double fluid cells

Name of cell	Negative pole	Solution	Positive pole	Solution	emf in volts
Bunsen	Amalg. Zn	1,H ₂ SO ₄ ;12,H ₂ O	C	Fuming HNO ₃	1.94
44	" "	1,112001,12,1120	"	HNO ₃ ; dens. 1.38	1.86
Chromate	" "	12,K ₂ Cr ₂ O ₇ ; 25,H ₂ SO ₄ ; 100,H ₂ O	44	1,H ₂ SO ₄ ; 12,H ₂ O	2.00
"	"	1.H ₂ SO ₄ : 12.H ₂ O	46	12, K ₂ Cr ₂ O ₇ : 100, H ₂ O	2.03
Daniell	46 46	1,H ₂ SO ₄ : 4,H ₂ O	Cu	Sat.sol.CuSO ₄ ;5,H ₂ O	
44	46 46	1,H ₂ SO ₄ : 12,H ₂ O	cu "	341.301.643.04,3,1120	1.09
"	"	5% sol.ZnSO ₄ :6H ₂ O	44	**	1.08
44	44 46	1NaCl; 4 parts H ₂ O	4.6	44	1.05
Grove	44 44	1H ₂ SO ₄ ; 12H ₂ O	Pt	Fuming HNO ₃	1.93
31010	66 66	Sol.ZnSO ₄	- "	HNO ₃ ; dens. 1.33	1.66
44	64 66	H₂SO₄ sol. ; dens. 1.136	44	Concent. HNO ₃	1.93
44	44 44	H ₂ SO ₄ ; dens. 1.136	66	HNO ₃ ; dens. 1.33	1.79
44	"	H ₂ SO ₄ sol. ; dens. 1.14	66	HNO ₃ ; dens. 1.19	1.66
44	66 66	H ₂ SO ₄ sol.; dens. 1.06	44	" " " "	1.61
44	"	NaCl sol.	"	" " 1.33	1.88
Partz	"	Sol.MgSO ₄	44	Sol.K ₂ Cr ₂ O ₇	2.06

Part 2.-Single fluid cells

		0.43777.04	a 4 1	
Leclanche	Amalg. Zn	Sol.NH₄Cl	Carbon *	1.46
Chaperon	44 44	Sol.KOH	Copper †	.98
Edison-Lelande	** **	"	*.:	.70
AgC1	Zn	23% sol.NH ₄ Cl	Silver ‡	1.02
Law	64	15% " "	Carbon	1.37
Dry cell	"	1 pt. ZnO, 1 pt. NH ₄ Cl,	"	1.3
		3 pts. plaster of paris,		
		2 pts. ZnCl ₂ , and water		
		to make a paste		
Poggendorff	Amalg. Zn	Sol.K ₂ Cr ₂ O ₇	4.6	1.08
"	**	12K ₂ Cr ₂ O ₇ ; 25H ₂ SO ₄ ;	46	2.01
		100,H ₂ O		
Regnault	44 44	1H ₂ SO ₄ : 12H ₂ O: 1CaSO ₄	Cd	.34
Volta couple	Zn	H ₂ O	Cu	.98

^{*} Depolarizer: Manganese peroxide with powdered carbon. † Depolarizer: CuO. ‡ Depolarizer: Silver chloride.

Part 3.-Secondary cells

Pb accumulator Regnier (1)	Pb Cu	H ₂ SO ₄ sol. of density 1.1 CuSO ₄ ; H ₂ SO ₄	PbO ₂	2.2§ 1.68 to .85				
" (2) Main Edison	Amalg. Zn " " Fe	ZnSO ₄ sol. H ₂ SO ₄ : dens. about 1.1 KOH 20% sol.	in H ₂ SO ₃ A nickel oxide	2.36 2.50 1.1 mean				
§ F. Streintz gives the following value of the temperature variations $\frac{dE}{dt}$ at different stages of charge:								

1.9223 2.2070 $_{dE/dt \times 10^6}^{\rm emf}$ 1.9828 2.0031 2.0084 2.0105 2.0779 140 228 335 285 255 130 Dolezalek gives the following relation between emf and acid concentration:

Percent H.SO₄ emf °C 64.5 2.37 52.2 2.25 35.3 2.10 21.4 2.00 1.89

|| Very low temperature coefficient.

TABLE 374.—COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS (concluded)

Part 4.-Standard cells

Clark	Zn + Hg	ZnSO ₄	Paste	1.434
Weston	Cd + Hg	CdSO ₄	H₂SO₄+Hg Paste CdSO₄+Hg	1.0185

The following numbers are given by G. Magnanini for the difference of potential in hundredths of a volt between zinc in a normal solution of sulfuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

	f the solution in polecules per liter	Zinc *	Cadmium *	Lead	Tin	Copper	Silver
No. of molecules	Salt		ivolts				
.5 1.0 1.0 .5 1.0	H ₂ SO ₄ NaOH KOH Na ₂ SO ₄ Na ₂ S ₂ O ₃	.0 32.1 42.5 1.4 5.9	36.6 19.5 15.5 35.6 24.1	51.3 31.8 32.0 50.8 45.3	51.3 .2 —1.2 51.4 45.7	100.7 80.2 77.0 101.3 38.8	121.3 95.8 104.0 120.9 64.8
1.0 1.0 .5 .5	KNO3 NaNO3 K2CrO4 K2Cr2O7 K2SO4	11.8† 11.5 23.9† 72.8 1.8	31.9 32.3 42.8 61.1 34.7	42.6 51.0 41.2 78.4 51.0	31.1 40.9 40.9 68.1 40.9	81.2 95.7 94.6 123.6 95.7	105.7 114.8 121.0 132.4 114.8
.5 .25 .167 1.0 1.0	(NH ₄) ₂ SO ₄ K ₄ FeC ₆ N ₆ K ₆ Fe ₂ (CN) ₁₂ KCNS NaNO ₃	5 - 6.1 41.0‡ - 1.2 4.5	37.1 33.6 80.8 32.5 35.2	53.2 50.7 81.2 52.8 50.2	57,6† 41.2 130.9 52.7 49.0	101.5 —† 110.7 52.5 103.6	125.7 87.8 124.9 72.5 104.6 §
.5 .125 1.0 .2 .167	Sr(NO ₃) ₂ Ba(NO ₃) ₂ KNO ₃ KC1O ₃ KBrO ₃	14.8 21.9 —† 15–10† 13–20†	38.3 39.3 35.6 39.9 40.7	50.6 51.7 47.5 53.8 51.3	48.7 52.8 49.9 57.7 50.9	103.0 109.6 104.8 105.3 111.3	119.3 121.5 115.0 120.9 120.8
1.0 1.0 1.0 1.0	NH₄Cl KF NaCl KBr KCl	2.9 2.8 — 2.3	32.4 22.5 31.9 31.7 32.1	51.3 41.1 51.2 47.2 51.6	50.9 50.8 50.3 52.5 52.6	81.2 61.3 80.9 73.6 81.6	101.7 61.5 101.3 82.4 107.6
.5 1.0 .5 .5	Na ₂ SO ₃ NaOBr C ₄ H ₆ O ₆ C ₄ H ₆ O ₆ C ₄ H ₄ KNaO ₆	- 8.2 18.4 5.5 4.1 - 7.9	28.7 41.6 39.7 41.3 31.5	41.0 73.1 61.3 61.6 51.5	31.0 70.6† 54.4‡ 57.6 42–47	68.7 89.9 104.6 110.9 100.8	103.7 99.7 123.4 125.7 119.7

^{*} Amalgamated. † Not constant. ‡ After some time. § A quantity of bromine was used corresponding to NaOH =1.

TABLE 375.—DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS

The thermoelectric effect of a number of alloys is given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of 50° C. In reducing the results from copper as a reference metal, the thermoelectric effect of lead to copper was taken as -1.9.

Substanc c	Relative quantity Thermoelec- tric effect in microvolts	Substance	Relative quantity Thermoelec- tric effect in microvolts	Substance	Relative quantity Thermoelec- tric effect in microvolts
Antimony Cadmium Antimony	806 696 227	Antimony Zinc Tin	2 43	Bismuth Antimony Bismuth	$\binom{4}{1}$ -51.4
Cadmium Zinc Antimony	2 146 1 806)	Antimony Cadmium	$\begin{bmatrix} 12 \\ 10 \end{bmatrix}$ 35	Antimony Bismuth	1 -63.2 10 68.2
Cadmium Bismuth	696 \ 137	Zinc Antimony Tellurium	$\begin{pmatrix} 10 \\ 1 \end{pmatrix}$ 10.2	Antimony Bismuth Antimony	$\binom{10}{1}$ -68.2
Antimony Zinc Antimony	406 \(\) 93 806 \(\)	Antimony Bismuth	$\binom{10}{1}$ 8.8	Bismuth Tin	${2 \choose 1}$ 60
Zinc Bismuth Antimony	406 \ 8.1 121 4	Antimony Iron Antimony	1 2.5	Bismuth Selenium	${10 \choose 1}$ -24.5
Cadmium Lead Zinc	$\begin{cases} 2\\1\\1 \end{cases}$ 76	Magnesium Antimony	8 - 4	Bismuth Zinc	${12 \atop 1}$ -31.1
Antimony Cadmium	4) 46	Lead Bismuth	- —43.8	Bismuth Arsenic	$\binom{12}{1}$ -46.0
Zinc Tin	1)	Bismuth Antimony	1 33.4	Bismuth Bismuth sulf	de 1 68.1

TABLE 377.-THERMOELECTRIC EFFECT

A measure of the thermoelectric effect of a circuit of two metals is the electromotive force produced by 1°C difference of temperature between the junctions. The thermoelectric effect varies with the temperature, thus: thermoelectric effect = Q = dE/dt = A + Bt, where A is the thermoelectric effect at 0°C, B is a constant, and t is the mean temperature of the junctions. The neutral point is the temperature at which dE/dt = 0, and its value is -A/B. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of heat at each junction, or Peltier effect, is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb = QT/\mathcal{F} , in which Q is in volts per degree C, T is the absolute temperature of the junction, and f = 4.19. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect. This coefficient, in calories per coulomb = $BT\theta/\bar{\tau}$, in which B is in volts per degree C, T is the mean absolute temperature of the junctions, and θ is the difference of temperature of the junctions. (BT) is Sir W. Thomson's "Specific Heat of Electricity," The algebraic signs are so chosen in the following table that when A is positive, the current flows in the metal considered from the hot junction to the cold. When B is positive, Q increases (algebraically) with the temperature. The values of A, B, and thermoelectric effect in the following table are with respect to lead as the other metal of the thermoelectric circuit. The thermoelectric effect of a couple composed of two metals, 1 and 2, is given by subtracting the value for 2 from that for 1; when this difference is positive, the current flows from the hot junction to the cold in 1. In the following table, A is given in microvolts per degree, B in microvolts per degree per degree, and the neutral point in degrees.

The table has been compiled from the results of Becquerel, Matthiessen and Tait; in reducing the results, the electromotive force of the Grove and Daniell cells has been taken as 1.95 and 1.07 volts. The value of constantan was reduced from results given in Landolt-Börnstein's tables.

	A	В	Thermoelec at mean t junctions (n	tric effect emp. of nicrovolts)	Neutral point $-\frac{A}{B}$
Substance	Microvolts	Microvolts	20°C	50°C	$-\frac{1}{B}$
Aluminum		+.0039	— .68	— .56	+ 195
Antimony, comm'l pressed wire.		_	+ 6.0	_	_
" axial		_	+ 22.6 + 26.4	_	
" equatorial	— 11.94	— .0506	+ 20.4 - 12.95	14.47 12.7	- 2 36
Arsenic		_	- 13.56		_
Rismuth comm'l pressed wire		_	- 97.0		_
" pure " "		_	- 89.0		_
crystal, axial		_	- 65.0 - 45.0	_	_
" equatorial	+ 2.63	0424	+ 3.48	+ 4.75	_ <u>62</u>
" fused		.0.2.	_	+ 2.45	=
Calcium	. —	_		+ 8.9	_
Cobalt		_	- 22	10.2	_
Constantan		+.0094	+ 1.52	-19.3 + 1.81	<u> </u>
" commercial		Ţ.005 4	+ .10	T 1.01	_
" galvanoplastic		_	+ 3.8	_	_
Gallium			2		
Gold		+.0101	+ 3.0	$+3.30 \\ +14.74$	[-277]
" pianoforte wire		—.0482 —	+ 16.2 + 17.5	+14./4	+ 356
" commercial	_	_		+12.10	
	. —			+ 9.10	_
Lead		.0000	+ .00	.00	1 226
Magnesium		0094	+ 2.03 + 5.9	+ 1.75	+ 236
Mercury		_	- .413	— 3.30	
Nickel		_	_	-15.50	_
" (—18° to 175°)	21.8_	0506	— 22.8	—24.33	[-431]
(250 -300)	—83.57 — 3.04	+.2384 0506	_	-	_
" (above 340°) Palladium	-6.18	0355 0355	<u> </u>	- 7.96	- 1 74
Phosphorus (red)		_	→ 29.9	_	_
Platinum			+ .9		
" (hardened)	+ 2.57	0074 0109	+ 2.42 818	+ 2.20 $- 1.15$	— 347 — 55
" (malleable) " wire		0109	010	- 1.13 + .94	_ 55
" another specimen		_		- 2.14	_
Platinum-iridium alloys:					
85% Pt + 15% Ir	. 7.90 . + 5.90	+.0062 0133	+ 8.03 + 5.63	+ 8.21 + 5.23	[—12 7 4] 444
90% Pt + 10% Ir		0133 +.0055	+ 6.26	+ 6.42	[—1118]
Selenium			+807.	- 0.12	
Silver	. + 2.12	+.0147	+ 2.41	+ 2.86	— 144
" (pure hard)	. —		+ 3.00	1 2 10	
" wire		0325	+ 10.62	+ 2.18 + 9.65	347
Tantalum			— 2.6		_
Tellurium * β			+500.	_	_
α	. –	_	+160.	_	
ThalliumTin (commercial)			+ .8	+ .33	_
" (Commercial)		_	+ .1		_
44	. — .43	+.0055	33	— .16	78
Tungsten		1 0220	<u> </u>	. 2 51	
Zinc pure pressed		+.0238	+ 2.79 + 3.7	+ 3.51	- <u>98</u>
pure pressed			0.7		

^{*} Electrical conductivity of $Te_{\it g}=$ 0.04, $Te_{\it a}=$ 1.7 emu.

TABLE 378.—THERMAL ELECTROMOTIVE FORCE OF METALS AND ALLOYS VERSUS PLATINUM

(millivolts)

One junction is supposed to be at 0° C; + indicates that the current flows from the 0° junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.

Tempera-	Α	۸	90%Pt+	10%Pt+	n.	90%Pt+	90% Pt+		Rh
ture, °C	Au	Ag	10%Pd	90%Pd	Pd	10%Rh	10%Ru	Ir	
—185	— .15	— .16	— .11	+ .24	+ .77		— .53	28	— .24
— 80	31	— .30	— .09	+ .15	+ .39		— .39	— .32	— .31
+100	+ .74	+ .72	+ .26	. .19	56		+ .73	+ .65	+ .65
+200	+1.8	+1.7	+ .62	— .31	-1.20		+1.6	+1.5	+1.5
+300	+3.0	+3.0	+1.0	— .37	-2.0	+2.3	+2.6	+2.5	+2.6
+ 400	<u>+</u> 4.5	+4.5	+1.5	35	-2.8	+3.2	+3.6	+3.6	+3.7
+500	+6.1	+6.2	+1.9	— .18	-3.8	+4.1	+4.6	+4.8	+5.1
÷600	+ 7.9	+8.2	+2.4	+ .12	-4.9	± 5.1	+5.7	+6.1	+6.5
∔ 700	+ 9.9	+10.6	+2.9	+ .61	-6.3	+6.2	+6.9	+7.6	+8.1
+800	+12.0	+13.2	+3.4	+1.2	 7.9	+7.2	+8.0	- 9.1	+9.9
÷900	+14.3	+16.0	+3.8	+2.1	-9.6	+8.3	+9.2	+10.8	+11.7
+1000	± 16.8	·	+4.3	+3.1	-11.5	∔ 9.5	+10.4	+12.6	+13.7
+1100	·		+4.8	+4.2	-13.5	+10.6	+11.6	+14.5	+15.8
+(1300)						+13.1	+14.2	+18.6	+20.4
+(1500)						+15.6	+16.9	+23.1	+25.6

TABLE 379.—THERMOELECTRIC PROPERTIES AT LOW TEMPERATURES 141

Thermoelectric emf per °K against silver alloy

°C	Cu	Λg	Au	Pd	Pt	Fe	Pb
-255	+.07	10	-1.20	+ .75	+1.54	+.05	-1.06
—24 0	.45	+.37	— .05	2.10	3.60	1.40	-1.19
220	.90	.39	+ .24	3.40	5.24	4.80	-1.25
— 200	.89	.31	.30	3.48	5.40	8.45	-1.29
-180	.72	.25	.30	2.14	4.36	11.5	-1.33
-160	.61	.22	.33	.54	3.02	14.0	-1.42
-140	.52	.21	.37	-1.06	1.72	15.8	-1.54
-120	.47	.20	.40	-2.52	.50	16.9	-1.67
-100	.44	.20	.44	-3.92	— .70	17.5	—1.79
— 80	.45	.20	.47	-5.27	—1.76	17.5	-1.92
— 60	.47	.20	.51	-6.52	-2.80	17.3	2.05
— 40	.49	.20	.55	—7.80	-3.80	16.9	-2.17
— 20	.51	.20.	.58	-9.05	-4.72	16.2	-2.29
0	.53	.21	.62	-10.32	-5.62	15.8	-2.42
+ 20	.56	.22	.65	— 11.6	— 6.56	15.3	-2.54

¹⁴¹ Borelius, Keesom, Johansson, Linde, Com. Phys. Lab. Leiden, No. 206, 1930.

TABLE 380.—PELTIER EFFECT, FE-CONSTANTAN, NI-CU, 0° __560°C

Temperature	0°	20°	130°	240°	320°	560°C
Fe-Constantan	3.1	3.6	4.5	6.2	8.2	12.5 $\int g cal \times 10^{-8}$
NiCu	1.92	2.15	2.45	2.06	1.91	2.38 per coulomb

°K	Cu	Ag	Au	Pd	Pt	Fe	Ni	Со	Pb
20	- .59	+1.40	+2.83	+1.9	+3.2	+1.3			
25	1.04	1.23	2.09	2.6	3.6	2.7			
30	1.22	.85	1.58	3.1	3.9	4.1	-4.5	— .2	.00
40	1.03	.24	.88	3.2	3.8	6.7	— 5.4	— .3	- .04
50	.67	— .02	.45	2.5	2.7	9.0	-5.0	— .8	— .06
60	.18	— .17	.19	1.0	1.0	10.8	—4.5	2.0	09
70	— .29	24	.07	-1.5	-1.1	11.9	-4.1	-3.7	12
80	— .46	— .25	.05	-4.6	-3.3	12.6	-4.0	<u>—5.5</u>	— .15
90	48	— .17	.17	<u>-6.6</u>	-5.1	12.9	-4.0	-7.0	18
100	45	— .03	.32	— 7.8	-6.5	13.0	-4.5	-8.4	20
110	— .37	+ .12	.45	-8.7	7.5	13.0	— 5.3	-9.8	23
120	— .26	.25	.56	-9.3	-8.0	12.8	-6.4	-11.1	26
130	— .13	.35	.66	9.7	-8.2	12.2	-7.4	-12.4	29
140	+ .02	.44	.75	-10.1	-8.2	11.0	-8.3	-13.5	32
150	.17	.52	.83	-10.3	8.3	8.9	-9.0	-14.6	34
160	.31	.59	.91	-10.6	-8.4	6.1	-9.7	-15.7	37
170	.46	.66	.99	-10.9	-8.5	2.6	-10.3	-16.7	40
180 200	.59 .79	.72	1.06	-11.2 -12.1	-8.7 -9.1	2 -3.5	-10.9 -12.1	-17.6 -19.6	42 46
220	.79 .96	.84 .96	1.19 1.31	-12.1 -13.3	-9.1 -9.8	-3.5 -4.5	-12.1 -13.3	-19.0 -21.5	40 49
240	1.10	1.08	1.43	-13.3 -146	-10.6	-4.8	-13.5 -14.5	-21.3 -23.4	5 2
260	1.10	1.00	1.43	-14.0 -15.8	-10.0 -11.4	-5.2	-14.3 -15.7	-25.4 -25.4	—.54
280	1.38	1.32	1.66	-13.8 -17.0	-11.4 -12.3	-5.2 -5.6			—.55
300	+1.52	+1.44	+1.77	-18.2	-12.3 -13.2	-5.9		• • •	—.57
	-\f-1.52		T1.//	-10.2	-10.2		• • •	• • •	

TABLE 382.—THERMOELECTRIC EFFECTS; PRESSURE EFFECTS

The following values of the thermoelectric effects under various pressures are taken from Bridgman. A positive emf means that the current at the hot junction flows from the uncompressed to the compressed metal. The cold junction is always at 0° C. The last two columns give the constants in the equation E = thermoelectric force against lead (0° to 100° C) = $(At + Bt^{\circ}) \times 10^{-\theta}$ volts; at atmospheric pressure, a positive emf meaning that the current flows from lead to the metal under consideration at the hot junction.

						, volts X	109				
	2	000		4000		8000		12	,000		
				Temperature, °C						mula icients	
Metal	50°	100°	50°	100°	50°	100°	20°	50°	100°	A	В
Bi	53,000		110,000	185,000	255,000	425,000	185,000	452,000	710,000	-74.42	+.0160
7.n	6,200		13,000	28,500	26,100	58,100	14,400	38,500	87,400	+3.047	00495
T1	4,930	10,870	9,380	20,290	17,170	37,630	8,780	23,750 19,180	52,460	+1.659 $+12.002$	00134* +.1619
Constantan	2,040 2,850	5,950	4,620 5,800	14,380 11,810	10,960 11,530	28,740 23,790	6,680 6,750	17,200	45,560 35,470	-34.76	0397
Pd	2,190	4,380	4,400	8,800	8,630	17,690	5,090	12,970	26,520		01760
Pt	1,180	3,600	3,600	7,310	7,370	14,350	3,880	11,030	21,570		01334
W	1,190	2,530	2,360	4,990	4,690	10,120	2,700	7,050	15,140	+1.594	+.01705
Ni	700	1,680	1,500	3,400	3,230	7,190	1,880	5,140	11,440	-17.61	0178
Ag	840	1,870	1,720	3,720	3,350	7,190	+1,900	4,950	10,560	+2.556	+.00432b
Fe	390	1,670	590	3,250	5,300	5,820	-990	220	7,680	+16.18	—.0089 ^ь
Pb	460 456	1,050 1,052	920 905	2,120 2,051	1,860 1,791	4,210 3,974	+880 +990	281 2,627	6,330 5,760	+2.899	+.00467¢
C	+292	584	+580	1,216	1,791	2,420	+596	1,616	3,546	+2.777	+.00483
Al	-70	101	91	294	32	929	68	312	1,962	,416	+.000084
Mo	+93	140	+187	278	375	555	+146	562	833	+5.892	+.02167
Sn	+38		+58	+165	+70	+292	-182	+10	+390		00067
Manganin	123	-232	242	-452	-489	894	308		1,314	+1.366	+.000414
Mg	84	-167	-181	-362	395	791	259		-1,296	095	+.00004
Co	-156	-348	-316	692	630	-1,360	-352	—937	-2,061	—17.3 2	0390

a, $-.0_556t^8$; b, $-.0_486t^3$, annealed ingot iron; c, $-.0_5166t^3$; d, $-.0_41t^8$; e, $-.0_425t^3$; f, $-.0_4112t^8$.

The following data indicate the magnitude of the effect of pressure on the Peltier and Thomson heats. They refer to the same samples as for the last table. The Peltier heat is considered positive if heat is absorbed by the positive current from the surroundings on flowing from uncompressed to compressed metal. A positive d^2E/dt^2 means a larger Thomson heat in the compressed metal, and the Thomson heat is itself considered positive if heat is absorbed by the positive current in flowing from cold to hot metal. Same reference as footnote 141, and notes as for preceding table.

		1		ier heat, ules/coul	omb			10 ⁸ ×	Thomse J × co	on heat, ulomb-1	°C-1	
			Pressure kg/cm²					Pressure kg/cm²			12	
		6000			12,000			6000			12,000	
			Temperature °C					1	`empera	ture °C		
Metal	0°	50°	100°	0°	50°	100°	0°	50°	100°	0°	50°	100°
Bi Zn Tl Cd Constantan Pd Pt W Ni Ag Fe Co Bb Au Cu Al Mo Sn Manganin Mg Co	+1070 +98 +66 +19 +46 +35 +23 +17 +11 +13 -11 +7 +6 +4 -2 -2 -16 -23	+1210 +140 +140 +95 +71 +57 +43 +37 +25 +17 +18 +10 +10 +16 +2 +2 +1 -2 -18 -33	+190 +124 +118 +70 +52 +35 +32 +23 +15 +14 +8 +0 +11 -21 -44	+2580 +190 +112 +81 +908 +45 +36 +24 +25 -38 +14 +13 -3 +2 -5 -4 -35 -46	+2810 +278 +171 +148 +1148 +1148 +149 +37 +34 +34 +20 +181 +7 +4 +4 +2 -4 2 -67	+12 +229 +221 +1403 +65 +65 +50 +44 +36 +36 +17 +16 +17 +1 +2 -48 -90	+1150 +41 +38 +109 +5 +3 +49 +49 +49 +79 +4 +4 +6 +11 +6 +1	+650 +48 +28 +74 +6 +6 +7 +7 +5 +58 +6 +4 +1 +9 -5 +0 +11	+56 +26 +44 -18 +66 +8 +6 -121 +10 +5 +4 +11 -1 -1 -1 -10	-520 +63 +79 +105 +13 +96 +9 +16 +7 -347 +6 +6 +21 +22 +29 +22 -20	-405 +133 +63 +92 +14 +99 +17 +14 +15 +8 +120 +8 +6 +3 +11 +2 +11 -24	+20 +50 +50 +93 +17 +8 +59 +20 +10 -194 +20 +7 +8 +20 -2 -5 +1 0 -28

TABLE 384.—THERMAL ELECTROMOTIVE FORCE OF CADMIUM VERSUS PLATINUM

7	_				
	emi	nera	ture	versus	emt

°C	mv	°C	mv	°C	mv
0	.000	125	1.211	250	3.255
25	+.171	150	1.559	275	3.740
50	.378	175	1.940	300	4.238
75	.620	200	2.351	315	4.539
100	.898	225	2.790		

TABLE 385.—PELTIER EFFECT

The coefficient of Peltier effect may be calculated from the constants A and B of Table 377, as there shown. With Q (see Table 377) in microvolts per $^{\circ}$ C and T = absolute temperature (K), the coefficient of Peltier effect = $\frac{QT}{42}$ cal per coulomb = 0.00086 QT cal per ampere-hour =QT/1000 millivolts (= millijoules per coulomb). Experimental results, expressed in slightly different units are here given. The figures are for the heat production at a junction of copper and the metal named in calories per ampere-hour. The current flowing from copper to the metal named, a positive sign indicates a warming of the iunction.

				Calories	per ampere	hour				
Sb *	Sb com- mercial †	Bi pure	Bi †	Cd 62	German silver	Fe -3.61	Ni 4.36	Pt .32	Ag 41	Zn 58
13.02	4.8	19.1	25.8	.46	2.47	2.5	_	_	_	.39

^{*} Becquerel's antimony is 806 parts Sb + 406 parts Zn + 121 parts Bi. † Becquerel's bismuth is 10 parts Bi + 1 part Sb.

The resistivities are the values of ρ in the equation $R = \rho l/s$, where R is the resistance in microhms of a length l cm of uniform cross section s cm². The temperature coefficient is a_t in the formula $R_t = R_s[1 + a_s(t - t_s)]$. The information of column 2 does not necessarily apply to the temperature coefficient.

		Tempera-	3.61	Temperature of	coefficient
Substance	Remarks	ture °C	Microhm- cm	t_s	a_s
Advance	see constantan				
Aluminum		20	2.828	18°	+.0039
**	c. p.	— 189	.64	25	+.0034
"	4	100	1.53	100	+.0040
	44	0	2.62	500	+.0050
	46	+100	3.86		
	**	400	8.0		
intimony		0	39.1	20	+.0036
"		-190	10.5		
	liquid	+860	120 35		
rsenic		0 20	10.1		
eryllium		20 18	119.0	20	+.004
ismuth		100	160.2	20	7.004
rass		20	7	20	+.002
	drawn	-160	2.72	20	
admium	drawn "	18	7.54	20	+.0038
	"	100	9.82		
	liquid	318	34.1		
alcium		20	4.59		+.0036
alido	see nichrome				
esium	- <u>-</u>	—187	5.25		
"		0	19		
"	solid \	27	22.2		
"		30	36.6		
hromium		0	13		
limax		20	87	20	+.0007
obalt	99.8 pure	20	9.7		·
onstantan		20	49	12	+.000000
44	_ _			25	+.00000
"				100	00003
"				200	00002
"				500	+.00002
opper	annealed	20	1.724	20 see col. 2	+.00393
"	hard-drawn	20	1.77		+.00382
"	electrolytic	206	.144	100	+.0038
	**	+205	2.92	400	+.0042
		400	4.10	1000	+.0062
	very pure, ann'ld	20	1.692		
ureka	see constantan	20	92	20	1 00016
xcello		20 0	53	20	+.00016
allium	190/ N:	20	33	20	+.0004
erman silver ermanium	18% Ni	0	89000.	20	+.0004
old	99.9 pure	-183	.68	20	+.0034
46	99.9 pure	0	2.22	100 ann'ld	+.0025
46	pure, drawn	20	2.44	500 "	+.0035
"	99.9 pure	194.5	3.77	1000 "	+.0049
1 Ia	see constantan				
leal	" "				
idium		0	8.37		
idium		— 186	1.92		
44		0	6.10		
"		+100	8.3		
on	99.98% pure	20	10	20	+.0050
44	pure, soft	-205.3	.652	0	+.0062
	- " "	— 7 8	5.32	25	+.0052
"	"	0	8.85	100	+.0068

	(0	onicinaca,			
		Tempera-		Temperature	coefficient
		ture	Microhm-		
Substance	Remarks	ture °C	cm	t _s	a_s
_		+ 98.5	17.8	500	
Iron	pure, soft			500	+.0147
		196.1	21.5	1000	+.0050
"	44	400	43.3		
44	electrolytic	0	10.0		
44	"	100	14.41		
T				20	. 0020
Lead		20	22	20	+.0039
	cold pressed	-183	6.02	18	+.0043
46	"	— 78	14.1		·
44	"		19.8		
	"	0			
		+ 90.4	28		
"	66 46	196.1	36,9		
"		318	94		
1.54.5	11.1				
Lithium	solid	—187	1.34		
**********	44	0	8.55		
44	44	99.3	12.7	-	
"	liquid	230	45.2		
3.6	liquid			20	. 004
Magnesium		20	4.6	20	+.004
	free from Zn	-183	1.00	0	+.0038
66	11 11 11	— 78	2.97	25	+.0050
66	46 66 46	ő	4.35	100	+.0045
* * * * * * * * * * * * * * * * * * * *	44 44 44				
		+ 98.5	5.99	500	+.0036
"	pure	400	11.9	600	+.0100
Manganese			5.0±		
3.5	84 Cu, 12 Mn, 4 N	i 20	44	12	+.000006
Manganin	04 CH, 12 MH, 4 IV		77		
				25	.000000
66				100	000042
66				250	000052
66				475	0000000
					
				500	00011
Mercury		20	95.783	20	+.00089
66	solid	-183.5	6,97	0	+.00088
	"	-102.9	15.04	V	1 100000
	66			D D /1 1	
	66	-50.3	21.3	$R_t = R_0(1 +$	
	••	— 39.2	25.5	.00089t +	
66	liquid	-36.1	80.6	$.000001t^2$	
"	46	0	94.07	,	
	46				
	46	50	98.50		
		100	103.25		
46	"	200.	114.27		
46	66	350	135.5		·
Molubdonum	VOPY DITE	0	5.14	25	+.0033
Molybdenum	very pure	U	J.17		
******				100	+.0034
				1000	+.0048
Monel metal		20	42	20	+.0020
Nichrome		20	100	20	+.0004
Nickel		20	7.8	20	+.006
				20	1000
"	very pure	20	7.236		
	pure	-182.5	1.44	0	+.0062
"	46	-78.2	4.31	25	+.0043
"	44	0	6.93	100	+.0043
66	44				1.0010
"		94.9	11.1	500	+.0030
				1000	+.0037
Osmium		20	9.5		
Palladium		20	11	20	+.0033
"	Very Dure	-183	2.78	0	
	very pure			U	+.0035
		— 78	7.17		
	16 66	0	10.21		
"	66 66	98.5	13.79		
Platinum		0	9.83	20	+.003
"	wire				
	wire	-203.1	2.44	0	+.0037
"		— 97.5	6.87		
	44	0	10.96		
	46	100	14.85		
66		400	26		
		400	20		

		Tempera-	377	Temperature o	oefficient
Substance	Remarks	ture °C	Microhm- cm	t_s	a,
Potassium		— 75	4	0	+.0057
"		0_	6.1		
		55 —186	8.4		
Rhodium		-180 -78.3	.70 3.09		
"		0	5.11	0	+.0043
"		100	6.60		
Rubidium	solid	-190	2.5		
"	"	0 35	11.6 13.4	_	
46	liquid	40	19.6		
Silicium		20	58±		
Silver	99.98 pure	18	1.629	20	+.0038
46	electrolytic	-183	.390 1.021	25 100	+.0030 $+.0036$
"	"	- 78 0	1.468	500	+.0030
"	"	98.15	2.062		
46	"	192.1	2.608		
" · · · · · · · · · · · · · · · · · · ·	1. 1	400	3.77	—,	
Sodium	solid "	—180 — 75	1.0 2.8		
"	46	- 73	4.3	0	+.0054
"	"	55	5.4	_	·
	liquid	116	10.2		
Steel	E. B. B. B. B.	20 20	10.4 11.9	20 see col. 2	+.005 +.004
66	Siemens-Martin	20	18		+.003
"	manganese	20	70		+.001
66	35%Ni, "invar."	20	81		
"	piano wire	0	11.8 45.7	0 see col. 2	+.0032 +.0016
"	temp. glass, hard ", yellow	0	27		+.0010
44	" . blue	ŏ	20.5	0 see col. 2	+.0033
	", soft	0	15.9		·
Strontium		20	24.8		1 0021
Tantalum Tellurium*		20 19.6	15.5 200,000	20	+.0031
Thallium	pure	-183	4.08		
44	- "	— 7 8	11.8		
46	44	0	17.60		
Tin		98.5 20	24.7 11.5	20	+.0042
"		-184	3.40	20	T.0072
		— 7 8	8.8		
"		0	13	_	
		91.45	18.2 55		
Titanium Tungsten		20	5.51	18	+.0045
	1000°K	727	25.3	500	+.0057
"	1500°K	1227	41.4	1000	+.0089
	2000°K 3000°K	1727 2727	59.4 98.9		
"	3500°K	3227	118		
Zinc	trace Fe	—183	1.62	20	+.0037
"	· · · · · · · · · · · · · · · · · · ·	— 78	3.34		
"	" "	0 92.45	5.75 8		
"	" "	191.5	10.37		
	liquid	440	37.2		
* See note to Table 37	•				

TABLE 386.—RESISTIVITY OF METALS AND SOME ALLOYS (concluded)

Resistance temperature coefficient for a number of metals and alloys of high purity.

Metal	$(R_{100} - R_6) / 100 R_6$	Alloy	$(R_{100} - R_0)/100R_0$
Ni		95 Pt— 5 Rh 90 Pt—10 Rh 80 Pt—20 Rh 60 Pt—40 Rh 40 Pt—60 Rh 20 Pt—80 Rh	.00215 .00169 .00140 .00144 .00194

TABLE 387.—SOME ELEMENTS ARRANGED IN ORDER OF INCREASING RESISTIVITY (ohm-cm×10-6, 20°C)

Ag	1.468	Mn	5.±	Pd	10.21	Ga 53
Cu	1.59	Мо	(5.3)	Pt	10.96	Os 56
Au	2.22	Zn	5.75	Rb	13	Hg 94.07
A1	2.6	Ir	6.10	Sn	13	Bi 110
Cr	2.6	K	6.1	Ta	14.6	Graphite 8×10 ²
Ti	3.2	Ni	6.93	T1	17.6	Carbon 3×10 ⁸
Na	4.3	Cd	7.04	Cs	19	Te 2×10^5
Ca	4.3	In	8.37	Pb	20.4	$P = 10^{12}$
Mg	4.35	Li	8.55	Sr	(23.5)	B 8×10 ¹²
Rh	4.69	Fe	8.8	As	35	Se 10 ¹³
W	5	Co	9	Sb	39	S 10 ¹⁷
	_	-	-			

TABLE 388.—THERMAL ELECTROMOTIVE FORCE OF PLATINUM-RHODIUM ALLOYS VERSUS PLATINUM

emf (mv)
Percent rhodium

Temp.	.5	1.0	5.0	10.0	20.0	40.0	80.0	100.0
0	.00	.00	.00	.00	.00	.00	.00	.00
100	+.10	+.18	+.54	+.64	+.63	+.65	+.62	+.70
200	.20	.37	1.16	1.43	1.44	1.52	1.49	1.61
300	.29	.57	1.82	2.32	2.40	2.55	2.55	2.68
400	.39	.76	2.49	3.25	3.47	3.70	3.77	3.91
500	.48	.94	3.17	4.22	4.63	4.97	5.12	5.28
600	.58	1.12	3.86	5.22	5.87	6.36	6.60	6.77
700	.67	1.30	4.55	6.26	7.20	7.85	8.20	8.40
800	.76	1.48	5.25	7.33	8.59	9.45	9.92	10.16
900	.85	1.66	5.96	8.43	10.06	11.16	11.76	12.04
1000	.94	1.84	6,68	9.57	11.58	12.98	13.73	14.05
1100	1.03	2.02	7.42	10.74	13.17	14.90	15.81	16.18
1200	1.13	2.20	8.16	11.93	14.84	16.91	17.99	18.42

TABLE 389.—EFFECT OF TENSION ON THE RESISTANCE OF METALS

Recip. Young's	Ca	Sr	Sb	Bi	Manganin	Co
$\mod. \times 10^6 \ldots 20$	4.75	7.5	1.25	4.2	.72	.5
Poisson ratio42 Tens. coef. spec.	.30	.36	.30?	.37	.33	.30
resist. $\times 10^6$ +11	+.8	—21.2	+3.0	-3.65	— .60	+.19

TABLE 390.—VARIATION OF THE ELECTRICAL RESISTANCE WITH PRESSURE FOR TWO TEMPERATURES OF A NUMBER OF METALS 142

	Copper— $\Delta R/R_0$		Silver-	Silver—ΔR/R ₀		$-\Delta R/R_0$	Iron— $\Delta R/R_0$		$Lead\Delta R/R_0$	
Pressure kg/cm ²	30°C	75°C	30°C	75°C	30°C	75°C	30°C	75°C	30°C	75°C
5,000	.0096	.0094	.0174	.0176	.0151	.0154	.0121	.0118	.0686	.0691
10,000	.0186	.0185	.0338	.0341	.0293	.0299	.0234	.0232	.1266	.1277
15,000	.0271	.0271	.0492	.0497	.0429	.0437	.0341	.0341	.1770	.1791
20,000	.0354	.0354	.0637	.0644	.0559	.0570	.0444	.0447	.2214	.2242
25,000	.0434	.0435	.0774	.0784	.0684	.0698	.0542	.0548	.2611	.2643
30,000	.0513	.0514	.0904	.0916	.0806	.0824	.0637	.0646	.2959	.2998

¹⁴² Bridgman, Proc. Amer. Acad. Arts and Sci., vol. 72, p. 174, 1938.

TABLE 391.—RELATIVE ELECTRICAL RESISTANCE WITH PRESSURE FOR TWO TEMPERATURES OF A NUMBER OF METALS*

Zinc

										Z	inc	
		hium		lcium	Stro	ntium	Bar	rium	to 1	s 87° ength /R	to le	is 17° ength /R
Pressure	R/R	R/R (0,75°)	R/R(0, 30°)	R/R(0, 30°)	R/R(0, 30°)		30°)	(0,	30°)
kg/cm ²	30°C	75°C	30°C	75°C	30°C	75°C	30°C	75°C	30°C	75°C	30°C	75°C
0			1.0000	1.1688	1.0000	1.0974	1.0000	1.156	1.0000	1.1627	1.0000	1.1650
2,500	1.0175	1.0172	1.0237	1.1922	1.1141	1.2140	.982	1.130	.9868	1.1488	.9758	1.1352
5,000	1.0354	1.0351	1.0490	1.2187	1.2448	1.3451	.971	1.114	.9744	1.1355	.9525	1.1062
7,500	1.0539	1.0537	1.0764	1.2485	1.3922	1.4908	.967	1.107	.9628	1.1228	.9300	1.0809
10,000 12,500	1.0727	1.0730 1.0928	1.1069	1.2816	1.5562 1.7364	1.6510 1.8258	.970 .976	1.106 1.108	.9518 .9416	1.1107 1.0991	.9081 .8882	1.0562 1.0325
15,000	1.1117	1.1131	1.1772	1.3571	1.9333	2.0153	.984	1.113	.9321	1.0880	.8686	1.0323
17,500	1.1318	1.1339	1.2164	1.3998	2.1467	2.2195	.995	1.123	.9233	1.0776	.8500	.9890
20,000	1.1524	1.1553	1.2582	1.4460	2.3767	2.4377	1.008	1.140	.9150	1.0677	.8321	.9687
22,500	1.1735	1.1770	1.3025	1.4959	2.6273	2.6703	1.025	1.161	.9072	1.0582	.8153	.9495
25,000	1.1949	1.1992	1.3491	1.5485	2.8905	2.9187	1.044	1.184	.8998	1.0498	.7990	.9310
27,500	1.2169	1.2221	1.3983	1.6033	3.1695	3.1805	1.066	1.211	.8926	1.0420	.7835	.9129
30,000	1.2394	1.2453	1.4500	1.6603	3.4665	3.4585	1.092	1.241	.8855		.7687	.8959
			Potassiur				Cesium					
Pressure		R	/R(0, 30))°)		R/	R (0, 30°)	S	odium	Ruh	oidium
kg/cm ²		′ 30°		75° `		30°		75° `		R(0, 30°)	R/R	(0, 30°)
0		1.0000)			1.0000		—–		.0000		0000
2,500		.664		<u> </u>		.807				.8529		515
5,000 7,500		.491 .378		.615 .467		.812 .884		1.046 1.117		.7537 .6762		471 407
10.000		.303		.372		1.005		1.117		6171		371
12,500		.253		.310		1.169		1.450		5708		354
15,000		.219		.269		1.376		1.685		5341		350
17,500		.197		.242		1.624		1.984		.5049		358
20,000		.1821		.224	1.917			2.369		4813		376
22,500 25,000		.1719		.216		2.492 2.836		3.068 3.491		.4619 .4456		404 447
27,500		.1/19		.210		2.630 3.239		3.972		4324		504
30,000		.1778	3					4.509		4223		576

^{*} For reference, see footnote 142, above.

Temperature versus emf

°C	mv	°C	mv	°C	mv
0	.000	400	5.450	800	9.350
25	350	425	5.580	825	9.675
50	.710	450	5.745	850	10.010
75	1.090	475	5.960	875	10.350
100	1.485	500	6.165	900	10.695
125	1.880	525	6.360	925	11.045
150	2.285	550	6.585	950	11.400
175	2.695	575	6.800	975	11.765
200	3.105	600	7.040	1000	12.130
225	3.505	625	7.290	1025	12.500
250	3.890	650	7.550	1050	12.875
275	4.255	675	7.825	1075	13.250
300	4.590	700	8.105	1100	13.625
325	4.880	725	8.415		
350	5.110	750	8.720		
375	5.290	775	9.030		

¹⁴³ Nat. Bur. Standards Journ. Res., vol. 5, p. 1291, 1930.

TABLE 393.—AVERAGE PRESSURE COEFFICIENTS* OF ELECTRICAL RESISTANCE UP TO 7000 kg/cm² AS A FUNCTION OF TEMPERATURE 144

Temperatures

Metal	−182.0°C	−78.4°C	0°C	30°C	75°C
Lead	-12.76	12.88	-12.99	-9.3	-9.2
Magnesium	-5.89	-4.49	-4.39		
Aluminum		—4.71	-4.28		
Silver	-4.09	-3.46	-3.45	-3.0	-3.0
Gold		-2.97	-2.94	-2.6	-2.7
Copper		-2.14	-1.88	—1.7	-1.7
Nickel	1.88	-2.00	-1.85		
Iron		-2.27	-2.34		
Palladium		-2.32	-2.13		
Niobium	80	- .98	-1.18		
Platinum		-1.97	-1.93		
Rhodium		— 1.86	−1 .64‡		
Molybdenum		-1.29	-1.30		
Tantalum		-1.42	— 1.45		
Tungsten	-1.36	-1.42	-1.37		

TABLE 394.—RESISTIVITY OF MERCURY AND MANGANIN UNDER PRESSURE

Pressure, kg/cm ²		500	1000	1500	2000	2500	3000	4000	5000	6000	6500
$R(p, -75^{\circ})$ Hg	.9186	.9055	.8930	.8818	.8714	.8582	.8478	.8268	.8076	.7896	.7807
$R(p, 25^{\circ})$ Hg	1.0000	.9836	.9682	.9535	.9394	.9258	.9128	.8882	.8652	.8438	.8335
* Hg	1.0000	.9854	.9716	.9588	.9462	.9342	.9228	.9010	.8806	.8616	.8527
R(p, 125°) Hg	1.0970	1.0770	1.0580	1.0400	1.0230	1.0070	.9908	.9614	.9342	.9086	.8966

^{*} This line gives the specific mass resistance at 25°, the other lines, the specific volume resistance. The use of mercury as above has the advantage of being perfectly reproducible so that at any time a pressure can be measured without recourse to a fundamental standard. However, at 0°C mercury freezes at 7500 kg/cm². Manganin is suitable over a much wider range. Over a temperature range 0 to 50°C the pressure resistance relation is linear within $\frac{1}{10}$ percent of the change of resistance up to 13,000 kg/cm². The coefficient varies slightly with the sample. Bridgman's samples (German) had values of $(\Delta R/\rho R_0) \times 10^9$ from 2295 to 2325. These are + instead of -, as with most of the above metals.

^{* ×10° 144} Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 67, p. 342, 1932.

[‡] On a less pure sample.

TABLE 395.—THERMAL ELECTROMOTIVE FORCE OF ZINC VERSUS PLATINUM

Temperature versus emf

°C	mv	°C	mv	°C	mv
0	.000	150	1.276	300	3.417
25	+.153	175	1.572	325	3.853
50 75	.331 .533	200 225	1.894 2.240	350 375	4.310 4.786
100	.758	250	2.610	400	5,290
125	1.005	275	3.002	415	5.604

TABLE 396.—CONDUCTIVITY AND RESISTIVITY OF MISCELLANEOUS ALLOYS

Temperature coefficients

Conductivity in mhos or $\frac{1}{\text{ohms-cm}} = \gamma^t = \gamma^0 (1 - at + bt^2)$ and resistivity in microhm – cm $= \rho^t = \rho^0 (1 + at - bt^2)$.

		γ^0		
Metals and alloys	Composition by weight	104	$a \times 10^{6}$	ρ^0
Gold-copper-silver	58.3 Au + 16.5 Cu + 15.2 Ag	7.58	574*	13.2
" " "	66.5 Au + 15.4 Cu + 18.1 Ag	6.83	529†	14.6
	7.4 Au + 78.3 Cu + 14.3 Ag	28.06	1830‡	3.6
Invar		1.33	2000	75
Welding iron	0.05% Cu	6.25	6000	18
Woods metal	56 Bi, 17 Cd, 14 Pb, 13 Sn	1.93	2900	52
Brass	Various	12.2–15.6	$1-2+10^{3}$	6.4-8.4
" hard drawn	70.2 Cu+ +29.8 Zn	12.16		8.2
" annealed		14.35		7.0
German silver	Various	3–5		20–33
"	60.16 Cu + 25.37 Zn + 14.03 Ni + .30 Fe with trace	3.33	360	30
	of cobalt and manganese	3.33	300	30
Aluminum bronze	(or cooatt and manganese	7.5-8.5	600	12-13
Phosphor bronze		10-20		5-10
Silicium bronze		41		2.4
Manganese-copper	30 Mn + 70 Cu	1.00	40	100
Nickel-manganese-				
copper	$3 \text{ Ni} + 24 \text{ Mn} + 73 \text{ Cu} \dots$	2.10	— 30	48
271 1 11	[18.46 Ni + 61.63 Cu +	2.01	200	33
Nickelin	{ 19.67 Zn + 0.24 Fe +	3.01	300	33
	(0.19 Co + 0.18 Mn 25.1 Ni + 74.41 Cu +			
Patent nickel	0.42 Fe + 0.23 Zn +	2.92	190	34
1 atch meker	0.13 Mn + trace of cobalt	2.,2	170	0.
	(53.28 Cu + 25.31 Ni +			
Rheotan	16.89 Zn + 4.46 Fe +	1.90	410	53
	0.37 Mn			
Rheotan	53 Cu, 25 Ni, 17 Zn, 5 Fe	2.24	280	45
Copper-manganese-	01.0 . 71.36 . 10.5	4.00	120	20
iron	91 $Cu + 7.1 Mn + 1.9 Fe \dots$	4.98	120	20
Copper-manganese-	70.6 $Cu + 23.2 Mn + 6.2 Fe.$	1.30	22	77
Copper-manganese-	70.0 Cu + 23.2 Min + 0.2 Te	1.50	22	• •
iron	$69.7 \text{ Cu} + 29.9 \text{ Ni} + 0.3 \text{ Fe} \dots$	2.60	120	38
Therlo	85 Cu. 13 Mn. 2 Al	2.24	10	46.5
Manganin	$84 \text{ Cu} + 12 \text{ Mn} + 4 \text{ Ni} \dots$	2.3	6	44
Constantan	60 Cu + 40 Ni	2.04	8	49
$^* b \times 10^9 = 924$, $^{\dagger} b \times 1$	$0^{0} = 93$, $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$			
$\theta \times 10^{\circ} = 924$. $\uparrow \theta \times 1$	$10^{\circ} = 93.$ $10^{\circ} = 7280.$			

This table shows the conductivity of alloys and the variation of the conductivity with temperature. The conductivity is given as $C_t = C_0 (1 - at + bt^2)$, and the range of tem-

perature was from 0° to 100°C.

The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the metals alloyed together.

Part 1

	Weight %	Volume %			
Alloys	of first	named	$\frac{C_0}{10^4}$	$a \times 10^6$	$b \times 10^{9}$
Sn ₆ Pb	. 77.04	83.96	7.57	3890	8670
Sn ₄ Cd		83.10	9.18	4080	11870
SnZn		77.71	10.56	3880	8720
PbSn		53.41	6.40	3780	8420
ZnCd ₂	24.76	26.06	16.16	3780	8000
SnCd	23.05	23.50	13.67	3850	9410
CdPb ₆	7.37	10.57	5.78	3500	7270

Part 2

	Volume %	Weight %			
Alloys	of first	named	$\frac{C_0}{10^4}$	$a \times 10^8$	$b \times 10^9$
Lead-silver (Pb ₂₀ Ag) Lead-silver (PbAg) Lead-silver (PbAg ₂)	. 48.97	94.64 46.90 30.64	5.60 8.03 13.80	3630 1960 1990	7960 3100 2600
		90.32 79.54	5.20 3.03	3080 2920	6640 6300
Tin-copper	00 50	93.57 83.60 14.91 12.35 11.61 6.02 1.41	7.59 8.05 5.57 6.41 7.64 12.44 39.41	3680 3330 547 666 691 995 2670	8130 6840 294 1185 304 705 5070
Tin-silver	. 91.30 . 53.85	96.52 75.51	7.81 8.65	3820 3770	8190 8550
Zinc-copper	. 36.70 . 25.00 . 16.53 . 8.89 . 4.06	42.06 29.45 23.61 10.88 5.03	13.75 13.70 13.44 29.61 38.09	1370 1270 1880 2040 2470	1340 1240 1800 3030 4100

Note.—Barus has pointed out that the temperature variation of platinum alloys containing less than 10% of the other metal can be nearly expressed by an equation $y = \frac{n}{x} - m$, where y is the temperature coefficient and x the specific resistance, m and n being constants. If a be the temperature coefficient at 0°C and s the corresponding specific resistance, $s(\alpha + m) = n$

For platinum alloys Barus's experiments gave m = -.000194 and n = .0378.

For steel m = -.000303 and n = .0620.

Matthiessen's experiments reduced by Barus gave for

Gold alloys m = -.000045, n = .00721. Silver " m = -.000112, n = .00538. Copper " m = -.000386, n = .00055.

TABLE 397.—ELECTRICAL CONDUCTIVITY OF ALLOYS (concluded)

Part 3

,	Weight %	Volume %			
	of first	named	C ₀		
Alloys ,			104	$a \times 10^{6}$	$b \times 10$
Gold-copper	99.23	98.36	35.42	2650	4650
*******	90.55	81.66	10.16	749	81
Gold-silver	87.95	79.86	13.46	1090	793
" "	87.95	79.86	13.61	1140	1160
"	64.80	52.08	9.48	673	246
" "	64.80	52.08	9.51	721	495
" "	31.33	19.86	13.69	885	531
66 66	31.33	19.86	13.73	908	641
Gold-copper	34.83	19.17	12.94	864	570
16 16	1.52	.71	53.02	3320	7300
Platinum-silver	. 33.33	19.65	4.22	330	208
46 46	9.81	5.05	11.38	774	656
"	5.00	2.51	19.96	1240	1150
Palladium-silver	25.00	23.28	5.38	324	154
Copper-silver	98.08	98.35	56.49	3450	7990
	. 94.40	95.17	51.93	3250	6940
44	76.74	77.64	44.06	3030	6070
44 44	42.75	46.67	47.29	2870	5280
" "	7.14	8.25	50.65	2750	4360
	1.31	1.53	50.30	4120	8740
ron-gold	13.59	27.93	1.73	3490	7010
" "	9.80	21.18	1.26	2970	1220
" "	4.76	10.96	1.46	487	103
ron-copper	40	.46	24.51	1550	2090
Phosphorus-copper	2.50		4.62	476	145
	95		14.91	1320	1640
Arsenic-copper	5.40		3.97	516	989
44 76	2.80		8.12	736	446
" "	trace		38.52	2640	4830

The electrical resistivity (ρ , ohm-cm) of good conductors depends greatly on chemical purity, Slight contamination even with metals of lower ρ may greatly increase ρ . Solid solutions of good conductors generally have higher ρ than components. Reverse is true of bad conductors. In solid state allotropic and crystalline forms greatly modify ρ . For liquid metals this last cause of variability disappears. The + temperature coefficients of pure metals is of the same order as the coefficients of expansion of gases. For temperature resistance (t, ρ) plot at low temperatures the graph is convex toward the axis of t and probably approaches tangency to it. However for extremely low temperatures Onnes finds very sudden and great drops in ρ , e.g., for mercury, $\rho_{2.0K} < 4 \times 10^{-10} \rho_0$ and for Sn, $\rho_{2.0K} < 10^{-7} \rho_0$. The t, ρ graph for an alloy may be nearly parallel to the t axis, cf. constantan; for poor conductors ρ may decrease with increasing t. At the melting-points there are three types of behavior of good conductors; those about doubling ρ and then possessing nearly linear t, ρ graphs (Al, Cu, Sn, Au, Ag, Pb); those where ρ suddenly increases and then the + temp. coefficient is only approximately constant (Hg, Na, K); those about doubling ρ then having a —, slowly changing to a + temp. coef. (Zn, Cd); those where ρ suddenly decreases and thereafter steadily increases (Sb, Bi). The values from different authorities do not necessarily fit because of different samples of metals. Resistivities are in microhm-cm unless otherwise stated. Italicized figures indicate liquid state.

Gold	Copper	Silver	Zinc
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mercury	Potassium	Sodium	Iron
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Manganin	German silver	Constantan	90% Pt 10% Rh
°C ρ_t $\frac{\rho_t}{\rho_0}$ -200. 37.8 9.74 -150. 38.2 .985 -100. 38.5 .992 -50. 38.7 .997 θ . 38.8 1.000 100. 38.9 1.003 400. 38.3 .987	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE 398.—RESISTIVITIES AT HIGH AND LOW TEMPERATURES (concluded)

(Ohm-cm unless stated otherwise.)

	Platinu	n		Lead			Bismu	th		Cadmiu	m
°C	P ₈ .10 .15 .54 4.18 7.82 11.05 14.1 17.9 25.4 40.3 47.0 52.7 58.0 63.0	ρ _t ρ ₀ .0092 .014 .049 .378 .708 1.00 1.28 1.62 2.30 3.65 4.25 4.77 5.25 5.70		P _t .59 4.42 5.22 11.8 13.95 15.7 19.8 27.8 38.0 95.0 95.0 98.3 107.2	ρ _t ρ ₀ .0298 .223 .264 .598 .705 .792 1.00 1.403 1.919 2.552 4.80 4.96 5.41 5.86	°C20015010050. 0. 17. 100. 200. 259. 263. 300. 500. 750.	P ₁ 34.8 55.3 75.6 94.3 110.7 120.0 156.5 214.5 2267.0 127.5 128.9 150.8 153.5	ρ _t ρ ₀ .314 .499 .683 .852 1.00 1.083 1.413 1.937 2.411 1.150 1.164 1.263 1.361 1.386	°C -252.9 -200190.2 -183.1 -139.2 -100. 0. 300. 325. 350. 400. 500. 700.	P ₁ .17 1.66 2.00 2.22 3.60 4.80 7.75 16.50 33.76 33.70 35.12 35.78	P _t P ₀ 0.0218 .214 2.58 .286 .464 .619 1.00 2.13 4.35 4.35 4.40 4.62
°C -200100. 0. 200. 225. 235. 750.	P _t 2.60 7.57 13.05 20.30 22.00 47.60 61.22	$ \frac{\rho_t}{\rho_0} $.199 .580 1.00 1.55 1.69 3.65 4.69	Car °C 0. 500. 1000. 1500. 2000. 2500. >107; 1380°	Carbon .0035 .0027 .0021 .0015 .0011	ohms-cm a Graphite .00080 .00083 .00087 .00090 .00100 .0011	15. 230. 300. 350 450. 700. 850.	>2	silica 200,000,000. 200,000,000. 200,000. 30,000. 800. 30. about 20.	°(00. 00. 00. 00. 00. 00. 00.	n cement o in ohms- cm > 9×10° 30800. 13600. 7600. 2300. 190.

TABLE 399.—SUPERCONDUCTIVITY OF SOME METALS 145

Metal	Т°К	Metal	т°К	Metal	Т°К
Nb		In		Ŭ	
Pb La		Re T1		Os	
Ta		Th		Cd	
<u>V</u>		<u>A</u> 1		Ti	
Hg		Ga Zn		Ru Hf	

^{*} Daunt, J. G., and Smith, T. S. † Daunt, J. G., and Heer, C. V., Phys. Rev., vol. 76, pp. 719 and 1324, 1948.

TABLE 400.—SUPERCONDUCTIVITY OF SOME ALLOYS AND COMPOUNDS 140

¹⁴⁶ Smith, G. H., and Wilhelm, J. O., Rev. Mod. Phys., vol. 7, p. 240, 1935.

TABLE 401.—VOLUME AND SURFACE RESISTANCE OF SOLID DIELECTRICS

The resistance between two conductors insulated by a solid dielectric depends both upon the surface resistance and the volume resistance of the insulator. The volume resistivity, ρ , is the resistance between two opposite faces of a centimeter cube. The surface resistivity, σ , is the resistance between two opposite edges of a centimeter square of the surface. The surface resistivity usually varies through a wide range with the humidity.

Material	σ; megohms 50% humidity	σ; megohms 70% humidity	σ; megohms 90% humidity	ρ Megohm-cm
Amber	6×10°	2×10^{8}	1×10^{5}	5×10^{10}
Beeswax, yellow		$6\times10^{\rm s}$	$5\times10^{\circ}$	2×10^{9}
Celluloid		2×104	2×10^{3}	2×104
Fiber, red		3×10^{3}	2×10^{2}	5×10^{3}
Glass, plate		6×10	2×10	2×10^7
" Kavalier		4×10^{3}	1×10^{3}	8×10°
Hard rubber, new	3×10°	1×10^{8}	2×10^{3}	1×10^{12}
Ivory	5×10^{3}	1×10^{3}	3×10	2×10^{2}
Khotinsky cement	$7 \times 10^{\circ}$	3×10^{8}	5×10^{5}	$2 \times 10^{\circ}$
Marble, Italian	3×10^{3}	2×10^{2}	2×10	1×10^{5}
Mica, colorless	$\dots 2\times 10^7$	4×10^{5}	8×10^{3}	2×10^{11}
Paraffin (parowax)	9×10^{9}	7×10^{9}	6×10^{9}	1×10^{10}
Porcelain, unglazed	6×10^{5}	7×10^{3}	5×10	3×10^{8}
Quartz, fused	3×10°	2×10^{3}	2×10^{2}	5×10^{12}
Rosin	\dots 6×10 ^s	$3\times10^{\rm s}$	2×10^{8}	5×10^{10}
Sealing wax		6×10^{8}	9×10^{7}	8×10°
Shellac	6×10^7	3×10^{6}	7×10^{3}	1×10^{10}
Slate		3×10	1×10	1×10^{2}
Sulfur		4×10^{9}	1×10^{8}	1×10 ¹¹
Wood, paraffined mahogany		5×10^{5}	7×10^{3}	4×10^7

TABLE 402.—ELECTRICAL RESISTIVITY OF SOME OXIDES AND MISCELLANEOUS MINERALS *

Material	Resistivity ohm-cm	Material	Resistivity ohm-cm
Graphite, commercial electrodes (density = 1.5) Hematite, Fe ₂ O ₃ , mineral Iron, metallic, meteoric Rock salt, pure impure	$.357$ $2.4-3.2 \times 6^{-6}$? $10^{6}-10^{7}$	Sulfur PbO ₂ , synthetic MnO ₂ , synthetic W ₂ O ₅ WO ₃	000092 . 6 00045

^{*} For reference, see footnote 45, p. 136.

TABLE 403.—ELECTRICAL RESISTIVITY OF ROCKS AND SOILS *

Igneous rocks	Resistivity ohm-cm	Sedimentary rocks	Resistivity ohm-cm
Granite	$10^{7}-10^{9}$	Limestone	104
Lava flow (basic)		Limestone, Cambrian	10 ⁴ -10 ⁵
Lava, fresh		Sandstone, eastern	$3 \times 10^{8} - 10^{4}$
Quartz vein, massive		Sandstone	10^{5}
~ ,,		Limestone	10^{5}
Metamorphic rocks	Resistivity ohm-cm		Resistivity
Marble, white		Unconsolidated materials	ohm-cm
Marble		Clay, blue	2×104
Marble, yellow		Clayey earth	
Schist, mica		Clay, fire	2×10^{5}
Shale, Nonesuch		Gravel	105
Shale, bed	105	Sand, dry	10 ⁵ -10 ⁶
Share, bed	10	Sand, moist	$10^{5}-10^{6}$

^{*} For reference, see footnote 45, p. 136.

TABLE 404.—RESISTIVITY OF SOILS AND SEA WATER MEASURED WITH HIGH-FREQUENCY ALTERNATING CURRENT*

Material	Frequency kilocycles/sec	Resistivity ohm/cm	Material	Frequency kilocycles/sec	Resistivity ohm/cm
Soil, very dry Topsoil, dry	1 to 10,000 37,000	$\frac{10^7}{7,000}$	Clay, dry Chalk	37,000	60,000
z opcon, a.y	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(moisture, 24%)	100 1,200 10,000	33,000 22,000 14,000
Loam, dark (moisture, 60%)	100 1,200 10,000	2,600 2,300 1,500	Sea water	100 1,200 10,000	21 21 16.5

^{*} For reference, see footnote 45, p. 136.

TABLE 405.—ELECTRICAL RESISTIVITY OF NATURAL WATERS*

Material	Resistivity ohm-cm	Material	Resistivity ohm-cm
Very fresh distilled waters Mine waters		Potable ground waters Surface waters	

^{*} For reference, see footnote 45, p. 136.

TABLE 406.—RESISTIVITY OF SOME GLASSES AT THREE TEMPERATURES 147

			Log 10			
			Volume :	resistivity -cm)		
Glass	Principal use	Density	25°C	250°C	350°C	
Potash soda lead I Soda lime I Potash soda lead I	Lamp bulbs	2.85 2.47 3.05	17.+ 12.4 17.+	8.9 6.4 10.1	7.0 5.1 8.0	
Hard Lime	Cooking utensils	2.53 2.28	17.+ 17.	11.4 9.2	9.4 7.4	
Borosilicate	Baking ware	2.13 2.24 2.23	17.+ 15. 15.	11.2 8.2 8.1	9.1 6.7 6.6	
Pyrex		2.23 2.18 2.20	17.+	11.2	9.2 10.48	

¹⁴⁷ Corning Glass Co. publication, Properties of selected commercial glasses, 1949. General Electric Co. publication, Fused quartz, 1947.

TABLE 407 .- CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS

In these tables m represents the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for 18°C , and relative to mercury at 0° C, the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one percent of the true value.

The tabular numbers were obtained from the measurements in the following manner:

Let $K_{18} = \text{conductivity}$ of the solution at 18°C relative to mercury at 0°C. $K^{*}_{18} = \text{conductivity}$ of the solvent water at 18°C relative to mercury at 0°C. Then $K_{18} - K^{*}_{18} = k_{18} = \text{conductivity}$ of the electrolyte in the solution measured.

 $\frac{k_{18}}{m} = \mu = \text{conductivity}$ of the electrolyte in the solution per molecule, or the "specific molecular conductivity."

Part 1.-Value of k18 for a few electrolytes

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

m	KC1	NaCl	AgNO ₃	KC ₂ H ₃ O ₂	K ₂ SO ₄	MgSO ₄
.00001 .00002 .00006	1 216 2.434 7.272 12.09	1.024 2.056 6.162 10.29	1 080 2.146 6.462 10.78	.939 1.886 5.610 9.34	1,275 2,532 7,524 12,49	1.056 2.104 6.216 10.34

Part 2.—Electrochemical equivalents and normal solutions

The following table of the electrochemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 409 may be convenient. They represent g per cm³ of the solution at the temperature given.

C 1: 1: 1 1			Temp.	D :	C-1, 3'11			Temp	D
Salt dissolved	g per l	771	- (Density	Salt dissolved	g per l	971	- (Density
KC1	74.59	1.0		1.0457	½K₂SO₄	87.16			1.0658
NH ₄ Cl	53.55	1.0009	18.6	1.0152	³ Na₂SO₄	71.09	1.0003	18.6	1,0602
NaCl		1.0		1.0391	½Li₂SO₄	55.09	1.0007		1.0445
LiC1	42.48	1.0	18.4	1.0227	⅓MgSO₁	60.17	1.0023	186	1.0573
½BaCl₂	104.0	1.0	18.6	1.0888	½ZnSO₄	80.58	1.0	5.3	1.0794
³ ZnCl₂	68.0	1.012	15.0	1.0592	¹ CuSO₄	79.9	1.001	18.2	1.0776
KI		1.0	18.6	1.1183	½K₂CO₃	69.17	1.0006	18.3	1.0576
KNO ₃	101.17	1.0	18.6	1.0601	¹ Na₂CO₂	53.04	1.0	17.9	1.0517
NaNO3		1.0	18.7	1.0542	KOH	56.27	1.0025	18.8	1.0477
AgNO ₃	169.9	1.0			HC1	35.51	1.0041	18.6	1.0161
½Ba(NO₃)₂		.5			HNO ₃	63 13	1.0014	18.6	1.0318
KClO ₃	61.29	.5	18.3	1.0367	₹H2SO4	49.06	1.0006	18.9	1.0300
KC ₂ H ₃ O ₂	00.10	1.0005	18.6	1.0467	2	,			

TABLE 408.—TEMPERATURE COEFFICIENTS OF CONDUCTIVITY

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing 0.01 gram molecule of the salt.

TABLE 409.—SPECIFIC MOLECULAR CONDUCTIVITY OF SOLUTIONS ${\rm Mercury} = 10^{\rm s}/({\rm ohm\text{-}cm})$

Salt dissolved ½K2SO4 KCI KI NH4CI KNO3		5 — 770 752 —	3 827 900 825 572	919 968 907 752	.5 672 958 997 948 839	.1 736 1047 1069 1035 983	.05 897 1083 1102 1078 1037	.03 959 1107 1123 1101 1067	.01 1098 1147 1161 1142 1122
$\begin{array}{l} \frac{1}{2} BaCl_2 \\ KClO_3 \\ \frac{1}{2} BaN_2O_6 \\ \frac{1}{2} CuSO_4 \\ AgNO_3 \end{array}$			487 — 150 448	658 — 241 635	725 799 531 288 728	861 927 755 424 886	904 (976) 828 479 936	939 1006 (870) 537 (966)	1006 1053 951 675 1017
½ZnSO ₄ ½MgSO ₄ ½Na ₂ SO ₄ ½ZnCl ₂ NaCl	60	82 82 — 180 398	146 151 — 280 528	249 270 475 514 695	302 330 559 601 757	431 474 734 768 865	500 532 784 817 897	556 587 828 851 (920)	685 715 906 915 962
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	240 	430 381 254 1560 5.2	617 594 427 1820 12	694 671 510 1899 19	817 784 682 2084 43	855 820 751 2343 62	877 841 799 2515 79	907 879 899 2855 132
HCl HNO3 ¼H3PO4 KOH NH3	610 148 423	1420 1470 160 990 2.4	2010 2070 170 1314 3.3	2780 2770 200 1718 8.4	3017 2991 250 1841 12	3244 3225 430 1986 31	3330 3289 540 2045 43	3369 3328 620 2078 50	3416 3395 790 2124 92
Salt dissolved K2SO4 KCI KI NH4CI KNO3	1162 1176 1157	.002 1181 1185 1197 1180 1173	.001 1207 1193 1203 1190 1180	.0006 1220 1199 1209 1197 1190	.0002 1241 1209 1214 1204 1199	.0001 1249 1209 1216 1209 1207	.00006 1254 1212 1216 1215 1220	.00002 1266 1217 1216 1209 1198	.00001 1275 1216 1207 1205 1215
BaCl₂ KClO₃ BaN₂O6 CuSO4 AgNO₃	1068 982 740	1074 1091 1033 873 1057	1092 1101 1054 950 1068	1102 1109 1066 987 1069	1118 1119 1084 1039 1077	1126 1122 1096 1062 1078	1133 1126 1100 1074 1077	1144 1135 1114 1084 1073	1142 1141 1114 1086 1080
½ZnSO ₄ ½MgSO ₄ ½Na ₂ SO ₄ ½ZnCl ₂ NaCl	744 773 933 939 976	861 881 980 979 998	919 935 998 994 1008	953 967 1009 1004 1014	1001 1015 1026 1020 1018	1023 1034 1034 1029 1029	1032 1036 1038 1031 1027	1047 1052 1056 1035 1028	1060 1056 1054 1036 1024
NaNO ₁ KC ₂ H ₃ O ₂ ½Na ₂ CO ₃ ½H ₂ SO ₄ C ₂ H ₄ O	921 891 956 3001 170	942 913 1010 3240 283	952 919 1037 3316 380	956 923 1046 3342 470	966 933 988 3280 7 96	975 934 874 3118 995	970 935 790 2927 1133	972 943 715 2077 1328	975 939 697* 1413* 1304*
HCI HNO3 {H3PO4 KOH NH3	3421 858	3455 3448 945 2140 190	3455 3427 968 2110 260	3440 3408 977 2074 330	3340 3285 920 1892 500	3170 3088 837 1689 610	2968 2863 746 1474 690	2057 1904 497 845 700	1254* 1144* 402* 747* 560*

^{*} Acids and alkaline salts show peculiar irregularities.

TABLE 410.—LIMITING VALUES OF μ , THE SPECIFIC MOLECULAR CONDUCTIVITY

This table shows limiting values of $\mu = \frac{k}{m}.10^s$ for infinite dilution for neutral salts, calculated from Table 409.

Salt μ Salt μ Salt μ	Salt µ
$\frac{1}{2}$ K ₂ SO ₄ 1280 $\frac{1}{2}$ BaCl ₂ 1150 $\frac{1}{2}$ MgSO ₄ 1080	½H₂SO₄ 3700
	HC1 3500
	HNO ₃ 3500
77370	¹ ⁄ ₃ H ₃ PO ₄ 1100 KOH 2200
	½Na ₂ CO ₃ 1400

TABLE 411.—THE EQUIVALENT CONDUCTIVITY OF THE SEPARATE IONS

Ion	0°C	18°	25°	50°	75°	100°	128°	156°
K	40.4	64.6	74.5	115	159	206	263	317
Na	26	43.5	50.9	82	116	155	203	249
NH4	40.2	64.5	74.5	115	159	207	264	319
Ag	32.9	54.3	63.5	101	143	188	245	299
½Ba	33	55²	65	104	149	200	262	322
½Ca	30	51²	60	98	142	191	252	312
⅓La	35	61	7 2	119	173	235	312	388
C1	41.1	65.5	75.5	116	160	207	264	318
NO ₃	40.4	61.7	70.6	104	140	178	222	263
C ₂ H ₃ O ₂	20.3	34.6	40.8	67	96	130	171	211
₹SO	41	68²	7 9	125	177	234	303	370
½C ₂ O ₄	39	63 ²	73	115	163	213	275	336
3C ₆ H ₅ O ₇	36	60	70	113	161	214		
⁴ Fe(CN) ₆	58	95	111	173	244	321		
Н	240	314	350	465	565	644	722	777
OH	105	172	192	284	360	439	525	592

TABLE 412.—HYDROLYSIS OF AMMONIUM ACETATE AND IONIZATION OF WATER

Tempera- ture	Percentage hydrolysis	Ioniza- tion constant of water	Hydrogen-ion concentration in pure water Equivalents per liter	Tempera- ture	Percentage hydrolysis	Hydrog Ioniza- concent tion in pure constant Equiva of water per l	ration water alents
t	100 _h	$\rm K_W \times 10^{14}$	$C_{\rm H} imes 10^7$	t	100 _h	$K_w \times 10^{14}$ $C_H \times$	107
0°C 18	(.35)	.089 .45	.30 .68	100°C 156	4.8 18.6	48. 6.9 223. 14.9	
25	(.55)	.82	.91	218	52.7	461. 21.5	
				306	91.5	168. 13.0)

TABLE 413.—THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS, AND BASES IN AQUEOUS SOLUTIONS

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per liter of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulfate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, KHSO₄ or H₃PO₄, per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was substracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts.

Concentration in $\frac{g \text{ equivalents}}{1000 \text{ I}}$.

Equivalent conductance in $\frac{\text{reciprocal ohm-cm}}{\text{g equivalents per cm}^{\text{s}}}$.

		-	E'au	ivalent c	onductan	ce at tl	he follow	ving °C	temper	atures	
Substance	Concen- tration	18°	25°	50°	75°	100°	128°	156°	218°	281°	306°
Potassium chloride	0	130.1		(232.5)		414	(519)	625	825	1005	1120
" " " "	2	126.3	146.4	(232.3)	(321.3)	393	(319)	588	779	930	1008
"	10	122.4	141.5	215.2	295.2	377	470	560	741	874	910
"	80	113.5	_	_	_	342	_	498	638	723	720
" "	100	112.0	129.0	194.5	264.6	336	415	490			
Sodium chloride	0	109.0	_	_	_	362	_	555	760	970	1080
" "	2	105.6	_	_	_	349	_	534	722	895	955
" "	10	102.0	—		_	336		511	685	820	860
" "	80 100	93.5	_	_	_	301	_	450	500	674	680
Silver nitrate	0	92.0 115.8	_	_	_	296 367		442 570	780	965	1065
" "	2	112.2	_	_	_	353	_	539	727	877	935
	10	108.0		_	_	337	_	507	673	790	818
"	20	105.1	_		_	326	_	488	639	170	010
"	40	101.3	_	_	_	312		462	599	680	680
66 66	80	96.5	_	_	_	294	_	432	552	614	604
"	100	94.6	_	_	_	289					
Sodium acetate	0	78.1		_	_	285	_	450	660	_	924
" " "	2	74.5	_	_	_	268	_	421	578	_	801
" "	10	71.2	_	_		253	_	396	542	_	702
Magnesium sulfate	80 0	63.4 114.1	_	_	_	221	_	340	452		
" "	2	94.3	_	_	-	426 302	_	690 377	1080 260		
" "	10	76.1	_	_		234		241	143		
" "	20	67.5	_	_		190		195	110		
	40	59.3	_	_	_	160	_	158	88		
" "	80	52.0	_	_	_	136	_	133	75		
	100	49.8	_	_	_	130	_	126			
	200	43.1		-	_	110	_	109			
Ammonium chloride	0	131.1	152.0	_	_	(415)	_	(628)	(841)	_	(1176)
" "	2	126.5	146.5	_	_	399	_	601	801	_	1031
" "	10 30	122.5 118.1	141.7	_	_	382	_	573	758	_	925
Ammonium acetate	0	(99.8)	_	_	_	(338)	_	(522)	_	_	828
" " "	10	91.7	_	_	_	300	_	(523) 456			
"	25	88.2	_	_	_	286	_	426			
Barium nitrate	0	116.9	_	_	_	385	_	600	840	1120	1300
44 44	2	109.7	_		_	352	_	536	715	828	824
" "	10	101.0	_	_	_	322	_	481	618	658	615
66 66	40	88.7		_	_	280	_	412	507	503	448
" "	80	81.6	_	_	_	258	-	372	449	430	
	100	79.1	_	_	_	249					

TABLE 413.—THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS, AND BASES IN AQUEOUS SOLUTIONS (concluded)

	Concen-	Equ	ivalent	conducta	nce at t	he follo	wing °C	temper	atures	
Substance	tration 18°	25°	50°	75°	100°	128°	156°	218°	281°	306°
Potassium sulfate	0 132.8		_	_	455	_	715	1065	1460	1725
" "	2 124.8		-		402		605	806	893	867
" "	10 115.7		_	_	365		537	672	687	637
44 45	40 104.2		_	_	320	_	455	545	519	466
	80 97.2 100 95.0		_	_	294 286		415	482	448	396
	100 95.0 0 379.0		_	_	850		1085	1265	1380	1424
Hydrochloric acid	2 373.6		_	_	826	_	1048	1217	1332	1337
" " " " " " " " " " " " " " " " " " " "	10 368.1			_	807		1016	1168	1226	1162
" "	80 353.0		_	_	762		946	1044	1046	862
"	100 350.6	_	_	_	754	_	929	1006		
Nitric acid	0 377.0		570	706	826	945	1047	(1230)	_	(1380
"	2 371.2		559	690	806	919	1012	1166	_	1156
46 46	10 365.0		548	676	786	893	978			
46 46	50 353.7		528	649	750	845	917			47.44
	100 346.4 0 383.0		516 (591)	632 (746)	728 891	817 (1041)	880 1176	1505		454*
Sulfuric acid	2 353.9		501	561	571	551	536	563	_	(2030) 637
66 66	10 309.0		406	435	446	460	481	533		037
" "	50 253.5		323	356	384	417	448	502		
"	100 233.3		300	336	369	404	435	483		474*
Postassium hydrogen (2 455.3		661.0	754	784	773	754			,, ,
sulfate	50 295.5		374.4	403	422	446	477			
	100 263.7		329.1	354	375	402	435			
Phosphoric acid	0 338.3		510	631	730	839	930			
66 66	2 283.1	311.9	401	464	498	508	489			
" " "	10 203.0		273	300	308	298	274			
"	50 122.7 100 96.5		157.8 122.7	168.6 129.9	168 128	158 120	142 108			
Acetic acid	0 (347.0		122.7	129.9	(773)			(1165)		(1268)
" "	10 14.50			_	25.1	_	22.2	14.7	_	(1200)
"	30 8.50		_		14.7	_	13.0	8.65		
" "	80 5.22		_	_	9.05	_	8.00	5.34		
"	100 4.67			_	8.10	_	_	4.82	_	1.57
Sodium hydroxide	0 216.5			_	594		835	1060		
" "	2 212.1	_	_	_	582	_	814			
" "	20 205.8		_	_	559	_	771	930		
	50 200.6		200	(520)	540	(760)	738	873		
Barium hydroxide	0 222 2 215	256	389 359	(520)	645 591	(760)	847			
44 44	10 207	235	342	449	548	664	722			
64 66	50 191.1	215.1	308	399	478	549	593			
"	100 180.1	204.2	291	373	443	503	531			
	0 (238)	(271)	(404)	(526)	(647)	(764)		(1141)		(1406)
Ammonium	10 9.66		· –		23.2	_	22.3	15.6		(50)
hydroxide	30 5.66	_	_	_	13.6	_	13.0			
· ·	100 3.10	3.62	5.35	6.70	7.47	_	7.17	4.82	_	1.33

^{*} These values are at the concentration 80.0.

TABLE 414.—THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION

		Equivalent conductance at the following °C temperature								
Substance	Concen- tration	0°	18°	25°	50°	75°	100°	128°	156°	
	0	80.8	126.3	145.1	219	299	384	485	580	
Potassium nitrate	2	78.6	122.5	140.7	212.7	289.9	370.3	460.7	551	
"	12.5	75.3	117.2	134.9	202.9	276.4	351.5	435.4	520.4	
"	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.1	
44 44	100	67.2	104.5	120.3	180.2	244.1	308.5	379.5	447.3	
Potassium oxalate	0	79.4	127.6	147.5	230	322	419	538	653	
" "	2	74.9	119.9	139.2	215.9	300.2	389.3	489.1	587	
66 66	12.5	69.3	111.1	129.2	199,1	275.1	354.1	438.8	524.3 449.5	
" "	50	63	101 94.6	116.5 109.5	178.6 167	244.9 227.5	312.2 288.9	383.8 353.2	409.7	
	100 200	59.3 55.8	88.4	109.3	155	210.9	265.1	321.9	372.1	
Calcium nitrate	0	70.4	112.7	130.6	202	282	369	474	575	
" "	ž	66.5	107.1	123.7	191.9	266.7	346.5	438.4	529.8	
" "	12.5	61.6	98.6	114.5	176.2	244	314.6	394.5	473.7	
66 66	50	55.6	88.6	102.6	157.2	216.2	276.8	343	405.1	
" "	100	51.9	82.6	95.8	146.1	199.9	255.5	315.1	369.1	
	200	48.3	76.7	88.8	135.4	184.7	234.4	288	334.7	
Potassium ferrocyanide .	0 _	98.4	159.6	185.5	288	403	527			
" "	.5	91.6	137	171.1 158.9	243.8	335.2	427.6			
" "	12.5	84.8 71	113.4	131.6	200.3	271	340			
"	50	58.2	93.7	108.6	163.3	219.5	272.4			
	100	53	84.9	98.4	148.1	198.1	245			
"	200	48.8	77.8	90.1	135.7	180.6	222.3			
٠٠	400	45.4	72.1	83.3	124.8	165.7	203.1			
Barium ferrocyanide	0	91	150	176	277	393	521			
46 46	2	46.9	75	86.2	127.5	166.2	202.3			
	12.5	30.4	48.8	56.5	83.1	107	129.8			
Calcium ferrocyanide	0 2	88 47.1	146 75.5	171 86.2	271 130	386	512			
"	12.5	31.2	49.9	57.4	130					
"	50	24.1	38.5	44.4	64.6	81.9				
" "	100	21.9	35.1	40.2	58.4	73.7	84.3			
" "	200	20.6	32.9	37.8	55	68.7	77.5			
" "	400	20.2	32.2	37.1	54	67.5	76.2			
Potassium citrate	0	76.4	124.6	144.5	228	320	420			
ii ii	0.5		120.1	139.4	210.1	2020	201.2			
	2	71	115.4	134.5	210.1	293.8	381.2			
" "	5 12.5	67.6	109.9	128.2	198.7 183.6	276.5 254.2	357.2 326			
" "	50	62.9 54.4	101.8 87.8	118.7 102.1	157.5	215.5	273			
" "	100	50.2	80.8	93.9	143.7	196.5	247.5			
	300	43.5	69.8	81	123.5	167	209.5			
Lanthanum nitrate	0	75.4	122.7	142.6	223	313	413	534	651	
"	2	68.9	110.8	128.9	200.5	279.8	363.5	457.5	549	
44 44	12.5	61.4	98.5	114.4	176.7	243.4	311.2	383.4	447.8	
" "	50	54	86.1	99.7	152.5	207.6	261.4	315.8	357.7	
44 44	100	49.9	79.4	91.8	139.5	189.1	236.7	282.5	316.3	
	200	46	72.1	83.5	126.4	170.2	210.8	249.6	276.2	

Every gram-atom involved in an electrolytic change requires the same number of coulombs, or ampere-hours of electricity, per unit change of valency. This constant is 96487.7 coulomb/g-atom, or 26.801 ampere-hours per g-atom hour, corresponding to an electrochemical equivalent of silver of 0.0011810 g sec⁻¹amp⁻¹. It is to be noted that the change of valence of the element from its state before to that after the electrolytic action should be considered. The valence of a free, uncombined element is to be considered as 0. The same current will electrolyze "chemically equivalent" quantities per unit time. The valence is then included in the "chemically equivalent" quantity.

Element	Change of valency	Mg per coulomb	Coulombs per mg	G per amp hour
A1	2	.09317	10.733	.3354
Cl	1	.36749	2.7212	1.3230
46	2	.12250	8.1633	.4410
"	5	.07350	13.605	.2646
"	7	.05250	19.048	.1890
Cu	1	.6585	1.5186	2.3706
Cu		.3293	3.0367	1.1855
Λ		2.044	.4892	7.358
Au	1	.6813	1.468	
TT				2.453
H	1	.0104472	95.719	.0376099
Pb		2.1476	.46564	7.7314
"		1.07379	.93128	3.8656
	4	.53690	1.8625	1.9328
Hg	1	2.0792	.48095	7.4851
<u></u>	2	1.0396	.961908	3.7426
Ni	1	.60828	1.6440	2.1898
"	2	.3041	3.2884	1.0948
	3	.20276	4.9319	.7299
0	2	.082914	12.0607	.298490
46	4	.041457	24.1214	.14945
Pt	2	1.01171	.98843	3.6422
"	4	.50585	1.97687	1.82107
44	6	.33724	2.9652	1.2140
K	1	.4052	2.4679	1.4587
Ag	1	1.11810	.894374	4.02516
Na	1	.23835	4.1955	.85806
Sn	2	.61512	1.6257	2.2144
4	4	.30756	3.2514	1.1072
Zn	2	.33881	2.9515	1.21972

The electrochemical equivalent for silver is 0.00111810 g sec⁻¹ amp⁻¹. For other elements the electrochemical equivalent = (atomic weight divided by change of valency) and this divided by 96487.7 coulomb/g-atom.

TABLE 416.—INTRODUCTION TO WIRE TABLES; MASS AND VOLUME RESISTIVITY OF COPPER AND ALUMINUM

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the cooperation of the Standards Committee of the American Institute of Electrical Engineers. The standard of copper resistance used is "The International Annealed Copper Standard" as adopted September 5, 1913, by the International Electrotechnical Commission and represents the average commercial high-conductivity copper for the purpose of electric conductors. This standard corresponds to a conductivity of 58×10^{-5} emu, and a density of 8.89, at 20° C. In the various units of mass resistivity and volume resistivity this may be stated as

0.15328 ohm (m, g) at 20°C 875.20 ohms (mi, lb) at 20°C 1.7241 microhm-cm at 20°C 0.67879 microhm-in. at 20°C 10.371 ohms (mil, ft) at 20°C

The temperature coefficient for this particular resistivity is $\alpha_{20} = 0.00393$, or $\alpha_0 = 0.00427$. The temperature coefficient of copper is proportional to the conductivity, so that where the conductivity is known the temperature coefficient may be calculated, and vice versa. Thus the next table shows the temperature coefficients of copper having various percentages of the standard conductivity. A consequence of this relation is that the change of resistivity per degree is constant, independent of the sample of copper and independent of the temperature of reference. This resistivity-temperature constant, for volume resistivity and Centigrade degrees, is 0.00681 microhm-cm, and for mass resistivity is 0.000597 ohm (m, g). The density of 8.89 g per cm³ at 20°C, is equivalent to 0.32117 lb per in.³

The values in the following tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Harddrawn copper may be taken as about 2.7 percent higher resistivity than annealed copper.

The following is a fair average of the chemical content of commercial high conductivity

copper:

Copper	99.91%	Sulfur	.002%
Silver		Iron	.002
Oxygen	.052	Nickel	trace
Arsenic	.002	Lead	"
Antimony	.002	Zinc	"

The following values are consistent with the data above:

Conductivity at 0°C, in emu	62.969×10^{-5}
Resistivity at 0°C, in microhm-cm	1.5881
Density at 0°C	8.90
Coefficient of linear expansion per degree C	.000017
"Constant mass" temperature coefficient	
of resistance at 0°C	.00427

The aluminum tables are based on a figure for the conductivity published by the National Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Co. of America. A volume resistivity of 2.828 microhm-cm and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give:

Conductivity at 0°C in emu	38.36×10^{-5}
Mass resistivity, in ohms (m, g) at 20°C	.0764
" " (mi, lb) at 20°C	436.
Mass percent conductivity relative to copper	200.7%
Volume resistivity, in microhm-cm at 20°C	2.828
" in microhm-in. at 20°C	1.113
Volume percent conductivity relative to copper	61.0%
Density, in g/cm ⁸	2.70
Density, in lb/in.8	.0975

The average chemical content of commercial aluminum wire is

Aluminum		99.57%
Silicon	• • • • • • • • • • • • • • • • • • • •	.29
	• • • • • • • • • • • • • • • • • • • •	.14

_									
	Gage No. 7-0 6-0 5-0	American wire gage (B. & S.) mils *	American wire ¿age (B. & S.) mm *	Steel wire gage † mils 490.0 461.5 430.5	Steel wire gage † mm 12.4 11.7 10.9	Stubs' steel wire gage mils	(British) standard wire gage mils 500. 464. 432.	Birming- ham wire gage (Stubs') mils	Gage No. 7-0 6-0 5-0
	4-0 3-0 2-0	460. 410. 365.	11.7 10.4 9.3	393.8 362.5 331.0	10.0 9.2 8.4		400. 372. 348.	454. 425. 380.	4-0 3-0 2-0
	0 1 2	325. 289. 258.	8.3 7.3 6.5	306.5 283.0 262.5	7.8 7.2 6.7	227. 219.	324. 300. 276.	340. 300. 284.	0 1 2
	3	229.	5.8	243.7	6.2	212.	252.	259.	3
	4	204.	5.2	225.3	5.7	207.	232.	238.	4
	5	182.	4.6	207.0	5.3	204.	212.	220.	5
	6	162.	4.1	192.0	4.9	201.	192.	203.	6
	7	144.	3.7	177.0	4.5	199.	176.	180.	7
	8	128.	3.3	162.0	4.1	197.	160.	165.	8
	9	114.	2.91	148.3	3.77	194.	144.	148.	9
	10	102.	2.59	135.0	3.43	191.	128.	134.	10
	11	91.	2.30	120.5	3.06	188.	116.	120.	11
	12	81.	2.05	105.5	2.68	185.	104.	109.	12
	13	72.	1.83	91.5	2.32	182.	92.	95.	13
	14	64.	1.63	80.0	2.03	180.	80.	83.	14
	15	57.	1.45	72.0	1.83	178.	72.	72.	15
	16	51.	1.29	62.5	1.59	175.	64.	65.	16
	17	45.	1.15	54.0	1.37	172.	56.	58.	17
	18	40.	1.02	47.5	1.21	168.	48.	49.	18
	19	36.	.91	41.0	1.04	164.	40.	42.	19
	20	32.	.81	34.8	.88	161.	36.	35.	20
	21	28.5	.72	31.7	.81	157.	32.	32.	21
	22	25.3	.62	28.6	.73	155.	28.	28.	22
	23	22.6	.57	25.8	.66	153.	24.	25.	23
	24	20.1	.51	23.0	.58	151.	22.	22.	24
	25	17.9	.45	20.4	.52	148.	20.	20.	25
	26	15.9	.40	18.1	.46	146.	18.	18.	26
	27	14.2	.36	17.3	.439	143.	16.4	16.	27
	28	12.6	.32	16.2	.411	139.	14.8	14.	28
	29	11.3	.29	15.0	.381	134.	13.6	13.	29
	30	10.0	.25	14.0	.356	127.	12.4	12.	30
	31	8.9	.227	13.2	.335	120.	11.6	10.	31
	32	8.0	.202	12.8	.325	115.	10.8	9.	32
	33	7.1	.180	11.8	.300	112.	10.0	8.	33
	34	6.3	.160	10.4	.264	110.	9.2	7.	34
	35	5.6	.143	9.5	.241	108.	8.4	5.	35
	36 37 38	5.0 4.5 4.0	.127 .113 .101	9.0 8.5 8.0	.229 .216 .203	106. 103. 101.	7.6 6.8 6.0	4.	36 37 38

^{*}The American wire gage sizes have been rounded off to the usual limits of commercial accuracy. They are given to four significant figures in Tables 420 to 423. They can be calculated with any desired accuracy, being based upon a simple mathematical law. The diameter of No. 0000 is defined as 0.4600 inch and of No. 36 as 0.0050 inch. The ratio of any diameter to the diameter of the next

greater number $\sqrt[39]{\frac{.4600}{.0050}} = 1.1229322$.

[†] The steel wire gage is the same gage that has been known by the various names: "Washburn and Moen," "Roebling," "American Steel and Wire Co.'s." Its abbreviation should be written "Stl. W. G." to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage.

Gage No. 39 40 41	American wire gage (B. & S.) mils * 3.5 3.1	American wire gage (B. & S.) mm * .090 .080	Steel wire gage † mils 7.5 7.0 6.6	Steel wire gage † mm .191 .178 .168	Stubs' steel wire gage mils 99. 97. 95.	(British) ham wi standard wire gage wing gage mils 5.2 4.8 4.4	re
42 43 44			6.2 6.0 5.8	.157 .152 .147	92. 88. 85.	4.0 3.6 3.2	42 43 44
45 46 47			5.5 5.2 5.0	.140 .132 .127	81. 79. 77.	2.8 2.4 2.0	45 46 47
48 49 50			4.8 4.6 4.4	.122 .117 .112	75. 72. 69.	1.6 1.2 1.0	48 49 50

TABLE 418.—TEMPERATURE COEFFICIENTS OF COPPER FOR DIFFERENT INITIAL TEMPERATURES (CENTIGRADE) AND DIFFERENT CONDUCTIVITIES

Ohms (m, g) at 20°C	Percent conductivity	a ₀	a ₁₅	a ₂₀	a ₂₅	a ₃₀	a ₅₀
.161 34	95%	.004 03	.003 80	.003 73	.003 67	.003 60	.003 36
.159 66	96%	.004 08	.003 85	.003 77	.003 70	.003 64	.003 39
.158 02	97%	.004 13	.003 89	.003 81	.003 74	.003 67	.003 42
.157 53	97.3%	.004 14	.003 90	.003 82	.003 75	.003 68	.003 43
.156 40	98%	.004 17	.003 93	.003 85	.003 78	.003 71	.003 45
.154 82	99%	.004 22	.003 97	.003 89	.003 82	.003 74	.003 48
. 153 28 .151 76	100%	.044 27	.004 01	. 003 93	.003 85	.003 78	.003 52
	101%	.004 31	.004 05	.003 97	.003 89	.003 82	.003 55

Note.—The fundamental relation between resistance and temperature is the following: $R_t = R_{t_1}(1 + \alpha_{t_1}[t - t_1]),$

where a_{t_1} is the "temperature coefficient," and t_1 is the "initial temperature" or "temperature of reference."

The values of α in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any percent conductivity, n, within commercial ranges, and for centigrade temperatures. (n is considered to be expressed decimally: e.g., if percent conductivity = 99 percent, n = 0.99.)

$$\alpha_{t_1} = \frac{1}{\frac{1}{n(0.00393)} + (t_1 - 20)}.$$

						tors to restance to 2		
Temperature, °C 0 5 10		Microhm— cm +.1361 +.1021 +.0681	Ohm (mi, 1b) + 68.20 + 51.15 + 34.10	Microhm— in. +.053 58 +.040 18 +.026 79	For 96 percent conduc- tivity 1.0816 1.0600 1.0392	For 98 percent conduc- tivity 1.0834 1.0613 1.0401	For 100 percent conductivity 1.0853 1.0626 1.0409	Temperature, °C 0 5 10
11	+.005 37	+.0612	+ 30.69	+.024 11	1.0352	1.0359	1.0367	11
12	+.004 78	+.0544	+ 27.28	+.021 43	1.0311	1.0318	1.0325	12
13	+.004 18	+.0476	+ 23.87	+.018 75	1.0271	1.0277	1.0283	13
14	+.003 58	+.0408	+ 20.46	+.016 07	1.0232	1.0237	1.0242	14
15	+.002 99	+.0340	+ 17.05	+.013 40	1.0192	1.0196	1.0200	15
16	+.002 39	+.0272	+ 13.64	+.010 72	1.0153	1.0156	1.0160	16
17	+.001 79	+.0204	+ 10.23	+.008 04	1.0114	1.0117	1.0119	17
18	+.001 19	+.0136	+ 6.82	+.005 36	1.0076	1.0078	1.0079	18
19	+.000 60	+.0068	+ 3.41	+.002 68	1.0038	1.0039	1.0039	19
20 21 22	0 000 60 001 19	0 0068 0136	- 3.41 - 6.82	0 002 68 005 36	1.0000 .9962 .9925	1.0000 .9962 .9924	1.0000 .9961 .9922	20 21 22
23	001 79	0204	- 10.23	008 04	.9888	.9886	.9883	23
24	002 39	0272	- 13.64	010 72	.9851	.9848	.9845	24
25	002 99	0340	- 17.05	013 40	.9815	.9811	.9807	25
26	003 58	0408	20.4623.8727.28	016 07	.9779	.9774	.9770	26
27	004 18	0476		018 75	.9743	.9737	.9732	27
28	004 78	0544		021 43	,9707	.9701	.9695	28
29	005 37	0612	- 30.69	024 11	.9672	.9665	.9658	29
30	005 97	0681	- 34.10	026 79	.9636	.9629	.9622	30
35	008 96	1021	- 51.15	040 18	.9464	.9454	.9443	35
40	011 94	1361	- 68.20	053 58	.9298	.9285	.9271	40
45	014 93	1701	- 85.25	066 98	.9138	.9122	.9105	45
50	017 92	2042	-102.30	080 37	.8983	.8964	.8945	50
55	020 90	2382	—119.35	093 76	.8833	.8812	.8791	55
60	023 89	2722	—136.40	107 16	.8689	.8665	.8642	60
65	026 87	3062	—153.45	120 56	.8549	.8523	.8497	65
70	029 86	3403	—170.50	133 95	.8413	.8385	.8358	70
75	032 85	3743	—187.55	147 34	.8281	.8252	.8223	75

	Diameter	Cross section a	at 20°C			er 1000 ft	
Gage No. 0000 000 000	in mils. at 20°C 460.0 409.6 364.8	Circular mils 211 600. 167 800. 133 100.	in.² .1662 .1318 .1045	0°C (= 32°F) .045 16 .056 95 .071 81	20°C (=68°F) .049 01 .061 80 .077 93	50°C (= 122°F) .054 79 .069 09 .087 12	75°C (= 167°F) .059 61 .075 16 .094 78
0	324.9	105 500.	.082 89	.090 55	.098 27	.1099	.1195
1	289.3	83 690.	.065 73	.1142	.1239	.1385	.1507
2	257.6	66 370.	.052 13	.1440	.1563	.1747	.1900
3	229.4	52 640.	.041 34	.1816	.1970	.2203	.2396
4	204.3	41 740.	.032 78	.2289	.2485	.2778	.3022
5	181.9	33 100.	.026 00	.2887	.3133	.3502	.3810
6	162.0	26 250.	.020 62	.3640	.3951	.4416	.4805
7	144.3	20 820.	.016 35	.4590	.4982	.5569	.6059
8	128.5	16 510.	.012 97	.5788	.6282	.7023	.7640
9	114.4	13 090.	.010 28	.7299	.7921	.8855	.9633
10	101.9	10 380.	.008 155	.9203	.9989	1.117	1.215
11	90.74	8234.	.006 467	1.161	1.260	1.408	1.532
12	80.81	6530.	.005 129	1.463	1.588	1.775	1.931
13	71.96	5178.	.004 067	1.845	2.003	2.239	2.436
14	64.08	4107.	.003 225	2.327	2.525	2.823	3.071
15	57.07	3257.	.002 558	2.934	3.184	3.560	3.873
16	50.82	2583.	.002 028	3.700	4.016	4.489	4.884
17	45.26	2048.	.001 609	4.666	5.064	5.660	6.158
18	40.30	1624.	.001 276	5.883	6.385	7.138	7.765
19	35.89	1288.	.001 012	7.418	8.051	9.001	9.702
20	31.96	1022.	.000 802 3	9.355	10.15	11.35	12.35
21	28.45	810.1	.000 636 3	11.80	12.80	14.31	15.57
22	25.35	642.4	.000 504 6	14.87	16.14	18.05	19.63
23	22.57	509.5	.000 400 2	18.76	20.36	22.76	24.76
24	20.10	404.0	.000 317 3	23.65	25.67	28.70	31.22
25	17.90	320.4	.000 251 7	29.82	32.37	36.18	39.36
26	15.94	254.1	.000 199 6	37.61	40.81	45.63	49.64
27	14.20	201.5	.000 158 3	47.42	51.47	57.53	62.59
28	12.64	159.8	.000 125 5	59.80	64.90	72.55	78.93
29	11.26	126.7	.000 099 53	75.40	81.83	91.48	99.52
30	10.03	100.5	.000 078 94	95.08	103.2	115.4	125.5
31	8.928	79.70	.000 062 60	119.9	130.1	145.5	158.2
32	7.950	63.21	.000 049 64	151.2	164.1	183.4	199.5
33	7.080	50.13	.000 039 37	190.6	206.9	231.3	251.6
34	6.305	39.75	.000 031 22	240.4	260.9	291.7	317.3
35	5.615	31.52	.000 024 76	303.1	329.0	367.8	400.1
36	5.000	25.00	.000 019 64	382.2	414.8	463.7	504.5
37	4.453	19.83	.000 015 57	482.0	523.1	584.8	636.2
38	3.965	15.72	.000 012 35	607.8	659.6	737.4	802.2
39	3.531	12.47	.000 009 793	766.4	831.8	929.8	1012.
40	3.145	9.888	.000 007 766	966.5	1049.	1173.	1276.

TABLE 420.—WIRE TABLE, STANDARD ANNEALED COPPER (continued) American wire gage (B. & S.)

	70.1				ft/c	ohm	
Gage No. 0000 000 00	Diameter in mils. at 20°C 460.0 409.6 364.8	lb/(1000 ft) 640.5 507.9 402.8	ft/lb 1.561 1.968 2.482	0°C (= 32°F) 22 140. 17 560. 13 930.	20°C (= 68°F) 20 400. 16 180. 12 830.	50°C (= 122°F) 18 250. 14 470. 11 480.	75°C (= 167°F) 16 780. 13 300. 10 550.
0	324.9	319.5	3.130	11 040.	10 180.	9103.	8367.
1	289.3	253.3	3.947	8758.	8070.	7219.	6636.
2	257.6	200.9	4.977	6946.	6400.	5725.	5262.
3	229.4	159.3	6.276	5508.	5075.	4540.	4173.
4	204.3	126.4	7.914	4368.	4025.	3600.	3309.
5	181.9	100.2	9.980	3464.	3192.	2855.	2625.
6	162.0	79.46	12.58	2747.	2531.	2264.	2081.
7	144.3	63.02	15.87	2179.	2007.	1796.	1651.
8	128.5	49.98	20.01	1728.	1592.	1424.	1309.
9	114.4	39.63	25.23	1370.	1262.	1129.	1038.
10	101.9	31.43	31.82	1087.	1001.	895.6	823.2
11	90.74	24.92	40.12	861.7	794.0	710.2	652.8
12	80.81	19.77	50.59	683.3	629.6	563.2	517.7
13	71.96	15.68	63.80	541.9	499.3	446.7	410.6
14	64.08	12.43	80.44	429.8	396.0	354.2	325.6
15	57.07	9.858	101.4	340.8	314.0	280.9	258.2
16	50.82	7.818	127.9	270.3	249.0	222.8	204.8
17	45.26	6.200	161.3	214.3	19 7 .5	176.7	162.4
18	40.30	4.917	203.4	170.0	156.6	140.1	128.8
19	35.89	3.899	256.5	134.8	124.2	111.1	102.1
20	31.96	3.092	323.4	106.9	98.50	88.11	80.99
21	28.46	2.452	407.8	84.78	78.11	69.87	64.23
22	25.35	1.945	514.2	67.23	61.95	55.41	50.94
23	22.57	1.542	648.4	53.32	49.13	43.94	40.39
24	20.10	1.223	817.7	42.28	38.96	34.85	32.03
25	17.90	.9699	1031.	33.53	30.90	27.64	25.40
26	15.94	.7692	1300.	26.59	24.50	21.92	20.15
27	14.20	.6100	1639.	21.09	19.43	17.38	15.98
28	12.64	.4837	2067.	16.72	15.41	13.78	12.67
29	11.26	.3836	2607.	13.26	12.22	10.93	10.05
30	10.03	.3042	3287.	10.52	9.691	8.669	7.968
31	8.928	.2413	4145.	8.341	7.685	6.875	6.319
32	7.950	.1913	5227.	6.614	6.095	5.452	5.011
33	7.080	.1517	6591.	5.245	4.833	4.323	3.974
34	6.305	.1203	8310	4.160	3.833	3.429	3.152
35	5.615	.095 42	10 480.	3.299	3.040	2.719	2.499
36	5.000	.075 68	13 210.	2.616	2.411	2.156	1.982
37	4.453	.060 01	16 660.	2.075	1.912	1.710	1.572
38	3.965	.047 59	21 010.	1.645	1.516	1.356	1.247
39	3.531	.037 74	26 500.	1.305	1.202	1.075	.9886
40	3.145	.029 93	33 410.	1.035	.9534	.8529	.7840

TABLE 420.-WIRE TABLE, STANDARD ANNEALED COPPER (concluded)

American wire gage (B. & S.). English units

		71110110411 11	ohm/lb		lb/ohm
Gage No. 0000 000 00	Diameter in mils. at 20°C 460.0 409.6 364.8	(= 32°F) .000 070 51 .000 1121 .000 1783	20°C (= 68°F) .000 076 52 .000 1217 .000 1935	50°C (= 122°F) .000 085 54 .000 1360 .000 2163	20°C (= 68°F) 13 070. 8219. 5169.
0	324.9	.000 2835	.000 3076	.000 3439	3251.
1	289.3	.000 4507	.000 4891	.000 5468	2044.
2	257.6	.000 7166	.000 7778	.000 8695	1286.
3	229.4	.001 140	.001 237	.001 383	808.6
4	204.3	.001 812	.001 966	.002 198	508.5
5	181.9	.002 881	.003 127	.003 495	319.8
6	162.0	.004 581	.004 972	.005 558	201.1
7	144.3	.007 284	.007 905	.008 838	126.5
8	128.5	.011 58	.012 57	.014 05	79.55
9	114.4	.018 42	.019 99	.022 34	50.03
10	101.9	.029 28	.031 78	.035 53	31.47
11	90.74	.046 56	.050 53	.056 49	19.79
12	80.81	.074 04	.080 35	.089 83	12.45
13	71.96	.1177	.1278	.1428	7.827
14	64.08	.1872	.2032	.2271	4.922
15	57.07	.2976	.3230	.3611	3.096
16	50.82	.4733	.5136	.5742	1.947
17	45.26	.7525	.8167	.9130	1.224
18	40.30	1.197	1.299	1.452	.7700
19	35.89	1.903	2.065	2.308	.4843
20	31.96	3.025	3.283	3.670	.3046
21	28.46	4.810	5.221	5.836	.1915
22	25.35	7.649	8.301	9.280	.1205
23	22.57	12.16	13.20	14.76	.075 76
24	20.10	19.34	20.99	23.46	.047 65
25	17.90	30.75	33.37	37.31	.029 97
26	15.94	48.89	53.06	59.32	.018 85
27	14.20	77.74	84.37	94.32	.011 85
28	12.64	123.6	134.2	150.0	.007 454
29	11.26	196.6	213.3	238.5	.004 688
30	10.03	312.5	339.2	379.2	.002 948
31	8.928	497.0	539.3	602.9	.001 854
32	7.950	790.2	857.6	958.7	.001 166
33	7.080	1256.	1364.	1524.	.000 7333
34	6.305	1998.	2168.	2424.	.000 4612
35	5.615	3177.	3448.	3854.	.000 2901
36	5.000	5051.	5482.	6128.	.000 1824
37	4.453	8032.	8717.	9744.	.000 1147
38	3.965	12 770.	13 860.	15 490.	.000 072 15
39	3.531	20 310.	22 040.	24 640.	.000 045 38
40	3.145	32 290.	35 040.	39 170.	.000 028 54

American wire gage (B. & S.). Metric units

Gage	Diameter	Cross section in mm ²			ohm/km	
No. 0000 000 00	in mm at 20°C 11.68 10.40 9.266	at 20°C 107.2 85.03 67.43	.1482 .1868 .2356	20°C .1608 .2028 .2557	50°C .1798 .2267 .2858	75°C .1956 .2466 .3110
0	8.252	53.48	.2971	.3224	.3604	.3921
1	7.348	42.41	.3746	.4066	.4545	.4944
2	6.544	33.63	.4724	.5127	.5731	.6235
3	5.827	26.67	.5956	.6465	.7227	.7862
4	5.189	21.15	.7511	.8152	.9113	.9914
5	4.621	16.77	.9471	1.028	1.149	1.250
6	4.115	13.30	1.194	1.296	1.449	1.576
7	3.665	10.55	1.506	1.634	1.827	1.988
8	3.264	8.366	1.899	2.061	2.304	2.506
9	2.906	6.634	2.395	2.599	2.905	3.161
10	2.588	5.261	3.020	3.277	3.663	3.985
11	2.305	4.172	3.807	4.132	4.619	5.025
12	2.053	3.309	4.801	5.211	5.825	6.337
13	1.828	2.624	6.054	6.571	7.345	7.991
14	1.628	2.081	7.634	8.285	9.262	10.08
15	1.450	1.650	9.627	10.45	11.68	12.71
16	1.291	1.309	12.14	13.17	14.73	16.02
17	1.150	1.038	15.31	16.61	18.57	20.20
18	1.024	.8231	19.30	20.95	23.42	25.48
19	.9116	.6527	24.34	26.42	29.53	32.12
20	.8118	.5176	30.69	33.31	37.24	40.51
21	.7230	.4105	38.70	42.00	46.95	51.08
22	.6438	.3255	48.80	52.96	59.21	64.41
23	.5733	.2582	61.54	66.79	74.66	81.22
24	.5106	.2047	77.60	84.21	94.14	102.4
25	.4547	.1624	97.85	106.2	118.7	129.1
26	.4049	.1288	123.4	133.9	149.7	162.9
27	.3606	.1021	155.6	168.9	188.8	205.4
28	.3211	.080 98	196.2	212.9	238.0	258.9
29	.2859	.064 22	247.4	268.5	300.1	326.5
30	.2546	.050 93	311.9	338.6	378.5	411.7
31	.2268	.040 39	393.4	426.9	477.2	519.2
32	.2019	.032 03	496.0	538.3	601.8	654.7
33	.1798	.025 40	625.5	678.8	758.8	825.5
34	.1601	.020 14	788.7	856.0	956.9	1041.
35	.1426	.015 97	994.5	1079.	1207.	1313.
36	.1270	.012 67	1254.	1361.	1522.	1655.
37	.1131	.010 05	1581.	1716.	1919.	2087.
38	.1007	.007 967	1994.	2164.	2419.	2632.
39	.089 69	.006 318	2514.	2729.	3051.	3319.
40	.0 7 9 87	.005 010	3171.	3441.	3847.	4185.

TABLE 421.—WIRE TABLE, STANDARD ANNEALED COPPER (continued)

American wire gage (B. & S.). Metric units

	Diameter			•	m/o	hm	
Gage No. 0000 000 00	in mm at 20°C 11.68 10.40 9.266	kg/km 953.2 755.9 599.5	m/g .001 049 .001 323 .001 668	0°C 6749. 5352. 4245.	20°C 6219. 4932. 3911.	50°C 5563. 4412. 3499.	75°C 5113. 4055. 3216.
0	8.252	475.4	.002 103	3366.	3102.	2774.	2550.
1	7.348	377.0	.002 652	2669.	2460.	2200.	2022.
2	6.544	299.0	.003 345	2117.	1951.	1745.	1604.
3	5.827	237.1	.004 217	1679.	1547.	1384.	1272.
4	5.189	188.0	.005 318	1331.	1227.	1097.	1009.
5	4.621	149.1	.006 706	1056.	972.9	870.2	799.9
6	4.114	118.2	.008 457	837.3	771.5	690.1	634.4
7	3.665	93.78	.010 66	664.0	611.8	547.3	503.1
8	3.264	74.37	.013 45	526.6	485.2	434.0	399.0
9	2.906	58.98	.016 96	417.6	384.8	344.2	316.4
10	2.588	46.77	.021 38	331.2	305.1	273.0	250.9
11	2.305	37.09	.026 96	262.6	242.0	216.5	199.0
12	2.053	29.42	.034 00	208.3	191.9	171.7	157.8
13	1.828	23.33	.042 87	165.2	152.2	136.1	125.1
14	1.628	18.50	.054 06	131.0	120.7	108.0	99.24
15	1.450	14.67	.068 16	103.9	95.71	85.62	78.70
16	1.291	11.63	.085 95	82.38	75.90	67.90	62.41
17	1.150	9.226	.1084	65.33	60.20	53.85	49.50
18	1.024	7.317	.1367	51.81	47.74	42.70	39.25
19	.9116	5.803	.1723	41.09	37.86	33.86	31.13
20	.8118	4.602	.2173	32.58	30.02	26.86	24.69
21	.7230	3.649	.2740	25.84	23.81	21.30	19.58
22	.6438	2.894	.3455	20.49	18.88	16.89	15.53
23	.5733	2.295	.4357	16.25	14.97	13.39	12.31
24	.5106	1.820	.5494	12.89	11.87	10.62	9.764
25	.4547	1.443	.6928	10.22	9.417	8.424	7.743
26	.4049	1.145	.8736	8.105	7.468	6.680	6.141
27	.3606	.9078	1.102	6.428	5.922	5.298	4.870
28	.3211	.7199	1.389	5.097	4.697	4.201	3.862
29	.2859	.5 7 09	1.752	4.042	3.725	3.332	3.063
30	.2546	.4527	2.209	3.206	2.954	2.642	2.429
31	.2268	.3590	2.785	2.542	2.342	2.095	1.926
32	.2019	.2847	3.512	2.016	1.858	1.662	1.527
33	.1798	.2258	4.429	1.599	1.473	1.318	1.211
34	.1601	.1791	5.584	1.268	1.168	1.045	.9606
35	.1426	.1420	7.042	1.006	.9265	.8288	.7618
36	.1270	.1126	8.879	.7974	.7347	.6572	.6041
37	.1131	.089 31	11.20	.6324	.5827	.5212	.4791
38	.1007	.070 83	14.12	.5015	.4621	.4133	.3799
39	.089 69	.056 17	17.80	.3977	.3664	.3278	.3013
40	.079 87	.044 54	22.45	.3154	.2906	.2600	.2390

TABLE 421.—WIRE TABLE, STANDARD ANNEALED COPPER (concluded)

American wire gage (B. & S.). Metric units

	Diameter		ohm/kg		g/ohm
Gage No. 0000 000 00	in mm at 20°C 11.68 10.40 9.266	0°C .000 155 4 .000 247 2 .000 393 0	20°C .000 168 7 .000 268 2 .000 426 5	50°C .000 188 6 .000 299 9 .000 476 8	20°C 5 928 000. 3 728 000. 2 344 000.
0	8.252	.000 624 9	.000 678 2	.000 758 2	1 474 000.
1	7.348	.000 993 6	.001 078	.001 206	927 300.
2	6.544	.001 580	.001 715	.001 917	583 200.
3	5.827	.002 512	.002 726	.003 048	366 800.
4	5.189	.003 995	.004 335	.004 846	230 700.
5	4.621	.006 352	.006 893	.007 706	145 100.
6	4.115	.010 10	.010 96	.012 25	91 230.
7	3.665	.016 06	.017 43	.019 48	57 380.
8	3.264	.025 53	.027 71	.030 98	36 080.
9	2.906	.040 60	.044 06	.049 26	22 690.
10	2.588	.064 56	.070 07	.078 33	14 270.
11	2.305	.1026	.1114	.1245	8976.
12	2.053	.1632	.1771	.1980	5645.
13	1.828	.2595	.2817	.3149	3550.
14	1.628	.4127	.4479	.5007	2233.
15	1.450	.6562	.7122	.7961	1404.
16	1.291	1.043	1.132	1.266	883.1
17	1.150	1.659	1.801	2.013	555.4
18	1.024	2.638	2.863	3.201	349.3
19	.9116	4.194	4.552	5.089	219.7
20	.8118	6.670	7.238	8.092	138.2
21	.7230	10.60	11.51	12.87	86.88
22	.6438	16.86	18.30	20.46	54.64
23	.5733	26.81	29.10	32.53	34.36
24	.5106	42.63	46.27	51.73	21.61
25	.4547	67.79	73.57	82.25	13.59
26	.4049	107.8	117.0	130.8	8.548
27	.3606	171.4	186.0	207.9	5.376
28	.3211	272.5	295.8	330.6	3.381
29	.2859	433.3	470.3	525.7	2.126
30	.2546	689.0	747.8	836.0	1.337
31	.2268	1096.	1189.	1329.	.8410
32	.2019	1742.	1891.	2114.	.5289
33	.1798	2770.	3006.	3361.	.3326
34	.1601	4404.	4780.	5344.	.2092
35	.1426	7003.	7601.	8497.	.1316
36	.1270	11140.	12090.	13510.	.082 74
37	.1131	17710.	19220.	21480.	.052 04
38	.1007	28150.	30560.	34160.	.032 73
39	.089 69	44770.	48590.	54310.	.020 58
40	.079 87	71180.	77260.	86360.	.012 94

TABLE 422.—WIRE TABLE, ALUMINUM Hard-drawn aluminum wire at 20°C (68°F) American wire gage (B. & S.). English units

Gazz	Diameter	Cross sec	etion	ohm	1b		
No. 0000 000 00	in mils 460. 410. 365.	Circular mils 212 000. 168 000. 133 000.	in.² .166 .132 .105	.0804 .101 .128	1000 ft 195. 154. 122.	1b/ohm 2420. 1520. 957.	ft/ohm 12 400. 9860. 7820.
0	325.	106 000.	.0829	.161	97.0	602.	6200.
1	289.	83 700.	.0657	.203	76.9	379.	4920.
2	258.	66 400.	.0521	.256	61.0	238.	3900.
3	229.	52 600.	.0413	.323	48.4	150.	3090.
4	204.	41 700.	.0328	.408	38.4	94.2	2450.
5	182.	33 100.	.0260	.514	30.4	59.2	1950.
6	162.	26 300.	.0206	.648	24.1	37.2	1540.
7	144.	20 800.	.0164	.817	19.1	23.4	1220.
8	128.	16 500.	.0130	1.03	15.2	14.7	970.
9	114.	13 100.	.0103	1.30	12.0	9.26	770.
10	102.	10 400.	.008 15	1.64	9.55	5.83	610.
11	91.	8230.	.006 47	2.07	7.57	3.66	484.
12	81.	6530.	.005 13	2.61	6.00	2.30	384.
13	72.	5180.	.004 07	3.29	4.76	1.45	304.
14	64.	4110.	.003 23	4.14	3.78	.911	241.
15	57.	3260.	.002 56	5.22	2.99	.573	191.
16	51.	2580.	.002 03	6.59	2.37	.360	152.
17	45.	2050.	.001 61	8.31	1.88	.227	120.
18	40.	1620.	.001 28	10.5	1.49	.143	95.5
19	36.	1290.	.001 01	13.2	1.18	.0897	75.7
20	32.	1020.	.000 802	16.7	939	.0564	60.0
21	28.5	810.	.000 636	21.0	.745	.0355	47.6
22	25.3	642.	.000 505	26.5	.591	.0223	37.8
23	22.6	509.	.000 400	33.4	.468	.0140	29.9
24	20.1	404.	.000 317	42.1	.371	.008 82	23.7
25	17.9	320.	.000 252	53.1	.295	.005 55	18.8
26	15.9	254.	.000 200	67.0	.234	.003 49	14.9
27	14.2	202.	.000 158	84.4	.185	.002 19	11.8
28	12.6	160.	.000 126	106.	.147	.001 38	9.39
29	11.3	127.	.000 099 5	134.	.117	.000 868	7.45
30	10.0	101.	.000 078 9	169.	.0924	.000 546	5.91
31	8.9	79.7	.000 062 6	213.	.0733	.000 343	4.68
32	8.0	63.2	.000 049 6	269.	.0581	.000 216	3.72
33	7.1	50.1	.000 039 4	339.	.0461	.000 136	2.95
34	6.3	39.8	.000 031 2	428.	.0365	.000 085 4	2.34
35	5.6	31.5	.000 024 8	540.	.0290	.000 053 7	1.85
36	5.0	25.0	.000 019 6	681.	.0230	.000 033 8	1.47
37	4.5	19.8	.000 015 6	858.	.0182	.000 021 2	1.17
38	4.0	15.7	.000 012 3	1080.	.0145	.000 013 4	.924
39	3.5	12.5	.000 009 79	1360.	.0115	.000 008 40	. 73 3
40	3.1	9.9	.000 007 77	1720.	.0091	.000 005 28	

TABLE 423.—WIRE TABLE, ALUMINUM Hard-drawn aluminum wire at 20°C (68°F) American wire gage (B. & S.). Metric units

Gage No. 0000 000 00	Diameter in mm 11.7 10.4 9.3	Cross section in mm ² 107. 85.0 67.4	ohm/km .264 .333 .419	kg/km 289. 230. 182.	g/ohm 1 100 000. 690 000. 434 000.	m/ohm 3790. 3010. 2380.
0	8.3	53.5	.529	144.	273 000.	1890.
1	7.3	42.4	.667	114.	172 000.	1500.
2	6.5	33.6	.841	90.8	108 000.	1190.
3	5.8	26.7	1.06	72.0	67 900.	943.
4	5.2	21.2	1.34	57.1	42 700.	748.
5	4.6	16.8	1.69	45.3	26 900.	593.
6	4.1	13.3	2.13	35.9	16 900.	470.
7	3.7	10.5	2.68	28.5	10 600.	373.
8	3.3	8.37	3.38	22.6	6680.	296.
9	2.91	6.63	4.26	17.9	4200.	235.
10	2.59	5.26	5.38	14.2	2640.	186.
11	2.30	4.17	6.78	11.3	1660.	148.
12	2.05	3.31	8.55	8.93	1050.	117.
13	1.83	2.62	10.8	7.08	657.	92.8
14	1.63	2.08	13.6	5.62	413.	73.6
15	1.45	1.65	17.1	4.46	260.	58.4
16	1.29	1.31	21.6	3.53	164.	46.3
17	1.15	1.04	27.3	2.80	103.	36.7
18	1.02	.823	34.4	2.22	64.7	29.1
19	.91	.653	43.3	1.76	40.7	23.1
20	.81	.518	54.6	1.40	25.6	18.3
21	.72	.411	68.9	1.11	16.1	14.5
22	.64	.326	86.9	.879	10.1	11.5
23	.57	.258	110.	.697	6.36	9.13
24	.51	.205	138.	.553	4.00	7.24
25	.45	.162	174.	.438	2.52	5.74
26	.40	.129	220.	.348	1.58	4.55
27	.36	.102	277.	.276	.995	3.61
28	.32	.0810	349.	.219	.626	2.86
29	.29	.0642	440.	.173	.394	2.27
30	.25	.0509	555.	.138	.248	1.80
31	.227	.0404	700.	.109	.156	1.43
32	.202	.0320	883.	.0865	.0979	1.13
33	.180	.0254	1110.	.0686	.0616	.899
34	.160	.0201	1400.	.0544	.0387	.712
35	.143	.0160	1770.	.0431	.0244	.565
36	.127	.0127	2230.	.0342	.0153	.448
37	.113	.0100	2820.	.0271	.009 63	.355
38	.101	.0080	3550.	.0215	.006 06	.282
39	.090	.0063	4480.	.0171	.003 81	.223
40		.0050	5640.	.0135	.002 40	.177

TABLE 424.—AUXILIARY TABLE FOR COMPUTING WIRE RESISTANCES

For computing resistances in ohms per meter from resistivity, ρ , in microhm-cm (see Table 386, etc.). e.g., to compute for No. 23 copper wire when $\rho=1.724$: 1 m = 0.0387 + .0271 + .0008 + .0002 = 0.0668 ohms; for No. 11 lead wire when $\rho=20.4$: 1 m = 0.0479 + .0010 = 0.0489 ohms. The following relation allows computation for wires of other gage numbers: resistance in ohms per m of No. n wire = 2 × resistance of wire No. (n-3) within 1 percent: e.g., resistance of m of No. $18=2\times No$. 15.

							ρ in mi	crohm-cm				
			1	2	3	4	5	6	7	8	9	10
Gage No.	Diam. in mm	Section mm ²			1	Resistance	of wire	1 m lot	ng in oh	ms		
0000	11.7	107.2	.04933	$.0_{3}187$	$.0_{3}280$	$.0_{3}373$.03466	.03560	.03653			.03933
00	9.27	67.43	$.0_{3}148$	$.0_3297$	$.0_{3}445$	$.0_{3}593$	$.0_{3}742$	$.0_{8}890$	$.0_{2}104$		$.0_{2}133$	$.0_{2}148$
1	7.35	42.41	$.0_3236$	$.0_3472$	$.0_{3}707$.03943	$.0_{2}118$.02141	.02165		.02212	.02236
3	5.83	26.67	$.0_{3}375$	$.0_{3}750$	$.0_{2}112$	$.0_{2}150$	$.0_{2}187$.02225	.0₂262		$.0_{2}337$.02375
5	4.62	16.77	$.0_{3}596$	$.0_{2}119$	$.0_{2}179$.02239	$.0_{2}298$.02358	.02417	.02477	.02537	.02596
7	3.66	10.55	$.0_{3}948$	$.0_{2}190$.02284	.02379	.02474	.02569	.02664		.02853	.02948
9	2.91	6.634	.02151	.02301	$.0_{2}452$	$.0_{2}603$	$.0_{2}754$.02904	.0106	.0121	.0136	.0151
11	2.30	4.172	.02240	.02479	.02719	.02959	.0120	.0144	.0168	.0192	.0216	.0240
13	1.83 1.45	2.624	.02381	.02762	.0114 .0182	.0152 .0242	.0191	.0229	.0267	.0305	.0343	.0381
15 17	1.15	1.650 1.038	$0_{2}606$ $0_{2}963$.0121	.0289	.0242	.0303	.0578	.0674	.0771	.0867	.0963
19	.912	.6527	.0153	.0306	.0460	.0613	.0766	.0919	.1072	.1226	.1379	.1532
21	.723	.4105	.0244	.0487	.0731	.0974	.1218	.1462	.1705	.1949	.2192	.2436
23	.573	.2582	.0387	.0775	.1162	.1549	.1936	,2324	.2711	.3098	.3486	.3873
23 25	.455	.1624	.0616	.1232	.1847	.2463	.3079	.3695	.4310	.4926	.5542	.6158
27	.361	.1021	.0979	.1959	.2938	.3918	.4897	.5877	.6856	.7835	.8815	.9794
29	.286	.0642	.1557	.3114	.4671	.6228	.7786	.9343	1.090	1,246	1.401	1.557
31	.227	.0404	.2476	.4952	.7428	.9904	1.238	1.486	1.733	1.981	2,228	2,476
33	.180	.0254	.3937	.7874	1.181	1.575	1.968	2.362	2.756	3.150	3.543	3.937
35	.143	.0160	.6262	1.252	1.879	2.505	3.131	3.757	4.383	5.009	5.636	6.262
37	.113	.0100	.9950	1.990	2.985	3.980	4.975	5.970	6.965	7.960	8.955	9.950
39	.090	.0063		3.166	4.748	6.331	7.914	9.497	11.08	12.66	14.25	15.83
40	.080	.0050	1.996	3.992	5.988	7.984	9.980	11.98	13.97	15.97	17.96	19.96

TABLE 425.—SAFE CURRENT-CARRYING CAPACITY OF COPPER WIRE, FOR DIFFERENT CONDITIONS, IN AMPERES PER CONDUCTOR*

	Varnish cam	bric insulators			Impregnated pa	ner inculation
Wire	,	Not more than three conductors	Rubber i in enclosed and		Single	Three con-
size AWG	Single wire in free air	in raceway or cable	Single conductor	Three conductor	conductor cable in air	in under- ground duct
14	30	23	23	19		
10	54	38	40	33		
6	99	68	71	57	98	78
3	155	104				
2	179	118	127	101	173	134
0	245	157	167	133	234	177
0000	383	237	256	203	352	264

^{*}These values are for voltages in the range up to 5,000 or 7,000 and for 75 to 100 percent time load, ambient temperature 30°C and copper temperature 75-80°C. Adapted from Publication No. P-29-226 of the Insulated Power and Cable Engineers' Association. For other values see these tables.

TABLE 426.-THE CALCULATION OF THE HIGH-FREQUENCY RESISTANCE OF CONDUCTORS *

The resistance of a conductor to high-frequency alternating currents is not the same as it offers to direct or low-frequency currents. The linkages of flux with the inner portions of the conductor are more numerous than with the outer portions. That is, the reactances of the inner filaments are greater than those of the outer filaments. Consequently, the

This tendency of the current to crowd toward the outer portions of the cross section becomes more pronounced the higher the frequency, and at very high frequencies the current density is sensibly zero everywhere except in the surface layer of the conductor. This phenomenon is called the "skin effect." It causes an increase in the effective resis-

tance of the conductor over its resistance to a direct current.

What is of interest in the calculation of the high-frequency resistance is the resistance ratio, the quotient of the resistance at the given frequency by the direct-current resistance. The resistance ratio depends upon the distribution of current density in the cross section, and this is a function of the frequency and the shape of the cross section. In general,

however, the resistance ratio is a function of the parameter $\sqrt{\frac{f}{R_0}}$, in which f is the frequency, and R_0 is the direct-current resistance per unit length. In what follows R_0 will be taken as the direct-current resistance per 1000 ft of conductor.

The distribution of current in the cross section is affected by a neighboring conductor carrying high-frequency currents. This *proximity effect* finds an explanation in that the value of the mutual inductance of any filament A of one conductor on a filament B of the other conductor depends upon the positions of A and B in their respective cross sections. The proximity effect may be very appreciable for conductors nearly in contact; falling off rapidly as their distance increased, it is negligible for moderate ratios of distance apart to cross sectional dimensions. In such cases the resistance is sensibly the same as for an isolated conductor.

Besides the spacing factor of the conductors, the proximity effect depends upon the frequency, and in lesser degree upon the shape of the cross sections. Quantitatively, the proximity effect may be expressed by the proximity factor, which is the quotient of actual resistance of the conductor by the resistance which it would have if removed to a great distance from the disturbing conductor, both values of resistance being referred to the same frequency.

That is, if

 R_0 = the direct current resistance

 R_1 = the resistance of the conductor when isolated, frequency f R_2 = the resistance in the presence of the disturbing conductor

at frequency f

then the proximity factor is $P = \frac{R_2}{R_1}$, and the resistance ratio $\frac{R_2}{R_0}$, in the presence of the disturbing conductor, is obtained from the resistance ratio $\frac{R_1}{R_0}$ when isolated by the rela-

tion $\frac{R_2}{R_0} = P \frac{R_1}{R_0}$. Resistance ratio may be obtained in any case if the resistance ratio

when isolated is known, together with the value of the proximity factor.

Formulas for the high-frequency resistance ratio have been developed in only a few simple (but important) cases, and even then very complicated formulas result. For practical work, tables are necessary for simplifying the calculations. The following tables cover the most important cases.

Formulas have been derived for the high-frequency resistance ratio of single-layer coils wound with round wire. Generally, these differ from one another and from measured values, because simplifying assumptions are made which are not sufficiently realized in practice. No tables of values for coils such as are met in practical radio work are available As a rough guide, the high-frequency resistance ratio for a single-layer coil is often from two to five times as great as the resistance ratio of the same wire stretched out straight and carrying current of the given frequency. The experimental work available indicates that this factor is due to the coiling of the wire, that is, the total proximity effect of the turns of the coil is largely dependent upon the frequency and the ratio of wire diameter to pitch of winding, and in lesser degree to the ratio of length to diameter.

^{*} Prepared by F. W. Grover, Nat. Bur. Standards.

TABLE 426.—THE CALCULATION OF THE HIGH-FREQUENCY RESISTANCE OF CONDUCTORS (continued)

Part 1 .-- Resistance ratio "F" for isolated round wires

Resistance ratio F of isolated round wire, as a function of the square root of the frequency divided by the direct current resistance per 1000 ft of conductor.

$\sqrt{f/R_0}$ F		30 1.0025				
$\sqrt{f/R_0}$ F		160 1.836				

Part 2.-Values of resistance ratio for isolated tubular conductors

t, thickness of wall of tube; d, outer diameter of tube

$\sqrt{\frac{f}{R_0}}$	$\frac{t}{d} = 0.01$	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
0 50 100 150	1.000 1.000 1.001 1.001	1.000 1.000 1.001 1.003	1.000 1.000 1.002 1.006	1.000 1.001 1.002 1.011	1.000 1.001 1.004 1.017	1.000 1.001 1.008 1.024	1.000 1.001 1.007 1.033	1.000 1.001 1.009 1.044	1.000 1.001 1.056	1.000 1.001 1.014 1.070
200 250 300 350 400 450 500	1.002 1.005 1.011 1.020 1.032 1.051 1.079	1.008 1.020 1.042 1.076 1.127 1.198 1.30	1.019 1.046 1.095 1.167 1.27 1.41 1.57	1.034 1.081 1.163 1.285 1.44 1.63 1.86	1.053 1.125 1.25 1.42 1.66 1.87 2.14	1.076 1.176 1.34 1.56 1.81 2.08 2.34	1.104 1.233 1.44 1.70 1.99 2.28 2.56	1.134 1.296 1.55 1.83 2.13 2.44 2.73	1.167 1.365 1.65 1.97 2.28 2.60 2.88	1.204 1.440 1.75 2.09 2.42 2.74 3.03
$\sqrt{\frac{f}{R_0}}$	$\frac{t}{d} = 0.10$	0.12	0.15	0.20	0.25	0.30	0.35	0.40	0.45	Solid 0.50
0 50 100 150 200 250	1.000 1.001 1.014 1.070 1.204 1.44	1.000 1.001 1.021 1.102 1.294 1.585	1.000 1.002 1.032 1.155 1.42 1.79	1.000 1.004 1.063 1.266 1.65 2.11	1.000 1.006 1.094 1.39 1.845 2.32	1.000 1.008 1.132 1.51 1.995 2.45	1.000 1.012 1.175 1.60 2.095 2.536	1.000 1.015 1.202 1.68 2.15 2.64	1.000 1.017 1.224 1.71 2.20 2.68	1.000 1.019 1.247 1.733 2.231 2.715
300 350 400 450 500	1.75 2.09 2.42 2.74 3.03	1.94 2.33 2.66 3.00 3.33	2.19 2.57 2.92 3.27 3.62	2.51 2.90 3.27 3.66 4.07	2.735 3.15 3.58 4.00 4.42	2.90 3.35 3.80 4.25 4.69	3.03 3.495 3.96 4.43 4.90	3.12 3.59 4.07 4.55 5.03	3.17 3.66 4.14 4.63 5.12	3.201 3.688 4.176 4.664 5.152

TABLE 426.—THE CALCULATION OF THE HIGH-FREQUENCY RESISTANCE OF CONDUCTORS (concluded)

Part 3.—Coefficients in formula for proximity factor of equal parallel round wires

The proximity factor of two equal parallel conductors may be calculated by the formula $P = 1 + [G \cdot d^2/s^2]/[F(1 - Hd^2/s^2)]$

in which the coefficient F is to be obtained from Part 1 for the given value of $\sqrt{f/R_0}$ and the coefficients G and H are to be taken from the table below for the given value of $\sqrt{f/R_0}$. In the table below the values of H apply to currents in the same direction; in the case of currents in opposite directions H' is to be used. In the above formula d is the diameter of the wires and s their axial spacing. The proximity factor for two equal parallel tubular conductors does not differ much from the value for two solid wires with the same axial spacing and a value of $\sqrt{f/R_0}$ one-half the value for two solid wires of the same diameter, except for conductors very close together.

		-					
$\sqrt{f/R_0}$	G	Н	H'	$\sqrt{f/R_0}$	G	H	H'
0	0	+.0417	+.0417	200	.8491	1904	.5530
25	.0036	.0395	.0443	250	1.0959	2017	.5932
50	.0519	+.0109	.0798	300	1.340	2093	.6200
75	.1903	0659	.1838	350	1.585	2149	.6389
100	.3562		.3112	400	1.830	2191	.6530
125	.4914	1685	.4114	450	2.073	2224	.6639
150	.6096	1776	.4787	500	2.319	2231	.6722
175	.7277	1839	.5228				

TABLE 427.—RATIO OF ALTERNATING TO DIRECT CURRENT RESISTANCES FOR COPPER WIRES

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

Diameter of wire in			Frequ	ency f =		
mm	60	100	1000	10,000	100,000	1,000,000
.05						*1.001
.1					*1.001	1.008
.25					1.003	1.247
.5				*1.001	1.047	2.240
1.0				1.008	1.503	4.19
2.0			1.001	1.120	2.756	8.10
3.			1.006	1.437	4.00	12.0
4.			1.021	1.842	5.24	17.4
4. 5.		*1.001	1.047	2.240	6.49	19 .7
7.5	1.001	1.002	1.210	3.22	7.50	29.7
10.	1.003	1.008	1.503	4.19	12.7	39.1
15.	1.016	1.038	2.136	6.14	18.8	_
20.	1.044	1.120	2.756	8.10	25.2	_
25.	1.105	1.247	3.38	10.1	28.3	_
40.	1.474	1.842	5.24	17.4		
100.	3.31	4.19	13.7	39.1	_	-

Values between 1.000 and 1.001 are indicated by *1.001. The values are for wires having an assumed conductivity of 1.60 microhm-cm; for copper wires at room temperatures the values are slightly less than as given in table.

The change of resistance of wire other than copper (iron wires excepted) may be calculated from the above table by taking it as proportional to $d \vee f/\rho$ where d = diameter, f the frequency (cycles/sec) and ρ the resistivity.

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

TABLE 428.—MAXIMUM DIAMETER OF WIRES FOR HIGH-FREQUENCY RESISTANCE RATIO OF 1.01

Frequency ÷ 106	0.1	0.2	0.4	0.6	0.8	1.0	1.2	1.5	2.0	3.0
Wavelength, m	3000	1500	750	500	375	300	250	200	150	100
				1	Diameter	in cm				
Material					^					
Copper	.0356	.0251	.0177	.0145	.0125	.0112	.0102	.0092	.0079	.0065
Silver	.0345	.0244	.0172	.0141	.0122	.0109	.0099	.0089	.0077	.0063
Gold	.0420	.0297	.0210	.0172	.0149	.0133	.0121	.0108	.0094	.0077
Platinum	.1120	.0793	.0560	.0457	.0396	.0354	.0323	.0290	.0250	.0205
Mercury	.264	.187	.132	.1080	.0936	.0836	.0763	.0683	.0591	.0483
Manganin	.1784	.1261	.0892	.0729	.0631	.0564	.0515	.0461	.0399	.0325
Constantan	.1892	.1337	.0946	.0772	.0664	.0598	.0546	.0488	.0423	.0345
German silver	.1942	.1372	.0970	.0792	.0692	.0614	.0560	.0500	.0434	.0354
Graphite	.765	.541	.383	.312	.271	.242	.221	.197	.171	.140
Carbon	1.60	1.13	.801	.654	.566	.506	.462	.414	.358	.292
Iron $\mu = 1000$.00263	.00186	.00131	.00108	.00094	.00083	.00076	.00068	.00059	.00048
$\mu = 500$.00373	.00264	.00187		.00132				.00084	
$\mu = 100$.00340						

TABLE 429.—STEADY POTENTIAL DIFFERENCE IN VOLTS REQUIRED TO PRODUCE A SPARK IN AIR WITH BALL ELECTRODES (RADIUS R)

Spark	D 0	73 0 0 0	D 0 #				
length,	R = 0	R = 0.25	R = 0.5	D _ 1	D 0	D 2	$R = \infty$
cm	Points	cm	cm	R = 1 cm	R=2 cm	R = 3 cm	Plates
.02	_	-	1560	1530			
.04	_		2460	2430	2340		
.06		_	3300	3240	3060		
.08	_	_	4050	3990	3810		
.1	3720	5010	4740	4560	4560	4500	4350
.2	4680	8610	8490	8490	8370	7770	7590
.3	5310	11140	11460	11340	11190	10560	10650
	5970	14040	14310	14340	14250	13140	13560
.4 .5	6300	15990	16950	17220	16650	16470	16320
.6	6840	17130	19740	20070	20070	19380	19110
.8	8070	18960	23790	24780	25830	26220	24960
1.0	8670	20670	26190	27810	29850	32760	30840
1.5	9960	22770	29970	37260	29030	32700	30040
2.0	10140	24570	33060	45480			
3.0	11250	28380					
4.0	12210	29580					
5.0	13050						

TABLE 430.—ALTERNATING-CURRENT POTENTIAL REQUIRED TO PRO-DUCE A SPARK IN AIR WITH VARIOUS BALL ELECTRODES

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length cm	R = 1 cm	R = 1.92	R = 5	R = 7.5	R = 10	R = 15
.08	3770					
.10	4400	4380	4330	4290	4245	4230
.15	5990	5940	5830	5790	5800	5780
.20	7510	7440	7340	7250	7320	7330
.25	9045	8970	8850	8710	8760	8760
.30	10480	10400	10270	10130	10180	10150
.35	11980	11890	11670	11570	11610	11590
.40	13360	13300	13100	12930	12980	12970
.45	14770	14700	14400	14290	14330	14320
.50	16140	16070	15890	15640	15690	15690
.6	18700	18730	18550	18300	18350	18400
.6 .7 .8 .9	21350	21380	21140	20980	20990	21000
.8	23820	24070	23740	23490	23540	23550
	26190	26640	26400	26130	26110	26090
1.0	28380	29170	28950	28770	28680	28610
1.2	32400	34100	33790	33660	33640	33620
1.4	35850	38850	38850	38580	38620	38580
1.6	38750	43400	43570	43250	43520	
1.8	40900	_	48300	47900		
2.0	42950		_	52400		

TABLE 431.—POTENTIAL NECESSARY TO PRODUCE A SPARK IN AIR BETWEEN MORE WIDELY SEPARATED ELECTRODES

E CH	Alter-		Stead	y potentials	3	c u	ints. Alter- current		
length,	nts. Al			Cup e	lectrodes	Spark length,	ts. urr	Steady	potentials
len	.=	Ball e	lectrodes	Pro	jection	len		Rall el	ectrodes
논		R == 1 cm	R = 2.5 cm	4.5 mm	1.5 mm	ᅺ			
Spark	Dull	1 Cm	2.5 CIII	4.5 111111	1.5 11111	Spe	Dull	R = 1 cm	R == 2.5 cm
		_	_		11280	6.0	61000	_	86830
.3 .5 .7		17610	17620	_	17420	7.0	_	52000	_
.7	_	_	23050	_	22950	8.0	67000	52400	90200
1.0	12000	30240	31390	31400	31260	10.0	73000	74300	91930
1.2	_	33800	36810	_	36700	12.0	82600	_	93300
1.5	_	37930	44310	_	44510	14.0	92000	_	94400
2.0	29200	42320	56000	56500	56530	15.0	_	_	94700
2.5	_	45000	65180	_	68720	16.0	101000	_	101000
3.0	40000	46710	71200	80400	81140	20.0	119000		
3.5		_	75300		92400	25.0	140600		
4.0	48500	49100	78600	101700	103800	30.0	165700		
4.5	-	_	81540	_	114600	35.0	190900		
5.0	56500	50310	83800	_	126500				
5.5	_	_	_	_	135700				

The specially constructed electrodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm in diameter and having a height of 4.5 mm and 1.5 mm respectively, attached to the plane face of the electrodes. These electrodes give a very satisfactory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 432.—EFFECT OF THE PRESSURE OF THE AIR ON THE DIELECTRIC STRENGTH

Voltages are given for different spark lengths l.

Pressure,				· - -				
cmHg	l = 0.04	l = 0.06	l = 0.08	l = 0.10	l = 0.20	l = 0.30	l = 0.40	l = 0.50
2		_	_		744	939	1110	1266
4	_	483	567	648	1015	1350	1645	1915
6	_	582	690	795	1290	1740	2140	2505
10	-	771	933	1090	1840	2450	3015	3580
15	_	1060	1280	1490	2460	3300	4080	4850
25	1110	1420	1725	2040	3500	4800	6000	7120
35	1375	1820	2220	2615	4505	6270	7870	9340
45	1640	2150	2660	3120	5475	7650	9620	11420
55	1820	2420	3025	3610	6375	8950	11290	13455
65	2040	2720	3400	4060	7245	10210	12950	15470
75	2255	3035	3805	4565	8200	11570	14650	17450

TABLE 433.—POTENTIALS IN VOLTS TO PRODUCE A SPARK IN KEROSENE

length cm 0.5 cm 1 cm 2 cm 3 cm length cm 0.5 cm 1 cm 2 cm 3 cm	
	3 cm
.1 3800 3400 2750 2200 .5 13050 12400 11000 69	6900
.2 7500 6450 4800 3500 .6 14000 13550 12250 82	3250
	0450
.4 11750 10750 9100 5600 1.0 16750 16400 15250 123	2350

TABLE 434.—DIELECTRIC STRENGTH OF MATERIALS

Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric

Substance	Kilovolts per cm	Substance		Cilovolts per cm	Substance	Kilovolts per cm
Substance Ebonite	per cm 300-1100 80-300 450 20 200-300 300-1500 90 80-200 20 30-60	Oils: Castor Cottonseed Lard Linseed, raw "boiled "total and the second a	Thickness .2 mm 1.0 "	per cm		770 150 25 500 100–250
				110		

TABLE 435.—DIELECTRIC CONSTANT (SPECIFIC INDUCTIVE CAPACITY) OF GASES

Atmospheric pressure

Wavelengths of the measuring current greater than 10000 cm

		Dielectric constant				Dielectric constant	
Gas	°C	Vacuum = 1	Air = 1	Gas	°C	Vacuum = 1	Air = 1
Air	0	1.000588	1.000000	HC1	100	1.00258	1.00199
NH_3	20	1.00718	1.00659	H_2	0	1.000264	.999676
CS_2	0	1.00290	1.00231	CH ₄	0	1.000948	1.000360
"	100	1.00239	1.00180	N_2O	0	1.00108	1.00050
CO2	0	1.000966	1.000377	SO ₂	0	1.00993	1.00934
CO	0	1.000692	1.000104	H ₂ O, 4 atm	145	1.00705	1.00646
C₂H₄	0	1.00138	1.00079				

TABLE 436.—VARIATION OF THE DIELECTRIC CONSTANT WITH THE TEMPERATURE

If K_0 = the dielectric constant at the temperature $\theta^{\circ}C$ of the above table, K_t at the temperature $t^{\circ}C$, and α and β are quantities in the following table, then $K_t = K_{\theta} - \alpha (t - \theta) + \beta (t - \theta)^2$.

Ammonia	6.19×10^{-6}	$\beta = 2.59 \times 10^{-7} \\ 1.86 \times 10^{-7}$	Range, 15-110°C 0-110
Water vapor	1.4×10^{-4}	• • • •	145

The dielectric constant of air at 76 cmHg and varying temperature may be calculated since K-1 is approximately proportional to the density. See Table 437.

TABLE 437.—VARIATION OF THE DIELECTRIC CONSTANT OF GASES WITH THE PRESSURE

	°C	Pressure atm		°C	Pressure atm	
Air	19	20	1.0108	Air 11	120	1.0579
"	74	40	1.0218	16 46	140	1.0674
"	44	60	1.0330	44	160	1.0760
	66	80	1.0439	"	180	1.0845
"	66	100	1.0548	CO ₂ 15	10	1.008
"	11	20	1.0101	"	20	1.020
"	66	40	1.0196	"	40	1.060
"	66	60	1.0294	N ₂ O 15	10	1.010
	4.6	80	1.0387		20	1.025
46	6.6	100	1.0482	46 64	40	1.070

TABLE 438.-DIELECTRIC CONSTANT OF LIQUIDS (K). PRESSURE EFFECT 148

	P	3	10°C		75°C	P 0° 30°C
	atm	K	Densit	y K	Density	atm K Density K Density
C5H12	1	1.82	.613			C ₂ H ₅ OH 1 27.8 .806 23.2 .781
Pentane	1000	1.96	.701	1.92		Ethyl 1000 29.4 .864 25.3 .844
	4000	2.12	.796	2.11		alcohol 8000 35.3 1.031 31.7 1.019
	8000	2.24	.865	2.22		12000 57.6 1.082 33.7 1.073
	12000	2.33	.907	2.31		C ₄ H ₆ OH 1 21.1 .819 17.3 .806
CS ₂	1	2.61	1.241			i-butyl 1000 22.9 .877 18.7 .856
Carbon	1000	2.82	1.332	2.69	1.29	alcohol 8000 26.8 1.031 22.8 1.018
bisulfide	4000	3.11	1.487	3.02		12000 28.2 1.080 23.9 1.069
	8000	3.33	1.601	3.28		C ₃ H ₃ O ₃ 1 49.9 1.272 42.8 1.254
	12000	3.52	1.689	3.45	1.66	Glycerine 1000 51.9 1.305 44.8 1.287
(C ₃ H ₅) ₂ O		4.15	.720	4.00		4000 56.4 1.367 49.1 1.349
Ethyl	1000	4.88	.801	4.08	.74	8000 61.1 1.429 53.8 1.410
ether	4000	6.05	.911	5.17	.87	
	8000	6.93 7.68	.988 1.047	6.00 6.94	.94 1.00	
C₀H₀Br	12000	5.22	1.465	4.87	1.40	Anomalous dispersion 247000 cycles
Bromo-	500	5.36	1.525	5.05	1.46	•
benzene	1000	5.47	1.558	5.16	1.50	Isobutyl-alcohol: 0°C
Delizene	4000	5.88	1.705	5.62	1.65	p: 1 2900 5810 9680 10830 12130
	8000			5.95	1.76	K: 21.1 24.4 25.9 27.4 27.2 26.4
C ₆ H ₆ Cl	' 1	5.41	1.004	4.90	.96	Glycerine . P 1 1940 4290 6330 8490
Chloro-	500	5.59	1.038	5.12	1.00	0°CK 49.9 53.4 55.6 52.2 40.1
benzene	1000	5.75	1.065	5.28	1.03	Eugenol P 1 2960 5081 5680 6300
	4000	6.33	1.152	5.88	1.13	30°CK 9.42 10.79 11.09 10.57 6.05
	8000			6.29	1.20	
C ₆ H ₁₃ OH	1	12.90	.812	8.55	.78	
Hexyl	1000	13.54	.861	9.32	.84	
alcohol		15.06	.937	10.42	.92	
	8000	• • •		11.15	.99	

¹⁴⁸ Danforth, Phys. Rev., vol. 38, p. 1224, 1931.

A wavelength greater than 10000 cm is designated by ∞ .

	Temp.	Wave- length,	Dielectric	Temp.	Wave- length,	Dielectric
Substance	°C'	cm	constant	Substance Temp.	cm	constant
Alcohol:	,		0.4	Ethyl ether 100	44	3.12
Amyl	frozen	· · ·	2.4	" " "	"	2.66
"	-100	"	30.1 23.0	100		2.12
44	-50 0	"	17.4	Crit.		
"	+20	66	16.0	" " … 192	66	1.53
"	18	200	10.8	" " 18	83	4.35
"	. 18	73	4.7	Formic acid +2	73	19.0
Ethyl	frozen	∞ "	2.7	" " (frozen		(0.0
"	-120	"	54.6	13	1200	62.0
"	80 40	66	44.3 35.3	" " 16 Glycerine 15	73 1200	58.5 56.2
"	0	66	28.4	" 15	200	39.1
"	+20	66	25.8	" 15	75	25.4
"	17	200	24.4	" —	8.5	4.4
"	44	75	23.0	"	.4	2.6
"	"	53	20.6	Hexane 17	00	1.880
	46	4	8.8 5.0	Hydrogen perox-\	75	84.7
Methyl	frozen	∞.4	3.07	ide 46% in H₂O∫ Kerosene —		.2
wiethyi	-100	"	58.0	Meta-xylene 18	00	2 37
"	— 50	∞	45.3	" " 17	73	2.37
44	0	44	35.0	(frozen)		
	+20	"	31.2	Nitrobenzol —10	00	9.9
- "	17	75	33.2	" —5	44	42.0
Propyl	-120	∞ "	46.2		"	41.0
********	$-60 \\ 0$	"	33.7 24.8	" +15 " 30	66	37.8 35.1
	+20	44	22.2	" 18	66	36.45
"	15	75	12.3	" … 17	73	34.0
Acetone	80	00	33.8	Octane 17	00	1.949
	0	"	26.6	Oils:		
66	15	1200	21.85	Almond 20	00 "	2.83
	17	73	20.7	Castor 11	"	4.67
Acetic acid	18 15	$\frac{\infty}{1200}$	9.7 10.3	Colza 20 Cottonseed 14	44	3.11
"	17	200	7.07	Cottonseed 14 Lemon 21	44	3.10 2.25
" "	19	75	6.29	Linseed 13	66	3.35
Amyl acetate	19	∞	4.81	Neatsfoot	66	3.02
Amylene	16	66	2.20	Olive 20	66	3.11
Aniline	18	00 "	7.316	Peanut 11		3.03
Benzol (benzene)	18		2.288	Petroleum —	2000	2.13
• •	19 23	73	2.26 3.18	Petroleum ether. 20	"	1.92 2.85
Bromine	20	84 ∞	2.626	Rape seed 16 Sesame 13	A "	3.02
" " "	17	73	2.64	Sesame 13. Sperm 20	т "	3.17
Chloroform	18	00	5.2	Turpentine 20	44	2.23
"	17	73	4.95	Vaseline	66	2.17
Decane	14	∞	1.97	Phenol 48	73	9.68
Decylene	17	"	2.24	Toluene —83	00	2.51
Ethyl ether	-80	00	7.05	" +16		2.33
" "	-40	"	5.67	19	73 ∞	2.31
	0 18	44	4.68 4.368	Water	200	81.07 80.6
"	20	44	4.30	see Table 440.)	74	81.7
"	60	44	3.65	17	38	83.6

Temperature coefficients of the formula: $K_{\theta} = K_{t}[1 - a(t - \theta) + \beta(t - \theta)^{2}]$

Substance	а	β	Temp. range, °C
	2024	-	
Amyl acetate			
Aniline	00351		10.10
Benzene		.0000087	10-40
Carbon bisulfide	000966		
46		.00000060	20-181
Chloroform		.000015	22-181
Ethyl ether			
Methyl alcohol			
Oils: Almond		.000026	
Castor		 ·	
Olive			
Paraffin		.0000072	
Coluene	****		0-13
"	000077	.00000046	20–181
* *	0044714	.000000	5-20
44	004502	.0000117	0-76
"	00.427	.0000117	4–25
	000045		20–181
Meta-xylene	000817		20-181

TABLE 441.—DIELECTRIC CONSTANT OF LIQUEFIED GASES

A wavelength greater than 10000 cm is designated by ∞ .

		Wave- length, cm	D' Louis		_	Wave. length, cm	D
Substance	Temp.	¥a lei	Dielectric constant	Substance	Temp. °C	Ϋ́a	Dielectric constant
Air	-191	∞	1.432				
44	"	75	1.47-1.50	Nitrous oxide			
Ammonia	-34	75	21–23	. N ₂ O	88	∞	1.93₃
	14	130	16.2		5	46	1.63
Carbon dioxide	5	00 "	1.608		+5	"	1.573
	$^{0}_{+10}$	66	1.58₃ 1.54₀		+15 -182	"	1.52 ₀ 1.49 ₁
" "	+15	46	1.52	Oxygen	-102	66	1.491
Chlorine	60	66	2.15	Sulfur dioxide	14.5	120	13.75
"	-20	44	2.03	" "	20	00	14.0
"	0	46	1.97。	66 66	40	44	12.5
"	+10	"	1.94	" "	60	44	10.8
"	0	100	2.08	" "	80	66	9.2
Cuanagan	$^{+14}_{23}$	100 84	1.88 2.52		100	"	7.8
Cyanogen	21	04	about 95	66 66	120 140	"	6.4 4.8
Hydrogen sulfide .	10	∞	5.93	Critical	154.2	46	2.1
" "	50	66	4.92	Circular	134.2		5. 1
"	90	44	3.76				

TABLE 442.—DIELECTRIC CONSTANT OF ROCKS *

Material	Wave- length, cm	Dielectric constant, range	Material	Wave- length, cm	Dielectric constant, range
Chalk, middle Devonian		8.0-9.0	Limestone	3×104	8.0–12.0 15.2
Coral dolomite Granite	• • •	8.0-9.0 7.0-9.0	Mica schist Sandstone, variegated		16.0–17.0 9.0–11.0

^{*} For reference, see footnote 45, p. 136.

Substance	Condi- tion	Wave- length, cm	Dielectric constant 2.68	Substance	Condi- tion Temp.	Wave- length, cm	Dielectric constant
Asphalt					°C		
Barium sulfate	_	75	10.2	Paper (telephone).		44	2.0
Caoutchouc	_	00	2.22	" (cable)		66	2.0 - 2.5
Diamond	_	66	16.5	Paraffin	Malaina	64	2.46
"	_	75	5.50	44	point	44	2.32
Ebonite	_	00	2.72	"	44-46	44	2.10
"	_	44	2.86	"	54-56	44	2.14
44	_	1000	2.55	"	74–76	44	2.16
Glass Flint	Density	1000	2.00	"	47.6°C 56.2	61 61	2.16 2.25
(extra heavy).	4.5	∞	9.90	Phosphorus:			
Flint	1.0		,,,,	Yellow	_	75	3.60
(very light)	2.87	64	6.61	Solid	_	80	4.1
Hard crown	2.48		6.96	Liquid	_	80	3.85
Mirror		66	6.44-7.46	Porcelain:			
"		66	5.37-5.90	Hard			
11		600	5.42–6.20	(Royal B'l'n).		00	5.73
Lead (Powell)	3 0_3 5	000	5.4-8.0	Seger " "		44	6.61
Jena (10wen)	5.0-5.5		3.4 0.0	Figure " "	_	44	6.84
Boron		44	5.5-8.1	Selenium	_	66	7.44
Barium		44	7.8–8.5	"	_	75	6.60
Borosilicate		44	6.4–7.7	"	_	00	6.13
			3.3–4.9	"	_	1000	6.14
Gutta percha	Temp.		3.3-4.9	Shellac	_	00	3.10
	°C			"	_	4.6	2.95-3.73
Ice	— 5	1200	2.85	"		44	3.67
"	—18	5000	3.16	Amber	_	_	2.86
"	-190	75	1.76-1.88	Sulfur			
Iodine (cryst.)	23	75	4.00	Amorphous		00	3.98
Lead chloride				Amorphous	_	75	3.80
(powder).		"	42	Cast, fresh	_	00	4.22
" nitrate		64	16	" " "	_	66	4.05
" sulfate	_	44	28	" "		75	3.95
" molybdenate .	_	44	24	C4 -14	_	00	3 .60
		46	8.3	Cast, old		75	3.90
Marble (Carrara).	-					\ /3	3.50
Mica	_	∞ "	5.66-5.97	T · · · · · · · · · · · · · · · · · · ·	near	> 00	3.42
3.6		44	5.80-6.62	Liquid	melting-	(3.42
Madras, brown .	_	"	2.5–3.4		point .	75	11.2
green	_	"	3.9–5.5	Strontium sulfate.	_	75	11.3
ruby		"	4.4	Thallium carbonate		75	17
Bengal, yellow.	_	"	2.8	" nitrate	_	75	16.5
" white	_	"	4.2	Wood		dried	
ruby	-	"	4.2–4.7	Red beech	fibers	∞	4.83-2.51
Canadian amber.	_	"	3.0	" "	Ţ "	44	7.73–3.63
South America .	_		5.9	Oak	Ī "	"	4.22-2.46
Ozokerite (raw)	_	4.6	2.21		ï"	44	6.84-3.64

TABLE 444.—ELECTROSTRICTION *

Electrostriction is a change in the dimensions of a dielectric proportional to the square of an applied electric field. The effect is very small except for bodies of very high dielectric constant or high mechanical compliance.^{n, e}

Typical values for-

Glasses	Rubber	Barium titanate polycrystalline
0.1 to 0.7×10 ⁻¹² transverse	$7 imes10^{-9}$ longitudinal	100 × 10 ⁻⁹ cm ² /statvolt longitudinal

^{*} Prepared by Hans Jaffe, Brush Development Co., Cleveland, Ohio. n. c Letters refer to references, p. 431.

	D: 1	A		ne at 19°C	75			cohol in 19.5°C
Substance Benzene Meta-xylene Ethyl ether Aniline Ethyl chloride O-nitro toluene Nitrobenzene	Diel. const. at 18°C $\lambda = \infty$ 2.288 2.376 4.367 7.298 10.90 27.71 36.45	Percent by weight 0 20 40 60 80 100	Density 16°C .885 .866 .847 .830 .813 .797	Dielectric constant 2.26 5.10 8.43 12.1 16.2 20.5		ce	Per- nt by eight 100 90 80 70 60	Dielectric constant 26.0 29.3 33.5 38.0 43.1
Water (conduct. 10 ⁻⁶).	01.07	Water	n acetone	at 19°C λ	= 75 cm			
		0 20 40 60 80 100	.797 .856 .903 .940 .973 .999	20.5 31.5 43.5 57.0 70.6 80.9	.6% .5 .5 .5 .5			

TABLE 446.-DIELECTRIC CONSTANT OF MINERALS *

			Dielectric	constant
36	Wavelength,	70	<u> </u>	
Material	cm	Range	1 axis	∥ axis
Asphalt		2.7		
Beryl			7.85	6.05
Coal, anthracite		5.6-6.3		
Fluorite		6.8		
Glass, flint ex. heavy		9.9		
Glass, hard crown		7.0	• • •	
Glass, Jena barium .		7.8–8.5	• • •	
Glass, lead (Powell)		5.4-8.0	• • •	
Gypsum		6.3		
[ce] (—2°C)		93.9		
celand spar	75		8.50	8.00
Quartz, fused		3.5-3.6		
Sulfur, amorphous		3.9		

^{*} For reference, see footnote 45, p. 136.

TABLE 447.—THE DIELECTRIC PROPERTIES OF NONCONDUCTORS

Results of tests at unit area and unit thickness of dielectric

At 1000 cycles	Mica	Paper	Celluloid	Ice
Max. breakdown volts per cm	1.06×10 ^e	.71×10°	1.05×10 ^e	.001×10°
Specific induc. capacity		4.90	13.26	86.40
Max. absorbable energy, watts-sec/cm ⁸ .	.198	.108	.640	.00040
90°-angle of lead	0° 57′	2° 10′	3° 40′	13° 39′
Equiv. resistance (ohm-cm) \times 10 ¹¹	3.91	9.84	48.3	1400
Conductivity, 1/(ohm-cm) × 10 ⁻¹⁰	2.56	1.02	.207	.00722
Percent change in cap. per cycle × 10	2.18	14.31	30.7	70.0
Percent change in resistance per cycle	.258	.146	.106	.127
At 15 cycles				
Specific inductive capacity	4.09	5.77	18.60	429.0
Max. absorbable energy, watt-sec/cm ⁸	.203	.126	.90	.002
Percent change in capacity per cycle	.00	.306	1.74	1.59
On direct current				
Conductivity, 1/(ohm-cm)	2.42×10 ⁻¹⁷	2.27×10 ⁻¹⁴	71.5×10 ⁻¹⁴	163.10-11

TABLE 448.—VALUES OF DIELECTRIC CONSTANT FOR SEVERAL ELECTRIC INSULATING MATERIALS AT RADIO FREQUENCIES

Material	Frequency kc	Dielectric constant	Material	Frequency kc	Dielectric constant
Glass	30	5.1-7.9	Phenolic insulation:		
cobalt	500	7.3	laminated	190	5.0-7.4
crown	230	6.3		1000	4.7-7.0
	800	6.2	molded	190	4.3-7.6
flint	500	7.0		1000	4.9-7.0
	890	7.0	Rubber, hard	135	3.7
photographic	100	7.5	·	210	3.0
1	1700	7.4		1126	3.0-3.7
plate	500	6.8-7.6	Wood:		
Pyrex	30	4.8	bay	8 7 0	3.8
•	500	4.9-5.8	birch	500	5.2
Marble	44	8.4	maple	500	4.4
	80-650	9.2-11.7*	oak	300	3.1 †–6.7
	1400	7.3		425	3.3
Mica1	00-1000	5.8-8.7		635	3.0†–6.5
				1060	3.3

^{*} Range of 10 samples of various kinds of marble. † After drying sample for 48 hours at 80°C.

TABLE 449.—COMPARISON OF ELECTRICAL PROPERTIES OF INSULATING MATERIALS AT ROOM TEMPERATURE **

	Intrinsic diel	ectric strength		**	
Material Cellulose acetate	Thickness (mm) .02512	(Kv/cm) 2300†	Dielectric constant 5.5	Volume resistivity (ohm-cm) 10 ¹²	
Glass: borosilicate No. 7740 (Pyrex) soda leadsoda lime	.10	4800* 3100* 4500*	4.8 8.2 7.0	10 ¹⁶ 10 ¹⁴ 10 ¹⁸	
Mica, muscovite clear ruby	.02010	3000-8200†	7.3	10 ¹⁷	
Phenolic resin	.01204	2600-3300†	7.5	10 ¹¹	
Porcelain, electrical	_	380†	4.4-6.8	1014	
Porcelain, steatite-low loss	_	500†	6.0-6.5	1015	
Silica, fused		5000*	3.5	1018	
Rubber, hard	.1030	2150 [†]	2.8	1018	

^{**} Table from Corning Glass Works publication on Properties of Selected Commercial Glasses (B-83).

* Values of P. H. Moon and A. S. Norcross, Trans. Amer. Inst. Electr. Engr., vol. 49, p. 775 (1930).

† Values of S. Whitehead. World Power, p. 72, September 1936.

Intrinsic dielectric strength can be realized only under test conditions and is very much higher than the working dielectric strength attainable in ordinary service. These data are listed for purposes of comparison.

cgs system, $K_{\text{vacuum}} = 1$

The dielectric constants, \dagger K, given here have usually been determined at low field strength (order of 1 volt/cm). Unless specifically noted, the frequency is between 60 cycles/sec and 5 megacycles/sec. Homogeneous crystals show little dispersion in this frequency range unless they are strongly piezoelectric or have very high dielectric constant. For some strongly piezoelectric crystals, the notation "free" appears in the frequency column. Dielectric constants so noted hold for the mechanically unconstrained condition which is usually fulfilled for frequencies below the principal mechanical resonances of the test body. The dielectric constants for the "clamped" crystal are smaller than for the "free" crystal. The difference does not exceed 10 percent except for K_a of Rochelle salt (see fig. 16) and $K \parallel$ of barium titanate.

 K_o , K_o , and K_o for orthorhombic crystals refer to electric field parallel to the crystallo-

graphic a, b, and c axes.

For monoclinic crystals, K_b refers to electric field parallel to the b axis which is the symmetry axis; K_c to field parallel to the c axis accepted by crystallographic convention; and K_c to an electric field perpendicular to the b and c axes.

* Tables 444, 450, and 451 prepared by Hans Jaffe, Brush Development Co., Cleveland, Ohio. † All data refer to room temperature unless otherwise noted.

Cubic crystals

Name	Compo- sition	K	Author- ity 149	Name	Compo- sition	K	Author-
Silver chloride	AgC1	12.3	g	Sphalerite	ZnS	8.8	e
Silver bromide	AgBr	13.1	g	Sodium chlorate	NaClO ₃	5.7	h
Lithium fluoride	LiF	9.00	f	Sodium bromate	NaBrO ₃	5.7	h
Sodium chloride	NaCl	5.90	f	Magnesium oxide .	MgO	9.65	f
Potassium chloride	KC1	4.68	g	Potassium bromide		4.90	f
Barium oxide	BaO	34.	0	Thallium chloride.	TICI	31.1	g

Uniaxial crystals

Name	Composition	$K \perp$	$K \parallel$	Frequency	Authority
Quartz		4.5	4.6		ь
Calcite		8.78	8.29		g
Sapphire		8.6	10.5	$10^2 - 10^7$	f
Rutile		86	170	10^{6} — 10^{6}	f
Barium titanate		4400	200	?—107	i
Tourmaline		8.2	7.5		h
Magnesite	MgCO₃	6.91	8.1		g
Dihydrogen phosph	ates and arsenates:				
	NH ₄ H ₂ PO ₄	56	15.4	free	d
"KDP"	KH₂PO₄	46	22	free	h
	NH4H2AsO4		14	free	d
"KDA"	KH₂AsO₄	52	22	free	d

Orthorhombic crystals

Name	Composition	Ka	Кь	Ke	Frequency	Author- ity
	•	AL B	AL D	V. G	Frequency	ity
Sulfur		3.75	3.95	4.45	$10^{2} \times 10^{3}$	f
Celestite	SrSO ₄	7.7	18.5	8.3	4×10 ⁸	g
Barite	BaSO ₄	7.65	12.2	7.7	4×10^{8}	g
Anglesite	PbSO₄	27.5	54.6	27.3	5×10 ² —	
Epsomite	MgSO₄·7H₂O	6.5	7.9	6.9		k
Ammonium oxalate	$(NH_4)_2C_2O_4\cdot H_2O$	8.2	5.5	6.0	free	k
Potassium pentaborate .	KB ₅ O ₈ ·4H ₂ O	4.6	5.5	4.5	free	đ
Iodic acid	HIO3	7.5	12.4	8.1	free	h

¹⁴⁹ For authorities, see references, p. 431. ‡ Synthetic, Linde Air Products Company.

TABLE 450.—DIELECTRIC CONSTANT OF CRYSTALS (concluded)

Name Tartrates :	Composition	Ka	$K_{\mathbf{b}}$	Ke	Frequency	Author- ity
Rochelle salt " 30°C §		8.0 300 9.0 5.84 7.2	9.4 8.9 7.32 8.0	9.6 10.0 7.4 6.9	2.5×10 ¹⁰ free free free free	h c, j h h h
	Monoclinic	crystal	s			
Lithium sulfate Tartaric acid Potassium tartrate Ammonium tartrate Ethylene diamine	$C_4H_4O_6$ $K_2C_4H_4O_6 \cdot \frac{1}{2}H_2O$	5.6 4.3 6.44 6.45	10.3 4.3 5.80 8.2	6.5 4.5 6.49 6.0	free free free free	h h h h
tartrate (EDT) § See also figure 16.	$C_2N_2H_8\cdot C_4H_6O_6$	5.0	8.22	6.0	free	h

REFERENCES: a, Bechmann, R., and Lynch, A. C., Nature, vol. 163, p. 915, 1949. b, Cady, W. G., Piezoelectricity, McGraw-Hill, New York, 1946. c, Hablutzel, J., Helvet. Phys. Acta, vol. 12, p. 489, 1939. d, Jaffe, H., The Brush Development Co. Report to U.S. Signal Corps on synthetic water-soluble piezoelectric crystals, April 1, 1948. e, Jaffe, H., personal communication. f, Laboratory for Insulation Research, Massachusetts Inst. Techn. Tables of Dielectric Materials III, 1948; and personal communication. g, Landolt Börnstein Tables, 5th ed. h, Masson, W. P., Piezoelectric crystals and their application to ultrasonics, Van Nostrand Co., New York, 1950. i, Merz, W. J., Phys. Rev., vol. 75, p. 687, 1949. j, Mueller, H., Phys. Rev., vol. 47, p. 175, 1935; vol. 58, p. 565, 1940. k, Naval Research Laboratory, Crystal Section. l, Spitzer, F., Dissertation, Göttingen, 1938. m, Standards on piezoelectric crystals, Proc. Inst. Radio Eng., vol. 37, p. 1378, 1949. n, International Critical Tables, vol. 6. o, Bever and Sproul, Phys. Rev., vol. 53, p. 801, 1951.

Fig. 16.—Dielectric constant K₄ of Rochelle salt. Curve A: free condition (audio frequency); curve B: clamped condition (radio frequency).

In this table are listed piezoelectric strain coefficients * d_{nm} which are ratios of piezoelectric polarization components to components of applied stress at constant electric field (direct piezoelectric effect) and also ratios between piezoelectric strain components to applied electric field components at constant mechanical stress (converse effect). The subscripts n=1 to 3 indicate electric field components, m=1 to 6 mechanical stress or strain components. These components are referred to orthogonal coordinate axes. For correlation of these to crystallographic axes, we follow Standards on Piezoelectric Crystals.^m

tion of these to crystallographic axes, we follow Standards on Piezoelectric Crystals."

In the monoclinic system, indices 2 and 5 refer to the symmetry (b) axis, in distinction from the older convention be relating indices 3 and 6 to the symmetry axis. Crystal classes are designated by international (Hermann-Mauguin) symbols. A dot in place of a coefficient indicates that it is equal by symmetry from another listed coefficient; a blank space indicates that the coefficient is zero by symmetry. If the sign of a coefficient is not given

it is unknown, not necessarily positive.

Unit for
$$d_{nm} = 10^{-8}$$
 stateoulomb/dyne $= \frac{1}{3} \times 10^{-12}$ coulomb/newton $= 10^{-8}$ cm/statvolt $= \frac{1}{3} \times 10^{-12}$ meter/volt

^{*} The coefficient d_{14} of Rochelle salt is extremely dependent on temperature and on amplitude. The ratio of d_{14} to dielectric constant K (for the latter see figure 16) is, however, nearly constant; $4\pi d_{14}/K = g_{14} = 6.4 \times 10^{-7}$ statvolt cm/dyne.

m Letters refer to references, p. 431.

Cubic an	i tetragonal	l crystals
----------	--------------	------------

Name	Composition	Class	d_{14}	d_{36}	Authority149
Sphalerite	ZnS	43m	9.7	•	ь
Sodium chlorate	NaClO ₃	23	5.2	•	1
Sodium bromate	NaBrO₃	23	7.3	•	1
"ADP"	NH₄H₂PO	42m	— 1.5	+48.0	d
"KDP"	K H₂PO₄	42m	+ 1.3	+21	e
"ADA"	NH ₄ H ₂ AsO ₄	42m	+41	+31	đ
"KDA"	K H₂AsO•	42m	+23.5	+22	d

Trigonal crystals

Name	Class	d_{11}	d_{14}	d_{13}	d_{22}	d_{31}	d_{33}	Authority
Quartz	32	+6.9	-2.0					b
Tourmaline	3m			+11.0	— .94	+.96	+5.4	b

Orthorhombic crystals

Substance	Class	d_1	4	d_{23}	C	l_{36}	Authority	
Epsomite	222	— 6.	2	-8.2	1	11.5	1	
Iodic acid	222	57		46	7	70	h	
Rochelle salt (30°C)		+1500	k	-160	+3	35	b	
NaNH, tartrate	. 222	+56		—15 0	+2	28	Ъ	
LiK tartrate		9.	6	33.6	- 2	22.8	h	
LiNH. tartrate		13.	2	19.6	1	14.8	h	
(NH ₄) ₂ oxalate	222	50		11	2	25	e	
		d ₁₅	d_{24}	d_{31}	d_{32}	d_{33}	Authority	
K pentaborate	. mm	9.5	1.7	5.4	0	+5.6	ď	

Monoclinic crystals (Class 2)

Substance	d_{14}	d_{16}	d_{21}	d_{22}	d_{21}	d_{25}	d_{34}	d_{36}	Authority	
Lithium sulfate	+14.0	-12.5	+11.6	-45.0	5.5	+16.5	-26.4	+10.0	h	
Tartaric acid	+24.0	+15.8	-2.3	-6.5	-6.3	+1.1	-32.4	+35.0	h	
K₂ tartrate (DKT)	-25	+6.5	-2.2	+8.5	-10.4	-22.5	+29.4	-66.0	h	
(NH ₄) ₂ tartrate	+9.3	-8.5	+17.6	-26.2	+1.8	-5.9	-14.0	+5.6	1	
EDT	-31.1	-36.5	+30.6	+6.6	-33.8	-54.3	—51	-56.9	a	
(Ethylene diamine tarti	rate)									
Cane sugar	-3.7	-7.2	+4.4	-10	+2.2	-2.6	-1.3	+1.3	ь	

Polarized polycrystalline substance

Barium titanate ceramic K = 1700		-235	$^{d_{23}}_{+570}$	Authority e
-------------------------------------	--	------	--------------------	----------------

TABLE 452.—VALUES FOR POWER FACTOR IN PERCENT FOR SEVERAL ELECTRICAL INSULATING MATERIALS AT RADIO FREQUENCIES

From the range of values given, an approximate figure can be taken for a particular material and its relative position with respect to other materials seen. Data of this kind are much affected by the condition and past treatment of the samples and by the conditions of the tests. The power factor and dielectric constant of dry air may be taken as 0 and 1.00. Fused quartz has the lowest power factor among the solid insulating materials, and is used for supporting the insulated plates of standard air condensers.

Material	Frequency kc	Power factor	Material	Frequency kc	Power factor
Amber	187.5	.459	Paraffin	14	.042
	300	.476	2 0	100	.017031
	600	.495		500	.026
	1000	.514		1070	.034
Glass	30	.35 - 2.98*	Phenolic		
	600	.040653†	insulation:		
cobalt	500	.70	laminated ∥.	190	2.62 - 8.0
flint	500	.42		1000	3.85 - 6.65
	890	.40	molded ∥	190	1.64 -10.9
photographic	100	.95		1000	1.56 - 8.4
	235	.86	Rubber, hard	135	.68
	1700	.77	•	315	.70
plate	14	.97		600	.62
	100	.77 – .93		625	.70
	500	.66 – .70		710	.88
	635	.82		1000	.68
	1000	.62		1085	.74
Pyrex	14	.88		1126	1.05
	30	.2656	Wood:		
	100	.58 – .74	bay	870	3.76
	420	.50	birch	500	6.48
	500	.42 – .67	maple	500	3.33 - 3.63
	750	.68	oak	300	2.94¶-13.8
	80–650	.35 - 4.72‡		635	3.24¶-10.1
Mica	600	.00793\$		1060	4.20

^{*}Range of 9 samples. †Range of 27 samples. ‡Range of 10 samples. §Range of a number of samples from different localities. || Range of several samples. ¶After drying 48 hours at 80°C.

Antenna arrays (figs. 17-19).—The basis for all directivity control in antenna arrays is wave interference. By providing a large number of sources of radiation, it is possible with a fixed amount of power greatly to reinforce radiation in a desired direction by suppressing the radiation in undesired directions. The individual sources may be any type of antenna.

The radiation patterns of several common types of individual elements are shown in figure 17. The expressions hold for linear radiators, rhombics, vees, horn radiators, or other complex antennas when combined into arrays, provided a suitable expression is used for A, the radiation pattern of the individual

type of	current	directivity horizontal	l vertical		
radiator	distribution	F(0)	F(β)		
Hall-wave dipole		$F(\theta) = \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta}$ $\cong K\cos\theta$	$F(\beta) = K(1)$		
Shortened dipole		$F(\theta) \cong K \cos \theta$	$F(\beta) = K(1)$		
Lengthened dipole	77	$K \left[\frac{\cos\left(\frac{\pi I}{\lambda}\sin\theta\right) - \cos\frac{\pi I}{\lambda}}{\cos\theta} \right]$	$F(\beta) = K(1)$		
Horizontal loop		F(0) ≅ K(1)	$F(\beta) = K \cos \beta$		
Horizontal turnstile	i ₁ and i ₂ phased 90°	F(0) ≃ K'(1)	$F(\beta) \cong K'(1)$		

 $\theta =$ horizontal angle measured from perpendicular bisecting plane

 β = vertical ongle measured from horizon

K and K' are constants and $K' \cong 0.7K$

Fig. 17.—Radiation patterns of several common types of antennas.

antenna. The array expressions are multiplying factors. Starting with an individual antenna having a radiation pattern given by A, the result of combining it with similar antennas is obtained by multiplying A by a suitable array factor, thus obtaining an A' for the group. The group may then be treated as a single source of radiation. The result of combining the group with similar groups, or, for instance, of placing the group above ground, is obtained by multiplying A' by another of the array factors given.

The expressions given here assume negligible mutual coupling between individual antennas. When coupling is not negligible, the expressions apply only if the feeding is adjusted to overcome the coupling and thus produce resultant

currents that are of the amplitude and relative phases indicated.

^{*} Data arranged by Newbern Smith and Marcella Phillips, Central Radio Propagation Laboratory, National Bureau of Standards.

One of the most important arrays is the linear multielement array where a large number of equally spaced antenna elements are fed equal currents in phase to obtain maximum directivity in the forward direction. Figure 18 gives expressions for the radiation pattern of several particular cases and the general case of any number of broadside elements.

In this type of array a great deal of directivity may be obtained. A large number of minor lobes, however, are apt to be present, and they may be undesirable under some conditions, in which case a type called the binomial array may be used. Here again all the radiators are fed in phase but the current is not distributed equally among the array elements, the center radiators in the array

configuration of array	expression for intensity F(θ)
	A[1]
A A	$2A\left[\cos\left(\frac{s^{\circ}}{2}\sin\theta\right)\right]$
-5	A + 2A [cos (s° sin θ)]
-5	$4A \left[\cos \left(s^{\circ} \sin \theta \right) \cos \left(\frac{s^{\circ}}{2} \sin \theta \right) \right]$
m radiators (general case)	$A \frac{\sin\left(m \frac{s^{\circ}}{2} \sin \theta\right)}{\sin\left(\frac{s^{\circ}}{2} \sin \theta\right)}$

A = 1 for horizontal loop, vertical dipole

$$A = \frac{\cos\left(\frac{\pi}{2}\sin\theta\right)}{\cos\theta}$$
 for horizontal dipole

s° = spacing of successive elements in degrees

Fig. 18.—Linear multielement array broadside directivity.

being fed more current than the outer ones. Figure 19 shows the configuration and general expression for such an array. In this case the configuration is made for a vertical stack of loop antennas in order to obtain single-lobe directivity in the vertical plane. If such an array were desired in the horizontal plane, say n dipoles end to end, with the specified current distribution the expression would be

$$F(\theta) = 2^{n-1} \left[\frac{\cos \pi/2 \sin \theta}{\cos \theta} \right] \cos^{n-1} (1/2 S^{\circ} \sin \theta)$$

The term binomial results from the fact that the current intensity in the successive array elements is in accordance with the binomial expansion $(1+1)^{n-1}$, where n is the number of elements.

configuration of array	expression for Intensity F(β)
, s	cos β[1]
\$\frac{\phi_{\beta}}{\phi_{\beta}}	$2\cos\beta\left[\cos\left(\frac{s^{\circ}}{2}\sin\beta\right)\right]$
$ \frac{1 \diamondsuit}{\stackrel{\uparrow}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel$	$2^2 \cos \beta \left[\cos^2 \left(\frac{s^\circ}{2} \sin \beta \right) \right]$
$ \begin{array}{c c} \downarrow & & & & \downarrow 1 \\ \downarrow & \downarrow & & & \downarrow 1 \\ \downarrow & \downarrow & \downarrow & \downarrow 2 \\ \downarrow & \downarrow & \downarrow & \downarrow 1 \end{array} $	$2^3 \cos \beta \left[\cos^3 \left(\frac{s^{\circ}}{2} \sin \beta \right) \right]$
$ \begin{array}{c c} 1 & & & \downarrow 1 \\ \hline 3 & \downarrow \downarrow 1 & & \downarrow 4 \\ \hline \frac{1}{2} & 5 & & \downarrow 3 \\ \hline 1 & \downarrow \downarrow 3 & & \downarrow 4 \\ \hline 1 & \downarrow \downarrow \downarrow 3 & & \downarrow 4 \end{array} $	$2^4 \cos \beta \left[\cos^4 \left(\frac{s^\circ}{2} \sin \beta \right) \right]$ and in general: $2^{n-1} \cos \beta \left[\cos^{n-1} \left(\frac{s^\circ}{2} \sin \beta \right) \right]$ where n is the number of loops in the array

Fig. 19.—Development of binomial array.

TABLE 453.—DIELECTRIC CONSTANT OF NONPOLAR GASES 150

at 0°C and 76cmHg

Gas Helium	(K-1)×10 ⁶ . 69.2	Gas Hydrogen	(K-1)×10 ⁶ 272	Gas Carbon di	(K-1)×10 ⁶ oxide 988
Neon	134.1	Oxygen	532.5	Air (CO2	free) 570
Argon	554.2	Nitrogen	580		

¹⁶⁰ Jelatis, J. G., Journ. Appl. Phys., vol. 19, p. 419, 1948; Hecter, L. G., and Woernley, D. C., Phys. Rev., vol. 69, p. 101, 1946.

TABLE 454.-DIELECTRIC CONSTANT AND LOSS TANGENT OF DIELECTRIC MATERIALS 151

The following table presents values of dielectric constant, * e' (relative to that vacuum e₀) and loss tangent, tan δ , for various substances at the frequencies and temperatures indicated. The loss tangent, $\tan \delta$, is identical with the power factor, $\cos \theta$ (or $\sin \delta$), for low loss substances. The table shows it multiplied by 104.

Part 1.-Solids

		Materials	Temp.		Freq	uency, c	cles per	second		
Δ	In	organic	C		1×10 ²	1×10 ³	1×10°	1×10 ⁸	1×1010	
11.		Crystals								
			-12	ϵ'/ϵ_0			4.15		3.17	
			0.5	tan δ	# 00	= 00	1200		7	
		Sodium chloride ²	25	ϵ'/ϵ_0	5.90	5.90	5.90		5.90	
	2	Ceramics		tan δ	<1	<1	<2		5	
	۷.	a. Steatite bodies								
		AlSiMag 211 ⁸	25	ϵ'/ϵ_0	6.00	5.98	5.97	5.96	5.90	
		ŭ		tan δ	92	34	5	4	14	
		b. Miscellaneous	26	, ,	- 4	F 4	F 4	- 4		
		Ruby mica4	26	ϵ'/ϵ_0 tan δ	5.4 25	5.4 6	5.4	5.4		
		Mycalex K 10 ⁵	24	ϵ'/ϵ_0	9.5	9.3	9.0	2	11.3**	
		Mycarcx It 10	24	tan δ	170	125	26		40	
		Porcelain, dry process ⁶	25	ϵ'/ϵ_0	5.50	5.36	5.08	5.04	4.74	
				tan δ	220	140	75	78	156	
	3.	Glasses	20	,,	205	2 05	205		3.82	
		Corning No. 790 ⁷	20	ϵ'/ϵ_0 tan δ	3.85	3.85 6	3.85		3.82 9.4	
		Corning No. 1990 ⁸	24	ϵ'/ϵ_0	8.40	8.38	8.30	8.20	7.94	
		Corning Ivo. 1990	٠.	tanδ	4	4	5	9	42	
		Foamglas ⁹	23	ϵ'/ϵ_0	90.0	82.5	17.5		5.49	
				tanδ	1500	1600	3180		455	
		Fused quartz10	25	ϵ'/ϵ_0	3.78	3.78	3.78	3.78 1	3.78 1	
				tan δ	8.5	7.5	2	1	1	
В.	Or	rganic, with or without inorganic comp	oonent:	s						
ъ.			,							
	1.	Crystals Naphthalene ¹¹	25	ϵ'/ϵ_0		2.85	2.85			
		Traphtharene	20	tanδ		19	3			
	2.	Plastics								
		a. Phenol-formaldehyde				4.05	4.50	1.00	4.50	
		Bakelite BM-1698112	25	ϵ'/ϵ_0	5.05	4.87 160	4.72 72	4.62	4.52 82	
		(powder preheated) Formica XX ¹³	26	$\tan \delta$ ϵ'/ϵ_0	190 5.23	5.15	4.60	4.04	3.55†	
		(field \(\psi\) to laminate)	20	tan δ	230	165	340	570	700†	
		b. Phenol-aniline-formaldehyde		tuiro	200	100	0.10	0.0	, , ,	
		Resinox 7013 ¹⁴	25	ϵ'/ϵ_0	4.64	4.55	4.37	4.30	4.25	
		(preformed and preheated)		tan δ	160	137	62	77	124	
		c. Melamine-formaldehyde								
		Formica grade FF-41 ¹⁸ (sheet stock)	26	ϵ'/ϵ_0	6.15	6.00	5.75	5.5		
		(SHEEL SLOCK)	20	tan δ	400	119	115	200		
		Melmac resin 59218	27	ϵ'/ϵ_0	6.70	6.25	5.20	4.70	4.59	
				tan δ	590	470	347	360	434	
		d. Urea-formaldehyde	24	,,	7.1	(7	()	F 2	165	
		Plaskon urea, natural ¹⁷	24	ϵ'/ϵ_0	7.1	6.7 280	6.0 310	5.2 500	4.65 782	
		e. Hexamethylene-adipamide		tan δ	380	200	310	300	702	
		Nylon 610 ¹⁸	25	ϵ'/ϵ_0	3.60	3.50	3.14	3.0		
		·		tanδ	155	186	218	200		
		Nylon 610 ¹⁸	25	ϵ'/ϵ_0	4.5	4.2	3.2	3.0		
		90% humidity		tan δ	650	640	380	220		

¹⁵¹ These data were selected from Tables of Dielectric Materials, volume 3, Laboratory of Insulation Research, Massachusetts Institute of Technology, Cambridge, Mass., June 1948.
a e is used for dielectric constant in this table in the place of K.
* Numbers refer to notes at end of table.
** Not corrected for variations of density.
† Rod stock in H₁₁ (TE₁₁) made of circular wave guide.

TABLE 454.—DIELECTRIC CONSTANT AND LOSS TANGENT OF DIELECTRIC MATERIALS (continued)

	Matariala	Temp.		Freq	uency, cy	ency, cycles per second			
	Materials f. Cellulose derivatives	-0		1×10²	1×10 ³	1×10 ⁶	1×10 ⁸	1×1010	
	(1) Acetates Tenite II 205A H ₂ ¹⁰ (cellulose acetate) (butyrate)	26	ϵ'/ϵ_0 tan δ	3 54 78	3.50 107	3.28 178	3.05 190		
	(2) Nitrate Pyralin ²⁰	27	ϵ'/ϵ_0 tan δ	10.8 6400	8.4 1000	6.6 640	5.2 1030	3 32 1310	
	(3) Ethyl cellulose Ethocel No. 2840 ²¹	25	ϵ'/ϵ_0 tan δ	3.90 75	3.80 210	3.40 275	3.20 240		
	g. Silicone resins DC 2101 ²²	25	ϵ'/ϵ_0 tan δ		2.9 56	2.9 45	2.9 45		
	h. Polyvinyl resins Polyethylene DE-3401 ²³	25	ϵ'/ϵ_0 tan δ	2.26 <2	2.26 <2	2.26 <2		2.26 3.6	
	Vinylite QYNA ²⁴	20 23	ϵ'/ϵ_0 tan δ ϵ'/ϵ_0	3.18 130 4.88	3.10 185 4.65	2.88 160 3.18	2.85 81 2.82	2.70	
	Lucite HM-119 ²⁶	23	$\tan \delta$ ϵ'/ϵ_0	800 3.20	630 2.84	570 2.63	180 2.58	51 2.57	
	Polystyrene ²⁷ (commercially molded) Sheet stock	25	$ \frac{\epsilon'}{\epsilon_0} $ tan δ	620 2.56 <.5	2.56 <.5	145 2.56 .7	2.55 <1	49 2.54 4.3	
3.	Elastomers Hevea rubber ²⁸	25	ϵ'/ϵ_0	2.4	2.4	2.4	2.4		
	Gutta-percha®	25	$ \frac{\epsilon'}{\epsilon_0} $ tan δ	28 2.61 5	2.60 4	18 2.53 42	50 2.47 120	2.38 50	
	GR-S (Buna S) ⁸⁰	26 25	$\frac{\epsilon'}{\epsilon_0}$ tan δ $\frac{\epsilon'}{\epsilon_0}$	2.66 7 2.39	2.66 9 2.38	2.56 120 2.35	2.52 95 2.35	2.44 50 2.35	
	Neoprene GR-M ⁸²	26	$\tan \delta$ ϵ'/ϵ_0 $\tan \delta$	7.5 8000	35 6.5 860	5.7 950	3.4 1600	8	
4.	Natural resins Amber ³³	25	ϵ'/ϵ_0 tan δ	2.7 12.5	2.7 18	2.65 56			
_	Shellac, natural XL ³⁴	28	ϵ'/ϵ_0 tan δ	3.86	3.81 74	3.47 310	3.10 300		
	Asphalts and Cement Plicene cement ⁸⁵	25	ϵ'/ϵ_0 tan δ	2.48 43.9	2.48 35.5	2.48 25.5	2.47 15	2.35 6.8	
6.	Waxes Apiezon wax "W"38	22	ϵ'/ϵ_0 tan δ	2.75 186	2.69 120	2.63 25			
	Beeswax, white ⁸⁷	23 25	$\frac{\epsilon'}{\epsilon_0}$ tan δ $\frac{\epsilon'}{\epsilon_0}$	2.65 140 2.3	2.63 118 2.3	2.43 84 2.3	2.39 60 2.3	2.35 48 2.24	
	Paraffin wax ⁸⁰		$\tan \delta$ ϵ'/ϵ_0 $\tan \delta$	8	2.25	2.25	2.25 <2	6.5 2.24 2.1	
7.	Sealing wax ⁴⁰	25	ϵ'/ϵ_0 tan δ	3.68 249	<2 3.52 150	<2 3.29 80	3.2 120	5.1	
	Balsa	26 25	ϵ'/ϵ_0 tan δ	1.4 50 2.1	1.4 40	1.37 120	1.30 135	1.20 83	
	Mahogany ‡	25	ϵ'/ϵ_0 $\tan \delta$ ϵ'/ϵ_0 $\tan \delta$	115 2.42 86	2.1 105 2.40 120	1.90 230 2.25 250	2.07 320	1.7 210	

TABLE 454.—DIELECTRIC CONSTANT AND LOSS TANGENT OF DIELECTRIC MATERIALS (continued)

Part 2.-Liquids

Materials	Temp.		Frequ	ency, cy	cles per s	es per second		
A. Inorganic Water, conductivity ⁴¹		$ \begin{array}{c} \epsilon'/\epsilon_0 \\ \tan \delta \\ \epsilon'/\epsilon_0 \end{array} $	1×10 ⁵ 87.0 1,900 78.2 4,000	1×10 ⁶ 87.0 190 78.2 400 71.5 590 64.8 865 58 1.240	3×10 ^s 86.5 320 77.5 160 71.0 105 64.5 84 57	3×10* 80.5 3,100 76.7 1,570 70.7 1,060 64.0 765 56.5 547	1×10 ¹⁰ 38 10,300 55 5,400 59 4,000 59 3,200 54 2,600	
B. Organic							4,000	
1. Aliphatic Methyl alcohol ⁴² Ethyl alcohol ⁴⁸	25 25	ϵ'/ϵ_0 $\tan \delta$ ϵ'/ϵ_0	1×10 ²	1×10³	31 2,000 24.5 900	31 380 23.7	8.9 8,100 1.7	
n-Propyl alcohol ⁴⁴	25	$\tan \delta$ ϵ'/ϵ_0 $\tan \delta$	0.17	0.17	20.1 180	620 19.0 2000	680 2.3 900	
Carbon tetrachloride ⁴⁵	25	ϵ'/ϵ_0 tan δ	2.17 60	2.17	2.17 <.4	2.17	2.17 16	
Nitrobenzene ⁴⁵	25	ϵ'/ϵ_0 tan δ			36 80			
Styrene N-100 ⁴⁶	22	ϵ'/ϵ_0 tan δ	2.40 38	2.40	2.40 <3		2.36 58	
3. Insulating oils Bayol ⁴⁷	24	ϵ'/ϵ_0 tan δ	2.14 12.6	2.14			2.14 18	
Fractol ⁴⁸	26	ϵ'/ϵ_0 tan δ	2.17 <1	2.17 <1			2.16 11.3	
Marcol ⁴⁹	24	ϵ'/ϵ_0 tan δ	2.14	2.14	2.14		2.14 11.2	
Primol-D ⁵⁰	24 25	ϵ'/ϵ_0 tan δ	2.17 <1 2.25	2.17 <1 2.25	2.17 <2		2.16	
Cable oil 5314 ⁶¹	80	ϵ'/ϵ_0 $\tan \delta$ ϵ'/ϵ_0	2.23 3 2.18	<.4 2.18			2.22	
Pyranol 1467 ⁵²	25	$\tan \delta$ ϵ'/ϵ_0	38 4.40	4.40	4.40	4.04	2.65	
Halowax oil 1000s3	25	$\tan \delta$ ϵ'/ϵ_0 $\tan \delta$	36 4.80 490	3 4.77 50	190 4.77 <2	1300	750 2.99 1850	
4. Lubricants	25					0.16		
Vaseline	25	ϵ'/ϵ_0 tan δ	2.16	2.16	2.16 <1	2.16 <4	2.16	
Silicone fluid No. 500, ⁵⁴ 100 cs. at 25°C	22	ϵ'/ϵ_0 tan δ	2.76	2.76			2.72 240	
Silicone fluid No. 200, ⁵⁴ 100 cs. at 25°C	23	ϵ'/ϵ_0 tan δ	2.76 .8	<.4 2.76 .4			2.70 320	

Notes: 1, From conductivity water. 2, Fresh crystals (Harshaw). Audio frequency loss decreases with time. For a discussion of low-frequency dispersion in ionic crystals see R. G. Breckenridge, Bull. Amer. Phys. Soc., vol. 23, p. 33, 1948. 3, Magnesium silicate (American Lava). 4, Muscovite. 5, Mica, glass, TiO₂ (Mycalex). 6, Knox. 7, 96% SiO₂. 8. Iron sealing glass. 9, Soda-lime (Pittsburgh-Corning). 10, SiO₂ (General Electric). 11, Eastman Kodak; recryst. and resubl. Lab. Ins. Res. 12, Mica-filled (Bakelite). 13, 50% paper laminate (Formica). 14, 58% mica, 2% mics. (Monsanto). 15, 55% filler (Formica). 16, Mineral filler (American Cyanamid). 17, a-cellulose (Libbey-Owens-Ford). 18, DuPont. 19, 5-15% plasticizer, pigments, dyes (Tennessee Eastman). 20, 25% camphor (DuPont). 21, 2.73 ethoxy groups/glucose, plast. (Dow). 2, Cross-linked organo siloxane polymer (Dow Corning). 23.

TABLE 454.—DIELECTRIC CONSTANT AND LOSS TANGENT OF DIELECTRIC MATERIALS (concluded)

1% antioxidant (Bakelite). 24, 100% polyvinyl chloride (Bakelite). 25, Polyvinylidene and vinyl chlorides (Dow). 26, Polymethyl methacrylate (DuPont). 27, For sheet stock, various samples used for different frequencies; for rod stock, ¢¹/¢₀ is the same as for sheet stock. (Plax). 28, Pale crepe (Rubber Research Corp.). 29, Palaquium Oblongifolium (Hermann Weber). 30, 100 pts GR.S, 1 pt stearic acid, 5 pts Kadox, 5 pts Captax, 3 pts sulfur (Rubber Research Corp). 31, Copolymer of '98-99% isobutylene, 1-2% isoprene (Rubber Research Corp.). 32, Poly-2-chlorobutadiene-1, 3 stabilized with Methyl Tuads (DuPont). 33, Fossil resin (Amber Mines). 34, Contains ca. 3.5% wax (Zinsser). 35, Central Scientific. 36, Shell Oil. 37, Bromund. 38, Vegetable and mineral waxes (Kuhne-Libby). 39, Mainly C₂₂ to C₂₂ aliphatic, saturated hydrocarbons (Standard Oil New Jersey). 40, Dennison. 41, Research Laboratory of Physical Chemistry, Massachusetts Inst. Techn. 42, Absolute, Analytical Grade (Mallinckrodt). 43, Absolute (U. S. Industrial Chemicals). 44, Eastman Kodak. Dried and refractionated, Lab. Ins. Res. 46, Dow. 47, 72.0% paraffins, 28.0% naphthenes (Stanco). 48, 57.4% paraffins, 42.6% naphthenes (Stanco). 51, Aliphatic and aromatic hydrocarbons (General Electric). 52, Chlorinated benzenes and diphenyls (General Electric). 53, 60% mono-, 40% di- and trichloronaphthalenes (Bakelite). 54, Methyl or ethyl siloxane polymer (Dow Corning). cs., centistoke.

TABLE 455.—DIELECTRIC CONSTANT AND CONDUCTIVITY OF SOILS 152

Measurements of samples of soil taken from different depths at various sites in England

		3	Ioisture	Cone	ductivity (i	n esu) a	t 20°C		ectric stant
Geological classification	Depth ft	Description c	ontent of	%	100 kc	1.2 Mc	10 Mc	1.2 Mc	10 Mc
Lower lias	Surface 1 2 3	Dark fibrous loam Loam and clay Clay and sand Blue clay	. 33 . 26	3.0×10^{8} 6.5 7.5 8.0	3.4×10^{8} 7.0 8.0 9.0	3.9×10 7.0 8.0 9.5	$^{8}6.0\times10^{8}$ $^{9.0}$ $^{12.0}$ $^{11.0}$	100 95 105 95	55 43 48 46
Chalk	Surface 1 2	Fibrous loam Chalky loam Chalk	. 21	.85 .55 .28	.90 .55 .26	.95 .85 .38	1.4 .95 .61	39 41 28	23 25 21
Upper greensand	Surface 1 2	Fibrous loam Brown, sandy clay. Brown sand	. 19	2.7 2.2 1.8	3.4 2.4 2.0	4.0 2.4 2.1	5.0 3.8 3.3	80 39 33	49 19 19
Upper lias	Surface 1 2 5	Fibrous loam Sandy loam Brown sand Sand and sandstone.	. 16 . 14	.85 .34 .29 .075	.95 .34 .29 .090	1.1 .40 .33 .12	1.6 .61 .46 .22	48 20 20 14	30 17 14 9
Red marls.	Surface 1 2	Reddish-brown loam Reddish-brown clay Reddish-brown clay	. 20	1.5 1.5 2.6	1.7 1.7 2.8	1.8 1.8 3.1	2.3 2.5 3.6	46 50 80	32 33 45
Devonian .	Surface 1 10	Black fibrous loam. Loam and slate Slate	9.0	1.3 .026 .00026	1.5 .030 .0025	1.8 .040 .0092	2.5 .060 .046	90 12 9.5	65 10 8.0
Granite	1 3 to 10 3 to 10	Gritty loam Granite Granite	_	.12 .00090 .00070	.12 .0070 .0050	.16 .028 .019	.18 .11 .095	22 12 10.0	15 8.5 7.5
Boulder clay	Surface 2 3	Fibrous loam Clay and loam Dark grit and clay.	19	.55 1.1 .60	.65 1.1 .70	.75 1.2 .80	1.1 1.7 1.2	50 60 50	20 21 19

¹⁶² Smith-Rose, Journ. Inst. Electr. Eng., London, vol. 75, p. 221, 1934.

The dipole moments are given in Debye units (1 Debye unit = 1×10^{-18} esu). The moments listed were obtained from gaseous measurements. The data are taken from Tables of Electric Dipole Moments, April 1947, compiled by L. G. Wesson, Laboratory for Insulation Research, Massachusetts Inst. Techn., Cambridge, Mass. Where several sources were given, a study was made to select the best value. Reference to original sources can be made from the above tables.

Part 1.-Inorganic substances

	Electric dipole moment 1×10-18	Substance	Electric dipole moment 1×10-18 esu
Substance	esu		
Ammonia	1.46	Nitric oxide	_
Argon	0	Nitrogen	0
Arsine	16	Nitrogen dioxide	3
Boron fluoride		Oxygen	0
Deuterium chloride	1.089	Phosphine	
Helium		Potassium chloride	6.3
Hydrogen		Silane, SiH4	0
Hydrogen fluoride		Sodium iodide	4.9
Hydrogen iodide		Sulfur dioxide	1.7
Krypton		Water	1.84
Neon		Xenon	

Part 2.—Organic substances

	Electric dipole moment 1×10-18		Electric dipole moment 1×10-18
Substance	esu	Substance	esu
Phosgene CCl ₂ O		Ethyl chloride C2H5Cl	2.00
(carbonyl chloride)	1.18	Ethyl fluoride C₂H₅F	
Thiophosgene CCl ₂ S		Ethyl iodide C₂H₅I	
Carbon tetrachloride CCl	0	Nitroethane C2H ₅ NO ₂	
Chloroform CHCl ₃		Ethane C2H6	
Hydrogen cyanide CHN		Ethyl alcohol C2H6O	1.68
Formaldehyde CH2O		Methyl sulfone C2H6O2S	
Formic acid CH2O2		Dimethylamine C₂H₁N	.99
Methyl bromide CH3Br		Cyanogen C2N2	.0
Methyl chloride CH3Cl		Propene (propylene) C ₂ H ₆	
Methyl iodide CH3I		Acetone C ₃ H ₆ O	2.85
Formamide CH ₃ NO	3.22	Methyl acetate C ₃ H ₆ O ₂	1.67
Nitromethane CH ₃ NO ₂	3.49	Ethyl ether C ₄ H ₁₀ O	1.14
Methane CH4	0	Ethyl sulfide C ₄ H ₁₀ S	1.51
Methyl alcohol CH ₄ O	1.69	Diethyl carbonate C₅H₁₀O₃	
Carbon monoxide CO	11	Bromobenzene C ₆ H ₅ Br	
Carbon dioxide CO2		Chlorobenzene C₀H₅Cl	
Carbon disulfide CS2	0	Fluorobenzene C ₀ H ₀ F	
Acetylene C ₂ H ₂	0	Nitrobenzene C₀H₅NO₂	
Ethylene C ₂ H ₄	0	Benzene C ₆ H ₆	
Acetaldehyde C2H4O	2.71	Phenol C ₆ H ₆ O	1.40
Acetic acid C₂H₄O₂	1.73	Aniline C ₀ H ₇ N	
Ethyl bromide C₂H₃Br	1.96	Toluene C ₇ H ₈	.37

TABLE 457A.—ATTENUATION COEFFICIENTS FOR VERY LOW FREQUENCY RADIO PROPAGATION

For very low frequencies (100 kc and under), an empirical transmission formula of the form

$$F = \frac{377 \ h \ l}{\lambda \ d} \sqrt{\frac{\theta}{\sin \theta}} \times e^{\frac{-ad}{\lambda^2}}$$

has been found useful (Austin-Cohen; Austin; Espenschied, Anderson, and Bailey), where

F = received field intensity, in $\mu v/m$

h = effective height of transmitting antenna, in km

I = transmitting antenna current, in amp

 θ = transmission distance, in radians

d = transmission distance, in km

 $\lambda =$ wavelength, in km

Values of α and x were found to vary somewhat.

Since theoretical justification for the Austin-Cohen value of $x = \frac{1}{2}$ has been given by Watson (Proc. Roy. Soc. London, A, vol. 95, p. 546, 1919), data furnished by the above observers have been reevaluated, assuming validity of the relationship

$$F = \frac{377 \ h \ l}{\lambda \ d} \sqrt{\frac{\theta}{\sin \theta}} \times e^{\frac{-ad}{\sqrt{\lambda}}},$$

and the resulting values of α presented in the accompanying table, together with their relative weights estimated from the number of observations used in their determination.

 α varies notably with frequency, time of day, and the type of ground along the transmission path, and less definitely with season, solar activity, and the location of the transmission path. The values presented here are for conditions where the entire transmission path, at the height of the ionospheric reflecting layer, lies in daylight or in darkness. For conditions of sunrise or sunset on the transmission path, α has generally been found to lie between day and night values, but under certain circumstances, to far exceed these values.

						Transmissio	n path	
f, kc 12.8	a .59>	Day weight (10-8 97	а	Night weight		Transmitter location Bordeaux, France	Receiver location Washington, D. C.	Observations by Austin
17.13	.66	112	.32>	(10-8 48	"	Rocky Point, N. Y.	New Southport, England	Espenchied, Anderson, Bailey
22.9	1.49	59			Land	San Diego, Calif.	Washington, D. C.	Austin
23.4	1.01	97			Sea water	Nauen, Germany	Washington, D. C.	Austin
24.05	.61	93	.25	7	"	Leafield, England	Belfast, Maine	Espenchied, Anderson, Bailey
24.05	.80	42	.46	2	44	44	Riverhead, L. I., N. Y.	"
24.05	.81	52	.44	1	"	"	Greenharbor, Mass.	"
25.7	.76	104	.29	42	"	Marion, Mass.	New Southgate, England	"
52	1.45	29	.60	15	**	Northolt, England	Riverhead, L. I., N. Y.	44
52	1.40	75	.84	21	44	44	Belfast, Maine	44
54.5	1.49	45	.89	30	44	"	Green Harbor, Mass.	"
57	1.48	112	.55	48	,,	Rocky Point, N. Y.	New Southgate, England	"

TABLE 457B.—ATTENUATION IN HIGH FREQUENCY PROPAGATION OVER LONG DISTANCES

At high frequencies and distances where the radiation is chiefly received by means of sky-wave transmission, reference is given to the methods for calculation of received field intensities presented in Chapter 7, National Bureau of Standards Circular 462, "Ionospheric Radio Propagation."

For long transmission paths (over 4000 km),

$$F = F_0 + \frac{1}{2} \log P - S_0 J Q \overline{K} d$$

where

$$F = \log$$
 of the received field intensity, in $\frac{\mu v}{m}$

 $F_0 = \log$ of the ionospherically unabsorbed field intensity, in $\frac{\mu \, \underline{v}}{m}$, for 1 kw

effective radiated power =
$$1.6 - 1.44 [\log d - 3.60]$$

d = transmission distance, in units of 1000 km

$$P =$$
 effective radiated power, in kw $\log S_0 = 0.502 - 1.916 (\log f - 0.477)$

f = frequency, in Mc Q = 1 + 0.005 R R = sunspot number

K = average K for the transmission path

 $K = 0.142 + 0.858 \cos \psi$

$$\psi$$
 = solar zenith angle
 $\overline{K}d = 0.142 D' + (K_1 + K_2 - 0.284) \tan \frac{D'}{2 R}$

where

D' = the length of the path in the region where K is not equal to zero, in units of 1000 km

 K_1 and K_2 = values of K at transmitting and receiving stations R = radius of the earth in units of 1000 km

J = seasonal variation factor. J has the values 1.0, 1.3, 1.15, respectively, if both terminals of the transmission path lie in summer, winter, or equinoctial regions. If one terminal lies in a summer region, the other in winter, J = 1.15.

TABLE 458.-E-LAYER MAXIMUM USABLE FREQUENCIES IN Mc FOR 2,000-km TRANSMISSION DISTANCE

		J	une *						E	quinox			
Local time of day:	00	04	08	12	16	20	(00	04	08	12	16	20
	Sun	spot	numb	er = 0)		5	Sun	spot	numb	er = 0		
Latitude N. 80° 40 0 40 S. 80	7.5	9.7	11.3 13.6 12.3 8.3	11.8 16.2 15.6 12.0	11.3 13.6 12.3 8.3	9.7				8.2 11.7 13.2 11.4 7.3	10.0 14.4 16.8 14.2 8.7	8.6 12.2 13.0 11.9 7.5	
	Sun	spot	numb	er = 1	25		5	Suns	pot	numb	er = 1	.25	
N. 80° 40 0 40 S. 80	9.8	11.2	13.4 17.4 16.3 10.7	14.0 20.2 20.8 15.4	13.4 17.4 16.3 10.7	11.2				8.9 15.1 17.0 13.5 8.3	10.3 18.6 21.3 16.8 9.6	8.7 14.7 16.4 13.3 8.1	

Norton calculated from Van der Pol's and Bremmer's theory and checked at broadcast frequencies the following results for vertically polarized ground-wave propagation. In many cases ionospheric waves will be much stronger than is indicated for ground-wave propagation in these tables. Some indication of when ionospheric waves may be expected is given.

Factor A for transmission over sea water

$$\epsilon = 80$$
, $(\sigma = 5 \times \text{mhos/m})$

Freq. Mc	50 km	100 km	150 km
.5	1.0	.96	.90
2	1.0	.77	.72
10	.71	.46	.33
50	.025	.0050	.0016
200	.00075		

Factor A for transmission over good ground

$$\epsilon = 15$$
, $\sigma = 10^{-2}$ mhos/m

Freq.	5 km	10 km	15 km	25 km	50 km	100 km	150 km
.1	1.00	1.00	1.0	1.0	1.0	.90	.87
.5	.98	.93	.90	.73	.68	.48	.35
2.0	.50	.30	.21	.095	.049	.018	.0092
10	.026	.011	.0072	.0036	.0018	.00054	.00020
50	.0030	.0015	.0096	.00040	.00017		
300	.00046	.00021	.00013				

Factor A for transmission over poor ground

$$\epsilon = 5$$
, $\sigma = 10^{-8}$ mhos/m

Freq. Mc .1 .5	5 km 1.0 .64	10 km .99 .45	15 km .95 .35	25 km .92 .22	50 km .85 .096	100 km .73 .038	150 km .64 .022
2.0 10 50 100	.056 .0059 .0012 .00080	.027 .0030 .00055 .00026	.018 .0019 .00036 .00016	.010 .0011 .00022	.0050 .00048 	.0018	.00093

CRITICAL FREQUENCIES AND MAXIMUM USABLE FREQUENCIES FOR RADIO TRANSMISSION BY REFLECTION FROM THE E AND F_2 LAYERS OF THE IONOSPHERE

Values of ionospheric critical frequencies and virtual reflection heights for all ionospheric layers (E, F_1, F_2, E_s) observed at a large number of stations are regularly distributed by the Central Radio Propagation Laboratory of the National Bureau of Standards to laboratories cooperating in ionospheric research. The values presented in Tables 458 and 461 are synthesized from the trends of these data. Values are not given here for the F_1 and E_s layers since their trends are much less accurately established than those of the E and F_2 layers.

Table 458 presents *E*-layer maximum usable frequencies for a transmission distance of 2,000 km, the maximum practical distance for 1-hop transmission by means of *E*-layer reflection.

Table 461 presents F_2 -layer ordinary-wave critical frequencies, and maximum usable frequencies for a transmission distance of 4,000 km, the maximum practical distance for 1-hop transmission by means of F_2 -layer reflection.

¹⁵³ Norton, K. A., The calculation of ground wave field intensity over a finitely conducting spherical earth, Proc. Inst. Radio Eng., December 1941; Van der Pol. Balth, and Bremmer, H., Philos. Mag., vol. 24, p. 141, 1937; vol. 24, p. 825, supplement, November 1937.

Latitudes and local times are those of the ionospheric reflection points. The F2-layer zones (W, I, and E) are those chosen for practical description of longitude effect by the International Radio Conference of April-May 1944. The W and E zones are centered on 70°W, and 110°E, longitude, respectively; the two I zones are intermediate between these.

Values are presented for sunspot numbers of 0 and 125. Since both critical frequencies and maximum usable frequencies show approximately linear variation with sunspot num-

ber, values for any other sunspot number, X, may be obtained by interpolation. [World-wide charts of predicted MUF, three months in advance, for both E and F_2 layers, are regularly published in Central Radio Propagation Laboratory Series D reports, "Basic Radio Propagation Prediction."]

 $E ext{-Layer}$ ordinary-wave critical frequencies.—These may be obtained by dividing the $E ext{-layer}$ 2,000 km MUF by 4.78, since the minimum virtual height of reflection is nearly constant for this layer.

Extraordinary-wave critical frequencies, f^x (or zero-distance MUF).—The ordinary-wave critical frequency f° , the extraordinary-wave critical frequency f^{z} , and the gyrofrequency f_h are related by the equation

$$(f^{\circ})^2 = (f^x \pm f_h) f^x$$

The gyrofrequency, f_h , varies with the intensity of the earth's magnetic field, H, and is given by

$$f_h = \frac{e\ H}{2\pi m\ c},$$

where c and m are, respectively, the electronic (or ionic) charge and mass, c the velocity of light in free space, and H is given in gauss.

Ion density.—The number of ions per cm3 at the reflection point may be obtained from the value of the ordinary-wave critical frequency, f° , by the equation

$$N = \frac{\pi m}{e^2 (f^\circ)^2},$$

where m and e are, respectively, the ionic mass and charge.

Minimum virtual heights of reflection.—The maximum usable frequency at any transmission (except for those nearly equal to zero) is equal to

$$MUF = f^{\circ} sec \phi$$

where ϕ is the angle of incidence of the wave upon the ionospheric reflecting layer. ϕ is approximately given by

$$\phi = \tan^{-1} \frac{\sin \frac{1}{2} \theta}{1 + (h/R) - \cos \frac{1}{2} \theta},$$

where θ is the angular distance of the transmission path, h the virtual height of reflection, and R the radius of the earth. (Cf. Smith, N., Proc. Inst. Radio Eng., May 1939, p. 232.)

Maximum usable frequencies for other transmission distances.—These may be obtained from the MUF of Table 461 by using the factors and procedure presented in Table 462.

Skip distances.—The MUF for a given distance is the frequency for which that distance is the skip distance.

TABLE 460 .-- ATTENUATION OF MICROWAVES BY WATER VAPOR IN THE ATMOSPHERE (in db/km) 154

Measured at 45°C at atmospheric pressure

Wavelength (cm) Frequency (kmc)	.75 cm 40.2	.96 31.2	1.16 25.8	1.28 23.5	1.37 21.9	1.69 17.8
Water vapor density (g/m³)						
10	.103 db/km	.081	.149	.230	.224	.049
30	.408	.321	.495	.69	.672	.18
50	.84	.665	.90	1.15	1.12	.355

¹⁵⁴ Adapted from Becker and Autler, Phys. Rev., vol. 70, p. 303, September 1946.

TABLE 461.—F2-LAYER CRITICAL FREQUENCIES AND MAXIMUM USABLE FREQUENCIES FOR 4,000-km TRANSMISSION DISTANCE IN Mc

E zone

	Jı	ine		Sept.		Dec.		J	une	S	ept.	Γ	Dec.
Lati- tude	$f^{\circ}F_{2}$	F ₂ -4000 MUF	$f^{\circ}F_{2}$	F ₂ -4000 MUF	$f^{\circ}F_{2}$	F ₂ -4000 MUF		$f^{\circ}F_{2}$	F ₂ -4000 MUF	$f^{\circ}F_{2}$	F_{2} -4000 MUF	$f^{\circ}F_{2}$	F ₂ -4000 MUF
		f day: 00			numbe				e: 12	4.4	Sunspot		er = 0 13.4
N.80° 40	4.1 4.18	14.2 13.9	3.9 3.8	13.9 12.9	3.4 2.9	12.6 9.6		4.2 5.8	13.9 19.0	4.4 6.1	15.4 21.4	3.7 6.8	24.7
0 40	3.5 2.7	11.4 9.2	4.0 3.0	14.7 10.3	4.9 4.3	16.5 14.7		9.0 5.0	25.6 18.8	8.6 5.6	24.7 19.5	8.2 5.9	24.5 19.4
S. 80	2.4	8.8	2.8	9.9	3.9	13.5		3.3	11.9	3.6	12.9	4.5	14.9
				unspot n					4.4.0		unspot n		
N.80° 40	5.2 8.6	16.3 24.9	6.1 7.0	18.8 21.3	5.6 3.5	17.8 10.8		5.4 9.0	16.0 25.6	6. 7 11. 4	21.2 35.3	5.4 11.1	17.6 36.4
0	8.8	27.0	10.9	38.8	8.2	25.9 24.7		14.0 10.8	32.7 36.4	15.5 10.5	38.8 34.1	12.7 8.3	30.2 22.7
40 S. 80	4.1 4.4	12.8 13.8	5.9 5.4	18.2 17.5	8.2 5.4	16.5		6.0	19.8	6.2	19.8	6.2	17.6
Local	time of	day: 04		Sunspot		r = 0			e: 16		Sunspor		
N.80° 40	3.9 3.7	13.0 11.8	3.6 3.7	12.9 12.3	3.0 2.9	10.8 9.9		4.5 5.6	14.8 18.2	4.5 5.6	15.9 20.0	3.9 5.0	14.2 18.3
0	2.3	8.1	2.3	8.5	3.0	9.9		8.4	24.2	9.0	27.0	8.6	28.1
40 S. 80	2.9 2.4	10.1 8.5	2.0 2.5	6.9 8.7	2.6 3.8	8.9 13.3		5.0 3.0	18.2 10.9	5.1 3.7	18.3 12.7	5.9 4.3	19.9 14.3
			S	unspot n	umber =	= 125				S	unspot n	umber	= 125
N.80° 40	5.2 8.0	15.4 23.3	5.5 6.3	17.5 18.8	4.4 3.6	14.0 10.9		5.6 9.0	16.3 26.5	6.5 10.9	20.0 33.2	5.4 8.8	17.3 28.8
0	4.9	15.3	7.2	23.5	6.2	20.0		14.0	34.0	16.2	41.2	12.2	29.6
40 S. 80	4.1 4.1	12.8 12.9	4.6 5.2	14.1 16.5	6.0 5.6	17.8 16.5		10.4 5.4	35.3 17.4	9.8 6.7	32.3 21.9	8.2 6.0	25.9 17.3
Local	time of	day: 08		Sunspot	numbe	r = 0		Time	e: 20		Sunspot	numb	er = 0
N.80° 40	4.0 5.8	13.0 19.4	4.0 5.7	14.3 20.9	3.4 5.2	12.5 19.4		4.2 5.5	14.3 18.8	4.4 5.1	15.8 18.2	3.7 2.7	13.3 9.6
0	7.4	22.5	7.8	25.3	6.7	20.6		4.5	14.7	8.2	25.9	7.2	23.5
40 S. 80	3.9 2.4	14.1 8.8	4.3 3.4	15.9 11.8	5.0 4.3	17.4 14.7		2.7 2.5	9.6 9.3	4.0 3.3	13.9 11.4	5.4 4.4	19.4 14.9
			S	unspot n	umber =	= 125				S	unspot n	umber	= 125
N.80° 40	5.3 9.4	15.4 28.2	6.7 10.0	21.2 33.2	5.0 8.2	15.8 29.4		5.5 8.6	16.7 26.0	6.6 8.0	20.8 25.9	5.2 4.3	16.7 14.1
0	12.7	35.5	13.5	38.2	12.0	34.7		11.0	28.2	14.0	34.2	10.0	25.9
40 S. 80	7.5 4.3	26.0 13.6	8.1 5.9	28.1 19.3	7.4 6.2	21.4 17.6		5.5 4.4	17.6 13.9	7.9 6.3	24.7 20.6	8.4 6.0	25.9 17.6
Logal	tima a	f da 00	`	C	•	I zo:	ne	m·	12		C		
N.80°	3.9	f day: 00 13.6	3.6	Sunspot	numbe	r = 0 9.8		4.0	e: 12 13.5	3.7	Sunspot	numb	er = 0 12.5
40 0	3.8 5.2	12.9 16.9	3.0 6.3	10.1 23.3	3.0	9.8 16.5		5.2	17.2 17.6	5.5	19.4	6.8 7.8	25.9 22.9
40	2.9	9.8	2.6	8.9	5.0 5.4	17.9		4.7	17.9	6.5 5.2	18.8 18.3	6.6	21.9
S. 80	2.4	8.8	2.8	9.9	3.9	13.5		3.3	11.9	3.6	12.9	4.5	14.9
N. 80°	5.2	16.9	5.8	unspot n 18.2	umber = 4.8	= 125 15.3		5.3	15.6	5.9	unspot n 18.7	umber 5.4	= 125 17.3
40	6.4 9.0	18.6	5.0	15.3	3.3	10.3		7.9	21.9	10.2	31.9	11.0	37.7
40	4.1	28.2 12.7	10.0 5.8	32.8 18.2	10.0 8.4	31.8 24.7		10.4 11.5	24.8 38.7	11.0 10.8	28.6 34.7	10.9 9.4	25.6 26.5
S. 80	4.4	13.8	5.4	17.5	5.4	16.5		6.0	19.8	6.2	19.8	6.2	17.6

TABLE 461.—F₂-LAYER CRITICAL FREQUENCIES AND MAXIMUM USABLE FREQUENCIES FOR 4,000-km TRANSMISSION DISTANCE IN Mc (continued)

	J	une		ept.	I	Dec.		J1	ine	S	ept.	D	ec.
Lati- tude	$f^{\circ}F_{2}$	F ₂ -4000 MUF	$f^{\circ}F_{2}$	F ₂ -4000 MUF	$f^{\circ}F_{2}$	F ₂ -4000 MUF		$f^{\circ}F_{2}$	F ₂ -4000 MUF	$f^{\circ}F_{2}$	F ₂ -4000 MUF	$f^{\circ}F_{2}$	F_{2} -4000 MUF
Local N.80°	time of 3.7	f day: 04 12.8		Sunspot 12.2				Tim 4.0	e: 16 13.2	3.6	Sunspot 12.6	numbe	r = 0 12.1
40	3.1	10.7	2.9	9.9	2.9	10.0		5.2	17.0	5.5 8.2	19.8	5.6 9.4	20.6
0 40	3.2 2.8	11.0 9.6	3.0	11.6 7.5	3.3 3.5	10.3 11.9		6.8 4.6	19.8 17.2	4.8	24.6 17.0	6.4	30.0 21.8
S. 80	2.4	8.5	2.5.	8.7	3.8	13.3		3.0	10.9	3.7	12.7	4.3	14.3
N.80°	4.8	15.4	5.7	inspot ni 17.4	umber = 3.9	= 125 $= 12.2$		5.2	15.6	5.9	unspot n 18.8	umber : 5.2	= 125 $= 16.6$
40 0	5.3 6.9	15.3 21.8	4.6 5.4	14.2 17.6	3.4 7.2	10.6 22.9		7.8 10.8	22.6 26.8	9.7 12.5	30.6 31.8	9.8 12.4	33.9 35.0
40 S. 80	4.0	12.5 12.9	4.2 5.2	12.6 16.5	6.2 5.6	18.5 16.5		10.0	33.5 17.4	10.4	33.5 21.9	9.2 6.0	27.3 17.3
		12.9 f day: 08		Sunspot					e: 20	0.7	Sunspot		
N.80°	3.9	12.8	3.6	13.2	3.0	10.9		3.8	13.2	3.6	12.8	3.1	11.5
40 0	4.8 6.2	16.5 18.6	5.0 5.6	18.8 17.9	5.0 7.4	18.8 22.9		5.2 6.0	17.9 20.8	3.6 7.0	12.9 21.6	2.7 7.6	8.8 24.9
40 S. 80	3.5 2.4	12.9 8.8	4.3 3.4	15.9 11.8	5.6 4.3	19.4 14.7		2.7 2.5	9.5 9.3	3.4 3.3	11.8 11.4	6.7 4.4	22.2 14.9
2,00		0.0		inspot n					,,,		unspot n		
N.80°	5.1	15.0	5.9	18.8	4.3	13.5		5.1	16.0	5.8	18.3	4.9 3.7	15.5 12.7
40	7.6 8.9	21.2 24.9	8.6 11.6	28.8 33.0	7.8 10.3	29.4 29.3		7.5 9.4	21.4 23.4	6.7 10.2	21.6 25.9	10.5	27.0
40 S. 80	7.7 4.3	26.5 13.6	8.6 5.9	29.4 19.3	8.8 6.2	25.6 17.6		5.4 4.4	17.6 13.9	7.4 6.3	24.3 20.6	9.2 6.0	26.8 17.6
						W zo	ona						
Locati	time of	f day : 00		Sunspot	numbe		JHE	Time	e: 12		Sunspot	numbe	·- 0
N.80°	3.9	13.6	3.6	12.9	2.7	9.8		4.0	13.5	3.7	13.2	3.4	12.5
40 0	3.0 4.4	10.5 14.6	2.0 5.5	6.8 20.6	2.3 3.6	7.8 12.0		5.2 7.6	16.8 21.8	5.2 10.6	18.6 30.3	6.5 8.6	24.5 26.5
40 S. 80	2.3 3.0	7.9 10.8	3.4 3.2	11.8 11.3	5.0 4.2	16.5 14.8		5.0 3.4	18.9 12.5	6.7 3.6	24.1 12.8	8.4 4.6	28.1 15.0
			Sı	inspot n							unspot n		= 125
N.80° 40	5.2 6.6	16.9 20.6	5.8 5.6	18.2 17.0	4.8 4.6	15.3 14.5		5.3 7.1	15.6 20.8	5.9 9.3	18.7 29.3	5.4 12.3	17.3 40.3
0 40	10.5	31.8	12.2	39.2 22.6	9.0 9.9	28.3 29.3		11.7 11.0	28.2 37.6	14.9 13.9	37.0 44.7	14.1 12.1	33.3 33.9
S. 80	5.1	10.6 16.3	7.2 6.2	20.0	5.9	17.5		5.7	18.3	7.6	24.7	7.0	19.8
		f day: 04		Sunspot					e: 16		Sunspot		
N.80° 40	3.7 2.1	12.8 6.8	3.4 1.7	12.2 5.8	2.7 2.6	9.9 8.9		4.0 5.2	13.2 17.2	3.6 5.3	12.6 19.0	3.4 5.7	12.1 21.0
0 40	3.2 2.0	11.0 6.8	3.5 2.9	12.8 10.0	2.3 4.7	7.8 15.9		9.2 4.4	26.9 16.5	10.2 5.0	31.5 18.5	8.6 7.2	27.3 24.5
S. 80	2.9	10.5	2.5	8.9	4.2	14.6		3.2	11.8	3.8	13.3	4.5	14.9
N.80°	10	15.4		unspot n				5.2	15.6		unspot n		
40	4.8 4.9	15.4 15.6	5.7 4.1	17.4 12.5	3.9 4.4	12.2 13.6		5.2 7.4	15.6 21.8	5.9 9.3	18.8 28.8	5.2 11.2	16.6 36.3
0 40	7.0 3.2	22.1 9.9	6.2 5.8	21.5 17.6	4.9 9.4	14.5 27.6		11.8 8.5	29.4 30.0	14.0 11.4	37.5 37.4	13.8 11.0	34.3 32.9
S. 80	4.6	14.7	5.2	16.7	5.6	16.7		5.2	16.6	6.9	22.2	6.5	18.7

TABLE 461 .- F2-LAYER CRITICAL FREQUENCIES AND MAXIMUM USABLE FREQUENCIES FOR 4,000-km TRANSMISSION DISTANCE IN Mc (concluded)

		June	S	Sept.		Dec.	J	une	S	ept.	D	ec.
Lati- tude		F ₂ -4000 MUF	$f^{\circ}F_{2}$	F_2 -4000 MUF	$f^{\circ}F_{2}$	F_2 -4000 MUF						
Local	time of	of day: 0	8	Sunspot	t numbe	er = 0	Tim	ie: 20		Sunspo	t numbe	er = 0
N.80°	3.9	12.8	3.6	13.2	3.0	10.9	3.8	13.2	3.6	12.8	3.1	11.5
40	4.8	16.2	4.6	17.4	4.5	17.6	5.4	18.7	4.0	14.5	2.6	9.0
0	5.8	17.4	7.5	24.1	7.6	22.9	6.8	22.3	8.4	26.0	5.7	19.0
40	4.4	15.9	5.9	21.8	6.6	22.9	2.2	7.8	2.9	10.1	6.4	21.6
S. 80	3.1	11.3	3.0	11.0	4.5	15.3	2.9	10.6	3.5	12.2	4.5	15.5
			S	unspot 1	number	= 125			S	unspot	number	= 125
N.80°	5.1	15.0	5.9	18.8	4.3	13.5	5.1	16.0	5.8	18.3	4.9	15.5
40	6.4	20.2	8.3	27.0	8.5	29.4	7.6	23.5	7.4	23.5	6.7	21.2
0	9.4	27.0	11.3	34.1	14.5	42.4	10.7	27.6	13.5	34.0	11.9	30.1
40	8.1	27.6	10.6	36.4	11.0	31.8	3.8	12.9	7.8	25.6	10.7	32.8
S. 80	5.0	15.9	6.8	22.1	6.7	18.9	4.9	15.8	6.5	20.6	6.5	19.3
3.00	3.0	13.9	0,0	44.1	0.7	10.7	7.2	13.0	0.0			

TABLE 462.—FACTORS FOR OBTAINING F.-LAYER MUF, AND COMBINED E, F,-LAYER MUF AT OTHER DISTANCES, FROM F2-4,000 km MUF AND E-2,000 km MUF

The accompanying table presents (a) factors, F_{2000}^{E-E,F_1} , by which the 2,000 E-layer maximum usable frequencies may be multiplied in order to obtain values of maximum usable frequencies by combined E- and F_1 -layer transmission for other distances, and (b) factors, $F_{4000F2-F2}$, by which 4,000-km F_2 -layer maximum usable frequencies may be multiplied in order to obtain values of F2-layer maximum usable frequencies at other transmission distances. These factors become less accurate with decreasing transmission distance.

For obtaining the maximum usable frequency for practical radio transmission, the

following procedures may be used:

1. One-hop transmission:—Obtain both the combined E-, F1-layer, and F2-layer maximum usable frequencies pertinent to the midpoint of the transmission path. The higher of the two will be the MUF for the path, neglecting possible transmission by sporadic-Eionization.

2. Long-path transmission: - For transmission paths exceeding 4,000 km, the following

procedure generally affords a sufficiently good value for practical use:

(a) Determine the 2,000-km E-layer MUF for a point 1,000 km along the transmission path from the transmitting station. Determine the 4,000-km F_2 -layer MUF for a point 2,000 km along the transmission path from the transmitting station. Select the higher of two values, for comparison with a value to be later obtained in procedure (b).

(b) Determine the 2,000-km E-layer MUF for a point 1,000 km along the transmission path from the receiving station. Determine the 4,000-km F_2 -layer MUF for a point 2,000 km along the transmission path from the receiving station. Select the higher of these

two values, for comparison with the value obtained in procedure (a).

(c) Compare the values obtained in procedures (a) and (b) above. The lower of the two will be the MUF for the transmission path, neglecting possible transmission by

sporadic-E ionization.

For more detailed and accurate procedures, and for inclusion of sporadic-E layer effects, reference is given to National Bureau of Standards Circular 462, "Ionospheric Radio Propagation," and to reports of the Central Radio Propagation Laboratory, Series D, "Basic Radio Propagation Prediction."

Distance km	$F_{2^{000}E^-E,F_1}$	$F_{4000}F_{2}$ – F_{2}	Distance km	$F_{2000E-E,F_1}$	$F_{4000}F_{2}-F_{2}$
200	.25	.35	2200		.79
400	.36	.36	2400		.83
600	.48	.38	2600		.86
800	.62	.41	2800		.90
1000	.72	.46	3000		.92
1200	.82	.51	3200	• • •	.95
1400	.88	.57	3400		.97
1600	.95	.63	3600		.98
1800	.98	.69	3800		.99
2000	1.00	.74	4000	• • •	1.00

TABLE 463.—CALCULATED ATTENUATION OF MICROWAVES BY RAIN (db/km) ¹⁰⁵

Rate of rainfall	Wa	velength (cm)	
(mm/hr) 1.2	5 3	5	10
2.46	3 db/km .049	.004	.0007
6.0 (moderate)61		.012	.0017
22.6 (heavy) 2.40	.728	.053	.0070
43.1 (cloudburst) 6.17	1.64	.165	.016

165 Adapted from article by L. Goldstein in Summary Technical Report of the National Defense Research Committee, Committee on Propagation, vol. 2, p. 164, published by Academic Press.

TABLE 464.—ATTENUATION OF MILLIMETER WAVES BY ATMOSPHERIC OXYGEN (db/km) 156

Attenua- tion Wave- coeffi- length cient (mm) (db/km) 6.34	Attenuation Wave-coeffilength cient (mm) (db/km) 5.19 12.7 5.13 15.7	Wave- length (mm) (db/km) 5.10 13.9 5.04 14.5	Wave- length (mm) (db/km) 4.96 14.7 4.48 .4
---	--	--	--

158 Lamont, H. R., Proc. Phys. Soc. London, vol. 61, p. 562, 1948.

TABLE 465.—EXTRATERRESTRIAL RADIO FREQUENCY RADIATION*

Part 1.—Discrete sources

Source Cygnus	. a 20 ^h 00 ^m	δ +43°	Reported by 157 Hey, Parsons, Phillips *	Remarks Approx. position; λ ≈ 5m.
Cygnus A	19 59	+41°41′	Bolton a	Uncertainty of position about 1°. Observed on 100 Mc/s.
Cygnus	19h58m47*±10*	+41°41′±7′	Bolton and Stanley f	Observed on 100, 60, 85, 200 Mc/s.
Cygnus	19 ^h 56 ^m .5	+39°50′	Ryle and Smithd	Observed on 80 Mc/s.
Cygnus	20 30	+38°	Hey, Parsons, Phillips 8	Observed on 64 Mc/s; position very uncertain.
Ursa Major	12 18.2	+58°00	Ryle and Smith d	Observed on 80 Mc/s.
Taurus A	5 13	+28°	Bolton a	Angular width < 30°; uncertainty of position about 1°. Observed on 100 Mc/s.
Taurus A	5h31m00s±30s	+22°01′	Bolton, Stanley, Sleeb	Intensity measured at 100 Mc/s.
Taurus A	5 31 20 <u>+</u> 30	+22°02′±8′	Bolton, Stanley h	Observed on 100 Mc/s.
Cassiopeia	23 ^h 17 ^m .5	+58°10′	Ryle and Smith d	Observed on 80 Mc/s.
Possible sources	$\begin{cases} 18^{h}59^{\text{in}}.1\\ 13&55&.3\\ 12&20\\ 18&51\\ 19&15 \end{cases}$	+46°11′ +57 14 +48 +24 0	Ryle Ryle Ryle Ryle Ryle	Obsered on 80 Mc/s.
Coma Berenices A.	12 04	+20°30′	Bolton a	Angular width <15'; uncertainty of position about 1°. Observed on 100 Mc/s.
Hercules A	16 21	+15	Bolton a	Angular width <1°; uncertainty of position about 1°. Observed on 100 Mc/s.
Virgo A	12h28m06s±37s	+12°41′±10′	Bolton, Stanley, Sleeb	Intensity measured at 100 Mc/s.
Centaurus A	13 22 20 <u>+</u> 60	-42°37′±8′	Bolton, Stanley, Sleeb	Intensity measured at 100 Mc/s.

^{*} Prepared by C. R. Burrows. 157 For references, see p. 450.

TABLE 465.—EXTRATERRESTRIAL RADIO FREQUENCY RADIATION (concluded)

Part 2.—Galactic noise from direction of Sagittarius 1

	Frequency, Mc/s	Vavelength, cm cm	Equivalent on mono-chromatic oradiation temp. (°K)	S Approx. X resolving L power (°)	Opserver Reber	Frequency, Mc/s	25 Wavelength, 27 cm Equivalent nono- c radiation c temp. (*K) c Approx. resolving power (*)
Hey, Parsons, and Phillips	90 160	462.5 333.3 187.5 150.0	10,500 3,000 5,300 300	12×30 35×35 6×8 	Reber Southworth Reber Southworth	3000 3300	33.3 10.0 Negative results but due to low sensitivity can only say 1.0 $T_{\nu} < < 20,000$.

Part 3.—Constant component of solar noise 1

Observer	Frequency, Mc/s	Wavelength cm	T_{R} ($^{\circ}$ K) equivalent blackbody	Observer	Frequency, Mc/s	Wavelength cm	TR (*K) equivalent blackbody
Piddington and Minnett	24 000	1.25	1.0×104+10%	Lehany and Yabsley	600	50.	.5×10 ⁶ ±20%
Dicke and Beringer.		1,25	1.0×104	Reber	480	62.5	1.0×10 ⁶
				McCready, Pawsey and			
Southworth	10,000	3	1.8×104	Payne-Scott	200	150.	1.2×10 ⁶
Sander	9,375	3.2	2.2×10 ⁴	Pawsey and Yabsley	200	150.	.7×10 ⁶
Southworth	3,000	10	1.8×10 ⁴	Lehany and Yabsley	200	150.	1.0×10 ⁶
Covington	2,804	10.7	5.6×10 ⁴	Ryle and Vonberg	175.4	171.	.6×10 ⁶
Covington	2,804	10.7	6.5×10 ⁴	Reber	160	187.	1.8×10 ⁶
Lehany and Yabsley.	1,200	25	$1.0 \times 10^5 \pm 20\%$	Ryle and Vonberg	80	375.	1.3×10 ⁶

REFERENCES: a, Bolton, J. G., Nature, vol. 162, p. 141, 1948; b, Bolton, J. G., Stanley, G. J., and Slee, O. B., Nature, vol. 164, p. 101, 1949; c, Unpublished; d, Ryle, M., and Smith, F. G., Nature, vol. 162, p. 462, 1948; e, Hey, J. S., Parsons, S. J., and Phillips, J. W., Nature, vol. 158, p. 234, 1946; f, Bolton, J. G., and Stanley, G. J., Nature, vol. 161, p. 312, 1948; g, Hey, J. S., Parsons, S. J., and Phillips, J. W., Proc. Roy. Soc. London, vol. 192, p. 425, 1948; h, Bolton, J. G., and Stanley, G. J., Australian Journ. Sci. Res., vol. 2, p. 139, 1949; i, Williamson, R. E., Journ. Roy. Astron. Soc. Canada, vol. 42, p. 9, 1948; j, Pawsey, J. L., and Yabsley, D. E., Australian Journ. Sci. Res., vol. 2, p. 198, 1949.

TABLE 466 .- DEFINITIONS *, BASIC EQUATIONS, AND GENERAL DISCUSSION

B, flux density (magnetic) induction, $= \phi/A = 4\pi I + H$; unit the gauss, maxwell per cm.

Diamagnetic substances, $\mu \le 1$, κ negative. Most diamagnetic substance known is Bi, $\mu =$

 $.9998 \ \kappa = -14 \times 10^{-6}$

Ferromagnetic substances, μ very large, κ very large: Fe, Ni, Co, Heusler's alloy (see Table 476), magnetite and a few alloys of Mn. μ for Heusler's alloy, 90 to 100 for B=2,200; for Si sheet steel 350 to 5,300.

H, field strength, = No. of lines of force crossing unit area in normal direction; unit =

gauss = one line per unit area.

Hall effect (galvanomagnetic difference of potential), Ettinghausen effect (galvanomagnetic difference of temperature), Nernst effect (thermomagnetic difference of potential) and the Leduc effect (thermomagnetic difference of temperature), see Tables 519 and 521.

Hysteresis is work done in taking a cm³ of the magnetic material through a magnetic cycle = $\int H dI = (1/4\pi) \int H dB$. Steinmetz's empirical formula gives a close approximation to the hysteresis loss; it is $aB^{1.6}$ where B is the max. induction and a is a constant (see Table 482). The retentivity (B_r) is the value of B when the magnetizing force is reduced to zero. The reversed field necessary to reduce the magnetism to zero is called the coercive force (H_c) .

I, intensity of magnetization or pole strength per unit area, = M/V = m/A where A is cross section of uniformly magnetized pole face, and V is the volume of the magnet.

 $4\pi m/A = 4\pi I = \text{No. of lines of force leaving unit area of pole.}$

I, specific intensity of magnetism, $= I/\rho$ where $\rho = \text{density}$, g/cm⁸. J_A , J_M , similarly atomic and molecular intensity of magnetization.

κ, susceptibility; permeability relates to effect of iron core on magnetic field strength of coil; if effect be considered on iron core, which becomes a magnet of pole strength m and intensity of magnetism I, then the ratio $I/H = (\mu - 1)/4\pi$ is the magnetic susceptibility per unit volume and is a measure of the magnetizing effect of a magnetic field on the material placed in the field. $\mu = 4\pi\kappa + 1$. M, magnetic moment = ml, where l is length between poles of magnet.

Magneto-strictive phenomena:

Joule effect: Mechanical change in length when specimen is subjected to a magnetic field. With increasing field strength, iron and some iron alloys show first a small increment $\Delta l/l = (7 \text{ to } 35) \times 10^{-6}$, then a decrement, and for H = 1600. $\Delta l/l$ may amount to $-(6 \text{ to } 8) \times 10^{-6}$. Cast cobalt with increasing field first decreases, $\Delta l/l = -8 \times 10^{-6}$, $H = 1600 \times 10^{-6}$. 150, then increases in length, $\Delta l/l=+5\times 10^{-6},\,H=2,000$; annealed cobalt steadily contracts, $\Delta l/l=-25\times 10^{-6},\,H=2000$. Ni rapidly then slowly contracts, $\Delta l/l=-30\times 10^{-6},\,H=100$; $-35\times 10^{-6},\,H=300$; $-36\times 10^{-6},\,H=2,000$. A transverse field generally gives a reciprocal effect.

Villari effect; really a reciprocal Joule effect. The susceptibility of an iron wire is increased by stretching when the magnetism is below a certain value, but diminished when

above that value.

Wiedemann effect: The lower end of a vertical wire, magnetized longitudinally, when a current is passed through it, if free, twists in a certain direction, depending upon circumstances. A reciprocal effect is observed in that when a rod of soft iron, exposed to longitudinal magnetizing force, is twisted, its magnetism is reduced.

 μ , magnetic permeability, = B/H. Strength of field in air-filled solenoid $= H = (4\pi/10)$ ni in gausses, i in amperes, n, number of turns per cm length. If iron filled, induction increased, i.e., No. of lines of force per unit area, B, passing through coil is greater than

H; $\mu = B/H$.

Paramagnetic substances, $\mu > 1$, very small but positive, $\kappa = 10^{-8}$ to 10^{-6} : oxygen, especially at low temperatures, salts of Fe, Ni, Mn, many metallic elements. (See Table 486.)

Paramagnetic substances show no retentivity or hysteresis effect. Susceptibility independent of field strength. The specific susceptibility for both para- and diamagnetic substances is independent of field strength.

 ϕ , magnetic flux, $= 4\pi m + HA$ for magnet placed in field of strength H (axis parallel

to field). Unit, the maxwell.

Unit pole is of such strength that it will repel another unit pole with a force of one dyne; at unit distance in free space, 4π lines of force radiate from it. m, pole strength; $4\pi m$ lines of force radiate from pole of strength m.

 χ , specific susceptibility (per unit mass) = $\kappa/\rho = J/H$.

 χ_A , atomic susceptibility, $= \chi \times (\text{atomic weight})$; $\chi_M = \text{molecular susceptibility}$.

^{*} See pages 16-18.

TABLE 467.—MAGNETIC PROPERTIES OF VARIOUS TYPES OF IRON AND STEEL

From tests made at the National Bureau of Standards. B and H are measured in cgs units.

Values of B	2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Annealed Norway ironH	.81	1.15	1.60		3.06				116.	_
μ	2470	3480	3750	3670	3270	2700	1930	680	150	-
Cast semi-steelH	2 00	2 90	4 30	6.46	9.82	15.1	24.9	50.5	135.	325.
μ	1000	1380	1400	1240	1020	795	563	317	133	62.
77		0.0	101	10.0	25.0	25.0	F0 F	76.0	1.42	
Machinery steelH	5.0	8.8	13.1	18.0	200	240	200	210	127	
μ	400	455	460	430	390	340	280	210	14/	_
Very pure iron \H	3.30	4.48	6.35	9.10	13.0	18.9	28.8	47.0	103.	240.
as received μ	606	893	945	880					175	83
Annealed in vacuo \H	.46	.60	.80	1.02	1.38	2.00	3.20	11.3	72.0	194.
from 900°C	4350	6670	7500		7250		4380	1420	250	103
As received	4 max	150.	Е	3 max	18.900		B_r ?	7,650,	F	I c 2.8.
After annealing										

TABLE 468.—MAGNETIC PROPERTIES OF ELECTRICAL SHEETS

From tests made at the National Bureau of Standards. B and H are measured in cgs units.

Values of B	2000	4000	6000	8000	10,000	12,000	14,000	16,000	18,000	20,000
Dynamo steel	1.00	1.10	1.43	2.00	3.10	4.95	9.20	34.0	114.	_
μ	2000	3640	4200	4000	3220	2420	1520	470	158	_
$\left. \begin{array}{c} \text{Ordinary trans-} \\ \text{former steel} \end{array} \right\} \begin{array}{c} \dots \dots H \\ \mu \end{array}$.60 3340	.87 4600	1.10 5450	1.48 5400	2.28 4380	3.85 3120	10.9 1280	43.0 372	149. 121	=
High silicon trans- former steel μ	.50 4000	. 70 5720	.90 6670	1.28 6250	1. 99 5020	3.60 3340	9.80 1430	47.4 338	1 65 . 109	_

TABLE 469.-MAGNETIC PROPERTIES OF IRON IN VERY WEAK FIELDS

The effect of very small magnetizing forces has been studied by C. Baur and by Lord Rayleigh. The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of H and for a finite range increases in simple proportion to H. He gives the formula k=15+100H, or $I=15H+100H^2$. The experiments were made on an annealed ring of round bar 1.013 cm radius, the ring having a radius of 9.432 cm. Lord Rayleigh's results for an iron wire not annealed give k=6.4+5.1H, or $I=6.4H+5.1H^2$. The forces were reduced as low as 0.00004 cgs, the relation of k to H remaining constant.

	First experiment		Second ex	kperiment
\overline{H}	k	I	\mathcal{H}	k
.01580	16.46	2.63	.0130	15.50
.03081	17.65	5.47	.0847	18.38
.07083	23.00	16.33	.0946	20.49
.13188	28.90	38.15	.1864	25.07
.23011	39.81	91.56	.2903	32.40
.38422	58.56	224.87	.3397	35.20

TABLE 470.—TYPICAL DATA FOR MAGNETIC MATERIALS 1571A Part 1.—High-permeability materials

Den-	sity,	7 88	288	288	7.65	767	8.17	8.17	8.25	8.27	١	8.60	8.72	×	8 77	× ×	200	0.8		7.8	:	7.86		5.0
Resis- tivity Mi-	crohm-	10	2	10	09	47	45	45	20	08	06	16	ν. V.	29	9	2	36	25		10^{6}		1		108
Coer-	force He	20	1.0	.05	ιν	5.	<i>ب</i>	.07	.05	-:	1	.05	0.05	0.5	005	2.0	2.0	1.0		<1.0		1		- :
Hyster-	ergs, Wh		2.000	300	3.500	1	1.200	1	220	1	1	200	500		I	12,000	0009	1		1		1		1
Satura- ation flux	density B. gausses	21.000	21,500	21,500	19,700	20,000	16,000	16,000	16,000	15,000	11,000	10,700	8,700	6.500	8.000	24.500	24,000	24,200		8,000		1		2,500
Maxi. mum	perme- ability	2.000	5,000	180,000	2,000	30,000	25,000	50,000	20,000	35,000	35,000	100,000	100,000	100,000	800,000	5,000	4.500	10,000		130		132		1,500
Permeability at	B = 20	180	200	5,000	200	1.500	2,500	4,000	4,500	2,000	3,000	8,000	20,000	20,000	100,000	800	800	650		125		55		1,000
Typical heat	rreatment °C	950 Anneal	950 Anneal	$1480 \text{ H}_2 + 880$	800 Anneal	800 Anneal	1050 Anneal	1200 H2 Anneal	1200 H2 Anneal	1125 H2 Anneal	1125 H ₂ Anneal	1050 + 600 O**	1100 + O	1175 H ₂	$1300 \text{ H}_2 + 0$	800 Anneal	800 Anneal	850 Anneal		650 Anneal		1		1
	Other	1]				.3 Mn							Ħ						1		I		
ite sition	Mo	1	1	I	1	1	١	!	1]	I	١	4	1	2	I	1	1		7		1	(e2O4
Approximate percent composition	ပိ		1	1	1	1	1	1]	1	1	I	1	1	1	20	49	34				1	į,	+ZnF
Ap	Ni	ı	1	1	1	1	45	45	20	1	1.	78.5	79	75	79	1	I	1		81]	(MnFe ₂ O ₄
	Fe	98.5	99.91	99.95	96	62	54.7	54.7	20	1	ı	21.2	16.7	<u>8</u>	15.7	49.7				17		6.66		
	Material Form	:	:	:	:	 •	45 PermalloySheet	loy†		:	:	78 PermalloySheet		:	SupermalloySheet	:	:	HipercoSheet	Insulated	2-81 Permalloy powder		Carbonyl iron powder		rerroxcube III powder

** Q, quench or controlled cooling. 1874 Compiled by R. A. Chegwidden, Bell Telephone System Monogr. B-1605, Metal Progress, vol. 54, p. 705, 1948.

* Properties in direction of rolling. † Similar properties for Nicaloi, 4750 alloy, Carpenter 49, Armco 48. ‡ At saturation.

TABLE 470.-TYPICAL DATA FOR MAGNETIC MATERIALS (concluded) Part 2.—Permanent magnet alloys

-	Weight lb/in.3	.280	.292	.280	1	.296	.295	.290	.249	.256	.249	.253	.264	.268	.26	.295	.292	.311	300	.113	.325	17	0/1:	led or forged. W-Weak.
	Mechanical Properties ‡	H, S	H, S	H, S	H, S	H, S	H	H	H, B	H, B	H	Н	H, B	H, B	H, B	Р	Р	P D, M	P D, M				1	† HR.Hot rolled or forged M.Malleable, W.Weak.
	Method of fabrication †	M,	Ä,	Ä,	ž	¥,	HR, M, P	Ĭ,	ڻ ڻ	r C	Sn, G	Sn, C, G	ري ن ن	ر ر ر	r C	C, CR, M,	C, CR, M,	C, CR, M,	C, CR, M,	Sn, G	C, CR, M, P	C, CR, M	1	CW-Cold worked. S-Strong. D-Ductile.
Energy	BH max. × 10−6	.20	.32	.30	.65	26.	1.1	6:	1.4	1.6	1.4	1.3	4.5	3.5	1.5	1.0	3.5	1.5	œ.	09:	.075	6.5	76:	
Residual induction	Br gausses	10,000	10,300	9,700	9,500	9,500	10,500	000,6	7,200	7,200	900,9	5,500	12,500	10,000	5,800	8,800	10,000	5,400	3,400	1,600	550	2,900	009'9	gnetic field I. B-Brittle
g Coercive I	H_c oersteds	20	2	65	150	240	250	240	440	550	520	200	550	750	950	300	510	550	099	1,000	0000'9	3,600	35 S	oled in ma ‡ M·Harc
Magnetizing C force	Hmar. oersteds	300	300	300	1.000	1,000	1,000	1,000	2,000	2,000	2,000	3,000	2,000	3,000	3.000	1.000	2,000	2,400	3,200	3,000	20,000	15,000	7,000	aked. F-Contraction
	Heat treatment * (temperature, °C)	080	Õ 850			0 950		1	A 1200. B 700	A 1200, B 600	A 1300	O 1200. B 650	ĀF 1300. B 600	1	1	B 600	CW + B 600	CW + B 600	-	1	ا ا .	Q 1200, B 650	1	A-Air cooled, B-Baked, F-Cooled in magnetic field, ned, C-Cast, Sn-Sintered, # M-Hard, B-Brittle,
Percent	Composition (remainder Fe)	1 Mn.	5 W.			36% Cobalt steel 36 Co 0.7 C. 4 Cr. 5 W	Remallov or Comol 17 Mo. 12 Co			11 10 Al 17 Ni 25 Co	II (sintered)			VI 8 AI 15 Ni	XII 6A1 18 Ni		I (wire)				868 A	1-cobalt	Hyflux Fine powder	*Value given is intrinsic He. * Q.Quenched in oil or water. CR-Cold rolled or drawn. M-Machined. G-Must be ground. P-Punch

		Indu	ction da	ıta					
Values of B	2000	4000	6000	8000	10000	12000	14000	16000	18000
Carbon steel	33 60	50 80	61 98	72 111	93 108	155 77	290 48	600 27	_
Chrome Η Bar, 3.5 Cr, 0.9 C μ	32 63	48 83	61 98	75 107	100 100	175 69	_	_	=
Chrome	30 67	44 91	52.5 114	62 129	75 133	155 104	235 60	=	_
Chrome Η Sheet, 5.75 Cr, 10 C μ	36 56	47.5 84	64 94	80 100	122 82	_	_	_	_
Tungsten steel	35 57	52.5 76	63 95	70 114	81.5 123	115 104	195 72	195 72	500 32
Cobalt	140 14	203 20	240 25	269 30	313 32	413 29	649 22	_	_
Comal 1	134 14.9	201 19.9	237 25.3	258 31	290 34.5	369 32.5	651 21.5	1355 11.8	2571 7
Alnico 1	280 7.1	400 10.0	478 12.6	582 13.8	910 11.0	1820 6.6	=	_	_
Alnico 2	360 5.6	560 7.1	668 9.0	785 10.2	1020 9.8	1680 7.1	_	_	_
Alnico 2	340 5.9	515 7.8	605 9.9	760 10.5	1200 8.3	1800 6.7	_	_	_
Alnico 3		473 8.5	565 10.6	698 11.5	1035 9.7	2000 6.0	=	=	_
Alnico 3	7.2	395 10.1	478 12.5	575 13.9	940 10.6	1910 6.3	_	_	=
Alnico 4 Η Cast, and sintered μ 12 Al, 28 Ni, 5 Co, Bal Fe	500 4.0	850 4.7	1075 5.6	1350 5.9	1890 5.3	_	=	_	=
Alnico 5	468	560	580	580	598	640	945	_	_
3 Cu, Bal Feμ	4.3	7.1	10.3	13.8	16.7	18.8	148	_	_
Alnico 6	430	675	770	845	940	1110	1700	_	_
3Cu, 1.25 Ti, Bal Fe μ	4.7	5.9	7.8	9.5	10.6	10.8	8.2	_	_
Alnico 12		1000	1300	1600	2000	3000	_	_	_
8 Ti, Bal Feμ	3.3	4.0	4.6	5.0	5.0	4.8	_	_	_
Cunife		645	845 7.1	_	_	_	_	_	_
Cunico		1000 4.0	1630 3.7	3200 2.5	_	_	=	=	=
Vectolite		2050	3700	_	_		_	_	_
26 Co ₂ O ₃ μ	1.8	2.0	1.7	_	_		_	_	_
Silmanal				Max	imum µ	1.111			

^{*} Much of the data on magnetism was corrected by W. E. Ruder, of the General Electric Co.

Low induction values

	Special Hi silicon steel, (4½% Si), .014" sheet
Values of H Values of B Values of μ	H ₂ annealed 875°C 0.001 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.018 0.020 3.0 5.0 7.0 10.0 13.0 16.0 21.0 24.0 750 833 875 1000 1083 1143 1167 1200
	Nickel-iron alloy 48% Ni, 52% Fe, .014" sheet
	Allegheny electrical alloy 4750 Treatment 1100°C 6 hr p.d. H ₂ cooled to room temp. 5 hr
Values of H Values of B Values of μ	0.001 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.018 0.020 7.0 15.0 32.0 49.0 67.0 88.0 108.0 132.0 185.0 215.0 7000 7500 8000 8165 8375 8800 9000 9430 10280 10750
	Permalloy strip, 79% Ni, 21% Fe
Values of H Values of B Values of μ	Treatment H ₂ 1100°C 4 hr f. c. 625°C in air 0.001 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.018 0.020 15.0 30.0 67.0 115.0 180.0 260.0 365.0 458.0 683.0 805.0 15000 15000 16750 19160 22500 26000 30420 32710 37940 40250
	Monimax 47% Ni, 3%Mo bal Fe, strip .004"
Values of H Values of B Values of μ	Treatment annealed 2 hr 1150°C p.d. H ₂ 0.001 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.018 0.020
	Mumetal strip .014", 77.2 Ni, 4.8 Cu, 1.5 Cr, 14.9 Fe
Values of H Values of B Values of μ	Treatment annealed in p.d. H ₂ at 1100°C 4 hr f. c. 0.001 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.018 0.020 20.0 50.0 158.0 300.0 443.0 600.0 758.0 923.0 1253.0 1420.0 20000 25000 39500 50000 55375 60000 63160 65930 69610 71000
	Cold rolled 3% Si, strip (oriented) .014"
Values of H	Annealed in H ₂ 980°C 0.001 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.018 0.020
Values of B Values of μ	_ 7 15 24 33 42 52 63 85 100 _ 3500 3750 4000 4100 4200 4300 4500 4700 5000

TABLE 473.-MAXIMUM CORE LOSSES IN ELECTRICAL STEEL SHEETS

			Wa	tts per lb	for 60 c	ycles		
Designation Thickness, in.:	.0140	.0155	.0170	.0185	.0220	.0250	.0280	.0310
				At 10,00	00 gausse	s		
Armature AISI M-43	1.17	1.38 1.23 1.05 .86 .76 .68	1.46 1.29 1.09 .90 .80 .72 .65	1.55 1.35 1.14 .94 .83 .75 .68	1.75 1.50 1.22 1.02 .90	1.98 1.70 1.30 1.10 .97	2.23 1.94 1.44	2.50 2.17 1.60
				At 15,00	00 gausse	s		
Armature AISI M-43	3.60 2.65 1.85 1.65 1.50 1.40 1.00	4.37 3.67 2.75 2.23 1.93 1.72 1.57	4.44 3.74 2.85 2.31 2.02 1.80 1.65	4.50 3.80 2.95 2.40 2.10 1.88 1.73	4.80 4.10 3.20 2.60 2.25	5.30 4.40 3.40 2.80 2.40	5.85 4.95 3.70	6.50 5.50 4.10

Nick	el at ()° and	1 100°C		Col	balt at	t 0° an	d 100°C		Magn	etite *		
Н	S	I	В	μ	H	S	I	В	μ	H	I	B	μ
100	35.0	309	3980	39.8	200	106	848	10850	54.2	500	325	4580	9.16
200	43.0	380	4966	24.8	300	116	928	11960	39.9	1000	345	5340	5.34
300	46.0	406	5399	18.0	500	127	1016	13260	26.5	2000	350	6400	3.20
500	50.0	441	6043	12.1	700	131	1048	13870	19.8	12000	350	16400	1.37
700	51.5	454	6409	9.1	1000	134	1076	14520	14.5				
1000	53.0	468	6875	6.9	1500	138	1104	15380	10.3				
1500	56.0	494	7707	5.1	2500	143	1144	16870	6.7				
2500	58.4	515	8973	3.6	4000	145	1164	18630	4.7				
4000	59.0	520	10540	2.6	6000	147	1176	20780	3.5				
6000	59.2	522	12561	2.1	9000	149	1192	23980	2.6				
9000	59.4	524	15585	1.7	At ()°C t	his sp	ecimen	gave				
12000	59 .6	526	18606	1.5				g result	ts:				
			ecimen		7900	154	1232	23380	3.0				
			; result	s:									
12300	67.5	595	19782	1.6									

^{*} These results are given by Du Bois for a specimen of magnetite. S= Magnetic moment per gram. I= Magnetic moment per cm³.

Professor Ewing has investigated the effects of very intense fields on the induction in iron and others metals. The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 cgs units, the increase of induction above this being almost the same as if the iron were not there, that is to say, dB/dH is practically unity. For hard steels, and particularly manganese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000. The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

Lowmoor wrought iron		Vicker's tool steel			ladfiel ganese		
H I B 3080 1680 24130 6450 1740 28300 10450 1730 32250 13600 1720 35200 16390 1630 36810 18760 1680 39900 18980 1730 40730	μ H 7.83 6210 4.39 9970 3.09 12120 2.59 14660 2.25 15530 2.15	I B 1530 25480 1570 29650 1550 31620 1580 34550 1610 35820	4.10 2.97 2.60 2.36 2.31	H 1930 2380 3350 5920 6620 7890 8390 9810	55 84 84 111 187 191 263 396	B 2620 3430 4400 7310 8970 10290 11690 14790	1.36 1.44 1.31 1.24 1.35 1.30 1.39 1.51

TABLE 475.—EFFECT OF TEMPERATURE ON PERMEABILITY OF NICKEL-IRON ALLOY (47-50 Ni) 158

Test Temp. °F	B (gausses) at 30 H (oersteds)	Maximum permeability (B/H)	B (gausses) at maximum permeability (B/H)	Permeability (B/H) at 100 gausses
390	11500	79000	4600	8000
190	11850	59000	4400	7000
80	12000	49000	4700	6100
32	12000	44000	5200	5600
- 42	12200	34000	6000	4500
-100	12300	30000	7000	4200

¹⁵⁸ Hicks, Laurence C., Nickel-iron alloys for magnetic circuits, Electrical Manufacturing, January 1946.

Several alloys have been experimented with that, although all the constitutents are non-magnetic or very weakly magnetic materials, have quite definite magnetic properties. Among these are Nos. 1-3 below, Heusler magnetic alloys. Some alloys made up for the most part of magnetic elements are nonmagnetic or very weakly magnetic, i.e., No. 4 below.

- 61 Cu, 25 Mg, 14 A1
 magnetic with a permeability μ
 of 33.
- 2. 75.6 Cu, Mn 14.3, Al 10.1, Pb magnetic $B_r = 480$, $H_o = 3.8$, μ max = 80.
- 3. Cu 61.5, Mn 23.5, A1 15 $B_r = 2550$, $H_e = 7.3$, μ max = 236.
- 4. Cu 78, Fe 12, Mg nonmagnetic.

TABLE 477.—PERMEABILITY OF SOME SPECIMENS OF IRON AND STEEL

This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 493. The specimen numbers refer to the same table. The numbers have been taken from the curves given by Hopkinson and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetiz-	Specimen	1 (iron)		Specimen 8 (annealed steel)		Specimen 9 (same as 8 tempered)		
ing force H	\overline{B}	μ	\overline{B}	μ	\overline{B}	μ	B	щ
1	_	_	_	_	_		265	265
2	200	100		_	_	_	700	350
3	_	_	_	_	_	_	1625	542
5	10050	2010	1525	300	750	150	3000	600
10	12550	1255	9000	900	1650	165	50 00	500
20	14550	727	11500	575	5875	294	6000	300
30	15200	507	12650	422	9875	329	6500	217
40	15800	395	13300	332	11600	290	7100	177
50	16000	320	13800	276	12000	240	7350	149
70	16360	234	14350	205	13400	191	7900	113
100	16800	168	14900	149	14500	145	8500	85
150	17400	116	15700	105	15800	105	9500	63
200	17950	90	16100	80	16100	80	10190	51

Magnetiz- ing force	ASTM 20 (as ca		ASTM 30		ASTM 40 furnace (a	electric as cast)
Н	B	Щ	\overline{B}	щ	\overline{B}	μ
5	1300	260	600	120	1750	350
10	3400	340	2550	255	4100	410
20	5250	262	4450	222	5950	297
30	6200	206	5450	181	6950	231
40	6950	173	6100	152	7600	190
50	7500	150	6700	134	8250	165
70	8300	118	7600	108	9100	130
100	9100	91	8600	86	10050	100
150	10150	67	9800	65	11100	74
200	11050	55	10650	53	11900	59

TABLE 478.-MAGNETIC PROPERTIES OF SOFT IRON AT 0° and 100°C

	Sof	ft iron at (o.c		Soft iron at 100°C				
H	S*	I†	В	μ	\overline{H}	S	I	В	μ
100	180.0	1408	17790	177.9	100	180.0	1402	17720	177.2
200	194.5	1521	19310	96.5	200	194.0	1511	19190	96.0
400	208.0	1627	20830	52.1	400	207.0	1613	20660	51.6
700	215.5	1685	21870	31.2	700	213.4	1663	21590	29.8
1000	218.0	1705	22420	22.4	1000	215.0	1674	22040	21.0
1200	218.5	1709	22670	18.9	1200	215.5	1679	22300	18.6

^{*} Magnetic moment per grain. † Magnetic moment per cm3.

	S	teel at 0°	С		Steel at 100°C)°C			
\overline{H}	St	I‡	В	μ		Н	S	I	В	μ	
100	165.0	1283	16240	162.4		100	165.0	1278	16170	161.7	
200	181.0	1408	17900	89.5		200	180.0	1395	17730	88.6	
400	193.0	1500	19250	48.1		400	191.0	1480	19000	47.5	
700	199.5	1552	20210	28.9		700	197.0	1527	19890	28.4	
1000	203.5	1583	20900	20.9	1	000	199.0	1543	20380	20.4	
1200	205.0	1595	21240	17.7	1	500	203.0	1573	21270	14.2	
3750*	212.0	1650	24470	6.5	3	000	205.0	1593	23020	7.7	
					5	000	208.0	1612	25260	5.1	

^{*} The results in this and other tables for forces above 1200 were obtained from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's Constants, Tables 516, 517, 520.)

TABLE 480.—ENERGY LOSSES IN TRANSFORMER STEELS

D. C. Hysteresis data From $B_{max} = 10,000$ gausses

Grade	Thickness in.	H _c oersteds	Br gausses	Hmax oersteds	$H_c \times B_r$
Transformer 52	0140	— .20	4800	2.03	960
Transformer 58		24	5050	1.94	1210
Transformer 65		31	5200	2.16	1610
Transformer 72		42	6200	2.19	2610
Transformer 72		43	5050	2.58	2170
Transformer 72	0250	50	5300	2.72	2650
D	01.40	r.	6650	2.20	2400
Dynamo		51	6650	2.30	3400
Dynamo		53	5500	2.85	2920
Dynamo	0250	— .59	5750	2.87	3400
Motor		55	6350	3.33	3500
Motor		58	6700	2.80	3890
Motor		63	6900	2.99	4350
Electrical		— .62	7700	2.52	4770
Electrical	0285	— .61	8100	2.16	4950
Electrical	0250	— .68	8250	2.26	5610
	24.42	- 4	0.250	2.40	F.0.F.0
Armature		64	8350	2.30	5350
Armature		68	8300	2.20	5650
Armature		— .72	8230	2.26	5940

TABLE 481.—ENERGY LOSSES IN TRANSFORMER STEELS

a c core losses

Watts/lb for 60 cycle at 10,000 gausses

Eddy current age loss Hysteresis Total	current	Gage	Thickness in.	Designation
29 .149 .345 494	.149	29		Transformer 52
29 .163 .385 .548	.163	29		Transformer 58
29 .193 .426 .619	.193	29		Transformer 65
	.205	29		Transformer 72
29 .218 .572 .790	.218	29		Dynamo
29 .245 .709 .954	.245	29		Motor
29 .262 .852 1.114	.262	29		Electrical
29 .486 .741 1.227	.486	29		Armature
29 .164 .236 .40	.164	29	strip0140	Oriented C. R. s
29 .149 .345 4 29 .163 .385 .5 29 .193 .426 .6 29 .205 .450 .6 29 .218 .572 .7 29 .245 .709 .9 29 .262 .852 1.1 29 .486 .741 1.2	.149 .163 .193 .205 .218 .245 .262 .486	29 29 29 29 29 29 29 29		Transformer 52 Transformer 58 Transformer 65 Transformer 72 Dynamo Motor Electrical Armature

[†] Magnetic moment per grain.
‡ Magnetic moment per cm3.

TABLE 482.—DISSIPATION OF ENERGY IN THE CYCLIC MAGNETIZATION OF VARIOUS SUBSTANCES

C. P. Steinmetz concludes from his experiments that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $e=aB^{1,a}$, where e is the energy dissipated and a a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed ± 15000 cgs units per cm². It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.

The following table gives the values of the constant a as found by Steinmetz for a number of different specimens. The data are taken from his second paper.

		Value of
Kind of material	Description of specimen	a
Iron	Norway iron	.00227
"	Wrought bar	.00326
"	Commercial ferrotype plate	.00548
**	Annealed " "	.00458
"	Thin tin plate	.00286
_ "	Medium-thickness tin plate	.00425
Steel	Soft galvanized wire	.00349
44	Annealed cast steel	.00848
	Soft annealed cast steel	.00457
"	Very soft annealed cast steel	.00318
"	Same as 8 tempered in cold water	.02792
"	Tool steel glass hard-tempered in water	.02670
	" " annealed	.02070
"	(Same as 12, 13, and 14, after having been subjected)	(.06130
"	to an alternating m. m. f. of from 4000 to 6000	.02700
"		.01445
Cast iron	Gray cast iron	.01300
44 44	" " containing ½% aluminum	.01365
66 66	" " " $\frac{1}{2}\%$ " \cdots	.01459
	(A square rod 6 cm ² section and 6.5 cm long, from)	
Magnetite	{ the Tilly Foster mines, Brewsters, Putnam County, }	.02348
	New York, stated to be a very pure sample	
Nickel	Soft wire	.0122
	Annealed wire, calculated by Steinmetz from	.0156
"	Ewing's experiments	
**********	Hardened, also from Ewing's experiments	.0385
Cobalt	Rod containing about 2% of iron, also calculated	.0120
	from Ewing's experiments by Steinmetz	
	milling grooves about 8 mm wide across a pile of	
	thin sheets clamped together. About 30% by vol-	
Inon 61:	ume of the specimen was iron.	
Iron filings	1st experiment, continuous cyclic variation of m.m.	0457
	f. 180 cycles per second	.0457
	2d experiment, 114 cycles per second	.0396
	(3d " 79–91 cycles per second	.0373
Nickel alloy	Permalloy	.0001
Fl	Hipernik	.00015
Electrical sheet		.00046
	Silicon steel 4.5% Si	.00051
	Silicon steel 4.4% Si	.00056
	Silicon steel 3.5% Si	.00065
	Silicon steel 1.0% Si	.00081
	Silicon steel 0.5% Si	.001
	Low carbon sheet	.003
	Cast steel annealed	.005
	Cast iron annealed	.012

The relation deduced by Curie that $\chi = C/T$, where C is a constant and T the absolute temperature, holds for some paramagnetic substances over the ranges given in the following table. Many paramagnetic substances do not obey the law. See the following table.

Substance	$C \times 10^6$	Range °C	Substance	$C \times 10^6$	Range °C
Oxygen	33,700	20° to 450°C	Gadolinium sulfate	21,000	-259° to 17
Air	7,830		Ferrous sulfate	11,000	— 259 " 17
Palladium	1,520	20 to 1370	Ferric sulfate	17,000	— 208 " 17
Magnetite	28,000	850 " 1360	Manganese chloride.	30,000	—258 " 17
Cast iron	38,500	850 " 1267			

TABLE 484.—TEMPERATURE EFFECT (°C) ON SUSCEPTIBILITY OF DIAMAGNETIC ELEMENTS *

Noe	effect:				
С	Cryst. 400 to 1200° Diamond, + 170 to 200°	P white S Cryst.; ppt.	Se — Br —170 to 18°	Cs	—170 to 50° and Au
	"Sugar" carbon Cryst.	Zn —170 to 300° As —	Zr Cryst. —170 to 500° Cd —170 to 300°		—39 to + 350° 327 to 600°
Incr	ease with rise in tempe	rature:			
Be	_	C Diamono	d, 200 to 1200°		—170 to 114°
В	Cryst. $+$ 170 to 400°	Ag -	_	Hg	—170 to —30°
Decr	ease with rise in tempe	rature:			
С	Amorphous	Gd -179 to 30°	In —170 to 150°	T1	_
С	Ceylon graphite	Ge —170 to 900°	Sb $+ 50 \text{ to } + 631^{\circ}$		—170 to 327°
Cu	III. − 1	Zr 500 to 1200°	Te —	Bi	—170 to 268°
Zn	+ 300 to 700°	Cd 300 to 700°	$I + 114 \text{ to} + 200^{\circ}$		

^{*} Tables 484 and 485 are from Honda and Owen.

TABLE 485.—TEMPERATURE EFFECT (°C) ON SUSCEPTIBILITY OF PARAMAGNETIC ELEMENTS

No	effect:			
Li	_	K −170 to 150°	Cr —170 to 500°	W –
	-170 to 97°	Ca —170 to 18°	Mn −170 to 250°	Os —
A1	657 to 1100°	V —170 to 500°	Rb —	
Incr	ease with rise	in temperature:		
Ti	-40 to 1100°	Cr 500 to 1100°	Ru + 550 to 1200 $^{\circ}$	Ba —170 to 18°
V	500 to 1100°	Mo —170 to 1200°	Rh —	Ir and Th
Dec	rease with rise	in temperature:		
(O)	_	Ti —180 to —40°	Ni 350 to 800°	Pd and Ta
As	—170 to 657°	Mn 250 to 1015°	Co above 1150°	Pt and U
Mg	_	(Fe) —	Nb -170 to 400°	Rare earth metals

If I is the intensity of magnetization produced in a substance by a field strength H then the magnetic susceptibility $\kappa = I/H$. This is generally referred to the unit mass; italicized figures refer to the unit volume. The susceptibility depends greatly upon the purity of the substance, especially its freedom from iron. The mass susceptibility of a solution containing p percent by weight of a water-free substance (susceptibility κ) is $\kappa_x = (p/100)\kappa + (1-p/100)\kappa_0$. ($\kappa_0 = \text{susceptibility of water.})$

ecptionity of water.)							
		co.				т	ъ.
Culatana	κ×10 ⁶	Temp.	Re- marks	Substance	κ×10 ⁶	Temp.	Re- marks
Substance			marks	- ·		C	marks
Ag	19	18		Li	+.38	10	
AgCl	28			Mo	+.04	18	
Air, 1 Atm	+.024	15		Mg	+.55	18	
A1	+.65	18	_	MgSO ₄	40	4.0	
Al ₂ K ₂ (SO ₄) ₄ 24H ₂ O	-1.0		Cryst.	Mn	+11.	18	
A, 1 Atm	— .10	0		MnCl ₂	+122.	18	Sol'n
As	— .3	18		MnSO₄	+100.	18	44
Au	— .15	18		N ₂ , 1 Atm	.001	16	
В	— .71	18		NH ₃	-1.1		
BaCl ₂	36	20		Na	+.51	18	
Be	+.79	75	Powd.	NaCl	50	20	
Bi	-1.4	18	10114.	Na ₂ CO ₃	19	17	Powd.
	38	18		Na ₂ CO ₃ ·10 H ₂ O	46	17	"
Br	-2.0	18			+1.3	18	
C, arc-carbon		18		Nb		18	Sol'n
C, diamond	49			NiCl ₂	+40.		301 11
CH ₄ , 1 Atm	+.001	16		NiSO.	+30.	20	
CO ₂ , 1 Atm	+.002	16		O ₂ , 1 Atm	+.120	20	
CS_2	— .77	18		Os	+.04	20	
CaO	—.27	16	Powd.	P, white	90	20	
CaCl ₂	—.40	19	**	P, red	50	20	
CaCO₃, marble	—.7			Pb	12	20	
Cd	17	18		PbCl ₂	—.25	15	Powd.
CeBr₃	+6.3	18		Pd	+5.8	18	
Cl ₂ , 1 Atm	— .59	16		PrCl ₃	+13.	18	Sol'n
CoCl ₂	+90.	18	Sol'n	Pt	+1.1	18	
CoBr ₂	+47.	18	"	PtCl ₄	.0	22	Sol'n
CoI ₂	+33.	18	46	Rh	+1.1	18	20
CoSO ₄	+57.	19	44	S	48	18	
$Co(NO_3)_2$	+57.	18	"	SO ₂ 1 Atm	30	16	
	+3.7	18			—.94	18	
Cr	+3.7	18	Donad	Sb	32	18	
CsC1	28		Powd.	Se			Carret
Cu	09	18	C 12	Si	12	18	Cryst.
CuCl ₂	+12.	20	Sol'n	SoO ₂ , Quartz	44	20	
CuSO ₄	+10.	20	Sol'n	—Glass	5±	20	
CuS	+.16	17	Powd.	Sn	+.03	20	
FeCl ₃	+90.	18	Sol'n	SrCl₂	42	20	Sol'n
FeCl ₂	+90.	18	"	Та	+.93	18	
FeSO ₄	+82.	20	44	Te	32	20	
$Fe_2(NO_3)_6 \dots$	+50.	18	44	Th	+.18	18	
He, 1 Atm	002	0		Ti	+3.1	18	
H ₂ , 1 Atm	.000	16		<u>V</u>	+1.5	18	
H ₂ , 40 Atm	.000	16		W	+.33	20	
H ₂ O	<i>—.7</i> 9	20		Zn	- .15	18	
HC1	80	20		ZnSO ₄	40		
H ₂ SO ₄	+.78	20		Zr	45	18	
HNO ₃	70	20		CH₃OH	73	10	
Hg	19	20		C₂H₅OH	80		
Ī	4	20		~	80		
In	1±	18		C₃H₁OH	60 60	20	
Îr	+.15	18		C₂H₅OC₂H₅	00	20	
K		20		CHCl₃	58		
	+.40			C ₆ H ₆	78		
KCl	50	20		Ebonite	+1.1	22	
KBr	40	20		Glycerine	64	22	
KI	38	20	C 41	Sugar	57		
KOH	35	22	Sol'n	Paraffin	58		
K ₂ SO ₄	42	20		Petroleum	91		
KMnO ₄	+2.0			Toluene	<i>—.77</i>		
KNO ₃	33	20		Wood	2-5		
K ₂ CO ₃	— .50	20	Sol'n	Xylene	— .81		

TABLE 487.—TEMPERATURE VARIATION OF RESISTANCE OF BISMUTH IN TRANSVERSE MAGNETIC FIELD (°C)

Proportional values of resistance

Н	-192°	-135°	-100°	-37°	0°	+18°	+60°	+100°	+183°
0	.40	.60	.70	.88	1.00	1.08	1.25	1.42	1.79
2000	1.16	.87	.86	.96	1.08	1.11	1.26	1.43	1.80
4000	2.32	1.35	1.20	1.10	1.18	1.21	1.31	1.46	1.82
6000	4.00	2.06	1.60	1.29	1.30	1.32	1.39	1.51	1.85
8000	5.90	2.88	2.00	1.50	1.43	1.42	1.46	1.57	1.87
10000	8.60	3.80	2.43	1.72	1.57	1.54	1.54	1.62	1.89
12000	10.8	4.76	2.93	1.94	1.71	1.67	1.62	1.67	1.92
14000	12.9	5.82	3.50	2.16	1.87	1.80	1.70	1.73	1.94
16000	15.2	6.95	4.11	2.38	2.02	1.93	1.79	1.80	1.96
18000	17.5	8.15	4.76	2.60	2.18	2.06	1.88	1.87	1.99
20000	19.8	9.50	5.40	2.81	2.33	2.20	1.97	1.95	2.03
25000	25.5	13.3	7.30	3.50	2.73	2.52	2.22	2.10	2.09
30000	30.7	18.2	9.8	4.20	3.17	2.86	2.46	2.28	2.17
35000	35.5	20.35	12.2	4.95	3.62	3.25	2.69	2.45	2.25

TABLE 488.—INCREASE OF RESISTANCE OF NICKEL DUE TO A TRANSVERSE MAGNETIC FIELD, EXPRESSED AS % OF RESISTANCE AT 0°C AND H \pm 0

Н	-190°	-75°	0°	+18°	+100°	+182°
0	+0	0	0	0	0	0
1000	∔.20	+.23	+ .07	+ .07	+ .96	+ .04
2000	∔.17	+.16	+ .03	+ .03	+ .72	07
3000	.00	05	34	36	14	60
4000	17	15	60	72	70	-1.15
6000	19	20	70	83	-1.02	-1.53
8000	19	23	— 76	90	-1.15	-1.66
10000	18	27	82	95	-1.23	-1.76
12000	18	30	87	-1.00	-1.30	-1.85
14000	18	32	91	-1.04	-1.37	1.95
16000	17	35	94	-1.09	-1.44	-2.05
18000	17	38	98	-1.13	-1.51	-2.15
20000	16	41	-1.03	-1.17	-1.59	-2.25
25000	14	49	-1.12	-1.29	-1.76	-2.50
30000	12	56	-1.22	-1.40	-1.95	-2.73
35000	10	63	-1.32	-1.50	-2.13	-2.98
	•••				5.10	2.70

TABLE 489.—CHANGE OF RESISTANCE OF VARIOUS METALS IN A TRANSVERSE MAGNETIC FIELD

(Room temperature)

Metal	Field strength in gausses	Percent increase	Field strength Percent Metal
Nickel	. 10000	-1.2	Lead 10000 + .0004
"	. "	-1.4	Tantalum " + .0003
"	. 6000	1.0	Magnesium 6000 + .01
"	. 10000	-1.4	Manganin " $+.01$
Cobalt	. "	— .53	Tellurium ? + .02 to .34
Cadmium		+ .03	Antimony ? + .02 to .16
Zinc		+ .01	Different specimens show
Copper		+ .004	very diverse results
Silver	. "	+ .004	Iron usually an increase i
Gold		+ .003	weak fields, a decreas
Tin	. "	+ .002	in strong.
Palladium	. "	+ .001	Allow behave similarly t
Platinum	. "	+ .0005	Nickel steel Alloys behave similarly to

	Tit	C 1	D			Electric	al sheets
	Electro- lytic iron	Good cast steel	Poor cast steel	Steel	Cast iron	Ordinary	Silicon
Chemical composition in percent PS	.024	.044	.56 .18	.99 .10	3.11 3.27	.036	.036 3.90
Chemical composi- Si Mn P	.008	.40	.29	.40	.56 1.05	.260 .040	.090
S	.008 .001	.044 .027	.076 .035	.04 .07	.06	.068	.006
Coercive force{	2.83 [.36]	1.51 [.37]	7.1 (44.3)	16.7 (52.4)	11.4 [4.6]	[1.30]	[.77]
Residual B	11400 [10800]	10600 [11000]	10500 (10500)	13000 (7500)	5100 [5350]	[9400]	[9850]
Maximum permeability {	1850 [14400]	3550 [14800]	700 (170)	375 (110)	240 [600]	[3270]	[6130]
B for $H = 150 \dots \left\{$	19200 [18900]	18800 [19100]	17400 (15400)	16700 (11700)	10400 [11000]	[18200]	[17550]
4πI for saturation {	21620 [21630]	21420 [21420]	20600 (20200)	19800 (18000)	16400 [16800]	[20500]	[19260]

Brackets indicate annealing at 800°C in vacuum. Parentheses indicate hardening by quenching from cherry-red.

TABLE 491.—CAST IRON IN INTENSE FIELDS

	Soft ca	st iron		Hard cast iron							
H	В	I	μ	\overline{II}	В	I	μ				
114	9950	782	87.3	142	7860	614	55.4				
172	10800	846	62.8	254	9700	752	38.2				
433	13900	1070	32.1	339	10850	836	30.6				
744	15750	1200	21.2	684	13050	983	19.1				
1234	17300	1280	14.0	915	14050	1044	15.4				
1820	18170	1300	10.0	1570	15900	1138	10.				
12700	31100	1465	2.5	2020	16800	1176	8.3				
13550	32100	1475	2.4	10900	26540	1245	2.4				
13800	32500	1488	2.4	13200	28600	1226	2.2				
15100	33650	1472	2.2	14800	30200	1226	2.0				

TABLE 492.—CORRECTIONS FOR RING SPECIMENS

In the case of ring specimens, the average magnetizing force is not the value at the mean radius, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

Ratio of radial width to	Ratio of av		Ratio of hysteresis for uniform distribution to actual hysteresis				
diameter of rings	Rectangular cross section	Circular cross section	Rectangular cross section	Circular cross section			
1/2	1.0986	1.0718	1.112	1.084			
1/3	1.0397	1.0294	1.045	1.033			
1/4	1.0216	1.0162	1.024	1.018			
1/5	1.0137	1.0102	1.015	1.011			
1/6	1.0094	1.0070	1.010	1.008			
1/7	1.0069	1.0052	1.008	1.006			
1/8	1.0052	1.0040	1.006	1.004			
1/10	1.0033	1.0025	1.003	1.002			
1/19	1.0009	1.0007	1.001	1.001			

TABLE 493.—COMPOSITION AND MAGNETIC PROPERTIES OF IRON AND STEEL

tion is not tabulated; but as stated by Hopkinson it may be obtained by subtracting the magnetizing force (240) from the maximum induction and then dividing by 4π. "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagnetizing force" is the magnetization force which had to be applied in order to leave no residual magnetization after previous magnetization in the opposite direction to the "maximum induction" stated in the table. The "energy dissipated" was calculated from the formula: Energy dissipated = coercive force \times maximum induction divided by π , which however, was only found to agree roughly with the the results of the experiment. This table and Table 477 are from a paper by Dr. Hopkinson on the magnetic properties of iron and steel. The numbers in the columns headed "magnetic properties" give results for the highest magnetizing force used, which is stated in the paper to have been 240. The maximum magnetiza-

	\[\text{!}	Energy dis- sipated per	cycle	13356	34742	13037	17137	10289	40120	98259	42366	99401		34567	113963	41941	1	154/4	1	45740 36485	
nerties		Demag-	netizing force	1	1	1	1	1		I	I	1		37.13	46.10	40.29	6	50.39	1	12.60	
Magnetic properties		Coer.	cive	2.30	8.80	3.80	2.96	1.63	6.73	11.00	8.26	19.38	1	23.50	33.86	27.64	16	24.50	1	9.49	
-		Residual	induc- tion	7248	7479	3928	7860	2080	9840	11040	10740	8736	1	2202	5848	2158	:	540	1	11073	
		Maxi.	mum in-	18251	12408	10783	18196	19840	18736	18796	16120	16120	310	4623	10578	4769	747	1985	733	15148	
	Specific	electri-	ance × 10 ⁶	13.78	32.54	105.60	10.50	10.80	14.46	13.90	15.59	16.95	65.54	53.68	39.28	55.56	69.93	63.16	99.02	61.63	
			Phos-	ı	1	I	0+0.	7 0.	.035	"	.019	"	020.	.078	3	3	.072	=	u u	.123	
Chemical analysis			Silicon	1	1	I	None	3	.042	3	.081	3	.204	809.	3	3	.094	3	3	3.438	(continued)
Chemic			Sulfur	1		I	.030	.016	.017	ä	.005	3	.038	.023	:	3	.024	:	3	3 3	3)
			Manga- nese	1	1	I	.200	.153	.438	3	.165	*	12.360	4.730	3	3	8.740	3	3		
			Total	1		1	.045	060.	.320	3	.890	*	1.005	.674	ž	3	1.298	3	3	.685	
			Temper	Annealed	,	l	ı	Annealed	3	Oil-hard-	Annealed	Oil-hard-	1	As forged	Annealed	Coil-hard-	As forged	Annealed	Oil-hard-	As forged	
			Description of	Wrought iron	Malleable cast iron	Grav cast iron	Bessemer steel	Whitworth mild steel	27 77 77	,	, , , , , , , , , , , , , , , , , , , ,	,	Hadfield's manganese steel	Manganese steel	, , , , , , , , , , , , , , , , , , ,	,	33	99 99	3	Silicon steel	•

TABLE 493.—COMPOSITION AND MAGNETIC PROPERTIES OF IRON AND STEEL (concluded)

197660 39789 41072 36383 169455 85944 64842 167050 216864 22.03 70.69 48.45 13.87 12.24 Magnetic properties 12.24 8.98 38.15 51.20 13.67 12.24 12.24 18.40 6818 3161 5108 5554 77 6500 10750 5500 9318 3595 7568 6489 15610 12133 9148 10546 9342 385 10000 20.16 17.91 22.49 44.27 114.0 62.86 56.61 105.20 65 56 115 27.08 089 151 435 435 128 241 043 0.0 Chemical analysis .151 2.044 1.476 .764 .502 4.5 3.25 134 Sulphur None " None 028 .855 3.455 2.581 2.036 4.510 As forged As forged Very hard Hot rolled As forged Annealed Oil-hard-Annealed Oil-hard-Hardened Hardened Oil-hard-Annealed Annealed Oil-hard-Annealed in cold in tepid water ened ened ened ened J..... Mottled cast iron..... C. R. silicon steel (oriented). Gray cast iron.....f (French) steel Description of steel Silicon steel Spiegeleisen Silicon steel specimen Tungsten ! Chrome

Other substances present—a .621 Cr, b 1.195 Cr, c 4.649 W, d 3.444 W, e 2.353 W, f 2.064 graphetic carbon, g 1.447 graphetic carbon, h 99.75 Fe.

H = true intensity of magnetizing field, H' = intensity of applied field, I = intensity of magnet-

ization, H = H' - NI. Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of I to about 1/7 the value when unsaturated; for values of $B (= H + 4 \pi I)$ less than 1000, N is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for N which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically agree.

Values of $K \times 10^4$ are given where B is determined by the step method and H = H' - KB.

			Values	s of $N \times 10^4$						
				Cylinde	r					
				od						
Ratio of length		Uniform	Magneto- metric	Dubois		cal cons	range of tancy	Values of $K \times 10^4$		
to diameter	Ellipsoid	magneti-	method (Mann)	Diameter 0.3175 cm	Diameter 1.1 to 2.0 cm					
5 10 15 20 30 40 50 60 70 80 90 100 150 200 300 400	7015 2549 1350 848 432 266 181 132 101 80 65 54 26 16 7.5 4.5		6800 2550 1400 898 460 274 182 131 99 78 63 51.8 25.1 15.2 7.5	0.158 cm 0. 2160 1206 775 393 238 162 118 89 69 55 45 20 11 5.0 2.8			1960 1075 671 343 209 149 106 63 41 21	30.9 18.6 12.7 9.25 — 5.5 — 3.66 1.83	85.2 53.3 27.3 16.6 11.6 8.45 	

TABLE 495.—ELEMENTS OF THE EARTH'S MAGNETIC FIELD

The elements commonly used to describe the natural geomagnetic field are:

Symbol	Name	Remarks
D	Magnetic declination	Bearing of magnetic north with respect to geographic north, counted positive from north around by east
I	Magnetic dip or inclination Horizontal intensity	Positive when Z has downward direction
\ddot{H}	Horizontal intensity	Positive regardless of direction
\overline{X}	North intensity	Referred to geographic north
Ÿ	East intensity	Referred to geographic east
\bar{z}	Vertical intensity	Positive when downward
\ddot{F}	Total intensity	Positive regardless of direction

For a given time and place, the field is completely described by specifying the values of three magnetic elements, provided they include one from the group $D,\,X,\,Y$, and one from the group, $I,\,Z,\,F$. The ways in which the magnetic elements are interrelated may be seen from figure 20 and the formulas below. The formulas in the right-hand group are

Fig. 20.—Interrelation of the magnetic elements.

obtained from the others by differentiation; they are useful when dealing with small increments, such as those which describe annual and daily changes and minor local anomalies of the geomagnetic field. The formulas pertaining to values of ΔD and ΔI are expressed in minutes of arc.

$$X = H \cos D$$

$$Y = H \sin D$$

$$Y = X \tan D$$

$$H = F \cos I$$

$$Z = H \tan I$$

$$Z = F \sin I$$

$$Z = VX^2 + V^2$$

$$X = \cos D \Delta H - H \sin D \sin 1' \Delta D$$

$$\Delta Y = \sin D \Delta H + H \cos D \sin 1' \Delta D$$

$$\Delta F = \cos I \Delta H + \sin I \Delta Z$$

$$\Delta I = \frac{H \Delta Z - Z \Delta H}{H^2 \sec^2 I \sin 1'}$$

$$\Delta I = \left(\frac{\Delta Z}{Z} - \frac{\Delta H}{H}\right) \frac{\sin 2I}{2 \sin 1'}$$

$$\Delta Z = \tan I \Delta H + H \sec^2 I \Delta I \sin 1'$$

$$\Delta Z = \tan I \Delta H + H \sec^2 I \Delta I \sin 1'$$

^{*} Prepared by E. H. Vestine, Carnegie Institution of Washington, and David G. Knapp, U. S. Coast and Geodetic Survey.

169 For references, see bibliography following Table 511, p. 501.

TABLE 495.-ELEMENTS OF THE EARTH'S MAGNETIC FIELD (concluded)

For purposes of mathematical analysis, it is convenient to recognize that the magnetic intensity or field strength (like other vector fields) is derivable from a scalar function or potential. If V be the potential corresponding to the geomagnetic field, we may write

$$F = -\operatorname{grad} V$$

whence any of the magnetic elements may be expressed as functions of the potential. In polar coordinates (r, θ, λ) with origin at the earth's center, we have

$$V = a \sum_{n=1}^{\infty} \left\{ (r/a)^n T_n^e + (a/r)^{n+1} T_n^1 \right\} = V^e + V^1,$$

where a denotes the earth's mean radius (6.37 \times 108 cm) (see Table 827).

$$T_{n} \equiv \sum_{m=0}^{m} (g_{n}^{n} \cos m \lambda + h_{n}^{m} \sin m \lambda) p_{n}^{m} (\theta).$$

Here θ is the colatitude and λ the east longitude, and the affixes e and i refer to portions respectively of external and internal origin. The function

$$P_{n^m}(\theta) = \left\{ 2 \frac{(n-m)!}{(n+m)!} \right\}^{\frac{1}{2}} P_{n,m}(\theta) \text{ when } m > 0.$$

= $P_{n,m}(\theta) \text{ when } m = 0,$

where

$$P_{n,m}(\theta) = \frac{(2n)!}{2^n n! (n-m)!} \sin^m \theta \left\{ \cos^{n-m} \theta - \frac{(n-m)(n-m-1)}{2(2n-1)} \cos^{n-m-2} \theta + \dots \right\}.$$

Magnetic surveys of portions of the earth have been made by means of observations at many thousands of stations, the elements usually observed being D, H, and I. Such surveys are repeated in part every few years in populated areas, and at intervals of one or more decades in most areas, because of a substantial and usually unpredictable change in the earth's field known as geomagnetic secular change. These changes are most accurately measured at fixed magnetic observatories to the number of about one hundred. The U. S. Coast and Geodetic Survey operates magnetic observatories at Cheltenham, Md.; Tucson, Ariz.; Sitka, Alaska; Honolulu, T. H.; and San Juan, P. R. Other nations conduct similar measurements.

Magnetic surveys by airplane will no doubt be commonplace in future years.

The part of the earth's field having external origin does not exceed a few percent, and its existence has never been indicated with much certainty by the spherical harmonic analyses. If the distinction between contributions of external and internal origin in the first formula is disregarded, the accompanying tables give the values of the principal harmonic terms at various epochs.

The magnetic moment of the earth as given by the centered dipole approximation for 1922 was 8.04×10^{25} cgs. The axis of this dipole intersects the earth's surface at points called the geomagnetic (axis) poles, located in 1922 at latitude 78°5 N., and longitude 270°0 E.; and at latitude 78°5 S., and longitude 111° E. In comparison with these currently adopted values, the analysis of Vestine and Lange for 1945 shows only slight change that may have taken place since 1922.

The dipole part of the earth's field diminishes with height h approximately as (1 - 3h/a). Values for 1945 have been estimated in tabulation to heights as great as h = 5000 km for

spherical harmonic terms up to degree six.

The magnetic north and south poles of popular interest are those defined by H=0, or by $I=\pm 90^\circ$. As H changes with time, owing to secular change, these poles must move with time, except in the unlikely event that the lines of zero change of X and Y both happen to pass through the poles. There are a principal north magnetic pole and a principal south magnetic pole, which undergo substantial change in position with time. In addition there are undoubtedly local (secondary) magnetic poles near each principal pole. These secondary poles occur only in pairs. Of each pair, one pole has the character of a potential focus (like the corresponding principal pole), while the other is a "false pole" or node of the equipotential lines. The secondary poles do not individually undergo large-scale migration, since they are associated with localized magnetic materials in the earth's crust. These occur when such materials succeed in reducing the changing value of H to zero, as the principal migrates.

The principal north and south magnetic poles are not diametrically opposite, each being

about 2,300 km from the antipodes of the other.

[†] See bibliography, reference g, p. 501.

TABLE 496.—THE FIRST EIGHT GAUSS COEFFICIENTS OF THE EARTH'S MAGNETIC POTENTIAL (V) EXPRESSED IN UNITS OF 10-4 cgs

Source	Epoch	g_1^0	g_1^1	h_1^1	g_{2}^{0}	g_{2}^{1}	h_2^1	$g_2{}^2$	h_{2}^{2}
Gauss	1835	3235	-311	+625	+ 51	+292	+ 12	— 2	+157
Erman-Petersen	1829	-3201	284	+601	- 8	+257	_ 4	— 14	+146
Adams	1845	-3219	-278	+578	+ 9	+284	10	+ 4	+135
Adams	1880	-3168	—243	+603	— 49	+297	<i> 75</i>	+ 61	+149
Fritsche	1885	3164	-241	+591	— 35	+286	— 75	+ 68	+142
Schmidt	1885	-3168	-222	+595	50	+278	— 71	+ 65	+149
Dyson and Furner	1922	3095	-226	+592	— 89	+299	-124	+144	+ 84
Afanasieva	1945	-3032	-229	+590	-125	+288	-146	+150	+ 48
Vestine and Lange	1945	-3057	—211	+581	-127	+296	-166	+164	+ 54

TABLE 497.—SPHERICAL HARMONIC COEFFICIENTS OF THE AVERAGE ANNUAL SECULAR VARIATION EXPRESSED IN UNITS OF 10-5 cgs

Source	Epoch	g_{1}^{0}	g_1^1	h_1 1	g_{2}^{0}	g_2 1	h_2 1	g_{2}^{2}	h_2^2
Dyson-Schmidt	1922-1885	+20	— 1	— 1	10	+6	-14	+21	18
Bartels		+42	— 9	+12	— 7	+8	—25	+13	— 8
Carlheim-Gyllensköld	1920-1902	0	+13	+ 4	0	-4	-12	+13	—17
Ť	1912.5	+25	+ 1	— 7	— 7	—1	— 9	+24	-17
Vestine and Lange	J 1922.5	+28	+ 4	<i></i> 7	-10	+1	-14	+17	—17
	1932.5	+23			-14		-18		
	1942.5	+ 9	+ 2	+1	-18	0	-20	+ 2	-14
Vestine and Lange	(1912.5	$^{+28}_{+23}$	+ 4 + 1	— 7 — 5	-10	$^{+1}_{+1}$	-14 -18	$+17 \\ +10$	-17 -14

The magnetic moment of the earth (epoch 1922) = 8.06×10^{25} cgs. Latitude 78.6 N. Longitude 289.9 E. 78.6 N. Geomagnetic north pole..... {Latitude 78.6 S. Longitude 109.9 E. Geomagnetic south pole.....

TABLE 498.—COORDINATES OF NORTH MAGNETIC POLE

Date or epoch	North lati- tude	West longi- tude	Observer	Authority *
1831.4	78 05.4		J. C. Ross	A. Nippoldt ^m
1904.5	70.5	96.5	R. Amundsen	Vestine et al.f,n
1912.5 1922.5 1932.5 1942.5	70.9 71.4 71.9 72.6	96.8 97.2 97.6 97.9		Vestine et al.†
1948.0	73.0	100.0	P. H. Serson et al.	R. G. Madill, Arctic, vol. 1, p. 8, 1948.

^{*} For authorities, see bibliography, p. 501.
† Based on the above position for 1904.5 with reduction for secular change.

Date or epoch	South Iati- tude	East longi- tude	Observer	Authority *
1841.1	75 00	153 45	J. C. Ross	C. C. Farr°
1909.0	72 25	155 16	D. Mawson	C. C. Farr°
1912.5	71.2	150.7	E. N. Webb	Vestine et al.f,°
1922.5 1932.5 1942.5 1945.0	70.2 69.0 68.3 68.2	149.2 148.1 146.2 145.4		Vestine et al.†

TABLE 500 .- DIP OR INCLINATION, UNITED STATES

This table gives for the epoch January 1, 1950, smoothed values of the magnetic dip, I, corresponding to the longitudes, λ , west of Greenwich in the heading and the north latitudes, Φ , in the first column. The remarks about smoothing, in Table 502, apply to this table as well.

Φ\	λ 65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
	0 0	0	0	0	0	0	0	0	0	0	0	0	0
2	1		54.7										
2	3		57.0	56.3	55.0	54.1	52.7	51.4	50.1				
2	5		59.2	58.5	57.6	56.6	55.2	53.9	52.6	51.4	50.3	2.11	
2	7		61.1	60.8	59.9	58.8	57.6	56.3	55.0	53.7	52.6	51.6	
2	9	62.9	63.0	62.8	62.0	61.0	59.8	58.5	57.2	56.0	54.8	53.8	
3	1	64.5	64.8	64.7	63.9	63.0	61.8	60.6	59.4	58.2	57.0	55.9	
3		66.2	66.5	66.5	65.9	64.9	63.8	62.6	61.5	60.4	59.0	58.0	
3		67.8	68.2	68.2	67.7	66.8	65.8	64.7	63.6	62.4	61.1	60.0	• • •
3	o 7	69.4	69.9	69.9	69.5	68.6	67.6	66.6	65.5	64.4	63.0	61.8	• • •
3	9	70.7	71.3	71.4	71.1	70.4	69.4	68.5	67.4	66.2	64.9	63.6	62.7
Ŭ		,	71.0	, 1. 1	, 1.1	70.1	07.1	00.5	07.1	00.2	01.7	00.0	02.7
4	1	72.0	72.6	72.8	72.6	72.0	71.2	70.2	69.2	68.0	66.7	65.4	64.3
4		73.2	73.9	74.2	74.0	73.6	72.5	71.9	70.9	69.6	68.4	67.1	65.9
4		74.4	75.2	75.6	75.5	75.0	74.4	73.6	72.6	71.3	70.0	68.8	67.5
4		75.6	76.3	76.8	7 6.9	76.6	75.9	75.1	74.1	72.8	71.6	70.4	69.2
4	9 75.5	76.6	77.4	78.0	78.4	78.1	77.3	76.5	75.5	74.4	73.0	71.9	70.7

TABLE 501.—SECULAR CHANGE OF DIP, UNITED STATES

Smoothed values of the magnetic dip for the indicated places for January 1 of the years stated. The degrees are given in the third column and in the succeeding column. The remarks about smoothing, in Table 502, apply to this table as well.

Lat. 25° 25 25 31 31	Long. 80° 55 90 53 100 51 80 62 90 60	3 188 162 137 163	202' 210 176 154 178	218 178 166 185	213' 216 176 164 181	1950 210 215 173 161 178	Lat 43 43 43 43 43	70° 80 90 100 110	73 73 71 69	17' 76 39 67 50	1935 19' 80 43 69 50	1940 24' 85 46 70 51	1945 19' 80 40 63 45	1950 12' 74 33 56 39
31 37 37 37 37 37 37	100 58 110 57 80 68 90 67 100 65 110 63 120 61	7 72 8 102 7 92 5 98 8 89	77 113 101 104 91 59	165 77 122 108 107 93 62	75 118 102 101 88 57	71 114 97 96 82 51	43 47 47 49 49 49	70 80 90 100 110 120	75 76 78 76 74 71	20 49 61 23 46 35 68	16 46 60 22 45 32 62	18 49 62 21 43 31 62	14 44 57 15 37 26 58	7 36 50 7 31 21 53

^{*} For authorities, see bibliography, p. 501. † Based on the above position for 1912.5 with reduction for secular change.

Fig. 21.—World isogonic lines, epoch 1945 (lines of equal declination, D, in degrees).

SMITHSONIAN PHYSICAL TABLES

SMITHSONIAN PHYSICAL TABLES

Fig. 24.-World isodynamic lines, epoch 1945 (lines of equal vertical intensity, Z, in cgs).

Fig. 25.—World isodynamic lines, epoch 1945 (lines of equal total intensity, F, in cgs).

TABLE 502.—SECULAR CHANGE OF MAGNETIC DECLINATION IN THE UNITED STATES

Smoothed values of the magnetic declination for the indicated places for January 1 of the years stated. The degrees are given in the fourth column, together with the indication E (east) or W (west); the minutes are given in the succeeding columns. The pattern depicted by this table for any date is highly smoothed and corresponds with that shown on "datum charts" discussed in current publications of the U. S. Coast and Geodetic Survey, such as those cited.** The latter contain more detailed secular-change tables, as well as current magnetic charts which may be consulted for values reflecting a greater amount of local information than it is possible to show in tabular form.

^{**} See bibliography, references d, e, p. 501.

Locality At sea Maine Canada	Lat. 44° 46 48 40	68° 68 68 72	13°W 16 W 19 W 6 W	1920 319' 269 241 311	1930 357' 299 263 356	1940 377' 312 269 382	1950 377' 307 258 387	Locality Mexico Tex. Tex.	Lat. 28° 30 32	100° 100 100	ong. 8 E 9 E 9 E	1920 112' 75 98	1930 127' 85 103	1940 142' 98 114	1950 135' 92 108
At sea Conn. N. H.	42 44	72 72	7 W 9 W	355 349	400 392	425 413	426 410	Tex. Okla. Kans.	34 36 38	100 100 100	10 E 10 E 11 E	63 89 52	63 82 38	69 83 35	63 76 25
Canada At sea N. C. Md.	46 34 36 38	72 76 76 76	11 W 0† 0 W 1 W	357 260 324 333	393 283 351 367	409 298 366 382	401 306 372 385	Kans. Nehr. S. Dak.	40 42 44	100 100 100	11 E 11 E 11 E	74 99 129	52 71 94	47 62 79	34 46 59
Pa. Pa. N. Y.	40 42 44	76 76	2 W 3 W 5 W	350 376	389 420 402	403 434 415	404 432 409	N. Dak. N. Dak. Tex. Tex.	46 48 30 32	100 100 104 104	12 E 12 E 10 E 11 E	105 143 91 65	63 94 100 69	40 64 110 76	16 34 100 66
At sea At sea At sea	26 28 30	80 80 80	0 E 0 E 0†	357 72 39 4*	77 40 0	75 37 3	59 25 11	N. Mex. N. Mex.	34 36	104 104	11 E 12 E	98 72	97 66	100 65	90 52
At sea S. C. N. C.	32 34 36	80 80	0† 0† 0†	33 81 132	43 96 153	46 98 157	51 101 157	Colo. Colo. Nebr. S. Dak.	38 40 42 44	104 104 104 104	13 E 13 E 13 E 14 E	45 78 118 107	33 60 94 76	26 49 79 57	12 31 58 31
Va. Pa. Pa.	38 40 42	80 80 80	0† 0† 0 W	191 255 326	218 289 365	221 293 371	219 288 365	N. Dak. N. Dak.	46 48	104 104	15 E 15 E	98 154	61 110	37 79 108	6 44 95
Canada Fla. Ga.	44 30 32	80 84 84	1 W 2 E 1 E	352 28 62	396 31 59	403 39 66	394 35 66	Mexico N. Mex. N. Mex. N. Mex.	34	108 108 108 108	11 E 12 E 12 E 13 E	95 74 111 90	75 109 84	79 109 80	65 95 63
Ga. Tenn. Ky. Ohio	34 36 38 40	84 84 84 84	1 E 0 E 0† 0†	32 59 18* 24	23 44 5 55	30 50 0 52	32 54 6* 44	Colo. Colo. Wyo.	38 40 42	108 108	14 E 15 E 15 E	69 56 111	59 40 90	51 26 73	32 5 47
Mich.	42	84 84	0† 0†	77 141	114 183	113 187	105 178	Wyo. Mont. Mont.	44 46 48	108 108 108	16 E 17 E 18 E	113 114 117	86 81 78	66 56 47	35 21 8
Mich. Ala. Ala. Ala.	46 30 32 34	84 88 88 88	0† 4 E 4 E 4 E	212 42 28 12	260 50 30 7	270 64 42 18	263 64 44 22	Ariz. Ariz.	32 34 36	112 112	12 E 13 E 14 E	125 107 91	125 104 84	126 103 78	112 86 60
Tenn. Ind. Ill.	36 38 40	88 88 88	3 E 3 E 2 E	54 34 70	42 14 41	53 23 47	58 29 52	Utah Utah Utah Idaho	38 40 42 44	112 112 112 112	15 E 16 E 17 E 18 E	80 76 79 84	70 62 61 61	60 49 44 41	39 25 16 9
III. Wis. Mich.	42 44 46	88 88 88	2 E 1 E 0 E	41 70 87	6 28 37	8 25 28	12 27 26	Mont.	46 48	112 112	19 E 19 E	96 163	67 129	41 99	5 59
Mich. La. La.	48 30 32	92 92	0† 6 E 6 E	35* 47 44	57 49	35 74 64	42 74 66	Mexico Calif. Calif. Nev.	32 34 36 38	116 116 116 116	12 E 13 E 14 E 15 E	164 151 141 137	162 146 134 127	163 144 128 118	148 128 109 97
Ark. Ark. Mo. Mo.	34 36 38 40	92 92 92 92	6 E 6 E 6 E	39 40 39 34	37 29 20 8	51 38 27 12	55 42 29 12	Nev. Nev. Idaho	40 42 44	116 116 116	16 E 17 E 18 E	138 140 152	126 124 133	113 109 114	89 81 83
Iowa Minn.	42 44	92 92	5 E 5 E	87 76	52 34	50 28	49 22	Idaho Mont. At sea	46 48 34	116 116 120	19 E 21 E 13 E	168 119 189	143 90 184	120 61 180	85 23 163
Minn. Minn. At sea Tex.	46 48 28 30	92 92 96 96	4 E 4 E 7 E 7 E	128 116 85 96	79 60 101 107	64 37 119 123	53 21 115 121	Calif. Calif. Calif.	36 38 40	120 120 120	14 E 15 E 16 E	184 182 180	177 1/2 168	171 163 156	152 143 132
Tex. Okla. Okla.	32 34 36	96 96 96	8 E 8 E 8 E	48 61 75	54 61 66	67 70 71	66 69 69	Calif. Oreg. Wash Wash.	42 44 46 48	120 120 120 120	17 E 18 E 19 E 21 E	184 200 213 168	169 181 192 142	154 163 172 116	129 135 140 80
Kans. Kans. Iowa	38 40 42	96 96 96	9 E 9 E 9 E	27 38 48	10 13 16	12 12 11	9 6 2	At sea Calif.	38 40	124 124 124	15 E 16 E	212 211 215	202 199 201	194 187 187	175 167 164
Minn. Minn. Minn.	44 46 48	96 96 96	8 E 8 E 8 E	120 134 154	81 88 100	70 69 71	57 50 48	Calif. Oreg. Oreg. Wash.	42 44 46 48	124 124 124 124	17 E 18 E 19 E 20 E	215 229 241 256	201 212 222 234	187 194 203 210	170 175 179

The daily variation is not predictable in detail since it fluctuates in form and amplitude from day to day. However, the variations shown in this table appear with considerable regularity when the data are averaged over several months or years. Values are based on the 10 least-disturbed days of each month of the interval 1918-1928, using photographic registrations obtained at three of the magnetic observatories listed in Table 510. A plus sign signifies that east declination is greater, or west declination less, than the mean for the day.

		anuary, Fel			March, Apri tember, Oct			May, June, July, August			
Hour, local	Sitka,	Chelten-	Tucson,	Sitka,	Chelten-	Tucson,	Sitka,	Chelten-	Tucson,		
mean time	Alaska	ham, Md.	Ariz.	Alaska	ham, Md.	Ariz.	Alaska	bam, Md.	Ariz.		
2 a. m.	.0	2	3	.0	+ .4	$\begin{array}{c} + .1 \\ + .3 \\ +1.5 \\ +4.0 \\ +1.4 \\ -2.3 \end{array}$	9	+ .3	+ .1		
4 a. m.	+ .2	+ .2	2	+ .5	+1.0		+ .6	+1.0	+ .6		
6 a. m.	+ .7	+ .8	+ .2	+2.4	+2.3		+4.9	+4.1	+2.6		
8 a. m.	+1.8	+2.5	+1.9	+4.8	+4.7		+7.7	+5.9	+4.7		
10 a. m.	+1.7	+2.5	+2.3	+3.6	+2.2		+4.8	+1.3	+ .4		
Noon	2	-2.0	-1.1	6	-3.7		-1.8	-4.7	-3.2		
2 p. m. 4 p. m. 6 p. m. 8 p. m. 10 p. m. Midnight	-1.5 -1.6 9 3 .0 1	-3.2 -1.5 2 + .5 + .6 + .2	-2.2 -1.0 .0 + .3 + .2 1	-2.9 -3.2 -2.3 -1.3 8 3	-4.7 -2.2 6 .0 + .3 + .4	-2.8 -1.4 6 2 1	-5.2 -5.1 -2.5 -1.0 -1.0	-5.4 -2.5 2 4 .0 + .2	-3.2 -1.4 3 4 2 1		

^{*} Expressed in minutes.

TABLE 504.-HORIZONTAL MAGNETIC INTENSITY, UNITED STATES

This table gives for the epoch January 1, 1950, the smoothed horizontal intensity, H, expressed in cgs units, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column. The remarks about smoothing, in Table 502, apply to this table as well.

$\Phi \setminus y$	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
21°			.267										
23			.262	.267	.274	.282	.288	.293	.296				
25			.254	.259	.266	.273	.278	.284	.288	.290	.290	:::	
27		:::	.246	.251	.257	.264	.270	.276	.280	.282	.282	282	
29	• • •	.232	.236	.241	.247	.254	.260	.266	.271	.273	.274	.276	• • •
21		222	226	221	225	244	240	055	2.0	0.15	0.45	260	
31	• • •	.222	.226	.231	.237	.244	.250	.257	.262	.265	.267	.269	
33		.212	.215	.220	.225	.232	.239	.246	.252	.256	.259	.261	
35		.202	.204	.208	.213	.220	.227	.234	.241	.246	.250	.253	
37		.192	.193	.196	.201	.207	.214	.222	.229	.236	.240	.244	
39		.181	.181	.184	.188	.194	.201	.210	.217	.224	.230	.234	.238
41	111	.171	.170	.171	.176	.181	.188	.196	.204	.212	.219	.224	.230
43	.165	.161	.160	.160	.162	.167	.174	.182	.191	.200	.207	.214	.219
45	.156	.151	.148	.148	.149	.153	.160	.168	.177	.186	.195	.202	.208
47	.145	.140	.137	.135	.135	.140	.146	.154	.164	.174	.182	.190	.197
49	.134	.129	.126	.123	.122	.126	.133	.140	.150	.160	.170	.178	.185

TABLE 505.—SECULAR CHANGE OF HORIZONTAL INTENSITY, UNITED STATES

Smoothed values of horizontal intensity in cgs units at the indicated places for January 1 of the years stated. The remarks about smoothing, in Table 502, apply to this table as well.

							-							
Lat.	Long.	1930	1935	1940	1945	1950	I	at.	Long.	1930	1935	1940	1945	1950
25°	80°	.2653	.2612	.2589	.2586	.2587	4	3°	70°	.1627	.1613	.1601	.1608	.1613
25	90	.2801	.2761	.2741	.2735	.2731	4	3	80	.1621	.1604	.1589	.1595	.1598
25	100	.2908	.2878	.2861	.2851	.2843	4	3	90	.1693	.1675	.1664	.1671	.1671
31	80	.2361	.2325	.2303	.2304	.2306		3	100	.1838	.1822	.1814	.1820	.1820
31	90	2494	.2461	.2442	.2441	.2438		3	110	.2015	.2002	.1994	.1997	.1996
31	100	.2622	.2595	.2578	.2573	.2567		3	120	.2154	.2143	.2135	.2136	.2136
٠.			.=0>0			12007		•			.5110	.2103	.2100	.2100
31	110	.2698	.2677	.2662	.2656	.2648		7	70	.1405	.1398	.1389	.1398	.1403
37	80	.2003	.1974	.1954	.1958	.1960		7	80	.1362	.1352	.1342	.1350	.1353
37	90	.2111	.2084	.2068	.2071	.2070		ģ	90	.1256	.1249	.1243	.1253	.1255
37	100	.2262	.2239	.2226	.2227	.2223		9	100	.1406	.1398	.1394	.1403	.1405
								-						
37	110	.2389	.2372	.2361	.2359	.2355	2	9	110	.1601	.1592	.1587	.1594	.1597
37	120	.2473	.2460	.2449	.2446	.2442	4	9	120	.1783	.1775	.1771	.1775	.1777

TABLE 506 .- VERTICAL MAGNETIC INTENSITY, UNITED STATES

This table gives for the epoch January 1, 1950, the smoothed vertical intensity, Z, expressed in cgs units, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column. The remarks about smoothing, in Table 502, apply to this table as well.

65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
		.378	200	201	200	270	265	:::				
• • •									262	2.40		
											356	
• • •		. 100	. 100			,	. 10 1		. 10 1	.007	.070	
	.465	.480	.488	.484	.478	.467	.456	.442	.427	.411	.398	
												.461
• • •	.510	.550	.575	.540	.575	.550	.551	.521	.309	.471	.4/3	.401
	.527	.544	.557	.559	.558	.551	.546	.536	.524	.509	.490	.476
			.566	.569	.566	.563	.558	.551	.538	.523	.506	.490
												.503
												.518
.518	.542	.505	.581	.393	.590	.591	.580	.581	.5/0	.550	.543	.527

TABLE 507 .- SECULAR CHANGE OF VERTICAL INTENSITY, UNITED STATES

Smoothed values of vertical intensity in cgs units at the indicated places for January 1 of the years stated. The remarks about smoothing, in Table 502, apply to this table as well.

Lat.	Long.	1930	1935	1940	1945	1950	Lat.	Long.	1930	1935	1940	1945	1950
25°	80°	.4243	.4240	.4236	.4228	.4222	43°	70°	.5417	.5382	.5370	.5365	.5343
25	90	4174	.4171	.4162	.4148	.4139	43	80	.5754	.5719	.5698	.5687	.5660
25	100	.3959	.3952	.3933	.3914	.3896	43	90	.5771	.5734	.5715	.5702	.5659
31	80	.4902	.4889	.4887	.4881	.4875	43	100	.5696	.5658	.5639	.5618	.5579
31	90	.4835	.4823	.4810	.4794	.4778	43	110	.5486	.5451	.5434	.5413	.5381
31	100	.4644	.4624	.4603	.4582	.4559	43	120	.5158	.5115	.5104	.5085	.5061
0.	200	•											
31	110	.4351	.4332	.4307	.4292	.4268	47	70	.5559	.5511	.5496	.5498	.5464
37	80	.5415	.5389	.5378	.5370	.5356	47	80	.5907	.5856	.5828	.5824	.5784
37	90	.5368	.5341	.5332	.5312	.5287	49	90	.6110	.6067	.6029	.6024	.5964
37	100	.5236	.5207	.5189	.5167	.5137	49	100	.5979	.5937	.5905	.5897	.5860
37	110	.5005	4977	.4961	.4938	.4908	49	110	.5806	.5754	.5729	.5722	.5701
37	120	.4654	.4623	.4612	.4591	.4564	49	120	.5531	.5474	.5461	.5452	.5431
٠.													

TABLE 508.-TOTAL MAGNETIC INTENSITY, UNITED STATES

This table gives for the epoch January 1, 1950, the smoothed total intensity, F, expressed in cgs units, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column. The remarks about smoothing, in Table 502, apply to this table as well.

$_{\Phi}\backslash^{\lambda}$	65°	70°	75°	80°	85°	90°	95°	100°	105°	110°	115°	120°	125°
21° 23			.463 .480	.480	.477	.481	.475	.469	.461		• • •	• • •	• • •
25			.495	.495	.496	.496	.489	.482	.473	.464	.453		
27 29		.510	.508 .520	.514 .526	.512 .526	.509 .524	.504 .518	.497 .509	.487 .501	.476 .488	.464 .476	.454 .466	
	• • •												
31 33		.515 .525	.530 .539	.539 .550	.539 .552	.536 .547	.530 .543	.523 .536	.514 .528	.502 .517	.490 .503	.480 .493	
35 37	• • •	.533 .544	.550 .561	.562 .570	.562 .572	.558 .568	.535 .564	.549 .560	.541 .552	.531 .544	.518 .530	.505 .518	
39		.549	.566	.575	.579	.578	.572	.571	.564	.556	.542	.528	.519
41		.554	.570	.582	.586	.586	.582	.580	.574	.566	.554	.539	.529
43 45	.543 .543	.558 .562	.576 .581	.588 .592	.591 .594	.590 .596	.589 .594	.587 .595	.583 .591	.574 .581	.563 .571	.549 .559	.537 .545
47	.541	.564	.580	.594	.599	.601	.601	.602	.599	.585	.577	.565	.554
49	.535	.557	.579	.594	.607	.609	.606	.603	.600	.592	.581	.572	.559

TABLE 509.—SECULAR CHANGE OF TOTAL INTENSITY, UNITED STATES

Smoothed values of total intensity in cgs units at the indicated places for January 1 of the years stated. The remarks about smoothing, in Table 502, apply to this table as well.

Lat.	Long.	1930	1935	1940	1945	1950	Lat.	Long.	1930	1935	1940	1945	1950
25°	80°	.5004	.4980	.4964	.4956	.4951	43°	70°	.5656	.5619	.5604	.5601	.5581
25	90	.5026	.5002	.4984	.4968	.4959	43	80	.5978	.5940	.5915	.5907	.5881
25	100	.4912	.4889	.4864	.4843	.4823	43	90	.6014	.5974	.5952	.5942	.5901
31	80	.5441	.5414	.5402	.5398	.5393	43	100	.5985	.5944	.5923	.5906	.5869
31	90	.5441	.5415	.5394	.5380	.5364	43	110	.5845	.5807	.5788	.5770	.5740
31	100	.5332	.5303	.5276	.5255	.5232	43	120	.5589	.5545	.5532	.5516	.5493
31	110	.5120	.5092	.5064	.5047	.5023	47	70	.5734	.5686	.5669	.5673	.5642
37	80	.5773	.5739	.5722	.5716	.5703	47	80	.6062	.6010	.5981	.5979	.5940
37	90	.5768	.5733	.5719	.5701	.5677	49	90	.6237	.6194	.6156	.6153	.6095
37	100	.5703	.5668	.5647	.5626	.5597	49	100	.6142	.6099	.6067	.6061	.6026
37	110	.5546	.5513	.5494	.5473	.5444	49	110	.6022	.5970	.5945	.5940	.5920
37	120	.5271	.5237	.5222	.5202	.5176	49	120	.5812	.5754	.5741	.5734	.5715

TABLE 510.—MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES **

The usual conventions are followed as explained in connection with Table 502.

In addition to permanent geomagnetic observatories, there are given the numerous series of magnetic records obtained for the better part of a year by special expeditions, as, for example, those obtained during the two International Polar Years of 1882-83 and 1932-33; all are listed in decreasing order of north latitude.

Generally, values are from continuous magnetograph records for all days, and are for mean of year.

The many special notes applying to individual observatories have been omitted in the tabulation; these may be obtained from the references cited below if desired. However, the following general types of notes should be taken cognizance of:

* — Observatory so marked is in a region of local magnetic disturbance.

a) = Means quoted here are for all days, and may differ slightly from previously published means for 10 quiet days, given in official publication of U. S. Coast and Geodetic Survey. --- A break occurred between the preceding and following years due to change in procedure, method, standard, or site.

	Total F	57200	55000	55067	56270	53555	53180	57789	58100	57271	52455	57852	57610 55055	54977	56971
ntensity	Vertical Z	+56798	+56395 +54616	+54699	+56118	+52926	+52524	+57649	+57972	+57070	+51588	+57430	+57229 +54325	+54251	+56219
Components of intensity	East Y														
Con	North X	6242	6709 6159	5844	200	8144	8538	3631	3490 687	4188	9493	6125	5/72 8263	8213	9808
	Horizontal H	9929	7161 6605	6355	4136	8187	8328	4024	3850 4570	4799	9468	6971	6614 8935	8902	9223
	Inclination I	+83°12'4	+82 45.8 +83 06.3	+83 22.4	+85 47.1	+81 12.4	+80 59.4	+86 00.4	+86 12.0 +85 18.9	+85 11.6	+79 34.1	+83 05.0	+83 24.5 +80 39.6	+80 40.9	+80 41
	$\begin{array}{c} \text{Declination} \\ D \end{array}$	+22°42′0	+20 28.4 +21 07.3	+23 07.7	99 49.5	- 5 54.6	- 4 53.7	+25 32.1	+24 57.5 -81 21.2	+29 14.2	-153.9	+28 31.6	+29 14.0 +22 21.9	+22 41.1	+28 45
	Year	1904	1905 1933	1941	$\frac{1923}{1924}$	$\frac{1932}{1933}$	1932) 1933 [1935	1940 1933	1939	1932 (1933	1938	1940	1932 \ 1933 \
	Longitude east	57°59′	52 52 48 8		287 37	15 42	16 45	104 17	291 06	80 56	19 14	80 25	56 24		203 43
	Latitude $(+ = N, - = S)$. +81°48′	75 78 78 78 78 78 78 78 78		. +78 32	. +78 28	. +77 54	. +77 17	. +76 32	. +76 26	. +74 29	. +73 30	. +73 16		. +71 23
	Observatory	Teplitz Bay (Camp Abruzzi)	Alger Island		Refuge Harbor (Greenland)	Cape Thordsen (Spitsbergen)	Sveagruvan (Spitsbergen)	Chelyuskin	Thule	Jekman Island	Bear Island (Björnöya)	Dickson	Matochkin Shar		Point Barrow

^{**} For references, see bibliography, p. 501.

(continued)

TABLE 510.—MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

							Comp	onents of int	ensity	
	Latitude $(+ = N,$	Longitude		Declination	Inclination	Horizontal H	North X	East	Vertical Z	Total
Observatory	S = S	east		D	I	~	ح	٨	۲	٨
Jan Mayen	+70°59′	351°40′		-21°43′8	+76°53′5	11726	10890	-4340	+50352	51699
Scoresby Sund (Greenland)	+70 29	338 02		-34 33.2	+78 17.9	10576	8710	5998	+51063	52147
Tromsö	+69 40	18 57		$-\frac{4}{9}$ 07.7	1	11567	11537	- 833	•	•
				$-\frac{2}{10.6}$		11244	11236	— 427	+50424	51662
	•			24.5		11213	11207	_ 373	+50647	51698
Petsamo	•			+ 5 40.2		11341	11284	+1140	+50838	52088
Godhavn	+03 160 14	306 20		57 41 1		2002	4308	-1215	+49555	51042
				-55 28.0		8174	4634	-6734	+55193	55795
King Point	469 07	221 52		+42 25		8448	6237	+5698	+59061	59662
Gjöhavn		_		90 9 -		750	746	⊗	+60434	60439
Sodankyla		-		+ 2 36.5		12207	12194	+ 556	+49202	50693
				1.67 + +		70011	1104/	4 715	+4x030	51033
Kandalaksha	+62 09	32 26		+ 6 44.0		12318	12233	+1444	+50118	51609
Wellen	+66 10	190 10		+15 41.2		13707	13196	+3706	+53460	55189
:				$(+15\ 37.5$		13720	13213	+3695	+53478	55210)
Angmagssalık	+65 3/	322 22		-39 52.9		10705	8215	-6864	+51699	52796
				(+29 46.1 (+29 46.1		12587	10926	+020/ +6249	+55395	567.56)
Bowdoin Harbor (Baffin Island)	+64 24	282 08		-52 12.1	+85 29.2	4722	2894	-3731	+59824	60010
Chesterfield Inlet	+63 20	269 18	1932	-12 36.1		3834	3742	— 836	+60762	60883
Fort Rae		243 56		+37 30.7		7734	6135	+4709	+59956	60453
Srednikan	+62 26	152 19		_ 9 04.1		16147	15945	-2545	+54169	56524
Dombås	+62 05	90 6		(- 7 08 (- 7 08		13900	13792	-2034 -1726	+541/9 +47250	50005) 49252)
Yakutsk	+62 01	129 43		(-6 16 - 17 08.0		13837	13754	-1510 -4272	+47450	49426)
Julianehaab	+60 43	313 58		(—17 36.4 —43 20.8	+77 38.1	14524	13844 8447		+52989	54247
				(continued)						

TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

							Comp	onents of in	tensity	
	Latitude					_	North	East	Vertical	Total
Observatory	(+ = N, - = S),	Longitude east	Year	Declination D	Inclination I		ح ب	ح ،	ح د	ح ,:
Lerwick	+60°08′	358°49′	1930	-14°11.2	$+72^{\circ}41'6$		14084	-3561	+46624	48835
			1944	-11 39.3	+72 58.0		14084	-2905	+46937	49091
	1	:	1946	-11 21.3	+73~00.2		14083	-2828	+46990	49136
Oslo (Christiania)	+59 55	10 43	1929	- 8 07.0 7 58.0	:		15774	2250	:	:
(Possing)	150 41	30 20	1030	2 040	1.72 14 1		15200	1352	+47631	50016
Sittsk (Faviovsk, succeed Lemingrad)	+32 41	30 23	1941	+ 5 16.8	+72 18.2		15163	+1401	+47725	50096
Lovö	+5921	17 50	1940	$\frac{1}{2}$ 28.1	+71 52.6		15312	_ 393	+46979	49241
			1946	-042.4	+72 03.2		15230	- 188	+47024	49429
Sitka *)	+57 03	224 40	1920 1930	+30 28.5 +30 15.6	+74 22.3 +74 22.8	15568 15449	13417 13344	+7896 +7785	+55655 +55256	57791 57375
			1945	+29 30.2	+74 15.4		13501	+7640	+55029	57174
			1947	(+29 22.6	+74 15.8		13510	+7605	+55016	57159)
Sverdlovsk (Katharinenburg)	+56 50	60 38	1899	+ 9 59.6	+70 42.0		17525	+3088	+50815	53840
			1929	+1057.2	+72 20.3		15988	+3094	+51145	53676
			1931	+1054.6	+72 26.9		15907	+3066	+51220	53721
Vyssokaya Dubrava (succeeding Sverdlovsk)	+56 44	61 04	1940	+12 57.2	+72 31.9	16085	15676	+3606	+51116	53587
(2000)			1944	+13 03.0		16030	15616	+3620	+51360	52803
Rude Skov (succeeding Copenhagen)	+55 51	12 27	1930	_ 6 00.4		16893	16800	-1768	+44747	47829
			1944 1946	3 34 8		16680	16647	1041	+45518 +45386	48354
Zaimishche (new site of Kasan)	+55 50	48 51	1940	+ 9 27.5		16651	16425	+2736	+48441	51601
			1945	$(+\ 9\ 40.9$		16560	16324	+2785	+49096	51814)
Kasan	+55 47	49 08	1909	+ 8 05.1	- 1	18118	17938	+2548	+47575	20308
			1913	+ 8 10.9		17959	17776	+2556	+47535	50815
Kutchino	+55 46	37 58	1927	+ 6 36.1		17875	17756	+2055	+46545	59859
Copenhagen		-	1900	-10 12.2		1/513	17236	-3102	+44803	48104
Eskdalemuir		-	1930	-14 47.1		16585	16036	74532	+44881	4/84/
ş			1750	7 10.3		1001/	10150	715	14010+	12504
Gross Kaum	+54 50 +54 50	06 07	1925	- 2 18.3 - 0 43.1	+08 01.9 +68 33.5	17530	17529	$\frac{-}{221}$	+44636	47955
Flensburg	+54 47	9 26	1903	-11 28.0	-	:	:	:	:	:
				(continued)						

Components of intensity

TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

								}		(
	Latitude					Horizontal	North	East	Vertical	Total
	(+ = N.	Longitude		Declination	Inclination	Ľ,	<	*	7	4
Observatory	S = S	east	Vear	D	I	٨	٨	~	۲	7
Meanook	+54°37	246°40′	1920	$+27^{\circ}38.6$	+77°53′6	12923	11445	+5996	+60246	61617
		2	1942	+25 33.6	+77 51.8	12729	11482	+5492	+59188	60541
Hel			1934	-235.5	+68 25.2	17553	17535	- 794	+44384	47729
Neufahrwasser			1903	-713	:	:	:	:	:	:
Barth			1903	-952.9	+67 37.6	18261	17990	-3134	+44363	47974
Wustrow	+54 21	12 24	1903	-10 08	:	:	:	:	:	:
Rostock	_		1903	-10 08	:	:	:	:	:	:
Stonyhurst			1920	-1552.9	+68 43.5	17303	16640	-4734	+44429	47679
			1943	-11 30.5	+68 54.5	17166	16820	-3425	+44504	47699
Wingst	+53 45	9 04	1939	-559.1	+68 12.0	17636	17540	-1839	+44092	47488
			1946	-459.7	+68 21.2	17601	17534	-1532	+44347	47712
Stettin-Zabelsdorf			1901	- 8 43	:	:	:	:	:	:
Witteveen	+52 49	6 40	1940	-709.2	+67 39.2	17959	17820	-2236	+43686	47233
			1946	-614.7	+67 45.0	17946	17840	-1952	+43867	47396
Zuy (new site of Irkutsk)	+52 28	104 02	1899	+ 208.8	+70 27.8	19948	19934	+ 747	+56220	59654
			1930	(+0.17.7)	+71 21.5	19019	19019	86 +	+56380	59500)
			1945	(-047.7)	+71 34.4	19028	19026	- 264	+57109	(96109
Potsdam (succeeding Berlin)	+52 23	13 04	1899	-10~00.7	+66 25.7	18818	18531	-3271	+43133	47060
			1920	-729.4	+66 33.5	18606	18447	-2425	+42912	46772
			1927	-609.1	+66 44.0	18489	18383	-1981	+43002	46809

The Potsdam Observatory was set up in 1889 but electric-tram disturbances beginning in 1906 forced transfer of registration to Seddin, which, in turn, for the same reason had to be transferred in 1932 to Niemegk. -2440 18485 18645 +66 30.6 1920 13 01 Seddin+52 17

46888	59682	59360	47310	:	46801	46945	47182	<u>:</u> ::
+43106	+56293	+56081	+43565	:	+43084	+43263	+43431	:
-1762	+ 617	+ 355	<u> </u>	:	-2998	-2561	-1337	-1167
18365	19814	19455	18465	:	18034	18045	18386	18374
18450	19824	19458	18476	:	18282	18226	18434	18411
-			+67 01.1	•	_	_	+67 00.1	•
Ŋ		-	-157.3	0	6	∞	4	3
1931	1910	1920	1930	1943	1930	1938	1940	1944
	104 16		21 15		5 11		12 40	
	Irkutsk (old site)+52 16		Swider+52 07		De Bilt (succeeding Utrecht) +52 06		Niemegk (succeeding Seddin) +52 04	

(continued)

TABLE 510.--MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

Components of intensity

							~		
Latitude					Horizontal	North	East	Vertical	Total
	Longitude	1	Declination	Inclination	Н	×	^	7	H
	east	Year	D		~	۲	~	۲	~
Valencia Cahirciveen +51°56'	349°45′	1930	$-17^{\circ}27.6$		17813	16992	-5345	+44081	47546
		1937	-1611.7		17802	17096	4965	+43987	47453
Nizhnedevitsk+51 31	38 22	1935	+ 5 33.6		18588	18501	+1801	+45060	48743
		1940	+ 5 54.0		18472	18374	+1899	:	:
	7 14	1934	-752.4		:	:	•	:	•
Kew +51 28	359 41	1910	-1603.2		18503	17781	-5117	+43546	47313
		1924	-1345.1		18392	17865	-4372	+43205	46957
Greenwich +51 28	00 0	1920	-1408.6		18450	17890	-4510	+43250	47020
		1925	-13 09.9		18410	17930	-4190	+43080	46850
Abinger (succeeding Greenwich) +51 11	359 37	1940	-10 43.0		18533	18210	-3446	+43099	46915
-		1946	-951.1		18469	18295	-3177	+43235	47054
Uccle (Brussels)+50 48	4 21	1910	-13 22.2	+66 00.8	19028	18512	-4400	+42764	46807
		1941	-802.4		:	:	:	:	:
Hermsdorf+50 46	16 14	1927	-429.3		:	:	:	:	:
;	;	1929	-410.6		:	:	:	:	:
+ 20	13 58	1934	- 4 42.5		:	:	:	:	:
+20	18 55	1911	- 5 48.0		: : :	:	:	:	:
Manhay (succeeding Uccle) +50 18	5 41	1942	-706.6		19106	18959	-2365	+42733	46810
iklow+50	18 54	1932	-228.0		:	:	:		•
20	354 55	1899	-18 32.7		18663	17694	-5936	+43569	47398
		1912	-1724.2		18799	17938	-5623	+43118	47038
Prague+50 05	14 25	1899	$-\ 9\ 11.9$		19926	19670	-3185	:	:
1		1926	- 5 27.7		:	:	:	:	:
		1913	-503.3		:	:	•	:	
Janów+49 54	23 44	1933	+ 0 06.4		20110	20110	+ 37	+42830	47316
		1899	-1703.7		:	:	:	:	:
		1907	+1627.4		:		:	:	:
•	;	0			i i	1000	0	00,00	1
(superseded by Val Joyeux) +48 49	2 30	1900	—I4 45.4	+64 53.5	19738	1908/	-2078	+42120	46515
-	6	1000	0		10201	10021	27.43	1 41530	75036
(succeeding Farc St. Muir) +49 49	7 01	1930	0.56.7		19647	19271	3303	+41329 -41668	45930
Vienna (Ambof) +48 13	16 14	1940	2 35.6	+63 48.9	20473	20452	- 926	+41634	46395
		1942	-220.9	+63.52.5	20467	20450	- 839	+41732	46481
			(continued)						

TABLE 510.—MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

	Total γ γ 45593	45/54 46275 45678 	45721	45959	45674	45802	46011	51365	47165	47237	44532 44686	58535	45046 45091	45218 52028	52144 44836	:
itensity	Vertical $\frac{\gamma}{Z}$ + 40813	+41005 +41578 +40750	+40752	+41374 +41658	+40521	+41058	+41250 +44643	+44764	+42098	+42206 +38899	+38690 +38818	+56503	+39087 +39408	+39498	+4400 <i>z</i> +38829	:
Components of intensity	East Y Y -2432	—2118 —1497 —3415	-3257	3296 2801	-2413	-3677	-3337 -4052	-4154 + 220	869. –	.— 595 —3662	-2466 -2360	-2212 -2006		-5324 -4049	4080 5313	 • •
Сош	North χ γ 20168	20188 20259 20353	20475	19737 19889	20937	19963	20108 24737	24846 21412	21256	21205 21815	22011	22086 15158	21895 21235	21360	21779	:
	Horizontal 7 20314	20239 20314 20638 	20730	20011 20085	21076	20299	20383 25067	25191 21413	21267	21213 22120	22049 22137	22196 15290	22390 21913	22013 26826	22418	:
	Inclination 1 463°32'5	+63 57.7 +63 08.4 +63 0.0.4	+63 02.3	+64 11.3 +64 15.6	+62 31.2	+63 41.5	+63 42.3 +60 41.1	+60 37.9 +62 55.0	+63 11.9	+63 18.9 +60 22.5	+60 19.3 +60 18.3	+74 51.5	+7+ 30.0 +60 11.7 +60 55.4	+60 52.1 +58 57.7	+ 28 25.0 + 60 00.0	: :
	Declination Declination Declination	- 9 33:5 - 9 31:5 - 8 03:8	- 6 54.7 - 9 02.4	_ 9 28.9 _ 8 01.0	- 6 34.5 - 5 21.1	$(-\frac{2}{2}\frac{16.8}{16.2})$ $-10\frac{26.2}{26.2}$	_ 9 25.3 _ 9 18.2	- 9 29.5 + 0 35.4	$\frac{-}{-}$ 9 03.6 $-$ 1 52.9	-136.4 -931.7	$\frac{625.3}{607.2}$	- 5 43.2 - 7 32.3	-12 04.0 -14 17.7	—13 59.7 — 8 40.9	-13 42.5	(continued)
	Year 1927	1932 1944 1920	1904	1936 1946	1910	1937	1947 1940	194 4 1938	1941 1923	1925 1899	1922	1943	1899	1905	1885	0161
	Longitude east 11°15'	11 17 11 36	14 08	2 16	18 12	18 11 358 27			142 46 30 46	13 51	8 56	280 44	7 16 1 28	132 20	2 53	
	Latitude $(+ = N, - = S)$ - = S)	+48 10 +48 09	+48 03	+48 01	+47 52	+47 52 +47 15			+46 39 +46 26	+44 52	+44 26	+43 47	+43 43		+42 42	
	Observatory Maisach	Fürstenfeldbruck	Kremsmünster Chambon-la-Forêt	(Succeeding Val Joyeux)	O'Gyalla (Pesth)	O'Gyalla (Stará Dăla)	Toyohara	Toyohara (new site)	Otomari Odessa	Pola	Castellaccio	Agincourt	Nice Toulouse	Mai-Tun (succeeding Vladivostok)	Perpignan	

TABLE 510.--MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

						Horizontal	Compo	Components of intensity	tensity	Total
Latitude $(+ = N, Observatory - = S)$		Congitude east	Year	$\begin{array}{c} \operatorname{Declination} \\ D \end{array}$	Inclination I	H	X X	Y Y	vertical Z Y	F F
eeding Karsani)		4°42′		+ 4°56.2	+59°21'3 +59°369	24142	24052 24043	+2078 +2109	+40749	47364
Karsani (succeeding Tiflis) +41	50 44	44 42		+ 4 26.0	+58 41.2	24570	24496	+1899	+40390	47276
)		φ φ		+ 2 41.6 + 2 41.6	+35 32.1 +56 02.8	25451	25423	+ 370 +1196	+37799	45569
Keles (succeeding Tashkent) +41 2	25 69	9 12		+ 5 23.5	+60 11.9	25359	25247	+2383	+44276	51024
+41		69 18		(+ 5 05.2 + 6 02.0	+57 34.0 +57 34.0	26780	26632 26632 22701	+2815	+42171	49956
04+		5 5	1921	13.6	+30 23.0 +56 11.8	24103	23/31	7000	-30304	43003
1 ortosa (Ebro)+10 .	,	000		$\frac{-15}{(-756.1)}$	+50 07.0	23724	23497	3275	+36879	43851)
Coimbra+40]	12 351	1 35		-17 24.2	+59 28.9	22724	21684	76297	+38549	44748
				-12 34.0 -12 02.3	+3/ 30./	23449	22933	300 1 4891		00000
Baldwin+38	47 264	4 50		+ 8 21.9	+68 34.5	21931	21698	+3190	+55890	60038 50951
Cheltenham +38	44 283	3 10		5 05.0	+70 21.6 +71 21.6	20194	20115	-1789 -2242	+56586	60081
				0.00 - 0 - 0.00 -	+71 22 9	18176	18037	-2240 -2240	+53953	56932)
				(-704.3)	+71 18.4	18221	18082	-2243	+53852	56851)
+38	43 350	0 51		-17 17.5 - 5 42 3	+57 55.6 +52 07.7	23518	22455 25934	—6990 —2591	+37530 +33514	44290 42455
				-453.0	+52 11.7	26197	26102	-2230	+33613	42616
San Miguel (Ponta Delgada) +37	46 334	4 21		-1956.0	+60 59.1 -58 47 4	22993	21615	-7839 -6956	+41456 +39333	47405 45989
Zinsen+37	30 126	6 38		-541.1	+53 16	29978	29831	-2970	+40170	50123
961		2 40		-617.0	+53 11.0	30167	29986	-3302 -6978	+40301	50341
San Fernando+30	28 333			$-12 \ 32.8$	+53 29.9	25072	24473	-5447	+33881	42149
		;		-10° 30.4	+52 48.8	25525	25097	7680	+33644	42231
Kakioka (succeeding Tokyo) +30	14 140	11 0		$\frac{-5 10.1}{-6 13.0}$	+49 30.3 +49 29.3	29916	29741	-3239	+35014	46054
				(continued)						

TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

							Сотро	Components of intensity	ensity	
	Latitude					~	North	East	Vertical	Total
Ohearustoru	(+ N.	Longitude	Vons	Declination	Inclination		×	; ہ	7 :	لئر ز
	10000	10000	1 cal	767.06			-	~		٨
I singtao	+30.04	120°19	308	- 3,43,6			30701	-2000	+39890	50376
			1930	4 32.8			30771	-2447	+39667	50262
	1	:	1936	(-437.6)			30834	-2495	+39741	50361)
Tokyo	+35 41	139 45	1899	-433.7			29761	-2374	+34400	45549
!			1912	-503.4			29879	-2644	+34379	45625
Ksara	+33 49	35 53	1940	+ 1 59.9			28651	+1000	+32236	43139
			1945	+209.4			28760	+1083	+32646	43521
Tuscon **)	+32 15	249 10	1920	+13 48.0			26117	+6416	+45594	52935
			1940	+13 48.2	(+59 40.6)	}	25381	+6236	+44684	51766)
			1947	$(+13\ 35.3$			25305	+6117	+44380	51452)
Lukiapang (succeeding Zikawei)	$+31\ 19$	121 02	1908	-256.2			33129	-1700	+33879	47416
·			1933	-335.4			33263	-2087	+33791	47462
Zikawei	+31 12	121 26	1899	-220.3			32798	-1339	+33747	47078
	,		1908	-235.4			33044	-1495	+33766	47268
Zō-sè	+3106	121 11	1920	-310.7			33016	-1833	+33813	47293
			1940	-325.7			33312	-1995	+33954	47609
			1947	(-326.8)			33527	-2019	+34125	47882)
Dehra Dun	+30 19	78 03	1910	+231.9			33225	+1469	+32019	46165
			1930	+111.9			32956	689 +	+33631	47091
			1937	+051.6			33219	+ 499	+34003	47539
Helwan	+29 52	31 20	1920	-123.7			29947	— 730	+26236	39821
			1930	-0.14.0			30078	-122	+26814	40295
			1940	+027.8			30438	+ 246	+27560	41061
			1944	+ 0 40.1			30570	+ 357	+27854	41358
Taihoku	+25 02	121 31	1940	-209.4			:	:	:	:
Minamitori Shima			1941	+015.3			:	:	:	:
Tamarasset		-	1938	-733.1		7	-31647	-4196	+18084	36690
			1940	-721.5			-31749	-4100	+18039	36746
Barrackpore	+22 46	8 22	1910	+055.5			37324	+ 603	+22168	43415
:			1914	+ 0 32.2			37401	+ 350	+22459	43628
Au Iau (succeeding Hongkong)	17 77+	114 03	1930	0 43.6			37482	- 475	+22187	43559
Hongkong (emperceded by A. Tou)	1 22 18	114 10	1000	- 0.50.0			5//03	- 4 - 50 - 60 - 7	+22133	43/21
tionshould (suprisoned by Alt Lau)		01 +11	1928	$\frac{+}{-}$ 0 33.3	+30 36.3	37319	37317	+ 136 - 361	+22075	43359
				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

TABLE 510.--MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

						Comp	Components, of intensity	tensity	
abanina I					Horizontal	North	East		Total
	Longitude	V	Declination	Inclination	Τ, 7	× >	ح ہد		ኒ <i>፦</i>
Observatory $-=3$) $H_{\text{cmolulu}, *}$) $+21^{\circ}19'$	201°56'	1902	+ 9°19′1	+40°14′5	29254	28868	+4737		38324
	•	1920	+ 9 53.2	+39 25.7	28838	28410	+4951		37335
		1940	$(+10\ 21.5$	+39 08.2	28459	27995	+5117		36691)
		1946	$(+10\ 28.2$	+39 14.0	28346	27874	+5151		36596)
Honolulu (new site)+21 18	201 54	1947	$(+11\ 35.3$	+38 40.2	28659	28075	+5/5/		36/00)
+19	-	1922	+ 9 09.9 + 9 41.8	+46 30.7 +47 09.3	30825	30385	+5122		45329
		1946	+ 9 37.0	+47 02.4	30622	30192	+5116		44934
Toungoo+18 56	96 27	1905	+ 0 48.4	+22 58.3	38675	38671	+ 544		42006
	9	1923	$\frac{-0.31.9}{0.26}$	+23 06.1	39207	39205	- 50 60 60		42023
Colaba (superseded Alibag) +18 54	72 49	1899	+ 0.20.0	+21 14.8	37303	37393	+ 144 144		40345
Aliham (encoopding Colaba) +18 38	72.52	1904	+ 1 09.4	+22 54.6	36861	36853	+ 744		40018
		1930	0.080 —	+25 30.6	37253	37253	- 87		41277
		1937	- 0 21.8	+25 26.0	37652	37651	-239		41693
San Juan * (superseding Vieques) +18 23	293 53	1930	(-450.6)	$+52\ 31.9$	(27494	27398	-2321)		45197
		1945	-610.6	+52 35.7	27397	27238	-2948		45102
		1947	(-6.18.2)	+52 28.0	27430	27264	-3012		45024)
Vieques *' (succeeded San Juan) +18 09	294 33	1910	- 2 20.6	+49 52.4	28828	27.400	2043		44780
	121 10	1924	+ 0.26.7	+31 42.2	38253	38252	+ 298		39752
		1938	+ 0 36.2	+15 47.2	38356	38354	+ 404		39859
Manila (succeeded by Antipolo) +14 35	120 58	1900	+ 0 52.1	+16 15.9	38029	38025	++ 576	+11095	39014
Kodakanai +10 14	77 28	1910	$\frac{+}{-}$ 0 55.0	+ 3 45.2	37485	37480	009 -		37566
		1923	-200.7	+ 4 41.3	37950	37927	-1332		38077
Palau (Parao)+ 7 20	134 29	1941	+ 2 07.1	:	:	:	:		: :
**		1941	0.40	:	:	•	• (• 1		1
Mogadiscio+ 2 02		1932	+ 9 55.8	-16 38.2	33142	33138	- 538		34590
			(continued)						

TABLE 510.--MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

	For γ γ cording	42542 43500	letter 5 (see of pre-	43928 44055)	36244	4276	9737	9279	40524 40493	5785 1857 1885	37420	37352 37539	7284	5540	4977
	cal T via; rec		ia; in a i 1928-3 ecause o												8138 8284 2
ntensity	Vertical $\frac{Z}{Z}$ γ to Batavia	_21487 _23154	Batav alues of ection b	-23624 -23689	-21875 -14374	-24665	} ++	+ 1078 -20428	—20650 —20683	-33171 -33171	-29750	29876 30131		1	∞ ∞
Components of intensity	East Vertical Total $Y Z F F \gamma \gamma \gamma \gamma \gamma \gamma \gamma \gamma$	+ 666 + 553	educed to dished vart t to corr	+ 865 + 984	—4182 —5616	-3943	+4203 +3365	+3284	+6598	-3531 -3531 -3957	-4753	_5417 _5741	+2808	+ 1930 - 4488 - 1330	-5785 -5785
Сотро	North X γ $106^{\circ}47'$) s.	36711 36822	06°44') r t the pul re subjec later.	37025 37133	28662 19325	23472	29436 29174	29074 34598	34238 34172	20784 23524	22193	21755 21640	26472	24289	22842
	Horizontal	36717 36826	stated that 3, 1935) as expedied	37035 37145	28966 20125	23801	29735 29367	29259 35195	34868 34839 3789	21082 23854	22697	22419 22389	26621	24700	23563
	Latitude Horizontal North $H=1$ Longitude Year Declination Inclination $H=1$	30°20′2 32 09.6	From magnetograph records at Kuyper (Latitude — 6°02′, longitude 106°44′) reduced to Batavia; in a letter dated November 15, 1941, the Director of the Observatory stated that the published values of 1928-35 (see Preface of "Report on magnetic observations in Batavia," 58B, 1935) are subject to correction because of previous errors in the scale-values and that revised values will be supplied later.	_32 32.0 _32 31.6	-36 56.8 -35 32.2	-30 04:2 -46 01:3 46 53 0		+ 2 06.6 -30 07.9	-30 38.1 -30 38.5	-53 54.3 -54 16.8	-52 39.6	-53 06.9 -53 23.1	-12 39.6	-14 44.1	-18 57.8 -19 22.2
	Declination 1 Declination 1 Declination 1, 1899, because	+ 1°02′4 + 0 51.6	tt Kuyper (Lati Director of th ic observations s and that revis	+ 1 20.3 - (+ 1 31.1 -	- 8 18.1 -16 12.3	32.1	37.6 34.8	34.2	54.5 14.0	9 38.5	05.5	58.9 51.5		28.1	
	Year ecords a d April	1902 1926	ecords a 1941, the magnet	1940 1944	1898 1910	1933	1922	1946 1930	1940	1941 1899	1930	1940 1945	1920	1915	1942
	Longitude east netograph r	106°49′	ember 15, 1 "Report or	106 49	39 18 13 13	27 28	284 40	188 14	1,				294 25	316 21	
	Latitude $(+=N, -=S)$ From mag at Batavia	– 6°11′	From mag dated Nov- Preface of vious error	- 6 11	6 49 8 49	-11 40	-12 03	-13 48	ļ	-10 33 -20 06			-23 07	-22 24	
	Observatory Batavia-Buitenzorg		Batavia-Kuyper		Dar-es-SalaamSt. Paul de Loanda	Elisabethville	Huancayo	Samoa, Apia		Tanarive			La Quiaca	Vassouras (succeeding Rio de Janeiro)	

(continued)

SMITHSONIAN PHYSICAL TABLES

(continued)

TABLE 510.--MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

		25729	56567	57368 28822	26971 26759	: :	33325	32663	60542	60694	60653	59607	59506)	59754	59806 48474	43685	41575		:
tensity	$\begin{array}{c} \mathrm{Vertical} \\ Z \\ \gamma \end{array}$	- 5912 - 6169	-50780	-51131 -51746 -12657	-12034 -12066	: :	-29733	-29352 -28819	-55974	-50206 -56215	55989 56384	-55252 -55220	-55203	-55277	-55570 -45672	-32808	-31719	07010-	:
Components of intensity	East Y 7	-3454	-1904	-1773 -1281 +4435	+2278 +2077		6281 5889	—5807 —5504	+3295	+3628	+3414 +3189	+6819	+7243	+6351	+6760 -9768	+7505	+7034	+2360	+1307
	North X	24801	24852	24734 24734 25511	24029	: :	13677	13098	22834	22594	23072	21301	21001	21787	21049	26254	25941	25558	23892
	Horizontal H	25040	24925	24023 24767 25894	24137	: :	15050	14328	23071	22884	23323	22365	22215	22694	22108	27306	26878	25667	23928
	$Inclination \\ I$			-64 17.7 -64 25.4 -26 03.0			—63 09.2 63 42.6	—63 59.0 64 17.5			. 4 -		_	•			-	-49 39.4 -54 31.0	:
	Declination D	7°55.7	- 4 22.8 - 6 33.3	- 4 08:0 - 2 57:9 + 9 51.7	+ 5 24.9	+14 59.5 +13 57.9		-23 54.5 -23 54.5							-			+13 02.4 + 5 16.6	+ 3 07.8
	Year	1900	1919	1945	1940 1940	1899	1933	1940	1919	1930	1899	1929	1945	1902	1930	1905	1914	1905	1932 1933
	Longitude	316°49′	115 52	296 07		289 18	18 28	19 14	145 28		144 58	172 44		172 37		295 51		315 13	
	Latitude $(+ = N, -1)$ Observatory $(+ = N, -1)$	Kio de Janeiro (superseded by Vassouras) —22°55′	Watheroo	Dilar — 31 40		Santiago (new station)33 27	Cape Town (superseded by Hermanus)33 57	Hermanus (succeeding Cape Town)34 25	Toolangi (succeeding Melbourne)37 32		Melbourne (superseded by Toolangi)37 50	Amberley (succeeding Christchurch)43 10		Christchurch (superseded by Amberley) —43 32	40	New Year's Island (Staten Island)54 39		Laurie Island	

TABLE 510.--MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (concluded)

	Total	ن ک	59708	174/0	68277	66923	99699	67145	
tensity	Vertical	4 6	-58206	-0/249	-68146	-66166	96799—	-66541	
ponents of in	East	ح ب	-11792	020	+3824	+9700	+9053	+8299	
Com	North	ح >	6171	3021	-1802	-2581	-2695	-2599	
	Horizontal	r >	13309	2112	4227	10038 —2581 +9700 —66166	9445	8983	
						-81 22.4		-82 18.7	
		Declination D	-62°22'6	0 30.8	+154 46.4	+104 54.0	+106 34.7	+106 49.1	
		Year	1902	1912	1912	1940	1934	1929	
		Longitude east	89°38'	142 40	100 74	196 09	196 04	196 12	
	Latitude	(+ = N,	_66°02′	36 16 16 16	-// 38	-78 29	-78 34	-78 35	
					:				
			Winter Station, Gauss			Little America (III)	Little America (II)	Little America (I)	
		atorv	tation,	nosiu.	ans	nerica	merica	merica	
		Observatory	nter S	s De	oe Ev	tle Aı	tle Aı	tle Aı	

Part 1.—Geomagnetic latitudes of points on the earth in various geographic latitudes and longitudes

		181 22 22 23 80 80 80 80 80	282 422 452 453 453 453 453 453 453 453 453 453 453	244 33 35 35	27333	23 212 19 18 16	417089	
		170 77 77 77 88 64	65 53 54 54 54	35 35 33 33	31 28 26 24	20 18 18 14	10 8 8 4	
		160 77 74 70 67 63	52 52 44 44	33.40 32.43 32.43 33.43 33.43	25 5 8 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 118 114 112	0108977	
		150 77 73 70 66	58 54 50 47 43	39 37 33 31	252 23 23 23 23 23 23 23 23 23 23 23 23 23	19 17 11 11 11	07281	
		140 77 73 70 65	57 50 45 60 72	33,33,33	25 25 28	18 16 17 10 10	80470	
		130 77 73 69 65 65	57 53 49 45 41	37 33 33 31 29	27 23 23 19	113 113 9	72811	
		120 77 73 69 65 61	57 53 49 45 41	37 33 33 31 29	27 25 23 21 19	17 13 13 9	72811	
	ees	110 76 73 69 65 61	57 53 49 45 41	37 33 33 31 29	23 23 19 19	17 13 13 9	72811	
	in degr	100 77 73 69 65 65	57 53 49 45 41	37 33 33 31 29	27 25 23 23 19	117 113 111 9	72821	
Geographic east longitude in degrees	longitude	% 77 73 73 69 65 65 65	57 53 49 45 41	37 33 33 31 29	27 25 23 23 19	17 13 13 9	72811	
	hic east	80 77 73 69 65	58 50 45 45 45	32 33 38	20 27 27 27 28	10 10 10 10	89470	
	Geograp	77 74 70 62	58 55 51 47 43	39 37 33 33 31	23 25 27 29 21 23 23 23 23 23 23 23 23 23 23 23 23 23	19 17 11 11	97281	
		60 77 71 63	09 22 44 48 52 48	33 38 40 32 33 38 33 34 40	30 28 24 22 22	20 118 117 113	11 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
		50 77 73 71 68 64	61 57 53 49 45	33 38 4 4 3 3 3 3 4 4 4 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	32 38 38 37 38 37	22 20 18 16 17	10 8 8 9 4	
		40 78 73 69 66	62 58 55 51 47	43 39 37 35	28 33 28 33 28 34	24 22 20 18 16	117 100 8 8	
		30 78 74 71 67	60 53 50 64	330 330 34 43 54 54 54 54 54 54 54 54 54 54 54 54 54	35 33 30 28	22 54 50 18 18 18 18 18 18 18 18 18 18 18 18 18	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		20 77 75 75 69	65 62 58 55 55	445 443 39	37 33 33 30	20 27 27 20 20 20	81 12 10 10	
		10 79 78 74 71	67 60 53 53	44 43 43 43	39 33 33 32	30 27 27 28 27 27	20 118 117 117 117	
		373 8 3 3 ° 0	69 62 53 55 55	51 47 45 43	33 33 33 33	32 28 28 28 29 24	22 20 118 14 14	
	Geo-	latitude + 88° + 84 + 80 + 76 + 75	++++ 2286 488	+++++ 844444	++++ 30 33 43 34 37 37	++++ 20 27 47 77 78	+++++ 8 9 4 5 10	

* += North latitude, - = south latitudes.

TABLE 511.—GEOMAGNETIC COORDINATES OF POSITION ON THE EARTH REFERRED TO THE GEOMAGNETIC AXIS POLE OF 1922, FOR POINTS IN VARIOUS GEOGRAPHICAL LOCATIONS (continued)

	180	40004		-16 -20 -22 -24	132 132 133 133 133 133 133			-79 -79	
	170	70749	100 112 114 116	-18 -20 -24 -24	29 33 41 45	- 53 - 57 - 60 - 64	68 71 75 79	1-80	
	160	07408		-19 -21 -23 -25	35 39 43 47	55 58 62 66		-81 -80	
	15	1000	77777	—23 —23 —25 —27	33 37 41 45 48	- 52 - 56 - 64 - 68	_75 _75 _78 _81 _83	-82	
	140	1111	127	24 24 26 30	34 38 42 46 50	- 54 - 58 - 62 - 65 - 69	-73 -77 -80 -83 -84	808	
	130	2 - 1 - 2 - 1		_23 _25 _27 _29 _31	35 39 43 47 51	55 59 67 67	- 74 - 78 - 82 - 85 - 85	188	
	120	2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 1	-13 -15 -19 -21	23 25 29 31	35 39 47 51	55 63 67 71		184	
degrees	110	2 - 1 - 2 - 1	-13 -15 -19 -21	_23 _25 _27 _29 _31	35 39 47 51	55 59 63 67 71	-75 -79 -83 -87 -88	184	
tude in c	100	2 - 1 - 1 - 1 - 2 - 1 - 1	-13 -15 -21	23 25 29 31	35 39 47 51	-55 -59 -63 -67	-75 -79 -83 -86 -87	184	
Geographic east longitude in	06	2 - 1 - 2 - 1 - 1 - 2	-13 -15 -19 -21	_23 _25 _27 _29 _31	35 39 47 51	55 58 62 66	-74 -78 -85 -85	-84 -80	nued)
	80	1111	11442	38847	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	53 61 65 69	27.1 88.1 88.1 88.1 88.1 88.1 88.1 88.1 8	88	(continued)
	70	1 1 1 1 1 0		-21. -23 -24 -26 -28	132 136 137 137 137 137 137 137 137 137 137 137			- F8 - 8 - 8 - 8	
	09	11111		-19 -21 -23 -25	35 35 39 43 47	- 50 - 54 - 62 - 62	69 73 76 81	_81 _80	
	50	111		-17 -19 -21 -23	29 33 41 45	1 - 1 - 49 - 60 - 60 - 60 - 60	67 71 74 77	80 79	
	40	42024		-15 -17 -21 -23			65 69 72 75	-73	
	30	04700		-14 -16 -17 -19 -21	25 29 33 37	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	63 67 73 73	_78 _79	
	20	∞04 <i>0</i> C	11 1 1 1 1 1 1 1 1 1	112 -114 -115 -119	23 31 35 39	- 43 - 50 - 54 - 58 - 58	65 65 69 72 75	-77 78	
	10	08 9 2 6	1 1 1 1 1 0 2 4 2 8	-10 -12 -14 -15	_25 _25 _33 _37	- 44 - 45 - 52 - 56	63 63 70 73	-76 -78	
	0	100 80 97	111	8 	-19 -23 -31 -35	-39 -47 -51 -54	- 1.65 - 1.65 - 1.65 - 1.65 - 1.65	-75 -78	
	graphic ,								

(continued)

TABLE 511.—GEOMAGNETIC COORDINATES OF POSITION ON THE EARTH REFERRED TO THE GEOMAGNETIC AXIS POLE OF 1922, FOR POINTS IN VARIOUS GEOGRAPHICAL LOCATIONS (continued)

	360 79 78 73	22888	51 47 45 43	41 39 37 35 33	32 28 28 24 24 24	22 20 118 114
	350 79 80 77 77 75	71 68 60 57	53 447 457	43 37 35 35 35	33 28 28 26 26	22 22 18 16
	340 80 81 81 79 76	73 66 58 58 58	55 53 51 47	45 43 41 37	35 33 31 27	25 23 21 19 17
	330 80 82 83 83 81 78	72 72 68 64 60	55 52 50 50 50 50	46 43 41 39	37 33 33 31 29	27 25 23 21 19
	320 83 83 83 83 83 83	77 73 65 65 65	52 52 50 50 50 50 50	844444 844444	33 34 30 33 34 30 34 30 34	50 50 50 50 50 50 50 50 50 50 50 50 50 5
	310 886 885 885 885 885	74 77 67 63	55 53 53 51	447 443 413	39 37 33 33 31	233373
grees	300 88 87 83 83	79 71 67 63	55 53 53 51	444 43 43	39 37 33 33 31	23 23 23 23 23 23 23 23 23 23 23 23 23 2
Geographic east longitude in degrees	290 88 88 87 83	79 71 67 63	55 53 53 51	445 43 413	39 37 33 33 31	25 23 23 21
st longitu	82 88 88 88 88 88 88 88 88 88 88 88 88 8	52 73 64 63	55 53 53 51	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	39 37 33 31	232572
aphic eas	270 88 88 88 88 88 88	840,93	55 53 53 53	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	39 37 33 31 31	233373
Geogr	09 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	77 69 65 65	53 53 50 50	84444	32 33 34 33 30 30 30 30 30 30 30 30 30 30 30 30	827788
	250 80 82 82 81 79	21748	525 84 80 84 80 84	4444 <u>8</u>	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	26 23 23 19
	240 80 81 81 76 76	73 66 68 58 58	52 52 50 44 47	44 43 37 37	33 33 27 27	25 23 21 19 17
	230 79 77 74 74	17 64 65 79 86	52 54 54 54	443 337 357	33 31 22 25 25	23 21 19 17 15
	220 79 77 75 75	69 62 58 58 58	50 44 45 43	33 33 33 33	31 27 23 23	21 19 17 15 14
	210 79 78 76 73	67 63 56 52 52	44 45 41 41	39 33 33 31	223 223 23 23 23 23 23 23 23 23 23 23 23	11 11 14 12
	200 73 75 75 69	65 62 54 50 50	47 45 43 41 39	37 33 33 29	27 25 23 21 19	117 117 110 110
	190 78 73 70 67	28228	45 43 41 39 37	33 33 32 27 22 27	25 23 21 19 17	117 100 8
Geo-	graphic * latitude * + 88° + 84 + 80 + 76 + 75	++++ 52 52 53	+++++ 84444 84454	++++ 33,4,8 33,4,8	755 755 755 755 755 755 755 755 755 755	+++++ 10 10

TABLE 511.—GEOMAGNETIC COORDINATES OF POSITION ON THE EARTH REFERRED TO THE GEOMAGNETIC AXIS POLE OF 1922, FOR POINTS IN VARIOUS GEOGRAPHICAL LOCATIONS (continued)

	360 112 100 8 8 4	111	- 10 - 11 - 15 - 16		39 54 54	- 58 - 65 - 65 - 72	_75 _78
	350 114 10 10 8	44004	10 110 117 117	-18 -22 -30 -33	137 145 153 153	-57 -64 -68 -71	_75 _77
	340 113 9 9	04000	110 8 0 112	-16 -20 -24 -32	36 - 44 - 52	55 63 67 70	_74 _77
	330 17 11 13 11 9	1 2 2 2 2 7		-15 -19 -23 -27 -31	35 39 50	- 54 - 58 - 62 - 70	_73 _77
	320 18 16 17 10 10	80470	10 10 10 10	-14 -22 -26 -30	134 142 150	-54 -61 -65 -69	_73 _77
	310 19 17 113 113	977881	1	-13 -21 -25	-33 -37 -45 -49	53 61 65 69	_73 _77
9	300 19 17 13 13	97281	11111	-13 -21 -25	37 37 49	53 61 65	_73 _77
Conversation onet Convitude in decrees	290 19 17 13 13	97281	1111	-13 -17 -21 -25	37 41 49	53 65 69	_73 _76
act longit	280 280 117 117 113	07781	1 1 1 9 9 1 1 1 1 1	-13 -17 -21 -25	37 41 45	53 65 65	_73 _77
o cidacay	270 19 17 13 13	97281	1111	-13 -17 -21 -25	-33 -41 -45 -49	- 53 - 63 - 65 - 65	_73 _77
2	260 188 164 175 175 176 176 176 176 176 176 176 176 176 176	89470	1108612	-14 -22 -26 -30	34 - 138 - 50 - 50	- 54 - 62 - 65 - 69	_73 _77
	250 17 113 113 9	 		-15 -19 -23 -27	35 39 47 51		_74 77
	240 15 13 11 9	1 32		-17 -20 -24 -32	64449 84445 75	56 61 63 67	-74 -77
	230 113 111 9 8	40004	7 - 10 8 - 12 12 - 14	-18 -22 -34 -34	- 38 - 44 - 45 - 53	62 64 68 71	_75 _77
	220 112 10 8 8 6	1 2 0 2 4 4 0		1.50 1.32 1.32 1.33 1.35 1.35	39 -44 -51 -51	1.58 1.69 1.73 1.73	_75 _78
	210 10 8 6 6	0.1408	1122		- 53 - 56 - 56	65 67 74	_76 _78
	200 8 8 9 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	11086	114 117 118 118	133	555 1.555 585 1.555	67 69 72	_77 78
	* 190 66 7 7	10 10 10 10 10	114 120 120 120		534 + 45	469 177 77 76	_78 _79
č	graphic latitude + 4 4 + 2 0		1144	47 - 73 40 - 7	4 8 5 5 5 0 4 8 5 5 5 0	49 172 188 189 189	2 8

TABLE 511.—GEOMAGNETIC COORDINATES OF POSITION ON THE EARTH REFERRED TO THE GEOMAGNETIC AXIS POLE OF 1922, FOR POINTS IN VARIOUS GEOGRAPHICAL LOCATIONS (continued)

Part 2.-Geomagnetic longitudes of points on the earth in various geographic latitudes and longitudes

	180					
	170 188 200 208 213 217	223 225 227 228	230 230 231 231 232	232 233 234 234 234	235 235 235 236 236	236 237 237 237 238
	160 187 197 203 208 211	214 216 217 220	222 222 223 223 223	223 224 225 225 225	225 226 226 227 227	227 227 228 228 228
	150 186 193 198 202 205	207 208 210 211 212	213 213 214 214	215 215 215 215 216	216 216 217 217 217	217 218 218 218 218
	184 194 198 198	200 201 202 203 204	204 205 205 205 205	206 206 206 206 207	207 207 207 207 208	208 208 208 208 209
	130 183 187 189 191 192	193 194 195 195	196 196 196 197	197 197 197 197	198 198 198 198	198 198 199 199
	120 181 183 184 185 185	186 186 187 187	187 188 188 188 188	188 188 188 188 188 188	188 188 188 189 189	189 189 189 189
legrees	110 180 180 179 179	179 179 179 179	179 179 179 179	179 179 179 179	179 179 179 179	179 179 179 179
Geographic east longitude in degrees	100 178 176 175 174 173	173 172 172 171	171 171 170 170	170 170 170 170 170	170 170 170 170 170	169 169 169 169
ast longi	90 177 173 170 168 167	165 164 164 163	162 162 162 162 162	161 161 161 161 161	161 160 160 160 160	160 160 160 159 159
graphic e	80 175 169 165 163	159 158 157 156 156	154 153 153 153	153 152 152 152 152 152	151 151 151 151 151	150 150 150 150
Geo	70 174 166 161 161 157 157	152 150 149 148	145 145 144 144	143 143 143 143	142 142 141 141 141	141 140 140 140
	60 173 163 156 151 148	145 143 141 140 138	137 137 136 136 135	135 134 134 133	133 132 132 132 132	131 131 131 130 130
	50 172 160 151 146 141	138 135 133 131 131	128 128 127 127 126	126 125 125 124 124	123 123 123 122 122	121 121 121 120 120
	171 157 147 140 135	131 128 125 123 123	120 119 118 118 1118	117 116 116 115 115	1114	=======================================
	30 170 154 142 134 128	123 120 117 115 115	111 110 109 108	107 107 106 106 105	105 104 103 103	102 102 101 101 101
	20 170 152 138 128 121	116 111 108 106 103	101 100 98 99	86 67 88 88 84 88	95 94 94 93	92223
	170 170 150 134 122 113	103 103 96 96	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8884888	888888	888888
	* 170 170 149 130 116	88 88 89 89 89 89 89 89 89 89 89 89 89 8	88 80 73 80 74	78 77 76 76 76	27 27 27 27 27 27 27	72223
Geo-	1 attitude + + 88 + + 84 + 76 + 75	+++64 +++52 ++52	+++++ 84444 0424	++++ 32 30 30 44 44 43 43 43 43 43 43 43 43 43 43 43	++++ ++24 +22 +20	+++++ 102416

	180						
	238 238 239 239 240	240 240 241 241 241	242 242 242 243 243 243	245 245 247 248 248	250 252 254 254 256 259	263 277 289 306	328 351
	160 228 229 229 230	230 230 231 231 231	231 232 232 232 233 233	234 235 237 237 238	239 241 243 245 248	253 259 268 281 303	329
	219 219 219 219 220	220 220 220 221 221	222 222 222 222	223 225 226 227	228 229 231 233 233 236	241 247 256 273 300	331 353
	209 209 209 209 210	210 210 210 211 211	211 211 211 212 212	212 213 213 214 215	216 217 219 221 223	227 233 243 263 299	335 354
	130 199 199 199 199	750000 750000 7500000000000000000000000	200 201 201 201 201 201	202 202 203 203 203	204 205 206 207 209	212 217 226 249 302	341 356
	120 189 189 189 189	189 189 189 190	961 961 961 961 961 961	198 198 191 191 191 191	191 192 193 194	196 198 204 223 316	350
egrees	110 179 179 179 179	179 179 179 179	179 179 179 179	179 179 179 179	179 179 179 178	178 178 177 175	0
tude in d	100 169 169 169 169	169 169 168 168	168 168 168 168	168 167 167 167	166 165 163 163	161 158 151 131 49	12
ast longi	159 159 159 159 159	158 158 158 158	158 157 157 157 157	156 156 156 155 155	154 153 151 150 148	145 140 130 108 59	4 70
Geographic east longitude in degrees	80 149 149 149 148	148 148 148 147	147 147 146 146	145 145 143 143	142 140 139 137	130 124 114 95 61	26 6
Geog	70 139 139 139 138	138 138 138 137 137	137 136 136 136 135	135 134 133 132 131	130 128 126 124 121	117 101 101 84 59	30
	130 129 129 129 128	128 128 128 127	126 126 126 125 125	123 123 120 120	119 117 115 109	105 99 77 56	31
	50 120 119 119 119	118 118 117 117	116 116 116 115 115	1112 1112 109	108 104 102 99	95 889 70 53	32
	40 110 109 109 109	108 108 107 107	106 106 105 105	102 102 103 8	888888	88 73 80 44 49	31
	° 555888	98 97 97	96 96 95 95	93 93 88	88888	76 71 65 57 45	30
	888888888888888888888888888888888888888	888888	86 86 85 85 85	883 883 80 80	74 74 70 70	67 63 58 51 41	28 10
	2888881 798888	78 78 74 74 75 75	77 76 76 75	74 73 70 70	65 64 65 65 65 65 65 65 65 65 65 65 65 65 65 65 6	55 51 45 37	25
	89,217 °	999888	67 67 68 69 69 69	65 64 62 62 61	52 53 53 53	22 33 33 33 35	23
Geo-	graphic latitude + + 6 + 4 + 2 0		112	1 - 1 - 2 - 2 - 2 - 3 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	444 488 529 609	- 64 - 72 - 76 - 80	

TABLE 511.—GEOMAGNETIC COORDINATES OF POSITION ON THE EARTH REFERRED TO THE GEOMAGNETIC AXIS POLE OF 1922, FOR POINTS IN VARIOUS GEOGRAPHICAL LOCATIONS (continued)

	360 170 130 116 106	88888	880 880 79	73 77 76 76 76	22 24 24 23 23	22222
	350 171 148 126 109 97	888224	869313	66 67 66 66 67	2242 244 26	62222
	340 172 149 123 101 88	23 23 65 65 65	588 588 588 588	55 55 55 55 55	3335458 3335458	52 52 51 51 51
	330 173 151 120 93 76	67 61 56 53 53	94444 648444	44444 4444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	554444
	320 174 155 119 83 63	53 447 39	37 36 36 35	333 448	322333333333333333333333333333333333333	33333
	310 176 161 122 69 69	252 252 254 254 254 254 254 254 254 254	22222	22222	221222222222222222222222222222222222222	200 271
	300 178 170 136 43	18 14 13 12	22221	=====0	00000	00000
egrees	290 180 181 187 355 355	358 358 358 359 359	359 359 359 359 359	359 359 359 359 359	359 359 359 359 359	359 359 359 359 359
ude in d	280 182 192 229 311 331	338 341 343 344 345	346 346 346 346 347	347 347 347 347 347	347 348 348 348 348	348 348 348 348 348
Geographic east longitude in degrees	270 184 200 239 288 310	320 325 328 330 331	333 334 334 334 334	335 335 336 336 336	336 336 336 337 337	337 337 338 338 338
graphic e	260 186 206 241 275 294	304 310 314 317 319	320 321 322 322 323	323 323 324 325 325	325 325 326 326 326	326 327 327 327 327
Geog	250 188 210 239 264 264 281	291 297 301 304 306	308 309 310 311	312 312 313 313 314	314 315 315 315 315	316 316 316 317 317
	240 189 211 236 257 270	279 285 292 295	297 299 299 300	301 302 302 303	303 304 305 305 305	305 306 306 306 307
	230 189 212 233 233 250 261	269 275 279 282 284	286 287 288 289 289	290 291 292 292	293 294 294 295	295 296 296 297
	220 190 211 229 243 253	260 265 268 272 274	276 277 278 278 278	280 281 282 282 282	283 284 284 285 285	285 285 286 286 287
	210 190 210 225 237 245	251 256 259 262 264	266 267 268 269 269	270 271 271 272 272	273 274 274 274 275	275 276 276 276 276
	200 190 208 221 231 238	243 247 250 253 254	257 258 258 259 260	260 261 261 262 263	263 264 264 264 265	265 266 266 267 267
	190 189 205 217 225 231	235 239 242 244 244	247 248 249 250 250	251 252 252 252 253 253	253 254 254 255 255	256 256 256 257 257
	180 189 203 212 219 224	228 231 233 235 235	238 239 240 240 241	242 242 243 243 243	244 245 245 245 245	246 246 247 247 247
Geo-	1 atitude * + 88 + 80 + 72 + 72	+++++ 52 52 54 54 54 54 54 54 54 54 54 54 54 54 54	+++++ 844444	++++ 33,3,3,3,3,8	++++ 752 4 5 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	+++++ 894450

TABLE 511.—GEOMAGNETIC COORDINATES OF POSITION ON THE EARTH REFERRED TO THE GEOMAGNETIC AXIS POLE OF 1922, FOR POINTS IN VARIOUS GEOGRAPHICAL LOCATIONS (continued)

	- (
		360 71 70 70 70 69	998888	6669	84832	55 53 53	
		350 61 60 60 60 60	2888888	57 57 56 56 56	\$53.4 \$23.4 \$3.4 \$3.4	51 50 47 47	
		340 50 50 50 50 50	44488	44 47 47 47	94444 63444	33 34 44 45 33 34 44 45	
		0 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	38,333	337	37 35 35 34 34	33333	
		320 30 30 30 30 30	22222	88888	22 52 52 52 52 52 52 52 52 52 52 52 52 5	224422	
		310 20 20 19 19 19	91 91 91 91 91	19 18 18 18 18	18 17 17 17	16 115 115 115	
		300	00000	00000	$\infty \infty \infty \infty \infty$	87777	
	grees	290 359 359 359 359 359	359 359 359 359 359	359 359 359 359 359	359 359 359 359	359 359 359 359 359	
	ide in de	280 348 349 349 349 349	349 349 349 349 349	349 349 349 349 350	350 350 350 350 350	351 351 351 351 352	
	Geographic east longitude in degrees	338 338 338 338 339	339 339 339 339	339 340 340 340 340	340 341 341 342	342 342 344 344 344	(ponu
	raphic e	328 328 328 328 328 328	329 329 329 330	330 330 330 331	331 332 332 333 333	333 334 335 336 337	(continued)
	Geog	250 317 318 318 318 318	319 319 319 320	320 320 321 321 321	322 322 323 323 324	325 326 327 328 328	
		240 308 308 308 308 308	309 309 310 310	310 311 311 312 312	312 313 314 314 315	316 317 318 320 321	
		230 297 298 298 298 299	300 300 300 300 300	301 301 302 302 302	303 304 304 305 306	307 309 310 311 313	
		220 287 287 288 288 288 289	289 289 290 291 291	291 291 292 292 292	293 294 295 296 297	298 300 301 303 305	
		210 277 278 278 278 278 279	279 280 280 280 281	281 282 282 282 283 283	284 285 287 287 287	289 291 292 295 297	
,		200 267 268 268 269 269	269 270 270 271 271	271 272 272 273 273	274 275 276 277 279	280 282 283 286 286	
		190 258 258 258 259 259 259	260 260 260 261 261 261	262 262 263 263 263	264 265 268 268 269	270 272 274 276 276	
		180 248 248 249 249 249	250 250 251 251 251 251	252 252 252 253 253 253	254 255 256 257 259	260 262 264 267 269	
	Geo-	graphic latitude * + + 6 + 4 + 4 0	2 6 8 10	11.1 11.1 11.0 12.0	- 24 - 32 - 36 - 40	- + 44 52 56 56	

POLE TABLE 511.—GEOMAGNETIC COORDINATES OF POSITION ON THE EARTH REFERRED TO THE GEOMAGNETIC AXIS 1922, FOR POINTS IN VARIOUS GEOGRAPHICAL LOCATIONS (concluded)

	360	51	48	4	39	32	23	6	
	350	43	41	37	33	78	20	∞	
	340	36	34	31	78	23	17	7	
	330	78	27	25	22	18	13	9	
	320	21	70	18	16	14	10	4	
	310	14	13	12	11	6	7	3	
	300	9	9	9	Ŋ	4	3	-	-
degrees	290	359	359	359	359	360	360	360	
ude in d	280	352	353	353	354	355	356	358	
Seographic east longitude in	270	345	346	347	348	350	353	357	
raphic ea	260	338	339	340	343	345	349	355	
Geog	250	330	332	334	337	341	346	354	
į	240	323	325	328	331	336	343	353	
	230	315	318	321	326	331	340	352	
	220	308	311	315	320	327	337	351	
	216	300	303	308	314	322	334	350	
	200	291	296	301	308	318	332	350	
	190	283	287	293	305	314	330	350	
	180	273	279	286	596	310	329	350	
Geo.	latitude *	-64	89—	-72	92—	08 -	-84	88-	

Bibliography: a, Chapman, S., and Bartels, J., Geomagnetism, vols. I and 2, Oxford, 1940. b, Fleming, J. A., ed., Terrestrial magnetism and electricity, Physics of the earth series, vol. 8, McGraw-Hill, New York, 1939. c, Ludy, Albert R., and Herbert Howe, H., Magnetism of the earth, U.S. Coast and Geodetic Survey, Serial 663, Washington, 1945. d. Deel, Samuel A., Magnetic declination in the United States page. E. Deel, Samuel A., and Herbert Howe, H., Magnetism, and Herbert Howe, H., Lange, L. Cooper, C., and Herbert Howe, H., Dinged, D., and Herbert Howe, H., Lange, L., Lang

TABLE 512 .- MAGNETIC AND ELECTRIC DATA FOR SUN AND EARTH

(Chapman, Cosmical magnetic phenomena, Nature, vol. 124, p. 19, 1929.)

Sun's magnetic field too small to be measured by direct effects on earth; measured by Zeeman effect on spectrum lines.

Earth's magnetic axis inclined 12° to rotation axis.

Earth's field rotates at same speed as nearly rigid earth.

Earth: Polar intensity of field 3 gauss.

Sun: Intense local fields frequent, 3000 gauss. The magnetic field of spots reverses each cycle (Proc. Astron. Soc. Pacific, vol. 41, p. 136, 1929). The polarity of leading spot in a bipolar group in the Northern Hemisphere is opposite that in the Southern Hemisphere relationship reverses each new sunspot cycle . complete magnetic cycle is double sunspot cycle.

Specific resistances: Earth Sun (Chapman, loc. cit.) 3×10^{10} 10^{8} , T, 10000° K. Heaviside layer, 1010 Reversing layer, 1015 to 1018 Photosphere, Dry earth, 2×10^{10} 3×10^{12} 3×10^{8} , T, 4×10^{7} Sea water, Center, 200-600 m deep,

Further characteristics of spots: (Milne, Monthly Notices, Roy. Astron. Soc., vol. 90, p. 487, 1930.) Umbra (dark center), 800 (very small) to 80,000 km across: penumbra may reach 240,000 km. Generally short-lived. A few last several (3) rotations, very rarely 6; one in 1840, 18 months. Most occur in 2 belts 5° to 40° N. and S. latitudes, often occur in pairs (see above). Umbra temperature 4000° K. Evershed gives velocity of outburst from spot 2 km/sec.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wavelength of the polarized light. Verdet's experiments agree fairly well with the formula

$$\theta = clH\left(r - \lambda \frac{dr}{d\lambda}\right) \frac{r^2}{\lambda^2}$$

where c is a constant depending on the substance used, l the length of the path through the substance, H the intensity of the component of the magnetic field in the direction of the path of the beam, r the index of refraction, and λ the wavelength of the light in air. If H be different, at different parts of the path, lH is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential v, we may write $\theta = Av$, where A is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant A has been called "Verdet's constant," and a number of values of it are given in Tables 514-517. For variation with temperature the following formula is given by Bichat:

$$R = R_0 (1 - 0.00104t - 0.000014t^2),$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wavelength the following approximate formula, given by Verdet and Becquerel, may be used:

$$\frac{\theta_1}{\theta_2} = \frac{\mu_1^2 (\mu_1^2 - 1) \lambda_2^2}{\mu_2^2 (\mu_2^2 - 1) \lambda_1^2},$$

where μ is index of refraction and λ wavelength of light.

A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulas are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at 20°C, Verdet's constant for the salt is negative.

As a basis for calculation, Verdet's constant for carbon disulfide and the

sodium line D has been taken as 0.0130 at 20°C.

Wavelength	.5μ	1.0μ	1.5μ	2.0μ	2.5μ
Steel	—11 !	—16:	—14 ′.	—11:	9:0
Cobalt		—11.5	- 9.5	— 11.	-6.5
Nickel	— 5.5	— 4.0	0	+ 1.75	+3.0

Field intensity = 10,000 cgs units. (Intensity of magnetization = about 800 in steel, 700 to 800 in cobalt, about 400 in nickel.)

TABLE 514.—VERDET'S CONSTANT

Part 1 .-- Solids

Substance	Formula	Wavelength	Verdet's constant in min
Amber Blende Diamond Lead borate Selenium Sodium borate Ziqueline (Cuprite) Fluorite	ZnS C PbB ₂ O ₄ Se Na ₂ B ₄ O ₇ Cu ₂ O CaF ₂	.589 .687 .589 .687 .2534 .3655 .4358 .4916 .589 1.00 2.50	.0095 .2234 .0127 .0600 .4625 .0170 .5908 .05989 .02526 .01717 .01329 .00897 .00300
Glass: Jena, medium phosphate crn. heavy crown, O1143 light flint, O451 heavy flint, O500 " S163 Zeiss, ultraviolet " Quartz, along axis, i.e., plate cut \(\pm\) to axis		3.00 .589 " " .313 .405 .436 .2194 .2573	.00030 .0161 .0220 .0317 .0608 .0888 .0674 .0369 .0311 .1587
Rock salt	NaCl	.2573 .3609 .4800 .5892 .6439 .2599 .3100 .4046 .4916 .6708	.04617 .02574 .01664 .01368 .2708 .1561 .0775 .0483 .0245
Sugar, cane: along axis IIAaxis IIA ¹	C ₁₂ H ₂₂ O ₁₁	2.00 4.00 .451 .540 .626 .451	.00262 .00069 .0122 .0076 .0066 .0129
Sylvite	KC1	.540 .626 .4358 .5461 .6708 .90 1.20 2.00	.0084 .0075 .0534 .0316 .02012 .01051 .00608 .00207

Part 2.—Liquids (for $\lambda = 0.589 \mu$)

Cla	Chemical	Density in g per	Verdet's constant in min	Temp.
Substance	formula			_
Acetone	C ₃ H ₆ O	.7947	.0113	20°
Acids: Formic	CH ₂ O ₂	1.2273	.0105	15
Acetic	C ₂ H ₄ O ₂	1.0561	.0105	21
Hydrochloric	HC1	1.2072	.0224	15
Hydrobromic	HBr	1.7859	.0343	"
Hydroiodic	HI	1.9473	.0515	
Nitric	HNO_3	1.5190	.0070	13
Alcohols: Methyl	CH₃OH	.7920	.0093	20
Ethyl	C ₂ H ₅ OH	.7900	.0112	44
Benzene	C_6H_6	.8786	.0297	46
Bromides: Methyl	CH₃Br	1.7331	.0205	0
Ethyl	C₂H₅Br	1.4486	.0183	15
Carbon bisulfide	CS ₂	1.26	.0420	18
Chlorides: Carbon	CCI ₄	1.60	.0321	15
Chloroform	CHCl ₃	1.4823	.0164	20
Ethyl	C ₂ H ₅ Cl	.9169	.0138	6
Iodides: Methyl	CH ₃ I	2.2832	.0336	15
Ethyl	C ₂ H ₅ I	1.9417	.0296	44
Nitrates: Methyl	CH ₃ O·NO ₂	1.2157	.0078	44
Ethyl	$C_2H_5O \cdot NO_2$	1.1149	.0091	"
Paraffins: Pentane	C ₅ H ₁₂	.6332	.0118	46
**	C ₆ H ₁₄	.6743	.0125	46
tra d	C ₇ H ₆	8581	.0269	28
	H ₂ O	0301	.1042	
OM #	1120	• • • •	.0776	• •
.275			.0293	• •
.4046	• • • •		.0131	• •
.589			.00410	• •
1.000			.00410	• •
1.300	G II	0746		27
Xylene	C_8H_{10}	.8746	.0263	27

TABLE 515.—VERDET'S CONSTANT FOR SOLUTIONS OF ACIDS AND SALTS ${\rm IN~WATER}~(\lambda \equiv 0.589~\mu)$

Chemical	Density g per	Verdet's constant	Temp.	Chemical	Density g per	Verdet's	Temp.
formula	cm ⁸	in min	°C	formula	°cm³	in min	°C
HBr	. 1.3775	.0244	20°	Fe ₂ Cl ₆	1.6933	2026	15°
HC1	1 1 5 5 7 7	.0204	46	44	1.5315	1140	66
"	4 05 60	.0168	66	"	1.1681	0015	44
HI	. 1.9057	.0499	44	"	1.0864	.0081	66
		.0205	"	"	1.0232	.0122	44
	. 1.3560	.0105	"	HgCl₂	1.0381	.0137	16
NH ₃		.0153	15	NiCl₂	4 4 4 4 6 0 1	.0270	15
NH₄Br		.0226	"	"	1.2432	.0196	46
BaBr ₂		.0215	20	KC1	1.6000	.0163	66
CdBr ₂		.0192	66	NaC1	1.0418	.0144	44
CaBr₂		.0189	"	SrCl ₂	1.1921	.0162	66
KBr	4 4 40 4	.0163	"	SnCl₂	1 11100	.0266	"
"	. 1.0876	.0151	46	ZnCl ₂	1.2851	.0196	4.6
NaBr	4 4 2 7 4	.0165	46	NH₄I	1.5948	.0396	66
"	. 1.0824	.0152	46	"	1.2341	.0235	66
K₂CO₃	4 4000	.0140	"	KI	1.6743	.0338	64
Na ₂ CO ₃	. 1.1006	.0140	44		1.1705	.0182	66
NH ₄ Cl	. 1.0718	.0178	15	KNO₃	1.0634	.0130	20
BaCl ₂	. 1.2897	.0168	20	NaNO₃		.0131	66
CdCl ₂	. 1.3179	.0185	"	$U_2O_3N_2O_5$.	2.0267	.0053	66
"	. 1.1732	.0160	"	"	1.1963	.0115	"
CaCl ₂	. 1.1504	.0165	44	BaSo₄	1.1788	.0134	"
"	. 1.0832	.0152	"	K ₂ SO ₄	1.0475	.0133	"
FeCl ₂	. 1.4331	.0025	15	Na₂SO₄	1.0661	.0135	"
44	. 1.1093	.0118	"				

Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and Du Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit area, which controls the amount of rotation of the beam.

Some data on the Verdet constant of gases by Ingersol (*) and by de Mallemann (†)

for wavelength 5780A, pressure 760 mmHg, and at temperature 0°C:

Substance in Hydrogen † 6.29		. 5.55	Substance Methane † Ethylene † Ethylene * Carbon dioxide *	34.4 34.6
------------------------------	--	--------	---	--------------

The de Mallemann values are from numerous papers in Comptes Rendus, 1929 to date (See in particular R. de Mallemann, F. Suhner, and J. Grange, C. R., vol. 232, p. 1094, 1915. See also P. Gabiano Ann. d. Physique, vol. 10, p. 68, 1933.). The Ingersoll values are from an ONR preliminary report (October 1952). The probable error of the de Mallemann and the Ingersoll values is of the order of 1 percent. The dispersion of the rotation for most gases, except oxygen, is roughly as the inverse square of the wavelength.

Substance	Pressure	Temp.	Verdet's constant in min
Atmospheric air	Atmospheric	Ordinary "	6.83×10^{-8} 13.00 "
Carbon disulfide	74 cmHg	70°C	23.49 "
Ethylene	Atmospheric	Ordinary	34.48 "
Nitrogen	"	"	6.92 "
Nitrous oxide	**	44	16.90 "
Oxygen	**	"	6.28 "
Sulfur dioxide	* "	"	31.39 "
"	246 cmHg	20°C	38.40 "

TABLE 517.—VERDET'S AND KUNDT'S CONSTANTS FOR SOME MATERIALS

The following short table is quoted from Du Bois's paper. The quantities are stated in cgs measure, circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

Name of substance	Magnetic susceptibility	Verdet's constant Number	Wavelength of light in cm	Knudt's
Cobalt		_	6.44×10^{-5}	3.99
Nickel		_	"	3.15
Iron	_	_	6.56 "	2.63
Oxygen: 1 atm		0.000179×10^{-5}	5.89 "	.014
Sulfur dioxide	—.0751 "	.302 "	"	- 4.00
Water		.377 "	"	- 5.4
Nitric acid	0633 "	.356 "	44	- 5.6
Alcohol	0566 "	.330 "	46	- 5.8
Ether	0541 "	.315 "	**	- 5.8
Arsenic chloride		1.222 "	44	-14.9
Carbon disulfide	0716 "	1.222 "	"	-17.1
Faraday's glass	0982 "	1.738 "	"	—17.7

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant K. He calls this constant K, Kerr's constant for the magnetized substance forming the magnet.

Color	Spectrum	Wave-	Kerr's const	ant in minutes p	er cgs unit of ma	gnetization
of light	line	length	Cobalt	Nickel	Iron	Magnetite
Red	Lia	.677 μ	0208	— .0173	— .0154	+.0096
Red	_	.620	— .0198	— .0160	— .0138	+.0120
Yellow	D	.589	— .0193	— .0154	0130	+.0133
Green	b	.517	— .0179	— .0159	— .0111	+.0072
Blue	F	.486	0180	— .0163	— .0101	+.0026
Violet	G	.431	0182	— .0175	0089	_

TABLE 519.—TRANSVERSE GALVANOMAGNETIC AND THERMOMAGNETIC **EFFECTS**

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature. E = difference of potential produced; I = difference of temperature produced; I = difference

primary current; $\frac{dt}{dx}$ = primary temperature gradient; B = breadth, and D = thickness,

of specimen; H = intensity of field, cgs units.

Hall effect (galvanomagnetic difference of potential),
$$E=R\frac{HI}{D}$$

Ettingshausen effect ("" temperature), $T=P\frac{HI}{D}$

Nernst effect (thermomagnetic " potential), $E=QHB\frac{dt}{dx}$

Leduc effect ("" temperature), $T=SHB\frac{dt}{dx}$

			4.4	
Substance	Values of R	$P \times 10^6$	$Q \times 10^6$	$S \times 10^8$
Tellurium	+ 400 to 800	+200	+360000	+400
Antimony	+.9 ".22	+2	+9000 to 18000	+200
Steel	+.012 ".033	_ .07	-700 " 1700	+69
Heusler alloy	+.010 ".026	_	+1600 " 7000	
Iron	+.007 ".011	06	—1000 " 1500	+39
Cobalt	+.0016 ".0046	+.01	+1800 " 2240	+13
Zinc	_	_	- 54 " 240	+13
Cadmium	+.00055			·
Iridium	+.00040	_	up to 50	+ 5
Lead	$\pm .00009$	_	-5.0(?)	
Tin	00003	_	—4.0 (?)	
Platinum	0002	_	- '	— 2
Copper	00052	-	-90 to 270	18
German silver	00054			
Gold	00057 to .00071			
Constantin	0009			
Manganese	00093			
Palladium	—.0007 to .0012	_	-r·50 to 130	— 3
Silver	- .0008 " .0015	_	46 " 430	-41
Sodium	0023			
	00094 to .0035			
	— .00036 " .0037			
Nickel	— .0045 " .024	+.04 to .19	+2000 " 9000	—4 5
Carbon	— .017	+5.	+100	
Bismuth	— up to 16.	+3 to 40	+ up to 132000	200

TABLE 521 .- VARIATION OF HALL CONSTANT WITH THE TEMPERATURE

		Bism	uth						Antimon	у	
H 1000 2000 3000 4000 5000 6000	-182°C 62.2 55.0 49.7 45.8 42.6 40.1	-90° 28.0 25.0 22.9 21.5 20.2 18.9	-23° 17.0 16.0 15.1 14.3 13.6 12.9	+11.5° 13.3 12.7 12.1 11.5 11.0 10.6	+100° 7.28 7.17 7.06 6.95 6.84 6.72		H 1750 3960 6160	-186°C .263 .252 .245	-79° .249 .243 2 35	+21.5° .217 .211 .209	+58
					Bismut	h					
\overline{H}	+14.5	°C +	104°	125°	189°	212°	2.	39°	259°	269°	270°
890	5.28	2.	57	2.12	1.42	1.24	1.	.11	.97	.83	.77*

TABLES 522-555.—OPTICAL GLASS AND OPTICAL CRYSTALS

Optical glass and optical crystals are in general described by giving their indices of refraction for standard wavelengths, such as the D, A, C, F, etc., lines and their ν values = $(n_D - 1)/(n_F - n_C)$. Also, the spectral transmission and some other physical constants may be given. In addition, many crystals have different optical properties in different directions which require some consideration of their optical axes. For glasses used as filters the spectral transmission is an important item. A table of wavelength units and some data on various types of optical glass and crystals follow.

TABLE 522.—RADIATION WAVELENGTH UNITS

	Radiation micron		rimetry micron		troscopy gstrom		-rays ay units		rays angstrom
			Powe	rs-of-10 e	quivalent	of units	listed in	column 1	
Micron	$ \begin{array}{ccc} $	μ 1 10 ⁻³ 10 ⁻⁴ 10 ⁻⁷ 10 ⁻¹⁰	10^{3} 1 10^{-1} 10^{-4}	A 10 ⁴ 10 1 10 ⁻³ 10 ⁻⁶	XU 10 ⁷ 10 ⁴ 10 ³ 1	μA 10^{10} 10^7 10^6 10^3 1	cgs unit cm 10 ⁻⁴ 10 ⁻⁷ 10 ⁻⁸ 10 ⁻¹¹ 10 ⁻¹⁴	mm 10^{-3} 10^{-6} 10^{-7} 10^{-10} 10^{-13}	m 10^{-6} 10^{-9} 10^{-10} 10^{-13} 10^{-16}

The X-ray unit as originally used referred to the measurement of x-wavelengths using a calcite crystal. Such results are in error by a factor of 1.00203.

OPTICAL GLASS

TABLE 523.—CHARACTERISTICS OF AMERICAN-MADE OPTICAL GLASSES 100

Crown glasses—crown (CO), light barium crown (LBC), dense barium crown (DBC), extra dense barium crown (EDBC)							
Name		LBC —BL		DBC —CG 620/603		EDBC —BL 617/539	
Туре		573/568	612/595	,	,	,	
n_D ,		1.57250	1.61160	1.62030	1.63840	1.61700	
$n_{G'}$		1.58538	1.6246	1.6332	1.6532	1.63171	
n_F		1.57962	1.61880	1.62750	1.64650	1.62511	
n_C		1.56954	1.60852	1.61722	1.63500	1.61367	
ν	59.6	56.8	59.5	60.3	55.5	53.9	

Flint glasses—crown flint (CF), light flint (LF), short flint (SF), extra light flint (ELF), light barium flint (LBF), barium flint (BF), dense barium flint (DBF), dense flint (DF), extra dense flint (EDF)

Name Type n _D ng' n _F nc v	CF —BL	LBF —BL	BF —BL	DBF —BL	DBF —CG	ELF —BL
	526/546	548/537	570/481	617/385	670/472	541/475
	1.52560	1.54770	1.57040	1.61700	1.66990	1.54140
	1.53793	1.56081	1.58575	1.63811	1.6882	1.55618
	1.53239	1.55491	1.57880	1.62843	1.67990	1.54949
	1.52277	1.54471	1.56695	1.61242	1.66572	1.53809
	54.6	53.7	48.1	38.5	47.2	47.5
Name Type n _D n _a n _F n _C	ELF —BL 559/455 1.55850 1.57447 1.56722 1.55495 45.5	SF —CG 613/442 1.61300 1.6308 1.62280 1.60893 44.2	LF —BL 575/429 1.57510 1.59263 1.58464 1.57122 42.9	DF —BL 596/397 1.59560 1.61538 1.60632 1.59130 39.7	EDF —BL 751/277 1.75060 1.78716 1.77009 1.74302 27.7	

¹⁶⁰ Adapted from data from Bausch & Lomb (BL) and Corning Glass Works (CG). F. A. Molby, West Virginia University, assisted in selecting and arranging these data. For reference see Molby, Journ. Opt. Soc. Amer., vol. 39, p. 600, 1949.

TABLE 524.—CHARACTERISTICS OF SOME OPTICAL GLASSES MADE AT THE NATIONAL BUREAU OF STANDARDS *

CF 529/516 1.5286 51.6	1.52900 1.54225 1.53628 1.53600 51.4	Percent 65.4 10.0 .2 .2 .2 .3.5 3.6
BaC 620/600 1.620 60.0	1.61935 1.63257 1.62667 1.61626 59.5	Percent 37.8 44.2 111.35 2 2 3 3 2 3 3.6 3.6 2 3.6
BaC 617/550 1.617 55.0	1.61727 1.63169 1.62523 1.61398 54.9	Percent 37.3 1.4 44.8 4.44.8 4.44.8 4.44.8 7.7 5.6 7.7 5.6 4.9
BaC 611/588 1.611 58.8	1.61107 1.62425 1.61837 1.60801 59.0	Percent 38.3
BaC 6109/572 1.6109 57.2	1.61118 1.62484 1.61873 1.60802 57.0	Percent 38.25 2.2 42.85 6.7 6.7 4.2 4.2 4.2 4.9 4.9
BaC 574/577 1.574 57.7	1.57353 1.58623 1.58055 1.57060 57.6	Percent 47.4 47.4 4.9 4.9 7.0 7.5 7.5
BaC 5725/574 1.5725 57.4	1.57283 1.58549 1.57984 1.56991 57.7	Percent 45.2 28.7 28.7 6.2 6.2 6.2 7.7 7.5 7.5 7.5 3.0
BaC 541/599 1.541 59.9	1.54111 1.55259 1.54747 1.53843 59.9	Percent 58.8 19.9 3.8 2.8 2.8 4.1
LC 528/580 1.528 58.0	1.52882 1.54035 1.53520 1.52613 58.3	68.3 68.3 11.5 14.0 2.5 2.5 11.2 11.3 .7
LC 523/586 1.523 58.6	1.52300 1.53433 1.52928 1.52037 58.7	70.2 70.2 11.5 14.0 2.5 2.5 1.2 1.2 7.7 .7
LC \$12/60\$ 1.5125 60.5	1.51310 1.52385 1.51906 1.51049 60.6	71.9 71.9 5.0 14.7 5.0 2.2
BSC 536/645 1.536 64.5	1.53598 1.54645 1.54182 1.53349 64.4	63.4 63.4 13.0 6.2 6.2 .4 .4 .4 .5.0
BSC 517/645 1.517 64.5	1.51728 1.52736 1.52289 1.51489 64.7	66.3 66.3 12.5 7.5 12.0 .5 1.2
BSC 511/635 1.511 63.5	1.51070 1.52086 1.51635 1.50829 63.4	
	pical glass ND Na' NR NR	Composition (batch) Percent SiO ₂ 68.8 PbO 68.8 PbO 68.8 PbO 68.0 PbO 68.0 PbO 68.0 PbO 69.0
Name . Nominal	Typical glass no no' ne ne ne	Composition SiO, PbO PbO BaO BaO, Na ₂ O KaO Shool CaO CaO CaO So, Al ₂ O, ZrO, ZrO, ZrO, ZrO, ZrO, ZrO, ZrO, Zr

* Data furnished by L. W. Tilton, National Bureau of Standards.

Ø	$_{604/435}^{BF}$	1.604	1.6042 1.6224 1.6141 1.6002 43.4	Percent 45.7 23.3 14.3	8.7	8.1		
ACTERISTICS OF SOME OPTICAL GLASSES MADE AT THE NATIONAL BUREAU OF STANDARDS (concluded)	$\frac{BF}{588/534}$	1.588	1.58835 1.60249 1.59614 1.58513 53.4	Percent 10.0 25.9	6.8 6.7 5.			1.5
OF STA	$^{BF}_{584/460}$	1.584	1.58386 1.60030 1.59283 1.58019 46.2 5	Percent 49.8 18.8 13.4	1.5 8.2 .5	7.8		
UREAU	754/277	1.754	1.75410 1.79106 1.77380 1.74644 27.5	Percent 31.2 66.2	2.3			
ONAL B	F F F F F F F F F F F F F F F F F F F	1.720 29.5	1.72037 1.75349 1.73808 1.71345 29.2	Percent 34.1 62.4	8. 2.6.			
E NATI	$^F_{689/309}$	1.689	1.68884 1.71851 1.70475 1.68259 31.1	Percent 37.0 58.1	5. 6.			
E AT TH	F 672/322	1.6725	1.67210 1.70003 1.68710 1.66619 32.1	Percent 38.8 55.4	بن تزنن			
S MADE	F 666/324	1.666	1.66600 1.69335 1.68069 1.66021 32.5	Percent 39.3 54.4	6.0			
GLASSES (concluded)	F 649/338	1.649	1.64903 1.67470 1.66285 1.64356 33.7	Percent 41.2 51.1	7.3. 5.5.			
TICAL		1.620	1.62042 1.64311 1.63268 1.61556 36.2	Percent 45.6 45.2	3.0 5.7 .5			
SOME OI	F 617/366 620/362	1.617	1.61699 1.63936 1.62907 1.61217 36.5	Percent 45.6 43.2	4.6 6.1 .5			
CS OF 8	F F 605/381	1.605	1.60490 1.62590 1.61630 1.60030 37.9	Percent 47.6 40.9	2.2 8.8 .5			
TERISTI	F 5795/410	1.5795	1.57942 1.59800 1.58951 1.56536 40.9	Percent 53.1 35.5	4.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00 7	ů.		
HARAC	F 572/425	1.5725 42.5	1.57184 1.58950 1.58146 1.56796 42.4	Percent 55.1 31.7 1.0	5.0 6.9 .3			
TABLE 524.—CHAR	Name	Nominal ND	Typical glass no no no no ne ne ne	on (batch)	B ₂ O ₃ Na ₂ O K ₂ O A ₂₂ O ₃	ShrUs ZnO BeO	SrO Li ₂ O CaO	Cl SO ₂ Al ₂ O ₃ ZFO ₂

TABLE 525.—INDEX OF REFRACTION OF EASTMAN KODAK CO. NONSILICA GLASSES (1949)

Part 1

Type	EK—110 (EK—110 —5328)	EK-210	EK-310	EK-325 (EK-32 -2641)	EK-330 (EK-33 -2734s)	EK-450 (EK-45 -29)
Index	*****					
n _h	1.71786	1.75861	1.77301	1.77288	1.78280	1.83767
n_g	1.71227	1.75201	1.76538	1.76518	1.77532	1.82832
n_F	1.70554	1.74413	1.75638	1.75607	1.76643	1.81738
n_D	1.69680	1.73400	1.74500	1.74450	1.75510	1.80370
	(1.6973)			(1.7442)	(1.7555)	(1.8016)
n_C	1.69313	1.72979	1.74033	1.73973	1.75043	1.79814
$n_{A'}$	1.68877	1.72484	1.73491	1.73417	1.74499	1.79180

Type numbers and n_D values in parentheses are 1947 descriptions of EK glasses for which expansion data appear in Table 550.

Part 2.—Dispersion of glasses							
Index							
n_D (1.69680	1.73400	1.74500	1.74450 (1.7442)	1.75510 (1.7555)	1.80370 (1.8016)	
$\nu = \frac{n_D - 1}{2} \cdot \dots \dot{5}$		51.18	46.42	45.56	47.19	41.8	
$\overline{n_F - n_C} \dots (5)$				(45.8)	(47.2)	(40.9)	
$n_F - n_C \dots$.01241	.01434	.01605	.01634	.01600	.01924	
	(.01246)			(.01624)	(.01602)	(.01959)	
$n_F - n_D$.00874	.01013	.01138	.01157	.01133	.01368	
	(.00877)			(.01153)	(.01133)	(.01394)	
$n_g - n_F \dots \dots$.00673	.00788	.00900	.00911	.00889	.01094	
	(.00677)			(.00913)	(.00890)	(.01118)	
$n_h - n_g$.00559	.00660	.00763	.00770	.00748	.00935	
	(.00562)			(.00776)	(.00750)	(.00959)	
$n_D - n_{A'} \dots$.00803	.00916	.01009	.01033	.01011	.01190	
	(.00806)			(.01018)	(.01014)	(.0)	

TABLE 526.—TRANSMISSION OF OPTICAL GLASS

Thickness 10 mm, reflection deducted *

	BSC —1	BSC 2	<i>C</i> —1	<i>LBC</i> —2	DBC —1	DBC —3	<i>CF</i> —1	<i>BF</i> —1	<i>DF</i> 2	EDF —3
Cut-off in $m\mu$	300	296	301	306	328	320	310	316	326	350
T at 360 $m\mu$	90 0	76.0	84.0	47.5	22.0	82.5	97.0	94.0	72.5	6.5
$380 \ m\mu \dots$	98.0	95.0	97.2	92.5	96.8	98.5	99.0	98.0	84.5	47.0
$400 \ m\mu$	99.5	99.5	99.3	99.5	99.5	99.4	99.5	99.5	90.5	70.0
$460 \ m\mu \dots$	99.5	99.5	99.3	99.5	99.5	99.4	99.5	99.5	97.0	96.2
$500 \ m\mu$	99.5	99.5	99.3	99.5	99.5	99.4	99.5	99.5	98.9	99.3
$800 \ m\mu \dots$	99.5	98.5	99.3	99.2	99.4	99.4	99.5	99.5	99.5	99.5
$1000 \ m\mu \dots$	99.5	94.5	99.3	97.2	96.6	99.4	99.5	99.5	99.5	99.5
$2000 \ m\mu \dots$	88.8	85.0	95.0	90.5	65.0	80.5	70.0	88.5	99.5	99.5
$3000 \ m\mu \dots$.5	0.	17.5	.6	.0	.0	.9	.9	6.0	3.0
Cut-off in $m\mu$	3200	3000	4000	3200	2900	2850	3350	3250	3500	4100

^{*} Abbreviated from a list of results of measurements on freshly polished samples of Bausch & Lomb glasses. Data supplied by the Bausch & Lomb Optical Co.

TABLE 527.—CHANGES WITH TEMPERATURE IN ABSOLUTE INDEX OF REFRACTION (n) AT 20°C FOR A NUMBER OF GLASSES * †

	Crown	barium crown	barium crown	Crown flint	Barium flint	Dense flint
crown 3 <i>SC</i> —1	C—1	LBC-2	DBC-3	CF-1	BF—1	DF2
	-					
						.586
.101	.199	.085	.305	.261	.246	.492
.087	.171	.072	.276	.244	.218	.450
	.159					.405
.059	.150	.036	.256	.205	.162	.370
.050	.131	.025	.237	.184	.140	.334
	.101 .087		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^{*} For references, see footnote 160, p. 509. † In units of the fifth decimal place.

TABLE 528.—INDEX OF REFRACTION OF GLASSES MADE BY SCHOTT AND GENOESSEN, JENA

The following constants are for glasses made by Schott and Genoessen, Jena: n_A , n_C , n_D , n_F , n_G , are the indices of refraction in air for $A = 0.7682\mu$, $C = 0.6563\mu$, D = 0.5893, F = 0.4861, G' =0.4341, $\nu = (n_D - 1)/(n_F - n_C)$.

	Catalogue type = Designation =	O 546 Zinc- crown	O 381 Higher dis- persion crown	O 184 Light silicate flint	O 102 Heavy silicate flint	O 165 Heavy silicate flint	S 57 Heaviest silicate flint
]	Melting number = ν =	1092 60 .7	1151 51.8	451 41.1	469 33.7	500 27.6	163 22.2
	Cd .2763µ	1.56759	_		_		_
Ъ.	Cd .2837	1.56372	. =		_	-	
gt	Cd .2980	1.55723	1.57093	1.65397	_	_	
e	Cd .3403	1.54369	1.55262	1.63320	1.71968	1.85487	
vel	Cd .3610	1.53897	1.54664	1.61388	1.70536	1.83263	
wavelength	Η .4340μ	1.52788	1.53312	1.59355	1.67561	1.78800	1.94493
P	H .4861	1.52299	1.52715	1.58515	1.66367	1.77091	1.91890
and	Na .5893	1.51698	1.52002	1.57524	1.64985	1.75130	1.88995
	Н .6563	1.51446	1.51712	1.57119	1.64440	1.74368	1.87893
light	K .7682	1.51143	1.51368	1.56669	1.63820	1.73530	1.86702
of 1	.800μ	1.5103	1.5131	1.5659	1.6373	1.7338	1.8650
	1.200	1.5048	1.5069	1.5585	1.6277	1.7215	1.8481
Kind	1.600	1.5008	1.5024	1.5535	1.6217	1.7151	1.8396
×	2.000	1.4967	1.4973	1.5487	1.6171	1.7104	1.8316
	2.400	_	_	1.5440	1.6131	_	1.8286

Percentage composition of the above glasses:

TABLE 529.-CHANGE OF INDICES OF REFRACTION FOR 1°C IN UNITS OF THE FIFTH DECIMAL PLACE

No. and designation S 57 Heavy silicate flint O 154 Light silicate flint O 327 Baryt flint light	58.4 58.3	C 1.204 .225 008	D 1.447 .261 .014	F 2.090 .334 .080	G' 2.810 .407 .137	$ \frac{-\Delta n}{n} 100 $.0166 .0078 .0079
O 225 Light phosphate crown	58.1	202	— .190	— .168	— .142	.0049

O 546, SiO₂, 65.4; K₂O, 15.0; Na₂O, 5.0; BaO, 9.6; ZnO, 2.0; Mn₂O₃, 0.1; As₂O₃, 0.4; B₂O₃, 2.5. O 381, SiO₂, 68.7; PbO, 13.3; Na₂O, 15.7; ZnO, 2.0; MnO₂, 0.1; As₂O₃, 0.2. O 184, SiO₂, 53.7; PbO, 36.0; K₂O, 8.3; Na₂O, 1.0; Mn₂O₃, 0.06; As₂O₃, 0.3. O 102, SiO₂, 40.0; PbO, 52.6; K₂O, 6.5; Na₂O, 0.5; Mn₂O₃, 0.09; As₂O₃, 0.3. O 165, SiO₂, 29.26; PbO, 67.5; K₂O, 3.0; Mn₂O₃, 0.04; As₂O₃, 0.2. S 57, SiO₂, 21.9; PbO, 78.0; As₂O₃, 0.1.

Coefficients, α , in the formula $I_t = I_0 \alpha^t$, where I_0 is the intensity before, and I_t after, transmission through the thickness t.

				Coeff	icient	of tra	ansmis	sion, a			
Unit $t = 1$ dm	.375	ι 390μ	.400	.43	4μ .4	36μ .	455μ	.477μ	.503μ	.580μ	.677μ
O 340, Ordinary light flint	.388	.456	.614	.56	6. 6	80	.834	.880	.880	.878	.939
O 102, Heavy silicate flint	_	.025	.463	.50			.663	.700	.782	.828	.794
O 93, Ordinary " "			-	-			.807	.899	.871	.903	.943
O 203, " " crown	.583	.583	.695	.66			.822	.860	.872	.872	.903
O 598, (Crown)	_	_	_	-	/	97	.770	.771	.776	.818	.860
								0.5	0.5		
Unit $t=1$ cm		0.95μ		1.4μ	1.7μ	2.0μ					3.1μ
S 204, Borate crown	1.00	.99	.94	.90	.85	.81	.69		.29	.18	-
S 179, Medium phosphate crown.		.98	.95	.90	.84	.67	.49		.18		_
O 1143, Dense borosilicate crown	.98	_	.97		.95	.93			.71	.47	.27
O 1092, Crown	.99	.96	.95	.99	.99	.91	.82		.60	.48	.29
O 1151, "	.98	_	.99	.99	.98	.94			.75	.45	.32
O 451, Light flint	1.00	_	.99	_	.98	.95			.78	.54	.34
O 469, Heavy "	1.00	_	.98	_	.99	.98			.90	.66	.50
O 500, " "	1.00	_	1.00	-	1.00	_	1.00	.99	.92	.74	.53
S 163, " "	1.00	-	.98	_	.99	_	.99		.94	.78	.60

Part 2

R is reflection factor yellow light for two surfaces. Values of transmission are for 1 mm thickness. Ordinary figures refer to wavelengths in μ , .281 to .775, black-faced infrared.

Glass	Density	.281	.302	.334	.366	.436	.480	.546	.578	.644	.700	.775
durability	R	.850	.950	1.15	1.30	1.60	2.00	2.20	2.40	2.60	2.80	3.00
UG1	2.77	.00	.17	.69	.85	.00	.00	.00	.00	.00	.01	.34
2/3	.911	.22	.11	.05	.04	.03	.04	.06	.11	.15	.19	.17
B G 1	2.50	.04	.40	.93	.97	.86	.44	.04	.05	.01	.51	.94
3	.915	.97	.93	.76	.58	.40	.50	.59	.69	.74	.75	.55
B G 4	2.41	.00	.00	.04	.74	.87	.53	.01	.01	.00	.07	.13
5	.921	.12	.11	.13	.12	.14	.21	.45	.59	.63	.45	.40
B G 10	2.60	.00	.00	.14	.64	.93	.95	.94	.88	.75	.62	.42
1/2	.916	.31	.25	.26	.31	.47	.55	.56	.58	.55	.47	.46
V G 1	2.93	.00	.00	.00	.00	.02	.47	.77	.56	.12	.06	.04
2	.905	.05	.09	.18	.27	.47	.65	.71	.76	.77	.69	.55
G G 2	2.58	.00	.00	.00	.64	.99	1.00	1.00	1.00	1.00	1.00	1.00
3	.916	1.00	1.00	1.00	1.00	1.00	.99	.99	.98	.94	.84	.70
G G 4	2.73	.00	.00	.03	.01	.67	.92	.97	.96	.94	.96	.99
2	.913	.99	.99	.99	.99	.99	.99	.99	.98	.94	.85	.64
G G 11	2.54	.00	.00	.00	.00	.01	.24	.99	.99	.99	.99	.98
2	.913	.97	.96	.96	.99	.96	.97	.97	.95	.91	.82	.66
R G 2	2.74	.00	.00	.00	.00	.00	.00	.00	.00	.92	.98	.98
2	.913	.98	.98	.98	.98	.98	.98	.97	.95	.92	.81	.65
R G 5	2.74	.00	.00	.00	.00	.00	.00	.00	.00	.02	.96	.98
2	.913	.98	.98	.99	.99	.99	.99	.98	.97	.92	.79	.58
N G 5	2.42	.00	.00	.00	.29	.59	.63	.66	.68	.70	.70	.65
1	.919	.61	.59	.61	.65	.73	.78	.78	.76	.69	.58	.40

U G 1 dark purple (uv., extreme red). B G 1 blue (uv., extreme red). B G 4 blue (ir.). B G 10, light blue green, ir. absorption. V G 1 yellow-green. G G 2 colorless, uv. absorption. G G 4 almost colorless, strong uv. absorption. G G 11 dark yellow for contract filters. R G 2 pure red. R G 5 dark red. N G 5 light neutral.

OPTICAL CRYSTALS

Not so many years ago physicists had to depend upon natural crystals for their various optical instruments. Now, owing to a great deal of work in this field, it has been found possible to grow artificial crystals of various materials for this purpose. Data on some of these artificial crystals are given in the following tables and the spectral transmission of some of them is shown in figure 26.

TABLE 531,-SOME ARTIFICIAL OPTICAL CRYSTALS *

Part 1

•	,	S	Size grown				7-0
Material c	Type of crystal	Diameter Length	Length	Weight	Transmission range	Uses	Keter- ence 161
Sodium chloride (NaCl) [†] cubic	ubic	190 mm	125 mm	13 kg	.2 to 15\mu, practical,	Ultraviolet, visible, and infrared spectro-	ر ح
Potassium chloride (KCI) [‡]	cubic	190		16	.38 to 21 µ	About the same as NaCl	c, d
Silver chloride (AgCI) cubic	ubic	95	125	4.5	Infrared to 30μ	Windows and prisms for uv. and ir. spectro-	e
(optical)* Calcium fluoride (CaF ₃)	cubic	125	100	5.0	.125 to 9.0µ	Scopy Windows and prisms uv., v., and ir. Lens c, f	c, f
Potassium bromide (KBr) 1	cubic	190	125	16	Practical, 15 to 25μ	parts Prisms and lenses for far infrared	b, c, e
Potassium iodide (KI)¶	cubic	190	125	16	Long wavelength in-	Prisms and windows for far infrared	ď, h
					frared, trans. 2 cm		
					thickness, 50% at 32.8u		
Lithium fluoride (LiF) 1 cubic	ubic	150	120	9	Practical, 1 to 5.0μ	Windows and prisms for uv. and ir., and as b, g	b, g
Thallium bromide-iodide cubic	ubic	125	87.5	8.9	20 to 37μ	rens components Prisms and windows, ir., lens parts	e, i
Barium fluoride (BaF ₁)	cubic	125	100	6.0	up to 12μ to 42μ	Infrared windows, prisms Windows, prisms	
	cubic	190		16	a.	Scintillation	
	-	100	125	16		Counters	-
	·· capac	061	571	0.1		counters	j

TABLE 531.—SOME ARTIFICIAL OPTICAL CRYSTALS (concluded)

Part 2

	In	dex of refraction	n	
Material	λ	1st sample	2d sample	Reference
KBr	.486μ	1.57181	1.57194	c, b, e
	.589	1.55986	1.55997	
	.656	1.55503	1.55524	
		$1 (1-10\mu) 1.5$	54 to 1.53	
KI	n _F		n_D	d, h
	1.68755	1.6670	1.6588	
	to infrared	$1 (1-20\mu) 1.6$	4, 1.62	
		n		
LiF	.4861	1.394810 ± 1	2×10^{-6}	b, g
	.5893	1.392057		
	.6563	1.390862		
Thallium bromide-iodide (KRS-5)**); 1µ, 2.45; 4µ	ι, 2.4;	i, e
	10μ , 2.3	9; 35μ , 2.30		

TABLE 532.— n_D , DISPERSION AND DENSITY OF JENA GLASSES

	ν	$n_D - 1$	-			Specific
No. and type of Jena glass n_D for D	$n_F - n_C$	$-n_F-n$	$_{C}$ n_{D} $ n_{A}$	$n_F - n_D$	$n_G' - n_F$	gravity
O 225 Light phosphate crown 1.5159	.00737	70.0	.00485	.00515	.00407	2.58
O 802 Borosilicate crown 1.4967	0765	64.9	0504	0534	0423	2.38
UV 3109 Ultraviolet crown 1.5035	0781	64.4	0514	0546	0432	2.41
O 227 Barium-silicate crown 1.5399	0909	59.4	0582	0639	0514	2.73
O 114 Soft silicate crown 1.5151	0910	56.6	0577	0642	0521	2.55
O 608 High-dispersion crown 1.5149	0943	54.6	0595	0666	0543	2.60
UV 3248 Ultraviolet flint 1.5332	0964	55.4	0611	0680	0553	2.75
O 381 High-dispersion crown 1.5262	1026	51.3	0644	0727	0596	2.70
O 602 Baryt light flint 1.5676	1072	53.0	0675	0759	0618	3.12
S 389 Borate flint 1.5686	1102	51.6	0712	0775	0629	2.83
O 726 Extra light flint 1.5398	1142	47.3	0711	0810	0669	2.87
O 154 Ordinary light flint 1.5710	1327	43.0	0819	0943	0791	3.16
O 154 Ordinary light flint 1.5710 O 184 " " 1.5900	1438	41.1	0882	1022	0861	3.28
O 748 Baryt flint 1.6235	1599	39.1	0965	1142	0965	3.67
O 102 Heavy flint 1 6490	1919	33.8	1152	1372	1180	3.87
0 41 " " 1.7174 0 165 " " 1.7541 S 386 Heavy flint 1 9170	2434	29.5	1439	1749	1521	4,49
O 165 " " 1.7541	2743	27.5	1607	1974	1730	4.78
2 000 11cavy mint 1.71/0	4289	21.4	2451	3109	2808	6.01
S 57 Heaviest flint 1.9626	4882	19.7	2767	3547	3252	6.33

Fig. 26.—Spectral transmission of a number of infrared materials. Curves: 1, Fluorite, CaFs, 1 cm thick. 2, Rocksalt, NaCl, 1 cm. 3, Silvite, KCl, 1 cm. 4, KBr, 1 cm. 5, Crystal quartz, SiO₂, 1 cm. 6, Fused SiO₂, 1 cm. 7, Thallium bromide, KRS-5, 4 mm thick. Taken from Baird Associates, Engineering Research Development Laboratories, Rep. W-44-009 Eng. 473, 1949.

no Quartz	n. Quartz	n Vitreous	Wavelength in air at 15° mμ	no Quartz	n. Quartz	n Vitreous
1.67578	1.68997					1.46067
1.65999	1.67343	1.55999	579.066			
1.64557	1.65842	1.54727	589,29	1.544246	1.553355	1.45845
1.63039	1.64262	1.53386	643.847	1.542288	1.551332	1.45674
1.61818	1.62992	1.52308	667.815	1.541553	1.550573	
1.60032	1.61139	1.50745	706.520	1.540488	1.549472	1.45517
	1.59813	1.49617	794.763	1.538478	1.547392	1.45340
1.576955	1.58720	1.48594	1000.00	1.53503	1.54381	
1.56747	1.577385	1.47867	1200.00	1.53232	1.54098	
1.55813	1.56772	1.47061	1400.00	1.52972	1.53826	
	1.563405	1.46690	1600.00	1.52703	1.53545	
	1.560368	1.46435	2058.20	1.51998	1.52814	
	1.557475	1.46191	2500.00	1.51156	1.5195	
1.0 .000	2.007 170		3000.00	1.49962	1.5070	••••
	Quartz 1.67578 1.65999 1.64557 1.63039 1.61818 1.60032 1.58752 1.576955	Quartz Quartz 1.67578 1.68997 1.65999 1.67343 1.64557 1.65842 1.63039 1.64262 1.61818 1.62992 1.60032 1.61139 1.58752 1.59813 1.576955 1.58720 1.56747 1.577385 1.55813 1.56772 1.553963 1.563405 1.551027 1.560368	Quartz Quartz Vitreous 1.67578 1.68997 1.57436 1.65999 1.67343 1.55999 1.64557 1.65842 1.54727 1.63039 1.64262 1.53386 1.61818 1.62992 1.52308 1.60032 1.61139 1.50745 1.58752 1.59813 1.49617 1.576955 1.58720 1.48594 1.56747 1.577385 1.47867 1.55813 1.56772 1.47061 1.553963 1.563405 1.46690 1.551027 1.560368 1.46435	no n n in air at 15° Quartz Vitreous mµ 1.67578 1.68997 1.57436 533.85 1.65999 1.67343 1.55999 579.066 1.64557 1.65842 1.54727 589.29 1.63039 1.64262 1.53386 643.847 1.61818 1.6292 1.52308 667.815 1.60032 1.61139 1.50745 706.520 1.58752 1.59813 1.49617 794.763 1.576955 1.58720 1.48594 1000.00 1.55747 1.577385 1.47867 1200.00 1.553963 1.563405 1.46690 1600.00 1.551027 1.560368 1.46435 2058.20 1.548229 1.557475 1.46191 2500.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹⁸¹a Sosman, Robt. B., The properties of silica, p. 591, Chemical Catalog Co., NewYork, 1927.

TABLE 534.-INDEX OF REFRACTION OF ROCK SALT IN AIR

λ(μ)	n	λ(μ)	n	λ(μ)	n
.185409	1.89348	.88396	1.534011	5.8932	1.516014
.204470	1.76964	.972298	1.532532	44	1.515553
.291368	1.61325	.98220	1.532435	6.4825	1.513628
.358702	1.57932	1.036758	1.531762	"	1.513467
.441587	1.55962	1.1786	1.530372	7.0718	1.511062
.486149	1.55338	"	1.530374	7.6611	1.508318
"	1.553406	1.555137	1.528211	7.9558	1.506804
46	1.553399	1.7680	1.527440	8.8398	1.502035
.58902	1.544340	""	1.527441	10.0184	1.494722
.58932	1.544313	2.073516	1.526554	11.7864	1.481816
.656304	1.540672	2.35728	1.525863	12.9650	1.471720
.030304	1.540702	2.00720	1.525849	14.1436	1.460547
.706548	1.538633	2.9466	1.524534	14.7330	1.454404
.766529	1.536712	3.5359	1.523173	15.3223	1.447494
.76824	1.53666	4.1252	1.521648	15.9116	1.441032
.78576	1.536138	4.1232	1.521625	20.57	1.3735
.88396	1.534011	5.0092	1.518978	22.3	1.340
		Talbot's band	is (18°C) 162		
λ(μ)		λ(μ)		$\lambda(\mu)$	
	n 1 41 2		1 252		1 220
18.1		21.3			1.229
18.7		22.8			1.203
19.4		23.6		27.3	1.175
20.0		24.2			
20.7	1.308	25.0	1.254		
$n^2 - \sigma^2$	$+\frac{M_1}{\lambda^2-\lambda^2}+\frac{M}{\lambda^2-\lambda^2}$	$\frac{1}{\lambda_2^2} - k\lambda^2 - k$	$h\lambda^4$ or $=b^2+$	$\frac{M_1}{\lambda^2-\lambda_1^2}+\frac{M_2}{\lambda^2-\lambda}$	$\frac{1}{\lambda_1^2} - \frac{M_2}{\lambda_2^3 - \lambda_3^2}$
n — u -					
	-				
where a:	= 2.330165		2547414	$b^{2} = 5.680$	
where a^2 : M_1 :	= 2.330165 = .01278685	k = .0	0009285837	$M_2 = 1205$	9.95
where a^{s} : M_{1} : λ_{1}^{2} :	= 2.330165	k = .0			9.95

¹⁶² Baird Associates, Infrared optical materials, Engineer Research and Development Laboratories, Fort Belvoir, Va.

_						
	λ(μ)	n	λ(μ)	n	λ(μ)	n
	185409	1.82710	1.1786	1.478311	8.2505	1.462726
	.200090	1.71870	46	1.47824	44	1.46276
	.21946	1.64745	1.7680	1.475890	8.8398	1.460858
	.257317	1.58125	66	1.47589	"	1.46092
	.281640	1.55836	2.35728	3 1.474751	10.0184	1.45672
	.308227	1.54136	2.9466	1.473834	"	1.45673
	.358702	1.52115	46	1.47394	11.786	1.44919
	.394415	1.51219	3.5359	1.473049	66	1.44941
	.467832	1.50044	44	1.47304	12.965	1.44346
	.508606	1.49620	4.7146	1.471122	46	1.44385
	.58933	1.49044	66	1.47129	14.144	1.43722
	.67082	1.48669	5.3039	1.470013	15.912	1.42617
	.78576	1.483282	66	1.47001	17.680	1.41403
	.88398	1.481422	5.8932	1.468804	20.60	1.3882
	.98220	1.480084	44	1.46880	22.5	1.369
			At	18°C 162		
	24)(")	n	λ(μ)	71
	., .	n	λ(μ)		26.7	
	18.2			1.374	27.2	
	18.8			1.363	28.2	
	19.7			1.352	28.8	
	20.4			1.336	40.0	1.220
	21.1	1.3/9	25.7 .	1.317		
		М.	M _o		M_1 . M_2	M_3
	$n^2 = a^2$	$+\frac{1}{\lambda^{2}-\lambda_{1}^{2}}+$	$-\frac{2H_2}{\lambda^2-\lambda_2^2}-k\lambda^2$	$-h\lambda^{*}$ or $=b^{2}+\frac{1}{2}$	$\frac{M_1}{\lambda^2 - \lambda_1^2} + \frac{M_2}{\lambda^2 - \lambda_2^2}$	$+\frac{1}{\lambda_a^2-\lambda^2}$
	$a^2 = 2.1$		_	= .0255550	$b^2 = 3.8$	
		008344206		= .000513495	$M_3 = 556$	
	$\lambda_1^2 = .0$		h	= .000000167583	$\lambda_3^2 = 329$	2.47
	$M_2 = .0$	00698382				

TABLE 536.-INDEX OF REFRACTION OF POTASSIUM BROMIDE * (22°C)

Wavelength	Index	Wavelength	Index	Wavelength	Index
.4047	. 1.589752	1.7011	1.53901	14.29	1.51505
.4358		2.440	1.53733	14.98	1.51280
.4861	. 1.571789	2.730	1.53693	17.40	1.50390
.5086		3.419	1.53614	18.16	1.50076
.5461	. 1.563928	4.258	1.53523	19.01	1.49705
.5876		6.238	1.53288	19.91	1.49288
.6438	. 1.555858	6,692	1.53225	21.18	1.48655
.7065	. 1.552447	8.662	1.52903	21.83	1.48311
1.2140	. 1.54408	9.724	1.52695	23.86	1.47140
1.1287	. 1.54258	11.035	1.52404	25.14	1.46324
1.3621	. 1.54061	11.862	1.52200		

^{*} Prepared by Stephens, Plyler, Rodney, and Spindler, National Bureau of Standards, March 1952.

TABLE 537.—INDEX OF REFRACTION OF NITROSO-DIMETHYL-ANILINE (WOOD)

λ	92	λ	n	λ	n	λ	n	λ	n
.497 .500 .506 .508 .516	2.140 2.114 2.074 2.025 1.985	.525 .536 .546 .557 .569	1.945 1.909 1.879 1.857 1.834	.584 .602 .611 .620 .627	1.815 1.796 1.783 1.778 1.769	.636 .647 .659 .669	1.647 1.758 1.750 1.743 1.723	.713 .730 .749 .763	1.718 1.713 1.709 1.697

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet.

TABLE 538.—REFRACTIVE INDEX OF SILVER CHLORIDE (AgCI) AT 23.9°C *

Tenths of microns

Wave- length		1	2	3	4	5	6	7	8	9
μ										
0						2.09648	2.06385	2.04590	2.03485	2.02752
	2.02239	2.01865	2.01582	2.01363	2.01189	2.01047	2.00931	2.00833	2.00750	2.00678
	2.00615	2.00559	2.00510	2.00465	2.00424	2.00386	2.00351	2.00318	2.00287	2.00258
	2.00230	2.00203	2.00177	2.00151	2.00126	2.00102	2.00078	2.00054	2.00030	2.00007
Wave			Wave-			Wave-			Wave-	
length			length			length			length	
μ	n		μ	n		μ	n		μ	n
1	2.022	239	6	1.9948	3	11	1.97556		16	1.94358
1.5	2.010)47	6.5	1.9933	9	11.5	1.97297		16.5	1.93958
2	2.006	515	7	1.9918	5	12	1.97026		17	1.93542
2.5	2.003	386	7.5	1.9902	1	12.5	1.96742		17.5	1.93109
3	2.002	230	8	1.9884	7	13	1.96444		18	1.92660
3.5	2.001	102	8.5	1.9866	1	13.5	1.96133		18.5	1.92194
4	1.999		9	1.9846		14	1.95807		19	1.91710
4.5	1.998		9.5	1.9825		14.5	1.95467		19.5	1.91208
5	1.997		10	1.9803		15	1.95113		20	1.90688
5.5	1.996		10.5	1.9780		15.5	1.94743		20.5	1.90149

^{*} Prepared by Leroy W. Tilton, Earle K. Plyler, and Robert E. Stephens, National Bureau of Standards.

TABLE 539.—INDEX OF REFRACTION OF FLUORITE (CaF₂) IN AIR Part 1

		·					
λ(μ)	n	λ(μ)	n	λ(μ)	n	λ(μ)	n
.1856	1.50940	.76040	1.43101	2.2100	1.42288	5.0092	1.39898
.19881	1.49629	.8840	1.42982	2.3573	1.42199	5.3036	1.39529
.21441	1.48462	1.1786	1.42787	2.5537	1.42088	5.5985	1.39142
.22645	1.47762	1.3756	1.42690	2.6519	1.42016	5.8932	1.38719
.25713	1.46476	1.4733	1.42641	2.7502	1.41971	6.4825	1.37819
.32525	1.44987	1.5715	1.42596	2.9466	1.41826	7.0718	1.36805
.34555	1.44697	1.6206	1.42582	3.1430	1.41707	7.6612	1.35680
.39681	1.44214	1.7680	1.42507	3.2413	1.41612	8.2505	1.34444
.48607	1.43713	1.9153	1.42437	3.5359	1.41379	8.8398	1.33079
.58930	1.43393	1.9644	1.42413	3.8306	1.41120	9.4291	1.31612
.65618	1.43257	2.0626	1.42359	4.1252	1.40855	51.2	3.47
.68671	1.43200	2.1608	1.42308	4.4199	1.40559	61.1	2.66
.71836	1.43157			4.7146	1.40238	∞	2.63

Part 2 163

n	λ(μ)	n	λ(μ)	n	λ(μ)	n
1.4415099	.508585	1.4361735	.770688	1.4308799	1.734047	1.4252000
1.4412890	.546077	1.4359584	.819115	1.4303704	1.767893	1.4250359
1.4394944	.579016	1.4341020	.961049	1.4291954	2.034339	1.4237262
1.4388656	.589298	1.4338304	1.092154	1.4283523	2.184308	1.4229318
1.4376377	.636238	1.4328439	11100001		2.312063	1.4222226
	.643850	1.4327050	1.178596	1.4278658	2.357191	1.4219705
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.441574	1.4265842		1.4208398
1.4364325	.706523	1.4316947	1.638231	1.4256500	2.575402	1.4206797
	1.4415099 1.4412890 1.4394944 1.4388656	1.4415099 .508585 1.4412890 .546077 1.4394944 .579016 1.438656 .589298 1.4376377 .636238 1.4372742 .643850 1.4370381 .656286	1.4415099 .508585 1.4361735 1.4412890 .546077 1.4359584 1.4394944 .579016 1.4341020 1.4388656 .589298 1.4338304 1.4376377 .636238 1.4328439 1.4372742 .643850 1.4327050 1.4370381 .656286 1.4324825	1.4415099 .508585 1.4361735 .770688 1.4412890 .546077 1.4359584 .819115 1.4394944 .579016 1.4341020 .961049 1.4388656 .589298 1.4338304 1.092154 1.4376377 .636238 1.4328439 1.156031 1.4372742 .643850 1.4327050 1.178596 1.4370381 .656286 1.4324825 1.441574	1.4415099 .508585 1.4361735 .770688 1.4308799 1.4412890 .546077 1.4359584 .819115 1.4303704 1.4394944 .579016 1.4341020 .961049 1.4291954 1.4388656 .589298 1.4338304 1.092154 1.4283523 1.4376377 .636238 1.4328439 1.156031 1.4279924 1.4372742 .643850 1.4327050 1.178596 1.4278658 1.4370381 .656286 1.4324825 1.441574 1.4265842	1.4415099 .508585 1.4361735 .770688 1.4308799 1.734047 1.4412890 .546077 1.4359584 .819115 1.4303704 1.767893 1.4394944 .579016 1.4341020 .961049 1.4291954 2.034339 1.4388656 .589298 1.4338304 1.092154 1.4283523 2.184308 1.4376377 .636238 1.4328439 1.156031 1.4279924 2.312063 1.4372742 .643850 1.4327050 1.78596 1.4278658 2.357191 1.4370381 .656286 1.4324825 1.441574 1.4265842 2.544951

$$n^2 = a^2 + \frac{M_1}{\lambda^2 - \lambda_1^2} - e\lambda^2 - f\lambda^4 \text{ or } = b^2 + \frac{M_2}{\lambda^2 - \lambda_v^2} + \frac{M_3}{\lambda^2 - \lambda_r^2}$$

where $a^2 = 2.03882$ f = .000002916 $M_3 = 5114.65$ $M_1 = .0062183$ $b^2 = 6.09651$ $\lambda_r^2 = 1260.56$ $\lambda_1^2 = .007706$ $M_2 = .0061386$ $\lambda_v = .0940\mu$ e = .0031999 $\lambda_v^2 = .00884$ $\lambda_r = 35.5\mu$

Change of index of refraction of fluorite for 1°C in units of the 5th decimal place

C line, -1.220; D, -1.206; F, -1.170; G, -1.142.

163 Schonrock, Zeitschr. Instrumentenkunde, vol. 40, p. 94, 1920; vol. 41, p. 104, 1921.

TABLE 540.—REFRACTIVE INDICES OF LITHIUM FLUORIDE AT 23.6°C*

Tenths of microns

Wave- length µ	0	1	2	3	4	5	6	7	8	9
0 1 2 3 4 5	1.38711 1.37875 1.36660 1.34942 1.32661 1.29745	1.38631 1.37774 1.36512 1.34740 1.32399	1.38554 1.37669 1.36359 1.34533 1.32131	1.38477 1.37560 1.36201 1.34319 1.31856	1.38400 1.37446 1.36037 1.34100 1.31575	1.39430 1.38320 1.37327 1.35868 1.33875 1.31287	1.39181 1.38238 1.37203 1.35693 1.33645 1.30993	1.39017 1.38153 1.37075 1.35514 1.33408 1.30692	1.38896 1.38064 1.36942 1.35329 1.33165 1.30384	1.38797 1.37971 1.36804 1.35138 1.32916 1.30068

^{*} Prepared by Leroy W. Tilton and Earle K. Plyler, National Bureau of Standards.

TABLE 541.—INDEX OF REFRACTION OF ICELAND SPAR (CaCO3) IN AIR

no	ne	λ (μ)	no	n-	λ (μ)	no	n-
_	1.5780	.508	1.6653	1.4896	.991	1.6438	1.4802
1.9028	1.5765	.533	1.6628	1.4884	1.229	1.6393	1.4787
1.8673	1.5664	.589	1.6584	1.4864	1.307	1.6379	1.4783
1.8130	1.5492	.643	1.6550	1.4849	1.497	1.6346	1.4774
1.7230	1.5151	.656	1.6544	1.4846	1.682	1.6313	_
1.7008	1.5056	.670	1.6537	1.4843	1.749	_	1.4764
1.6932	1.5022	.760	1.6500	1.4826	1.849	1.6280	_
1.6802	1.4964	.768	1.6497	1.4826	1.908	_	1.4757
1.6755	1.4943	.801	1.6487	1.4822	2.172	1.6210	
1.6678	1.4907	.905	1.6458	1.4810	2.324	_	1.4739
	1.9028 1.8673 1.8130 1.7230 1.7008 1.6932 1.6802 1.6755	- 1.5780 1.9028 1.5765 1.8673 1.5664 1.8130 1.5492 1.7230 1.5151 1.7008 1.5056 1.6932 1.5022 1.6802 1.4964 1.6755 1.4943	— 1.5780 .508 1.9028 1.5765 .533 1.8673 1.5664 .589 1.8130 1.5492 .643 1.7230 1.5151 .656 1.7008 1.5056 .670 1.6932 1.5022 .760 1.6802 1.4964 .768 1.6755 1.4943 .801	— 1.5780 .508 1.6653 1.9028 1.5765 .533 1.6628 1.8673 1.5664 .589 1.6584 1.8130 1.5492 .643 1.6550 1.7230 1.5151 .656 1.6544 1.7008 1.5056 .670 1.6537 1.6932 1.5022 .760 1.6500 1.6802 1.4964 .768 1.6497 1.6755 1.4943 .801 1.6487	— 1.5780 .508 1.6653 1.4896 1.9028 1.5765 .533 1.6628 1.4884 1.8673 1.5664 .589 1.6584 1.4864 1.8130 1.5492 .643 1.6550 1.4849 1.7230 1.5151 .656 1.6544 1.4846 1.7008 1.5056 .670 1.6537 1.4843 1.6932 1.5022 .760 1.6500 1.4826 1.6802 1.4964 .768 1.6497 1.4826 1.6755 1.4943 .801 1.6487 1.4822	— 1.5780 .508 1.6653 1.4896 .991 1.9028 1.5765 .533 1.6628 1.4884 1.229 1.8673 1.5664 .589 1.6584 1.4864 1.307 1.8130 1.5492 .643 1.6550 1.4849 1.497 1.7230 1.5151 .656 1.6544 1.4846 1.682 1.7008 1.5056 .670 1.6537 1.4843 1.749 1.6932 1.5022 .760 1.6500 1.4826 1.849 1.6802 1.4964 .768 1.6497 1.4826 1.908 1.6755 1.4943 .801 1.6487 1.4822 2.172	— 1.5780 .508 1.6653 1.4896 .991 1.6438 1.9028 1.5765 .533 1.6628 1.4884 1.229 1.6393 1.8673 1.5664 .589 1.6584 1.4864 1.307 1.6379 1.8130 1.5492 .643 1.6550 1.4849 1.497 1.6346 1.7230 1.5151 .656 1.6544 1.4846 1.682 1.6313 1.7008 1.5056 .670 1.6537 1.4843 1.749 — 1.6932 1.5022 .760 1.6500 1.4826 1.849 1.6280 1.6802 1.4964 .768 1.6497 1.4826 1.908 — 1.6755 1.4943 .801 1.6487 1.4822 2.172 1.6210

TABLE 542.-INDEX OF REFRACTION FOR VARIOUS ALUMS

		Density	np C°		Inde	ex of refra	action for	the Fraun	hofer lines	5	
F	१	Der	Temp	a	В	с	D	E	b	F	G
				Alumin	um alums	RA1(SO ₄) ₂ + 12H ₂	0 *			
NH ₃ (K R C	lb ls IH₄	1.667 1.568 1.735 1.852 1.961 1.631 2.329	17-28 7-17 14-15 7-21 15-25 15-20 10-23	1.43492 .45013 .45226 .45232 .45437 .45509 .49226	1.43563 .45062 .45303 .45328 .45517 .45599 .49317	1.43653 .45177 .45398 .45417 .45618 .45693 .49443	1.43884 .45410 .45645 .45660 .45856 .45939 .49748	1.44185 .45691 .45934 .45955 .46141 .46234 .50128	1.44231 .45749 .45996 .45999 .46203 .46288 .50209	1.44412 .45941 .46181 .46192 .46386 .46481 .50463	1.44804 .46363 .46609 .46618 .46821 .46923 .51076
				Chron	ne alums l	RCr(SO ₄)	2 + 12H ₂ O	*			
	lb H₄	2.043 1.817 1.946 1.719 2.386	6-12 6-17 12-17 7-18 9-25	1.47627 .47642 .47660 .47911 .51692	1.47732 .47738 .47756 .48014 .51798	1.47836 .47865 .47868 .48125 .51923	1.48100 .48137 .48151 .48418 .52280	1.48434 .48459 .48486 .48744 .52704	1.48491 .48513 .48522 .48794 .52787	1.48723 .48753 .48775 .49040 .53082	1.49280 .49309 .49323 .49594 .53808
				Iron	alums R	Fe(SO ₄) ₂ ·	+ 12H ₂ O *				
C	Rb Ss NH₄	1.806 1.916 2.061 1.713 2.385	7-11 7-20 20-24 7-20 15-17	1.47639 .47700 .47825 .47927 .51674	1.47706 .47770 .47921 .48029 .51790	1.47837 .47894 .48042 .48150 .51943	1.48169 .48234 .48378 .48482 .52365	1.48580 .48654 .48797 .48921 .52859	1.48670 .48712 .48867 .48993 .52946	1.48939 .49003 .49136 .49286 .53284	1.49605 .49700 .49838 .49980 .54112

 $^{^{\}star}$ R stands for the different bases given in the first column. For other alums see references on Landolt-Börnstein-Roth Tabellen.

TABLE 543.—INDEX OF REFRACTION OF SELECTED MONOREFRINGENT OR ISOTROPIC MINERALS

The values are for the sodium D line unless otherwise stated and are arranged in the order of increasing indices. Selected by Edgar T. Wherry from a private compilation of E. S. Larsen, of the U. S. Geological Survey.

		Index of
36'1	Formula	refraction $\lambda = 0.589 \mu$
Mineral		
Villiaumite	NaF	1.328
Cryolithionite	3NaF·3LiF·2AlF ₈	1.339
Opal	SiO ₂ ·nH ₂ O	1.406
Fluorite	CaF ₂	1.434
Alum	K ₂ O·Al ₂ O ₃ ·4SO ₃ ·24H ₂ O	1.456
Sodalite	3Na ₂ O·3Al ₂ O ₃ ·6SiO ₂ ·2NaCl	1.483
Cristobalite	SiO ₂	1.486
Analcite	Na ₂ O·Al ₂ O ₃ ·4SiO ₂ ·2H ₂ O	1.487
Sylvite	KCI	1.490
Noselite	5Na ₂ O · 3Al ₂ O ₃ · 6SiO ₂ · 2SO ₃	1.495
Hauynite	Like preceding + CaO	1.496
Lazurite	4Na ₂ O·3Al ₂ O ₃ ·6SiO ₂ ·Na ₂ S ₆	1.500±
Leucite	K ₂ O · Al ₂ O ₃ · 4SiO ₂	1.509
Pollucite	2Cs ₂ O · 2Al ₂ O ₃ · 9SiO ₂ · H ₂ O	1.525
Halite	NaCl	1.544
Bauxite	Al ₂ O ₃ ·nH ₂ O	1.570±
Pharmacosiderite	3Fe ₂ O ₃ ·2As ₂ O ₃ ·3K ₂ O·5H ₂ O	1.676
Spinel	MgO·Al ₂ O ₃	1.720±
Berzeliite	3(Ca, Mg, Mn)O·As ₂ O ₅	1.727
Periclasite	MgO	1.736
Grossularite	3CaO·Al ₂ O ₃ ·3SiO ₂	1.736
Helvite	3(Mn, Fe)O·3BeO·3SiO ₂ ·MnS	1.739
Pyrope	3MgO·Al ₂ O ₃ ·3SiO ₂	1.745
Arsenolite	As ₂ O ₃	1.754
Hessonite	3CaO·(Al, Fe) ₂ O ₃ ·3SiO ₂	1.763
Pleonaste	(Mg, Fe)O·Al ₂ O ₃	1.770±
	3FeO·Al ₂ O ₃ ·3SiO ₂	1.778
Almandite	FeO·Al ₂ O ₃ ·35lO ₂	1.800±
Hercynite	ZnO·Al ₂ O ₃	1.805±
Gahnite		1.811
Spessartite	3MnO·Al ₂ O ₃ ·3SiO ₂	1.838
Lime	CaO . C . O . 35:0	
Uvarovite Andradite	3CaO·Cr ₂ O ₃ ·3SiO ₂	1.838 1.857
	$3CaO \cdot Fe_2O_3 \cdot 3SiO_2$ $6CaO \cdot 3Ta_2O_6 \cdot NbOF_3$	1.925
Microlite		
Nantokite	CuCl	1.930
Pyrochlore	Contains CaO, Ce ₂ O ₂ , TiO ₂ , etc.	1.960
Schorlomite	3CaO·(Fe, Ti) ₂ O ₃ ·3(Si, Ti)O ₂	1.980—
Percylite	PbO·CuCl ₂ ·H ₂ O	2.050
Picotite	(Mg, Fe)O·(Al, Cr) ₂ O ₃	2.050±
Eulytite	2Bi ₂ O ₈ ·3SiO ₂	2.050
Cerargyrite	AgCl	2.061
Mosesite	Contains Hg, NH4, Cl, etc.	2.065
Chromite	FeO·Cr ₂ O ₃	2.070
Senarmontite	Sb ₂ O ₃	2.087
Embolite	Ag(Br, Cl)	2.150±
Manganosite	MnO	2.160
Bunsenite	NiO	2.18 *
Lewisite	5CaO·2TiO ₂ ·3Sb ₂ O ₅	2.200
Miersite	CuI·4AgI	2.200
Bromyrite	AgBr	2.253
Dysanalite	Contains CaO, FeO, TiO2, etc.	2.330
Marshite	CuI	2.346
Franklinite	(Zn, Fe, Mn)O·(Fe, Mn)₂O₂	2.360*
Sphalerite	(Zn, Fe)S	2.370
Perovskite	CaO·TiO,	2.380
Diamond	C	2.419

TABLE 543.—INDEX OF REFRACTION OF SELECTED MONOREFRINGENT OR ISOTROPIC MINERALS (concluded)

Mineral	Formula	Index of refraction $\lambda = 0.589 \mu$
Eglestonite Hauerite Alabandite Cuprite	MnS ₂ MnS	2.490* 2.690* 2.700* 2.849
* Li line.		

TABLE 544.—INDEX OF REFRACTION OF MISCELLANEOUS MONOREFRINGENT OR ISOTROPIC SOLIDS

Substance Spectrum	Index of refraction	Substance Spectrum	Index of refraction
Albite glass D	1.4890	Gelatin, Nelson no. 1 D	1.530
Amber D	1.546	" various D	1.516-1.534
Ammonium chloride D	1.6422	Gum Arabic red	1.480
Anorthite glass D	1.5755	" " red	1.514
Asphalt D	1.635	Obsidian D	1.482-1.496
	1.621	Phosphorus D	2.1442
Bell metal D	1.0052	Pitch red	1.531
Boric acid, melted C	1.4623	Potassium bromide D	1.5593
" " " … D	1.4637	" chlorstannate. D	1.6574
" " " F	1.4694	" iodide D	1.6666
Borax, melted C	1.4624	Resins: Aloes red	1.619
" " D	1.4630	Canada balsam . red	1.528
" " F	1.4702	Colophony red	1.548
Camphor D	1.532	Copal red	1.528
" D	1.5462	Mastic red	1.535
Canada balsam D	1.530	Peru balsam D	1.593
Ebonite red	1.66	Selenium A	2.61
Fuchsin A	2.03	" В	2.68
" В	2.19	" C	2.73
" C	2.33	" D	2.93
" G	1.97	Sodium chlorate D	1.5150
" H	1.32	Strontium nitrate D	1.5667

TABLE 545.—INDEX OF REFRACTION OF MISCELLANEOUS UNIAXIAL CRYSTALS

		Index of	refraction
	Spectrum	Ordinary	Extraordinary
Crystal	line	ray	ray
Ammonium arseniate NH ₄ H ₂ AsO ₄	D	1.5766	1.5217
Benzil (C ₇ H ₆ CO) ₂	D	1.6588	1.6784
Corundum, Al ₂ O ₃ , sapphire, ruby	D	1.769	1.760
Ice at -8° C	D	1.308	1.313
(6 (6 (6 (6	Li	1.297	1.304
Ivory	D	1.539	1.541
Potassium arseniate KH ₂ AsO ₄	F	1.5762	1.5252
" " "	D	1.5674	1.5179
" "	- C	1.5632	1.5146
Sodium arseniate Na ₃ AsO ₄ ·12H ₂ O	Ď	1.457	1.466
" nitrate NaNO ₃	D	1.586	1.336
" phosphate Na ₃ PO ₄ ·12H ₂ O	$\bar{\mathrm{D}}$	1.447	1.453
Nickel sulfate NiSO4.6H2O	F	1.5173	1.4930
" " " "	Ď	1.5109	1.4873
" "	- C	1.5078	1.4844
Strychnine sulfate	Ď	1.614	1.599

TABLE 546.-INDEX OF REFRACTION OF SELECTED UNIAXIAL MINERALS

The values are arranged in the order of increasing indices for the ordinary ray and are for the sodium D line unless otherwise indicated. Selected by Edgar T. Wherry from a private compilation of Esper S. Larsen, of the U. S. Geological Survey.

Mineral Ice H ₂ O Sellaite MgF ₂ Chrysocolla CuO·SiO ₂ ·2H ₂ O Laubanite 2CaO·Al ₂ O ₂ ·5SiO ₂ ·6 Chabazite (Ca, Na ₂)O·Al ₂ O ₃ ·43 Douglasite 2KCI·FeCl ₃ ·2H ₂ O Hydronephelite 2N ₂ O·3Al ₃ O ₃ ·6SiO ₂ Apophyllite K ₂ O·3Al ₃ O ₃ ·6SiO ₂ Coquimbite Fe ₂ O ₃ ·3SO ₃ ·9H ₂ O Brucite MgO·H ₂ O Alunite K ₂ O·3Al ₂ O ₃ ·4SO ₃ ·6I Penninite 5(Mg, Fe)O·Al ₂ O ₃ ·3C Cacoxenite 2Fe ₂ O ₃ ·2O ₃ ·12H ₂ O Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Dioptase CuO·SiO ₂ ·H ₂ O Phenacite 2BeO·SiO ₂ Parisite 2CeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₃ Connellite 20CuO·SO ₃ ·2CuCl ₂ ·2 Benitoite BaO·TiO ₂ ·3SiO ₂ Powellite CaO·WO ₃ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ ·CO ₂ Penfieldite AgI Tapiolite FeO·(Ta, Nb) ₂ O ₅		Α
Ice H ₂ O Sellaite MgF ₂ Chrysocolla CuO·SiO ₂ ·2H ₂ O Laubanite 2CaO·Al ₂ O ₃ ·5SiO ₂ ·6 Chabazite (Ca, Na ₂)O·Al ₂ O ₃ ·4SiO ₂ ·6 Chabazite 2KCl·FeCl ₂ ·2H ₂ O Hydronephelite 2Na ₂ O·3Al ₂ O ₃ ·6SiO ₂ Apophyllite K ₂ O·8CaO·16SiO ₂ ·1 Quartz SiO ₂ Coquimbite Fc ₂ O ₃ ·3SO ₃ ·9H ₂ O Brucite MgO·H ₂ O Alunite K ₂ O·3Al ₂ O ₃ ·4SO ₃ ·6I Penninite 5(Mg, Fe)O·Al ₂ O ₃ ·3 Cacoxenite 2Fc ₂ O ₃ ·P ₂ O ₅ ·12H ₂ O Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Dioptase CuO·SiO ₂ ·H ₂ O Phenacite 2BeO·SiO ₂ Vesuvianite 2CoF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite BaO·TiO ₂ ·3SiO ₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO ₂ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ ·CO ₂		Extraordinary
Sellaite MgF ₂ Chrysocolla CuO·SiO ₂ ·2H ₂ O Laubanite 2CaO·Al ₂ O ₃ ·5SiO ₂ ·6 Chabazite (Ca, Na ₂)O·Al ₂ O ₃ ·4! Douglasite 2KCl·FeCl ₂ ·2H ₂ O Hydronephelite 2Na ₂ O·3Al ₂ O ₃ ·6SiO ₂ Apophyllite K ₂ O·8CaO·16SiO ₂ ·1 Quartz SiO ₂ Coquimbite Fe ₂ O ₃ ·3SO ₃ ·9H ₂ O Brucite MgO·H ₂ O Alunite K ₂ O·3Al ₂ O ₃ ·4SO ₃ ·6I Penninite 5(Mg, Fe)O·Al ₂ O ₃ ·3 Cacoxenite 2Fe ₂ O ₃ ·92O ₅ ·12H ₂ O Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Dioptase CuO·SiO ₂ ·H ₂ O Phenacite 2BeO·SiO ₂ Parisite 2CeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Willemite 2CaO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite BaO·TiO ₂ ·3SiO ₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO ₂ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ ·CO ₂	-	ray
Chrysocolla Laubanite CuO·SiO ₂ ·2H ₂ O Laubanite Chabazite C(Ca, Na ₂)O·Al ₂ O ₃ ·5SiO ₂ ·6 Chydronephelite 2Na ₂ O·3Al ₂ O ₃ ·6SiO ₂ Apophyllite K ₂ O·8CaO·16SiO ₂ ·1 Quartz SiO ₂ Coquimbite Fe ₂ O ₃ ·3SO ₃ ·9H ₂ O Brucite MgO·H ₂ O Alunite K ₂ O·3Al ₂ O ₃ ·4SO ₃ ·6I Penninite S(Mg, Fe)O·Al ₂ O ₃ ·3 Cacoxenite 2Fe ₂ O ₃ ·P ₂ O ₅ ·12H ₂ O Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Eudialite 2ZnO·SiO ₂ Parisite 2ZeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite BaO·TiO ₂ ·3SiO ₂ Benitoite BaO·TiO ₂ ·3SiO ₂ Calomel Cacosite CaO·WO ₃ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	1.309	1.313
Chrysocolla CuO·SiO ₂ ·2H ₂ O Laubanite 2CaO·Al ₂ O ₃ ·5SiO ₂ ·6 Chabazite (Ca, Na ₂)O·Al ₂ O ₃ ·4 Douglasite 2KCt·FeCl ₃ ·2H ₂ O Hydronephelite 2Na ₂ O·3Al ₂ O ₃ ·6SiO ₂ Apophyllite K ₂ O·8CaO·16SiO ₂ ·1 Quartz SiO ₂ Coquimbite Fe ₂ O ₃ ·3SO ₃ ·9H ₂ O Alunite MgO·H ₂ O Alunite K ₂ O·3Al ₂ O ₃ ·4SO ₃ ·6I Penninite 5(Mg, Fe)O·Al ₂ O ₃ ·3 Cacoxenite 2Fe ₂ O ₃ ·12H ₂ O Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Dioptase CuO·SiO ₂ ·H ₂ O Phenacite 2BeO·SiO ₂ Parisite 2CeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite BaO·TiO ₂ ·3SiO ₂ Benitoite BaO·TiO ₂ ·3SiO ₂ Benitoite BaO·TiO ₂ ·3SiO ₂ Calomel HgCl Cassiterite SnO ₂ Zincon Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	1.378	1.390
Laubanite 2CaO·Al ₂ O ₃ ·5SiO ₂ ·6 Chabazite (Ca, Na ₂)O·Al ₂ O ₃ ·4! Douglasite 2KCl·FeCl ₃ ·2H ₂ O Hydronephelite 2Na ₂ O·3Al ₂ O ₃ ·6SiO ₂ Apophyllite K ₂ O·8CaO·16SiO ₂ ·1 Quartz SiO ₂ Coquimbite Fe ₂ O ₃ ·3SO ₃ ·9H ₂ O Brucite MgO·H ₂ O Alunite K ₃ O·3Al ₂ O ₃ ·4SO ₃ ·6I Penninite 5(Mg, Fe)O·Al ₂ O ₃ ·3 Cacoxenite 2Fe ₂ O ₃ ·2O ₃ ·12H ₂ O Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Eudialite 2BeO·SiO ₂ Parisite 2CeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₃ ·2CuCl ₂ ·2 Benitoite BaO·TiO ₂ ·3SiO ₂ Canomalite 5CaO·WO ₃ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite PoO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	1.460±	1.570±
Chabazite (Ca, Na₂)O·Al₂O₃·4! Douglasite 2KCl·FeCl₃·2H₂O Hydronephelite 2Na₂O·3Al₂O₃·6SiO₂·1 Apophyllite K₂O·8CaO·16SiO₂·1 Quartz SiO₂ Coquimbite Fe₂O₃·3SO₃·9H₂O Brucite MgO·H₂O Alunite K₂O·3Al₂O₃·4SO₃·6I Penninite 5(Mg, Fe)O·Al₂O₃·3 Cacoxenite 2Fe₂O₃·P₂O₃·12H₂O Eudialite 6Na₂O·6(Ca, Fe)O·2 Dioptase CuO·SiO₂·H₂O Phenacite 2BeO·SiO₂ Parisite 2CeOF·CaO·3CO₂ Willemite 2ZnO·SiO₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y₂O₃·P₂O₃ Connellite 20CuO·SO₃·2CuCl₂·? Benitoite BaO·TiO₂·3SiO₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO₃ Zircon ZrO₂·SiO₂ Powellite CaO·MoO₃ Calomel HgCl Cassiterite ZnO PhO·PbCl₂·CO₂ Penfieldite PbO·PbCl₂ <td>H₂O . 1.475</td> <td>1.486</td>	H ₂ O . 1.475	1.486
Douglasite 2KCl⋅FeCl₃⋅2H₂O Hydronephelite 2Na₂O⋅3Al₂O₃⋅6SiO₂ Apophyllite K₂O⋅8CaO⋅16SiO₂⋅1 Quartz SiO₂ Coquimbite Fe₂O₃⋅3SO₃⋅9H₂O Brucite MgO⋅H₂O Alunite K₂O⋅3Al₂O₃⋅4SO₃⋅6I Penninite 5(Mg, Fe)O⋅Al₂O₃⋅3 Cacoxenite 2Fe₂O₃⋅P₂O₃⋅12H₂O Eudialite 6Na₂O⋅6(Ca, Fe)O⋅2 Dioptase CuO⋅SiO₂⋅H₂O Phenacite 2BeO⋅SiO₂ Parisite 2CeOF⋅CaO⋅3CO₂ Willemite 2ZnO⋅SiO₂ Vesuvianite 2(Ca, Mn, Fe)O⋅(Al Xenotime Y₂O₃⋅P₂O₃ Connellite 20CuO⋅SO₃⋅2CuCl₂⋅2 Benitoite BaO⋅TiO₂⋅3SiO₂ Ganomalite 6PbO⋅4(Ca, Mn)O⋅6 Scheelite CaO⋅WO₃ Zircon ZrO₂⋅SiO₂ Powellite CaO⋅MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO Pho⋅PbCl₂⋅CO₂ Penfieldite PbO⋅PbCl₂	$SiO_2 \cdot 6H_2O$ 1.480±	1.482±
Hydronephelite 2Na ₂ O·3Al ₂ O ₃ ·6SiO ₂ Apophyllite K ₂ O·8CaO·16SiO ₂ ·1 Quartz SiO ₂ Coquimbite Fe ₂ O ₃ ·3SO ₃ ·9H ₂ O Brucite MgO·H ₂ O Alunite K ₂ O·3Al ₂ O ₃ ·4SO ₃ ·6H Penninite 5(Mg, Fe)O·Al ₂ O ₃ ·3E Cacoxenite 2Fe ₂ O ₃ ·P ₂ O ₅ ·12H ₂ O Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Dioptase CuO·SiO ₂ ·H ₂ O Phenacite 2BeO·SiO ₂ Parisite 2CeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite BaO·TiO ₂ ·3SiO ₂ Benitoite BaO·TiO ₂ ·3SiO ₂ Benitoite BaO·TiO ₂ ·3SiO ₂ Cacomellite CaO·WO ₃ Zircon ZrO ₂ SiO ₂ Powellite CaO·WO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	1.488	1.500
Apophyllite	·7H ₂ O 1.490	1.502
Quartz SiO₂ Coquimbite Fe₂O₃·3SO₃·9H₂O Brucite MgO·H₂O Alunite K₂O·3Al₂O₃·4SO₃·6I Penninite 5(Mg, Fe)O·Al₂O₃·3 Cacoxenite 2Fe₂O₃·P₂O₅·12H₂O Eudialite 6Na₂O·6(Ca, Fe)O·2 Dioptase CuO·SiO₂·H₂O Phenacite 2BeO·SiO₂ Parisite 2CeOF·CaO·3CO₂ Willemite 2ZnO·SiO₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y₂O₃·P₂O₃ Connellite 20CuO·SO₃·2CuCl₂·2 Benitoite BaO·TiO₂·3SiO₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO₃ Zircon ZrO₂·SiO₂ Powellite CaO·MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO PhO·PbCl₂·CO₂ Penfieldite PbO·PbCl₂ Iodyrite AgI		1.537±
Coquimbite Fe ₂ O ₃ ·3SO ₃ ·9H ₂ O Brucite MgO·H ₂ O Alunite K ₂ O·3Al ₂ O ₃ ·4SO ₃ ·6I Penninite 5(Mg, Fe)O·Al ₂ O ₃ ·3 Cacoxenite 2Fe ₂ O ₃ ·P ₂ O ₅ ·12H ₂ O Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Dioptase CuO·SiO ₂ ·H ₂ O Phenacite 2BeO·SiO ₂ Parisite 2CeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite 20CuO·SO ₃ ·2CuCl ₂ ·2 Benitoite BaO·TiO ₂ ·3SiO ₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO ₃ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	1.544	1.553
Brucite MgO⋅H₂O Alunite K₂O⋅3Al₂O₃⋅4SO₃⋅6I Penninite 5(Mg, Fe)O⋅Al₂O₃⋅3 Cacoxenite 2Fe₂O₃⋅P₂O₅⋅12H₂O Eudialite 6Na₂O⋅6(Ca, Fe)O⋅D Dioptase CuO⋅SiO₂⋅H₂O Phenacite 2BeO⋅SiO₂ Parisite 2CeOF⋅CaO⋅3CO₂ Willemite 2ZnO⋅SiO₂ Vesuvianite 2(Ca, Mn, Fe)O⋅(Al Xenotime Y₂O₃⋅P₂O₅ Connellite 20CuO⋅SO₃⋅2CuCl₂⋅Section Benitoite BaO⋅TiO₂⋅3SiO₂ Ganomalite 6PbO⋅4(Ca, Mn)O⋅O⋅Section Scheelite CaO⋅WO₃ Zircon ZrO₂⋅SiO₂ Powellite CaO⋅MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO Phospenite PbO⋅PbCl₂⋅CO₂ Penfieldite PbO⋅PbCl₂ Iodyrite AgI	1.550	1.556
Alunite K ₂ O·3Al ₂ O ₃ ·4SO ₃ ·6I Penninite 5(Mg, Fe)O·Al ₂ O ₃ ·3 Cacoxenite 2Fe ₂ O ₂ ·P ₂ O ₅ ·12H ₂ O Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Dioptase CuO·SiO ₂ ·H ₂ O Phenacite 2BeO·SiO ₂ Parisite 2CeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite 20CuO·SO ₃ ·2CuCl ₂ ·2 Benitoite BaO·TiO ₂ ·3SiO ₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO ₃ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	1.559	1.580
Penninite 5(Mg, Fe)O·Al ₂ O ₃ ·3 Cacoxenite 2Fe ₂ O ₃ ·P ₂ O ₅ ·12H ₂ O Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Dioptase CuO·SiO ₂ ·H ₂ O Phenacite 2BeO·SiO ₂ Parisite 2CeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite 20CuO·SO ₃ ·2CuCl ₂ ·2 Benitoite BaO·TiO ₂ ·3SiO ₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO ₃ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI		1.592
Cacoxenite 2Fe₂O₃ · P₂O₅ · 12H₂O Eudialite 6Na₂O · 6(Ca, Fe)O · 2 Dioptase CuO · SiO₂ · H₂O Phenacite 2BeO · SiO₂ Parisite 2CeOF · CaO · 3CO₂ Willemite 2ZnO · SiO₂ Vesuvianite 2(Ca, Mn, Fe)O · (Al Xenotime Y₂O₃ · P₂O₃ Connellite 20CuO · SO₃ · 2CuCl₂ · 3SiO₂ Benitoite BaO · TiO₂ · 3SiO₂ Ganomalite 6PbO · 4(Ca, Mn)O · 6 Scheelite CaO · WO₃ Zircon ZrO₂ · SiO₂ Powellite CaO · MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO Pho · PbCl₂ · CO₂ Penfieldite PbO · PbCl₂ Iodyrite AgI		1.579
Eudialite 6Na ₂ O·6(Ca, Fe)O·2 Dioptase CuO·SiO ₂ ·H ₂ O Phenacite 2BeO·SiO ₂ Parisite 2CeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₃ Connellite 20CuO·SO ₃ ·2CuCl ₂ ·2 Benitoite BaO·TiO ₂ ·3SiO ₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO ₃ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	2.0:	
Dioptase CuO·SiO ₂ ·H ₂ O Phenacite 2BeO·SiO ₂ Parisite 2CeOF·CaO·3CO ₂ Willemite 2ZnO·SiO ₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite 20CuO·SO ₃ ·2CuCl ₂ ·3 Benitoite BaO·TiO ₂ ·3SiO ₂ Ganomalite CaO·WO ₃ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	1.582	1.645
Phenacite 2BeO·SiO₂ Parisite 2CeOF·CaO·3CO₂ Willemite 2ZnO·SiO₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y₂O₃·P₂O₅ Connellite 20CuO·SO₃·2CuCl₂·S Benitoite BaO·TiO₂·3SiO₂ Ganomalite 6PbO·4(Ca, Mn)O·(Scheelite CaO·WO₃ Zircon ZrO₂·SiO₂ Powellite CaO·MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO Phosgenite PbO·PbCl₂·CO₂ Penfieldite PbO·PbCl₂ Iodyrite AgI	20(Si, Zr)O₂·NaCl 1.606	1.611
Parisite 2CeOF·CaO·3CO₂ Willemite 2ZnO·SiO₂ Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y₂O₃·P₂O₅ Connellite 20CuO·SO₃·2CuCl₂·? Benitoite BaO·TiO₂·3SiO₂ Ganomalite 6PbO·4(Ca, Mn)O·(Scheelite CaO·WO₃ Zircon ZrO₂·SiO₂ Powellite CaO·MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO Phosgenite PbO·PbCl₂·CO₂ Penfieldite PbO·PbCl₂ Iodyrite AgI	1.654	1.707
Parisite	1.654	1.670
Willemite 2ZnO⋅SiO₂ Vesuvianite 2(Ca, Mn, Fe)O⋅(Al Xenotime Y₂O₃⋅P₂O₃ Connellite 20CuO⋅SO₃⋅2CuCl₂⋅2 Benitoite BaO⋅TiO₂⋅3SiO₂ Ganomalite 6PbO⋅4(Ca, Mn)O⋅6 Scheelite CaO⋅WO₃ Zircon ZrO₂⋅SiO₂ Powellite CaO⋅MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO Phosgenite PbO⋅PbCl₂⋅CO₂ Penfieldite PbO⋅PbCl₂ Iodyrite AgI	1.676±	1.757
Vesuvianite 2(Ca, Mn, Fe)O·(Al Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite 20CuO·SO ₃ ·2CuCl ₂ ·? Benitoite BaO·TiO ₂ ·3SiO ₂ Ganomalite 6PbO·4(Ca, Mn)O·(Scheelite CaO·WO ₃ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ ·CO ₂ Penfieldite AgI	1.691	1.719
Xenotime Y ₂ O ₃ ·P ₂ O ₅ Connellite 20CuO·SO ₃ ·2CuCl ₂ ·2 Benitoite BaO·TiO ₂ ·3SiO ₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO ₃ Zircon ZrO ₂ ·SiO ₂ Powellite CaO·MoO ₃ Calomel HgCl Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	l. Fe) (OH, F)O·2SiO ₂ 1.716±	1.721
Connellite 20CuO·SO₃·2CuCl₂·2 Benitoite BaO·TiO₂·3SiO₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO₃ Zircon ZrO₂·SiO₂ Powellite CaO·MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO Phosgenite PbO·PbCl₂·CO₂ Penfieldite PbO·PbCl₂·CO₂ Iodyrite AgI	1.721	1.816
Benitoite BaO·TiO₂·3SiO₂ Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO₃ Zircon ZrO₂·SiO₂ Powellite CaO·MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO Phosgenite PbO·PbCl₂·CO₂ Penfieldite PbO·PbCl₂ Iodyrite AgI		1.746
Ganomalite 6PbO·4(Ca, Mn)O·6 Scheelite CaO·WO₂ Zircon ZrO₂·SiO₂ Powellite CaO·MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO Phosgenite PbO·PbCl₂·CO₂ Penfieldite PbO·PbCl₂ Iodyrite AgI	1.757	1.804
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		1.945
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1.918	1.934
Powellite CaO·MoO₃ Calomel HgCl Cassiterite SnO₂ Zincite ZnO Phosgenite PbO·PbCl₂·CO₂ Penfieldite PbO·PbCl₂ Iodyrite AgI	1.923±	1.968±
Calomel HgCl Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	1.923	1.978
Cassiterite SnO ₂ Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI		2.650
Zincite ZnO Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	1.973	
Phosgenite PbO·PbCl ₂ ·CO ₂ Penfieldite PbO·PbCl ₂ Iodyrite AgI	1.997	2.093
Penfieldite PbO·PbCl₂ Iodyrite AgI	2.013	2.029
Iodyrite AgI	2.114	2.140
	2.130	2.210
Taniolite FeO: (Ta. Nh),Os	2.210	2.220
	2.270	2.420 (Li line)
Wurtzite ZnS	2.356	2.378
Derbylite 6FeO·Sb ₂ O ₂ ·5TiO ₂	2.450	2.510 (Li line)
Greenockite CdS	2.506	2.529
Rutile TiO ₂	2.616	2.903
Moissanite CSi	2.654	2.697
77 0	2.854	3.201
Cinnabar HgS	2.034	0.201
Uniaxia	1 negative minerals	
Chiolite 2NaF·AlF ₃	1.349	1.342
Hanksite 11Na ₂ O·9SO ₃ ·2CO ₂ ·	KCI 1.481	1.461
Thaumasite 3CaO·CO ₂ ·SiO ₂ ·SO ₃		1.468
Hydrotalcite 6MgO·Al ₂ O ₃ ·CO ₂ ·15		1.498
Cancrinite 4Na ₂ O·CaO·4Al ₂ O ₃ ·		1.496
Milarite K ₂ O·4CaO·2Al ₂ O ₃ ·2		1.529
Kaliophilite K ₂ O·Al ₂ O ₃ ·2SiO ₂	1.537	1.533
	1.539	1.511
Mellite $Al_2O_3 \cdot C_{12}O_9 \cdot 18H_2O$ Marialite "Ma" = $3Na_2O \cdot 3Al_2$		1.537
	1.542	
Nephelite Na ₂ O·Al ₂ O ₃ ·2SiO ₂		1.538
Wernerite Me ₁ Ma ₁ ±	1.578	1.551
Beryl 3BeO·Al ₂ O ₃ ·6SiO ₂	1.581±	1.575±
Torbernite CuO·2UO ₃ ·P ₂ O ₅ ·8H	₂ O 1.592	1.582
Meionite "Me" = $4CaO \cdot 3Al_2C$	0 ₃ ·6SiO ₂ 1.597	1.560
Melilite Contains Na₂O, CaC), Al ₂ O ₃ , SiO ₂ , etc. 1.634	1.629

TABLE 546.—INDEX OF REFRACTION OF SELECTED UNIAXIAL MINERALS (concluded)

Uniaxial negative minerals (continued)

		Index o	f refraction
		Ordinary	Extraordinary
Mineral	Formula	ray	ray
Apatite	$9CaO \cdot 3P_2O_5 \cdot Ca(F, Cl)_2$	1.634	1.631
Calcite	$CaO \cdot CO_2$	1.658	1.486
Gehlenite	$2CaO \cdot Al_2O_3 \cdot SiO_2$	1.669	1.658
Tourmaline	Contains Na ₂ O, FeO, Al ₂ O ₃ , B ₂ O ₃ , SiO ₂ , etc.	$1.669 \pm$	1.638±
Dolomite	CaO·MgO·2CO ₂	1.681	1.500
Magnesite	$MgO \cdot CO_2$	1.700	1.509
Pyrochroite	MnO·H ₂ O	1.723	1.681
Corundum	Al_2O_3	1.768	1.760
Smithsonite	ZnO·CO ₂	1.818	1.618
Rhodochrosite	$MnO \cdot CO_2$	1.818	1.595
Jarosite	$K_2O \cdot 3Fe_2O_3 \cdot 4SO_3 \cdot 6H_2O$	1.820	1.715
Siderite	FeO·CO ₂	1.875	1.635
Pyromorphite	$9 \text{PbO} \cdot 3 \text{P}_2 \text{O}_5 \cdot \text{PbCl}_2$	2.050	2.042
Barysilite	3PbO·2SiO ₂	2.070	2.050
Mimetite	$9PbO \cdot 3As_2O_5 \cdot PbCl_2$	2.135	2.118
Matlockite	PbO·PbCl ₂	2.150	2.040
Stolzite	$PbO \cdot WO_3$	2.269	2.182
Geikielite	(Mg, Fe)O·TiO₂	2.310	1.950
Vanadinite	$9 \text{PbO} \cdot 3 \text{V}_2 \text{O}_5 \cdot \text{PbCl}_2$	2.354	2.299
Wulfenite	PbO·MoO ₃	2.402	2.304 (Li line)
Octahedrite	TiO ₂	2.554	2.493
Massicotite	PbO	2.665	2.535 (Li line)
Proustite	$3Ag_2S \cdot As_2S_3$	2.979	2.711 " "
Pryargyrite	$3Ag_2S \cdot Sb_2S_3$	3.084	2.881 " "
Hematite	Fe_2O_3	3.220	2.940 " "

TABLE 547.—INDEX OF REFRACTION OF MISCELLANEOUS LIQUIDS (see also Table 551), LIQUEFIED GASES, OILS, FATS, AND WAXES

Substance	Temp °C	Index for D 0.589 µ	Substance	Temp °C	Index for D 0.589µ
Liquefied gases:			Oils:		
Br ₂	15	1.659	Lavender	20	1.464 -1.466
Cl ₂	14	1.367	Linseed	15	1.4820-1.4852
CO ₂	15	1.195	Maize	15.5	1.4757-1.4768
C_2N_2	18	1.325	Mustard seed	15.5	1.4750-1.4762
C ₂ H ₄	6	1.180	Neat's foot	15	1.4695-1.4708
H ₂ S	18.5	1.384	Olive	15.5	1.4703-1.4718
N ₂		1.205	Palm	60	1.4510
ATTT	16.5	1.325	Peanut	15.5	1.4723-1.4731
NH ₃	0.0	1.330	Peppermint	20	1.464 -1.468
	15	1.194	_ * *	15.5	1.4770
		1.221	Poppy	25	1.4677
O ₂	15	1.350	Porpoise	15.5	1.4748-1.4752
SO ₂			Rape (Colza)	25	1.4741
HCI	16.5	1.252	Seal	15.5	1.4742
HBr	10	1.325	Sesame	15.5	1.4760-1.4775
HI	16.5	1.466	Soya bean	15.5	1.4665-1.4672
Oils:			Sperm		
Almond	15.5	1.4728–1.4753	Sunflower	15.5	1.4739
Castor	15	1.4799-1.4803	Tung	19	1.503
Citronella	20	1.47 -1.48	Whale	40	1.4649
Clove	20	1.5301-1.5360	Fats and Waxes:	4.0	
Cocoanut	15.5	1.4587	Beef tallow	40	1.4552-1.4587
Cod liver	15	1.4790-1.4833	Beeswax	75	1.4398-1.4451
Cotton seed	15.5	1.4737-1.4757	Carnauba wax.	84	1.4520-1.4541
Croton	27	1.4757-1.4768	Cocoa butter	40	1.4560-1.4518
Eucalyptus	20	1.460 - 1.467	Lard	40	1.4584-1.4601
Lard	15.5	1.4702-1.4720	Mutton tallow	60	1.4510

TABLE 548 .- INDEX OF REFRACTION OF SELECTED BIAXIAL MINERALS

The values are arranged in the order of increasing β index of refraction and are for the sodium D line except where noted. Selected by Edgar T. Wherry from private compilation of Esper S. Larsen, of the U. S. Geological Survey.

	Biaxial positive minerals	Ind	lex of refra	action
Mineral	Formula	na	$n\beta$	ny
	Na ₂ O·(NH ₄) ₂ O·P ₂ O ₅ ·9H ₂ O	1.439	1.441	1.469
Stercorite	Al ₂ O ₃ ·SO ₂ ·9H ₂ O	1.459	1.464	1.470
Aluminite	SiO ₂	1.469	1.470	1.473
Thenardite	Na ₂ O·SO ₃	1.464	1.474	1.485
Carnallite	KCI·MgCl ₂ ·6H ₂ O	1.466	1.475	1.494
Alunogen	A1 ₂ O ₃ ·3SO ₃ ·16H ₂ O	1.474	1.476	1.483
Melanterite	FeO·SO ₃ ·7H ₂ O	1.471	1.478	1.486
Natrolite	$Na_2O \cdot Al_2O_3 \cdot 3SiO_2 \cdot 2H_2O$	1.480	1.482	1.493
Arcanite	K ₂ O·SO ₃	1.494	1.495	1.497
Struvite	$(NH_4)_2O \cdot 2MgO \cdot P_2O_5 \cdot 12H_2O$	1.495	1.496	1.500
Heulandite	$CaO \cdot Al_2O_3 \cdot 6SiO_2 \cdot 3H_2O$	1.498	1.499	1.505
Thomsonite	$(Na_2, Ca)O \cdot Al_2O_2 \cdot 2SiO_2 \cdot 3H_2O$	1.497	1.503	1.525
Harmotome	$(K_2, B_2)O \cdot Al_2O_3 \cdot 5SiO_2 \cdot 5H_2O$	1.503	1.505	1.508
Petalite	$\text{Li}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot8\text{SiO}_2$	1.504	1.510	1.516
Monetite	$2CaO \cdot P_2O_5 \cdot H_2O$	1.515	1.518	1.525
Newberyite	$2\text{MgO} \cdot \text{P}_2\text{O}_5 \cdot 7\text{H}_2\text{O}$	1.514	1.519	1.533
Gypsum	CaO·SO ₂ ·2H ₂ O	1.520	1.523	1.530
Mascagnite	$(NH_4)_2O\cdot SO_3$	1.521	1.523	1.533
Albite	$\text{``Ab''} = \text{Na}_2\text{O} \cdot \text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2$	1.525	1.529	1.536
Hydromagnesite	4MgO·3CO ₂ ·4H ₂ O	1.527	1.530	1.540
Wavellite	$3A1_2O_8 \cdot 2P_2O_8 \cdot 12(H_2O, 2HF)$	1.525	1.534	1.552
Kieserite	MgO·SO ₃ ·H ₂ O	1.523	1.535	1.586
Copiapite	2Fe ₂ O ₃ ·5SO ₃ ·18H ₂ O	1.530	1.550	1.592
Whewellite	$CaO \cdot C_2O_2 \cdot H_2O$	1.491	1.555	1.650
Variscite	$Al_2O_3 \cdot P_2O_6 \cdot 4H_2O$	1.551	1.558	1.582
Labradorite	Ab ₂ An ₂	1.559	1.563	1.568
Gibbsite	Al ₂ O ₃ ·3H ₂ O	1.566	1.566	1.587
Wagnerite	$3 \text{MgO} \cdot \text{P}_2 \text{O}_5 \cdot \text{MgF}_2$	1.569	1.570	1.582
Anhydrite	CaO·SO ₃	1.571	1.576	1.614
Colemanite	2CaO·3B ₂ O ₃ ·5H ₂ O	1.586	1.592	1.614
Fremontite	$Na_2O \cdot Al_2O_3 \cdot P_2O_5 \cdot (H_2O, 2HF)$	1.594	1.603 1.603	1.615
Vivianite Pectolite	3FeO·P ₂ O ₅ ·8H ₂ O Na ₂ O·4CaO·6SiO ₂ ·H ₂ O	1.579 1.595	1.603	1.633 1.633
Calamine	$2Z_{11}O \cdot SiO_2 \cdot H_2O$	1.614	1.617	1.636
Chondrodite	4MgO·SiO ₂ ·Mg(F, OH) ₂	1.604	1.617	1.636
Turquoise	CuO·3Al ₂ O ₃ ·2P ₂ O ₅ ·9H ₂ O	1.610	1.620	1.650
Topaz	2A10F·SiO ₂	1.619	1.620	1.627
Celestite	SrO·SO ₃	1.622	1.624	1.631
Prehnite	2CaO·Al ₂ O ₃ ·3SiO ₂ ·H ₂ O	1.616	1.626	1.649
Barite	BaO·SO ₂	1.636	1.637	1.648
Anthophyllite	MgO·SiO ₂	1.633	1.642	1.657
Sillimanite	Al ₂ O ₃ ·SiO ₂	1.638	1.642	1.653
Forsterite	2MgO·SiO ₂	1.635	1.651	1.669
Enstatite	MgO·SiO ₂	1.650	1.653	1.658
Euclase	2BeO·Al ₂ O ₃ ·2SiO ₂ ·H ₂ O	1.653	1.656	1.673
Triplite	$3MnO \cdot P_2O_5 \cdot MnF_2$	1.650	1.660	1.672
Spodumene	Li ₂ O·Al ₂ O ₃ ·4SiO ₂	1.660	1.666	1.676
Diopside	CaO·MgO·2SiO ₂	1.664	1.671	1.694
Olivine	2(Mg, Fe)O·SiO ₂	1.662	1.680	1.699
Triphylite	$\text{Li}_2\text{O}\cdot 2(\text{Fe}, \text{Mn})\text{O}\cdot \text{P}_2\text{O}_5$	1.688	1.688	1.692
Zoisite	4CaO · 3Al ₂ O ₃ · 6SiO ₂ · H ₂ O	1.700	1.702	1.706
Strengite	Fe ₂ O ₃ ·P ₂ O ₅ ·4H ₂ O	1.708	1.708	1.745
Diaspore	Al ₂ O ₃ ·H ₂ O	1.702	1.722	1.750
Staurolite	2FeO · 5Al ₂ O ₃ · 4SiO ₂ · H ₂ O	1.736	1.741	1.746
Chrysoberyl	BeO·Al ₂ O ₃	1.747	1.748	1.757
Azurite	3CuO·2CO ₂ ·H ₂ O	1.730	1.758	1.838
Scorodite	$Fe_2O_3 \cdot As_2O_6 \cdot 4H_2O$	1.765	1.774	1.797

TABLE 548.—INDEX OF REFRACTION OF SELECTED BIAXIAL MINERALS (continued)

Biaxial positive minerals (continued)

	Blanda positive innectate (communication)	Inde	ex of refra	ction
Mineral	Formula	na	nβ	ny
Olivenite	$4CuO \cdot As_2O_5 \cdot H_2O$	1.772	1.810	1.863
Anglesite	PbO·SO ₃	1.877	1.882	1.894
Titanite	CaO·TiO ₂ ·SiO ₂ As ₂ O ₃	1.900	1.907 1.920	2.034 2.010
Claudetite Sulfur	S S	1.871 1.950	2.043	2.240
Cotunnite	PbCl ₂	2.200	2.217	2.260
Huebnerite	MnO⋅WO₃	2.170	2.220	2.320
Manganite	Mn ₂ O ₃ · H ₂ O	2.240	2.240	2.530 (Li)
Raspite	PbO·WO ₃	2.270 2.240	2.270 2.270	2.300
Mendipite Tantalite	2PbO·PbCl ₂ (Fe, Mn)O·Ta ₂ O ₅	2.240	2.320	2.310 2.430 (Li)
Wolframite	(Fe, Mn)O·WO ₃	2.310	2.360	2.460 (Li)
Crocoite	PbO·CrO ₃	2.310	2.370	2.660 (Li)
Pseudobrookite	2Fe ₂ O ₃ ·3TiO ₂	2.380	2.390	2.420 (Li)
Stibiotantalite	$Sb_2O_3 \cdot Ta_2O_5$	2.374	2.404	2.457
Montroydite	HgO TiO₂	2.370 2.583	2.500 2.586	2.650 (Li) 2.741
Brookite	PbO	2.510	2.610	2.710
		2.510	2.010	2.710
	Biaxial negative minerals			
Mirabilite	$Na_2O \cdot SO_3 \cdot 10H_2O$	1.394	1.396	1.398
Thomsenolite	NaF·CaF ₂ ·AlF ₃ ·H ₂ O	1.407	1.414	1.415
Natron	Na ₂ O·CO ₂ ·10H ₂ O	1.405	1.425	1.440
Kalinite	K ₂ O·Al ₂ O ₃ ·4SO ₃ ·24H ₂ O	1.430	1.452	1.458
Epsomite	MgO·SO ₃ ·7H ₂ O B ₂ O ₃ ·H ₂ O	1.433 1.340	1.455 1.456	1.461 1.459
Borax	Na ₂ O · 2B ₂ O ₃ · 10H ₂ O	1.447	1.470	1.472
Goslarite	ZnO·SO ₃ ·7H ₂ O	1.457	1.480	1.484
Pickeringite	$MgO \cdot Al_2O_3 \cdot 4SO_3 \cdot 22H_2O$	1.476	1.480	1.483
Bloedite	$Na_2O \cdot MgO \cdot 2SO_2 \cdot 4H_2O$	1.483	1.487	1.486
Trona	3Na ₂ O·4CO ₂ ·5H ₂ O	1.410	1.492	1.542
Thermonatrite	Na ₂ O · CO ₂ · H ₂ O	1.420 1.494	1.495	1.518 1.500
Stilbite Niter	(Ca, Na ₂)O·Al ₂ O ₃ ·6SiO ₂ ·5H ₂ O K ₂ O·N ₂ O ₅	1.334	1.498 1.505	1.506
Kainite	MgO·SO ₃ ·KCl·3H ₂ O	1.494	1.505	1.516
Gaylussite	Na ₂ O·CaO·2CO ₂ ·5H ₂ O	1.444	1.516	1.523
Scolecite	$CaO \cdot Al_2O_3 \cdot 3SiO_2 \cdot 3H_2O$	1.512	1.519	1.519
Laumontite	$CaO \cdot Al_2O_3 \cdot 4SiO_2 \cdot H_2O$	1.513	1.524	1.525
Orthoclase	K ₂ O·Al ₂ O ₃ ·6SiO ₂	1.518	1.524	1.526
Microcline	Same as preceding	1.522	1.526	1.530
Anorthoclase Glauberite	(Na, K)2O·Al2O3·6SiO2 Na2O·CaO·2SO3	1.523 1.515	1.529 1.532	1.531 1.536
Cordierite	4(Mg, Fe)O·4Al ₂ O ₃ ·10SiO ₂ ·H ₂ O	1.534	1.538	1.540
Chalcanthite	CuO·SO ₃ ·5H ₂ O	1.516	1.539	1.546
Oligoclase	Ab ₄ An	1.539	1.543	1.547
Beryllonite	$Na_2O \cdot 2BeO \cdot P_2O_5$	1.552	1.558	1.561
Kaolinite	Al ₂ O ₃ ·2SiO ₂ ·2H ₂ O	1.561	1.563	1.565
Biotite	$K_2O \cdot 4(Mg, Fe)O \cdot 2Al_2O_3 \cdot 6SiO_2 \cdot H_2O$	1.541 1.553	1.574 1.575	1.574 1.577
Autunite	$CaO \cdot 2UO_3 \cdot P_2O_5 \cdot 8H_2O$ $"An" = CaO \cdot Al_2O_2 \cdot 2SiO_2$	1.555	1.584	1.588
Lanthanite	$La_2O_3 \cdot 3CO_2 \cdot 9H_2O$	1.520	1.587	1.613
Pyrophyllite	$A1_2O_3 \cdot 4SiO_2 \cdot H_2O$	1.552	1.588	1.600
Talc	3MgO·4SiO₂·H₂O	1.539	1.589	1.589
Hopeite	$3ZnO \cdot P_2O_5 \cdot 4H_2O$	1.572	1.590	1.590
Muscovite	K ₂ O·Al ₂ O ₃ ·6SiO ₂ ·2H ₂ O	1.561	1.590	1.594
Amblygonite	$A1_2O_3 \cdot P_2O_5 \cdot 2LiF$	1.579 1.560	1.593 1.598	1.597 1.605
Lepidolite Phlogopite	Al ₂ O ₃ ·3SiO ₂ ·2(K, Li)F K ₂ O·6MgO·Al ₂ O ₃ ·6SiO ₂ ·2H ₂ O	1.562	1.606	1.606
Tremolite	CaO·3MgO·4SiO ₂	1.600	1.616	1.627
	(continued)			

TABLE 548.—INDEX OF REFRACTION OF SELECTED BIAXIAL MINERALS (concluded)

Biaxial negative minerals (continued)

	•	Inde	ex of refra	ction
Mineral	Formula	na	nβ	ny
Actinolite	CaO·3(Mg, Fe)O·4SiO ₂	1.614	1.630	1.641
Wollastonite	CaO·SiO ₂	1.620	1.632	1.634
Lazulite	(Fe. Mg) $O \cdot Al_2O_3 \cdot P_2O_5 \cdot H_2O$	1.612	1.634	1.643
Danburite	CaO·B ₂ O ₃ ·2SiO ₂	1.632	1.634	1.636
Glaucophane	Na ₂ O·2FeO·Al ₂ O ₃ ·6SiO ₂	1.621	1.638	1.638
Andalusite	$Al_2O_3 \cdot SiO_2$	1.632	1.638	1.643
Hornblende	Contains Na2O, MgO, FeO, SiO2, etc.	1.634	1.647	1.652
Datolite	2CaO·2SiO ₂ ·B ₂ O ₃ ·H ₂ O	1.625	1.653	1.669
Erythrite	$3C_0O \cdot As_2O_5 \cdot 8H_2O$	1.626	1.661	1.699
Monticellite	CaO·MgO·SiO ₂	1.651	1.662	1.668
Strontianite	SrO·CO ₂	1.520	1.667	1.667
Witherite	BaO·CO ₂	1.529	1.676	1.677
Aragonite	CaO·CO ₂	1.531	1.682	1.686
Axinite	$6(Ca, Mn)O \cdot 2Al_2O_3 \cdot B_2O_3 \cdot 8SiO_2 \cdot H_2O$	1.678	1.685	1.688
Dumortierite	$8Al_2O_3 \cdot B_2O_3 \cdot 6SiO_2 \cdot H_2O$	1.678	1.686	1.689
Cyanite	Al ₂ O ₃ ·SiO ₂	1.712	1.720	1.728
Epidote	$4CaO \cdot 3(A1, Fe)_2O_3 \cdot 6SiO_2 \cdot H_2O$	1.729	1.763	1.780
Atacamite	3CuO·CuCl ₂ ·3H ₂ O	1.831	1.861	1.880
Fayalite	2FeO·SiO ₂	1.824	1.864	1.874
Caledonite	$2(Pb, Cu)O \cdot SO_3 \cdot H_2O$	1.818	1.866	1.909
Malachite	2CuO·CO ₂ ·H ₂ O	1.655	1.875	1.909
Lanarkite	2PbO·SO₃	1.930	1.990	2.020
Leadhillite	$4PbO \cdot SO_3 \cdot 2CO_2 \cdot H_2O$	1.870	2.000	2.010
Cerusite	PbO·CO ₂	1.804	2.076	2.078
Laurionite	PbCl ₂ ·PbO·H ₂ O	2.077	2.116	2.158
Matlockite	PbO·PbCl ₂	2.040	2.150	2.150
Baddeleyite	ZrO ₂	2.130	2.190	2.200
Lepidocrocite	$Fe_2O_3 \cdot H_2O$	1.930	2.210	2.510
Limonite	2Fe ₂ O ₃ ·3H ₂ O in part	2.170	2.290	2.310
Goethite	Fe ₂ O ₃ ·H ₂ O	2.210	2.350	2.350 (Li)
Valentinite	Sb_2O_3	2.180	2.350	2.350
Turgite	2Fe ₂ O ₃ ·H ₂ O in part	2.450	2.550	2.550 (Li)
Realgar	AsS	2.460	2.590	2.610 (Li)
Terlinguaite	Hg ₂ OC1	2.350	2.640	2.660 (Li)
Hutchinsonite	$(T1, Ag)_2S \cdot PbS \cdot 2As_2S_3$	3.078	3.176	3.188
Stibnite	Sb ₂ S ₃	3.194	4.303	4.460

		In	dex of refract	ion
Crystal	Spectrum line	n_{α}	$n\beta$	n_{γ}
Ammonium oxalate, (NH ₄) ₂ C ₂ O ₄ ·H ₂ O	D	1.4381	1.5475	1.5950
Ammonium acid tartrate,				
$(NH_4)H(C_4H_4O_6)$	D	1.5188	1.5614	1.5910
Ammonium tartrate, (NH ₄) ₂ C ₄ H ₄ O ₆	D	_	1.581	_
Antipyrin, CuH ₁₂ NO ₂	D	1.5697	1.6935	1.7324
Citric acid, C ₆ H ₈ O ₇ ·H ₂ O	D	1.4932	1.4977	1.5089
Codein, $C_{18}H_{21}NO_3 \cdot H_2O$	D	1.5390	1.5435	_
Magnesium carbonate, MgCO ₃ ·3H ₂ O	D	1.495	1.501	1.526
" sulfate, MgSO4·7H2O	D	1.432	1.455	1.461
	Cd, $.226\mu$	1.4990	1.5266	1.5326
"	Η, .656μ	1.4307	1.4532	1.4584
Potassium bichromate, K ₂ Cr ₂ O ₇	D	1.7202	1.7380	1.8197
" chromate, K ₂ CrO ₄	D	_	1.7254	_
	red	1.6873	1.722	1.7305
" nitrate, KNO₃	D	1.3346	1.5056	1.5064
" sulfate, K ₂ SO ₄	F	1.4976	1.4992	1.5029
	D	1.4932	1.4946	1.4980
"	С	1.4911	1.4928	1.4959
Racemic acid, C ₄ H ₆ O ₆ ·H ₂ O	yellow	_	1.526	_
Resorcin, C ₆ H ₆ O ₂	D	_	1.555	_
Sodium bichromate, Na₂Cr₂O ₇ ·2H₂O	D	1.6610	1.6994	1.7510
" acid tartrate, NaH(C₁H₄O₀)·2H₂O	red	. 	1.5332	
Sugar (cane), $C_{12}H_{22}O_{11}$	T1	1.5422	1.5685	1.5734
" "	D	1.5397	1.5667	1.5716
	Li	1.5379	1.5639	1.5693
Tartaric acid, C ₄ H ₆ O ₆ (right-)	D	1.4953	1.5353	1.6046
Zinc sulfate, ZnSO ₄ ·7H ₂ O	F	1.4620	1.4860	1.4897
"	D	1.4568	1.4801	1.4836
	С	1.4544	1.4776	1.4812

TABLE 550.—SPECIFIC GRAVITY, COEFFICIENT OF EXPANSION, AND STAIN CLASS OF OPTICAL GLASS *

	Specific g	ravity	Cofficient of expansion mean values \times 10 ⁷				
Glass type	BL	CG`	- 40° to 0° BL	0° to 40° BL	0° to 100° BL	0° to 300° CG	for BL
511635 517645	2.48 2.53	2.53	73.0 62.0	77.0 65.2	79.6 67.5	80	1 1
523586	2.53 2.73	• • •	75.8 70.2	80.2 73.0	83.0 74.5		1
573574 580410 584460	3.21 3.27 3.31	3.21	74.2 76.2	78.0 80.0	80.0 81.9	99	3 1
605381 611572	3.49 3.57	3.47 3.56	57.8	61.2	64.1	86 70	1 5
611588	3.58 3.64	3.40 3.58	60.8 70.8	64.0 73.0	66.9 74.2	71 89	5
617550	3.66 3.67	3.50 3.61	• • •	• • •		72 87	5 1
649338	3.91 4.51	3.89	73.5	75.2	77.3	85	1 2 3
Melt No.							
EK-110-5328 EK-32-2641 EK-33-2734s EK-45-29	• • • • • • • • • • • • • • • • • • • •	4.1 4.5 4.7 4.6	58.0 57.8 53.5 57.0	61.2 61.2 57.0 60.5	63.5 63.9 59.4 63.4	• • •	

BL, Bausch & Lomb Optical glass. EK, Eastman Kodak glass. CG, Corning glass. The first 15 glass types in column 1 are described in Table 524 of NBS glasses.

^{*} Types of glass in class 1 or 2 are not likely to stain even when used as exposed surfaces in tropical climates. Glasses in class 5 are liable to stain when exposed to rain, moisture condensation, or fingerprints in any climate. Other glasses are intermediate in stain resistance.

			Indices of refraction					
		m	200					
Substance	Density	Temp °C	0.397μ <i>H</i>	0.434μ <i>G'</i>	0.486μ F	0.589μ D	0.656μ C	
Acetaldehyde, CH3CHO	.780	20	_	1.3394	1.3359	1.3316	1.3298	
Acetone, CH ₃ COCH ₃	.791	20	_	1.3678	1.3639	1.3593	1.3573	
Aniline, C ₆ H ₅ ·NH ₂	1.022	20	_	1.6204	1.6041	1.5863	1.5793	
Alcohol, methyl, CH3.OH	.794	20	1.3399	1.3362	1.3331	1.3290	1.3277	
" ethyl, C₂H6·OH	.808	0	_	1.3773	1.3739	1.3695	1.3677	
66 66	.800	20	_	1.3700	1.3666	1.3618	1.3605	
" " dn/dt	_	20	_	0004	0004	0004	0004	
" n-propyl C₃H₁·OH	.804	20	_	1.3938	1.3901	1.3854	1.3834	
Benzene, C ₆ H ₆	.880	20	_	1.5236	1.5132	1.5012	1.4965	
" $C_6H_6 dn/dt$	1 407	20	1 7200	0007	0006	0006	0006	
Bromnaphthalene, C10H7Br	1.487	20	1.7289	1.7041	1.6819	1.6582	1.6495	
Carbon disulfide, CS ₂	1.293	0	1.7175	1.6920	1.6688	1.6433	1.6336	
" totrochloride CC1	1.591	20 20	1.6994	1.6748	1.6523	1.6276	1.6182	
" tetrachloride, CCl ₄ Chinolin, C ₈ H ₇ N	1.090	20	_	1.4729 1.6679	1.4676 1.6470	1.4607 1.6245	1.4579 1.6161	
Chloral, CCl ₃ ·CHO	1.512	20	_	1.4679	1.4624	1.6245	1.4530	
Chloroform, CHCl ₃	1.489	20	1.463	1.458	1.4530	1.4357	1.4330	
Decane, C ₁₀ H ₂₂	.728	14.9		1.4200	1.4160	1.4108	1.4088	
Ether, ethyl, C ₂ H ₅ ·O·C ₂ H ₅	.715	20	_	1.3607	1.3576	1.3538	1.3515	
	_	20	_	0006	0006	0006	0006	
Ethyl nitrate, C2H5·O·NO3	1.109	20		1.395	1.392	1.3853	1.3830	
Formic acid, H·CO ₂ H	1.219	20	_	1.3804	1.3764	1.3714	1.3693	
Glycerine, C ₃ H ₈ O ₃	1.260	20	_	1.4828	1.4784	1.4730	1.4706	
Hexane, CH ₃ (CH ₂) ₄ CH ₃	.660	20	_	1.3836	1.3799	1.3754	1.3734	
Hexylene, CH ₃ (CH ₂) ₃ CH·CH ₂	.679	23.3	_	1.4059	1.4007	1.3945	1.3920	
Methylene iodide CH ₂ I ₂	3.318	20	1.8027	_	1.7692	1.7417	1.7320	
" $\frac{dn}{dt}$		20	_	_	0007	0007	0006	
Naphthalene, C ₁₀ H ₈	.962	98.4	_		1.6031	1.5823	1.5746	
Nicotine, C ₁₀ H ₁₄ N ₂	1.012	22.4		1.5439	1 40 46	1.5239	1.5198	
Octane, CH ₃ (CH ₂) ₆ CH ₃	.707	15.1	_	1.4097	1.4046	1.4007	1.3987	
Oil, almond	.92 .99	0 15.1	1.6084	_	1.4847 1.5743	1.4782 1.5572	1.4755 1.5508	
	.99	21.4	1.0004	_	1.5647	1.5372	1.5308	
bitter almond	1.06	20	_	1.5775	1.5623	1.54/5	1.5391	
cassia	-	10	1.7039	1.5775	1.6389	1.6104	1.6007	
4	_	22.5	1.6985	_	1.6314	1.6026	1.5930	
cinnamon	1.05	23.5	_	_	1.6508	1.6188	1.6077	
olive	.92	0	_	_	1.4825	1.4763	1.4738	
rock	_	0	_	_	1.4644	1.4573	1.4545	
turpentine	.87	10.6	1.4939	_	1.4817	1.4744	1.4715	
	.87	20.7	1.4913	_	1.4793	1.4721	1.4692	
Pentane, CH ₃ (CH ₂) ₃ CH ₃	.625	15.7	_	1.3645	1.3610	1.3581	1.3570	
Phenol, C.H.OH	1.060	40.6	_	1.5684	1.5558	1.5425	1.5369	
C. CIT CIT CIT	1.021	82.7	-		1.5356		1.5174	
Styrene, C ₆ H ₅ CH·CH ₂	.910	16.6	-	1.5816	1.5659	1.5485	1.5419	
Thymol, C ₁₀ H ₁₄ O	.982	_		1 5170	1.5386	1 4055	1.5228	
Toluene, CH ₃ ·C ₆ H ₆	.86	20	1 2425	1.5170	1.5070	1.4955	1.4911	
Water, H₂O	_	20 0	1.3435 1.3444	1.3404 1.3413	1.3372 1.3380	1.3330 1.3338	1.3312 1.3319	
"	_	40	1.3444	1.3413	1.3349	1.3307	1.3319	
"	_	80	1.3332	1.3302	1.3270	1.3230	1.3290	
			1.0002	1.0002	1.0270	1.0200	1.0210	

TABLE 552.—INDICES OF REFRACTION FOR SOLUTIONS OF SALTS AND ACIDS RELATIVE TO AIR

			Iı	Indices of refraction for spectrum lines						
Substance	Density	Temp °C	С	D	F	Н	Н			
		Solutio	ons in water	r						
Ammonium chloride Calcium chloride	.025 .398 .215	27.05 29.75 25.65 22.9 25.8	1.37703 .34850 .44000 .39411 .37152	1.37936 .35050 .44279 .39652 .37369	1.38473 .35515 .44938 .40206 .37876	= = = = = = = = = = = = = = = = = = = =	1.39336 .36243 .46001 .41078 .38666			
Hydrochloric acid	.359 .416 normal s double	normal	1.40817 .39893 .40052 .34087 .34982 .35831	1.41109 .40181 .40281 .34278 .35179 .36029	1.41774 .40857 .40808 .34719 .35645 .36512	1.35049 .35994 .36890	1.42816 .41961 .41637 —			
Soda (caustic)	.189	21.6 18.07 18.07 18.07	1.41071 .37562 .35751 .34000	1.41334 .37789 .35959 .34191	1.41936 .38322 .36442 .34628	1.38746 .36823 .34969	1.42872 — — —			
Sodium nitrate Sulfuric acid """ """	.811 .632	22.8 18.3 18.3 18.3 18.3	1.38283 .43444 .42227 .36793 .33663	1.38535 .43669 .42466 .37009 .33862	1.39134 .44168 .42967 .37468 .34285		1.40121 .44883 .43694 .38158 .34938			
Zinc chloride	1.359 .209	26.6 26.4	1.39977 .37292	1.40222 .37515	1.40797 .38026	_	1.41738 .38845			
Solutions in ethyl alcohol										
Ethyl alcohol		25.5 27.6 16.0 16.0	1.35971 .35372 .3918 .3831	1.35971 .35556 .398	1.36395 .35986 .361 .3705		1.37094 .36662 .3759 .3821			

Note.—Cyanin in chloroform also acts anomalously; for example, Sieben gives for a 4.5 percent solution $\mu_A=1.4593$, $\mu_B=1.4695$, μ_F (green) = 1.4514, μ_G (blue) = 1.4554. For a 9.9 percent solution he gives $\mu_A=1.4902$, μ_F (green) = 1.4497, μ_G (blue) = 1.4597.

Solutions of potassium permanganate in water

Wavelength	Spectrum line	Index for 1 % sol	Index for 2 % sol	Index for 3 % sol	Index for 4 % sol	Wavelength	Spectrum line	Index for 1 % sol	Index for 2 % sol	Index for 3 % sol	Index for 4 % sol
.687	μB	1.3328	1.3342	_	1.3382	$.516\mu$	_	1.3368	1.3385	_	
.656		.3335	.3348	1.3365	.3391	.500	_	.3374	.3383	1.3386	1.3404
.617	_	.3343	.3365	.3381	.3410	.486	F	.3377	_	_	.3408
.594	_	.3354	.3373	.3393	.3426	.480	_	.3381	.3395	.3398	.3413
.589	D	.3353	.3372	_	.3426	.464	_	.3397	.3402	.3414	.3423
.568	3 —	.3362	.3387	.3412	.3445	.447	_	.3407	.3421	.3426	.3439
.553	_	.3366	.3395	.3417	.3438	.434	_	.3417	_		.3452
.527	E	.3363	_	_	_	.423	_	.3431	.3442	.3457	.3468
.522		.3362	.3377	.3388	_	_	_	_	_	_	-

Corrections for reducing wavelengths and frequencies in air (15°C, 76 cmHg) to vacuo

The indices were computed from the Cauchy formula $(n-1)10^7=2726.43+12.288/(\lambda^2\times 10^{-8})+0.3555/(\lambda^4\times 10^{-10})$. For 0°C and 76 cmHg the constants of the equation become 2875.66, 13.412 and 0.3777 respectively, and for 30°C and 76 cmHg 2589.72, 12.259 and 0.2576. Sellmeier's formula for but one absorption band closely fits the observations: $n^2=1+0.00057378\lambda^2/(\lambda^2-595260)$. If n-1 were strictly proportional to the density, then $(n-1)\phi/(n-1)t$ would equal 1+at where a should be 0.00367. The following values of a were found to hold:

The indices are for dry air $(0.05 \pm \% \text{ CO}_2)$. Corrections to reduce to dry air the indices for moist air may be made for any wavelength by Lorenz's formula, +0.000041(m/760), where m is the vapor pressure in mm. The corresponding frequencies in waves per cm and the corrections to reduce wavelengths and frequencies in air at 15°C and 76 cmHg pressure to vacuo are given. E.g., a light wave of 5000 angstroms in dry air at 15°C , 76 cmHg becomes 5001.391 A in vacuo; a frequency of 20,000 waves per cm correspondingly becomes 19994.44.

			Fre- quency	Vacuo correction				Fre- quency	Vacuo correction
Wave-	Dry air	Vacuo	waves per	for $\frac{1}{\lambda}$ in air	Wave-	Dry air	Vacuo correction	waves per	for $\frac{1}{\lambda}$ in ai
length, λ	(n-1) $\times 10^{7}$ 15° C	correction for λ in air	1	$\left(\begin{array}{cc} 1 & 1 \end{array}\right)$	λ	$\times 10^7$	for λ in air	. 1	$\left(\begin{array}{cc} 1 & 1 \end{array}\right)$
ang- stroms	15°C 76 cmHg	$(n\lambda - \lambda)$ add	λ in air	(nλ λ) subtract	ang- stroms	15°C 76 cmHg	$(n\lambda - \lambda)$ add	π in air	$\begin{pmatrix} \overline{n\lambda} & \overline{\lambda} \end{pmatrix}$ subtract
2000	3256	.651	50,000	16.27	5500	2771	1.524	18,181	5.04
2100	3188	.670	47,619	15.18	5600	2769	1.551	17,857	4.94
2200 2300	3132 3086	.689 .710	45,454 43,478	14.23 13.41	5700 5800	2768 2766	1.578 1.604	17,543 17,241	4.85 4.77
2400	3047	.731	41,666	12.69	5900	2765	1.631	16,949	4.68
2500	3014	.754	40,000	12.05	6000	2763	1.658	16,666	4.60
2600 2700	2986 2962	.776 .800	38,461 37.037	11.48 10.97	6100 6200	2762 2761	1.685 1.712	16,393 16,129	4.53 4.45
2800	2902	.824	35,714	10.50	6300	2760	1.739	15,873	4.38
2900	2923	.848	34,482	10.08	6400	2759	1.766	15,625	4.31
3000	2907	.872	33,333	9.69	6500	2758	1.792	15,384	4.24
3100	2893	.897	32,258	9.33	6600	2757	1.819	15,151	4.18
3200 3300	2880 2869	.922 .947	31,250 30,303	9.00 8.69	6700 6800	2756 2755	1.846 1.873	14,925 14,705	4.11 4.05
3400	2859	.972	29,411	8.41	6900	2754	1.900	14,492	3.99
3500	2850	.998	28,571	8.14	7000	2753	1.927	14,285	3.93
3600	2842 2835	1.023 1.049	27,777	7.89 7.66	7100 7200	2752 2751	1.954 1.981	14,084 13,888	3.88 3.82
3700 3800	2829	1.049	27,027 26,315	7.00	7300	2751	2.008	13,698	3.77
3900	2823	1.101	25,641	7.24	7400	2750	2.035	13,513	3.72
4000	2817	1.127	25,000	7.04	7500	2749	2.062	13,333	3.66
4100 4200	2812 2808	1.153 1.179	24,390 23,809	6.86 6.68	7600 7700	2749 2748	2.089 2.116	13,157 12,987	3.62 3.57
4300	2803	1.205	23,255	6.52	7800	2748	2.110	12,820	3.52
4400	2799	1.232	22,727	6.36	7900	2747	2.170	12,658	3.48
4500	2796	1.258	22,222	6.21	8000	2746	2.197	12,500	3.43
4600 4700	2792 2789	1.284 1.311	21,739 21,276	6.07 5.93	8100 8250	2746 2745	2.224 2.265	12,345 12,121	3.39 3.33
4800	2786	1.338	20,833	5.80	8500	2744	2.332	11,764	3.23
4900	2784	1.364	20,406	5.68	8750	2743	2.400	11,428	3.13
5000 5100	2781 2779	1.391 1.417	20,000	5.56 5.45	9000	2742 2741	2.468	11,111	3.05
5200	2777	1.417	19,607 19,230	5.45	9250 9500	2741	2.536 2.604	10,810 10,526	2.96 2.88
5300	2775	1.471	18,867	5.23	9750	2740	2.671	10,256	2.81
5400	2773	1.497	18,518	5.13	10000	2739	2.739	10,000	2.74

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_t - 1 = \frac{n_0 - 1}{1 + at} \cdot \frac{p}{760}$, where n_t is the index of refraction for temperature t, n_0 for temperature zero, α the coefficient of expansion of the gas with temperature, and p the pressure of the gas in millimeters of mercury. For air see Table 553.

Indices of refraction

****		(n -	1) 103		Wave-		(n -	1) 103	
Wave- length	Air	0	N	H	length	Air	0	N	H
μ .4861 .5461 .5790 .6563	.2951 .2936 .2930 .2919	.2734 .2717 .2710 .2698	.3012 .2998 	.1406 .1397 .1393 .1387	μ .4360 .5462 .6709 6.709 8.678	.2971 .2937 .2918 .2881 .2888	.2743 .2704 .2683 .2643 .2650	co ₂ .4506 .4471 .4804 .4579	.1418 .1397 .1385 .1361 .1361

The values are for 0°C and 760 mmHg

	The values are for 0°	C and 760 mmHg	
Substance Kind of light Acetone D Ammonia white " D Argon D Benzene D	Indices of refraction 1.001079-1.001100 1.000381-1.000385 1.000373-1.000379 1.000281 1.001700-1.001823	Substance Kind of light Hydrogen white D Hydrogen sulfide. D D Methane white	Indices of refraction 1.000138-1.000143 1.000132 1.000644 1.000623 1.000443
$\begin{array}{cccc} \text{Bromine} & \dots & D \\ \text{Carbon dioxide} & \dots & \text{white} \\ \text{``} & \dots & D \\ \text{Carbon disulfide.} \left\{ \begin{array}{c} \text{white} \\ D \end{array} \right. \end{array}$	1.001132 1.000449-1.000450 1.000448-1.000454 1.001500 1.001478-1.001485	" D Methyl alcohol D Methyl ether D Nitric oxide white " D	1.000444 1.000549-1.000623 1.000891 1.000303 1.000297
$ \begin{array}{ccc} \text{Carbon monoxide} \Big\{ \begin{array}{c} \text{white} \\ \text{white} \\ \text{Chlorine} & \dots & \text{white} \\ \text{``} & \dots & D \\ \text{Chloroform} & \dots & D \\ \end{array} $	1.000340 1.000335 1.000772 1.000773 1.001436–1.001464	Nitrogen white " D Nitrous oxide white " D Oxygen white	1.000295-1.000300 1.000296-1.000298 1.000503-1.000507 1.000516 1.000272-1.000280
Cyanogen white " D Ethyl alcohol D Ethyl ether D Helium D	1.000834 1.000784-1.000825 1.000871-1.000885 1.001521-1.001544 1.000036	Pentane D Sulfur dioxide white D Water white	1.000271-1.000272 1.001711 1.000665 1.000686 1.000261
Hydrochloric \{\text{ white acid}\} D	1.000449 1.000447	" D	1.000249-1.000259

TABLE 555.—PHYSICAL PROPERTIES OF SOME SPECIAL GLASSES

			Coefficient	Thermal				
(Jass	Composition *		ig's of thermal	conductivity	Specific	Softening points	Electric resistance †	Dielectric
Fused quartz Pyrex (7740)	SiO ₂ SiO ₂ , 80: B ₂ O ₃ , 14	2.20 7100		.0033	.18	1660	10.48 4.1 6.6 4.5	1.4
Vycor (7900)	Na ₂ O, 4: Al ₂ O ₃ , 2 SiO ₂ , 96: B ₂ O ₃ , 3:			.0022	:		8.1	3.8
Lead glass	other oxides SiO ₂ , 68: PbO, 15: Na ₂ O ₃ , 10: K ₂ O, 6:	4.26 5400	0 91×10-7	:	:	280	6.7	9.5
Soda lime glass	CaO, 1 SiO ₂ , 72: Na ₂ O, 15: CaO, 9: MgO, 3: Al ₂ O ₃ , 1	2.47 6900	0 92×10-7	:	:	969	5.1	7.2
	Diameter μ	Breaking strength units – dynes/cm²	Young's modulus		Torsion coefficient	on ent		$\Delta I/I$ for failure
Quartz fibers ‡	1.5 3.0 5.0 10.0 30.0	.90×10 th .65 .30 .145	11.1.1×10 ¹¹ 9.8 8.5 7.1		6.6×10 ¹¹ 5.8 4.8 3.5	(10 ¹¹		.059 .049 .035
* Approximately. † Log R (microl fibers the tensile strength varies from 6-20	R (microhm-cm) for 350°C. ‡ The from 6-20 times these values.	tensile strength as	‡ The tensile strength as measured from rods about 5 or 6 mm in diameter is about 5 kg/mm². For quart:	s about 5 or 6 r	nm in dian	neter is abo	ut 5 kg/mr	1². For quart

TABLE 556.--COLOR SCREENS

Although only the potassium salt does not keep well, it is perhaps safer to use freshly prepared solutions.

Color	Thick- ness mm	Water solutions of	Grams of substance in 100 cm ⁸	Optical center of band μ	Transmission
Red "	20 20	Crystal-violet, 5BO Potassium monochromate	.005 10.	.6659	{begins about .718μ. ends sharp at .639μ.
Yellow "	20 15	Nickel sulfate, NiSO. 7aq Potassium monochromate	30. 10.	.5919	.614–.574μ,
" Green	15 20	Potassium permanganate Copper chloride, CuCl ₂ ·2aq		.5330	.540–.505μ
" Bright blue	20 20 20	Potassium monochromate Double-green, SF	10. .02 15.	.4885	{.526494 and .494458μ
Bright blue{ Dark blue{	20	Copper sulfate, CuSO. 5aq Crystal-violet, 5BO Copper sulfate, CuSO. 5aq	.005 15.	.4482	.478–.410μ

The following list is condensed from Wood's Physical Optics:

Methyl violet, $4R \cdot (Berlin Anilin Fabrik)$ very dilute, and nitroso-dimethyl-aniline transmits 0.365μ . Methyl violet + chinin-sulfate (separate solutions), the violet solution made strong enough to blot out 0.4359μ , transmits 0.4047 and 0.4048, also faintly 0.3984.

Cobalt glass + aesculin solution transmits 0.4359µ.

Guinea green B extra (Berlin) + chinin sulfate transmits 0.4916µ.

Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.5461; then add the Neptune green until the yellow lines disappear.

Chrysoidine + eosine transmits 0.5790μ . The former should be dilute and the eosine added until the green line disappears.

Silver chemically deposited on a quartz plate is practically opaque except to the ultraviolet region 0.3160-0.3260 where 90 percent of the energy passes through. The film should be of such thickness that a window backed by a brilliantly lighted sky is barely visible.

In the following those marked with a * are transparent to a more or less degree to the ultraviolet.

*Cobalt chloride: solution in water, absorbs $0.50-.53\mu$; addition of CaCl₂ widens the band to 0.47-.50. It is exceedingly transparent to the ultraviolet down to 0.20. If dissolved in methyl alcohol + water, absorbs 0.50-.53 and everything below 0.35. In methyl alcohol alone 0.485-0.555 and below 0.40 μ .

Copper chloride: in ethyl alcohol absorbs above 0.585 and below 0.535; in alcohol + 50

percent water, above 0.595 and below 0.37μ .

Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits 0.535-.565 and above 0.60μ , the bands very sharp (a useful screen for photographing with a visually corrected objective).

Praseodymium salts: three strong bands at 0.482, .468, .444. In strong solutions they fuse into a sharp band at 0.435-.485\mu. Absorption below 0.34.

Picric acid absorbs 0.36-.42μ, depending on the concentration. Potassium chromate absorbs 0.40-.35, 0.30-.24, transmits 0.23μ.

* Potassium permanganate: absorbs 0.555-.50, transmits all the ultraviolet.

Chromium chloride: absorbs above 0.57, between 0.50 and .39, and below 0.33μ . These limits vary with the concentration.

Aesculin: absorbs below 0.363μ, very useful for removing the ultraviolet.

* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs 0.49-.37 and transmits all the ultraviolet.

Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.

Iodine: saturated solution in CS2 is opaque to the visible and transparent to the infrared.

536 TABLE 557.-LIGHT FILTERS, NARROW SPECTRUM REGIONS 104

Filters from the following components: Distilled H₂O; Aq. sol. CuSO₄·5H₂O; NiSO₄·7H₂O; Glasses, Corning G 986A, G 586, G 980A; dyed gelatin, Wratten filters 88A, 25, 61, 49.

	Solut	ion			
Filter and absorbent	Concen- tration	Thick- ness	Wavelengths limits	Max	Transmission at max
88A		2 cm	.720-1.400 .720-1.380	.800	.80 .72
88A, G 986A *	5%	2 cm	.720–1.020 .590– .690	.770	.35 .26
25, CuSO ₄ ·5H ₂ O	5%	2 cm	.490690	.530	.52
49, "	5% 10%	2 cm 2 cm	.380500 .330430	.460 .380	.26 .69
G 986A, NiSO₄·7H₂O	50%	1 cm	.260360	.310	.50

¹⁶⁴ Jones, L. A., Journ. Opt. Soc. Amer., vol. 16, p. 259, 1928.
* Thickness .32 cm.

TABLE 558.—NARROW BAND PASS FILTERS *

Filter	Thickness range	Wavelength limits	Max	Transmission at max
C.S. 5– 74	5 7.5 mm	$.402480 \mu$.430μ	14.5 percen
5- 76	5 5.8	.400483	.430	27.5
5- 75	3.2- 5.7	.395495	.460	12.5
4–104	6 8.5	.467530	.485	5.3
4–117	7. –12.	.466580	.495	34.0
4–105	912.5	.483570	.515	11.0
4–102	913.5	.528573	.550	10.6
4–115 †	10. –14.	.530575	.555	35.5
3–110	5. – 9.	.561620	.580	3.0
3–120	610.	.565670	.590	19.5
2- 77	6.5- 9.5	.585705	.610	11.5
2- 78	4 7.	.612760	.640	16.0
2- 79	8.8–12.	.665780	.715	9.5
7– 84	10. –13.	.710900	.750	15.0
7- 85 ‡	5 6.	.800-1.101	.960	25.0
7– 86	7. – 8.	1.200-2.800	2.100	45.0
4- 17	5.5–10.	1.700-2.800	2,400	21.0

^{*} Corning Glass Works. † Second max at 2.55 with transmission at 5.0 percent. ‡ Second max at .605 with transmission at 1.0 percent.

TABLE 559.—TRANSPARENCY OF WATER 165

Values of a in $I = I_0 e^{-at}$; t in cm; I_0 , I, intensity before and after transmission through distilled water at 20°C; wavelength λ in μ .

b			c		d		d		e
λ .1829 .1854 .1862 .1878 .1916 .1935	4.7 1.11 .86 .48 .20 .12	λ .20 .24 .28 .30 .34 .38	.08 .0135 .0077 .0064 .0028	λ .40 .42 .44 .48 .50	a .00080 .00061 .00046 .00037 .00038	λ .54 .58 .60 .62 .64	a .00044 .00084 .00197 .00265 .00292	λ .70 .75 .80 .85 .90	.0058 .028 .024 .027 .06

 ¹⁸⁵ b, Tsukamoto, K., Rev. d'Optique, vol. 7, p. 89, 1929.
 c, Dawson, L. H., and Hulburt, E. O., Journ. Opt. Soc. Amer., vol. 24, p. 175, 1934.
 d, Hulburt, E. O., Journ. Opt. Soc. Amer., vol. 35, p. 698, 1945.
 e, Collins, J. R., Phys. Rev., vol. 26, p. 771, 1925.

Percent transmission for a number of wavelengths. All values are for a thickness of 3.5 mm unless otherwise noted. The values given include surface reflection losses. All glasses except the sharp cutting reds and yellows will meet the standard value at 3.5 mm within a thickness range of 3.0 to 4.0 mm. The sharp cutting reds and yellows will meet the standard value at 3.5 within a thickness range of 2.0 to 6.0 mm.

Filter	.40μ	.45	.50	.55	.60	.65	.70	Remarks
N-1	80	64	69	69	68	68	79	
N-2	58	25	33	36	35	38	76	
N-3	36	7	12	13	12	13	52	
N-6†		.02	.15	.11	.08	.16		0 at .43 μ ; 9.8 at .68 μ
R-1					28	86	87	0 at .58µ
R-2				1	69	85	84	0 at $.54\mu$; 35 at $.59\mu$
R-5					2	87	89	0 at .59μ
R-6					84	86	83	54% at .58µ
R-7							81	44% at .67μ
Y-4				68	89	89	89	0 at .51μ
Y-9	27	56	74	82	84	85	86	0 41 10 2 10
Y-10		1	73	87	90	89	87	0 at .44μ
G-1		3	7	1				0 at .41 and .56μ
G-9		1	23	54	22	6	8	0 at .43μ
BG-1	3 6	64	68	41	11	2		0 at .69μ
B-1	87	82	46	33	14	15	68	0 at .05 m
D 0	82	59	7	2			39	0 at .58 and .66μ
TO 4	42	11	·	2	• •			0 at .48μ
D 0	91	86	63	53	35	38	81	υ αι .τομ
D 40	84	84	59	44	23	19	36	
В-10	04	04	39	44	20	19	30	

^{*} Adapted from data furnished by J. W. Forrest, Bausch & Lomb Optical Co. † $t=2.0\,$ mm.

TABLE 561.—SPECTRAL TRANSMISSION OF SOME RED PYROMETER GLASSES

Thickness						W	avelen	gths μ					
Glass mm	.60	.61	.62	.63	.64	.65	.66	.67	.68	.70	.72	.74	.76
Jena 4512 2.93				1.8	25.0	57.0	67.4			78.5	80.5	81.0	81.5
Jena 2745 3.2		.8	2.5	6.5	10.5	13.8	18.0	22.3	26.0	33.5	39.5	44.5	47.5
Corning high trans- mission red:													
150 percent 5	.1	4.7		64.3									75.0
50 percent 5			.1	5.5									74.1
28 percent 6					2.0	24.0	67.0	73.8	76.8	76.2	75.1	73.2	71.8

TABLE 562.—THE EFFECTIVE WAVELENGTH λ_e OF CORNING 50-PERCENT RED PYROMETER GLASS* 5 mm THICK FOR SOME TEMPERATURE INTERVALS 100

Temperature interval	λο	Temperature interval	λε
1300-1700°K	.6602µ	1827–1300°K	.6601μ
1300-2100	.6599	1827-1500	.6598
1300-2500	.6596	1827-2100	.6593
1300-2900	.6594	1827-2500	.6589
1300-3300	.6592	1827-2900	.6587
2300-1300	.6596	1827-3300	.6585
2300-3300	.6581	1827-3600	.6584

^{*} See Table 77.

100 "Temperature, Its Measurement and Control," a symposium prepared by the American Institute of Physics, p. 1115, Reinhold Publishing Co.

TABLE 563.—ULTRAVIOLET TRANSPARENCY OF ATMOSPHERIC COMPONENTS $I=I_0\ 10^{-ad},\ d\ {\rm in\ cm\ 0^{\circ}C,\ 760\ mmHg}.$

Oxygen	Oxygen	Ozone	Ozone
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} .186\mu & \alpha = .0089 \\ .193 & .0015 \\ & & .0015 \\ & & & \\ O_{2}, \text{ air} \\ & \\ Air \\ .186\mu & \alpha = .0019 \\ & \\ Water \\ .1875\mu & \alpha = .0055 \\ .1900 & .0026 \\ .1950 & .0012 \\ .2000 & .0007 \\ \end{array}$.2378µ 100.5 .2482 141 .2537 148.8 .2652 123 .2804 45.6 .2967 6.9 .3125 .96 .3341 .07	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Air at sea level (Washington), 400 m practically no absorption $\lambda > .3\mu$; $< .28\mu$ about that due to molecular scattering. Air transmission reduced by 1/100: 22 km at $.28\mu$; 5 at 25μ ; 0.57 at $.22\mu$; 20 km at $.205\mu$.

Atmospheric transparency for ultraviolet

	Wavelength, μ Percent transmitted	.29	.30 .9	.31 9.	.32 20.	.33 27.	.34 33.	.35 38.	.37 46.	.39 51.	.41 56.	.43 60.	.45 64.
--	--	-----	-----------	-----------	------------	------------	------------	------------	------------	------------	------------	------------	------------

TABLE 564.—TRANSMISSION OF DYESTUFF SOLUTIONS OF "ADJUSTED" CONCENTRATIONS*

The table gives the percentage transmittances (column 5) at various wavelengths, of the dye solutions, dissolved or buffered as indicated in the third column. All solutions are adjusted to that concentration which gives unit density (10-percent transmittance) at the wavelength of maximum absorption, except for those solutions (marked * in column 4) that have the maximum absorption in the ultraviolet range. The wavelength of maximum absorption is given in column 2. In column 3 is given the serial number of the dye as listed and described in the Colour Index of the British Society of Dyers and Colorists (1924). Dyes having no Colour Index number are listed by the "prototype number" (abbreviated Pr.) of the 1949 Technical Manual and Year Book of the American Association of Textile Chemists and Colorists, p. 147. The names assigned to the dyes are not the names used by the individual American manufacturers but are older names assigned by the Year Book to each Colour Index number, p. 237; or to the "foreign prototype," p. 261. In column 4, A stands for acid buffer (pH = 4.6), K for alkaline buffer (pH = 9.3).

In column 4, A stands for acid buffer (pH = 4.0), K for alkaline buffer (pH = 9.3). In this column, E stands for ethanol (ethyl alcohol) used as solvent, and Bz for benzene. Where A or K are used, the solvent was water. N stands for "no buffer," with water as solvent

In some cases two or more sets of transmissions correspond to a given Colour Index number and name. For example, C.I. No. 326 corresponds to 62 dyestuffs listed as on the American market in 1939, and these may be classified as of several distinct types of Benzo Fast Scarlets and Benzo Fast Oranges. In less striking cases, the different types result from uncontrollable variations in manufacture. In such cases, the transmissions should be considered as representative rather than as specifications of the dye. No manufacturer would guarantee the transmissions within a narrow range, though all data are accurate measurements on actual representatives of at least one manufacturer's products. Transmissions vary somewhat with the exact pH of the buffer and with the characteristics of the instrument used for measurement, especially with the slit width. The present data obtained with the General Electric recording spectrophotometer, which has a 10-micron slit width.

From the data of the table, approximate data for stronger solutions, whose transmission at the wavelength of maximum absorption is only 1 percent, may be readily obtained by means of a table of squares. Such solutions are twice as concentrated as those of the table. Their transmissions at any given wavelength are approximately the squares of the tabulated transmissions. These relations depend on the validity of Beer's Law for the solution in question.

^{*} Data furnished by I. H. Godlove, General Aniline & Film Corporation.

TABLE 564.-TRANSMISSION OF DYESTUFF SOLUTIONS OF "ADJUSTED" CONCENTRATIONS (continued)

Wavelength (microns) 1.52	6	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	No. Buffer	Pr. 242 E* 3 7 15 36 70 90 Pr. 139 A* 2 7 14 29 56 78 727 A* 2 7 14 24 40 61 594 K* 4 8 12 18 29 40	Diamine Catechine G	Supramine Yellow 3GL. (710) (39) Pr. 474 A* 3 6 18 49 82 96 99 Mikado Yellow L5G. 392 865 K* 5 8 12 20 37 62 79 Fastusol Yellow L5G. 394 Pr. 79 K* 4 4 20 57 90 10 Mikado Yellow L5G. 408 Pr. 75 K 11 15 24 78 99 10 Diamine Fast Orange EG. 408 Pr. 365 K 10 11 15 24 78 99 10 Benzo Chrome Brown G. 408 Pr. 365 K 10 11 15 24 24 12 10 10 24 24 12 10 11 11 24 25 99 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
	6 98 68 21 45 51 52 53 53 54 54 54 54 54 54	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	clength (microns) .54 .56 .58	95 96 97 98 99 99 96 97 98 96 97 98 96 97 98 96 97 98 92 97 98 92 97 98 92 97 98 92 97 98	100	100 100 100 100 100 100 100 100 100 100

$\overline{}$
D
읙
=
=
1
ō
ŭ
$\overline{}$
တ
Z
0
_
-
⋖
α
ᆮ
5
~
щ
O
Z
" CONCENTRATION
O
_
0
UI
ī
10
~
2
ADJI
ц
⋖
3
ŭ.
0
ഗ
Ë
ä
<u>2</u> 0
NOIL
NOITO
NOIFO
SCOTION
SOLUTION
SOLUTION
F SOLUTION
FF SOLUTION
JEF SOLUTION
UPF SOLUTION
TUFF SOLUTION
STUFF SOLUTION
ESTUFF SOLUTION
YESTUFF SOLUTION
DYESTUFF SOLUTION
DYESTUFF SOLUTION
F DYESTUFF SOLUTION
OF DYESTUFF SOLUTION
OF DYESTUFF SOLUTION
N OF DYESTUFF SOLUTIONS OF "ADJUSTED" (
ON OF DYESTUFF SOLUTION
ION OF DYESTUFF SOLUTION
SION OF DYESTUFF SOLUTION
SSION
TRANSMISSION OF DYESTUFF SOLUTION
SSION
-TRANSMISSION
-TRANSMISSION
-TRANSMISSION
-TRANSMISSION
E 564TRANSMISSION
E 564TRANSMISSION
E 564TRANSMISSION
-TRANSMISSION

	.70	100	100	900008	6	0018880	000000000000000000000000000000000000000	92	100	100	
	89.	96	100	001100 1000 1000 1000	94	858885	989999	92	100	99	
	99.	95	100	100 100 100 98	91	98 98 100 100	585555	75	100	100	
	.64	93	100	001 000 001 000 001	98	99 97 100	9899998	74	100	100	
	.62	88 66	100	99 99 99 99	81	97 96 96 100	88888	72	97	88	
	09.	86	86	986598 88	74	91 92 98	8888888	63	98	8 %	
rons)	.58	98	93	88888	62	75 76 75 73 86	888888	43	70 83	81	
mic (mic	.56 ses (pe	56	77	83 83 83 83	46	50 50 50 52 52	34 23 35 35 35 35 35 35 35 35 35 35 35 35 35	25	38	6 2 5	
Wavelength (microns)	.52 .54 .56 .58 Transmittances (percent)	249	45	857.88 44 84 84	29	27 27 26 21 21 21	25 22 13 13 13 13	15	18	15	
Wave	.52 Transi	28 21	21	182638	16	4444	111123	11	11 10	10	
	.50	18 13	13	721111	11	55555	21112	11	11	12	
	.48	12 10	10	99911	Ξ	112211	14 11 11 12 13	16	17	20	
	.46	100	10	12 13 13 13 18	17	15 17 17 22	28 28 31 48 48	25	29	38	
	4.	111	14	16 21 33 33 32	26	330 331 331	\$44 43 \$54 45 \$64 45	32	94	6 6	(continued)
	.42	14 16	23	17 37 38 38 48	28	36 36 36 36	53 53 65 65	29	47 35	59	(conti
	.40	20	27	2488403	31	86 54 54 54 54 54 54 54 54 54 54 54 54 54	55 61 57 57	24	29	61 84	
	Buffer	solvent A K	A	BZ AAEAA	Bz	RENZZZ	44* 744	¥	ΚX	44	
	No.	No. 332 459	152	24 151 244 161 194	729	236 238 370 327 326	148 176 185 326 114	430	210 382	101 361	
	C.I. No.	Pr.	Pr.	Pr. Pr.		Pr. Pr. Pr.	Pr.		Pr.	Pr. Pr.	
		λ Max. 455 466	475	/ 4478 490 490 690 690 690 690 690 690 690 690 690 6	492	493 494 498 498 499	500 504 508 510 510 510	511 511 660	512 512 513 513	515 515 (<400)	
		Name Bismarck Brown R Congo Orange R	Polar Orange R	Sudan I Orange II Celliton Scarlet B Orange R Supramine Red 2G	Victoria Blue B Base	Celliton Fast Red GG Celliton Fast Rubine B Congo Red Palatine Fast Red RN Benzo Fast Scarlet (S)	Paper Red A Extra Fast Red A. Cochineal Red A. Benzo Fast Scarlet (S). Crocein Scarlet 3BX. Azo Eosine G.	Polar Red	Anthralan Red B-CF	Guinea Fast Red BL	

TABLE 564.-TRANSMISSION OF DYESTUFF SOLUTIONS OF "ADJUSTED" CONCENTRATIONS (continued)

Wavelength (microns)

7.0	:		100	35	100	100	100	66	8	100	8		98	2	66	100	86	100	30		100	86	100		100	72	
89			100	35	100	100	100	8	66	100	8	9	38	?	66	66	95	100	100		8	95	100		100	63	
99			100	38	8	100	100	66	66	100	66	5	38	?	8	95	87	100	100		66	82	100		100	51	
49			100	88	86	86	100	62	66	100	86	9	38	?	66	81	72	100	66		86	89	66		100	38	
.62			100	22	8	96	86	91	66	66	96	9	36	1	86	28	21	100	97		91	44	83		66	26	
09.	,		100	† %	94	84	68	72	66	95	26	5	3 9	3	94	35	32	100	35		99	24	86		93	16	
.58		rcent)	100	9 6	20	54	26	43	46	20	29	8	23	3	78	56	21	03	99		27	14	75		41	11	
.56		ses (be	66	3 45	28	25	25	22	80	45	15	13	2	1	35	15	12	30	82		11	10	15		10	10	
545.		Fransmittances (percent	74	5.	13	13	13	14	78	15	12	12	21⊆		10	10	10	7	12		11	11	19		24	13	
.52	:	Transr	===	2	10	10	10	10	13	16	12	70	3 ==	2	18	25	17	%	56		18	15	9		9	23	
.50			27	12	13	13	13	16	36	31	20	5	10	`	78	28	53	45	47		33	22	63		99	41	
.48			36	18	20	23	23	53	57	31	33	09	3 %		34	82	46	69	20		21	32	84		84	62	
.46			74	32	31	37	40	46	79	33	51	0	34		42	93	62	84	84		65	45	95		94	22	
44.			88 2	3.4	39	43	52	26	88	40	71	03	43	2	65	96	7	8	87		75	9	96		96	84	
.45		İ	26 92	34	45	34	29	29	96	20	83	04	48		83	6	71	16	98		82	74	93		93	85	
04.			93	47	46	26	63	22	35	28	88	0.0	23		35	95	69	9.3	84		92	79	92		92	82	
	Buffer	or solvent	∀ ∢	: 	Bz	×	A	∨	V	ш	田	Z	. ≺		V	Z	¥	×	H		Z	A	A		V	A	
	C.I. No.	or Pr. No.	768	393	182	382	184	188	773	363	234	778	394		677	869	35	779	213		842	1080	749		748	710	
	J.	Pr		Pr.	Pr.			Pr.		Pr.	Pr.		Pr.			(Pr.		Pr.								
		λ Max.	517	518	519	522 (<400)	523	523	527	531 (492?)	531	(565) 535	535	(562)	538	543	(< 400)	548	548	(<400)	551	551	553	(<400)	(< 400)	564	(<400)
		Name	Eosine G	Oxamine Brilliant Red B	Sudan Red BB	Diamine Scarlet B	Amaranth	Supra Light Rubine BL	Erythrosine Bluish	Azosol Brilliant Red B	Celliton Fast Pink B	Phloxine B	Palatine Fast	Claret BN	Fuchaine	Formyl Violet S4B	Uplet B	Rose Bengale B.	Azosol Fast Red 3B		Methylene Violet	Anthraquinone Violet	Rhodamine B		Sulpho Rhodamine B	Brilliant Sky Blue 5G	

(continued)

TABLE 564.-TRANSMISSION OF DYESTUFF SOLUTIONS OF "ADJUSTED" CONCENTRATIONS (continued)

	٢		٢													
	.70		100	91	92	95	8	99		52	86	96	94	84	95	
	89.		26	79	82	8	94	28		27	91	85	77	59	8	
	99.		8	55	55	54	72	27		15	63	49	34	23	37	
	.64		45	24	21	20	30	22		11	22	14	11	10	11	
	.62		12	10	10	10	10	10		10	10	13	13	12	19	
	09.		14	12	11	Ξ	19	16		13	24	28	14	10	36	
(suo:	.58	rcent)	30	16	11	14	35	18		20	41	41	17	15	53	
(micr	.56	es (be	45	24	16	23	52	26		30	59	09	78	25	74	
Wavelength (microns)	.54	Transmittances (percent)	63	38	27	35	73	40		9	79	92	39	37	82	
Wave	.52	Fransn	78	22	42	48	98	55		45	8	98	54	55	94	
	.50		88	73	59	26	94	70		4	95	91	62	20	26	
	.48		93	84	73	09	26	81		39	26	93	9	81	66	
	.46		96	91	82	99	92	82		36	93	94	29	88	66	
	.44		95	94	82	99	71	68		35	74	87	29	93	96	
	.42		82	95	89	62	2	83		31	99	75	58	91	81	
	.40		75	98	92	59	77	71		27	77	77	48	82	79	
	Buffer	or	A	A	∢	<	A	म		×	V	A	⋖	A	∀	
	ó		663	729	9201	246	657	227		593	799	658	144	202	673	
	C.I. No.	Pr. No.	9	7	10	(4)	9	Pr. 2		Ŋ	9	9	Pr. 1	Pr. 2	9	
		.:														
		λ Max		615	(582) (582)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	618	619	580, 580,	256	624	630	635	(595, (595, (595,	(450) (412) (412)	
			:	:	:	:	•	•		•	•	:	:	:	•	
						Naphthol Blue Black		R		Diamine Green B				Alizarine Supra Sky R		
		Name		Victoria Blue B	:	Black	Malachite Green	Celliton Fast Blue FR.		В	Brilliant Green		Neeland Blue GG	Sky	Xylene Blue AS	
		Na	Setocyanine	ue B	Cyananthrol R	lue]	Greet	st Bl		reen	reen	Setoglaucine	ue G	upra	e A	
			anine	a Bl	thro	nol B	nite (n Fa		le G	at G	ucin	d Bl	ne S	Blu	
			tocy	ctori	yanaı	aphtl	alach	Ilito		amir	illia	togla	eelan	izari	ylene	
			Se	>	C	Z	M	Ü		D	Bı	Se	Z	A	×	

(continued)

TABLE 564.—TRANSMISSION OF DYESTUFF SOLUTIONS OF "ADJUSTED" CONCENTRATIONS (concluded)

	.70	8	95	78	59	75	38	80	10
	89:	28	S 08	52 ;	30	43	15	30 8	11
			38 8	18	13		10		14
	99.	41				17		11	
	49.	=	10	10	10	10	15	20	18
	.62	17	20	11	10	11	26	28	28
	09.	34	38	10	11	11	42	36	42
ons)	.58 rcent)	47	52	18	18	17	61	59	59
(micr	.56 :s (per	65	72	36	88	28	92	75	12
Wavelength (microns)	.52 .54 .56 .58 Transmittances (percent)	8	98	57	41	45	98	98	74
Wave	.52 Fransı	68	93	92	57	61	35	91	92
	.50	92	26	87	89	75	93	35	64
	.48	06	83	91	69	98	68	93	56
	.46	88	66	68	55	87	74	96	40
	44.	98	%	82	35	74	09	26	25
	.42	98	82	98	23	56	64	86	18
	.40	85	81	87	24	51	72	26	12
	Buffer	solvent A	A	V	A	<	A	V	A
	C.I. No.	. No. 737	672	913	1078	1075	13	326	ν
	C.	7					Pr.		
	,	A Max. 637 (< 400,	(24 <u>2</u>)	638	(610, (610,	413) 642 (607,	× 400) 662 633	£ 664 664 664	(<400)
	;	Wool Green S	Xylene Blue VS	Nile Blue A	Alizarine Cyanine Green	Alizarine Astrol B	Alkali Fast Green 10G	Methylene Blue	Naphthol Green B

Alum: Ordinary alum (crystal) absorbs the infrared. Metallic reflection at 9.05μ and 30 to 40μ .

Rock salt: Rubens and Trowbridge give the following transparencies for a 1 cm thick plate in percent:

9 12 14 15 17 13 16 18 19 20.7 23.7μ 99.5 99.5 99.3 97.6 % 93.1 84.6 66.1 51.6 27.5 9.6 .6 0.

Pflüger gives the following for the ultraviolet, same thickness: $280\mu\mu$, 95.5 percent; 231, 86 percent; 210, 77 percent; 186, 70 percent. Metallic reflection at 0.110μ , 0.156, 51.2, and 87μ .

Sylvite: Transparency of a 1 cm thick plate:

9 10 11 12 13 14 15 16 17 18 19 20.7 23.7μ % 100. 98.8 99.0 99.5 99.5 97.5 95.4 93.6 92. 86. 76. 58. 15.

Metallic reflection at 0.114μ , 0.161, 61.1, 100.

Fluorite: Very transparent for the ultraviolet nearly to 0.1 μ . Rubens and Trowbridge give the following for a 1 cm plate:

 λ 8 μ 9 10 11 12 μ % 84.4 54.3 16.4 1.0 0

Metallic reflection at 24µ, 31.6, 40µ.

Iceland spar: Merritt gives the following values of k in the formula $i = i e^{-kd}$ (d in cm): For the ordinary ray:

1.02 1.45 1.72 2.07 2.11 2.30 2.44 2.53 2.60 2.65 2.74μ .0 .03 .13 .74 1.92 3.00 1.92 1.21 1.74 2.36 2.83 2.90 2.95 3.04 3.47 3.62 3.80 3.98 4.35 4.52 4.83μ 3.30 1.32 .70 1.80 4.71 22.7 19.4 9.6 18.6 ∞ 6.6 14.3 6.1

For the extraordinary ray:

λ k

> 2.49 2.87 λ 3.00 3.28 3.38 3.59 3.76 3.90 4.02 4.41 4.67μ k .14 .08 .43 1.32 .89 1.79 2.04 1.17 .89 1.07 2.40

> > λ 4.91 5.04 5.34 5.50 μ k 1.25 2.13 4.41 12.8

Quartz: Very transparent to the ultraviolet; Pflüger gets the following transmission values for a plate 1 cm thick: at 0.222μ, 94.2 percent; 0.214, 92; 0.203, 83.6; 0.186, 67.2 percent.

Merritt gives the following values for k (see formula under Iceland spar):

For the ordinary ray:

3.96 4.50μ 2.72 2.83 2.95 3.07 3.17 3.38 3.67 3.82 4.12 λ 7.30 .20 .47 .57 .31 .20 .15 1.26 1.61 2.04 3.41

For the extraordinary ray:

3.74 3.91 4.19 4.36μ 2.74 2.89 3.08 3.52 3.59 3.64 3.00 3.26 3.43 .33 2.22 8.0 .26 .51 .76 1.88 1.83 1.62 3.35 k .0 .11 .11

For $\lambda > 7 \mu$, becomes opaque, metallic reflection at 8.50μ , 9.02, $20.75-24.4\mu$, then transparent again.

TABLE 566.—TRANSPARENCY OF WATER VAPOR (steam)

Wave- length .95 \mu 1.13 1.36 1.84 2.64	Steam 109 cm "	Absorption 7% 14 75 84 100	Wave- length 6.5 \(\mu\) 11 13 15 18	Steam 32.4 cm 104 104 104 32.4	Absorption 80% 15 35 55 55	Wave- length 20 \mu 22 26 30 34	Steam 32.4 "	Absorption 80% 22 30 50 80
--	----------------------	----------------------------	--	---	----------------------------	---	--------------	----------------------------

TABLE 567.-TRANSMISSION OF RADIATION THROUGH MOIST AIR (percent)

The values of this table are of use for finding the transmission of energy through air containing a known amount of water vapor. An approximate value for the transmission may be had if the amount of energy from the source between the wavelengths of the first column is multiplied by the corresponding transmission coefficients of the subsequent columns. The values for the wavelengths greater than 18µ are tentative and doubtful.

	nge of elengths						Precipit	able wa	ter in c	m				
Wave μ	μ	.001	.003	.006	.01	.03	.06	.10	.25	.50	1.0	2.0	6.0	10.0
.75 t	to 1.0	_	_	_	100	99	99	98	97	95	93	90	83	78
1.0	1.25	_	_	_	99	99	98	97	95	92	89	85	74	69
1.25	1.5	_	_	-	96	92	84	80	66	57	51	44	31	28
1.5	2.0		_	_	98	97	94	88	79	73	70	66	60	57
*2	3	96	92	87	84	77	70	64	_	_		_	_	_
3	4	95	88	84	78	72	66	63	_	_	_	-	_	_
*4	5	92	83	76	71	65	60	53		_	_	-	_	_
5	6	95	82	75	68	56	51	47	35	_	_	_	_	_
6	7	85	54	50	31	24	8	4	3	2	0	0	0	0
7	8	94	84	76	68	57	46	35	16	10	2	0	0	0
8	9	100	100	100	99	98	96	94	65	-		_		_
†9	10	100	100	100	100	100	100	100	100	100	100	100		_
†10	11	100	100	100	100	100	100	100	100	100	100	100	-	_
11	12	100	100	100	100	100	99	98	96	95	93	_	_	
12	13	100	100	100	100	99	99	97	86	82	_	_	_	
*13	14	100	100	100	99	97	94	90	80	60	_	_	_	_
*14	15	_		96	93	80	75	50	15	0	0	0	0	0
*15	16	_	_	_	_	70	55	40	0	0	0	0	0	0
16	17	_	_	_	_	_	50	20	0	0	0	0	0	0
17	18		-	-	-	45	25	10	0	0	0	0	0	0
18	∞	98	94	89	82	45	0	0	0	0	0	0	0	0

TABLE 568.—INFRARED TRANSMISSION OF VARIOUS SUBSTANCES (percent) 167

		20μ	30	40	50	60	70	80	90	100	110	120	130μ
Fused quartz	.2 mm	0	0	2	20	35	51	53	52				
	1.0 "	0	0	0	0	0	0	5	6	18	30	22	27
Crystal "	1.0 "	0	- 1	7	42	57	62	59	72	71	78	70	72
Sulfur, rhombic	.9 "	30	40	10	6	39	37	52	58	51	56	58	38
Paraffin	2.0 "	19	35	42	51	58	64	65	75	85	79	76	70
Mica	64	6	18	50	53	46	57	50	21	27	50	(55)	(55)
Cellophane	40μ	0	16	22	23	24	24	23	23	29	30	`30	42
Celluloid	1μ	92	93	95	96	96	97	97	98	98	99	99	99
Black paper	.1 mm				2	5	13	19	22	23	26	28	30
Camphor soot	*	60	76	79	80	81	82	84	85	86	87	89	90
Pfund Bi black	*	30	40	44	48	50	40	45	58	60	57	60	63
Lampblack,													
water glass	.8	0	(1)	(3)	7	12	21	20	26	30	25	30	30

 $^{^{107}}$ Barnes, Phys. Rev., vol. 39, p. 562, 1932. * On celluloid 1μ thick.

[†] These places require multiplication by 0.90 and 0.70 respectively for one air mass and 0.85 and 0.65 for two air masses to allow for ozone absorption when the radiation comes from a celestial body.

TABLE 569.—INFRARED TRANSMISSION, IN PERCENT, OF A NUMBER OF MATERIALS 168

Thick-	Lead chloride	Magne- sium oxide	Potas- sium chloride	Silver chloride	Thallium bromide	Thallium bromide- iodide (58% I, 42% Br)	Thallium chloride	Sapphire	Cesium bromide
in mm	6	.47	6	6	6	8	6	1.17	7
λ (μ) .40									71.5
.60	• •	• •	• •	• •	• •	• •	• •	• •	77.8
	• •	• •	• •	• •	• •	• •	• •	• •	79.8
2	• •	88	• •	73	• •	• •	• •	86.5	82.0
2	• •	87	• •	73 76	• •	• •	• •	89.0	82.0
3	• •	89	• •	70 77	• •	• •	• •	89.0 89.2	
1 2 3 4 5 6 7	• •		• •		• •	• •	• •		82.0
5	• •	90	• •	79	• •	• •	• •	82.5	82.0
0	• •	89	• •	80	• •	• •	• •	50.0	82.0
/	• •	84	• •	80	• •	• •	• •	4.0	83.0
8	• •	78	• •	80	• •	• •	• •	• •	83.0
10	• •	11	• •	80	• •	• •	• •		83.5
12	::	• •	• •	80	• •	• •	• •		84.0
14	82			80	• •				84.5
16	82	• •	::	82	• •				85.0
18	80		87	82					85.0
20	77		72	78			•.•		85.0
22	69		37	62	61		57		85.0
24	52		12	46	61		38		84.0
26	19			27	60	66	18		84.0
28					57	62	6		83.0
30					50	61			83.0
32				• •	39	58			83.0
34					33	54			82.0
36					26	51			80.0
38			••	• •	• •	• •		• •	76.0

Data from E. K. Plyler, Nat. Bur. Standards Journ. Res., vol. 41, p. 125, 1948, and E. K. Plyler, National Bureau of Standards, private communication. Cesium bromide data by E. K. Plyler and F. A. Phelps.

TABLE 570.—INFRARED TRANSMISSION OF GASES (percent) 100

		Length of	cell, 4 inch	es.			
Material Pre	ssure 6.7μ	8.7μ	20.75μ	22.9μ	27.3μ	29.4μ	32.8
NH ₂ 7	60 mmHg 24	26	7 9	93	83	82	62
	60 95	92	99	101	101	100	98
H ₂ S 7	60 97	98	98	97	92	90	83
SO ₂ 7	60 98	5	7	58	100	100	96
C ₆ H ₆	96 65	97	102	99	100	98	95
	14 95	99	97	99	99	99	91
	61 30	98	100	86	98	99	96
	00 93	90	99	98	98	97	97
$(C_2H_6)_2O \dots 5$	26 17	6	61	45	69	71	61

169 Strong, Phys. Rev., vol. 37, p. 1565, 1931, Restrahlung.

TABLE 571.—INFRARED TRANSMISSION OF SOLIDS (percent)

Material	Description	6.7 µ	8.7μ	20.75μ	22.9µ	27.3μ	29.4μ	32.8μ
Lacquer film	±.55μ thickness	96	93	97	98	99	99	100
Mica	10μ thickness	83	22	19	00	35	42	44
Soot on lacquer	Opaque to visible	25	22	67	53	60	67	60
Quartz, fused	10μ thickness	86	02	01	03	51	55	68
Glass		93	07	12	14	48	51	56
Cellophane	25μ thickness	33	04	04	01	20	25	26
MgO	Deposit from burning							
_	Mg ribbon	88	86	04	02	90	93	87
ZnO	Deposit from Zn arc	99	80	15	05	93	7 9	80

2.8μ
0
33
48
91
52
48 9: 52

TABLE 573.—ABSORPTION OF VARIOUS MATERIALS USED FOR BLACKENING RECEIVERS FOR MEASURING RADIATION OF DIFFERENT WAVELENGTHS 170

Soot from a candle, acetylene, or camphor flame has been used and was found by Pfund to be very good to wavelengths about 1.2μ ; beyond this to longer wavelengths the soot becomes transparent until at about 11μ , for a film about as thick as will work satisfactorily,

it transmits about 50 percent of the incident radiation.

Very finely powdered metal such as zinc (4 parts Zn and 1 part Sb) and platinum were found to be very good. Even for wavelengths of about 14µ the Zn powder absorbed over

98 percent of the radiation and out to 51μ the absorption was about 85 percent. For longer wavelengths powdered NaCl, KBr, TlCs, and some other salts were found to

be very good, as shown in the table.

The figures given in the table for radiation absorption are relative, those with the highest values being the blackest. For instance, India ink and tellurium powder are the best absorbers for radiation shorter than 5μ while for longer wavelengths than 50μ powdered glasses and CuSO4 are probably the more nearly black.

The absorptive power is an integrated effect over the entire far infrared. Litharge, powdered glass, white lead, copper sulfide, celestite, and red phosphorus were the best absorbers beyond 50μ . A very thin coat of the absorbing material in most cases was an inefficient absorber of the extreme infrared waves. A very poor absorbing material in most cases such as copper or platinum will absorb if the surface is sufficiently rough.

For radiometers, the absorbing material is better when mixed with turpentine and alcohol and painted on the vanes. For thermocouples, the absorbing material is better if it is mixed with lacquer. Sixty-fold sensitiveness and better steadiness comes from evacua-

The high absorption of glass in the near infrared suggests its use as a source of radiation. Two Pt wires separated by 4 mm and covered with glass were heated by an electric current; the hot portion of the glass between the wires served as a source of extreme infrared radiation. A convenient method of filtering out the near infrared is to grind the windows with emery so that the pits are about 4μ deep. The apparatus may be adjusted with visible light by covering the rough surface with turpentine.

	Radia	d for		Radi:	
Substance	$\lambda < 5\mu$	$\lambda > 50\mu$	Substance	$\lambda < 5\mu$	$\lambda > 50\mu$
Litharge	10.8	4.3	Silver sulfide		4.4
Ground glass		4.7	Copper sulfate crystals		
Powdered glass	11.7	5.0	from solution	15.0	4.1
White lead 2 Pb			Wellsbach mantle		
CO ₃ ·Pb(OH) ₂	14.9	4.9	material	8.9	3 1
White lead in lacquer	14.3	4.4	Platinum black	18.2	4.4
Red phosphorus	18.3	5.0	Tartaric acid and		
Red phosphorus from			sugar	16.0	3.9
a match box	17.7	5.1	Talc		3.8
Celestite, powdered			Water glass		3.7
SrSO ₄	14.7	4.6	Tellurium, powdered		3.3
Brucite, powdered			India ink		3.8
$Mg(OH)_2$	11.4	4.2	Lacquer		3.0
Angelsite, powdered			Castor oil		28
PbSO4	14.2	4.2	Glycerine		3.1
Copper sulfide	17.1	5.2	Turpentine		.2
Copper oxide	13.8	4.4	Clean receiver	2.9	.2

¹⁷⁰ Cartwright, Phys. Rev., vol. 35, p. 415, 1930; Pfund, Rev. Sci. Instr., vol. 1, p. 397, 1930, and Journ. Opt. Soc. Amer., vol. 23, p. 375, 1933.

TABLES 574-592.—REFLECTION AND ABSORPTION OF RADIATION

According to Fresnel, the amount of light reflected by the surface of a transparent medium $=\frac{1}{2}\left(A+B\right)=\frac{1}{2}\left\{\frac{\sin^2\left(i-r\right)}{\sin^2\left(i+r\right)}+\frac{\tan^2\left(i-r\right)}{\tan^2\left(i+r\right)}\right\}$; A is the amount polarized in the plane of incidence; B is that polarized perpendicular to this; i and r are the angles of incidence and refraction.

TABLE 574.—RADIATION REFLECTED WHEN $i \equiv 0^\circ$ OR INCIDENT LIGHT IS NORMAL TO SURFACE $\equiv (n-1)^2/(n+1)^2$

(percent)

n	$\frac{1}{4}(A+B)$	71	$\frac{1}{2}(A + B)$	n	$\frac{1}{2}(A+B)$	n	$\frac{1}{2}(A + B)$
1.00	.00	1.4	2.78	2.0	11.11	5.	44.44
1.02	.01	1.5	4.00	2.25	14.06	5.83	50.00
1.05	.06	1.6	5.33	2.5	18.37	10.	66.67
1.1	.23	1.7	6.72	2.75	22.89	100.	96.08
1.2	.83	1.8	8.16	3.	25.00	∞	100.00
1.3	1.70	1.9	9.63	4.	36.00		

TABLE 575.—RADIATION REFLECTED WHEN n = 1.55

i	r	A	В	dA†	dB †	$\frac{1}{2}(A+B)$	$\frac{A-B}{A+B}^*$
٥	0 '						
0	0 .0	4.65	4.65	.130	.130	4.65	.0
0 5	3 13.4	4.70	4.61	.131	.129	4.65	1.0
10	6 25.9	4.84	4.47	.135	.126	4.66	4.0
15	9 36.7	5.09	4.24	.141	.121	4.66	9.1
20	12 44.8	5.45	3.92	.150	.114	4.68	16.4
25	15 49.3	5.95	3.50	.161	.105	4.73	25.9
30	18 49.1	6.64	3.00	.175	.094	4.82	37.8
35	21 43.1	7.55	2.40	.191	.081	4.98	51.7
40	24 30.0	8.77	1.75	.210	.066	5.26	66.7
45	27 8.5	10.38	1.08	.233	.049	5.73	81.2
50	29 37.1	12.54	.46	.263	.027	6.50	92.9
55	31 54.2	15.43	.05	.303	.007	7.74	99.3
60	33 58.1	19.35	.12	.342	013	9.73	98.8
65	35 47.0	24.69	1.13	.375	032	12.91	91.2
70	37 19.1	31.99	4.00	.400	050	18.00	77.7
75	38 32.9	42.00	10.38	.410	060	26.19	61.8
80	39 26.8	55.74	23.34	.370	069	39.54	41.0
82 30	39 45.9	64,41	34.04	.320	— .067	49.22	30.8
85 0	39 59.6	74.52	49.03	.250	061	61.77	20.6
86 0	40 3.6	79.02	56.62	.209	055	67.82	16.5
87 0	40 6.7	83.80	65.32	.163	—.04 6	74.56	12.4
88 0	40 8.9	88.88	75.31	.118	036	82.10	8.3
89 0	40 10.2	94.28	86.79	.063	022	90.54	4.1
90 0	40 10.7	100.00	100.00	.000	000	100.00	.0

Angle of total polarization = 57° 10'.3, A = 16.99.

^{*} This column gives the degree of polarization. \uparrow Columns 5 and 6 furnish a means of determining A and B for other values of n. They represent the change in these quantities for a change of n of 0.01.

TABLE 576.—REFLECTING FACTOR OF POWDERS (WHITE LIGHT) (percent)

Various pure chemicals, very finely powdered and surface formed by pressing down with glass plate. White (noon sunlight) light. Reflection in percent.

Barium sulfate 81.1 Borax 81.6 Boric acid 83.2 Calcium carbonate 95† Citric acid 81.5 Magnesium carbonate 86.6	Rochelle salt Salicylic acid Sodium carbonate Sodium chloride Sodium sulfate Starch Sugar Tartaric acid	81.1 81.8 78.1 77.9 80.3 87.8
--	---	--

^{*} The smoke of magnesium turnings freely burning in air and deposited on a satisfactory base forms a uniform fine-grained diffusing surface of high reflectance. This oxide should be deposited so as not to be affected by the heat from the burning Mg. A satisfactory base may be Al, silver-plated Cu, block porcelain. The oxide adheres better to depolished surfaces. Surfaces of high and uniform reflectance throughout the spectrum are best. † Revised values.

TABLE 577.—VARIATION OF REFLECTING FACTOR OF SURFACES WITH ANGLE (RELATIVE VALUES)

Illumination at normal incidence, 14-watt tungsten lamp, reflection at angles indicated with normal.

Angle of observation	0°	1°	3°	5°	10°	15°	30°	45°	60°
Magnesium carbonate block	.88		_	.88	.88	.87	.83	.72	.68
Magnesium oxide	.80	_		.80	.80	.80	.77	.75	.66
Matt photographic paper	.78	_		.78	.78	.78	.78	.76	.72
White blotter	.76			.76	.76	.76	.73	.70	.67
Pot opal, ground	.69	.69	.69	.69	.69	.69	.68	.66	.64
Flashed opal, not ground			11.3	.31	.22	.21	.20	.20	.18
Glass, fine ground	.29	.29	.29	.29	.27	.20	.14	.13	.12
Glass, coarse ground	.23	.22	.21	.20	.19	.16	.11	.11	.12
Matt varnish on foil	.83	_	.78	.72	.62	.49	.28	.21	.16
Mirror with ground face	4.9	_	_	4.55	3.86	3.03	.78	.42	.35

The following figures, taken from Fowle, Smithsonian Misc. Coll., vol. 58, No. 8, indicate the amount of energy scattered on each side of the directly reflected beam from a silvered mirror; the energy at the center of the reflected beam was taken as 100,000, and the angle of incidence was about 3°.

Angle of reflection, 3° ±	0'	8′	10'	15'	20'	3 0′	45'	60'	100'
Energy	100.000	600	244	146	107	66	33	22	11

Wavelength of max. energy of Nernst lamp used as source about 2\mu.

TABLE 578.—ULTRAVIOLET REFLECTING FACTOR OF SOME METALS 171

Aluminum, cast polished rolled Rhodium Tin, polished Duralumin	.21 .30 .33 .24	.300 .45 .28 .37 .38 .31	.350 .54 .34 .44 .45 .44	.400 .62 .41 .50 .52 .46	.450 .68 .46 .53 .60 .46	.500 .72 .50 .57 .67 .46	.550 .73 .53 .58 .72 .46	.600 .74 .56 .59 .73
" tarnished to	.20	.26	.32					

¹⁷¹ Coblentz, Stair, Nat. Bur. Standards Journ. Res., vol. 4, p. 189, 1930.

TABLE 579.—PERCENTAGE REFLECTION FROM METALS, VIOLET END OF SPECTRUM 172

Wavelength in μ	.10	.15	.20	.25	.30	.35	.40	.50	.60
Ni electroplated				40	44	51	53	56	(60)
" vac. fused					42	45	52	62	64
Ag (min. 7% , 33μ)				30	16	71	88	92	(94)
Stellite (Co, Cr, Mo)					49	55	60	64	(68)
Stainless steel, 13% Cr					47	52	56	59	(60)
Cobalt				43	46	52	58	62	(67)
Speculum				31	41	50	56	60	(62)
Beryllium (98.7%) 46	53	67	79	84	87				()
Chromium on steel	63	65	71	78	82	86	88		
Cinomium on sections of						- 50	50	•••	

¹⁷² Coblentz, Stair, Nat. Bur. Standards Journ. Res., vol. 2, p. 343, 1929.

TABLE 580.—PERCENTAGE REFLECTING FACTOR OF DRY POWDERED PIGMENTS

The total reflecting power depends on the distribution of energy in the illuminant and is given in the last three columns for noon sun, blue sky, and for a 7.9 lumens/watt tungsten filament.

Spectrum color	Vio-	Bl	ue		Green	1	Yel	low	C	rang	e		Red		Noon sun	y light	Tungsten lamp
Wavelength in µ	.44	.46	.48	.50	.52	.54	.56	.58	.60	.62	.64	.66	.68	.70	Š	Sky	Tu
American vermilion Venetian red Tuscan red Indian red Burnt sienna	8 5 7 8 4	6 5 7 7 4	5 7 7 4	5 5 8 7 4	6 5 8 7 5	6 6 8 7 6	9 7 8 7 9	11 12 12 11 14	24 19 16 15 18	39 24 18 18 20	53 28 20 20 21	61 30 22 22 22 23	66 32 23 23 24	65 32 24 24 25	14 11 11 10 11	12 10 10 9 9	12 13 12 11 13
Raw sienna	8 20	13 22 9 20 5	13 23 7 21 6	13 27 7 24 8	18 40 10 32 18	26 53 19 42 48	35 63 30 53 66	43 71 46 63 75	46 75 60 64 78	46 74 62 61 79	45 73 66 60 81	44 73 82 59 81	45 73 81 59 81	43 72 80 59 81	33 58 33 49 54	30 55 29 46 50	37 63 40 53 63
Chrome yellow light Chrome green light Chrome green medium Cobalt blue Ultramarine blue	13 10 7 59 67	13 10 7 58 54	18 14 10 49 38	30 23 21 35 21	56 26 21 23 10	82 23 17 15 6	88 20 13 11 4	89 17 11 10 3	90 14 9 10 3	89 11 7 10 4	88 9 6 11 5	87 8 6 15 7	85 7 6 20 10	84 6 5 25 17	76 19 14 16 7	70 19 14 18 10	82 18 12 13 6

TABLE 581.—INFRARED DIFFUSE PERCENTAGE REFLECTING FACTORS OF DRY PIGMENTS

Wavelength in μ	Co ₂ O ₃	CuO	Cr_2O_3	PbO	Fe_2O_3	Y_2O_3	PbCr04	Al ₂ O ₃	ThO_2	SnO	MgO	CaO	ZrO ₂	PbCO3	MgCO ₃	White lead	Zn oxide paint
.60 *	3		27	52	26	74	70	84	86	82	86	85	86	88	85	76	68
.95 *	4	24	45	_	41		_	88	_	86	_		84	93	89	79	72
4.4	14	15	33	51	30	34	41	21	47	8	16	22	23	29	11	_	
8.8	13	_	5	26	4	11	5	20	7	3	2	4	5	10	4	_	_
24.0	6	4	8	10	9	10	7	6	10	5	9	6	5	7	9		_

^{*} Nonmonochromatic means from Coblentz. A surface of plate glass, ground uniformly with the finest emery and then silvered, used at an angle of 75°, reflected 90 percent at 4μ , approached 100 for longer waves, only 10 at 1μ , less than 5 in the visible red and approached 0 for shorter waves. Similar results were obtained with a plate of rock salt for transmitted energy when roughened merely by breathing on it. In both cases the finer the surface, the more suddenly it cuts off the short waves.

Perpendicular incidence and reflection (See also Tables 578, 579, 589)

The numbers give the percents of the incident radiation reflected.

# 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Silver-backed glass	Mercury-backed glass	mach's magnalium 67.06 67.67 1.25 1.25 83.9	2. 1. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	1.12 Ross' speculum metal 1.12 V - 1.05 Ross' speculum metal 1.12 V - 1.05 Ross' speculum metal	9.8.57 Nickel 4.9.75 Nickel 4.9.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	Copper electrolytically deposited	32.9 35.0 37.2 40.3 45.0 47.8	25.3 25.3 27.3 27.3 28.6	8 8 8 8 electrolytically deposited 47 47 47 47 47 48 48 8 8 8 electrolytically deposited	31.8 27.9 27.1	Brass (Trowbridge)	21.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25
.420 .450 .500 .550 .600 .650	85.7 86.6 88.2 88.1 89.1 89.6	72.8 70.9 71.2 69.9 71.5 72.8	83.3 83.4 83.3 82.7 83.0 82.7 83.3	47.2 49.2 49.3 48.3 47.5 51.5 54.9	56.4 60.0 63.2 64.0 64.3 65.4 66.8	56.6 59.4 60.8 62.6 64.9 66.6 68.8	48.8 53.3 59.5 83.5 89.0 90.7	51.9 54.4 54.8 54.9 55.4 56.4 57.6	32.7 37.0 43.7 47.7 71.8 80.0 83.1	51.8 54.7 58.4 61.1 64.2 66.5 69.0	29.3 33.1 47.0 74.0 84.4 88.9 92.3		86.6 90.5 91.3 92.7 92.6 94.7 95.4
.800 1.0 1.5 2.0 3.0 4.0 5.0 7.0 9.0 11.0 14.0			84.3 84.1 85.1 86.7 87.4 88.7 89.0 90.0 90.6 90.7 92.2	63.1 69.8 79.1 82.3 85.4 87.1 87.3 88.6 90.3 90.2 90.3	70.5 75.0 80.4 86.2 88.5 89.1 90.1 92.2 92.9 93.6	69.6 72.0 78.6 83.5 88.7 91.1 94.4 94.3 95.6 95.9 97.2		58.0 63.1 70.8 76.7 83.0 87.8 89.0 92.9 92.9 94.0 96.0	88.6 90.1 93.8 95.5 97.1 97.3 97.9 98.3 98.4 98.4 97.9	70.3 72.9 77.7 80.6 88.8 91.5 93.5 95.5 95.4 95.6 96.4	94.9 	91.0 93.7 95.7 95.9 97.0 97.8 96.6	96.8 97.0 98.2 97.8 98.1 98.5 98.1 98.5 98.7 98.8 98.3

TABLE 583.-LONG-WAVE ABSORPTION BY GASES

Unless otherwise noted, gases were contained in a 20-cm long tube.

	mHg		Percentage absorption						cmHg		Percent	orption		
	re, cm				Long Hg l	gλ, amp			re, cm				Lon Hg l	
C	ressu	22			^	Fil- tered,			ressu		**		^	Fil- tered,
Gas H2	76	$\frac{23\mu}{100}$	52μ 100	110μ	100	$\frac{314\mu}{100}$	Gas NH3		م 67	23μ 83.1	52μ .5	110μ 99.2	12.2	314µ 66.7
	76	100	100 99.6	100 99.5	100 98.5	97.6	CH ₄		76	91	94.3	99.2	43.3	100
	20	100	100	100	100	100	C ₂ H ₂		76	99.5	87.4	97.3	97.9	100
	76	22.6	76.9	12.7	6	4.8	C ₂ H ₄		7Ğ	99	96.4	92.8	100	100
CO ₂	76	100	100	100	100	100	CS ₂	2	26	97.8	100	100	99.5	100
CO	76	100	100	94.1	92.1	91.6	C2H60) .	6	85.4	5.4	58	52.4	49.9
	76	99.6	11.6	5.4	10.3	21.4	C4H10	O. 5	1	26.8	46	34	21.8	10.7
N ₂ O	7 6	100	96.8	98.4	93.3	90.8	C_5H_{12}	4	16	66 †	44.5	88.8	87	84.2
	76		94	99	87.3	85.5	CH ₃ C	1.1	4	98	100	100	95.4	94.7
$(CN)_2$.	76	100	97.8	100	99.3	_	H ₂ O *	. 7	6	39.6	.7	19.6	33.6	49.2

^{*} Steam 100°C passed through tube 40 cm long, 150°C; 0.06 cm ppt. $H_2O.\ \dagger$ Pentane vapor, pressure 36 cmHg.

553

The radiation used to measure the reflecting factors for the wavelengths given was obtained from the sun's radiation transmitted through selected filters. The radiation from a "pointalight" transmitted through a thin gold filter may be used in place of the sun.

Description Magnesium carbonate	(1.78μ) 63	(.84µ) .99	(.61µ) .98	(.50μ) .96	Gold film .96	Com- puted
CLAY TILES						
Dutch: light red		.66 .42 .38 .40 .22 .47	.56 .34 .31 .32 .19 .37 .28	.21 .11 .11 .13 .13 .12	.57 .38 .34 .34 .19 .40 .31	.52 .38 .33 .33 .18 .39 .31
Concrete tiles						
Uncolored Brown Brown: very rough. Black		.38 .17 .13 .09	.36 .15 .13 .09	.27 .09 .10 .09	.35 .15 .12 .09	.33 .13 .11 .08
SLATES						
Dark gray: smooth fairly rough rough Greenish gray: rough Mauve Blue gray Silver gray (Norwegian)		.11 .10 .11 .16 .16 .21	.11 .10 .11 .12 .13 .13	.11 .09 .11 .13 .10 .12 .19	.11 .10 .10 .12 .14 .13 .21	.10 .10 .10 .13 .13 .15
Other roofing materials						
Asbestos cement: white red Enamelled steel: white green red blue Galvanized iron: new. very dirty whitewashed Special roofing sheet: brown green Bituminous felt Aluminized felt Weathered asphalt Roofing lead: old.		.42 .33 .53 .34 .26 .27 .30 .09 .79 .15 .20 .12 .60	.41 .29 .53 .17 .18 .17 .34 .09 .79 .12 .11 .61 .11	.36 .14 .57 .13 .08 .18 .34 .09 .76 .07 .12 .11 .57	.41 .31 .52 .24 .19 .20 .35 .09 .78 .13 .14 .12 .62 .11	.39 .26 .52 .25 .19 .23 .35 .09 .74 .13 .15 .11 .60
Bricks						
Gault: cream Stock: light fawn. Fletton: light portion. dark portion Wire cut: red Sand-lime: red Mottled purple Stafford: blue Lime-clay (French)		.69 .47 .61 .46 .48 .37 .26 .12 .63	.64 .38 .57 .37 .41 .30 .22 .11	.43 .19 .35 .15 .15 .11 .15 .08 .29	.64 .44 .58 .41 .44 .32 .23 .11 .54	.61 .39 .52 .37 .39 .30 .23 .12 .49

TABLE 585.—REFLECTION AND TRANSMISSION OF VARIOUS MATERIALS FOR VERY LONG WAVELENGTHS

With quartz, 1.7 cm thick: 60 to 80 μ , absorption very great; 63 μ , 99 percent; 82 μ , 97.5; 97μ , 83.

Percentage reflection												
Wavelength $\lambda = 82\mu * \ldots \lambda = 108\mu † \ldots$	_	Marble	25.8		82.6	29.6		_		_		

Percentage transparency Uncorrected for reflections

		Unicon rected	1 for reflections		
				Thickness precipi-	
		Trans-	Thick	- table	Trans-
Solid	Thickness	parency	Liquid ness	liquid	parency
Paraffin	3.03	57.0	Benzene 1.00	_	56.8
Mica	.055	16.6	Ethyl alcohol158	-	7.9
Hard rubber	.40	39.0	Ethyl ether158	3	37.1
Quartz axis	2.00	62.6	Water029)	25.8
Quartz, amorph	3.85	0	Water044	-	13.6
Rock salt		21.5			
Fluorite	.59	5.3	Vapors:		
Diamond	1.26	45.3	Alcohol 2.00	.023	88
Quartz 1 axis	2.00	81.3	Ether 2.00	.350	33.5
	4.03	66.4	Benzene 2.00	.063	100
" " "	7.26	49.8	Water 4.00	.21	19.6
"""	44 774	35.5	CO ₂ 2.00		100
" " "	14.66	29.0			

^{*} Restrahlung from KBr. † Isolated with quartz lens.

TABLE 586.—TRANSPARENCY OF BLACK ABSORBERS

(percent)

Method and wavelength	Black silk paper, .025 mm thick	Opaque black paper, .11 mm thick	Black cardboard .4 mm thick	Candle lampblack, 10 cm ² = 1.8 mg
Spectrometer 2µ	. 0	0	0	.5
4	.9	0	0	8.6
6	1.7	0	0	16.0
12	8.2	1.4	0	37.6
Fluorite "reststrahlen" 26	24.2	32	0	76.7
Rock salt "reststrahlen" 52	46.0	15.1	0	91.3
Quartz lens isolation 108	61.5	33.5	1.6	91.5

TABLE 587.—RELATIVE REFLECTIVITY OF SNOW, SAND, AND OTHER MATERIALS 173

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Florida sand † 15 40 50 30	Crushed quartz 40 50 53 28	Snow 35 40 15	Plaster of paris 40 53 60 63	White paper 8 30 30 15	Sodium ‡ carbonate 14 28 35 18	White cotton cloth § 26 42 40 20
7μ 48	• •		26		• •		

Hulburt, Journ. Opt. Soc. Amer., vol. 17, p. 23, 1928.
 Yellow-white grains of many kinds.
 Very white.

[‡] Anhydrous.

TABLE 588,-PERCENTAGE DIFFUSE REFLECTION FROM MISCELLANEOUS **SUBSTANCES**

		Lan	np-bla	cks			s				la la	nate		s,		
Wave- length μ	Paint	Rosin	Sperm	Acctylene	Camphor	Pt black electrol	Green leaves	Lead oxide	Al oxide	Zinc oxide	White paper	Lead carbona	Asphalt	Black leaves	Black felt	Red brick
.60	3.2				-		25.	52.	84.	82.		89.	15.	1.8	14.	30.
.95	3.4	1.3	1.1	.6	1.3	1.1			88.	86.	75.	93.			21.	
4.4	3.2	1.3	.9	.8	1.2	1.4		51.	21.	8.	18.	29.		3.7		10
8.8	3.8	2.0	1.3	1.2	1.6	2.1		26.	2.	3. 5.	5.	11.		2.7		12.
24.0	4.4	3.0	4.0	2.1	5.7	4.2		10.	6.	5.		/.				

TABLE 589.-INFRARED REFLECTIVITY OF TUNGSTEN (Temperature variation)

Three tungsten mirrors were used-a polished Coolidge X-ray target and two polished flattened wires mounted in evacuated soft-glass bulbs with terminals for heating electrically. Weniger and Pfund, Journ. Franklin Inst.

Wavelength	Absolute reflectivity	Percent increase in reflectivity in going from room temperature to								
in μ	at room temperature in percent	1377°K	1628°K	1853°K	2056° K					
.67	51	+6.0	+7.4	+ 8.7	+ 9.8					
.80	55	<u> </u>	<u> </u>	· —	+ 8.2					
1.27	70	.0	.0	.0	.0					
1.90	83	-6.6	-8.2	— 9.6	-11.0					
2.00	85	— 7.5	 9.3	-10.9	-12.3					
2.90	92	— 7.7	 9.4	— 11.1	12.5					
4.00	93	_		_	-12.5					

TABLE 590.—RESTRAHLUNG BANDS FROM VARIOUS MATERIALS 174 (percent)

Number of reflections	Crystal mirrors	Filter (3 mm paraffin in each case)	Wavelength in μ	Frequency in ~ /cm
4	Quartz	1 cm KCl	20.7	483
3	Fluorite Metal	5 mm KCl	23	435
2	Fluorite Calcite	3 mm KBr	27.3 29.4	366 340
3	Fluorite Metal	.4 mm quartz 1.2 mm KBr	32.8	305
3	Aragonite	.4 mm quartz	41 *	244
4	Metal NaCl	2 mm quartz	52	192
4	KBr	"	63 83	159 120
4		"	94	106
	TiBr	"	117 152	85 66
4	Magnesium oxide	66	22.5	444

 $^{^{174}}$ Strong, Phys. Rev., vol. 38, p. 1818, 1931. * The use of a paraffin window about 3 mm thick stops the short wavelength restrahlung of quartz at 8.7μ and of calcite at 6.7μ . Weak reflection at 41μ .

TABLE 591.—INFRARED REFLECTING FACTOR OF VARIOUS MATERIALS *

(percent)

$\lambda = 20\mu$ $\sim /\text{cm} = 500$	25 400	331 300	50 200	66 3 150	100 100	150μ 663
Rough brass 67	70	78	83	92	96	100
" " 24	33	42	58	68	81	99
" "	14	17	21	25	40	82
Galena 31	30	21	51	73	76	76
Zincite 50	35	18	21	18	20	15
β magnesia, fused80	60	34	30	30	30	30
Stibnite	20	4	39	48	52	39
Sphalerite 10	15	29	20	19	18	17
Corundum (30)	41	26	31	29	24	22
Cuprite 45	47	47	42	41	42	46

^{*} For reference, see footnote 174, p. 555.

TABLE 592.—INFRARED TRANSMISSION OF VARIOUS MATERIALS *

$\lambda = 20\mu$ $\sim /cm = 500$	25 400	33 1 300	50 200	66 3 150	100 100	150μ 663
/ / Cm = 500	400	300	200	150	100	003
KBr	61	46	3			
K1	83	76	12			
Amorphous SiO ₂ 3	27	64	63	62	70	87
CCl, liquid (57)	63	50	74	74	(72)	
KCI 97	97	96	93	80	`98´	

^{*} For reference, see footnote 174, p. 555.

TABLES 593-597.—ROTATION OF PLANE OF POLARIZED LIGHT

TABLE 593.—TARTARIC ACID, CAMPHOR, SANTONIN, SANTONIC ACID, CANE SUGAR

A few examples are here given showing the effect of wavelength on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solution. The following symbols are used:

p = number grams of the active substance in 100 g of the solution. c = " solvent " " " " " q = " cm³ "

Right-handed rotation is marked +, left-handed -.

Line of	Wavelength	Tartaric acid, $C_4H_6O_6$, dissolved in water. q = 50 to 95, temp = 24°C	Camphor, C dissolved in $q = 50$ temp = 2	alcohol. o 95,	Santonin, $C_{15}H_{18}O_3$, dissolved in chloroform $q=75$ to 96.5, temp = 20°C
В	6867 A				$-140^{\circ}1 + .2085 q$
Č	6562	+2.748 + .09446 q	38°549 —	.0852 a	-149.3 + .1555 q
Ď	5892	+1.950 + .13030 q	51.945 —		-202.7 + .3086 q
Ē	5269	+ .153 + .17514 q	74.331 —		-285.6 + .5820 q
b ₁	5183	1 1100 11101 4		-	-302.38 + .6557 q
b ₂	5172	832 + .19147 q	79.348 —	.1451 a	
F	4861	-3.598 + .23977 q	99.601 —		-365.55 + .8284 q
e	4383	-9.657 + .31437 q	149,696 —		-534.98 + 1.5240 q
		,		•	· ·
			Santonin,	C ₁₅ H ₁₈ O ₃	Santonic acid, C ₁₅ H ₂₀ O ₄ ,
		Santonin, C15H18O3,	dissolved in	dissolved in	dissolved in
		dissolved in alcohol.	alcohol.	chloroform. $c = 3.1-30.5$	chloroform. $c = 27.192$
		c = 1.782 temp = 20°C	c = 4.046 temp = 20°C	$temp = 20^{\circ}C$	
В	6867	-110.4°	442°	484°	— 49°
Č	6562	-118.8	504	549	— 57
Ď	5892	-161.0	693	754	— 74
Ē	5269	-222.6	991	1088	-105
bı	5183	-237.1	1053	1148	—112
b ₂	5172				_
F	4861	-261.7	1323	1444	—137
e	4383	-380.0	2011	2201	—197
G	4307	_		_	_
g	4226	_	2381	2610	-230
-					

Values obtained at the National Bureau of Standards for the rotation of sucrose are given below.

Light source Li 6708 Cd 6438 Na 5892.5 Hg 5780 Hg 5461 Ag 5209 Cd 5086	$\begin{array}{c} \text{Rot } \lambda \\ \hline \text{Rot } \lambda = 5461 \text{ A} \\ .644 \\ .711 \\ .84922 \\ .8854 \\ 1.0000 \\ 1.108 \\ 1.167 \end{array}$	[a] 20 * 50.45 55.70 66.529 69.36 78.342 86.80 91.43	Light source Cd 4678 Hg 4358 Ag 4208 Hg 4047	Rot λ Rot $\lambda = 5461$ 1.403 1.644 1.786 1.95	$\begin{bmatrix} a \end{bmatrix}_{\lambda}^{20} * \\ 109.9 \\ 128.8 \\ 139.9 \\ 152.8 \\ \end{bmatrix}$
Cd 4800	1.323	103.65			

^{*} Degrees per dm. The above values are for a near normal solution, i.e., approximately 26 g of sucrose per 100 cm³.

	Sodium	chlora	te			Qt	ıartz		
Spec- trum line	Wave- length	Temp °C	Rotation per mm	Spec- trum line	Wave- length	Rotation per mm	Spec- trum line	Wave- length	Rotation per mm
a B C	7164 A 6870 6563	15.0 17.4 20.6	2:068 2.318 2.599	A a B	7604 7164 6870	12°668 14.304 15.746	Cd ₉ N Cd ₁₀	3609 3582 3465	63°628 64.459 69.454
D E F	5892 5270 4861	18.3 16.0 11.9	3.104 3.841 4.587	C D ₁	6563 5896	17.318 21.684	O Cd11	3441 3401	70.587 72.448
G' G H	4340 4308 4101	10.1 14.5 13.3	5.331 6.005 6.754	D ₂ E	5890 5270	21.727 27.543	P Q Čd ₁₂	3360 3286 3247	74.571 78.579 80.459
L M N	3820 3728 3581	14.0 10.7 12.9	7.654 8.100 8.861	F G	4862 4308	32.773 42.604	R Cd ₁₇	3180 2747	84.972 121.052
P Q Ř	3361 3287 3180	12.1 11.9 13.1	9.801 10.787 11.921	h H K	4102 3969 3934	47.481 51.193 52.155	Cd ₁₈ Cd ₂₃	2571 2312	143.266 190.426
T Cd ₁₇ Cd ₁₈	3021 2747 2571	12.8 12.2 11.6	12.424 13.426 14.965	L M	3820 3728	55.625 58.894	Cd ₂₄ Cd ₂₅ Cd ₂₆	2264 2193 2143	201.824 220.731 235.972

TABLE 595.—REFLECTING FACTOR OF METALS (See Table 584)

Wave- length		Sb	Cd	Co	Graph ite	- Ir	Mg	Мо	Pd	Rh	Si	Ta	Te	Sn	w	Va	Zn
μ								Pe	rcents	3							
.5	_	_	_	_	22	_	72	46	_	76	34	38	_	_	49	57	_
.6	_	53	_	_	24	_	73	48	_	77	32	45	49	_	51	58	_
.8	_	54	_	_	25	_	74	52	_	81	29	64	48	_	56	60	_
1.0	71	55	72	67	27	78	74	58	72	84	28	78	50	54	62	61	80
2.0	82	60	87	72	35	87	77	82	81	91	28	90	52	61	85	69	92
4.0	92	68	96	81	48	94	84	90	88	92	28	93	57	72	93	79	97
7.0	96	71	98	93	54	95	91	93	94	94	28	94	68	81	95	88	98
10.0	98	72	98	97	59	96	_	94	97	95	28		_	84	96	_	98
12.0	98	_	99	97	_	96	_	95	97		_	95	_	85	96	_	99

The surfaces of some of the samples were not perfect so that the corresponding values have less weight. The following more recent values are given for tungsten and stellite, an exceedingly hard and untarnishable alloy of Co, Cr, Mo, Mn, and Fe (C, Si, S, P).

Wavelength,	μ,											
Tungsten, Stellite,								.900				
Stellite,		.32	.42	.50	.64	.67	.689	.747	.792	.825	.848	.880

TABLE 596.—OPTICAL CONSTANTS OF METALS

Two constants are required to characterize a metal optically, the refractive index, n, and the absorption index, k, the latter of which has the following significance: the amplitude of a wave after traveling one wavelength, λ^1 measured in the metal, is reduced in the ratio 1: $\exp\left(-2\pi k\right)^*$ or for any distance d 1: $\exp\left(-2\pi dk/\lambda^1\right)$, for the same wavelength measured in air this ratio becomes 1: $\exp\left(-2\pi dnk/\lambda^1\right)$, nk is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle, $\overline{\phi}$ (principal incidence) the change is 90° and if the plane polarized incident beam has a certain azimuth $\overline{\psi}$ (principal azimuth) circularly polarized light results.

$$k = \tan 2\overline{\psi} \left(1 - \cot^2\overline{\phi}\right) \text{ and } n = \frac{\sin \overline{\phi} \tan \overline{\phi}}{\left(1 + k^2\right)^{\frac{1}{4}}} \left(1 + \frac{1}{2}\cot^2\overline{\phi}\right).$$
(continued)

For rougher approximations the factor in parentheses may be omitted. R =computed percentage reflection.

(The points have been so selected that a smooth curve drawn through them closely indicates the characteristics of the metal.)

					Comp	uted	
Metal	λ	$\overline{\phi}$	$\overline{ u}$	n	k	nk	R
Cobalt Copper	μ .231 .275 .500 .650 1.00 1.50 2.25 .231 .347 .500 .650 .870 1.75 2.25 4.00	64°31′ 70 222 77 5 79 0 81 45 83 21 83 48 65 57 65 6 70 44 74 16 78 40 84 4 85 13 87 20	29°39 29 59 31 53 31 25 29 6 26 18 26 5 26 14 28 16 33 46 41 30 42 30 42 30 42 30 42 30	1.10 1.41 1.93 2.35 3.63 5.22 5.65 1.39 1.19 1.10 .44 .35 .83 1.03 1.87	1.30 1.52 1.93 1.87 1.58 1.29 1.27 1.05 1.23 2.13 7.4 11.0 11.4 11.4	1.43 2.14 3.72 4.40 5.73 6.73 7.18 1.45 1.47 2.34 3.26 3.85 9.46 11.7 21.3	% 32. 46. 69. 73. 75. 76. 29. 32. 56. 86. 97.
Gold Iridium	5.50 1.00 2.00 3.00 5.00 1.00	88 00 81 45 85 30 87 05 88 15 82 10	41 50 44 00 43 56 43 50 43 25 29 20	3.16 .24 .47 .80 1.81 3.6	9.0 28.0 26.7 24.5 18.1 1.60	28.4 6.7 12.5 19.6 33. 5.8	
	2.00 3.00	84 40 85 40	28 10 26 40	6.0 8.0	1.48 1.37	8.9 11.0	
Nickel Platinum	5.00 .420 .589 .750 1.00 2.25 1.00	87 20 72 20 76 1 78 45 80 33 84 21 82 00	24 00 31 42 31 41 32 6 32 2 33 30	12.5 1.41 1.79 2.19 2.63 3.95 3.4	1.13 1.79 1.86 1.99 2.00 2.33 1.82	14.1 2.53 3.33 4.36 5.26 9.20 6.2	54. 62. 70. 74. 85.
Flatillum	2.00 3.00 5.00	84 45 86 00 87 15	30 30 29 40 28 50 27 00	5.7 7.7 11.5	1.70 1.59 1.37	9.7 12.3 15.7	
Silver	.226 .293 .316 .332 .395 .500 .589 .750 1.00 1.50 2.25 3.00 4.50 .226 .257 .325 .500 .650 1.50 2.25	62 41 63 14 52 28 52 1 66 36 72 31 75 35 79 26 82 0 84 42 86 18 87 10 88 20 66 51 68 35 69 57 75 48 81 48 83 22	22 16 18 56 15 38 37 2 43 6 43 29 43 47 44 6 44 2 43 48 43 34 42 40 41 10 28 17 28 45 30 9 29 2 27 9 28 51 30 36	1.41 1.57 1.13 .41 .16 .17 .18 .17 .24 .45 .77 1.65 4.49 1.30 1.38 1.37 2.09 2.70 3.71 4.14	.75 .62 .38 1.61 12.32 17.1 20.6 30.7 29.0 23.7 19.9 12.2 7.42 1.26 1.35 1.53 1.50 1.33	1.11 .97 .43 .65 1.91 2.94 3.64 5.16 6.96 10.7 15.4 20.1 33.3 1.64 1.86 2.09 3.14 3.59 5.75 7.41	18. 17. 4. 32. 87. 93. 95. 97. 98. 99. 35. 40. 45. 57. 73. 80.

TABLE 597.—OPTICAL CONSTANTS OF METALS (additional data)

Metal	λ	n	k	R	Metal	λ	n	k	R
	μ					μ			
A1 *	.589	1.44	5.32	83	Ni *	.275	1.09	1.16	24
Sb *	.589	3.04	4.94	70		.441	1.16	1.23	25
Bi †‡	white	2.26		_		.589	1.30	1.97	43
Cd *	.589	1.13	5.01	85	Rh *	.579	1.54	4.67	78
Cr *	.579	2.97	4.85	70	Se ‡	.400	2.94	2.31	44
Nb *	.579	1.80	2.11	41		.490	3.12	1.49	35
Au †	.257	.92	1.14	28		.589	2.93	.45	25
Au	.441	1.18	1.85	42		.760	2.60	.06	20
	.589	.47	2.83	82	Si *	.589	4.18	.09	38
Lorus	.589	3.34	.57	30	O1	1.25	3.67	.08	33
I crys Ir *	.579	2.13	4.87	75		2.25	3.53	.08	31
Fe §	.257	1.01	.88	16	Na (liq)	.589	.004	2.61	99
res	.441	1.28	1.37	28	Ta *	.579	2.05	2.31	44
	.589	1.51	1.63	33	Sn *	.589	1.48	5.25	82
Pb *	.589	2.01	3.48	62	W *	.579	2.76	2.71	49
		.37	4.42	93	V *	.579	3.03	3.51	58
Mg *	.589	2.49	3.89	64	Žn*	.257	.55	.61	20
Mn *	.579				ZII	.441	.93	3.19	73
Hg (liq)	.326	.68	2.26	66		.589	1.93	4.66	74
	.441	1.01	3.42	74					73
	.589	1.62	4.41	75		.668	2.62	5.08	/3
70.4	.668	1.72	4.70	77	$\lambda = wavele$	ength. n =	= refraction	on index.	
Pd *	.579	1.62	3.41	65	k = absorp	tion inde	x, R = res	flection. P	ercent.
Pt †	.257	1.17	1.65	37					
	.441	1.94	3.16	58					
	.589	2.63	3.54	59					
	.668	2.91	3.66	59					

TABLES 598-601.—MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE

TABLE 598.—LIQUIDS, $n_{\scriptscriptstyle D}$ (0.589 $_{\mu}$) \equiv 1.74 to 1.78

In 100 parts of methylene iodide at 20°C the number of parts of the various substances indicated in the following table form saturated solutions having the refractive indices specified. When ready for use the liquids can be mixed to give intermediate refractions. Commercial iodoform (CHI₃) powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystallized product may be bought. A fragment of tin in the liquids containing the SnI₄ will prevent discoloration.

CHI ₃	SnI4	AsI_3	SbI_3	S	nna at 20°C
			12		1.764
	25				1.783
	25		12		1.806
	30			6	1.820
	27	13	7	Ü	1.826
40	27	16	,		1.842
10	31	14	8	10	1.853
35	31				1.868
33	31	16	8	10	1.008

TABLE 599.—RESINLIKE SUBSTANCES, n_D (0.589 μ) \pm 1.68 to 2.10

Piperine, an inexpensive alkaloid, comes in very pure straw-colored crystals. Melted, it dissolves the tri-iodides of Sb and As very freely. The solutions are fluid at slightly above 100° and when cold, resinlike. Three parts antimony iodide to one part of arsenic iodide with varying proportions of piperine are easier to manipulate than one containing either iodide alone. In preparing, the constituents, in powder of about 1 mm grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

Percent iodides	00	10	20	30	40	50	60	70	80
Index of refraction	1.683	1.700	1.725	1.756	1.794	1.840	1.897	1.968	2.050

TABLE 600.—PERMANENT STANDARD RESINOUS MEDIA, $n_{\scriptscriptstyle \mathrm{D}}~(0.589_{\mu}) \equiv 1.546$ to 1.682

Any proportions of piperine rosin form a homogeneous fusion which cools to a transparent resinous mass. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 percent antimony iodide and 93 percent piperine should be used over the eyepiece. Any amber-colored rosin in lumps is suitable.

Percent rosin	00	10	20	30	40	50	60	70	80	90	100
Index of refraction	 1.683	1.670	1.657	1.643	1.631	1.618	1.604	1.590	1.575	1.560	1.544

TABLE 601.—SUBSTANCES, $n_{\rm D} \equiv 1.39$ to 1.75

			n		71
n-Heptane	1.39	Eugenol	1.54	Quinaldine	1.61
Octylene	1.41	Nitrobenzene	1.55	Iodobenzene	1.62
Cyclohexane	1.44	Anethole	1.56	a-Chloronaphthalene	1.63
d-Limonene	1.47	o-Toluidine	1.57	a-Bromonaphthalene	1.66
p-Xylene	1.50	o-Bromophenol	1.58	a-Iodonaphthalene	1.69
Chlorobenzene	1.53	Bromoform	1.59	Methylene iodide	1.75

TABLE 602.—SENSITOMETRIC CONSTANTS OF TYPE PLATES AND FILMS. **DEFINITIONS**

Density (D).-Density is a measure of the degree of blackening of an exposed film or plate after development. Density is defined in general terms as the logarithm of the ratio of the radiant flux, Po, incident on the sample to the radiant flux, Po, transmitted by the sample.

Fig. 27.—Typical characteristic curve. Ordinates are diffuse transmission density (D); abscissae, logs of exposure (log E). A-C= toe, C-E= straight line, E-F= shoulder, B= speed point, $B-D=\Delta \log E=1.50$. Tan $\alpha=\gamma$, Tan $b=\beta$, Tan $a=0.3\beta$.

$$D = \log\left(\frac{P_o}{P_t}\right)$$

Exposure (E).—E = It (expressed in meter-candle seconds). I = illumination (metercandles, mc) incident on the photographic material during exposure, t =exposure time in

Gamma (γ).—Gamma is defined as the tangent of the angle alpha (α) (fig. 27) which the straight-line part of the characteristic curve makes with the log-exposure axis.

Gamma infinity (γ_{∞}) .— γ_{∞} is defined as the limiting value to which gamma ap-

proaches as development time is increased.

Time of development for the half gamma infinity $(t_{\gamma} = \gamma_{\alpha}/2)$.—A convenient practical specification of development rate of significance in comparing developers.

Time of development for gamma of unity $(t_7 = 1.0)$.—A convenient practical specification of development rate of significance in comparing photographic materials. Comparisons must be confined to materials in the same developer.

Inertia (i) -i = the value of exposure where the straight-line portion of the character-

istic curve (fig. 27) extended cuts the log E axis.

Speed $(S_c) - S_c = 1/E$, where E is the exposure corresponding to point B on the D-log E curve in figure 27. This point is located in the following manner: A log exposure range of 1.50, represented in the figure by the distance along the log exposure axis between B and D, is selected in a region where the slope of the curve at the low end of the range is 0.30 of the average slope over the entire range. When the slope, or tangent of angle a, is 0.30 of the tangent of angle b, the point B, at the low end of the exposure range, represents the exposure value (E) from which the speed of the material is derived.

^{*} The material on photography was prepared by L. A. Jones, of the Eastman Kodak Co.

In the determination of the values given in Table 604, developing solutions made up according to the following formulas were used (temperature, 20°C):

Developer A:	
Monomethyl para-aminophenol sulfate *	2.0 grams
Sodium sulfite (anhydrous)	50.0 "
Hydroquinone	4.0 "
Sodium carbonate (anhydrous)	6.0 "
Potassium bromide	.75 "
Air-free distilled water to make	1.0 liter
Developer B:	
Monomethyl para-aminophenol sulfate *	2.0 grams
Sodium sulfite (anhydrous)	80.0 "
Hydroquinone	4.0 "
Borax	4.0 "
Potassium bromide	.5 "
Air-free distilled water to make	1.0 liter
Developer C:	
Water, about 125°F (50°C)	500.0 cc
Monomethyl para-aminophenol sulfate *	2.2 grams
Sodium sulfite (anhydrous)	96.0 "
Hydroquinone	8.8 "
Sodium carbonate, monohydrated	56.0 "
Potassium bromide	5.0 "
Air-free distilled water to make	1.0 liter

^{*} Sold under such trade names as Metol, Elon, Rhodol, and Pictol.

TABLE 604.—SENSITOMETRIC CONSTANTS OF TYPE PLATES AND FILM

Material D	eveloper	γ_{∞}	$t_{\gamma} = \gamma_{\infty}/2$	$t_{\gamma} = 1.0$	Reciprocal inertia * (Si)	Speed (Se)
	Motio	n-pictu	re films			
Fast panchromatic Medium-speed panchromatic Fine-grain panchromatic Positive (regular) Positive (fine-grain)	B C	1.30 1.70 2.00 3.35 4.30	10.2 9.8 10.8 1.5 1.4	21.5 13.0 10.8 .9 .7	2300 1700 600 25 5	400 250 100
	Sheet	films an	d plates			
Fast panchromatic Fast orthochromatic Medium-speed panchromatic Medium-speed orthochromatic Blue-sensitive	A A A	1.45 1.50 1.50 1.25 1.35	2.6 2.0 3.6 2.7 2.7	5.2 4.2 6.3 9.9 5.7	2500 1700 840 850 430	500 400 200 200 100
	Ama	teur rol	l films			
Fast panchromatic	A	1.28 1.25 2.50	2.9 2.2 5.5	6.6 5.7 4.2	2500 1300 400	400 200 100
	Process	films a	nd plates			
Panchromatic Orthochromatic Blue-sensitive	CCC	6.90 5.00 4.00	3.3 2.00 2.7	.8 .7 1.7	60 60 35	

 $^{{}^{\}circ}$ Si = 10/i, where i is the inertia value at $\gamma = 1.0$. Reciprocal inertia was originally proposed by Hurter and Driffield as a sensitometric measure of the speed of photographic materials. It bears no direct relation to their effective speed as determined by camera exposures, however. It is useful for comparing different types of materials which have no common basis of application in practice.

TABLE 605.—COMPARISON OF NUCLEAR AND OPTICAL EMULSIONS

Nuclear track plates differ markedly in physical composition and general characteristics from the ordinary photographic materials (optical type) as shown in the table, where a number of properties of optical and nuclear emulsions are compared.

Property	Optical type	Nuclear type
AgBr: gelatin (wt)		
	15:85	
Grain diameter	5 to 3μ	1 to $.4\mu$
	10μ	
Emulsion wt mg/cm ²	2-4	10 – 80
Sensitivity to light	Very high	Low
Response to a-particles	High	Individual tracks
Response to β -particles	Moderate	Individual tracks
Response to γ -rays	Low	Very low

TABLE 606.—RESOLVING POWER AND EDGE GRADIENT VALUES 176 Part 1.—Definitions

Resolving power (R).—The resolving power of a photographic material is broadly defined as the ability to record fine detail distinguishably. Any quantitative evaluation depends on the type of detail, and for convenience parallel lines separated by spaces whose width is equal to the common width of the lines are almost universally used.⁷⁶ Values are usually given as the number of lines per millimeter that can be resolved visually under

adequate magnification.

Resolving power increases with increasing exposure to a maximum and then decreases, It is relatively unaffected by the type of developer, although developers that markedly reduce the grain size improve resolution. As the development time increases from zero, resolving power rises rapidly to a maximum, decreases slightly, and then remains sensibly constant for all practical development times. It increases in a roughly exponential manner as the contrast in the test object increases from zero, becoming substantially constant for contrasts exceeding about 100:1. Its dependence on wavelength is less well known, but in general it increases as wavelength decreases because of the increasing opacity of the emulsion. Although resolving power tends to increase as granularity decreases, this is by no means always the case. The values given in Table 608 apply when the ratio of brightness of the light to the dark lines is 1000:1 and the test object is photographed with an especially well-corrected f/5 lens in tungsten light with the optimum exposure; the materials were developed for practical times in the developer for which the data are given in Table 604.

As thus specified, resolving power is a threshold phenomenon and is not a criterion of the clearness with which gross details will be reproduced. Furthermore, it is of questionable value when the image is to be scanned with a physical photometer because the effect of

granularity depends upon the design of the instrument.

Edge gradient (G).—The appearance of sharpness produced by a photographic image probably depends, among other factors, upon the rate of change of density across the edge of the image with distance measured normal to the boundary. The curve of density vs distance resembles the H and D curve, and its gradient, called edge gradient to distinguish it from the gradient of the H and D curve, passes through a maximum with respect to distance. The values of this maximum for the respective materials in density units per micron are given in Table 608. These values were determined with a test object consisting of an extremely sharp, clear line in an opaque background on a high-resolution plate. This test object was pressed firmly against the sample with a contact liquid between and the combination was exposed to light from an f/5 lens. The resulting image was scanned with a physical microphotometer having a comparatively narrow slit.

The determinants of edge gradient have been less studied than have the determinants of resolving power, but it is known that the maximum gradient has a maximum with respect to exposure. It would be expected that the maximum gradient would increase in gamma, but present knowledge indicates that it increases less rapidly. The dependence on wavelength has not been studied with modern techniques, but older studies indicate that gradient increases with decreasing wavelength. The values in Table 608 are for $\gamma \infty/2$

and tungsten light at the optimum exposure.

Both resolving power and edge gradient are inherent properties of the emulsion and are relatively inflexible. It is possible to improve them by bathing the material in dye that absorbs the light to which the emulsion is sensitive, but this is rarely practical because of the concomitant reduction in speed.

Mees, C. E. K., The theory of the photographic process, chap. 21, Macmillan, 1942.
 Mees, C. E. K., Proc. Roy. Soc. London, vol. 83, p. 10, 1909.

TABLE 606.—RESOLVING POWER AND EDGE GRADIENT VALUES (concluded)

Part 2.-Values

Material	Resolving power	Edge gradient (× 10-2)
Motion-picture films:		
Fast panchromatic	. 95	8
Medium-speed panchromatic	. 100	9
Fine-grain panchromatic	. 100	10
Positive (regular)	. 105	18
Positive (fine-grain)	. 130	22
Professional sheet films:		
Fast panchromatic	. 85	11
Fast orthochromatic	. 100	10
Medium-speed panchromatic		10
Medium-speed orthochromatic		11
Blue-sensitive	. 90	10
Amateur roll films:		
Fast panchromatic	. 95	10
Fast orthochromatic	. 100	11
Fine-grain panchromatic	. 105	12
Process films and plates:		
Panchromatic film		22
Orthochromate film		23
Blue-sensitive plates	. 110	18
High resolution plates:approx.	2,500 *	

^{*} This value was obtained by direct exposure to a line interference pattern. With conventional methods of measurement, the value is limited by the optical system rather than by the characteristics of the emulsion.

TABLE 607.- RELATIVE PHOTOGRAPHIC EFFICIENCY OF ILLUMINANTS

	Color	Phot	ographic efficien	cy, Er*
Source	temperature rating	Blue sensitive	Ortho- chromatic	Panchromatic
Sun		100	100	100
Zenith blue sky		700	285	300
Carbon arc, white flame		440	220	230
Mercury arc, H-1		135	120	90
Mercury arc, H-4		225	175	130
Mercury arc, H-6		340	245	160
Fluorescent, standard warm white		70	70	75
Fluorescent, daylight		125	150	120
Incandescent tungsten	2848°	40	50	70
Argon glow lamp		21,000	60	35

^{*} Er = relative photographic efficiency of source evaluated on basis of equal visual intensities.

TABLE 608.—SPECTRAL SENSITIVITY OF PHOTOGRAPHIC MATERIALS

Spectral sensitivity is normally expressed in terms of the reciprocal of the energy (ergs/cm²) at various wavelengths required to produce a given density under given conditions of development. The curves in figure 28 are shown for a scale of relative sensitivity values, with a value of 10 assigned to the point of maximum sensitivity. The curves should be regarded only as representative of the type of sensitizing for which they were determined and are not suitable for quantitative use. In figure 29 spectral sensitivity data are presented in a different form. Here the wavelengths to which classes of spectroscopic plates are sensitive are shown in a block diagram. No indications are given of the way in which sensitivity varies with wavelength. A solid portion of the block diagram indicates the spectral region for which the class is especially valuable, i.e., where the sensitizing is most effective.

Fig. 28.—Spectral sensitivity curves for typical films: 1, blue sensitive; 2, orthochromatic; 3, panchromatic; 4, infrared sensitive.

Fig. 29.—The range of spectral sensitivity of kodak spectroscopic plates.

TABLE 609.—NUCLEAR TRACK PLATE SPECIFICATIONS

Nuclear emulsions in general have about the same chemical composition and therefore have fairly uniform stopping power characteristics. The types of nuclear track plates can be divided broadly into four classes, depending upon the purposes for which they are to be used. A general classification of such emulsions for use in nuclear research is listed in the table. The emulsions are classified under the headings, A, B, C, and D, in terms of Nuclear track plates are designed to register the paths of charged particles. The choice of plate depends upon the type of particle to be studied. the maximum energy particle that they are capable of registering.

	A	В	C*	D
Nuclear particles recorded	a-particles 200 Mev Protons 10 Mev Deuterons 20 Mev	a-particles 400 Mev Protons 50 Mev Deuterons 100 Mev Electrons .05 Mev	 a-particles of any energy Protons Deuterons π mesons μ mesons Electrons 4 Mev 	Nuclear fission fragments of high ionizing power
Sensitivity to light Emulsion thicknesses available	Low 25, 50, and 100μ	Moderate 10, 50, 100, 150, and 200μ	High 10, 25, 50, 100, 150, and 200 μ	Very low 20 and 50 μ
Percent weight of AgBr in dry emulsion	81	81	81	65

* Specially fast batches of the general type of plate can be made that register singly charged particles at the minimum of the ionization curve and thus will register particles of any energy value whatsoever.

TABLES 610-625A.—STANDARD WAVELENGTHS 177-192 AND SERIES RELATIONS IN ATOMIC SPECTRA *

Primary standard of wavelength.—The red radiation, 6438.4696 *A*, emitted by a cadmium lamp of Michelson type was first chosen in 1907 by the International Union for Cooperation in Solar Research ¹⁷⁷ as a primary standard of wavelength and definition of the angstrom as a unit of wavelength measurement. This primary standard was adopted in 1922 by the International Astronomical Union ¹⁷⁸ and in 1927 by the International Committee on Weights and Measures ¹⁷⁹ with the statement that the wavelength of this radiation is 6438.4696 × 10⁻¹⁰ meters when the light is propagated in dry air at 15°C (hydrogen thermometer) at a pressure of 760 mmHg, gravity being 980.665 cm/sec².

Specifications for the standard cadmium lamp were last revised in 1935; ¹⁸⁰ they designate that the lamp must be Michelson H-type with internal electrodes, excited with continuous or alternating current of industrial frequency, maintained at a temperature near 300°C (never exceeding 320°C) and contain air under a pressure between 0.7 and 1.0 mmHg at that temperature. The constriction must not be less than 2 mm diameter and the current must not exceed

7 milliamps/mm².

A summary of nine directly measured values of the wavelength of the red radiation of cadmium in terms of the meter has been given by H. Barrell ¹⁸¹ as in Table 612.

¹⁷⁷⁻¹⁹² For footnotes 177-192, see p. 578.

TABLE 610.—PRELIMINARY VALUES OF Hg¹⁹⁸ WAVELENGTHS IN ANGSTROMS

N.B.S. (U.S.A.)	N.P.L. (England)	I.B.W.M. (France)	Mean
5790.6628	5790.6628	5790.6630	5790.6629
5769.5983	5769.5985	5769.5986	5769.5985
5460.7532	5460.7531	5460.7533	5460.7532

International secondary standards of wavelength from neon, krypton, and iron spectra.—Spectroscopic secondary standards of wavelength are derived from the primary standard (Cd 6438.4696 A) by means of the Fabry-Perot interferometer. The existing international secondary standards represent the mean of three or more independent, concordant values adopted by the International Astronomical Union. All values of secondary standards of wavelength are valid for normal air (15°C and 760 mmHg). The most precisely determined secondary standards of wavelength have been obtained from discharge tubes of the Geissler type containing neon or krypton gas at a pressure not exceeding 15 mmHg. In 1935 the International Astronomical Union sadopted 8-figure values of 20 neon wavelengths with the reservation that they apply only to the conditions under which they were determined, viz, with interferometers of high resolving power but plate separations not exceeding 40 mm.

TABLE 611.—NEON SECONDARY STANDARD WAVELENGTHS IN ANGSTROMS

5852.4878	6074.3377	6266.4950	6532.8824
5881.8950	6096.1630	6304.7892	6598.9529
5944.8342	6143.0623	6334.4279	6678.2764
5975.5340	6163.5939	6382,9914	6717.0428
6029.9971	6217.2813	6506.5279	7032.4127

New values of 20 krypton lines as secondary standards of wavelength were adopted in 1935 by the International Astronomical Union. See Table 614.

^{*} Data furnished and arranged by W. F. Meggers, National Bureau of Standards.

¹⁸³ For reference, see p. 578.

¹⁸⁴ For reference, see p. 578.

TABLE 612.—VALUES OF THE WAVELENGTH OF THE CADMIUM RED LINE IN TERMS OF THE INTERNATIONAL METER (Unit \pm 1 \times 10-10 m)

			Corrected and adjusted		rences
Date of determination	Observers	Original values	values in normal air	10 ⁻¹⁰ m	Parts per
1892–93	Michelson and Benoît (B.I.P.M.)	6438.4722	6438.4691	0005	08
1905–06	Benoît, Fabry and Perot (B.I.P.M.)	6438.4696	6438.4703	+.0007	+.11
1927	Watanabe and Imaizumi (Tokyo)	6438.4685	6438.4682	0014	22
1933	Sears and Barrell (N.P.L.)	6438.4711	6438.4713	+.0017	+.26
1933	Kösters and Lampe (P.T.R.)	6438.4672	6438.4689	0007	11
1934–35	Sears and Barrell (N.P.L.)	6438.4709	6438.4709	+.0013	+.20
1934–35	Kösters and Lampe	6438.4685	6438.4690	0006	09
1937	(P.T.R.) Kösters and Lampe	6438.4700	6438.4700	+.0004	+.06
1940	(P.T.R.) Romanova, Varlich, Kar-	6438.4677	6438.4687	0009	—.14
	tashev, and Batarchukova (Leningrad)	Mean	6438.4696	±.0009	±.14

The values originally reported (column 3) are corrected (column 4) to take account of subsequent conclusions (a) regarding the values to be attributed to the standards of length employed, and adjusted (b), so far as the available information permits, to uniform standard conditions of dry air at 15°C and 760 mmHg pressure, containing 0.03 percent CO₂. The statistical mean deviation associated with the average value of $6438.4696 \times 10^{-10}$ m derived from these nine determinations amounts to $\pm 0.0010 \times 10^{-10}$ m.

The recent production of purer monochromatic radiation (than the cadmium red line) suggests that eventually another wavelength from a single heavy isotype of even mass number may be adopted as the primary standard of length. Thus, since 1945 many milligrams of Hg¹⁰⁸ have been made by transmutation of gold in chain-reacting uranium piles. Electrodeless lamps containing Hg¹⁰⁸ have been made and distributed by the National Bureau of Standards. When excited by ultra-high frequency (> 100 megacycles) and water cooled these lamps emit with high intensity ideally sharp mercury lines. Preliminary measurements, relative to Cd 6438.4696 A, of the yellow and green lines of Hg¹⁰⁸ have been reported ¹⁸² by the National Bureau of Standards, by the National Physical Laboratory, and by the International Bureau of Weights and Measures, as in Table 610.

TABLE 613.—RESULTANT S VALUES AND TERM MULTIPLICITIES

Number of electrons	S	Term multiplicities
1	1/2	Doublets
2	0, 1	Singlets, triplets
3	1/2, 3/2	Doublets, quartets
4	0. 1. 2	Singlets, triplets, quintets
5	1/2, 3/2, 5/2	Doublets, quartets, sextets
6	0, 1, 2, 3	Singlets, triplets, quintets, septets
7	1/2, 3/2, 5/2, 7/2	Doublets, quartets, sextets, octets
etc.	_, _, _, _, _, _, _, _, _, _, _,	

¹⁸² For reference, see p. 578.

TABLE 614.—KRYPTON SECONDARY STANDARD WAVELENGTHS IN ANGSTROMS

4273.9700	4319.5797	4453.9179	5649.5629
4282.9683	4351.3607	4463.6902	5870.9158
4286,4873	4362.6423	4502.3547	5993.8503
4300.4877	4376.1220	5562.2257	6421.029
4318.5525	4399.9670	5570.2895	6456.291

Neon and krypton secondary standards are used extensively for interference measurements in metrology and spectroscopy, but their spectral range and distribution does not make them generally suitable for wavelength measurements by interpolation in prismatic or in grating spectra. For the latter purpose a system of secondary standards should consist of lines of comparable intensity distributed as uniformly as possible throughout the entire range of wavelengths commonly observed in optical spectra. An approach to such a system is found in the internationally adopted secondary standards derived from the spectrum of the iron arc. The source for iron secondary standards is specified ¹⁸⁵ as the "Pfund arc operated between 110 and 250 volts, with 5 amperes or less, at a length of 12-15 millimeters used over a central zone at right angles to the axis of the arc, not to exceed 1.0-1.5 millimeters in width, and with an iron rod 6-7 millimeters diameter as the upper pole and a bead of oxide of iron as the lower pole. As the secondary standards to the red of 6000 A are all stable lines, and as the exposures with the above-mentioned arc may be rather long, it is recommended that the 6 mm, 6 ampere arc be retained for this region."

The list of iron secondary standards adopted by the International Astronomical Union 1866 consists of 306 7-figure values ranging from 2447.708 to 6677.933 A, thus covering a little

more than one octave.

Internal evidence from the combination principle as well as the agreement between independent observers indicates that the average probable error in these standards is ± 0.001 A. Preliminary values of long-wave iron lines (6750.158 to 10216.351 A) have been suggested.¹⁸⁷

Additional ultraviolet iron lines (2100.794 to 3383.980 A) have been suggested ¹⁸⁸ and only one or two confirmatory observations are required to extend the secondary standards over a range of more than two octaves.

185-188 For references, see p. 578.

TABLE 615.--J VALUES FOR LEVELS IN TERMS HAVING ODD AND EVEN MULTIPLICITIES

	Values of J for —												
Terms	Singlets	Doublets	Triplets	Quartets	Quintets	Sextets							
S	0	1/2	1	3/2	2	5/2							
P	1	1/2, 3/2	0 1 2	1/2, 3/2, 5/2	1 2 3	3/2, 5/2, 7/2							
D	2	3/2, 5/2	1 2 3	1/2, 3/2, 5/2, 7/2	0 1 2 3 4	1/2, 3/2, 5/2, 7/2, 9/2							
F	3	5/2, 7/2	2 3 4	3/2, 5/2, 7/2, 9/2	1 2 3 4 5	1/2, 3/2, 5/2, 7/2, 9/2, 11/2							
G	4	7/2,9/2	3 4 5	5/2, 7/2, 9/2, 11/2	23456	3/2, 5/2, 7/2, 9/2, 11/2, 13/2							
etc.													

TABLE 616.—TERMS FROM NONEQUIVALENT ELECTRONS

Electrons	Terms (omitting J values)
ss	¹S, ° S
sp	¹ P, ⁸ P
sd	10, 10 to 10 to
pp	15,1P,1D,85,8P,8D
pd dd	1P, 1D, 1F, 8P, 8D, 8F 1S, 1P, 1D, 1F, 1G, 8S, 8P, 8D, 8F, 8G 1P, 1D, 1F, 1G, 1H, 8P, 8D, 8F, 8G, 8H 1S, 1P, 1D, 1F, 1G, 1H, 1I, 8S, 8P, 8D, 8F, 8G, 8H, 8I
df	¹ P. ¹ D. ¹ F. ¹ G. ¹ H. ⁸ P. ⁸ D. ⁸ F. ⁸ G. ⁸ H
ÍÍ	¹ S, ¹ P, ¹ D, ¹ F, ¹ G, ¹ H, ¹ I, ¹ S, ¹ P, ¹ D, ¹ F, ¹ G, ¹ H, ¹ I
etc.	

TABLE 617.-- IRON SECONDARY STANDARDS OF WAVELENGTH IN ANGSTROMS

2447.708	3175.447	3565.381	3767.194	3922.914	4267.830	4647.437	5270.360
2584.536	3178.015	3576.760	3787.883	3927.922	4271.764	4667.459	5307.365
2635.808	3184.896	3581.195	3790.095	3930.299	4282.406	4678.852	5328.534
2679.062	3191.659	3584.663	3795.004	3935.815	4285.445	4691.414	5341.026
2689.212	3196.930	3585.320	3797.517	3940.882	4294.128	4707.281	5371.493
2699.107	3200.475	3586.114	3798.513	3942,443	4298.040	4710.286	5397.131
2723.577	3205.400	3589.107	3799.549	3948.779	4305.455	4733.596	5405.778
2735.475	3215.940	3608.861	3805.345	3956.681	4307.906	4641.533	5429.699
2767.523	3217.380	3617.788	3815.842	3966.066	4315.087	4745.806	5434.527
2778.221	3222,069	3618.769	3824.444	3967.423	4325.765	4772.817	5446.920
2804.521	3225.789	3621.463	3825.884	3969.261	4337.049	4786.810	5455.613
2813.288	3226.223	3631.464	3827.825	4005.246	4352.737	4789.654	5497.519
2823.276	3239,436	3647.844	3834.225	4014.534	4358.505	4859.748	5501.469
2832.436	3244.190	3649.508	3839.259	4045.815	4369.774	4878.218	5506.782
2838.120	3257.594	3651.469	3840.439	4063.597	4375.932	4903.317	5569.625
2851.798	3271.002	3669.523	3841.051	4066.979	4383.547	4918.999	5572.849
2869.308	3284.588	3676.314	3843.259	4067.275	4390.954	4924.776	5586.763
2912.158	3286.755	3677.630	3846.803	4071.740	4404.752	4939.690	5615.652
2929.008	3298.133	3679.915	3849.969	4107.492	4408.419	4966.096	5624.549
2941.343	3340.566	3687,458	3850.820	4114.449	4415.125	4994.133	5658.826
2953.940	3347.927	3695.054	3856.373	4118.549	4422.570	5001.871	5662.525
2957.365	3370.786	3704.463	3859.913	4121.806	4427.312	5012.071	6027.057
2965.255	3396.978	3705.567	3865.526	4127.612	4430.618	5041.759	6075.487
2981.446	3399.336	3719.935	3867.219	4132.060	4442.343	5049.825	6136.620
2987.292	3401.521	3722.564	3872.504	4134.681	4443.197	5051.636	6137.696
2999.512	3407.461	3724.380	3873.763	4143.871	4447.722	5083.342	6191.562
3037.388	3413.135	3727.621	3878.021	4147.673	4454.383	5110.414	6230.728
3047.605	3427.121	3732.399	3878.575	4156.803	4459.121	5123.723	6252.561
3057.446	3443.878	3733.319	3886.284	4170.906	4461.654	5127.363	6265.140
3059.086	3445.151	3734.867	3887.051	4175.640	4466.554	5150.843	6318.022
3067.244	3465.863	3737.133	3888.517	4184.895	4489.741	5167.491	6335.335
3075.721	3476.704	3738.308	3895.658	4202.031	4494.568	5168.901	5393.605
3083.742	3485.342	3748.264	3899.709	4203.987	4517.530	5171.599	6421.355
3091.578	3490.575	3749.487	3902.948	4213.650	4528.619	5198.714	6430.851
3116.633	3497.843	3758.235	3906.482	4216.186	4531.152	5202.339	6494.985
3134.111	3513.820	3760.052	3907.937	4219.364	4547.851	5216.278	6546.245
3157.040	3521.264	3763.790	3917.185	4250.790	4592.655	5227.192	6592.919
3160.658	3558.518	3765.542	3920.260	4260.479	4602.944	5242.495	6663.446
						5250.650	6677.933

Iron tertiary standards of wavelength.—The iron tertiary standards derived from diffraction-grating interpolation between secondary standards, and formerly adopted, 189 have all been superseded by interferometer, or grating interpolated, values published in the M.I.T. Wavelength Tables (John Wiley & Sons, New York, 1939).

Extreme ultraviolet standards of wavelength.—Provisional standards of wavelength.

length in the extreme ultraviolet, measured relative to secondary and tertiary iron standards in overlapping spectral orders, have been published; ¹⁸⁰ they include 57 carbon lines (1930.900 to 858.091 A), 23 nitrogen lines (1745.246 to 775.966 A), 25 oxygen lines (1306.038 to 580.974 A), and 10 argon lines (1066.660 to 871.099 A).

Standard solar wavelengths.—The International Astronomical Union 101 has adopted 7-figure standards of wavelength in the solar spectrum when two or more accordant values have been reported. These values have resulted mainly from interferometer measurements of solar-absorption wavelengths relative to neon or to iron secondary standards. The standards represent integrated solar light, are corrected for Doppler-Fizeau displacement, and are valid for standard air at 15°C and 760 mmHg pressure. In the long-wave region many of the solar spectrum standards originate in the terrestrial atmosphere as absorption by oxvgen or water vapor.

In Table 618 the + sign following the symbol of an element indicates ionization; a symbol like Fe -, solar line too strong to be due to iron alone; Fe, Co, coincidences of like order; Fe Co, coincidence closer for preceding element; Fe - Co, Fe wavelength smaller, Co larger than solar line; an italicized element indicates a more prominent contribution

and boldface a decidedly predominant element.

¹⁸⁹⁻¹⁹¹ For references, see p. 578.

TABLE 618.—STANDARD SOLAR WAVELENGTHS MEASURED IN AIR AT 15°C AND 1 ATMOSPHERE PRESSURE

		<i>'</i>	AIND I AI III C	or mene	r ness(ONL		
λ Solar	Origin Int	ensity	λ Solar	Origin	Intensity	λ Solar	Origin I	ntensity
3592.027	V +	2	4348.947	Fe	-	4832,719	Ni — Fe	3
3635.469	Ti '	2	4365.904	Fe	2 2 2 1	4839.551	Fe	3
3650.538		2	4389.253	Fe	2	4939.694	Fe	
3672.712	Fe	2 3 5 3 3	4398,020	Y +	ī	4983,260	Fe	3 3
3695.056	Fe	5	4416.828	Fe +	2	4994.138	Fe	4
3710.292	Ŷ+	3	4425.444	Ca	2 4	5002.798	Fe	2
3725.496	Fe	3	4430.622	Fe	3	5014.951	Fe	3
3741.065	Ťi	4	4439.888	Fe	ĭ	5028.133	Fe	2
3752.418	Fe	3	4451.588	Mn	3	5079.745	Fe	Ā
3760.537	Fe	4	4454.388	Fe	3 .	5090.782	Fe	5
3769.994	Fe	4	4459.755	Cr — V	1	5109.657	Fe	ž
3781.190	Fe	3	4470 485	Ni	2	5150.852	Fe	4
3793.876	Cr Fe	3 2	4481.616	Fe	1 2 1	5159.065	Fe	2
3804.015	Fe	3	4502.221	Mn	2	5198.718	Fe	3
3821.187	Fe	4	4508.289	Fe +	2 4	5225.534	Fe	2
3836.090	Ti + Cr V?	ż	4512.741	Ti T	3	5242.500	Fe	3
3843.264	Fe	4	4517.534	Fe	3	5253.468	Fe	2
3897.458	Fe —	4	4525.146	Fe	š	5273.389	Fe	2
3906.752	Fe	3	4531.631	Fe	2	5288.533	Fe	2
3916.737	Fe		4534.785	Ťi	Ā	5300.751	Cr	2
3937.336	Fe	3	4541.523	Fe +	2	5307.369	Fe	3
3949.959	Fe	5	4547.853	Fe Ti	3	5322.049	Fe	3
3953.861	Fe —	3	4548.770	Ti	2	5332.908	Fe	1
3960.284	Fe —	4 3 5 3 3	4550.773	Fe	3 5 2 4 2 3 2 2 4 5 6 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5348.326	Cr	4 2 3 2 4 5 2 4 2 3 2 3 2 3 2 3 2 3 3 4 4 4 4 4 4 4
3963.691	Cr	3	4563.766	Ti +	1	5365.407	Fe	7
3977.747	Fe	6	4571.102	Mg	7	5379.581	Fe	3
3991.121	Cr - Zr +	3	4571.982	Ti +	6	5389.486	Fe	2
4003.769	Fe — Ti	3	4576.339	Fe +	2	5398.287	Fe —	3
4016.423	Fe	2	4578.559	Ca +	2	5409.799	Cr	5
4029.642	Fe - Zr +	2 5 2 2 2 5 4	4587.134	Fe	2	5415.210	Fe	4 3 3 5 5 2 4
4030.190	Fe	2	4589.953	Ti +	3	5432.955	Fe	2
4037.121	1.0	2	4598.125	Fe	3	5445.053	Fe	1
4053.824	Ti + Fe	2	4602.008	Fe	3	5462.970	Fe	3
4062.447	Fe	ž	4602.949	Fe	6	5473.910	Fe	3 3 5 4 2 2 2 2 3 3 4 4 2 2 2 2 3 3 4 4 4 4 4
4073,767	Fe	4	4607.654	Fe	4	5487.755	Fe	3
4079.843	Fe	3	4617.276	Ti	3	5501.477	Fe	5
4082.943	Мn	3 4	4625.052	Fe	5	5512.989	Ca	4
4091.557	Fe	3	4630.128	Fe	5 4	5525.552	Fe	2
4094.938	Ca	3 4	4635.853	Fe	2	5534.848	Fe +	2
4107.492	Fe	ż	4637.510	Fe	2 5 4	5546.514	Fe	2
4120.212	Fe	5 4	4638 017	Fe	4	5590.126	Ca	3
4136.527	Fe	3	4643.470	Fe	4	5601.286	Ca	3
4139.936	Fe	4	4647,442	Fe	4	5624.558	Fe V	4
4154.814	Fe	4	4656.474	Τi	3	5641.448	Fe	2
	Ti + Cr - Fe		4664.794	Cr Na	3	5655.500	Fe	2
4168.620	Fe Fe + ?	2	4678.172	0, 1,4	3 N	5667.524	Fe	$\bar{2}$
4178.859	Fe +	3	4678.854	Fe	6	5679.032	Fe	3
4184.900	Fe, Cr	4	4683.567	Fe	.3	5690.433	Si	3
4191.683	Fe		4690.144	Fe	4	5701.557	Fe	4
4198.638	Fe	3 3 3	4700.162	Fe	3	5731.772	Fe	4
4208.608	Fe	3	4704.954	Fe	3	5741.856	Fe	$\dot{2}$
4220.347	Fe	3	4720.999	Fe	2	5752.042	Fe	4
4233.612	Fe	6	4728.552	Fe	4	5760.841	Ni	2
4241.123	Fe		4733.598	Fe	4	5805.226	Ni	4
4246.837	Sc +	2 5 2 3 2 5 2	4735.848	Fe	3	5809.224	Fe	4
4257.661	Mn	2	4736.783	Fe	6	5816.380	Fe	5
4266.968	Fe	3	4741.535	Fe	4	5853.688	Ba +	5
4276.680	Fe Ti	2	4745.807	Fe	4	5857.459	Ca	8
4282.412	Fe	5	4772.823	Fe	4	5859.596	Fe	5
4291.472	Fe	2	4788.765	Fe	3	5862.368	Fe	6
4318.659	Ca Ti	4	4789.658	Fe	3	5866.461	Ti	3
4331.651	Ni	2	4802.887	Fe	3 2 e 3	5867.572	Ca	4 5 5 8 5 6 3 2 4
4337.925	Ti +	4	4824.143	Cr + - F	e 3	5892.883	Ni	4

TABLE 618.—STANDARD SOLAR WAVELENGTHS MEASURED IN AIR AT 15°C AND 1 ATMOSPHERE PRESSURE (continued)

AND 1 ATMOSPHERE PRESSURE (continued)										
λ Solar	Origin I	ntensity	λ Solar	Origin	Intensity	λSolar	Origin	Intensity		
5898.166	Atm	4	6213.437	Fe	6	6455.605	Ca	_		
5905.680	Fe	4	6215.149	Fe	3	6456.391	Fe +	3		
5916.257	Fe —	3	6216.358	v	ĭ	6471.668	Ca	5		
5919.054	Atm	5	6219.287	Fе	6	6475.632	Fe	2 3 5 2 1		
5919.644	Atm	7	6226.740	Fe	ĭ	6482.809	Ni	ī		
5927.797	Fe	5 7 3	6229,232	Fe	ī	6493.788	Ca	6		
5930.191	Fe		6230.736	Fe — V	8	6494.994	Fe	8		
5932.092	Atm	5	6232.648	Fe	4	6498.945	Fe	ĺ		
5934.665	Fe	6 5 5	6240.653	Fe	3	6499.654	Ca	4		
5946.006	Atm	3	6244,476	Si	2	6516.083	Fe +	2		
5952.726	Fe	4	6245.620	Sc +	1	6518.373	Fe	2 2 4		
5956.706	Fe	4	6246.327	Fe	7	6569.224	Fe	4		
5975.353	Fe	3	6247.562	Fe +	2	6592.926	Fe	6		
5976.787	Fe	4	6252.565	Fe	2 7	6609.118	Fe	6 5 6		
5983.688	Fe	5	6254.253	SiFe	5	6643.638	Ni	6		
5984.826	Fe	6	6256.367	FeNi	6	6677.997	Fe	8		
6003.022	Fe	6	6258.110	Ti	3	6717.687	Ca	8 6 2		
6008.566	Fe	6	6258.713	Ti	3	6810.267	Fe	2		
6013.497	Mn	6	6265.141	Fe	5	6858.155	Fe	4		
6016.647	Mn	6	6270.231	Fe	3 5 2 3	6870.946	Atm O	13		
6024.068	Fe	7	6279.101	Atm O		6879.928	Atm O	10		
6027.059	Fe	4	6279.896	Atm O	2 2 3	6918.122	Atm O	8		
6042.104	Fe	3	6280.393	Atm O	2	6919.002	Atm O	8		
6065.494	Fe	7 5	6280.622	Fe		6923.302	Atm O	6		
6078.499	Fe	5	6281.178	Atm O	1	6924.172	Atm O	6		
6079.016	Fe	3	6281.956	Atm O	2	6928.728	Atm O	5		
6082.718	Fe F	1	6283.796	Atm O	1	6934.422	Atm O	3		
6085.257	Ti — Fe	2	6289.398	Atm O	1	6959.452	Atm	9		
6086.288	Ni	2	6290.221	Atm O	2 2	6961.260	Atm	11		
6089.574	Fe	2 2 2 2 2 3	6292.162	Atm O	2	6978.862 6986.579	Fe	6		
6090.216	V	2	6292.958 6295.178	Atm O	3		Atm	8		
6093.649	Fe	2		Atm O	3	6988.986 7022.957	Atm Fe	4		
6096.671	Fe Fe	6	6295.960 6297.799	Atm O Fe	Ş	7023.504	Atm	7		
6102.183	Ca	9	6299.228	Atm O	3	7023.304	Atm	5		
6102.727 6111.078	Ni	2	6301.508	Fe	7	7034.910	Si	š		
6116.198	Ni	3	6302.499	Fe	ź	7122.206	Ni	7		
6122.226	Ca	10	6302.764	Atm O	2	7568.906	Fe	Ś		
6127.912	Fe	3	6305.810	Atm O	3 5 3 7 5 2 2 2 2 2 3	7574.048	Ni	4555755		
6128.984	Ni	1	6306.565	Atm O	2	7586.027	Fe	8		
6136.624	Fe	8	6309.886	Atm O	$\bar{2}$	7595.770	Atm O ₂			
6137.002	Fe	3	6315.314	Fe	3	7599.462	Atm O ₂			
6137.702	Fe	7	6315.814	Fe	2	7602.995	Atm O ₂			
6141.727	Ba + - F		6318.027	Fe	6	7611.194	Atm O ₂	0		
6145.020	Si	2	6322.694	Fe	2 6 5	7616.980	Ni	8		
6149.249	Fe +		6327.604	Ni	2	7619.214	Ni	4		
6151.623	Fe	2 4	6330.852	Fe	2 2 7	7621.802	Atm O2			
6154.230	Na		6335.337	Fe	7	7625.354	Atm O2	1		
6157.733	Fe	2 5 4	6336.830	Fe	7	7638.306	Atm O ₂	3		
6161.295	Ca	4	6344.155	Fe	4	7647.202	Atm O ₂	1		
6162.180	Ca	15	6355.035	Fe	4	7649.553	Atm O ₂	-1		
6165.363	Fe	2 5	6358.687	Fe	6	7651.963	Atm O ₂	0		
6166.440	Ça	5	6378.256	Ni	2	7657.606	Mg	9 N		
6169.564	_ Ca	.7	6380.750	Fe	4	7665.944	Atm O ₂	10		
6170.516	Fe - Ni	4_	6393.612	Fe	7	7671.669	Atm O ₂	10		
6173.341	Fe	5	6400.009	Fe	8	7676.565	Atm O ₂	9		
6175.370	Ni	3	6400.323	Fe	2	7677.619	Atm O ₂	9		
6176.816	Ni	5	6408.026	Fe	8 2 5 7	7682.758	Atm O ₂			
6180.209	Fe	3	6411.658	Fe	1	7683.802	Atm O ₂	8 6		
5186.717	Ni	4	6419.956 6421.360	Fe	7	7690.218 7695.838	Atm O ₂ Atm O ₂			
6187.995 6191.571	— Fe Fe	5 3 5 2 4 9	6430.856	Fe Fe	4 7 7	7696.869	Atm O ₂	4		
6200.321	Fe Fe	6	6449.820	Ca	6	7714.310	Ni Ni	6		
0200.321	1.6	U	0777.020	Ca	J	// 17.010	741	J		

TABLE 618.—STANDARD SOLAR WAVELENGTHS MEASURED IN AIR AT 15°C AND 1 ATMOSPHERE PRESSURE (continued)

AND I ATMOSPHERE PRESSURE (continued)									
λ Solar	Origin I	ntensity	λ Solar	Origin	Intensity	λ Solar	Origin	Intensity	
7727.616	Ni	5	8259.692	Atm	_	9073.134	Atm	1	
7748.284	Fe	6	8263.445	Atm	8 7	9074.306	Atm	7	
7751.116	Fe	2	8272.042	Atm	8	9092.482	Atm		
		2 8	8279.600	Atm	9	9105.399	Atm	5 7	
7780.568	Fe	5				9118.009			
7788.933	Ni	Ş	8300.408	Atm	10		Atm	5 3	
7797.588	Ni	5	8304.300	Atm	6	9132.443	Atm	3	
7807.916	Fe? — Fe	4	8311.956	Atm	6	9140.457	Atm	1	
7832.208	Fe	9	8316.224	Atm	5	9150.800	Atm	1	
7836.130	A1	4 N	8327.061	Fe	10	9175.249	Atm	5	
7864.437	Atm	2	8329.682	Atm	8	9178.534	Atm	3	
7885.014	Atm Ti	1	8333.584	Atm	5	9181.203	Atm	5 3 3 5 3	
7887.117	Atm	3	8342.290	Atm	3	9190.208	Atm	3	
7893.512	Atm	4	8349.162	Atm	4	9192.568	Atm	5	
7912.870	Fe	2 3 7 7 7	8357.040	Atm	6 5	9205.584	Atm	3	
7915.634	Atm	3	8362.302	Atm	5	9225.006	Atm	6	
7920.666	Atm	7	8367.331	Atm	6	9232.750	Atm	3	
7928.618	Atm	7	8376.381	Atm	4	9251.100	Atm	3 6	
7937.150	Fe	7	8394.020	Atm		9254.347	Atm	1	
7941.096	Fe.	2	8397.152	Atm	2	9275.072	Atm	2	
7945.858	Fe	2 7	8426.514	Ti	3 2 2 4	9289.856	Atm	2 2 5 6	
7958.492	Atm	7	8434.968	Ťi	4	9301.910	Atm	5	
7971.522	Atm	4	8439.581	Fe	Ś	9311.734	Atm	6	
7984.342	Atm	4	8468.418	Fe	ğ	9314.006	Atm	4	
7994.488	Fe	3	8471.744	Fe	ź	9320.768	Atm	7	
8000.300	Atm	6	8514.082	Fe	5 9 2 7 5	9321.650	Atm		
8012.940	Atm	4	8515.122	Fe	ź	9348.382	Atm	0 2 6	
8036.460	Atm	2	8526.676	Fe	3	9361.227	Atm	6	
8039.600	Atm	2	8556.797	Si	8 N	9363.334	Atm	3	
8045.530		3 3 8	8571.807	Fe	2	9374.280		1	
	Atm	0	8582.271	Fe	6	9400.094	Atm	7	
8046.058 8047.625	Fe Fe	0	8595.968	Si	3 N	9406.904	Atm	1 7 6	
		4	8598.836	Fe			Atm	5	
8063.286 8075.158	Atm	2			3 7	9444.412	Atm	5	
	Fe	2 2 3	8611.812 8613.946	Fe	í	9463.992	Atm	3	
8096.580	Atm	3		Fe	2	9472.418	Atm	1	
8103.165	Atm	1	8616.284	Fe		9476.754	Atm	4	
8107.842	Atm	4	8648.472	Şi	10 N	9478.884	Atm	0	
8118.910	Atm	2 3 2 3 5 5 3	8674.756	Fe	7	9483.970	Atm	1	
8125.445	Atm	3	8699.461	Fe	4	9486.042	Atm	7	
8133.209	Atm	2	8713.208	Fe	3	9504.434	Atm	3	
8139.718	Atm	<u>ş</u>	8717.833	Mg?	7 N	9507.742	Atm	1	
8146.213	Atm	္	8747.438	Fe	0	9512.630	Atm	5	
8147.188	Atm	5	8773.906	<u>A</u> 1	6	9533.411	Atm	4	
8165.337	Atm	3	8784.444	Fe	1	9549.958	Atm	5 4 2 2 2 3 5 7 3 3	
8169.386	Atm	6	8790.454	Fe Si	6	9550.962	Atm	2	
8177.932	Atm	7	8793.350	Fe	6	9558.836	Atm	2	
8178.491	Atm	4	8824.234	Fe	10	9575.680	Atm	3	
8181.848	Atm	9	8866.943	Fe	9	9587.126	Atm	5	
8194.836	Na	12 N	8868.444	Fe	3	9598.870	Atm	7	
8200.694	Atm	6	8876.030	Fe	1	9601.170	Atm	3	
8207.749	Fe	4	8879.316	Atm	4	9624.496	Atm	3	
8212.132	Atm	5	8917.506	Atm	1	9629.997	Atm	1	
8218.114	Atm	10	8927.392	Ca +	7	9643.105	Atm	3 2	
8221.553	Atm	6	8930.270	Atm	4	9651.932	Atm		
8225.688	Atm	5	8946.878	Atm	4	9664.646	Atm	6	
8229.762	Atm	8	8950.744	Atm	1	9686.386	Atm	3	
8233.906	Atm	8	8958.402	Atm	4	9694.588	Atm	0 2 6	
8234.628	Atm	3	8963.492	Atm	4	9700.139	Atm	2	
8237.341	Atm	5	8969.030	Atm	0	9708.922	Atm	6	
8239.132	Fe	8 3 5 2 4	8976.424	Atm	1	9730.638	Atm	4	
8239.924	Atm		8993.043	Atm	0	9755.979	Atm	0	
8248.137	Fe	4	9047.412	Atm	2 7	9765.495	Atm	4	
8248.802	,O	4	9052.974	Atm	7	9768.637	Atm	2	
8252.727	Atm	6	9060.434	Atm	6	9776.818	Atm	3	

TABLE 618.—STANDARD SOLAR WAVELENGTHS MEASURED IN AIR AT 15°C AND 1 ATMOSPHERE PRESSURE (concluded)

λ Solar	Origin	Intensity	λ Solar	Origin Inte	nsity λ Solar	Origin	Intensity
9779.406	Atm	5	9803.241	Atm	3 9843.978	Atm	2
9787.146	Atm	3	9821.754	Atm .	3 9850.524	Atm	1
9791.006	Atm	7	9831.960	Atm — Ti	4 9873.638	Atm	4
9795. 2 88	Atm	1	9835.758	Atm	1 9878.200	Atm F	e 1
9799.476	Atm	7	9840.092	Atm —	1 9889.050	Fe	5

Prominent lines in simple spectra of elements.—The more prominent lines, in simple spectra, easily excited with high intensity, are universally employed in spectroscopy, refractometry, polarimetry, spectrophotometry, interferometry, and metrology either to calibrate the wavelength scales of dispersing instruments or to make optical measurements at various wavelengths. A brief tabulation of the wavelengths most commonly used for these purposes is given in Table 619, where numerical values of wavelengths and approximate relative intensities by elements are followed by graphical presentation (fig. 30). The spectral range is restricted to that easily observed photographically in air (2000 to 10000 A). Values of wavelengths are quoted from the M.I.T. Wavelength Tables (John Wiley & Sons, New York, 1939) and relative intensities in individual spectra are estimated from arc spectrograms made at the National Bureau of Standards.

TABLE 619.—WAVELENGTHS (IN ANGSTROMS) AND RELATIVE INTENSITIES OF PROMINENT LINES IN SIMPLE SPECTRA

Wavelength	Intensity	Wavelength	Intensity	Wavelength	Intensity
H 6562.849	200	Mg 5183.618	75	Сц 5782.132	30
6562.725	100	5172.699	45	5218.202	100
4861.327	40	5167.343	15	5153.235	30
4340.465	15	3838.258	75	5105.541	15
4101.735	5	3832.306	50	4651.134	10
3970.074	ĭ	3829.350	20	4586.954	8
077 0.07 1	1	2852.129	500	4062.698	25
He 7065.188	40	2802.695	400	4022.657	20
6678.149	75	2795.53	800	3273.962	400
5875.618	500	2793.33	800	3247.540	800
		A1 3961.527	500		
5015.675	45			2961.165	4
4921.929	25	3944.032	250	2824.369	8
4713.143	25	3092.713	100	2766.371	15
4471.477	40	3082.155	50	2618.366	30
4026.189	20	2660.393	5	2492.146	5 5
3888.646	500	2652.489	4	2406.665	5
3203.14	25	2575.100	10	2392.627	20
3187.743	50	2567.987	5	2293.842	15
2945.104	25			2263.079	10
2733.32	25	A 8521.441	200	2246,995	8
2511.22	10	8424.647	250	2230.084	4
2385.42	5	8408.208	300	2225.697	
		8264.521	150	2199.583	6 5
Li 8126.52	30	8115.311	400	2192.260	4
6707.844	900	8103.692	200	2135.976	4
6103.642	60	8014.786	80	2100.770	•
4971.990	5	8006.156	60	Zn 4810.534	100
4602.863	10	7503.867	150	4722.159	60
4132.29	3	7067.217	300	4680.138	20
3232.61	4	6965.430	500	3345.572	15
2741.31	2	6871.290	100	3345.020	80
2/41.31	2	6752.832	100	3302.941	15
Na 8194.811	30	6677.282	80	3302.588	40
			50	3282,333	20
8183.270	15	4200.675			10
5895.923	500	4158.590	50	3075.901	
5889.953	900	4044.418	20	2138.56	950
5688.224	10	3948.979	20	2061.91	15
5682.657	6	- 0000	20	2025.51	30
3302.988	10	Cu 8092.634	30		
3302.323	20	7933.130	15		

Fig. 30.—Spectra of the elements. Figure gives graphically the positions of some of the more prominent lines in the spectra of some of the elements. Flame spectra are indicated by lines in the lower parts of the panels; are spectra in the upper parts.

TABLE 619.—WAVELENGTHS (IN ANGSTROMS) AND RELATIVE INTENSITIES OF PROMINENT LINES IN SIMPLE SPECTRA (concluded)

Wavelength	Intensity	Wavelength	Intensity	Wavelength	Intensity
Ne 9665.424	100	Ag 8273.519	30	Kr 9856.24	50
9326.52	60	7687.779	15	9751.759	200
9300.85	60	5471.551	50	8928.692	200
9201.76	60	5465.487	100	8776.749	600
9148.68	60	5209.067	50	8508.870	300
8853.866	80	3382.891	400	8298.108	500
8783.755	100	3280.683	800	8281.049	150
8780.622	120	2437.791	4	8263.240	300
8654.383	150	2413.184	2	8190.054	300
8377.607	80	2415.104	2	8112.902	600
		K 7698.979	400		
7438.899	80		400	8104.364	400
7245.167	200	7664.907	800	8059.504	150
7032.4127	300	6938.98	8	7854.821	80
6929.468	300	6911.30	4	7694.539	120
6678.2764	400	4047.201	4	7685.246	100
6506.5279	600	4044.140	8	7601.544	400
6402,246	800	3446.722	8	7587.413	400
6382.9914	500			5870.9158	300
6266.4950	400	Ca 8662.140	40	5570.2895	200
6163.5939	250	8542.089	80	4463.6902	20
6143.0623	600	6439.073	40	4376.1220	50
6096.1630	400	6162.172	60	4319.5797	80
		5588.748	50	4318.5525	40
6074.3377	300				
5944.8342	400	4226.728	200	4273.9700	40
5881.8950	250	3968.468	400		
5852.4878	800	3933.666	800	Hg 5790.654	10
5400.562	50			5769.59	10
		Cd 6438.4696	200	5460.740	7 5
Rb 7947.60	400	6099.18	50	4358.35	50
7800.227	800	5085.824	100	4046.561	25
7757.651	50	4799.918	60	3650.146	50
7618.933	50	3612.875	20	3131.833	10
7408.170	20	3610.510	100	3131.546	10
6298.327	40	3467.656	20	3125.663	15
				2967.278	30
6206.309	30	3466.201	55		
6070.751	10	3403.653	25	2536.519	600
5724.453	20	3261.057	20		
4215.556	100	2288.018	900		
4201.851	200	2265.017	100		
		2144.382	200		

TABLE 620.-WAVELENGTHS OF FRAUNHOFER LINES

For convenience of reference the values of the wavelengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "Index letter," are here tabulated separately. The letters x, y, and Z were assigned by Abney. Except for D_3 , the rest have been taken from Higg's map of the normal solar spectrum. The data in columns 2, 3, and 4 are from the following sources:

For λ > 6600, Babcock, H. D., and Moore, C. E., Carnegie Inst. Washington Publ. 579, 1947.

For λ 3062-6600, Revised Rowland Table, St. John, C. E., et al., Carnegie Inst. Washington Publ. 396, 1928, with additions and corrections by C. E. Moore, unpublished (1949).

For λ < 3062, Babcock, H. D., Moore, C. E., and Coffeen, M. F., Astrophys. Journ., vol. 107, p. 287, 1948 (Mount Wilson Contr. No. 745).

¹⁰² For reference, see p. 578.

Index letter	Identi- fication	Solar wavelength	Solar intensity	Index letter	Identi- fication	Solar wavelength	Solar intensity
	Atm	8987.65	10		(Fe Ti +	4307.912	6
У		8806.775	14	G	{Ca	4307.747	3
x_4	Mg		23		Ca	4226.740 ‡	20d
X2	Ca +	8662.170		h	H _o	4101.748	40 N
X2	Ca +	8542.144	25	H	Ca +	3968.492	700
x_1	Ca +	8498.062	20	K		3933.682	1000
\boldsymbol{z}	Atm	8226.962	(20)		Ca +	3820.436	25
\boldsymbol{A}	Atm O ₂	7593.695 *	10	L	Fe		4
а	Atm	7184.526	8	M	Fe	3727.634	
B	Atm O ₂	6867.187 *	4	N	Fe	3581.209	30
a B C	Ha	6562.808	40	O P	Fe	3441.019	15
a	Atm O ₂	6276.607 *	2d	P	Ti +	3361.193	15 8 7N
D_1	Na Na	5895.940	20	Q	Fe	3286.772	/N
	Na	5889.973	30	R	∫Ca +	3181.276	3
D_2		5875.650 †	30		∖Ca +	3179.342	5d?
D_{i}	∫He			r	∫Fe	3143.996	2 4 3
	∫He	5875.618 †		′	∫Ti +	3143.764	4
-	Fe	5270.388	4	S_1	ζNi	3101.895	
E	∤ <u>C</u> a	5270.268	3_	51	\ Ni	3101.574	4N
	Fe	5269.550	8D		ζFe	3100.682	3
b_1	Mg	5183.619	30	S ₂	Fe	3100.325	4N
b ₂	Mg	5172.698	20	32) Fe	3099.987	3 3 35
b_3	∫Fe +	5169.050	4		Fe	3099.896	3
<i>U</i> ₃	∖Fe	5168.908	3	S	Fe	3047.614	35
,	∫Fe .	5167.508	3 5		ſ Fe	3021.077	30
b_4	Mg	5167.328	15	T	₹ Fe	3020.656	40
F	H	4861.342	30		Fe	3020.490	20
g	H_{γ}	4340.475	20 N	t	Fe Ni	2994.436	40
• • • • • • • • • • • • • • • • • • • •		· · ·			· - · -		

^{*} Band lines due to molecular oxygen in the earth's atmosphere. The wavelength of the first line of the hand is recorded here.

† Laboratory wavelengths listed. He lines are conspicuous in the spectrum of the chromosphere. ‡ Rowland assigns the index letter "g" to this line.

REFERENCES FOR STANDARD WAVELENGTHS

REFERENCES FOR STANDARD WAVELENGTHS

177 Trans Int. Union Coop. Solar Res., vol. 2, p. 142, 1907.

178 Trans. Int. Astron. Union, vol. 1, p. 35, 1922.

179 Procès Verbaux Comité Int. Poids et Mesures, Ser. 2, vol. 12, p. 67, 1927.

180 Ibid., vol. 17, p. 91, 1935.

181 Proc. Roy. Soc. London, vol. A186, p. 164, 1946.

182 Journ. Opt. Soc. Amer., vol. 38, p. 7, 1948; vol. 40, p. 545, 1950. Comptes Rendus, vol. 228, p. 964, 1949.

183 Trans. Int. Astron. Union, vol. 5, p. 86, 1935.

184 Ibid., vol. 5, p. 87, 1935.

185 Ibid., vol. 1, p. 36, 1928; vol. 4, p. 234, 1932; vol. 6, p. 79, 1938.

185 Ibid., vol. 3, p. 86, 1928; vol. 4, p. 234, 1932; vol. 6, p. 79, 1938.

186 Ibid., vol. 6, p. 80, 1938.

186 Ibid., vol. 6, p. 80, 1938.

187 Ibid., vol. 1, p. 41, 1922; vol. 2, p. 42, 1925.

189 Phys. Rev., vol. 47, p. 653, 1935.

180 Trans. Int. Astron. Union, vol. 3, p. 93, 1928; vol. 6, p. 90, 1938.

182 Philos. Trans., vol. 177, p. 457, 1886.

Series relations in atomic spectra.—The analysis of atomic spectra began in 1889 when J. R. Rydberg first found that the wave number (number of waves per cm) of a spectral line could be represented as the difference between two numerical quantities that he called spectral terms. From the data of alkali and alkaline-earth spectra Rydberg sorted singlet, doublet, and triplet terms that formed sequences of the form where R is Rydberg's constant, n is an integer, and μ a fraction. Rydberg also distin-

guished between sharp, principal, and diffuse terms; the initial letters s, p, and d survive in spectroscopic notation today. To distinguish between successive terms of a series, cardinal numbers (n) were prefixed to the literal symbols, and to distinguish between the components of doublet and triplet terms numerical subscripts were arbitrarily attached. Thus the wave numbers of the yellow doublet of sodium were represented symbolically: $\sigma = 1s - 2p_{1,2}$. More than 30 years passed before these arbitrary symbols could be given

any atomic interpretation.

The concept of atomic energy levels was first clearly stated in 1913 by N. Bohr who postulated (1) that stationary atomic states exist, and (2) that the frequency of atomic radiation is proportional to the difference between two atomic energy states, $hv = (E_1 - E_2)$, the proportionality factor being Planck's constant, h. By 1919 the accumulation of singlet, doublet, and triplet terms found in arc and spark spectra barely sufficed to suggest two general laws of spectral structures: (1) the alternation law which states that even and odd multiplicities alternate in successive columns of the periodic chart of the atoms, and (2) the displacement law which states that the spectrum of an ionized atom resembles that of the preceding atom but the analogous lines are displaced toward higher frequencies. Term multiplicities of atoms or ions are thus determined solely by the number of electrons in the atoms, whereas the atomic charge controls the position of the spectrum. These two facts suggested that electrons and protons were involved in the exegesis of atomic spectra.

The more complex spectra resisted all attempts at interpretation until 1922 when M. A. Catalán deliberately set out to discover a new or more general principle in spectral structure. He found in the arc spectra of chromium and manganese terms having five or six levels which combined to produce groups of lines that he called multiplets. In a few years thousands of terms were found in atomic and ionic spectra, and contemporaneously the present quantum theory of atomic energy levels was developed. As a result of these developments the arbitrary symbols that empirical spectroscopy devised for the yellow

doublet of sodium were replaced by the following:

$$\sigma = 3^{2}S_{14} - 3^{2}P^{\circ}_{14}, _{114}$$

Each and every item of this spectroscopic notation now has definite physical meaning in terms of a vector model of the Rutherford-Bohr atom which is assumed to consist of a minute but massive nucleus (composed of protons and neutrons) with one or more electrons circulating about it. The normal number of electrons in any atom is equal to the

atomic number, Z: identical with the number of protons in its nucleus.

Spectral lines result from changes in atomic energies defined by the positions of one or more optical electrons in successive shells and by their orbital and axial momenta, each of which is associated with an appropriate quantum number. In general, the first large change in atomic energy occurs when an electron jumps from its normal shell, represented by the principal quantum number n, to another shell. These principal quantum numbers identify the successive shells of the periodic system and serve as coefficients to the spectral term symbols S, P, D, F, etc. If an electron is moved from its lowest value of n to $n = \infty$ the atom is ionized, and the voltage necessary to remove this electron is called the ionization potential. This ionization energy is expressed in wave number (cm⁻¹) or in electron volts (ev) as in Tables 623 and 624. Increasing atomic energies are exhibited in absorption spectra, decreasing energies in emission spectra.

After that due to a change in n, the next largest change in atomic energy is usually one associated with orbital angular momentum symbolized by an azimuthal quantum number l having integral values 0, 1, 2, 3, - corresponding respectively to the empirical term symbols S, P, D, F, - -. Electrons with l = 0 are called s-electrons, those with l = 1, p-electrons, etc. These four l values and the first seven n values suffice to describe the normal electron configurations of all possible atoms and ions. When two or more optical electrons are present, their individual orbital momenta l_1 , $l_2 - -$ are added vectorially to form a resultant L which is restricted by quantum theory to integral values ranging in the case of two electrons from $l_1 + l_2$ to $|l_1 - l_2|$. The types of spectral terms resulting from various simple configurations of electrons are shown in Table 621.

TABLE 621.—L VALUES AND SPECTRAL TERMS RESULTING FROM TWO ELECTRONS

Electrons	L	Terms
SS	0	S
sp	1	P
pp	0 1 2	SPD
pd	1 2 3	PDF
dd	0 1 2 3 4	SPDFG
df	1 2 3 4 5	PDFGH
ff	0 1 2 3 4 5 6	SPDFGHI

TABLE 621.--L VALUES AND SPECTRAL TERMS RESULTING FROM TWO ELECTRONS (concluded)

A third contribution to the total energy of an atom or ion comes from the rotation of each electron about its own axis. This axial angular momentum is the same for all electrons; it is represented by the spin quantum number $s = \frac{1}{2}$. When two or more electrons are present the individual spin vectors s_1 , s_2 , -- combine with each other to yield a resultant S, but (like L) the resultant spin S can take only certain discrete values, the maximum being obtained when all the individual spins are parallel, and the minimum being either one-half or zero according as the number of electrons is odd or even. Electron spins account for the splitting of most spectral terms into two or more components (called levels) and give a physical meaning to the subscripts attached to these levels. These subscripts are called inner quantum numbers; they are symbolized by J to represent the vector sum of L and S. The largest and smallest values of J result from simple addition and subtraction of L and S and all intermediate values of J that differ by integral amounts are allowed:

$$J = (L + S), (L + S - 1),$$

when L > S the number of permitted J values is 2S + 1, which fixes the term multiplicity R and underlies the alternation law, since the maximum multiplicity will be even or odd according as the number of electrons is odd or even. The S values and spectral-term multiplicities associated with numbers of optical electrons are displayed in Table 613.

Because $s = \frac{1}{2}$ for each electron the total angular momentum J of an atom or ion will have integral values for levels belonging to odd multiplicities, and half-integral values for

levels if the term multiplicities are even, as shown in Table 615.

TABLE 622.—TERMS FROM EQUIVALENT ELECTRONS

Electrons	Terms (omitting J values)
ς²	1S
p^2	¹ S, ¹ D, ⁸ P
p° Ja	² P, ² D, ⁴ S
$\frac{a^{-}}{d^{8}}$	² P ² D ² D ² F ² C ² H ⁴ P ⁴ F
$\frac{G}{f^2}$	¹ S, ¹ D, ¹ G, ⁸ P, ⁸ F ² P, ² D, ² D, ² F, ² G, ² H, ⁴ P, ⁴ F ¹ S, ¹ D, ¹ G, ¹ I, ³ P, ³ F, ⁸ H
etc.	

The actual types and multiplicities of terms arising from various configurations of optical electrons depend on whether the electrons are equivalent or nonequivalent, that is, have the same or different values of n and l. In any atom the maximum number of equivalent electrons is 2(2l+1), and no shell can contain more than two s electrons (s^2) , $\sin p$ electrons (p^0) , ten d electrons (d^{n0}) or fourteen f electrons (f^{10}) . In simple cases the spectral terms arising from nonequivalent electrons may be obtained from the L values of Table 621 and the S values of Table 613, as shown in Table 616.

When the optical electrons are equivalent, the Pauli exclusion principle introduces sim-

plifications, some of which are evident by comparing Tables 616 and 622.

An important consequence of the Pauli principle is that closed shells, in which the maximum number of equivalent electrons is present, have L=O and S=O and therefore may be ignored in deriving the terms given by any electron configuration. Furthermore, any subgroup that lacks one or more electrons to fill the group behaves spectroscopically as if the lacking electrons were present, except that the terms are, in general, regular (smallest J level has least energy) when the group is less than half filled but inverted when more than half filled.

Each configuration (excluding single electrons and closed shells) yields many energy states, and the object of spectrum analysis is to determine (1) the numerical values of the energy levels, (2) the quantum numbers that characterize them, and (3) the electron configurations from which they arise. The wave number of each observed spectral line measures the energy difference between two quantized states of an atom or ion, but, because the same level can in general combine with many others, the number of levels is usually much smaller than the number of classified lines. The combining properties of atomic energy levels are governed by simple rules. Thus all terms or levels of a given atom fall into two groups of different parity called even and odd according as the arithmetical sum of the l values of the optical electrons is even or odd (distinguished by the sign \circ and by

level value in *italics*), and normally spectral lines are permitted only when terms of different parity combine. Furthermore, an overwhelming majority of the transitions between atomic energy levels obey the following rules:

$$\Delta R = 0
\Delta L = \pm 1
\Delta J = 0, \pm 1, excepting 0 to 0.$$

For any given spectrum in which energy levels have been established, and in which LS coupling exists, it is possible to assign notation as well as electron configuration without ambiguity. Relative values of J are readily determined from the combining properties of the levels and the selection rule, $\Delta J = 0 \pm 1$. In terms of odd multiplicity the absolute value of J is fixed by the absence of the transition 0 to 0 which is forbidden. In other cases the absolute value of J can often be deduced from the sum rule (the sum of the intensities of all the lines of a multiplet that belong to the same initial or final state is proportional to the statistical weight 2J + 1 of the initial or final state respectively), or from the interval rule (the interval between two successive components, J and J + 1, of a polyfold term is proportional to J + 1). The most decisive determination of J and L (excepting singlet terms) results from the observation of completely resolved Zeeman patterns since an external magnetic field causes each energy level to be split into 2J + 1 sublevels and the

splitting factors indicate L values.

It is a consequence of atomic structure that long series of spectral terms of the same parity, L, S, J, but increasing n, are observed only in one-electron spectra, as for example to n=79 in the first spectrum of sodium. Five- six- or seven-electrons provide so many configurations and competing levels that it is often exceedingly difficult to detect the

second or any higher members of a spectral series.

Quantum principles having thus specified the various spectral terms arising from certain electrons, it became possible in 1925 to determine from identified terms the electron configurations of all atoms and ions. By 1950 the ground states of 82 species of neutral atoms and 75 singly ionized atoms had been uniquely determined from spectral structure. Besides disclosing the ground level and normal electron configuration of each atom or ion, the discovery of series relations in atomic spectra has given exact values for many ionization potentials which measure the forces with which the optical electrons are bound to atoms and ions. Furthermore, since the most intense radiations are usually associated with the largest L and J values of low-lying levels, the analysis of spectra has aided in selecting the strongest spectral lines characteristic of atoms and ions. In general, the strongest lines result from $s \leftarrow p$ electron transitions, but do not necessarily end on the ground state. Because these data are of great importance in spectroscopy, atomic physics, chemistry, and astrophysics, they are collected for neutral atoms in Table 623 and for singly ionized atoms in Table 624. 108

¹⁹⁸ For more detailed discussions of atomic spectra and complete compilations of atomic energy levels, see the list of references, page 585.

TABLE 623.—SPECTROSCOPIC PROPERTIES OF NEUTRAL ATOMS

The wavelengths of strongest lines exceeding 2000 A are valid for standard air, the remainder for vacuum.

n	NY 4 1	Normal	Ground	Speet wal	Ionization potential	Strongest
Period	Neutral atom	electron configuration	level	Spectral multiplicities	volts	line, A
n		$1s^1$	2S034	2	13.595	1215.66
1	1 H	15	301/3	1 2	24.580	584.33
	2 He	1s ²	¹S₀ ˆ	1, 3		
2	3 Li	$2s^1$	2S014	2	5.390	6707.85
	4 Be	$2s^2$	1S ₀	1, 3	9.320	2348.61
	5 B	$2s^2 2p^1$	² P° _{01/3}	2	8.296	2497.73
	6 C	$2s^2 2p^2$	³Po	1, 3	11.264	1657.01
	7 N	$2s^2 2p^3$	4S°11/4	2, 4 1, 3, 5	14.54	1134.98
	8 O	$2s^{2}2p^{4}$	³ P ₂	1, 3, 5	13.614	1302.19
	9 F	$2s^2 2p^5$	2P°11/2	2, 4	17.418	954.80
	10 Ne	$2s^2 2b^6$	¹ S ₀	1, 3	21.559	735.89
3	11 Na	$3s^1$	2S034	2	5.138	5889.95
	12 Mg	$3s^2$	¹ S ₀	1, 3	7.644	2852.13
	13 A1	$3s^2 3b^1$	² P° ₀ %	2	5.984	3961.53
	14 Si	$3s^2 3p^2$	*Po	1, 3	8.149	2516.12
	15 P	$3s^2 3p^3$	1S°11/4	2.4	10.55	1774.94
	16 S	$3s^2 3p^4$	3p. 173	2, 4 3, 5 2, 4	10.357	1807.31
	17 CI	$3s^2 3p^5$	³ P ₂ ² P° ₁ ₁ ,	2 4	13.01	1347.2
	18 A	$3s^2 3p^6$	¹ S ₀	1, 3	15.755	1048.22
4	19 K	$4s^1$	2S0 1/4	2	4.339	7664.91
4	20 Ca	45 ²	¹ S ₀	1, 3	6.111	4226.73
		$3d^{1} 4s^{2}$	$^{2}D_{1\frac{1}{2}}$	1, 3	6.538	5671.80
	21 Sc	$3d^2 4s^2$	³ F ₂	2, 4 1, 3, 5	6:818	4981.73
	22 Ti	30 45	4F2	1, 3, 5		4379.24
	23 V	$3d^3 4s^2$	4F11/4	2, 4, 6 1, 3, 5, 7	6.743	4254.35
	24 Cr	3d ⁶ 4s ¹	⁷ S ₃	1, 3, 5, 7	6.74	
	25 Mn	$3d^5 4s^2$	⁸ S ₂ 1/ ₂	2, 4, 6, 8	7.432	4030.76
	26 Fe	$3d^{6} 4s^{2}$	5D4	1, 3, 5, 7 2, 4, 6	7.868	3581.20
	27 Co	$3d^7 4s^2$	4F41/2	2, 4, 6	7.862	3453.50
	28 Ni	$3d^8 4s^2$	*F.	1, 3, 5 2, 4 1, 3	7.633	3414.76
	29 Cu	$3d^{10}4s^{1}$	2S 0 1/4	2, 4	7.724	3247.54
	30 Zn	4s2	¹S₀	1, 3	9.931	2138.56
	31 Ga	$4s^2 4p^1$	² P°01/2	2, 4	6.00	4172.06
	32 Ge	$4s^2 4p^2$	³ P ₀	1, 3	7.88	2651.18
	33 As	$4s^2 4p^3$	15°114	2, 4 1, 3 2, 4 3, 5	9.81	1890.43
	34 Se	452 4p4	*P ₂	3, 5	9.750	1960.91
	35 Br	$4s^2 4p^5$	2P°11/4	2, 4 1, 3	11.84	1488.4
	36 Kr	452 4p6	¹S₀	1, 3	13.996	1235.82
5	37 Rb	5s1	2So1/2	2	4.176	7800.23
	-38 Sr	5s2	$^{1}S_{0}$	1, 3	5.692	4607.33
	39 Y	$4d^{1} 5s^{2}$	² D _{1 1/2}	1, 3 2, 4 1, 3, 5 2, 4, 6	6.377	5466.47
	40 Zr	$4d^2 5s^2$	⁸ F ₂	1, 3, 5	6.835	4687.80
	41 Nb	$4d^4 5s^1$	6D034	2, 4, 6	6.881	4058.94
	42 Mo	$4d^{5} 5s^{1}$	⁷ S ₃	2, 4, 6 3, 5, 7	7.131	3798.25
	43 Tc	$4d^5 5s^2$	⁶ S _{21/2}	4 6 X	7.23	3636.10
	44 Ru	$4d^{7}5s^{1}$	⁵ F ₅	3, 5, 7 2, 4 1, 3, 5	7.365	3498.94
	45 Rh	$4d^8 5s^1$	4F414	2.4	7.461	3434.89
	46 Pd	$4d^{10}$	1S ₀	1 3 5	8.33	3404.58
	40 Pd 47 Ag	5s ¹	2S01/4	2, 4	7.574	3280.68
	47 Ag 48 Cd	5s ²	1S ₀	1, 3	8.991	2288.02
	48 Cd	35	۵٥	1, 5	0.771	2200.02

TABLE 623.—SPECTROSCOPIC PROPERTIES OF NEUTRAL ATOMS (concluded)

Period n	Neutral atom 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd	Normal electron configuration 5s² 5p¹ 5s² 5p² 5s² 5p³ 5s² 5p⁵ 5s² 5p⁵ 6s² 5p⁵ 6s² 6s² 6s² 6s² 4f⁵ 6s² 4f⁵ 6s² 4f⁵ 6s²	Ground level 2P° 0½ 8P0 4S° 1½ 3P2 2P° 1½ 1S0 2S0 ½ 1S0 2D1½ 4I° 4½ 6I4	Spectral multiplicities 2, 4 1, 3 2, 4 1, 3, 5 2, 4 1, 3, 5 2, 4 1, 3 2 1, 3 2, 4 4 5	Ionization potential volts 5.785 7.332 8.64 9.01 10.44 12.127 3.893 5.210 5.61	Strongest line, A 4511.32 3175.04 2068.38 2142.75 1830.4 1469.62 8521.10 5535.55 6249.93 5699.23 4951.36 4924.53
	61 Pm 62 Sm 63 Eu 64 Gd	$4f^{6} 6s^{2}$ $4f^{7} 6s^{2}$ $4f^{7} 5d^{1} 6s^{2}$	⁷ F ₄ ⁸ S° ₃ ¹ / ₂ ⁹ D° ₂	7, 9 6, 8, 10 7, 9, 11	5.6 5.67 6.16	4296.75 4594.02 4225.85
	65 Tb 66 Dy 67 Ho 68 Fr	•••	• • •	• • •	•••	
	68 Er 69 Tm 70 Yb 71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At	4f ¹³ 6s ² 4f ¹⁴ 6s ² 5d ¹ 6s ² 5d ² 6s ² 5d ³ 6s ² 5d ⁵ 6s ² 5d ⁶ 6s ² 5d ⁶ 6s ² 5d ⁷ 6s ² 5d ⁷ 6s ² 5d ⁷ 6s ¹ 5d ⁷ 6s 1 6s ² 6s ² 6p ² 6s ² 6p ² 6s ² 6p ³	2F° 31/3 1So 2D21/3 3F2 4F11/4 5Do 6S21/4 5F11/4 3D3 2So1/4 1So 2P° 01/2 3Po 4S° 11/4	2 1, 3, 5 4, 6 5, 7 4, 6, 8 3, 5, 7 4, 6 1, 3, 5 2 1, 3 2, 4 	6.2 5.0 5.5 7.7 7.98 7.87 8.7 9.2 8.96 9.223 10.434 6.106 7.415 8 ±	5675.83 3987.99 4518.57 3682.24 2647.47 4008.75 3460.47 2909.06 2543.97 2659.44 2427.95 1849.68 5350.46 4057.82 3067.72 2449.99
7	86 Rn 87 Fr 88 Ra	$6s^2 6p^6$ $7s^2$	¹ S ₀	1, 3 1, 3	10.745 5.277	1786.07 4825.91
	89 Ac 90 Th	6d ¹ 7s ² 6d ² 7s ²	${}^{2}D_{1\frac{1}{2}}$ ${}^{3}F_{2}$	3,5	• • •	• • •
	91 Pa 92 U	$5f^3 6d^1 7s^2$	5L°6	5, 7	4 ±	5915.40
	93 Np 94 Pu					• • •
	94 Pu 95 Am	• • •	• • •	• • •	• • •	• • •
	96 Cm				• • •	
	97 Bk					
	98 Cf					

TABLE 624.—SPECTROSCOPIC PROPERTIES OF SINGLY-IONIZED ATOMS

The wavelengths of strongest lines exceeding $2000~\mathrm{A}$ are valid for standard air, the remainder for vacuum.

Period n	Ionized atom	Normal electron configuration	Ground level	Spectral multiplicities	Ionization potential volts	Strongest line, A
1	1 H +	1s ¹	2°C	• • • •	r4.402	202 70
2	2 He + 3 Li +	1s ²	² S ₀ 1/ ₆ ¹ S ₀	2 1, 3	54.403 75.6193	303.78 1.99.26
2	4 Be +	$2s^1$	2S0 1/4	2	18.206	3130.42
	5 B +	$2s^2$	¹ S ₀	1 2	25.149	1362.46
	6 C+	$2s^2 2p^1$	2P°014	2,4	24.376	1335.71
	7 Ň +	$2s^2 2p^2$	*P. ***	1.3.5	29.605	1085.74
	8 O +	25º 258	4S°11/4	1, 3 2, 4 1, 3, 5 2, 4	35.146	834.47
	9 F+	$2s^{2}2b^{4}$	⁸ P ₂	1, 3, 5 2, 4 1, 3, 5 2, 4	34.98	606.81
	10 Ne +	$2s^2 2b^5$	² P°11/2	1, 3, 5 2, 4 1, 3	41.07	460.73
3	11 Na +	$2s^2 2p^6$	¹S₀ 1″	-, -	47.29	372.07
	12 Mg +	351	2S01/2		15.03	2795.53
	13 A1 +	3s ²	¹ S ₀	1, 3	18.823	1670.81
	14 Si ⁺ 15 P ⁺	$3s^2 3p^1$ $3s^2 3p^2$	² P° _{01/2}	2, 4 1, 3, 5	16.34 19.65	1817.0 1542.32
	16 S +	$3s^2 3p^3$	*P. *S*134	1, 3, 5 2, 4	23.4	1259.53
	17 C1+	$3s^2 3p^4$	3 11/2 3 D.	1, 3, 5	23.80	1071.05
	18 A +	$3s^2 3p^5$	³ P ₂ ² P° ₁ ,	2, 4	27.62	919.78
4	19 K +	$3s^2 3p^0$	$^{1}S_{0}$	1, 3	31.81	600.77
	20 Ca +	4s1	2S014	2	11.87	3933.67
	21 Sc +	$3d^{1}4s^{1}$	$^{\circ}D_{1}$	1, 3	12.80	3613.84
	22 Ti +	$3d^2 4s^1$	4F114	2, 4	13.57	3349.41
	23 V +	3d4	5D0	1, 3 2, 4 1, 3, 5 2, 4, 6	14.65	3093.11
	24 Cr *	$3d^{5}$ $3d^{5}$ $4s^{1}$	6S214		16.49	2835.63
	25 Mn + 26 Fe +	3d° 4s¹ 3d° 4s¹	⁷ S ₃ ⁶ D _{41/4}	3, 5, 7 2, 4, 6, 8	15.64 16.18	2576.10 2382.04
	27 Co +	$3d^8$	⁸ F ₄	2, 4, 6, 8	17.05	2382.04
	28 Ni *	3d°	$^{2}D_{2}^{1/2}$	2, 4	18.15	2216.47
	29 Cu +	$3d^{10}$	¹ S ₀	2, 4, 6, 8 3, 5 2, 4 1, 3, 5 2, 4 1, 3	20.29	2135.98
	30 Zn +	4s1	$^{2}S_{0.16}$	2,4	17.96	2025 51
	31 Ga ⁺	4s2	1S0	1, 3	20.51	1414.44
	32 Ge +	4s2 4p	2P°0%	2	15.93	1649.26
	33 As +	$4s^2 4p^2$	*P ₀ 'S°14	1, 3	20.2	1266.36
	34 Se +	$4s^2 4p^8 4s^2 4p^4$	1S°14	2, 4 1, 3, 5	21.5	1192.29
	35 Br ⁺ 36 Kr ⁺	$4s^2 4p^5$ $4s^2 4p^5$	⁸ P ₂ ² P° ₁ ,	1, 3, 5 2, 4 1, 3	21.6 24.56	1015.42 917.43
5	37 Rb+	$4s^2 4p^6$	¹ S ₀	1, 3	27.5	741.4
· ·	38 Sr +	5s ¹	2S01/2	2	11.026	4077.71
	39 Y +	$5s^2$	1S ₀	1.3	12.233	3710.29
	40 Zr +	$4d^2 5s^1$	4F134	2, 4 1, 3, 5	12.916	3391.98
	41 Nb+	4d4	⁵D₀	1, 3, 5	13.895	3094.18
	42 Mo+	4d ⁵	6S21/4	4, 6 5, 7	• • •	2816.15
	43 Tc +	$4d^5 5s^1$	⁷ S ₃	5, 7	• • •	2543.24
	44 Ru + 45 Rh +	$\frac{4d^7}{4d^8}$	⁴F₄¾ ⁵F₄	2, 4, 0	• • •	2402.72 2334.77
	46 Pd+	4 <i>d</i> °	2D	3, 3 2 4	19.9	2296.53
	47 Ag +	4d ¹⁰	² D ₂ ¹ / ₅₀	1 3	21.5	2246.41
	48 Cd+	5s1	2S01/4	2, 4, 6 3, 5 2, 4 1, 3 2, 4	16.90	2144.38
	49 In +	$5s^2$	15,	1.3	18.86	1586.4
	50 Sn +	$5s^2 5t^1$	2P°014	2, 4	14.6	2152.22
	51 Sb +	$5s^2 5t^2$	³P₁	1 2	19	1606.98
	52 Te +	$5s^{2}5p^{1}$	4S134	2, 4	21.5	1161.52
	53 I ⁺ 54 Xe ⁺	$5s^2 5p^4$ $5s^2 5p^5$	⁸ P ₂ ² P° ₁ ,	1, 3 2, 4 1, 3, 5 2, 4	19.0 21.2	1233.97
	34 Ae	5s² 5p⁵	P 11/2	2, 4	21.4	1100.42

TABLE 624.—SPECTROSCOPIC PROPERTIES OF SINGLY-IONIZED ATOMS (concluded)

Period n	Ionized atom	Normal electron configuration	Ground level	Spectral multiplicities	Ionization potential volts	Strongest line, A
6	55 Cs +	5s ² 5p ⁹	¹S₀	1, 3	23.5	926.75
Ü	56 Ba +	6s ¹	2S₀ 1/4	2	10.00	4554.04
	57 La +	$5d^2$	*F ₂	1, 3	11.43	3949.10
	58 Ce+	4f2 6s1	4H314	2, 4		4186.60
	59 Pr +	$4f^{3}6s^{1}$	°I°4	3, 5		4179.42
	60 Nd+	4f ⁶ 6s ¹	°I21/2	4, 6, 8		4303.57
	61 Pm +	4f° 6s1	8TD	6, 8	.: .:	.:::
	62 Sm +	4f° 6s¹ 4f' 6s¹	⁸ F ₀ ¹ / ₅ ⁸ S ₄	0, 8	11.2	3568.27
	63 Eu+ 64 Gd+	$4f^{7} 6s^{1} 5d^{1}$	10D°21/4	7, 9 6, 8, 10	11.24 12 ±	4205.05 3422.47
	65 Tb +	41 05 34		0, 0, 10	12 -	3422.47
	66 Dy +	• • •	• • •	• • •	• • •	• • •
	67 Ho+	• • •		• • •	• • •	• • •
	68 Er +			• • •	• • •	
	69 Tm+	$4f^{18}6s^{1}$	*F°4	1, 3		3848.02
	70 Yb *	4f146s1	3S034	2	12.10	3694.20
	71 Lu +	$6s^2$	¹S₀	1, 3	14.7	2615.43
	72 Hf +	$5d^{1}6s^{2}$	² D ₁ 1/ ₂	2, 4 1, 3, 5	14.9	2641.41
	73 Ta ⁺ 74 W ⁺	5d³ 6s¹ 5d⁴ 6s¹	°F1 °D0%	1, 3, 5 4, 6	• • •	2685.17 2204.49
	75 * Re *	$5a^{\circ} 6s^{\circ}$	⁷ S ₃	5, 7	• • •	2204.49
	76 Os +	<i>5a</i> 03		J, 7	• • •	•••
	77 Ir +	• • •				
	78 Pt +	$5d^{9}$	$^{2}D_{2\frac{1}{2}}$	2, 4	18.54	1777.09
	79 Au+	$5d^{10}$	¹S₀	1	20.5	1740.47
	80 Hg +	$6s^{i}$	2S01/4	2, 4	18.751	1649.96
0	81 TI+	6s ²	¹S₀	1, 3	20.42	1908.64
8	82 Pb + 83 Bi +	$6s^2 6p^1$	² P° 0 1/2 ² P ₀	2, 4	15.03 16.7	1726.75 1902.41
	84 Po+	$6s^2 6p^2$		3	10.7	1902.41
	85 At +	• • •	• • •	• • •	• • •	• • •
	86 Rn+	• • •				
	87 Fr +			• • •	• • •	• • •
7	88 Ra +	$7s^1$	2So 1/4	2	10.14	3814.42
	89 Ac+	$7s^2$	¹S _o	1, 3		.:::
	90 Th +	$6d^2 7s^1$	4F114	2, 4		4019.14
	91 Pa +	F /3 77 9	410	7.5	• • •	3719.29
	92 U + 93 Np +	$5f^3 7s^2$	4I°414	4, 6	• • •	3/19.29
	93 Np * 94 Pu *	•••	• • •	• • •	• • •	
	95 Am +	•••		• • •		
	96 Cm +					
	97 Bk +					
	98 Cf	***	• • •			

References for series relations in atomic spectra: Meggers, W. F., Journ. Opt. Soc. Amer., vol. 31, p. 44, 1941; vol. 31, p. 606, 1941. Pauling, L., and Goudsmit, S., The structure of line spectra, McGraw-Hill Book Co., New York, 1930. White, H. E., Introduction to atomic spectra, McGraw-Hill Book Co., New York, 1934. Herzberg, G., Atomic spectra and atomic structure, Dover Publications, New York, 1944. Condon, E. U., and Shortley, G. H., The theory of atomic spectra, Macmillan Bacher, R. F., and Goudsmit, S., Atomic energy states, McGraw-Hill Book Moore, C. E., Atomic energy levels, Nat. Bur. Standards Circ. 467, vol. 1, 1949; vol. 2, 1952.

TABLE 625.-MOLECULAR CONSTANTS OF DIATOMIC MOLECULES *

The energy, E, of a molecule is the sum of three contributions, the electronic energy, E_e , the vibrational energy, E_v , and the rotational energy, E_r , i.e.,

$$E = E_o + E_v + E_r \tag{1}$$

The electronic energy, E_* , gives the largest contribution and is entirely similar to the energy of atoms. Similar to S, P, D states of atoms, one distinguishes Σ , Π , Δ , . . . states of diatomic molecules depending on whether the electronic orbital angular momentum about the interval electron spin S determines the multiplicity (2S+1) of the electronic state which is added to the term symbol as a left superscript. Σ states are designated Σ^* or Σ^- depending on whether their eigenfunctions remain unchanged or change sign upon reflection at a plane through the internuclear axis. For molecules with identical nuclei (such as N2, H2, O_2 , . . .) a subscript g or u indicates whether the eigenfunction upon reflection at the center remains unchanged or changes sign (e.g. ${}^1\Sigma_{g}{}^+$, ${}^1\Sigma_{u}{}^+$, ${}^1\Pi_{g}$, . . .). In each electronic state the molecule may have various amounts of vibrational energy.

Quantum mechanics shows that for diatomic molecules the vibrational energy is given by

$$\frac{E_{\bullet}}{hc} = G(v) = \omega_{\bullet}(v + \frac{1}{2}) - \omega_{\bullet}x_{\bullet}(v + \frac{1}{2})^{2} + \dots$$
 (2)

where v is the vibrational quantum number which can assume the values $0, 1, 2, \ldots$ and where ω_e is the (classical) vibrational frequency (in cm⁻¹) for infinitesimal amplitudes. The constant $\omega_e x_e$ is small compared to ω_e and is due to the anharmonicity of the vibration.

If the vibrational energy is increased more and more, a point is reached at which the two atoms fly apart, that is, the molecule is dissociated. The dissociation energy, D_0 , corresponds to the maximum of the function G(v) and can in many cases be determined from the spectrum.

In each vibrational level the molecule may have various amounts of rotational energy. For diatomic molecules, in the simplest case ($^{1}\Sigma$ state), the rotational energy is given by

$$\frac{E_r}{hc} = F(J) = B_v J(J+1) - \dots$$
 (3)

where J is the rotational quantum number which may take the values 0, 1, 2, . . . and where B_v is the so-called rotational constant which is slightly different for different vibrational levels of a given electronic state: one has

$$B_v = B_e - a_e (v + \frac{1}{2}) + \dots {4}$$

Here ao is small compared to the rotational constant Bo which refers to the equilibrium position. For Be one finds

$$B_{\sigma} = \frac{h}{8\pi^2 c\mu r_{\sigma}^2} \tag{5}$$

Here $\mu = \frac{m_1 m_2}{m_1 + m_2}$ is the reduced mass of the molecule with m_1 and m_2 the masses of

the two atoms, and r_e is the internuclear distance in the equilibrium position. The product μr_e^2 is the moment of inertia of the molecule; in other words, B_e , apart from universal constants, is the reciprocal moment of inertia.

Each electronic state of a diatomic molecule is characterized by a certain set of values for the vibrational and rotational constants ω_e , $\omega_e x_e$, ..., D_0 , r_e , B_e , α_e , These constants have been determined for a large number of diatomic molecules in various electronic stants have been determined for a large number of diatomic molecules in various electronic states from the analysis of band spectra. A comprehensive and up-to-date table may be found in "Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules," by G. Herzberg (Van Nostrand. New York, 1950). The following table is an excerpt from the compilation just mentioned, but brought up to date, 1953. Here only the constants ω_e , D_o^0 , and r_e for the ground states are listed and the type of the ground state is given. From r_e the rotational constant B_e can be obtained according to the formula (5) given above. D_o^0 corresponds to dissociation into normal atoms. The values are given in ev (electron-volts) where 1 ev corresponds to 8068.3 cm⁻¹. The numbers on the element symbols give the mass numbers of the isotopic species to which the constants refer. When no mass number is given the data refer to the ordinary isotopic mixture. With the exception of the hydrogen molecule in each case only the data for one isotopic species are listed.

of the hydrogen molecule in each case only the data for one isotopic species are listed. More detailed explanation of the underlying theory, the methods of determination of these constants and references for each individual molecule may be found in the book already quoted.

^{*} Prepared by G. Herzberg, National Research Council of Canada.

TABLE 625A.—MOLECULAR CONSTANTS FOR THE GROUND STATES OF DIATOMIC MOLECULES

The following symbols are used: () Constants and symbols in parentheses are uncertain or of low accuracy. [] Constants in brackets refer to the lowest vibrational levels rather than to the equilibrium position. Such a value under ω_e is the first vibrational quantum $\Delta G_1/2 = G(1) - G(0) = \omega_e - 2\omega_e x e^+$..; under r_e it is the effective value r_0 in the lowest vibrational level (v = 0), that is, it has been obtained from B_0 rather than B_e . * An asterisk in the column "Type of state" indicates that it is doubtful whether the state whose constants are given is the ground state of the molecule. † A dagger after a value under r_e indicates that it has been obtained from electron diffraction rather than from the spectrum of the molecule. {In a few cases several values of the dissociation energy are compatible with the available data. These values are grouped together by braces.

Molecule	Type of state	ω _ε (cm ⁻¹)	$D_0^{0}(ev)$	re(Å)
Ag ¹⁰⁰ Br ⁸¹	$(^{1}\Sigma)$	247.72	2.6	7 6 (21)
Ag ¹⁰⁷ Cl ⁸⁵	$\binom{2}{1\Sigma}$	343.6	3.1	
AgH ¹	1Σ+	1760.0	2.5	1.617
Λ σ107 γ 127	$\binom{2}{\Sigma}$	206.18	2.98	1.017
Ag ¹⁰⁷ I ¹²⁷ AgO ¹⁶	$\binom{1}{\Sigma}$	493.2	(1.8)	
Al ²⁷ Br ⁷⁹	¹ Σ +	378.0	(2.4)	2.295
A1 ²⁷ C1 ⁸⁵	1Σ +	481.30	(3.1)	2.14
Al ²⁷ F ¹⁹	1Σ +	814.5	(2.5)	2.17
Al ²⁷ H ¹	1\sum_{\sum_{+}}^{2} +	1682.57	< 3.06	1.6459
$(Al^{27}H^1)^+$	² ∑ +	(1610)	10.00	1.602
Al ²⁷ I ¹²⁷	1 <u>\sum_+</u> +	316.1	(2.9)	1.002
A1 ²⁷ O ¹⁶	² ∑ +	978.2	(<3.75)	1.6176
A c. 78	${}^{1}\Sigma_{g}^{+}$	429.44	≤3.96	1.0170
$(As_2^{75})^+$ $As^{75}N^{14}$	$({}^{2}\Sigma^{+})$	314.8	(2.4)	
A s75 N14	¹ Σ + ′	1068.0	(6.5)	
As ⁷⁵ O ¹⁶	2Π	967.4	≤ 5.0′	
Au ¹⁹⁷ Cl ⁸⁸	(¹∑ +)	382.8	(3.5)	
Au ¹⁹⁷ H¹	¹ Σ + / ⁸ Σ ₀ - / ² Σ + / ² Σ	2305.01	3.1	1.5237
B, ii	⁸ Σ _a -	1051.3	(3.6)	1.589
BaBr ⁷⁰	² ∑ +	193.8	(2.8)	
Ba188C135	$^2\Sigma$	279.3	(2.7)	
BaF19	$^{2}\Sigma$	468.9	(3.8)	
BaH¹	² ∑ [→]	1172	≤ 1.82	2.2318
BaO ¹⁶	¹ Σ	669.8	4.7	1.940
BaS			(2.3)	
B11Br79	¹ Σ +	684.31	(4.1)	1.89
B11Cl35	¹ Σ +	839.12	(4.2)	1.716
Be ⁹ Cl ⁸⁵	² Σ +	846.58	(4.3)	(1.7)
Be°F¹°	² Σ +	1265.6	(5.4)	1.3614
Be°H¹	² Σ +	2058.6	(2.2)	1.3431
(Be ⁹ H ¹)+	¹ Σ +	2221.7	(3.2)	1.3122
Be ⁹ O ¹⁶	¹ Σ +	1487.32	$\begin{cases} (3.7) \\ (3.0) \end{cases}$	1.3308
B11F19	¹ Σ +	1400.6	(4.3)	1.262
B"H'	² Σ +	(2366)	< 3.51	1.2325
$(B^{11}H^{1})^{+}$	² Σ +	(2435)	~ 5.51	[1.2146]
Bi ₂ ²⁰⁰	$^{1}\Sigma_{g}^{+}$	172.71	1.70	[1.2140]
Bi ²⁰⁰ Br ⁷⁹	29	209.34	2.74	
Bi ²⁰⁰ Cl ⁸⁶		308.0	(3.0)	
Bi ²⁰⁰ F ¹⁰		510.7	(3.2)	
Bi ²⁰⁰ H ¹	(0 ⁺)	1698.9	(2.7)	1.809
Bi ²⁰⁰ I ¹²⁷	(0)	163.9	(2.7)	21007
Bi ²⁰⁰ O ¹⁶		702.1	(2.9)	
Bii Ni4	* ∏ ⁸	1514.6	(5.0)	1.281
B11O16	² Σ +	1885.44	(9.1)	1.2049
Br ⁷⁹ Br ⁸¹	$^{1}\Sigma_{g}^{+}$	323.2	1.971	2.284
BrCl	1Σ+	[430]	2.138	
Br79F19	1Σ +	673	2.16	1.75555
BrO¹6	*	713	(2.2)	
C_2^{12}	³∏"	1641.35	(3.6)	1.3117
CaBr ⁷⁹	² Σ +	285.3	(2.9)	
CaCl ³⁵	$^{2}\overline{\Sigma}$ +	369.8	≤ 2.76	(1.86_6)
Ca40F19	² Σ +	587.1	≤ 3.15	([2.02])
Ca ⁴⁰ H ¹	2Σ	1299	≤ 1.70	2.0020

TABLE 625A.—MOLECULAR CONSTANTS FOR THE GROUND STATES OF DIATOMIC MOLECULES (continued)

			,	
Molecule	Type of state	ω _e (cm ⁻¹)	$D_0^0(ev)$	$r_{e}(\mathring{A})$
(Ca40H1)+				[1.73]
CaI ¹²⁷	$(^2\Sigma)$	242.0	(2.8)	
Ca ⁴⁰ O ¹⁶	¹ Σ *	732.1	5.0	1.822
CaS			≤ 5.2	
C12C185	2∏	846		
Cd ₂			.087	
CdBr	. *	230.0	(3.3)	
CdCl ³⁵	² Σ	330.5	(2.8)	
CdF ¹⁹	$(^{2}\Sigma)$	(535)		
CdH1	² Σ +	1430.7	.678	1.762
$(CdH^1)^+$	¹ Σ +	1775.4	(2.0)	1.667
CdI ¹²⁷	$^2\Sigma$	178.5	(1.6)	
CdS			≤ 3.9	
CdSe		0.44.0	≤ 3.2	
CeO ¹⁶	*	865.0	(77)	
CF	2∏	1308.4	(4.8)	1.27
C12H1	²∏ 1—	2861.6	3.47	1.1198
(C12H1)+	¹ Σ +	[2739.54]	3.6	1.13083
C1 ₂ 85	$\frac{1}{\Sigma_g}^+$	564.9	2.475	1.988
(Cl ₂ 85)+	2∏ *	645.3	(4.4)	1.891
Clas F 19	¹ Σ	786.3	2.616	1.62813
C1O ¹⁶ C ¹² N ¹⁴	2 ₂ +	(780)	1.9	1.1718
C-N-	-2:	2068.70	(11 100	1.1/18
$C^{12}O^{16}$	¹ Σ +	2170.21	∫ 11.108	1.1282
CO	2	21/0.21	9.605	1.1202
$(C^{12}O^{16})^+$	²Σ +	2214.24	(9.9)	1.1151
C ₀ C1	*	421.2	(3.3)	1.1131
CoH ¹	$\Omega = 4$	(1890)		[1.542]
CoO ¹⁶	*	(850)		[1.0 12]
$C^{12}P^{s_1}$	² ∑ +	1239.67	(6.9)	1.562
ČrŌ¹6	*	898.8	4.4	1.005
C ¹² S ⁸² Cs ₂ ¹⁸⁸	¹ Σ +	1285.1	(7.8)	1.534
Cs2 ¹⁸⁸	$^{1}\Sigma_{g}^{+}$	41.990	.45	
Cs ¹⁸⁸ Br	1Σ"+	(194)	≥3.9	[3.14] †
Cs ¹⁸⁸ C1	¹ Σ +	`299´		2.88
C12Se	¹ Σ +	1036.0	(6.8)	
CsF ¹⁹	¹ Σ +	(270)	5.67	2.34
Cs188H1	1 _Σ +	890.7	(1.9)	2.494
Cs ¹²⁸ I 127	¹ Σ +	142	3.37	[3.41] †
CsRb		49.4		
Cu ₂	$\binom{1}{1}\sum_{g}^{g+1}$	160	(.17)	
Cu ⁶⁸ Br ⁷⁹	Σ +	314.10	(2.5)	
Cu ⁶⁸ Cl ⁸⁶	1Σ +	416.9	(3.0)	1 77 4 2
Cu ⁸⁶ F ¹⁹	1Σ +	622.7	(3.0)	1.743
Cu ⁶⁸ H ¹	1Σ +	1940.4	< 2.89	1.463
(Cu ⁶⁵ H¹)+	² Σ	[1874]	(20)	[2.27]
Cu ⁶⁸ I ¹²⁷	1 ₂ +	264.8	(3.0)	
CuO ¹⁶	$\binom{2\Sigma}{\Sigma}$	628 [892. ₁]	4.9	1.418 †
F ₂ ¹⁹ FeCl ⁸⁵	1\(\Sigma_g^+\) 6\(\Sigma_p^+\)	406.6	<1.63	1.410
FeO ¹⁶	2 +	880	≤ 4.24	
Ga [®] Br ⁸¹	¹ Σ +	263.0	(2.7)	
Ga [®] Cl [®]	1 ² +	365.3	(2.7) ≤5.0	[2.21]
Ga [®] F ¹⁹	¹ Σ +	623.2	(6.3)	(2,21)
Ga ⁶⁰ I ¹²⁷	1 _Σ +	216.4	(0.3) ≤2.88	
GaO16	$^2\Sigma$	767.69	(2.9)	
GdO ¹⁶	*	841.0	(5.9)	
GeBr	2П	29 6 .6	(3.0)	
Ge74C186	²∏	406.6	(4.0)	
GeF ¹⁹	² ∏	665.2	(4.9)	
Ge74O16	¹ Σ +	985.7	(6.9)	1.651
Ge ⁷⁴ S**	¹ Σ +	575.8	(5.6)	

TABLE 625A.—MOLECULAR CONSTANTS FOR THE GROUND STATES OF DIATOMIC MOLECULES (continued)

Molecule Ge ⁷⁴ Se ⁸⁰	Type of state	ω _e (cm ⁻¹) 406.8	$D_0^0(\text{ev})$ (4.1)	$r_{\theta}(\mathring{A})$
Ge Se Ge ⁷⁴ Te ¹²⁰	1Σ +	323.4	(3.2)	
H_2^1	Σ_{g}^{+}	4395.2	4.476	.7416₀
H ¹ H ²	$^{1}\Sigma_{g}^{g}$	3809.7	4.511	.7414
H ² H ³	Σ_{g}^{0}	2853.8	4.570	$(0.7416_{\rm e})$
H ₂ ²	$^{1}\Sigma_{g}^{g}$	3118.5	4.554	$(.7416_6)$
	$^{1}\Sigma_{g}^{0}$	3608.3	4.524	$(.7416_6)$
H ₁ H ₈	$^{1}\Sigma_{g}^{g}$	2553.8	4.588	(.7416 ₆)
H ₂ ³	${}^{2}\Sigma_{g}^{o}$	2333.8	2.648	1.06
$(H_2^1)^+$	$^{1}\Sigma^{g}$	2649.67	3.75	1.414
H¹Br	2Π,	2049.07		[1.459]
(H¹Br)+		2989.74	3.5	1.27460
H¹C185	${}^{1}\Sigma$ + ${}^{2}\Pi$		4.430	1.3153
(H¹Cl ⁸⁵)+	-11 ₄	2675.4	4.48	1.5155
He ₂ ⁴	$\sum_{g} q^{+}$	unstable	(21)	1.08
(He ₂ ⁴) ⁺	$^{2}\Sigma_{u}^{+}$	[1627.2]	(3.1)	.9171
H1F10	$ \begin{array}{c} \Sigma + \\ (^{2}\Sigma) \end{array} $	4138.52	5.8	
Hg ₂	20	(36)	.060	3.3
Hg ²⁰² Br ⁸¹	$\binom{2\Sigma}{2}$	186.2	.7	[2 22] +
HgCl ⁸⁵	² Σ +	292.61	1.0	[2.23] †
HgF ¹⁹	$\binom{2}{2}$	490.8	(1.8)	1 7 40 4
HgH¹	² Σ +	1387.09	.376	1.7404
$(HgH^1)^+$	¹ Σ +	2033.87	(2.3)	1.594
HgI ¹²⁷	$(^2\Sigma)$	125.6	.36	
HgS			≤ 2.8	
HgSe			≤ 2.7	
HgT1		26.9	(.031)	
H ¹ I ¹²⁷	$^1\Sigma$ +	2309.5	3.056	1.604
$(H^1I^{127})^+$			3.11	
H1S82	²∏ ₄		< 3.8	[1.35]
I ₂ ¹²⁷	$^{1}\Sigma_{g}^{+}$	214.25	1.5417	2.667
$I^{127}Br^{79}$	¹ Σ +	268.4	1.817	
I127C125	¹ Σ +	384.18	2.152	2.32070
I127F10	¹ Σ +	610	1.98	
In ¹¹⁵ Br ⁸¹	¹ Σ +	221.0	≤ 3.3	[2.57] †
In115C185	¹ Σ +	317.4	≤ 4.54	2.32
In ¹¹⁵ F ¹⁹	¹ Σ +	534.7	(5.7)	
In118H1	1Σ +	1474.7	€2.48	1.8376
In116 I 127	¹ Σ +	177.1	≤ 2.7	[2.86] †
InO16	$(^{2}\Sigma)$ *	703.09	(1.3)	
I127O16	` *	687	(1.9)	
K_2^{89}	$^{1}\Sigma_{g}^{+}$	92.64	.514	3.923
KBr	¹ Σ +	231	3.96	[2.94] †
KC1	¹ Σ +	280	4.42	[2.79] †
KF19	¹ Σ +	(390)	≤ 5.9	[2.55]
K89H1	¹ Σ +	985.0	1.8_{6}	2.244
KI^{127}	¹ Σ +	212	3.33	[3.23] †
La ¹⁸⁹ O ¹⁶	$\frac{2\Sigma}{\Sigma}$	811.6	(9)	
Li27	$^{1}\Sigma_{a}^{+}$	351.43	1.03	2 672
LiBr	¹ Σ +		4.5	
LiCI	1 × +		5.1	
Li ⁷ Cs ¹⁸⁸	¹ Σ +	(167)		
LiF19	_	` '	≤ 6.6	
Ĺi ⁷ H¹	¹ Σ +	1405.65	(2.5)	1.5953
LiI ¹²⁷	1Σ +	450	3.6	
LiK	1 _Σ +	(207)		
LiRb	1Σ +	(185)		
LuO ¹⁶	_	841.66	(5.3)	
Mg ²⁴ Br ⁷⁹	$(^2\Sigma)$	373.8	≤ 3.35	
Mg ²⁴ Cl ⁸⁵	$^{2}\Sigma^{+}$	465.4	(3.2)	
Mg24F19	2 ² Σ +	717.6	(4.2)	[1.75]
Mg ²⁴ F ¹⁹ Mg ²⁴ H ¹	2 ² Σ +	1495.7	€2.49	1.7306
(Mg ²⁴ H ¹)+	1 _Σ +	1695.3	(2.1)	1.649
MgI ¹²⁷	$\binom{2}{\Sigma}$ +)	[312]	(=,	
MIRI	(2)	[0,2]		

TABLE 625A.—MOLECULAR CONSTANTS FOR THE GROUND STATES OF DIATOMIC MOLECULES (continued)

Molecule Mg ²⁴ O ¹⁶	Type of state ¹ ∑ *	ω _e (cm ⁻¹) 785.1	D ₀ 0(ev) 5.2	re(Å) 1.749
MgS Mn ⁵⁵ Br	${}^{\tau}_{\Sigma}$	525.2	(2.9)	1./ 42
Mn ⁵⁵ (1 ⁽⁸⁵⁾	$(^7\Sigma)$	289.7 384.9	(2.9) (3.3)	
Mn ⁵⁵ F ¹⁹ Mn ⁵⁵ H ¹	$\binom{7\Sigma}{\Sigma}$	618.8 [1490.58]	(3.9)	1.73075
$Mn^{55}I^{127}$	$(^7\Sigma)$	(240)	<(2.4)	1./30/3
Mn ⁵⁵ O ¹⁶	$^{1}\Sigma_{g}^{+}$	840.7 2359.61	(4.4) 9.756	1.094
N ₂ ¹⁴ (N ₂ ¹⁴) ⁺ Na ₂ ²³	$^{2}\Sigma_{a}^{+}$	2207.19	8.724	1.116
Na2 ²³ Na ²⁸ Br	$\overset{1}{\overset{1}{{{{{{{}{{$	159.23 315	.73 3.85	3.079 [2.64] †
Na ²³ Cl	¹ Σ +	380	3.58	[2.51] †
Na ²³ Cs ¹⁸⁸ Na ²³ F ¹⁹	¹ Σ ⁺	(98)	≤ 5.3	
N228H1	1 ₂ +	1172.2	(2.2)	1.8873
Na ²³ I ¹²⁷ Na ²⁸ K	¹ Σ + ¹ Σ +	286 123.29	3.16 .62	[2.90] †
Na ²⁸ Rb N¹⁴Br	1\sum_{\sum_{+}}^{+} +	106.64	(.57)	
N ₁₄ H ₁	[₹] -	693 (3300)	(3.0) (3.8)	1.038
NiBr NiCl	*	334		
NiH¹	$(^{2}\Pi)$ * $^{2}\Delta_{5}/_{2}$	419.2 [1926.6]	(7.3) ≤3.1	1.475
NiO ¹⁶ N ¹⁴ O ¹⁶	* 211	(615) 1903.85	≤ 4.2 ₇ 6.49	1.1508
$(N^{14}O^{16})^{+}$			10.6	1.1300
N ¹⁴ S ⁸² O ₂ ¹⁸	${}^{2}\Pi_{r}$ ${}^{8}\Sigma_{g}^{-}$	1220.0 1580.36	(5.9) 5.080	1.20740
O_2^+	$^{2}\Pi_{a}$	1876.4	6.48	1.1227
O ¹⁶ H ¹ (O ¹⁶ H ¹) ⁺	² ∏ ⁴ ⁸ ∑ -	3735.21 [2955]	4.35 ≥ 4.4	.9706 1.0289
P_2^{81}	$^{1}\Sigma_{g}^{+}$	780.43	5.031	1.894
Pb₂ PbBr™	$({}^{2}\Pi_{1}/{}_{2})$	256.5 207.5	(.7) 3.0	
PbCl ⁸⁵	$(^{2}II_{1}/_{2})$	303.8	3.1	
PbF ¹⁰ PbH ¹	$^{2}\Pi_{1/2}$ $^{2}\Pi_{1/2}$	507.2 1564.1	3.5 <i>≤</i> 1.59	1.839
PbI ¹²⁷	$(^{2}\Pi_{1}/_{2})$	160.5	2.8	
PbO ¹⁶ Pb ²⁰⁸ S ⁸²	1Σ + 1Σ +	721.8 428.14	(4.2) (4.7)	1.922 2.395
PbSe PbTe	$\overset{1}{\Sigma}^{+}$ $\overset{1}{\Sigma}$	277.6	(4.7)	
$P^{s_1}H^1$	³∑ -	211.8 (2380)	(3.5)	[1.433]
$P^{81}N^{14}$ $P^{81}O^{16}$	$^{1}\Sigma$ + $^{2}\Pi_{r}$	1337.24 1230.6	(6.3) (6.2)	1.4910 1.447
Pr141O16	*	818.9	(0.2)	1.44/
Rb₂ ⁸⁵ RbBr	$^{1}\Sigma_{g}^{+}$	57.28	.49 3.9	
RbC1	$\binom{1}{\Sigma}$	(253)	>3.96	[2.89] †
RbCs ¹⁸⁸ RbF ¹⁰	$({}^{1}\Sigma^{+})$	49.41 340	5.4₅	
RbH¹	¹ Σ ⁺	936.77	(1.9)	2.367
RbI ¹²⁷ S ₂ ⁸²	${}^{1}\Sigma_{8}\Sigma_{g}^{-}$	725.68	3.29 ≤ 4.4	[3.26] † 1.889
Sb ₂ SbBi ²⁰⁹	$\begin{array}{c} {}^{8}\Sigma_{g}^{-} \\ {}^{1}\Sigma_{g}^{+} \\ {}^{1}\Sigma^{+} \end{array}$	269.85	(3.7)	
SbC186	-2	220.0 369.0	(3.0) (4.6)	
SbF ¹⁶ SbN ¹⁴	$^{1}\Sigma$	614.2 942.0	(4.2) (4.8)	
SbO ¹⁶	2∏	817.2	(3.8)	
Sc45O16	² Σ	971.55	(7)	

TABLE 625A.—MOLECULAR CONSTANTS FOR THE GROUND STATES OF DIATOMIC MOLECULES (concluded)

			(0011011111111)	
Molecule	Type of state	$\omega_e(\text{cm}^{-1})$	$D_0^0(\mathrm{ev})$	$r_{e}(\mathring{A})$
Se₂80	$({}^1\Sigma_g{}^+)$	391.77	≤ 3.55	2.16
SeO ¹⁶	(- /)	907.1	(5.4)	2.10
Si ₂	*	(750)	(3.1)	
SiBr	^{2}II	425.4	(3.7)	
Si ²⁸ Cl ³⁶	2 II .	535.4		
SI"CI"	² ∏,	856.7	(4.0)	[1 (027
Si ²⁸ F ¹⁹	-11,		(4.8)	[1.603]
Si ²⁸ H ¹	² ∏ _r	(2080)		1.520
Si ²⁸ N ¹⁴	² Σ + ¹ Σ +	1151.68	(4.5)	1.572
Si ²⁸ O ¹⁶	Σ +	1242.03	7.2	1.510
(Si ²⁸ O ¹⁶)+	² Σ +	(851)		1.504
Si ²⁸ S ³²	¹ Σ +	749.5	(6.6)	1.929
Si ²⁸ Se	¹ Σ +	580.0	(5.8)	
Si ²⁸ Te	¹ Σ +	481.2	(5.5)	
SnBr	$^{2}\Pi_{r}$	247.7	(3.0)	
SnC186	² Π _r	352.5	(3.6)	
SnF ¹⁹	$^{2}\Pi_{1}/_{2}$	582.9	(3.9)	
SnH¹	$^{2}\Pi_{r}^{1/2}$	(1580)	< 3.2	[1.782]
SnO ¹⁶	1 _Σ +	822.4	5.7	1.838
SnS	1 ² +	487.68	≤3.0	(2.06)
	1 _Σ +	331.2	(4.6)	(2.00)
SnSe	1 2 +			
SnTe		259.5	(4.2)	
$S^{32}O^{16}$	⁸ Σ -	1123.7	$\begin{cases} 4.001 \\ 5.146 \end{cases}$	1.4933
C - D - 79	²∑ +	216.5		
SrBr ⁷⁰	² Σ +		(2.8)	
SrC1 ³⁵		302.3	(3.0)	
SrF ¹⁹	² ∑ +	500.1	(3.5)	0.1455
SrH¹	² Σ +	1206.2	≤ 1.68	2.1455
SrI ¹²⁷	$\binom{2}{\Sigma}$	173.9	(2.2)	
SrO ¹⁶	`1 <u>\</u> *	653.5	(4.5)	1.921
SrS			<i>≤</i> 2.7	
Te ₂		251	<i>≤</i> 3.18	[2.59] †
TeO16		796.0	∫ 2.728	
		790.0	3.453	
Ti48C185	*	456.4	(1.0)	
Ti48O16	8II,	1008.26	(6.9)	1.620
TlBr ⁸¹	¹ Σ +	192.1	≤ 3.19	[2.68] †
TICI ⁸⁵	1 _Σ +	287.47	3.75	[2.55] †
TIFie	1 _Σ +	475.00	< 4.72	[2.00]
TIH¹	1Σ +	1390.7	≤ 2.18	1.870
T11127	1Σ +	150	<i>≤</i> 2.64	[2.87] †
$V^{51}O^{16}$	$\binom{2\Delta}{\Delta}$ *	1012.7	(6,4)	1.890
YbCl	$\binom{\Delta}{2\Sigma}$ *	293.6	(1.2)	1.070
Y 80 O 16	(2)	852.5	(9)	
Zn ₂	$(^{1}\Sigma)$ $(^{2}\Sigma) *$	034.3	(.25)	
	(25) *	(220)	(.23)	
ZnBr	$(\frac{1}{2}\sum)^{\frac{1}{4}}$		(20)	
ZnC1 ³⁵	25	390.5	(3.0)	
ZnF ¹⁹	² Σ	(630)	0.51	1.5045
ZnH¹	² Σ +	1607.6	.851	1.5945
$(ZnH^1)^+$	¹ Σ +	1916	(2.5)	1.515
Zn ⁶⁴ I ¹²⁷	$(^2\Sigma)$ *	223.4	(2.0)	
ZnO			≤ 4.0	
ZnS			≤ 4.4	
ZnTe			≤ 2.2	44.44
$Zr^{90}O^{16}$	аП	937.2	(7.8)	(1.416)
				····

The atmosphere, with a total mass of about 5.3×10^{21} g (about one-millionth the mass of the earth), extends 7,000-60,000 miles above sea level (depending upon the definition of the top) and for purposes of discussion may be divided into several regions or layers. From sea level up to about 10-15 km (the troposphere), about the next 30 km above this (the stratosphere), and the entire region above this (i.e., above about 40 km) is spoken of as the upper atmosphere. At heights above 80 km in the upper atmosphere strong ionization is found and thus this region is called the ionosphere. Again the ionosphere may be divided into three or four layers; first, the *E* layer (about 100 km) moderately ionized; next the F_1 layer (at about 200 km) more strongly ionized; the F_2 layer (about 300 km) much more strongly ionized. Above this, there is some recent evidence indicating an additional ionized region, the *G* layer (400-700 km).

The following tables give some characteristics of the atmosphere as a

function of the height above sea level.

TABLE 626.—COMPOSITION OF THE AIR NEAR GROUND LEVEL 104

Gas	Molecular weight	Percent per volume
Nitrogen	. 28	78.09 20.95
Oxygen	. 40	.93 100.00
Carbon dioxide		0204 18×10^{-4}
Helium		5.3×10^{-4} 1.1×10^{-4}
Hydrogen	. 2	$\begin{array}{c} 0.5 \times 10^{-4} \\ 0.08 \times 10^{-4} \end{array}$
Xenon	. 48	$.02 \times 10^{-4}$, increasing with altitude
Radon		7 \times 10 ⁻¹⁸ , decreasing with altitude .2 – 4, variable

¹⁹⁴ Regener, E., The structure and composition of the stratosphere, No. 509, Headquarters Air Materiel Command, Wright Field, Dayton, Ohio, April 1946.

TABLE 627.—COMPOSITION OF THE ATMOSPHERE UP TO THE F_2 LAYER, LATITUDE 45° 195

Altitude km 0 50 83	Composition, 1 percent volume 21 O ₂ , 78 N ₂ , .93 A 18 O ₂ , 82 N ₂ 18 O ₂ , 82 N ₂	Molecular weight of mixture, M 28.9 28.66 28.66	Altitude km 120 300 (F ₂ layer)	Composition 1 percent volume 30.5 O, 69.5 N ₂ 30.5 O, 69.5 N ₂	Molecular weight of mixture, M 24.35 24.35
---------------------------------	---	--	--	--	--

¹⁹⁶ Grimminger, G., Analysis of temperature, pressure and density of the atmosphere extending to extreme altitudes, p. 18, Rand Corporation, November 1948.

A standard atmosphere is defined by an altitude-temperature-pressure relation. It is an aeronautic necessity in valuating the performance of airplanes and for the calibration of instruments. The following standard has been officially adopted by the Army Air Corps, National Bureau of Standards, National Advisory Committee for Aeronautics, and the Weather Bureau. See Table 343.

Altitude	Pres	ssure	Dens	sity	Т		
Meters	mmHg	inHg	kg/m ⁸	lb/ft8	Temperature °C		
0	760.0	29.921	1.2255	.07650	15.0		
1000	674.1	26.54	1.1120	.06942	8.5		
2000	596.2	23.47	1.0068	.06286	+ 2.0		
3000	525.8	20.70	.9094	.05678	- 4.5		
4000	462.3	18.20	.8193	.05115	-11.0		
5000	405.1	15.95	.7363	.04597	17.5		
6000	353.8	13.93	.6598	.04119	-24.0		
7000	307.9	12.12	.5896	.03681	-30.5		
8000	266.9	10.51	.5252	.03279	-37.0		
9000	230.4	9.07	.4664	.02912	-43.5		
10000	198.2	7.80	.4127	.02577	50.0		
11000	169.7	6.68	.3614	.02256	-55.0		
12000	145.0	5.71	.3090	.01929	-55.0		
13000 14000	124.0	4.88	.2642	.01649	-55.0		
15000	106.0	4.17	.2259	.01410	-55.0		
13000	90.6	3.57	.1931	.01206	-55.0		

TABLE 629.—VALUES OF ATMOSPHERIC TEMPERATURE, PRESSURE, AND DENSITY UP TO THE F., LAYER*

Latitude 45°, $\rho_a = 1014 \text{ mb,}^{\dagger} \rho_a = 1.223 \times 10^{-4} \text{ g/cm}^3$, d (diameter of particle) = $3 \times 10^{-3} \text{ cm}$

Speed of sound, c	cm/sec	3.410×10^{4}	3.351	3.291	3.167	3.038	2.967	2.967	2.967	2.968	2.970	2.972	3.348	3.802	3.802	3.496	3.126	3.126	3.443	3.686	4.322	2.02	:	:	:
Mean collision fred. P		× 10°	» X	。 20 X	× 10°	× 10°	× 10°	× 10°	× 10°	× 10°	X 10'	× 10′	\times 10 $^{\prime}$	× 10°	× 10°	× 10°	× 10°	× 10°	× 10,	× 10,	× 10°	× 10°	1.88 × 10	3.93×10	1.25×10
Mean free	E	9.744 × 10-8	1.130×10^{-6}	1.318 × 10-6	1.825 × 10-6	2.592×10^{-6}	3.165 × 10-6	5.010 × 10-6	8.048 × 10-6	2.069 × 10 ⁻⁴	4.178 × 10-4	8.399×10^{-4}	3.006 × 10-6	1.155×10^{-3}	2.943×10^{-3}	5.915×10^{-2}	1.505×10^{-1}	2.990×10^{-1}	1.194	2.958	1.926×10	2.00×10^{3}	4.29×10^{8}	2.29×10^{4}	7.79×10^{4}
Mean particle speed, v	cm/sec	4.590×10^{4}	4.511	4.432	4.264	4.090	3.996	3.996	3.996	3.996	3.999	4.002	4.508	5.118	5.118	4.706	4.209	4.209	4.612	4.916	5.708	6.63	8.07	10.6	9.78
Number density, n	particles/cm ⁸	2.568×10^{19}	2.213×10^{19}	1.898×10^{19}	1.371×10^{10}	9.652×10^{19}	7.905×10^{16}	4.995×10^{18}	3.109×10^{16}	1.210×10^{18}	5.989×10^{17}	2.979×10^{17}	8.323×10^{16}	2.166×10^{16}	8.501×10^{18}	4.230×10^{16}	1.663×10^{16}	8.367×10^{14}	2.096×10^{14}	8.459×10^{18}	1.299×10^{18}	1.25×10^{12}	5.83×10^{10}	1.09×10^{10}	3.21×10^{6}
Density. 0	g/cm³	1.223×10^{-8}	1.055×10^{-1}	9.047×10^{-4}	6.537×10^{-4}	4.601 × 10 ⁻⁴	3.768 × 10-	2.381×10^{-4}	1.482×10^{-4}	5.761×10^{-6}	2.849 × 10-6	1.415×10^{-6}	3.946 × 10-	1.024×10^{-6}	4.019×10^{-7}	2.000×10^{-7}	7.860×10^{-8}	3.956×10^{-8}	9.507×10^{-9}	3.713×10^{-3}	5.218×10^{-10}	5.02×10^{-11}	2.33×10^{-12}	4.38×10^{-13}	1.29×10^{-18}
Pressure.	millibars	1014	843.5	697.5	466.8	302.3	236.2	149.2	92.88	36.14	17.89	8.901	3.148	1.054						٠.				1.40 × 10-	
Temp	.K	288.0	278.1	268.2	248.4	526.6	218.0	218.0	218.0	218.0	218.0	218.0	276.0	355.0	355.0	300.2	240.0	240.0	276.4	304.2	375.0	505.5	751.0	935.2	1100
Apparent gravity, g'	cm/sec3	69.086	980.22	979.74	978.80	977.87	977.37	976.46	975.52	973.66	972.26	970.87	968.54	965.40	962.39	959.81	957.00	955.51	952.55	950.30	944.60	935.20	917.88	905.21	894.09
1																									
Height, h	E E	0	1.524	3.048	960'9	9.144	10.769	13.716	16.764	22.860	27.432	32.000	39.624	20.000	00009	68.581	78.000	83.000	92.965	100.58	120.00	152.40	213.36	259.08 160.98	300.00

* For reference, see footnote 195, p. 592. † 1 millibar (mb) = 102 dynes/cm³ = 0.750 mmHg.

TABLE 630.—VALUES OF TEMPERATURE, PRESSURE, AND DENSITY ABOVE THE ${f F}_2$ LAYER (CALCULATED) *

Latitude 45°, $\rho_a = 1014 \ mb$, $\rho_a = 1.223 \times 10^{-3} \ \mathrm{g/cm^3}$

u (Mean	freq, v 1/sec	5.56×10^{-1}																		
$d \ddagger = 2 \times 10^{-8} \text{ cm}$	Mean free	path, L	1.76×10^{5}	1.20×10^{6}	$3.63\times10^{\circ}$	$8.69 \times 10^{\circ}$	1.66×10^{7}	4.81×10^{7}	8.01×10^{7}	8.36×10^{8}	$6.52 \times 10^{\circ}$	1.98×10^{12}	7.49×10^{12}	122×10^{13}	1.96×10^{18}	2.41×10^{13}	2.71×10^{13}	2.92×10^{13}	3.08×10^{13}	3.20×10^{13}	
p	-	speed v cm/sec	٠,	1.48×10^{5}	1.67×10^{6}	1.84×10^{5}	1.92×10^{5}	1.93×10^{5}	1.93×10^{6}	1.93×10^{5}	1.94×10^{5}	2.41×10^{6}	5.48×10^{5}	6.87×10^{5}	7.14×10^{6}	7.19×10°	7.20×10^{5}	7.21×10^{6}	7.22×10^{6}	7.22×10^{5}	
	Number	density, n	$3.21 \times 10^{\circ}$																1.83×10	1.76×10	
		Density, p	1.29×10^{-13}	1.12×10^{-14}	3.69×10^{-15}	1.54×10^{-15}	8.00×10^{-16}	2.75×10^{-16}	1.65×10^{-16}	1.58×10^{-17}	2.01×10^{-18}	4.29×10^{-21}	2.18×10^{-22}	8.52×10	4.90×10 ⁻²³	3.94×10^{-23}	3.49×10^{-28}	3.23×10^{-23}	3.06×10^{-23}	2.94×10 ⁻²³	
		Pressure, p millibars	4.84×10-7																5.27×10^{-15}	.03×10 ⁻¹⁵	
	Mean	mol wt		14.40 9																	
	nass	Atomic hydrogen		6.00×10^{-6}	1.35×10^{-6}	2.56×10^{-5}	9.34×10^{-5}	1.17×10^{-4}	1.88×10^{-4}	1.67×10^{-3}	1.13×10^{-2}	3.402	49.44	86.53	96.23	97.85	98.46	98.76	98.93	99.05	
	Percentage composition by mass	Atomic helium	:	1.39×10^{-4}	2.62×10-4	4.29×10-4	6.53×10-4	1.41×10^{-3}	2.03×10^{-3}	1.10×10^{-2}	4.84×10^{-2}	3.887	23.13	13.12	3.847	2.152	1.541	1.241	1.067	.9536	
	Percentage con	Atomic nitrogen	:	77.78													2.10×10^{-6}			2.56×10-6	
		Atomic	:	22.22	20.20	18.70	17.53	15.48	14.57	10.92	8.397	3.392	.5616	3.38×10^{-8}	4.85×10-8	2.47×10^{-7}	4.52×10-8	1.51×10^{-8}	7.02×10-9	3.99×10-	
		Temp ° K																			
,6 ²	aren vity sec	Vpp:	894.09	867.75	842.75	819.43	795.40	752.29	732.04	642.07	567.73	370.01	260.11	148.58	57.28	30.12	18.53	12.54	9.05	6.83	
	ht is		186.4																		
	Heio	km	300	400	200	009	200	006	1000	1500	2000	4000	0009	10,000	20,000	30,000	40,000	50,000	000,09	20,000	

* For reference, see footnote 195, p. 592. $\uparrow d =$ diameter of particle.

TABLE 631.-RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES

Part 1.—Values of $\frac{h}{760}$, from h=1 to h=9, for the computation of different values of the ratio of actual to normal barometric pressure

This gives the density of moist air at pressure h in terms of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmossphere, we have the following equation for pressure term: h = B - 0.378p, where p is the vapor pressure, and B the corrected barometric pressure. When the necessary psychrometric observations are made the values of p may be taken from Table 640 and then 0.378p from Table 632, or the dew point may be found and the value of 0.378p taken from Table 632.

		Examples of use of the table
	h	To find the value of $\frac{h}{760}$ when $h = 754.3$
h	<u>h</u> 760	h = 700 gives .92105
	.0013158	50 " .065789
1		4 " .005263
2	.0026316	1 .003203
2 3	.0039474	.3 " .000395
4	.0052632	754.3 .992497
4 5		
5	.0065789	
6	.0078947	To find the value of h when $h = 5.73$
		To find the value of $\frac{h}{760}$ when $h = 5.73$
7	.0092105	h = 5 gives .0065789
7 8 9	.0105263	n = 3 gives .0003703
0		./ .0009210
9	.0118421	.03 " .0000395
		5.73 .0075394

Part 2.—Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 800

Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the characteristic, and so on.

					Values of	$\log \frac{h}{760}$				
h	0	1	2	3	4	5	6	7	8	9
80	1.02228	1.02767	1.03300	1.03826	1.04347	1.04861	1.05368	1.05871	1.06367	1.06858
90	.07343	.07823	.08297	.08767	.09231	.09691	.10146	.10596	.11041	.11482
100	1.11919	1.12351	1.12779	1.13202	1.13622	1.14038	1.14449	1.14857	1.15261	1.15661
110	.16058	.16451	.16840	.17226	.17609	.17988	.18364	.18737	.19107	.19473
120	.19837	.20197	.20555	.20909	.21261	.21611	.21956	.22299	.22640	.22978
130	.23313	.23646	.23976	.24304	.24629	.24952	.25273	.25591	.25907	.26220
140	.26531	.26841	.27147	.27452	.27755	.28055	.28354	.28650	.28945	.29237
150	1.29528	1.29816	1.30103	1.30388	1.30671	1.30952	1.31231	1.31509	1.31784	1.32058
160	.32331	.32601	.32870	.33137	.33403	.33667	.33929	.34190	.34450	.34707
170	.34964	.35218	.35471	.35723	.35974	.36222	.36470	.36716	.36961	.37204
180	.37446	.37686	.37926	.38164	.38400	.38636	.38870	.39128	.39334	.39565
190	.39794	.40022	.40249	.40474	.40699	.40922	.41144	.41365	.41585	.41804
200	1.42022	1.42238	1.42454	1.42668	1.42882	1.43094	1.43305	1.43516	1.43725	1.43933
210	.44141	.44347	.44552	.44757	.44960	.45162	.45364	.45565	.45764	.45963
220	.46161	.46358	.46554	.46749	.46943	.47137	.47329	.47521	.47712	.47902
230	.48091	.48280	.48467	.48654	.48840	.49025	.49210	.49393	.49576	.49758
240	.49940	.50120	.50300	.50479	.50658	.50835	.51012	.51188	.51364	.51539

¹⁹⁶ The tables on densities and humidities have been adapted from the sixth edition of the Smithsonian Meteorological Tables, which see for more extensive data.

TABLE 631.—RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES (continued)

Part 2.—Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 800 (continued)

					Values of	$\log \frac{h}{760}$				
h	0	1	2	3	4	5	6	7	8	9
250	1.51713	1.51886	1.52059	1.52231	1.52402	1.52573	1.52743	1.52912	1.53081	1.53249
260	.53416	.53583	.53749	.53914	.54079	.54243	.54407	.54570	.54732	.54894
270	.55055	.55216	.55376	.55535	.55694	.55852	.56010	.56167	.56323	.56479
280	.56634	.56789	.56944	.57097	.57250	.57403	.57555	.57707	.57858	.58008
290	.58158	.58308	.58457	.58605	.58753	.58901	.59048	.59194	.59340	.59486
300	1.59631	1.59775	1.59919	1.60063	1.60206	1.60349	1.60491	1.60632	1.60774	1.60914
310	.61055	.61195	.61334	.61473	.61611	.61750	.61887	.62025	.62161	.62298
320	,62434	.62569	.62704	.62839	.62973	.63107	.63240	.63373	.63506	.63638
330	.63770	.63901	.64032	.64163	.64293	.64423	.64553	.64682	.64810	.64939
340	.65067	.65194	.65321	.65448	.65574	.65701	.65826	.65952	.66077	.66201
350	1.66325	1.66449	1.66573	1.66696	1.66819	1.66941	1.67064	1.67185	1.67307	1.67428
360	.67549	.67669	.67790	.67909	.68029	.68148	.68267	.68385	.68503	.68621
370	.68739	.68856	.68973	.69090	.69206	.69322	.69437	.69553	.69668	.69783
380	.69897	.70011	.70125	.70239	.70352	.70465	.70577	.70690	.70802	.70914
390	.71025	.71136	.71247	.71358	.71468	.71578	.71688	.71798	.71907	.72016
400	1.72125	7.72233	1.72341	1.72449	1.72557	1.72664	7.72771	7.72878	7.72985	7.73091
410	.73197	.73303	.73408	.73514	.73619	.73723	.73828	.73932	.74036	.74140
420	.74244	.74347	.74450	.74553	.74655	.74758	.74860	.74961	.75063	.75164
430	.75265	.75366	.75467	.75567	.75668	.75768	.75867	.75967	.76066	.76165
440	.76264	.76362	.76461	.76559	.76657	.76755	.76852	.76949	.77046	.77143
450 460 470 480 490	7.77240	7.77336	7.77432	7.77528	7.77624	1.77720	7.77815	7.77910	7.78005	1.78100
	.78194	.78289	.78383	.78477	.78570	.78664	.78757	.78850	.78943	.79036
	.79128	.79221	.79313	.79405	.79496	.79588	.79679	.79770	.79861	.79952
	.80043	.80133	.80223	.80313	.80403	.80493	.80582	.80672	.80761	.80850
	.80938	.81027	.81115	.81203	.81291	.81379	.81467	.81554	.81642	.81729
500 510 520 530 540	1.81816	1.81902	1.81989	1.82075	1.82162	1.82248	1.82334	1.82419	1.82505	1.82590
	.82676	.82761	.82846	.82930	.83015	.83099	.83184	.83268	.83352	.83435
	.83519	.83602	.83686	.83769	.83852	.83935	.84017	.84100	.84182	.84264
	.84346	.84428	.84510	.84591	.84673	.84754	.84835	.84916	.84997	.85076
	.85158	.85238	.85319	.85399	.85479	.85558	.85638	.85717	.85797	.85876
550	1.85955	1.86034	1.86113	1.86191	1.86270	1.86348	1.86426	1.86504	1.86582	1.86660
560	.86737	.86815	.86892	.86969	.87047	.87123	.87200	.87277	.87353	.87430
570	.87506	.87582	.87658	.87734	.87810	.87885	.87961	.88036	.88111	.88186
580	.88261	.88336	.88411	.88486	.88560	.88634	.88708	.88782	.88856	.88930
590	.89004	.89077	.89151	.89224	.89297	.89370	.89443	.89516	.89589	.89661
600	1 89734	1.89806	1.89878	1.89950	1.90022	1.90094	1.90166	1.90238	1.90309	1.90380
610	.90452	.90523	.90594	.90665	.90735	.90806	.90877	.90947	.91017	.91088
620	.91158	.91228	.91298	.91367	.91437	.91507	.91576	.91645	.91715	.91784
630	.91853	.91922	.91990	.92059	.92128	.92196	.92264	.92333	.92401	.92469
640	.92537	.92604	.92672	.92740	.92807	.92875	.92942	.93009	.93076	.93143
650	1.93210	1.93277	1.93343	1.93410	1.93476	1.93543	1.93609	1.93675	1.93741	1.93807
660	.93873	.93939	.94004	.94070	.94135	.94201	.94266	.94331	.94396	.94461
670	.94526	.94591	.94656	.94720	.94785	.94849	.94913	.94978	.95042	.95106
680	.95170	.95233	.95297	.95361	.95424	.95488	.95551	.95614	.95677	.95741
690	.95804	.95866	.95929	.95992	.96055	.96117	.96180	.96242	.96304	.96366
700	1.96428	1.96490	1.96552	1.96614	1.96676	1.96738	1.96799	1.96861	1.96922	1.96983
710	.97044	.97106	.97167	.97228	.97288	.97349	.97410	.97471	.97531	.97592
720	.97652	.97712	.97772	.97832	.97892	.97951	.98012	.98072	.98132	.98191
730	.98251	.98310	.98370	.98429	.98488	.98547	.98606	.98665	.98724	.98783
740	.98842	.98900	.98959	.99018	.99076	.99134	.99193	.99251	.99309	.99367

TABLE 631.—RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES (concluded)

Part 2.—Values of the logarithms of $\frac{h}{760}$ for values of h between 80 and 800 (concluded)

					Values of	$\log \frac{h}{760}$				
h	0	1	2	3	4	5	6	7	8	9 `
750 760 770 780 790	1.99425 .00000 .00568 .01128 .01681	1.99483 .00057 .00624 .01184 .01736	1.99540 .00114 .00680 .01239 .01791	1.99598 .00171 .00737 .01295 .01846	1.99656 .00228 .00793 .01350 .01901	1.99713 .00285 .00849 .01406 .01955	1.99771 .00342 .00905 .01461 .02010	1.99828 .00398 .00961 .01516 .02064	1.99886 .00455 .01017 .01571 .02119	1.99942 .00511 .01072 .01626 .02173

TABLE 632.—DENSITY OF MOIST AIR, VALUES OF 0.378p

This table gives the humidity term 0.378p, which occurs in the equation $\delta = \delta_0 \frac{h}{760} = \frac{B - 0.378p}{760}$ for the calculation of the density of air containing aqueous vapor at pressure p; δ_0 is the density of dry air at normal temperature and barometric pressure, B the observed barometric pressure, and h = B - 0.378p, the pressure corrected for humidity. For values of $\frac{h}{760}$, see Table 631. Temperatures are in degrees centigrade, and pressures in mmHg.

	p Vapor			p Vapor			p Vapor	
Dew	v apor pressure		Dew	pressure		Dew	pressure	
point	(ice)	0.378p	point	(water)	0.378₽	point	(water)	0.378₽
°C	mmHg	mmHg	°C	mmHg	mmHg	°C	mmHg	mmHg
50	.029	.01	0	4.58	1.73	30	31.86	12.0
45	.054	.02	1	4.92	1.86	31	33.74	12.8
40	.096	.04	2	5.29	2.00	32	35.70	13.5
-35	.169	.06	2 3 4	5.68	2.15	33	37.78	14.3
-30	.288	.11	4	6.10	2.31	34	39.95	15.1
—25	.480	.18		6.54	2.47	35	42.23	16.0
24	.530	.20	6	7.01	2.66	36	44.62	16.9
23	.585	.22	5 6 7	7.51	2.84	37	47.13	17.8
22	.646	.24	8	8.04	3.04	38	49.76	18.8
21	.712	.27	9	8.61	3.25	39	52.51	19.8
-20	.783	.30	10	9.21	3 48	40	55.40	20.9
19	.862	.33	ii	9.85	3.72	41	58.42	22.1
18	.947	.36	12	10.52	3.98	42	61.58	23.3
17	1.041	.39	13	11.24	4.25	43	64.89	24.5
16	1.142	.43	14	11.99	4.53	44	68.35	25.8
-15	1.252	.47	15	12.79	4.84	45	71.97	27.2
14	1.373	.52	16	13.64	5.16	46	75.75	28.6
13	1.503	.57	17	14.54	5.50	47	79.70	30.1
12	1.644	.62	18	15.49	5.85	48	83.83	31.7
11	1.798	.68	19	16.49	6.23	49	88.14	33.3
-10	1.964	.74	20	17.55	6.63	50	92.6	35.0
9	2.144	.81	21	18.66	7.06	51	97.3	36.8
8	2.340	.88	22	19.84	7.50	52	102.3	38.6
8 7	2.550	.96	23	21.09	7.97	53	107.3	40.6
6	2.778	1.05	24	22.40	8.47	54	112.7	42.6
– 5	3.025	1.14	25	23.78	8.99	55	118.2	44.7
- 3	3.291	1.14	26	25.24	9.54	56	124.0	46.9
	3.578	1.35	27	26.77	10.12	57	130.0	49.1
3 2	3.887	1.47	28	28.38	10.73	58	136.3	51.5
1	4.220	1.60	29	30.08	11.37	59	142.8	54.0
0	4.580	1.73	30	31.86	12.04	60	149.6	56.5
	7.500	1.73	30	31.00	12.04			50.5

TABLE 633.-MAINTENANCE OF AIR AT DEFINITE HUMIDITIES

The relative humidity and vapor pressure of aqueous vapor of moist air in equilibrium conditions above aqueous solutions of sulfuric acid are given below.

Density of Rela acid sol humi	tive	pressure 30°C	Density of acid sol	Relative humidity	Vapor 20°C	pressure 30°C
	mm	mm			mm	mm
1.00 100	.0 17.4	31.6	1.30	58.3	10.1	18.4
1.05 97	.5 17.0	30.7	1.35	47.2	8.3	15.0
1.10 93	.9 16.3	29.6	1.40	37.1	6.5	11.9
1.15 88	.8 15.4	28.0	1.50	18.8	3.3	6.0
1.20 80	.5 14.0	25.4	1.60	8.5	1.5	2.7
1.25 70	.4 12.2	22.2	1.70	3.2	.6	1.0

TABLE 634.—PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE

For various altitudes (barometric readings)

The amount of water vapor in the atmosphere may be determined by the use of the

wet-bulb-dry-bulb hygrometer.

The first column gives the depression of the wet-bulb temperature t_1 below the air temperature t_2 . The value corresponding to the barometric height at the altitude of observation is to be subtracted from the vapor pressure corresponding to the wet-bulb temperature taken from Part 3, Table 635. The temperature corresponding to this vapor pressure taken from Part 3, Table 635 is the dew point. The wet bulb should be ventilated about 3 meters per second. For sea-level use Table 640. Example: $t = 35^{\circ}$, $t_1 = 30^{\circ}$, barometer 74 cmHg. Then 31.83 - 2.46 = 29.37 mm = aqueous vapor pressure; the dew point is 28.6° C.

					F	Baromet	ric pro	ssure i	n cmH	g				
$t - t_1$ $^{\circ}C$	74	72	70	68	66	64	62	60	58	56	54	52	50	48
10	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
1	.50	.48	.47	.46	.44	.43	.42	.40	.39	.38	.36	.35	.34	.32
2	.98	.96	.93	.90	.88	.85	.82	.80	.77	.75	.72	.69	.67	.64
3	1.47	1.43	1.39	1.35	1.32	1.28	1.24	1.20	1.15	1.12	1.08	1.04	1.00	.96
4	1.97	1.91	1.86	1.81	1.75	1.70	1.65	1.60	1.54	1.49	1.44	1.38	1.33	1.28
5	2.46	2.39	2.32	2.26	2.19	2.13	2.06	1.99	1.93	1.86	1.80	1.73	1.66	1.60
6	2.95	2.87	2.79	2.71	2.63	2.55	2.47	2.39	2.32	2.24	2.16	2.08	2.00	1.92
7	3.45	3.36	3.26	3.17	3.08	2.99	2 89	2.80	2.71	2.61	2.52	2.43	2.33	2.24
8	3.95	3.84	3.73	3.63	3.53	3.42	3.31	3.20	3.10	2.99	2.88	2.78	2.67	2.56
9	4.44	4.32	4.21	4.09	3.97	3.85	3.73	3.61	3.49	3.37	3.25	3.13	3.00	2.88
10	4.94	4.81	4.68	4.54	4.41	4.28	4.14	4.01	3.88	3.74	3.61	3.48	3.34	3.21
11	5.44	5.30	5.15	5.00	4.86	4.71	4.56	4.42	4.27	4.12	3.97	3.83	3.68	3.53
12	5.94	5.78	5.62	5.46	5.30	5.14	4.98	4.82	4.66	4.50	4.34	4.18	4.02	3.85
13	6.45	6.27	6.10	5.92	5.75	5.57	5.40	5.23	5.05	4.88	4.70	4.53	4.36	4.18
14	6.95	6.76	6.58	6.39	6.20	6.01	5.83	5.64	5.45	5.26	5.07	4.88	4.70	4.51
15	7.46	7.26	7.06	6.85	6.65	6.45	6.25	6.05	5.85	5.64	5.44	5.24	5.04	4.84
16	7.96	7.75	7.54	7.32	7.11	6.89	6.68	6.46	6.24	6.03	5.81	5.60	5.38	5.17
17	8.47	8.24	8.02	7.79	7.56	7.33	7.10	6.87	6.64	6.41	6.18	5.95	5.72	5.50
17	0.47	0.24	0.04	1.19	7.50	7.55	7.10	0.07	0.04	0.41	0.10	3.9.7	5.72	5.50

TABLE 635.—PRESSURE OF SATURATED WATER VAPOR FOR VARIOUS CONDITIONS OF TEMPERATURE AND SURROUNDINGS

Pressure in mmHg, temperature in °C

Part 1.	—At	low	temper	atures	over	ice

Temp	0	1	2	3	4	5	6	7	8	9
-60	.0081	.0071	.0062	.0054	.0047	0041	.0035	.0030	.0026	.0023
— 50	.0295	.0261	.0222	.0203	.0178	.0157	.0138	.0121	.0106	.0094
40	.0962	.0858	.0766	.0681	.0607	.0540	.0479	.0425	.0377	.0333
-30	.2855	.2560	.2308	.2075	.1865	.1675	.1502	.1337	.1205	.1078
-20	.7740	.7030	.6380	.5780	.5240	.4790	.4290	.3880	.3500	.3160
-10	1.945	1.782	1.630	1.486	1.359	1.239	1.130	1.029	.9360	.8510
0	4.580	4.219	3.880	3.565	3.280	3.010	2.765	2.531	2.322	2.128

Part 2.—At low temperatures over water

Temp	0	1	2	3	4	5	6	7	8	9
-10	2.148	1.983	1.832	1.690	1.556	1.434	1.319	1.215	1.109	1 025
0	4.580	4.260	3.968	3.672	3.410	3.160	2.930	2.712	2.510	2.321

Part 3.—Fcr temperatures 0° to 374° over water

Temp	0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0	4.580	4.615	4.648	4.685	4.712	4.750	4.784	4.820	4.855	4.888
1	4.922	4.960	4.998	5.030	5.065	5.105	5.140	5.175	5.212	
2 3	5.289	5.328	5.365	5.404	5.442	5.482	4.525	5.566	5.602	5.642
3	5.680	5.720	5.761	5.801	5.842	5.885	5.930	5.972	6.014	
4	6.095	6.139	6.182	6.125	6.270	6.314	6.358	6.401	6.445	
4 5	6.535	6.582	6.535	6.679	6.724	6.770	6.816	6.862	6.910	
6 7	7.010	7.058	7.106	7.155	7.204	7.254	7.306	7.356	7.408	7.460
7	7.509	7.560	7.613	7.666	7.720	7.772	7.823	7.875	7.929	
8	8.039	8.095	8.149	8.205	8.260	8.315	8.370	8.425	8.482	
9	8.605	8.670	8.726	8.782	8.838	8.900	8.960	9.020	9.080	
10	9.200	9.263	9.325	9.390	9.455	9.520	9.580	9.645	9.707	9.770
11	9.835	9.901	9.965	10.032	10.100	10.170	10.240	10.308	10.375	10.445
12	10.518	10.580	10.655	10.718	10.790	10.858	10.928	11.000		11.150
13	11.225	11.300	11.375	11.750	11.525	11.600	11.677	11.755	11.829	11.905
14	11.980	12.060	12.140	12.217	12.295	12.375	12.455	12.538	12.620	12.698
15	12.776	12.860	12.945	13.025	13.110	13.195	13.280	13.365	13.450	13.540
16	13.625	13.710	13.801 13.89		13.985	14.075	14.165	14.255	14.345	14.440
17	14.530	14.620	14.710	14.800	14.895	14.990	15.085	15.172	15.270	15.375
18	15.460	15.560	15.660	15.760	15.960	15.960	16.060	16.160		
19	16.460	16.570	16.680	16.790	16.900	17.000	17.100	17.210	17.315	17.425
20	17.525	17.635	17.745	17.855	17.965	18.080	18.195	18.310	18.425	18.540
21	18.650	18.765	18.880	19.000	19.110	19.225	19.345	19.460	19.580	19.700
22	19.820	19.940	20.060	20.185	20.310	20.430	20.580	20.690	20.800	20.930
23	21.050	21.190	21.320	21.450	21.580	21.710	21.840	21.970	22.100	22.230
24	22.365	22.500	22.630	22.763	22.905	23.050	23.190	23.310	23.450	23.600
25	23.750	23.900	24.030	24.200	24.345	24.490	24.640	24.790	24.935	25.080
Temp	0	1	2	3	4	5	6	7	8	9
20	17.53	18.65	19.82	21.05	22.37	23.75	25.21	26.74	28.32	30.03
30	31.82	33.70	35.69	37.71	39.15	42.20	44.60	47.04	49.70	52,45
40	55.30	58.35	61.50	64.85	68.30	71.90	75.65	79.55	83:00	88.00
50	92.50	97.25	102.1	107.1	113.0	118.0	123.9	129.9	136.2	142.6
60	149.4	156.3	163.9	171.7	179.4	187.6	196.1	205.0	214.1	223.8
70	308.5	243.2	252.2	265.9	275.2	289.1	301.5	314.2	327.3	340.9
80	355.2	369.7	384.8	400.6	416.5	439.8	450.8	468.6	487.0	506.0
90	525.5	546.5	567.0	588.5	610.8	634.0	658.0	682.0	707.0	733.0
100	767.0	786.5	815.5	845.0	875.1	906.0	937.8	970.5	1004.2	1038.8
			010.0	0.0.0	0,0.1	200.0	,0,.0	,, 0.0	2001.2	20000

TABLE 635.—PRESSURE OF SATURATED WATER VAPOR FOR VARIOUS CONDITIONS OF TEMPERATURE AND SURROUNDINGS (concluded)

Temp	0	1	2	3	4	5	6	7	8	9
110	1074	1111	1149	1187	1227	1268	1310	1353	1397	1442
120	1489	1536	1585	1636	1687	1740	1794	1850	1907	1965
130	2025	2086	2149	2214	2280	2347	2416	2487	2559	2633
140	2709	2786	2866	2947	3030	3115	3201	3290	3381	3473
150	3568	3665	3763	3864	3967	4072	4180	4290	4402	4516
160	4632	4751	4873	4997	5123	5252	5383	5518	5654	5794
170	5936	6080	6228	6378	6532	6688	6847	7009	7174	7342
180	7513	7688	7865	8046	8230	8417	8608	8802	8999	9200
190	9404	9612	9823	10040	10260	10480	10700	10940	11170	11410
200	11650	11890	12140	12400	12650	12920	13180	13450	13730	14010
210	14290	14580	14870	15160	15470	15770	16080	16400	16720	17040
220	17370	17710	18050	18390	18740	19100	19450	19820	20190	20560
230	20950	21330	21720	22120	22520	22930	23350	23770	24190	24620
240	25060	25500	25950	26410	26870	27340	27810	28290	28780	29270
250	29770	30280	30790	31310	31830	32360	32900	33450	34000	34560
260	35130	35700	36280	36870	37470	38070	38680	39300	39920	40560
270	41200	41840	42500	43160	43840	44520	45200	45900	46600	47320
280	48040	48760	49500	50250	51000	51770	52540	53320	54110	54910
290	55710	56530	57360	58190	59040	59890	60750	61620	62510	63400
300	64300	65210	66130	67060	68000	68960	69920	70890	71870	72860
310	73870	74880	75910	76940	77990	79050	80120	81200	82290	83390
320	84500	85630	86760	87910	89070	90250	91430	92630	93840	95060
330	96290	97530	98790	100060	101350	102640	103950	105280	106600	108000
340	109300	110700	112100	113500	114900	116300	117800	119200	120700	122200
350	123700	125200	126800	128300	129900	131400	133000	134600	136300	137900
360	139600	141200	142900	144600	146300	148100	149800	151600	153400	155200
370	157000	158800	160700	162600	164400		_	-	_	

TABLE 636.—WEIGHT IN GRAMS OF A CUBIC METER OF SATURATED AQUEOUS VAPOR

Temp °C	0	1	2	3	4	5	6	7	8	9
20	1.074	.988	.909	.836	.768	.705	646	.592	.542	.496
-10	2.358	2.186	2.026	1.876	1.736	1.605	1.483	1.369	1.264	1.165
— 0	4.847	4.523	4.217	3.930	3.660	3.407	3.169	2.946	2.737	2.541
+ 0	4.847	5.192	5.559	5.947	6.360	6.797	7.260	7.750	8.270	8.819
+10	9.399	10.01	10.66	11.35	12.07	12.83	13.63	14.84	15.37	16.21
+20	17.30	18.34	19.43	20.58	21.78	23.05	24.38	25.78	27.24	28.78
+30	30.38	32.07	33.83	35.68	37.61	39.63	41.75	43.96	46.26	48.67

For higher temperatures see Table 166.

TABLE 637.—WEIGHT IN GRAINS OF A CUBIC FOOT OF SATURATED AQUEOUS VAPOR

Temp °F	0	1	2	3	4	5	6	7	8	9
20	.219	.208	.198	.188	.179	.170	.161	.153	.146	.138
-10	.355	.339	.323	.308	.293	.280	.266	.254	.242	.230
— 0	.563	.540	.517	.492	.469	.448	.428	.408	.390	.372
+ 0	.563	.587	.614	.642	.671	.701	.732	.768	.799	.834
+10	.870	.908	.947	.988	1.030	1.074	1.119	1.166	1.215	1.265
+20	1.318	1.375	1.431	1.488	1.548	1.612	1.676	1.746	1.815	1.886
+30	1.961	2.038	2.118	2.200	2.285	2.375	2.466	2.558	2.656	2.755
+40	2.862	2.970	3.081	3.195	3.315	3.438	3.563	3.691	3.822	3.965
+50	4.105	4.256	4.410	4.565	4.722	4.890	5.060	5.235	5.420	5.608
+60	5.805	6.000	6.195	6.410	6.628	6.855	7.080	7.317	7.560	7.810
+70	8.060	8.325	8.600	8.880	9.165	9.460	9.765	10.075	10.390	10.720
+80	11.06	11.40	11.76	12.12	12.50	12.87	13.27	13.70	14.09	14.52
+90	14.96	15.41	15.98	16.34	16.84	17.32	17.82	18.34	18.90	19.39
+100	19.96	20.55	21.15	21.75	22.35	23.05	23.65	24.32	24.98	25.68
+110	26.35	27.12	27.90	28.62	29.40	30.20	31.00	31.85	32.68	33.55

TABLE 638.—RELATIVE HUMIDITY FOR VARIOUS PRESSURES AND DRY-BULB TEMPERATURES

Vertical argument is the observed vapor pressure which may be computed from the wet-bulb and dry-bulb readings through Tables 634 or 640. The horizontal argument is the observed air temperature (dry-bulb reading).

Vapor	-			_				Air	temi	nerat	ures	dry	hul	b. °(
pressure	0	1	2		3 -	_4	<u></u> 5			-7	8	<u>—</u> 9			11 -	-12	1:	3 —	14 -	-15	-20
.25	6	7	7		8	8	9	10		0	11	13		5	15	15	16		7	18	28
.50	12	13	14	1	5	16	17	18		19	21	23	2		28	29	31		14	37	55
.75	17	19 25	20 27	2		24 32	25 34	27 36		29 39	32 42	34 45	3		40 53	43 57	46 61		50 57	54 72	81
1.00 1.25	23 29	31	33	3		32 39	42	45		18	52	56	6		55 65	70	76		2	87	• •
1.50	35	37	40	4.	3 4	46	49	53		7	61	67	7	1	77	83	90	9	7		
1.75	40	43	46	4		53	57	62		6	71	77	8		87	92	98		•	• •	• •
2.00 2.25	45 51	48 54	52 59	56		60 68	65 73	70 79		75 34	81 91	87 98	9		9 7 '	mmHg		° _	i -	-: -2	_3°
2.50	56	60	65	7		75	81	88			100					3.50			4	90	97
2.75	61	66	71	70		31	87	94						•		3.75			0	96	
3.00 3.25	67 72	72 78	78 84	8; 9(38 96	94	99		•	• •	• •	•		• •	4.00			6	• •	• •
3.50	78	84	90	9	7	• •	• •	• •								4.50	100			• •	
Vapor pressure								Air	temp	erat	ures,	dry	bull	0, °(
mmHg	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
.5 1.0	12 24	11 23	11 21	10 20	9 18	9 17	8 16	8 15	7 14	7 13	13	6 12	6 11	5 10	5 10	5	4	4 8	8	3 7	3 7
1.5	35	33	31	29	27	25	23	21	20	19	18	17	16	15	14	13	12	11	11	10	10
2.0	46	43	40	37	35	32	30	28	27	25	23	22	21	20	18	17	16	15	14	13	12
2.5	56	52	48	45	42	39	36	34	32	30	28	26	25	23	22 26	21	19	18 22	17 20	16 19	15
3.0 3.5	67 78	63 73	58 68	54 63	50 59	47 55	44 52	41 48	38 45	36 43	34 40	32 38	30 35	28 33	31	25 29	23 28	26	24	23	18 22
4.0	91	85	79	74	69	65	61	57	53	50	47	44	41	39	37	35	32	30	29	27	25
4.5	99	93	87	81	76	71	67	62	58	55	52	49	46	43	40	38	36	33	31	29	28
5.0 5.5	• •	• •	95	89 96	83 91	78 86	73 81	68 75	64 70	60 66	56 62	53 58	50 55	47 51	44 48	41	39 42	36 40	34 37	32 35	31 33
6.0				,,	100	94	88	82	76	72	68	64	60	56	53	50	46	43	40	38	36
6.5			٠.			99	93	89	83	78	72	68	64	60	56	52	49	46	44	41	39
7.0 7.5	• •		• •		• •	٠.	100	94	88 94	82 88	77 83	72 77	68 73	64 68	60 65	56 61	52 57	49 54	47 51	44 48	42 46
8.0				• •				100	100	94	88	83	77	73	68	65	61	57	54	51	48
8.5										98	92	86	81	76	72	68	63	60	57	53	51
9.0						• •			• •		97	91 97	86 91	81	76 80	72 75	67 71	64 67	60	56 59	53 56
9.5 10.0	• •	• •		• •	• •	• •	• •	• •	• •	• •		97	95	85 89	84	79	74	70	63 66	62	59
11.0														96	92	87	82	77	72	67	64
12.0				٠.	• •						• •	• •		• •	• •	94	89	84	79	74	70
13.0 14.0	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	96	90 98	85 93	80 88	76 84
15.0	• • •			• •							• •	• •					• •		97	91	86
16.0	٠.		٠.																	100	92
17.0	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	٠.	• •	• •	• •	98
Vapor								Air 1	temp	eratı	ıres,	drv	bulb	. °C							
pressure mmHg	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	7	6	6	6	5	5	5	5	4	4	4	4	3	3	3	3	3	2	2	2	2
2	12	11	11	10	10	9	9	8	8	7	7	7	6	6	6	5	5	5	5	4	4
3 4	18 25	17 23	16 22	15 20	15 19	14 18	13 17	12 16	12 15	11 15	11	10 13	9	9	8 11	8 11	7 10	7 10	7	6	6 8
5	30	28	27	25	24	23	22	20	19	18	14 17	16	15	15	14	14	13	12	11	11	10
6	36	34	32	30	29	27	26	24	23	21	20	19	18	17	17	16	15	14	13	12	12
7 8	42 48	39 45	37 42	35 40	34 38	32 36	30	28	26	25	23 27	22	21	20	19	18	17	16	16	15	14
0	40	43	42	40	30	30	34	32	30	29		26	24	23	22	21	20	19	18	17	16
								(cont	inue	$^{c}d)$										

TABLE 638.—RELATIVE HUMIDITY FOR VARIOUS PRESSURES AND DRY-BULB TEMPERATURES (continued)

Vapor					. –			Air	temp	eratu	res.	dry	bulb	. °C		,					
pressure /	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
mmHg 9	53	50	47	44	41	39	37	35	33	31	29	27	26	25	24	23	22	21	20	19	18
10	59	56	52	50	47	44	42	40	37	35	34	32	30	28	27	26	24	23	22	21	20
11	64	61	57	53	50	48	45	43	41	38	36	35	33	31	29	28	26	25	24	23	22
12	70	66	62 67	59 63	56 60	53 57	50 53	47 50	44 48	42 45	40	38 41	36 38	34 36	32 35	31	29 32	28 30	26 28	25 27	24 26
13 14	75 81	71 76	72	68	64	61	57	54	51	49	46	44	41	39	37	35	33	32	30	29	27
15	86	82	77	72	68	65	61	56	54	52	49	46	44	42	40	38	36	34	32	31	29
16	92	87	82	77	73	69	65	62	58	55	52	49	47	45	42	40	38	36	34	33	31
17	100	92	86	82	77 82	73 77	69 73	65 69	62 65	58 62	55 58	52 55	49 52	47 50	45 47	42 45	40 42	38 40	36 38	34 36	33 35
18 19	• •	100	91 99	86 93	86	81	77	73	69	65	61	58	55	52	50	47	45	42	40	38	36
20				96	90	85	80	76	72	68	65	61	58	55	52	50	47	45	42	40	38
21				99	94	89	84	79	75	72	68	64	61	58	55	52	49	47	44	42	40
22		• •	• •	• •	98	93	88	83	79 82	75 78	71 74	67 70	63	60 62	57 59	54 57	51 54	49 51	46	44	42
23 24	• •	• •	• •	• •	• •	97	92 96	87 90	85	81	77	73	66 69	65	62	59	56	53	48 50	46 48	44 46
25	• •						100	94	89	84	79	75	71	68	64	61	58	55	51	50	48
26								97	92	87	83	78	74	70	67	63	60	57	54	52	49
27									96	91	86	82	78	73	69	65	62	59	56	53	51
28	• •	• •	• •	• •	• •	• •	• •	• •	99	94 97	89 92	85 87	82 83	77 78	71 74	68 70	64 67	61	58 60	55 57	53 54
29 30											95	90	85	81	77	73	70	66	62	59	56
31											98	93	88	83	79	75	71	68	64	61	58
32									• •	• •		95	90	86	81	77	73	69	66	63	60
33		• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	98	95 98	89 93	85 88	80 84	76 79	72 75	69 72	65 68	62 65
34 35		• •	• •	• •	• •	• •	• •	• •					100	95	89	85	81	77	73	69	66
36														97	91	86	82	78	74	70	67
37													٠.	98	94	89	84	80	76	72	69
38		• •			• •	• •	• •	• •	• •	• •	• •	• •		• •	96 98	91 93	86 88	82 84	78 80	74 76	70 72
39 40	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •					100	95	90	86	82	78	74
41																97	92	88	83	80	76
42																100	94	90	85	81	77
43					• •	• •	• •	• •	• •		• •	• •	• •	• •	• •	• •	97 99	92 94	87 90	83 85	79 81
44 45	• •	٠.	• •	• •	• •	• •	• •							• •			•••	96	91	86	82
46																		98	93	88	84
47																		• •	95	90	86
48		• •		٠.	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	97 99	92 94	88 89
49 50	• •	• •	• •	• •	• •	• •	• •	• •		• •			• •				• •			96	91
51																				98	92
52													• •		• •	• •	• •	• •	• •	99	94 97
53		• •	• •		• •		• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •	98
54 55	• •	• •	• •	• •	• •	• •	• •		• •	• •			• •		• •						100
33	• •	• •	• •	• •	• •	• •	• •	• •													
Vapor								Air	temp	eratı	ıres,	dry	bult	, ∘€	;						
pressure -	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
5	10	10	9	9	8	8	8	7	7	7	6	6	6	6	5	5	5	5	5	4	4
10	20	19	18	17	16	15	14	14	13	13	12	12	11	11	10	10	9	9	8	8	7
15	29	28	26	25	24	23	22	21 27	20	19 25	18 24	17	16	16 20	15 19	14 18	14 18	13 17	12 16	12 15	11 15
20 25	38 47	37 45	35 43	33 41	31 39	30 37	29 35	33	26 32	31	29	23 28	27	25	24	23	22	21	20	19	19
30	56	53	51	49	46	44	42	40	38	36	35	33	22 27 32	30	24 29	28	27	25	24	22	21
35	66	62	59	57	53	51	48	46	44	42	40	38	37	35	33	32	30	29	28	26	24
40	74	70	67	64	60	58	55	52 58	50 56	48 53	45 51	43	41	39 44	38 42	36 40	35 39	33 37	32 35	30 34	28 32
45 50	82	78 87	75 82	71 79	68 75	65 71	61 68		62	59	56			49	47	45	43	41	39		35
30	71	0/	02	1)	, 5	, 1	00	,			1)										

TABLE 638.—RELATIVE HUMIDITY FOR VARIOUS PRESSURES AND DRY-BULB TEMPERATURES (concluded)

Vapor								Air	temp	eratu	ıres,	dry	bulb	, °C	:						
pressure /-	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
55	100	95	90	86	82	78	74	71	68	65	62	59	56	54	51	49	47	45	43	41	39
60			97	93	88	84	80	77	73	70	67	64	61	58	55	53	51	49	47	45	43
65					96	91	87	83	79	75	72	69	65	62	60	57	55	52	50	48	46
70						98	93	89	85	81	77	74	70	67	64	61	59	56	54	52	49
75							100	95	91	86	83	79	75	72	69	66	63	60	58	55	53
80									96	91	87	83	80	76	73	69	66	63	61	58	56
85										97	92	88	84	81	77	74	70	67	64	62	59
90											96	92	89	85	81	78	74	71	68	65	62
95		mmHg	57°	58	59	60°	• •					97	93	. 89	85	82	78	75	71	68	65
100		125	96	92	88	84							99	94	89	86	82	78	75	72	69
105		130	100	96	92	88								98	94	90	86	82	78	75	72
110		135		99	95	91									98	94	89	85	82	78	75
115		140			99	94										97	93	89	85	82	78
120		145				97											97	93	89	85	82
125		150				100	٠.				٠.							96	92	88	84

TABLE 639.-RELATIVE HUMIDITY, WET AND DRY THERMOMETERS

This table gives the relative humidity direct from the difference between the reading of the dry $(t^{\circ}C)$ and the wet $(t_{1}^{\circ}C)$ thermometer. It is computed for a barometer reading of 1000 mb. The wet thermometers should be ventilated about 3 meters per second. Changes due to different pressure can be calculated from the data given in Tables 634 and 640.

Temperatures of dry thermometer, t°

$t^{\circ} - t_1^{\circ})$	-15	-10	-5	0	5	$(t^{\circ}-t_1^{\circ})$	10	15	20	25	30	35	40
2	92	94	95	96	97	.5	94	95	96	96	97	97	97
.2 .4 .5	84	89	91	92	95	1.0	89	90	92	93	93	94	94
.5	80	86	89	91	93	1.5	83	86	88	89	90	91	91
.6	76	82	88	90	92	2.0	77	81	83	85	86	88	89
.8	68	77	83	87	89	2.5	72	76	80	82	83	85	8
1.0	60	71	78	83	86	3.0	67	72	75	78	80	82	8
1.2	52	65	74	80	84	3.5	61	67	72	75	77	79	8
1.4	43	59	72	76	81	4.0	56	63	68	71	74	76	7
1.5	39	56	67	74	80	4.5	51	58	64	68	71	73	7
1.6	35	53	65	73	78	5.0	46	54	60	65	68	71	7
1.8	27	49	61	69	75		36	46	53	58	62	65	6
2.0	18	41	56	65	73	7	26	38	46	52	57	60	6
2.5		27	46	58	66	8	15	29	39	46	51	55	5
3.0		10	35	50	60	6 7 8 9	15 5	21	32	40	46	51	5
3.0 3.5			24	41	53	10		13	25	34	41	46	5
4.0			12	33	47	11		5	19	30	36	42	4
4.0 4.5 5 6 7				25	40	12			13	23	31	37	4
5				16	34	13				18	28	33	3
6						14				13	25	29	3
7					21 8	15				8	19	25	3
						16					13	21	2
						17					9	18	2
						18					5	14	2
						19					3	10	1
						20					2	7	1
						22							1
						24							Ī

TABLE 640.—PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE: SEA LEVEL

This table gives the vapor pressure corresponding to various values of the difference $t-t_1$ between the readings of dry-bulb and wet-bulb thermometers and the temperature t_1 of the wet-bulb thermometer. The difference $t-t_1$ is given by two-degree steps in the top line, and t_1 by degrees in the first column. Temperatures in Centigrade degrees, vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure B equal to 76 cmHg. A correction is given for each centimeter at the top of the columns. Ventilating velocity of wet thermometer about 3 meters per second.

t_1	$t - t_1 = 0^{\circ}$	2°	4°	6°	8°	10°	12°	14°	16°	18°	20°	Differ- ence
Cor	rections											for 0.1° in
per	for <i>B</i> r cmHg	.013	.026	.040	.053	.966	.079	.092	.106	.119	.132	$t - t_1$
-10	1.96	.97		_	_							.050
- 9	2.14	1.15	.16	_	_			Exa	mple			.050
- 8 - 7	2.34 2.55	1.35 1.56	.35 .66	_	_			= 10.0	; B =	74.5 c	mHg	.050 .050
– 6	2.78	1.78	.79	_	_		$t_1 = 7$.		12.77	0.050		.050
— 5	3.02	2.03	1.03	.03	_		3, $1.5 imes$: 6.17 - : 048	- 12 ×	0.050 =	= 5.57 = .07	.050
- 4 - 3	3.29 3.58	2.29 2.58	1.29 1.58	.29 .58	_	Henc		.010		=	= 5.64	.050
— 3 — 2	3.89	2.89	1.89	.88	_			_	_			.050 .050
$ \overline{1}$	4.22	3.22	2.22	1.21	.21	_	_	_	_	_		.050
0	4.58	3.58	2.57	1.57	.57	-	_	_	_	_	_	.050
1	4.92	3.92 4.29	2.92 3.28	1.91 2.27	.91 1.27	.26	_	_	_	_	_	.050
2 3	5.29 5.68	4.68	3.67	2.66	1.66	.65	_	_	_			.050 .050
4	6.10	5.09	4.08	3.07	2.07	1.06	.05	_	_	_		.050
4 5	6.54	5.53	4.52	3.51	2.51	1.50	.49	_	_	_	_	.050
6	7.01	6.00	4.99	3.98	2.97	1.96	.95	12	_	_	_	.050
7 8	7.51 8.04	6.50 7.03	5.49 6.02	4.48 5.01	3.47 4.00	2.46 2.98	1.45 1.97	.43 .96	_	_	_	.050 .050
9	8.61	7.60	6.58	5.57	4.56	3.54	2.53	1.52	.50	_	_	.050
10	9.21	8.20	7.18	6.17	5.15	4.14	3.12	2.11	1.09	.08	_	.050
11	9.85	8.83	7.81	6.80	5.78	4.77 5.44	3.75 4.42	2.73 3.40	1.72 2.38	.70		.051
12 13	10.52 11.24	9.50 10.22	8.49 9.20	7.47 8.18	6.45 7.16	6.14	5.13	4.11	3.09	1.37 2.07	.35 1.05	.051 .051
14	11.99	10.97	9.95	8.93	7.91	6.90	5.88	4.86	3.84	2.82	1.80	.051
15	12.79	11.77	10.75	9.73	8.71	7.69	6.67	5.65	4.63	3.61	2.59	.051
16	13.64	12.62	11.60	10.58	9.96	8.53 9.42	7.51 8.40	6.49 7.38	5.47 6.36	4.45 5.33	3.43 4.31	.051
17 18	14.54 15.49	13.52 14.46	12.49 13.44	11.47 12.42	10.45 11.39	10.37	9.34	8.32	7.30	6.27	5.25	.051 .051
19	16.49	15.46	14.44	13.41	12.39	11.36	10.34	9.31	8.29	7.26	6.24	.051
20	17.55	16.52	15.50	14.47	13.44	12.42	11.39	10.36	9.34	8.31	7.29	.051
21 22	18.66 19.84	17.64 18.82	16.61	15.58	14.56 15.73	13.53 14.70	12.50 13.67	11.47 12.64	10.45 11.62	9.42	8.39 10.57	.051 .051
23	21.09	20.06	17.79 19.03	16.76 18.00	16.97	15.94	14.91	13.88	12.85	11.82	10.79	.051
24	22.40	21.37	20.34	19.31	18.27	17.24	16.21	15.18	14.15	13.12	12.09	.051
25	23.78	22.75	21.71	20.68	19.65	18.62	17.59	16.56	15.52	14.49	13.46	.052
26 27	25.24 26.77	24.20 25.73	23.17 24.70	22.14 23.66	21.10 22.63	20.07 21.60	19.04 20.56	18.00 19.53	16.97 18.49	15.94 17.46	14.90 16.42	.052 .052
28	28.38	27.34	26.31	25.27	24.24	23.20	22.17	21.13	20.10	19.06	18.02	.052
29	30.08	29.04	28.00	26.97	25.93	24.89	23.86	22.82	21.78	20.75	19.71	.052
30	31.86	30.82	29.78	28.75	27.71	26.67	25.63	24.60	23.56	22.52	21.48	.052
31	33.74	32.70	31.66	30.62	29.58	28.54 30.50	27.50 29.46	26.46 28.42	25.42 27.38	24.38 26.34	23.34 25.30	.052 .052
32 33	35.70 37.78	34.66 36.73	33.62 35.69	32.58 34.65	31.54 33.61	32.57	31.53	30.49	29.44	28.40	27.36	.052
34	39.95	38.90	37.86	36.82	35.78	34.73	33.69	32.65	31.61	30.57	29.52	.052
35	42.23	41.18	40.14	39.10	38 05	37.01	35.97	34.92	33.88	32.83	31.79	.052
36 37	44.62 47.13	43.57 46.08	42.53 45.04	41.48 43.99	40.44 42.94	39.40 41.90	38.35 40.85	37.31 39.81	36.26 38.76	35.22 37.71	34.17 36.67	.052 .052
38	49.76	48.71	45.04	45.99	45.57	44.52	43.47	42.43	41.38	40.33	39.29	.052
39	52.51	51.46	50.41	49.37	48.32	47.27	46.22	45.17	44.12	43.08	42.03	.052
40	55.40	54.35	53.30	52.25	51.20	50.15	49.10	48.05	47.00	45.95	44.00	.052

TABLE 641.—PRESSURE OF COLUMNS OF MERCURY AND WATER

British and metric measures. Correct at 0°C for mercury and at 4°C for water.

	sure		British mea	sure
Pressure g/cm ²	Pressure lb/in.2	inHg	Pressure g/cm ²	Pressure lb/in.2
0.		1		.491152
		2		.982304
		3		1.473457
		4		1.964609
		5		2.455761
		6 .		2.946918
		7	241.726	3,438058
		8	276.259	3.929286
		ğ		4,420370
135.9540	1.933670	10	345.323	4.911522
Pressure	Pressure	Inches of	Pressure	Pressure lb/in.²
g/cm²	· ·			
1				.036127
2		2		.108382
3		3		.144510
4		7		.180637
5		3		.216764
0		7		.252892
/		0		.289019
0		0		.325147
				.361274
		13.5954 .193367 27.1908 .386734 40.7862 .580101 54.3816 .773468 67.9770 .966835 81.5724 1.160204 95.1678 1.353566 108.7632 1.546936 122.3586 1.740303 135.9540 1.933670 Pressure g/cm² lb/in.² 1 .0142234 2 .0284468 3 .0426702 4 .0568936 5 .0711170 6 .0853404 7 .0995638 8 .1137872 9 .1280106	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

¹⁰⁷ The tables on the barometer have been adapted from the Smithsonian Meteorological Tables, sixth edition.

TABLE 642.—CORRECTION OF THE BAROMETER FOR CAPILLARITY * Metric measure

Diameter of tube			Height	of meniscu	s in millimet	ers		
in mm	.4	.6	.8	1.0	1.2	1.4	1.6	1.8
4	1.1	1.7	2.1	2.4	2.6			
5	.73	1.06	1.34	1.55	1.76			
6	.47	.71	.91	1.08	1.21	1.30	1.37	1.43
7	.33	.48	.63	.7 6	.86	.9 6	1.03	1.08
8	.24	.35	.46	.55	.63	.70	.77	.82
9	.18	.27	.35	.41	.47	.53	.57	.61
10	.12	.18	.24	.30	.35	.40	.44	.47
12	.07	.10	.13	.16	.20	.22	.25	.27
14	.04	.06	.08	.10	.11	.13	.15	.17
16	.02	.04	.05	.06	.07	.09	.10	.11

^{*} Corrections to be added in millimeters.

TABLE 643.—VOLUME OF MERCURY MENISCUS IN mm3

Height of					Diamete	er of tube	in mm				
meniscus	14	15	16	17	18	19	20	21	22	23	24
mm											
1.6	157	185	214	245	280	318	356	398	444	492	541
1.8	181	211	244	281	320	362	407	455	507	560	616
2.0	206	240	278	319	362	409	460	513	571	631	694
2.2	233	271	313	358	406	459	515	574	637	704	776
2.4	262	303	350	400	454	511	573	639	708	781	859
2.6	291	338	388	444	503	565	633	706	782	862	948.
2.0	271	000	000	117	500	505	000	,00	702	002	770.

TABLE 644.—CONSTANT a FOR REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE *

English	cale and measure	metric n	ale and reasure	Glass sca metric m	
Height of barometer in inches	in inches for temp °F	Height of barometer in mmHg	in mm for temp °C	Height of barometer in mmHg	in mm for temp °C
15.0	.00135	400	.0651	50	.0086
16.0	.00145	410	.0668	100	.0172
17.0	.00154	420	.0684	150	.0258
17.5	.00158	430	.0700	200	.0345
18.0	.00163	440	.0716	250	.0431
18.5	.00167	450	.0732	300	.0517
19.0	.00172	460	.0749	350	.0603
19.5	.00176	470	.0765	330	.0003
19.5	.00170	480	.0781	400	.0689
20.0	.00181	490	.0797	450	
		490	.0797		.0775
20.5	.00185	F00	0012	500	.0861
21.0	.00190	500	.0813	520	.0895
21.5	.00194	510	.0830	540	.0930
22.0	.00199	520	.0846	560	.0965
22.5	.00203	530	.0862	580	.0999
23.0	.00208	540	.0878		
23.5	.00212	550	.0894	600	.1034
		560	.0911	610	.1051
24.0	.00217	570	.0927	620	.1068
24.5	.00221	580	.0943	630	.1085
25.0	.00226	590	.0959	640	.1103
25.5	.00231		10707	650	.1120
26.0	.00236	600	.0975	660	.1137
26.5	.00240	610	.0992	000	.1107
27.0	.00245	620	.1008	670	.1154
27.5	.00249	630	.1024	680	.1172
27.3	.00249	640	.1024	690	.1172
20.0	.00254	650		700	.1109
28.0 28.5	.00254		.1056	710	.1200
		660	.1073	710 720	
29.0	.00263	670	.1089		.1240
29.2	.00265	680	.1105	730	.1258
29.4	.00267	690	.1121		
29.6	.00268			740	.1275
29.8	.00270	700	.1137	750	.1292
30.0	.00272	710	.1154	760	.1309
		720	.1170	770	.1327
30.2	.00274	730	.1186	780	.1344
30.4	.00276	740	.1202	790	.1361
30.6	.00277	750	.1218	800	.1378
30.8	.00279	760	.1235		
31.0	.00281	770	.1251	850	.1464
31.2	.00283	780	.1267	900	.1551
31.4	.00285	790	.1283	950	.1639
31.6	.00287	800	.1299	1000	.1723

^{*}The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic enclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under a are the values of a in the equation Ht := Ht' - a (t' - t) where Ht is the height at the standard temperature, Ht' the observed height at the temperature t', and a(t'-t) the correction for temperature. The standard temperature is 0°C for the metric system and 28°.5 F on the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately 28°.5 F, because of the fact that the brass scale is graduated so as to be standard at 62°F, while mercury has the standard density at 32°F. density at 32°F.

censity at 32°F. Example.—A barometer having a brass scale gave H=765 mm at 25°C; required, the corresponding reading at 0°C. Here the value of a is the mean of .1235 and 1251, or .1243; ... a $(t'-t)=.1243\times 25=3.11$. Hence $H_0=765-3.11=761.89$. Nore.—Although a is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for a, and when great accuracy is wanted the proper coefficients have to be determined by experiment.

TABLE 645.—REDUCTION OF BAROMETER TO STANDARD GRAVITY FOR DIFFERENT HEIGHTS

Free-air altitude term. Correction to be subtracted.

The correction to reduce the barometer to sea level is $[(g_1-g)/g] \times B$ where B is the barometer reading and g and g_1 the value of gravity at sea level and the place of observation respectively. The following values were computed for free-air values of gravity g_1 (Table 802). It has been customary to assume for mountain stations that the value of g_1 = say about $\frac{2}{3}$ the free-air value, but a comparison of modern determinations of g_1 in this country shows that little reliance can be placed on such an assumption. Where g_1 is known its value should be used in the above correction term. (See Tables 803-805.) Similarly for the latitude term, see succeeding tables; the true value of g should be used if known; the succeeding tables are based on the theoretical values, Table 802.)

Height Observed height of barometer in mmHg													
above													
sea level	g_1-g	400	450	500	550	600	650	700	750	800			
meters 100	.031	Co	rection	n in m	mHa	to be	cub	.02	.02	.02			
200	.062			height				.04	.05	.05	_	_	
300	.002			nn and				.07	.03	.03	_	_	
400	.123		the to		Daion	ietei i	cau-	.07	.10	.10	_	_	
500	.154	_		p mie.				.11	.12	.13		_	
600	.185	_					.12	.13	.14	.13	_		
700	.216				_	_	.14	.15	.16		=	_	
800	.247				_		.16	.18	.19	_	_	_	
900	.278	_	_	_			.18	.20	.22		_		
1000	.309		_		.18	.19	.20	.22	.24			_	
1100	.339	_	_		.19	.21	.22	.24	.24		_		
1200	.370	_	_	_	.21	.23	.24	.26	_	_		_	
1300	.401	_	_	_	.22	.24	.26	.29	_	_	_		
1400	.432	_	_	_	.24	.26	.28	.31		_	_	_	
1500	.463		_	.24	.26	.28	.30	.33	_		_	_	
1600	.494	_	_	.25	.28	.30	.32	_	_	_	_	_	
1700	.525	_	_	.27	.30	.32	.34			_		_	
1800	.555	_	_	.28	.31	.34	.36	_		.020	.0463	15000	
1900	.586	_	_	.30	.33	.36	.39	_	_	.019	.0447	14500	
2000	.617	_	.28	.31	.34	.38	.41	_	.021	.019	.0432	14000	
2100	.648	_	.30	.33	.36	.40	_	_	.021	.018	.0416	13500	
2200	.679	_	.31	.35	.38	.41		_	.020	.017	.0401	13000	
2300	.710		.32	.36	.40	.43	_	.021	.019	.017	.0386	12500	
2400	.740	_	.34	.38	.42	.45	_	.021	.018	.016	.0370	12000	
2500	.771	.31	.35	.39	.43	.47	_	.020	.018	.015	.0355	11500	
2600	802	.33	.37	.41	_	_	.021	.019	.017	.015	.0339	11000	
2700	.833	.34	.38	.42	_	_	.020	.018	.016	.014	.0324	10500	
2800	.864	.35	.40	.44	_	_	.019	.017	.015	.013	.0308	10000	
2900	.895	.36	.41	.46	_	.020	.018	.016	.015	.013	.0293	9500	
3000	.926	.38	.42	.47		.019	.017	.016	.014	.012	.0278	9000	
3100	.957	.39	.44	_	_	.018	.016	.015	.013	_	.0262	8500	
3200	.988	.40	.46	_	_	.017	.015	.014	.012	_	.0247	8000	
3300	1.019	.42	.47	_	.017	.016	.014	.013	_	_	.0231	7500	
3400	1.049	.43	.48	_	.016	.015	.013	.012	_	_	.0216	7000	
3500	1.080	.44	.49	_	.015	.014	.012	.011	_	_	.0200	6500	
3600	1.111	.45	_	_	.014	.013	.011	_		_	.0185	6000	
3700	1.142	.46	_	_	.013	.012	.011	_	_	—	.0170	5500	
3800	1.173	.48	_	.012	.011	.011	.010	_	_	_	.0154	5000	
3900	1.204	.49	_	.011	.010	.010	_	_	_	_	.0139	4500	
4000	1.235	.50	_	.010	.009	.009	_	_	_	-	.0123	4000	
_		_	.008	.008	.007	.007	Cor	rection	e in i	n to	.0092	3000	
		.006	.005	.005	.007	.007		tracted			.0092	2000	
	_	.003	.003	.003	.004			sea le			.0031	1000	
		.003	.003	.003	_	_		n and			.0051	1000	
								n and g in b					
							reaulii	gmb	ottom	me.		feet	
		30	28	26	24	22	20	18	16	14	$g_1 - g$	Height	
											01 3	above	
				Observe	u neigh	or bar	ometer	n inche	S			sea level	

TABLE 646.—REDUCTION OF BAROMETER TO STANDARD GRAVITY* METRIC MEASURES

From latitude 0° to 45°, the correction is to be added algebraically.

Lati- tude	520	540	560	580	600	620	640	660	680	700	720	740	760	780
0	—1.39 -	mm -1.45 -	mm -1.50 -	mm -1.55 -	mm -1.61 -	mm -1.66 -	mm -1.71 -	mm -1.77 -	mm -1.82 -	mm -1.87 -	mm -1.93 -	mm 1.98 -	mm -2.04 -	mm 2.09
5 6 7 8 9	-1.37 - 1.36 1.35 1.34 1.33	-1.42 - 1.42 1.40 1.39 1.38	-1.48 - 1.47 1.46 1.44 1.43	-1.53 - 1.52 1.51 1.49 1.48	-1.58 - 1.57 1.56 1.55 1.53	-1.64 - 1.63 1.61 1.60 1.58	- 1.69 - 1.68 1.66 1.65 1.63	-1.74 - 1.73 1.72 1.70 1.68	-1.79 - 1.78 1.77 1.75 1.73	-1.85 - 1.83 1.82 1.80 1.78	-1.90 - 1.89 1.87 1.85 1.84	-1.95 - 1.94 1.92 1.91 1.89	-2.00 - 1.99 1.98 1.96 1.94	-2.06 2.04 2.03 2.01 1.99
10 11 12 13 14	-1.31 - 1.29 1.27 1.25 1.23	-1.36 - 1.34 1.32 1.30 1.28	-1.41 - 1.39 1.37 1.35 1.33	-1.46 - 1.44 1.42 1.40 1.38	-1.51 - 1.49 1.47 1.45 1.42	-1.56 - 1.54 1.52 1.50 1.47	- 1.61 - 1.59 1.57 1.54 1.52	-1.66 - 1.64 1.62 1.59 1.56	-1.71 - 1.69 1.67 1.64 1.61	-1.76 - 1.74 1.72 1.69 1.66	-1.81 - 1.79 1.76 1.74 1.71	-1.86 - 1.84 1.81 1.78 1.75	-1.92 - 1.89 1.86 1.83 1.80	-1.97 1.94 1.91 1.88 1.85
15 16 17 18 19	-1.21 - 1.19 1.16 1.13 1.10	-1.26 - 1.23 1.20 1.18 1.15	-1.30 - 1.28 1.25 1.22 1.19	-1.35 - 1.32 1.29 1.26 1.23	-1.40 - 1.37 1.34 1.31 1.27	-1.44 - 1.41 1.38 1.35 1.32	- 1.49 - 1.46 1.43 1.39 1.36	-1.54 - 1.50 1.47 1.44 1.40	-1.58 - 1.55 1.52 1.48 1.44	-1.63 - 1.60 1.56 1.52 1.48	-1.67 - 1.64 1.60 1.57 1.53	-1.72 - 1.69 1.65 1.61 1.57	-1.77 - 1.73 1.69 1.65 1.61	-1.81 1.78 1.74 1.70 1.65
20 21 22 23 24	-1.07 - 1.04 1.01 .98 .94	-1.11 - 1.08 1.05 1.01 .98	-1.16 - 1.12 1.09 1.05 1.01	-1.20 - 1.16 1.13 1.09 1.05	-1.24 - 1.20 1.16 1.13 1.08	-1.28 - 1.24 1.20 1.16 1.12	-1.32 - 1.28 1.24 1.20 1.16	-1.36 - 1.32 1.28 1.24 1.19	-1.40 - 1.36 1.32 1.28 1.23	-1.44 - 1.40 1.36 1.31 1.27	-1.49 - 1.44 1.40 1.35 1.30	-1.53 - 1.48 1.44 1.39 1.34	-1.57 1.52 1.48 1.43 1.37	-1.61 1.56 1.51 1.46 1.41
25 26 27 28 29	9087 .83 .79 .75	94 - .90 .86 .82 .78	97 - .93 .89 .85 .81	-1.01 - .97 .92 .88 .84	-1.04 - 1.00 .96 .91 .86	-1.08 - 1.03 .99 .94 .89	- 1.11 - 1.07 1.02 .97 .92	-1.15 - 1.10 1.05 1.00 .95	-1.18 - 1.13 1.08 1.03 .98	-1.22 - 1.17 1.12 1.06 1.01	-1.25 - 1.20 1.15 1.09 1.04	-1.29 - 1.23 1.18 1.12 1.07	-1.32 - 1.27 1.21 1.15 1.10	-1.36 1.30 1.24 1.18 1.12
30 31 32 33 34	7167 .62 .58 .54	7469 .65 .60 .56	7672 .67 .63 .58	79 - .74 .70 .65 .60	82 - .77 .72 .67 .62	85 - .80 .74 .69 .64	87 - .82 .77 .72 .66	90 - .85 .79 .74 .68	93 - .87 .82 .76 .70	95 - .90 .84 .78 .72	98 - .92 .86 .80 .74	-1.01 - .95 .89 .83 .76	1.04 .98 .91 .85 .79	-1.06 1.00 .94 .87 .81
35 36 37 38 39	4945 .40 .36 .31	5146 .42 .37 .32	5348 .43 .38 .33	55 - .50 .45 .40 .34	57 - .52 .46 .41 .36	59 - .53 .48 .42 .37	61 - .55 .49 .44 .38	63 - .57 .51 .45 .39	64 - .58 .52 .46 .40	6660 .54 .48 .42	68 - .62 .56 .49 .43	70 - .64 .57 .51 .44	72 .65 .59 .52 .45	.74 .67 .60 .53 .46
40 41 42 43 44	2621 .17 .12 .07	27 - .22 .17 .12 .07	2823 .18 .13 .08	29 - .24 .19 .13 .08	30 - .25 .19 .14 .08	3126 .20 .14 .08	32 - .26 .21 .15 .09	33 - .27 .21 .15 .09	34 - .28 .22 .16 .09	35 - .29 .22 .16 .10	36 - .30 .23 .16 .10	37 - .30 .24 .17 .10	38 .31 .24 .17 .10	39 .32 .25 .18 .11
45	02 -	02 -	03 -	03 -	03 -	03 -	03 -	03 -	03 -	03 -	03 -	03 -	03 -	04

^{* 980.665} cm sec-2

(continued)

TABLE 646.—REDUCTION OF BAROMETER TO STANDARD GRAVITY (concluded) METRIC MEASURES

From latitude 46° to 90°, the correction is to be added algebraically.

Lati- tude		520	540	560	580	600	620	640	660	680	700	720	740	760	780
45	_	.02 —	.02 —	.03 –	03 –	03 -	03 -	03 -	03 -	03 -	03	— .03 -	— .03 –	03 —	mm 04
46 47 48 49 50	+	.02 + .07 .12 .17 .22	.03 + .08 .12 .17 .22	.03 + .08 .13 .18 .23	03 + .08 .13 .19 .24	03 - .08 .14 .19 .25	.03 -1 .09 .14 .20 .26	03 - .09 .15 .21 .26	03 - .09 .15 .21 .27	03 - .09 .16 .22 .28	+ .03 .10 .16 .23 .29	+ .03 · .10 · .17 · .23 · .30	+ .03 - .10 .17 .24 .31	+ .04 + .10 .18 .25 .31	04 .11 .18 .25 .32
51 52 53 54 55	+	.26 + .31 .36 .40 .45	.27 + .32 .37 .42 .46	.28 + .33 .38 .43 .48	29 + .34 .40 .45 .50	30 - .36 .41 .46 .52	.31 + .37 .42 .48 .53	32 - .38 .44 .49 .55	33 - .39 .45 .51 .57	34 - .40 .46 .52 .58	+ .35 .42 .48 .54 .60	+ .3643 .49 .56 .62	+ .37 - .44 .51 .57 .64	+ .38 + .45 .52 .59 .65	39 .46 .53 .60
56 57 58 59 60	+	.49 + .54 .58 .62 .66	.51 + .56 .60 .65 .69	.53 + .58 .62 .67 .72	55 + .60 .65 .69 .74	57 - .62 .67 .72 .77	.59 + .64 .69 .74 .79	60 - .66 .71 .77 .82	62 - .68 .74 .79 .84	64 - .70 .76 .81 .87	+ .66 .72 .78 .84 .89	+ .68 .74 .80 .86 .92	+ .70 - .76 .82 .89 .94	+ .72 + .78 .85 .91 .97	.74 .80 .87 .93 1.00
61 62 63 64 65	+	.71 + .74 .78 .82 .86	.73 + .77 .81 .85 .89	.76 + .80 .85 .89 .93	79 + .83 .88 .92 .96	81 - .85 .91 .95 .99	84 - .88 .94 .98 1.03	87 - .91 .97 1.01 1.06	89 - .94 1.00 1.04 1.09	.92 - .97 1.03 1.08 1.13	1.00 1.06 1.11 1.16	+ .98 - 1.02 1.09 1.14 1.19	+1.00 - 1.05 1.12 1.17 1.22	+1.03 + 1.08 1.15 1.20 1.26	-1.06 1.11 1.18 1.23 1.29
66 67 68 69 70	·	.93 .97 1.00		.97 + 1.00 1.04 1.08 1.11	-1.00 + 1.04 1.08 1.11 1.15	-1.04 - 1.08 1.11 1.15 1.19	1.11 1.15 1.19 1.23	-1.10 + 1.15 1.19 1.23 1.27	-1.14 - 1.18 1.23 1.27 1.31	-1.17 - 1.22 1.26 1.31 1.35	+1.21 1.25 1.30 1.34 1.39	+1.24 1.29 1.34 1.38 1.43	+1.28 + 1.33 1.37 1.42 1.47	+1.31 + 1.36 1.41 1.46 1.51	1.35 1.40 1.45 1.50 1.55
71 72 73 74 75	·	1.09 1.12 1.14	1.10 + 1.13 1.16 1.19 1.21	1.14 + 1.17 1.20 1.23 1.26	-1.18 + 1.22 1.25 1.28 1.30	-1.22 - 1.26 1.29 1.32 1.35	1.26 + 1.30 1.33 1.36 1.39	-1.31 - 1.34 1.37 1.41 1.44	-1.35 - 1.38 1.42 1.45 1.45	1.42 1.46 1.50 1.53	+1.43 1.47 1.50 1.54 1.57	+1.47 1.51 1.55 1.58 1.62	+1.51 + 1.55	+1.55 + 1.59 1.63 1.67 1.71	-1.59 1.63 1.67 1.72 1.75
76 77 78 79 80		1.21 1.23 1.25	1.26 1.28 1.30	1.28 + 1.31 1.33 1.35 1.37	-1.33 + 1.35 1.38 1.40 1.42	1.40 1.42 1.45 1.47	+1.42 + 1.45 1.47 1.49 1.51	- 1.47 - 1.49 1.52 1.54 1.56	-1.51 + 1.54 1.57 1.59 1.61	1.56 - 1.59 1.61 1.64 1.66	+1.60 1.63 1.66 1.69 1.71	+1.65 - 1.68 1.71 1.73 1.76	+1.70 + 1.73 1.76 1.78 1.81	+1.74 + 1.77 1.80 1.83 1.86	1.79 1.82 1.85 1.88 1.90
81 82 83 84 85		1.30 1.31 1.32	1.33 + 1.35 1.36 1.37 1.38	1.38 + 1.40 1.41 1.42 1.43	-1.43 + 1.45 1.46 1.48 1.49	1.50 1.51 1.53 1.54	1.53 + 1.55 1.56 1.58 1.59	-1.58 -1 1.60 1.61 1.63 1.64	-1.63 + 1.65 1.67 1.68 1.69	-1.68 - 1.70 1.72 1.73 1.74	+1.73 - 1.75 1.77 1.78 1.79	+1.78 - 1.80 1.82 1.83 1.84	+1.83 + 1.85 1.87 1.88 1.90	+1.88 + 1.90 1.92 1.93 1.95	1.93 1.95 1.97 1.98 2.00
90	+	1.35 +	1.41 +	1.46 +	-1.51 +	-1.56 -	-1.61 +	- 1.67 +	-1.72 +	-1.77 -	⊢1.82 -	+1.87 -	+1.93 +	+1.98 +	2.03

TABLE 647.—REDUCTION OF BAROMETER TO STANDARD GRAVITY * ENGLISH MEASURES

From latitude 0° to 45°, the correction is to be added algebraically.

Lati-		20	21	22	23	24	25	26	27	28	29	30
tude	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch
0	051	054	056	059	062	064	067	070	072	075	078	080
5	050 .050	053 .052	055 .055	058 .058	061 $.060$	063 $.063$	066 .066	069 .068	071 .071	074 .073	077 .076	079 .079
7 8	.049 .049	.052 .052	.055 .054	.057 .057	.060 .059	.062 .062	.065	.068 .067	.070 .070	.073	.075 .075	.078 .077
9	.048	.051	.054	.056	.059	.061	.064	.066	.069	.071	.074	.076
10	048	050	053	055	058	060	063	066	068	071	073	076
11 12	.047 .047	.050 .049	.052	.055 .054	.057	.060	.062	.065	.067	.070 .069	.072	.075 .074
13 14	.046 .045	.048 .047	.051 .050	.053	.055	.058	.060	.063	.065 .064	.068	.070 .069	.072
15	043	047 047	049	.052 —.051	.055 —.053	.057	.059 —.058	060	063	065	067	.071
16	.043	.046	.048	.050	.052	.055	.057	.059	.062	.064	.066	.068
17 18	.042	.045	.047	.049 .048	.051	.053	.056 .054	.058 .057	.060	.062 .061	.065	.067 .065
19	.040	.042	.045	.047	.049	.051	.053	.055	.057	.059	.062	.064
20	039	041	043	045	047	050	052	054	056	058	060	062
21 22	.038 .037	.040	.042	.044	.046 .045	.048 .047	.050 .049	.052	.054 .052	.056 .054	.058	.060 .058
23 24	.036	.038	.039	.041	.043	.045	.047 .045	.049 .047	.051 .049	.053 .051	.054	.056 .054
25	033	035	037	038	040	042	043	045	047	049	050	052
26	.032	.033	.035	.037	.038	.040	.042	.043	.045	.047	.048	.050
27 28	.030	.032	.033	.035	.037	.038	.040 .038	.041	.043	.045	.046 .044	.048 .046
29	.027	.029	.030	.032	.033	.035	.036	.037	.039	.040	.042	.043
30 31	026 .024	027 .026	029 .027	030 .028	031 .030	033 .031	034 .032	035 .033	037 .035	038 .036	040 .037	041 .038
32	.023	.024	.025	.026	.028	.029	.030	.031	.032	.034	.035	.036
33 34	.021	.022	.023	.025	.026 .024	.027 .025	.028 .026	.029 .027	.030	.031 .029	.032	.034
35	018	019	020	021	022	— .023	024	025	026	— .027	— .027	028
36 37	.016 .015	.017 .015	.018	.019	.020	.021	.022	.022	.023	.024	.025	.026
38	.013	.014	.014	.015	.016	.016	.017	.018	.018	.019	.020	.020
39	.011	.012	.012	.013	.014	.014	.015	.015	.016	.017	.017	.018
40 41	010 .008	010 .008	011 .009	011 .009	012 .009	012 .010	013 .010	013 .011	014 .011	014 .012	015 .012	015 .012
42	.006	.006	.007	.007	.007	.008	.008	.008	.009	.009	.009	.010
43 44	.004	.005 .003	.005	.005	.003	.003	.003	.004	.004	.004	.007	.004
45	001	001	001	001	001	001	— .001	001	001	001	001	001

^{* 32.17} in. sec-2

(continued)

TABLE 647.—REDUCTION OF BAROMETER TO STANDARD GRAVITY (concluded) ENGLISH MEASURES

From latitude 46° to 90°, the correction is to be added algebraically.

Lati- tude	19	20	21	22	23	24	25	26	27	28	29	30
45	—.001	—.001	—.001	—.001	—.001	—.001	—.001	—.001	—.001	—.001	—.001	—.001
46	+.001	+.001	+.001	+.001	+.001	+.001	+.001	+.001	+.001	+.001	+.001	+.001
47	.003	.003	.003	.003	.003	.003	.003	.004	.004	.004	.004	.004
48	.004	.005	.005	.005	.005	.006	.006	.006	.006	.006	.007	.007
49	.006	.006	.007	.007	.007	.008	.008	.008	.009	.009	.009	.010
50	.008	.008	.009	.009	.010	.010	.010	.011	.012	.012	.012	.012
51	+.010	+.010	+.011	+.011	+.012	+.012	+.013	+.013	+.014	+.014	+.015	+.015
52	.011	.012	.012	.013	.014	.014	.015	.015	.016	.016	.017	.018
53	.013	.014	.014	.015	.016	.016	.017	.018	.018	.019	.020	.020
54	.015	.015	.016	.017	.018	.019	.019	.020	.021	.022	.022	.023
55	.016	.017	.018	.019	.020	.021	.021	.022	.023	.024	.025	.026
56	+.018	+.019	+.020	+.021	+.022	+.023	+.024	+.024	+.026	+.026	+.027	+.028
57	.020	.021	.022	.023	.024	.025	.026	.027	.028	.029	.030	.031
58	.021	.022	.023	.025	.026	.027	.028	.029	.030	.031	.032	.033
59	.023	.024	.025	.026	.028	.029	.030	.031	.032	.033	.035	.036
60	.024	.026	.027	.028	.029	.031	.032	.033	.034	.036	.037	.038
61	+.026	+.027	+.028	+.030	+.031	+.033	+.034	+.035	+.037	+.038	+.039	+.041
62	.027	.029	.030	.032	.033	.034	.036	.037	.039	.040	.042	.043
63	.029	.030	.032	.033	.035	.036	.038	.039	.041	.042	.044	.045
64	.030	.032	.033	.035	.036	.038	.040	.041	.043	.044	.046	.047
65	.031	.033	.035	.036	.038	.040	.041	.043	.045	.046	.048	.050
66	+.033	+.034	+.036	+.038	+.040	+.041	+.043	+.045	+.047	+.048	+.050	+.052
67	.034	.036	.038	.039	.041	.043	.045	.047	.048	.050	.052	.054
68	.035	.037	.039	.041	.043	.045	.046	.048	.050	.052	.054	.056
69	.036	.038	.040	.042	.044	.046	.048	.050	.052	.054	.056	.058
70	.038	.040	.042	.044	.046	.048	.050	.052	.053	.055	.057	.059
71	+.039	+.041	+.043	+.045	+.047	+.049	+.051	+.053	+.055	+.057	+.059	+.061
72	.040	.042	.044	.046	.048	.050	.052	.054	.057	.059	.061	.063
73	.041	.043	.045	.047	.049	.052	.054	.056	.058	.060	.062	.064
74	.042	.044	.046	.048	.051	.053	.055	.057	.059	.062	.064	.066
75	.043	.045	.047	.049	.052	.054	.056	.058	.061	.063	.065	.067
76	+.044	+.046	+.048	+.050	+.053	+.055	+.057	+.060	+.062	+.064	.066	.069
77	.044	.047	.049	.051	.054	.056	.058	.061	.063	.065	.068	.070
78	.045	.047	.050	.052	.055	.057	.059	.062	.064	.066	.069	.071
79	.046	.048	.051	.053	.055	.058	.060	.063	.065	.067	.070	.072
80	.046	.049	.051	.054	.056	.059	.061	.063	.066	.068	.071	.073
81 82 83 84 85	+.047 .047 .048 .048 .049	+.049 .050 .050 .051	+.052 .052 .053 .053 .054	+.054 .055 .056 .056	+.057 .057 .058 .059 .059	+.059 .060 .061 .061 .061	+.062 .062 .063 .064 .064	+.064 .065 .066 .066 .067	+.067 .067 .068 .069 .069	+.069 .070 .071 .071 .072	+.072 .072 .073 .074 .074	+.074 .075 .076 .076 .077
90	+.049	+.052	+.055	+.057	+.060	+.062	+.065	+.068	+.070	+.073	+.075	+.078

TABLE 648.—DETERMINATION OF HEIGHTS BY THE BAROMETER

Formula of Babinet:
$$Z = C \frac{B_0 - B}{B_0 + B}$$

 C (in feet) = 52494 $\left[1 + \frac{t_0 + t - 64}{900}\right]$ English measures.
 C (in meters) = 16000 $\left[1 + \frac{2(t_0 + t)}{1000}\right]$ metric measures.

In which Z = difference of height of two stations in feet or meters.

 B_{\bullet} , B= barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.

 t_0 , t = air temperatures at the lower and upper stations respectively.

VALUES OF C

F	English measu	res		Metric measur	es
$\frac{1}{2}(t_0+t)$ °F	C Feet	Log C	$\underbrace{\frac{1}{2}(t_0+t)}_{\circ C}$	C Meters	Log C
10	49928	4.69834	10	15360	4.18639
15	50511	.70339	— 8	15488	.19000
	51004	4.50025	– 6	15616	.19357
20	51094	4.70837	- 4	15744	.19712
25	51677	.71330	— 2	15872	.20063
30	52261	4.71818	0	16000	4.20412
35	52844	.72300		16128	.20758
		2000	+ 2	16256	.21101
40	53428	4.72777	6	16384	.21442
45	54011	.73248	6 8	16512	.21780
50	54595	4.73715	10	16640	4.22115
55	55178	.74177	12	16768	.22448
			14	16896	.22778
60	55761	4.74633	16	17024	.23106
65	56344	.75085	18	17152	.23431
70	56927	4.75532	20	17280	4.23754
75	57511	.75975	22	17408	.24075
			24	17536	.24393
80	58094	4.76413	26	17664	.24709
85	58677	.76847	28	17792	.25022
90	59260	4.77276	30	17920	4.25334
95	59844	.77702	32	18048	.25643
			34	18176	.25950
100	60427	4.78123	36	18304	.26255

TABLE 649.—THUNDERSTORM ELECTRICITY 188

(Lightning strokes consist of current peaks and continuing currents.)

Average2 coulombs18 coulombs10° amp204 sec21/yr10 — 20	1.5 μ sec 38 μ sec 1.2 × 10° amp/ μ sec 95% — 10° ergs	
Minimum $3 \times 10^{-4} \text{ sec}$ $3/\text{yr}$	10° volts 1000 V/cm 100	1100 amp/cm²
Maximum 5 coulombs >300 coulombs 2 × 10 ⁸ amp 1000 amp 4.5 sec 50/yr	10 μ sec >120 μ sec 4.5 × 10° amp/ μ sec 20 × 10° volts to 50 V /cm to	3×10^4 amp/cm ² 5 cm
Quantity discharged by single current peaks Current amplitude in current peaks Current amplitude in current discharges Number of current peaks in strokes Time interval between successive current peaks Variability in number of strokes (Empire State Bldg.) Number of strokes per square mile per year at an average isokeraunic level of 27	Wave shapes of current peaks: Fronts Tail—time to half value S120µ sec Effective rate of rise of current. Polarity of lightning strokes to ground from cloud (approximately) Cloud potential (estimated). Energy (depends on voltage and current in channel—estimated). Potential gradient at earth's surface beneath a thundercloud (estimated). Number of lightning discharges over entire earth each second.	Lightning channel: Current density during formation

Cloud-to-ground stroke characteristics.—First discharge in a stroke progresses from cloud to ground as stepped leaders (average velocity, 1 foot per microsecond). After contacting earth a return stroke progresses toward the cloud (velocity, 65-450 feet/ μ sec; average, 100 feet/ μ sec). Subsequent discharges progress from the cloud as continuous leaders (average velocity, 10 feet/ μ sec) and again a return stroke is formed. In case of tall objects (skyscrapers) stroke leaders may start from the building toward the cloud. In such a case no thunder or very little thunder is heard unless initial discharge is followed by current peaks.

188 McEachron, K. B., "Lightning and Lightning Protection," Encycl. Brit., vol. 14, June 1948. Used by permission.

The elements of atmospheric electricity show variations, both regular and irregular. Over land the irregular variations are very pronounced and the regular variations differ notably from place to place, in marked contrast to the corresponding characteristics over the ocean. Therefore, and because of the wider and more uniform geographical distribution of ocean observations, it seems best to give the greater weight to the ocean data when attempting to arrive at values characterizing world-wide conditions. Because of the wide variation from place to place in the means from land stations, due to local factors, a general mean of these is of questionable significance. Hence it seems better to indicate the extremes of station means in the case of elements for which the data are sufficiently abundant.

Certain disparities, which will be found between published tables of ocean data, arise

largely from the inclusion of more recent data.

Of the atmospheric-electric elements the potential gradient has been the most extensively observed. The sign of the average gradient is everywhere such as to drive positive ions toward the earth. The periodic variations in this element are of great interest because of their apparent relation with cosmic phenomena. Thus the potential gradient apparently increases with increase in sunspot numbers and varies throughout the year. The maxima in monthly means occur everywhere, with few exceptions, at the time of northern winter, and the corresponding minima occur at the time of northern summer. The diurnal variation observed over the oceans is everywhere in phase when considered on a common-time basis, except for a minor phase-shift that depends upon the season. This diurnal variation derived from observatories made on the *Carnegie* during 1915 to 1921, given by the Fourier expression $\Delta P/P = 0.15 \sin (\theta + 186^\circ) + 0.03 \sin (2\theta + 237^\circ)$ where θ is reckoned at 15° per hour beginning at 0° Greenwich mean civil time, is in close agreement with that obtained from 1928–1929 observations.

No general expression that will approximately characterize the diurnal variation over land can be given. These variations determined by local factors are apparently superimposed upon a variation of the same world-wide character as that found to prevail over

the oceans.

TABLE 651.-IONIC EQUILIBRIUM IN THE ATMOSPHERE

Equilibrium for atmospheric ionization occurs when $q = \alpha n^2 + \eta_1 N_0 n + \eta_2 N n$, where n and N are the number of pairs of small and large ions of one sign and N_0 the number of uncharged nuclei; α , η_1 , η_2 , are coefficients of recombination of small ions with small ions, with uncharged nuclei, and with large ions. If for both small and large ions the positive and negative are equally abundant, then $N_0/N = \eta_2/\eta_1$. When $n/N \leqslant 2\eta_2/\alpha$, the equilibrium-condition is expressed by $q = \beta n$; β is designated the diminution-constant; $1/\beta = \bigoplus$ is the "average life" of a small ion in air which contains an abundance of large ions; \bigoplus varies inversely as N.

a: 1.6 × 10⁻⁶ cm³/sec

η₁: 5 × 10⁻⁶ "

η₂: 6 × 10⁻⁸ "

Over land,

Average, 30 sec

Extremes, 10 to 60 sec

Over sea, 230 sec

N: Over land, 500 to 50,000 ions/cm³

Aitken nuclei, number per cm³:

Over open country, up to 10⁵

Over midocean, about 800

In free air,

Altitude 1 km 6,000 5 km 50

3 km 200 8.5 km about 5

TABLE 652.—CHARGE ON RAIN AND SNOW

Specific net charge on precipitation:

Average, 0.5 esu/g Maximum observed, 20 esu/g

Specific charge on individual raindrops or snowflakes:

Rain, + 2.7 to - 3.2 esu/gSnow, + 11.6 to - 8.1 esu/g

^{*} Tables 650-653 prepared by G. R. Wait, Department of Terrestrial Magnestism, Carnegie Institution of Washington.

Element	Symbol	Mean	ns	Units	Variations
Potential gradient.	P	Land: 64	to 317	volts/m	Range Percent of mean Annual 22 to 145 Diurnal 35 to 120
		Sea:	128		Annual 13 Diurnal 35
		Free air	• • • • • •		Percentage of surface values at various altitudes 0 km 100 6 km 8 3 " 17 9 " 4
Air-conductivity		T 1	4. 5	> / 10-4	We intime determined chiefly by
total	^ = ^+ + ^-	Land: 1	to 5		Variations determined chiefly by local factors
		Sea:	2.6	46 66	Variations small and chiefly irregular
		Free air			Ratio of value at various alti- tudes to that at surface 0 km 1 6 km 20 3 " 8 9 " 38
Ratio of positive					3 6 9 36
to negative					
conductivity	λ_+/λ	Land: Sea:	1.12 1.26		
Air-earth current density	$i = \lambda P/30000$	Land:	7.0	$esu \times 10^{-7}$	
	. — 11 / 00000	Sea:	11.0	,	
Density of small		Land:	750	ions/cm ⁸	
ions: Positive	n_+	Sea:	600	ii	
Negative .	n_	Land:	650	"	
	$(n_+ + n)/2$	Sea: Free air	500		. Values at various altitudes 2 km 1300
Ratio of positive					4 " 1900 5 " 2300
to negative ionic density	$p = n_+/n$	Land: Sea:	1.23 1.23		

(continued)

			7
Element	Symbol	Means	Units
Space-charge, over land	ρ	At surface: *	10 ⁻¹⁰ esu/cm ⁸
		-2000 to + 1900	,
	$\rho = -\left(\frac{dP}{dh}/1.2\pi\right) \times 10^{-10}$	Free air:	
	(F t - 1-i-t- i- 1)	0 to 3 km 9.0	66
	(For $h = \text{height in km}$)	0 to 3 km 9.0 3 to 6 0.9	46
		6 to 9 0.4	46
Mobility of small ions:	$k_{+} = \lambda_{+}/300 \ en_{+}$	0.00	
Positive	$k_{+} = k_{+}/300 \text{ en}_{+}$ k_{+}	Land: 0.9	cm sec-1 volt-1 cm-1
1 0311110	n+	Sea: 1.6	"
Negative	k_	Land: 1.0	66
		Sea: 1.7	44
Rate of formation of		Over land:	
ion-pairs	q	Ra and Th	
		products in air	
		a rays 4.6	ions cm ⁻⁸ sec ⁻¹
		β rays 0.2 γ rays 0.15	"
		γ rays 0.15 Radioactive	
		matter in the	
		earth's crust	
		β rays 0.1	"
		γ rays 3.0	44
		Penetrating radiation 1.5	44
			46
		Total 9.55	
		At sea:	
		Penetrating	44
		radiation 1.5	46
		` '	44
		Total 2.2	**

^{*} The sign and magnitude of surface values are exceedingly variable from place to place.

Just a few years ago it was held that the universe was made up of 92 elements and that probably these elements were made of two elementary particles. While most of these 92 elements had been identified and their properties studied, there were several that had not been identified and thus very little was known directly about their properties.

As a result of a great amount of study and investigation, during the past few years the number of known elementary particles has been extended to seven or eight (see Table 720), and all the elements missing from the periodic table (see Table 658) have been identified and some of their properties studied. ¹⁹⁹ In addition to this, the number of elements has been extended to five or six beyond uranium and some of the properties of these elements have been studied. (See Table 658.)

It is now generally considered that the elements are made up of electrons, protons, and neutrons. Each element now has three designations: the name; the atomic number, Z, i.e., the charge on the atomic nucleus and the mass number, A, which is the number of protons and neutrons that make up the nucleus of the atom and extends from 1 for hydrogen (or the neutron) to 246 for the isotope of californium. This mass number is not too definite since, in many cases, several atoms have isotopes of the same mass number.

Atoms of number greater than 83 and certain isotopes of eight atoms of lower atomic number, are unstable in that they break down into other isotopes, i.e., they are radioactive. (See Table 732.) There are in all about 1,220 different isotopes ¹⁹⁹ that have been identified and have had some of their properties studied. Of these only 274 are stable. A number of atoms ²⁰⁰ (Z=43,61,85,93,94,95,96) are so unstable that they are not now found on the earth. Two of the isotopes, A=5, and 8, have so short a life that it is almost impossible to detect them. A radioactive material with a life shorter than about 10^{-20} sec and longer than about 10^{14} years will be unobservable as such.

The values given for certain physical dimensions of molecules, atoms, or nuclei depend upon the definition of the particular dimension and the method used in its calculation. Diameters may be calculated from Van der Waal's equation, from viscosity, and from certain force relations. Some values are the results of assuming the atom or nucleus to be a sphere. While these various methods give results that do not differ too much, neither are the results in good enough agreement for one to feel that the answer is final. The following tables give some results of physical dimension obtained by various means of calculation.

TABLE 654.—CONVERSION FACTORS FOR UNITS OF MOLECULAR ENERGY*

1 cal/móle	Erg/molecule = 1 = 1.660349×10^{-17} = 6.94690×10^{-7}	Joule/mole 6.02283×10 ¹⁸ 1 4.1840	Cal/mole 1.43491×10 ¹⁶ .239006	Electron-volt/ molecule 6.2422 ×10 ¹¹ 1.036427×10 ⁻⁵ 4.33641 ×10 ⁻⁵	Wave No † (cm ⁻¹) 5.03581×10 ¹⁵ 8.36121×10 ⁻² .349833
l electron-volt/ molecule 1 wave No (cm ⁻¹)	$= 1.601992 \times 10^{-12} = 1.985776 \times 10^{-16}$	96.4853×10 ^a 11.95999	2.30605×10 ⁴ 2.85851	1 1.239567×10-4	8.06734×10 ⁸

^{*} This table adapted from data furnished by the National Bureau of Standards. † This means $h\nu/m$ olecule where the values given are for $\nu =$ unity.

¹⁹⁹ Seaborg and Perlman, Rev. Mod. Phys., vol. 20, p. 585, 1948.

²⁰⁰ Bethe, H. A., Elementary nuclear theory, John Wiley & Sons, Inc., 1947. Reprinted by permission.

					
Element Symbol	At No	Atomic weight *	Element Symbol	At No	Atomic weight *
Actinium Ac	89	227	Molybdenum Mo	42	95.95
Aluminum Al	13	26.98	Neodymium Nd	60	144.27
Americium Am	95	[243]		10	20.183
	51	121.76			
Antimony Sb			Neptunium Np	93	[237]
Argon A	18	39.944	Nickel Ni	28	58.69
Arsenic As	33	74.91	Niobium Nb	41	92.91
Astatine At	85	[210]	Nitrogen N	7	14.008
Barium Ba	56	137.36	Osmium Os	76	190.2
Berkelium Br	97	[245]	Oxygen O	8	16
Beryllium Be	4	9.013	Palladium Pd	46	105.7
Bismuth Bi	83	209.00	Phosphorus P	15	30.975
Boron B	5	10.82	Platinum Pt	78	195.23
201011 111111111	35	79.916	Plutonium Pu	94	[242]
Diomine Titter	48	112.41		84	210
Cadmium Cd					
Calcium Ca	20	40.08	Potassium K	19	39.100
Californium Cf	98	[246]	Praseodymium Pr	59	140.92
Carbon C	6	12.010	Promethium Pm	61	[145]
Cerium Ce	58	140.13	Protactinium Pa	91	231
Cesium Cs	55	132.91	Radium Ra	88	226.05
Chlorine Cl	17	35.457	Radon Rn	86	222
Chromium Cr	24	52.01	Rhenium Re	75	186.31
Cobalt Co	27	58.94	Rhodium Rh	45	102.91
Copper Cu	29	63.54	Rubidium Rb	37	85.48
Curium Cm	96	[243]	Ruthenium Ru	44	101.7
Dysprosium Dy	66	162.46	Samarium Sm	62	150.43
Erbium Er	68	167.2	Scandium Sc	21	44.96
	63	152.0	Selenium Se	34	78.96
	9	19.00	Determant trivities = -	14	28.06
Fluorine F	87	[223]		47	107.880
Francium Fr			Silver Ag		22.997
Gadolinium Gd	64	156.9	Sodium Na	11	
Gallium Ga	31	69.72	Strontium Sr	38	87.63
Germanium Ge	32	72.60	Sulfur S	16	32.066 †
Gold Au	79	197.2	Tantalum Ta	73	180.88
Hafnium Hf	72	178.6	Technetium Tc	43	[99]
Helium He	2	4.003	Tellurium Te	52	127.61
Holmium Ho	67	164.94	Terbium Tb	65	159 2
Hydrogen H	1	1.0080	Thallium Tl	81	204.39
Indium In	49	114.76	Thorium Th	90	232.12
Iodine I	53	126.91	Thulium Tm	69	169.4
Iridium Ir	77	193.1	Tin Sn	50	118.70
Iron Fe	26	55.85	Titanium Ti	22	47.90
Krypton Kr	36	83.80	Tungsten W	74	183.92
Lanthanum La	57	138.92	Uranium U	92	238.07
	82	207.21	Vanadium V	23	50.95
Lead Pb				54	131.3
Lithium Li	3	6.940		70	173 04
Lutetium Lu	71	174.99	Titter Druini Titter = 0	, ,	
Magnesium Mg	12	24.32	Yttrium Y	39	88.92
Manganese Mn	25	54.93	Zinc Zn	30	65.38
Mercury Hg	80	200.61	Zirconium Zr	40	91.22

Wichers, Edward, Journ. Amer. Chem. Soc., vol. 74, p. 2447, 1952.
 A value given in brackets denotes the mass number of the isotope of longest known half life.
 Because of natural variations in the relative abundance of the isotopes of sulfur, the atomic weight of this element has a range of ±.003.

1 Hydrogen	Н	34 Selenium	Se		Ho
2 Helium	He	35 Bromine	Br	68 Erbium	Er
3 Lithium	Li	36 Krypton	Kr		Γm
4 Beryllium	Ве	37 Rubidium	RЬ	70 Ytterbium	Yb
5 Boron	В	38 Strontium	Sr	71 Lutetium	Lu
6 Carbon	С	39 Yttrium	Y	72 Hafnium	Hf
7 Nitrogen	N	40 Zirconium	Zr	73 Tantalum	Ta
8 Oxygen	0	41 Niobium	Nb	74 Tungsten	W
9 Fluorine	F	42 Molybdenum	Mo	75 Rhenium	Re
10 Neon	Ne	43 Technetium	Тc	76 Osmium	Os
11 Sodium	Na	44 Ruthenium	Ru	77 Iridium	Ir
12 Magnesium	Mg	45 Rhodium	Rh	78 Platinum	Pt
13 Aluminum	ΑĬ	46 Palladium	Pd	79 Gold	Au
14 Silicon	Si	47 Silver	Ag	80 Mercury	Hg
15 Phosphorus	P S Cl	48 Cadmium	Cď	81 Thallium	Τĭ
16 Sulfur	S	49 Indium	In	82 Lead	Pb
17 Chlorine	CĨ	50 Tin	Sn	83 Bismuth	Bi
18 Argon	Ā	51 Antimony	Sb	84 Polonium	Po
19 Potassium	ĸ	52 Tellurium	Te	85 Astatine	At
20 Calcium	Ca	53 Iodine	Ĭ		Rn
21 Scandium	Sc	54 Xenon	Χē	87 Francium	Fr
22 Titanium	Ti	55 Cesium	Cs	88 Radium	Ŕa
23 Vanadium	Ÿ	56 Barium	Ba	89 Actinium	Ac
24 Chromium	Ċr	57 Lanthanum	La	90 Thorium	Th
25 Manganese	Mn	58 Cerium	Ce	91 Protactinium	Pa
26 Iron	Fe	59 Praesodymium	Pr	92 Uranium	Ü
27 Cobalt	Ĉo	60 Neodymium	Ñđ		Np
28 Nickel	Ni	61 Promethium	Pm	94 Plutonium	Pu
29 Copper	Cu	62 Samarium	Sm		Am
30 Zinc	Zn	63 Europium	Eu		Cm
31 Gallium	Ga	64 Gadolinium	Gď	97 Berkelium	Bk
32 Germanium	Ge	65 Terbium	Tb	98 Californium	Cf
33 Arsenic	As	66 Dysprosium	Dy	20 Camormum	CI
JJ ATSEIIC	115	00 Dysprosium	Dy		

Given below by atomic numbers are some foreign or obsolete names for certain of the elements.

4 Glucinium, Gl	41 Columbium, Cb	61 Illinium, Il	80 Hydragyrum
11 Natrium	43 Masurium, Ma	71 Cassiopeium	82 Plumbum
13 Aluminium	47 Argentum	72 Celtium	85 Alabamine, Ab
19 Kalium	50 Stannum	75 Bohemium	86 Emanation, niton
26 Ferrum	51 Stibium	79 Aurum	87 Virginium, Vi

TABLE 657.—PERIODIC SYSTEM OF THE ELEMENTS ***

	b 2 He 4.003	10 Ne 20.183	18 A 39.944	36 Kr 83.80	54 Xe 131.3		86 Rn 222				
NIII				28 Ni 58.69	46 Pd 106.7	78 Pt 195.23					
ν,	a			27 Co 58.94	45 Rh 102.91	77 Ir 193.1					
				26 Fe 55.85	44 Ru 101.7	76 Os 190.2				71 Lu 174.99	
VII	٩	9 F 19.00	17 Cl 35.457	35 Br 79.916	53 1 126.91		85 At [210]			70 Yb 173.04	
>	a			25 Mn 54.93	43 Tc [99]	75 Re 186.31				69 Tm 169.4	
17	P	8 O 16	16 S 32.066	34 Se 78.96	52 Te 127.61		84 Po 210			68 Er 167.2	
	a			24 Cr 52.01	42 Mo 95.95	74 W 183.92				67 Ho 164.94	
	P	7 N 14.008	15 P 30.975	33 As 74.91	51 Sb 121.61		83 Bi 209,00		ion.	66 Dy 162.46	98 Cf
	a			23 V 50.95	41 Nb 92.91	73 Ta 180.88			mmunicat	65 Tb 159.2	97 Bk
>	P	6 C 12.010	14 Si 28.06	32 Ge 72.60	50 Sn 118.70		82 Pb 207.21		private co	64 Gd 156.9	95 Am 96 Cm
	а			22 Ti 47.90	40 Zr 91.22	72 Hf 178.6			vol. 105, p. 514, 1947; G. T. Seaborg, private communication.	63 Eu 152.0	95 Am
=	P	5 B 10.82	13 Al 26.98	31 Ga 69.72	49 In 114.76		ths * 81 Ti 204.39	rare	7; G. T.	62 Sm 150.43	93 Np 94 Pu
	a			21 Sc 44.96	39 Y 88.92	57 La 138.92 58 to 71	Rare earths * 81 7 204.3	89 Ac 227 90-103 Actinide rare earths †	514, 194	61 Pm 62 Sm [147] 150.43	93 Np
	P	4 Be 9.013		30 Zn 65.38	48 Cd 112.41		80 Hg 200.61		а. 105, р.	60 Nd 144.27	92 U 238.17
	a		12 Mg 24.32	20 Ca 40.08	38 Sr 87.63	56 Ba 137.36		88 Ra 226.05		59 Pr 140.92	: 91 Pa 231
	٩			29 Cu 63.54	47 Ag 107.880		79 Au 197.2		202 Meggers, W. F., Science,	58 Ce 140.13	† Actinide rare earths: 90 Th 232.12
	a 1 H 1.0080	3 Li 6.940	11 Na 22.997	19 K 39.100	37 Rb 85.48	55 Cs 132.91		87 Fr 223	202 Meggers, W	57 La 58 Ce 138.92 140.13	actinide ra
	П	11	III	1<	>	VI		VII	202 * R		+

TABLE 658.—ELECTRON CONFIGURATIONS OF THE ELEMENTS, NORMAL STATES *

	K		L		M			N		0
	1 s	2s	2p	35	3 <i>p</i>	3 <i>d</i>	4s	4p	4 <i>d</i>	$\frac{O}{5s}$
1 H	1									
2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne	2	1								
4 Be	2	2								
5 B	2	2	1							
6 C	2	2	2							
8 0	2	2	4							
0 F	2	2	5							
10 Ne 11 Na 12 Mg	2	2	6	1						
12 Mg	2	2	6	2						
13 A1	2	2	6	2	1					
14 Si 15 P	2	2	6	2	3					
15 P 16 S 17 Cl	2	2	6	2	4					
17 Cl	2	2	6	2	5					
18 A 19 K	2	2	6	2	6		1			
19 K 20 Ca	2	2	6	2	6		2			
21 Sc 22 Ti	2	2	6	2	6	1 2	2			
14 Si 15 P 16 S 17 Cl 18 A 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn	2	2	6	2	6	3	2			
23 V 24 Cr	2	2	6	2	6	5	1			
25 Mn 26 Fe	2	2	6	2	6	1 2 3 5 5 6 7 8 10 10	2			
27. Co	2	2	6	2	6	7	2			
28 Ni 29 Cu	2	2	6	2	6	8	2			
30 Zn	2	2	6	2	6	10	2			
31 Ga	2	2	6	2	6	10 10	2	1		
32 Ge 33 As	2	2	6	2	6	10	2	3		
34 Se	2	2	6	2	6	10	2	4		
34 Se 35 Br 36 Kr 37 Rb	2	2	6	2	6	10 10	2	5		
37 Rb	2	2	6	2	6	10	2	6		1
38 Sr	2	2	6	2	6	10	2	6		2
38 Sr 39 Y 40 Zr	2	2	6	2	6	10 10	2	6	1	2
41 Nb	2	2	6	2	6	10	2	6	4	1
42 Mo	122222222222222222222222222222222222222	122222222222222222222222222222222222222	12345666666666666666666666666666666666666	122222222222222222222222222222222222222	12345666666666666666666666666666666666666	10	1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2	2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 4 5 5 7 8 10	1 2 2 2 1 1 2 1
43 Tc 44 Ru	2	2	6	2	6	10 10	2	6	5 7	1
45 Rh	2	2	6	2	6	10	2	6	8	ī
46 Pd	2	2	6	2	6	10	2	6	10	

^{*} See column 3, Table 623. G. T. Seaborg, private communication.

(continued)

TABLE 658.—ELECTRON CONFIGURATIONS OF THE ELEMENTS, NORMAL STATES (concluded)

	K		L_		M				N			0				P		
47 Agd 48 Cd 49 Sn 50 Sn 51 St 52 Te 53 I Xe 55 S6 Ba a Ce 57 Re 60 Pm 61 SE 60 Pm 62 Se 64 GT 63 ET 64 GT 65 Th 66 Re 67 Th 71 LHf 73 TW 74 Re 75 Au 75 Re 76 Or 77 Pt 80 HT 78 Pt 81 Pt 82 Ph 83 Bt 84 Po 85 At 87 Fr 88 Re 87 Fr 88 Re 87 Fr 88 Re 87 Fr 88 Re 89 AT 88 Re 90 Pt 91 Pu 93 NP 94 PA 95 Cf 97 Re 97 Re 98 Re 99 Re 90 Re	15 222222222222222222222222222222222222	22 22 22 22 22 22 22 22 22 22 22 22 22	2,6666666666666666666666666666666666666	3\$ 222222222222222222222222222222222222	3¢666666666666666666666666666666666666	3d 10 10 10 10 10 10 10 10 10 10 10 10 10	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4¢666666666666666666666666666666666666	100 100 100 100 100 100 100 100 100 100	2 3 4 4 5 6 7 7 7 9 10 11 12 13 14 4 14 4 14 4 14 4 14 4 14 4	5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12345666666666666666666666666666666666666	1 1 1 2 3 3 4 4 5 6 6 7 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2 3 4 5 6 7 8 9	122222222222222222222222222222222222222	1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE 659.—RADII, IN ANGSTROM UNITS, OF THE ELECTRONIC ORBITS OF LIGHTER ELEMENTS 208

	K		L		M		Ŋ	7
Element	1 <i>s</i>	25	2p	3 <i>s</i>	3 <i>p</i>	3 <i>d</i>	${4s}$	4p
Helie Be ONOF Ne a g MAISPSCIAKCSCTIV CMFC NI una e e s Ser	.53 .30 .20 .143 .112 .090 .080 .069 .061 .055 .050 .046 .042 .037 .035 .032 .031 .029 .028 .026 .025 .024 .023 .021 .020 .019 .019 .019	1.50 1.19 .88 .67 .56 .48 .41 .37 .32 .30 .27 .24 .23 .21 .20 .19 .18 .16 .150 .143 .138 .133 .127 .122 .117 .112 .106 .103 .100 .097 .095 .092	.85 .66 .53 .45 .38 .32 .28 .25 .23 .21 .19 .18 .16 .155 .145 .133 .127 .122 .117 .112 .106 .090 .095 .081 .078 .071 .069	1.55 1.32 1.16 .98 .88 .72 .66 .60 .55 .52 .48 .40 .39 .37 .35 .34 .32 .31 .30 .29 .28	1.21 1.06 .92 .82 .75 .67 .63 .58 .54 .50 .47 .44 .41 .39 .37 .36 .34 .32 .31 .30 .29 .28	.61 .55 .49 .45 .42 .39 .36 .34 .32 .30 .28 .27 .25 .24	2.02 2.03 1.80 1.66 1.52 1.41 1.31 1.22 1.14 1.07 1.03 .97 .92 .88 .84	1.13 1.06 1.01 .95 .90
Kr	.015	.090	.067	.25	.25	.22	.74	.00

²⁰⁸ Slater, J. C., Introduction to chemical physics, 1939. Courtesy of McGraw-Hill Book Co.

TABLE 660 .- ELEMENTAL ABUNDANCES IN THE UNIVERSE 204

(Atoms per 10,000 atoms of Si*)

	Ele-	Abun-			Ele-	Abun-			Ele-	Abun-	
Z	ment	dance	Source	Z	ment	dance	Source	Z	ment		Source
1	H†	3.5×10^{8}	S	29	Cu	4.6	M	58	Ce	.023	M
2	He†	3.5×10^7	S	30	Zn	1.6	M	59	Pr	.0096	M
3	Li	1 2		31	Ga	.65	M	60	Nd	.033	M
4	Be	.2		32 33	Ge As	2.5	M M	61	Pm	012	M
6	ç	80,000	S	34	Se	4.8 .25	M	62 63	Sm Eu	.012 .0028	M
7	B C N	160,000	Š	35	Br	.42	M	64	Gd	.0028	M
4 5 6 7 8 9	0	220,000	S S S P	36	Kr‡			65	Тb	.0052	M
	F	90	P	37	Rb	.071	M	66	Dy	.020	M
10	Ne‡	9,000-24,000	P, Sc	38	Sr	.41	M	67	Ho	.0057	M
11	Na	462 ± 36	M	39	Y	.10	M	68	Er	.016	M
12 13	Mg Al	$8,870 \pm 250$ 882 ± 81	M M	40 41	Zr Nb	1.5 .009	M M	69	Tm Yb	.0029 .015	M
14	Si	10,000	M	42	Mo	.19	M	70 71	Lu	.0048	M M
15	Р	130	M	43	Tc			72	Hf	.007	M
16	S CI	3500	S	44	Ru	.093	M	73	Ta	.0031	M
17	Cl	170	S P	45	Rh	.035	M	74	W	.17	M
18	A ‡	130-2,200	P, Pe	46	Pd	.032	M	75	Re	.0041	M
19	K	69.3 ± 7.5	M	47	Ag	.027	M	76	Os	.035	M
20 21	Ca §	670 ± 74	M, S	48	Cd	.026	M	77	Ir D	.014	M
22	Sc Ti	$.18$ 26.0 ± 9.0	M M	49 50	In Sn	.01 .62	M M	78 79	Pt Au	.087 .0082	M M
23	v	2.5	M	51	Sb	.017	M	80	Hg	?	M
24	Čr	95	M	52	Te	?	141	81	ΤΪ	?	M
25	Mn	77	M	53	Ī	.02		82	Pb	.27	M
26	Fe	18,300	M	54	Xe‡		M	83	Bi	.0021	M
27	Co	99	M	55	Cs	.001	M	90	Th	.012	M
28	Ni	1,340	M	56	Ba	.039	M	92	U	.0026	M
				57	La	.021	M				

*Silicon is 12.3 percent by weight in meteorites. † The hydrogen-helium ratio and the ratio of hydrogen and helium to the "oxygen group" elements (C, N, O, Ne, Fe) are those computed by J. Greenstein and reported by M. Harrison, Astrophys. Journ., vol. 108, p. 310, 1940. ‡ See Table 663. § Stellar and meteoritic values have been combined by equalizing the calcium abundances. || The letters S, P, Sc, Pe, and M designate the sources chosen (solar, planetary nebulae, τ-Scorpii, γ Pegasi, or meteoritic).

TABLE 661.—ABUNDANCE OF ELEMENTS IN OUR PLANET GIVEN IN PERCENTAGE BY WEIGHT*

Element	Earth crust	Earth	Lithosphere,† hydrosphere, atmosphere	Element	Earth crust		ithosphere,† hydrosphere, atmosphere
0	46.6	24.4	49.38	P		.17	.12
Ši	27.7	12.2	25.8	Ċ		.07	.17
Al	8.1	1.0	7.5	Čl		.05	.19
Fe	5.0	45.6	4.66	H		.04	.87
Ca	3.63	1.2	3.34	Cu		.01	.01
Na	2.8	.47	2.55	Zn		.0005	.03
K	2.16	.12	2.38	As		.01	
Mg	2.1	9.4	2.07	Ba			.04
Ti	.4	.06	.61	F			.04
Mn	.1	.19	.09	N			.03
Ni		3,41	.01	Zr			.02
S		1.08	.07	V			.02
S Co		.26	.002	Sr			.02
Cr		.22	.03				

^{*} This table was selected from several sources including the report by Brown (see footnote 204) and data furnished by Ingerson of the U. S. Geological Survey. † The lithosphere, 10 miles of earth crust, makes up 93 percent, the hydrosphere makes up 7 percent, and the atmosphere makes up 0.03 percent of the part of the earth considered. Proc. Nat. Acad. Sci., vol. 8, p. 114, 1922.

TABLE 662.—CHEMICAL COMPOSITION OF EARTH—METEORITES AND SOLAR ATMOSPHERE * 205

The table gives $\log NH$, where NH = the number of atoms, neutral and ionized, per cm³. Constants added to data of Russell and Brown to give order of magnitude agreement with Unsöld. : indicates less accuracy; ? origin doubtful.

with Unsöld.: indicates less accuracy; ? origin doubtful.

H and He are about 97 percent of the total solar mass, the oxygen group 2.7 percent, the metals 0.3 percent; and by numbers of atoms 99 percent, 0.9 percent, and 0.1 percent

respectively.

The level of ionization in the solar atmosphere is such that atoms of IP = 8.33 ev are 50 percent ionized; ionization temperature = 5676° K; electron pressure ≈ 32 bar; 85 percent of free electrons come from Mg, Si, Fe, according to Unsöld.

To 1	ement	Earth- meteorite †	Sun ‡	Sun §	Element	Earth- meteorite †	Sun ‡	Sun §
								Sun s
	1 H	18.04	22.1	24.13	41 Nb	13.05	12.6:	12.40
	2 He	****	20.6?	• • • •	42 Mo	14.38	13.0	13.40
	3 Li	14.91	13.6:		44 Ru	14.07	13.3	
	4 Be	14.23	13.4		45 Rh	13.64	12.1	
	5 B	14.72	16.6:		46 Pd	13.61	12.7	
	6 C	17.22	19.1	19.91	47 Ag	13.53	126	
	7 N	15.01	19.6:	20.23	48 Cd	13.52	13.8:	
	8 O	19.64	20.6	20.35	49 In	13.10	11.6:	
	9 F	15.48	17.6:		50 Sn	14.89	12.8?	
10					51 Sb	13.33	12.4:	
1		17.76	18.8	17.90	53 I	13.35		
1.		19.05	18.9	19.13	55 Cs	12.10	?	
1.		18.04	18.0	17.95	56 Ba	13.69	14.9	14.57
1-	4 Si	19.10	19.1	18.91	57 La	13.42	13.4	
1.	5 P	17.21	15.6:		58 Ce	13.46	14.0	
1	6 S	17.98	17.3:	18.54	59 Pr	13.08	12.2:	
1	7 CI	16.63			60 Nd	13.62	13.6	
13	8 A				62 Sm	13.18	13.1	
19	9 K	16.94	18.4:	16.82	63 Eu	12.55	13.0:	
2	0 Ca	17.93	183	17.85	64 Gd	13.33	12.7:	
2	1 Sc	14.36	15.2	14.95	65 Tb	12.82		
2		16.52	16.8	16.58	66 Dy	13.40	13.2:	
2.		15.50	16.6	15.67	67 Ho	12.85		
	4 Čr	17.80	17.3	17.20	68 Er	13.30	11.7:	• • • •
2.		16.99	17.5	17.08	69 Tm	12.56	12.1:	
20		19.37	18.8	19.34	70 Yb	13.28	12.6:	
2		17.10	17.2	16.65	71 Lu	12.78	12.6:	
2		18.23	17.6	17.57	72 Hf	12.94	12.0	
2		15.76	16.6	15.85	73 Ta	12.59	11.6:	
30		15.30	16.5	16.40	74 W	14.33	11.8	• • • •
3		14.91	13.6:	10.10	75 Re	12.71		
3		15.50	14.6	• • • •	76 Os	13.64	12.1:	
3.		15.78	14.0	• • • •	77 Ir	13.25	11.4?	
	4 Se	14.50		• • • •	78 Pt	14.04	13.2	
	5 Br	14.72	• • •		79 Au	13.01		
	7 Rb	13.95	13.3:		82 Pb	14.53	12.8	14.2
3		14.71	14.9	14.97	83 Bi	12.42	12.0	14.2
3		14.71	14.9	14.83	90 Th	13.18		
4		15.28	14.2	13.99	90 In 92 U	12.51		• • • •
41	U ZI	13.40	14.1	13.99	92 0	12.51		

^{*} Prepared by B. Bell.

206 Brown, Rev. Mod. Phys., vol. 21, p. 625, 1949; Russell-Dugan-Stewart, Astronomy, vol. 2, p. 503, 1938: Unsöld, Zeitschr. f. Astrophys., vol. 24, p. 307, 1948.

† Brown. ‡ Russell. §Unsöld.

TABLE 663.—COSMIC ABUNDANCES OF THE RARE GASES *

As estimated by interpolation of the abundance curves (abundances in atoms per 10,000 atoms of silicon).

Gas Ne A	Isotope used for inter- polation Ne ²¹ A ³⁶		Estimated abundance of element 37,000 1,000	Gas Kr Xe	Isotope used for inter- polation Kr^{83} Xe^{181}	Estimated abundance of isotope .1 .004	Estimated abundance of element .87	
----------------	---	--	---	-----------------	---	--	------------------------------------	--

^{*} For reference, see footnote 204, p. 625.

627

			Neutr	al atoms				S	ingly ioni	zed ator	ns
		Disk				Spot				Disk	
		No. lin	es **		No.	lines			No. 1	ines	
oN 14 123456789	Heit Heit Lii Bei	bolonded Unblended	Blended	S S S Max int	Unblended	Blended	25. 3.	Element	Unblended	Blended	Max int
5 6 7 8 9	B‡ Cı Nı Oı F‡	41 8 12	7 6 1	12 -1 5			$-\frac{10}{-2}$	Ве 11	2		1
11 12 13 14	Na 1 Mg 1 Al 1 Si 1	21 55 22 156	6 4 5 29	30 (200) 20 (80)			70? 30 25 12	Mg II	12	2	(1000)
15 16 19 20	Pı Sı Kı Caı	6 31 4 108	1 10 3 21	1 8			2 20 40	Si 11	4	2	2
21 22 23 24 25 26 27 28 29 30 31 32	Sc I Ti I V I Cr I Mn I Fe I Co I Ni I Cu I Zn I Ga I Ge I	43 687 272 776 185 4164 501 617 14 9	14 264 133 305 73 877 209 180 3 3	12 20 2 7 4 10 7 40 6 25 10 3 1	15 134 53 23 1 2 7	1 2 2 2	7 10 8 12 12 35 6 9 7	Ca II Sc II Ti II V II Cr II Mn II Fe II Co II Ni II	25 57 255 160 216 16 371 6 13	26 119 103 133 11 140 7 8	1000 6 12 5 6 6 6 0 3
37 38 39 40 41 42	Rb 1 Sr 1 Y 1 Zr 1 Nb 1 Mo 1	1 13 17 59 4 8 15	2 10 41 2 6 5 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 6 12 41	1	4 3 3 3	Sr 11 Y 11 Zr 11 Nb 11 Mo 11	8 53 148 13 7	2 18 93 8 5	9 3 3 -1 0
44 45 46 47 48 49	Rui Rhi Pdi Agi Cdi Ini	8 8 3 1		$ \begin{array}{ccc} -1 \\ -2 \\ 0 \\ 0 \\ -1 \\ -2 \end{array} $			-1	Rh 11?	3	2	-2
50 51 56	Sn 1 Sb 1 Ba 1	1	2	-2 -2 -3 N	1		1	Ва 11	6	3	8

^{*} Prepared by Charlotte E. Moore, National Bureau of Standards.

The sources used are as follows:
2935A—3062A, Babcock, H. D., Moore, C. E., and Coffeen, M. F., Astrophys. Journ., vol. 107, p. 287, 1948 (Mount Wilson Contr. No. 745).
3062A—6600A, St. John, C. C., and others, Revised Rowland Table, Carnegie Inst. Washington Publ. 396, 1928, with unpublished corrections and revisions by C. E. Moore (September 1949).
The counts included also the raie ultime of Mg 1 (2852A); the ultimate lines of Mg 11 (2795A, 2802A) and the strong Si I line at 2881A. These lines, among others, have been identified in the ultraviolet solar spectrum photographed from a V-2 rocket. Intensities in parentheses are quoted from the paper on this subject by Durand, E., Oherly, J. J., and Tousey, R., Astrophys. Journ., vol. 109, p. 1, 1949. (See also Hopfield, J. J., and Clearman, H. E., Phys. Rev., vol. 73, p. 877, 1948.)
For lines of H and He see Menzel, D. H., Lick Obs. Publ. 17, p. 1, 1931; Mitchell, S. A., Astrophys. Journ., vol. 105, p. 1, 1947.

**These counts refer to lines not present in disk spectrum. † Lines of H and He are prominent in the spectrum of the chromosphere. ‡ B and F are identified only from their presence in compounds (see Part 2).

			Neutral a	toms				Si	ngly ioniz	ed atoms	
		Disk				Spot				Disk	
		No. li	ines		No.	lines			No.	lines	
At No	Element	Unblended	Blended	Max int	Unblended	Blended	Max int	Element	Unblended	Blended	Max int
	La 1				1		—2 N	La 11 Ce 11 Pr 11 Nd 11 Sm 11	44 106 11 74 82	20 81 16 72 63	$ \begin{array}{c} 1 \\ 0 \\ -1 \\ 1 \\ 0 \\ 1 \end{array} $
57 58 59 60 62 63 64 65 66 68 69 70 71 72 73 74	Euı			2			-1	Eu 11 Gd 11 Tb 11? Dy 11 Er 11	10 29 2 29 2 6	20 2 25	$ \begin{array}{c} 0 \\ -1 \\ 1 \\ -1 \end{array} $
70 71 72	Yb 1 Hf 1	2	1 -	0 —3			1	Tm 11? Yb 11 Lu 11? Hf 11	1 13	5 2 4 5	-1 -3 -1
76 77 78	Ta 1? W 1 Os 1 Ir 1 Pt 1 Au 1	3 13 2 2 2 3 1 2	8 4? 4	-2 -1 0 -2 2 -3 -2 -1		1	-1 -1 -2				
79 82 90	Pb 1 Th 1	1		$-2 \\ -1$							

Part 2.—Molecules in the sun—18 present (either disk or spot spectrum, or both)207

OH NH	Mg H C ₂	Sc O Al O?	CH Cn Si H	Mg O Ca H	Y O Mg F Sr F
O_2	11 0	Zr O	S1 H	BH	Sr F

²⁰⁷ Babcock, H. D., Astrophys. Journ., vol. 102, p. 154, 1945 (Mount Wilson Contr. No. 708).

TABLE 665.—ABUNDANCES OF LIGHT ELEMENTS IN EARLY TYPE STARS

The table gives the number of atoms per 1000 atoms oxygen for τ Scorpii, spectrum dBo, 208 : 10 Lacertae, O; 209 : γ Pegasi, B2.5 IV, 209 ; mean for 8 B-stars, weighted mean by Aller, 200 the last 3 columns from letters to the editor, 1950. : less certain.

Element	τSco	10 Lac	γ Peg	8 B-stars	Mean
1 H	10×10^{5}	20×10 ⁶	87×10 ⁵		20×10^{5}
2 He	1.8×10^{6}	1.68×10⁵	5.5×10^{5} :		1.7×10^{5}
6 C	170	200	120	150	160
7 N	380	220	200	230	250
8 O	1000	1000	1000	1000	1000
10 Ne	1100	880			1000
12 Mg	5 9	62	310	93	120
13 A1	3.7		11	4.2	6
14 Si	64	82	90	38	60
15 P			1.1		1.1
16 S			40	22	30
17 CI			20:		20:
18 A	• • • •	• • • •	100 :	••••	100 :

 ²⁰⁸ Unsöld, Zeitschr. f. Astrophys., vol. 21, p. 1, 1941.
 ²⁰⁰ Aller, Astrophys. Journ., vol. 104, p. 347, 1946.

The gases that have been detected are listed together with the means of detection and approximate abundances. Both the observations and the application of ionization theory introduce considerable uncertainty in the determination of abundances. Values given are the best current estimates. In general, the composition of the interstellar gas appears to be the same as for the

Gas	Density in clouds atoms/cm ³	Detection	Gas	Density in clouds atoms/cm ³	Detection
Hydrogen	10	Emission lines	Titanium	10-6 †	Absorption lines
Oxygen	.01	Emission lines	Nitrogen		N emission, CN ab-
Carbon	.003	Molecular absorp-			sorption lines
		tion lines	Potassium	10 ⁻⁵ †	Absorption lines
Calcium	2×10^{-6}	Absorption lines	Sulfur		Emission lines
Sodium	4×10^{-5}	Absorption lines	CH	10 ⁻⁶ †	Absorption lines
Iron		Absorption lines	CN	10 ⁻⁶ †	Absorption lines
		Mean gas density	3×10 ⁻²⁴ g/cm ³		

The interstellar gas is strongly concentrated in clouds as evidenced by the multiplicity of interstellar absorption lines. Stromgren suggests density between clouds is about 1% of that in clouds.

TABLE 667.—THE ABUNDANCE OF CERTAIN ELEMENTS IN THE NEBULAE 211

(Given as the exponent of 10)

	Abun-		A hun-		Ahun.		Abun-		Abun-
Element	dance E	Element	dance	Element	dance	Element	dance	Element	dance
Н	11—	C	. 9	Na .	<7+	S	. 8	Sc	<6+
						C1			
						<u>A</u>			
						K			
В	<9	Ne	. 8	Р	<8—	Ca	. 7—		</td

²¹¹ Bowen and Wyse, Lick Obs. Bull., vol. 19, p. 1, 1939.

TABLE 668.—MATTER IN INTERSTELLAR SPACE * 212

The interpretation of the interstellar absorption curve and of absorption by dark clouds requires the presence of small grains with radii ranging around 10-5 cm. Polarization of starlight indicates that some, if not all, grains are elongated. Composition, from absorption curve and scattering appears to be mainly dielectric.

Density of matter

Solid grains: Uniform region, abs 0.5 m/kpc	0 ⁻²⁵ g/cm ³
Dense condensation, abs 5-10 m (1000 m/kpc)	$3 \times 10^{-24} \text{g/cm}^3$

^{*} Prepared by B. Donn.

222 Greenstein, Harvard Circ. 422, 1938. Spitzer, Astrophys. Journ., vol. 93, p. 369, 1941. Van de Hulst, Rech. Astron. de l'Obs. d'Utrecht, vol. 11, pt. 1, 1946, pt. 2, 1949. Schalen, Publ. of Uppsala Observatory, 1930 on. Oort, Astron. Inst. Netherlands Bull. No. 283, 1932.

^{*} Prepared by B. Donn. Frepared by B. Donn.
210 Adams, Astrophys. Journ., vol. 109, 1949; Publ. Astron. Soc. Pacific, vol. 60, p. 354, 1948; Dunham, Proc. Amer. Philos. Soc., vol. 81, p. 277, 1939. Ledoux, Pop. Astr., vol. 49, p. 513, 1941. Stromgren, Astrophys. Journ., vol. 108, p. 242, 1948. Struve, Journ. Washington Acad. Sci., vol. 31, p. 217, 1941; Astrophys. Journ., vol. 89, p. 517, 1939.

† Values for apparently abnormally dense cloud.

Colloidal science originally dealt with that large field of small particles, but now it has been extended to cover also those materials that are small in one or two of the three dimensions. Thus, this field now includes chain molecules

and films as well as the fine particles.

The diameters of atoms range from 2 to 3 A (angstroms) while diameters of ordinary inorganic molecules extend from about 7 to 10 A. Organic molecules are much larger and their dimensions may extend to 20 A or larger. It is sometimes stated that colloid particles range in diameter from 20 A to a much larger value but it must be remembered that it is difficult to fix such dimensions.

Many of the properties of colloids are due to their relatively very great surface as compared with their volumes. Some of the newer experimental tools, i.e., ultracentrifuges, X-rays, and the electron microscopes, have been a great help in studying these particles and their reactions. Several tables follow that give properties and characteristics of colloids and colloidal particles.

TABLE 669.-BROWNIAN MOVEMENT

The Brownian movement is a microscopically observed agitation of colloidal particles. It is caused by the bombardment of them by the molecules of the medium and may be used to determine the value of Avogadro's number. Perrin, Chaudesaignes, Ehrenhaft, and De Broglie found, respectively, 70, 64, 63 and 64×10^{22} as the value of this constant. The following table indicates the size and the dependence of this movement on the magnitude of the particles.

	Diameter		Temp	Velocity
Material	\times 10 5 cm	Medium	°C Î	\times 10 ⁸ cm/sec
Dust particles	2.0	Water	_	none
Gold		"	20?	200.
Gold	1	46	"	280.
Gold	06	46	"	700.
Platinum		Acetone	18	3900.
Platinum		Water	20	3200.
Rubber emulsion		46	17	124.
Mastic		"	20?	1.55
Gamboge		46	20	2.4
"	2.13	66	"	3.4

The movement varies inversely as the size of the particles; in water, particles of diameter greater than 4μ show no perceptible movement; when smaller than $.1\mu$, lively movement begins, while at $10m\mu$ the trajectories amount to up to $20m\mu$.

TABLE 670.—PARTICLE SIZES OF SOME INDIVIDUAL DUSTS 212a

Dust	Diameter, cm
Milk powder (by evaporation of fine spray)	1.4×10^{-2} 7×10^{-2}
Fine powder (300 mesh) e.g., cement	1×10^{-2} $.7 \times 10^{-2}$
Smelter fumes Atmosphere, fog particles	$1 \times 10^{-3} - 1 \times 10^{-3}$ $1.4 \times 10^{-3} - 3.5 \times 10^{-3}$
Cement kiln flue dust	6×10^{-3} — $.8\times10^{-8}$
H ₂ SO ₄ mist from concentrators	$1.1 \times 10^{-3} - 1.6 \times 10^{-4}$
NH₄C1 fumes	$1 \times 10^{-4} - 1 \times 10^{-5}$
Oil sinoke	1×10^{-4} $- 5 \times 10^{-8}$ 1×10^{-4} $- 1 \times 10^{-6}$
Resin smoke	
Tobacco smore	1.0/(10

^{212a} Alexander, J., Colloid chemistry, vol. 2, Chemical Publishing Co. Used by permission.

M, molecular weight; f/f_0 , dissymmetry constant; a, short diameter; b, long diameter.

Substance	M	f/f_0	b/a	a (A)	b (A)
Zein	35000	2.0	20.1	16	322
Cytochromec C	15600	1.3	5.8	18	98
Gliadin	26000	1.6	11.1	18	196
Hordein		1.6	11.1	18	196
Erythrocruorin (chironimus)		1.6	11.1	19	208
Serum albumin, urea denatured		1.98	19.4	20	356
Lactalbumin a		1.2	4.3	21	91
Erythrocruorin (lampetra)		1.2	4.3	22	94
Bence-Jones β		1.3	5.8	25	144
Myoglobin		1.1	2.9	24	70
Crotoxin		1.2	4.3	25	109
Concanavalin B		1.3	5.8	26	149
Tuberculin protein		1.2	4.3	26	112
Lactoglobulin		1.2	4.3	28	122
Pepsin		1.08	2.7	31	84
Insulin		1.13	3.3	31	102
Egg albumin		1.1	2.9	32	91
Hemoglobin (horse)		1.24	4.8	32	155
Serum albumin (horse)		1.2	4.3	34	145
Yellow ferment		1.2	4.3	36	152
Canavalin	110000	1.3	5.8	36	207
Serum globulin		1.4	7.5	37	280
Diphtheria toxin		1.2	4.3	34	145
Antipneumococcus serum globulin (rabbit)		1.4	7.5	37	274
Antipneumococcus serum globulin (man)		1.5	9.2	37	338
Concanavalin A		1.1	2.9	43	124
Erythrocruorin (arc a)		1.0	1.	43	43
Bence-Jones a		1.0	i.	43	43
Catalase		1.3	5.8	46	297
Antipneumococcus serum globulin (horse)		2.0	20.1	47	950
Phycoerythrin (seramium)		1.2	4.3	54	232
Amandin		1.3	5.8	51	291
Tyroglobulin	(20000	1.5	9.2	54	498
Edestin		1.2	4.3	55	237
Excelsin	00.4000	1.1	2.9	62	179
Urease		1.2	4.3	64	274
Hemocyanin (palinurus)		1.2	4.3	62	268
Tobacco mosaic virus	60000000	3.0	7.0	02	200
	208000	1.02			
Legumin	200000	1.02			

²¹³ Neurath, Journ. Amer. Chem. Soc., vol. 61, p. 1841, 1939.

TABLE 672.—INFLUENCE OF PARTICLE SIZE UPON SOLUBILITY 214

	Size of particles		
Material	μ		Solubility at 25°C
CaSO ₄			2.085 g per liter *
	.3		2.476 g per liter
BaSO4	1.8		2.29 mg per liter *
	.1		4.15 mg per liter
HgO	Coarse red po	owder	50 mg per liter *
	Very fine yell	owish powder	150 mg per liter

²¹⁴ Thomas, Arthur W., Colloid chemistry, McGraw-Hill Book Co., 1934. Used by permission of the

author. *These are the permanent saturated solutions. The more concentrated solutions, obtained from contact with the more finely ground particles, slowly revert to the normally saturated solutions and the particles grow to 2μ in size.

(In small calories)

Substance	Fuller's earth	Bone charcoal	Kaolin	Dispersive power percent
Amylene	57.1		78.8	1.54
Water	30.2	18.5		2.82
Acetone	27.3	19.3		1.72
Methyl alcohol	21.8	17.6	27.6	1.60
Ethyl acetate		16.5		1.05
Ethyl alcohol		16.5	24.5	
Aniline				
Amyl alcohol		10.6	20.4	
Ethyl ether				.90
Chloroform		14.0	15.7	.86
Benzene	4 /	11.1	9.9	.39
Carbon disulfide		8.4	9.9	
Carbon tetrachloride		13.9	9.4	.27
Hexane		8.9	7.2	.22

^{*} For reference, see footnote 214, p. 631.

TABLE 674.—EFFECT OF ACTIVATION ON THE ADSORBING POWER OF CHARCOAL 215

Substance tested	Adsorption mg CCl ₄ /(g C)	Granular density	Physical character
Ironwood	22	.96	Fibrous, hard
Primary ironwood charcoal		.89	Hard
Activated ironwood charcoal		.72	Hard, friable, granular
Commercial wood charcoal	11	.46	Firm, fibrous
Highest activated wood charcoal *	1480	.30	Soft, friable
Cocoanut shell	18	1.20	Hard
Primary cocoanut charcoal		.96	Hard
Activated cocoanut charcoal		.84	Hard
Lignite semi-coke	30	1.09	Firm
Good activated lignite charcoal		.89	Firm
Highest activated lignite charcoal *		.31	Friable, granular

²¹⁵ Weiser, H. B., Colloid chemistry, 2d ed., John Wiley & Sons, Inc., 1949. Reprinted by permission.
* Further activation reduces the granules to a fine powder.

TABLE 675.—HEATS OF ADSORPTION OF VAPORS ON CHARCOAL *

	Integral heat of adsorption,	Heat of liquefaction,	Net heat of adsorption,	
Vapor	h cal/mole	Q cal/mole	h-Q cal/mole	h-Q/ml cal/mole
C ₂ H ₅ Cl	12330	6220	6110	86.4
CS ₂	12630	6830	5800	99.1
CH₃OH	4.00 00	9330	3620	90.8
C ₂ H ₅ Br	14330	6850	7480	102.0
C ₂ H ₆ I	4 40 70	7810	6440	81.5
CHCl ₃	4.40.00	8000	6930	87.5
HCOOC₂H₅		8380	7040	90.1
C ₀ H ₀		7810	7360	85.0
C ₂ H ₅ OH	4 4000	10650	4330	76.8
CCI,		8000	8090	85.6
$(C_2H_5)_2O$	4 (000	6900	9190	80.3

^{*} For reference, see footnote 215, above.

TABLE 676.—SPREADING COEFFICIENTS, S, OF ORGANIC LIQUIDS ON WATER AT 20°C *

Spreading liquids	$S = W_a - W_c \dagger$	Spreading liquids	$S = W_a - W_c$
Butyric acid	45.66	Heptane	22.40
Ethyl ether		Ethyl bromide	
Isoamyl chloride		Chloroform	
Heptaldehyde		Anisole	
Nitromethane		Phenetole	
Mercaptan	24.86	p-Cymene	
Oleic acid		İsopentane	9.44
	Liquids which form lo Ethylene disbromide Carbon disulfide Monoiodobenzene Bromoform Liquid petrolatum .	— 6.94 — 8.74 — 9.58	

^{*} For reference, see footnote 215, p. 632. † Wa, work adhesion; Wc, work of cohesion.

TABLE 677.—HEATS OF ADSORPTION OF GASES BY CHARCOAL 216

Gas Argon Nitrogen	Heat of vaporization	Heat of sublimation	Gas Carbon dioxide Ammonia		0005 Heat of 0000 vaporization	0019 Sublimation sublimation
Carbon monoxide	1410	3715	minoma	7200	3000	7120

²¹⁶ Lewis, Squires, and Broughton, Industrial chemistry of colloidal and amorphous materials, Macmillan Co., 1942. Used by permission of the publishers.

TABLE 678.—BOND ENERGIES * IN KILOCALORIES PER MOL 217

Covalent bonds	Intermolecular cohesion	Covalent bonds	Intermolecular cohesion
$-C \equiv C - 123$	>C=0 ·· H-N< 10-16	\rightarrow C-N< 59	-COOR:ROOC- 6
>C = C < 100	>C=O ·· H-O- 7-10 →COH ·· HOC← 14	→C—S— 54	-HC=0:0=CH- 5
$\begin{array}{ccc} \rightarrow C - C \leftarrow & 59 \\ \rightarrow C - O - & 70 \end{array}$	$H_2O \cdots H - O - H $	—S—S— 64 →Si—Si← 42	-C1:C1- 3 -CH ₃ :H ₃ C- 2
	Covalent bonds	Intermolecular cohesion	
	→Si-O- 90		2
	Ionic bonds Na ⁺ , Cl ⁻ (dry) 128	-0-:-0- -CH ₂ -:-CH ₂ -	1.6
	$-NH_3^+$, $-COO^-$ 4.5	H ₂ : H ₂	.25
	in water		

^{*} For the energy per atom, divide these values by the Avogadro number, 6.023×10^{23} . Pauling, Linus, The nature of the chemical bond. Used by permission of the author.

TABLE 679.—IGNITION AND PROPAGATION TEMPERATURES OF DUSTS IN AIR*

Degrees Centigrade

Dust	Ignition temper- ature	Propagation temperature	Dust	Ignition temper- ature	Propa- gation temper- ature
Sugar	540	805	Cork	630	1000
Dextrin		940	Rice	630	970
Starch		1035	Mustard	680	1050
Cocoa		970	Wheat elevator		(1295)
		995	Oat and corn elevator		(995)
Flour	630	(1265)	Oat hull	• • • • • •	(1020)

^{*} For reference, see footnote 214, p. 631.

TABLE 680,-LOWER EXPLOSIVE LIMITS *

Milligrams per liter of air

Dust Starch	Glowing Pt wire 7 0	Arc 10.3	Induc- tion spark 13.7	Dust Glow Sugar 10	ire Arc	Induc- tion spark 34.4
Corn elevator Wheat elevator Sulfur	10.3	10.3 10.3 13.7	13.7	Aluminum 7 Coal 17	0 7.0	13.7 No ignition

^{*} For reference, see footnote 214, p. 631.

TABLE 681.—SOME MEASUREMENTS OF EXPLOSION PRESSURES *

Dust	Pressure generated, lb/in. ²	Dust	Pressure generated, lb/in.2	Dust	Pressure generated, lb/in.2
Lycopodium Dextrin Wheat starch Tanbark dust Wood dust .	14.6 14.0 13.3	Cornstarch Wheat elevate Sugar Linseed meal Pittsburgh co	or 12.5 12.2 11.7	Cocoa Sulfur flour . Rice-bran dust Ground-cork o	8.8 t 8.7

^{*} For reference, see footnote 214, p. 631.

TABLE 682 .- PH STABILITY RANGE OF SOME PROTEINS *

Protein	Source	Stable in the pH range of
Amandin	Almonds	4.3 to 10.0
	Pathological urine	3.5 to 7.5
Edestin	Hempseed	5.5 to 9.7
	Hens' eggs	4.0 to 9.0
Erythrocruorin	Blood of Arenicola marina	2.6 to 8.0
Erythrocruorin	Blood of Lumbricus terrestris	2.6 to 10.0
Excelsin	Brazil nuts	5.5 to 10.0
	Blood of Helix pomatia	4.5 to 7.4
CO-hemoglobin	Horse blood hemoglobin plus CO	6.0 to 9.05
Insulin	Beef pancreas	4.5 to 7.0
	Vetch	5.0 to 9.0
Phycocyan	Ceramium rubrum	1.5 to 8.0
	Horse blood	4.0 to 9.0
	Horse blood	4.0 to 8.0

^{*} For reference, see footnote 214, p 631.

TABLE 683.—ELECTRON EMISSION FOR HOT SOLIDS

The electron emission from a solid varies with the temperature T (°K) in accordance with the Richardson-Laue-Dushman equation

$$I = AT^2 \left[\exp \left(-b_o / T \right) \right] \tag{1}$$

where I = current in amps cm⁻², and A and b_o are constants, characteristic of the material. The constant b_o is ordinarily expressed in terms of electron volts (Φ_o) where

$$\Phi_o = 8.620 \times 10^{-5} b_o$$
 $b_o = 1.160 \times 10^4 \theta_o$ (2)

or $b_o = 1.160 \times 10^4 \,\theta_o$

The values of A and b_o (or Φ_o) are customarily derived from a plot of log (I/T^2) versus 1/T, where

$$\log I = \log A + 2 \log T - \frac{b_o}{2.303T} \tag{3}$$

and

$$\log = \log \text{ to base } 10.$$

Hence, $\Phi_0 = 1.986 \times 10^{-4} (b_0/2.303)$ (4) Theoretically, Φ_0 , as determined from thermionic emission data, should be identical with

Theoretically, Φ_{e} , as determined from thermionic emission data, should be identical with Φ_{e} , the "work function" from contact potential measurements, and Φ_{e} , the work function determined by means of Einstein's equation

$$Ve = h\nu - \Phi_e$$

where $\nu =$ frequency for photoelectric emission, V = retarding potential, e = charge on the electron, and h = quantum constant.

TABLE 684.—ELECTRON EMISSION CONSTANTS FOR METALS AND CARBON

The table gives emission constants (see preceding equations) for metals and carbon. For other values and comprehensive data on this topic see references in footnote 218.

ζ φ _e
0 2.48-2.51
0 2.71
0 4.82
0 1.91
0 4.37
0
0 4.46
0
0 4.63
0 4.12
)
0
0 4.92
0
)
0 4.92
0 4.05
0 3.3–3.6
0 4.3–4.5
0

²¹⁸ Herring, C., and Nichols, M. H., Rev. Mod. Phys., vol. 21, p. 185, 1949. Reimann, A. L., Thermionic emission, John Wiley & Sons, Inc., 1934. Dushman, S., Rev. Mod. Phys., vol. 2, p. 381, 1930.

^{*} Prepared by Saul Dushman, General Electric Research Laboratory, Schenectady, N. Y.

TABLE 685.—ELECTRON EMISSION ($I \equiv \text{amp/cm}^2$) AND ($W \equiv \text{watts/cm}^2$) FOR A NUMBER OF MATERIALS ²¹⁰

The table gives emission data for a range of temperature, for the most frequently used metals and for thoriated tungsten (ThW). Values of A and b_o used in calculation of I (amp/cm²) are those given in Table 684. For ThW, the values used are A = 3.0 and $\phi_o = 2.72$, $b_o = 3.15 \times 10^s$.

	Tungs	ten	Molybde	enum	Tantal	um	Niobii	um	ThW *
$T \circ K$	\overline{I}	\overline{w}	ī	W	I	\overline{W}	\overline{I}	w	Inv
1000									1.73×10 ⁻⁷
1200		• • •	• • •	• • •	• • •	• • •	• • •		3.95×10^{-5}
1400 1600	9.27×10 ⁻⁷	7.74	2.39×10-6	6.30	9.1 ×10 ⁻⁸	7.36	2.19×10 ⁻⁶	6.40	2.03×10^{-8} 4.06×10^{-2}
1800	4.47×10^{-5}	14.2	1.05×10^{-4}	11.3	3.32 × 10-4	13.3	6.95×10-4	11.4	.428
2000	1.00×10^{-3}	24.0	2.15×10^{-8}	19.2	6.21×10^{-8}	21.6	1.16×10^{-2}	18.5	2.864
2200	1.33×10^{-2}	38.2	2.59×10^{-2}	30.7	6.78×10^{-2}	34.2	.115	29.9	
2400	.116 .716	57.7	.215 1.29	47.0	.509 2.25	51.3 75.4	.800 5.20	45.3 67.0	
2600 2800	3.54	83.8 117.6	6.04	69.5 98.0	12.53	105.5	60.67	130.6	
3000	14.15	160.5	23.28	116.0	45.60	144.4	00.07	100.0	

²¹⁰ Dushman, Saul, The scientific foundations of vacuum technique, John Wiley & Sons, Inc., 1949. Reprinted by permission.
* Layer of thorium on tungsten.

TABLE 686.-PHOTOELECTRIC EFFECT

A negative charged body loses its charge under the influence of ultraviolet radiation because of the escape of negative electrons freed by the absorption of the energy of the radiation. The radiation must have a wavelength shorter than some limiting value λ_0 characteristic of the metal. The emission of these electrons, unlike that from hot bodies, is independent of the temperature. The relation between the maximum velocity ν of the expelled electron and the frequency ν of the radiation is $(\frac{1}{2})mv^2 = h\nu - P$ (Einstein's equation) where h is Planck's constant $(6.62 \times 10^{-27} \text{ erg sec})$, $h\nu$, the energy of a "quanta," P, the work which must be done by the electron in overcoming surface forces. $(\frac{1}{2})mv^2$ is the maximum kinetic energy the electron may have after escape. Richardson identifies the P of Einstein's formula with the ϕ_e of electron emission of Table 683. The minimum frequency ν_0 (corresponding to maximum wavelength λ_0) at which the photoelectric effect can be observed is determined by $h\nu = P$. P applies to a single electron, whereas w applies to 96,500 coulombs $(6.02 \times 10^{29} \text{ electrons})$; therefore $w = NP = .00399\nu_0$ ergs. $\phi = (12.4 \times 10^{-5})\lambda_0$ volts.

TABLE 687.-THE ELECTRON AFFINITY OF THE ELEMENTS, IN VOLTS

Metal Tungsten Platinum Tantalum	·· =	Thermionic (Langmuir) 4.52 4.31	Photo- electric and contact (Millikan)	Photo- electric (Richardson) — 4.3	Miscellaneous	Single- line spectra	Adjusted mean 4.52 4.4? 4.3
Molybdenum Carbon		4.31 4.14	_	_	_	=	4.3 4.1
Silver		-	_	_	_	_	4.1
Copper	(4.0)	_	_	4.1	_	_	4.0
Bismuth	· · · 	_	—	3.7	_	_	3.7
Tin			_	3.5	-	_	3.8
Iron		3.2?	_	_	_	_	3.7
Zinc	3.46	_	_	3.4	_	4.04	3.4
Thorium	–	3.36	_	_	_		3.4
Aluminum	3.06	_	_	2.8	_	_	3.0
Magnesium		_	_	3.2	_	4.35	2.7
Titanium	—	2.4?	_	_	_	_	2.4
Lithium		_	2.35	_		1.85	2.35
Sodium		-	1.82	2.1	-	2.11	1.82

There has been considerable controversy over the reality and nature of the contact differences of potential between two metals. At present, owing to the studies of Langmuir, there is a decided tendency to believe that this Volta difference of potential is an intrinsic property of metals closely allied to the phenomena given in Tables 684 to 688 and that the discrepancies among different observers have been caused by the same disturbing surface conditions. The values are for freshly cut surfaces in vacuo. Freshly cut surfaces are more electropositive and grow more electronegative with age. That the observed initial velocities of emission of electrons from freshly cut surfaces are nearly the same for all metals suggests that the more electropositive a metal is the greater the actual velocity of emission of electrons from its surface.

From the equation $w=RT\log (N_A/N_B)$, where w is the work necessary per grammolecule when electrons pass through a surface barrier separating concentrations N_A and N_B of electrons, it can be shown that the Volta potential difference between two metals should be

$$v_1 - v_2 = \frac{1}{F} \{ w_2 - w_1 + RT \log(N_A/N_B) \} = \frac{w_2 - w_1}{F} = \phi_2 - \phi_1$$

(see Table 686 for significance of symbols), since the number of free electrons in different metals per unit volume is so nearly the same that $RT \log (N_A/N_B)$ may be neglected. The contact potentials may thus be calculated from photoelectric phenomena. They are independent of the temperature. The following table gives a summary of values of ϕ in volts obtained from the various phenomena where an electron is torn from the attraction of some surface. In the case of ionization potentials the work necessary to take an electron from an atom of metal vapor is only approximately equal to that needed to separate it from a solid metal surface.

TABLE 689.—ELECTRODE POTENTIALS

It should not be assumed that all the emf of an electrolytic cell is contact emf. Its emf varies with the electrolyte, whereas the contact emf is an intrinsic property of a metal. There must be an emf between the two electrodes of such a cell dependent upon the concentration of the electrolyte used. The following table gives in its first line the electrode potential e_h of the corresponding metals (in solutions of their salts containing normal ion concentration) on assumption of no contact emf at the junction of the metals. The second line, $\phi - e_h - 3.7$ volts, gives an idea of the electrode potentials (arbitrary zero) exclusive of contact emf.

Metal	Ag	Cu	Bi	Sn	Fe	Zn	Mg	Li	Na
en	+.80	+.34	+.20	— .10	—.43	— .76	-1.55	-3.03	-2.73
$\phi - e_h - 3.7 \dots$	40	+.04	+.20	20	43	46	— .55	-1.65	— .85

TABLE 690.-PRESSURE AND NUMBER OF MOLECULES

1. Units of Pressure

 $A_n = normal atmosphere$ = 760 mmHg at 0°C and 45° latitude $= 1.01325 \times 10^{\circ}$ microbars 1 dyne cm⁻² = 1 microbar = 0.75 micron 1 micron = 10^{-3} mmHg = 1.333 microbars $=1\mu$ $P_{mm} = \text{pressure in mmHg}$ $P\mu = \text{pressure in microns} = 10^{-3} P_{mm}$ $P\mu b = \text{pressure in microbars} = 1.333 \times 10^{-3} P_{mm}$

2. Number of molecules per unit volume

For ideal gas,

 $PV = R_{o}T$ Where V = volume per gram-molecular weightP = pressureT = absolute temperature in degrees Absolute (°K)= degrees Centigrade + 273.16

For ideal gas at 0° C and $A_n = 1$,

 $V = V_o = 22,414.6 \text{ cm}^3$ Hence $R_o = 62.364 \text{ mm liter, deg}^{-1} \text{ K g mole}^{-1}$ $= 8.3146 \times 10^7 \text{erg deg}^{-1} \text{ K g mole}^{-1}$ $\rho = \text{density of gas/g/cm}^3$ $= 1.2027 \times 10^{-8} M P \mu b / T^{-1} \text{ g cm}^{-8}$ $= 1.6035 \times 10^{-8} M P_{mm} / T^{-1} \text{ g cm}^{-8}$ Where M = molecular weight in grams $n = \text{number of molecules per cm}^{\text{3}}$ = 7.244 × 10¹⁵ $P \mu b / T$ = 9.656 × 10¹⁸ P_{mm} / T

3. The number of molecules per cm⁸ for different temperatures and pressures

$T(^{\circ}K)$	$P_{\mu b}$	P_{mm}	n	T^{\bullet}	$P_{\mu b}$	P_{mm}	n
273.16	1.0133×10 ⁶	760	2.687×10 ¹⁹	298.16	1.333×10^{3}	1	3.240×10 ¹⁶
298.16	"	66	2.462×10^{10}	273.16	1.000	7.50×10^{-4}	2.653×10^{13}
273.16	1.333×10^{3}	1	3.536×10^{16}	298.16	4.6	"	2.430×10^{18}

^{*} Prepared by Saul Dushman, General Electric Co. The formulae and calculations in this section are based on a more comprehensive discussion in chapter 1 of his "Scientific Foundations of Vacuum Technique" (John Wiley & Sons, New York, 1949).

TABLE 691.--MEAN FREE PATHS, L, MOLECULAR DIAMETERS, δ, AND RELATED DATA FOR WATER AND MERCURY VAPORS*

	t°C	Pmm**	$10^{5}\eta_{0}$	10°Lt1	L_t^p	$10^8\delta t$	10-14Ns †
H₂O	0	4.58	8.69	2.90	6.34×10 ⁻⁴	4.68	5.27
	15	12.79	9.26				
•	25	23.76	9.64	3.37	1.42×10^{-4}		
Hg	219.4	31.57	46.66	6.28	1.99×10 ⁻⁴	4.27	6.32
U	150 0	2.807	39.04	4.87	1.74×10^{-8}	4.50	5.70
	100.0	.2729	33.56	3.93	1.44×10^{-2}	4.70	5.22
	25.0	.0018	25.40	2.66	1.45	5.11	4.42
	.0		16.2(J)	• • •		6.26(J)	• • • _

^{*} For reference, see footnote 219, p. 636. ** $P_{mm} = \text{vapor pressure at } t^*C$. † $N_* = \text{number of molecules/cm}^2$ for monomolecular layer. In the case of H_2O , for which the values of L (path length) and δ (diameter) for a series of temperatures are given in the table, the Sutherland relation was used with C = 650 and $\eta_{15} = 926 \times 10^{-5}$ cgs units.

In the case of Hg the values of η (viscosity) used are based on t=219.4 °C. Values at other temperatures were derived by means of Sutherland's relations, with C=942.2

Part 1.- Discussion

Let a denote the *most probable* velocity, v_a , the *average* velocity and v_r , the *mean* velocity (the square root of the mean square). Then

$$a = \sqrt{2R_o T/M} = 12,895 \sqrt{T/M} \text{ cm sec}^{-1}$$

 $v_a = (2/\sqrt{\pi}) \ a = 1.1284 \ a = 14,551 \sqrt{T/M} \ \text{cm sec}^{-1}$
 $v_r = \sqrt{3/2} \ a = 1.225 \ a = 15,794 \sqrt{T/M} \ \text{cm sec}^{-1}$

The probability of a random velocity v = ca is

$$f_c = (r/\sqrt{\pi})c^2 \left[\exp - c^2\right]$$

The fraction of the total number of molecules, N, which have a random velocity equal to or less than v = ca is

$$y = \frac{N_c}{N} = \int_{0}^{c} f_c dc$$

Part 2 of this table gives values of f_c and of y for a series of values of c. The third column gives values of Δy , which is the fraction of the total number that have values of c between that given in the same horizontal row and that in the preceding row.

From the relation for f_e we obtain the relation for the probability that a molecule possesses the translational energy E. Let x = E/(kT) where x is a dimensionless quantity.

Then

$$f_z = 2\sqrt{x/\pi} (\exp - x)$$

and the average kinetic energy is $E_{av} = (3/2)kT$

where k = Boltzmann constant= 1.3805 × 10⁻¹⁶ erg dcg⁻¹ K

The last two columns in Part 2, below, give values of f_x for a series of values of x.

Part 2.-Values of functions for application of distribution laws

С	fe	у	Δυ	x	fx
0	0	0		0	
.2	.0867	.0059	.0059	.1	.3229
.3	.1856	.0193	.0134	.2	.4131
.5	.4393	.0812	.0619	.5	.4839
.7	.6775	.1939	.1127	.7	.4688
1.0	.8302	.4276	.2337	1.0	.4152
1.3	.7036	.6634	.2358	1.4	.3294
1.6	.4464	.8369	.1735	1.8	.2502
1.8	.2862	,9096	.0727	2.2	.1855
2.0	.1652	.9540	.0444	2.5	.1464
2.2	.0867	.9784	.0244	3.0	.0973
2.5	.0275	.9941	.0157	3.5	.0637
3.0	.0025	$1 - 4.2 \times 10^{-4}$		4.0	.0413
4.0	4.1×10^{-6}	$1 - 5.1 \times 10^{-7}$		5.0	.0170
5.0	7.8×10^{-10}	$1 - 7.9 \times 10^{-11}$		6.0	.0069

Part 3.-Rates of incidence and of evaporation of molecules

The rate at which molecules strike a surface is given by

$$\nu = (1/4) n v_a \text{ cm}^{-2} \text{ sec}^{-1}$$
= 2.635 × 10¹⁰ $(P_{\mu b})/(\sqrt{MT}) \text{ cm}^{-2} \text{ sec}^{-1}$
= 3.513 × 10²² $P_{mm}/\sqrt{MT} \text{ cm}^{-2} \text{ sec}^{-1}$
G = mass of gas of molecular wt, M,
= 1.6604 × 10⁻²⁴ $M\nu$
= 4.375 × 10⁻⁵ $(P_{\mu b})(\sqrt{M/T}) \text{ g cm}^{-2} \text{ sec}^{-1}$
= 5.833 × 10⁻² $(P_{mm})(\sqrt{M/T}) \text{ g cm}^{-2} \text{ sec}^{-1}$

If we assume that the accommodation coefficient for condensation is unity, then the rate of evaporation is equal to the rate of condensation and the vapor pressure, P_{mm} , is given by the relation

 $P_{mm} = 17.14G \sqrt{T/M}$

TABLE 693.-MASSES, VELOCITIES, AND RATES OF INCIDENCE OF **MOLECULES***

 $\nu_1 = \text{rate of incidence of molecules per cm}^2 \text{ per sec, at } 0^{\circ}\text{C} \text{ and } 1 \text{ microbar.}$

 $\nu_{1\prime}$ = rate of incidence of molecules per cm² per sec, at 0°C and 1 mm.

 $G_1 = \text{mass of gas corresponding to } \nu_1 \text{ (g cm}^{-2} \text{sec}^{-1}\text{)}.$ $G_{1'}$ = mass of gas corresponding to $\nu_{1'}$ (g cm⁻² sec⁻¹).

 $m = \text{mass of molecule in grams} = 1.66035 \times 10^{-24} M$; M = molecular weight; ρ_1° = density (g cm⁻⁸) of gas at 0°C and 1 microbar. v_a = average velocity (cm sec⁻¹).

				10-	$\times v_a$				
Gas or vapor	M	$10^{23}m$	10 ¹⁰ ρ ₁ ο	0°C	25°C	$10^{-17}\nu_1$	$10^{-20}\nu_1'$	$10^{5}G_{1}$	$10^2G_{1}'$
H ₂	2.016	.3347	.8878	16.93	17.70	11.23	14.97	.3759	.5012
He	4.003	.6646	1.7631	12.01	12.56	7.969	10.63	.5297	.7062
CH.	16.04	2.663	7.063	6.005	6.273	3.981	5.308	1.060	1.414
NH_3	17.03	2.827	7.498	5.829	6.089	3.865	5.152	1.092	1.456
H₂O	18.02	2.992	7.936	5.665	5.919	3.756	5.007	1.124	1.498
Ne	20.18	3.351	8.886	5.355	5.594	3.550	4.733	1.190	1.586
CO	28.01	4.651	12.34	4.543	4.746	3.012	4.016	1.402	1.868
N_2	28.02	4.652	12.34	4.542	4.745	3.011	4.015	1.402	1.868
Air	28.98**	4.811	12.77	4.468	4.668	2.962	3.950	1.425	1.900
O ₂	32.00	5.313	14.09	4.252	4.442	2.819	3.758	1.497	1.996
A	39.94	6.631	17.59	3.805	3.976	2.523	3.363	1.675	2.230
CO ₂	44.01	7.308	19.38	3.624	3.787	2.403	3.204	1.756	2.342
CH₃C1	50.49	8.383	22.23	3.385	3.356	2.244	2.991	1.881	2.508
SO_2	64.06	10.64	28.21	3.004	3.139	1.992	2.656	2.118	2.825
C1 ₂	70.91	11.77	31.23	2.856	2.984	1.893	2.524	2.229	2.973
Kr	83.7	13.90	36.85	2.629	2.747	1.743	2.324	2.422	3.229
C7H10	100.2	16.63	44.12	2.403	2.510	1.593	2.123	2.650	3.533
Xe	131.3	21.80	57.82	2.099	2.193	1.392	1.856	3.034	4.044
CC1	153.8	25.54	67.72	1.939	2.026	1.286	1.714	3.283	4.377
Hg†	200.6	33.31	(88.33)	1.698	1.774	(1.126	1.501	3.750	4.998)

TABLE 694.-MOLECULAR VELOCITIES 220

	C Root mean square	c Average
Gas	velocities, NTP	velocities, NTP
Hydrogen	18.38×104 cm/sec	16.93×104 cm/sec
Helium	13.11	12.08
Water vapor	6.15	5.65
Neon	5.84	5.38
Carbon monoxide	4.93	4.54
Nitrogen	4.93	4.54
Ethylene	4.93	4.54
Nitric oxide	4.76	4.38
Oxygen	4.61	4.25
Argon	4.13	3.80
Carbon dioxide	3.93	3.62
Nitrous oxide	3.93	3.62
Krypton	2.86	2.63
Xenon	2.28	2.10
Mercury vapor	1.84	1.70
Air	4.85	4.47
Ammonia	6.33	5.82

²²⁰ Newman and Searle, The general properties of matter, Edward Arnold & Co., London.

^{*} For reference, see footnote 219, p. 636. ** Calculated from the value ρ (density) = 1.293 \times 10⁻⁸ at 0°C and 760 mmHg. * Since the vapor pressure of mercury at 0°C is 1.85 \times 10⁻⁴ mmHg (=0.247 μ b), the values given in parentheses have no physical significance. Actual values at 0°C, corresponding to saturation pressure, are as follows: $\rho = 21.79 \times 10^{-10}$; $\nu = 2.777 \times 10^{10}$; $G = 9.249 \times 10^{-0}$.

(2)

Let L = mean free path, $\delta =$ molecular diameter. Then

$$L = \frac{1}{\sqrt{2\pi n\delta^2}} \tag{1}$$

and when

$$\eta = 0.499 \rho v_o L$$

 $\eta = \text{coefficient of viscosity}$

 ρ = density of gas at given pressure and temperature

Unit of η is the poise = g cm⁻¹ sec⁻¹

Hence

$$L = 1.1451 \times 10^4 \, \frac{\eta}{P_{\mu b}} \sqrt{\frac{T}{M}} \, \text{cm}$$
 (3)

$$=8.589 \frac{\eta}{P_{mm}} \sqrt{\frac{T}{M}} \text{ cm}$$
 (4)

and

$$\delta^2 = \frac{2.714 \times 10^{-21}}{\eta} \sqrt{MT} \, \text{cm}^2 \tag{5}$$

 η , as a function of T, is given by the relation

$$\eta_T = \left(\frac{T}{T_o}\right)^{3/2} \left(\frac{C + T_o}{C + T}\right) \tag{6}$$

where η_0 = value at T_0 , η = value at T and C is known as the Sutherland constant. For short ranges of temperature, the exponential relation is used, of the form

$$(\eta_T/\eta_o) = (T/T_o)^x \tag{7}$$

In Tables 691 and 696, which give values of L, δ and related data for a number of gases and vapors,

 η_{15} = coefficient of viscosity at 15°C

$$\eta_0 =$$
 " " " 0°C

and

x = value of exponent in equation (7)

 L_0^1 = value of mean free path (in cm) at 0°C and 1 mmHg

 L_0^{760} = value of mean free path (in cm) at 0°C and 760 mmHg

 L_{25}^{1} = value of mean free path (in cm) at 25°C and

 L_{25}^{760} = value of mean free path (in cm) at 25°C and 760 mmHg

 δ = value of molecular diameter (in cm) at 0°C

 $N_s = 1.154/\delta^2 = \text{of molecules per cm}^2 \text{ to form a mono-}$ layer (assuming that the spacing is that of close-packed or face-centered lattice)

 $\omega =$ collision-frequency at 25°C and 760 mmHg $= r_a/L_{25}^{760}$

For the vapors of H_2O and H_3O (Table 691), P = vapor pressure in mmHg at the teniperature t, and L_t and δ_t denote the values of the mean free path and diameter, respectively, at this temperature. For H₂O vapor, C=650 and $\eta_{15}=9.26\times 10^{-6}$. For Hg, C=942.2 and value of η at t=219.4°C was used. The values of η_0 and δ_0 for Hg at 0°C are those given by Jeans.

TABLE 696.—VISCOSITY, , MEAN FREE PATHS, L, MOLECULAR DIAMETERS, δ, AND RELATED DATA FOR A NUMBER OF GASES *

Gas:									
Characteristic	H_2	Hе	Ne	Air	O_2	A	CO_2	Kr	Xe
x **	.69	.64	.67	.79	.81	.86	.95	.85	.92
$10^7 \times \eta_{15}$ ° †	871	1943	3095	1796	2003	2196	1448	2431	2236
$10^7 \times \eta_0$ °	839	1878	2986	1722	1918	2097	1377	2372	2129
$10^{7} \times \eta_{25}^{\circ}$	892	1986	3166	1845	2059	2261	1496	2502	2308
10³×L₀ɔ¹ ‡	8.39	13.32	9.44	4.54	4.81	4.71	2.95	3.69	2.64
$10^{\circ} \times L_{\circ}$ 0780	11.04	17.53	12.42	5.98	6.33	6.20	3.88	4.85	3.47
$10^3 \times L_{26}^{01}$	9.31	14.72	10.45	5.09	5.40	5.31	3.34	4.06	2.98
$10^6 \times L_{25}$ 0700	12.26	19.36	13.75	6.69	7.10	6.67	4.40	5.34	3.93
$10^{8}\times\delta$	2.75	2.18	2.60	3.74	3.64		4.65	4.15	4.91
C	84.4	80	56	112	125	142	254	188	252
$10^{-14} \times N_s$ §	15.22	24.16	17.12	8.24	8.71	8.54	5.34	6.69	4.78
10 ⁻⁰ ×ω ¶	14.45	7.16	1.68	6.98	6.26	5.70	8.61	6.48	5.71

^{*} For reference, see footnote 219, p. 636. ** x from relations $\eta_T = aT^x$. † C = a measure of strength of the attraction forces (in dynes) between molecules. ‡ L_0 o¹ = mean free path at 0°C and ·1 mmHg, etc. § $N_s =$ number of molecules/cm² for monomolecular layer. ¶ $\omega =$ collision frequency (sec-¹) at 25°C and 760 mmHg.

TABLE 697.--EFFECTIVE ATOMIC RADII

Goldschmidt, on the basis of reasonable though empirical assumptions, has calculated effective radii of atoms in various charged conditions; Pauling, on the basis of wave mechanics, has presented theoretical values for most of the elements, the two series agreeing well in many cases. The latter values are printed in boldface type; the values considered nontypical are in parentheses; e.g., for silicon we have: Si^{*4} (0.22—) 0.39–0.41, Si⁰ (1.12—) 1.18, Si⁻¹ (1.98); 2.71, signifying silicon, carrying 4 + charges, has apparent radius between 0.22 and 0.41; but the lower values relate to compounds where the atoms appear to be deformed; so Goldschmidt gives 0.39 as most significant. Wave mechanics yields 0.41. Neutral, the radius ranges from 1.2, in abnormal compounds, to 1.18 in those typical; when carrying 4 — charges, the value is 1.98, according to calculations deemed faulty, 2.71 according to theory.

In applying the data to replacements, halides and oxides are usually ionized, and the values in the outer columns apply. Thus in fluorite the value for Ca⁺² should be added to that for F⁻¹, giving between 2.32 and 2.42, or 2.37 as a mean; and the observed Ca-F distance in the crystal is 2.36 angstrom units. In the remaining types of compounds the atoms appear to be largely neutral

and the first column should be used.

Atomic No; element		<u>e</u>	Atomic Radius neutral atom angstroms	u
Atomi	Radius neutral atom angstroms	Radius positively charged ion angstroms		Radius positively charged ion angstroms
1 H 2 He 3 Li 4 Be	(.93) (1.50—)1.56 1.05(—1.15)	1 .6078(— .82) 2 .3134	42 Mo 1.36 Mo 44 Ru 1.27–1.34 45 Rh 1.34–1.35	6 .62 4 .66(— .83) 4 .6365 3 .69
5 B 6 C 7 N 8 O	(.45—) .77 (.65—) .71 .60(— .65)	3 .20 4 .15 5 .11 6 .09 7 .07	46 Pd 1.37 47 Ag (1.17—)1.44 48 Cd (1.47—)1.49(—1.60) 49 In 1.45–1.62	1 (.79)1.13-1.26 2 (.78) .97-1.03 3 .8192
9 F 10 Ne 11 Na	.67 (1.12) (1.77—)1.86	7 .07 1 .9598(—1.09)	50 Sn (1.27—)1.40 51 Sb (1.22—)1.34(—1.44) Sb	4 (.64—) . 71 (—.81) 5 . 62 3 .90
12 Mg 13 Al 14 Si	(1.42—)1.62 (1.16—)1.43 (1.12—)1.18	2 .6578(— .85) 3 .5057(— .66) 4 (.22—) .3941 5 .84	52 Te 1.33-1.43 Te 1.36-1.40	6 .56 4 .8189 7 .50
15 P 16 S 17 Cl	.93 1.02-1.04 1.05-1.07	5 . 34 6 . 29 34 7 . 26	I 54 Xe (1.90) 55 Cs (2.37—)2.55 56 Ba 2.10	5 .94 1 1.65 -1.69 (—1.75) 2 1.35-1.43(—1.49)
18 A 19 K 20 Ca 21 Sc	(1.54) (2.07—)2.23 (1.70—)1.97 1.51	1 1.33(-1.84) 2 .99-1.66(-1.50) 3 .8183	57 La 58 Ce 1.82–1.83 Ce	3 1.15-1.22 4 1.01-1.02 3 1.18
21 Sc 22 Tl 23 V V	(1.40—)1.49(—1.53) 1.32(—1.43)	4 (.58—) .6468 5 .59 4 .5961	59 Pr Pr 60 Nd	4 .92-1.00 3 1.16 3 1.15
24 Cr 25 Mn Mn	(1.17—) 1.25 (—1.54) (1.17—) 1.29 (—1.59)	7 .46 4 .5052	62 Sm 63 Eu 64 Cd 65 Tb	3 1.13 3 1.13 3 1.11 3 1.09
Mn 26 Fe Fe 27 Co	(1.21—)1.26(1.45) 1.26(1.39)	2 . 80 91 3 (.49) .67 2 . 75 83 3 .2947	66 Dy 67 Ho 68 Er	3 1.07 3 1.05 3 1.04
Co 28 Ni Ni	1.24(—1.39)	2 .7282 3 .35 2 .6978	69 Tm 70 Yb 72 Hf 1.66	3 1.04 3 1.00
29 Cu Cu 30 Zn	(1.22—) 1.27 (—1.37) 1.31–1.34	1 (.58—) .96 2 .71— .83	73 Ta 1.42–1.44 74 W 1.37 W 76 Os 1.30–1.34	6 .88 4 . 66 68 4 . 65 67
31 Ga 32 Ge 33 As As	(1.28—)1.33(—1.45) 1.22 (1.04—)1.16(—1.26)	4 .4453	77 Ir 1.35 78 Pt 1.38(—1.43) 79 Au 1.40–1.44	4 .6466 1 1.37
34 Se 35 Br 36 Kr	1.13-1.17 1.19 (1.69)	6 .42 7 .39	80 Hg 1.46–1.49 81 T1 (1.71—)1.99(—2.25)	2 1.10-1.12 3 .95-1.05 1 1.44-1.51 4 .84
37 Rb 38 Sr 39 Y 40 Zr	(2.25—)2.36 1.95	1 1.48-1.49(-1.88) 2 1.13-1.27(-1.45) 3 .93-1.06	82 Pb 1.74(—1.90) Pb 83 Bi (1.34—)1.46(—1.55) 90 Th 1.80–1.82	2 (.98—.)1.21-1.32 5 .74 4 1.02-1.10
40 ZF 41 Nb Nb	1.60–1.62 1.43 (—1.50)	4 (.68—) .8089 5 .6970 4 .6769	92 U —NH4	4 .97-1.05 1 1.42-1.59
	Radius negative	Radius negative ion	Radius negative ion	Radius e negative ion
1 H -	-1 (1.27); 2.08 -4 2.60	14 Si —4 (1.98); 2.71 15 P —3 2.12	ion 32 Ge —4 2.72 33 As —3 2.22 34 Se —2 1.91–1.98	50 Sn —4 (2.15); 2.94 51 Sb —3 2.45 52 Te —2 2.03–2.21
8 O -	-3 1.71 -2 1.32-1.40 -1 1.33-1.86	16 S —2 1.74–1.84 17 Cl —1 1.81	35 Br —1 1.95—1.96	53 I —1 2.16-2.20 82 Pb —4 2.15

	Dry	gas	Moist gas	
Gas	D+	D-	D+	D-
AirOxygen		.043 .0396	.032 .0288	.035 .0358
Carbon dioxide	.023	.026 .0414	.0245	.0255
Hydrogen		.190	.128	.142

^{*} Tables 698-700 and 702 prepared by J. D. Cobine, General Electric Co., Schenectady, N. Y. ²²¹ Cobine, J. D., Gaseous conductors, 2d ed., McGraw-Hill Book Co. Used by permission of the publishers.

TABLE 699.—DIFFUSION COEFFICIENTS OF NEUTRAL GASES AT 0°C AND 760 mmHg *

Gases	D **	m †	Gases	D **	m †
A — He			H ₂ - CO	651	1.75
Air - CO ₂	134		$H_2 - CO_2 \dots$		1.75
$Air - O_2 \dots$	178		$H_2 - N_2 \dots$		1.75
CO - CO ₂		2.00	$H_2 - N_2O \dots$		1.75
CO — H₂O	642		$H_2 - O_2 \dots$	679	1.75
CO - O ₂	183	1.75	H ₂ O — Air		1.75
CO ₂ — Air	134		Hg — Air		
$CO_2 - H_2O \dots$	528		O ₂ — Air		1.75
He — A	641	1.75	$O_2 - H_2 \dots$		
H_2 — Air		1.75	$O_2 - CO \dots$		1.75
			$O_2 - CO_2 \dots$		2.00

^{*} For reference, see footnote 221, above. ** D in cm²/sec. † $D = D_o(T/T_o)^m(p_o/p)$, where D_o is the value of D in the table, $T_o = 0$ °C, $p_o = 1$ atm.

TABLE 700.—MOBILITIES OF POSITIVE IONS IN NOBLE GASES AT 760 mmHg AND 0°C *

(cm/sec per volt/cm)

Ion	He	Ne	A	Kr	Xe
Gas †	20.1	5.85	1.81	.88	.61
Li	24.2	11.87	4.68	3.72	2.84
Na	22.7	8.16	3.03	2.20	1.69
K	21.5	7.51	2.64	1.86	1.35
Rb		6.75	2.24	1.49	1.03
Cs		6.10	2.10	1.33	.91

^{*} For reference, see footnote 221, above.

TABLE 701.—MOLECULAR DIAMETERS, δ, FOR ATTRACTIVE SPHERES*

Gas	From η †	From b ‡	Gas	From η †	From b ‡
Argon 2	2.87×10^{-8} cm	2.87×10^{-8} cm	Hydrogen	2.38×10⁻⁵ cm	2.53×10 ⁻⁸ cm
Krypton 3	3.15	3.16	Nitrogen		3.56-3.10
Xenon 3	3.50	3.45	Air	3.11	3.32
Helium 1	.91	1.97	Carbon		
Oxygen 2	2.96	2.91	dioxide	3.23	3.22
				3.30	3.42

^{*} For reference, see footnote 220, p. 640. † Viscosity. ‡ Van der Waal's equation.

[†] Ions same as gas.

TABLE 702.-MOBILITY * OF SINGLY-CHARGED GASEOUS IONS AT 760 mmHg AND 0°C **

(cm/sec per volt/cm)

Gas	$(\epsilon-1)$ †	K o-	K o+
Air (dry)	.000585	2.2	1.6
A (pure)	.00056	206.0	1.81
Cl ₂		.74	.74
CCI.	.0030	.31	.30
CO	.00070	1.14	1.10
CO ₂ (dry)	.00098	.98	.84
H ₂	.00028	8.15	5.9
H ₂ (pure)		7900.0	13.8
HCl	.0046	.62	.53
H ₂ O (at 100°C)		.95	1.1
H ₂ S	.0040	.56	.62
He	.000074	6.3	5.09
He (pure)		500.0	21.4
Hg in He			13.4
Hg in N ₂			2.02
Kr	.0007685		.94
N ₂	.00058	1.84	1.27
N ₂ (pure)		145.0	2.51
NH ₃	.0072	.66	.56
NH ₃ in N ₂		• • •	3.06
N ₂ O	.00113	.90	.82
Ne	.0001231		5.64
O ₂	.00051	1.8	1.31
SO ₂	.0095	.41	.41
002	.0020	* 11	.71

^{*} $K = K_0 \rho_0 / \rho$, where ρ_0 is the gas density at NTP and ρ is the density at which K is desired.

$$K = \frac{0.235 \left(\frac{m_1 + m_2}{m_1}\right)^{\frac{1}{8}}}{(\rho/\rho_0) (\epsilon - 1)_0 M_0}$$

where $m_1 = \text{mass}$ of ion, $m_2 = \text{mass}$ of gas particle, $\epsilon = \text{dielectric}$ constant, $(\epsilon - 1)_o$ is calculated for NTP. $M_o = \text{molecular}$ weight of gas. Values of mobility in this table may not be absolute, but are of orienting value.

** For reference, see footnote 221, p. 644.

† International Critical Tables; Tables Annuelles Internationales de Constants.

TABLE 703.-MOLECULAR DIAMETER (BRAGG) *

Gas	From crystal measured in 2d	From viscosity	Ratio, 2d/ η
Neon Argon Krypton Xenon	2.05 2.35	2.35×10 ⁻⁸ cm 2.87 3.15 3.50	.553 .714 .746 .771

^{*} For reference, see footnote 220, p. 640.

TABLE 704.—NUMBER OF MOLECULES (PER cm2 AT 0°C) OF MONOLAYER AND EQUIVALENT VOLUME (cm3) *

He	No molecules × 10 ⁻¹⁴ 15.22 24.16 8.54 8.10	Vol gas at 760 mmHg and 20°C × 10 ⁵ 6.08 9.65 3.41 3.24	Gas X 10 ⁻¹⁴ CO 8.07 CO ₂ 5.34 CH ₄ 5.23 NH ₃ 4.56	Vol gas at 760 mmHg and 20°C × 105 3.23 2.13 2.09 1.82
	8.10	3.24 3.48	H ₂ O 4.50 H ₂ O 5.27	2.11

^{*} For reference, see footnote 219, p. 636.

646

According to Langmuir, in solids and liquids every atom is chemically combined to adjacent atoms. In most inorganic substances the identity of the molecule is generally lost, but in organic compounds a more permanent existence of the molecule probably occurs. When oil spreads over water evidence points to a layer a molecule thick and that the molecules are not spheres. Were they spheres and an attraction existed between them and the water, they would be dissolved instead of spreading over the surface. The presence of the -COOH, -CO or -OH groups generally renders an organic substance soluble in water, whereas the hydrocarbon chain decreases the solubility. When an oil is placed on water the -COOH groups are attracted to the water and the hydrocarbon chains repelled but attracted to each other. The process leads the oil over the surface until all the -COOH groups are in contact if possible. Pure hydrocarbon oils will not spread over water. Benzene will not mix with water. When a limited amount of oil is present the spreading ceases when all the water-attracted groups are in contact with water. If weight w of oil spreads over water surface A, the area covered by each molecule is AM/wN where M is the molecular weight of the oil O=16, N, Avogadro's constant. The vertical length of a molecule $l=M/a\rho N=W/\rho A$ where ρ is the oil density and a the horizontal area of the molecule.

Substance	Cross section in cm ² × 10 ¹⁶	$l \text{ in cm}$ (length) $\times 10^8$
Palmitic acid C ₁₅ H ₃₁ COOH		19.6
Stearic acid C ₁₇ H ₃₅ COOH		21.8
Cerotic acid C ₂₅ H ₅₁ COOH	25	29.0
Oleic acid C ₁₇ H ₃₃ COOH	48	10.8
Linoleic acid C ₁₇ H ₃₁ COOH	47	10.7
Linolenic acid C ₁₇ H ₂₀ COOH	66	7.6
Ricinoleic acid C ₁₇ H ₃₂ (OH)COOH	90	5.8
Cetyl alcohol C ₁₆ H ₃₃ OH	21	21.9
Myricyl alcohol C ₃₀ H ₆₁ OH	29	35.2
Cetyl palmitate C ₁₅ H ₃₁ COOC ₁₆ H ₃₃	21	44.0
Tristearin $(C_{18}H_{35}O_2)_3C_3H_5$	69	23.7
Trielaidin (C18H33O2)3C3H5	137	11.9
Triolein $(C_{18}H_{33}O_2)_3C_3H_5$	145	11.2
Castor oil (C ₁₇ H ₃₂ (OH)COO) ₃ C ₃ H ₅	280	5.7
Linseed oil (C ₁₇ H ₃₁ COO) ₃ C ₃ H ₅	143	11.0

TABLE 706.-VOLUMES OF INERT GAS ATOMS *

Gas	Volume from ionic radius	ь	b volume	Volume of liquid
Neon Argon Krypton Xenon	8.6 12.5	17.1 32.2 39.7 50.8	5.1 3.8 3.2 2.7	16.7 28.1 38.9 47.5

^{*} For reference, see footnote 203, p. 624.

Material	observed	ro calculated A	Melting point, °C	Material	observed	calculated	Melting point, °C
			Sodium chle	oride structure			
LiF LiCl LiBr LiI NaF NaCl NaBr	2.57 2.75 3.00 2.31 2.81	2.10 2.60 2.75 3.00 2.35 2.85 3.00	870 613 547 446 980 804 755	AgF AgCl AgBr	2.77 2.88 2.10 2.60	3.65 2.30 2.80 2.95 2.15 2.60 2.70	435 455 434 2800
NaI KF KCI KBr KI	3.23 2.67 3.14 3.29	3.25 2.65 3.15 3.30 3.55	651 880 776 730 773	CaO CaS CaSe CaTe SrO	2.40 2.84 2.96 2.97	2.40 2.85 2.95 3.15 2.60	2572 2430
RbF RbCl RbBr	2.82 3.27 3.43	2.80 3.30 3.45 3.70	760 715 682 642	SrS SrSe SrTe	3.01 3.12 3.33	3.05 3.15 3.35 2.75	882
CsF NH ₄ Cl NH ₄ Br	3.00 3.27	3.05 3.25 3.40	684			3.20 3.30 3.50	1923
			Cesium chlor	ide structure			
CsCl CsBr CsI NH4Cl	3.71 3.95	3.55 3.70 3.95 3.25	646 636 621	NH₄Br NH₄I TICI TIBr	3.78	3.40 3.65	430 460
			Zincbleno	le structure			
CuCl CuBr CuI BeS BeSe BeTe ZnS	2.46 2.62 2.10 2.18 2.43 2.35	2.30 2.45 2.70 2.10 2.20 2.40 2.35	422 504 605	ZnTe CdS CdSe CdTe HgS HgSe HgTe	2.52 2.62 2.80 2.53 2.62	2.65 2.50 2.60 2.80 2.50 2.60 2.80	1750
ZnSe	. 2.45	2.45					
Wurtzite stru	cture (fire	st distance		eighbor along ax layer)	is, second t	o three nei	ghbors in
BeO	. 2.63, 2.76 . 1.64, 1.66 . 1.94, 2.04	1.65	2570	CdS	2.36, 2.36 2.52, 2.56 2.63, 2.64	2.50	1850 1750

^{*} For reference, see footnote 203, p. 624.

(Angstroms)

Be** .20 Mg** .70 Ca** .95 Sr** 1.15 Ba** 1.30	Li* .80 Na* 1.05 K* 1.35 Rb* 1.50 Cs* 1.75 NH4*	F- 1.30 Cl- 1.80 Br- 1.95 I- 2.20	O 1.45 S 1.90 Se 2.00 Te 2.20	Zn** .45 Cd** .60 Hg** .60	Cu* .50 Ag* 1.00
--	---	--	--	---	---------------------------

^{*} For reference, see footnote 203, p. 624.

TABLE 703.—CRYSTAL STRUCTURE AND INTERATOMIC DISTANCES FOR METALS (Angstroms) **

Abbreviations: b.c., body-centered cubic; f.c., face-centered cubic; hex, hexagonal; di, $\operatorname{diamond}$; *, other structures.

Li b.c. 3.03	Na b.c. 3.72	K b.c. 4.50	Rb b.c. 4.86	Cs b.c. 5.25
Be hex 2.28 2.24	Mg hex 3.20 3.19	Ca f.c. 3.93	Sr f.c. 4.29	Ba b.c. 4.35
В	A1 f.c. 2.85	Sc	Y 3.58	La hex, f.c. 3.72, 3.73
		Ti hex 2.95 2.90	Zr hex 3.23 3.18	Hf hex 3.32 3.33
		V b.c. 2.63	Nb	Ta b.c. 2.88
		Cr b.c. 2.49	Mo b.c. 2.72	W b.c. 2.73
		Mn * 2.50		
		Fe f.c. 2.57, 2.48	Ru hex 2.69 2.65	Os hex 2.71 2.67
		Co hex, f.c. 2.71	Rh f.c. 2.69	Ir f.c. 2.70
		Ni f.c. 2.49	Pd f.c. 2.74	Pt f.c. 2.76
		Cu f.c. 2.55	Ag f.c. 2.88	Au f.c. 2.87
		Zn hex 2.65 2.94	Cd hex 2.97 3.30	Hg * 2.99
		Ga * 2.56	In * 3.24, 3.33	T1 hex, f.c. 3.45, 3.43
	Si di 2.35	Ge di 2.43	Sn di 2.80	Pb f.c. 3.49
		As * 2.50	Sb * 2.88	Bi * 3.10
		Se * 2.32	Te * 2.88	

^{**} For reference, see footnote 203, p. 624.

TABLE 710.—GREATEST BINDING ENERGY OF AN ELECTRON—NEUTRAL ATOMS *** *

The binding energy has been calculated by multiplying the absolute value of the appropriate energy level (in cm⁻¹), referred to its proper limit, by the factor 0.00012395, to express it in electron volts. A dash indicates that no such term exists. Brackets denote an estimated value.

\$ 44470000000000000000000000000000000000	A B B B B B B B B B B B B B B B B B B B
5.5 5.5 5.5 5.5 5.7 7.7 7.7 7.7 7.7 7.7	A B 1.28 1.45 1.65 1.53 1.73 1.60 2.09 2.28 2.28 2.28 2.28 2.28 2.39 2.39 2.41 2.59 2.62 3.37 4 8 4.99 4.99
55 .54 .64 .65 .64 .87 .87 .98 .98 .98 .98 .100 .100 .131 .131 .143	A B 11.73 2.20 11.95 2.30 2.31 2.31 2.31 2.31 2.31 2.32 2.31 2.33 2.31 2.34 2.31 2.34 3.32 4.08 A B A 1.18 5.69 6.77 6.92
885 885 885 885 886 886 886 887 887 886 1106 1116 1115	7. B 1.94 1.49 1.49 1.51 1.53 1.53 1.53 1.53 1.55 1.55 1.55
	2.73 2.73 3.56 3.56 4.03 3.87 5.15 4.03 5.15 4.03 5.15 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0
4.50 4.00	A B 5.34 6.11 6.54 6.11 6.54 6.13 6.56 6.54 6.13 6.56 6.48 7.08 7.42 7.22 7.22 7.22 7.22 7.22 7.22 7.22
34 1.51 1.51 1.53 1.54 1.554 1.554 1.852 1.852 1.86 1.873 1.833 1.	7 4 1 8 ‡ 1.67 3.59 2.39 3.38 2.38 6.80 2.38 8.25 4.05 7.04 4.45 7.85 5.81 8.65
34 1.58 1.58 2.03 2.27 2.29 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.08	:::::::::::::::::::::::::::::::::::::::
\$ 1112 200 200 200 200 200 200 200 200 20	:::::::::::::::::::::::::::::::::::::::
2.5 3.640 3.640 3.640 8.30 11.540 11.	:::::::::::::::::::::::::::::::::::::::
2 E.44.20 2 47.20 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	:::::::::::::::::::::::::::::::::::::::
11 12 24.58	111111111111111111111111111111111111111
Element Hil HeI LLI LLI LLI LLI LLI LLI LLI LLI LLI L	Kri Coll Coll Coll Coll Coll Coll Coll Col

‡ B, limit is lowest of configu-²²² Moore, Charlotte E., and Russell, Henry Norris, Nat. Bur. Standards Journ. Res., vol. 48, p. 61, 1952.

* A, Lidén, K., Ark. f. Fys. (Stockholm), vol. 1, p. 260, 1949. B, Finkelnburg, W., and Stern, F., Phys. Rev., vol. 77, p. 303, 1950.

† A, limit is lowest level of configuration $3d^{n-1}$ (K 1 — Cu 1), $4d^{n-1}$ (Ki 1 — Cu 1), $4d^{n-2}$ (Ki 1 — Cu 1), $4d^{n-2}$ 55 (Rb 1 — Nb 1) in the singly ionized atom. See column 6, Table 623.

650 TABLE 711.—GREATEST BINDING ENERGY OF AN ELECTRON— SINGLY-IONIZED ATOMS * †

Element	15	2s	2 <i>p</i>	3 <i>s</i>	3 <i>p</i>	3 d	45	4 <i>p</i>	4 <i>d</i>	5 <i>s</i>	5 <i>p</i>	5 <i>d</i>
Не п	54.40	13.60	13.60	6.04	6.04	6.04	3.40	3.40	3.40	2.18	2.18	2.18
Li 11	75.62	16.61	14.35	6.86	6.27	6.05	3.73	3.49	3.40	2.34	2.22	2.18
Be 11		18.21	14.25	7.27	6.25	6.05	3.89	3.49	3.40	2.42	2.22	2.18
Вп		25.15	20.52	9.06	7.30	6.48	4.53	3.89	3.57	2.73		2.26
CII			24.38	9.93	8.05	6.33	4.89	4.23	3.54	2.89	2.65	2.25
NII			29.61	11.15	9.20	6.49	5.24	4.55	3.62	3.05		2.25
OII			35.15	12.19	9.87	6.48	5.57	4.68	3.60	3.20	2.80	2.27
Fп			34.98	13.08	9.86	6.33	5.81	4.40	3.49	0.20	00	
Ne 11			41.07	13.91	10.55	6.47	6.12		3.60			
Na 11			47.29	14.45	10.95	6.32	6.20		3.47	3.50		
Mg II				15.03	10.61	6.17	6.38	5.04	3.47	3.53	2.95	2.21
Al II				18.82	14.19	6.98	7.51	5.76	3.77	3.94	3.24	2.36
Si 11					16.34	6.51	8.22	6.28	3.82	4.20	3.47	2.41
PII					19.65	6.81	8.92	6.86	4.16	4.36	0.17	2.41
SII					23.4	9.75	9.82	7.85	4.57	4.78	3.06	2.11
Cl II					23.80	10.13	10.43	7.86	4.63	4.93	0.00	2.75
A II					27.62	11.22	10.98	8.40	4.85	5.11	4.05	2.28
Кп					31.81	11.55	11.67	9.10	5.11	5.46	1.00	2.20
Ca 11						10.18	11.87	8.75	4.82	5.40	4.36	2.85
Sc 11						12.20	12.80	9.56	5.42	5.66	7.50	2.00
Тіп						13.46	13.57	9.91	5.53	5.87		
VII						14.65	14.33	10.36	5.67	5.07		
Ċr II						16.49	15.01	10.69	5.76	6.24		
Mn II						13.86	15.64	10.88	5.78	6.39	4.99?	3 25
Fe II						15.95	16.18	11.41	5.91	6.53	5.35	0.20
Соп						17.05	16.64	11.45	0.71	6.64	5.05	
Ni 11						18.15	17.11	11.76		6.77		
Cu II						20.29	17.57	12.05	6.09	6.90	5.40	3.39
Zn 11							17.96	11.95	5.95	7.00	5.39	3.34
Ga 11							20.51	14.64	7.16	7.75	5.83	3.51
Ge 11							20.51	15.93	5.91	8.20	6.14	3.52
As II								20.2	9.2	10.4	8.4	0.02
Se 11								21.5	7.2	9.70	7.50	4.36
Br 11						• • • •		21.6	7.65	9.94	7.37	4.32
Kr 11				• • • •		• • • •		24.56	8.95	10.58	7.96	4.63
Rb 11		• • • •	• • • •	• • • •				27.50	0.93	10.97	8.38	4.67
Sr 11				• • • •	• • • •			27.30	9.22	11.03	8.09	4.42
YII	• • • •	• • • •	• • • •	• • • •	• • • •		• • • •			12.29	9.15	5.14
Žr II			• • • •	• • • •	• • • •		• • • •		13.71	14.03	10.56	4.87
Nb 11				• • • •					10.71	17.03	10.50	
140 11	• • • •		• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •			• • • •

TABLE 712.—CONSTANTS OF DIATOMIC MOLECULES *

The attractive force between atoms varies with the distance between centers. When this distance $= r_e$, the sum of the two radii, the force changes from an attraction to a repulsion. The force, D, at this distance, r_e , is thus the force necessary to pull the two atoms apart. The energy of separation is generally given.

Substance	D kgcal mole	.D electron volts	re A	Substance	,D kgcal mole	D electron volts	re A
H ₂ CH		4.454 3.5	.75 1.12	CO C ₂		9.6 5.6	1.13 1.31
NH	97	4.2	1.08	Cl ₂	57	2.47	1.98
ОН НС1		4.4 4.40	.96 1.27	$\operatorname{Br_2} \ldots \ldots$ $\operatorname{I_2} \ldots \ldots$		1.96 1.53	2.28 2.66
NO O ₂		5.3 5.09	1.15	Li ₂	26	1.14 .76	2.67 3.07
N ₂		7.35	1.09	Na ₂ K ₂		.51	3.91

^{*} For reference, see footnote 203, p. 624.

^{*} See column 6, Table 623. † For reference, see footnote 222, p. 649.

Nuclear physics may be divided into three fields: radioactivity, cosmic rays, and artificial disintegration. The third division—artificial disintegration—is today the most active single experimental (and theoretical) problem of the physicist. This new branch of physics has introduced a number of terms, some of which are defined in Table 716. There is hardly a major physical laboratory that does not have at least one of the devices listed in Table 718 for

producing high-energy particles of one kind or another.

The study of nuclear physics started more than 50 years ago with the discovery of radioactivity. This was a study of natural disintegration up to about 1919 when Rutherford produced and studied artificial disintegration by bombarding nitrogen with swift a-particles from RaC'. However, he had to depend upon nature for the high-speed particles that he used. The value of the speed and energy of the a-rays from natural radioactive materials (Table 732) shows the nature of the particles then available. It was not until about 10 years later that a start was made on the development of the various devices for producing the regulated high-speed and high-energy particles listed in Table 718.

By bombarding different materials with one of the high-speed particles produced by various devices it has been found possible to produce one or more radioactive isotopes of each of the 92 elements and, in addition, to produce 6 elements beyond uranium—each with a number of isotopes.* There are now 9 or 10 known fundamental particles (Table 720), 5 or 6 of which are used in the bombardment of isotopes for the production of new reactions. Some examples of reactions thus brought about by the use of different ones of these high-speed particles together with the minimum energy of the particles necessary to produce the reactions are given in Table 726.

The relative masses of the isotopes vary from 1.0081374 for H^1 to about 242.14152 for Cm^{242} . The actual mass in grams for H^1 is 1.67339×10^{-24} grams, and thus the mass, in grams, of any atom may be determined from its atomic weight. The mass of the neutron is 1.67473×10^{-24} g. The radius of a nucleus, r, is given approximately by $1.4 \times 10^{-13} A^{1/3}$ cm, A being the atomic mass number. These values give for the density of the nucleus about 10^{14} g/cm³ (see Table 872). The atomic weight, the magnetic moment, and the

spin of a number of isotopes are given in Table 719.

TABLE 713.—MASS, ENERGY, AND VELOCITY RELATIONS FOR THE ELECTRON

	Electron	mass *		
Energy Mev	g	m_0	β	Velocity cm/sec
very small	9.1066×10^{-28}			
.018	9.42×10^{-28}	1.035	.25	.75 ×10 ¹⁰
.05	10.00×10^{-28}	1.10	.42	1.26 ×10 ¹⁰
.1	10.90×10^{-28}	1.20	.548	1.65×10^{10}
.5	18.02×10^{-28}	1.98	.863	2.585×10^{10}
1	26.93×10^{-28}	2.96	.94	2.818×10^{10}
5	98.24×10^{-28}	10.8	.996	2.985×10^{10}
5 7	133.89×10^{-28}	14.7	.9976	2.990×10^{10}
10	187.38×10^{-28}	20.6	.9988	2.994×10^{10}
20	365.64×10^{-28}	40.1	.9992	near the velocity of light
100	1791.8×10^{-28}	196.6	.9998	near the velocity of light
1000	17839×10^{-28}	1960	.999999	
10000	178160×10^{-28}	19580	.9999999	66 66 66 66 66

^{*} See Tables 27, 28, and 714.

^{*} For reference, see footnote 199, p. 618.

or

The neutrons and protons are held together in a nucleus by attractive forces (nuclear force) which have a range of only about 2×10^{-13} cm but are stronger than the electric Coulomb forces at distances less than this range. The energy which would be required to separate a nucleus into its constituent protons and neutrons (collectively denoted by nucleons) is called the nuclear binding energy. According to Einstein's mass-energy relation this binding energy is equal to c2 times the difference between the nuclear mass and the mass in the free state of the nucleons contained in the nucleus. The binding energy per nucleon is of the order of magnitude of a few Mev, its actual amount depending on various factors. Starting at about 1 Mev for the deuteron (nucleus of heavy hydrogen) the binding energy per nucleon increases on the average with increasing atomic weight A reaching a maximum of about 10 Mey for A about 50; as A increases further the Coulomb repulsion between the constituent protons becomes more and more important and the binding energy per particle decreases again. In addition to this general trend there are individual variations in stability, a notable example being the great stability of the a-particle (nucleus of He⁴) with a binding energy of more than 7 Mev per nucleon.

The theory of relativity shows that energy and mass are related and that mass may be converted into energy, giving an amount of energy in ergs $= mc^2$, where c is the velocity of light expressed in cm/sec and m the mass in grams. This theory also shows that the velocity of light is the upper limit for the velocity for any particle. It is to be noted that this theory tells us nothing as

to the method of converting mass to energy!

The mass m of a fast-moving particle depends upon its velocity v, thus, m (at velocity v) = $\frac{m_o}{\sqrt{1-\beta^2}}$ where $\beta = v/c$. The kinetic energy of a particle moving with a velocity near that of light

$$KE \doteq m_o c^2 \left(\frac{1}{\sqrt{1 - \beta^2}} - 1 \right)$$
$$m \doteq m_o + \frac{KE}{c^2}$$

Some calculated results of the above relations are shown in Table 713. This theory, together with nuclear physics, shows that each moving particle has a wavelength that is given thus: the wavelength, $\lambda = h/mv$ for a particle of mass m with a velocity v. (See Table 722.)

TABLE 715.—TWO INTERESTING RESULTS OF ARTIFICIAL DISINTEGRATION *

Different man 14	
Different results from the same material ${}_{13}Al^{27} + {}_{2}He^4 \rightarrow {}_{15}P^{80} + {}_{0}n^1$ ${}_{13}Al^{27} + {}_{2}He^4 \rightarrow {}_{14}Si^{50} + {}_{1}H^1$ ${}_{13}Al^{27} + {}_{1}H^2 \rightarrow {}_{13}Mg^{25} + {}_{6}He^4$ ${}_{12}Al^{27} + {}_{1}H^2 \rightarrow {}_{13}Al^{24} + {}_{1}H^2$ ${}_{13}Al^{27} + {}_{1}H^1 \rightarrow {}_{14}Si^{27} + {}_{0}n^1$	Different ways of producing the same materials ${}_{12}\text{Mg}^{26} + {}_{2}\text{He}^{4} \rightarrow {}_{13}\text{Al}^{28} + {}_{1}\text{H}^{1}$ ${}_{13}\text{Al}^{27} + {}_{1}\text{H}^{2} \rightarrow {}_{13}\text{Al}^{28} + {}_{1}\text{H}^{1}$ ${}_{14}\text{Al}^{27} + {}_{1}\text{H}^{2} \rightarrow {}_{13}\text{Al}^{28} + {}_{1}\text{H}^{1}$ ${}_{14}\text{Si}^{28} + {}_{0}\text{N}^{1} \rightarrow {}_{13}\text{Al}^{28} + {}_{1}\text{H}^{1}$ ${}_{13}\text{Ps}^{1} + {}_{0}\text{N}^{1} \rightarrow {}_{13}\text{Al}^{28} + {}_{2}\text{He}^{4}$

^{*} For reference, see footnote 224, p. 665.

TABLE 716.-DEFINITIONS OF SOME TERMS USED IN NUCLEAR PHYSICS

Alpha-particle.—A helium atom, stripped of its outer electrons, that is expelled from a radioactive material.

Artificial disintegration.—Breaking down of an atom by a controlled experiment.

Atom.—The smallest particle of any material substance that can exist as such. Atomic bomb.—A bomb depending upon atomic energy. (U or Pu fission.)

Atomic energy.—Energy due to some breaking down of an atom.

Atomic mass unit, amu.—(1) The mass of a unit atomic weight (see Dalton). (2) An energy unit equal to the mass energy (mc^2) of a unit atomic mass $(1/16 \text{ mass } 0^{16}) =$ $1.4921 \times 10^{-4} \text{ ergs} = 931.3 \text{ Mev.}$

Atomic number .- The value of the positive charge of the atom. This determines the

chemical properties.

Atomic weight.—Chemical: The relative weight of an atom taking the oxygen atom. found in nature, as having a weight of 16. Physical: The relative weight of an atom taking the oxygen isotope 16 as having a weight of 16. This makes the ratio of physical to chemical scale = $1.000272 \pm .000005$

Barn.—Unit area cross section of nucleus = 10⁻²⁴ cm².

Baryton.—See Table 720. See meson.

Beta-ray.—An electron expelled from a radioactive material.

Betatron.—See Table 718.

Binding energy.—The energy due to the packing of an element assuming that the element is made up of protons, electrons, and neutrons.

Bursts (cosmic ray).—A very great output of particles due to a cosmic-ray encounter

with an atom.

Cathode rays.—Electrons that are driven from the negative electrode (the cathode) of a discharge tube. (See Table 758.)

Chain reaction.—A reaction in which one or more of the products of the reaction

keeps it going, i.e., such as the fission of 92 U225.

Compton effect.—The change in wavelength due to the scattering of radiation by a material substance.

Cosmic rays.—A radiation that falls upon the outer atmosphere, generally thought to come from outer space. (See page 710.)

Cosmos.—The entire universe.

Cross section, \(\sigma\).—The proportionality constant between the beam intensity and the number of particles, considered, that strike a target. It has the dimension of an area. See

Cyclotron.—See Table 718.

De Broglie wavelength.—For a particle of mass m and velocity v, the De Broglie wavelength $\lambda = h/mv$.

Delta-rays.—Electrons that are emitted from certain materials due to α-ray bombard-

Deuterium.—See deuteron.

Deuteron.—This isotope of hydrogen that has twice the atomic weight of the proton.

Electron ±.—The smallest particle of electricity that can exist.

Positron, + electron. (Charge + 4.8025 × 10⁻¹⁰ esu.)

Negatron, - electron. (Charge - 4.8025 × 10⁻¹⁰ esu.)

Electron shell.—The shell that is used to describe the location of the outer electrons of an atom. These are K, L, M, N, O. (See Table 658.)

Energy units.—See Table 654. Erg:

ev—The energy equal to that of an electron moving under an emf of 1 volt = $1.602 \times$ 10⁻¹² ergs.

Mev-The energy equal to that of an electron moving under an emf of 10° volts. amu—The mass-energy of a unit mass of atomic weight = 1.492×10^{-3} ergs.

Mass unit—Energy value of one gram = 8.987×10^{20} ergs.

Fission.—The breaking down of a heavy atom into two parts of about equal mass. (See page 706.)

Gamma-rays.—Radiation of very short wavelength that results from some radioactive breakdown. (See Tables 747-752.)

H-rays.—Hydrogen atoms that are emitted from certain materials due to a-ray bombardment.

h .- Planck constant. See quantum.

H or $h = h/2\pi$.

Isobar.—One of two or more nuclei that have the same weight but different atomic numbers.

TABLE 716.-DEFINITIONS OF SOME TERMS USED IN NUCLEAR PHYSICS (concluded)

Isomer.—As applied to an isotope, it is one of two or more that have the same atomic number and weight but different radioactive properties.

Isotope.—One of two or more atomic nuclei that differ in weight but have the same

atomic number, thus the same chemical characteristics.

Magnetic moment.—Nuclear unit of $=\frac{e\ h}{4\pi Mc}=5.05\times 10^{-24}$ erg/oersted where M=mass of proton.

Magneton (Bohr).—The magnetic moment of the electron = $\frac{e h}{M.2-c}$ = 9.27 × 10⁻²¹ erg/oersted.

Mass-energy ratio.—The relativistic relation between mass and energy, i.e., $E = mc^2$.

Mass, rest.—The mass of a particle M_o when at rest. See Table 714.

Mass-velocity ratio.—The variation of mass with velocity, v = velocity, then

 $M_v = \frac{M_o}{\sqrt{1 - \frac{v^2}{c^2}}}$, c = velocity of light. (See Table 714.)

Meson (Mesotron).—See Table 720.

Maximum velocity.—The highest velocity for any material substance, i.e., the velocity of light.

Mev.—A unit of energy; an electron moving under an emf of 10^6 v. $(1.603 \times 10^{-6} \text{ ergs})$. See energy units (Table 654).

Molecule.—An aggregate of two or more atoms of a substance that exists as a unit.

Momentum, angular of nucleus, measured in units $h = h = h/2\pi$. Negatron.—See negative electron. (Sometimes spelled negaton.) Neutrino.—See Table 720.

Neutron.—A neutral particle with a mass about the same as the proton. See Table 720.

Nucleon.—General name for protons and neutrons.

Nucleus.—The central part of an atom, i.e., what is left of an atom after all the outer

electrons are stripped off. Packing fraction.—Related to the mass lost when the atom was formed $=\frac{M_1-A}{A}$ where M is the atomic weight of the atom and A the atomic number.

Photon.—The quantum of radiation $= h\nu$. Proton.—The nucleus of the smallest unit mass, the smallest isotope of the hydrogen atom.

Positron.—See electron. (Sometimes written positon.)

Quantum = $h\nu$, a so-called atom of energy. h = Planck constant. See photon.

Radioactivity.—Natural breakdown of atoms. (See page 672.)

Range of a particle.—The distance it can move through different media.

Rest mass.—The mass of any particle at rest.

Shower.—(Cosmic rays.) See Bursts. Showers may extend a very great distance, i.e., several hundred meters, and have about 10¹⁵ ev energy.

Spin.—Unit of nuclear spin = $h = h = h/2\pi$. Synchrotron.—See Table 718. Tritium.—See Triton. Triton.—The isotpe of hydrogen that has three times the atomic weight of the proton.

Ultimate particle.—See Table 720.

Valence electrons.—The electrons of an atom, in the outer shell that determines its chemical valency.

Van de Graaff generator.—See Table 718.

Volt-electron, ve.-A unit of energy equal to that of an electron moving under an

e:nf of 1 volt = 1.602×10^{-12} ergs.

X-rays.—A radiation of very short wavelengths that results when an electron is stopped (or started) very quickly, as when striking a metal target. (See page 692.)

Atomic number Z	Element	Isotopes (total number)	Naturally radioactive isotopes (number)	Artificially radioactive isotopes (number)	Relative abundance of natural isotopes
1 2	Hydrogen Helium	3	(number)	1 1	$H^{1 \dagger}$: $H^{2} = 99.9844$: .0156 He^{8} : $He^{4} = 1.3 \times 10^{-4}$: 99.9999
3 4 5 6 7	Lithium Beryllium Boron	3 4 3 5		1 3 1	Li ^o : Li ⁷ = 7.39: 92.61 Be ^o = 100.00 B ¹⁰ : B ¹¹ = 18.83: 81.17
6 7 8	Carbon Nitrogen	5		3 3	$B^{10}: B^{11} = 18.83: 81.17$ $C^{12}: C^{18} = 98.9: 1.1$ $N^{11}: N^{15} = 99.62: .38$
9	Oxygen Fluorine	6 4		3	O^{16} : O^{17} : O^{18} = 99.757: .039: .204 F^{10} = 100.00
10	Neon	5		2	Ne^{20} : Ne^{21} : $Ne^{22} = 90.51$: .28:
11 12	Sodium Magnesium	5 5		4 2	$Na^{23} = 100.00$ Mg^{24} : Mg^{25} : $Mg^{26} = 78.60$: 10.11: 11.29
13 14	Aluminum Silicon	5 5		4 2	$A1^{27} = 100.00$ Si^{28} : Si^{20} : $Si^{20} = 92.28$: 4.67:
15 16	Phosphorus Sulfur	5 7		4 3	$P^{31} = 100.00$ $S^{2} : S^{23} : S^{34} : S^{36} = 95.06 : .74 :$
17 18	Chlorine Argon	7 7		5 4	4.18: .016 $Cl^{35}: Cl^{37} = 75.4: 24.6$ $A^{36}: A^{26}: A^{10} = .307: .060:$
19 20	Potassium Calcium	9 10	K ⁴⁰	6	99.633 K^{30} : K^{40} : $K^{41} = 93.3$: .011: 6.7 Ca^{40} : Ca^{42} : Ca^{42} : Ca^{43} : Ca^{44} : Ca^{46} :
24	2 41	10		0	$Ca^{48} = 96.96: .64: .15: 206: .0033: .19$
21 22	Scandium Titanium	10 9		9	$Sc^{45} = 100.00$ Ti^{46} : Ti^{47} : Ti^{46} : Ti^{49} : Ti^{50} = 7.95: 7.75: 73.45: 5.51: 5.34
23 24	Vanadium Chromium	5 7		4 3	$V^{51} = 100.00$ $Cr^{50} : Cr^{52} : Cr^{53} : Cr^{54} = 4.49 :$ 83.78 : 9.43 : 2.30
25 26	Manganese Iron	6 8		5 4	$Mn^{55} = 100.00$ Fe^{54} : Fe^{56} : Fe^{57} : $Fe^{58} = 5.81$:
27 28	Cobalt Nickel	9 10		8 5	91.64: 2.21: .34 Co ⁵⁰ = 100.00 Ni ⁵⁸ : Ni ⁶⁰ : Ni ⁶¹ : Ni ⁶² : Ni ⁶⁴ =
29	Copper	10		8 7	67.76: 26.16: 1.25: 3.66: 1.16 Cu ⁶³ : Cu ⁶⁵ = 69.09: 30.91 Zn ⁶⁴ : Zn ⁶⁶ : Zn ⁶⁷ : Zn ⁶⁸ : Zn ⁷⁰ =
30 31	Zinc Gallium	12 10		8	48.89: 27.81: 4.07: 18.61: .620 Ga^{69} : $Ga^{71} = 60.2$: 39.8
32	Germanium	14		9	Ge^{70} : Ge^{72} : Ge^{73} : Ge^{74} : Ge^{76} = 20.55: 27.37: 7.61: 36.74: 7.67
33 34	Arsenic Selenium	9 16		8 10	$As^{75} = 100.00$ $Se^{74}:^{76}:^{77}:^{78}:^{80}:^{82} = .87:$ 9.02: 7.58: 23.52: 49.82: 9.19
35 36	Bromine Krypton	14 22		12 16	Br ⁷⁰ : Br ⁸¹ = 50.5: 49.5 Kr ⁷⁶ : 80 : 62 : 83 : 84 : 86 = .342: 2.223: 11.50: 11.48: 57.02: 17.43
37 38	Rubidium Strontium	16 14	Rb ⁸⁷	14 10	Rb^{85} : $Rb^{87} = 72.8$: 27.2 Sr^{84} : 80 : 80 : 9.86 : 7.02: 82.56
39 40	Yttrium Zirconium	11 12		10 7	$Y^{80} = 100.00$ $Zr^{90.91.92.94.96} = 51.46: 11.23:$ 17.11: 17.40: 2.80
41	Niobium	15		14	$Nb^{93} = 100.00$

^{*} For reference, see footnote 199, p. 618. † Numbers following symbol indicate names of isotopes of that element.

050					`
Atomic number Z	Element	Isotopes (total number)	Naturally radioactive isotopes (number)	Artificially radioactive isotopes (number)	Relative abundance of natural isotopes
42	Molybdenum	12	(number)	5	$M_0^{92} \cdot {}^{94} \cdot {}^{95} \cdot {}^{96} \cdot {}^{97} \cdot {}^{98} \cdot {}^{100} = 15.86:$ 9.12 : 15.7 : 16.5 : 9.45 : 23.75: 9.62
43 44	Technetium Ruthenium	19 13		19 6	$Ru^{96}: ^{98}: ^{96}: ^{100}: ^{101}: ^{102}: ^{104} = 5.68: 2.22: 12.81: 12.70: 16.98: 31.34: 18.27$
45 46	Rhodium Palladium	11 12		10 6	$Rh^{103} = 100.00$ $Pd^{102} : ^{104} : ^{105} : ^{108} : ^{109} : ^{110} = .8 : 9.3 : 22.6 : 27.2 : 26.8 : 13.5$
47 48	Silver Cadmium	14 16		12 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
49 50	Indium Tin	15 27		13 17	$\begin{array}{l} In^{113}: In^{115} = 4.23: 95.77 \\ Sn^{112}:^{114}:^{115}:^{116}:^{117}:^{118}:^{119}:^{120}:^{122}:^{124} \\ = .90: .61: .35: 14.07: 7.54: \end{array}$
51 52	Antimony Tellurium	19 26		17 18	23.98: 8.62 : 33.03: 4.78 : 6.11 Sb ¹²¹ : Sb ¹²³ = 57.25: 42.75 Te ¹³⁰ , ¹²² , ¹²³ , ¹²⁴ , ¹²⁵ , ¹²⁸ , ¹²⁸ , ¹²⁸ , ¹²⁹ = .091: 2.49: .89: 4.63 : 7.01:
53 54	Iodine Xenon	17 22		16 13	$ \begin{array}{l} 18.72: 31.72: 34.46 \\ I^{127} = 100.00 \\ Xe^{124}, 128, 129, 129, 180, 181, 182, 184, 180 = \\ .094: .088: 1.90: 26.23: 4.07: \end{array} $
55 56	Cesium Barium	16 19		15 12	21.17: 26.96: 10.54: 8.95 $Cs^{183} = 100.00$ $Ba^{180} \cdot ^{192} \cdot ^{184} \cdot ^{185} \cdot ^{187} \cdot ^{188} = .101:$.097: 2.42: 6.59: 7.81: 11.32:
57 58	Lanthanum Cerium	12 12		10 8	71.66 La ¹³⁸ : La ¹⁸⁹ = .089: 99.911 Ce ¹⁸⁶ : 188: .140: .142 = .193: .250:
59 60	Praseodymium Neodymium	7 12	Nd^{150}	6 4	88.48: 11.07 $Pr^{141} = 100.00$ Nd^{142} ; 146 ; 146 ; 146 ; 146 ; $^{150} = 27.13$: 12.20: 23.87: 8.30: 17.18: 5.72:
61 62	Promethium Samarium	8 13	Sm ¹⁵²	8	5.60 $Sm^{144}, {}^{147}, {}^{149}, {}^{140}, {}^{150}, {}^{152}, {}^{154} = 3.16: \\ 15.07: 11.27: 13.84: 7.47: \\ 26.62: 225.23$
63 64	Europium Gadolinium	11 11		9 4	26.63: 22.53 Eu ¹⁵¹ : Eu ¹⁵⁸ = 47.77: 52.23 Gd ¹⁵² : 154 : 156 : 156 : 156 : 150 : 160 :
65 66	Terbium Dysprosium	7 10		6 3	24.78: 21.79 $Tb^{156} = 100.00$ $Dy^{156} : ^{156} : ^{106} : ^{161} : ^{162} : ^{163} : ^{164} = .0524 :$.0902 : 2.294 : 18.88 : 25.53 : 24.97 : 28.18
67 68	Holmium Erbium	7 10		6 4	$\text{Ho}^{165} = 100.00$ $\text{Er}^{162} : ^{164} : ^{168} : ^{167} : ^{168} : ^{170} = .1 : 1.5 :$
69 70	Thulium Ytterbium	8 10		7 3	32.9: $24.4: 26.9: 14.2$ $Tm^{169} = 100.00$ $Yb^{166: 170: 171: 172: 173: 174: 176} = .06:$ 4.21: 14.26: 21.49: 17.02: 29.58: 13.38
71 72	Lutetium Hafnium	7 9	Lu ¹⁷⁶	5 3	$\begin{array}{l} Lu^{176}: Lu^{176} = 97.5: 2.5 \\ Hf^{174}:^{176}:^{177}:^{178}:^{179}:^{180} = .18: 5.30: \end{array}$
73	Tantalum	9		8	$18.47: 27.10: 13.84: 35.11$ $Ta^{181} = 100.00$
			(continue	?d)	

Atomic		Isctopes	Naturally radioactive	Artificially radioactive	
number Z	Element	(total	isotopes	isotopes	Relative abundance of
		number)	(number)	(number)	natural isotopes
74	Tungsten	10		5	$W^{180}:^{182}:^{183}:^{184}:^{186} = .122: 25.77:$
	D4 1				14.24: 30.68: 29.17
75	Rhenium	11	Re ¹⁸⁷	9	Re^{185} : $Re^{187} = 37.07$: 62.93
76	Osmium	10		3	$Os^{184}:^{186}:^{187}:^{188}:^{189}:^{190}:^{192} = .018:$
					1.59: 1.64: 13.3: 16.1: 26.4:
					41.0
77	Iridium	6		4	$Ir^{191}: Ir^{198} = 38.5: 61.5$
7 8	Platinum	11		6	$Pt^{192}:^{194}:^{196}:^{196}:^{198} = .78: 32.8:$
					33.7: 25.4: 7.23
79	Gold	13		12	$Au^{197} = 100.00$
80	Mercury	13		6	$Hg^{196}:^{108}:^{109}:^{200}:^{201}:^{202}:^{204} = .15:$
					10.1: 17.0: 23.3: 13.2: 29.6:
					6.7
81	Thallium	15	$T1^{207}(AcC'')$	10	$T1^{208}:T1^{205}=29.1:70.9$
			T1 ²⁰⁸ (ThC")		
			T1210 (RaC")		
82	Lead	14	Pb210 (RaD)	6	$Pb^{204}:^{206}:^{207}:^{208} = 1.5:23.6:22.6:$
			Pb ²¹¹ (AcB)		52.3
			Pb ²¹² (ThB)		
			Pb ²¹⁴ (RaB)		
83	Bismuth	13	Bi ²¹⁰ (RaE)	8	$Bi^{209} = 100.00$
			Bi ²¹¹ (AcC)		
			Bi ²¹² (ThC)		
			Bi ²¹⁴ (RaC)		

TABLE 718.—DEVICES FOR PRODUCING HIGH-ENERGY PARTICLES * † ‡

Impulse generator.

Transformer rectifier.—Max about 2 Mev.

Electrostatic generator, belt type.—Originated by R. J. Van de Graaff at M.I.T. Developed for use in nuclear physics at M.I.T. by Van de Graaff and at Carnegie Institution in Washington by M. A. Tuve. About 1-3 Mev. Performance improved at Wisconsin, by enclosing equipment in pressure chamber (with freon added to air), up to 4-5 Mev (under pressure) 100 lb/in.² This device can accelerate any kind of charged particle. Under construction (M.I.T., Los Alamos) 12 Mev.

Cyclotron.—Originated at Berkeley by E. O. Lawrence. For accelerating any heavy charged particles (not electrons), 44 Mey alpha-particles, 22 Mey deuterons, 9.5 Mey

protons.

Betatron.—Originated at Illinois by D. W. Kerst. For accelerating electrons. 300 Mev,

Illinois; 100 Mev, General Electric Co.

Synchro-cyclotron.—Developed at Berkeley. 390 Mev alpha-particles, 400 Mev protons, 195 Mev deuterons.

Synchrotron (electron).—Berkeley, 335 Mev electrons; General Electric Co., Cornell, Michigan, Perdue, Berkeley, about 300 Mev; Harvard, 125 Mev.

Linear accelerator.—Berkeley, 32 Mev protons; Stanford, 5.7 Mev electrons (under construction, 1000 Mev); M.I.T., 20-30 Mev electrons.

Proton synchrotron.—Berkeley, 3-6 Mev (under construction); Brookhaven, 3 Mev

(under construction).

Some of the smaller cyclotrons at various laboratories have been converted to F. M. cyclotrons. There are now in use, or under construction in this country, over 100 devices for producing particles of over 1 Mev energy.

 ${}_{6}^{4}Be^{9} + 2 He^{4} \rightarrow {}_{6}C^{12} + {}_{0}n^{1}$ ${}_{5}^{11} + 2 He^{4} \rightarrow {}_{7}N^{14} + {}_{0}n^{1}$ ${}_{1}H^{2} + h\nu \rightarrow {}_{1}H^{1} + {}_{0}n^{1}$

^{*} This list was prepared by R. G. Herb, University of Wisconsin, and W. W. Brobeck, University of California. See Brookhaven National Laboratory Publication BNL-L-101, Particle accelerators, 1948, † High-speed neutrons cannot, of course, be produced directly by any of these devices. Neutrons are produced by bombarding certain materials with one of the high-speed particles produced by these devices. If beryllium, boron, or lithium are bombarded by a-particles neutrons are produced thus:

[‡] Machines up to about 6 Mev now produced commercially.

TABLE 719.—ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES 223

Part 1.-The neutron to fluorine a

z	Element	Isotope	Atomic mass	Spin g	Magnetic moment 9	Quadrupole moment ** (10 ⁻²⁴ cm ²) ^g
0	n	1	1.008977	1/2	-1.91280 ± 9	
0	H	1	1.0081374	1/2	$+2.79254 \pm 0$	
-		2	2.014719	ì	+ .857352±9	$\pm .002766 \pm 25$
		2 3 3	3.016971	1/2	$+2.978624\pm28$	1 10021 00 = 20
2	He	3	3.016951	$\frac{1}{2}$	$(-)2.127414\pm3$	*****
_	110	4	4.003910	0	` ′	
3	Li		6.017043	1	+ .82189 ±4	<9×10 ⁻⁴
3	Li	6 7	7.018242	2/2		
				3/2	$+3.25586 \pm 11$	$+(.02)\pm 2$
		8 7 8 9	8.025031	• • •	• • • • • •	• • • • • •
4	Be	7	7.019169			
		8	8.007916			
			9.015098	3/2	$(-).7849 \times I*\pm 5$	
		10	10.016774			
5	В	9	9.016246			
		10	10.016173	3	$+1.8004 \pm 7$	+.06 ± 4
		11		3/2	$+2.68858 \pm 28$	+.03±2
6	С	12	12.003900	0		1
U	C	13	13.007554	1/2	$+ .70225 \pm 14$	
		14	14.007733	0	T .70223 = 14	• • • • • •
7	N	13	13.009941	U	• • • • •	
/	IN				10265 +2	
		14	14.007565	1	$+ .40365 \pm 3$	+.02
_	_	15		1/2	28299 ± 3	
8	О	16		0		
		17	17.004515	(1/2)		<.02
		18		(0)		$ <4\times10^{-8} $
9	F	19	19.004486	1/2	$+2.6285 \pm 7$	

²²¹ References and other footnotes at end of table, p. 663. Superior letters (a, b, etc) refer to authorities cited in footnote.

Part 2.--Fluorine to thallium b

Z	Element	Isotope	Atomic mass	Spin g	Magnetic moment 9	Quadrupole moment † 9
10	Ne	18	(18.0114)			
		19	19.00781			
		20	19,99877	(0)	~0	
		21	20.99963	3/2	<0	
		21	20.77700	(>3/2?)		••••
		22	21.99844	(0)	~0	
		23	23.0013	` ′	0	• • • •
11	Na	23	21.0035	• • •		• • • • •
11	Na	21 22 23			1 1 74502	••••
		22	21.9999	3	+1.74582	
		23	22.99618	3/2	$+2.21711\pm25$	$\neq 0$
		24	24.9975	• • •		*,* * *
		24 25 22 23 24 25 26	24.9967			
12	Mg	22	22.0062			
		23	23.0002			
		24	23.9925	(0)	~0	
		25	24.9938	(5/2)	96±7	
		26	25.9898	(0)	~0	
		27	26,9928			
13	A1	25	24.9981			
		26	25.9929			
		27	26.9899	5/2	$+3.6408\pm4$	+ .156±3
		28	27.9903	· ·	70.0100-1	+ .130=3
		29	28.9893	• • •	• • • • •	• • • •
		30	(29.9954)	• • • •	• • • • •	• • • •
14	Si	27		• • •		• • • •
14	31	20	26.9949	(0)		
		28 29	27.9866	(0)		~0
		29	28.9866	1/2		~0

TABLE 719.—ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES (continued)

			Atomic		Magnetic	Quadrupole
Z	Element	Isotope	mass	Spin g	moment g	moment † g
		30	29.9832	(0)	• • • • •	~0
		31 32	30.9862 (31.9849)	• • •	• • • •	• • • •
15	P	29	28.9919		• • • • •	* * * *
10	•	30	29.9873			
		31	30.9843	1/2	$+1.13165\pm20$	
		32	31.9827			
		33	32.9826	• • •	• • • •	
16	C	34	33.9826 30.9899	• • •	* * * * *	* * * *
16	S	31 32	31.98089	0		
		33	32.9800	3/2	$(+)(.3\pm.2,.9)$	08
		34	33.97710	(0)		$ <2\times10^{-3} $
		35	34.9788	3/2		+ .06
		36	35.978	(0)	• • • • •	< .01
17	CI	37	36.982		• • • •	• • • •
17	C1	33 34	32.9860 33.9801	• • •	****	* * * *
		35	34.97867	3/2	+ .82191±22	0795±5
		36	35.9788	2	, ,,,,,	0172 ± 4
		37	36.97750	3/2	$+ .68414 \pm 24$	0621 ± 5
		38	37.981			
10		39	(38.9794)		• • • •	
18	A	35	34.9850 35.98780	(0)	~0 · · · · ·	
		36 37	36.9777	(0)	~0	• • • •
		38	38.974		• • • • •	****
		39	(38.9755)			
		40	39.9756	(0)	~0	
		41	40.9770			
19	K	37	(36.9830)	• • •	* * * * *	
		38 39	37.9795 38.9747	3/2	.391±1	
		40 ‡	39.9760	4	-1.291 ± 4	****
		41	40.974	3/2	215±1	
20	Ca	40	39.97530	(0)	~0	
		42	41.9711			
21		43	42.9723	7.0	47556+10	
21 22	Sc Ti	45 46	44.9669 45.9661	7/2	-4.7556 ± 10	* * * *
22	11	47	46.9647	• • •	••••	• • • •
		48	47.9631			
		49	48.9646			
		50	49.9621			
	**	51	50.5887	7/2	/ L \ F 1470 + F	
23	V	51 51	50.9577 50.958	7/2	$(+)5.1478\pm5$	• • • •
24	Cr	52	51.956			• • • •
		53	52.956			
25	Mn	55	54.957	5/2	$+3.4677\pm4$	
26	Fe	54	53.957			
		56	55.9568			* * * *
25	C	57	56.957	7/2	~0	• • • •
27 28	Co Ni	59 58	58.94 57.9594	7/2	+4.6482	• • • •
20	141	60	59.9495			
		61	60.9537		~0	
		62	61.9493			
		64	63.9471		1000015 100	20-10
29	Cu	63	62.957	3/2	$+2.22617\pm36$	26±10 14±10
20	7	65	64.955	3/2 (0)	$+2.3845\pm4$	
30	Zn	64	63.955	(0)	7-0	• • • •

TABLE 719.—ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES (continued)

				,		
Z	Element	Isotope	Atomic mass	Spin 9	Magnetic moment g	Quadrupole moment † g
۷	Biement	66	65.954	(0)	~0	
		67	66.954	5/2	+ .9	• • • •
		68	67.955	(0)	~0	
		70	69.954	• • •		
31	Ga	69	68.952	3/2	$+2.0167\pm11$	+ .2318±23
		71	70.952	3/2	$+2.5614\pm10$	$+.1461\pm15$
32	Ge	70		(0)		$ <7\times10^{-8} $
		72		(0)		$ <7\times10^{-3} $
		73	• • • • •	9/2, > 9/2	• • • •	21 ± 10
		74 76	• • • • •	(0) (0)		$ < 7 \times 10^{-8} < 7 \times 10^{-8} $
33	As	75	74.91	3/2	+1.4	+ .3±2
34	Se	74		(0)	T 1.T	T .0—2
0.	БС	76		(0)	~0	$ <2\times10^{-3} $
		77		$7/2\pm 1$, $(1/2)$		$ \langle 2 \times 10^{-8} $
		78		(0)	~0	$ <2\times10^{-3} $
		80		0		$ <2\times10^{-8} $
	-	82		(0)	~0	
35	Br	79		3/2	$+2.10576\pm37$	+ .26±8
20	TZ	81		3/2	+2.2696±5	+ .21+7
36	Kr	82 83		(0) 9/2	~0 9704	+ .i5
		84		(0)	~0	
		86		(0)	~0	
37	Rb	85		5/2	$+1.3532\pm4$	
0,	24.0	87‡		3/2	$+2.7501\pm5$	
38	Sr	86		(0)		
		87		9/2	-1.1	
		88		(0)	~0	
39	Y	89		1/2	— .14	
40	Zr	91	• • • • •	5/2	1 (1(5 + 22	
41 42	Nb	93 92		9/2	$^{+6.165\pm32}_{\sim0}$	~0
42	Мо	94	93.945	(0) (0)	~0	• • • •
		95	94.946	(5/2)	0	
		96	95.944	(0)	~0	
		97	96.945	(5/2)		• • • •
		98	97.943	(0)	~0	
43	Tc					
44	Ru	96	95.945	• • •		
		98	97.943	• • •		• • • •
		99 100	98.944	• • •	• • • • •	• • • •
		101	99.942 100.946	• • •	• • • • •	****
		102	101.941			****
45	Rh	102	102.941			
		103		>(1/2?)	<0	
46	Pd	102	101.941	• • •		
		104	103.941			
		105	104.942	• • •	• • • • •	
		106	105.941	• • •		
		108 110	107.941 109.941	• • •	• • • • •	• • • •
47	Ag	107	106.945	1/2	086	
"	418	109	108.944	1/2	160	••••
48	Cd	110	100.544	(0)	~0	
		111		1/2	$-$.59492 \pm 8	
		112		(0)	~0	
		113		1/2	62238±8	• • • •
		114		(0)	~0	••••
49	In	116	• • • • •	(0)	~0	1.144
49	111	113 115	• • • • •	9/2 9/2	$+5.486\pm3$ $+5.500\pm3$	1.1 44 1.161
50	Sn	115	114.940	1/2	+3.300±3 9177±2	1.101
-00	D.1.	110	111710	1/2	./1// 4	••••

TABLE 719.—ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES (continued)

			`	, , , , , , , , , , , , , , , , , , , ,		
Z	Element	Isotope	Atomic mass	Spin g	Magnetic moment	Quadrupole moment † 9
		116	115.939	(0)	~0	
		117	116.937	1/2	9997±2	
		118	117.937	(0)	~0	
		119 120	118.938 119.937	1/2 (0)	-1.0459 ± 2	• • • •
		122	121.945			
		124	123.944			
51	Sb	121		5/2	$+3.3591\pm5$	-3 ± 2
52	Te	123 123		7/2 1/2	$+2.5465\pm5$	-1.2±2
32	10	125		1/2		
		126		(0)	~0	
		128		(0)	~0	
53	I	130 127	126.92	(0) 5/2	~0 +2.8086±8	59±20
33	1	129	120.92	7/2	$+2.8080\pm 6$ (+)2.74±14h	-39 ± 20 -39 ± 15
54	Xe	129		1/2	7766±1	
		131		3/2	+7	< .1
		132		(0)	~0	
		134 136		(0) (0)	~0 ~0	• • • •
55	Cs	133	132 91	7/2	$+2.5771\pm9$	≤ .3
		135		7/2	$+2.7271\pm33$	
= /	70	137		7/2	$+2.8397\pm30$	
56	Ba	134 135		$\frac{(0)}{3/2}$	~ 0 + .8346±25	• • • •
		136		(0)	~0	
		137		3/2	+ .9351 ±27	
		138		(0)	~0	
57	La	139	138.953	7/2	$+2.7769\pm28$	$\neq 0$
58 59	Ce Pr	141	140.95	5/2	+4.5938	
60	Nd	145	144.962		1.0200	
		146	145.962			
		148	147.962			• • • •
61	Pr	150 ‡	149.964	• • •	• • • •	• • • •
62	Sm	147		(>1/2)		
		149		(>1/2)		
63	Eu	151		5/2	+3.4	+1.2
64	Gd	153 154	153.971	5/2	+1.5	+2.5
04	Gu	155	154.971	• • •		
		156	155.972	• • •		
		157	156.973			• • • •
		158 160	157.973 159.974	• • •	• • • • •	• • • •
65	Tb	159	159.974	3/2		• • • •
66	Ďу	.07	207.2			
67	Ho	165	164.94	7/2		
68	Er	160	160.4	1/2		
69 70	Tm Yb	169 171	169.4	1/2 1/2	+ .45	
,,	10	173		5/2	 .65	$+3.9\pm4$
71	Lu	175		$7/2$ $\geqslant 7$ $(1/2, 3/2)$	+2.6	+5.9
72	TIC	176 ‡		(1/2 3/2)	+3.8	+7±1
72	Hf	177 178		(0)	~0	
		179		(0) $(1/2, 3/2)$		
		180		(0)	~0	
73	Ta	181	180.88	7/2	+2.1	+6
74	W	182 183	• • • • •	(0) 1/2	• • • •	
		100		1/2		• • • •

TABLE 719.—ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES (continued)

Z	Element	Isotope	Atomic mass	Spin "	Magnetic moment g	Quadrupole moment † 9
		184		(0)		
	_	186		(0)		(, 2 0)
75	Re	185	• • • • •	5/2	+3.3	(+2.8)
		186 187‡		5/2 5/2	1 2 2	+2.6
76	Os	189	189.04	1/2	+3.3	+2.0
70	OS	190	190.03			• • • •
		192	192.04	• • •		
77	Ir	191	191.04	(>1/2)		
• •	••	193	193.04	(3/2)		
78	Pt	194	194.039	(0)	~0	
		195	195.039	1/2	60592 ± 8	
		196	196.039	(0)	~ 0	
		198	198.05	: ::	*****	
79	Au	197	197.04	3/2	+ .20	
80	Hg	198		(0)	~0	
		199 200		1/2	.50413±13	****
		200		(0) 3/2	$^{\sim 0}_{+.5590\pm 1}$	+ .5
		202		(0)	~0	,
		204		(0)	~0	

Part 3.—Thallium to curium (1950) §

The masses have been derived as outlined by Stern.^d The mass of the α -particle is assumed to be 4.00389 mass units and the mass of Pb²⁰⁰ is 206.04519 mass units. The masses of thallium, lead, and bismuth isotopes are determined from the following neutron binding energies (in Mev):

T1*** 6.52±0.03	$Pb^{206} \dots 8.15 \pm 0.05$	Pb^{200} 3.87 ± 0.05
$T1^{908} \dots 7.48 \pm 0.15$	$Pb^{207} \dots 6.719 \pm 0.016$	Bi^{209} 7.44 ± 0.05
$T1^{200} \dots 6.30 \pm 0.03$	$Pb^{208} \dots 7.38 \pm 0.008$	Bi^{210} 4.62 ± 0.015

The decay energies are taken from a paper by Wapstra except for two corrections. The decay energy of Ra²²³ is taken to be 170 Kev higher than that given by Wapstra as was assumed by Stern. Also, it is assumed that the decay of Ra²²⁵ is 700 Kev, and the masses based on this assumption are in parentheses. A few other disintegration energies not given by Wapstra were taken from Perlman, et al.'

		A	M-A	Spin g	Nuclear magnetons g	Z		A	M-A	Spin g	Nuclear magnetons g
81	TI	203	.04187	1/2	$+1.6114\pm3$	83	Bi	211	.05968‡		
01	7.1	204	.04385		T1.01173	65	DI	212	.06394‡		
		205		1/2	11 (272 + 2						
			.04480	1/2	$+1.6272\pm3$			213	.06720		
		206	.04702					214	.07252‡		
		207	.04854‡			84	Po	208	.05244		
		208	.05339‡					209	.05425		
		209	.05690					210	.05488‡		
		210	.06261‡					211	.05899‡		
82	Pb	204	.04291	(0)	~0			212	.06152‡		
- O	- 0	205	.04496					213	.06586		
		206	.04519	(0)				214		• • •	
		207		(0)	~0				.06848‡		
			.04696	1/2	$+ .5894 \pm 1$			215	.07312‡		
		208	.04802	(0)	~0			216	.07587‡		
		209	.05285					218	.08398‡		
		210	.05619‡			85	At	212	.06138		
		211	.06117‡					214	.06964		
		212	.06457‡					215	.07232‡		
		214	.07353‡					216	.07636‡		
83	Bi	208	.05114					217	.07877	• • •	
00	DI	209**	.05213	0/2	1 4 0001 + 5						
				9/2	$+4.0801\pm5$	0.6	-	218	.08365‡		
		210	.05614			86	Rn	216	.07424		

TABLE 719.—ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES (concluded)

Z		А	M-A	Spin ø	Nuclear magnetons	7			34.4	0.1.4	Nuclear
86	Rn	216	.07424	•	magnetons	Z 01	n	A 226	M-A	Spin g	magnetons g
80	KII	217	.07424			91	Pa	226 227	.10494	• • •	
		218							.10631		• • • •
		219	.08015 .08447‡					228	.10874		
		220	.08663‡					229	.10988	2/2	
		222	.09387‡					231‡	.11479	3/2	
87	Fr	218	.08211	• • •				232	.11767	• • •	
0/	гг	219	.08420					233 234‡	(.11966)		
		220	.08756	• • •		92	U	234+	.12317 .10931		
		221	.08955	• • •		92	O	229	.11142	• • •	
		223	.08933					230	.11142		
88	Ra	220	.08632		• • • •			232	.11624		
00	Na	221	.08944					233	(.11908)		
		222	.09116					234‡	.12110		
		223	.09479‡					235‡	.12392 (.	5/27/2	
		224	.09673‡					237	(.12927)		
		225	(.10053)					238‡	.13226	• • •	
		226	.10300‡					239	.13606		
		228	.10928‡			93	Mo	231	.11696		
89	Ac	222	.09361			93	Np	233	.11985		
0,7	AC	223	.09535					235	.12421		
		224	.09333					237	(.12874)	5/2	
		225	.09978					238	.13248		• • • •
		227	.10539‡					239	.13470		
		228	.10926‡			94	Pu	232	.12039	• • •	
90	Th	224	.09808	• • •		27	ı u	234	.12283	• • •	
20	1 11	225	.10051					236	.12641	• • •	
		226	.10193					238	.13099		• • • •
		227	.10528‡					239	.13343		
		228	.10655‡		• • • •			241	(.13864)		
		229	(.10992)			95	Am	239	.13440		
		230	.11201‡)3	2 1111	241	(.13862)		
		231	.11505	• • •				242	.14206		
		232	.11751‡	• • •		96	Cm	238	.13382		
		233	(.12095)			20	CIII	240	.13713		
		234	.12381‡					242	.14152		
		204	.12301+		• • • •			272	.17132		

²²³ References: a, Tollestrup, Fowler, and Lauritsen, Phys. Rev., vol. 78, p. 372, 1950. b, Bethe, H. A. Elementary nuclear theory, John Wiley & Sons, Inc., 1947; Rasetti, F., Elements of nuclear physics. Prentice-Hall, Inc., 1936; Poss, H. L., Phys. Rev., vol. 75, p. 600, 1949. c, Harvey, J. A., Bull, Amer. Phys. Soc., vol. 25, p. U4, 1950. d, Stern, M. O., Rev. Mod. Phys., April 1949. e, Wapstra, A. H., Physica, vol. 16, p. 33, 1950. f, Perlman, I., Ghiorso, A., and Seaborg, G. T., Phys. Rev., vol. 77, p. 26, 1950; Kinsey, B. B., et al., Phys. Rev., vol. 78, p. 77, 1950; also private communications; Hanson, et al., Phys. Rev., vol. 76, p. 578, 1949. g, Ramsey, Norman, Experimental nuclear physics (forthcoming), John Wiley & Sons, Inc.

Note added in proof, 1953.—Because of recent mass measurements, the mass of Pb 200 should be taken as 206.03859. All mass values should be lowered 0.00660 mass units. See Stone, Martin O., Rep. Univ. California Radiation Lab., April 1952.

* I = spin. **Quadrupole moment = -0.4. † (10-24 cm²). ‡ Radioactive series. \$ Prepared by J. A. Harvey, Massachusetts Institute of Technology (see footnote 223, above, reference c).

TABLE 720.—SOME FUNDAMENTAL PARTICLES OF MODERN PHYSICS*

Electron.—A negatively charged stable particle. The negative charge surrounding the

nuclei in all neutral atoms consists entirely of electrons.

Positron.—A particle of the same mass, M_{\bullet} , as an ordinary electron. It has a positive electrical charge of exactly the same amount as that of an ordinary electron (which is sometimes called negatron). Positrons are created either by the radioactive decay of certain unstable nuclei or, together with a negatron, in a collision between an energetic (more than one Mev) photon and an electrically charged particle (or another photon). A positron does not decay spontaneously but on passing through matter it sooner or later collides with an ordinary electron and in this collision the positron-negatron pair is annihilated. The rest energy of the two particles, which is given by Einstein's relation $E = \text{mc}^2$ and amounts to 1.0216 Mev altogether, is converted into electromagnetic radiation in the form of one or more photons.

form of one or more photons.

Proton.—This is the nucleus of an ordinary hydrogen atom. It has a positive charge of exactly the same amount as that of an electron and a mass M_P which is 1837 times larger than M_o and is a stable particle. No experimental evidence of negative protons has

been found as yet.

Neutron.—An electrically neutral particle of mass only very slightly greater (by a factor of 1.0013) than that of the proton. Neutrons are produced in various nuclear reactions. In the free state a neutron is unstable, decaying spontaneously with a half-life of about 10 minutes into a proton, and electron and (presumably) a neutrino. When passing through matter a neutron can also be captured by atomic nuclei.

Deuteron.†—Nucleus of H². a-particle.†—Nucleus of He⁴.

Meson.—Two types of particles of mass intermediate between that of the electron and proton have been discovered in cosmic radiation and in the laboratory. The one particle with mass about 215 m_e is called μ -meson, the other with about 280 m_e π -meson. Mesons of both positive and negative charge have been found and there is now reasonably good evidence for neutral mesons. Both types of mesons decay spontaneously. Some evidence exists for a meson of mass about 1000 m_e .

Neutrino.—An electrically neutral particle of mass very much smaller than that of the electron and possibly zero. There exists as yet no direct experimental evidence for the existence of neutrinos since they interact extremely weakly with matter (e.g., only a small fraction of neutrinos passing through a body of solar mass would be absorbed). There exist, however, extensive measurements on the momentum and energy of the parent and daughter nucleus and of the emitted β -particle in a β -decay process. These measurements show that energy and momentum (as well as spin and charge) in such a process can be conserved if, and only if, a light neutral particle such as the neutrino is emitted together with the β -particle.

Photon.—A photon (or γ -ray) is a quantum of electromagnetic radiation which has zero rest mass and an energy of h (Planck's constant) times the frequency of the radiation. Photons are generated in collisions between nuclei or electrons and in any other process in which an electrically charged particle changes its momentum. Conversely photons can be

absorbed (i.e., annihilated) by any charged particle.

There have been some reports of other particles than those listed above.

Electron, negal Electron, posit Proton, p Neutron, n Deuteron, d a-particle	tive (positron	n) e ⁺	$\begin{array}{c} \text{Mass} \\ (g) \\ 9.1066 \times 10^{-28} \\ 9.1066 \times 10^{-28} \\ 1.6725 \times 10^{-24} \\ 1.6747 \times 10^{-24} \\ 3.34486 \times 10^{-24} \\ 6.6442 \times 10^{-24} \end{array}$	Spin (#) 1/2 1/2 1/2 1 none	$\begin{array}{c} \text{Charge} \\ \text{(esu)} \\ -4.8025 \times 10^{-10} \\ +4.8025 \times 10^{-10} \\ +4.8025 \times 10^{-10} \\ \text{none} \\ +4.8025 \times 10^{-10} \\ +9.6050 \times 10^{-10} \end{array}$	Magnetic moment (nuclear magnetons) 2.7926 -1.9135 .8565 0
Name S. μ*—meson π*—meson π*—meson π*—meson photon ‡ neutrino	ymbol μ* μ- π* π- π° γ	Rest ma. (electron mass) 209 209 275 275 265 0 <.005		Charge esu +4.8025×10 ⁻¹⁰ -4.8025×10 ⁻¹⁰ +4.8025×10 ⁻¹⁰ -4.8025×10 ⁻¹⁰ 0 0	Mean life (sec) 2.15×10 ⁻¹ 2.15×10 ⁻¹ 2.96×10 ⁻¹ 2.96×10 ⁻¹ <5×10 ⁻¹	decay $ \begin{array}{ccc} & \mu^{+} \longrightarrow e^{+} + 2\nu \\ & \mu^{-} \longrightarrow e^{-} + 2\nu \\ & \mu^{-} \longrightarrow e^{-} + 2\nu \\ & \pi^{+} \longrightarrow \mu^{+} + \nu \end{array} $	Mode of capture $\mu^{-} + p \longrightarrow n + \nu$ $\pi^{-} + p \longrightarrow n$

^{*} Prepared by E. E. Salpeter and W. K. H. Wolfgang. † Not fu quantum), $h\nu$: γ ; value ($\lambda=.6\mu$) = 3.310×10⁻¹² ergs.

If a neutron or proton (or a light nucleus) approaches a nucleus at a distance less than the range of nuclear forces it may interact with the nucleus in various ways. If the kinetic energy of the incident particle is not more than a few Mev it is usually first captured by the nucleus, forming a compound nucleus. This compound nucleus is in an excited state (having an excess energy due to the extra binding energy of the additional particle as well as its initial kinetic energy) and in a short time either (a) makes a transition to its groundstate releasing the excess energy in the form of photons, (b) re-emits the incident particle returning to the ground-state or an excited state of the original nucleus (elastic or inelastic scattering), or (c) emits some other particle (neutron, proton, deuteron or a-particle usually).

A neutron does not experience any Coulomb repulsion on approaching a nucleus and hence can react with a nucleus however low its kinetic energy. However, if the incident particle is a proton or deuteron (and even more so if it is an a-particle) it has to overcome an energy barrier due to the electrostatic Coulomb repulsion of the nucleus. For a proton incident on a light nucleus (small Z) this barrier is a few hundred Kev and increases almost proportionately with Z. If the kinetic energy of an incident proton is larger than this barrier it can react about as easily as a neutron. If its energy is lower it can still react due to a purely quantum phenomenon called barrier penetration, but the probability of such a reaction's taking place decreases extremely rapidly as the kinetic energy is decreased relative to the barrier.

Nuclear processes in stars .- There are no free neutrons in stellar interiors (any produced are quickly captured by nuclei), but there is a large proportion of ionized hydrogen and helium (protons and α -particles). At a stellar temperature of, say, 2×10^7 °C the mean thermal kinetic energy of a proton is less than 2 Kev which is appreciably less than the Coulomb barrier of even light nuclei. This means that the reaction rate for protons being captured by a nucleus in stars is in general low and decreases very rapidly with increasing charge Z of the nucleus, reactions with nuclei of Z greater than 8 (oxygen)

being negligible for practical purposes in stars.

Two different cycles (the carbon and proton-proton cycle respectively) are of importance in connection with nuclear energy production in stars. In each of these cycles four protons are captured, separately, by certain light nuclei, two of the compound nuclei thus formed, beta-decay, emitting a positron and neutrino. Each positron subsequently finds an electron and the pair is annihilated, accompanied by the emission of photons. The net effect in each of these cycles is that four protons and two electrons have disappeared, an α-particle has appeared in their place and two neutrinos have been emitted. The energy generated is the total binding energy of an a-particle plus the rest-energy of two electrons which amounts to about 29 Mev per cycle. About 7 percent of this energy is lost in the form of kinetic energy of neutrinos, which escape without interacting any further. The remaining 93 percent of the energy is converted into thermal kinetic energy and radiation. The photons created in the original nuclear processes are absorbed after traversing only a short distance in the star and a larger number of photons of lower frequency are emitted, etc., so that the radiation finally leaving the star has approximately the spectral distribution of blackbody radiation. The rate at which these cycles take place and hence the rate of energyproduction increases very much for even a small increase in the stellar temperature.

TABLE 722,--THE THEORETICAL DE BROGLIE WAVELENGTHS ASSOCI-ATED WITH VARIOUS PARTICLES AND BODIES OF GROSS MATTER 224

 $(\lambda = h/(m v))$

Particle Slow electron 1-volt-electron 100-volt-electron 10,000-volt-electron H ₂ molecule at 200°C.	Mass in g 9.1 ×10 ⁻²⁸ 9.1 ×10 ⁻²⁸ 9.1 ×10 ⁻²⁸ 9.2 ×10 ⁻²⁸ 3.3 ×10 ⁻²⁴	Velocity cm/sec 1 5.9 ×10 ⁷ 5.9 ×10 ⁸ 5.0 ×10 ⁹ 2.4 ×10 ⁶	Energy ergs 4.5 × 10 ⁻²⁸ 1.6 × 10 ⁻¹² 1.6 × 10 ⁻¹⁰ 1.6 × 10 ⁻⁸ 9.5 × 10 ⁻¹⁴	De Broglie wavelengths A 7.3×10 ⁸ 12. 1.2 .12 .82
100-volt proton	1.67×10^{-24} 5.6×10^{-24}	1.38×10^{7} 6.94×10^{8}	1.6×10^{-9} 1.6×10^{-12}	.029 .0143
a-particle from radium 22 rifle bullet	6.6 ×10 ⁻²⁴	2.1 ×10° 32.000	1.45×10^{-6} 9.5×10^{8}	6.6×10^{-5} 1.1×10^{-23}
Golf ball	45	3,000 2,500	2.0×10^{8} 4.4×10^{8}	4.9×10^{-24} 1.9×10^{-24}

²²⁴ Stranathan, J. D., The particles of modern physics, Blakiston Co., 1942. Used by permission of the publishers.

^{*} Prepared by E. E. Salpeter.

TABLE 723.—RATES OF NUCLEAR REACTIONS IN STARS AND OF ENERGY PRODUCTION AT VARIOUS TEMPERATURES * 225

Reaction Tempera	ture: 10×10 ⁶	15×10 ⁶	17.5×10 ⁶	20×10 ⁶	25×10 ⁶	30×10 ⁶
$H^1+H^1 \rightarrow H^2+e^+$	6×10 ¹⁰ yr	1.2×10 ¹⁰ yr	6×10 ⁹ yr	4×10 ⁹ yr	2×10 ⁹ yr	1 × 10° yr
$H^2+H^1 \rightarrow He^3+\gamma$	15 sec	2 sec	1 sec	.5 sec	.2 sec	.1 sec
$He^3 + He^4 \rightarrow Be^7 + \gamma$ $Be^7 \rightarrow Li^7 - c^-$	2×10 ¹² yr	1.5×10° yr	1.2×10 ⁸ yr	1.5×10 ⁷ yr	5×10 ⁵ yr	5×104 yr
	70 days	70 days	70 days	70 days	70 days	70 days
Li ⁷ +H¹→He⁴+He⁴	10 hr	50 min	50 sec	15 sec	2 sec	.4 sec
Mean life of hydrogen	6×10 ¹⁰ yr	3×10 ⁹ yr	1.5×10° yr	1×10 ⁹ yr	5×10 ⁸ yr	3×10 ⁸ yr
Energy production in ergs/(g sec)	.75	40	80	120	250	400

Part 2.-Carbon cycle, temperatures in °K

Reaction Temper	ature:					
$C^{12}+H^{1} \rightarrow N^{13}+\gamma$ $N^{13} \rightarrow C^{13}+e^{+}$ $C^{12}+H^{1} \rightarrow N^{14}+\gamma$	10×10 ⁶ 2×10 ⁹ yr 10 min ≤5×10 ⁸ yr	15×10 ⁶ 1×10 ⁶ yr 10 min ≤2.5×10 ⁵ yr	17.5×10 ⁶ 6×10 ⁴ yr 10 min ≤1.5×10 ⁶ yr	7×10^{6} 7×10^{3} yr 10 min $\lesssim 1.5 \times 10^{3}$ yr	25×10 ⁶ 200 yr 10 min ≤50 yr	30×10 ⁶ 15 yr 10 min ≤3 yr
$N^{14}+H^1\rightarrow O^{15}+\gamma$ $O^{15}\rightarrow N^{15}+c^+$ $N^{15}+H^1\rightarrow C^{12}+He^4$ Mean life of hydrogen	2×10 ¹¹ yr 2 min 4×10 ⁷ yr 5×10 ¹³ yr	4×10 ⁷ yr 2 min 8×10 ³ yr 1×10 ¹⁰ yr	1.7×10 ⁶ yr 2 min 300 yr 4×10 ⁸ yr	1.5×10 ⁵ yr 2 min 30 yr 4×10 ⁷ yr	3×10 ³ yr 2 min .6 yr 7×10 ⁵ yr	150 yr 2 min .1 yr 3×104 yr
Energy production in ergs/(g sec)	.0025	12	300	3,000	200,000	4,000,000

Relative abundances of N¹⁴: C¹²: C¹³: N¹⁵ at a temperature of 17.5×100 °K are in the approximate ratios of 5,000: 200: 50: 1.

Note that the energy-production for the carbon cycle increases much more rapidly with temperature than for the proton-proton cycle. At very "low" temperatures (≤10⁷ °K) the proton-proton reactions are the only ones of importance. The net result at these temperatures is the formation of He³ and a positron out of three H¹ nuclei, since the reaction between He³ and He⁴ is then too slow to be important. In Table 724 the reaction times of a few other nuclear reactions are given merely to show the rapid increase of the reaction time with increasing charge of the interacting nuclei especially at lower temperatures. None of the reactions listed in Table 724 are of importance as sources of stellar energy.

* Tables 723 and 724 prepared by E. E. Salpeter.

225 Bethe, Phys. Rev., vol. 55, p. 434, 1939; Astrophys. Journ., vol. 92, p. 118, 1940.

Fowler, W. A., and Hall, R. N., Phys. Rev., vol. 77, p. 197, 1950, and private communication.

Christy, R. F., and O'Reilly, J., unpublished work.

TABLE 724.-TIMES REQUIRED FOR SOME OTHER REACTIONS

Reaction	Temperature:	15×10 ⁶ °K	20×10° °K	30×10° °K
$F^{\iota \rho} + H^{\iota} \longrightarrow$	O10+He4	5×10 ⁹ yr	$1\times10^7 \text{ yr}$	5×10 ⁸ yr
$N^{15}+H^{1}\rightarrow$	$O^{16}+\gamma$	1×10^8 yr	5×10 ⁶ yr	$5\times10^8 \text{ yr}$
$O^{16}+H^1\rightarrow$	$F^{17}+\gamma$	5×10 ¹⁸ yr	2×10 ¹¹ yr	$1\times10^{8} \text{ yr}$
Ne ²² +H ¹ -	\rightarrow Na ²⁸ + γ	$5 \times 10^{15} \text{yr}$	$5 \times 10^{12} \text{yr}$	$5\times10^{8} \text{ yr}$
Li ⁷ +He ⁴		$2 \times 10^{17} \text{yr}$	2×10 ¹¹ yr	2×10 ¹⁶ yr
Be ⁷ +He ⁴ -	→ し"+γ	$5 \times 10^{23} \text{yr}$	$1 \times 10^{20} \text{vr}$	2×10 ¹⁵ vr

All mean reaction times are proportional to the density ρ of the stellar material and to C_{II} , the percentage by weight of hydrogen (except the reactions in which one of the colliding nuclei is He^{*} instead of H^{*} in which case C_{IIe} replaces C_{II}). The figures in the above tables are for $C_{II} = 50$ percent, $C_{IIe} = 30$ percent, and for $\rho = 160$ g/cm³. The calculations of Christy and O'Reilly* for the interior of the sun give these values for C_{II} , C_{IIe} and ρ as well as a concentration of 1.5 percent for carbon, nitrogen, and oxygen combined and of 1.5 percent for all other elements combined. Their calculations predict a temperature of about 17×10^{4} °K in the interior of the sun. The mean life of all the hydrogen now present and the total energy production due to the proton-proton cycle and the carbon cycle are also given in Table 723. For the carbon cycle the mean life of hydrogen and the energy production depend on the concentration of the isotopes of carbon and nitrogen. These elements play the role of a "catalyst" controlling the speed of the reaction and are reproduced at the end of each cycle. The figures in Part 2 of Table 723 are for a concentration of 1 percent by weight for N¹¹.

^{*} For reference, see footnote 225 above.

TABLE 725.—SLOW NEUTRON PRODUCED RADIOACTIVITIES OF LONG HALF-LIFE * 220

		Max energy	Max energy		Percent
Radioactive	**	β-particles emitted	γ-rays emitted	Thermal neutron	abundance of parent
isotope	Half-life	Mev	Mev	in barns	nucleus
1H3	12.1 yr	.0179	none	6.5×10^{-4}	.016
1H ³ 1H ³	12.1 yr 12.1 yr	.0179	none	860 (n,a)	7.5
₄Be¹⁰	2.7×10° yr	.0179 .6	none	5000 (n,p)	1.2×10-
C14	5700 yr	.156	none none	.0085	100. 99.6
6C14	5700 yr	.156	none	1.7 (n,p) .1	1.12
11 N 2**	14.8 hr	1.39	2.76	.4	100.
14Si ³¹	170 min	1.8	none	.ii	3.05
$D^{3}2$	14.3 d	1.72	none	.23	100.
15 T = 16 S 35	87.1 d	.169	none	.26	4.15
{ 100	2×10° yr	.64	none	53.	75.4
17 Cl 38	37.5 min	4.94	2.15	.6	24.6
18A ⁴¹ 19K ⁴²	1.83 hr 12.4 hr	2.55	1.37	1.2	99.6
20 Ca ⁴⁵	152 d	3.5 .260	1.5	1.0 .63	6.6
20 Ca	2.5 hr	2.3	none .8	.03	2.06 .19
21.5C°0	85 d	1.49	1.12	22.	100.
Ti ⁵¹	72 d	.36	1.0	.04	5.34
24Cr ⁰¹	26.5 d	K capture	.32	16.2	4.49
25 M n	2.59 hr	2.81	2.06	12.8	100.
10 H POS	4 yr 47 d	K capture	.07	2.1	5.8
20 Fe ⁵⁹	47 d	.46	1.30	.32	.28
27 CO ⁶⁰	5.3 yr	.3	1.3	22.5	100.
28 N i 65 29 Cu 64	2.6 hr 12.8 hr	1.9	1.1	2.6	.88
$_{36}^{29}$ Cu $_{36}^{65}$	250 d	.66 .4	1.35 1.14	4.3 .51	69.1 50.9
30Zn ⁶⁹	13.8 hr	Г.Т.	.44	.09	17.4
$_{30}Zn^{69}$	57 min	1.0	none	.9	17.4
31Ga ⁷²	14.1 hr	3.17	2.5	3.4	39.8
‰(ie ⁽¹ (?)	40 hr	1.2		.073	21.2
32Ge ⁷¹	11.4 d	K capture	.32	.45	21.2
32Ge ⁷⁶	89 min	1.2		.60	36.7
32Ge ⁷⁷	12 hr	2.0		.085	7.7
33As ⁷⁸	26.8 hr	3.0	1.2 .5	4.6 24,	100.
34Se ⁷⁵ 34Se ⁸¹	127 d 58 min	K capture I.T.	.10	.03	.87 49.8
35Br ⁸⁰	4.4 hr	I.T.	.049	3.0	50.6
35 Br 82	34 hr	.47	1.35	2.25	49.4
36 K.r'	34 hr	.9	.2	.27	.34
24 K r 88	4.5 hr	.94	.37	.96	57.
36Kr ⁸⁵	9.4 yr	.74	none	.06	57.
36 K T **	74 min	4.		.06	17.4
37Rb ⁸⁶ 38Sr ⁸⁷	19.5 d	1.8	1.08	.72 1.3	72.8 9.9
38 Sr ⁸⁹	2.7 hr 55 d	I.T. 1.5	.386	.005	82.6
38 Y 90	62 hr	2.35	none none	1.2	100.
40/ 100	65 d	1.0	.92	.1	17.
40Zr ⁹⁷	17 hr	2.1	.8	.29	2.8
42 M O"*	6.7 hr	3.7	1.6	.2	15.9
$_{42}M_{0}^{90}$	67 hr	1.5	.75	.37	24.
43 T C 99	6.6 hr	I.T.	.136	from Mo decay	
44Ru ^o '	2.8 d	K capture	.23	.01	5.7
44Ru ¹⁰³	41 d	.67	.55	1.2 .67	31.3 18.3
44Ru ¹⁰⁵ 45Rh ¹⁰⁵	4 hr 35 hr	1.35 .78	.76 .3	from Ru ¹⁰⁸ decay	10.5
46 Pd ¹⁰⁹	13 hr	1.1	none	12.1	27.
46 Pd ¹¹¹	26 min	3.5	none	.39	13.5
A or 110	225 d	.59	1.40	2.3	48.7
47 A 9 111	7.5 d	1.0	none	from Pd111 decay	
48Cd ¹¹¹	48.6 min	I.T.	.247	.2	12.8

^{*} Revised by Jacob L. Rhodes, University of Pennsylvania.

200 Stephens, W. E., (editor), Nuclear fission and atomic energy, Science Press. Used by permission of the editor.

TABLE 725.—SLOW NEUTRON PRODUCED RADIOACTIVITIES OF LONG HALF-LIFE (concluded)

		IIAEI -EII E	(concluded)		
		Max energy β-particles	Max energy γ-rays	Thermal neutron	Percent abundance
Radioactive	** 14.114	emitted	emitted	cross section	of parent
isotope	Half-life	Mev	Mev	in barns	nucleus
48Cd ¹¹⁵	43 d	1.7	.5	.14	28.
48Cd ¹¹⁵	2.33 d	1.13	.55	1.1	28.
48Cd ¹¹⁷ 49In ¹¹⁴	2.8 hr	1.7	10	1.4	7.3
49 I n 118	48 d 53.9 min	I.T. .85	.19 2.32	61. 56.	4.5 95.77
50Sn ¹¹³	105 d	.080	.085	1.1	1.1
51Sb ¹²²	2.8 d	1.94	.57	6.8	57.
51Sb ¹²⁴	60 d	2.37	2.06	2.5	44.
Te ¹²⁷	9.3 hr	.70	none	.78	18.7
52Te ¹²⁹	72 min	1.8	.8	.13	31.8
128	25 min	2.02	.428	6.8	100.
52 J 131	8 d	.687	.37	from Te131 decay	
54 X e ¹⁸⁸	5.27 d	.35	.085	.2	26.9
55 Cs ¹⁸⁴	3.1 hr	2.4	.7	.016	100.
55 Cs ¹³⁴	2.3 yr	.66	1.40	26.	100.
56 Ba ¹⁸¹ 56 Ba ¹³⁹	11.7 d 85 min	K capture	1.2	24. .5	.09 71.7
56 Da 57 La ¹⁴⁰	40 hr	2.27 2.12	.163 2.3	9.	99.9
58Ce ¹⁴¹	30 d	.6	.2	.95	88.5
явCe ¹⁴³	33 hr	1.35	.5	.31	11.1
59Pr ¹⁴²	19.3 hr	2.14	1.9	11.	100.
$_{60} Nd^{147}$	11.0 d	.90	.58	1.5	16.5
40 N d 149	1.7 hr	1.5		2.4	6.8
₉₂ Sm ¹⁵⁸	47 hr	.78	.61	280.	26.6
62Sm155	25 min	1.9	.3	6.	22.5
63 Eu ¹⁵²	9.2 hr	1.88	.725	1530.	49.1
93 Eu ¹⁵⁴	7 yr	.9	1.2	1000.	52.2
$^{64}Gd^{159}$ $^{65}Tb^{160}$	18 hr	.95	.38	1.1	24.8
65 Tb 160	3.9 hr 75 d	.88	1 15	11. 22.	100. 100.
(a) V 100	2.5 hr	1.2	1.15 .8	2700.	27.3
67 HO166	27.2 hr	1.6		67.	100.
48 ET100	9.4 d	.33	none		27.1
₈₈ Er ¹⁷¹	7.5 hr	1.5	.81	7.	14.9
$_{69} \text{Tm}^{170}$	127 d	.98	.83(?)	118.	100.
70 Y D 100	33 d	K capture	.4	18,000.	.14
70 Yb ¹⁷⁵	4.1 d	.50	.35	50.	31.8
70 Y b 177	2.1 hr	1.2		5.	12.7
71 Lu ¹⁷⁸ 71 Lu ¹⁷⁷	3.7 hr	1.15	none	30.	97.5
71 Lu 72 H f ¹⁸¹	6.6 d 46 d	.47 .46	.2	3200.	2.5
72 Ta ¹⁸²	120 d	.53	.47 1.22	10. 20.6	35.1 100.
a. W 180	73 d	.43	none	2.1	30.7
~.W ¹⁸⁷	24.1 hr	1.33	.69	37.2	29.2
75Re ¹⁸⁶	90 hr	1.05	none	101.	38.2
75 Ke100	18 hr	2.05	1.43	75.	61.8
74OS ¹⁹¹	15 d	.142	.129	3.4	26.4
76()S ¹⁹³	32 hr	1.2	1.58	3.9	41.0
77 I r 192	70 d	.67	.607	740.	38.5
77 I r 194 78 P t 197	19 hr	2.2	1.4	130.	61.5
78 Pt 197	3.3 d 18 hr	.7	• • • •	4.5	25.4
7.0 Pt 199	31 min	1.8	• • • •	1.1 3.9	25.4 7.2
70 A 11 ¹⁹⁸	2.7 d	.96	.411	3.9 96.	100.
», Η σ ²⁰⁸	51.5 d	.21	.3	2.4	29.6
₂₁ T1 ²⁰⁴	3.5 yr	.87	none	7.5	29.2
∘₂Ph²09	3.5 yr 3.32 yr	.68	none	.00045	52.3
a3Bi ²¹⁰	5.0 d	1.17	none	.015	100.
84P0 ²¹⁰	138 d		from Bi ²¹⁰ deca	ıy	
90 Th ²⁸⁸	23.5 min	1.6	none	* * * * * *	100.
Pa ²³⁸ 92 U ²⁸⁹	25 d 23.5 min	.23	.30	from Th ²⁸⁸ decay	00
$^{92}_{93}\text{Np}^{289}$	23.5 min 2.3 d	1.20 1.18	.076 .27	from U ²⁸⁹ decay	99.
931 V D	2.5 Q	1.10	.21	from U-~ decay	

When various materials are bombarded with the high-speed particles produced by one of the devices given in Table 718, disintegrations, or the building up of elements higher in the atomic table, result. Some examples of these reactions are given in the table.

Part 1.—Some values of the energy of artificial disintegration for different isotopes and for different reactions 227

		Neutron bombar	dment		
$H^{1}(n,\gamma)H^{2}$ $He^{2}(n,p)H^{3}$ $L^{10}(n,p)He^{6}$ $L^{10}(n,a)H^{5}$ $L^{17}(n,\gamma)L^{18}$ $H^{10}(n,a)L^{17}$ $H^{10}(n,a)H^{3}Be^{8}$ $H^{10}(n,p)Be^{10}$ $H^{11}(n,a)L^{18}$	— 2.320 Mev .764 — 2.9 4.785 1.98 2.79 .22 .20 — 6.66	$B^{11}(n,\gamma)B^{12}$ $Be^{0}(n,\gamma)Be^{10}$ $Be^{0}(n,a)He^{8}$ $Be^{0}(n,2n)Be^{8}$ $C^{12}(n,n)3a$ $C^{12}(n,2n)C^{11}$	9.57 Mev 2.6 6.69 80 1.63 7.43 18.68 3.94	$\begin{array}{c} N^{14}(n,a)B^{11} \\ N^{14}(n,b)C^{14} \\ O^{19}(n,2n)O^{15} \\ O^{19}(n,a)C^{13} \\ O^{17}(n,a)C^{14} \\ N^{14}(n,H^3)C^{12} \\ N^{14}(n,H^3)3a \\ N^{15}(n,H^3)C^{13} \end{array}$	28 Mev .60 15.6 2.31 1.73 4.10 .626 11.43 9.97
		Proton bombaro	iment		
$L_{10}(p, \gamma) Be^{7}$ $L_{10}(p, \alpha) He^{8}$ $L_{17}(p, \alpha) Be^{7}$ $L_{17}(p, \gamma) Be^{8}$ $L_{17}(p, \gamma) He^{4}$ $Be^{9}(p, d) Be^{8}$ $Be^{9}(p, \alpha) Be^{10}$ $Be^{9}(p, \alpha) Be^{10}$ $Be^{9}(p, \alpha) Be^{10}$	17.28 .559	$ B^{10}(p,a)Be^{7} $ $ B^{11}(p,a)Be^{8} $.558 8.70 — 5.2 1.146 8.57 — 2.762 15.96	$\begin{array}{c} N^{14}(\rho,a)C^{11} \\ N^{15}(\rho,a)C^{12} \\ C^{12}(\rho,\gamma)N^{18} \\ C^{13}(\rho,\gamma)N^{14},N^{14} \\ C^{13}(\rho,n)N^{13} \\ F^{10}(\rho,a)O^{10} \\ F^{10}(\rho,n)N^{20} \\ O^{18}(\rho,n)F^{18} \end{array}$	- 3.00 4.92 1.92 7.56 2.96 8.113 - 3.84 - 2.455
		Deuteron bomba	rdment		
$\begin{array}{c} \operatorname{Li}^{8}(d,a)\operatorname{He}^{4} \\ \operatorname{Li}^{8}(d,n)\operatorname{Be}^{8} \\ \operatorname{Li}^{8}(d,p)\operatorname{Li}^{7} \\ \operatorname{Li}^{8}(d,p)\operatorname{Li}^{7} \\ \operatorname{Li}^{8}(d,n)\operatorname{Be}^{7} \\ \operatorname{Li}^{7}(d,p)\operatorname{Li}^{8} \\ \operatorname{Li}^{7}(d,a)\operatorname{He}^{4} \\ \operatorname{Li}^{7}(d,a)\operatorname{He}^{8} \\ \operatorname{Bi}^{0}(d,a)\operatorname{Be}^{8},\operatorname{Be}^{8} \\ \operatorname{Bi}^{0}(d,p)\operatorname{Bi}^{1},\operatorname{Bi}^{1} \end{array}$		$\begin{array}{c} B^{11}(d,a)Be^{0}\\ B^{11}(d,n)C^{12}C^{12}^{\circ}\\ B^{11}(d,p)B^{12}\\ Be^{0}(d,a)L^{17},L^{17}^{\circ}\\ Be^{0}(d,H^{3})Be^{5}\\ Be^{6}(d,p)Be^{10}\\ C^{12}(d,p)C^{13}\\ C^{12}(d,n)N^{13}\\ C^{13}(d,a)B^{11} \end{array}$	8.03 Mev 13.78 -4 7.09 4.53 4.52 2.726 279 5.10	$\begin{array}{c} C^{13}(d,p)C^{14} \\ N^{14}(d,a)C^{12} \\ N^{14}(d,p)N^{15} \\ N^{14}(d,p)N^{15} \\ N^{14}(d,d,p)N^{15} \\ N^{14}(d,d,p)N^{18} \\ N^{14}(d,a)3a \\ N^{15}(d,a)C^{13} \\ O^{19}(d,a)N^{14} \end{array}$	5.99 Mev 13.50 8.57 5.1 — 4.36 6.16 7.62 3.07
		a-ray bombard	ment		
$\begin{array}{l} {\rm Be}^{\rm e}(a,a') {\rm Be}^{\rm s} + n \\ {\rm Be}^{\rm e}(a,a') {\rm Be}^{\rm s} * \\ {\rm Be}^{\rm e}(a,a') {\rm He}^{\rm f} + \alpha \\ {\rm Be}^{\rm e}(a,a') 2a + n \\ {\rm Li}^{\rm e}(a,p) {\rm Be}^{\rm e} \end{array}$	1.63	$\text{Li}^{7}(a,n) \text{B}^{10}, \text{B}^{10} *$ $\text{B}^{10}(a,d) \text{C}^{12}$ $\text{B}^{10}(a,p) \text{C}^{13}, \text{C}^{13} *$ $\text{B}^{10}(a,n) \text{N}^{13}$ $\text{B}^{9}(a,n) \text{C}^{12}, \text{C}^{12} *$	2.78 Mev 1.44 4.14 1.18 5.75	$Be^{0}(a,a')Be^{0}$ * $B^{11}(a,n)N^{14}$ $B^{11}(a,p)C^{14}$ $C^{12}(a,n)O^{15}$	— 1.63 Mev .28 .88 — 8.4

²²⁷ Hornyak, W. F., and Lauritsen, T., Rev. Mod. Phys., vol. 20, p. 191, 1948; Phys. Rev., vol. 78, p. 372, 1950.

Part 2.—Photo-nuclear reactions, threshold values 228

$H^{2}(\gamma,n)H^{1}$ $Be^{0}(\gamma,n)Be^{8}$ $Li^{7}(\gamma,p)He^{8}$ $Li^{7}(\gamma,p)He^{8}$ $C^{12}(\gamma,n)C^{11}$ $N^{14}(\gamma,n)N^{13}$ $Mg^{22}(\gamma,p)M$ $Mg^{20}(\gamma,p)M$ $Mg^{20}(\gamma,p)M$ $A[x^{7}(\gamma,n)A]^{2}$ $Size(\gamma,n)Siz$	9.8 ± .5 18.7 ±1.0 10.65± .2 18.2 ± .3 1.2 ± 1.5 ±1.0 1.2 ± 1.0 1.4 ± 1.0 1.4 ± .4 1.2 ± .4 1.3 ± .4 1.3 ± .4 1.3 ± .4 1.4 ± .4	$\begin{array}{lll} F_0^{54}(\dot{\gamma},n)F_0^{53} & 13.8\\ Mn^{55}(\gamma,n)Mn^{54} & 10.1\\ Cu^{53}(\gamma,n)Cu^{52} & 10.9\\ Cu^{63}(\gamma,n)Cu^{54} & 10.1\\ Zn^{64}(\gamma,n)Zn^{69} & 11.8\\ Zn^{70*}(\gamma,n)Zn^{69} & 9.2\\ Br^{79}(\gamma,n)Br^{78} & 10.2\\ Zr^{80}(\gamma,n)Zr^{89} & 12.4\\ Zr^{90}(\gamma,n)Zr^{89} & 12.4\\ Zr^{91}(\gamma,n)Br^{90} & 7.2\\ Mo^{92}(\gamma,n)Mo^{91} & 13.2\\ \end{array}$	2 ± .4 Mev 3 ± .2 5 ± .20 0 ± .2 2 ± .2 0.0± .20 0.± .2 0.± .20 0.± .30 0.±	$\begin{array}{c} \Pr^{141}(\gamma,n)\Pr^{140}\\ Nd^{150}(\gamma,n)Nd^{140}\\ Ta^{181}(\gamma,n)Ta^{180}\\ Au^{197}(\gamma,n)Au^{190}\\ Hg^{201}(\gamma,n)Hg^{200}\\ Tl^{205}(\gamma,n)Tl^{204}\\ Pb^{207}(\gamma,n)Pb^{206} \end{array}$	6.44± .15 Mev 6.51± .15 8.50± .15 9.25± .2 9.3 ± .2 9.40± .10 7.40± .20 7.7 ± .2 8.00± .15 6.25± .20 7.38± .15 6.85± .20 7.45± .2
$K^{89}(\gamma,n)K^{88}$			10主 .30	$\mathrm{Bi}^{208}(\gamma,n)\mathrm{Bi}^{208}$	$7.45 \pm .2$

²²⁸ McElhinney, J., Hanson, A. O., Becker, R. A., Duffield, R. B., and Diven, B. C., Phys. Rev., vol. 75, p. 542, 1949.

The heavier elements, Np, Pu, Am, Cm, Bk, and Cf may be produced by artificial transformation of U, followed by radioactive breakdown. A few examples follow:

$$\begin{array}{c} {}_{02}{\rm U}^{238} + {}_{0}n^{1} \xrightarrow{} {}_{02}{\rm U}^{230} + \gamma \\ {}_{02}{\rm U}^{239} \xrightarrow{} {}_{93}{\rm Np}^{289} + \beta^{-}(23~{\rm min}) \\ {}_{03}{\rm Np}^{2} \xrightarrow{\rm D} \xrightarrow{} {}_{94}{\rm Pu}^{220} + \beta^{-}(2.3~{\rm days}) \\ {}_{02}{\rm U}^{238} + {}_{0}n^{1} \xrightarrow{} {}_{02}{\rm U}^{237} + {}_{0}n^{1} + {}_{0}n^{1} \\ {}_{02}{\rm U}^{239} \xrightarrow{} {}_{94}{\rm Np}^{237} + \beta^{-}(6.8~{\rm d}) \\ {}_{92}{\rm U}^{238} + {}_{1}{\rm H}^{2} \xrightarrow{}_{02}{\rm Np}^{238} + {}_{0}n^{1} + {}_{0}n^{1} \\ {}_{04}{\rm Np}^{2} \xrightarrow{\rm Pu}^{241} + {}_{0}n^{1} \\ {}_{04}{\rm Np}^{2} \xrightarrow{}_{04}{\rm Pu}^{245} + \beta^{-}(2.0~{\rm d}) \\ {}_{02}{\rm U}^{238} + {}_{2}{\rm He}^{4} \xrightarrow{}_{94}{\rm Pu}^{241} \xrightarrow{}_{04}{\rm Pu}^{241} + \beta^{-}(\sim 10~{\rm yr}) \\ \end{array}$$

 $\text{or } \overline{\ _{90}\text{Cm}^{210}} + 0 \textit{N}^1 + 0 \textit{N}^1 + 0 \textit{N}^1$ For quantity production:

 $_{94}Pu^{230} + _{2}He^{4} \rightarrow _{07}Cm^{242} + _{0}\overline{n^{1}}$

$${}_{05}Am^{241} + {}_{0}n^{1} \rightarrow {}_{05}Am^{242} + \gamma$$

$${}_{05}Am^{212} * \rightarrow {}_{106}Cm^{242} + \beta^{-}$$

$${}_{05}Am^{241} + {}_{2}He^{4} \rightarrow {}_{07}Ek^{243} + {}_{0}n^{1} + {}_{0}n^{1}$$

$${}_{00}Cm^{242} + {}_{2}He^{4} \rightarrow {}_{07}Cf^{244} + {}_{0}n^{1} + {}_{0}n^{1}$$

²²⁹ G. T. Seaborg, private communication. * Sixteen-hour + 100-year isomers.

TABLE 728.—PILE YIELDS OF SOME ISOTOPES *

Calculated for 10 liters of material exposed to 10¹⁰ neutrons cm⁻⁸ sec⁻¹

Radioactive isotope H ³ Be ¹⁰ C ¹⁴ Na ²⁴	Cross section in units of 10-24 cm ² times relative isotope abundance 10-7 .0086 1.7 .4	Density of material g/cm³ 1 1.85 1.6 .97	Half-life in hours 1.1×10 ⁰ 2.4×10 ⁷ 4×10 ⁷ 14.8		Mean free path cm 7×10 ⁷ 570 12 60	Yields mc/hr 10-7 7×10-8 2×10-3 1100
P ³²	.23	2.2	343	31	60	45
K^{42}	.066	.86	12.4	39	680	120
Ca ⁴⁵ Fe ⁵⁰ Zn ⁶⁵	.012	1.54	3650	40	2220	.12
Fe ⁵⁰	.001	4.86	1110	56	7000	.1
Znos	.26	7.14	6000	65	65	4.5
As ⁷⁸	4.6	5.7	26.8	75	2.86	1300
Br ⁸²	1.12	3.12	34	80	22.8	1300
Rb86	.52	1.53	469	85	106	20
Sr ⁸⁹	.0041	2.6	1770	88	8000	.l
Ag ¹¹⁰ In ^{144m}	1.1	10.5	5400	108	.41	200
In144m	2.74	7.3	1150	115	5.7	150
Ta ¹⁸²	20.6	16.6	2800	181	.48	680
Bi ²¹⁰	.015	9.8	120	209	1420	6

^{*} Revised by J. L. Rhodes. For reference, see footnote 226, p. 667.

TABLE 729.—COMPARATIVE PROPERTIES OF ORDINARY AND HEAVY WATER*

Property	H ₂ O	H ₂ ² O
Specific gravity at 25°C relative to ordinary water		-
at 25°C	1.0000	1.1079
Temperature of maximum density	4.0°C	11.6°C
Dielectric constant	81.5	80.7
Surface tension	72.75 dynes/cm	67.8
Viscosity at 10°C	13.10 millipoises	16.85
Melting point	.000°C	3.802°C
Boiling point (76 cmHg pressure)	100.00°C	101.42°C
Heat of fusion	1436 cal/mole	1510
Heat of vaporization at 25°C		10743
Refractive index at 20°C for NaD line	1.33300	1.32828

^{*} For reference, see footnote 224, p. 665.

TABLE 730.—THE MECHANICAL EFFECTS OF RADIATION 230

Wavelengths, cm	Nature of radiation	Effect on atom	Temperature,	Where found
7500×10^{-8} 3750×10^{-8}	Visible radiation	Disturbs outermost electrons	3880 to 7700	Stellar atmosphere
$\frac{250\times10^{-8}}{10^{-8}}$		Disturb inner electrons	{ 115,000 to 29,000,000	Stellar interiors
$\frac{5\times10^{-0}}{10^{-0}}$	Soft γ-rays	Strip off all or nearly all electrons	58,000,000 to 290,000,000	Central regions of dense stars
4×10 ⁻¹⁰	γ-rays of RaB	Disturb nuclear arrangements	720,000,000	?
5×10 ⁻¹¹	Hardest γ-rays		58×10^{8}	
4.5×10 ⁻¹²	?	Building of He atom out of H	64×10°	
2×10^{-12}	Highly penetrating	Disintegrates nuclei	15×1010	
1.3×10 ⁻¹⁸	?	Annihilation or creation of proton and accompanying electron	22×1011	

²⁸⁰ Nat. Res. Council Bull. 80, 1931.

A number of elements (12; 43 isotopes) of high atomic weight, now found in the earth, and one of the isotopes of each of six lighter elements (Table 732) are unstable in that they spontaneously break down into other elements, emitting a, β or γ rays. The study of artificial radioactivity shows some other types of breakdown. Some of the artificial radioactive nuclei break down by the emission of positive electrons or of neutrons; a K electron may be captured (designated by K); some internal conversion of electrons may take place (e^{-})

or there may be some isomeric transition of the nucleus (I.T.). The characteristics of the three rays— α , β , and γ —are quite different. A 3 Mev a-particle has a velocity of about 1/25 that of light, a range in air of 1.7 cm, and produces some 4,000 ion pairs per mm in air at 760 mmHg at 15°C. A 3 Mev β-ray has a velocity of nearly 99 percent of that of light and a range in air of about 13 meters, and produces only about 4 ion pairs per mm in air. The energy of a γ -ray, which is very short-wavelength radiant energy, is $E = h\nu$, and it has the velocity of light. Thus a 3 Mev γ -ray has a wavelength of 4.1 XU. However, the γ-rays given by the natural radioactive materials have much less energy than this (4 Mev), generally about 1 Mev. [Some artificial radioactive materials emit y-rays with very high energy (See Tables 750-752.).] The wavelengths of the γ -rays from natural radioactivity particles range from about 4.5 to about 4,000 XU. γ-rays have a very long range. A γ-ray produces directly no ions along its path but spends almost its entire energy in producing a photoelectron. Rutherford ^{230*} says that the β -rays are about 100 times as penetrating as the α -rays, and the γ -rays 10 to 100 times as penetrating as the β -rays.

Today it should be stated that, in general, the radioactive isotopes (about 43 in number) of these 12 elements change into other isotopes, either smaller or of the same weight, depending upon the type of breakdown. The nucleus of the resulting isotope may be smaller in weight by about four units and have a charge two units smaller than the parent due to the emission of an a-particle, or it may be of almost the same weight and have a charge one unit greater due to the emission of a β -ray. There are several changes in both the weight and charge that may take place for some of the artificial radioactive nuclei.

The character of these changes varies with the element and seems to be determined by some probability law. It does not seem possible, by any ordinary physical or chemical means, to change these characteristics. (See artificial disintegration, Table 726.)

* For reference, see footnote 199, p. 618.

TABLE 731.—UNITS FOR THE RATE OF RADIOACTIVE DISINTEGRATION

The curie, the adopted unit of the rate of radioactive decay, is defined as the number of disintegrations of 1 gram of radium (3.61×1010) in 1 second. As a working value for the curie the National Bureau of Standards some years ago adopted the value 3.700×10¹⁰ disintegrations per second.

The rutherford (abbreviated rd) = 10° disintegrations per second, has been suggested as a smaller working standard. Then, 1 millirutherford (mrd) = 10° disintegrations per second and 1 microrutherford (μrd) = 1 disintegration per second.

The rate of disintegration of an isotope that emits gamma-rays may be determined by a

measure of the γ-ray emission in roentgens.

A committee of the National Research Council 201 recommended that the curie be defined as 3.70×10^{10} disintegrations per second; the rutherford (rd) as just given. For quantitative comparison of radioactive sources emitting gamma-rays, for which disintegration rates cannot be determined, the roentgen per hour at 1 meter (rhm) is recommended.

²⁰⁰ Rutherford, E., Chadwick, J., and Ellis, C. D., Radiation from radioactive substances, Cambridge Univ. Press, 1930.

²³¹ Physics Today. vol. 3, p. 5, 1950.

	00	
	:	
	1111	
	200	

	End product	90 Io 230	90 UY 231	90 UX, 234	89 Ac 227	92 U., 234	92 Un 234	92 UZ 234	88 AcX 223	88 ThX 224	88 Ra 226	91 Pa 231	88 MsTh, 228	91 UX, 234m	87 AcK 223	90 RaAc 227	90 RaTh 228	86 An 219	86 Tn 220	86 Rn 222	89 MsTh ₂ 228	88 AcX 223	84 AcA 215	84 ThaA 216	84 RaA 218	83 AcC 211	83 ThC 212	83 RaC 214	82 Pb 206	82 AcD 207	82 ThD 208	82 RaD 210	82 At 211	85 AcB 215	82 ThB 212 85 At 216
radiation viev	5	:	.17	:	.25	.70	8.		:	:		.04	:	60:	.03		:	:	:	.19	:	60.	:	:	:	:	:	:	.75	:	:	:	:		:
Energy of radiation in Mev	a or B	4.76	4.5	4.2	5.0	1.2	2.3		5.8	5.3	4.7	7	4.0	2	4.9		1.5	5.7	5.6	4.8	κi	1.2	8.9	6.3	5.5	8.0	7.7	6.7	5.3	7.4	8. 8.	7.7	7.4	1	6.7
	Radiation	ಕ	α; λ	ಕ	α; λ	β^- ; γ	β-: γ	I.T.	a; y	α; λ	α; λ	β-;γ; β-	ರ	$\beta^-;\gamma$	α; γ	-8	$\beta^-; \gamma$	a; 7	В	$\alpha; \gamma$	-8-	β-;γ	ರ	ರ	ช	ಶ	ъ	B	α; λ	В	В	В	ಶ	β_	B B
í	Decay	$2.8 \times 10^{-6} \text{ yr}^{-1}$	$7.8\times10^{-10} \text{ yr}^{-1}$	$1.54 \times 10^{-10} \mathrm{yr}^{-1}$	$2.1 \times 10^{-6} \text{ yr}^{-1}$.103 hr ⁻ⁱ	.63 min ⁻¹	.58 min-1	$3.710^{-2} \mathrm{d}^{-1}$.36 yr ⁻¹	8.510-6 yr-1	$2.710^{-2} hr^{-1}$	$5.0 \times 10^{-11} \text{ yr}^{-1}$	$2.9 \times 10^{-2} \mathrm{d}^{-1}$	$3.2\times10^{-2}\mathrm{yr}^{-1}$.11 hr ⁻¹	$6.2 \times 10^{-2} \mathrm{d}^{-1}$.19 d ⁻¹	$4.3 \times 10^{-4} \text{ yr}^{-1}$	8.101 yr ⁻¹	$3.3 \times 10^{-2} \text{ min}^{-1}$.18 sec ⁻¹	$1.28 \times 10^{-2} \text{ sec}^{-1}$.181 d ⁻¹	$7\times10^{3}\mathrm{sec^{-1}}$	$2.3 \times 10^{3} \text{ sec}^{-1}$:	5.0×10-3 d-1	$1.4 \times 10^{2} \text{ sec}^{-1}$	$2.2\times10^6\mathrm{sec^{-1}}$	$4.6 \times 10^{3} \text{ sec}^{-1}$	$3.9 \times 10^{2} \text{ sec}^{-1}$		4.3 sec ⁻¹
	Half-life	$2.5\times10^{6}\mathrm{yr}$	$8.9 \times 10^{8} \text{yr}$	4.5×10° yr	$3.3 \times 10^4 \text{yr}$	6.7 hr	1.1 min	1.2 min	18.7 d	1.90 vr	$8.1 \times 10^4 \text{ yr}$	25.6 hr	$1.39 \times 10^{10} \text{ yr}$	24.1 d	21.7 yr		6.1 hr	11.2 d	3.6 d	1620 yr	6.7 yr	21 min	3.9 sec	54.5 sec	3.83 d	~10-4 sec	3×10^{-4} sec	several sec	139 d	5×10^{-8} sec	3.2×10^{-7} sec	1.5×10 ⁻⁴ sec	1.8×10^{-8} sec		.16 sec
:	Kadioactive name *	Uranium II	Actinouranium	Uranium I	Protactinium	Uranium Z	Uranium X2		Radioactinium	Radiothorium	Ionium	Uranium Y	Thorium	Uranium X1	Actinium		Mesothorium 2	Actinium X	Thorium X	Radium	Mesothorium 1	Actinium K	Actinon	Thoron	Radon	Astatine	3 7	3	Radium F	Actinium C'	Thorium C'	Radium C'	Actinium A		Thorium A
	Isotope	234	235	238	231	234	234 m		227	228	230	231	232	234	227		228	223	224	226	228	223	219	220	222	215	216	218	210	211	212	214	215		216
	Material	Uranium	Uranium	Uranium	Protactinium	Protactinium	Protactinium		Thorium	Thorium	Thorium	Thorium	Thorium	Thorium	Actinium		Actinium	Radium	Radium	Radium	Radium	Francium	Radon	Radon	Radon	Astatine	Astatine	Astatine	Polonium	Polonium	Polonium	Polonium	Polonium		Polonium
	Atomic number	92	35	92	91	91	91		8	06	8	8	06	96	68		68	88	88	88	88	87	98	98	98	82	85	82	84	84	84	84	84		84

* Many of these radioactive isotopes were known as radioactive decay products before it was known that they were isotopes of other elements.

TABLE 732.—NATURAL RADIOACTIVE MATERIALS (concluded)

	End product	82 RaB 214	85 At 218	84 Po 210	81 Tl 206	81 AcC" 207	84 AcC' 211	81 ThC" 208	84 ThC' 212	81 RaC" 210	84 RaC' 214	83 RaE 210	83 AcC 211	83 ThC 212	83 RaC 214	82 Pb 207	82 Pb 208	82 RaD 210	76 Os 187	72 Hf 176	60 Nd 148	61 Pm 150	38 Sr 87	20 Ca 40	
radiation ev	ح	:		:	:	:		:		1.8	:	.045	∞.	:	:	:	2.6	:	:	.26	:	:	-:	1.5	
Energy of radiation in Mev	a or B	0.9		1.2	8.8	9.9		6.1		5.5	3.1	.026	1.0	.36	.65	1.5	1.75	1.8	.04	.21	2.1	.01	.15	1.7	
	Radiation	B	-8-	-8	_ ප	ರ	-8	. ප	-8	. B	-8	β^- ; γ	β-; γ	β-: γ	β^- ; γ	β-: γ	β-: γ	-8	-62	β^{-} : γ	ម	-8	β-:γ: ε-	β-; λ	
Decay	constant	.22 min ⁻¹		.14 d ⁻¹		.32 min ⁻¹		$1.14 \times 10^{-2} \text{ min}^{-1}$		3.5×10 ⁻² min ⁻¹		$3.2 \times 10^{-2} \text{ yr}^{-1}$	$1.92 \times 10^{-2} \text{ min}^{-1}$	$6.5 \times 10^{-2} hr^{-1}$	$2.59 \times 10^{-2} \mathrm{min^{-1}}$.145 min-1	.22 min ⁻¹	.52 min ⁻¹	$1.7 \times 10^{-13} \text{ yr}^{-1}$	$9.5\times10^{-12} \text{ yr}^{-1}$	$6.9 \times 10^{-18} \text{ yr}^{-1}$	$1.4 \times 10^{-11} \text{ yr}^{-1}$	$1.1 \times 10^{-11} \text{ yr}^{-1}$	$4.3\times10^{-10}\mathrm{yr}^{-1}$	
	Half-life	3.1 min		5 d		2.16 min		60.5 min		19.7 min		22 yr	36.1 min	10.6 hr	26.8 min	4.76 min	3.1 min	1.32 min	$4 \times 10^{12} \text{ yr}$	7.3×1010 yr	$1.0 \times 10^{12} \text{ yr}$	$\sim 5 \times 10^{10} \text{ yr}$	$6.3\times10^{10} \text{ yr}$	1.6×10° yr	
Radioactive	name *	Radium A		Radium E		Actinium C		Thorium C		Radium C		Radium D	Actinium B	Thorium B	Radium B	Actinium C"	Thorium C"	Radium C"	Rhenium	Lutetium	Samarium	Neodymium	Rubidium	Potassium	
	Isotope	218		210		211		212		214		210	211	212	214	202	208	210	187	176	152	150	87	40	
	Material	Polonium		Bismuth		Bismuth		Bismuth		Bismuth		Lead	Lead	Lead	Lead	Thallium	Thallium	Thallium	Rhenium	Lutetium	Samarium	Neodymium	Rubidium	Potassium	
Atomic	number	84		83		83		83		83		82	82	82	85	81	81	81	75	71	62	9	37	19	

Radioactive		Radioactive	
name	Element and isotope	name	Element and isotope
Actinium	89 Actinium 227	" D	82 Lead 210
Actinium A	84 Polonium 215	Radium E	83 Bismuth 210
" B	82 Lead 211	" F	84 Polonium 210
" Ĉ	83 Bismuth 211	" Ĝ	82 Lead 206
" Č'	84 Polonium 211	Radon †	86 Radon 222
" Č"	81 Thallium 207	Actinon	86 Radon 219
" Ď	82 Lead 207	Emanation	86 Radon 222
" K	87 Francium 223	Niton	86 Radon 222
" X	88 Radium 223	Thoron	86 Radon 220
Actinouranium	92 Uranium 235	Thorium	90 Thorium 232
Brevium (see	91 Protactinium 234m	Thorium A	84 Polonium 216
Uranium X2)	71 1 Totactillum 25 mi	" B	82 Lead 212
Emanation	86 Radon 222	" C'	84 Polonium 212
Mesothorium I	88 Radium 228	" C"	81 Thallium 208
" II	89 Actinium 228	" D	
		" X	82 Lead 208
Niton	86 Radon 222		88 Radium 224
Radioactinium	90 Thorium 227	Thoron	86 Radon 220
Radiothorium	90 Thorium 228	Uranium I	92 Uranium 238
Radium	88 Radium 226	11	92 Uranium 234
Radium A	84 Polonium 218	Λ_1	90 Thorium 234
В	82 Lead 214	Λ_2	91 Protactinium 234m
" <u>C</u>	83 Bismuth 214	ĭ	90 Thorium 231
" C'	84 Polonium 214	" Z	91 Protactinium 234
" C"	81 Thallium 210	Uranium lead	82 Lead 206

^{*} At times the prefix cca was used to designate the element following certain elements either in the periodic table or in radioactive series. † At one time all these materials were called Emanation, i.e., RaEm, AeEm, ThEm.

TABLE 734.—THE FOUR RADIOACTIVE FAMILIES

The radioactive isotopes of the heavy materials arrange themselves into four families, or series, that are known either by the parent of the family or by the member of the series with the longest life. Before the various isotopes had been established some of the different members of the families had special names. (See Table 733.) These families or series are also designated by the numerical relation of the particular isotopes of the family involved and the number 4. Thus the four families or series are: (1) Thorium, or 4n + 3 series; (2) Neptunium,* or 4n + 1; (3) Uranium, or 4n + 2; (4) Actinium, or 4n + 3.

Generally, tables of these families show the type of radiation emitted, the energy of the radiation, the end product, and two or three factors that describe the time characteristics of the disintegrations; i.e., T the half-life (that is, the time it takes for one-half of the given material to disintegrate, which can be accurately measured T_a , the average life, and λ , the decay constant. From the law of disintegration which radioactive materials have

been found to follow, the three constants are shown to be related as follows: $\lambda = \frac{0.693}{T}$ and $T_a = \frac{1}{\lambda}$.

There are a number of isomers 282 in the series as shown in Table 742, as for instance, see Uranium X_1 , Radium C, Actinium, etc. As a result of recent work on the artificial production of radioactive isotopes many more isomers could be given. Also, the first member of some of the series might be different. Thus, the 4n + 3 series (the Actinium group) might start in this manner:

Element 92 Uranium 239 93 Neptunium 239 94 Plutonium 239	Rays and end products β^- , Np^{238} β^- , Pu^{239} α , U^{235}	T (half-period) 23.5 min 2.3 days 2.4×10 ⁴ yr	Decay constant $\frac{\text{sec}^{-1}}{\text{sec}^{-1}}$ 4.9×10^{-8} 3.5×10^{-7} 9.2×10^{-18}
--	--	--	---

To be sure, any trace of such members of this family would no longer be found in the earth.

^{*} Almost all the isotopes of this family are artificial products and arc not now found in the earth. ²³² Sergè, Emilio, and Helmholtz, A. C., Rev. Mod. Phys., vol. 21, p. 271, 1949.

TABLE 734.—THE FOUR RADIOACTIVE FAMILIES (continued)

Part 1.—Thorium series (4 n)

of radiation n Mev γ	ı	1	1	1		1						5.6	
Energy α or β	4.0	.05	1.5	5.4	5.7	6.3	6.8	.36	6.1		8.8	1.7	
Decay constant λ sec-1	1.58×10^{-18}	3.28×10^{-9}	3.14×10^{-5}	1.16×10-8	2.20×10^{-6}	1.27×10^{-2}	4.4	1.8×10^{-5}	1.91×10~³		2.3×10^{-8}	3.72×10^{-3}	
$rac{T}{}$ (half period)						.,			0				
Rays and end product	a MsTh 1	β- MsTh 2	β^{-}, γ RaTh	a, γ ThX	α Tn	a ThA	a ThB	β^-, γ ThC	a ThC"	β^-, γ ThC'	a ThD	β^-, γ ThD	Stable
Radioactive	Thorium	Mesothorium 1	Mesothorium 2	Radiothorium	Thorium X	Thoron	Thorium A	Thorium B	Thorium C		Thorium C'	Thorium C"	Thorium D
Isotope	232	228	228	228	224	220	216	212	212		212	208	208
Element	Thorium	Radium	Actinium	Thorium	Radium	Radon	Polonium	Lead	Bismuth		Polonium	Thallium	Lead
Atomic	06	88	68	8	88	98	84	85	83		84	83	28

Part 2.—Neptunium series (4 n + 1)

Energy of radiation in Mev or β . or β 0102	5.46 4.74 4.74 5.83 5.83 5.83 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0
,	4.40×10 ⁻¹¹ 1.20×10 ⁻⁹ 8.4×10 ⁻¹⁴ 2.93×10 ⁻⁷ 1.34×10 ⁻¹³ 3.1×10 ⁻¹² 5.4×10 ⁻⁷
$\begin{array}{c} T \\ \text{(half period)} \\ \boldsymbol{\sim} 10 \ \text{yr} \end{array}$	500 yr 6.7 days 2.6×10° yr 27.4 days 1.63×10° yr 7000 yr 14.8 days
Rays and end product β^- Am	a, γ Np β, c, γ Np α, γ, c U α, γ, c U α, γ, c Th α Ra β Ra β Ac
Isotope 241	241 237 233 223 225 225 225
Element Plutonium †	Americium Uranium Neptunium Protactinium Uranium Thorium Radium Actinium
Atomic number 94	88882888

[†] Not isolated from ores, artificially produced by bombarding uranium with a particles.

Ď
š
Ē
77
=
8
ت
27
=
FAMILIES
3
⋖
ц,
111
RADIOACTIVE
2
F
ပ်
Ē
o.
Ē
9
2
Œ
~
Ŧ
FOUR
Ö
LL,
111
=
THE
7
1
4
734
-
ш
_
TABLE
4
F
•

Energy of radiation in Mev α or β γ	6.31	5. £. ∞ 5. £. ∞	8.4	.70
Decay constant \lambda sec^1	2.3×10^{-3}	2.5 ×10 '	1.6×10^{5} 5.2×10^{-3}	5.8 ×10-5
T (half period)	5 min 021 sec	.021 sec. 46 min	$4.2 \times 10^{-6} \text{ sec}$ 2.2 min	3.3 hr
Rays and end product	a At Bi	β- P _O	a Ph β- Pb	β- Bi Stable
Isotope	221	213	213 209	209
Element	Francium	Bismuth	Polonium Thallium	Lead Bismuth
Momic			84 E	

Part 3.—Uranium series (4n+2)

radiation lev 7 .09	.8 .70 .19 .19 .118	.05
Energy of α or β 4.2	2.0 1.0 4.7 4.7 4.7 4.8 5.5 6.0 6.0 6.0 1.8 3.1 1.8	7.7 1.80 .025 1.17 5.3
Decay constant λ sec ⁻¹ 4.9 ×10 ⁻⁷ 3.3 ×10 ⁻⁷	1.01×10 ⁻² 2.9 ×10 ⁻³ 3.1 ×10 ⁻⁴ 3.1 ×10 ⁻⁴ 1.355×10 ⁻¹⁴ 2.10×10 ⁻⁴ 3.85×10 ⁻⁴ 4.3 × 10 ⁻⁴ 5.85×10 ⁻⁴	$\begin{array}{c} 4.5 \times 10^{3} \\ 9.8 \times 10^{-2} \\ 1.0 \times 10^{-6} \\ 1.6 \times 10^{-6} \\ 5.35 \times 10^{-8} \end{array}$
(half period) 4.5 \times 10° yr 24.1 days	1.14 min 6.7 hr 2.5×10² yr 8.0×10¹ yr 1620 yr 3.825 days 3.05 min 26.8 min 19.7 min	1.5×10 ⁻⁴ sec 1.32 min 22 yr 5.0 days 138 days
Rays and end product a UX 1 \beta^2, \text{ UX 2} \\ \text{ T, T, T, T} \end{array}	β C . C . C . C . C . C . C .	β RaD β^{-} RaD β^{-} β^{-} RaE β^{-} α, γ RaG α, γ Stable
Radioactive name Uranium I Uranium X ₁	Uranium X ₃ Uranium Z Uranium II Ionium Radium Emanation Radium A Radium B	Radium C' Radium C' Radium D Radium E Radium F Radium F (uranium I
1 sotope 238 234	234 m 234 m 230 220 222 218 214	214 210 210 210 210 206
Element Uranium Thorium	Protactinium Uranium Thorium Radium Radon Polomium Lead	Polonium Thallium Lead Bismuth Polonium Lead
Atomic number 92 90	22288888 88	888 883 883 884 883 883 883 883 883 883

TABLE 734.—THE FOUR RADIOACTIVE FAMILIES (concluded)

Part 4.—Actinium series (4 n + 3)

Energy of radiation	$a \text{ or } \beta$ γ	4.6 .16	5.	5.0 .3	4.9 .04						7.4		· ·	1.5 8:			7.4			
	constant $\lambda \sec^{-1}$					1.01×10^{-9}	4.3×10^{-7}	5.5 ×10-4	7.2×10^{-7}	.178	$3.9 \times 10^{\circ}$		6.9×10^3	3.2×10^{-4}	5.2×10^{-3}		1.4×10^{-2}	2.4×10^{-3}		
F	(half period)	8×10° vr	25.6 hr	$3.4 \times 10^4 \text{yr}$	•	21.7 vr	18.6 days	21 min	11.2 days	3.9 sec	1.8×10^{-3} sec		10-4 sec	36 min	2.2 min		5×10^{-3} sec	4.8 min		
-	Kays and end product	a. v UY	β-, γ. c Pa	α, γ Ac	8- RdAc	a AcK	a, y AcX	β-, γ AcX	α, γ An	a AcA	a AcB	β- At	a AcC	β^{-}, γ AcC	β^{-}, γ AcC'	a AcC"	a AcD	β^-, γ AcD	Stable	
:	Kadioactive	Actinouranium	Uranium Y	Protactinium	Actinium		Radioactinium	Actinium K	Actinium X	Actinon	Actinium A		Astatine	Actinium B	Actinium C		Actinium C'	Actinium C"	Actinium D	
	Isotope	235	231	231	227)	227	223	223	219	215		215	211	211		211	202	202	
	Element	Uranium	Thorium	Protactinium	Actinium	111111111111	Thorium	Francium	Radium	Radon	Polonium		Astatine	Lead	Bismuth		Polonium	Thallium	Lead	
	Atomic	02	18	6	80	5	06	82	. œ	% %	2		85	8	83		84	81	85	

			Relati	ve isotop	e abunda	ances
Source of lead	Locality	Geological age	204	206	207	208
	Great Bear Lake, Canada		1.000	15.93	15.30	35.3
	Broken Hill, N.S.W		1.000	16.07	15.40	35.5
Cerussite	Broken Hill, N.S.W	Pre-Cambrian	1.000	15.92	15.30	35.3
			1.000	15.93	15.28	35.2
	Yancey Co., N. C		1.000	18.43	15.61	38.2
	Nassau, Germany		1.000	18.10	15.57	37.85
	Eifel, Germany		1.000	18.20	15.46	37.7
	Joplin, Mo		1.000	21.65	15.88	40.8
Galena II	Joplin, Mo	Late Carboniterous	1.000	21.60	15.73	40.3
G 1	3.6 . 112 T. 11 337 1	I . C .	1.000	21.65	15.75	40.45
	Metalline Falls, Wash		1.000	19.30	15.73	39.5
Cerussite	Wallace, Idaho	Late Cretaceous	1.000	15.98 16.10	15.08 15.13	35.07 35.45
W.lfanita and			1.000	10.10	15.15	33.43
Wulfenite and	Tucson Mts., Arizona	Miscene	1.000	18.40	15.53	38.1
	Saxony, Germany		1.000	17.34	15.47	37.45
Galella	Saxony, Germany		1.000	17.38	15.44	37.3
			1.000	17.00	10	0,10

^{*} For reference, see footnote 45, p. 136.

TABLE 736.—LEAD RATIOS OF SELECTED RADIOACTIVE MINERALS*

Mineral	Locality	Geologic age	Age ratio in 10 ⁶ years
Samarskite	Glastonbury, Conn	Pre-Triassic	270
Pitchblende	Jachymov, Bohemia	Late-Paleozoic	220
Thorite	Brevig. Norway		230
Kolm	Güllhögen, Sweden	Latest Cambrian	400
Bröggerite	Karlhus, Raade, Norway	Pre-Cambrian	900
Cleveite	Aust-agder, Arendal, Norwa	y Pre-Cambrian	1000
Uraninite	Keystone, S. Dak	Pre-Cambrian	1500
Uraninite	Sinyaya, Pala, Carelia, Russ	sia Pre-Cambrian	1850

^{*} For reference, see footnote 45, p. 136.

TABLE 737.—ANALYSIS OF THORIUM C" (THALLIUM 208) BETA-RAY SPECTRUM 233

Number of line	Intensity	Origin	Energy of β-ray line + absorption energy in Mev	Energy of γ-ray Mev	Number of line	Intensity	Origin	Energy of β-rav line + absorption energy in Mev	Energy of γ-ray Mev
1 2 3	v.s. s. m.	L ₁ I ₁₁ L ₁₁₁	.0252+.0158 .0259+.0152 .0278+.0133	.0410 .0411 .0411	23 18 25	m. v.s. m.s.	L _I K L _I	.2446+.0158 .1915+.0875 .2640+.0158	.2604 .2790 .2798
4 5 6	v.s. m.	M_I M_V N_I	.0369+.0038 .0380+.0025 .0398+.0009	.0407 .0406 .0407	20 26 29	s. m.s. v.s.	K L _I K	.2042+.0875 .2756+0158 .4281+.0875	.2917 .2914 .5156
7 8 13	m. f. f.	N _I or K		.0405 .1452 .1441	30 31 30	v.s. m.f. v.s.	$L_I \\ M_I \\ K$.5025 + .0158 .5150 + .0038 .5025 + .0875	.5183 .5188 .5900
12 19 14	m.s. m.f.	K I i K	.1231+.0875 .1954+.0158 .1458+.0875	.2106 .2112 .2333	33 35 36	m.s. m.f. f.	L _I K L _I	.5729+.0158 .6990+.0875 .770 +.0158	.5887 .786 .786
21 16 22	m.s. m.f. m.s. f.	L _I K L _I	.2165+.0158 .1661+.0875 .2369+.0158	.2323 .2536 .2527	40 41 42	s. m. f.	K L ₁ M ₁	2.558 +.0875 2.635 +.0158 2.646 +.0034	2.646 2.651 2.649
17	m.	K	.2309 + .0138 .1706 + .0875	.2581	12	4.	-/- 1		

²⁸¹ Rutherford, E., Chadwick, J., and Ellis, C. D., Radiation from radioactive substances, Cambridge University Press, 1930.

TABLE 738.—ALPHA-RAY SPECTRA OF SOME NATURAL RADIOACTIVE MATERIALS

It is sometimes stated that all alpha-particles from any one source are emitted with the same energy or velocity. This is in the main true for most of the particles but careful measurements have shown that this is not always the case. For some time it was known that occasionally an alpha-particle had a range much longer than average, which, of course, means a high initial velocity.

Atomic No.	Element and isotope	a-ray	Mean range in air, cm	Velocity (cm/sec) × 10-9	a-ray energy Mev	Disinte- gration energy Mev	Energy differences from main group Mev	Relative number of particles
92	Uranium 238	-	2.92	1.420	4.20	4.28		• • • • •
	(Uranium I)		2.5			40=		
	Uranium 234 (Uranium II)		3.5	1.515	4.76	4.85	• • • •	• • • •
91	Protactinium 231		3.8	1.553	5.01	5.11		
90	Thorium 232		2.90	1.390	4.00	4.75		
	Thorium 230		3	1.500	4.66	4.67		
	(Ionium) Thorium 228			1.6150	5.418	5.517	0	5
	(Radiothorium)	a ₀ a ₁	• • • •	1.6020	5.335	5.431	.086	1
	Thorium 227	ao		1.7063	6.049	6.159	0.000	80
	(Radioactinium)	a_1		1.7021	6.019	6.127	.32	15
		a_2	• • • •	1.6979	5.990	6.097	.62	100
		a ₃	• • • •	1.6948 1.6885	5.986 5.924	6.075 6.030	.84 1.29	15 5
		a ₅		1.6806	5.870	5.975	1.84	10
		as		1.6729	5.817	5.921	2.38	5
		ar		1.6558	5.766	5.869	.290	80
		a ₈	• • • •	1.6627 1.6589	5.744 5.719	5.847 5.822	.312 .337	15 60
		α ₉ α ₁₀		1.6524	5.674	5.776	.383	10
88	Radium 226	α ₀	3.5	1.520	4.793	4.879	0	
		a_1	3.4	1.492	4.612	4.695	.184	
	(Thorium X)		• • • •	1.653	5.681	5.786		
	Radium 223	a_0		1.6589 1.6424	5.719 5.607	5.823 5.709	0 .114	6 4
	(Actinium X)	a_1 a_2		1.6316	5.533	5.634	.114	1
86	Radon 222		4.3	1.626	5.486	5.58867	••••	
	(Emanation)		4.067	1 7207	6 2072	6 200E		
	Radon 220 (Thoron)		4.967	1.7387	6.2872	6.3995	• • • •	
	Radon 219	a_0	5.655	1.8117	6.824	6.953	0	10
	(Actinon)	a_1	(5.308)	1.7763	6.561	6.683	.270	1
0.4	D 1 . 210	a_2	5.147	1.7593	6.436	6.556	.397	1
84	Polonium 218 (Radium A)		4.9	1.700	6.00024	6.11239	• • • •	• • • •
	Polonium 216 (Thorium A)		5.601	1.8054	6.774	6.9038		
	Polonium 215 (Actinium A)		6.420	1.8824	7.368	7.508	• • • •	• • • •
	Polonium 214 (Radium C')		6.870 7.755	1.9220 1.9550	7.68300 8.280	7.82934 8.437	0 .608	10 ⁸ .43
				2.0729	8.941	9.112	1.283	(.45)
			9.00	2.0876 2.1157	9.068 9.31 5	9.242 9.493	1.412 1.663	.38
				2.1356	9.492	9.673	1.844	1.35
				2.1543	9.660	9.844	2.015	.35
				2.1678	9.781	9.968	2.138	1.06
				2.1817 2.2001	9.908 10.077	10.097 10.269	2.268 2.439	.36 1.67
				2.2079	10.077	10.209	2.513	.38
				2.2274	10.329	10.526	2.697	1.12
	D.1. 1 212		11.47	2.2466	10.509	10.709	2.880	.23
	Polonium 213		3.805	1.59715	5.3006	5.4033	• • • •	. • • • •

TABLE 738 .- ALPHA-RAY SPECTRA OF SOME NATURAL RADIOACTIVE MATERIALS (concluded)

Atomic No.	Element and isotope Polonium 212	α-гау	Mean range in air, cm 8.533	Velocity (cm/sec) × 10-9 2.05405	a-ray energy Mev 8.7783	Disinte- gration energy Mev 8.9476	Energy differences from main group Mev	Relative number of particles 10 ⁶
	(Thorium C')		9.687	2.1354	9.4912	9.6736	.726	34
			11.543	2.2501	10.5418	10.7447	1.797	190
	Polonium 211 (Actinium C')		6.518	1.8911	7.434	7.581	• • • •	
83	Bismuth 214	a ₀	(4.039)	1.630	5.5068	5.6117	0	94
	(Radium C)	a_1	(3.969)	1.620	5.4458	5.5495	.062	113
	Bismuth 212	a_1		1.7108	6.081	6,20069	0	27.2
	(Thorium C)	a ₂		1.7053	6.044	6.16069	.0400	69.8
	,	a_3		1.6651	5.762	5.8729	.3278	1.80
		a ₄		1.6446	5.620	5.7283	.4724	.16
		as		1.6418	5.610	5.7089	.4918	1.10
	Bismuth 211	ao	5.392	1.7832	6.619	6.739	0	100
	(Actinium C)	a 1	4.947	1.7356	6.262	6.383	.356	19

TABLE 739.—CHARACTERISTICS OF SOME HIGH-SPEED ALPHA-PARTICLES FROM NATURAL RADIOACTIVE SOURCES *

Atomic No.	Element	Isotope	Common name	Velocity	Energy Mev	Range o
92	Uranium	234	Uranium II	1.516×10°	4.76	3.4
		235	Actinouranium	1.483	4.56	3.2
		238	Uranium I	1.43	4.18	2.9
91	Protactinium	231		1.555	5.01	3.7
90	Thorium	227	Radioactinium		6.05	4.8
		228	Radiothorium	1.616	5.42	4.1
		230	Ionium	1.500	4.66	3.3
		232	Thorium	1.498	3.98	2.7
89	Actinium	227	Actinium	1.537	4.94	3.6
88	Radium	223	Actinium X	1.660	5.72	4.4
		224	Thorium X	1.657	5.68	4.4
		226	Radium	1.520	4.79	3.5
86	Radon	219	Actinon	1.814	6.82	5.8
		220	Thoron	1.729	6.28	5.1
		222	Radon	1.628	5.49	4.2
85	Astatine	215		1.964	8.00	7.4
		216		1.937	7.79	7.1
		218		1.802	6.72	5.7
84	Polonium	210	Polonium	1.599	5.30	4.0
		211	Actinium C'	1.894	7.43	6.6
		212	Thorium C'	2.058	8.78	8.7
		214	Radium C'	1.925	7.68	7.0
		215	Actinium A	1.886	7.37	6.5
		216	Thorium A	1.805	6.77	5.8
		218	Radium A	1.701	6.00	4.8
83	Bismuth	211	Actinium C	1.787	6.62	5.6
		212	Thorium C	1.713	6.08	4.9
		214	Radium C	1.630	5.51	4.2

^{*} For reference, see footnote 199, p. 618. † Approximate range in air (from curve).

TABLE 740.—CHARACTERISTICS OF SOME HIGH-SPEED ALPHA-PARTICLES FROM ARTIFICIAL RADIOACTIVE SOURCES *

No. 96		Isotope	cm/sec	Mev	air,† cm
	Curium	-	1.77×10°	6.50	5.4
		240	1.74	6.26	5.1
		241	1.71	6.08	4.9
0.5		242	1.72	6.1	4.9
95	Americium	239 241	1.67	5.77	4.5
0.4	Di destessi		1.62 1.78	5.48 6.6	4.2
94	Plutonium	234	1.78	6.2	5.5 5.0
		236	1.66	5.75	4.5
		238	1.63	5.51	4.2
		239	1.57	5.15	3.8
		240	1.57	5.1	3.8
93	Neptunium		1.73	6.2	5.0
, ,	reptamam morning	235	1.56	5.06	3.8
		237	1.51	4.77	3.4
92	Uranium		1.80	6.72	5.7
		229	1.76	6.42	5.3
		230	1.68	5.85	4.6
91	Protactinium		1.81	6.81	5.8
		227	1.76	6.46	5.4
		228	1.71	6.09	4.9
		229	1.66	5.69	4.4
90	Thorium	224	1.86	7.20	6.3
		225	1.78	6.57	5.5
		226	1.74	6.30	5.1
		227	1.71	6.05	4.8
00	A	229	1.56	5.02	3.7
89	Actinium	222 223	1.83 1.79	6.96	6.0 5.6
		224	1.73	6.64 6.17	5.0
		225	1.67	5.80	4.5
88	Radium		1.90	7.49	6.7
00	Radium	221	1.80	6.71	5.6
		222	1.77	6.51	5.4
		224	1.65	5.68	4.4
87	Francium	218	1.94	7.85	7.2
		219	1.88	7.30	6.4
		220	1.80	6.69	5.6
		221	1.74	6.30	5.2
86	Radon		1.97	8.07	7.6
		217	1.93	7.74	7.1
		218	1.85	7.12	6.2
85	Astatine		1.67	5.76	4.5
		208	1.65	5.66	4.4
		211	1.69	5.89	4.6
		214	2.06	8.78	8.4
0.4	D 1 :	217	1.84	7.02	6.1
84	Polonium		1.57	5.14	3.8
		205 206	1.61 1.58	5.35 5.2	4.0 3.9
		206	2.01	5.2 8.34	3.9 8.0
83	Ricmuth		1.73	6.20	5.0
00	Bismuth	198	1.68	5.83	4.6
		196	1.62	5.47	4.1
		200	1.58	5.15	3.8

^{*} For reference, see footnote 199, p. 618, † Approximately, from curve.

TABLE 741.-VAPOR PRESSURE OF THE RADIUM EMANATION IN cmHg

Temperature °C12										
Vapor pressure	9 5	76	100	500	1000	2000	3000	4500	4745	

TABLE 742.—BETA-RAYS FROM RADIOACTIVE MATERIALS—BOTH NATURAL (MARKED WITH *) AND ARTIFICIAL

		(WARKED V	VIII ") AI	ND ART	IFICIAL		
	Atomic	T21	T .	Radioact			
	No.	Element	Isotope	name			
	95	Americium	242 m		.8		
	93	Neptunium	239 238	• • • •	.60 1.30		
	92	Uranium	239		1.2		
	91	Protactinius		Uraniur	77 0 0		
		2 10140111141	230		~1.1		
	90	Thorium	233		1.2		
	89	Actinium	228*	Mesotho			
	87	Francium	223*	Actiniu			
	83	Bismuth	213	D	~1.3		
	82	Lead	210* 211*	Radium Actiniu			
	02	Lead	209	Actiliui	.7		
	81	Thallium	209		1.8		
			208*	Thorium	n C" 1.83		
			207*	Actiniu	m C" 1.4		
			206		1.7		
	80	Managemen	204 205	• • • •	.8 1.6		
	79	Mercury Gold	200-202	• • • •	2.5		
	1)	Gold	198		.9		
	78	Platinum	199		1.8		
			197		.6		
	77	Iridium	194		2.2		
			192	• • • •	.6	/	
							F
Atomic No.	Element		ergy Mev	Atomic No.	Element	Isotope	Energy in Mev
76	Osmium	•	.5	54	Xenon	137	4.0
75	Rhenium		.5			135	.93
			.07	53	Iodine	136	6.5
74	Tungsten		.63			135	1.4
73	Tantalum		.0			133 128	1.4 1.59
71	Lutetium		.15 .7 β*	52	Tellurium	129	1.8
70	Ytterbium		.3	52	1 circi igili	127	.76
69	Thulium		.0	51	Antimony	126	2.8
68	Erbium	171 1	.49			124 m	3.2
67	Holmium		.8			124	2.37
(5	T 1.		2.0 β ⁺			122 120	1.36 1.53 β ⁺
65 64	Terbium Gadolinium		.6 β ⁺			118	3.1 β ⁺
63	Europium	>154 ~2		50	Tin	>120	1.8
	zan opium	157 ~1				125	~2.2
		154	.9			123	2.6
			.88	49	Indium	117	1.73
62	Samarium		.9			116 114	2.8 1.98
61	Promethium		.78 .1			112	1.5
01	1 Tometinum		.5				2.2 β ⁺
			.7	48	Cadmium	115 m	1.8
		2	.0	47	Silver	113	2.2
60	Neodymium	149 1	.6			112	3.6
ro.	D 1 .:	141	.78 β⁺			110 108	2.6 2.8
59	Praseodymiu	m 145 3 144 3	.2			106	2.04 β ⁺
		140 2	.5 β ⁺	46	Palladium	111	3.5
58	Cerium	143 1	.36			101	2.3 β ⁺
58 57	Lanthanum	141 2	.9	45	Rhodium	106	3.55
		<139 2	.1	4.4	D. d	104	2.3
56	Barium	140 1	.05	44	Ruthenium	107 105	~4. 1.4
55	Cosin		2.27 2.6			95	1.4 1.1 β ⁺
33	Cesium	138 2	.0			70	1.1 P

TABLE 742.—BETA-RAYS FROM RADIOACTIVE MATERIALS—BOTH NATURAL (MARKED WITH *) AND ARTIFICIAL (concluded)

			_		(
Atomic No.	Element	Isotope	Energy in Mev	Atomic No.	Element	Isotope	Energy in Mev
43	Technetium	101	1.3	28	Nickel	65	1.9
10	1 cennetium	100	2.3	20	IVICKCI	57	.67 β⁺
		95	1.3	27	Cobalt	62	2.5
		94	2.47 β+		000011	56	1.5 β ⁺
		92	4.3 β ⁺	26	Iron	52	.55 β+
42	Molybdenum	101	2.0	25	Manganese	52 m	2.66 β ⁺
		99	1.3		, and the second	51	2.0 β ⁺
4.4		93	2.65 β⁺	24	Chromium	49	1.45 β⁺
41	Niobium	97	1.4	23	Vanadium	52	2.05
		96	1.8	22 '	TT'. '	47	1.9 β*
40	Zirconium	92 97	1.38	22	Titanium	51 m	1.6
70	Zircomuni	89	2.2 1.07 β ⁺	21	Scandium	45 49	1.2 β ⁺ 1.8
39	Yttrium	93	3.1	21	Scandium	44	1.5 β ⁺
0,	1	92	3.5			41	4.94 β+
		$\overline{91}$	1.5	20	Calcium	49	2.3
		90	2.35	19	Potassium	42	2.04
		88	.83 β⁺			40*	1.9
38	Strontium	91	1.3			38	2.5 β⁺
37	D.A.CAC.	89	1.5	18	Argon	41	1.18
3/	Rubidium	88 86	4.6 1.8	17	Chlorine	35 38	4.4 β ⁺
		81	.9 β ⁺	17	Chiorine	36 34	1.19 2.5 β+
36	Krypton		-4.			33	4.1 β ⁺
	pro	85	1.0	16	Sulfur	37	4.3
35	Bromine	85	2.5			31	3.85 β ⁺
		84	5.3	15	Phosphorus	34	5.1
		80	2.0			32	1.7
		78	2.3 β ⁺			30	3.0 β⁺
		76 75	3.15 β ⁺	14	Silicon	29 31	3.6 β ⁺ 1.8
34	Selenium	83	1.6 β ⁺ 1.5	14	Siricon	27	3.74 β ⁺
0.	Sciemani	83 m	3.4	13	Aluminum	29	2.5
		81	1.5	10	2 11 (111111111111111111111111111111111	28	3.0
33	Arsenic	78	1.4			26	3.0 B ⁺
		74	1.3	12	Magnesium	23	2.82 β ⁺
		72	2.78 β ⁺	11	Sodium	24	1.4
32	Germanium	77 m	2.8	10	Neon	23	4.1
		77	2.0	9	T1 .	19	2.2 β ⁺
31	Gallium	71 73	1.2 β ⁺ 1.4	9	Fluorine	20 17	5.0 2.1 β ⁺
31	Ganium	73 70	1.68	8	Oxygen	19	4.5
		68	1.9 β ⁺	O	Oxygen	14	1.8 β⁺
		66	3.1 β ⁺	7	Nitrogen	17	3.7
30	Zinc	69	1.0			16	3.5
		63	2.3			13	1.24 β ⁺
29	Copper	66	2.9	6	Carbon	~10	2 β ⁺
		62	2.6 β ⁺	6 5 3 2	Boron	12	12
		61 60	1.2 β ⁺	3	Lithium Helium	8 6	12 3.7
		00	1.8 β ⁺	2	riellum	0	3.7

TABLE 743.—RELATIVE STOPPING POWER OF SELECTED SUBSTANCES FOR α-PARTICLES ²³⁴

Substance	Relative stopping power	Range in substance Range in air	Substance	Relative stopping power	Range in substance Range in air
air	1	1	Ne	62	1.61
O ₂		.93	Α	98	1.02
H ₂	21	4.77	Kr	1.52	.66
He		5.88	Xe	1.98	.50
		A1 1700.00)5.8510)-4	

²³⁴ Rasetti, Franco, Elements of nuclear physics. Copyright 1936 by Prentice-Hall, Inc., New York. SMITHSONIAN PHYSICAL TABLES

TABLE 744.—ANALYSIS OF THE BETA-RAY SPECTRUM OF RADIOACTINIUM (THORIUM 227) *

Number of line	Intensity	Origin	Energy of β-ray line + absorption energy Mev	Energy of γ-ray Mev	Number of line	Intensity	Origin	Energy of β-ray line + absorption energy Mev	Energy of γ-ray Mev
1	20	L_{I}	.0125 + .0192	.0317	26	40	L_t	.0813 + .0192	.1005
3	20	L_{III}	.0160 + .0154	.0314	29	30	M_{I}	.0965 + .0048	.1013
6	15	M_{I}	.0262 + .0048	.0310	30	30	N_{I}	.0990 + .0012	.1002
7	10	M_{II}	.0271 + .0044	.0315	18	100	K	.0454 + .1035	.1489
9	15	M_{V}	.0290 + .0031	.0321	35	80	L_I	.1305 + .0192	.1497
10	30	N_{I}	.0299 + .0012	.0311	36	30	M_{I}	.1445 + .0048	.1493
11	20	N_{VI}	.0305 + .0003	.0308	28	50	K	.0936 + .1035	.1971
12	15		.0320	.0320	38	30	L_{I}	.1753 + .0192	.1945
4	50	L_{I}	.0246 + .0192	.0438	40	20	M_I	.1899 + .0048	.1947
5 8	20	L_{II}	.0255 + .0185	.0440	37	60	K	.1501 + .1035	.2536
	25	L_{III}	.0281 + .0154	.0435	46	40	L_{t}	.2348 + .0192	.2540
16	10	M_{I}	.0388 + .0048	.0436	47	30	M_I	.2488+.0048	.2536
14	40	L_I	.0340 + .0192	.0532	39	60	K	.1796 + .1035	.2831
19	20	M_{I}	.0486 + .0048	.0534	48	20	L_{I}	.2618 + .0192	.2810
17	90	L_I	.0425 + .0192	.0617	41	50	\overline{K}	.1976 + .1035	.3011
20	70	M_I	.0567 + .0048	.0615	49	20	L_{I}	.2800 + .0192	.2992
21	50	N_I	.0598+.0012	.0610				,	

^{*} For reference, see footnote 233, p. 679.

TABLE 745.—ANALYSIS OF BETA-RAY SPECTRUM OF MESOTHORIUM 2 (ACTINIUM 228) *

Number of line	100 85 65 45	ii o L I I I I I I I I I I I I I I I I I I	Energy of β-ray line + absorption energy Mev .0381+.0204 .0416+.0162 .0523+.0052 .0566+.0013	Energy of γ -ray Mev .0585 .0578 .0584 .0579	Number 91 Number of line	91 98 19 10 10 10 10 10 10 10 10 10 10 10 10 10	uigiro Mr K Lt K	Energy of β-ray line + absorption energy Mev .1782+.0052 .1406+.1092 .2291+.0204 .2099+.1092	Energy of γ-ray Mev .1834 .2498 .2495 .319
5	6	L_{I}	.0593 + .0204	.079 7	21	6	L_{I}	.299 +.0204	.319
6	4	L_{III}	.0631 + .0162	.0793	22	2	N_{I}	.318 + .001	.319
The M		N lines	would be masked	exactly	23 24	8	K L_I	.352 + .109 .442 + .020	.461 .462
	by	the inter	nse lines 8 and 9.		25	2	M_I	.458 +.005	.463
11	35	L_{I}	.1093 + .0204	.1297					
12	25	L_{III}	$.1129 \pm .0162$.1291	26	6	K	.804 +.109	.913
13	22	M_I	.1245 + .0052	.1297	28	2	L_I	.897 +.020	.917
14	6	N_{I}	.1279 + .0013	.1292	27	3	K	.861 + .109	.970
8	50	K	.0749+.1092	.1841	29	2	L_I	.949 +.020	.969
17	20	L_{I}	.1644 + .0204	.1848					

^{*} For reference, see footnote 233, p. 679.

TABLE 746 .- ANALYSIS OF THE BETA-RAY SPECTRUM OF PROTACTINIUM *

Number of line	Intensity	Origin	Energy of β-ray line + absorption energy Mev	Energy of γ-ray Mev	Number of line	Intensity	Origin	Energy of β-ray line + absorption energy Mev	Energy of γ-ray Mev
1	60	L_{I}	.0753 + .0198	.0951	10	30	M_I	.2869 + .0050	.2919
2	40	L_{III}	.0788 + .0158	.0946	6	70	K	.2194 + .1064	.3258
3	40	M_I	.0905 + .0050	.0950	11	40	L_I	.3016 + .0198	.3214
5	100	K	.1896 + .1064	.2960	12	20	M_I	.3182 + .0050	.3232
9	60	L_I	.2746 + .0198	.2944					

^{*} For reference, see footnote 233, p. 679.

TABLE 747.—GAMMA-RAY ENERGY OF SOME HEAVY ISOTOPES, NATURAL AND ARTIFICIAL

Atomic No.	Element	Isotope	γ-ray energy Mev	Atomic No.	Element	Isotope	γ-ray energy Mev
95	Americium	240	1.3	83	Bismuth	214	1.8
94	Plutonium	239	.42		(Radium C	(*)	
93	Neptunium	238	1.2		`	206	.74
		234	1.9	82	Lead	211	.74 .8
92	Uranium	233	.31		(Actinium	B*)	
91	Protactinium	234	.70		` ·	204 m	1.1
	(Uranium Z	*)		81	Thallium	208	2.62
	(Uranium X		.81		(Thorium	C")	
	(232	1.05		`	199	1.5
		230	.94			198	1.3
85	Astatine *	210	1.0	80	Mercury	198 m	.4
84	Polonium (Radium F)	210	.77		•		
	(/	207	1.3				
		206	.8				

TABLE 748.-THE GAMMA-RAY SPECTRUM OF ThC" *

These differences of energies, or velocities, of the α -ray from thorium C are sometimes explained on the energy-level basis of the nucleus. The agreement with the energies of the γ -rays emitted from ThC", the daughter of ThC, and these apparent differences of disintegration energy of α -ray of ThC, given in the table show one agreement with this theory.

Apparent difference isintegration rgy of a-ray groups of ThC	Energy of observed γ-rav from ThC"	Transitions between levels	Apparent difference of disintegration energy of a-ray groups of ThC	Energy of observed γ-ray from ThC"
.040	.040	$L_4 - L_2$.433	.432
	.327	$\overline{L}_5 - \overline{L}_2$.452	.451
.473	.471	$L_4 - L_3$.145	
.492		$L_5 - L_3$.164	
.288	.287	$L_5 - L_4$.019	
	.492	.473 .471 .492	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^{*} For reference, see footnote 225, p. 666.

TABLE 749.—DANGER RANGES FOR PERSONS WHO ARE WORKING WITH RADIUM, FOR DIFFERENT AMOUNTS OF RADIUM, PROVIDING THE RADIUM IS ENCLOSED IN NOT LESS THAN 1 mm LEAD OR ITS EQUIVALENT

		Daily e	xposure (i	n hours)	
	1	2	4	8	16
Amount of radium element milligrams		Danger	range (in	meters)	
100	.9	1.3	1.8	2.5	3.6
200	1.3	1.8	2.6	3.6	5.1
400	1.8	2.5	3.5	5	7.1
1000	2.9	4	5.7	8	11.3

TABLE 750.—GAMMA-RAY ENERGY OF SOME ARTIFICIAL RADIOACTIVE ISOTOPES OF LOW ATOMIC WEIGHT

Atomic No.	Element	Isotope	energy Mev	Atomic No.	Element	Leutene	γ-ra energ
4	Beryllium	7	.49			Isotope	Me
				40	Zirconium	95	.73
7	Nitrogen	15	6.7	41	Niobium	92	1.0
8	Oxygen	14	2.3			96	1.0
		19	1.6	42	Molybdenum	93	1.6
9	Fluorine	20	2.2	43	Technetium	92, 93	2.4
11	Sodium	22	1.3	45	Rhodium	100	1.2
11	Sodium	24	1.38	43	Knodium		
12	M			477	G.11	106	1.25
	Magnesium	27	1.0	47	Silver	110	1.40
13	Aluminum	28	1.80	48	Cadmium	107	.84
16	Sulfur	37	2.6	49	Indium	116	2.32
17	Chlorine	34	3.4	50	Tin	126	1.2
		38	1.60	51	Antimony	118	1.5
18	Argon	41	1.37	31	Antimony		
19				50		124	2.04
19	Potassium *	38	2.15	52	Tellurium	119	1.4
		40	1.54	53	Iodine	135	1.6
		42	1.4			136	2.9
20	Calcium	47	1.3	54	Xenon	127	.9
	Curciani	48	.8	55	Cesium	136	1.2
21	Scandium	43	1.65	33	Cesiuiii		
21	Scandium				- ·	138	1.2
		44	1.33	56	Barium	140	.53
		48	1.3	57	Lanthanum	140	1.63
22	Titanium	51	1.0	58	Cerium	139	1.8
23	Vanadium	52	1.46	59	Praseodymium	142	1.9
25	Manganese	52 m	1.46	0,	1 Tubeody Illiani	146	1.4
23	Manganese	56	2.06	61	Promethium	143	
26							.67
26	Iron	59	1.10	63	Europium	156	2.0
27	Cobalt	60	1.16	65	Terbium	154	1.4
		62	1.3	67	Holmium	162	1.1
28	Nickel	65	1.1	69	Thulium	166	1.5
29	Copper	60	1.5	71	Lutetium	170	1.5
49	Copper	64	1.35	72	Hafnium	175	1.5
		66	1.32	73	Tantalum	176	1.7
30	Zinc	65	1.11			182	1.2
32	Germanium	75	1.1	75	Rhenium	182	1.5
33	Arsenic	72	2.4	76	Osmium	193	1.58
35		76	2.0	77	Iridium	194	1.35
33	Bromine						
		82	1.35	78	Platinum	193	1.5
37	Rubidium	81	.8	79	Gold	192	2.3
		82	1.0	81	Thallium	198	1.3
		86	1.08	82	Lead	204 m	1.1
38	Strontium	91	1.3	83	Bismuth	206	.74
39		88	2.76	00	245HIUUH	_00	., -
39	Yttrium						
		93	.7				

^{*} Natural radioactive source.

TABLE 751.—TOTAL MASS ABSORPTION COEFFICIENT, μ/ρ , FOR γ -RAYS IN VARIOUS ELEMENTS (IN CM $^2/\mathrm{G}$)

Wavelength A	С	Al	Cu	Λg	Pb
.1	.15	.16	.36	1.4	3.8
.2	.16	.28	1.5	5.6	4.9
.3	.19	.47	4.3	17.	14.
.4	.25	1.1	9.8	38.	31.
.5	.35	2.0	19.	71.	54.

h v Conversion	h v Conversion
(Mev) λ.4 observed	(Mev) λ A observed
γ-rays of	γ-rays of
89 Actinium 228→90 Thorium 228	84 Polonium 210→82 Lead 206
$(MsTh_2)$ (RaTh)	(RaF) (RaG)
$.0581$ $.213$ $L_{I}L_{III}M_{I}N_{I}$.202 \ .062 K
$.0795$ $.156$ $L_{I}M_{III}$.798 .0156 K
$.1294$ $.096$ $L_1L_{III}M_1N_1$	1.068 .0116 K
.1841 .067 $K L_{I} M_{I}$	γ-rays of
.2497 .050 K L ₁	83 Bismuth 211→81 Thallium 207
$.319$ $.039$ $KL_{I}N_{I}$	(AcC) (AcC'')
.338 .037 (observed in	γ-rays of
{ external	84 Polonium 211→82 Lead 207
.408 .030 photoeffect	(AcC') (AcD) .354 .035 K L ₁ M ₁
$.462$ $.027$ $K L_{I}M_{I}$	$.354$ $.035$ $K L_{I}M_{I}$
.915 .0135 K L _I	$.460$ $.027$ KL_{I}
.970 .0128 K L ₁	$.480$ $.026$ KL_{I}
γ-rays of	γ-rays of
90 Thorium 227→88 Radium 223	83 Bismuth 214→84 Polonium 214
(RdAc) (AcX)	(RaC) (RaC')
$.0315$ $.390$ $L_1L_{III}M_IM_{II}N_{VI}$	$.6067$ $.0205$ $K L_I M_I N$
$0437 284 L_1L_1L_1M_1$.766 .0162 K
$.0533$ $.237$ L_1M_1	.933 .0133 K
$.0614$ $.207$ $L_{I}M_{I}N_{I}$	1.120 $.0112 K L_I M_I$
$.1007$ $.123$ $L_{I}M_{I}N_{I}$	1.238 $.0100 ext{ } K ext{ } L_I$
$.1493$ $.083$ $K L_{I}M_{I}$	1.379 .0090 K
$.1954$ $.063$ $K L_I M_I$	1.414 $.0088 K L_{I}M_{I}$
.253 .049 $K L_{I}M_{I}$	1.761 .0071 KL_{I}
.282 .044 K L _I	2.198 .0056 KL
$.300$ $.041$ KL_{I}	γ -rays of
γ-rays of	82 Lead 212→83 Bismuth 212
88 Radium 223→86 Radon 219	(ThB) (ThC)
(AcX) (An)	$.1147 .0108 L_{I}L_{II}M_{I}N_{I}$
.1435 .086 $K L_{I}M_{I}$.1757 .0071 K
$.153 .081 K L_{I}M_{I}N_{I}$	$.2379 .0052 K L_{I}L_{II}L_{III}M_{I}N_{I}$
.157 .079 $K L_1 M_1$.2494 .0049 K
.200 .062 K L _I	.2990 .0041 K L ₁ M ₁
.269 .046 K L _I	γ-rays of
γ-rays of	83 Bismuth 212→84 Polonium 212
90 Thorium 228→88 Radium 224	(TcC) (ThC')
(RaTh) (ThX)	.726 .0171 <i>K</i> 1.623 .0076 <i>K</i>
$.0848$ $.146$ $L_{i}M_{i}$	1.623 .0076 K 1.882 .0066 K
$.0881$ $.141$ $L_{I}M_{I}$	
γ-rays of	γ-rays of 83 Bismuth 212→81 Thallium 208
88 Radium 226→86 Radon 222 169 .066 K L ₁ M ₁	(ThC) (ThC'')
1202	$.399 .0036 L_1L_{11}L_{111}M_1M_{11}N_1O$
γ -rays of	.399 .0030 LILILIMITMITMITMIT
82 Lead 210→83 Bismuth 210 (RaD) (RaE)	.298 .0042 K
(1441)	.327 .0039 K
	.327 .0039 K .432 .0287 K
γ-rays of 91 Protactinium 231→89 Actinium 227	.451 .0275 K
.0949 .0130 $L_1L_{III}M_1$.471 .0263 K
$.0949$ $.0130$ $L_1L_1IIM_1$ $.294$ $.042$ $K_1L_1M_1$.471 .0263 <i>K</i> .617 .0201 <i>K</i>
$.323$ $.038$ $K L_1 M_1$	γ-rays of
	84 Polonium 212—82 Lead 208
γ -rays of 82 Lead 214 \rightarrow 83 Bismuth 214	(ThC') (ThD)
(RaB) (RaC)	.2765 .045 K L ₁ L ₁₁₁
$\begin{array}{ccc} (Rab) & (Rac) \\ .0529 & .0235 & L_1L_{11}L_{111}M_1M_{111}M_{111}N_1O \end{array}$	$.5100 .0243 K L_1 M_1$
.0329 $.0233$ $E1E111.HWI WI	.5523 .0224 K L ₁ M ₁
.2571 .048 K L ₁	2.620 .0047 $K L_1 M_1$
.2937 .042 K L ₁	
$.3499 .035 K L_1 M_1 N_1$	
.0177 .000 17 15[111]111	

^{*} For reference, see footnote 234, p. 684.

TABLE 752.—GAMMA SPECTRUM FOR SOME RADIOACTIVE BREAKDOWNS (concluded)

γ-rays ²⁸⁵ from 82 Lead 210→83 Bismuth 210 (RaD) (RaE) γ-ray line E (kev) γ-ray line E (kev) 65 ± 5 $46.7 \pm .1$ (X) 32 ± 1 D $23.2 \pm .6$ A E 43 ± 1 В F $7.3 \pm .7$

37 ²³⁵ San Tsiang Tsien, Phys. Rev., vol. 69, p. 38, 1946.

C

± 1

TABLE 753 .- THE ENERGY RADIATED BY A NUMBER OF RADIOACTIVE MATERIALS *

			Energ radia in M	tion	Disintegrations	Radiation
Material	Half-life	Radiation	a or B	γ	No g-1 sec-1	Mev g-1 sec-1
92 Uranium 238 (Uranium I)	4.5×10° yr	а	4.2		1.23×10 ⁴	5.2 ×10 ⁴
90 Thorium 232	$1.39 \times 10^{10} \text{ yr}$	а	4.1		4.1×10^{3}	1.70×104
88 Radium 226	1620 yr	αγ	4.79	.19	3.6×10^{10}	1.80×10^{11}
86 Radon 222	3.825 d	a	5.486		5.7×10^{15}	3.1×10^{18}
86 Radon 220	54.5 sec	α	6.282		3.5×10^{19}	2.2×10^{20}
(Thoron)						
86 Radon 219	3.92 sec	а	6.824		4.8×10^{20}	3.3×10^{21}
(Actinon)						
86 Radon 217	10 ⁻⁸ sec	α	7.74		1.93×10^{24}	1.50×10^{25}
84 Polonium 214	1.5×10 ⁻⁴ sec	а	7.680		1.30×10^{25}	1.0×10^{26}
(Radium C')						
84 Polonium 212	$3.1 \times 10^{-7} \text{ sec}$	a	8.776	• •	6.4×10^{27}	5.6×10^{28}
(Thorium C')	# B				0.0	0.0
84 Polonium 211	5×10^{-8} sec	а	7.434	• •	3.9×10^{28}	2.9×10^{24}
(Actinium C')	100 1				4 575 44015	1.0
84 Polonium 210	138 d	αγ	5.3	.77	1.57×10^{15}	1.2×10^{15}
83 Bismuth 214	19.7 min	αγ	5.5	1.8	1.65×10^{18}	3.0×10^{18}
81 Thallium 210	1.32 min	β-	1.8	• •	2.51×10^{19}	4.5×10^{19}
(Radium C")			1 77	0.0	1.00> /1019	47 > (1019
81 Thallium 208	3.1 min	$eta^- \gamma$	1.7	2.6	1.08×10^{19}	4.7×10^{19}
(Thorium C")	4770	0=	1 47		7.1 /1018	1.04>/1019
81 Thallium 207	4.76 min	$\beta^- \gamma$	1.47	• •	7.1×10^{18}	1.04×10^{19}
(Actinium C")	10.2.1	0= .	2.1	1.9	4.28×10 ¹⁷	8×10 ¹⁷
59 Praseodymium 142	19.3 hr	β-γ	2.1 6.5	2.9	2.85×10^{20}	8×10 ²⁰
53 Iodine 136	1.8 min	β- γ	1.9	1.54	1.84×10^{5}	3.9×10^{-5}
19 Potassium 40 **	1.8×10° yr	$\beta^-\gamma$	1.9	1.34	1.0 4 × 10	3.9 X 10

TABLE 754.—SAFE WORKING DISTANCES FOR DIFFERENT EXPOSURE TIMES TO DIFFERENT AMOUNTS OF RADIUM

Daily exposure milligram-hr 100 200 400	Safe distance meters 1 1½ 2	Daily exposure milligram-hr 800 1600 3200	Safe distance meters 2½ 3½ 5

^{*} For reference, see footnote 199, p. 618.

** The radiation from potassium may seem to be too intense as compared to that from thorium 232 or uranium 238 but it must be remembered that the active isotope of potassium constitutes only .01 percent of ordinary potassium while the active isotopes of uranium and thorium constitute about 100 percent of the material. It is also to be noted that the active isotope of potassium has more disintegration than either uranium or thorium intent that the contractive isotope of potassium has more disintegration than either uranium or thorium, in part due to its greater number of atoms per gram.

TABLE 755.—COMBINATION OF LEAD SHIELD THICKNESS AND DISTANCE FOR ADEQUATE PROTECTION FOR EXPOSURES TO DIFFERENT AMOUNTS OF RADIUM, NOT EXCEEDING 8 HOURS PER DAY

Workers with radioactive materials must observe certain precautions to avoid being burned by the emitted radiations. Tables 749, 751, 754, 755, taken from the National Bureau of Standards Handbook H 23 on Radium Protection, give some of the necessary precautions. These precautions are for radium; if some other radioactive product is being worked with, care must be taken to increase these precautions if the materials are more active than radium. See Table 732.

The α -rays are much more easily stopped than the β - or γ -rays. The most energetic

The α -rays are much more easily stopped than the β - or γ -rays. The most energetic α -rays are stopped by an ordinary sheet of paper or a sheet of aluminum .06 mm thick. The β -rays are stopped by a few millimeters of aluminum, while many of the γ -rays will penetrate a block of lead a number of inches thick.

ess l Distance cm	Amount of radium milligrams	Thickness of lead cm	Distance cm
	1000		
		6	160
140	5000	6	160
	d Distance	Distance	Distance radium of lead

TABLE 756.—CONSTANTS FOR CATHODE-RAY SPEEDS IN MATTER

Cathode rays whose direction of motion is perpendicular to the direction of a uniform magnetic field (H) describe a circular path of radius (r) according to the formula corrected for relativity change of mass of electron.

$$Hr = 1704 \left[\beta \left(1 - \beta^2\right)^{-1/2}\right]$$

where H is expressed in gauss and r in cm.

When cathode rays impinge on matter they are deflected from their original direction of motion. These deflections grade all the way from 180° "reflections" to the "diffusion" corresponding to deflections through very small angles. The large-angle deflections are ordinarily comparatively infrequent. However, when the substance struck by the cathode rays is crystalline, certain directions may be preferred by the deflections. Here the beam of cathode rays behaves as though it consisted of a train of waves of wavelength $\lambda_c = 0.02426/\beta$, where λ_c is in angistroms. The preferred directions for the "reflected" cathode-ray beams may be calculated from the Bragg formula (see Siegbahn's "X-ray Spectroscopy"). The simple Bragg formula is quite limited in application here, however, since refraction in the crystal is very appreciable for the cathode-ray beams. In general, the cathode rays which have been deflected by matter will have lost speed, but the rays which have undergone these "preferred" deflections remain of the same speed as the primary cathode beam.

Cathode rays lose speed on penetrating matter. The losses of speed by individual cathode particles grade from complete stoppage to no loss of speed. The majority of the cathode particles, however, lose speed according to the relation (Thomas-Whiddington-

Bohr law)

$$\beta_0^4 - \beta^4 = ax$$

where β_0 is the initial speed, and β the speed after traversing a path length x in the material (x to be measured in cm along the actual curved path), and a is a constant roughly equal to 6.5ρ where ρ is the density of the material in g/cm³. A convenient form for the expression is the following. Note that the two forms are not equivalent except at very low speeds (experiment has not yet decided between the two):

$$V_0^2 - V^2 = bx$$

where V_0 and V are the initial and final "equivalent voltages" (see above) of the cathode rays, in kv, and b is a constant roughly equal to $40 \times 10^4 \rho$. A tabulation of experimental values of a and b for various materials follows:

Material	a	ь
Beryllium Aluminum Copper Silver Gold Moist air, 76 cmHg 18° C.	17. 56. 66. 138.	.75 × 10° 1.1 " 3.6 " 4.2 " 9.0 " .44 × 10³

TABLE 757.—ENERGY IN CALORIES/HR DEVELOPED BY ONE GRAM OF RADIUM IN EQUILIBRIUM WITH ITS PRODUCTS*

		Ene	ergy radiation in	Mev
Material	Radiation	a	β	γ
88 Radium 226	αγ	17.32×1010		.69×1010
86 Radon 222	α	19.80		
84 Polonium 218	а	21.64		• • • •
82 Lead 214 (Radium B)	β- γ		2.35×10 ¹⁰	• • • •
83 Bismuth 214 a (Radium C)	(.04%)β-γ	* * * *	11.46	6.50
84 Polonium 214 (Radium C')	а	27.70	• • • •	
81 Thallium 210	β-		6.50	• • • •
82 Lead 210 (Radium D)	β- γ	• • • •	.09	.17
83 Bismuth 210	β-		4.22	• • • •
84 Polonium 210 (Radium F)	α γ	19.53		2.78
Radiation totals in Mev Energy due to recoil of atom			24.62×10 ¹⁰	10.14×10 ¹⁰
Alpha rays and recoil		109.70×10 ¹⁰		

Total energy radiated (α , β^- , γ in Mev) = 144.46 \times 10¹⁰ = 199 cal/hr.

The total heating effect developed by one gram of radium in equilibrium with its products in 199 cal/hr.

TABLE 758.—CATHODE RAYS

Owing to the growth of the subject, electrons are treated under three separate headings; cathode rays, the swiftly moving electrons from the cathode in a discharge tube; beta rays, from radioactive breakdown; and the general field, electrons. The velocity of the cathode rays (electrons) depends upon the applied voltage. At comparatively low pressures the cathode rays have a nearly uniform velocity. Free electrons are emitted from hot bodies (Table 683-689), especially if the heated substance is coated with barium, calcium, or strontium oxide (Wehnelt cathode). These electrons can be given any desired speed, always less than that of light, if the heated substance (usually in the form of a wire) be enclosed in an evacuated tube and the difference of potential (V) applied between the wire (cathode) and another electrode (anode, anticathode, or target). The speed of the electron and also its kinetic energy is often designated by giving the applied voltage, i.e., a 10 kv electron has a speed of 10 kv, about .2 that of light, and an energy of 10,000 ev, or 1.602×10^{-8} ergs. (See Table 713.) The speed (v) of the cathode rays, expressed as a fractional part (β) of the speed of light ($\beta = v/c$, where c is the speed of light), when they have fallen through the entire potential difference, is given by the formula (which is corrected for the relativity change of mass)

$$V = 510.8 \left[(1 - \beta^2)^{-1/2} - 1 \right]$$

where V is in kilovolts.

A tabulation of the corresponding values of V (kilovolts) and β follows.

β V(kv)	β $V(kv)$	β V(kv)
.01 .0255	.40 46.5	.90 661.
.02 .1022		.942 1000.
.05 .639	.50 79.0 .548 100.	.95 1085.
.10 2.574	.60 127.7	.98 2045.
.20 10.53	.80 340.4	

^{*} For reference, see footnote 199, p. 618.

X-rays, which are short wavelength (.06-1020A) radiant energy, are, in general, generated whenever swiftly moving electrons are suddenly stopped by striking any material substance. The electrons may come from a cold cathode (gas-filled tube) and the current increased by ionization of the gas in the tube, or they may come from a hot cathode (Coolidge tube) in a tube of very low gas pressure. Soft and hard X-rays are terms applied to X-rays produced by low or high applied voltage respectively.

Two types of X-rays are generated when the electrons hit the target—continuous spectrum (over a limited wavelength) and the radiation that is characteristic of the material of which the anode is made. The continuous X-ray spectrum has a very definite short-wave limit that depends upon the voltage

applied to the tube. Thus

$$V_0 e = h v_0 = h c / \lambda_0$$

If V_0 is given in volts, this wavelength λ_0 will be in angstroms if the other units are properly chosen.

 $\lambda_0 \text{ (in } A) = \frac{12395}{V_0}$

The characteristic spectra are designated K, L, M, N, O, etc., where these letters refer to the various electron shells (Table 658).

X-rays, like any type of radiant energy, have two characteristics; intensity (i.e., the rate of energy transfer), and wavelength. These two quantities are

connected thus: the energy $E = hv = hc/\lambda$.

This, of course, assumes monochromatic radiation or the energy for a narrow wavelength interval, which is not always the case; all electrons do not hit the anode with the same energy nor do all materials react alike to electron bombardment. Some of the characteristics of X-rays and the reaction of X-rays to various materials are given in the following tables.

TABLE 759.—X-RAY PRODUCTION 286

Quantity of X-rays emitted by a tungsten-target tube per kilowatt of energy in cathode-ray beam.*

Operating potential kilovolts	Power in total X-rays from focal spot watts	Effective wavelength (unfiltered) angstrom units	Roentgens (r) per second at 1 meter from target (unfiltered)
50	2.5	.56	1,2
70	3.5	.40	.62 .34 .39
100	5.	.28	.34
200	10.	.14	.39
500	25.	. 05 6	1.1
1000	48.	.028	2.1
2000	95.	.014	4.0

 ²³⁸ Clark, George L., Applied X-rays, McGraw-Hill Book Company, Inc., 1940. Used by permission of the publishers.
 * Compiled by A. H. Compton.

TABLE 760.—CRITICAL ABSORPTION WAVELENGTHS (A), K SERIES*

12 Mg 9.5112	35 Br	· 74 W
13 Al 7.9470	40 Zr	78 Pt
17 Cl 4.3938	42 Mo61842	79 Au1534
24 Cr 2.0663	47 Ag	82 Pb
26 Fe 1.7405	53 I	92 U
29 Cu 1.3780	56 Ba	72 0 11111111 11111
-> Cu 1.0700	оо раоооо	

^{*} For reference, see footnote 236, above.

TABLE 761.—RELATIVE IONIZATION PRODUCED IN VARIOUS GASES BY HETEROGENEOUS X-RAYS *

	Density relative		ative to air = 1
Gas or vapor		Soft X-rays	Hard X-rays
Hydrogen, H ₂		.01	.18
Carbon dioxide, CO2	1.53	1.57	1.49
Ethyl chloride, C2H6Cl	2.24	18.0	17.3
Carbon tetrachloride, CCl	5.35	67	71
Nickel carbonyl, Ni(CO)		89	97
Ethyl bromide, C ₂ H ₅ Br		72	118
Methyl iodide, CH ₂ I	4.96	145	125
Mercury methyl, Hg(CR ₃) ₂	7.93	425	• • •

^{*} For reference, see footnote 236, p. 692.

TABLE 762.—WAVELENGTHS OF FLUORESCENT RADIATION EXCITED BY X-RAYS*

Material	Region A	Position of maximum
Fluorspar	3640-2400	2840
Fluorspar and iron spar	3900-2310	2800
Scheelite (Ca tungstate)		4330
Zinc sulfide		4500
K platinocyanide	4900-4120	4500
Ba platinocyanide		4800
Ca platinocyanide	5090-4550	4800
U NH, fluoride	4400-3800	4100
X-ray tube glass		3750

^{*} For reference, see footnote 236, p. 692.

TABLE 763.—THE ABSORPTION OF X-RAYS

The absorption of X-rays by materials follows the same law as the absorption of radiant energy, i.e.,

$$I = I_0 \times e^{-\mu x}$$

where I_0 is the initial intensity and I the intensity after a distance x, and μ the absorption coefficient. μ/ρ is the mass absorption (ρ density) of the material. μ/ρ is really the sum of two coefficients— τ/ρ the true or fluorescent X-ray mass-absorption coefficient—and σ/ρ the mass-absorption due to scattering. For light elements σ/ρ has a practically constant value of 0.17 independent of the wavelength for intermediate ranges.

The following relations may be written

$$\mu/\rho = \tau/\rho + \sigma/\rho = K \lambda^8 + \sigma/\rho$$

The constants for this absorption equation for several materials follow: *

K_{κ} K_{L} K_{κ}/K_{L} $ au A (10^{-21})$	Mo 42	Ag 47	Sn 50	W 74	Au 79	Pb 82
	375	545	595	1870	2230	2570
	50	70	90	330	395	476
	7.5	7.8	6.6	5.65	5.65	5.40
	13.3	11.0	8.90	3.19	2.57	2.37

^{*} For reference, see footnote 236, p. 692.

TABLE 764.—APPROXIMATE LEAD THICKNESS REQUIRED TO REDUCE RADIATION DOSAGE RATE TO 5 PERCENT OF USEFUL BEAM 257

Kilovolts	50	75	100	150	200	250	400	500	1000	2000
	.1	.3	.4	.7	1.0	1.3	3.0	7	32	50

²³⁷ National Bureau of Standards Handbook 41, Medical X-ray protection up to two million volts.

TABLE 765.—MASS-ABSORPTION COEFFICIENTS FOR A NUMBER OF MATERIALS FOR DIFFERENT WAVELENGTHS*

Wavelength angstroms	С	Al	Cu	Sn
.010	.061	.059	.056	.054
.015	.073	.070	.067	.067
.020	.081	.078	.076	.082
.025	.088	.085	.085	.102
.030	.097	.094	.097	.130
.040	.108	.104	.120	.204
.050	.117	.113	.150	.32
.064	.130	.130	.198	.49
.072	.136	.143	.232	.614
.098	.142	.156	.325	1.17
.130	.152	.186	.45	2.15
.175	.163	.228	1.12	4.50
.200	.175	.270	1.59	6.10
.280	.188	.402	3.25	12.8
.417	.256	1.18	11.4	45.5
.417	.315	1.90	18.9	11.8
	.313 .474	3.73	37.2	23.0
.631		5.22	51.0	34.0
.710	.605	3.44	31.0	34.0

^{*} For reference, see footnote 236, p. 692.

TABLE 766.—EXPONENTIAL FORMULAE FOR THE TOTAL MASS-ABSORPTION VALUES, μ/ρ , FOR SEVERAL ELEMENTS *

A11 to .4	Mo 1 to .35 Mn $> \lambda_{\kappa_{abs}}$ Ag 1 to .4 Ag $> \lambda_{\kappa_{abs}}$ Pb $> \lambda_{\kappa_{abs}}$	$450 \times \lambda^{3} + .4$ $51.5 \times \lambda^{8} + 1.0$ $603 \times \lambda^{3} + .7$ $86 \times \lambda^{3} + .6$ $510 \times \lambda^{3} + .75$
-----------	--	---

^{*} For reference, see footnote 236, p. 692.

TABLE 766A.—X-RAY DOSAGE UNITS

The international unit of quantity or dose of X-rays (and gamma-rays), one roentgen, r, is obtained from that X-ray (or gamma-ray) energy which, when the secondary electrons are fully utilized and secondary radiation from the walls of the chamber avoided, under standard conditions 0°C and 760 mmHg, produces in a cubic centimeter of atmospheric air such a degree of conductivity that the quantity of electricity, measured at saturation, equals 1 esu.

TABLE 767.—PROTECTIVE POWERS OF MATERIALS RELATIVE TO LEAD*

A lead screen is very effective in protecting against X-rays. The data in the table show the thickness of lead is as effective as 1 mm of certain other materials that are in common use for protection against X-rays generated by a 100,000-volt Coolidge tube.

Lead glass	.25 to .45	Woods	.05 to .13
Bricks and concrete	.01	Steel	.15

^{*} For reference, see footnote 236, p. 692.

TABLE 768.-THE MINIMUM THICKNESS OF LEAD RECOMMENDED FOR PROTECTION FOR VARIOUS INTENSITIES OF X-RAYS

X-rays generated by peak voltage not in excess of (kilovolts):	Minimum equivalent thickness of lead millimeters	X-rays generated by peak voltage not in excess of (kilovolts):	Minimum equivalent thickness of lead millimeters
75	1.0	225	5.0
100	1.5	300	9.0
125	2.0	400	15.0
150	2.5	500	22.0
175 200	3.0 4.0	600	34.0

The National Bureau of Standards Handbook 41 on X-ray protection gives as the permissible dosage rate 0.3 r per week. On the basis of a 48-hour week of uniform exposure the permissible dosage rate is 0.00625 r per hr (6.25 mr per hr).

This booklet also gives safety rules for operating X-ray equipment and the thickness of lead or concrete necessary for protection against X-ray tubes operated at various intensities.

TABLE 769.---DISTANCE PROTECTION *

T		Distance	† for va	rious app	olied volt	ages (kil	ovolts)			
Target current	50	75	100	150	200	250	400	500	1000	2000
ma					feet					
.005	 15	20	20	25	25	25	25	30	90	195
.05	 40	50	60	60	65	70	70	75	220	400
.5	 85	115	145	145	165	170	170	200	460	850
2.5	 120	185	235	245	270	285	295	340	690	
10	 160	250	330	350	390	420				
25	 195	300	390	420	480	510				

TABLE 770.—PRIMARY PROTECTIVE-BARRIER REQUIREMENTS FOR 10 MILLIAMPERES AT THE PULSATING POTENTIALS * AND DISTANCES INDICATED †

Target	L		ckness with peak ovolts of—			Target	Lead thickness with peak kilovolts of—				
distance	75	100	150	200	250	distance ft	75	100	150	200	250
ft 2 (.61 m)	2.2	3.4	mm 4.3	6.7	11.8	20 (6.1 m)	1.0	1.7	mm 2.4	3.6	6.4
5 (1.52 m) 10 (3.05 m)	1.7	2.7 2.2	3.6 3.0	5.5 4.5	9.6 8.1	50 (15.2 m)	.5	1.1	1.7	2.4	4.3

^{*} Direct-current potentials require the order of 10 percent greater thickness than those given here for

pulsating potential.
† For reference, see footnote 237, p. 693.

TABLE 771.—PRIMARY PROTECTIVE-BARRIER REQUIREMENTS FOR 400-KILOVOLTS PEAK PULSATING POTENTIAL WITH REFLECTION TARGET *

		ickness wit urrent of-		_	Lead thickness with target current of—			
Target distance ft	1 ma	3 ma mm	5 ma	Target distance ft	1 ma	3 ma mm	5 ma	
5 (1.52 m) 10 (3.05 m)	16.5 12.5	20 15.5	22 17.0	20 (6.1 m) 50 (15.2 m)	9.5 5.5	11.5 8.0	13.0 9.0	

^{*} For reference, see footnote 237, p. 693.

^{*} For reference, see footnote 237, p. 693.
† These distances were computed by taking into account distance and air absorption. The air absorption was determined by assuming the radiation was monochromatic and of double the minimum wavelength of the polychromatic radiation given off by the tube at the indicated potential.

TABLE 772.—PRIMARY PROTECTIVE-BARRIER REQUIREMENTS FOR 1000-KILOVOLT CONSTANT POTENTIAL WITH TRANSMISSION TARGET *

		Barrier thicknesses with target current of—									
Target		1 ma		2 ma	3 ma						
distance ft	Lead mm	Concrete †	Lead mm	Concrete in.	Lead	Concrete in.					
5 (1.52 m) 10 (3.05 m)	123 107	30.5 27.0	131 115	32.5 28.5	136 120	33.5 29.5					
20 (6.1 m) 100 (30.5 m)	91 53	23.0 15.0	99 61	25.0 17.0	103 66	26.0 18.0					
100 (50.5 111)	33	13.0	01	17.0	00	10.0					

TABLE 773.—FILTERS FOR OBTAINING MONOCHROMATIC X-RAYS *

Target	Lowest approximate voltage for K series kilovolts	λ for Κ α doublet	Filter	Thickness,	g/cm³
Chromium	6	2.287	Vanadium	.0084	.0048
Iron	7	1.935	Manganese	.0075	.0055
Copper	9	1.539	Nickel	.0085	.0076
Molybdenum	20	.710	Zirconium	.037	.024
Silver	25	.560	Palladium	.03	.036

^{*} For reference, see footnote 236, p. 692.

TABLE 774.—CRITICAL ABSORPTION WAVELENGTHS (A), L SERIES *

Element	$L_{\mathbf{I}}$ (L_{11})	L_{11} (L_{21})	$L_{111} = (L_{22})$	Element	$L_{\mathbf{I}}$ $(L_{\mathbf{II}})$	L_{11} (L_{21})	$L_{111} \atop (L_{22})$
47 Ag	3.2474	3.5067 2.5475	3.6908 2.7139	78 Pt 82 Pb	.8921 .7806	.9321 .8136	1.0709
56 Ba	2.0620	2.1993 1.0713	2.3568 1.2116	92 U	.5687	.5920	.7216

^{*} For reference, see footnote 236, p. 692.

TABLE 775.—CRITICAL ABSORPTION WAVELENGTHS (A), M SERIES*

Element	M_{I}	M_{II}	M_{III}	M_{IV}	M_{∇}	Element	M_{I}	M_{II}	M_{III}	M_{IV}	M_{v}
W Bi						Th U					

^{*} For reference, see footnote 236, p. 692.

TABLE 776.—CHARACTERISTIC EMISSION WAVELENGTHS (A). K SERIES*

Element	$\gamma(\beta_2)$	β_1	eta_2	a ₁	a ₂
24 Cr 2	2.0667 (B _s)	2.0806		2.28503	2.28891
26 Fe 1	$.74080(\beta_5)$	1.753013	1.75646	1.932076	1.936012
28 Ni 1		1.49705		1.65450	1.65835
29 Cu 1	1.37824	1.38935		1.53739	1.54123
42 Mo	.619698	.630978	.631543	.707831	.712105
45 Rh	.53396	.54449	.54509	.61202	.61637
47 Ag		.496009	.49665	.55828	.56267
74 W		.18397	.18477	.20860	.21341
78 Pt	.15887	.16370		.18523	.19004

^{*} For reference, see footnote 237, p. 693. † These concrete thicknesses are for a concrete density of 147 pounds per cubic foot.

^{*} For reference, see footnote 236, p. 692. $\delta = 0.17803$, $\delta_2 = 0.17917$ (Duane, 1933).

TABLE 777.—WAVELENGTHS IN ANGSTROMS OF K-SERIES LINES REPRE-SENTING TRANSITIONS IN THE ORDINARY X-RAY ENERGY LEVEL DIAGRAM* ALLOWED BY THE SELECTION PRINCIPLES 200

Siegbahn	$K a_2$	K a ₁	Kβ	$egin{array}{c} K \ eta_1 \ K \ eta \ K\text{-}M_{111} \end{array}$	$K \beta_2 \atop K \gamma \atop K-L_{11}N_{111}$
Sommerfeld transition	K a ₂ K a' K-L ₁₁	K a ₁ K a K-L _{III}	Κβ Κβ ₃ Κ-Μ ₁₁	$K - M_{111}$	\tilde{K} - $\tilde{L}_{11}N_{111}$
4 Be	115.7				
5 B 6 C	67.71 44.54				
7 N	31.55	7			
8 O	23.56	7			
9 F 11 Na	18.27: 11.88:		11.59	4	
12 Mg	9.869		9.53		
13 A1	8.320		7.96		
14 Si 15 P	7.11 6.14		6.75 5.79		
16 S	5.3637	5.3613	5.02	11	
17 C1 19 K	4.7212	4.7182	4.39- 3.44		
20 Ca	3.73707 3.35495	3.73368 3.35169	3.08		
21 Sc	3.02840	3.02503	2.77.	39	
22 Ti 23 V	2.74681 2.50213	2.74317 2.49835	2.50 2.27		
24 Cr	2.28891	2.28503	2.08		
25 Mn	2.10149	2.09751	1.90		
26 Fe 27 Co	1.936012 1.78919	1.932076 1.78529	1.75. 1.61		
28 Ni	1.65835	1.65450	1.479	905	1.48561
29 Cu 30 Zn	1.541232 1.43603	1.537395 1.43217	1.38 ⁹ 1.29		1.37824 1.28107
30 Zn 31 Ga	1.34087	1.33715	1.20	520	1.1938
32 Ge	1.25521	1.25130	1.12		1.11459
33 As 34 Se	1.17743 1.10652	1.17344 1.10248	1.05	510 013	1.04281 .97791
35 Br	1.04166	1.03759	.93	087	.91853
36 Kr	.9821	.9781	.82749	67 .82696	.8643 .81476
37 Rb 38 Sr	.92776 .87761	.92364 .87345	.78183	.78130	.76921
39 Y	.83132	.82712	.73972	.73919	.72713
40 Zr 41 Nb	.78851 .74889	.78430 .74465	.70083 .66496	.70028 .66438	.68850 .65280
42 Mo	.712105	.707831	.631543	.630978	.619698
43 Tc	.675	.672	.60 .57193	1 .57131	.56051
44 Ru 45 Rh	.64606 .61637	.64174 .61202	.54509	.54449	.53396
46 Pd	.58863	.58427	.52009	.51947	.50918
47 Ag 48 Cd	.56267 .53832	.55828 .53390	.49665 .47471	.49601 .47408	.48603 .46420
49 In	.51548	.51106	.45423	.45358	.44408
50 Sn 51 Sb	.49402	.48957	.43495	.43430 623	.42499 .40710
51 Sb 52 Te	.47387 .45491	.46931 .45037		926	.39037
53 I	.43703	.43249	.38292	.38315	.37471
54 Xe 55 Cs	.40411	7 .39959	.36 .35436	.35360	.34516
56 Ba	.38899	.38443	.34089	.34022	.33222
57 La	.37466	.37004	.32809 .31572	.32726 .31501	.31966 .30770
58 Ce 59 Pr	.36110 .34805	.35647 .34340	.30439	.30360	.29625
60 Nd	.33595	.33125	.29351	.29275	.28573
62 Sm 63 Eu	.31302 .30265	.30833 .29790	.27325 .26386	.27250 .26307	.26575 .25645
- UJ Eu	.50205	.67170			

^{*} This criterion cannot be strictly applied to the Ka line from 4 Be to 9 F, nor to the $K\beta_1$ line from 11 Na to 29 Cu as reported in this table.

288 Compton, A. H., and Allison, S. K., X-rays in theory and experiment, D. Van Nostrand Co., Inc., New York, 1935. Courtesy of the publishers.

TABLE 777.—WAVELENGTHS IN ANGSTROMS OF K-SERIES LINES REPRE-SENTING TRANSITIONS IN THE ORDINARY X-RAY ENERGY LEVEL DIAGRAM ALLOWED BY THE SELECTION PRINCIPLES (concluded)

Siegbahn Sommerfeld transition	$K \overset{\boldsymbol{\alpha_2}}{\kappa} \overset{\boldsymbol{\kappa_3}}{\kappa} \overset{\boldsymbol{\kappa_2}}{\kappa} \overset{\boldsymbol{\kappa_2}}{\kappa} \overset{\boldsymbol{\kappa_3}}{\kappa} \overset$	K a ₁ K a K-L _{III}	Κβ Κβ ₃ Κ-Μ ₁₁	$egin{array}{c} K \ oldsymbol{eta_1} \ K \ oldsymbol{eta} \ K\text{-}M_{111} \end{array}$	$K \beta_2 K \gamma K L_{II} N_{III}$
64 Gd	.29261	.28782	.25471	.25394	.24762
65 Tb	.28286	.27820	.24629	.24551	.23912
66 Dy	.27375	.26903	.23787	.23710	.23128
67 Ho	.26499	.26030		.1111	
68 Er	.25664	.25197	.22300	.22215	.21671
69 Tm	.24861	.24387	.21558	.21487	
70 Yb	.24098	.23628	.20916	.20834	.20322
71 Lu	.23358	.2282	.20252	.20171	.19649
72 Hf	.22653	.22173	.19583	.19515	.19042
73 Ta	.21973	.21488		3991	.18452
74 W	.21337	.20856	.18475	.18397	.17906
76 Os	.20131	.19645		361	.16875
77 Ir	.19550	.19065		850	.16376
78 Pt	.19004	.18223		5370	.15887
79 Au	.18483	.17996		902	.15426
81 T1	.17466	.16980		5011	.14539
82 Pb	.17004	.16516		1606	.14125
83 Bi	.16525	.16041		205	.13621
92 U	.13095	.12640	.11	187	.10842

TABLE 778.-WAVELENGTHS, TUNGSTEN L SERIES *

γ4	$L_{11} - O_{22}$	1.02647	β_7	$L_{22} - N_{43}$, 44	1.2208
$\gamma_{\mathfrak{o}}$	$L_{11} - N_{33}$	1.0439	β11, 12		1.2354
γ_3	$L_{11} - N_{22}$	1.05965	β_2	$L_{22} - N_{32, 33}$	1.24191
γ_2	$L_{11} - N_{21}$	1.06584	$eta_{ extsf{3}}$	$L_{11} - M_{22}$	1.26000
γ_6	$L_{21} - O_{32}$	1.0720	β_1	$L_{21} - M_{32}$	1.27917
γ_8	$L_{21} - O_{11}$	1.079	eta_{6}	$L_{22} - N_{11}$	1.2871
γ_1	$L_{21} - N_{32}$	1.09553	β_{\bullet}	$L_{11} - M_{21}$	1.29874
γ 5	$L_{21} - N_{11}$	1.1292	β_{11}	$L_{11} - M_{11}$	1.3344
β_0		1.2021	η	$L_{21} - M_{11}$	1.4177
β_8	$L_{11} - M_{33}$	1.2034	a_1	$L_{22} - M_{33}$	1.47348
β_{10}		1.2094	a ₂	$L_{22} - M_{32}$	1.48452
β_5	$L_{22} - O_{32, 33}$	1.2125	ī	$L_{22} - M_{11}$	1.67505

^{*} For reference, see footnote 236, p. 692.

TABLE 779.—TYPICAL SAFE RATINGS OF DIAGNOSTIC X-RAY TUBES

General Ele	ectric C	ompan	y Bens	son-ty	pe X-ra	y tube	Westinghou	ise Corpoi	ration WL	-355 tube
Effective focal area	Full	l wave ma	Half kv*	wave ma	Se rect kv*		Effective focal area	Full wave kv ma	Half wave	Self- rectified kv ma
Stationary	y target	: 1 sec	cond				Stationar	y target:	1 second	
1.5 mm ²	110	20	110	15			1.5 mm ²	2770	2025	1520
3.7	110	60	95	50			2.1	4830	3410	2570
5.2	90	150	100	100	78	100	2.6	6500	4730	3400
		1/60	secon	d			3.0	7680	5915	4150
5.2	72	500					4.2	11900	9650	6870
	104	350							1/60 secon	nd
Rotating	target:	1 seco				• • •	4.2	25000		
8	80	280								• • • •
		1/60 s		• • •	• • •	•••				
	80	540								
		•								

^{*} Peak kilovolts.

TABLE 780.—WAVELENGTHS OF THE MORE PROMINENT L-GROUP LINES IN ANGSTROMS *

Siegbahn Sommerfeld transition	$L_{\text{III}}^{2}M_{\text{IV}}$	a_1 a L_{III} - M_{∇}	$L_{11}^{\beta_1}$	$_{L_{111}\text{-}M_{1}}^{l}$	η η L ₁₁ -M ₁
16 S 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni	36.27 31.37 27.37 24.31 21.53 19.40 17.57 15.93 14.53		21.19 19.04 17.23 15.63 14.25	83 40.90 35.71 31.33 27.70 23.84 22.34 20.09 18.25 16.66	23.28 19.76 17.86 16.28
29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 37 Rb	13.30 12.22 11.27 10.41 9.65 8.97 8.35 7.30	9 5 2 2 8 8 27	13.027 11.960 11.01 10.153 9.395 8.718 8.109	15.26 13.97 12.89 11.922 11.048 10.272 9.564	14.87 13.61 12.56 11.587 10.711 9.939 9.235
38 Sr 39 Y	6.84 6.43		6.610 6.2039	7.822	7.506 7.0310
				$\mathcal{L}_{\mathtt{III}}^{\beta_2}$	$L_{ ext{II}}^{\gamma_1}$
40 Zr 41 Nb 42 Mo 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd 62 Sm 63 Eu 64 Cd 65 Tb 66 Dy 67 Ho 68 Tm 70 Yb 71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au	5.718 5.401 4.8437 4.5956 4.3666 4.1538 3.9554 3.7724 3.60151 3.4408 3.2910 3.1509 2.8956 2.7790 2.6689 2.5651 2.4676 2.3756 2.2057 2.1273 2.0526 1.9823 1.9156 1.8521 1.79202 1.7339 1.67942 1.6270 1.57704 1.52978 1.48438 1.4410 1.39866 1.3598 1.32155 1.28502	5.7120 5.3950 4.8357 4.5878 4.3585 4.1456 3.9478 3.7637 3.59257 3.4318 3.2820 3.1417 2.8861 2.7696 2.6597 2.5560 2.4577 2.3653 2.1950 2.1163 2.0419 1.9715 1.9046 1.8410 1.78068 1.7228 1.66844 1.61617 1.56607 1.3885 1.47336 1.42997 1.38859 1.34847 1.31033 1.27377	5.8236 5.4803 5.1665 4.6110 4.3640 4.1373 3.9266 3.7301 3.5478 3.3779 3.2184 3.0700 2.9309 2.6778 2.5622 2.4533 2.3510 2.2539 2.1622 1.9936 1.9163 1.8425 1.7727 1.7066 1.6435 1.58409 1.5268 1.4725 1.42067 1.3711 1.32423 1.27917 1.23603 1.19490 1.15540 1.11758 1.08128	5.5742 5.2260 4.9100 4.3619 4.1221 3.9007 3.6938 3.5064 3.3312 3.16861 3.0166 2.8761 2.7461 2.5064 2.3993 2.2980 2.2041 2.1148 2.0314 1.8781 1.8082 1.7419 1.6790 1.6198 1.5637 1.51094 1.4602 1.41261 1.36731 1.3235 1.28190 1.24203 1.2041 1.16884 1.13297 1.09974 1.06801	5.3738 5.0248 4.1728 3.9357 3.7164 3.5149 3.3280 3.1553 2.99494 2.8451 2.7065 2.5775 2.3425 2.2366 2.1372 2.0443 1.9568 1.8738 1.7231 1.6543 1.5886 1.5266 1.4697 1.4142 1.3611 1.3127 1.26512 1.21974 1.1765 1.13558 1.09630 1.0587 1.02296 .98876 .95599 .92461

^{*} For reference, see footnote 238, p. 697.

TABLE 780.—WAVELENGTHS OF THE MORE PROMINENT L-GROUP LINES IN ANGSTROMS (concluded)

Siegbahn Sommerfeld transition	$egin{array}{c} \mathbf{a_2} \\ \mathbf{a'} \\ L_{\mathbf{III}} M_{\mathbf{IV}} \end{array}$	$\overset{a_1}{\overset{a}{L_{111}}} \cdot M_{ ext{V}}$	$egin{array}{c} eta_1 \ eta \ L_{II} \cdot M_{_{f V}} \end{array}$	$egin{array}{c} eta_2 \ \gamma \ L_{111} \cdot N_{ m V} \end{array}$	$\overset{oldsymbol{\gamma_1}}{\delta}_{L_{\mathbf{II}}\text{-}N_{\mathbf{IV}}}$
80 Hg	1.24951	1.23863	1.04652	1.03770	.8946
81 Tl	1.21626	1.20493	1.01299	1.00822	.86571
82 Pb	1.18408	1.17258	.98083	.98083	.83801
83 Bi	1.15301	1.14150	.95002	.95324	.81143
90 Th	.96585	.95405	.76356	.79192	.65176
91 Pa	.9427	.9309	.7407	.7721	.6325
92 U	.92062	.90874	.71851	.75307	.61359

TABLE 781.—WAVELENGTHS OF M-SERIES LINES IN ANGSTROMS FROM 73 Ta TO 92 U *

Transition	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	81 Ti	82 Pb	83 Bi	90 Th	92 U
$M_{11}O_{19}$											2.613	2.440
M_1N_{111}		5.163				4.451	4.291	4.005	3.864	3.732	2.938	2.745
	5.558			4.944	4.770	4.590	4,424	4.110	3.964	3.829	3.006	2.813
$M_{11}N_{1V}$		5.342						4.207	4.063	3.926	3.124	2.941
$M_{111}O_{\rm V}$				• • • •	4.859	4.682	4.514					
$M_{111}O_1$		5.620						• • • •	4.235	4.096		3.114
$M_{II}N_{I}$												3.322
γ'								4.800	4.650	4.506	3.661	3.463
$M_{111}N_{\rm V}$	6.299	6.076	5.875	5.670	5.490	5.309	5.135	4.815	4.665	4.522	3.672	3.473
$M_{111}N_{1V}$	6.340	6.121	5.919	5.712	5.529	5.346	5.175	4.855	4.705	4.560	3.710	3.514
	7.083	6.794								4.813	3.804	3.570
$M_{\rm IV}O_{\rm II}$			• • • •	()))	(000	5 706	5.595	5.220	5.045	4.881	3.924	3.698
$oldsymbol{eta}'$	6.984	6.718		6.233	6.009	5.796						
$M_{IV}N_{VI}$	7.008	6.743	6.491	6.254	6.025	5.8168		5.239	5.065	4.899	3.934	3.708
$M_{\rm V}O_{\rm III}$						5.975	5.755					
a"	7.201	6.932		6.440	6.215	5.997	5.794	5.416	5.239			
a'	7.219	6.948		6.459	6.231	6.011	5.811	5.433	5.256	5.087	4.112	3.886
$M_{\rm v}N_{\rm vii}$	7.237	6.969	6.715	6.477	6.249	6.034	5.828	5.450	5.274	5.108	4.130	3.902
					6.262	6.045	5.842	5.461	5.288	5.119	4.143	3.916
$M_{\rm v}N_{\rm vi}$	7.500	7 246	• • • •	• • • •			6.241	5.870	5.694	5.526	4.554	4.322
$M_{111}N_1$	7.596	7.346		• • • •	6.653	6.442						
$M_{ m IV}N_{ m III}$,	8.559	8.222		7.629	7.356	7.086		6.371	6.149	4.901	4.615
$M_{\rm V}N_{\rm HI}$	9.297	8.943	8.612	8.293	8.002	7.722	7.451	6.960	6.726	6.508	5.229	4.937
$M_{IV}N_{II}$	9.311	8.977	8.646	8,344	8.048	7.774	7.507	7.017	6.788	6.571	5.329	5.040

^{*} E. Lindberg, Dissertation, Uppsala (1931). In addition to the values listed here, measurements have been made in the range from Ce 58 to 72 Hf. The wavelengths may be found in the dissertation, or in Siegbahn, Spektroskopie der Röntgenstrahlen (1931). For reference, see footnote 238, p. 697.

TABLE 782.—X-RAY TERMS FOR VARIOUS ELEMENTS *

 ν/R values; ν in cm⁻¹, R = 109,737 cm⁻¹

Term	13 Al	20 Ca	29 Cu	42 Mo	47 Ag	74 W	92 U
K	10.71	297.4	661.6	1473.4	1880.9	5120.7	8474
$L_{\mathbf{I}}$			81.0	211.3	282.7	890.8	1602.6
\overline{L}_{II}	2.30	25.8	70.3	193.7	260.9	849.9	1542.7
L_{111}	2.30	25.5	68.9	186.0	248.6	751.3	1264.2
$M_{\rm I}$			8.9	37.5	54.4	207.3	408.5
M_{11}	.63	1.9	5.7	30.5	46.7	189.3	381.5
M_{111}	.63	1.9	5.7	29.2	44.4	167.5	316.8
M_{IV}		.4	.4	17.3	29.2	137.5	274.2
$M_{\rm v}$.4	.4	17.1	28.8	132.9	261.2
$N_{\mathbf{I}}$				5.1	8.7	43.3	106.0
N_{II}				2.9	6.5	36.0	93.5
N_{III}				2,9	6.5	31.0	76.6
N_{1V}					1.1	18.7	57.5
$N_{\mathbf{v}}$.4	2.0	17.6	54.3
N_{VI}						2,3	28.5
N_{VII}						2.0	27.6
O_1				• • • •		5.4	23.7
On			• • • •			2.9	18.3
Om						2.9	13.9
OIvOv							7.0
$P_{II}P_{III}$				• • • •			.8

^{*} For reference, see footnote 238, p. 697.

TABLE 783.—CRITICAL ABSORPTION WAVELENGTHS IN ANGSTROMS*

Longer wavelengths															
Longe						N	2028.20					N _I	1019,04		
$M_{ m v}$												222.00	00.77/		
$M_{ m IV}$:					700 10	/00.10		
$M_{\rm III}$					0 704	0.007	:						:		
M_{11}					0 077	0.011	•						:		
$M_{\mathbf{I}}$			1621.48		434.03	424.03	:						:		
$L_{\rm III}$		574.9		126 96.4 26.4	75.7 60.9 50.1	30.1	35.63	27.29				13.15	:		
$L_{\rm II}$		572.4	:	1								12.9	:		
$L_{\rm I}$	1329.89	255.77	: :	: :	• •	•	:	•				:	:		
X	504.29 64.3 43.5 31.1	18.0	9.4962 7.9356	6.7310	5.0088	3.805/	3.0643	2.4912	2.0659	1.7394	1.6040	1.3774	1.1902	1.1164	1.04203
;	0 N C B B I E B B C B B I B B B B B B B B B B B B B B	10 Ne													

* For reference, see footnote 238, p. 697.

		TABLE 7	83.—CRITI	TABLE 783.—CRITICAL ABSORPTION WAVELENGTHS IN ANGSTROMS (continued)	W NOITAL	'AVELENG	THS IN	ANGSTRO	MS (conti	nued)		
	К	$L_{\rm I}$	L_{11}	$L_{\rm III}$	$M_{\rm I}$	M_{11}	M_{111}	M_{17}	$M_{\mathbf{v}}$	Long	Longer wavelengths	
	.91809							:	•	N	N	
36 Kr	.86372	• 1	:	• •	:	:	:	:	:	845.42	855.63	
	.81410	5.9854		6.8413						01		
	.76837	5.5713	6.1621	6.3620	:	:	:	:	:	2177.46		
	.7255	5.2216	5.7373	5.9444								
	.68738	4.8574	5.3659	5.5610								
	.65158	4.5717	:	5.2121								
	.61848	4.2897	4.7120	4.9042								
	.5584		4.1648	4.3577								
	53303	3 61860	3 9340	4 1212						N	M	
	50795	3 4206	37512	3 9005						1412 02	1407 20	
	48448	3 2474	3 5067	3,6008	•	:	:	20.02	21 14	1412.72	1407.30	
	46313	2.0773	2 2102	2.0200		:	:	30.00	20.17	V V V	IV VI	
	00077	2.0773	2.0192	20.4400	::	:	:	87	13	97.879	/05.23	7
	244290	2.9194	5.1595	3.3155				•				
	46624.	2.7696	2.9723	3.1493	:	:	:	24	24.28			
	.40609	2.6317	2.8219	2.9907								
	.38926	2.5039	2.6793	2.8457				•	ر ر	Ou. m		
	.37344	2.3839	2.5475	2.7139	•	:		19	19.00 {	1022.13		
	.35777	2.2691	2.4241	2.5872	:	:		:	, :			
	.34404	2.1605	2.3073	2.4678						P.		
	.33070	2.0620	2.1993	2.3568	•			15.56	15.89	2379 29		
	.31814	1.9689	2.0989	2.2537			•			ì		
	.30626	1.8856	2 0067	2.1579								
	.2951	1.808	1.9197	2.0727								
	.28458	1.7317	1.8391	1 9907								
	.2644	1.5954	1.6991	1.8408								
	.2548	1.5333	1.6228	1.7717								
	.2462	1.4740	1.5587	1.7062								
	.2376	1.4181	1.4981	1.6453								
	.2301	1.3648	1.4414	1.5870								
	.22264	1.3146	1.3869	1.5322								
		1.2660	1.3349	1.4796								
	.2085	1.21%	1.2849	1.4299								
	.2016	1.1764	1.2381	1.38264								
	.1951	1.1362	1.1945	1.3377								

									$P_{\rm I}$	1187.95											
	Longer wavelengths								Ov	835.47											
(pepn)	Long								OIV	742,22				1	Pn, m	1155.52					
ANGSTROMS (concluded)	$M_{\mathbf{v}}$			6.702		6.194	5.961	5.746	5.529	5.331	5.136	4.945	4.762			:		2,133	3.777	3.491	
ANGSTR	M_{IV}			6.487		5.975	5.754	5.544	5.330	5.139	4.936	4.747	4.568			:		0111	3.550	2.327	-
IGTHS IN	$M_{\rm III}$			5.427		5.027	4.851	4.676	4.508	4.340	4.184	4.034	3.893					2002	3.002	2.877	-
WAVELEN	M_{11}			4.800		4.412	4.270	3.738	4.085		:	:	:			:			7.2/1	2.385	
RPTION	$M_{\rm I}$			4.365		4.037	:	3.603	3.742	•		:	:			:		0000	7.388	2.228	
783.—CRITICAL ABSORPTION WAVELENGTHS IN	$L_{\rm III}$	1.2930	1.2517	1.2116	1.1755	1.1390	1.1038	1.0710	1.0382	1.0075	9778	.9492	.9221			:	.802	2000	7,000	.7208	
83.—CRITI	$L_{\rm II}$	1.1515	1.1102	1.0713	1.0354	8666.	.9654	.9321	6006	8208	.8419	.8143	.7878			:	029.	2002	0.670	.5913	
TABLE 7	$L_{\rm I}$	1.097	1.057	1.0205	.9873	.9558	.9223	.8914	.8622	.8342	.8072	.7812	.7559			:	:	0000	6000.	.5680	
	K	1901.	.1836	.17822	.1735	.16755	.16209	.15770	.15320	.14893	.14441	.14049	.13678			:	:	02011	0/711.	.10658	
																	88 Ra				

TABLE 784,—CALCULATED MASS ABSORPTION COEFFICIENTS 200

K series

9	3 1420	11.194	31.927	76.193	125.84	246.27	401.64	601.92	803.50	1125.3	1393.5	1775.8	2072.3	2507.0	2766.9																	
4.00	1 2080	3.4658	9.6441	22.972	37.995	74.928	123.19	186.85	253.16	361.06	457.04	598.22	720.70	889.43	1037.1	1230.5	1343.4															
2 50	5016	9970	2.4945	5.7894	9.5170	18.768	30.958	47.288	64.669	93.298	119.74	159.30	195.61	244.02	288.75	355.96	402.03	437.17	537.16	619.41	689.33											
1 50	4318	3687	.6731	1.3939	2.2131	4.2565	6.9494	10.591	14.512	21.036	27.180	36.469	45.240	56.745	900.89	85.069	92.676	108.25	135.88	160.57	189.78	235.77	284.05			360.33						
80	3854	2171	2417	.3552	.4864	.8119	1.2266	1.7915	2.3963	3.4280	4.4007	5.8930	7.3182	9.1794	11.052	13.914	16.105	18.014	22.859	27.341	33.257	42.804	53.860	67.243	70.389	77.110	86.581	97.059	105.02	109.22	115.74 121.84	
40	3550	.1841	.1660	.1838	.2061	.2588	.3111	.3827	.4513	.5896	.7092	0906.	1.0876	1.3335	1.5725	1.9568	2.2446	2.4967	3.1592	3.7759	4.6098	5.9875	7.6376	9.7060	10.265	11.376	13.113	15.161	16.696	17.698	19.160 20.609	
25	3366	.1702	.1489	.1560	.1662	.1884	.2013	.2189	.2292	.2686	.2938	.3461	.3882	.4532	.5096	.6082	.6754	.7318	.9065	1.0651	1.2683	1.6220	2.0502	2.5938	2.7412	3.0375	3.5078	4.0731	4.4985	4.7850	5.2015 5.6184	7
1.5	3081	.1553	.1347	.1389	.1455	.1592	.1621	.1659	.1619	.1757	.1771	.1920	.1985	.2167	.2255	.2506	.2607	.2664	.3131	.3512	.3871	.4664	.5634	8889	.7180	.7862	8800	1.0204	1.1212	1.1875	1.3820	
080	8696	.1325	.1147	.1176	.1228	.1331	.1335	.1342	.1278	.1347	.1312	.1367	.1353	.1417	.1399	.1470	.1442	.1388	.1537	.1623	.1593	.1720	.1880	.2101	.2102	.2215	.2342	.2527	.2703	2794	.3121	
040	2083	.1049	.0910	.0933	.0973	.1052	.1053	.1055	.1000	.1047	.1012	.1046	.1024	.1062	.1034	.1069	.1031	.0973	.1054	.1088	.1014	.1034	.1061	.1110	.1073	.1092	.1077	.1082	.1118	.1116	.1142	Ē
020	1577	.0794	0687	.0705	.0734	.0794	.0794	.0795	.0753	.0788	.0200	.0784	.0767	.0794	.0771	.0795	.0765	.0719	9220.	.0798	.0736	.0741	.0750	.0771	.0739	.0745	.0719	.0706	.0721	07/10	.0717	T. I.I.
, γ 010	1134	.0571	.0494	.0506	.0528	.0571	.0571	.0571	.0541	.0566	.0546	.0563	.0551	.0570	.0553	.0570	.0548	.0515	.0555	.0570	.0525	.0528	.0533	.0546	.0523	.0526	.0506	.0494	.0503	.0494	.0498	
Material	1 Hydrogen	2 Helium	3 Lithium	4 Beryllium	5 Boron	6 Carbon	7 Nitrogen	8 Oxygen	9 Fluorine	10 Neon	11 Sodium	12 Magnesium	13 Aluminum	14 Silicon	15 Phosphorus	16 Sulfur	17 Chlorine	18 Argon	19 Potassium	20 Calcium		24 Chromium	26 Iron	28 Nickel	29 Copper	30 Zinc	32 Germanium	34 Selenium	35 Bromine	30 Krypton	37 Kubidium 38 Strontium	9.8 D.

2:9 Private communication from John A. Victoreen, The Victoreen Instrument Co., Cleveland, Ohio.

(concluded)
COEFFICIENTS
ABSORPTION
D MASS
784.—CALCULATE
TABLE

		00.9																					534.90	291.00	211.31	04.777
		4.00																				154.59	166.08	89.240	64.330	607.70
(2)		2.50																				40.027	42.061	22.460	16.155	17.338
3		1.50																				9.1109	9.4547	5.0960	3.7066	3.9938
		.80																				1.5759	1.6341	.9573	.7506	.//88
		.40	26.879	34.886	38.467	40.150																.3561	.3801	.2921	.2733	0007
	series	.25	7.4923	10.110	11.493	12.287	13.207	13.621	14.743	14.536	15.620											.2123	.2321	.2084	.2097	6661.
	K	.15	1.8412	2.5023	2.8718	3.0958	3.3434	3.4660	3.7952	3.8080	4.1654	5.0766	6.7235	6.9253	7.7673	8.0105	8.1957		8.5986			.1643	.1819	.1747	.1806	.1/08
		080	.3873	.4971	.5581	.5950	.6397	9099.	.7190	.7332	.7959	6896.	1.3152	1.3614	1.5647	1.6253	1.6759	1.7806	1.8491	1.8609	1.9814	.1337	.1486	.1457	.1517	.1431
:		.040	.1269	1411	.1466	.1492	.1570	.1587	.1661	.1685	.1785	.2013	.2508	.2575	.2878	.2973	.3049	.3210	.3320	.3406	.3612	.1052	.1170	.1151	.1201	.1133
		.020	.0740	0755	.0743	.0728	.0752	.0746	.0750	.0762	.0778	8620.	.0858	.0865	.0903	.0917	.0925	.0944	.0961	.0964	.0992	.0793	.0882	6980.	9060.	.0854
		.010	.0505	0505	.0490	.0475	.0488	.0481	.0478	.0486	.0490	.0485	.0488	.0488	.0490	.0493	.0493	.0492	.0496	.0488	.0490	.0570	.0634	.0624	.0651	.0614
		Material	42 Molybdenum	47 Silver	50 Tin	52 Tellurium	53 Iodine	54 Xenon	56 Barium	58 Cerium	60 Neodymium	65 Terbium	73 Tantalum	74 Tungsten	78 Platinum	79 Gold	80 Mercury	82 Lead	83 Bismuth	90 Thorium	92 Uranium	Air	Water	NvIon	Polyethylene	Polystyrene

Artificial disintegration is generally considered in two parts: the first when the bombarded atom suffers a change not greater than the loss (or gain) of an alpha particle, and the second when the change in the bombarded atom is much greater—the bombarded atom being at times split into two nearly equal parts. This latter is called fission: the former, artificial disintegration. Fission was at first brought about by bombardment with neutrons but it can be caused by bombardment by almost any particle with the proper energy (see Table 726). This effect can be produced in a number of isotopes of the heavier atoms such as Np, U, Pa, Th, Pb, Sn, Eu, and Ni. Some other atoms such as Bi, Rb, Tl, Hg, Au, Pt, W, and many others show no fission; at least if such an effect exists it is less than 1/1000 that of Th. There are a great many products of fission as shown by a paper by scientists of the Plutonium Project.²⁴⁰ One example of fission is

$$_{92}\mathrm{U}^{235} + _{0}n^{1} \rightarrow _{40}\mathrm{Zr}^{97} + _{52}\mathrm{Te}^{137} + _{0}n^{1} + _{0}n^{1}$$

There is a considerable release of energy when fission takes place. Complete data are not available but such as are available give values of about 200 Mev per fission per atom of the heavier elements. (See Table 790.) It is also to be noted that there are two neutrons given as a result of the above reaction; thus, it is self-sustaining.

TABLE 785.—FISSION DATA *

Target substance	92U235	$_{93}Pu^{239}$	$_{90}\mathrm{Th^{282}}$	92 ^{U238}	₀₁ Pa ²³¹	92 ^{U283}
Compound nucleus	$_{92}U^{238}$	$_{93}Pu^{240}$	90 Th ²³³	$_{92}U^{239}$	91 Pa ²³²	$_{92}U^{234}$
Threshold energy for fast neutron fis-						
sion, in Mev	0	0	$1.0 \pm .1$	$1.1 \pm .1$	~ 1	0
Energy released per fission, in Mev	200)			
Energy of fission neutrons, in Mev						
	(Ave~1)		1			
Average number of neutrons released	(
per fission	2.3		> Estimat	ed to be s	ame as fo	r 92U ²⁸⁵
	(2 to 3.5)					
Average number of neutrons released	,					
per thermal neutron absorbed, η	1.4					
			J			

^{*} For reference, see footnote 226, p. 667.

TABLE 786.—FISSION THRESHOLDS *

Compound nucleus	Threshold energy for exciting fission	Cause of excitation	Target nucleus	Compound	Threshold energy for exciting fission	Cause of excitation	Target nucleus
90 Th ²⁸² 90 Th ²³³ 91 Pa ²³² 91 Pa ²³³ 91 Pa ²³⁴ 92 U ²³³ 92 U ²³⁵	5.40±.22 Mev 1.10±.05 ~1 <6.9 ~8 5.18±.27 5.31±.25	γ n n p d γ γ	$_{90}$ Th $_{232}^{232}$ $_{90}$ Th $_{232}^{232}$ $_{91}$ Pa $_{231}^{232}$ $_{90}$ Th $_{232}^{232}$ $_{92}$ U $_{233}^{233}$ $_{92}$ U $_{235}^{233}$	$\begin{array}{c} ^{92}U^{238} \\ ^{92}U^{239} \\ ^{93}Np^{248} \\ ^{93}Np^{239} \\ ^{93}Np^{240} \\ ^{94}Pu^{239} \\ ^{94}Pu^{240} \end{array}$	5.08±.15 Mev 1.0 ±.1 <0 <6.9 ~8 5.31±.27 <0	γ n slow n p d γ slow n	$\begin{array}{c} \mathfrak{p}_{2}U^{238} \\ \mathfrak{p}_{2}U^{238} \\ \mathfrak{p}_{3}Np^{237} \\ \mathfrak{p}_{2}U^{238} \\ \mathfrak{p}_{2}U^{238} \\ \mathfrak{p}_{4}Pu^{239} \\ \mathfrak{p}_{4}Pu^{239} \end{array}$
$_{92}U^{236}$	<0	slow n	$_{92}U^{235}$				

^{*} Revised by J. L. Rhodes, University of Pennsylvania. For reference, see footnote 226, p. 667.

²⁴⁰ Journ. Amer. Chem. Soc., vol. 68, p. 2411, 1946.

TABLE 787.—ESTIMATED VALUES OF THE NEUTRON BINDING ENERGY OF THE DIVIDING NUCLEUS *

Neutron binding energy	Compound nucleus	Neutron binding energy
6.2 Mev	92 U 237	5.2 Mev
6.4	$_{92}$ U 239	6.1 5.1
		~6.3 ~5.3
5.4	94 Pu ²³⁹	~5.4 ~6.4
	binding energy 6.2 Mev 5.2 6.4 5.4 6.5	binding energy nucleus 6.2 Mev 92 U ²³⁷ 5.2 92 U ²³⁸ 6.4 92 U ²³⁹ 5.4 93 N P ²³⁹ 6.5 93 N P ²⁴⁰ 5.4 94 P u ²³⁹

^{*} For reference, see footnote 226, p. 667.

TABLE 788.-THE CRITICAL ENERGY FOR FISSION *

The experimental values of the critical energy for fission of a number of isotopes have been determined by Koch, McElhinney, and Gasteiger ²⁴¹ who give the following photofission threshold energies. (The work of Shoupp and Hill ²⁴² on the fast neutron fission energies for Th²³² and U²³⁵ was used for the values given for Th²³³ and U²³⁶.)

Compound nucleus	E c	Compound nucleus	Ec	Compound nucleus	Ec	
90 Th ²³²	5.40±.22 Mev	92U ²³⁵	. 5.31±.25 Mev	92 U ²³⁹	6.1	Mev
	6.3	92U ²³⁸	. 5.08±.15	94 Pu ²³⁹	$5.31 \pm .27$	
92U ²³³	$5.18 \pm .27$					

^{*} Prepared by J. L. Rhodes, University of Pennsylvania. ²⁴¹ Phys. Rev., vol. 77, p. 329, 1950. ²⁴² Phys. Rev., vol. 75, p. 785, 1949.

TABLE 789.—HALF-LIVES FOR SPONTANEOUS FISSION 243

These half-lives are calculated on the basis of a half-life of 10¹⁵ years for U²³⁵

Element Z A Half-life	Element Z A Half-life
$_{92}U^{235}$ 10^{15} years	$_{94}Pu^{241}$ 8.0×10^{13} years
$_{92}\mathrm{U}^{233}$ 1.4×10^{14}	$_{94} Pu^{230} \dots 1.3 \times 10^{12}$
$_{93}Np^{237} \ldots 7.6 \times 10^{13}$	$_{94}Pu^{236} \dots 1.6 \times 10^{11}$
$_{14}Pu^{244} \ldots 6.8 \times 10^{16}$	$_{95} \mathrm{Am^{243}}_{95} \ldots 6.6 \times 10^{11}$ $_{95} \mathrm{Am^{241}} \ldots 1.4 \times 10^{10}$
$_{\text{\tiny P4}} \text{Pu}^{^{242}} \ldots 7.7 \times 10^{^{14}}$	$_{95}\text{Am}^{241}$ 1.4×10^{10}

²⁴⁸ Turner, Rev. Mod. Phys., vol. 17, p. 292, 1945.

TABLE 790.—THE ENERGY RELEASED BY FISSION ON DIVISION OF SOME ATOMS INTO EQUAL PARTS *

Original	Two products	Energy released on division	Energy released in subsequent beta decay
28 N i 01	14Si ^{20, 31} 25Mn ^{58, 59}	—11 Mev	2 Mev
50Sn ¹¹⁷ 68Er ¹⁶⁷	Se83, 84	94	13
$^{82}_{92}\mathrm{Pb}^{206}_{230}$	41 Nb ^{103, 104} 40 Pd ^{110, 120}	120 200	32 31
92 🔾	451 (1	200	31

^{*} For reference, see footnote 226, p. 667.

Radioactive isotope	Half-life Maximum β-particle energy in Mev	Maximum γ-ray energy in Mev	Branching ratio in percent	Radioactive isotope	Half-life	Maximum B.particle energy in Mev	Maximum y-ray energy in Mev	Branching ratio in percent
36 K r 85 37 R b 86 33 S r 80 38 S r 80 39 Y 80 39 Y 80 40 Z 7 85 41 N b 85 42 M o 90 44 R u 108 44 R u 108 44 R u 108 45 C d 115 46 C d 115 47 C d 115 48 C d 115 49 S r 128 40 S r 128 41 S r 128 41 S r 128 42 S r 128 43 S r 128 44 S r 128 45 S r 128 46 S r 128 47 S r 128 48 S r 128 49 S r 128 40 S r 128 41 S r 128 41 S r 128 42 S r 128 43 S r 128 44 S r 128 45 S r 128 46 S r 128 47 S r 128 48 S r 128 49 S r 128 40 S r 128 41 S r 128 41 S r 128 42 S r 128 43 S r 128 44 S r 128 45 S r 128 46 S r 128 47 S r 128 47 S r 128 48 S r 128 49 S r 128 40 S r	9.4 yr .74 19 d 1.82 55 d 1.5 25 yr .65 62 hr 2.35 61 d 1.6 65 d 1.0 35 d .15 90 hr I.T. 67 hr 1.5 41 d .67 1.0 yr ~.03	none 1.08 none none none none .92 .7775 .55 none none	.24 .00016 4.6 ~5 5.9 6.4 6.2 3.7 .5 .018	51 Sb ¹²⁷	93 hr 90 d 32 d 77 hr 8 d 5.3 d 13 d 37 yr 12.8 d 30 d 275 d	1.2 I.T. 28 .687 .35 .28 8 1.05 .6 .35 1.0	.72 .22 .37 .085 1.2 .75 .53 .2 none none	
48Cd ¹¹⁵ 50Sn ¹²⁸ 51Sb ¹²⁵	43 d 1.7 43 d 1.7 130 d 1.3 2.7 yr .7	.5 .39 .6	.0008	63 Eu ¹⁵⁵ 63 Eu ¹⁵⁶	11 d 3.7 yr 2 yr 15.4 d	.23 .2 2.4	.084 2.0	.03

^{*} Revised by J. L. Rhodes, University of Pennsylvania. For reference, see footnote 226, p. 667.

TABLE 792.—CROSS SECTIONS OF FISSIONABLE NUCLEI FOR NEUTRONS (IN UNITS OF 10-24 cm2) *

Tr		Cross	section for energy rang	es
Target substance	Process	Thermal	Resonance	Fast †
92U ²³⁵	fission	420 ± 100	30	2.4
	scattering	17	17	6
98 U ²⁸⁸	fission	0	0	.5
	scattering	17	17	6
	absorption	3	5000 ‡	0
2 11	(resonance)	0 ()	24	_
Ordinary uranium	fission	3 (ave)	.2 (ave)	5
	scattering	17	17	6 0
	absorption (resonance)	3	5000 ‡	0
$_{^{94}}\mathrm{Pu}^{^{239}}$ $_{^{92}}\mathrm{U}^{^{238}}$	fission scattering	}assumed sa	ame as for 92U235	
₉₀ Th ²³²	fission	0	0	.1
20	scattering	17	17	6
	absorption	8.3	• • • • • • • • • • • • • • • • • • • •	
₉₁ Pa ²⁸¹	fission	0	Ö	3
	scattering	17	17	6
₉₀ Th ²³⁰	fission	0	0	.3
	scattering	1Ž	17	6

^{*} For reference, see footnote 226, p. 667. \dagger Most of the scattering of fast neutrons is inelastic scattering, resulting in large energy losses (as much as 90 percent). \ddagger The resonance peak for U^{288} occurs at approximately 5 ev and is taken to have an effective width of 0.16.

TABLE 793.—CROSS SECTIONS OF SOME FISSION PRODUCTS FOR THERMAL NEUTRONS *

	Element Br	"Average nucleus"		Isotope (in units of 10-12 cm ²)		
Atomic number 35		Absorption σ_{σ} 7	Total	Mass number 79 81	Absorption σ_a 12 2.25	Relative natural abundance 50.6 49.4
36	Kr	.1	27	78 84 86	.27 .16 .061	.34 57.0 17.4
37	Rb	.7	12	85 87	.724 .135	72.8 27.2
38	Sr	1.5	11	86 88	1.3 .005	9.8 82.56
39	Y	1.1		89	1.1	100
40	Zr	.4	15	90 91 92 94 96	.12 1.54 .27 .53 1.07	51.5 11.2 17.1 17.4 2.8
41	Nb	1.0	6.9	93	1.0	100
42	Мо	3.9	7.9	95 97 98 100	13 2.3 .37 .23	15.7 9.5 24.1 9.25
51	Sb	4.7	9	121 123	6.8 2.5	56 44
52	Te	5	10	126 128 130	.88 .2 .22	18.7 31.86 34.52
53	I	6.1	9.4	127	6.1	100
54	Xe		35	132 136	.2 .15	26.9 8.9
56	Ba	1.25	9.25	138	.56	71.66
57	La	9	25	139	9	99.9
62	Sm	8000		149	53,000	15.5
63	Eu	2500	4500	151 153	5200 240	49.1 50.9
64	Gd	38,000	•••	155 157	50,000 180,000	14.8 15.7

^{*} Revised by J. L. Rhodes, University of Pennsylvania. For reference, see footnote 226, p. 667.

Cosmic rays are an ionizing radiation that has been discovered in the atmosphere of the earth. As generally discussed these rays are divided into primary and secondary cosmic rays, the primary rays being the high-energy particles that fall upon the outer atmosphere of the earth. In general, the intensity of cosmic radiation is given as the number of rays per cm² per second. The intensity (i.e., number of particles per cm²) increases for about the first onetenth of the atmosphere where it is about 5 times the initial intensity and from there down to sea level the intensity decreases. These primary rays appear to come from all directions from outer space and to consist almost entirely, if not altogether, of particles charged positively 245 (i.e., protons, alpha-particles, and probably other nuclei). Several theories have been advanced for the origin of this primary radiation: (1) Annihilation of matter; (2) speeding up of stripped atoms in outer space either by electrical fields or by changing magnetic fields; (3) from some activity in stars in distant space; or even (4) that it is radiation remaining from the original explosion some 109-1010 years ago when the present known universe was started. These assumptions are based upon the theory that this radiation comes from the cosmos or outer space. Some 246 present arguments for the sun as the source of the cosmic rays and argue that the magnetic field of the sun traps at least a part of the radiation from the sun, which give the results as now found on the earth. There are seemingly very great difficulties to explain away in establishing any one of these theories.

Owing to the effect of the earth's magnetic field there is less of this energy that reaches even the outer atmosphere at or near the magnetic equator than in higher latitudes, the lower-energy particles being screened off by the strong magnetic fields of the earth near the magnetic equator. The energy of the cosmic-ray particles that strike the upper atmosphere extends from about 10° to 10^{17} eV, or even higher, with a maximum number for about $6 \times 10^{\circ}$ eV. The average energy of all particles entering the atmosphere at the equator is about 3×10^{10} eV and for geomagnetic latitudes above about 40 the average is about $6 \times 10^{\circ}$ eV.

In Tables 794 and 797 are given some data on the primary radiation reaching the outer atmosphere for different geomagnetic latitudes.

²⁴⁶ Teller, Edward, Physics Today, vol. 2, p. 6, 1949.

TABLE 794.—PROBABLE CHARACTERISTICS OF COSMIC RAYS FALLING UPON THE TOP OF THE ATMOSPHERE AT VARIOUS MAGNETIC LATITUDES

All energies are given in electron volts.

	Geomagnetic latitude		
	3°	39°	52°
Energy falling per sec on each cm ² of the atmosphere Total number of ions formed per sec below each cm ²	1×10^9	1.7×10^{9}	3.2×10^{9}
of the upper surface of the atmosphere Low energy limit of oncoming particles imposed by the	3×10^{7}	5.4×10^7	7.4×10^7
earth's magnetic field		8×10° 1.6×10°	2×10 ^θ .88×10 ¹⁰
surface of the atmosphere per min	1.9	6.5	21.8

²⁴⁴ Rev. Mod. Phys., vol. 21, p. 1, 1949; Stranathan, The "particle" of modern physics, D. Blakiston Co.; Montgomery, D. J. X., Cosmic ray physics, Princeton University Press; Johnson, T. R., Rev. Mod. Phys., vol. 10, p. 193, 1938; Swann, W. F. G., Reports on progress in physics, vol. 10, p. 1, 1946.

²⁴⁵ Korff, Physics Today, vol. 3, p. 9, 1950.

The secondary cosmic rays, which are due to the ionization and other actions of the highenergy particles of the primary cosmic rays, have been studied by various methods for various positions with respect to the geomagnetic latitude on the earth's surface and for different elevations up to such heights that only about 0.5 percent of the atmosphere, by weight, is above the measuring instrument. The secondary rays consist of all sorts of particles such as electrons, both positive and negative; protons, and other heavy particles; mesons; neutrons, traveling with various speeds, and radiant energy of very short wavelength.

At the surface of the earth (sea level) the cosmic rays are of such intensity that they produce 1.63 ion pair cm⁻⁸ sec⁻¹. The intensity is about constant, within a very few percent, for geomagnetic latitudes higher than above 40 and from this point to the equator

the intensity drop-off is about 9 percent.

The ionization increases with altitude up to about 16,000 m for geomagnetic latitudes >40, where it is about 150-200 times as large as at sea level. Above this altitude the intensity of ionization drops off until, at an elevation where the amount of the atmosphere above the measuring instrument is only about 0.5 percent (35,300 m), the intensity is about 0.2 percent of that at the maximum, or about the same as that observed at 0.4 atmosphere above the earth. The variation with altitude is much less at the geomagnetic equator.

Cosmic rays react with the atoms of the atmosphere and produce a variety of effects; the production of a simple ion pair, the production of neutrons and electrons, the production of mesons, the production of extensive showers, where the released energy is so great that the cosmic ray must be only the cause of some explosion or some artificial disintegration. Mesons are particles that may have a unit positive or negative charge or they may be neutral as to charge. The mass of the meson is about 200 times that of an electron; it is very penetrating and is radioactive, with a life of about 2×10-6 sec. Some evidence exists for mesons with a mass of about 1000 me.

Thus, there are formed bursts, an extensive production of ionization, and stars when a group of particles have a common origin as shown by cloud-chamber pictures. Stars are probably so named because these pictures show a number of tracks that have a common origin. These tracks vary from 2 to 10 with an average of about 4. The number of stars

increases with the elevation above sea level. At an elevation of about 4,500 m the average energy ionization star particle was about 12 Mev.

Cosmic-ray showers, extensive ionizations of exceedingly complex reactions taking place in the atmosphere, extend over distances up to several hundred meters. These showers contain millions of particles and represent a total of about 10¹⁵ ev.

These secondary rays may be roughly divided into a hard and a soft component. The separation is generally made by filtering out the soft component with about 10 to 12 cm of lead. The hard component consists of mesons, a small number of protons, possibly some fast-moving electrons, and short-wavelength photons. The soft component consists of electrons, photons, and some slow-moving mesons, protons, and neutrons. The number of rays of the hard component does not reach a maximum with height but seems to increase to as great a height as measurements have been made, i.e., up to a height where the pressure is above 0.8 mmHg, where it is about 15 times as intense as at sea level. The soft component increases in intensity down from the top of the atmosphere to a pressure of 75 mmHg, then decreases to sea level, where the intensity is about 1 percent of that at its maximum. At its maximum intensity the soft component is about 5 times that of the hard component, in the vertical direction. At the earth's surface this hard component makes up about 75 percent of the cosmic radiation and a much smaller part at high altitudes. This hard component is very penetrating, since it will pass through many meters of water or lead. Cosmic rays have been detected in a mine at a depth of 384 meters, and by tipping the apparatus, the thickness through which the cosmic rays passed was equivalent to 1,408 meters of water (about 124 meters of lead!). Another observer detected this radiation in a coal mine at a depth of 610 meters, which is equivalent to 1,600 meters of water! In this case, the intensity measured at the depth corresponding to 1,600 meters of water was only about 1/20000 of that at the surface! These highly penetrating rays are thought to be mesons, produced by the primary cosmic rays.

TABLE 796.-MEAN IONIZATION ENERGY OF Y-RAY NECESSARY TO PRODUCE AN ION PAIR *

(See Table 799.)

Gas H ₂ He		Gas N ₂		Gas Ne A	
Не	27.8	O ₂	32.3		23.4

^{*} For reference, see footnote 203, p. 624.

TABLE 797.—THE CRITICAL ENERGY* AND THE TOTAL ENERGY OF COSMIC RAYS ENTERING THE ATMOSPHERE AT FOUR LOCATIONS

Location 51° Saskatoon 60° Omaha 51°	Eff crit 6 F Bev/particle	25.2 Total 99.5 energy, E Bev cm ⁻² sec ⁻¹	Location San Antonio Madras	& & Geomagnetic	Eff crit 0.29 energy Bev/particle	. Total 6.8 energy, E 7.8 energy, E 8 ev cm ⁻² sec ⁻¹
--------------------------------------	------------------------------	--	-----------------------------------	-----------------	---	--

^{*} The energy of a cosmic ray which enables it to enter the earth's atmosphere.

TABLE 798.—ESTIMATED COSMIC RAY INTENSITIES AT 50° GEOMAGNETIC LATITUDE

In this table are given some data on cosmic rays for various altitudes for geomagnetic latitudes of 50°

		T	otal intensit	У	Ha	rd compone	nt	So	ft compone	nt
		Omni- direc- tional	Vertical	Lati- tude effect	Omni- direc- tional	Vertical	Lati- tude effect	Omni- direc- tional	Vertical	Lati- tude effect
Altit	ude	narticle	particle	per-	particle	particle	per-	particle	particle	per-
meters	atm	sec cm ²	sec cm ² ω	cent	sec cm ²	sec cm ² ω	cent	sec cm ²	sec cm ² ω	cent
0	1.000	.020	.015	10	.013	.009	10	.007	.006	10
2,000	.784	.035	.025	15	.018	.012	15	.017	.013	15
4,500	.570	.10	.07	25	.03	.020	25	.07	.05	25
10,000	.261	.7	.3	45	.10	.05	30	.6	.25	30
6,100	.100	1.5	.5	75	.25	.08	?	1.25	.42	80
30,000	.0115	.5	.15	85	.4	.13	?	.06	.02	?
∞	0	.3	.1	90	?	?	?	?	?	?

TABLE 799.—SOME COSMIC-RAY DATA

Total number of rays at top of the atmosphere Total energy carried to earth per second (outer atmos-	8×10 ¹⁷ sec ⁻¹
phere)	9×10^{18} Bev/sec, 1.4×10^{9} watts
a current of *	.13 amp
Average energy of all incident particles, latitude >40	7 Bev
Average energy of all incident particles, all areas, about Cosmic energy reaching earth's outer atmosphere, high	11 Bev
latitude	$3.8 \times 10^{-3} \text{ erg cm}^{-2} \text{ sec}^{-1}$
_ phere is about	7×10^9 ev
The spectrum extends from about	1×10° to 1017 ev and probably higher
1 cm ² in cross section extending to top of atmosphere	
Thus in this column there are formed about	7.4×10^7 ion pairs
This means about	90 ion pair, cm ⁻¹ sec ⁻¹ 1.2 ray min ⁻¹ cm ⁻²
Cosmic ray at sea level produces ‡	1.63 ion pair, cm ⁻³ sec ⁻¹
Radiant energy flux reaching earth from all stars	3.02×10 ⁻⁸ erg cm ⁻² sec ⁻¹
latitude Average energy of the cosmic rays entering the atmosphere is about. The spectrum extends from about. The energy required for the ionization found in a column 1 cm² in cross section extending to top of atmosphere at 60 N geomagnetic latitude. Thus in this column there are formed about. This means about. Total number of rays at sea level from all directions. Cosmic ray at sea level produces ‡. Total cosmic energy reaching earth per second at sea level.	3.8×10 ⁻⁸ erg cm ⁻² sec ⁻¹ 7×10 ⁹ ev 1×10 ⁹ to 10 ¹⁷ ev and probably higher 3.8×10 ⁻⁸ erg cm ⁻² sec ⁻¹ 7.4×10 ⁷ ion pairs 90 ion pair, cm ⁻¹ sec ⁻¹ 1.2 ray min ⁻¹ cm ⁻² 1.63 ion pair, cm ⁻³ sec ⁻¹ 40 joules

^{*} If there were no compensating effects the potential of the earth would increase about $180V/\sec$. † The number varies with the geomagnetic latitude, being about 0.33 particles cm⁻² sec⁻¹ at high latitudes ($>40^{\circ}$) and about 0.032 particles cm⁻² sec⁻¹ at the equator. This data is based upon an energy of 32 ev necessary to produce one ion pair. ‡ Thus the average ray entering the cm³ at sea level has an energy of about 10° ev.

TABLE 800.—RADIATION AT EARTH'S SURFACE, MASS AND RADIATION DENSITY IN OUR GALAXY, AND IN THE UNIVERSE

Our galaxy:	
Total number of stars	
Average mass of stars	
Total mass of galaxy	
Total volume 10 ⁶⁸ cm ³	
Diameter (disk)	
Average mass density	
Average mass density 3×10^{-24} g cm ⁻³ Total mass energy 2.95×10^{68} ergs	
Total kinetic energy	
Average mass-energy-density	
Average kinetic energy-density 1.6×10 ⁻⁸ erg cm ⁻³	
Universe:	
Mass density 3×10 ⁻³⁰ g cm ⁻³	
Mass-energy-density 3×10 ⁻⁹ erg cm ⁻⁸	
Radiant-energy-density	
Cosmic ray energy-density	
At earth's surface (top of atmosphere):	
Total radiant energy from all stars	ec-1
Total radiant energy density (our galaxy) 5.8×10 ⁻¹⁴ erg cm ⁻³	
Total radiant energy (sun directly overhead)* 1.2×10° erg cm ⁻² s	ec-1
Cosmic ray energy	ec-1
Cosmic ray energy-density	

^{*} Astrophysical data.

TABLE 801.—COMPOSITION OF COSMIC RADIATION AT GEOMAGNETIC LATITUDE 30° 247

	Re	lative No. of	particles		Rela	tive No.	of particles
Nuclei	Sun	τ Sco	Cosmic rays	Nuclei	Śun	τ Sco	Cosmic rays
H He		1.6×10^{6} 2.9×10^{5}	1.6×10^{6} 4.0×10^{5}	11≤Z≤14 16≤Z≤20	157 28	215	~2600 ~1000
6 ≤ Z ≤ 8	3200	2500	14000	Fe	150		~ 400

²⁴⁷ Bradt and Peters, Phys. Rev., vol. 77, p. 54, 1950.

TABLE 802.—ACCELERATION OF GRAVITY

For sea-level and different latitudes. Calculated from the International Gravity Formula: $g = 978.0490 \ [1 + 0.0052884 \ \sin^2 \phi - 0.0000059 \ \sin^2 2 \ \phi]$

						- / ,	
Latitude	g		g ft/sec²	Latitude	g cm/sec²		g ft/sec²
φ	cm/sec ²	$\log g$		ϕ		$\log g$	
0°	978.0490	2.9903607	32.08	50°	981.0786	2.9917038	32.19
5	.0881	.9903780	.09	51	.1673	.9917431	.19
10	.2043	.9904296	.09	52	.2554	.9917821	.19
12	.2716	.9904594	.09	53	.3427	.9918207	.20
14	.3504	.9904944	.10	54	.4291	.9918589	.20
15	978.3940	.9905138	32.10	55	981.5146	.9918968	32.20
16	.4404	.9905344	.10	56	.5990	.9919341	.20
17	.4893	.9905561	.10	57	.6822	.9919709	21
18	.5409	.9905790	.10	58	.7642	.9920072	.21
19	.5951	.9906031	.11	59	.8448	.9920428	.21
20	978.6517	.9906281	32.11	60	981.9239	.9920778	32.21
21	.7107	.9906543	.11	61	982.0015	.9921122	.22
22	.7721	.9906815	.11	62	.0773	.9921457	.22
23	.8357	.9907098	.11	63	.1515	.9921785	.22
24	.9015	.9907390	.12	64	.2238	.9922105	.22
25	978.9694	.9907691	32.12	65	982.2941	.9922415	32.23
26	979.0394	.9908001	.12	66	.3624	.9922718	.23
27	.1113	.9908321	.12	67	.4287	.9923010	.23
28	.1850	.9908648	.12	68	.4927	.9923293	.23
29	,2606	.9908983	.13	69	.5545	.9923567	.24
30	979.3378	.9909325	32.13	70	982.6139	.9923829	32.24
31	.4165	.9909674	.13	71	.6709	.9924081	.24
32	.4968	.9910030	.14	72	.7254	.9924322	.24
33	.5785	.9910392	.14	73	.7774	.9924552	.24
34	.6614	.9910760	.14	74	.8267	.9924769	.24
35	979.7455	.9911133	32.14	75	982.8734	.9924976	32.25
3 6	.8308	.9911511	.15	76	.9173	.9925170	.25
37	.9170	.9911893	.15	77	.9585	.9925351	.25
38	980.0041	.9912279	.15	78	.9968	.9925521	.25
39	.0919	.9912668	.15	79	983.0322	.9925678	.25
40	980.1805	.9913060	32.15	80	983.0647	.9925821	32.25
41	.2696	.9913455	.16	81	.0942	.9925951	.25
42	.3591	.9913852	.16	82	.1207	.9926068	.25
43	.4490	.9914250	.17	83	.1442	.9926172	.25
44	.5391	.9914649	.17	84	.1645	.9926262	.26
45	980.6294	.9915049	32.17	85	983,1818	.9926338	32.26
46	.7197	.9915449	.18	86	.1960	.9926402	.26
47	.8098	.9915848	.18	87	.2071	.9926450	.26
48	.8998	.9916246	.18	88	.2150	.9926485	.26
49	.9894	.9916643	.18	90	983,2213	.9926513	.26
		17710010			, 50.2210	.7720010	.20

TABLE 803.—FREE-AIR CORRECTION OF ACCELERATION OF GRAVITY FOR ALTITUDE

To reduce $\log g$ (cm per sec per sec) to $\log g$ (ft per sec per sec) add $\log 0.03280833 = 8.5159842 - 10$.

The standard value of gravity, used in barometer reductions, etc., is 980.665. It was adopted by the International Committee on Weights and Measures in 1901. It corresponds nearly to latitude 45° sca-level.

 $-0.0003086~\rm cm~sec^{-2}~m^{-1}$ when altitude is in meters. $-0.000003086~\rm ft~sec^{-2}~ft^{-1}$ when altitude is in feet.

Altitude	Correction	Altitude	Correction
200 m	—.0617 cm/sec ²	200 ft	000617 ft/sec ²
300	.0926	300	.000926
400	.1234	400	.001234
500	.1543	500	.001543
600	.1852	600	.001852
700	.2160	700	.002160
800	.2469	800	.002469
900	.2777	900	.002777

^{*} Prepared under the direction of K. T. Adams, U. S. Coast and Geodetic Survey.

Name					Gravity	, cm/sec²
Santiago, Chile 33°27.1 S 70°39.8 W 541.3 979.429 979.596 Rio, Brazil 22 53.7 S 43 13.4 W 29.0 978.805 978.814 Tacna, Peru 18 01.0 S 70 15.0 W 557.1 978.298 978.470 Chala, Peru 15 49.0 S 74 18.5 W 14.0 978.429 978.480 Chala, Peru 15 49.0 S 74 18.5 W 14.0 978.452 978.433 Minkindani, E. Africa 10 16.6 S 40 07.6 E 3 978.224 978.235 Minkindani, E. Africa 10 16.6 S 40 07.6 E 3 978.224 978.225 Timor Sea 9 36 S 128 07 E 340 978.233 978.233 Minkindani, E. Africa 7 54.9 S 39 39.4 E 5 978.105 978.104 Mafia, E. Africa 7 54.9 S 39 39.4 E 5 978.105 978.104 Mafia, E. Africa 7 54.9 S 30 39.4 E 5 978.168 978.104 Mafia, E. Africa 7 54.9 S 30 39.4 E 5 978.168 978.104 Mafia, E. Africa 7 54.9 S 30 39.4 E 5 978.108 978.105 Mailwa, E. Africa 5 04.2 S 31 47.5 E 1080 977.783 978.104 Mailwa, E. Africa 1 0.7 S 36 40 E 2193 977.412 978.089 Marigal, E. Africa 0 28 N 35 59 E 1036 977.664 977.984 Kanifuri, India 5 22.2 N 73 19.2 E 1 978.107 978.107 Indian Ocean 7 56 N 68 46 E -4390 978.102 978.102 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.107 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.107 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.107 Pacific Ocean 9 52 N 132 46 E -6050 978.212 978.212 Pacific Ocean 19 58 N 164 56 W -4960 978.660 978.860 Pacific Ocean 19 58 N 164 56 W -4960 978.660 978.860 Pacific Ocean 19 58 N 164 56 W -4960 978.860 978.860 Pacific Ocean 19 58 N 164 56 W -4960 978.860 978.891 Pacific Ocean 19 58 N 164 56 W -4960 978.660 978.860 Pacific Ocean 19 58 N 164 56 W -4960 978.660 978.860 Pacific Ocean 19 58 N 164 56 W -4960 978.660 978.860 Pacific Ocean 22 4 N 90 11.7 W -2299 979.941 978.650 Pacific	Nama	T adda. J.	Y 1. 1		01 .	
Rio, Brazil 22 53.7 S 43 13.4 W 29.0 978.805 978.814 Tacna, Peru 18 01.0 S 70 15.0 W 14.0 978.452 978.456 Lima, Peru 12 01.1 S 70 02.3 W 143.6 978.289 978.333 Minkindani, E. Africa 10 16.6 S 00 07.6 E 3 978.224 978.225 Timor Sea 9 36 S 128 07 E 340 978.233 978.225 Trimor Sea 9 36 S 128 07 E 340 978.293 978.222 978.223 Timor Sea 9 36 S 128 07 E 30 978.058 978.104 Mafia, E. Africa 7 54.9 S 30 94 E 5 978.105 978.102 Kaliwa, E. Africa 1 45 S </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-			
Tacna, Peru 18 01.0 S 70 15.0 W 57.1 978.298 978.456 Lima, Peru 12 01.1 S 77 02.3 W 14.0 978.452 978.456 Lima, Peru 12 01.1 S 77 02.3 W 143.6 978.228 978.333 Minkindani, E. Africa 10 16.6 S 40 07.6 E 3 978.224 978.233 Trujillo, Peru 8 07.0 S 79 02.3 W 29.4 978.095 978.104 Mafia, E. Africa 7 5.5 106.55 E 230 978.292 978.292 Kaliwa, E. Africa 5 0.42 S 31 47.5 E 180 977.783 978.116 Banda Sea 1 45 S 126.5 F —1390 978.058 978.058 Limuru, E. Africa 1 0.7 S 6 40	Di- Di	33 27.1 5				
Chala, Peru 15 49.0 S 74 1.85 W 14.0 978.452 978.459 978.333 Minkindani, Peru 12 0.1 S 77 0.2 3 W 143.6 978.289 978.333 Minkindani, E. Africa 10 16.6 S 40 07.6 E 3 978.224 978.225 Timor Sea 9 36 S 128 07 E 30 978.233 978.233 978.233 978.233 978.233 978.233 978.233 978.292 878.292 978.292 878.292 978.104 Mafia, E. Africa 7 54.9 S 39 39.4 E 5 978.168 978.104 Mariani Ocean 7 7 55.9 S 106 55 E 230 978.292 978.292 978.292 978.292 978.292 978.292 978.292 978.292 978.292 978.292 978.292 978.102 978.102 978.102 978.102 978.102 978.102 978.102 978.102 978.116 98.116 98.116 98.116 978.202 978.202 978.202 97						
Lima, Peru 12 01.1 S 77 02.3 W 143.6 978.239 978.333 Minkindani, E. Africa 10 16.6 S 40 07.6 E 3 978.224 978.225 Timor Sea 9 36 S 128 07 E 340 978.233 978.233 978.233 978.233 978.233 978.233 978.233 978.233 978.233 978.292 978.104 978.104 978.104 978.104 978.104 978.104 978.105 978.104 978.105 978.104 978.105 978.104 978.105 978.104 978.105 978.104 978.105 978.104 978.105 978.104 978.105 978.104 978.105 978.104 978.104 978.104 978.104 978.104 978.104 978.104 978.107 978.104 978.102 978.102 978.102 978.102 978.102 978.102 978.102 978.107 978.102 978.107 978.107 978.102 978.102 978.102 978.102 978.102 978.102 978.102 978.102 978.102 978.102 978.102 97						
Minkindani, E. Africa 10 16.6 S 40 07.6 E 3 978.224 978.225 978.233 Timor Sea 9 36 S 128 07 E 3 978.234 978.233 978.233 Trujillo, Peru 8 07.0 S 79 02.3 W 29.4 978.095 978.104 Mafia, E. Africa 7 54.9 S 39 39.4 E 5 978.168 978.169 Indian Ocean 7 35 S 106 55 E 230 978.292 978.292 Kaliwa, E. Africa 5 04.2 S 31 47.5 E 1080 977.783 978.116 Banda Sea 1 45 S 126 57 E -1390 978.058 978.058 Limuru, E. Africa 0 28 N 35 59 E 1036 977.664 977.984 Kanifuri, India 5 22.2 N 73 19.2 E 1 978.107 978.102 Indian Ocean 7 56 N 8 46 E -4390 978.102 978.102 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.107 Pacific Ocean 9 52 N 132 46 E -6050 978.212 978.222 Pacific Ocean 13 35 N 95 27 W -3870 978.309 978.550 Dharwar, India 15 27.						
Timor Sea 9 36 S 128 07 E 340 978.233 978.233 978.233 978.233 978.233 978.233 978.233 978.233 978.233 978.233 978.104 Mafia, E. Africa 7 54.9 S 39 39.4 E 5 978.168 978.104 978.103 978.202 978.202 978.202 978.202 978.202 978.202 978.202 978.202 978.202 978.202 978.202 978.202 978.202 978.202 978.116 978.103 977.783 978.116 978.105 978.702 978.816 978.802 978.202 978.202 978.202 978.202 978.202 978.105 978.116 80 978.202 978.202 978.202 978.105 978.104 978.802 978.816 978.802 978.816 978.802 978.816 978.202 978.202 978.202 978.202 978.802 978.808 978.808 978.808 978.808 978.808 978.808 978.808 978.808 978.808 978.808 978.808 978.808 978.808 978.808 977.664<						
Trujillo, Peru 8 07.0 S 79 02.3 W 29.4 978.095 978.104 Mafia, E. Africa 7 54.9 S 39 39.4 E 5 978.168 978.169 978.104 Mafia, E. Africa 7 54.9 S 39 39.4 E 5 978.168 978.169 978.105 978.106 S5 E - 230 978.292 978.292 Kaliwa, E. Africa 5 04.2 S 31 47.5 E 1080 977.783 978.116 Sanda Sea 1 45 S 326 57 E - 1390 978.058 978.058 Limuru, E. Africa 1 07 S 36 40 E 2193 977.412 978.089 Marigal, E. Africa 0 28 N 35 59 E 1036 976.664 977.984 Kanifuri, India 522.2 N 3 19.2 E 1 978.107 978.107 10 Junior Cocan 7 56 N 68 46 E -4390 978.102 978.102 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.107 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.102 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.102 Punalur, India 13 35 N 95 27 W -3870 978.360 978.360 Dharwar, India 15 27.6 N 75 00.2 E 728 978.839 978.350 Dharwar, India 15 27.6 N 75 00.2 E 728 978.839 978.551 Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58 N 164 56 W -4960 978.660 978.660 Atlantic Ocean 20 44 N 65 37 W -5510 978.660 978.804 Atlantic Ocean 22 30.9 N 80 30.4 W 67 978.826 978.894 978.594 Atlantic Ocean 22 30.9 N 80 30.4 W 67 978.826 978.894 978.993 Dholpur, India 26 42.0 N 77 54.8 E 176 978.999 979.054 Nagasaki, Japan 32 44.7 N 129 52.2 E 30 979.94 979.063 Mount Wilson, Calif. 34 13.4 N 118 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.925 Pacilla, Spain 37 23.0 N 5 59.5 W 11 979.965 979.968 Denver, Colo. 39 40.6 N 104 57.1 W 1639.5 979.062 979.968 Denver, Colo. 39 40.6 N 104 57.1 W 1639.5 979.063 980.428 Atlantic Ocean 43 14 N 119 36 W -4100 978.520 979.988 Denver, Colo. 39 40.6 N 104 57.1 W 1639.5 979.063 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.138 981.291 Vladimirskaja, Siberia 56 28 N 84 57 E 125 981.582 981.621 Oslo, Norway 55 47 N 10 43.5 E 28 981.927 981.936 55 Michael, Alaska 63 28.5 N 162 02.4 W 1 1 982.197 982.197						
Mafia, É. Africa 7 549 S 39 39.4 E 5 978.168 978.169 Indian Ocean 7 55 S 106 55 E — 230 978.292 978.292 Kaliwa, E. Africa 5 04.2 S 31 47.5 E 1080 977.833 978.116 Banda Sea 1 45 S 126 57 E — 1390 978.058 978.058 Limuru, E. Africa 1 0 7 S 36 40 E 2193 977.412 978.089 Marigal, E. Africa 0 28 N 35 59 E 1036 977.664 977.984 Kanifuri, India 5 22.2 N 73 19.2 E 1 978.107 978.107 Indian Ocean 7 56 N 68 46 E — 4390 978.102 978.107 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.107 978.107 Pacific Ocean 9 52 N 132 46 E — 6050 978.212 978.212 Pacific Ocean 1 3 35 N 95 27 W — 3870 978.360 978.501 Dharwar, India 15 27.6 N 75 00.2 E 728 978.383 978.539						
Indian Ocean						
Kaliwa, E. Africa 5 04.2 S 31 47.5 E 1080 977.783 978.116 Banda Sea 1 45 S 126 57 E —1390 978.058 978.058 Limuru, E. Africa 1 07 S 36 40 E 2193 977.412 978.089 Marigal, E. Africa 0 28 N 35 59 E 1036 977.664 977.984 Kanifuri, India 5 22.2 N 73 19.2 E 1 978.107 978.107 Indian Ocean 7 56 N 68 46 E —4390 978.102 978.102 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.117 Pacific Ocean 9 52 N 132 46 E —6050 978.212 978.212 Pacific Ocean 13 35 N 95 27 W —3870 978.360 978.360 Dharwar, India 15 27.6 N 75 00.2 E 728 978.183 978.407 Musmar, E. Africa 18 13.0 N 35 58 E 493 978.360 978.360 Pacific Ocean 19 58 N 164 56 W —4960 978.660						
Banda Sea 1 45 S 126 57 E —1390 978.058 978.058 Limuru, E. Africa 1 07 S 36 40 E 2193 977.412 978.089 Marigal, E. Africa 0 28 N 35 59 E 1036 977.664 977.984 Kanifuri, India 5 22.2 N 73 19.2 E 1 978.107 978.107 Indian Ocean 7 56 N 68 46 E —4390 978.102 978.102 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.102 978.102 Punalur, India 9 52 N 132 46 E —6050 978.212 978.212 Pacific Ocean 13 35 N 95 27 W —3870 978.360 978.360 Dharwar, India 15 27.6 N 75 00.2 E 728 978.183 978.494 Musmar, E. Africa 18 13.0 N 35 58 E 493 978.399 978.551 Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58 N 164 56 W —4960 978.660 978.660 <	Volume E Africa					
Limuru, E. Africa 1 07 S 36 40 E 2193 977.412 978.089 Marigal, E. Africa 0 28 N 33 59 E 1 036 977.664 977.984 Kanifuri, India 5 22.2 N 73 19.2 E 1 978.107 978.107 Indian Ocean 7 56 N 68 46 E -4390 978.102 978.102 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.117 Pacific Ocean 9 52 N 132 46 E -6050 978.212 978.212 Pacific Ocean 13 35 N 95 27 W -3870 978.360 978.360 Dharwar, India 15 27.6 N 75 00.2 E 728 978.839 978.407 Musmar, E. Africa 18 13.0 N 35 58 E 493 978.399 978.551 Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58 N 164 56 W -4960 978.660 978.660 Atlantic Ocean 20 44 N 65 37 W -5510 978.804 978.704 Santiago, Cuba 22 30.9 N 80 30.4 W 67 978.826 978.847	Panda Cas					
Marigal, E. Africa 0 28 N 35 59 E 1036 977.664 977.984 Kanifuri, India 5 22.2 N 73 19.2 E 1 978.107 978.107 Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.117 Pacific Ocean 9 52 N 132 46 E -6050 978.212 978.212 Pacific Ocean 13 35 N 95 27 W -3870 978.360 978.360 Dharwar, India 15 27.6 N 75 00.2 E 728 978.183 978.497 Musmar, E. Africa 18 13.0 N 35 58 E 493 978.399 978.551 Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58 N 164 56 W 4960 978.660 978.660 Atlantic Ocean 20 44 N 65 37 W -5510 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Kanifuri, India 5 22.2 N 73 19.2 E 1 978.107 978.107 Indian Ocean 7 56 N 68 46 E —4390 978.102 978.102 Punalur, India 9 01.0 N 76 55.8 E 34 978.102 978.102 Pacific Ocean 9 52 N 132 46 E —6050 978.212 978.212 Pacific Ocean 13 35 N 95 27 W —3870 978.360 978.360 Dharwar, India 15 27.6 N 75 00.2 E 728 978.183 978.407 Musmar, E. Africa 18 13.0 N 35 58 E 493 978.399 978.551 Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58. N	Marigal E Africa					
Indian Ocean						
Punalur, India 9 01.0 N 76 55.8 E 34 978.107 978.117 Pacific Ocean 9 52 N 132 46 E -6050 978.212 978.212 Pacific Ocean 13 35 N 95 27 W -3870 978.360 978.360 Dharwar, India 15 27.6 N 75 00.2 E 728 978.183 978.407 Musmar, E. Africa 18 13.0 N 35 58 E 493 978.399 978.551 Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58 N 164 56 W -4960 978.660 978.660 Atlantic Ocean 20 44 N 65 37 W -5510 978.704 978.704 Santiago, Cuba 22 30.9 N 80 30.4 W 67 978.826 978.847 Key West, Fla. 23 21 N 47 05 W -3550 978.880 978.890 Nagasaki, Japan 32 44.7 N 129 52.3 E 30 979.594 979.054 Nagasaki, Japan 32 44.7 N 129 52.3 E 30 979.594 979.603						
Pacific Ocean 9 52 N 132 46 E -6050 978.212 978.212 Pacific Ocean 13 35 N 95 27 W -3870 978.360 978.360 Dharwar, India 15 27.6 N 75 00.2 E 728 978.183 978.407 Musmar, E. Africa 18 13.0 N 35 58 E 493 978.399 978.551 Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58 N 164 56 W -4960 978.660 978.650 Pacific Ocean 20 44 N 65 W -4960 978.860 978.704 Santiago, Cuba 22 30.9 N 80 30.4 W -67 978.826 978.874 Atlantic Ocean 23 21 N 47 05 W -3550 978.880 978.890 Key West, Fla. 24 33.6 N 81 48.4 W 1 978.97						
Pacific Ocean 13 35 N 95 27 W —3870 978.360 978.360 Dharwar, India 15 27.6 N 75 00.2 E 728 978.183 978.407 Musmar, E. Africa 18 13.0 N 35 58 E 493 978.399 978.551 Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58 N 164 56 W —4960 978.660 978.660 Atlantic Ocean 20 44 N 65 37 W —5510 978.704 978.704 Santiago, Cuba 22 30.9 N 80 30.4 W 67 978.826 978.847 Atlantic Ocean 23 21 N 47 05 W —3550 978.880 978.880 Key West, Fla. 24 33.6 N 81 48.4 W 1 978.973 979.973 Dholpur, India 26 42.0 N 77 54.8 E 176		, 0210 21				
Dharwar, India 15 27.6 N 75 00.2 E 728 978.183 978.407 Musmar, E. Africa 18 13.0 N 35 58 E 493 978.399 978.551 Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58 N 164 56 W —4960 978.660 978.660 Atlantic Ocean 20 44 N 65 37 W —5510 978.704 978.704 Santiago, Cuba 22 30.9 N 80 30.4 W 67 978.826 978.847 Atlantic Ocean 23 21 N 47 05 W —3550 978.880 978.880 Key West, Fla. 24 33.6 N 81 48.4 W 1 978.973 978.973 Dholpur, India 26 42.0 N 77 54.8 E 176 978.999 979.054 Nagasaki, Japan 32 44.7 N 129 52.2 E 30 979.594 979.603 Mount Wilson, Calif. 34 13.4 N 118 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792						
Musmar, E. Africa 18 13.0 N 35 58 E 493 978.399 978.551 Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58 N 164 56 W —4960 978.660 978.660 Atlantic Ocean 20 44 N 65 37 W —5510 978.704 978.704 Santiago, Cuba 22 30.9 N 80 30.4 W 67 978.826 978.847 Atlantic Ocean 23 21 N 47 05 W —3550 978.880 978.880 Key West, Fla. 24 33.6 N 81 48.4 W 1 978.973 978.973 Dholpur, India 26 42.0 N 77 54.8 E 176 978.999 979.054 Nagasaki, Japan 32 44.7 N 129 52.2 E 30 979.594 979.603 Mount Wilson, Calif. 34 13.4 N 118 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792 Atlantic Ocean 36 23 N 26 43 W —3610 979.890 979.890 Sevilla, Spain 37 23.0 N 5 9						
Tacubaya, Mexico 19 24.3 N 99 11.7 W 2299 977.941 978.650 Pacific Ocean 19 58 N 164 56 W —4960 978.660 978.660 Atlantic Ocean 20 44 N 65 N W —5510 978.704 978.704 Santiago, Cuba 22 30.9 N 80 30.4 W 67 978.826 978.847 Atlantic Ocean 23 21 N 47 05 W —3550 978.880 978.880 Key West, Fla. 24 33.6 N 81 48.4 W 1 978.973 978.973 Dholpur, India 26 42.0 N 77 54.8 E 176 978.999 979.054 Nagasaki, Japan 32 44.7 N 129 52.2 E 30 979.594 979.603 Mount Wilson, Calif. 34 13.4 N 118 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792 Atlantic Ocean 36 23 N 26 43 W —3610 979.890 979.890 Sevilla, Spain 37 23.0 N 5 55 W 11 979.965 979.668 Denver, Colo. 39 40 6 N 10 457.1 W 1639.5 979.612 980.118 Buffalo, N. Y. 42 57.1 N 78 49.3 W						
Pacific Ocean 19 58 N 164 56 W -4960 978.660 978.660 Atlantic Ocean 20 44 N 65 37 W -5510 978.704 978.704 Santiago, Cuba 22 30.9 N 80 30.4 W 67 978.826 978.847 Atlantic Ocean 23 21 N 47 05 W -3550 978.880 978.880 Key West, Fla. 24 33.6 N 81 48.4 W 1 978.973 978.973 Dholpur, India 26 42.0 N 77 54.8 E 176 978.999 979.054 Nagasaki, Japan 32 44.7 N 129 52.7 E 30 979.594 979.603 Mount Wilson, Calif. 34 13.4 N 18 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792 Atlantic Ocean 36 23 N 26 43 W -3610 979.890 979.890 Sevilla, Spain 37 23.0 N 5 59.5 W 11 979.965 979.968 Denver, Colo. 39 40 6 N 104 57.1 W 1639.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Atlantic Ocean 20 44 N 65 37 W —5510 978.704 978.704 Santiago, Cuba 22 30.9 N 80 30.4 W 67 978.826 978.847 Atlantic Ocean 23 21 N 47 05 W -3550 978.880 978.880 Key West, Fla. 24 33.6 N 81 48.4 W 1 978.973 978.973 Dholpur, India 26 42.0 N 77 54.8 E 176 978.999 979.054 Nagasaki, Japan 32 44.7 N 129 52.2 E 30 979.594 979.603 Mount Wilson, Calif. 34 13.4 N 118 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792 Atlantic Ocean 36 23 <						
Santiago, Cuba 22 30.9 N 80 30.4 W 67 978.826 978.847 Atlantic Ocean 23 21 N 47 05 W -3550 978.880 978.880 Key West, Fla. 24 33.6 N 81 48.4 W 1 978.973 978.973 Dholpur, India 26 42.0 N 77 54.8 E 176 978.999 979.054 Nagasaki, Japan 32 44.7 N 129 52.2 E 30 979.594 979.603 Mount Wilson, Calif. 34 13.4 N 118 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792 Atlantic Ocean 36 23 N 26 43 W -3610 979.890 979.890 Sevilla, Spain 37 23.0 N 5 59.5 W 11 979.965 979.968 Denver, Colo. 39 40 6 N 104 57.1 W 1639.5 979.612 980.118 Buffalo, N. Y. 42 57.1 N 78 49.3 W 210 980.363 980.428 Atlantic Ocean 43 14 N 19 36 W -4100 978.520 978.520 Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622						
Atlantic Ocean 23 21 N 47 05 W —3550 978.880 978.880 Key West, Fla. 24 33.6 N 81 48.4 W 1 978.973 978.973 978.973 978.973 978.973 978.973 978.973 978.973 978.973 978.973 978.973 978.973 978.973 978.973 979.954 978.999 979.054 978.999 979.594 979.603 979.594 979.603 979.594 979.603 979.603 979.594 979.603 979.603 979.783 980.418 979.253 979.783 979.783 979.783 979.468 979.792 979.468 979.792 979.468 979.792 979.468 979.792 979.800 979.890 979.890 979.890 979.890 979.968 979.968 979.968 979.968 979.968 979.968 979.968 979.968 979.968 979.968 979.9612 980.118 980.681 980.681 980.681 980.681 980.681 980.681 980.681 980.682 978.520 978.520 978.520 978.520 97						
Key West, Fla. 24 33.6 N 81 48.4 W 1 978.973 978.973 Dholpur, India 26 42.0 N 77 54.8 E 176 978.999 979.054 Nagasaki, Japan 32 44.7 N 129 52.2 E 30 979.594 979.603 Mount Wilson, Calif. 34 13.4 N 118 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792 Atlantic Ocean 36 23 N 26 43 W -3610 979.890 979.890 Sevilla, Spain 37 23.0 N 5 59.5 W 11 979.965 979.968 Denver, Colo. 39 40 6 N 104 57.1 W 1639.5 979.612 980.118 Buffalo, N. Y. 42 57.1 N 78 49.3 W 210 980.363 980.428 Atlantic Ocean 43 14 N 19 36 W -4100 978.520 978.520 Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 <						
Dholpur, India 26 42.0 N 77 54.8 E 176 978.999 979.054 Nagasaki, Japan 32 44.7 N 129 52.3 E 30 979.594 979.603 Mount Wilson, Calif. 34 13.4 N 118 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792 Atlantic Ocean 36 23 N 26 43 W -3610 979.890 979.890 Sevilla, Spain 37 23.0 N 5 59.5 W 11 979.965 979.968 Denver, Colo. 39 40 6 N 104 57.1 W 1639.5 979.612 980.118 Buffalo, N. Y. 42 57.1 N 78 49.3 W 210 980.363 980.428 Atlantic Ocean 43 14 N 19 36 W 4100 978.520 978.520 Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204 Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981						
Nagasaki, Japan 32 44.7 N 129 52.2 E 30 979.594 979.603 Mount Wilson, Calif. 34 13.4 N 118 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792 Atlantic Ocean 36 23 N 26 43 W —3610 979.890 979.890 Sevilla, Spain 37 23.0 N 5 59.5 W 11 979.965 979.968 Denver, Colo. 39 40 6 N 104 57.1 W 1639.5 979.612 980.118 Buffalo, N. Y. 42 57.1 N 78 49.3 W 210 980.363 980.428 Atlantic Ocean 43 14 N 19 36 W —4100 978.520 978.520 Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204 Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981.291 Vladimirskaja, Siberia 54 57 N 85 9 E 265 981.424 981.506 Tomsk, Siberia 56 28 N 84 57 E						
Mount Wilson, Calif. 34 13.4 N 118 03.4 W 1719.4 979.253 979.783 Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792 Atlantic Ocean 36 23 N 26 43 W -3610 979.890 979.890 Sevilla, Spain 37 23.0 N 5 59.5 W 11 979.965 979.968 Denver, Colo. 39 40 6 N 104 57.1 W 1639.5 979.612 980.118 Buffalo, N. Y. 42 57.1 N 78 49.3 W 210 980.363 980.428 Atlantic Ocean 43 14 N 19 36 W -4100 978.520 978.520 978.520 978.520 978.520 978.520 978.520 978.520 978.520 980.648 980.648 980.622 980.648 980.648 980.622	Nagasaki Janan	32 44 7 N				
Batna, Algeria 35 33.0 N 6 10 E 1050 979.468 979.792 Atlantic Ocean 36 23 N 26 43 W —3610 979.890 979.890 Sevilla, Spain 37 23.0 N 5 59.5 W 11 979.965 979.968 Denver, Colo. 39 40 N 10 57.1 W 1639.5 979.612 980.118 Buffalo, N. Y. 42 57.1 N 78 49.3 W 210 980.363 980.428 Atlantic Ocean 43 14 N 19 36 W —4100 978.520 978.520 978.520 Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204						
Atlantic Ocean 36 23 N 26 43 W -3610 979.890 979.890 Sevilla, Spain 37 23.0 N 5 59.5 W 11 979.965 979.968 Denver, Colo. 39 40 6 N 104 57.1 W 1639.5 979.612 980.118 Buffalo, N. Y 42 57.1 N 78 49.3 W 210 980.363 980.428 Atlantic Ocean 43 14 N 19 36 W -4100 978.520 978.520 Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204 Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981.291 Vladimirskaja, Siberia 54 57 N 85 9 E 265 981.424 981.506 Tomsk, Siberia 56 28 N 84 57 E 125 981.582 981.621 Oslo, Norway 59 54.7 N 10 43.5 E 28 981.927 982.197 St. Michael, Alaska 63 28.5 N 162 02.4 W 1 982.197 982.197						
Sevilla, Spain 37 23.0 N 5 55.5 W 11 979.965 979.968 Denver, Colo. 39 40 6 N 104 57.1 W 1639.5 979.612 980.118 Buffalo, N. Y. 42 57.1 N 78 49.3 W 210 980.363 980.428 Atlantic Ocean 43 14 N 19 36 W —4100 978.520 978.520 Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204 Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981.291 Vladimirskaja, Siberia 54 57 N 85 9 E 265 981.424 981.506 Tomsk, Siberia 56 28 N 84 57 E 25 981.582 981.621 Oslo, Nor						
Denver, Colo. 39 40 6 N 104 57.1 W 1639.5 979.612 980.118 Buffalo, N. Y. 42 57.1 N 78 49.3 W 210 980.363 980.428 Atlantic Ocean 43 14 N 19 36 W —4100 978.520 978.520 Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204 Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981.291 Vladimirskaja, Siberia 54 57 N 85 59 E 265 981.582 981.506 Tomsk, Siberia 56 28 N 84 57 E 125 981.582 981.621 Oslo, Norway 59 54.7 N 10 43.5 E 28 981.927 982.197 St. Michael, Alaska 63 28.5 N 162 02.4 W 1 982.197 982.197		00 =0				979.968
Buffalo, N. Y. 42 57.1 N 78 49.3 W 210 980.363 980.428 Atlantic Ocean 43 14 N 19 36 W —4100 978.520 978.520 Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204 Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981.291 Vladimirskaja, Siberia 54 57 N 85 59 E 265 981.424 981.506 Tomsk, Siberia 56 28 N 84 57 E 125 981.522 981.621 Oslo, Norway 59 54.7 N 10 43.5 E 28 981.927 981.936 St. Michael, Alaska 63 28.5 N 162 02.4 W 1 982.197 982.197						
Atlantic Ocean 43 14 N 19 36 W -4100 978.520 978.520 Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204 Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981.291 Vladimirskaja, Siberia 54 57 N 85 9 E 265 981.424 981.506 Tomsk, Siberia 56 28 N 84 57 E 125 981.522 981.621 Oslo, Norway 59 54.7 N 10 43.5 E 28 981.927 981.936 St. Michael, Alaska 63 28.5 N 162 02.4 W 1 982.197 982.197				210	980.363	980,428
Ottawa, Ontario 45 23.6 N 75 43.0 W 83 980.622 980.648 Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204 Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981.291 Vladimirskaja, Siberia 54 57 N 85 59 E 265 981.424 981.506 Tomsk, Siberia 56 28 N 84 57 E 125 981.582 981.621 Oslo, Norway 59 54.7 N 10 43.5 E 28 981.927 981.936 St. Michael, Alaska 63 28.5 N 162 02.4 W 1 982.197 982.197				-4100	978.520	978.520
Müchen, Germany 48 09 N 11 37 E 525 980.733 980.895 Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204 Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981.291 Vladimirskaja, Siberia 54 57 N 85 99 E 265 981.424 981.506 Tomsk, Siberia 56 28 N 84 57 E 125 981.582 981.621 Oslo, Norway 59 54.7 N 10 43.5 E 28 981.927 981.936 St. Michael, Alaska 63 28.5 N 162 02.4 W 1 982.197			75 43.0 W	83	980.622	980.648
Greenwich, England 51 28.6 N 0 00.3 E 47 981.189 981.204 Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981.291 Vladimirskaja, Siberia 54 57 N 85 59 E 265 981.424 981.506 Tomsk, Siberia 56 28 N 84 57 E 125 981.582 981.621 Oslo, Norway 59 54.7 N 10 43.5 E 28 981.927 981.936 St. Michael, Alaska 63 28.5 N 162 02.4 W 1 982.197 982.197	Müchen, Germany	48 09 N		525	980.733	980.895
Saskatoon, Saskatchewan 52 07.8 N 106 38.1 W 497 981.138 981.291 Vladimirskaja, Siberia 54 57 N 85 9 E 265 981.424 981.506 Tomsk, Siberia 56 28 N 84 57 E 125 981.582 981.621 Oslo, Norway 59 54.7 N 10 43.5 E 28 981.927 981.936 St. Michael, Alaska 63 28.5 N 162 02.4 W 1 982.197 982.197	Greenwich, England	51 28.6 N	0 00.3 E	47	981.189	981.204
Vladimirskaja, Siberia 54 57 N 85 59 E 265 981.424 981.506 Tomsk, Siberia 56 28 N 84 57 E 125 981.582 981.621 Oslo, Norway 59 54.7 N 10 43.5 E 28 981.927 981.936 St. Michael, Alaska 63 28.5 N 162 02.4 W 1 982.197 982.197		52 07.8 N	106 38.1 W	497	981.138	
Tomsk, Siberia		54 57 N	85 59 E	265	981.424	981.506
Oslo, Norway 59 54.7 N 10 43.5 E 28 981.927 981.936 St. Michael, Alaska 63 28.5 N 162 02.4 W 1 982.197 982.197				125	981.582	
St. Michael, Alaska			10 43.5 E	28		
	St. Michael, Alaska	63 28.5 N	162 02.4 W			
	Arctic Red River, N. T	67 26.6 N	133 44.3 W	41	982.438	982.451
Whales Point, Spitzbergen 77 30.4 N 20 58.8 E 458 982.897 983.038			20 58.8 E			
Hellwald, Spitzbergen			20 50.2 E			
Ile de Rosse						
Arctic Ocean			19 25 E	-3402	983.096	983.096

^{*} For sea stations, the depth is recorded in this column; the observations were made in submarines and reduced to sea level.

TABLE 805.—ACCELERATION OF GRAVITY (g) IN THE UNITED STATES

The following table is abridged from the table of Principal Facts in U. S. Coast and Geodetic Survey Special Publication No. 244, Pendulum Gravity Data in the United States. The observed values depend on relative determinations and on an adopted value of 980.118 for the Commerce

Building Base in Washington, D. C.

There are also given two types of gravity anomalies. The free-air anomaly is the difference between the observed value of gravity and the theoretical values of gravity for the latitude of the station corrected for the elevation of the station. The isostatic anomaly is the difference between the observed values of gravity and the theoretical value of gravity for the latitude of the station corrected for the elevation of the station, topography and isostatic compensation in the earth's crust to a depth of 113.7 kilometers.

				Observed	Free-air	Isostatic
C4-4'	Latitude	T:4	Elevation	gravity	anomaly	anomaly
Station		Longitude	m 2040	gal	gal	gal
Atlanta, Ga	33°45′.3	84°23′.5	324.0	979.527	014	030
Austin, Tex. (university)		97 44.2	189	979.286	—.016	017
Baltimore, Md	39 17.8	76 37.3	30.5	980.114	+.005	+.002
Beaufort, N. C		76 39.8	1.5	979.732	+.011	026
Birmingham, Ala	33 30.8	86 48.8	179	979.539	027	038
Bismarck, N. Dak	46 48.5	100 47.1	514.4	980.628	006	001
Boise, Idaho		116 12.3	822.0	980.215	036	+.010
Boston, Mass.	42 21.6	71 03.8	22	980.399	+.014	+.002
Burbank, Okla.		96 41.0	345	979.788	+.003	001
Calais, Maine		67 16.9	38	980.634	.000	008
Cambridge, Mass	42 22.8	71 07.8	14	980.401	+.012	+.001
Charleston, S. C	32 47.2	79 56.0	6.1	979.549	010	026
Charlottesville, Va		78 30.3	166	979.941	015	017
Chicago, Ill.	41 47.4	87 35.9	182	980.281	003	004
Cincinnati, Ohio		84 25.3	245	980.007	022	024
Cleveland, Ohio	41 30.4	81 36.6	210	980.244	006	006
Cloudland, Tenn	36 06.2	82 07.9	1890	979.386	+.129	001
Colorado Springs, Colo		104 49.5	1841.8	979.493	017	008
Columbus, Ga		84 57.6	73.5	979.526	+.015	+.014
Columbus, Ohio		82 59.4	231.0	980.092	014	014
Denver, Colo.		104 57.1	1639.5	979.612	034	016
Duluth, Minn.	46 47.0	92 06.4	215.8	980.761	+.037	+.048
Durham, N. C		78 56	126	979.838	+.046	+.034
El Paso, Tex.	31 46.3	106 29.0	1146.0	979.127	+.002	+.009
Empire State Building, N. Y	40 44.9	73 59.2	16.2	980.269	+.027	+.020
Eugene, Oreg	44 02.7	123 05.6	129	980.493	010	+.005
Fort Dodge, Iowa		94 11.4	340.1	980.314	+.014	+.011
Grand Canyon, Ariz		112 06.8	847.0	979.466	111	014
Grand Canyon, Wyo	44 43.7	110 29.7	2386.0	979.902	+.033	002
Grand Rapids, Mich	42 58.0	85 39.5	235.8	980.375	+.002	004
Green River, Utah	38 59.4	110 09.9	1243	979.639	068	025
Iowa City, Iowa		91 32.2	212.3	980.250	013	012
Ithaca, N. Y	42 27.1	76 29.0	246.9	980.303	020	022
Key West, Fla.	24 33.6	81 48.4	1	978.973	+.034	011
Knoxville, Tenn.	35 57.7	83 55	280	979.715	027	026
Lancaster, N. H	44 29.5	71 34.3	261.8	980.489	014	014
Las Vegas, N. Mex	35 35.8	105 13.1	1959.6	979.207	+.015	003
Little Rock, Ark		92 16.4	89.0	979.724	+.027	+.028
Madison, Wis.	43 04.6	89 24.0	270	980.368	005	008
Memphis, Tenn.	35 08.7	90 03.3	80.3	979.743	+.010	+.008
Miles City, Mont	46 24.2	105 50	718	980.542	+.008	+.028
Minneapolis, Minn.		93 13.9	256.1	980.600	+.052	+.055
Mitchell, S. Dak	43 41.8	98 01.8	408	980.378	003	002
Mount Hamilton, Calif	37 20.4	121 38.6	1281.7	979.663	+.112	004
New Orleans, La		90 04.3	2.4	979.326	007	020
New York, N. Y		73 57.7	38.1	980.270	+.029	+.019
Oberlin, Ohio		82 13.2	248	980.208	011	013
Philadelphia, Pa	39 57.1	75 11.7	15.8	980.199	+.028	+.018
Pike's Peak, Colo	38 50.4	105 02.5	4293.1	978.957	+.203	+.018
Pittsburgh, Pa.		80 00.6	235	980.121	027	027
Prestonsburgh, Ky	3/ 40.6	82 45.6	193	979.884	032	028
Princeton, N. J	40 21.0	74 39.5	64.0	980.181	011	— .025

(continued)

TABLE 805.—ACCELERATION OF GRAVITY (g) IN THE UNITED STATES (concluded)

Station Richmond, Va. St. Louis, Mo. St. Petersburg, Fla. Salt Lake City, Utah. San Francisco, Calif. Seattle, Wash. (university) Sheridan, Wyo. Smith College, Mass. State College, Pa. Terre Haute, Ind. Traverse City, Mich. Wallace, Kans.	Latitude 37°32'2 38 38.0 27 48.9 40 46.1 37 37.5 47 39.6 44 48.0 42 19.0 40 47.9 39 28.7 44 45.8 38 54.7	Longitude 77°26′1 90 12.2 82 40.2 111 53.8 122 25.7 122 18.3 106 58.7 72 38.2 77 51.8 87 23.8 85 37.2 101 35.4	Elevation m 29.9 153.9 15 1322 114.3 58 1149.9 54.6 357.8 150.9 180.1 1005	Observed gravity gal 979,963 980.004 979.191 979,806 979.968 980.736 980.244 980.376 980.127 980.075 980.553 979,758	Free-air anomaly gal +.009 008 +.025 035 +.018 115 012 +.005 014 013 +.001	Isostatic anomaly gal .000 .000 .007 +.006 +.006022095 +.010 +.006014011 +.001016
Washington, D. C.: Geophysical Laboratory National Bureau of Standards. Smithsonian Institution Wheeling, W. Va. Winnemucca, Nev. Worcester, Mass. Wright Field, Ohio. Yuma, Ariz.	38 56.6	77 03.4	88.1	980.104	+.044	+.036
	38 56.5	77 03.9	95.1	980.100	+.042	+.034
	38 53.3	77 01.5	10.4	980.118	+.039	+.038
	40 04.0	80 43.3	205	980.088	035	032
	40 58.4	117 43.8	1311	979.847	016	012
	42 16.5	71 48.5	170.0	980.328	003	022
	39 46.6	84 05.9	247.8	980.094	+.010	+.008
	32 43.3	114 37.0	53.9	979.532	007	+.006

TABLE 806.--LENGTH OF SECONDS PENDULUM AT SEA LEVEL AND FOR DIFFERENT LATITUDES

Lat	Length cm	Log	Length in.	Log	Lat	Length cm	Log	Length in.	Log
0°	99.097	1.996061	39.014	1.591221	50°	99,404	1.997404	39.135	1.592565
5	99.101	1.996078	39.016	1.591243	55	99.449	1.997597	39.153	1.592765
10	99.113	1.996131	39.020	1.591287	60	99.490	1.99778	39.169	1.592943
15	99.132	1.996215	39.028	1.591376	65	99.527	1.997942	39.184	1.593109
20	99.158	1.996329	39.038	1.591488	70	99.560	1.998084	39.196	1.593242
25	99.190	1.996469	39.051	1.591632	75	99.586	1.998198	39.207	1.593364
30	99.228	1.996633	39.066	1.591799	80	99.605	1.998283	39.214	1.593441
35	99.269	1.996814	39.082	1.591977	85	99.618	1.998335	39.219	1.593497
40	99.313	1.997006	39.099	1.592166	90	99.622	1.998352	39.221	1.593519
45	99.359	1.997205	39.117	1.592366					

Calculated from Table 802 by the formula $l=g/\pi^2$. For each 100 ft of elevation subtract 0.000953 cm or 0.000375 in. or 0.0000313 ft. This table could also have been computed by either of the following formulas derived from the gravity formula at the top of Table 802.

 $l = 0.990961 (1 + 0.0052884 \sin^2 \phi - 0.0000059 \sin^2 2 \phi)$ meters.

 $[\]begin{array}{l} l = 0.990961 + .0052406 \sin^2 \phi - 0.0000058 \sin^2 2 \phi, \text{ meters.} \\ l = 39.014135 (1 + 0.0052884 \sin^2 \phi - 0.0000059 \sin^2 2 \phi) \text{ inches.} \\ l = 39.014135 + 0.2063214 \sin^2 \phi - 0.0002302 \sin^2 2 \phi, \text{ inches.} \end{array}$

The departures are from values of gravity normally expected, from Table 802.

		T31	G	Departure	
Latitude	Longitude	Elevation meters *	Gravity cm/sec ²	from values of table	Place
19°29',8 N	155°34'8 W	3970	978.096	+698	Mauna Loa
19 42.2 N	155 27.9 W	2030	978.504	+495	Kalaieha
19 25.4 N	155 15.7 W	1211	978.673	+428	Kilavea
23 47.0 N	166 12.5 W	2	979.201	+315	East Island
32 21 N	64 40 W	2	979.806	+282	St. Georges
37 30.0 N	2 45.0 W	858	979.669	+265	Baza
38 06.7 N	3 04.5 W	805	979.792	+248	Villacarrillo
42 55.8 N	0 08 E	2877	979.779	+224 +224	Pic du Midi
37 11.0 N	3 36.0 W	669	979.669	+224 +206	Granada
45 50 N	6 52 E	4807	979.401	+180	Mont Blanc
45 57.5 N	7 48.9 E	2797	980.019	+166	
45 59.5 N	7 42.7 E	2582	980.019	+157	Bétempshütte
67 53.6 N	13 02.0 E	19	982.622		Schwarzsee
33 48.5 N	74 33.3 E	3338	978.752	+142	Sörvaagen
51 48 N	10 37 E	1140	981.015	+133	Korag
35 44.5 N	15 39.5 E	— 460	979.926	+129	Brocken
40 38 N	15 59.5 E 17 57 E	- 400 16	980.337	+118	Mediterranean Sea
23 06.1 N	74 58.5 W	2		+107	Brindisi
42 08 N	41 42 E	3	978.941 980.317	+100	Clarence Town
46 21.9 N	9 07.6 E	1030		- 53	Poti
56 08.0 N	9 07.6 E 91 18.0 E		980.374	-61	Augio
		339	981.435	- 70	Kosulka
		783	977.835	— 78	Moliro
30 19.5 N	78 03.4 E	683	979.063	- 89	Dehra Dun
50 30.2 N	116 03.4 W	828	980.767	-100	Invermere
1 50 N	31 19 E	623	977.753	-109	Butiaba
7 50 S	120 48 E	-5140	978.024	-121	Java Sea
5 12 N	94 12 E	-2555	977.962	-129	Indian Ocean
40 26 N	50 00 E	57	980.065	-136	Surachany
8 48 S	128 26 E	-2120	978.019	-151	Timor Sea
26 41.8 N	88 24.8 E	118	978.887	-166	Siliguri
2 09 N	126 59 E	-2200	977.877	-179	Celebes Sea
10 17 N	126 41 E	8740	978.013	-200	Philippine Sea
0 29 S	125 59 E	-2390	977.833	-216	Celebes Sea
5 36 S	131 08 E	—7330	977.843	—255	Banda Sea
19 32 N	66 46 W	8040	978.284	-341	Atlantic Ocean

Heiskanen, W., Catalogue of the isostatically reduced gravity stations, Helsinki, 1939.
 For sea stations, the depth is recorded in this column; the observations were made in submarines and reduced to sea level.

TABLE 808,-THE SOLAR CONSTANT

A long series of measurements has been made 240 at widely separated, selected stations by the astrophysicists of the Smithsonian Institution on both the total intensity of the solar radiation and the spectral distribution of this radiation. One result of these measurements is the value of the solar constant, that is, the total solar radiation (cal cm-2 min-1) at normal incidence outside the atmosphere at the mean solar distance. As a result of the work up to 1913 the solar constant was found to be 1.9408 ly. min⁻¹ (langley; see Table 2, Part 2). Later investigations 250 showed that the standard used in these measurements was somewhat in error. Observations showed that the correction employed for the unmeasured ultraviolet radiation was too low; also solar radiation in the infrared region beyond about 2.5μ introduced some error. As a final result of all the corrections it was found that this 1913 value of the solar constant was very good. It should be pointed out that there is evidence 240 that the solar constant fluctuates as much as \pm 1.5 percent. In addition, the varying distance between the sun and earth (see Table 827) produces a change in the actual solar radiation at the top of the atmosphere of about ± 3.5 percent from the mean value. Now in 1951 the value of the solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance) = 1.946 calories = mean 6430 determinations 1924-47. Subject to variations, usually within the range of 2.8 percent, and occurring irregularly in periods of a week or 10 days. New data on the ultraviolet and infrared corrections to the solar constant given by F. S. Johnson (in press) indicate that the value 1.946 should be increased by 2.6 percent. Johnson's best value is 2.00 ± 2 percent.

Computed effective temperature of the sun: from form of blackbody curves, 6000° to 7000° Absolute; from $\lambda_{\text{max}} T = 2930$ and $\text{max} = 0.470\mu$, 6230°; from total radiation, $J = 76.8 \times 10^{-12} \times T^4$, 5830°

Sun radiates	
	$6.25 \times 10^{10} \mathrm{erg \ sec^{-1} \ cm^{-2}}$
of this	1.72×10^{24} erg/sec strikes the earth.

^{*} Prepared by L. B. Aldrich and W. H. Hoover, Astrophysical Observatory, Smithsonian Institution. 249 Abbot, C. G., Solar radiation and weather studies, Smithsonian Misc. Coll., vol. 94, No. 10, 1935. 250 Aldrich, L. B., and Abbot, C. G., Smithsonian pyrheliometry and the standard scale of solar radiation, Smithsonian Misc. Coll., vol. 110, No. 5, 1948. See also Annals, Smithsonian Astrophysical Observatory, vol. 7, ch. 3 (in press).

TABLE 809.—ATMOSPHERIC TRANSMISSION COEFFICIENTS

		•				002	
Wave- length		M	ontezuma, Chile	Table Cal	Mı., if.	Mian Fla	
μ	H	igh	Low	High	Low	High	Low
.34	6	20	.568	.605	.552	.512	.464
.35		56	.600	.641	.585	.541	.492
.36		87	.630	.672	.615	.567	.519
.37		14	.657	.701	.643	.593	.545
.38		38	.681	.726	.668	.617	.571
.39		59	.703	.749	.692	.642	.595
.40		78	.722	.769	.712	.662	.615
.45		48	.792	.840	.783	.755	.709
.50		90	.838	.883	.831	.818	.764
.55		00	.849	.890	.838	.850	.788
.60		13	.863	.905	.854	.873	.814
.65		36	.884	.933	.880	.925	.872
.70		63	.924	.961	.922	.935	.890
.75		72	.936	.970	.934	.943	.902
.80		80	.945	.978	.943	.949	.911
.85		84	.952	.983	.950	.954	.917
.90		85	.956	.984	.954	.957	.922
.95		86	.957	.985	.956	.960	.925
1.00		87	.958	.986	.957	.962	.928
1.25		89	.960	.989	.959	.964	.933
1:50		94	.965	.994	.968	.969	.942
1.75		97	.970	.997	.970	.973	.946
2.00		96	.975	.996	.974	.969	.945
2.25		88	.970	.987	.965	.955	.930

High transmissions are for every clear day and low precipitable water, 2 mm for Montezuma and Table Mt., and 3.5 mm for Miami.

Low transmissions are for very hazy days and high precipitable water, 10 mm for Monte-

zuma and Table Mt., and 25 mm for Miami. Transmission coefficients in the range $.70-2.25 \lambda$ are all smooth-curve values drawn over the tops of the water-vapor bands.

Unit air mass.

_									0			Yearly
Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.				mean
									1.945	1.950		
									55	57		1.950
					18				25			28
			31		28				45			38
				50						53		48
	55		50									49
												40
												43
												44
												42
	44		42								52	47
	46		46									47
	39	39	41	39						39		41
	48	42	40		43					50		46
	45	47	43		48					51		47
	45									50		47
47	46	44	4 6		49					52		48
	48		41	43	47			48				46
	46	48	44	44	43		45	46				47
47	42	44	43	42	41		40	46	44			44
47	45	43	48	48	48		47	49	46	45		47
48	48	50	47	51	48	52	50	48	50		51	49
49	48	43	45	47	48	48	45	44	44	48		46
42	44	43	45	46	51	48	49	47	46	43	48	46
48	52	44	44	46	44	45	43	40	43	46	46	45
39	46	44	48	47	44	47	41	42	42	47	43	44
46	39	38	46	53	52	51	48	50	48	53	54	48
53	49		49		51	47	49	47	52	53	54	50
	53		51	52	56		53	56	52	56	55	53
55		47	49	51	44	49	49	47	50	52	54	50
56	49	47	45	49	49	47	50	47	52	51	49	49
			43	40	44	46	48	47	47	42	46	46
45	41	36	44	46	47	40	43	42	43	40	47	43
	49 47 47 48 49 42 48 39 46 53 51 55 56 50	1.957 1.955 47 46 42 29 44 41 46 55 45 38 39 39 41 42 48 41 44 44 48 46 45 39 50 48 45 47 46 47 42 47 42 47 42 47 45 48 48 48 49 48 48 49 48 48 49 48 49 40 55 50 50 50 50 50 50 50	1.957 1.955 1.949 47 46 42 29 32 44 41 47 46 55 50 45 38 40 39 39 40 41 42 46 48 41 41 44 44 43 48 46 47 45 39 39 50 48 42 48 45 47 47 46 44 49 48 43 47 46 48 47 42 44 47 45 43 48 48 50 49 48 43 47 46 48 47 42 44 47 45 43 48 52 44 39 46 44 39 46 44 39 48 43 42 44 43 48 52 44 39 46 44 39 46 44 39 46 44 39 46 44 39 46 44 39 46 44 39 46 44 39 46 44 39 46 44	1.957 1.955 1.949 1.947 47 46 36 30 42 29 32 31 44 41 47 42 46 55 50 50 45 38 40 38 39 39 40 44 41 42 46 44 48 41 41 43 44 44 43 42 48 46 47 46 45 39 39 41 50 48 42 40 48 45 47 46 47 46 44 46 47 46 44 46 47 46 44 46 47 46 44 46 48 45 47 46 47 46 44 46 48 45 47 46 47 46 44 46 49 48 43 41 47 46 44 43 47 45 43 48 48 50 47 49 48 43 45 48 48 50 47 49 48 43 45 48 50 47 49 48 43 45 48 50 47 49 48 43 45 48 50 47 49 48 43 45 48 50 47 49 48 43 45 48 50 47 49 48 43 45 48 50 47 49 48 43 45 48 50 47 49 48 43 45 48 50 47 49 48 43 45 48 50 47 49 48 43 45 49 48 50 47 49 48 43 45 49 48 50 47 49 48 43 45 49 48 50 47 49 48 43 45 49 48 50 47 49 48 43 45 49 48 50 47 49 48 43 45 49 51 53 49 51 55 56 47 49 56 49 47 45 50 52 55 43	1.957 1.955 1.949 1.947 1.950 47 46 36 30 30 42 29 32 31 36 44 41 47 42 50 46 55 50 50 48 45 38 40 38 40 39 39 40 44 43 41 42 46 44 48 48 41 41 43 42 47 48 46 47 46 51 45 39 39 41 39 50 48 42 40 41 48 45 47 46 51 48 45 47 46 47 47 46 44 46 47 47 46 44 46 47 47 46 48 44 44 47 42 44 43 42 47 45 43 48 48 48 48 50 47 47 46 48 44 47 42 44 43 42 47 45 43 48 48 48 48 50 47 51 49 48 43 45 47 46 48 44 48 48 50 47 47 46 48 44 48 48 50 47 51 49 48 43 45 47 48 48 48 50 47 51 51 51 53 49 51 52 55 56 47 49 51 56 49 47 45 49 50 52 55 43 40	1.957 1.955 1.949 1.947 1.950 1.939 47 46 36 30 30 18 42 29 32 31 36 28 44 41 47 42 50 52 46 55 50 50 48 48 45 38 40 38 40 41 39 39 40 44 43 46 41 42 46 44 48 49 48 41 41 43 42 47 50 48 46 47 46 51 47 45 39 39 41 39 42 50 48 42 40 41 43 48 45 47 43 44 48 48 45 47 43 44 48 48 45 47 46 47 47 47 46 44 46 47 47 47 46 44 46 47 47 47 46 48 44 44 43 42 47 49 48 43 42 41 47 45 43 48 44 44 43 47 42 44 43 42 41 47 45 43 48 48 48 48 48 50 47 51 48 48 48 48 50 47 51 48 48 48 48 48 48 48 48 48 48 49 49 48 48 48 49 48 43 45 47 49 48 48 43 45 47 40 48 48 48 48 48 48 50 47 51 48 49 48 43 45 47 48 49 48 43 45 47 48 49 48 43 45 47 48 49 48 43 45 47 48 49 48 43 45 47 48 49 48 43 45 47 48 49 48 43 45 47 48 49 48 43 45 47 48 49 48 43 45 47 48 49 48 43 45 47 48 49 48 43 45 47 48 49 48 43 45 47 48 40 48 50 47 51 48 41 42 44 43 45 46 51 42 44 43 45 46 51 43 9 48 43 45 47 48 44 44 46 44 45 9 48 43 45 47 48 46 39 38 46 53 52 53 49 45 49 50 51 51 53 49 51 52 56 55 56 47 49 51 44 56 49 47 45 49 59 50 52 55 43 40	1.957 1.955 1.949 1.947 1.950 1.939 1.950 47 46 36 30 30 30 18 14 42 29 32 31 36 28 36 44 41 47 42 50 52 51 46 55 50 50 48 48 49 45 38 40 38 40 41 42 39 39 40 44 43 46 44 41 42 46 44 48 49 43 48 41 41 43 43 37 41 44 44 43 42 47 50 50 48 48 46 47 46 51 47 48 45 39 39 41 39 42 44 45 39 39 41 39 42 44 45 48 45 47 43 44 48 47 47 46 44 46 47 49 47 47 46 48 44 44 43 42 47 45 43 48 48 49 48 48 50 47 51 48 48 49 48 49 48 48 49 43 49 48 43 41 43 47 49 47 49 48 48 49 43 40 41 43 44 47 46 48 44 44 43 44 47 42 44 43 42 47 45 43 48 48 48 49 48 48 50 47 51 48 48 48 48 50 47 51 48 52 49 48 43 45 47 46 51 48 48 48 50 47 51 48 52 49 48 48 43 45 47 48 48 48 49 48 49 48 48 50 47 51 48 52 59 48 48 49 49 47 49 48 48 49 48 48 49 48 48 49 48 48 49 48 49 48 49 48 49 48 43 45 47 48 48 48 50 47 51 48 52 59 50 51 47 51 53 49 51 52 56 57 55 56 47 49 51 44 49 56 49 47 45 49 50 56 59 55 55 43 40 44	1.957 1.955 1.949 1.947 1.950 1.939 1.950 1.943 47 46 36 30 30 18 14 21 42 29 32 31 36 28 36 34 44 41 47 42 50 52 51 46 46 55 50 50 48 48 49 47 45 38 40 38 40 41 42 46 39 39 40 44 43 46 44 43 41 42 46 44 48 49 43 42 46 47 46 51 47 48 47 45 39 39 41 39 42 44 41 43 46 47 46 51 47 48 48 45 47 43 44 48 47 47 49 48 45 47 46 47 47 47 47 49 48 43 41 43 42 47 50 48 45 47 46 44 48 49 47 47 46 44 46 47 47 47 47 49 48 43 41 43 44 48 49 47 47 46 44 46 47 47 47 47 49 48 43 41 43 44 48 49 47 47 46 44 46 47 49 47 47 46 48 44 44 43 44 48 49 47 46 44 46 47 49 47 48 48 45 47 46 47 49 47 47 46 48 44 44 43 42 41 48 45 47 46 44 46 47 49 47 47 46 48 44 44 43 47 48 48 50 47 51 48 48 49 47 46 48 44 44 44 43 44 45 47 42 44 43 42 41 42 40 47 45 43 48 48 49 47 48 48 50 47 51 48 52 50 49 48 43 45 47 48 48 48 49 47 48 48 50 47 51 48 52 50 49 48 43 45 47 48 48 48 49 48 52 44 44 44 46 44 45 43 39 46 44 48 47 44 47 41 46 39 38 46 53 52 51 48 53 49 45 49 50 51 47 49 51 53 49 47 45 49 59 56 49 47 45 49 49 47 45 49 49 56 69 47 49 51 44 49 49 56 69 47 49 51 44 49 56 69 47 45 49 49 57 56 52 55 43 40 44 46 48	1.957 1.955 1.949 1.947 1.950 1.939 1.950 1.943 1.950 47 46 36 30 30 18 14 21 17 42 29 32 31 36 28 36 34 53 44 41 47 42 50 52 51 46 47 49 45 38 40 38 40 41 42 46 43 39 39 40 44 43 46 44 43 42 46 43 42 46 47 49 47 49 45 48 45 47 46 51 47 49 45 48 45 47 46 44 46 47 49 49 47 49 48 48 49 47 49 48 48 49 47 49 48 48 49 47 49 48 48 49 47 49 48 48 49 47 49 48 48 49 47 49 48 48 49 47 49 48 48 49 47 49 48 49 48 49 49 47 49 47 49 48 48 49 49 47 49 45 48 45 47 46 44 48 49 47 49 47 49 48 48 45 47 46 47 46 51 47 48 47 49 48 48 45 47 46 47 46 47 49 47 47 49 47 48 47 46 44 46 47 49 47 47 49 47 48 47 46 44 46 47 49 47 47 49 47 47 48 47 46 44 46 47 49 47 47 49 48 47 46 48 48 43 41 43 47 44 48 48 47 46 48 48 47 46 48 48 49 47 47 48 47 46 48 48 49 47 47 48 47 46 48 47 49 47 47 49 47 47 48 48 48 48 49 47 48 48 48 49 47 48 48 48 49 47 48 48 48 49 47 48 48 48 49 47 49 48 48 48 49 47 49 47 47 48 48 48 48 49 47 49 49 47 47 46 48 48 48 49 47 48 48 48 48 49 47 49 49 47 49 48 48 48 48 49 47 49 48 48 48 48 49 47 49 49 47 49 48 48 48 48 49 47 49 48 48 48 48 49 47 49 49 47 49 48 48 48 48 48 49 47 49 49 47 49 48 48 48 50 47 51 48 52 50 48 49 48 48 48 49 47 49 49 47 49 48 48 48 50 47 51 48 52 50 48 49 48 48 49 47 49 49 47 49 48 48 48 50 47 51 48 52 50 48 49 48 48 49 47 49 49 47 49 48 48 48 50 47 51 48 52 50 48 49 48 48 49 47 49 49 47 49 48 48 52 44 44 44 46 44 46 44 46 44 46 44 46 44 46 44 46 44 46 44 46 44 46 44 47 49 49 49 47 49 48 48 48 50 47 51 48 52 50 48 49 48 48 49 47 49 49 47 49 48 48 50 50 51 47 48 48 48 50 50 51 47 48 48 50 50 51 47 49 47 49 47 51 51 53 49 51 52 56 57 53 56 55 56 47 49 51 44 49 49 49 47 55 55 56 56 47 49 51 44 49 49 49 47 55 55 55 56 47 49 51 44 49 49 49 47 55 55 55 56 47 49 51 44 49 49 49 47 55 55 55 56 47 49 51 44 49 49 49 47 55 55 55 56 47 49 51 44 49 49 49 47 55 55 55 56 47 49 51 44 49 49 49 47 55 55 55 56 47 49 51 44 49 49 49 47 55 55 55 56 56 57 53 56 56 57 53 56 55 56 57 53 56 56 57 53 56 55 56 57 53 56 56 57 55 58 56 57 55 58 47 49 51 49 49 47 50 47 50 47 50 47 50 47 50 47 50 47 50 47 50 47 50 47 50 47 50 47	1.957 1.955 1.949 1.947 1.950 1.939 1.950 1.943 1.950 55 47 46 36 30 30 118 14 21 17 25 42 29 32 31 36 28 36 34 53 45 44 41 47 42 50 52 51 46 47 52 46 55 50 50 48 48 49 47 49 48 45 38 40 38 40 41 42 46 43 38 39 39 40 44 43 46 44 43 48 49 43 42 42 43 48 41 41 43 43 43 37 41 39 40 39 44 44 43 42 47 50 50 49 46 46 48 46 47 46 51 47 48 47 49 47 45 39 39 41 39 42 44 41 41 41 39 50 48 42 40 41 43 46 43 47 44 48 51 48 45 47 43 44 48 47 44 48 51 48 45 47 43 44 48 47 44 48 51 48 45 47 43 44 48 47 44 48 51 48 45 47 43 44 48 47 44 48 51 48 45 47 46 47 47 47 47 49 45 47 47 46 44 46 47 49 47 47 47 49 45 47 47 46 48 43 41 43 42 41 42 40 46 48 46 47 46 48 44 44 43 47 44 48 51 48 45 47 46 47 47 47 47 49 45 47 47 46 48 48 49 47 47 47 49 45 47 47 46 48 44 48 49 47 47 47 49 45 47 47 46 48 48 49 47 47 47 49 45 47 47 46 48 48 44 44 43 47 44 46 48 46 47 46 48 44 44 43 42 41 42 40 46 44 47 45 43 48 48 49 47 49 47 47 49 45 48 48 50 47 51 48 48 49 47 49 49 48 48 43 41 43 47 44 46 48 46 47 46 48 44 44 43 42 41 42 40 46 47 45 43 48 48 48 49 47 49 49 48 48 50 47 51 48 52 50 48 50 49 48 43 45 47 48 48 48 49 47 49 46 48 52 44 44 43 42 41 42 40 46 48 48 50 47 51 48 52 50 48 50 49 48 43 45 47 48 48 48 49 47 49 46 48 52 44 44 44 46 44 45 43 40 46 48 52 44 44 44 46 44 45 43 40 46 48 52 44 44 44 45 43 44 45 43 40 43 39 46 44 48 47 44 47 41 42 40 46 48 52 44 44 44 46 44 45 43 40 46 47 45 43 48 48 48 49 47 49 49 48 48 50 47 51 48 52 50 48 50 49 48 48 43 45 47 48 48 49 47 49 49 46 48 52 44 44 44 46 44 45 43 40 46 47 45 43 48 48 48 49 47 49 49 48 50 47 51 48 50 50 49 48 48 43 45 47 48 48 48 49 47 49 40 40 46 44 48 47 44 47 41 42 40 41 42 44 43 45 46 51 48 50 49 48 48 50 47 51 48 50 51 53 49 51 52 56 57 53 56 52 55 56 47 49 51 44 49 49 49 47 50 56 49 47 45 49 49 47 50 47 50 56 49 47 45 49 49 47 50 47 50 56 49 47 45 49 49 47 50 47 50 56 52 55 43 40 44 46 44 46 48 47 47	1.957 1.955 1.949 1.947 1.950 1.939 1.950 1.943 1.950 55 57 47 46 36 30 30 18 14 21 17 25 26 42 29 32 31 36 28 36 34 53 45 44 44 41 47 42 50 52 51 46 47 52 53 46 55 50 50 48 48 48 49 47 49 48 46 45 38 40 38 40 41 42 46 43 38 36 39 39 40 44 43 46 44 43 42 42 42 43 46 48 41 41 41 43 43 43 37 41 39 40 39 43 44 44 44 43 42 46 44 43 42 42 42 43 46 48 46 47 46 51 47 48 47 49 47 49 47 45 45 39 39 41 39 42 44 41 41 41 39 39 50 48 48 45 47 44 48 45 47 44 48 45 47 44 48 45 47 46 44 48 47 49 47 49 49 47 45 49 48 45 47 46 44 48 49 47 44 48 47 44 48 45 47 49 50 48 48 45 47 46 47 48 47 44 48 47 44 48 45 47 46 44 48 45 47 44 48 45 47 49 49 50 48 45 47 46 44 46 47 49 47 47 47 49 48 47 49 49 50 48 48 45 47 46 47 46 47 47 47 47 49 45 47 50 50 48 48 42 40 41 43 46 43 49 49 50 48 48 45 47 46 47 47 47 47 49 45 47 50 47 46 44 46 47 49 47 47 48 47 44 48 45 47 46 44 46 47 49 47 47 48 47 46 48 47 46 48 48 48 49 47 47 48 49 52 49 48 43 41 43 47 44 48 47 44 48 49 52 49 48 43 41 43 47 44 46 48 47 49 47 47 49 48 47 49 48 48 47 46 48 48 48 49 47 49 47 47 48 49 52 49 48 43 41 43 47 44 46 48 46 48 46 48 48 48 48 49 47 49 46 46 48 48 47 44 48 48 47 44 48 48 47 44 48 48 47 44 48 48 47 44 48 48 48 48 49 47 49 46 48 48 48 50 47 48 48 48 50 47 51 48 52 50 48 50 49 52 44 44 44 44 48 48 49 47 49 49 47 49 46 45 45 45 46 49 52 47 51 48 52 50 48 50 49 48 48 48 48 48 48 49 47 49 46 48 48 48 50 47 51 48 52 50 48 50 49 49 48 48 48 50 47 51 48 52 50 48 50 49 49 48 48 43 45 47 48 48 48 50 48 50 48 50 49 49 48 48 48 50 47 51 48 52 50 48 50 49 50 51 52 56 56 55 56 47 49 51 52 56 57 53 56 52 56 55 56 47 49 51 52 56 57 53 56 52 56 55 56 47 49 51 44 49 49 49 47 50 52 55 56 55 56 47 49 51 44 49 49 49 47 50 52 55 56 55 56 47 49 51 44 49 49 49 47 50 52 55 56 55 56 47 49 51 44 49 49 49 47 50 52 55 56 55 56 56 57 53 56 52 56 55 56 57 53 56 52 56 55 56 57 53 56 52 56 56 55 56 57 53 56 52 56 56 55 56 56 57 53 56 52 56 56 55 56 56 57 55 58 47 49 51 44 49 49 49 47 50 52 51 56 56 55 55 56 56 57 55 58 47 49 51 44 49 49 49 47 50 52 51 56 56 55 55 56 56 57 55 58 47 49 51 44	1,957 1,955 1,949 1,947 1,950 1,939 1,950 1,943 1,950 55 57 52 47 46 36 30 30 18 14 21 17 25 26 24 24 29 32 31 36 28 36 34 53 45 44 43 44 41 47 42 50 52 51 46 47 52 53 50 46 55 50 50 48 48 48 49 47 49 48 46 48 41 41 41 43 43 43 44 44 44 43 42 46 44 43 43 42 44 44 44 43 42 46 44 43 42 46 47 49 47 49 47 49 48 46 47 49 48 41 41 41 43 43 43 37 41 39 40 39 43 46 47 45 39 39 39 41 39 42 44 41 41 41 39 39 46 46 48 52 48 46 47 46 51 47 48 47 49 47 49 47 45 46 45 47 46 41 43 44 48 47 44 48 49 47 49 49 50 50 48 45 47 46 47 46 47 47 49 47 49 47 49 47 45 46 48 45 47 46 47 46 41 43 46 43 49 49 49 50 50 48 42 40 41 43 46 43 49 49 49 50 50 48 45 47 46 47 47 47 49 47 48 47 50 51 47 46 48 45 47 46 47 47 47 49 47 47 48 49 47 50 51 47 46 44 48 47 49 47 47 48 47 50 51 47 46 48 45 47 46 47 47 47 49 45 47 50 51 47 46 48 45 47 46 47 47 47 49 45 47 50 51 47 46 48 45 47 46 47 47 47 49 45 47 50 51 47 46 48 43 41 43 47 44 48 47 49 49 45 50 50 48 48 45 47 46 47 47 47 49 47 47 48 49 47 50 51 47 46 48 43 41 43 47 44 48 47 49 49 45 51 51 50 48 45 47 46 47 47 47 49 47 47 48 49 52 51 47 46 44 44 44 43 44 44 48 47 44 48 51 51 51 50 48 48 45 47 46 47 47 47 49 47 47 48 49 52 51 47 46 48 44 44 44 48 47 44 46 48 46 48 51 47 46 48 48 49 47 49 47 47 49 46 48 51 51 51 50 48 48 45 47 46 47 47 47 49 47 49 45 47 50 51 47 46 48 48 48 49 47 49 47 49 46 48 51 47 47 42 44 43 44 44 44 44 44 44 44 44 44 44 44

^{*} Calories per cm per min.

TABLE 811.-AIR MASSES

The transmission, both total and spectral, of the atmosphere depends upon several varying factors besides the actual air masses, that is, the length of the path of the rays in the atmosphere; thus, corrections must always be determined for different tests.

Values of the transmission of the atmosphere for any position of the sun except when it is directly overhead are calculated from measurement when the sun is in the zenith, i.e., $c_m = c_0 a^m$ when e_m is the intensity of the radiation at air mass m, e_0 the intensity for the sun in the zenith, and a the transmission for unit air mass. m is unity when the sun is in the zenith and approximately equals the secant of the zenith distance for the other positions.

Besides values derived from the pure secant formula, the table contains those derived from various other more complex formulas, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

Zenith dist	0°	20°	40°	60°	70°	75°	80°	85°	880
Secant	1.00	1.064	1.305	2.000	2,924	3.864	5.76	11.47	28.7
Forbes	1.00	1.065	1.306	1.995	2.902	3.809	5.57	10.22	18.9
Bouguer	1.00	1.064	1.305	1.990	2.900	3.805	5.56	10.20	19.0
Laplace	1.00			1.993	2.899		5.56	10.20	18.8
Bemporad	1.00			1.995	2.904		5.60	10.39	19.8

TABLE 812.—THE AMOUNT OF SOLAR RADIATION IN DIFFERENT SECTIONS OF THE SPECTRUM, ULTRAVIOLET, VISIBLE, AND INFRARED

Calories, min⁻¹cm⁻², Smithsonian scale of 1913

Wavelengt	h			mi, Fl		Montezuma, Chile Air mass					
μ	0	1	2	3	4	5	1	2	3	4	5
.00 to .400	.151	.070	.036	.018	.010	.005	.094	.061	.041	.028	.019
.400 to .770	.925	.740	.591	.476	.386	.314	.813	.734	.664	.603	.549
.770 to ∞	.874	.606	.517	.450	.398	.359	.742	.695	.657	.630	.608
.00 to ∞	1.950	1.416	1.144	.944	.794	.678	1.649	1.490	1.362	1.261	1.176

Average clear day at Miami, Fla. (sea level) precipitable water about 2.00 cm. Average clear day at Montezuma, Chile (altitude 9,000 feet) precipitable water 0.25 cm.

TABLE 813.—SPECTRAL DISTRIBUTION OF SOLAR RADIATION OUTSIDE THE ATMOSPHERE

On the bases of the Smithsonian and other observations, Moon 251 in 1940 proposed a spectral solar-radiation curve at normal incidence outside the atmosphere at the mean solar distance and also a like curve for solar radiation at the earth's surface for air mass 2 (Table 815). More recently a rocket observation 252 has given a direct measurement (at 55 km) of the ultraviolet spectrum of the sun at wavelengths below 0.34 \mu. Since less than 1 percent of atmospheric ozone is above this level, this observation should be closely representative of ultraviolet solar radiation at wavelengths above 0.22μ at the top of the atmosphere. Moon's values for wavelengths above 0.33μ and data from the rocket observation for wavelengths below 0.33μ were used in constructing the table.

Part 1.-Intensity of solar radiation outside the atmosphere

	Wave-	Intensity	Wave-	Intensity	Wave-	Intensity	Wave-	Intensity
1	ength	Relative	length	Relative	length	Relative	length	Relative
	μ	units	μ	units	μ	units	μ	units
	.220	14	.420	1766	.68	1473	2.5	50
	.230	33	.424	1742	.69	1439	2.6	43
	.240	40	.430	1788	.70	1405	2.7	38
	.250	55	.44	1939	.71	1371	2.8	33
	.260	126	.45	2036	.72	1337	2.9	30
	.265	174	.46	2096	.73	1304	3.0	26
	.270	162	.47	2119	.74	1270	3.1	23
	.275	136	.48	2127	.75	1236	3.2	21
	.280	145	.49	2103	.80	1097	3.3	19
	.290	378	.50	2061	.85	976	3.4	17
	.295	418	.51	2000	.90	871	3.5	15
	.300	386	.52	1954	.95	781	3.6	14
	.310	538	.53	1912	1.0	706	3.7	12
	.320	621	.54	1894	1.1	590	3.8	11
	.330	796	.55	1878	1.2	488	3.9	10
	.335	826	.56	1861	1.3	395	4.0	9
	.340	856	.57	1841	1.4	319	4.1	8
	.345	886	.58	1819	1.5	260	4.2	8
	.350	916	.59	1795	1.6	214	4.3	8 8 7
	.360	976	.60	1762	1.7	177	4.4	6
•	.370	1046	.61	1727	1.8	148	4.5	6
	.380	1121	.62	1690	1.9	124	4.6	5
	.390	1202	.63	1653	2.0	105	4.7	5
	.400	1304	.64	1616	2.1	89	4.8	5
	.405	1427	.65	1579	2.2	76	4.9	6 5 5 5 4 4
	.410	1728	.66	1543	2.3	66	5.0	4
	.413	1803	.67	1508	2.4	57		

(continued)

Moon, P., Journ. Franklin Irst., vol. 230, p. 583, 1940.
 Hulbert, E. O., Journ. Opt. Soc. Amer., vol. 37, p. 405, 1947.

TABLE 813.—SPECTRAL DISTRIBUTION OF SOLAR RADIATION OUTSIDE THE ATMOSPHERE (concluded)

Part 2.—Energy distribution of solar radiation outside the atmosphere

Wavelength interval	Energy cal cm ⁻²	Wavelength interval	Energy cal cm ⁻²	Wavelength interval	Energy cal cm-2	Wavelength interval	Energy cal cm ⁻²	
μ	min-1	μ	min-1	μ	min-1	μ	min-1	
.22—.23	.0004	.45—.46	.0303	.68—.69	.0213	.91—.92	.0123	
.23—.24	.0006	.4647	.0309	.69—.70	.0208	.9293	.0121	
.24—.25	.0010	.47—.48	.0312	.70—.71	.0203	.93—.94	.0118	
.2526	.0011	.48—.49	.0311	.71—.72	.0198	.94—.95	.0116	
.26—.27	.0025	.4950	.0306	.72—.73	.0194	.95—.96	.0113	
.27—.28	.0021	.50—.51	.0299	.73—.74	:0189	.96—.97	.0111	
.28—.29	.0029	.51—.52	.0290	.74—.75	.0183	.97—.98	.0109	
.29—.30	.0059	.52—.53	.0283	.75—.76	.0179	.98—.99	.0107	
.30—.31	.0067	.53—.54	.0279	.76—.77	.0175	.99—1.0	.0105	
.31—.32	.0085	.54—.55	.0277	.77—.78	.0171	1.0—1.1	.0948	
.32—.33	.0107	.55—.56	.0274	.78—.79	.0167	1.1-1.2	.0792	
.33—.34	.0121	.56—.57	.0271	.79—.80	.0163	1.2—1.3	.0643	
.34—.35	.0130	.57—.58	.0268	.80—.81	.0159	1.3—1.4	.0518	
.35—.36	.0138	.5859	.0264	.81—.82	.0155	1.4—1.5	.0424	
.36—.37	.0149	.59—.60	.0260	.8283	.0152	1.5—1.6	.0348	
.37—.38	.0159	.60—.61	.0255	.83—.84	.0148	1.6—1.7	.0288	
.38—.39	.0171	.61—.62	.0251	.84—.85	.0145	1.7—1.8	.0240	
.39—.40	.0184	.62—.63	.0245	.85—.86	.0142	1.8—1.9	.0197	
.40—.41	.0212	.63—.64	.0240	.86—.87	.0138	1.9—2.0	.0168	
.41—.42	.0262	.64—.65	.0234	.87—.88	.0135	2.0—3.0	.0719	
.42—.43	.0256	.65—.66	.0234	.88—.89	.0133	3.0—4.0	.0227	
.43—.44	.0236	.66—.67	.0229	.89—.90	.0132	4.0—5.0	.0084	
.44—.45	.0270		.0224		.0129	4.0-3.0	.0004	
.44—.45	.0292	.67—.68	.0219	.90—.91	.0120			

TABLE 814.—DISTRIBUTION OF INTENSITY (RADIATION) OVER SOLAR DISC

Fraction of radius

Wave- length *									
μ	.00	.30	.50	.60	.70	.80	.90	.95	.975
.3149	1.000	.959	.857	.760	.721	.607	.446	.337	.251
.3518	1.000	.977	.895	.841	.785	.679	.524	.407	.328
.3665	1.000	.980	.881	.841	.787	.703	.546	.437	.359
.4030	1.000	.959	.877	.859	.767	.664	.533	.423	.346
.4487	1.000	.977	.912	.859	.804	.720	.594	.500	.389
.5186	1.000	.975	.929	.877	.832	.759	.644	.551	.466
.5485	1.000	.967	.919	.884	.832	.756	.650	.565	.487
.6151	1.000	.980	.936	.900	.853	.790	.687	.600	.528
.6980	1.000	.983	.946	.916	.872	.812	.722	.644	.574
.8384	1.000	.984	.952	.926	.893	.843	.766	.695	.640
.9920	1.000	.987	.957	.933	.903	.860	.788	.727	.670
1.1973	1.000	.988	.965	.944	.918	.880	.814	.758	.702
1.5397	1.000	.993	.973	.960	.940	.912	.863	.811	.763
1.7093	1.000	.994	.980	.967	.950	.925	.878	.832	.786
2.0664	1.000	.994	.980	.970	.955	.929	.888	.849	.811
2.2870	1.000	.995	.980	.968	.953	.931	.891	.850	.814
3.5	1.000	.996	.988	.980	.969	.952	.928	.902	.875
8.3	1.000	.998	.992	.990	.986	.977	.960	.942	.928
10.2	1.000	.998	.994	.991	.988	.982	.966	.953	.946

^{*} Values .3149 through .4487 μ from Cavanaggia and Chalonge, Ann. d'Astrophys., vol. 9, p. 143, 1946; .5186 through 10.2 μ from Pierce, McMath, Goldberg, and Mohler, Astrophys. Journ., vol. 112, p. 289, 1950.

(Watts per square meter per micron)

λ	J_{λ}	λ microns J_{λ}	λ microns	J_{λ}	λ microns J_{λ}
.295	2.09 a	.60 1167	1.15	216	1.65 173
.296	2.35 *	.61 1168	1.16	271	1.66 163
.297	2.87 b	.62 1165	1.17	328	1.67 159
,298	9.87 b	.63 1176	1.18	346	1.68 145
.299	.0346	.64 1175	1.19	344	1.69 139
.300	.0810	.64 1175 .65 1173	1.20	373	1.70 132
.301	.177	.66 1166	1.21	402	1.71 124
.302	.342	.67 1160	1.22	431	1.72 115
.303	.647	.68 1149	1.23	420	1.73 105
.304	1.16	.69 978	1.24	387	1.74 97.1
.305	1.91	.70 1108	1.25	328	1.75 80.2
.306	2.89	.71 1070 .72 832	1.26	311	1.76 58.9
.307	4.15	.72 832	1.27	381	1.77 38.8
.308	6.11	.73 965	1.28	382	1.78 18.4
.309 .310	8.38 11.0	.74 1041	1.29 1.30	346	1.79 5.70 1.80 ,920
.310	13.9	.75 867 .76 566	1.31	264 208	1.80 ,920 1.81
.312	17.2	.77 968	1.32	168	1.82
.313	21.0	.78 907	1.33	115	1.83
.314	25.4	.79 923	1.34	58.1	1.84
.315	30.0	.80 857	1.35	18.1	1.85
.316	34.8	.81 698	1.36	.660	1.86
.317	39.8	.82 801	1.37		1.87
.318	44.9	.83 863	1.38		1.88
.319	49.5	.84 858	1.39		1.89
.32	54.0	.85 839	1.40	i.91	1.90 1.91 .705
		.86 813 .87 798	1.41 1.42	3.72	1.92 2.34
.33	101	.88 614	1.43	7.53	1.93 3.68
.34	151	.89 517	1.44	13.7	1.94 5.30
.35	188	.90 480	1.45	23.8	1.95 17.7
.36	233	.91 375	1.46	30.5	1.96 31.7
.37	279	.92 258	1.47	45.1	1.97 37.7
.38	336	.93 169 .94 278	1.48	83.7	1.98 22.6
.39	397	.94 278	1.49	128	1.99 1.58
.40	470	.95 487	1.50	157	2.00 2.66 2.01 19.5
.41 .42	672 733	.96 584 .97 633	1.51	187 209	2.02 47.6
.43	733 787	.98 645	1.52 1.53	217	2.03 55.4
.44	911	.99 643	1.54	226	2.04 54.7
.45	1006	1.00 630	1.55	221	2.05 38.3
.46	1080	1.01 620	1.56	217	2.06 56.2
.47	1138	1.02 610	1.57	213	2.07 77.0
.48	1183	1.03 601	1.58 1.59	209	2.08 88.0 2.09 86.8
.49	1210	1.04 592 1.05 551	1.60	205 202	2.10 85.6
.50 .51	1215 1206	1.05 551 1.06 526	1.61	198	2.11 84.4
.52	1199	1.07 519	1.62	194	2.12 83.2
.53	1188	1.08 512	1.63	189	2.13 20.7
.54	1198	1.09 514	1.64	184	2.14
.54 .55	1190	1.10 252			
.56	1182	1.11 126	0		
.57	1178	1.12 69.			
.58 .59	1168 1161	1.13 98. 1.14 164	J		
.37	1101	1.17 104			

^{*} For reference, see footnote 251, p. 721. $\times 10^{-4}$ b $\times 10^{-8}$

TABLE 816.—THE BIOLOGICALLY EFFECTIVE COMPONENT OF ULTRAVIOLET, SOLAR, AND SKY RADIATION PER MONTH PER CM2 (UVQ IN WATT MINUTES) AND THE TOTAL SOLAR AND SKY RADIATION (Q IN CALORIES PER MONTH PER CM2) INCIDENT IN WASHINGTON, D. C., 1941–1946, MONTHLY AVERAGE 263

UVQ watt min Month month-1 cm-2	Q cal month ⁻¹ cm ⁻²	Month	UVQ watt min month-1 cm-2	Q cal month ⁻¹ cm ⁻²
Jan	4,982 6,987		1.091 1.012	15,239 14,470
Mar	10,847 12.916	Sept		11,158 8,767
May 990 June 1.108	15,203 16.019	Nov		6,085 4.690

²⁵⁸ Coblentz, W. W., Bull. Amer. Meteorol. Soc., vol. 28, p. 465, 1947.

TABLE 817.—DURATION OF SUNSHINE *

Approx										
declination of sun:	23°27′	—15°	—10°	—5°	0°	+5°	+10°	+15°	+20°	+23°27′
Approx date:	Dec. 22	Feb. 9 Nov. 3	Feb. 23 Oct. 19	Mar. 8 Oct. 6	Mar. 21 Sept. 23	Apr. 3 Sept. 10	Apr. 16 Aug. 28	May 1 Aug. 13	May 20 July 24	June 21
Latitude	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
0°	12 07	12 07	12 07	12 07	12 07	12 07	12 06	12 06	12 07	12 07
10°	11 32	11 45	11 53	12 00	12 07	12 14	12 21	12 29	12 37	12 43
20°	10 55	11 23	11 38	11 52	12 07	12 22	12 37	12 53	13 08	13 21
30°	10 12	10 58	11 21	11 44	12 08	12 31	12 54	13 19	13 45	14 05
40°	9 20	10 26	11 01	11 35	12 09	12 43	13 16	13 53	14 32	15 01
50°	8 04	9 43	10 35	11 23	12 12	12 59	13 47	14 39	15 37	16 23
55°	7 10	9 15	10 16	11 14	12 12	13 11	14 08	15 11	16 24	17 23
60°	5 52	8 36	9 53	11 03	12 15	13 25	14 35	15 54	17 30	18 53
65°	3 34	7 42	9 21	10 50	12 17	13 45	15 14	16 58	19 16	22 03
70°		6 14	8 32	10 29	12 21	14 14	16 13	18 44		
80°			3 10	8 46	12. 38	16 44				

^{*} Prepared by G. M. Clemence, U. S. Naval Observatory. For more extensive tables, see "Tables of Sunrise, Sunset, and Twilight," Supplement to the American Ephemeris, 1946.

TABLE 818.—RELATIVE DISTRIBUTION IN NORMAL SPECTRUM OF SUNLIGHT AND SKY LIGHT AT MOUNT WILSON

Zenith distance about 50°

This table is abstracted in modified form from the Annals of the Smithsonian Astrophysical Observatory. The observations, which were visual, made on October 17, 1906, probably represent the most ideal sky conditions on Mount Wilson.

							С	D	ь	F
Place in spectrum (μ)	.422	.457	.491	.566	.614	.660				
Intensity sunlight	186	232	227	211	191	166				
Intensity sky light	1194	986	701	395	231	174				
Ratio at Mount Wilson		425	309	187	121	105	102	143	246	316
Ratio computed by Rayleigh		_	_	_	_		102	164	258	328
Ratio observed by Rayleigh		_	_	_	_	_	102	168	291	369

TABLE 819.—ILLUMINATION DUE TO DIRECT SUNLIGHT, SKY LIGHT, AND TOTAL ON HORIZONTAL AND VERTICAL PLANES 254

		Direct si	unlight	Sky	light	To	tal
Solar	Air	Ind	Ipd	Ina	I_{ps}	The	Ipt
altitude	mass	ft –	-c	ft	<u></u>	ft -	
h	m				~		
3	15.36	19.6	374	256	587	277	961
5 7	10.39	100	1150	325	746	425	1900
7	7.77	252	2050	395	848	647	2900
10	5.60	590	3350	491	953	1080	4300
15	3.82	1310	4910	629	1070	1940	5980
20	2.90	2130	5860	750	1140	2880	7000
25	2.36	2980	6390	856	1180	3840	7570
30	2.00	3820	6620	945	1210	4760	7830
35	1.74	4650	6640	1020	1220	5670	7860
40	1.55	5440	6490	1090	1220	6530	7710
45	1.41	6170	6170	1160	1220	7330	7390
50	1.30	6850	5750	1210	1200	8060	6950
55	1.22	7450	5220	1270	1180	8720	6400
60	1.15	8000	4620	1310	1150	9310	5770
65	1.10	8470	3950	1350	1090	9820	5040
70	1.06	8860	3230	1390	1020	10250	4250
75	1.04	9160	2450	1420	930	10580	3380
80	1.02	9380	1650	1440	834	10820	2480
85	1.01	9510	833	1460	728	10970	1560
90	1.00	9570	00	1480	615	11050	615

The solar altitude, h, is expressed in angular units, the illumination, l, in foot-candles. The subscripts p and h designate the evaluation of illumination on the perpendicular (facing the sun) and horizontal planes. The additional subscripts, d, s, and t, designate direct sunlight, sky light and total light (direct sunlight plus sky light).

TABLE 820.—MEAN INTENSITY J FOR 24 HOURS OF SOLAR RADIATION ON A HORIZONTAL SURFACE AT THE TOP OF THE ATMOSPHERE AND THE SOLAR RADIATION A, IN TERMS OF THE SOLAR RADIATION, A_o, AT EARTH'S MEAN DISTANCE FROM THE SUN

	Motion of the sun in				Relative	mean ve Latitud	ertical in le north	tensity	$\frac{J}{A_0}$		
Date	longi- tude	0°	10°	20°	30°	40°	50°	60°	70°	80°	900
Jan. 1	0:99	.303	.265	.220	.169	.117	.066	.018			
Feb. 1	31.54	.312	.282	.244	.200	.150	.100	.048	.006		
Mar. 1	59.14	.320	.303	.279	.245	.204	.158	.108	.056	.013	
Apr. 1	89.70	.317	.319	.312	.295	.269	.235	.195	.148	.101	.082
May 1		.303	.318	.330	.329	.320	.302	.278	.253	.255	.259
June 1		.287	.315	.334	.345	.349	.345	.337	.344	.360	.366
July 1	179.39	.283	.312	.333	.347	.352	.351	.345	.356	.373	.379
Aug. 1	209.94	.294	.316	.330	.334	.330	.318	.300	.282	.295	.300
Sept. 1		.310	.318	.316	.305	.285	.256	.220	.180	.139	.140
Oct. 1	270.07	.317	.308	.289	.261	.225	.183	.135	.084	.065	
Nov. 1	300.63	.312	.286	.251	.211	.164	.114	.063	.018		
Dec. 1	330.19	.304	.267	.224	.175	.124	.072	.024			
Year .		.305	.301	.289	.268	.241	.209	.173	.144	.133	.126

Average annual solar energy received per square dekameter of horizontal surface in kilowatt hours. U. S.: Lincoln, 160,906; Mount Weather, 148,824; Washington, 145,403; New York, 106,460; Chicago, 97,856. Other countries: Toronto, 139,523; Johannesburg, 175,696; Davos Platz, 174,043; South Kensington, 78,569; Stockholm, 79,267.

²⁵¹ Jones, L. A., and Condit, H. R., Journ. Opt. Soc. Amer., vol. 38, p. 147, 1948.

Mean temperatures of a few selected American stations, also of one station of very high and two of very low temperature, and one of very great and one of very small range of temperature.

	Jan. Feb	. Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Year
1	Hebron-Rama (Labr.), -20.7 -20.	9 - 15.6	— 6.9	+ .2	+ 4.5	+ 7.6	+ 8.0	+ 4.5	.8	- 6.2	— 16.2 ·	- 5.2
2	Winnipeg (Canada)21.6 -18.	8 - 11.0	+ 1.9	+10.9	+17.1	+18.9	+17.6	+11.6	+ 4.1	— 7.6	-15.7	+ .6
3	Montreal (Canada)10.9 - 9.	1 - 4.3	+ 4.8	+12.6	+18.3	+20.5	+19.3	+14.7	+ 7.8	2	7.1	+ 5.5
	Boston — 2.8 — 2.											
	Chicago 4.8 — 2.											
6	Denver	1 + 3.8	+ 8.3	+13.6	+19.1	+22.1	+21.2	+16.6	+10.3	+ 3.3	.0	+ 9.7
	Washington $\dots + .7 + 2$											
	Pikes Peak											
	St. Louis											
	San Francisco +10.1 +10.											
	Yuma+12.3 +14.											
	New Orleans +12.1 +14											
	Massaua											
	Ft. Conger (Greenl'd)39.0 -40.											
	Verkhoyansk51.0 -45											
16	Batavia +25.3 +25.	4 + 25.8	+26.3	+26.4	+26.0	+25.7	+25.9	+26.3	+26.4	+26.2	+25.6	+25.9
_												

Lat, Long., Alt. respectively: (1) + 58°5, 63°0 W, -; (2) + 49.9, 97.1 W, 233m; (3) + 45.5, 73.6 W, 57m; (4) + 42.3, 71.1 W, 38m; (5) + 41.9, 87.6 W, 251m; (6) + 39.7, 105.0 W, 1613m; (7) + 38.9, 77.0 W, 34m; (8) + 38.8, 105.0 W, 4308m; (9) + 38.6, 90.2 W, 173m; (10) + 37.8, 122.5 W, 47m; (11) + 32.7, 114.6 W, 43m; (12) + 30.0, 90.1 W, 16m; (13) + 15.6, 37.5 E, 9m; (14) + 81.7, 64.7 W, -; (15) + 67.6, 133.8 E, 140m; (16) - 6.2, 106.8 E, 7m.

Note.—Highest recorded temperature in world $\equiv 57\,^{\circ}\text{C}$ in Death Valley, California, July 10, 1913. Lowest recorded temperature in world $\equiv -68\,^{\circ}\text{C}$ at Verkhoyansk, Feb. 1892.

TABLE 822.—TEMPERATURE VARIATION OVER EARTH'S SURFACE (HANN)

Maximum values for month in italics.

			Tempera	tures °C			Mean ocean	Land surface
Latitude	Jan.	Apr.	July	Oct.	Year	Range	temp	%
North pole	-41.0	-28.0	— 1.0	-24.0	-22.7	40.0	— 1.7	_
+80°	-32.2	-22.7	+ 2.0	-19.1	<u>-17.1</u>	34.2	- 1.7	20
70	-26.3	-14.0	7.3	- 9.3	-10.7	33.6	+ .7	53
60	-16.1	- 2.8	14.1	+ .3	- 1.1	30.2	4.8	61
50	— 7.2	+ 5.2	17.9	6.9	+ 5.8	25.1	7.9	58
40	+ 5.5	13.1	24.0	15.7	14.1	18.5	14.1	45
30	14.7	20.1	27.3	21.8	20.4	12.6	21.3	43.5
20	21.9	25.2	28.0	26.4	25.3	6.1	25.4	31.5
+10	25.8	27.2	27.0	26.9	26.8	1.4	27.2	24
Equator	26.5	26.6	25.7	26.5	26.3	.9	27.1	22
 10	26.4	25.9	23.0	25.7	25.5	3.4	25.8	20
20	25.3	24.0	19.8	22.8	23.0	5.5	24.0	24
30	21.6	18.7	14.5	18.0	18.4	7.1	19.5	20
40	15.4	12.5	8.8	11.7	11.9	6.6	13.3	4
50	8.4	5.4	3.0	4.8	5.4	5.4	+ 6.4	2
60	3.2		— 9.3		— 3.2	12.5	.0	0
70	- 1.2		-21.0	_	-12.0	19.8	— 1.3	71
80	(-4.3)	_	(-28.7)	_	(-20.6)	(24.4)		100
South pole	(-6.0)	_	(-33.0)	_	(-25.0)	(27.0)	-	(100)

Table illustrates temperature changes underground at moderate depths due to surface warming (read from plot for Tiflis, Lehrbuch der Meteorologie, Hann and Süring, 1915). Below 20–30 m (nearer the surface in Tropics) there is no annual variation. Increase downward at greater depths, 0.03 ± °C per m (1° per 35 m) l.c. At Pittsburgh, 1524 m, 49.4°, .0294 per m; Oberschlesien, 2003 m, 70°, .0294 per m; or West Virginia, 2200 m; 70°, .034° per m (Van Orstrand). Mean value outflow heat from earth's center, 0.00000172 g cal cm⁻² sec⁻¹, or 54 g cal cm⁻² yr⁻¹ (39 Laby). Open ocean temperatures: Greatest mean annual range (Schott) 40° N., 4.2° C; 30° S., 5.1°; but 10° N., only 2.2°; 50° S., 2.9°. Mean surface temp. whole ocean (Krümmel) 17.4°: all depths, 3.9:. Below 1 km nearly isothermal with depth. In Tropics, surface 28°; at 183 m, 11°, 80 percent water less than 4.4°. Deep-sea (bottom) temps. range —0.5° to +2.6°. Soundings in South Atlantic: 0 km, 18.9°; .25 km. 15°; .5 km, 8.3°; 1 km, 3.3°; 3 km, 1.7°; 4.5 km, 0.6°.

			y	laxim	ım val	ues in 1	boldfac	e.				
Donah						Tempera	ture °C					
Depth,	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
0	1	4	10	14	21	29	32	32	24	16	9	4
.5	4	4	9	13	18	23	26	28	24	18	12	6
1.0	6	6	8	12	15	20	24	26	23	18	14	10
1.5	9	8	9	11	14	18	21	23	22	18	15	12
2.0	11	10	10	11	13	16	19	21	21	18	16	14
3.0	14	12	12	11	13	14	16	17	18	18	17	15
4.0	15	13	12	12	12	13	14	16	16	17	17	16
5.0	15	14	13	13	13	13	14	14	15	16	16	16
6.0	15	14	14	14	14	14	14	14	14	15	15	15

TABLE 824,---WOLF'S SUNSPOT NUMBERS, ANNUAL MEANS * 255

Sunspot number =k (10 \times number of groups and single spots observed + total number of spots in groups and single spots). k depends on observer and telescope, equaling unity for Wolf with 3-in. telescope and power of 64. Wolf's numbers are closely proportional to spotted area on sun, 100 corresponds to about 1/600 of visible disk covered (umbras and penumbras). Periodicity: successive outbursts about 11 years apart, extremes 7.3 years and 17.1 years. See references for daily and monthly values.

Smoothed monthly numbers are formed from monthly means of observed number by weighting the sixth months preceding and following 1, all 11 intervening months 2.

Smoothed monthly sunspot numbers, annual means Maximum and minimum values for period in boldface

Year	0	1	2	3	4	5	6	7	8	9
1750	83.1	52.2	45.9	28.9	13.5	9.3	12.2	31.9	47.2	54.5
1760	64.7	80.2	60.1	48.5	36.7	21.4	14.2	35.9	66.8	103.4
1770	98.5	86.7	65.7	39.7	27.5	8.8	21.7	92.2	151.3	123.4
1780	89.2	66.5	38.7	22.5	10.3	26.7	81.2	128.2	133.3	117.0
1790	90.6	67.6	59.8	47.3	38.5	24.0	15.6	6.5	4.6	6.9
1800	15.0	33.7	44.1	43.0	46.8	42.5	27.3	11.6	7.6	3.1
1810	.0	1.7	4.5	12.1	15.5	35.1	46.1	39.8	30.0	23.4
1820	16.6	6.6	4.0	2.6	8.3	16.9	35.3	51.6	62.1	67.1
1830	67.2	50.5	26.3	9.4	13.3	59.1	121.1	137.0	103.4	83.4
1840	61.9	38.5	23.0	13.2	17.7	38.4	59.7	97.3	125.0	95.4
1850	69.8	63.2	52.8	38.6	21.0	7.7	5.2	23.0	56.3	90.3
1860	94.8	77.7	61.1	45.4	45.2	31.4	14.7	8.8	36.9	78.6 7.7
-1870	131.8	113.8	99.7	67.9	43.1	18.9	11.7	11.0	3.9	6.3
1880	31.6	54.4	58.1	65.4	63.3	51.3	25.1	12.6	7.0	13.8
1890	8.4	37.7	70.0	83.7	79.1	61.5	43.1	28.1	24.6	40.6
1900	8.8	3.4	5.7	23.0	44.1	58.7	60.3	56.0	51.2 83.1	65.5
1910	21.0	6.5	3.4	2.2	11.8	46.4	59.1	96.2 70.0	74.5	62.0
1920	36.9	27.0	13.0	6.3	16.8	43.7	66.5	113.2	103.9	89.6
1930	38.8	21.1	12.1	5.9	9.4	36.5	79.6	145.6	141.2	134.7
1940	66.8	50.5	30.3	15.3	11.1	36.4	91.7	145.0	141.4	107.7
1950	83.9	69.4								

^{*} Prepared by Allan F. Cook II.

255 Astron. Mitt. Zürich, No. 145, 1945; Journ. Geophys. Res., vol. 54, p. 347, 1949; Waldmeier, M.,
Astron. Mitt Zürich; Terr. Mac.; Journ. Geophys. Res., Trans. Int. Astron. Union Quart. Bull. Solar
Activity; American Sunspot Number Reductions, Central Radio Propagation Laboratory, National
Bureau of Standards.

728 TABLES 825-884.—ASTRONOMY AND ASTROPHYSICS *

Astronomy, including astrophysics, is a study of the geometry and physics of the heavenly bodies and the material in the intervening space. This experimental science requires some very special apparatus—in general, used in connection with large telescopes. Table 825 gives a list of the larger telescopes that are now (1949) in active scientific use. Some definitions and standards and other data on astronomy follow.

TABLE 825.—THE LARGEST TELESCOPES IN ACTIVE SCIENTIFIC USE (1949) †

Reflectors (60-inch mirrors and larger) Hale Telescope, Palomar Mountain, Calif., U. S. A.... MacDonald Observatory, Mount Locke, Tex., U. S. A. 82-inch Radcliffe Observatory, Pretoria, South Africa. 76-inch David Dunlap Observatory, Richmond Hill, Ontario, Canada. Dominion Astrophysical Observatory, Victoria, B. C., Canada. Perkins Observatory, Delaware, Ohio, U. S. A.. Wyeth Reflector, Harvard Observatory, Oak Ridge, Mass., U. S. A.. 74-inch 72-inch 69-inch 61-inch Southern Station of the Harvard Observatory, Bloemfontein, South Africa..... Mount Wilson Observatory, Mount Wilson, Calif., U. S. A..... 60-inch 60-inch Cordoba Observatory, Bosque Alegre, Argentina..... Refractors

(30-inch lenses and larger)

Yerkes Observatory, Williams Bay, Wis., U. S. A	40-inch
Lick Observatory, Mount Hamilton, Calif., U. S. A	36-inch
Astrophysical Section, Observatory of Paris, Mundon, France	33-inch
Allegheny Observatory, Pittsburgh, Pa., U. S. A	30-inch
University of Paris Observatory, Nice, France	30-inch

Schmidt-type telescopes (of large aperture)

48-inch correction plate, 72-inch mirror, Palomar Observatory, Calif., U. S. A.
24-inch correction plate, 36-inch mirror (Burrell Telescope), Warner & Swasey Observatory, Case Institute of Technology, Cleveland, Ohio, U. S. A.
24-inch correcting plate, 33-inch mirror (Jewett Telescope) Harvard Observatory, Oak Ridge, Mass., U. S. A.

TABLE 826.—APPROXIMATE EQUATION OF TIME **

The equation of time in this table is to be added algebraically to local apparent solar time to obtain local mean solar time.

Accurate values of the equation of time may be obtained from the American Ephemeris and Nautical Almanac.

	ınin		min		min		min
Jan. 1	+ 3	Apr. 1	+ 4	July 1	+ 4	Oct. 1	-10
11	- 8	11	<u> </u>	11	<u>i</u> 5	11	-13
21	+11	21	<u> </u>	21	+ 6	21	-15
Feb. 1	+14	May 1	— 3	Aug. 1	+ 6	Nov. 1	-16
11	+14	11	_ 4	11	+ 5	11	-16
21	+14	21	4	21	∔ 3	21	14
Mar. 1	+13	June 1	— 2	Sept. 1	0	Dec. 1	11
11	+10	11	— 1	11	— 3	11	— 7
21	+ 8	21	+ ī	21	— 7	21	— 2
	•		, -		•		_

^{**} Prepared by G. M. Clemence, U. S. Naval Observatory.

^{*}These tables were prepared under the supervision of D. H. Menzel, of Harvard University, and Edith Janssen Tebo, of Harvard College Observatory.

[†] Prepared by J. J. Nassau, Case Institute of Technology.

Aberration constant.-20".47 (conventional value; work of Doolittle, Spencer Jones, and others, indicates a value of 20:50).

Aphelion.—Point where earth is farthest from sun = 1.520×10^{18} cm.

Astronomical unit (A. U.)—Distance: mean distance earth to sun, 149,500,000 km. (Conventional value, solar parallax 8"79 would give 149,700,000.) Mass: the combined mass of the sun and earth which means, practically, the sun's mass = 1.987×10^{88} g.

Color index.—Ordinary stellar magnitudes are supposed to correspond to observations with the normal eye. This is by no means easy to define, for the brightness of a red star compared with a white, appears greater when the amount of light entering the eye is increased for both in the same ratio (Purkinje effect) for low brightness.

Owing to differences in the actual distribution of the energy with wavelength, the relative brightness of stars of different temperatures and colors measured with receptors

sensitive to different spectral regions vary greatly.

On ordinary photographs, red stars appear much fainter than to the eye. If the measures are calibrated so that the visual and photographic magnitudes average the same for spectral class A, the difference for any other group of stars is called color index. This ranges from about $-0^m.3$ to +1.8 for class M and reaches 5^m for the reddest stars of class N

The difference in color index between the two standard types, e.g., AO and KO is called the color-equation. It varies over a wide range with the spectral sensitivity of the receiver, very large and positive for the violet and ultraviolet and negative for the red and

infrared.

Photoelectric devices, combined with screens and measurable transmission have at last provided standard systems for stellar photometry of at least approximately definite physical significance for spectral regions ranging from the ultraviolet to the infrared. Radiometric magnitudes correspond to the measures of the whole observable energy radiation.

Bolometric magnitudes are supposed to represent the total energy radiation of all wave-

lengths, and must be found by calculation.

Date line.—Established by convention not far from the 180th meridian from Greenwich. Where the line runs across a group of islands, the change of the date line is diverted to one side so that the group has the same day. Ships crossing from the east, skip a day; going east, count the same day twice.

Day.—Mean solar day = 1,440 minutes = 86,400 seconds = 1.0027379 sidereal day. Sidereal day (ordinary, two successive transits of vernal equinox, might be called equinoctial day) = 86,164.09054 mean solar seconds = 23 hr, 56 min, 4.09054 sec mean solar time.

Two successive transits of same fixed star = 86,164.09967 mean solar seconds. **Declination.**—If $\delta =$ declination, t, hour angle measured west from meridian, h, altitude, ϕ , latitude and A, azimuth measured from S. point through W. Then

```
\sin h = \sin \phi \sin \delta + \cos \phi \cos \delta \cos t
\cos h \cos A = -\cos \phi \sin \delta + \sin \phi \cos \delta \cos t given \delta, t, \phi
                                                      \cos \delta \sin t
           \sin \delta = \sin \phi \sin h - \cos \phi \cos h \cos A
  \cos \delta \cos t = \cos \phi \sin h + \sin \phi \cos h \cos A given h, A, \phi
  \cos \delta \sin t =
```

Delaunay's $\gamma = \sin 1/2 I = 0.04488716$ (Brown).

Dip of horizon.—In minutes of arc = \vee elevation in ft (approximately).

Earth.—Mean $r = 6.3712 \times 10^8$ cm. Equatorial diameter = 12,756.78km; polar diameter = 12,713.82 km. Area = 5.101×10^8 cm. Equatorial diameter = 72.9×10^{-6} radians/sec. Volume = 1.083×10^{27} cm³. Mass = 5.975×10^{27} g. Density = 5.517 g/cm³. Mean distance to sun = 1.495×10^{19} cm. Distance to the moon = 3.844×10^{10} cm. Light traverses mean radius of earth's orbit in 498.6 sec. Semimajor axis orbit = 1.4950×10^{18} cm; semi ninor axis = 1.4948×10^{19} cm. Viscosity = 10.9×10^{18} cgs. Velocity of equatorial point on earth, because of rotation: 1.050 mi/hr = 1.550 ft/sec = 1.650 km/hr = 460 m/sec. In orbit: 18/5 mi/sec = 30 km/sec. See Tables 831 and 833. Rotational energy = 2.16×10^{30} erg.

Earth's orbital velocity = 18.5 miles/second. 1,550 ft/sec (rotation at Equator). Eccentricity of earth's orbit = $e = 0.01675104 - 4.180 \times 10^{-7} (t - 1900) - 1.26 \times 10^{-11}$

 $(t-1900)^2$

Eccentricity of moon's orbit $= e_2 = 0.05490056$ (Brown).

Gal.—Unit of gravity acceleration = 1 cm sec-

General precession (westward movement of the equinoxes) = 50.2564 + 0.000222 (t - 1900) per year (Newcomb). Probably requires correction of about +0.001. See Table 838.

Gravitation constant = $(6.670 \pm 0.005) \times 10^{-8}$ dyne cm² g⁻² (Heyl, 1930).

Gravity, acceleration due to, g = 978.0495 cm sec⁻² (conventional value at sea level at equator. See Table 802). Unit, gal = 1 cm sec⁻².

(continued)

^{*} Prepared by G. M. Clemence, U. S. Naval Observatory.

Heat index .- Radiometric (heat or bolometric), zero taken to agree with Class AO. (radiometric - visual magnitude) = heat index, + for red stars.

Horizon.—Distance at sea is approximately, miles = $\sqrt{(3/2)}$ height in feet. Local refraction (mirage) may introduce large percentage changes in either direction for observations from altitudes of 30 feet or less.

Inclination of moon's orbit = $I = 5^{\circ}8'43.5''$ (Brown).

Julian period, 1950 = 6663.—January 1, 1950, Julian-day number = 2433283.

Latitude variation.—The direction of the axis of the earth in space changes approximately 20".5 per year owing to precession. The change is roughly periodic in 25,800 years

with an amplitude of 23.5. This does not affect terrestrial latitudes, but a variation in them is caused by a shift of the earth's body about this axis. The two ascertained components of the polar motion have periods of 1.00 and nearly 1.20 years (the annual and Chandlerian components, respectively), so that the oscillations in X and Y, as well as the resultant total motion have variations in amplitude with a "beat period" of about 6 years. In contrast to the annual terms, Chandler's term shows striking variations in amplitude. There is, further, a variation in the period of the Chandlerian term (1.18, 1.20, 1.17, 1.15, 1.19 years) which appears nearly proportional to the corresponding amplitude variations according to the relation $P=0.185\,A+1.128$, where P is the period in years and A the amplitude in 0.01 units. (See T. Nicolini, appendix to Commission 19 Report, Trans. Int. Astron. Union, Zurich, 1948.)

Light, velocity of.—(Mean value) in vacuo, 299773 ± 10 km sec⁻¹ (Dorsey). $299792.5 \pm 0.8 \,\mathrm{km \, sec^{-1}}$ (Bearden). $299776 \pm 0.00004 \text{ km sec}^{-1}$ (Birge).

Light year.—The distance light travels in 1 year = 9.5×10^{12} kilometers = 5.9×10^{13} miles. Light traverses mean radius of earth's orbit in 498.6 sec.

Lunar inequality of earth = L = 6.454. Lunar node d = daily motion = -0.052954.

Lunar parallax = 3422.70'' (Brown).

Lunar perigee, daily motion = + 0.111404. Lunar-solar precession = p' = 50.3714'' per year (De Sitter, 1927). Of this 0.0191",

Einstein, orbital motion earth.

Magnitudes.—The observed intensity of light received on the earth from astronomical bodies ranges over a factor exceeding 10¹⁰. It is therefore expressed on a logarithmic scale—the system of stellar magnitudes. This system, which was adopted by Hipparchus more than 2,000 years ago, is closely represented by the equation

$$m = 2.5 \log_{10} (l_0/l)$$

where l is the observed light and l_0 a standard value corresponding roughly to the light of Arcturus or Vega. Decrease of light by a factor of 100 increases the stellar magnitude by 5.00; hence the brightest objects have negative magnitudes. (Sun: -26.8; mean full moon: -12.5; Venus at brightest: -4.3; Jupiter at opposition: -2.3; Sirius: -1.6; Vega: +0.2; Polaris: +2.1). The faintest stars visible to the naked eye on a clear dark night are of about the sixth magnitude (though on a perfectly black background the limit for a single luminous point approaches the eighth magnitude). The faintest stars visible with a telescope of aperture A (in inches) is one approximately of magnitude 9+5 $\log_{10} A$. The magnitude of the faintest stars which can be photographed with the 200-inch telescope is about +22.7. The apparent magnitude of a standard candle at a distance of 1 meter is -14.2

Absolute magnitude, M, is that which the body would exhibit if placed at a distance of 10 parsecs, and corresponds to its actual luminosity. For a star of magnitude m, and

parallax p, in seconds of arc

$$M = m + 5 + 5 \log p$$

For the sun, M=+4.7. The brightest stars probably exceed M=-7 and the faintest observed value is M=+18, a range of 10^{10} . The full moon (could it be observed without interference from the standard distance) would have M = +32 and a standard candle +72.8.

Mean distance earth to moon = 60.2678 terrestrial radii.

= 384.411 kilometers = 238.862 miles. (See Table 834.) Mean distance earth to sun = 149,500,000 kilometers = 92,900.000 miles. (See Astronomical unit.) See Table 833.

Month.—Sidereal = 27.321661 days, synodical (ordinary) = 29.530588 days (Brown). Nutation constant (periodic motion of celestial pole) = 9.21". conventional value; 9.207". Principal in long = $\Delta \phi = (-17.234" - .017" T) \sin \Omega$; principal term in obliquity = $\Delta \epsilon = (+9.210 + .0009 T) \cos \Omega$ (Newcomb). T centuries from 1900. Obliquity of ecliptic = $23^{\circ}27'8.26" - 0.4684 (t - 1900)"$ (Newcomb).

(continued)

TABLE 827.-MISCELLANEOUS ASTRONOMICAL DATA (concluded)

Parallactic inequality moon = Q = 124.785'' (Brown.)

Parsec.—Distance of star whose parallax is $1 \sec = 31 \times 10^{12} \text{ km} = 19.2 \times 10^{12} \text{ miles}$ = 3.263 light years.

Perihelion.—Point where earth is nearest sun = 1.4700×10^{18} cm.

Planetary precession = λ = 0.1247" (Newcomb). Pole of Milky Way = R. A., 12 hr 48 min; Dec., +27°. Refraction.—r in. (") = [983 × (barometer in in.)/(460 + t° F)] tan Z, where Z = zenith distance. Error < 1", Z < 75°, ordinary t and pressure.

Solar diameter = 864,408 miles.

Solar parallax = 8.80 (conventional value), 8.79 (Newcomb, Spencer Jones).

Sun.— $r = 6.965 \times 10^{10}$ cm. Area = 6.093×10^{22} cm². Volume = 1.412×10^{35} cm³. Mass \times 10³⁸ g. Density = 1.41 g/cm³. Mean distance to earth 1.495 \times 10¹⁸ cm. See = 1.987 Table 831.

Twilight.—There are three definitions of twilight: civil, nautical, and astronomical. Civil twilight lasts until the sun is about 6° below the horizon, after which motor-car lights must be turned on. Nautical twilight lasts until the sun is about 12° below the horizon. This is the limit for observations of stars with the sea horizon. Astronomical twilight is considered to end when the sky is dark in the zenith. It lasts until the sun is about 18° below the horizon. For latitudes $> 50^{\circ}$ there is a faint twilight at midnight in midsummer.

Year.—Anomalistic (two successive passages of the perihelion) = 365.25964134 + 3.04 \times 10⁻⁸ (t – 1900) days. Eclipse (time taken by sun to pass from a node of the moon's orbit to the same node) = 346.620031 + 3.2 \times 10⁻⁷ (t – 1900) days. Sidereal (from given star to same star again) = $365.25636042 + 1.1 \times 10^{-9}$ (t – 1900) days. Tropical (ordinary) (two successive passages of vernal equinox by sun) = $365.24219879 - 6.14 \times 10^{-8}$ (t-1900) days.

TABLE 828.--ELEMENTS OF SOLAR MOTION *

Because of the asymmetry in stellar motions (Table 876), determinations of the speed and direction of the sun's motion are very sensitive to the selection of stars to which it is referred. Ideally we wish to refer the sun's motion to the circular velocity with respect to the galactic center; this may be called the basic solar motion. It is possible to determine this basic solar motion from detailed studies of the distribution of motions among nearby stars and it is found that such a determination made from the giant K stars is in excellent agreement with an independent determination from the A stars (Janssen and Vyssotsky). This value is given in the last line of the table. The figures listed for the first five groups are smoothed values obtained from a combination of the best observational results. The values for the next four groups come from investigations made at Leiden, Mount Wilson, and McCormick Observatories. The solar motion with respect to B stars, c-stars, and Cepheids is difficult to determine satisfactorily because of uneven distribution in space, very small proper motions, etc.

			Coordinates	of the apex	
Stellar group of reference B8 to A3. A5 to F2. F5 to G0. K0 to K2. gK5 to gM8. dK8 to dM5. Irregular var Long-period var Cluster-type var Basic solar motion.	Solar velocity 16 km/sec 17 18 20 22 23 35 54 130 15	R A 263° 266 269 273 276 275 265: 297 260	Dec +20° +23 +26 +29 +31 +44 +38: +46 +52 +17	Gat long 11° 15 18 23 27 39 30: 47 53 7	Gal lat +24° +22 +21 +19 +17 +22 +28: +10 +12 +25

^{*} Prepared by A. N. Vyssotsky, University of Virginia. 256 Astron. Journ., vol. 53, p. 87, 1948.

This calendar gives the day of the week for any known date from the beginning of the Christian Era down to the year 2400.

Dominical letters

	Julian Calendar Gregorian Calendar												
Year	Century	700 1400	100 800 1500 †	200 900	300 1000	400 1100	500 1200	600 1300	1500 ‡	1600 2000	1700 2100	1800 2200	1900 2300
0 1 29 2 30 3 31 4 32 5 33 6 34 7 35 8 36 9 37 10 38 11 39 12 40 13 41 14 42 15 43 16 44 17 45 18 46 19 47 20 48 21 49 22 50 23 51 24 52 25 53 26 54 27 55 28 56	57 85 58 86 59 87 60 88 61 89 62 90 63 91 64 92 65 93 66 94 67 95 68 96 69 97 70 98 71 99 72 73 74 75 77 77 78 80 81 82 83 84	DB AG FD CB AF ED CAG F ECB AG ED CB GF	EC B A G E D C B A G F E D C B A G F E D C B A G F E D C B A G F E D C B A G F E D C A G F E D C A G F E D C B A G F E D C A G F E D C B A G F	FE DCB AFEDCA GFECBAGEDCBAGEE	GF EDCBGFECBAGFEDCAGFECBAGF	AG FEDCAGFECBAGEDCBGFEDBAGFEDCBAG	BA GFECBAGFEDCBAGFEDCBAGFEDCBA	CB GFD CBAGEDCBGFEC BAGEDCBAGEDCBAFEDCB	F E D C B A G F E D C C B A G	BA FEDC BAGFEDCBAGFED BAGFEDCBAGFEDCBA	CBAGFEDCBAGFEDCBAGFEDCBGFEDCBAGFEDCBAGFEDCBAGFEDCBAGFEDCBAGFEDCBGFEDCBAGFEDCBAGFEDCBGFEDCBGFEDCBGFEDCBAGFEDCBGFEDCBAGFFEDCBAGFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFEDCBAGFFFEDCBAGFFFEDCBAGFFFEDCBAGFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	EDCBAGFEDCAGFEDCBAGFEDCA	GFEDCAGFEC BAGFEDC BAGFEDC BAG
Jan., O	ar., Nov. ily		A D G B E C F		B E A C F D G	C F B D G E A	Domin	D G C E A F B	E A D F B G C		F B E G C A D	G C F A D B E	
1 8 2 9 3 10 4 11 5 12 6 13 7 14	15 22. 29 16 23 36 17 24 31 18 25 19 26 20 27 21 28)	W	on. ies. ed. iurs. i.	Sat. Sun. Mon. Tues. Wed. Thurs Fri.	. Tu	t.	Thurs. Fri. Sat. Sun. Mon. Tues. Wed.	Wed Thu Fri. Sat. Sun. Mon Tues	rs.]	Tues. Wed. Thurs. Fri. Sat. Sun. Mon.	Mor Tue: Wed Thu Fri. Sat. Sun.	s. l. rs.

To find the calendar for any year of the Christian Era, first find the Dominical letter for the year in the upper section of the table. Two letters are given for leap years; the first is to be used for January and February, the second for the other months. In the lower section of the table, find the column in which the Dominical letter for the year is in the same line with the month for which the calendar is desired; this column gives the days of the week that are to be used with the month.

E.g., in the table of Dominical Letters we find that the letter for 1951 is G; in the line with July, this letter occurs in the first column; hence July 4, 1951, is Wednesday.

^{*} Prepared by G. M. Clemence, U. S. Naval Observatory. † On and before 1582, Oct. 4 only. ‡ On and after 1582, Oct. 15 only.

Days are numbered consecutively, beginning with the number 0, from Greenwich mean noon on Jan. 1, 4713 B.C. The number of days since that time that have elapsed at Greenwich mean noon on any given date is the Julian Day Number of that day.

For A.D. 0 to A.D. 1580 inclusive, the Julian Day Numbers in this table are the days elapsed at Greenwich mean noon up to January 0 of the Julian Calendar in each leap year.

For 1584 to 2096 inclusive, the Julian Day Numbers are for January 0 of the Gregorian Calendar, except that in 1700, 1800, and 1900, which were not leap years, they are for January -1.

									J	
A.D.	0	100	200	300	400	500	600	700	800	900
0	1721057 1722518	1757582 1759043	1794107 1795568	1830632 1832093	1867157 1868618	1903682 1905143	1940207 1941668	1976732 1978193	2013257 2014718	2049782 2051243
8 12	1723979 1725440	1760504 1761965	1797029 1798490	1833554 1835015	1870079 1871540	1906604 1908065	1943129 1944590	1979654 1981115	2016179 2017640	2052704 2054165
16 20	1726901 1728362	1763426 1764887	1799951 1801412	1836476 1837937	1873001 1874462	1909526 1910987	1946051	1982576	2019101	2055626
24 28	1729823 1731284	1766348 1767809	1802873 1804334	1839398 1840859	1.875923	1912448	1947512 1948973	1984037 1985498	2020562 2022023	2057087 2058548
32 36	1732745 1734206	1769270 1770731	1805795 1807256	1842320 1843781	1877384 1878845	1913909 1015370	1950434 1951895	1986959 1988420	2023484 2024945	2060009 2061470
40	1735667	1772192	1807236	1845242	1880306 1881767	1916831 1918292	1953356 1954817	1989881 1991342	2026406 202786 7	2062931 2064392
44 48	1737128 1738589	1773653 1775114	1810178 1811639	1846703 1848164	1883228 1884689	1919753 1921214	1956278 1957739	1992803 1994264	2029328 2030789	2065853 2067314
52 56	1740050 1741511	1776575 1778036	1813100 1814561	1849625 1851086	1886150 1887611	1922675 1924136	1959200 1960661	1995725 1997186	2032250 2033711	2068775 2070236
60 64	1742972 1744433	1779497 1780958	1816022 1817483	1852547 1854008	1889072 1890533	1925597 1927058	1962122 1963583	1998647	2035172	2071697
68 72	1745894 1747355	1782419 1783880	1818944 1820405	1855469 1856930	1891994 1893455	1928519 1929980	1965044 1966505	2000108	2036633 2038094	2073158 2074619
76	1748816	1785341	1821866	1858391	1894916	1931441	1967966	2003030 2004491	2039555 2041016	2076080 2077541
80 84	1750277 1751738	1786802 1788263	1823327 1824788	1859852 1861313	1896377 1897838	1932902 1934363	1969427 1970888	2005952 2007413	2042477 2043938	2079002 2080463
88 92	1753199 1754660	1789724 1791185	1826249 1827710	1862774 1864235	1899299 1900760	1935824 1937285	1972349 1973810	2008874 2010335	2045399 2046860	2081924 2083385
96	1756121	1792646	1829171	1865696	1902221	1938746	1975271	2011796	2048321	2084846
A.D.	1000	1100	1200 2159357	1300 2195882	1400 2232407	1500 2268932	1600	1700	1800	1900
0 4	2086307 2087768	2122832 2124293	2160818	2197343 2198804	2233868 2235329	2270393	2305447 2306908	2343432	2379956	2415019† 2416480
8 12	2089229 2090690	2125754 2127215	2162279 2163740	2200265	2236790 22382 5 1	2271854 2273315	1308369 2309830	2344893 2346354	2381417 2382878	2417941 2419402
16 20	2092151 2093612	2128676 2130137	2165201 2166662	2201726 2203187	2239712	2274776 2276237	2311291 2312752	2347815 2349276	2384339 2385800	2420863 2422324
24 28	2095073 2096534	2131598 2133059	2168123 2169584	2204648 2206109	22411 73 22426 3 4	2277698 2279159	2314213 2315674	2350737 2352198	2387261 2388722	2423785 2425246
32 36	2097995 2099456	2134520 2135981	2171045 2172506	2207570 2209031	2244095 2245556	2280620 2282081	2317135 2318596	2353659 2355120	2390183 2391644	2426707 2428168
40	2100917	2137442	2173967 2175428	2210492 2211953	2247017 22484 7 8	2283542 2285003	2320057 2321518	2356581	2393105	2429629
44 48	2102378 2103839	2138903 2140364	2176889	2213414 2214875	2249939 2251400	2286464 2287925	2322979	2358042 2359503	2394566 2396027	2431090 2432551
52 56	2105300 2106761	2141825 2143286	2178350 2179811	2216336	2252861	2289386	2324440 2325901	2360964 2362425	2397488 2398949	2434012 2435473
60 64	2108222 2109683	2144747 2146208	2181272 2182733	2217797 2219258	2254322 2255783	2290847 2292308	2327362 2328823	2363886 2365347	2400410 2401871	2436934 2438395
68 72	2111144 2112605	2147669 2149130	2184194 2185655	2220719 2222180	2257244 2258705	2293769 2295230	2330284 2331745	2366808 2368269	2403332 2404793	2439856 2441317
76	2114066	2150591	2187116	2223641	2260166	2296691	2333206	2369730	2406254	2442778
80 84	2115527 2116988	2152052 2153513	2188577 2190038	2225102	2261627 2263088	2298152‡ 2299603§	2336128	2371191 2372652	2407715 2409176	2444239 2445700
88 92	2118449 2119910	2154974 2156435	2191499 2192960	2228024 2229485	2264549 2266010	2301064 2302525	2337589 2339050	2374113 2375574	2410637 2412098	2447161 2448622
96	2121371	2157896 2451544	2194421	2230946 2458849	2267471 2040	2303986 2466154	2340511	2377035 2473459	2413559	2450083 2480764
	2004 2008	2453005 2454466	2024 2028	2460310 2461771	2044 2048	2467615 2469076	2064 2068	2474920 2476381	2084 2088	2482225 2483686
	2012 2016	2455927 2457388	2032 2036	2463232 2464693	2052 2056	2470537 2471998	2072 2076	2477842 2479303	2092 2096	2485147 2486608
	2010	240,000	2000							

Days to be added to reduce to the beginning of each month: For dates from 1582 October 15 to 1583 December 31, inclusive, Gregorian Calendar, diminish all numbers in this table by 10. In 1700, 1800, and 1900, Gregorian Calendar, for January 0 use the number 1 instead of the tabular value 0, and for February 0 use 32 instead of 31.

Year	Jan. 0	Feb. 0	Mar. 0	Apr. 0	May 0	June 0	July 0	Aug. 0	Sept. 0	Oct. 0	Nov. 0	Dec. 0
0	0	31	60	91	121	152	182	213	244	274	305	335
ĭ	366	397	425	456	486	517	547	578	609	639	670	700
2	731	762	790	821	851	882	912	943	974	1004	1035	1065
3	1096	1127	1155	1186	1216	1247	1277	1308	1339	1369	1400	1430

^{*} Prepared by G. M. Clemence, U. S. Naval Observatory. § Gregorian Calendar. † For January - 1. ‡ Julian Calendar.

TABLE 831.—PHYSICAL DATA; PLANETS AND PRINCIPAL SATELLITES

(From unpublished compilation by G. P. Kuiper and D. L. Harris, Yerkes Observatory.)

Planet or satellite	Mass * (Earth = 1)	Mean diameter \dagger $(E=1)$	Mean density H ₂ O = 1	Surface gravity $(E = 1)$	Velocity of escape km/sec	Rotation period (days)
Mercury	.0543	.38	5.46	.38	4.3	88.0
Venus		.967	4.96	.87	10.4	15-30?
Earth		1.000	5.52	1.00	11.3	1.00
Mars		.523	4.12	.39	5.1	1.03
Jupiter		10.97	1.33	2.65	61.0	.41
Saturn	05.3	9.03	.71	1.17	36.7	.43
Uranus	14.58	3.72	1.56	1.05	22.4	.45
Neptune		3.38	2.47	1.23	25.6	.66
Pluto	<.1?	.45	<5.5?	<.5?	<5.3?	?
Moon	.0123	.273	3.33	.16	2.4	27.3
Jupiter I		.255	4.03	.19	2.5	1.77
Jupiter II	.0079	.226	3.78	.16	2.1	3.55
Jupiter III	.0261	.394	2.35	.17	2.9	7.15
Jupiter IV		.350	2.06	.13	2.4	16.69
Titan		.371	2.54	.17	2.8	15.95
Triton	.022	.35?	2.8?	.18?	2.8?	5.88

^{*} Mass of the Earth is 5.975×10^{27} grams; of the Sun 332,488 (1 \pm 0.00013) $E=1.987 \times 10^{33}$ grams; of the Moon (0.012289 \pm 0.000004) $E=7.343 \times 10^{25}$ grams. † Equatorial diameter of the Earth = 12,756.78 km; polar diameter 12,713.82 km; "mean diameter" 12,742.46 km. See Table 827

TABLE 832.—PLANETARY TEMPERATURES

		Calcul	lated
	Measured	Ā	\overrightarrow{B}
Mercury (sunlit side)	690° K	445° K	631° K
Venus (dark side)	250		
(bright side)	330	327	464
Earth (mean)	287	277	392
Moon (center of illuminated hemisphere)	400	277	392
Mars (warmest portions)	285	222	316
Jupiter	135	122	273
Saturn	120	90	128
Uranus	less than 90	63	89
Neptune		51	72

All temperatures are given on the absolute scale. To change to centigrade, subtract 273. The column headed "measured" presents values determined by Coblentz and Lampland, and by Pettit and Nicholson. The column headed "A" gives black sphere temperatures; "B" gives these multiplied by $\sqrt{2}$ or the calculated maximum temperatures of the center of the illuminated hemisphere of atmosphereless black planets. The observed values lie, as expected, between A and B in nearly every case.

TABLE 833.--PLANETARY ORBITS * 257

	Maan die	tance to Sun	Siderea	l period		
Body	A U	km	Mean days	Tropical	Inclina- tion	Eccen- tricity
Mercury	.387	57.9 †	87.97	.241	7:004	.2056
Venus	.723	108.1	224.70	.615	3.394	.0068
Earth	1.000	149.5 ‡	365.26	1.000	.000	.0167
Mars	1.524	227.8	686.98	1.881	1.850	.0934
Jupiter		777.8	4332.58	11.862	1.306	.0484
Saturn	9.539	1426.1	10759.20	29.458	2.490	.0557
Uranus	19.191	2869.1	30685.91	84.015	.773	.0472
Neptune	30.071	4495.6	60187.60	164.788	1.774	.0086
Pluto	39.457	5898.9	90469.27	247.697	17:143	.2485

^{*} Prepared G. P. Kuiper, Yerkes Observatory.

277 American Ephemeris and Nautical Almanac for 1950.

† × 100.

† X loo.

† Mean distance in km computed from earth's equatorial radius (6378.388 km) and solar parallax of 8."80. Recent determinations by Spencer Jones (Monthly Notices, Roy. Astron. Soc., vol. 101, p. 356, 1941) and Rabe (Astron. Journ., vol. 55, p. 112, 1950) give 8."790 ± 0."001 and 8."7984 ± 0."0004, respectively.

Body	Mean distance from planet (km)	Sidereal period (days)	Vis magnitude at mean opp	Direction of motion †
Earth Moon	384,400	27.322	—12.7	D
Mars				
Phobos	9,400	.319	11.5	D
Deimos	23,500	1.262	13.0	D
Jupiter				
V	181,200	.498	13.0	D
I Io	421,400	1.769	5.0	D
II Europa	670,500	3.551	5.3	Ď
III Ganymede	1,069,500	7.155	4.6	Ď
IV Callisto	1,881,200	16.689	5.6	Ď
VI	11,500,000	250.6	13.7	Ď
VII	11.750.000	259.6	16.	Ď
X	11,750,000	260.	17.8	Ď
VIII	23,500,000	739.	16.	Ř
IX	23,700,000	758.	17.6	Ř
XI	22,500,000	692.	17.4	Ř
C-4	, ,			
Saturn Mimas	185,500	0.42	10.1	D
Enceladus	238,000	.942 1.370	12.1	D
	294,600	1.888	11.6	D
Tethys	377,300	2.737	10.5 10.7	D D
Dione	526,900	4.518	9.7	D
Rhea	1,220,800	15.945	8.2	D
Titan	1,482,000	21.277	13.0	D
Hyperion	3,558,000	79.330	10.1–11.8	D
Phoebe	12,950,000	550.48	16.1–11.8	R
	12,930,000	330.70	10.	K
Uranus	4.00 000			
Miranda	129,700	1.413	16.8	D
Ariel	190,700	2.520	14.8	D
Umbriel	265,700	4.144	15.4	D
Titania	435,800	8.706	13.9	Ď
Oberon	582,800	13.463	14.3	D
Neptune				
Triton	353,700	5.877	13.5	R
Nereid	5,580,000	368.	18.5	?

^{*} Compiled by D. L. Harris, Yerkes Observatory. † With respect to rotation of planet. D= direct motion, R= retrograde motion.

TABLE 835.—NUMBER OF STARS [ϕ (M)] PER CUBIC PARSEC NEAR THE SUN WITH ABSOLUTE (PHOTOGRAPHIC AND VISUAL) MAGNITUDES M=1/2 TO M+1/2* 258

log	$\phi(M) +$	10	log	$\phi (M) +$	10
M	Phot	Visual	M	Phot	Visual
6.0	2.10	1.63	+ 5.0	7.35	7.40
- 5.0	3.07	2.77	+ 6.0	7.49	7.45
4.0	3.65	3.58	+ 7.0	7.53	7.45
- 3.0	4.25	4.12	+ 8.0	7.46	7.55
-2.0	4.75	4.71	+ 9.0	7.49	7.75
-1.0	5.07	5.32	+10.0	7.64	7.84
.0	5.68	5.98	+11.0	7.81	7.99
+ 1.0	6.34	6.59	+12.0	7.97	8.02
+ 2.0	6.77	6.71	+13.0	8.01	8.05
+ 3.0	6.86	6.98	+14.0	8.06	
+ 4.0	7.19	7.29	·		

^{*} Prepared by S. W. McCuskey, Case Institute of Technology, 258 van Rhijn, Groningen Publ. No. 47, 1936.

Observed

Observed

Calculated

Calculated

Relationship between diameter and depth of terrestrial explosion craters, terrestrial meteoritic craters and lunar craters. (All explosions occurred slightly below the surface.)

 $D = 0.1083 d^2 + 0.6917 d + 0.75$

where

 $D = \log \text{ diameter (feet)}$ $d = \log \text{ depth (feet)}$

Examples:

	Diameter	depth	depth
Shell crater Arizona meteorite crater Lunar crater Moretus	4150 ft	3 ft + 700 ft (originally) 14,600 ft	2.20 ft 732 ft 16,900 ft

Relationship between diameter of crater and rim height above ground level for terrestrial explosion craters, terrestrial meteoritic craters, and lunar craters.

 $E = -0.097 D^2 + 1.542 D - 1.841$

where

 $E = \log \text{ rim height (feet)}$ $D = \log \text{ diameter (feet)}$

Examples:

	Diame	ter	rim height	rim height
Shell crater	10	ft	.4 ft ±	.40 ft
Arizona meteorite crater			165 ft (past erosion neglected)	295 ft
Lunar crater Cleomedes	80	mi	5200 ft	5830 ft

Terrestrial meteoritic craters

	Diameter (ft)	Present depth (ft)	Original depth (ft)	Present rim height	Discovered
American craters:	4150	570	700	165	1001
Arizona		14	700 130	165 12	1891 1921
Odessa 1, near Odessa, Tex			130	0	1921
Odessa 2	. 70	shallow	17	U	1921
At least one other small crater					
identified nearby		• • •	• • •	• • •	• • •
Brenham crater (near Brenham					
Kans., also called Havilan	E	1 11.	> 10	0	1933
crater)			>10	0 550	1950
Chubb (Quebec)	. 2½ mi	nned—ice-	-covered lake	330	Pits known
South American craters:					since 1576
Campo del Cielo, Argentine; man		A.			since 1570
craters	. 20 to 23	4	• • •	• • •	
Australian craters:					
Henbury 1, near Henbury cattle	. 75	shallow		0	1930
station	•	shallow	• • •	0	1930
2	125	18	• • •		1930
3	125	18	• • •	2 2	1930
4	~ =	6	• • •	4	1930
5	240	25	• • • •	12	1930
6			• • •	high	1930
7 (probably double)	100	15	• • •	high	1930
8			• • •	0	1930
		shallow	• • •	low	1930
	45	Shanow	• • •	10 W	1930
			• • •	12	1930
4.0	20		10	low	1930
Boxhole crater, 200 miles N. E. o		J	•	10 11	1,00
Henbury		50			1937
Dalgaranga crater		16		prominent	1923
- Daisalanga Clatel	. 200	•		F-0	

^{*} Prepared by R. B. Baldwin, Oliver Machinery Co., Grand Rapids, Mich.

(continued)

D	liameter (ft)	Present depth (f1)	Original depth (ft)	Present rim height	Discovered
Wolf Creek	3700	200		100	1947
Eurasian craters :					
Kaalijärv, on Baltic Island of Oesel.	300-360	50		25	1827
Oesel 2	120				1827
3	100				1827
4	65				1827
5	35				1827
6 (probably double)	120×175	• • •		• • •	1827
Wabar 1 in Rubalkhali of Arabia	328	40		high	1932
At least two smaller craters nearby.	130×180	30		high	1932 1932
Great Siberian craters. About 200 in number	30—175				Formed June 30, 1908 Formed
craters	<100				Feb. 12,1947

The 1947 meteorite probably disintegrated high in the air. The 1908 meteorite exploded violently either just before striking the ground or immediately after a ricochet. All others seem to have struck the ground, penetrated a short distance, and then exploded.

It will be noticed that there is a tendency for several craters to be formed simultaneously as if

the meteorites traveled in clusters.

Only authenticated craters are here listed. Possible or doubtful cases have been omitted.

TABLE 837.—ALBEDOS

Object	m	g	σ	þ	q	Visual albedo	Color index	Photo- graphic albedo
Moon	-12.66	+ .29	2"40	.104	.694	.072	+ .75	.059
Mercury	-2.20	14	3.34	.080	.72	.058	+1.00	.038
Venus	-5.12	-4.41	8.50	.630	1.20	.76	+ .62	.70
Mars	— 1.88	-1.39	4.60	.133	1.11	.148	+1.00	.088
Jupiter	-2.53	— 9.23	95.19	.424	1.2:	.51	+ .67	.45
Saturn	+ .76	8.80	78.95	.416	1.2:	.50	+ .90	.36
Uranus	+ 5.55	-7.17	32.4	.548	1.2:	.66	+ .42	.73
Neptune	+ 7.80	-6.91	29.7	.514	1.2:	.62	+ .42	.68
Pluto	+14.74	-1.17	4.0	.146	1.1:	.16	+ .67	.14

Table compiled by D. L. Harris on the basis of measures by G. Müller and E. S. King

and reduced to the International Photovisual System. Long-period variations of the outer planets have been suspected by W. Becker (State and Parallel light). Then its albedo is the ratio of the whole amount reflected from S to the whole amount of light incident on it." In the above table, m = the stellar magnitude at mean opposition; y = magnitude it would have at full phase and unit distance from earth and sun; $\sigma =$ assumed mean semidiameter at unit distance; p = ratio of observed brightness at full phase to that of a flat disk of same size and same position, illuminated and viewed normally and reflecting all the incident light according to Lambert's law; q depends on law of variation of light with phase; albedo = pq.

Albedo of the earth: 0.39.200

 ²⁵⁰ Becker, W., Astron. Nachs., vol. 277, p. 65, 1949.
 200 Danjon, Ann. Strasbourg, vol. 3, pt. 3, p. 168, 1937.

TABLE 838.—PRECESSION FOR 50 YEARS * 201

				909 808 808	00 88 00 83 00 83	7 30 7 00 6 30 6 00				19 30 19 00 18 30 18 00
Prec	Dec ,	—16.7 —16.6	1.0.1	-15.4 -14.5 -13.2	-11.8 -10.2 -8.3	- 6.4 - 2.2 - 0.	+16.7 +16.6 +16.1	+15.4 +14.5 +13.2	+11.8 +10.2 + 8.3	++ 6.4 + 2.2 0.
	30°	+2.56 2.48	62	2.31 2.24 2.17	2.11 2.05 2.00	1.97 1.94 1.92 1.92	+2.56 2.64 2.73	2.81 2.88 2.95	3.02 3.07 3.12	3.16 3.18 3.20 3.20
	20°	+2.56	2.43	2.36 2.36 2.31	2.27 2.24 2.21	2.19 2.17 2.16 2.16	+2.56 2.61 2.67	2.72	2.85 2.88 2.91	2.93 2.95 2.96 2.97
	—10°	+2.56	10.7	2.2.2 2.45 4.45 4.45	2.42 2.40 2.39	2.38 2.37 2.37 2.36	+2.56 2.59 2.61	2.64 2.66 2.68	2.70 2.72 2.73	2.74 2.75 2.75 2.75 2.76
	0.0	+2.56	7.50	2.2.5 2.5 2	2.56 2.56 2.56	2.56 2.55 2.55 2.55 2.55 2.55	+2.56 2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56	2.56 2.56 2.56 2.56 2.56
	+10°	+2.56	7.01	2.64 2.66 2.68	2.70 2.72 2.73	2.74 2.75 2.75 2.76	+2.56 2.53 2.51	2.49 2.46 2.44	2.42 2.40 2.39	2.38 2.37 2.37 2.36
n, δ ==	+20°	+2.56 2.61	70.7	2.72 2.76 2.81	2.85 2.88 2.91	2.93 2.95 2.96 2.97	+2.56 2.51 2.45	2.40 2.36 2.31	2.27 2.24 2.21	2.19 2.17 2.16 2.16 2.16
t ascension	+30°	+2.56	7.73	2.83 2.95 2.95	3.02 3.07 3.12	3.16 3.18 3.20 3.20	+2.56 2.48 2.39	2.31 2.24 2.17	2.11 2.05 2.00	1.97 1.94 1.92 1.92
n in right	+400	+2.56	7.80	2.92 3.03 3.13	3.22 3.30 3.37	3.42 3.46 3.49 3.50	+2.56 2.44 2.32	2.20 2.09 1.99	1.90 1.81 1.75	1.66
Precession	+50°	+2.56	7.50	3.07 3.22 3.37	3.50 3.61 3.71	3.79 3.88 3.89	+2.56 2.39 2.22	2.05 1.90 1.75	1.62	1.33 1.28 1.25 1.25 1.23
	.09+	+2.56	3.00	3.30 3.52 3.73	3.92 4.09 4.23	4.34 4.47 4.47 4.49	+2.56 2.31 2.06	1.82 1.60 1.39	1.20 1.03 + .89	++++ 85.52.83
	+70°	+2.56	3.30	3.73 4.09 4.42	4.73 4.99 5.21	5.39 5.52 5.60 5.62	+2.56 2.16 1.77	1.39 1.03 .70	++ 1 .09	
	+75°	+2.56	3.64	4.15 5.09	5.50 5.86 6.16	6.40 6.58 6.68 6.72	+2.56 2.02 1.48	.97 + .46 + .03	38 74 -1.04	-1.28 -1.45 -1.56
	+80°	+2.56	4.19	5.72 6.40	7.02 7.57 8.03	8.82 8.82 8.88 8.88	+2.56 1.82 + .93	+ .14 60 -1.28	-1.90 -2.45 -2.91	_3.27 _3.54 _3.70 _3.75
	+85°	+ 2.56	+ 5.85	+ 7.43 + 8.92 + 10.31	+11.56 +12.66 +13.58	+14.32 +14.85 +15.18 +15.29	+ 2.56 + .90 73	$\begin{array}{c} -2.31 \\ -3.80 \\ -5.19 \end{array}$	- 6.44 - 7.54 - 8.46	- 9.20 - 9.73 -10.06 -10.17
Prec	Dec ,	+16.7	+16.1	++15.4 +14.5 2.5 13.5	+11.8 +10.2 + 8.3	+++ 6.4 + 2.2 .0	—16.7 —16.6 —16.1	-15.4 -14.5 -13.2	-11.8 -10.2 -8.3	6.4 - 6.4 - 2.2 - 0.
				227		4 \$ 30 00 \$ 30 00 \$ 00				

* Selected by Edith J. Tebo, Harvard Observatory. ²⁰¹ The Observer's Handbook for 1949, Royal Astronomical Society of Canada.

Part 1.- Density and pressure

The density distribution in the earth's interior is obtained by a series of approximations made to conform with known data as boundary conditions. These known facts, with which any density distribution must harmonize, include the following:

(1) The average density is 5.522, obtained by comparing the attraction of the earth with that of a known mass. Dr. Heyl's value for the constant of gravitation is used, 6.664×10^{-8} dyne cm² g^{-2} (Table 27).

(2) The precession constant and other astronomic and geodetic data (Table 827) give the earth's moments in inertia. $I = 0.33344 \, Er^2$ where I is the moment of inertia about the polar axis, r the equatorial radius, and E the mass of the earth; further

$$I = \frac{8\pi}{15} \int \rho d \, (ar^4)$$

where a is the polar semi-axis and $\rho = f(a, r)$, the density. If the earth were a homogeneous sphere its moment of inertia would be 0.4 Mr^2 and density 4.6.

(3) The known flattening of the earth from geodetic data is 1/297. If the earth were homogeneous the flattening would be larger. These should be sufficient to give a unique density distribution but, as Lambert of the Coast and Geodetic Survey pointed out, a

distribution satisfying condition (2) also satisfies condition (3).

(4) The last boundary condition results by comparing the elastic behavior at various depths with the known elastic constants of rocks. Time-distance curves of earthquake impulses enable one to calculate the velocities of the compressional, V_p , and distortional, V_s , waves at various depths in the earth. Assuming isotropy there are simple relations between K, R, E (moduli of compression, rigidity, Young's respectively), σ (Poisson's ratio), V_p and V_s such that if the density and any two of them are known the others can be had. The variation in elastic constants for different rocks is small but sufficient to permit discrimination when compared with the elastic properties at different depths computed by means of the equations

$$V_{s^2} = R/\rho, \ V_{p^2} - 43 \ V_{s^2} = K/\rho, \ (V_p/V_s)^2 = \frac{2 \ (1-\sigma)}{1-2 \ \sigma}$$

The uncertainties result from extrapolating low pressure and temperature laboratory data

to high pressures and temperatures.

Whence we deduce: "granitic" material to a depth of 10 to 30 km; below this the rock is denser, about 3.0, and corresponds to a basalt or gabbro. At about 45 km depth a discontinuity occurs; the change in elastic properties corresponds with a transition to peridotite, density 3.4. From this depth to 1,600 km the variation is uniform, the density increasing slowly with pressure. From 1,600 to 2,900 km the earthquake velocities remain somewhat constant and could be accounted for by a slow addition of iron and nickel to the material, the density changing from 3.4 to 9.0. Below 2,900 km V_p begins to decrease slightly and the assumption is that this core consists of nickel-iron with a density at the center of about 10.7.

Depth	Density	Pressure	Rock type
0 km	2.7 g/cm ³		Granitic
10	2.7	$.0027 \times 10^6 \text{kg/cm}^2$	
30	3.0	.0067	Basaltic
60	3.4	.0171	Peridotitic
120	3.5	.0381	
400	3.75	.131	
800	4.0	.30	
1200	4.25	.47	
1700	4.4	.68	•
2000	5.8	.84	
2450	7.25	1.135	
2900	9.0	1.5	Transition layer
3200	9.6	1.7	
4800	10.25	2.8	Ni-Fe core
6370	10.7	3.1	

^{*} Compiled by R. W. Goranson.

(continued)

TABLE 839.—CHARACTERISTICS OF EARTH'S INTERIOR (concluded)

Part 2.-Elastic constants of earth's interior

Depth km	Bulk modulus × 10 ⁻¹² dynes/cm ²	Rigidity × 10 ⁻¹² dynes/cm ²	Depth km	Bulk modulus × 10 ⁻¹² dynes/cm²	Rigidity × 10 ⁻¹² dynes/cm ²
0 0–20 20–45 45–120 120–400	.415 $.5 \pm .05$ $.7 \pm .1$ $1.4 \pm .2$ $1.6 \pm .2$	$.26$ $.3 \pm .05$ $.4 \pm .1$ $.6 \pm .1$ $1.0 \pm .2$	1200 1700 2850 2900 6370	$3.6 \pm .3$ $4.2 \pm .3$ 8 ± 2 7 ± 1 ? 12 ± 10 ?	$2.2 \pm .3$ $2.7 \pm .3$ 4.0 ± 1.0 Smaller than at surface, perhaps zero.

Part 3.-Velocities of earthquake waves

 V_p is the velocity in km/sec of the primary or condensational wave, V_s , of the secondary or distortional wave. Turner speaks of them as the push and shake waves.

Layer	V_p , km/sec	Vs, km/sec
0 to 20 ± 10 km depth, depending on locality	5.4 to 5.6, depending on locality. May reach 6.1	$3.2 \pm .3$
20 ± 10 to 45 ± 10 km depth, depending on locality	6.25 to 6.75, depending on locality	$3.5 \pm .3$
Between 45 ± 10 and 2900 km depth: 45 ± 10	$8.0 \pm .1$	$4.4 \pm .2$
1300 2400	$12.5 \pm .1$ $13.5 \pm .1$	$6.9 \pm .2$ $7.5 \pm .2$
<2900 Core, 2700 to 6370 km (center):	$13.5 \pm .1$	$7.4 \pm .2$
>2900 6000	$8.7 \pm .2$ $10.9 \pm .2$	7 ?

TABLE 840.-BULK MODULI OF ROCK-FORMING MINERALS *

The bulk modulus, K, of a compact holocrystalline rock can be obtained with a fair degree of accuracy except for low pressures by adding the proportionate bulk moduli of the constituent minerals. Pressure, P, and $K \times 10^{-6}$ are in bars.

		Pressure in bars	
Mineral	1	2,000	10,000
Feldspar: Orthoclase	.527	.538	.603
Oligoclase, Ab _{7*} A ₁₁₂₂	.582	.592	.641
Labradorite, Ab48An52	.654	.671	.758
Pyroxene: Orthorhombic	1.00	1.00	1.00
Diopside	.935	.935	.935
Augite	.981	.981	.981
Hornblende: Actinolite	.769	.769	.769
Mica: Phlogopite	.431	.451	.516
Quartz	.373	.383	.437
Calcite	.736	.741	.758
Magnetite	1.818	1.852	2
Corundum		_	
Tourmaline			_
Rutile		_	_

^{*} Compiled by R. W. Goranson.

P (pressure), and K, R. E (bulk, rigidity, and Young's moduli resp), are given in bars (1 bar = $10^{\rm o}$ dynes/cm²). V_p and V_s (compressional and distortional wave velocities respectively), are in km/sec. σ is Poisson's ratio and ρ is the density. ρ is in g/cm³.

Dynamically determined elastic constants are surrounded by parentheses (single parenthesis represents seismic data); the others are static determinations. Italicized figures are calculated. In places where insufficient data were present to complete the calculations, figures in square brackets have been assumed. In the "P" column m.s. denotes mean stress.

The basis of this table includes data of L. H. Adams and Williamson, F. D. Adams and Coker,

Bridgman and others.

Name	P	K×10-a	σ	R×10-6	E×10-6	ρ	V p	V .
Granite	1	(.439)	(.32)	(.18)	(.46)	2.62	(5.05)	(2.62)
Granite	m.s. 350	.303	.23	.20	.50		(3.03)	(2.02)
	2000	.472	[.28]	.26	.62	2.62	5.53	3.05
	10000	.552	[.28]	.29	.73	2.67	5.91	3.26
Basalt	200	(.476)	(.30)	(.22)	(.58)	2.91	(5.06)	(2.72)
	2000	.538	[.28]	`.28	`.71 [']	2.91	5.59	3.08
	10000	.654	[.28]	.34	.86	2.95	6.11	3.38
	ſ	.606	.24	.35	.84	2.85	_	_
Gabbro, norite, diabase	1 \	(.641)	(.27)	(.35)	(.88)	2.85	(6.22)	(3.49)
	\		_	_	((.911))	_	_	_
	600	.641				_		
	2000	.700	[.27]	.38	.97	2.85	6.50	3.65
Olivine diabase, olivine	10000	.714	[.27]	.39	.99	2.89	6.54	3.67
gabbro	1 <	.736	.28	.38	1.01	3.00	(1)	2 57
	m.s. 350	.741	.28	.37	((.985))	3.00	6.46	3.57
	600	.752	.20	.57	.93	3.00)		
	2000	.806	ſ.281	.42	1.06	3.01 ~	6.7	3.7
	10000	.826	[.28]	.43	1.09	3.08	6.7	3.7
Peridotite dunite	1	1.064	[.27]	.58	1.47	3.28	7.5	4.2
Terradite danite	2000	1.191	[.27]	.65	1.64	3.28	7.9	4.4
	10000	1.265	[.27]	.69	1.74	3.29	8.15	4.57
Obsidian	1	.345	.17	_	((.682))	2.34	_	_
	2000	.352			· ` — <i>` ` `</i>	2.35		_
Basalt glass		.352	_	_	_	2.41	_	_
	2000 €	.690	S —	_	_	2.85	_	_
Cryst limestone, parallel	10000 ∫		([.27]	.37	.95	2.89	6.4	3.6
bed		.437	.26	.24	.61	-		
	7000	.715	[.28]	.37	.94	2.71	6.68	3.69
	1	(.439)	(.29)	(.17)	(.55)	2.71	(5.2)	(2.81)
O	1	.402 .374	.26	.23	.57	2.69	5.3	1.9
Quartzitic sandstone	2000	.383	.21	.27	.65	2.64	3.3	1.9
	10000	.363 .437	[.27]	.24	.60	2.70	5.4	2.9
	10000	.737	[,4/]	.27	.00	4.70	5.7	ω.)

^{*} Compiled by R. W. Goranson.

TABLE 842.—AGE OF EARTH, MOON, AND STRATA

The age of the earth is probably from $(1.3 \text{ to } 3) \times 10^9 \text{ years}$ (radioactive data). Its liquefaction was probably complete within 5,000 years, solidification within 15,000 years from start. The age of the earth's crust may be taken as roughly 2,000 million years.

Ages of geologic strata

Late Oligocene	37,000,000 yr	Late pre-Cambrian (?).	587,000,000 yr
" Cretaceous (?)	59,000,000 "	Upper pre-Cambrian	640,000,000 "
Permian-Carboniferous .	204,000,000 "	Middle pre-Cambrian	987,000,000 to
Permian to Devonian	239,000,000 to		1,087,000,000 yr
	374,000,000 yr	Lower pre-Cambrian	1,800,000,000 "

The diagram, figure 31, prepared by the U. S. Naval Observatory, shows the paths of total and total-annular eclipses in the United States during the twentieth century. The following data for total United States solar eclipses between 1950 and 2000 are taken from the complete table of eclipses from A.D. 1900–A.D. 2000, given by D. H. Menzel.²⁰²

	Begin	nning	"No	on''	En	d		
Date	Lati- tude	Longi- tude	Lati- tude	Longi- tude	Lati- tude	Longi- tude	Maxii durai	
June 30, 1954 October 2, 1959	+42° +42	+ 99° + 72	+62° +23	+ 5° + 6	+26° + 7	74° 56	2 m 3	40 *
July 20, 1963	+43	143 +149	+62 +25	+126 + 88	+33 +55	+44 +23	1 3	
February 26, 1979		+140	+61	+ 77	+77	+34	3	

²⁰² Menzel, D. H., Our Sun, p. 260, Harvard Univ. Press, 1949. Used by permission.

Fig. 31.—Curves showing the paths of solar eclipses during the twentieth century.

TABLE 843.—SPECTRUM CLASS AND PROPER MOTIONS *

Limits of p m	0	В	A	F	G	K	М	N	
"00 to "02	13	238	392	97	107	218	48	3	
.02 to .04	6	164	533	115	91	327	54	4	
.04 to .10	1	88	476	231	168	393	99	2	
.10 to .20			160	245	70	242	27	1	
.20 to .45		1	31	168	56	88	8		
.45 to .80			1	46	20	23	1		
.80 to 2.00			1	12	19	13			
Over 2				1	6	6			
Mean pm	"22	"03	" 06	"17	″18	"12	".07	704	
Percentage of stars with									
$\mu > "20 \dots$	0	.2	5	25	18	10	4	0	
• • • • • • • • • • • • • • • • • • • •									

^{*} This table, after Boss, gives the number of stars in his catalog brighter than $6^m.5$ which have proper motions between given limits. For reference, see footnote 272, p. 746.

Class	Mean area in 10 ⁻⁶ of sun's hemisphere 217	Mean duration	Class	Mean area in 10-6 of sun's hemisphere 1266	Mean duration 62 min
1		17 min	3		
2	570	29 "	3+	2350	3 hr

The following paragraphs are reprinted from F. Hoyle, "Some Recent Researches in Solar Physics," p. 36, Cambridge University Press, 1949.†

Flares are a particular class of bright reversal characterized by sudden commence-

ments. The properties of flares are:

(a) They are roughly classified in order of increasing importance as 1, 2, 3, and 3 +. The area of the flare, seen in projection against the solar disk, is, at present, used as the criterion of importance. Flares of class 3 + are rare, occurring on an average only once or twice per year. At the other extreme, flares of class 1 occur every few hours during periods of marked solar activity.

(b) The effective line width in $H \alpha$ at peak intensity varies between 1.75 A and 16 A. being approximately proportional to the importance of the flare. $H\beta$, $H\gamma$ show lesser widths, but the data for these are somewhat meager.

(c) The contour of the bright emission is nearly symmetrical about the normal position

of H a and is independent of the position of the flare upon the disk (there is invariably a greater extension in the red wing than in the blue wing, which increases with the importance of the flare, reaching 0.7 A for those of the greatest intensity). Doppler displacements of the contour indicating large-scale turbulence of the emitting material in the line

of sight have not been observed in excess of \pm 10 km/sec.

(d) Flares are associated with sunspots, and in particular with complicated spot groups. The size of a sunspot, however, is not always a criterion of flare activity, some large spots being relatively inactive. The emitting material is mainly situated either in the reversing layer or the lower chromosphere, and the emission occurs in a region with fixed position relative to the position of the spot group. The areas of flares projected on the solar disk vary from a few hundred millionths up to the values exceeding 10,000 millionths of the area of the disk. The duration of a flare is usually of the order of an hour or less, but lifetimes > 5 hours occasionally occur.

(e) Flares are strongly correlated with a number of terrestrial effects. Radio fadeouts, due to increased ionization in the D-layer, occur simultaneously with the visible appearance of intense flares. Great magnetic storms are associated with flares of classes 3 and 3+. The magnetic disturbances commence about 26 hours after the appearance of the flare, and are most marked when the flare is near the center of the disk. Finally, there is a growing body of evidence that the sun emits exceptionally high intensities in the radio

meter wave-band during flares.

TABLE 845.—CONSTELLATION ABBREVIATIONS (Astron. Union, 1922)

Andromeda And Antlia Ant Apus Aps Aquarius Aqr Aquila Aql Ara Ara Aries Ari Auriga Aur Boötes Boo Caelum Cae Camelopardalis. Cam Cancer Cnc Canes Venatici. CVn Canis Major CMa	Circinus Cir Columba Col Coma Beren Com Corona Aust CrA Corona Bor CrB Corvus Crv Crater Cru Cygnus Cyg Delphinus Del Dorado Dor Draco Dra Equuleus Equ Eridanus Eri	Lacerta Lac Leo Leo Leo Minor LMi Lepus Lep Libra Lib Lupus Lup Lynx Lyn Lyra Lvr Mensa Men Microscopium Mic Monoceros Mon Musca Mus Norma Nor Octans Oct	Pisces Austr PsA Puppis Pup Pyxis Pyx Reticulum Ret Sagitta Sge Sagittarius Sgr Scorpius Sco Sculptor Scl Scutum Sct Serpens Ser Sextans Sex Taurus Tau Telescopium Tel Triangulum Tri
Caelum Cae			
Camelopardalis. Cam	Dorado Dor		
CancerCnc	Draco Dra	Musca Mus	
Canes Venatici. CVn	Equuleus Equ	NormaNor	
Canis Major CMa	Eridanus Eri		
" Minor CMi	FornaxFor	Ophiuchus Oph	" Austr TrA
Capricornus Cap	Gemini Gem	OrionOri	Tucana Tuc
Carina Car	GrusGru	PavoPav	Ursa Major UMa
Cassiopeia Cas	Hercules Her	Pegasus Peg	" Minor UMi
Centaurus Cen	Horologium Hor	PerseusPer	VelaVel
Cepheus Cep	Hydra Hya	Phoenix Phe	VirgoVir
Cetus Cet	Hydrus Hyi	Pictor Pic	VolansVol
Chamaeleon Cha	Indus Ind	PiscesPsc	Vulpecula Vul

[†] Used with permission of the author. * Prepared by Edith J. Tebo, Harvard College Observatory.

The following table was taken from Edlén's paper.²⁶³ It summarizes the results of the identification of 19 of the coronal lines caused by forbidden transitions. Fe X, XI, XIII, XIV, XV; Ni XII, XIII, XV, XVI; Ca XII, XIII, XV; A X, XIV. Two of these identifications, namely λ 4359 attributed to A XIV and λ 5694 attributed to Ca XV, are somewhat questionable and therefore these two identifications are given with a (?) in the

table. All these identified lines are caused by magnetic dipole radiation.

The first column gives the wavelengths of the coronal lines taken from Mitchell's compilation 284 and reduced values from later work by Lyot. 285 The second column gives the corresponding wave numbers. The third and fourth columns give the intensities as measured by Grotrian and Lyot respectively. The proposed identification is given in column five and the transition probabilities in column six. The seventh and eighth columns give the excitation potential and ionization potentials of the next preceding ionization stages.

4	,	¥	T1 - 410 - 41	Am	F.D.	75.1
A	cm-1	Intensity	Identification	sec-1	EP	IP†
3 328	30 039	1.0	Ca XII $2s^2 2p^5 {}^2P_{1\frac{1}{2}} - {}^2P_{1\frac{1}{2}}$	488	3.72	589
3 388.1	29 507	16	Fe XIII $3s^2 3p^2 {}^1D_2 - {}^3P_2$	87	5.96	325
3 454.1	28 943	2.3				
3 601.0	27 762	2.1	Ni XVI $3s^2 3p^{-2}P_{1\frac{1}{2}} = {}^{2}P_{\frac{1}{2}}$	193	3.44	455
3 642.9	27 443		Ni XIII 3s ² 3p ⁴ 1D ₂ — ⁸ P ₁	18	5.82	350
3 800.8	26 303		•			
3 986.9	25 075	.7	Fe XI $3s^2 3p^4 iD_2 - ^3P_1$	9.5	4.68	261
4 086.3	24 465	1.0	Ca XIII $2s^2 2p^4 {}^3P_1 - {}^3P_2$	319	3.03	655
4 231.4	23 626	2.6	Ni XII $3s^2 3p^5 {}^2P_{14} - {}^2P_{14}$	237	2.93	318
4 311	23 190		•			
4 359	22 935	• •	? A XIV $2s^2 2p^{-2}P_{1\frac{1}{2}} - {}^{2}P_{\frac{1}{2}}$	108	2.84	682
			! A AIV 25 2p F11/2 - F1/2	100	2.04	062
4 567	21 890	1.1	NI WILL 0 20 42D 2D	1.57	2.40	250
5 116.03	19 541.0	4.3 2.2	Ni XIII $3s^2 3p^4 ^3 P_1 - ^3 P_2$	157	2.42	350
5 302.86	18 852.5	100 100	Fe XIV $3s^2 3p^2 P_{1\frac{1}{2}} - {}^2P_{\frac{1}{2}}$	60	2.34	355
5 536	18 059		A X $2s^2 2p^5 {}^{2}P_{1/2} - {}^{2}P_{1/2}$	106	2.24	421
5 694.42	17 556.2	1.2	? Ca XV $2s^2 2p^2 {}^{3}P_1 - {}^{3}P_0$	95	2.18	814
6 374.51	15 683.2	8.1 18	Fe X $3s^2 3p^5 {}^2P_{1/2} - {}^2P_{1/2}$	69	1.94	233
6 701.83	14 917.2	5.4 2.0	Ni XV $3s^2 3p^2 {}^{3}P_1 - {}^{3}P_0$	57	1.85	422
7 059.62	14 161.2	2.2	Fe XV 3s 3p 3P ₂ - 3P ₁		31.7	390
7 891.94	12 667.7	13	Fe XI $3s^2 3p^4 {}^3P_1 - {}^3P_2$	44	1.57	261
8 024.21	12 458.9	.5	Ni XV $3s^2 3p^2 ^3 P_2 - ^3 P_1$	22	3.39	422
10 746.80	9 302.5	55	Fe XIII 3s ² 3D ² 3P ₁ — 3P ₀	14	1.15	325
10 797.95	9 258.5	35	Fe XIII $3s^2 3p^2 {}^3P_2 - {}^3P_1$	9.7	2.30	325
10 797.93	, 230.3	33	1 C 2111 33 30 1 2 — 1 1			

TABLE 847.-THE CEPHEID PERIOD-LUMINOSITY CURVE*

Logarithm of period days	Mean spectrum 200	Absolute photographic magnitude 267	Absolute bolometric magnitude ²⁰⁹	Logarithm of period days	Mean spectrum	Absolute photographic magnitude	Absolute holometric magnitude
.0 .2 .4 .6 .8 1.0	F 2.5 F 5.5 F 7.5 G 0 G 2 G 4	31 68 -1.01 -1.33 -1.66 -2.02	85 -1.26 -1.74 -2.25 -2.74 -3.26	1.2 1.4 1.6 1.8 2.0	G 6 G 8 K .5 K 2.5 M 0	-2.39 -2.80 -3.25 -3.73 -4.24	-3.77 -4.31 -4.99 -5.87 -7.52

^{*} Prepared by Edith J. Tebo, Harvard College Observatory.

288 Zeitschr. Astrophys., vol. 22, p. 30, 1943.

294 Handbook d'Astrophys., vol. 4, p. 324, 1929; vol. 7, p. 401, 1936.

295 Monthly Notices, Roy. Astron, Soc., vol. 99, p. 580, 1939.

† The ionization potential refers to the next lower stage.

^{*} Prenared by H. Shapley, Harvard University.

200 Shapley, Harvard Bull., vol. 861, 1928.

201 Shapley, Proc. Nat. Acad. Sci., vol. 26, p. 544, 1940.

208 Kuiper, Astrophys. Journ., vol. 88, p. 453, 1938.

		72 1	Inter	nsity
λ	Classification	Excitation potential	7027	7662
H I 4340.5 4861.3 6562.8	2 ² S, P — 5 ² S, P, D 2 ² S, P — 4 ² S, P, D 2 ² S, P — 3 ² S, P, D	13.0 12.7 12.0	39 100 580	40 100 500
He I 3888.6 4471.5 5015.7 5875.6 6678.1	2s *S — 3p *P 2p *P — 4d *D 2s *S — 3p *P 2p *P — 3d *D 2p *P — 3d *D	22.9 23.6 23.0 23.0 23.0	<13 6 5± 50 8	<25 5 30 6
He II 4541.6 4685.8 5411.6	4 ² S, P, D, F — 9 ² S, P, D, F, G 3 ² S, P, D — 4 ² S, P, D, F 4 ² S, P, D, F — 7 ² S, P, D, F, G	53.5 50.8 53.1	4 39 25	3 60 10
C II 4267.2	$3d ^{2}D - 4f ^{2}F$	20.9	3	1
N II 5755.0 6548.4 6583.9	$[2p^{2} {}^{1}D - 2p^{2} {}^{1}S]$ $[2p^{2} {}^{8}P_{1} - 2p^{2} {}^{1}D]$ $[2p^{2} {}^{8}P_{2} - 2p^{2} {}^{1}D]$	4.0 1.9 1.9	30 150 260	5± 10±
O I 6300.2	$[2p^4 {}^8P_2 - 2p^4 {}^1D]$	2.0	50	1
O II 3726.2 3729.1 7319.0 7330.4	$ \begin{array}{l} [2p^{2} {}^{4}S - 2p^{3} {}^{2}D_{1/4}] \\ [2p^{8} {}^{4}S - 2p^{8} {}^{2}D_{2/4}] \\ [2p^{8} {}^{2}D_{2/4} - 2p^{3} {}^{2}P] \\ [2p^{8} {}^{2}D_{1/4} - 2p^{3} {}^{2}P] \end{array} $	3.3 3.3 5.0 5.0	20 11 P P	8 5
O III 4363.2 4959.5 5007.6	$ \begin{array}{l} [2p^{2} {}^{1}D - 2p^{2} {}^{1}S] \\ [2p^{2} {}^{8}P_{1} - 2p^{2} {}^{1}D] \\ [2p^{2} {}^{8}P_{2} - 2p^{2} {}^{1}D] \end{array} $	5.3 2.5 2.5	23 430 1200	19 350 1000
Ne III 3868.7 3967.5	[2p ^{4 8} P ₂ — 2p ^{4 1} D] [2p ^{4 8} P ₁ — 2p ^{4 1} D]	3.2 3.2	95 24	80 <80
Ne IV 4714.1 4719.7	$\begin{array}{l} [2p^{3} ^{2}D_{^{2}\cancel{1}\cancel{2}} - 2p^{3} ^{2}P] \\ [2p^{3} ^{2}D_{^{1}\cancel{2}} - 2p^{3} ^{2}P] \end{array}$	7.7 7.7	« 6	≪10
Ne V 3345.8 3425.8	$[2p^2 {}^3P_1 - 2p^2 {}^1D]$ $[2p^2 {}^3P_2 - 2p^2 {}^1D]$	3.8 3.8	43 109	P P
S II 4068.5 4076.5 6717.3 6731.5	$ \begin{array}{l} [3p^3 ^4S - 3p^3 ^2P_{144}] \\ [3p^3 ^4S - 3p^3 ^2P_{14}] \\ [3p^3 ^4S - 3p^3 ^2D_{244}] \\ [3p^3 ^4S - 3p^3 ^2D_{144}] \end{array} $	3.0 3.0 1.8 1.8	<8 5 6 12}	<3 .5 5
A 1V 4711.4 4740.3 Fe XI 3871.9	$[3p^{3} {}^{4}S - 3p^{3} {}^{2}D_{2}{}_{1}{}_{5}]$ $[3p^{3} {}^{4}S - 3p^{3} {}^{2}D_{1}{}_{5}]$ $[3p^{4} {}^{8}P_{1} - 3p^{4} {}^{1}D]$	2.6 2.6 4.7	<6 10 «95	<10 10 «80

The above table, containing most of the strongest and/or important lines under nebular conditions, is taken from a more complete list.*** The brackets [] about a classification indicate a forbidden transition. These wavelengths are in all cases except Ne III and Ne V the values calculated from series analyses of the ions concerned. The last two columns give the observed intensities in the objects NGC 7027 and 7662. P indicates the line is present but out of the range covered by the observations and intensity estimates; < represents a blend with a line classified otherwise, transition indicated probably an appreciable contributor; « is also a blend with a line classified otherwise, transition indicated probably is not an appreciable contributor.

^{*} Prepared by Edith J. Tebo, Harvard College Observatory. ²⁰⁹ Bowen, I. S., and Wyse, A. B., Lick Obs. Bull., vol. 19, p. 1, 1939.

The solar neighborhood distance of 50 light-years, explored chiefly through the motions of nearby stars. A large majority are of less than solar luminosity, most below naked-eye visibility. Only 40 percent of the stars known to be nearer than 16 light-years are brighter than the sixth magnitude. Exploring the solar neighborhood therefore involves a search for telescopic dwarf stars. Any body 1/100 of sun's mass within 1,000 astronomical units (.015 light year) would be detected by its disturbance on Neptune and Uranus even if invisible (Russell). Nearest known star is 4 light-years distant (Proxima Centauri, m = 11, M = 15.5).

Region of brighter stars extending 500 light-years. The great majority of naked-eye stars lie in this region, though some of unusually high intrinsic luminosity are farther away. It includes probably 500,000 telescopic stars. Studied by proper motions, trigono-

metric and spectroscopic parallaxes, and photometry.

The Milky Way with a radius of about 50,000 light-years. The stars within 5,000 light-years of the sun are a trifling part of the galactic system outlined by the globular clusters and Milky Way clouds. The stars are so remote that proper motions and spectroscopic analyses hopelessly fail. Statistical counts are of some help in the nearer parts. But most of our knowledge comes from eclipsing binaries, long-period variables, and Cepheids. The period-luminosity relation for Cepheid variables is the key to practically all > a few 1,000 light-years.

The Clouds of Magellan, nearly 100,000 light-years distant, nearest of all external galaxies and the most easily studied. Great advantage, all of its varied manifestations are seen at practically the same distance. These phenomena include gaseous nebulae, star clusters, giant and supergiant stars, some 1,500 known Cepheids in the Larger Cloud. In this cloud 750 stars brighter than -5.0 abs mag and over 200,000 brighter than the

0.0 have been estimated.

The Supergalaxies, 1,000,000 to 500,000,000 light-years distant. Composed of clusters of extragalactic nebulae. The relative diameters and brightnesses have been determined for some of the supergalaxies. The most conspicuous is the Coma-Virgo cloud A, a stream of several hundred bright spiral, spheroidal, and irregular galaxies, about 10⁷ light-years distant; its greatest length about one-half this. One of the richest and most distinct supergalaxies is in Centaurus.

TABLE 850.—STELLAR SPECTRA AND RELATED CHARACTERISTICS*

The one-dimensional classification system.—The spectra of almost all the stars can be arranged in a continuous sequence, the various types connected in a series of imperceptible gradations. With two unimportant exceptions, the sequence is linear. According to the now generally accepted Harvard (or Draper) system of classification, certain principal types of spectrums are designated by letters—P, W, O, B, A, F, G, K, M, R, N, and S—and the intermediate types of suffixed numbers. A spectrum halfway between B and A is denoted by B 5 while those differing slightly from class A in the direction of Class B are called B 8 or B 9. Classes R and N apparently form one side chain, and class

S another chain, both branching from the main series near class K.

The two-dimensional classification system.—In addition to the larger characteristics used to determine the spectral class (temperature differences) there are smaller luminosity effects that depend mainly on differences in densities in the atmospheres of the stars. Thus one can distinguish between dwarfs, giants, and supergiants. At Harvard, in 1897, Miss Maury was actually the first to denote certain stars by prefixing the letter "c" to the spectral class. These stars are now known to be supergiants. Mount Wilson observers still use this letter "c" to denote supergiants, "g" for giants, and "d" for dwarfs. This dM 5 denotes a dwarf star of spectral type M 5 (see Table 874). Morgan, Keenan, and Kellman have extended the classification even further. Their luminosity classes include not only giants (III) and dwarfs (V) but subgiants (IV) and several classes of supergiants (I; Ia, and Ib) and intermediates (II).

Almost all the stars can be classified on the above system. In addition to individual peculiar stars there are, however, groups of stars that cannot be given specific classifications, such as the A-type spectrum variables 271 and the "metallic-line" stars. 272

The colors of the stars, the degree to which they are concentrated into the region of the sky, including the Milky Way (Table 854), and the average magnitudes of their peculiar velocities in space (Tables 828 and 876) all show important correlations with spectral type. In the case of colors, the correlation is so close as to indicate that both spectrum and color depend almost entirely on the surface temperature of the stars. The correlation in the other two cases, though statistically important, is by no mean so close.

^{*} Prepared by Edith J. Tebo, Harvard College Observatory.
270 An Atlas of Stellar Spectra, University of Chicago Press, 1943.
271 Deutsch, Astrophys. Journ., vol. 105, p. 283, 1947.
272 Roman, Morgan, and Eggen, Astrophys. Journ., vol. 107, p. 107, 1948. Greenstein, Astrophys.
Journ., vol. 107, p. 151, 1948; vol. 109, p. 121, 1949.

Part 1.—The Harvard spectrum classification

Class P	Principal spectral lines (absorption unless otherwise stated) Gaseous nebulae. Emission lines and bands of H, He I and II, and O II.	Example 	Number brighter than 6.25, mag	Percent in galactic region
W	Wolf-Rayet objects divided into two sequences: carbon, WC, have emission lines attributed to He I and II, C II, III, and IV, and O II, III, IV, V, and VI; nitrogen sequence, WN, have emission lines attributed to He I and II, and N III, IV, and V.	γ Velorum	5	100
0	Lines of H, He I and II, O II and III, and N II and III.	ζ Puppis	20	100
В	Neutral H and He, N II, and O II, and a few ionized lines of metals.	€ Orionis	696	82
A	H series at maximum, Ca II (H and K), and weak ionized metallic lines.	Sirius	1885	66
F	Ca II (H and K) strong, H lines fainter, metallic lines more abundant.	Canopus	720	57
G	H lines faint, Ca II (H and K) strong, many fine metallic lines.	The sun	609	58
K	Ca II (H and K) very strong, many neutral metallic lines. Spectrum faint in the violet.	Arcturus	1719	56
M	Molecular bands of TiO, lines of Ca I and II, and other metals. Long-period variables have emission H lines,	Antares	457	54
S	ZrO bands and metallic lines. Long- period variables have emission H lines.	η ₁ Gruis	0	• • • •
R	Bands of C2, CN, and CH; many metallic lines.	B D -10°5057	0	63
N	Bands of C2, CN, and CH; very little violet light.	19 Piscium	8	87
Q	Novae. Rapid spectral changes from early supergiant type near maximum, through nebular stage, and finally to a Wolf-Rayet type.			

Part 2.—Prototypes for luminosity classification 273

Class B 0 B 5 A 2 F 0	Supergiants c Ori Oph Cyg Lep	Giants κ Ori δ Per λ UMa ζ Leo	Main sequence ζ Oph κ Hya ζ Vir μ Cap	Class G 5 K 2 M 1 M 5	Super- giants 9 Peg 56 Ori a Sco a Her	Giants γ Hya κ Oph 75 Cyg 56 Leo	Main sequence κ Cet ε Eri BD + 42.2296 BD + 4.3561
F 8	γ Cyg	1 Com	βVir				

For description of classification of Wolf-Rayet stars see reference, footnote 274. The "galactic region" here means the zone between galactic latitudes \pm 30°, and including half the area of the heavens. 96 percent of the stars of known spectra belong to classes A, F, G, K, 99.7 percent including B and M (Innes, 1919). Henry Draper Catalog, 9 vols., 1918–24, and H. D. Extension, 2 vols., 1925–49, give positions, magnitudes, and spectra of nearly 360,000 stars. See also Yale Zone Catalogs, and the Bergedorf and Potsdam Spectral-Durchmusterungen.

^{*} Prepared by M. W. Mayall, Harvard College Observatory. ²⁷³ Trans. Int. Astron. Union, vol. 7, p. 408, 1950. ²⁷⁴ Trans. Int. Astron. Union, vol. 6, p. 248, 1938.

Visual magnitude	(B 0 to B 5)	(B 8 to A 3)	(A 5 to F 2)	(F 5 to G 0)	(G 5 to K 2)	(K 5 to M 8)
< 2.24	28	28	7	10	15	12
2.25 to 3.24	25	19	10	12	22	12
3.25 to 4.24	16	22	7	12	35	8
4.25 to 5.24	9	27	12	12	30	10
5.25 to 6.24	5	38	13	10	28	6
6.26 to 7.25	5	30	11	14	32	7
7.26 to 8.25	2	26	11	16	37	7
8.5 to 9.4	2	18	13	20	36	12
9.5 to 10.4	1	16	12	. 24	38	9
Photographic						
magnitude	(B 0 to B 5)	(B 6 to A 4)	(A 5 to F 4)	(F 5 to G 4)	(G 5 to K 4)	(K 5 to Mc)
8.5 to 9.5	2	31	16	24	24	3
9.5 to 10.5	1	24	16	31	26	3
10.5 to 11.5	1	17	13	40	27	3
11.5 to 12.5	0	10	13	47	26	3
12.5 to 13.5	0:	3:	10:	58:	26:	2:

The data are taken from the publications of the Harvard, McCormick, and Bergedorf Observatories. The discontinuity in trend appearing between the visual and photographic groupings is in the sense to be expected. Ninety-nine percent of the stars brighter than magnitude 8.5 belong to the six classes listed; less than one percent have spectra of classes P, WR, O, R, N, S, and Peculiar, and such stars are even more uncommon among the fainter groupings.

Among stars brighter than sixth magnitude the percentages of dwarfs are as follows (Öpik

et al.):

A limited sampling in the Milky Way yields the following percentages of dwarfs among fainter stars (Nassau and McCrae):

Photographic magnitude	F 8 to G 2	G 5	G 8 to K 3
8 to 10	75	23	7
10 to 11	77	31	8
11 to 12	82	42	10

In higher galactic latitudes the percentages of dwarfs are higher; thus in latitudes 31° to 90° dwarfs constitute about 17 percent of the K0 and K2 stars of visual magnitude 10.4 (Janssen and Vyssotsky). Among the M0 and M8 stars of all latitudes between visual magnitudes 8.5 and 10.5 3 percent are dwarfs (Dyer and Vyssotsky).

TABLE 853.—THE LOCAL FAMILY OF GALAXIES 275

		Modulus †		Distance (corrected for		Diameter	
Member	Type	Obs	Corr	lat effect)	M_{Pg}	Apparent	Linear
Our galaxy	Sb						24 kpc
M 31	O11	22.4	21.8	231 kpc	17.9	3.2°	12.9
LMC	I	17.1	16.7	22	-15.9	12°	4.6
M 33	Sc	22.3	21.9	239	-14.9	62'	4.3
SMC	I	17.3	17.0	25	-14.5	8°	3.6
M 32	E 2	22.4	21.8	231	12.9		
Fornax system	E	21.0:	20.8:	142:	—11.9:	50′	2.1:
NGC 205	E 5⊅	22.4	21.8	231	-11.5	15:8	1.1
NGC 6822	<i>I</i>	21.6	21.0	161	-10.8	20′	.94
IC 1613	I	22.0	21.8	225	10.8	17'	1.1
Sculptor system	E	19.4	19.2	69	10.6	45′	.90
NGC 185	E	22.4±	$21.5 \pm$	$204 \pm$	10.6	14:5	.86
NGC 147	E	22.4±	21.5±	204±	-10.3	14:1	.83

²⁷⁵ Baade, Walter, Astrophys. Journ., vol. 100, p. 150, 1944. † Modulus in stellar magnitude is m-M=5 (log d-1), where d is distance in parsecs and M is absolute magnitude.

^{*} Prepared by A. N. Vyssotsky, University of Virginia.

TABLE 854.—GALACTIC CONCENTRATION OF STARS OF VARIOUS SPECTRAL CLASSES *

Part 1.-Number of stars per 100 square degrees

В	A	F Galactic lat	G itude 0° to 5°	K	М
4.5 6.3 19 46 82	6.0 15 76 190 610	1.7 3.4 14 85 240	2.1 3.0 21 96 310	3.5 12 54 200 490	1.3 2.6 14 57 150
38 87 100	510 970 1390	150 430 1200	220 720 1960	180 460 940	19 42 140
		Galactic lati	tude 60° to 90	0	
.2 0 0 0 0	2.6 3.8 7.4 8	.8 1.8 9.2 20 20	1.0 2.4 16 83 170	2.9 7.5 32 75 210	.7 .7 6.3 0 16
0 0 .9	9 10 14	32 27 34	120 290 680	75 160 270	9 12 26
	4.5 6.3 19 46 82 38 87 100	4.5 6.0 6.3 15 19 76 46 190 82 610 38 510 87 970 100 1390 .2 2.6 0 3.8 0 7.4 0 8 0 8	Galactic late 4.5 6.0 1.7 6.3 15 3.4 19 76 14 46 190 85 82 610 240 38 510 150 87 970 430 100 1390 1200 Galactic late .2 2.6 .8 0 3.8 1.8 0 7.4 9.2 0 8 20 0 8 20 0 9 32 0 10 27	Galactic latitude 0° to 5° 4.5 6.0 1.7 2.1 6.3 15 3.4 3.0 19 76 14 21 46 190 85 96 82 610 240 310 38 510 150 220 87 970 430 720 100 1390 1200 1960 Galactic latitude 60° to 90 .2 2.6 .8 1.0 0 3.8 1.8 2.4 0 7.4 9.2 16 0 8 20 83 0 8 20 170 0 9 32 120 0 10 27 290	Galactic latitude 0° to 5° 4.5 6.0 1.7 2.1 3.5 6.3 15 3.4 3.0 12 19 76 14 21 54 46 190 85 96 200 82 610 240 310 490 38 510 150 220 180 87 970 430 720 460 100 1390 1200 1960 940 Galactic latitude 60° to 90° 2 2.6 8 1.0 2.9 0 3.8 1.8 2.4 7.5 0 7.4 9.2 16 32 0 8 20 83 75 0 8 20 170 210 0 9 32 120 75 0 10 27 290 160

The data are taken from the publications of the Harvard, McCormick, and Bergedorf Observatories. The spectral groupings are the same as in the preceding table. Absorption accounts for the apparent discrepancy in low latitudes between the numbers of early type stars in the last line of the visual magnitudes and those in the first line of the photographic magnitudes.

A measure of apparent galactic concentration may be found from the ratios of the star numbers in low latitudes to those in high latitudes. We obtain the figures given in Part 2:

Part 2.—Index of apparent galactic concentration

Visual magnitude	В	A	F	G	K	М
< 6.0	22	2.8	2.3	2.1	1.2	1.9
6.0 to 7.0		4.0	1.9	1.2	1.5	3.7
7.0 to 8.25		10	1.5	1.3	1.7	2.2
8.5 to 9.4		24	4.2	1.2	2.7	
9.5 to 10.4		76	12	1.8	2.3	9
Photographic magnitude						
9.5 to 10.5		56	4.8	1.8	2.4	2.1
10.5 to 11.5		97	16	2.5	2.9	3.5
11.5 to 12.5		99	35	2.9	3.5	5.5

The irregularities here are attributable in part to inadequate sampling.

Among the stars of the main sequence the true concentration increases with the stellar mass; the true concentration of the rcd giants is relatively low. The W, O, and N stars show high apparent concentration to the Milky Way as do the Cepheids, and planetary nebulae; on the other hand, the long-period variables show little concentration and the cluster-type variables even less.

^{*} Prepared by A. N. Vyssotsky, University of Virginia.

Part 1.—Stars of given visual magnitude and galactic latitude

Mag	0°—20°	20°—40°	40°—90°	Mag	0°-20°	20°—40°	40°—90°
3.0	" 027	" 036		9.0			".0073
4.0	.020	.025	.027	10.0	.0032	.0037	.0057
5.0	.015	.017	.020	11.0	.0023	.0030	.0045
6.0	.011	.012	.015	12.0	.0018	.0024	.0034
7.0	.0080	.0086	.0117	13.0	.0014	.0020	.0027
8.0	.0059	.0062	.0092	14.0	.0011	.0016	.0021

These tabular values have been obtained by combining and smoothing the secular parallaxes derived at Groningen and McCormick together with mean parallaxes for fainter stars derived at Leiden, To obtain annual parallaxes from secular parallaxes a solar velocity of 19 kilometers per second has been assumed. Similarly the Leiden figures rest on certain assumptions as to the peculiar motions of faint stars. Recent studies of the space motions of stars more than 500 parsecs from the plane of the galaxy indicate that the annual parallaxes listed here may well be systematically too large for stars fainter than tenth magnitude in the higher latitudes.

Some idea of the dependence of the mean parallaxes on the spectral type may be gained from Part 2. Here the probable error of a secular parallax is approximately 0"001.

Part 2.—Mean parallaxes according to spectral class for stars of visual magnitude 10.0 (latitude 0° to 90°)

Spectral class	Secular parallax	Solar velocity	Annual parallax
B 8 to A 3	" 007	16 km/sec	"0021
A 5 to F 2	.011	17	.0031
F 5 to G 0	.022	18	.0058
K 0 to K 2	.014	20	.0033
gM 0 to $gM 8$.005	22	.0011

^{*} Prepared by A. N. Vyssotsky, University of Virginia.

TABLE 856.—SPECTRUM CLASSES AND TEMPERATURES OF STARS*

	0	bserved	Т	emperature	by several	methods, °I	ζ
Spectral	Heat	Water-cell absorption	Heat	index	Water-cell	Color	Ioniza-
type	Mag	Mag	λ 0.555 μ	λ 0.529 μ	absorption	index 276	tion
B 0	.05	.20				25000°	20000
B 5	.01	.23				15500	15000
A 0	.00	.26				10700	10000
A 5	.02	.30			7500°	8530	8400
F 0	.15	.36	6750°	7300°	6200	7500	7500
F 5	.30	.41	5760	6160	5450	6470	7000
dG 0	.32	.42	5700	6100	5350	6000	
dG 5	.39	.47	5350	5750	4920	5360	
DK0	.55	.54	4820	5100	4460	4910	
dK 5	1.10	.76	3720	3980	3550	4150 †	
$dM \ 0 \ \dots \dots$	1.40	.87	3400	3650	3260	3600 ‡	
$dM \ 2 \ \dots \dots$	2.1	1.14	2870	3060	2780	3200	
$gG \ 0 \ \dots \dots$.47	.50	5000	5450	4700	5200	5600
gG 5	.65	.60	4550	4870	4140	4620	5000
gK0	.90	.70	4020	4300	3750	4230	4000
gK 5	1.57	.93	3240	3480	3130	3580	3000
$gM \ 0 \ \dots \dots$	1.86	1.01	3030	3250	2980	3400	3000
$gM \ 2 \ \dots $	2.2	1.14	2810	3000	2810	3200	
gM 4	3.1	1.30	2400	2590	2550	2930	
gM 6	4.2	1.46	2050	2200	2390	2750	
gM 8	5.2	1.62	1780	2000	2250		
Mc Max	4.4	1.5	1990	2160	2350		
Mc Min	8.9	2.2			1830		

^{*} Prepared by S. B. Nicholson, Mount Wilson Observatory. 270 Kuiper, G. P., Astrophys. Journ., vol. 88, p. 464, 1938. † Payne, Stellar atmospheres, 1925. ‡ Interpolated.

	R A 1950 Dec h m	m_{v}	Sp	<i>†</i>	M	μ "	θ	$V_{\rm rad}$
a Cen A	14 36.2—60°38′	.3	dG3	.755	4.7	3.68	281°	— 22
	14 36.2—60 38	1.7	dK 2	.755	6.1	3.68	281	- 22
	14 26.3—62 29	11.5	dM:	.778	16.0	3.85	282	
	17 55.4+ 4 33	9.4	dM 5	.544	13.1	10.26	356	-110
W 359	$10\ 54.1 + 7\ 19$	13.8	dM 6	.402	16.8	4.70	235	+ 13
L 726-8 A	1 36.4—18 13	12.4	dM $6e$.4::	15.4	3.38	80	+ 30
L 726-8 B	1 36.4—18 13	12.9	dM 6e	.4 : :	15.9	3.38	80	+ 30
+36:2147 A†	11 00.6+36 18	7.5	dM 2	.390	10.5	4.78	187	— 87
a CMa A	6 42.9—16 39	-1.6	A 0	.378	13	1.32	203	- 8 - 8
α CMa B	6 42.9—16 39 18 46.7—23 54	8.5 10.5	$\frac{F}{dM}$ 5	.378 .354	11.4 13.2	1.32	203 106	$-\ \ \frac{8}{0}$
R 154		12.2	dM 6	.318	14.7	1.82	176	- 81
	3 30.6— 9 38	3.8	dK 2	.301	6.2	.97	271	+ 15
61 Cyg A	21 04.7+38 30	5.6	dK 5	.298	8.0	5.21	52	- 64
61 Cyg B	21 04.7 + 38 30	6.3	dK7	.298	8.7	5.21	52	 64
τ Cet	1 41.7—16 12	3.6	dG7	.298	6.0	1.92	296	— 16
a CMi A	7 36.7+ 5 21	.5	dF 4	.294	2.8	1.25	214	- 4
α CMi B	7 36.7+ 5 21	10.8	111	.294	13.1	1.25	214	- 4
L 789-6	22 35.7—15 36	12.3	dM 6	.293	14.6	3.27	46	-60
	21 59.6—57 00	4.7	dK 5	.288	7.0	4.69	123	- 40 - 12
	$11 \ 45.1 + 1 \ 07$	11.0 8.9	dM 5 dM 3	.288 .285	13.3 11.2	1.39 2.28	153 324	
	18 42.2+59 33 18 42.2+59 33	9.7	dM 4	.285	12.0	2.28	324	$^{+}_{+}$ $^{2}_{2}$
+43: 44 A †	0 15.4+43 44	8.1	dM 3	.279	10.3	2.90	82	+ 8
+43:44 B	0 15.4+43 44	10.8	sdM 4c	.279	13.0	2.90	82	+ 8
-36:9694		7.3	dM 1	.277	9.5	6.91	79	+ 10
-44 :612	5:09.7-45:00	9.0	sdM 0	.262	11.1	8.74	131	+242
+ 5:1668	7 24.7+ 5 28	10.1	dM 5	.262	12.2	3.76	171	+ 27
-39:8920	21 14.3—39 04	6.6	dM 0	.257	8.8	3.46	251	+ 22
+56:2783 A		9.8	dM 4	.256	11.8	.86	246	- 24 - 24
+56: 2783 B	22 26.6+57 26 6 26.8— 2 46	11.2 11.6	dM 6 dM 6e	.256 .256	13.2 13.6	.86 1.00	246 131	- 24 + 25:
	16 27.5—12 32	9.9	dM 4	.253	11.9	1.18	182	- 18
vMa 1	0 46.6+ 5 10	12.3	DF	.245	14.2	2.98	155	+238
	12 30.8+ 9 18	12.7	dM7	.225	14.5	1.80	279	_ 5
W 424 B	12 30.8+ 9 18	12.7	dM7	.225	14.5	1.80	279	- 5
Co-46: 11540	17 24.9—46 51	9.7	dM3	.224	11.5	1.04	147	
<i>−</i> 37 : 9435 · · · · · · ·	0 02.5—37 36	8.5	dM 3	.222	10.2	6.07	113	+ 24
+68:946	17 36.7+68 23	92	dM3	.218	10.8	1.31	197	- 17
+50: 1725	10 08.3+49 42	6.7	dK 8 $dM 2$.218 .212	8.4 10.6	1.45 .81	249 185	<i>—</i> 27
_49:11439 _15:6290	21 30.3—49 14 22 50.7—14 31	9.0 10.2	dM 5	.212	11.8	1.11	123	+ 10
CO-44: 11909	17 33 4—44 16	10.5	dM 5	.210	12.1	1.15	217	T 10
a Aul	19 48.3 + 8 44	.9	A 4	.206	2.5	.66	55	- 26
L 145–141	11 42.7—64 34	12.1	DA	.204	13.6	2.68	97	
+43:4305	22 44.7+44 05	10.1	dM 5	.203	11.6	.86	237	+ 2
o ₂ Eri A	4 13.0 — 7 44	4.5	dK = 0	.200	6.0	4.08	213	- 42
02 Eri B	4 13.0 - 7 44	9.4	DA	.200	10.9	4.08	213	- 42 - 42
c ₂ Eri C	4 13.0— 7 44	11.1 11.0	dM 5c dM 4	.200 .200	12.6 12.5	4.08 .87	213 57	-42 -120
Grw+79:3888	11 45.4+/8 38	11.0	(17/1 4	.200	12.3	.07	37	-120

The stars have been designated by their BD or CPD numbers and only if neither of these was available, by their Cordoba Durchmusterung numbers: for very faint stars the discoverer's numbers have had to be used. p = parallax, $\mu = \text{proper motion}$, m = magnitude, M = absolute magnitude, $V_{\text{rad}} = \text{radial}$ velocity, Sp = spectrum, $\theta = \text{position}$ angle.

^{*} Prepared by W. Luyten, University of Minnesota. † These stars have invisible companions.

TABLE 858.—MASSES OF STARS FOR BINARIES WITHIN 10 PARSECS FROM THE SUN*

This table contains all visual binary stars within 10 parsecs for which the orbital elements and parallax are well determined.

The sum of the masses follows from the harmonic relation:

$$M_1 + M_2 = \frac{a^3}{P^2}$$

where a is the semimajor axis of the relative orbit, expressed in astronomical units, P the period in years; the masses are referred to the sun's mass as unit. For the majority of these binaries the mass-ratio is known, thus permitting a determination of the masses of the individual component.

			P	Sum of	Separate masses		
Star	Parallax	$^{a}_{ m U}$	years	$M_1 + M_2$	M_1	M_2	
η Cas		67.9	526	1.13	.69	.44	
p Eri		52	251	2,22			
02 Eri B, C		34.1	248	.64	.44	.20	
Sirius		20.0	49.94	3,21	2.15	1.06	
Procyon		15.8	40.65	2.37	1.74	.63	
ξ UMa		19.7	59.86	2.13	.98	1.15	
a Cen A, B		23.2	80.09	1.92	1.06	.86	
ξ Boo		34.4	149.95	1.81	.96	.85	
(Her		13.24	34,42	1.96	1.12	.84	
-8°4352		1.28	1.72	.70			
Fu 46		4.58	13.12	.56	.31	.25	
HR 6416	132	37.4	242	.89			
HR 6426	147	12.5	42.2	1.09			
μ Her B, C		11.8	43.0	.87			
7° Oph		23.14	87.85	1.61	.89	.72	
61 Cyg		83.5	720	1.12	.69	.43	
		9.23	44.52	.40	.26	.14	

^{*} Prepared by Peter van de Kamp, Swarthmore College.

TABLE 859.—THE FIRST-MAGNITUDE STARS ARRANGED IN ORDER OF BRIGHTNESS *

Name	R A 1950 h m	Dec	m _v	Sp	μ	θ	V km/s	Þ	Mabs
Sirius †	6 42.9	—16°39′ -	-1.6	A0	1"32	203°	- 8	<i>"</i> 378	+1.3
Canopus	(22 2	# A 4 A	9	cF0	.02	47	+20	.012	-5.5
a Centauri † ‡		-60 38	.1	dG 3	3.68	281	-22	.755	+4.5
Vega §	. 18 35.2	+3844	.1	A 0	.34	36	-14	.122	÷ .5
Capella		+45 57	.2	G 1	.44	168	+30	.073	5
Arcturus	. 14 13 4	+19 27	.2	K 0	2.28	209	— 5	.091	.0
Rigel †	5 12.1	— 8 15	.3	cB 8	.00		+24	.002 :	8.:
Procyon †	. 7 36.7	+ 5 21	.5	dF 4	1.25	214	_ 4	.294	+2.8
Achernar	1 35.9	—57 29	.6	B 7	.10	110	+19	.032	-1.9
β Centauri †		-60 08	.9	B 3	.04	217	— 12:	.036 :	-1.3:
Altair §	. 19 48.3	+ 844	.9	A 4	.66	55	-26	.206	+2.5
Betelgeuse §	5 52.4	+724	.9:		.03	75	+21	.013	-3.5
Aldebaran ‡	4 33.0	$+16\ 25$.8	K 5	.20	160	+54	.058	— .4
a Crucis † ‡		-62 49	1.1	B 1	.04	235	— 8:	.03:	-1.5
Spica		-1054	1.2	B2	.06	230	+ 2:	.011 :	-2.6 :
Pollux §		+28 09	1.2	G8	.62	265	+3	.100	+1.2
Antares †		$-26\ 19$	1.2	M1	.03	200	— 3	.020 :	-2.3:
Fomalhaut		-29 53	1.3	A3	.37	116	+ 6	.145	+2.1
Deneb §	. 20 39.7	+45 06	1.3	cA2	.00	· · ·	— 5:	.002:	<i>−</i> 7. <u>;</u>
Regulus † ‡		+12 13	1.3	B 8	.25	270	+ 3:	.042	- .6
β Crucis	. 12 44.8	— 59 25	1.5	<i>B</i> 1	.05	235	+20	.006 :	<u>-4.4:</u>

^{*} Prepared by W. Luyten, University of Minnesota. † Visual binary. ‡ Has distant companion. § Has an optical companion. The magnitude shown is the combined visual magnitude. \parallel Spectroscopic binary. m= magnitude, Sp= spectrum, $\mu=$ proper motion, $\theta=$ position angle, V= radial velocity, p= parallax, M= absolute magnitude.

Main sequence	m v	Sp	t	Mv	T	R	d	μ	ρ
β Centauri	.9	B 3		-1.3	21,000°H	X 11 🕟		(25)	.018
ν Scorpii	4.3	B 3	.009	8	21,000	3.2	.0003	(5.2)	.16
β Aurigae A	2.8	A 0	.034	.6	10,700	2.4	.0008	2.2	.13
a Lyrae	.1	A 0	.122	.5	10,700	2.4	.003	(3.0)	.11
a Can Maj A		A 0	.378	1.3	10,700	1.8	.006	2.4	.42
a Aquilae	.9	A4	.206	2.5	8,800	1.4	.003	(1.7)	.6
a Can Min	.5	dF 4	.294	2.8	6,100	1.9	.006	1.1	.16
a Centauri A	.1	dG3	.755	4.5	5,850	1.0	.007	1.1	1.1
70 Ophiuchi A	4.3	dK 0	.192	5.7	5,740	1.0	.002	.9	.9
61 Cygni A	5.6	dK 5	.298	8.0	4,300	.7	.003	(.45)	1.3
Krüger 60 A	9.8	dM 4	.256	11.8	3,180	.34	.0008	.26	9.
Barnard's Star	9.4	dM 5	.544	13.1	3,020	.16	.0008	(.18)	45:
Giants									
a Aurigae A	.2	gG1	.073	— .5	5,150	12	.007	4.2	.0024
a Boötis	.2	gK0	.091	.0	4,620	30	.023	(8)	.0003
a Tauri	.8	gK 5	.058	4	3,940	70	.034	(5)	1.4×10^{-5}
β Pegasi	2.2	gM 3	.016	-1.0	3,390	160	.025	(6)	1.5×10^{-6}
a Orionis	.9	cM2	.017	-4.0	3,060	480	.048	(35)	3×10^{-7}
a Scorpii A	1.2	cM 2	.0095	-3.5	3,060	380	.042	(22)	5×10 ⁻⁷
_								` ′	
White dwarfs	0.5	r	270	11.4	7 500	024	00010	00	E> /104
a Can Maj B	8.5	$F_{\underline{A}}$.378	11.4	7,500	.034			5×104
40 Eridani B	9.4	A F	.200	10.9	11,000		.00004		7×10^{4}
van Maanen's Star.	12.3	P	.245	14.2	7,500	.009	: .00002	(.14)	10 ⁵ —10 ⁶

Many of the data were taken from the reference given in footnote 277. The spectra, magnitudes, radii, parallaxes, and densities have been revised for some of the stars. The letters A and B denote the brighter and fainter components, respectively, of binary stars.

Apparent (visual) magnitude is denoted by m_v , spectral class by Sp, parallax in seconds of arc, p, absolute (visual) magnitude by M_v , radius in terms of the sun by R, apparent diameter in seconds of arc by d, mass in terms of the sun by μ , and density by ρ (in g/cm^3).

TABLE 861.—SPECTRUM TYPE AND MEAN VISUAL **ABSOLUTE MAGNITUDE ***

Type	Main sequence	Super- giants	Туре	Main sequence	Giants	Super- giants	Sub- giants
0	-3.8		F 5	+ 3.7	+1.2	-4.2	
B 0	-3.1	-5.4	F 8	+ 4.1	+ .8	-4.0	
\vec{B} $\vec{1}$	-2.6	5.4	G 0	+ 4.4	+ .6	-3.8	
B2	-2.2	-5.3	G 2	+ 4.7		-3.6	
B3	-1.7	-5.3	G 5	+ 5.1	+ .6 + .5	-3.2	+3.0
B 5	— .8	-5.2	G 8	+ 5.5	÷ .5	-2.8	
B 8	+ .2	— 5.0	K 0	+ 5.9	+ .5	-2.6	+3.0
B 9	+ .4	-5.0	K 2	+ 6.3	+ .5	-2.3	
A 0	i .7	-4.9	K 5	+ 7.1	+ .2	-2.0	
A2	+1.2	-4.8	K 8	+ 7.7	.0		
A3	+1.5	—4.8	M 0	+ 8.4	— .2	—4.5	
A 5	+1.7	—4.7	M 1	+ 9.0			
A8	+2.3	-4.5	M 2	+ 9.6			
F 0	+2.6	-4.4	M 3	+10.4			
F 2	+3.1	—4.3	M 4	+11.5			
			M 5	+13.6			

^{*} Prepared by R. E. Wilson, Mount Wilson Observatory.

^{*} Prepared by Edith J. Tebo, Harvard College Observatory. 277 Russell, Dugan, and Stewart, Astronomy, p. 740, Ginn & Co., 1926. Used by permission.

TABLE 862.—REDUCTION OF VISUAL TO BOLOMETRIC MAGNITUDE *

The bolometric corrections (BC) given in the table are added algebraically to visual magnitudes. From tables by G. P. Kuiper, 278 slightly revised for O and B stars by same author. The (effective) temperature, Te, scale of the O and early B stars is still to be regarded as provisional. The corrections for $O_6 - F_0$ stars are based on the stellar temperature scale and on theoretical spectral-energy curves. For $F_0 - M_5$ stars they are based on radiometric observations by Pettit and Nicholson.

	Main seq			Main seq			its : 0)	Supergiants $(M = -4)$	
Type	ВС	T_e	Type	BC	Te	BC	T_e	BC	Te
05	— 5.3:	100,000:	F 0	.0	6500	.0	6500	.0	6500
06	-4.8	70,000:	F 2	04	6100	04	6100	04	6100
07	-4.3	50,000	F 5	— .04	6100	— .08	5850	— .12	5720
08	-3.9	41,600	F 8	— .05	6050	— .17	5500	— .28	5150
09	-3.5	35,000	G 0	— .06	6000	— .25	5240	— .42	4830
B 0	-3.0	28,500	G2	07	5900	— .31	5070	— .52	4650
B 1	-2.8	26,300	G 5	— .10	5770	39	4880	— .65	4480
B 2	-2.5	23,000	G8	— .10	5770	— .47	4720	— .80	4330
B 3	-2.3	21,000	K 0	— .11	5740	— .54	4620	— .93	4240
B 4	-2.1	19,300	K 2	— .15	5580	— .72	4420	-1.20	4060
B 5	-1.9	17,800	K 3	31	5070	89	4260	-1.35	3940
B 6	-1.6	15,600	K 4	— .55	4600	-1.11	4120	-1.56	3780
B 7	-1.4	14,300	K 5	— .85	4300	-1.35	3940	-1.86	3590
B 8	-1.2	13,100	K 6	-1.14	4100	17.22	****		
B 9	9	11,600	M 0	-1.43	3880	-1.55	3800	-2.2	3420
A 0	— .7	10,700	M 1	-1.70	3700	-1.72	3680	-2.6	3230
A1	— .6	10,150	M2	-2.03	3540	-1.95	3560	— 3.0:	3060
A2	— .5	9,600	M3	-2.4:	3320	-2.26	3390	— 3.6:	2840:
A3	4	9,000	M 4	-2.7:	3180	-2.72	3160		
A_{5}	— .3	8,500	M 5	— 3.1 : :	3020	— 3.4 :	2920 :		
A7	— .2	7,900							
F 0	— .0	6,500							

^{*} Prepared by G. P. Kuiper, Yerkes Observatory. 278 Astrophys. Journ., vol. 88, p. 446, 1938.

TABLE 862A.—RUSSELL-HERTZSPRUNG DIAGRAM *

Absolute magnitudes (ordinates) of 3,915 stars of different spectrum types (abscissae) determined by the spectroscopic method by W. S. Adams and his associates (courtesy of Mount Wilson Observatory, 1932). The diagram shows distinctly the division of types G, and later, into giants (high-luminosity stars) and dwarfs (low-luminosity) with few intermediate stars. The curve simulates the mirror image of the figure 7, and with the

addition of much new material confirms fully that first drawn by Russell in 1913.

The majority of the stars may be divided into dwarfs, giants, and supergiants (a few stars do appear to have luminosities intermediate between these classifications). The luminosity of the dwarfs decreases regularly with advancing spectral type (reduced surface temperature); it drops abruptly for the coolest. Among the giants the luminosity decreases until about class F 5 and then increases with decreasing temperature at least as far as the early subdivisions of class M. For supergiants, the luminosity does not appear to change appreciably with spectral class.

In the diagram, the concentration into vertical columns is purely an effect of rough spectral classification. Most of the stars on this diagram belong to Population Type I

(Table 874). The white dwarfs occupy the lower left corner (Table 872). Kuiper 279 has more recently derived the empirical mass luminosity relation for (1) the visual binaries, (2) some selected spectroscopic binaries, and (3) Trumpler's massive stars in clusters. His diagram is reproduced in figure 33. Morgan, Keenan, and Kellman 280 have presented a preliminary calibration of their luminosity classes in terms of visual absolute magnitudes, which includes B stars as well as subclasses (intermediates between giants and dwarfs and between giants and supergiants).

 ^{*} Prepared by Edith J. Tebo, Harvard College Observatory.
 Astrophys. Journ., vol. 88, p. 472, 1938.
 An atlas of stellar spectra, p. 34, University of Chicago Press, 1943.

-5	<u> </u>	9 F	o F	5 G	0 0	is 1	o K	Mo	M5
-4				:					
-3				<u>.</u>	. : : :	::			
				::				;;	
-5				.,::	•		• •	: •	
-1					. '				
	:				. • :				: .
0	.:			^	• ;				
+1	_ :::	: :	:					, ,	
				:			:		
+2						:			
+3					-:				
					: .		LA [*]	E-TYPE 5 M	DWARFS O M
+4							.,	,	Ĭ
+5				-			: .		
					1 :				
+6									
+7						1	. • •		:
+8							•		
**									
+9								•	
+10									
*10									
+11									
+IS									
716									
+13									

Fig. 32.—The Russell-Hertzsprung Diagram

TABLE 863.-LOG (NO. STARS)/(SQ. DEGREE) BRIGHTER THAN PHOTO-GRAPHIC MAGNITUDE, m, AT STATED GALACTIC LATITUDES *

										sue	tio No	ve	Nos	itio . at - 90°
m	+90°	+40°	+20°	+10°	0°	<u>·</u> 10°	20°	40°	—90°	+90°	0° .	—90°	+90°	-90°
5.0	8.15	8.24	8.37	8.49	8.77	8.65	8.50	8.25	8.07				4.1	5.0
6.0	8.59	8.72	8.85	8.95	9.22	9.10	8.94	8.71	8.62	2.8	2.8	3.5	4.3	4.0
7.0	9.02	9.18	9.31	9.41	9.64	9.51	9.35	9.16	9.08	2.7	2.6	2.9	4.1	3.6
8.0	9.44	9.62	9.77	9.87	.09	9.93	9.79	9.60	9.50	2.6	2.8	2.6	4.5	3.9
9.0	9.86	.05	.21	.33	.55	.37	.23	.04	9.92	2.6	2.9	2.6	4.9	4.3
10.0	.25	.47	.65	.77	1.02	.82	.67	.47	.32	2.5	3.0	2.5	5.9	5.0
11.0	.63	.87	1.08	1.21	1.49	1.26	1.11	.89	.72	2.4	3.0	2.5	7.2	5.9
12.0	1.01	1.26	1.50	1.64	1.95	1.70	1.54	1.29	1.12	2.4	2.9	2.5	8.7	6.8
13.0	1.38	1.63	1.90	2.05	2.39	2.14	1.95	1.68	1.48	2.3	2.8	2.3	10	8.1
14.0	1.70	1.97	2.28	2.45	2.82	2.57	2.34	2.03	1.78	2.1	2.7	2.0	13	11
15.0	1.98	2.30	2.66	2.85	3.22	2.99	2.72	2.34	2.02	1.9	2.5	1.7	17	16
16.0	2.26	2.61	3.02	3.25	3.60	3.39	3.07	2.64	2.26	1.9	2.4	1.7	22	22
17.0	2.53	2.90	3.36	3.64	3.96	3.76	3.40	2.92	2.48	1.9	2.3	1.7	27	30
18.0	2.79	3.15	3.67	3.97	4.32	4.10	3.68	3.18	2.70	1.8	2.3	1.7	34	42
19.0								C		[1.6]	2.0			
20.0								Sea	res) 1.0	1.9			
21.0										1.4	1.9			

(Characteristic 8. or 9. means, of course, -2, or -1.)

For values averaged over all galactic longitudes see reference, footnote 281. An excess of stars, relative to the averages, between longitudes 230° and 50°, and a deficit elsewhere, reflect the eccentric position of the sun within the stellar system, which, in a first approximation, may be regarded as a greatly flattened spheroid. For more detailed values for both longitude and latitude see references, footnote 282. The Groningen numbers are generally larger than the Mount Wilson values, notably so in low galactic latitudes. This defference arises partly from the irregular influence of the highly complex structure of the stellar system and especially of the obscuring dust clouds in and near the Milky Way. Mount Wilson results were derived from counts of stars in small areas at and north of declination -15°; Groningen results from sample counts over the whole sky. The Groningen magnitude scale for faint stars south of declination -15° is, however, somewhat in doubt and may also affect the totals.

TABLE 864.—STARS OF LARGE PROPER MOTION *

Star	m	Sp	μ	θ	Star	m	Sp	μ	θ
+ 4:3561	9.4	dM 5	10″26	356°	W 489	14.8	DC	3"92	252°
-44:612	9.0	sdM 0	8.74	131	Proxima Cen	11.5	dM:	3.85	282
+38:2285	6.4	dG 6	7.04	145	+ 5:1668	10.1	dM 5	3.76	171
—36:9694			6.91	79	μ Cassiopeiae	5.3	dG 5	3.75	115
-37:9435			6.07	113	a Centauri	.3	dG 3	3.68	281
R 619	12.6	dM 6	5.40	167	-15:4041/2	9.3	sdG 6	3.68	235
61 Cygni			5.21	52	— 39 : 8920	6.6	dM 0	3.46	251
+36:2147	7.5	dM 2	4.78	187	L 726–8	12.4	dM $6e$	3.38	80
W 359	13.8	dM 6	4.70	235	L 789–6	12.3	dM 6	3.27	46
€ Indi	4.7	dK 5	4.69	123	R 451	12.7	sdK 8	3.20	174
+44:2051	8.7	dM 1	4.49	282	—43:354	4.3	dG 5	3.15	76
o₂ Eridani	4.5	dK 0	4.08	213	R 578	14.1	sdM 2	3.06	152

m = magnitude, Sp = spectrum, $\mu = \text{proper motion}$, $\theta = \text{position angle}$.

Stars have been identified with their B.D. or C.P.D. numbers. In case of multiple stars the magnitudes and spectra of the brightest component are given. For further information on stars possessing large proper motions see references, footnote 283.

^{*} Prepared by F. H. Seares, Mount Wilson Observatory.

281 van Rhijn, Groningen Publ. No. 43, Table 6, 1929.

282 van Rhijn, Groningen Publ. No. 43, Table 10; Seares and Joyner, Mount Wilson Contributions

Nos. 346, 347; Astrophys. Journ., vol. 67, p. 24, 123, 1928; Publ. Astron. Soc. Pacific, vol. 40, p. 303, 1928.

^{*} Prepared by W. Luyten, University of Minnesota.
289 Lick Obs. Bull. No. 344; Harvard Circ. 283; Publ. Cincinnati Obs. LO 18; Publ. Astronomical Obs.
Univ. Minnesota, vol. 3, No. 1.

Photographic magnitude m	Number of stars	Equiva- lent no. 1st mag stars (photogr)	Totals to mag	Photographic magnitude m	Number of stars	Equiva- lent no. lst mag stars (photogr)	Totals to mag
-1.6	Sirius	11	11	8.0— 9.0	40,600	40	258
— .9	a Carinae	6	17	9.0—10.0	116,000	46	304
.0	a Centauri	2	19	10.0—11.0	304,000	48	352
.0— 1.0	8	14	33	11.0—12.0	789,000	50	402
1.0— 2.0	24	15	48	12.0—13.0	2,000,000	50	452
2.0— 3.0	66	17	65	13.0—14.0	4,950,000	50	502
3.0— 4.0	188	19	84	14.0—15.0	11,500,000	46	548
4.0— 5.0	767	31	115	15.0—16.0	25,400,000	40	588
5.0- 6.0	2,000	32	147	16.0—17.0	56,000,000	35	623
6.0— 7.0	5,360	34	181	17.0—18.0	115,000,000	29	652
7.0— 8.0	14,800	37	218	18.0—™		48	700

This table derived from van Rhijn's counts (Table 7 of reference 281) shows that to photographic magnitude 18.0 the total of starlight received is equivalent to 652 stars of photographic magnitude 1.0. If all the remaining stars are included, the equivalent addition is only 48 1st-magnitude stars, giving a total of 700, equal to about a hundredth part of full moonlight. The corresponding total of stars of visual magnitude 1.0 would be about 1,320, which agrees reasonably well with the equivalent total of 1,440 stars (zenith) found by van Rhijn from direct measurement of the visual brightness of the sky; or 1,674 stars outside the earth's atmosphere. Density of stellar radiation = $0.8 \times 10^{-13} \ {\rm erg/cm^3}$. Cosmic radiation density = $1.3 \times 10^{-13} \ {\rm erg/cm^3}$ (near the earth).

The number of stars in each magnitude interval is still increasing rapidly at m=18, but the run in the numbers in the second column of the table indicates that somewhere about m=30 the numbers begin to decrease and eventually to approach zero as the limit of the stellar system is reached. The extrapolated total number of stars in the system given by different investigations ranges from 30 to 100 billion. The great inherent uncertainty of this total is further in-

creased by the unknown influence of interstellar absorption.

Practically all the stars visible to the naked eye lie within 1,000 parsecs of the sun, and most of them are more than 100 parsecs distant. In the vicinity of the sun, the majority of the stars lie within 200 or 300 parsecs of the galactic plane; but along this plane the star-filled region extends far beyond 1,000 parsecs in all directions, and may reach 30,000 parsecs in the great southern star clouds (Shapley).

TABLE 866.—BRIGHT OR WELL-OBSERVED NOVAE *

		Dui arent tion nitudes 3 ma	1		olute iitudes	Vebula radial expansion per year		sion veloci (absorptio	
Nova and year	Max	Min decli		Max	Min	Nebula expans	Prin- cipal	Diffuse enhanced	Orion
Aquilae	1918 —1.1		8 430	-9.3	+2.6	1"0	+1500 *		-4000
T Aurigae	1891 3.8	14.8 10	800	-5.3	+5.7	.12	— 400	— 870	-1200
Carinae	18438	7.9 600): 170 ^b	—7 :‡	+1.7:				
T Coronae B	1946 ° 3.0	11:v	9 850	-7.0	+1:		-1100	-4360	
Cygni	1920 2.0	15.5		-8.9	+4.6	.09	— 725	-1400	-2500
Geminorum	1912 3.5	14.7 3	7 790 ^d	-6.4	+4.8		— 800	-1400	-2100
DQ Herculis	1934 1.4	15:v 10	230	-5.5	+7.5	.27	— 318	— 800	-1100
CP Lacertae	1936 2.1	15.3	9 1350	-8.6	+4.6	.25	-1500^{\dagger}	-3200	-3800
RS Ophiuchi	1933 ° 4.3	11.0v	9 1150 b		-1.3		Note		
Persei	1901 .2	13:v 1		-8.4	+4:v		1300	-3500	3700
RR Pictoris	1925 1.2	12.7 15		-7.3	+4.2	.17	— 320	— 750	-1500
CP Puppis	1942 .4		7 500 : 1		[+8.5]		-1000		
RT Serpentis	1909° 10.5	[16 800		$+3.6^{\circ}$			small		
T Pyxidis	1944° 6.4	13.6 130		-5.4°			— 940	-1800	1900
Tauri	1054 f—5:	15.9	. 1180	—16	+4.3	.20	-1100		

^{*}Prepared by D. B. McLaughlin, University of Michigan. a, Absorption velocities increased with time: N Aql, to -1700 km/sec; CP Lac, to -2500 km/sec. b, Absolute magnitude assumed; distance based on assumed absolute magnitude. c, Recurrent novae: T CrB; RS Oph, 1898; T Pyx, 1890, 1902, 1920. T CrB: distance based on spectroscopic parallax of class M companion. d, Nova Gem and CP Pup; distances based on strength of interstellar calcium lines. f, Nova Tauri 1054; a super nova; now the Crab Nebula. Note on velocity of RS Ophiuchi: there was no system of absorption lines at the short-wavelength edge of the emissions as in other novae.

^{*} Prepared by F. H. Seares, Mount Wilson Observatory.

The mass-luminosity relation is shown in figure 33, which is based on data by G. P. Kuiper. 284 Dots and open circles represent visual and spectroscopic binaries, each component being shown separately. Crosses represent several visual binaries in the cluster of the Hyades. Squares represent the white dwarfs. The symbol ① stands for the sun.

^{*} Prepared by O. Struve, University of California, Berkeley. ²⁸⁴ Astrophys. Journ., vol. 88, p. 472, 1938.

Fig. 33.—The mass luminosity relation for stars.

TABLE 867.—CLASSIFICATION OF NEBULAE

I Galactic nebulae—	A B	Symbol e. g.
		(1) Predominantly luminous. DL N.G.C. 6618 (2) "obscure DO Barnard 92 (3) Conspicuously mixed DLO N.G.C. 7023
II Extragalactic nebulae—	A	Regular (1) Elliptical E_n $\begin{cases} N.G.C. 3379 & E & 0 \\ " & 221 & E & 2 \\ " & 4611 & E & 5 \\ " & 2117 & E & 7 \end{cases}$
		(2) Spirals (a) Normal spirals S (1) Early Sa N.G.C. 4594 (2) Intermediate Sb " 2841 (3) Late Sc " 5457 (b) Barred spirals SB
Extragalactic nebulae too f		(1) Early

Radiometric magnitude of any star = visual (or photographic) magnitude of a spectral class A^0 star giving the same radiometric deflection. If m_r , m_{pr} , and m_{pg} are, respectively, radiometric, photovisual, and photographic magnitude, then Color Index, $CI = (m_{pg} - m_{pv})$; heat index, $HI_{pv} = m_{pv} - m_r$; $HI_{pg} = m_{pg} - m_r$. Spectral class: Henry Draper, revised by D. Hoffleit (DH); by W. W. Morgan (WWM). All measures reduced to zenith at Mount Wilson; two reflections from fresh silver; zinc-antimony black thermojunction; rock salt window. Stars of known or suspected variability are rejected from this list.

All the stars were in both the Mount Wilson and Harvard observing programs.²⁸⁵

The reduction of the Mount Wilson and Harvard data to a common basis has been rather difficult. The following are the principal factors that differ between the Mount Wilson and Harvard observations.

- (1) The Atmosphere.—There was more water vapor over Oak Ridge than Mount Wilson; hence, early-type stars would be too faint at Oak Ridge.
- (2) The thermocouple blacking.—Probably the surfaces were equally "black" in the ultraviolet and visible regions; the Harvard surfaces were blacker in the infrared; hence, late-type stars would be too faint at Mount Wilson.
- (3) The cell window.—Rock salt was used at Mount Wilson; fluorite was used at Harvard. These are equally good throughout the ultraviolet, visible, and infrared to the region of 6 to 8 microns. For longer wavelengths, rock salt is better. The effect of this difference is in the opposite direction to the thermocouple blacking in (2) above. However, the very small percentage of stellar energy beyond 8 microns and absorption bands in the earth's atmosphere means that the difference in the cell windows has a very much smaller effect than the thermocouple blacking and, therefore, (2) above dominates.

A systematic difference exists between the Mount Wilson and Harvard observations which follows a pattern predicted in accordance with factors (1) and (2) above. Therefore, corrections which are usually less than 0.1 magnitudes have been applied. The largest, 0.16 magnitudes, is for 51 Gem. This correction brings the two sets of data into better agreement but there remains an apparent difference in zero-point of about 0.13 magnitudes. Since it is impossible to determine which of these two sets of observations is in error, the mean of the Mount Wilson and Harvard data has been taken, corrected as indicated for factors (1) and (2) above. These mean values are the data given in the m_r column.

	N	Aagnitud	le	Spec	tral class			Magnitu	de	Spec	ral class
Star	m_{pv}	m_{pg}	m_r	DH	·WWM	Star	m_{pv}	mpg	mr	DH	WWM
α And β Cas γ Peg	2.11 2.34 3.00	2.08 2.82 2.67	2.12 2.11 2.83	$egin{array}{c} B_{9} \ F_{3} \ B_{2} \end{array}$	F ₂ III	51 Gem α CMi β Gem	4.85 .40 1.13	.83 2.31	2.17 .10 .37	M ₆ F ₅ K ₀	F ₄ V K ₀ III
β And α Cet α Per	2.07 2.54 1.78	3.94 4.47 2.43	.28 .53 1.47	Κ ₆ Μ ₀ F ₃	K5 III M9 III F5 I	ε Leo π Leo β UMa	2.96 4.52 2.34	2.40	2.44 2.77 2.50	G_0 M_2 A_1	G ₁ II
η Tau α Tau α Aur β Tau	2.90 .77 .14 1.68	2.92 2.70 1.03 1.52	2.86 80 53 1.66	$egin{array}{c} \mathrm{B}_5: \ \mathrm{K}_5 \ \mathrm{G}_2 \ \mathrm{B}_8 \end{array}$	K ₅ III G ₂ I	a UMa a Cyg β Peg a Peg	1.70 1.24 2.25 2.56	3.09 1.40 4.39 2.53	1.02 1.17 .11 2.59	G ₇ A _{2p} M ₃ A ₁	K ₀ III

* Prepared by R. M. Emberson, Research and Development Board, Washington, D. C.
²⁸⁵ Pettit and Nicholson, Astrophys. Journ., vol. 56, p. 295, 1922; vol. 68, p. 279, 1928; vol. 78, p. 320, 1933.
Stern and Emberson, Astrophys. Journ., vol. 94, p. 412, 1941.

TABLE 869.-NONGALACTIC NEBULAE

Some 400 considered. Distribution of magnitudes appears uniform throughout sequence. For each stage in the sequence the total magnitude (M_T) is related to the max diameter (d) by the formula: $M_T = C-5 \log d$. When minor diameter is used, C approx constant throughout sequence (C=10.1). Mean absolute visual magnitude -15.2. The statistical expression for distance in parsecs is $\log D = 4.04 + 0.2 M_T$. Masses appear to be of the order of $2.6 \times 10^8 \times \text{our}$ sun's. Apparently nebulae as far as measured are distributed uniformly in space, one to 10^{17} parsecs³ or 1.5×10^{-31} in cgs units.

Corresponding radius of curvature of the finite universe of general relativity is of order of 2.7×10^{10} parsecs, about 600 times the distance at which normal nebulae can be detected

with the Mount Wilson 100-inch reflector.

TABLE 870.—VARIABLE STARS, GENERAL CHARACTERISTICS * 250

The task of cataloging and naming variable stars was delegated in 1946 by the International Astronomical Union to the Sternberg Astronomical Institute in Moscow. The 1948 General Catalogue lists 10,912 variable stars; a supplement lists 265 additional variables discovered in 1948. Several thousands of variable stars in globular clusters, in the Magellanic Clouds, and in the nearest galaxies are not included in this catalog, nor are thousands of stars whose variability has been announced, but which are not officially recognized pending confirmation. The total number of variable-star discoveries announced until 1950 probably amount to 20,000.

Classification.—Variable stars, with the exception of eclipsing binaries (see Table 270) and the distributed results in the exception of eclipsing binaries.

879), can be divided roughly into three major groups: (1) Pulsating stars. The variables of this group are all giants, located above the main sequence in the Russell diagram. (2) Explosive stars. The variables of this group are, as far as is known, dwarfish; located below the main sequence in the Russell diagram. (3) Erratic variables, whose light, fluctuations, mostly of an erratic nature, are produced by external causes (nebulosity)

or by peculiar phenomena in their atmospheres.

Pulsating stars.—Cepheids. Usually divided into cluster-type variables, with periods shorter than one day, and classical Cepheids, with periods longer than one day, although

at least five subgroups are indicated.

Cluster-type variables belong to Population II, have spectra ranging from A to F, absolute magnitudes close to zero: most variables found in globular clusters belong to this group. Periods range from $0^4.061$ (CY Aquarii) to $1^4.35$ (a star in the ω Centauri cluster), with the greatest concentration around $0^4.53$. Typical variable: RR Lyrae (7".1 -8".0; period $0^4.57$; spectrum 42-F0). About 1,700 galactic objects and 600 stars in

globular clusters are known to belong to this group.

Classical Cepheids belong to Population I, have spectra ranging from F to K, with marked dependence on period, and intrinsic luminosities increasing with the period (periodluminosity law) from $-0^{M}.5$ to -3^{M} (absolute visual magnitudes). Periods range from 14.13 (BQ Coronae Austrinae) to $45^{\circ}.2$ (SV Vulpeculae), with the greatest concentration around $2^{\circ}.7$. Typical variable: δ Cephei ($3^{\circ}.8 - 4^{\circ}.6$, period $5^{\circ}.37$, spectrum $F \circ - G \circ 2$). About 500 galactic stars and 2,500 stars in the Magellanic Clouds and other extragalactic systems are known to belong to this group.

For both cluster-type and classical Cepheids the shape of the light curve is a function of the period; the rise to maximum is always faster than the decline. Average visual amplitude 0^m.75; photographic amplitudes 50 percent larger. Radial-velocity curves are in phase with light curves (maximum approach at maximum light); Average amplitude 30-40 km/sec.

Long-period variables. Typical variable: o (Mira) Ceti (2^m.0 - 10^m.1; period 331^d; spectrum M 6e). Characterized by very large amplitudes (from 4 to 10 magnitudes, visual), late spectra (M, S, R, N) with bright hydrogen emission lines near maximum light, unstable light curves and periods ranging from 120d (W Puppis) to 1379d (BX Monocerotis). Greatest concentration of periods around 275°. Long-period variables seem to fall into two major groups, whose periods overlap to a great extent. Stars of the first group have nearly symmetrical light curves with moderate amplitudes and periods ranging from 120d to 450°, they seem to belong to Population II. Stars of the second group have strongly asymmetrical light curve (rise faster than decline), large amplitudes and periods upward of 200^d; they seem to belong to Population I.

The enormous visual (and photographic) amplitudes are accounted for by a shift in the effective wavelength of the radiation with phase and by the formation of strong absorption bands at minimum light in the visual region of the spectrum. The total (bolometric) radiation has an amplitude of only one magnitude. Absolute bolometric magnitudes near

-4. About 2,600 stars are known to belong to this group.

Semiregular red variables. Typical variables: Af Cygni (6^m.3 - 8^m.0; period 89^d; spectrum M 6). Spectra similar to those of long-period variables, except for much weaker, or entirely absent, hydrogen emission lines. Amplitude mostly comprised between 1 and 3 magnitudes (both visual and photographic). Light curves very irregular, often erratic; periods ranging from 42^d (TX Tauri) to 810^d (S Persei), but mostly comprised between 100^d and 200^d; several unrelated periods often occur in the same star and for many variables periods have only a statistical significance. Then mean brightness often changes slowly, with cycles of 1,000-2,000 days. Absolute visual magnitudes high, between 0 and -4. Their galactic distribution suggests Population II. Total number of recognized variables 600.

RV Tauri stars. Typical variable: RV Tauri (8^m.7 - 11^m.8; period 39^d.3; spectrum KIV). Spectra Cepheid-like, but light curves similar to those of the preceding group. Deep and shallow minima often alternate. Periods (intervals between two successive

^{*} Prepared by L. Jacchia, Massachusetts Institute of Technology.

286 Kukarkin, B. V., and Parenago, P. P., Fizičeskie Peremennye Zvjozdy, 1937; Gaposchkin, C. P., and Gaposchkin, S., Variable stars, 1938; Campbell, L., and Jacchia, L., The story of variable stars, 1941.

TABLE 870 .- VARIABLE STARS, GENERAL CHARACTERISTICS (concluded)

minima, irrespective of principal and secondary) range from 16d.5 (SX Centauri) to 73d (R Scuti). Galactic distribution suggests Population I. Only 60 stars can be safely

assigned to this group.

Explosive stars.—U Geminorum stars. Typical variable: U Geminorum (8^m.8-14^m.0; average cycle 97^d). Characterized by long permanence at minimum light, interrupted by brief, sudden explosions which bring the star almost always to the same maximum magnitude; the time between explosions might vary as from 1 to 4 for an individual star, but the average length of cycles over long periods of time are constant for each star. Average cycle length ranges from 13d (AB Draconis) to 340d (AW Geminorum). A few stars undergo temporary spells of continuous, irregular fluctuations. The amplitude increases from 3 magnitudes for short-cycle stars to 5 magnitudes for long-cycle stars. Spectra are of early type and peculiar; hydrogen lines in emission at minimum in absorption at maximum galactic concentration low for short-cycle variables, greater for long-cycle ones. Group numbers about 70 stars.

Z Camelopardalis stars. Typical variable: Z Camelopardalis (10^m.5 - 13^m.3; average cycle 22⁴.1). Similar to the preceding, but with shorter minima and smaller amplitudes; erratic variation is the rule rather than the exception: Less than a dozen stars are known

of this type.

Novae, repeating novae, and novaelike stars. Novae are stars that suddenly blaze up with startling rapidity and then gradually fade out again. For data on bright or wellobserved novae see Table 866. A repeating (or recurrent) nova, such as T Pyx, has several outbursts, any one of which would have identified it as a nova. A novalike star, e.g., Z Andromeda, from time to time shows novalike characteristics with the formation of a shell spectrum and displaced absorption lines and later emission lines. Nebular lines are often associated with these objects.

Erratic variables.—R Coronae Borcalis stars. Supergiants with G and R spectra and an abnormal abundance of carbon in their atmospheres. For long periods of time (often years) the light remains constant at maximum. At entirely irregular intervals the light is dimmed, probably by a carbon veil, with resulting fluctuations which may reach 9 or 10 magnitudes. Typical stars: R Coronae Borealis (variable from 5^m.8 to 15^m.0), RY Sagittarii (variable from 5m.9 to 15m.0 and probably fainter). Only 23 stars are known to

belong to this type.

Variables associated with nebulosities. Stars in gaseous nebulae of the diffuse or of the cometary type, or even in dark nebulae, often show erratic variations with various amplitudes and speeds. At least three subtypes are indicated, typified by the following stars: T Orionis (9^m.6 – 11^m.9; rapid; often constant at maximum); R Monocerotis (10^m – 14^m slow); RW Aurigae (9^m.0 - 13^m.5; very rapid, no constant light at any time). About 200 stars can be attributed to one or the other of these groups.

P Cygni and Be Stars. These early-type giants are normally quiescent, but occasionally some of them undergo slow fluctuations of moderate amplitude (1m - 4m) which last over a series of years. Typical: P Cygni (3^m-6^m) , active in the 17th century; γ Cassiopeiae $(1^m.6-3^m.0)$, active after 1936.

TABLE 871.-VISUAL BINARY STARS *

- Visual binary stars are cataloged as follows:
 - 1. "New General Catalog of Double Stars within 120° of the North Pole" (abbreviated: ADS = Aitken Double Stars), by R. G. Aitken, Carnegie Inst. Washington Publ. 417, 1932 (2 vols.); contains 17,180 objects.
 - 2. ADS is the successor to BDS = "A General Catalog of Double Stars within 121° of the North Pole," by S. W. Burnham, Carnegie Inst. Washington Publ. 5, 1906 (2 vols.); this catalog contains 13,665 pairs. About one-third of these (mostly wide objects) are not repeated in ADS.
 - 3. SDS or "Southern Double Star Catalog," from -19° to -90° declination, by R. T. A. Innes, B. H. Dawson, and W. H. van den Bos, Union Observatory, Johannesburg, South Africa, 1927 (4 vols.).
 - 4. Many wide double stars of interest are contained in "Measures of Proper Motion Stars," by S. W. Burnham, Carnegie Inst. Washington Publ. 168, 1913.
- A full discussion of mass determinations of visual binary stars is found in "The Masses of the Stars with a General Catalog of Dynamical Parallaxes," by H. N. Russell and C. E. Moore, Univ. Chicago Press, 1940.
- Orbits of visual binaries are listed in W. H. Finsen, "Second Catalog of Orbits of Visual Binary Stars," Union Obs. Circ. 100, 1938. Supplementary orbits are found in later Union Observatory Circulars and in the Astronomical Journal.

^{*} Prepared by G. P. Kuiper, Yerkes Observatory.

Star	mv	CI	Sp	μ	Þ	Mv	$\odot \stackrel{r}{=} 1$	ρ cgs
V Ma 1		+.69	DF	2″98	"245	14.2	.009:	10 ⁵ —10 ⁶
02 Eridani B Sirius B		.0:	$DA \\ DF$	4.08 1.32	.200 .378	10.9 11.4	.018 .034	7×10° 5×10°
He 3 LDS 275 A		—.80 +.15	DB DC	.90 .35	.066	11.1	.002 : .012 :	$10^{6} - 10^{7}$ $10^{5} - 10^{6}$
LDS 275 B L 39-44		+.15 +.2:	DC	.35 .57			.012 : .005 :	10 ⁵ —10 ⁶
W 489 LDS 678 A	14.8	+.77 —.14	DC DA	3.92	.129	15.4	.012:	10 ⁵ —10 ⁶
222					,			

 $p = \text{parallax}, \ \mu = \text{proper motion}, Sp = \text{spectrum}, m = \text{magnitude}, M = \text{absolute magnitude}.$

A representative selection of white dwarfs is given above, including the two stars for which the masses are known (02 Eri B and Sirius B), the bluest white dwarf (He 3), the reddest degenerate star (W 489), the only known double white dwarf (LDS 275), the faintest known white dwarf (L 39-44) and a typical example of a white component of red-white dwarf double (LDS 678 which has a red component of 13.7 vis with a color index of +1.81).

The values given for the radii and the densities (ρ) are in most cases very uncertain

estimates based on very approximate parallaxes and estimated masses.

TABLE 873.-LOW-DENSITY STARS, GIANTS *

α	Star Orionis Scorpii A	cM 2	Visual abs mag —4.0 —3.5	Density sun = 1 3×10^{-7} 5×10^{-7}	Radius sun = 1 480 380	Mass sun = 1 (35) (22)
β	Scorpii A	gM3	-3.5 -1.0 4	5×10^{-6} 1.5×10^{-6} 1.4×10^{-5}	380 160 70	(22) (6) (5)

^{*} Prepared by W. S. Adams, Mount Wilson Observatory.

TABLE 874.-GIANT AND DWARF STARS *

The table gives a list of typical supergiants, giants, and main-sequence stars. The relations between the absolute magnitudes and spectral types of the stars are conspicuous and complicated. Along the main sequence M (visual) falls very rapidly from about -4 for class O to +14 for M 6. For identical spectra, the scatter about the mean is of the order of $\pm 1^{\rm m}$. The normal giants form a sequence with M ranging from about 0 for class G 2 to -1.5 for M 8 with a somewhat greater scatter. Supergiants, with M from -4 to -7, are found sparingly in all spectral classes. The white dwarfs, of which nearly 100 are now known, form a widely separated group with spectra from A (or perhaps B) to G and with M from +10 to +15. Subgiants, one or two magnitudes fainter than the normal giants, are recognizable and the existence of other sequences is indicated by recent precise work.

The above discussion applies to stars of Population Type I, which is found in many parts of the galaxy, the arms of spiral nebulae, and other regions where absorbing interstellar material is present. Population II, in regions far from such matter, includes no supergiants or bright blue stars and the relation of the sequences are different. This type is found in the globular clusters, the elliptical nebulae, and the central regions of spiral nebulae and the galaxy. Both types occur near the sun.

The majority of the stars visible to the naked eye are giants, since these, being brighter, can be seen at much greater distances. Classes F and G comprise the greatest percentage of dwarf stars among those visible to the eye. The dwarf stars of classes K and M are actually much more numerous per unit of volume, but are so faint that few of the former, and none of the latter, are visible to the naked eye.

(continued)

^{*} Prepared by W. Luyten, University of Minnesota.

^{*} Prepared by R. E. Wilson, Mount Wilson Observatory, and E. M. Janssen, Harvard College Observatory.

Typical supergiants, giants, and main-sequence stars

		, 0		•	
Mount Wilson type	Star	Boss	Vis mag		50
Wilson	Star 6 Ori K Ori 7 Ori 7 Aur 7 CMa 8 Per 7 Her 8 Ori 7 Tau 8 Peg 8 Cyg 8 Lyr 8 Cyg 9 Cyg 9 Cyg 10 Cyg 11 Cyg 12 Cyg 13 Cyg 14 Cyg 15 Ari 16 Ari 17 Booo 18 Vir 18 Cas 18 CMi 18 Per 18 Ser	Boss 1370 1435 1301 1204 1934 838 4162 1250 1304 5944 5048 4722 5320 1732 482 428 3722 3307 12 2008 772 4055	Vis mag 1.8 2.2 3.4 3.1 3.9 .3 1.8 2.6 3.0 .1 1.3 1.6 3.1 2.7 3.0 2.9 2.4 .5 1.9 3.9	h m 5 33.7 5 45.4 5 22.0 5 03.0 7 22.7 3 39.4 16 18.2 5 12.8 5 23.1 23 02.3 19 43.4 18 35.2 20 39.7 6 42.9 2 06.6 1 51.9 14 30.1 12 39.1 0 06.5 7 36.7 3 20.7 15 54.1	- 1°14′ - 9 41 - 2 26 +41 10 - 29 12 +47 38 +46 26 - 8 15 +28 34 +14 56 +45 00 +38 44 +45 06 -16 39 +34 45 +20 34 +38 42 -1 11 +58 52 + 5 21 +49 41 +15 49
GF 8 GF 8 GF 8 GG 1 GG 2 GG 5 GG 5 GG 6 GK 0 GK 5 GK 6 GM 0 GM 0 GM 1 GM 2 GM 2 GM 2 GM 5 GM 5 GM 5	γ Cyg ε Hya β Vir δ Tri a Aur GC 10756 γ Hya κ Cet ε Gem a Boo 70 Oph ξ Cyg a Tau 61 Cyg A 61 Cyg B β And a Sco a Ori a Cet GC 15183 a Her 56 Leo GC 923	5229 2354 3105 514 1246 2099 3449 752 1717 3662 4571 5431 1077 5433 5434 259 4193 1468 691 2935 4373 2915	2.3 3.5 3.8 5.4 .2 4.4 3.3 5.0 3.3 .2 4.3 3.9 1.1 5.6 6.3 2.4 1.2 .9 2.8 7.6 3.6 6.0 9.2	20 20.4 8 44.1 11 48.1 2 14.0 5 13.0 7 54.7 13 16.2 3 16.7 6 40.8 14 13.4 18 02.9 21 03.1 4 33.0 20 04.7 1 06.9 16 26.3 5 52.5 2 59.7 11 .6 17 12.4 10 53.4 15 16.9	+40 06 +6 36 +2 03 +34 00 +45 57 -22 45 -22 55 +3 11 +25 11 +19 27 +2 31 +43 44 +16 25 +38 30 +38 30 +35 21 -26 19 +7 24 +3 54 +36 18 +14 27 +6 27 -7 32

TABLE 875.—TEMPERATURE IN INTERSTELLAR SPACE * 287

Because interstellar matter is far from being in thermodynamic equilibrium, the temperature of space will depend on the measuring process used.

Temperature from energy density of starlight Color temperature of starlight	3°K 10,000 — 15,000°K dilution factor 10 ⁻¹⁴
Temperature of gas (kinetic) H I region (hydrogen neutral) H II region (hydrogen ionized) Temperature of grains (internal energy)	60°K 10,000°K 20°K

^{*} Prepared by B. Donn, Harvard University.

287 Dunham, Proc. Amer. Philos. Soc., vol. 81, p. 277, 1939; Eddington, Proc. Roy. Soc. London, vol. A 111, p. 424, 1926; Spitzer, Astrophys. Journ., vol. 107, p. 6, 1948; vol. 109, p. 337, 1949; vol. 111, p. 593, 1950; van de Hulst, Rech. Astron. Obs. Utrecht, vol. 11, pt. 1, 1946.

The motions of the stars show various well-marked features, of which the ellipsoidal distribution and the asymmetry are a consequence of the rotation of the galaxy; the significance of certain other features is not yet fully understood. If we assume the circular velocity around the galactic center (Table 828) as our origin, and plot the individual motions of the stars of any group as vectors from this origin, the ends of these vectors do not form a spherical distribution (as they would if the motions of the stars were at random) but rather an elongated distribution which is more or less asymmetrical and in which the area of highest concentration of the vector points is centered about the origin. If for the moment we ignore the asymmetry, the distribution may be characterized as roughly ellipsoidal and the approximate extent and shape of the distribution may be inferred from the dispersions of the velocity components along each of the three principal axes, σ_a , σ_b , and σ_c , in km/sec.

Spectral group ²⁸⁸ (main sequence)	σ_a	σ_b (km.	σ_c	$\overline{M}_{\sigma_{\sigma}^2}$	
A 0 to A 9 F 0 to F 9 F 5 to G 0 G 0 to K 6 K 8 to M 5	17 24½ 27 32 37	12 16 17 16 25	$ \begin{array}{r} 8\frac{1}{2} \\ 12\frac{1}{2} \\ 13\frac{1}{2} \\ 16\frac{1}{2} \\ 17 \end{array} $	180 250 240 270 170	
(Giant branch) K 0 to K 9 M 0 to M 9	23½ 27	17 19:	20 19:	1300 1800 :	

The direction of the a-axis is called the direction of the preferential motion; the two opposite points on the sky at the extremities of this axis are called the vertices. The a-axis for any group of stars is always nearly parallel to the plane of the galaxy. In the case of most groups of stars fainter than eighth magnitude, it appears that the a-axis is directed approximately toward the galactic center at longitude 325. Among stars brighter than sixth magnitude the direction deviates from the direction of the galactic center toward greater longitudes and the deviation is most marked in the case of the A stars, for which the longitude of the vertex is close to 350. In every case the c-axis is directed toward some point close to the galactic pole. The asymmetry referred to above characterizes the distribution of the components parallel to the b-axis. It is relatively slight when the dispersions are small as with the A stars, but becomes very pronounced in the case of groups with large dispersions, there being practically no large motions in the direction of the galactic rotation (longitude 55°).

The last column in the table contains the product of the mean stellar mass (in terms of the sun's mass) and the square of the dispersion along the c-axis. This quantity (analogous to kinetic energy) is practically constant for the various groups of the main sequence

but is much larger for the giant branch.

The dispersions of velocities for the B stars, the c stars, and the Cepheids are of the order of 10 km/sec and difficult to determine accurately. For long-period variables the dispersions average about 50 km/sec and for the cluster-type variables 90 km/sec.

A general card catalog of radial velocities is kept at Mount Wilson Observatory. now contains approximately 14,000 entries and will be published in the near future. The proper motions of all stars brighter than magnitude 7.0 and of many fainter stars may be found in the Albany General Catalog. The Transactions of the Yale Observatory contain the proper motions of many thousands of stars down to magnitude 9.5 and north of declination -30° and two catalogs of the Cape Observatory contain 40,000 proper motions in the zone -40° to -52° .

 $^{^*}$ Prepared by A. N. Vyssotsky, University of Virginia. 288 Astron. Journ., vol. 53, p. 94, 1948.

TABLE 877.—STARS WITH LARGE SPACE VELOCITY GREATER THAN 200 km/sec, BASED ON PARALLAXES \geqslant "005 * 289

				D 1 1	Aı	ex	37.1
Star	Vis mag	Spec	Par	Rad vel km/sec	la	ba	Vel km/sec
20 C 1321	. 10.8	dG 1	"005	—178	163°	—29°	699
20 C 879	. 10.2	dG 2	.008	-138	190	+13	546
HD 134439	. 9.4	dG 2	.040	+295	273	. 3	521
HD 104800	. 9.3	dG 0	.006	+ 11	286	—17	488
HD 111980	. 8.3	dF 6	.009	+144	296	—2 6	472
HD 177095	. 9.4	dG 3	.009	+ 78	246	 6	433
HD 160693	. 8.4	dF 8	.011	+ 40	299	+18	432
HD 224618		dG 6	.014	— 44	178	— 4	388
18 C 560	. 8.9	dA8	.007	+338	187	0	380
HD 179626	. 9.3	dF 4	.007	— 71	264	+10	358
HD 6755	. 7.8	dG 0	.018	-325	248	+ 7	352
HD 64090		sdG 0	.038	-242	294	-15	345
20 C 825	40.0	sdA 4p	.009	-164	289	-18	324
HD 230409	0 =	dG 4	.009	— 19	288	<u> </u>	316
HD 222766	0.4	dG 4	.009	- 98 - 26	188 162	+ 1	307 304
18 C 3002	C #	dK 0	.023 .108	- 20 - 98	299	$-10 \\ -12$	304 296
HD 103095	0.1	dG 5 dF 1	.008	98 240	231	$\frac{-12}{+2}$	276
TTD 111001	0.0	dF 4	.014	$\frac{-240}{+227}$	242	$^{+18}_{+18}$	275
HD 113083	. 9.2	sdK 2	.262	+242	243	- 8	273
20 C 58	. 12.3	sdF 3	.243	+263	97	<u>66</u>	264
HD 134113	0.7	dF 8	.009	- 60	197	+21	263
HD 193901	0.0	dF 5	.027	-179	341	-13	258
18 C 756	. 9.2	dF 8	.031	-191	307	+12	243
HD 5223	. 8.8	R 3	.019	-234	275	+41	235
HD 148816	7.4	dF7	.029	- 52	256	-16	223
HD 219175	0.2	dF 5	.011	— 32	173	-13	223
HD 102158	. 8.0	dG 0	.014	+ 24	162	+21	221
HD 74000	. 9.4	dF 5	.005	+200	238	+13	215
HD 25329	. 8.6	dK 0	.047	_ 30	229	+ 8	214
HD 140283	. 7.3	sdA 5p	.033	—170	179	— 5	214
HD 219962	. 6.4	gK 1	006	+ 23	161	-10	210
HD 219617	. 9.0	sdA 8p	.030	+ 6	293	- 6	202

^{*} Revised by R. E. Wilson, Mount Wilson Observatory. 289 Miczaika, G., Astron. Nachs., vol. 271, p. 265, 1940.

Star	Mag	Spec	A (19	950) D	Proper motion	Radial velocities km/sec
CD —29°2277 VX Her HD 209621 TU Per GC 24145 GC 5108 AR Her SZ Gem HD 6755 AC +25°67928 GC 20393 20 C 993 S Lib GC 20394 S Car BD +30°2611 20 C 491 BD +72°94 20 C 58 20 C 1263 AC +64°4188 20 C 1266 Luy Ye 24 HD 6833 GC 6369 HD 64090 18 C 2348 RZ Lyr HD 5223 BD —17°484 GC 17670 LPM 661 HD 26 HD 74000 R Pic	. 10.5v . 8.8 . 12.19 . 6.9 . 9.1 . 10.4v . 11.5v . 7.8 . 10.6 . 9.9 . 11.5 . 8.5v . 9.4 . 10.1 . 12.3 . 13.4 . 12.8 . 8.5 . 12.3 . 13.4 . 12.8 . 8.5 . 12.5 . 7.1 . 8.5 . 8.5 . 11.9v . 8.8 . 9.4 . 8.2 . 9.4 . 8.2 . 9.4	sdF 6 A 6 A 7 3 A 5 A 4 dA 8 A 5 A 6 dF 5 sdF 0 sdG 9 sdG 1 M 2e sdG 2 sdG 6 sdF 2 sdG 6 sdF 3 sdM 1 sdA 8 dF 5 dM 0 dG 5 dK 2 dF 8 dF 1 A 2 R 3 F 1 dF 4 sdF 8 sgG 2 dA 9 M 0c	5 26.9 16 28.5 22 02.1 3 05.4 17 44.6 4 11.6 15 59.0 7 50.8 1 06.5 20 22.6 15 07.5 16 26.8 15 18.5 15 07.5 10 07.8 15 04.8 8 47.8 1 42.9 0 46.5 21 07.1 13 17.7 20 23.8 21 26.7 1 06.8 5 09.7 7 50.4 17 36.1 18 41.8 0 51.6 2 29.1 12 58.8 17 53.2 0 02.8 8 38.5 4 44.8	-29°56′ +18 28 +20 48 +53 00 +25 46′ +22 14 +47 04 +61 17 +24 54 -16 13 +44 48 -20 13 -16 08 -61 18 +30 13 +7 49 +73 13 +5 10 +59 33 +64 26′ +9 18 +11 58 +54 28 -45 00 +30 46′ +18 35 +32 45 +32 45 +32 45 +33 48 -16 09 -49 20		+540 -390 -381 -380 -362 +338 -335 +330 -325 -319 +306 -301 +294 +292 +289 -279 +276 -266 +263 -260 +252 -247 -244 +242 -240 -2440 -2440 -2440 -2440 -240 -2

^{*} Prepared by R. E. Wilson, Mount Wilson Observatory.

					R	adius	Ma	ass	
Star	Period days	App bright m	Sp 1	Sp 2	R_1 (in \bigcirc)	R_2 (in \odot)	M_1 (in \odot)	M_2 (in \odot)	Ref 290
V 444 Cyg AO Cas γ Cyg SZ Cam AH Cep	4.212 3 523 2.996 2.698 1.775	8.4 5.8 7.0 7.0 6.6	O 6 O 8.5 O 9 B 0 B 0	WN 6 O 8.5 O 9 (B 2) B 0	13 16 5.9 12.7 6.1	5.9 5.6 6.1	35 31 17.4 36 16.5	20 29 17.2 10.3 14.2	a b c d e
δ Ori V 478 Cyg VV Cep V Pup V 470 Cyg	5.733 2.881 7430 1.454 1.873	2.4 8.9 6.6 4.5 8.7	B 0 B .5 B 1 B 2	(B 2) B .5 cM 2 B 3 B 2	17 7.1 13 6.1 6.0	10 7.1 1200 5.5 7.2	26 15.4 33 16.6 13	10 15.2 47 9.8 11	f g h i j
μ' Sco	1.446 1.333 4.066 2.051 2.729	3.0 8.1 7.6 4.6 7.6	B 3 B 3 B 3 B 3	B 6 (B 8) B 7 B 3	5.2 3.8 13 4.4 4.5	5.7 3.4 16 4.4 4.0	14.0 6.7 27 6.8 10.0	9.2 5.3 27 5.4 9.8	k l m n j
AG Per SX Aur ξ Aur U CrB U Oph	2.029 1.210 972.15 3.452 1.677	6.5 8.2 6.6 7.6 5.8	B 3 B 3.5 B 6 B 5 B 5	B 4 B 3.5 cK 4 (A 2) B 5	2.7 5.1 2.8 3.4 3.1	2.6 4.4 200 5.5 3.0	5.0 10.7 10 6.4 5.3	4.4 5.6 22 2.4 4.6	o i p q r
V 599 Agl Z Vul 6 Agl TX UMa β Per	1.849 2.455 1.950 3.063 2.867	6.5 7.0 5.0 6.8 2.2	B 5 B 3 B 8 B 8 B 8	B 8 B 8 gF 2 (G)	7.8 4.6 3.6 2.1 2.7	4.4 4.3 3.6 3.4 2.8	12 5.3 6.8 2.8 2.3	6.4 2.4 5.4 .9	s t u v
AR Aur β Lyr U Sge GO Cyg β Aur	4.135 12.908 3.381 .718 3.960	5.8 3.4 6.4 8.3 2.1	B 9 cB 9 B 9 B 9 A 0	A 0 G 2 A 0	1.8 47 4.5 2.0 2.6	1.8 31 5.8 1.4 2.6	2.6 52 6.7 1.6 2.4	2.3 43 2.0 1.3 2.4	c w x y z
TV Cas RX Her MR Cyg WX Cep TX Her	1.813 1.779 1.677 3.378 2.060	7.3 7.1 8.5 9.1 8.3	A 0 A 0 A 0 A 2 A 2	 A 0 (A 0) (A 5) A 2	2.4 2.3 3.2 3 1.6	2.5 1.8 3.6 3 1.6	1.7 2.1 3.0 1.0 2.0	1.0 1.9 2.6 1.0 1.8	a 1 b 1 c 1 d 1 e 1
CM Lac UX Mon RX Gem WW Aur S Aut	1.605 5.905 12.208 2.525 .648	8.3 8.7 8.5 5.7 8.8	A 2 A 3 A 4 A 7 A 8	A 8 G 2 K 0 A 7 A 8	1.3 1.8 2.2 2.2 1.4	1.7 6.6 5.5 2.2 1.1	2.0 3.4 3.1 2.2 1.0	1.5 1.5 .6 1.9	f 1 g 1 h 1 r i 1
Z Her	3.993 4.798 2.904 .334 4.183	7.2 8.0 9.2 8.3 9.7	F 2 F 4 F 5 F 8 G 0	(F2) G8 F5 F8 G0	1.5 1.6 1.3 .8 1.3	3.1 5.3 1.0 .6 1.2	1.5 1.9 1.2 1.0 1.4	1.3 1.7 1.1 .9 1.3	q j 1 k 1 1 1 m 1
UV Leo RT And Boo WW Dra Ar Lac	.600 .629 .268 4.630 1.983	8.5 9.0 6.6 8.8 7.3	G0 $G0$ $G2$ $gG2$ $G5$	G 2 K 1 G 2 gK 0 K 0	1.1 .8 .7 4.8 1.8	1.2 1.4 .6 8.3 3.0	1.3 1.5 1.0 3.5 1.4	1.2 1.0 .5 2.5 1.4	n 1 o 1 p 1 q 1 k 1
RT Lac AH Vir YY Gem	5.074 .408 .814	8.8 9.7 8.6	G 9 K 0 M 1	K 1 K 0 M 1	4.9 1.3 .6	4.9 .8 .6	1.0 1.4 1.0	1.9 .6 .9	r 1 s 1 t 1

^{*} Prepared by Z. Kopal, Harvard College Observatory.

200 References: a, Keeping, Publ. Dominion Astrophys. Obs., vol. 7, p. 349, 1947. b, Wood, Astrophys.

Journ., vol. 108, p. 28, 1948. c, Dugan, Princeton Contr., No. 12, 1931. d, Kopal (unpublished). e,

(continued)

Huffer and Eggen, Astrophys. Journ., vol. 106, p. 313, 1947. f, Luyten-Struve-Morgan, Yerkes Publ., vol. 7, pt. 4, 1939. g, McDonald, Publ. Dominion Astrophys. Obs., vol. 7, p. 135, 1949. h, Geodicke, Michigan Publ., vol. 8, No. 1, 1939. i, Popper, Astrophys. Journ., vol. 97, p. 394, 1943. j, Gaposchkin, Astron. Journ., vol. 53, p. 112, 1948. k, Stibbs, Monthly Notices, Roy. Astron. Soc., vol. 108, p. 398, 1948. l, Joy and Sitterly, Astrophys. Journ., vol. 73, p. 77, 1931. m, Gaposchkin, Publ. Astron. Soc. Pacific, vol. 55, p. 192, 1943. n, Baker, Lick Obs. Bull., vol. 12, p. 130, 1926. o, Eggen (private communication). p, Kopal, Astrophys. Journ., vol. 103, p. 310, 1946. q, Shapley, Princeton Contr., No. 3, 1915. r, Huffer and Kopal, Astrophys. Journ., vol. 103, p. 310, 1946. q, Shapley, Princeton Contr., No. 3, 1915. r, Huffer and Eggen, Astrophys. Journ., vol. 105, p. 217, 1947. w, Kopal, Astrophys. Journ., vol. 93, p. 92, 1941. x, Joy, Astrophys. Journ., vol. 105, p. 217, 1947. w, Kopal, Astrophys. Journ., vol. 93, p. 92, 1941. x, Joy, Astrophys. Journ., vol. 104, p. 316, 1930. y, Pierce, Astron. Journ., vol. 48, p. 113, 1939. z, Piotrowski, Astrophys. Journ., vol. 108, p. 510, 1948; Smith. Astrophys. Journ., vol. 108, p. 504, 1948. a 1, McDiarmid, Princeton Contr., No. 7, 1924. h 1, Wood, Astrophys. Journ., vol. 104, p. 376, 1946. q, 1941. Modian, Princeton Contr., No. 31, 1921. f 1, Wachmann, Astron. Journ., vol. 29, p. 232, 1936. g 1, Struve, Astrophys. Journ., vol. 106, p. 255, 1947. h 1, Gaposchkin, Astrophys. Journ., vol. 104, p. 376, 1946. i 1, Joy, Astrophys. Journ., vol. 106, p. 255, 1947. h 1, Gaposchkin, Astrophys. Journ., vol. 104, p. 376, 1946. p. 1, Sidade and Cesco, Astrophys. Journ., vol. 104, p. 376, 1946. p. 1, Sidade and Cesco, Astrophys. Journ., vol. 104, p. 376, 1946. p. 1, Sidade and Cesco, Astrophys. Journ., vol. 104, p. 376, 1946. p. 1, Sidade and Cesco, Astrophys. Journ., vol. 104, p. 376, 1946. p. 1, Sidade and Cesco, Astrophys. Journ., vol. 104, p. 376, 1946. p. 1, Sidade and Cesc

TABLE 880.—SPECTROSCOPIC BINARY STARS *

These binary systems were discovered and investigated by measuring the Doppler displacements of the spectrum lines. All except the widest systems are too close to each other to be observed as double stars through the telescope. The data given are from J. H. Moore's "Fifth Catalogue of Spectroscopic Binaries." 201 In the table a designates the semimajor axis of the orbit in kilometers and refers to the center of gravity of the system; i is the inclination of the orbit plane to the plane of the sky; and m designates the mass of each component. When both components of a binary system are bright enough to record their spectral lines, individual mass functions can be derived and these are shown in column 8. When only the spectrum of one star is visible a more complicated mass function is obtained involving the total mass of the system and the mass ratio. Several systems in the table are eclipsing stars and for them the inclination is nearly 90°. Hence for them the quantity sin³ i in columns 8 and 9 is nearly equal to 1.

Star	Mag	Class	Period days	Eccen- tricity	Orbital velocity	a sin i 100 km	$m_1 \sin^3 i$ $m_2 \sin^3 i$	$\frac{m_2^8 \sin^3 i}{(m_1 + m_2)^2}$
13 Ceti A	. 5.6	F 7	2.08	.1	37	1.06	-	.01
13 Ceti AB	F 0		6.91 yr					
α Ursa Minoris		F 7	29.6 yr	.6	4	466		.04
ε Aurigae		F 2	27.1 yr	.3	16	2014		3.34
7 Turigae		K4+B	973	.4	24	294		1.03
					ſ 26	ſ37	(1.19	
a Aurigae	2	G 1	104	.02	32	146	(.94	
∫VV Orionis ab	. 5.3	B 2	1.49	.00	132	2.7		.36
(VV Orionis abc			120	.3	13	20.5		.02
β Aurigae		A 0	4.0	.00	109	5.9		2.21
29 Canis Majoris		07	4.39	.06	216	13.0		4.60
[[a1 Geminorum		A 8	2.93	.00	31.9	1.28		.010
. Z a ² Geminorum	. 2.0	A3	9.21	.50	12.9	1.42		
$\uparrow \lbrace $			340 yr	.43				
YY Gem		M 1	.81	.00	∫ 114	∫ 1.28	ſ .63	
(11 Gem	. 9.0	171 1	.01	.00	127	1.42	₹ .57	
V Puppis	4.1	B 1	1.45	.00	∫ 199	∫ 3.98	∫ 15.12	
v ruppis	7.1	БТ	1.45	.00	342	∫ 6.84	₹ 8.80	
W Ursae Majoris	8.3	F 8	.33	.00	∫ 134	∫ .61	∫ .67	
vv Orsac Majoris	. 0.0	1.0	.55	.00	્રે 188	.86	₹ .48	
a Virginis	12	B 2	4.01	.10	∫ 127	∫ 6.96	∫ 8.97	
~ * 11g/m3	. 1.2	15 2	1.01	.10	202	11.10	્રે 5.63	
θ Aquilae	3.4	B 9	17.12	.61	₹ 51	∫ 9.5	₹ .75	
				,01	64	11.9	(17.60	
Y Cygni	. 7.0	09	3.00	.14	{ 244	∫ 10.0	∫ 17.2	
v G			0.00		\241	₹ 9.9	₹ 17.4	

^{*} Prepared by O. Struve, University of California, Berkeley. ²⁹¹ Lick Obs. Bull. No. 521, 1949.

²⁰¹ Lick Obs. Bull. I † System of Castor.

TABLE 881,-PROPERTIES AND CLASSIFICATION OF STAR CLUSTERS*

Star clusters fall into two distinctly different types:

Globular.—Typical, Messier 13; open, Messier 4; elongated, Messier 19. Have strong central condensations, rich in faint stars. Scattered widely in latitude, restricted in longitude. Many variables—nearly 1,300 in 62 clusters. Radial velocities > 100 km/sec. All more than 5,000, and one-third more than 50,000 light-years away. Very few new ones found—about 100 known. Very definitely part of galaxy. Although concentrated toward its plane, only 2 within 4° of it (obstruction by interstellar dust clouds). Diameters about 35 parsecs. Many stars, tens and hundreds of thousands. Many giants and supergiants with maximum luminosity about -2.5. Galactic.—Very varied: rich, M 11; irregular, M 35; nebulous, Pleiades; accidental,

M 103. Almost exclusively in Milky Way, all longitudes; apparently no variables. Radial velocities rarely > 40 km/sec, generally less. Almost all less than 4,000 light-years distant. Almost exclusively in galactic region devoid of globulars. Tens and hundreds, rarely thousands of stars. Hyades type, yellow stars as dominant as A type. Pleiades

type, almost all B's and A's, on Russell's main sequence.

Part 1.-Globular star clusters

This table contains those with galactic latitudes $\geq 20^\circ$, for which space absorption can be evaluated and distance correctly estimated (also the giant cluster Omega Centauri in lower latitude).292

		Gala		Apparent magni-	(kilo-	Absolute magni-	No. of vari-
NGC	RA (1900) Dec	Long	Lat	tude	parsecs)	tude	ables
104 (47 Tuc) . 288	19.6	272° 157 268 237 212 148 226 269 305 310 277 8 8 310 299 312 332 27 344 40 343 36 303 336 347 20 3 32 33 32 33 32 33 32	-45° -88 -47 -51.5 -34.5 +26 +79 +36 +79 +78 +15 +78 +72.5 +48.5 +29 +29 +46 +40 +25 +40 +25 -26.5 -27 -20 -34 -21 -28 -36	(4.5) 8.96 8.0 9.5 7.72 11.51 11.01 9.12 8.68 10.9 (4.7:) 7.21 10.39 10.87: 9.61 7.04 6.78 7.95 10.26 7.64 7.30 7.2: 7.08 9.50 10.01 10.24 11.45 7.33 7.33	7.6 14.5 10.0 22 14 56.2 20.0 13.5 20.2 17.4 6.8 12.2 17.0 32 33.1 13.8 10.1 9.5 8.3 30 8.3 10.3 5.8 42 18 16.6 44 11.5 13.8	-10.2 - 6.8 - 7.3 - 7.2 - 8.1 - 7.7 - 5.5 - 6.8 - 7.8 - 5.3 - 10: - 8.2 - 5.8 - 6.7 - 7.1: - 6.5 - 8.0 - 8.1 - 7.3 - 7.6 - 7.8 - 7.4: - 7.7 - 8.9: - 7.0 - 6.6 - 7.3 - 8.3 - 8.3 - 8.5	8 2 14 0 3 36 4 4 28 42 10 168 186 18 7 0 97 15 1 21 2 16 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
7492	23 3.1 —16 10 —	22	64	12.33	25.1	— 4.7	9

²⁰² Shapley, Proc. Nat. Λcad. Sci., vol. 30, p. 63, 1944; Pop. Astron., vol. 57, p. 9, 1949. For number of variables see Sawyer, Helen B., Puhl. David Dunlap Obs., vol. 1, p. 388, 1947.

(continued)

^{*} Prepared by H. Shapley, Harvard University.

TABLE 881.—PROPERTIES AND CLASSIFICATION OF STAR CLUSTERS (concluded)

Part 2.- Galactic star clusters

Columns 2 through 6 from Shapley.²⁰⁸ Distances from R. J. Trumpler, unpublished. Linear diameters computed on basis of revised distances. 1 kiloparsec = 31×10^{15} km = 3×10^{3} light-years.

			Gal:	actic	Diar	neter		Distance
					Ang	Linear	No.	(kilo-
NGC	. `	1900) Dec	Long	Lat	. ′	pc	stars	parsecs)
	h m							
663	1 39.2	+60°44′	98°	.4°	11	5.8	80	1.8
869	2 12	+56 41	102.5	— 3.1	3 6	15.7		1.5
884	2 15.4	$\pm 56 39$	103	3.1	36	15.7		1.5
Pleiades	3 41	+23 48	134.5	22.3				.15
Hyades	4 14	+15 23	147	-22.6				.04
1960	5 29.5	+34 04	143	+ 2.4	12	3.5	60	1.0
2099	5 45.8	+32 31	145	+ 4.5	20	5.8	150	1.0
2632	8 34.3	+20 20	173.5	+34.0				.15
Mel III	12 20	+26 40	200	+85.4				.07
6705		- 6 23	355	- 4.2	iò	3.8	200	1.30
			80.5		12	4.9	120	1.40
7034	23 19.8	+61 03	00.5	+ .5	12	4.9	120	1.40

203 Star clusters, p. 228, McGraw-Hill, 1930.

TABLE 882.—OUR GALAXY, ITS CENTER AND ROTATION *

The center of the galaxy apparently lies among the dense Milky Way clouds in Sagittarius, at a distance of about 9,000 to 10,000 parsecs from the sun. About this center the sun revolves with a period of some 200 million years at an orbital speed of nearly 300 km/sec. The amount of matter within the sun's orbit is probably more than 200 billion times the sun's mass. In the table, A is the differential orbital radial velocity per kiloparsec of distance from the sun, rA is the maximum group velocity for a distance r, and l_0 is the longitude of the galactic center. The sun is about 33 parsecs above the galactic plane.2114

Stars	No.	Vis mag limit	Distance kpc	$\frac{\mathrm{Max}}{rA}$ km/sec	A km sec-1 kpc-1	l _o	Dist to center k pc	Source 295
O-M	210	8.0	.2— 1.1	35	19.0	324	6.3	a
О-В 7	849	7.5	.2— 1.4	22.2	15.0	324.4	10.0	ь
Interstellar	261	8,6	.4— 1.2	13.5	16.6	331.7		С
В-К	3786				15.0	324	6.5	d
PGC and 18 C	4233				15.0		8.8	e
K	392	7.5	.2		17.0	17		f
Plan Neb	110		.5—12.0	264	14.0	333.0	9.4	g
Cepheids	156	14.1	.4— 2.3	39.4	20.9	325.3	10.0	h
OB, Ceph, c, gas			.2—10.0	39.6	17.7	326.0	9.4	i
C	205	8.4	.2— 1.3	26.6		324.4		j
O 5-B 5	987	6.4	.3— 1.1	18.8				k
Irreg var	116		.5	9.5		325.7		1

^{*} Prepared by A. H. Joy, Mount Wilson Observatory.

204 Gerasimič, Luyten, Proc. Nat. Acad. Sci., vol. 13, p. 180, 1927.

205 a, Oort, Bull. Astron. Inst. Netherlands, vol. 4, p. 89, 1927. b, Plaskett, Pearce, Publ. Dominion Astrophys. Obs., vol. 5, p. 241, 1936. c, Plaskett, Pearce, Publ. Dominion Astrophys. Obs., vol. 5, p. 167, 1933. d, Lindblad, Monthly Notices, Roy. Astron. Soc., vol. 90, p. 503, 1930. e, Wilson, R., Astron. Tourn., vol. 40, p. 121, 1930. f, Redman, Publ. Dominion Astrophys. Obs., vol. 6, p. 27, 1931. g, Berman, Lick Obs. Bull., vol. 18, p. 57, 1937. h, Joy. Astrophys. Journ., vol. 89, p. 356, 1939. i, Wilson, Astrophys. Journ., vol. 93, p. 212, 1941. k, Wilson, Astrophys. Journ., vol. 94, p. 12, 1941. l, Wilson, Astrophys. Journ., vol. 96, p. 371, 1942.

The maximum component $(v \sin i)$ along the line of sight of the equatorial velocity vof rotation is found from the distortion of an absorption line produced by differential Doppler effect across the observed hemisphere. For stars in the following groups, v >50 km/sec very rarely, and $v \le 50$ km/sec usually: supergiants, giants; main-sequence stars later than I 5 and not close spectroscopic binaries. For main-sequence stars of early type, and not spectroscopic binaries or cluster members, the distribution function f(v) is found to be well represented by the formula

$$f(v) = (j/\sqrt{\pi}) \{ \exp[-j^2(v-v_1)^2] + \exp[-j(v+v_1)^2] \},$$

where the parameters j^{-1} , v_1 , and \overline{v} have the following values:

	Spectral type					
	\overline{Be}	O-B	A	F 0-F 2		
j^{-1} (km/sec)	70	63	107	90		
v_1 (km/sec)	350	95	107	0		
$\frac{v_1}{\overline{v}}$ (km/sec)	348	94	112	51		

In an idealized Roche model, rotational instability sets in at v = 560 km/sec. The Be stars are surmised to be rotationally unstable B's. Number of B 8's per B 8e = 123; number of $(B\ 0-B\ 5)$'s per $(B\ 0e-B\ 5e)=15$. In the Pleiades and in h and χ Persei, v for B's is $\sim 2\times \overline{v}$ for noncluster B's. For 13 Pleiades earlier than B 9, number of B's per Be=13. In many close spectroscopic binaries of both late and early types, the components rotate with the orbital period. In some eclipsing systems, the sense of rotation is found from the Doppler shift of an absorption line at partial phrase. The sense is always that of the orbital motion. For the sun, v = 2.1 km/sec.

TABLE 884.--TRANSMISSION OF LIGHT THROUGH SPACE *

The obscuring matter in space is too irregularly distributed to be described by a mean extinction coefficient for the galaxy. For bright Milky Way regions a minimum value of

0.2 m/kpc has been found.244

Photoelectric measurements by Stebbins and Whitford 207 indicate that the wavelength dependence of the interstellar extinction is essentially the same throughout the galaxy. Their results are given with the table. See references to Oort 2018 and Strohmeier 2019 for possibility of variations in bright and obscured regions.

λ (Α)	$\frac{1}{\lambda}(\mu^{-1})$	m (mag)	λ (Α)	$\frac{1}{\lambda}(\mu^{-1})$	m (mag)
3200	3.12	1.30 [†]	5700	1.75	.64
3550	2.83	1.18	7190	1.39	.35
4220	2.37	1.00	10300	.97	.00
4880	2.05	.81	21000	.48	—.25†

An unknown constant must be added to these values to give the actual extinction. The scale has been adjusted arbitrarily to give 1 mag differential extinction between \(\lambda\) 4200

A value of 4 for the ratio of total photographic absorption to international color excess $[R = A_{4400}/(A_{4400} - A_{5400})]$ is obtained by extrapolation of the above table to $1/\lambda = 0$. Most observational determinations are between 3 and 5.300

Light from distant stars shows polarization up to 5 percent, approximately proportional to reddening. Plane of polarization variable but generally perpendicular to galactic plane. 801

2007 Stebbins and Whitford, Astrophys. Journ., vol. 98, p. 323, 1943; Whitford, Astrophys. Journ., vol. 107, p. 102, 1948.
 2008 Oort, Ann. d'Astrophys., vol. 1, p. 91, 1938.
 2009 Strohmeier, Zeitschr. Astrophys., vol. 17, p. 83, 1939.
 300 Greenstein, Astrophys. Journ., vol. 87, p. 151, 1938; Oort, Bull. Astron. Inst. Netherlands, vol. 8, p. 308, 1938; Stebbins, Astrophys. Journ., vol. 90, p. 209, 1939; van Rhijn, Groningen Publ. 51, 1946; Weaver, Astrophys. Journ., vol. 110, p. 190. 1949.
 301 Hall, Science, vol. 109, p. 166, 1949; Hiltner, Science, vol. 109, p. 165, 1949, Astrophys. Journ., 1949.

1949.

^{*} Prepared by A. J. Deutsch, Harvard University.

[†] Preliminary values, currently under investigation * Prepared by B. Donn, Harvard University.

by Whitford.
206 Stebbins. Huffer, and Whitford, Astrophys. Journ., vol. 96, p. 209, 1939; Bok, Pop. Astron., vol. 2. p. 261, 1944. ²⁸⁷ Stebbins and Whitford, Astrophys. Journ., vol. 98, p. 323, 1943; Whitford, Astrophys. Journ.,

TABLE 885.—SOME DATA ON THE EARTH AND ITS SURFACE

Part 1.-Dimensions

The earth is a great oblate spheroid with the oceans making up about 71 percent of the area. The dimensions of the earth are as follows:

Equatorial radius	6378.388 km
Polar radius	
Area of surface	
Volume of geoid	1,083,319,780,000 km ⁸

The surface consists of:

Oceans and seas	$361.059 \times 10^6 \text{ km}^2 \text{ or } 70.8 \text{ percent}$
Land	148.892×10 ⁶ km ² or 29.2 percent

The land surface is of various elevations above sea level, the mean being about 840 m, while the average depth of the three great oceans and adjacent seas is about 3800 m (Table 886). The highest elevation and the lowest elevation in each continent are given in Part 2.

Part 2.—Area and elevation of continents

Λrea	Highest	Height	Lowest point	Depth
10 ⁰ km²	mountain	m		m
Africa	Kibo	5970	Libian Desert	133
	McKinlev	6150	Death Valley	85
South America 17.6	Aconcagua	6960	Sea level	392
Asia 44.0	Everest	8880	Dead Sea	
Europe 9.7	Elbrus	5640	Caspian Sea	28
Australia 7.7	Korciusko	2230	Lake Eyre	12

TABLE 886.—SEA-WAVE HEIGHT IN FEET FOR VARIOUS WIND VELOCITIES AND DURATIONS

Wind duration			Wind velo	city in knots	;	
in hours	10	20	30	40	50	60
6	2	5	10	14	20	25
12	2	7	13	20	30	35
24	2	9	17	30	40	55
48	2	10	22	35	45	70

Waves consistently higher than the values given are not found because stronger winds blow the tops of the waves off. Isolated waves up to 80 feet are due to the addition of two or more crests.

One of the longest swell periods recorded was 23 seconds. According to the relations given, its length in deep water would equal 2,650 feet, and its velocity 69 knots. A 28-second swell has been recorded near Cape of Good Hope. Its length must have been almost three-quarters of a mile and its speed 84 knots.

TABLE 887.—APPROXIMATE HEIGHT OF SWELL IN FEET AT VARIOUS DISTANCES FROM THE STORM AREA

	Distance from	storm area i	n nautical m	iles
0	500	1000	2000	3000
40	25	20	12	8
30	19	14	8	5
20	12	8	5	3
15	8	5	3	2
10	5	3	2	1
5	2	1	.5	_

^{*} Tables 888 to 894, and 897 prepared by R. H. Fleming, U. S. Hydrographic Office.

			Mean
Body	Area 10 ⁶ km²	Volume 10 ⁶ km ³	depth
			m 2.026
Atlantic Ocean	82.441	323.613	3,926
Pacific Ocean \ excluding adjacent seas	165.246	707.555	4,282
Indian Ocean J	73.443	291.030	3,963
All oceans (excluding adjacent seas)	321.130	1,322.198	4,117
Arctic Mediterranean	14.090	16.980	1,205
American Mediterranean	4.319	9.573	2,216
Mediterranean Sea and Black Sea	2.966	4.238	1,429
Asiatic Mediterranean	8.143	9.873	1,212
Large Mediterranean seas	29.518	40.664	1.378
Baltic Sea	.422	.023	55
Hudson Bay	1.232	.158	128
Red Sea	.438	.215	491
Persian Gulf	.239	.006	25
Small Mediterranean seas	2.331	.402	172
All Mediterranean seas	31.849	41.066	1.289
North Sea	.575	.054	94
English Channel	.075	.004	54
Irish Sea	.103	.006	60
Gulf of St. Lawrence	.238	.030	127
Andaman Sea	.798	.694	870
Bering Sea	2.268	3.259	1.437
Okhotsk Sea	1.528	1.279	838
Japan Sea	1.008	1.361	1.350
East China Sea	1.249	.235	188
Gulf of California	.162	.132	813
Bass Strait	.075	.005	70
Marginal seas	8.079	7.059	874
	39.928	48.125	1,205
All adjacent seas	106.463	354.679	3.332
Atlantic Ocean			
Pacific Ocean including adjacent seas	179.679	723.699	4,028
Indian Ocean	74.917	291.945	3,897
All oceans (including adjacent seas)	361.059	1,370.323	3,795

Mean elevation of land = 840 mMean depth of oceans = 3,800 mMean sphere depth = 2,440 m

Continental shelves extend out with small gradients to depths of about 100 to 150 m. Average width about 30 miles but varies from zero to several hundred. Continental slopes have about 2° to 3° inclination. Volcanic islands, fault scarps, etc., may have slopes as steep as similar features on land.

Greatest depths known are in the Pacific Ocean—10,800 m Deepest sounding in the Atlantic Ocean is 9,200 m Deepest sounding in the Indian Ocean is 7,450 m

Greatest depths occur in troughs or trenches paralleling mountainous coasts and insular

arcs. These areas are centers of seismic and volcanic activity.

Topography of the ocean floor is in general similar to major features found on land. Submerged features such as the Mid-Atlantic Ridge are comparable in size and extent to the combined Rockies and Andes Mountains. In the Pacific are hundreds of isolated guyots, flat-topped seamounts rising thousands of feet from the ocean bed with minimum depths of 1,000-2,000 m. Many isolated seamounts rise more than 3,000 m from the sea floor. Continental and insular shelves and slopes are not regular but generally show topographic relief such as shoals, terraces, canyons and valleys. Certain areas such as the Mediterranean, Black Sea, Sea of Japan, Red Sea, etc., are isolated at depth by ridges separating the deep water from the adjacent sea or ocean.

^{**802} Reprinted by permission of the publishers from The oceans; their physics, chemistry, and general biology, by H. U. Sverdrup, Martin W. Johnson, and Richard H. Fleming. Copyright 1942 by Prentice-Hall, Inc.

Depth interval	Includir	ng adjacen	t seas	All	Excludi	ing adjace	nt seas	All
(m)	Atlantic	Pacific	Indian	oceans	Atlantic	Pacific	Indian	oceans
0- 200	13.3	5.7	4.2	7.6	5.6	1.7	3.2	3.1
200-1000	7.1	3.1	3.1	4.3	4.0	2,2	2.7	2.8
1000-2000	5.3	3.9	3.4	4.2	3.6	3.4	3.1	3.4
2000-3000	8.8	5.2	7.4	6.8	7.6	5.0	7.4	6.2
3000-4000	18.5	18.5	24.0	19.6	19.4	19.1	24.4	20.4
4000-5000	25.8	35.2	38.1	33.0	32.4	37.7	38.9	36.6
5000-6000	20.6	26.6	19.4	23.3	26.6	28.8	19.9	26.2
6000-7000	.6	1.6	.4	1.1	8	1.8	.4	1.2
>7000	• • •	.2		.1	• • •	.3	• • •	.1

^{*} For reference, see footnote 302, p. 773.

TABLE 890.-PHYSICAL PROPERTIES OF SEA WATER (Fig. 34)

Temperatures in the sea range from -2° to 30°C. The lower limit is set by the formation of ice and the higher limit by the balance between incoming radiation, back radiation, and evaporation.

Pressures in the sea vary from zero at the sea surface to about 1,000 atm in the greatest depths $(10,000 \ m)$. Standard unit is the bar $= 10^6 \ dynes/cm^2$. Approximately $10 \ m$ of

sea water = 1 atm.

Concentration of the dissolved constituents varies from nearly zero in river mouths to $40^{\circ}/_{\circ o}$ (parts per thousand) in isolated seas in arid regions. In most ocean waters the total solids are between 33 and $37^{\circ}/_{\circ o}$. In addition, sea water contains dissolved gases, dissolved organic matter, and variable amounts of particulate material of biological or terrigenous origin.

Salinity is defined as the total amount of solid material in grams in one kg of sea water when all carbonates are converted to oxides, the bromine and iodine replaced by

chlorine, and all organic matter completely oxidized.

Chlorinity, determined by titration with AgNO₃, is essentially equal to the amount of chlorine in grams in one kg of sea water when all the bromine and iodine have been replaced by chlorine.

Salinity =
$$0.03 + 1.805 \times \text{Chlorinity} (^{\circ}/_{\circ \circ})$$

Distribution of temperature and salinity is most variable in the surface layers. Low temperatures occur in high latitudes with relatively low salinities. In the Tropics surface temperatures and salinities are high. The great occan basins are filled with high-density water produced in high latitudes during the winter when ice forms or when water of high salinity is cooled. Deep temperatures are therefore generally between 0° and 2°C. Convection and wind mixing produce a surface layer in which uniform conditions prevail. This may be as thick as several hundred meters. Immediately beneath this there is a rapid change in temperature called the thermocline. Diurnal variations of temperature at the surface rarely exceed 1°C. Annual variations of surface temperature are greatest in midlatitudes (about 10°C). Annual variations diminish with depth and rarely extend below 200 m.

Density of sea water is a function of salinity as well as temperature and pressure. The range in values is from 1.00 to about 1.04 g/cm³. Most of the other properties are functions of temperature, salinity, and pressure. The difference from the values for pure water depends then on the effects of the dissolved organic compounds. Light absorption and color will also be primarily determined by suspended or dissolved debris. Processes of heat conduction, diffusion, and transfer of momentum are dominated by turbulent water movements and consequently the laboratory coefficients of conductivity, diffusion, and viscosity have to be replaced by "eddy" coefficients of vastly greater magnitude.

Absorption of light.—Water is essentially opaque to electromagnetic radiation except in the visible spectrum. Below several hundred meters, even in the clearest water, all the solar radiation is absorbed. (See Tabic 891 and fig. 35.) In coastal waters that contain suspended debris, the radiation may be absorbed in only a few meters. The rapid absorp-

tion of radiation limits photosynthesis to the surface layers.

Evaporation.—The principal source of heat is radiation from sun and sky. The chief heat losses are due to long-wave radiation to space and evaporation. Evaporation is greatest when the air is dry and colder than the water. Regional variations are generally between 50 and 150 cm/year.

FIG. 34.—Osomotic pressure, vapor pressure, of sea water, relative to that of pure water, freezing point, and temperature of maximum density as functions of chlorinity and salinity.

TABLE 891.—PERCENTAGE OF RADIATION OF GIVEN WAVELENGTH
TRANSMITTED BY 1 M OF WATER*

			Wa	avelength	(µ)		
Type of water	.46	.48	.515	.53	.565	.60	.66
Pure water	98.5	98.5	98.2	97.9	96.8	88.3	75.9
Oceanic water { highest highest average	91.8	97.5 92.7 85.7	96.6 92.5 86.7	96.3 91.8 86.9	92.9 89.8 84.5	81.8 75.9 71.6	
Coastal water $\begin{cases} average & \dots \\ lowest & \dots \\ lowest & \dots \end{cases}$	69.7	79.4 71.6 63.5	82.6 75.9 67.1	84.5 76.4 70.6	• • •	68.7 64.6 61.4	62.0 53.6 46.7

^{*} For reference, see footnote 302, p. 773.

Wavelengths in microns.

Fig. 35.—Extinction coefficients of radiation of different wavelengths in pure water and in different types of sea water.

TABLE 892.—COMPOSITION OF SEA WATER *

The major ions present (over 99.9 percent of dissolved solids) are given in the table for $Cl = 19.00 \, ^{\circ}/_{\circ \circ}$.

Ion	0/00	Cl-ratio	Equiv/kg	Ion	0/00	C1-ratio	Equiv/kg
C1 ⁻	18.9799	.99894	.5353	Na+	10.5561	.5556	.4590
SO,	2.6486	.1395	.0551	Mg ⁺ +	1.2720	.06695	.1046
HCO ₃	.1397	.00735	.0023	Ca ⁺ +	.4001	.02106	.0200
Br ⁻		.00340	.0008	K ⁺	.3800	.02000	.0097
F	.0013	.00007	.0001	Sr ⁺ +	.0133	.00070	.0003
H₃BO₃	.0260	.00137					
							.5936
			.5936				

Salinity = 34.325 °/ $_{\circ \circ}$. Total solids = 34.48 °/ $_{\circ \circ}$.

The Cl-ratios are constants for oceanic waters except for HCO₃⁻⁻ and Ca⁺⁺ which are affected by biological activity. Ratios are not valid in areas of river dilution.

TABLE 893.—GEOCHEMISTRY OF THE OCEANS

The oceans contain about 5×10^{16} metric tons of dissolved solids. The amount in tons of any element can be estimated by multiplying the values in Table 894 by 1.42×10^{12} . Rivers each year add about 2.7×10^{9} metric tons.

^{*} For reference, see footnote 302, p. 773.

TABLE 894.--ELEMENTS PRESENT IN SOLUTION IN SEA WATER*

Elements present in solution in sea water in terms of $Cl = 19^{\circ}/_{\circ o}$ are listed in order of abundance in the table. Adding the dissolved gases H_2 , N_2 , O_2 , H_0 , and A, a total of some 49 elements are known to occur.

Ranges are indicated for Si, N, P, As, Fe, Mn, and Cu. The distribution of these elements, present in small quantities, is affected by biological activity. Lower values are

usually near surface.

All atmospheric gases are found in the sea. Their solubility decreases with increasing temperature and salinity. At 0°C, Cl = 19°/00, surface water contains 8.08 m l/l of O_2 and 14.40 m l/l of N_2 . At 20°C corresponding values are 5.38 and 9.65. Distribution of dissolved N_2 is determined by temperatures and salinity. Oxygen at middepths is reduced, but only in the waters of isolated basins such as the Black Sea is there stagnation and H_2S present. Plant activity near the surface may increase O_2 above saturation values. Carbon dioxide is present in large quantities (about 50 ml/l) chiefly as HCO_3 and CO_2 balanced against basic cations. Strong acid must be added to drive off all CO_2 . The pH in the sea varies between 7.4 and 8.4 depending upon the $O_2 \rightleftharpoons CO_2$ changes due to respiration or photosynthesis.

(Dissolved gases not included)

Element	$Cl = 19.00 ^{\circ}/_{\circ \circ}$	Element	$Cl = 19.00 ^{\circ}/_{\circ \circ}$
Chlorine	18980	Copper	
Sodium	10561	Zinc	
Magnesium	1272	Lead	
Sulfur	884	Selenium	
Calcium		Cesium	
Potassium	380	Uranium	
Bromine	65	Molybdenum	
Carbon	28	Thorium	
Strontium	13	Cerium	
Boron	4.0	Silver	
Silicon	02 —4.0	Vanadium	
Fluorine	1.4	Lanthanum	
Nitrogen †		Yttrium	
Aluminum	5	Nickel	
Rubidium		Scandium	
Lithium		Mercury	
Phosphorus		Gold	
Barium	05	Radium	2— 3×10^{-10}
Iodine			traces
Arsenic		Chromium	traces
Iron		Cobalt	traces
Manganese		Tin	traces

^{*} For reference, see footnote 302, p. 773.

† Computed.

TABLE 895.-WAVE VELOCITY IN VERY SHALLOW WATER

Depth	Speed
Depth of water	of wave
feet	knots
15	13
10	11
5	8

TABLE 896.—VELOCITY OF EARTHQUAKE WAVES WITH DEPTH OF WATER

referred in this contribution of the second	Depth in feet	500 70	1,000 100	2,000 150	5,000 240	10,000 340	15,000 420
---	---------------	-----------	--------------	--------------	--------------	---------------	---------------

If a large swell or an earthquake wave approaches a shoreline great damage may be done before the energy of the moving water is absorbed.

The permanent currents of the ocean are maintained by differential heat and cooling and by the indirect effects of the wind. They may extend to depths as great as 1,000 m and their speed is usually less than 50 cm/sec. In the Gulf Stream and Kuroshio, speeds may exceed 250 cm/sec. Volume transparents of the large current systems exceed 50 million tons/sec.

Wind-driven currents induced by the drag of the wind are generally shallow, less than 100 m, flow with speeds about 2 percent of wind, and deviate about 30° from the wind direction, to the right in the Northern Hemisphere and to the left in the Southern

Hemisphere.

Tidal currents follow elliptical orbits during each tidal cycle. Motion probably extends to the bottom. In restricted coastal channels the currents are reversing and sometimes exceed 250 cm/sec.

WAVES AT SEA*

Whenever the wind blows over the water, the surface is formed into waves which grow under the influence of the wind and form a most irregular surface known as a sea. Such waves traveling out from a storm area are called swells. As waves break near the shore surfs are formed.

Waves may also be formed by earthquakes, fault movements, submarine landslides, or

volcanic eruptions beneath the sea.

The height of a wave, H, is the vertical distance from crest to trough. The length, L, is the horizontal distance between adjacent crests. The wave period, P, is the time interval between passage of successive crests at a fixed point. The velocity, V, of a wave is the speed with which the wave travels along the sea surface.

The following relations hold for depths greater than one-quarter wavelength with good

approximation:

$$L = 5 P^2$$
, $V = 3 P$

where the wavelength, L, is in feet, the period, P, in seconds, and the velocity, V, in knots. The waves move along the surface of the water but the water, on the other hand, advances very little—about one percent only of the wave velocity.

The height of the sea is determined by three factors:

Wind velocity, average speed of wind over fetch. Fetch, distance over wind blows. Wind duration, how long the wind blows.

Tables 886 and 898 show the wave heights for some conditions.

TABLE 898.—WAVE HEIGHT IN FEET FOR VARIOUS WIND VELOCITIES
AND FETCHES

Fetch in nautical			Wind velo	city in knots	5	
miles	10	20	30	40	50	60
10	2	3	5	7	9	10
20	2	4	7	9	12	14
50	2	6	10	14	18	22
100	2	7	13	17	25	30
500	2	10	20	31	45	55
1000	2	10	21	35	50	70

(See also Tables 886, 887, and 895.)

^{*} Abstracted from an article prepared for the Encyclopedia Britannica, by Walter Munk, Scripps Institute of Occanography. Used by permission.

(Nat. Res. Council Bull. 78, 1931.)

Spring tides.—When moon (new or full) is in line with sun (large tide).

Neap tide.—When moon is in quadrature with sun (small tide).

Generally two high and two low each day. Variation in heights of two high and two

low = "diurnal inequality."

River-type tide, steep short-period graph for flood, more inclined and longer for ebb. Extreme case = "bore," tide rises so rapidly it assumes form of wall several feet high. Most famous bores, Tsientang Kiang, China; Turnagain Arm, Alaska; Severn and the Wye, England; Seine in France; Hoogly, India; Petitcodiac, Canada.

Mean sea level (geodetic).—The equipotential surface which the oceans would assume if undisturbed by the tides and effects of wind and weather. Starting with mean sea level at any given initial point the geodesist can determine by precise spirit leveling, the

equipotential surface.

Mean sea level (geographic).—Determined by averaging actual tidal heights over a sufficient period. It is a local or geographic value. It is much disturbed by prevalent winds and local contours. Note difference between average of hourly readings (mean sea level) and half-tide point (because of the shape of the tide height as related to time). On Atlantic coast ½ tide level lies below mean by about 1/10 ft: on Pacific above by 1/20 ft. Mean tide near rivers varies with rainfall. Nineteen years' observation used for full tide cycle. A fundamental level net has been connected with mean sea level at Portland, Me., via Boston, Mass., Ft. Hamilton, N. Y., Sandy Hook and Atlantic City, N. J., Old Point Comfort and Norfolk, Va., Brunswick, Ga., Fernandina, St. Augustine, and Cedar Keys, Fla., Biloxi, Miss., Galveston, Tex., San Diego, San Pedro, San Francisco, Calif., Ft. Stevens, Oreg., and Seattle, Wash. The accuracy of high precision leveling is measured by the correction necessary to close circuits, about 0.00063 foot/mile. Mean sea level difference indicated by special adjustment of leveling network in 1929: Portland, Maine, 9 cm higher than Ft. Hamilton; Vancouver, 2 cm higher than Seattle; Galveston, 27 cm higher than St. Augustine; San Diego, 33 cm higher than Galveston; Fort Stevens, 26 cm higher than San Diego; Isthmus of Panama, Pacific coast, 20 cm higher than Atlantic; Death Valley, 280 ft (84.1) below sea level; Mount Whitney, 14,495 ft (4418.1 m) above.

TABLE 900.-THE EARTH'S ROTATION: ITS VARIATION ***

From observations, Spencer Jones (Monthly Notices, Roy. Astron. Soc., vol. 99, p. 541, 1939) deduces as the best value of the apparent solar acceleration 2.5"/(century)². Lunar theory predicts 12.0"/(century)² leaving part attributable to tidal friction 10"/(century)². Estimates of tidal friction losses (Jeffreys, Philos. Trans., A, vol. 221, p. 239, 1920):

	So. China Sea×1018 erg/sec	
Eng. Channel 1.1 " "		Hudson Bay — " "
North Sea 1.7 " "	Bering Sea 15.0 " "	Fox Strait 1,4 " "
Yellow Sea 1.1 " "	Malacca Str 1.1 " "	Bay Fundy4 " "

Other contributions are small. Total for spring tides 22×10^{16} erg/sec. 1.1×10^{16} erg/sec average, corresponding to about 7" secular acceleration per century per century. If Ω is earth's angular velocity of rotation, $d\Omega/dt=-2.5\times10^{-22}/\text{sec}^2$. $\Omega=7.3\times10^{-5}$ rad./sec. Ω changes by 10^{-5} of its amount in 3×10^{12} sec or 10^5 years. The day should have lengthened by 1 sec in 120,000 years.

The fluctuations in the earth's rate of rotation indicated by astronomical evidence are of a quite greater order of magnitude. Moreover the changes vary in sign whereas frictional effects should not. The observations come from deviations of the sun and moon from their gravitational orbits, the transits of Mercury, and eclipses of Jupiter's satellites. Changes in the speed of rotation of the earth rotation seem the only explanation. This may be due to shifts of matter within or on the earth. The following figure by Brown indicates that in 1928 the earth was about 25 sec ahead of its average rotational motion during the last three centuries. The greatest apparent change in the loss or gain of one sec in a whole year. (1 part in 30,000,000.)

Fig. 36.—Irregularities in the earth's rotation derived from the moon's motions.

Tidal friction should make the earth rotate more slowly and the moon recede from the earth. The rate of dissipation of energy by friction is about 1.4×10^{19} erg/sec. The earth's rotation from this cause should have slowed by 4 hours during geologic time. The moon should continue to recede until its period of revolution and that of the earth's rotation are equal to 47 of our present days. The moon should then gradually approach the earth, ultimately coming within Roche's limit (about twice the earth's radius) breaking up possibly into a ring like Saturn's.

³⁰³ Jeffreys, The earth, Macmillan, 1929; Innes, Changes in the length of the day, Scientia, vol. 42, p. 69, 1927; Brown, Nature, vol. 119, p. 200, 1927; Jo rn. Roy. Astron. Soc. Canada, vol. 24, p. 177, 1930. Revised by G. M. Clemence, U. S. Naval Observatory.

Density to obtain 35.31 8.345×10 ⁻³ 1.94 1.602 1.602 1.602×10 ⁻³ 27.68 27.68 27.68 27.10 Electrical units (See Tables 6-8) 9.32×10 ⁻³ Energy units (See Tables 7, 654) 4.185×10 ⁻¹ 4.185×10 ⁻¹ Energy units (See Tables 7, 654) 2.389(1×10 ⁻¹ Energy units (See Tables 7, 654) 7.376×10 ⁻³ 6.23 6.41 7.376×10 ⁻³ 6.24 1.0197×10 ⁻³ 6.24 7.376×10 ⁻³ 6.24 6.25 6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.27 6.28	10-5 00-7 10-12 10-8 10-8 10-8 10-8 10-8 10-8
Multiply by g/ft* 35.31 g/liter 8.345 g/cm* 62.43 g/cm* 1.94 lb/1000 ft* 1.602 lb/ft* 27.68 slug/ft* 32.17 Electrical unit amu 1.492 erg cal 4.185 erg 2.339	electron-volt 1.624×1 6.24×1 6.24×1 6.24×1 6.24×1 6.24×1 1.356×1 1.356×1 1.356×1 1.285
	liter
Area (See Tables 31–33) Multiply acre 1.60×10² 1.60×10² 4.356×10² 2.20×10² 1.0² 5.05×10² 6.452 barrel 1.244 2.1504×10² 3.524×10² 4.524×10² 4.524×10² 6.45 bushei 1.244 6.45 1.244 6.45	$ 28.32 $ $ 3.7854 \times 10^{3} $ $ 3.7854 \times 10^{3} $ $ 3.7853 $ $ 8 $ $ 4 $ $ 4.423 $ $ 6.3 $ $ 1.000028 \times 10^{2} $ $ 1.602 \times 10^{-2} $ $ 2.7.2 $ $ 2.7.3 $ $ 3.7.3 $

* In this table the calorie = 4.185 joules and the Btu = 252 calories (See Table 7).

(continued)

\subseteq
9
5
=
7
2
2
ŭ
FACTORS
Œ
0
-
O
4
ш
Z
0
RSION
5
IL.
CONVERSION
2
CON
0
ပ
GENERAL
5
Œ
ш
Z
Ш
G
-1
٠,
5
901.
Ш
TABLE
8
4
-

Heat flow units (See Tables 129-130)	Heat content (See thermal units)	Tree concent (See morning mines)	Illumination (See Tables 71–72)		Linear units (See Tables 31-33, 522)	1×10-4 1×10-8 1×10-4 1×10-4	1/3	1.143×10° cm 30.48 cm		1/3 yd		$\times 10^{2}$	$1/3$ nautical mile 9.4602×10^{17} cm in $1/7.9$				$ imes 10^{18}$	Metric system prefixes (See Tables 31-33)	.000001	
			Multiply	lu/ft²		A	barleycorns cubits	ft ft	* **		fathom furlong	hand	league light yrs	u u	mil mile (statute) mile (nantical)	micron (µ)	parsec span		micro milli	
	to obtain	ergs Bt.,	ft-poundals	ft-lbs ovanta $(\lambda = .6 \mu)$	ergs ft-1b	joule Btu	cal ergs ergs	ergs	129–130)		cm³/sec gal/sec	liter/sec ft³/sec	ft³/sec gal/sec		poundal poundweight	kg weigiit dyne	dyne dyne	dyne	cm/sec² ft/sec²	
Energy units (continued)	by	10'	23.73	3.021×10^{18}	9.807×10^{5}	3.6×10^{6} 3.414×10^{3}	8.602×10^{5} 1.602×10^{-6} 1.3553×10^{7}	4.2130×10^{5} 3.310×10^{-12}	gy flow (See Tables 129-130)	Flow	4.720×10^{2} .1247	2.228×10^{-3}	5.885×10^{-4} 4.403×10^{-3}	Force	7.233×10^{-5} 2.248×10^{-6} 1.0197×10^{-6}	105	1.3827×10^4 4.448×10^5	9.61 × 10	Gravitational 9.80665×10^{2} 32.174	e in the MKS system.
	Multiply	Joule			kg-cm	kw-hr	Mev pound-foot	poundal-foot quantum ($\lambda = .6 \mu$)	Energy		ft³/min	gal/min	liter/min		dyne	newton †	poundal pound (weight)	grain (weight)	grav (gal)	† The unit of force in

TABLE 901.—GENERAL CONVERSION FACTORS (continued)

ontinued	7.501×10^{2} mmHg 1.0197×10^{3} g/cm^{2} 1.0197×10^{4} kg/m^{2} 10^{6} dynes/cm ²	1.0197 kg/cm² 1.00 dyne/cm² 9.869×10-7 atm 7.50×10-4 mmHg 1.316×10-2 atm		2.953×10 ⁻² in. Hg (0°C) 1.0197×10 ⁻² kg/m² 7.501×10 ⁻⁴ mmHg 2.950×10 ⁻² atm .8826 in. Hg 3.048×10 ² kg/m²	62.43
Multiply P1 atm		barye cmHg	· dynes/cm²	ft of water	in. Hg (continued)
ontinucd) to obtain	per measure)×10² (See Tables 66 and 69-74)	ft-lb/sec kw ft-lb/sec	hp Btu/min kw ft-lb Btu/sec kg cal/min watts	le 260) g/cm² lb/in.² cmHg (0°C)	m² g (0°C) s/cm²
Metric system prefixes (continued) by to obta .01 .1 .1 .00×10² 1.00×10³ 1.00×10³ 1.00×10° 1.00×10°	Paper measure 5.00×10^2 Photometric units (See Tables	Power units 12.96 1.758×10 ⁻² 5.145×10 ⁻² 6.075×10 ⁻²	$\begin{array}{c} 1.82\times10^{-3} \\ 42.43 \\ 7.457 \\ 7.457 \\ 5.50\times10^{2} \\ 7.070 \\ 10.69 \\ 7.457\times10^{2} \\ 10^{3} \\ 1.341 \end{array}$	Pressure units (See Table 260) 1.033×10* 14.70 76 cmH	1.032 29.921 $1.01325 \times 10^{\circ}$ 1.01325
Multiply centi deci deka hecto kilo myra mega	reams Pho	Btu/min cal/min	ft-lb/sec hp hp kw	atm	

TO
9
2
Ξ
Ξ
0
ಲ
S
Œ
FACTORS
H
Ò
5
щ
7
5
\simeq
S
Œ
Ш
CONVERSION
Z
S
ပ
- 1
7
GENERAL
10
=
2
25
۲
Ų
౼
901
ABLE
7
0
4
-

Temperature (See Table 1)	2187 °C/cm 4.572 °F/in.	ts (See Table	2.52×10^2 cal 7.782×10^2 ft-lb	ه کند بند	2.3020×10' it-poundals 1.0546×10° joules 1.0754×10² kg-m		8.898 kg cal/km 8.898 kg cal/m³ 1 cal/(g°C)		×××10.* ×10.* ×10.*	3.088 IT-10 1.559×10-4 hp-hrs 1.163×10-4 kw-hrs 1.264×10 ¹⁸ cutants (3 – 6 m)		1 cal cm ⁻² min ⁻¹ 1/60 cal cm ⁻² sec ⁻¹ 6.97×10^{-2} watt/cm ²	Time (See Tables 3, 729) 3.155715×10 ^r sec 8.64×10 ^t sec	
Temr	Multiply deg F/in. der C/cm		Btu			Btu/lb	Btu/(lb °F)	cal			cal/g kg/cal	pyron	Tim year § day	§ Tropical year. (continued)
(Pon	ft of water kg/m²	Ib/ft² Ib/in²	atm in. Hø	kg/m² oz/in.²	1b/it* 1b/in.² 1b/in.²	atm kg/mm²	lb/in.* atm atm	kg/cm² kg/mm²	g/cm² dynes atm	lb/m² g/cm² kg/cm² T.T.	1501 lb/in.² mmHg atm	ohms-mil-ft ‡	nautical mile/hr 6080.2 ft/hr	
Precents unite (continued)	1.133 3.453×10²	70.74	2.458×10^{-8} 7.355×10^{-2}	25.40	$\frac{5.203}{3.613 \times 10^{-2}}$ $\frac{1.422 \times 10^{-3}}{1.420 \times 10^{-3}}$.9681	4.725×10 ⁻⁴ 6.803×10 ⁻²	7.03×10-2 7.03×10-4	70.30 1.332×10^{3} 1.3158×10^{-3}	$\frac{29.9}{1.3595}$ $\frac{1.3595}{1.3595 \times 10^{-8}}$	1 1/760	Resistivity 6.016×10°	Speed 1	‡ This means the resistance of a wire 1 ft long and 1 mil in diameter.
	Multiply in. Hg		in. of H ₂ O		kg/m²	kg/cm² kips/in.²	1b/ft² 1b/in.²		mmHg		psi Tor	ohms-cm	knot	‡ This m

(concluded)
FACTORS
CONVERSION
-GENERAL
TABLE 901.

	mg oz 1b 1b grains g		m³ of gas/100 k lb.
Weight (mass) units by 15.43 1×10-8	10^{3} 2.205×10^{-2} 2.205×10^{-3} 10^{3} 7.00×10^{3} 4.536×10^{2}	$\begin{array}{c} 16 \\ .8229 \\ 1 \\ 32.17 \\ 9.80 \times 10^{2} \end{array}$	Weight per volume 6.243 62.43
Multiply g	kips 1b	lb (troy) slug slug (metric)	ft³ of gas/lb ft³ of water (4°C)
ble 31) to obtain cm³ cm³	m³/kl 1/100 m³ lb/ton grains/ft³	iter/(100 kg) Table 31) grains mg	g oz dynes
Volume units (See Table 31) by to obt 16.387 2.8317×10* cm³	Volume capacity 7.482 13.37 .02 .437	Weight (mass) units (See Table 31) 3.168 2.053×10* mg	1.772 6.25×10-2 9.807×10²
Multiply in.³ ft³	00 ft³) g	gal/ton Weij carat (1877) carat (metric)	drams (av)

(References are to pages)

Abampere, 10, 20	Activity (power), 4
Abbreviations: common units of measurc-	Adsorption, heats of, 632, 633
ment, 56	charcoal, 632, 633
constellations, 743	Aeronautics, 337
Abcoulomb, 10, 20	air flow, 337, 349
Aberration constant, 729	compressible, 348
Abfarad, 20	force, parameters, 337, 343
Abhenry, 20	illustrations, 349
Absolute units (see under name of unit), 20	isentropic, 348
Absorption (see also Transmission):	formulas, 348
for air (atmosphere), 538, 546	normal-shock, 348
components, 538	formulas, 348
moist, 546	oblique-shock, 348
for crystals, 517, 545	parameters (force) and Mach numbers
for filters, 535-537	350, 352
for gases, long wavelengths, 552	speed vs. pressure, 338 supersonic, 348
for glass, 512 red pyranometer, 537	types, 339, 349
various, 512	vs. Mach number, 349, 352
for mass: γ-rays, 687	vs. Reynolds number, 349
X-rays, 694	bodies moving through a liquid, 337
for materials for blackening receivers, 548	forces on, 337
for radiant energy, 517, 535-546	angle of attack, 339
for screens, color, 535	aspect ratio, 339
for various materials, 535	depends upon, 337
for water, 536	for air: attitude to wind, 337
of gases by liquids, 360	center of pressure, 339
of vapors by liquids, 360	drag coefficient, 339, 340, 342
of various radiations: alpha rays, 672, 684	lift coefficient, 339
beta rays, 672, 690	Mach number, 337, 340
cathode rays, 672, 690	and flow parameters, 342, 350
gamma rays, 672, 687	pressure, dynamic, 338
radiant energy, 549	vs. air speeds, 358
X-rays, 693, 694, 701	Reynolds number, 337
critical, 701	critical, 341
Abundance (see Elements, chemical): ele-	shape of body, 337
ments, 625-629	speed, 338
isotopes, 655	surface, roughness, 337 turbulence of air, 337
Abvolt, 12, 20	
Acceleration: angular, 4	sample bodies: airfoils, 353
gravity (see Gravitation), 714	air flow around, 352
linear, 6	angle of attack, 352
Acoustics (see also Sound), 309	Mach number, 352
architectural, 315	Reynolds number, 352
attenuation coefficient, 315	surface roughness, 352, 353
definition of terms, 315	flow parameters, 353
hearing, 314	vs. Mach number, 353
differential sensitivity, 314	force coefficients, 353
distribution of hearing losses, 315	illustrations, 352
sensitivity of ear, 314	cylinders, nonrotating, 340
reverberation time, 315 calculations, 315	drag coefficient, 340. 341
optimum, 316	aspect ratio, 340
room type, 317	Mach number, 340-342
sound type, 317	Reynolds number, 340, 341
Actinium 228,	inclination of axis to wind direction
Beta-ray spectrum, 685	341
Dota raj spectram, 500	

Aeronautics—continued	Air—continued
flat plates, thin, 339	mass, 592, 720 different values, 720
force coefficients, 339	with direction of sight, 720
angle of attack, 339	moist:
drag, 339, 340	density, calculated, 596
lift, 339 Mach number, 340	relative, 598
Reynolds number, 340	transmission, 546
local skin friction, 343, 345	saturated water vapor, 600
moment thickness, 344	pressure, 600
skin friction, 343	weight, 601
laminar flow, 343, 344	sound, speed in, 306, 594
Reynolds number, 343	thermal conductivity, 142
turbulent flow, 343, 344	thermal properties, 270
miscellaneous bodies, 343	dry, 269, 270
drag coefficient, 343	transmission of radiation, 538, 546
Reynolds number, 343	components, 538
various bodies, 343	ultraviolet, 538
forces on, 343	viscosity, kinematic, 345
spheres, 341	weight, 592
drag coefficient, 341	Albedos (see Astronomy), 737 Alcohol: compressibility, 282
Mach number, 342	density, mixtures with water, 302
Reynolds number, 342	melting point, with pressure, 118
forces on, 342	vapor pressure, 370
pressure coefficient, 342	viscosity, 320
Reynolds number, 341 critical, 341	Alloys: alnico, 454
sphere size, 341	aluminum, 192, 220
standard atmosphere for, 345	Babbitt, 226
basis of, 345	brazing, 223
characteristics of, 347	carboloy, 224
extension of, 347	conductivity, electrical, 390, 391
properties, 347	super, 394
ratio specific heats, 345, 348	thermal, 138
velocity of sound in, 347	copper, 198
viscosity, 347	density, 293 Heusler, 458
kinematic, 347	latent heat of fusion, 165
Age, earth, 741	low melting point, 125, 225
moon, 741	composition, 125, 225
radioactive materials, 679	magnetic, 458
strata, 741	alnico, 454
universe, 710	Heusler, 458
Air (see also Atmosphere), 592	permalloy, 453
aqueous vapor, pressure in atmosphere,	silmanal, 454
599	superpermalloy, 453
sea-level, 605	melting points, 125 low, 125
composition, ground level, 592	miscellaneous, 217
up to F ₂ layer, 592	resistivity, 384
compressibility, 265	soldering, 223
density of moist air, 596-598	special purpose, 220
dry, thermal properties, 269, 270	thermal emf vs. lead, 379
effects on weighing, 69	thermal expansion, 149
corrections, 69 flow (see under Aeronautics), 337	invar, 221
	low expansion, 221
compressible, 348	special purpose, 220
heat capacity, 163 height, 592	Alnico, 454
humidity, relative, 602	Alpha particles (see also Radioactivity)
determination, 602-604	664, 672, 680
dry-bulb temperature, 604	charge, 50 characteristics, 672, 680, 681
maintenance, 599	high-speed, artificial radioactive sources
various vapor pressures, 601	682
wet and dry temperature, 604	natural radioactive sources, 681
index of refraction, 532	ionization, 672
infrared transmission, 546	mass, 49
Joule-Thomson effect in, 278	range in air, 672, 684

Alpha particles-continued	Artificial disintegration—continued
relative stopping power of selected sub-	parts, 706
stances, 684	pile yields, 670
Velocity, 672	results of, 666-670
Alpha-ray spectra, artificial radioactive substances, 682	Artificial radioactivity, 667
natural radioactive substances, 681	slow-neutron-produced, 667 Asbestos, thermal conductivity, 139
Altitude, by barometer, 613	Astronomical units, 729
Aluminum: alloys, properties, 192	Astronomy, 728
atomic weight, 619	albedos, 737
boiling point, 117	planets, 737
conductivity, 404	calendars, 728, 732, 733
mechanical properties, 192	equation of time, 728
melting point, 117	Julian day, 733
oxide, 162 solder, 223	perpetual, 732
wire, 414	clouds of Magellan, 746 constellation abbreviations, 743
Alums, 521	craters, 736
index refraction, 521	lunar, 736
American candle (see Photometry), 94	terrestrial, 736
after 1948, 94	data, miscellaneous, 729
Ammonia: compressibility, 266	day (see also under Definitions), 729
hydrolysis, 399	change of, 780
latent heat of vaporization, 167	definitions, 729
pressure variation, 167	earth, 734, 741
liquid, density, 178	age, 741
heat content, 162, 178 latent heat, 178	strata, 741 diameter, 729
pressure variation, 167	dimensions, 729, 734
pressure effects, 167	distance, to moon, 730
properties, 178	to sun, 730
specific heats, 178	interior, characteristics, 739
thermal properties, 162	density, 739
Ampere, 20	with depth, 739
Ampere-turn units, 18	elastic constants, 740
Amu, 21	rocks, 740, 741
Angle, 4 Angstrom, 4, 63	pressure, 739
Angular acceleration, 4	temperature, 727 velocity, earthquake waves, 739, 740
Angular momentum, 4	mass, 729
Angular velocity, 4	orbit, 729, 734
earth, 729	physical data, 729
Antenna arrays, 434	precession for 50 years, 738
Antifreeze solutions, 135	quake waves, 739
Aphelon, 729	velocity in ocean, 777
API scale, 290	rigidity, 740
Apostilb, 93	rotation, 729, 780
Apothecary mass unit, 63, 64, 66 Aqueous solutions, 300-305	variation, 780 satellites, 734
density, 300-305	strata, 741
diffusion into water, 354	temperature, 734
Arcs (see under name of)	various places, 726
Area, 4	velocity, earthquake waves, 739
Argon: compressibility, 264	viscosity, 729
melting point vs. pressure, 117, 118	galaxies, local family, 748
parameters, 117	our galaxy, 713, 770
volume-pressure, 118	center, 770
Artificial disintegration, 653, 669, 706	rotation, 770
bombardment, 669, 670 alpha-ray, 669	stars, mass, 713
deuteron, 669	number, 713 interstellar space, 771
neutron, 667, 669	matter, 629, 771
photonuclear, 669	temperature, 763
products, 669	Magellanic clouds, 746
proton, 669	moon (see also Moon), age, 741
interesting results, 652, 669	nebulae (see also under stars), classifica-
methods of producing elements beyond	tion, 758
uranium, 670	nebulae lines, 745

A

	A.A
stronomy—continued	Astronomy, stars—continued
novae, well observed, 757	number and brightness, 756
orbits, planets, 734	near sun, 735
planets, 734	per square degree, 756
albedos, 737	photographic, 735, 749
distance to sun, 730	radiometric, 730
orbits, 734	reduction to visual, 754
period, 734	spectrum type, 753
physical data, 734	visual, absolute, 753
satellites, 735	to bolometric, 754
orbits, 735	mass, total our galaxy, 713
temperature, 734	mass-luminosity, 758
precession for 50 years, 738	masses, binaries, 752
rotation, earth, 780	motion of, 764
our galaxy, 770	large, 756
stars, 771	velocities, 765
Russell-Hertzsprung diagram, 754	near sun, 751, 752
satellites, orbits, 735	masses, 752
physical data, 734, 735	nebulae, brightness, 757
planets, 735	classification, 758
solar constant, 719	nongalactic, 759
variation, 720	variables with, 760
	novae, 757
solar corona, emission lines, 744	
solar eclipses, 742	brightness, 757
solar flares, 743	well observed, 757
solar motion, elements of, 731	characteristics, 757
stars:	classification, 758
binary mass of, within 10 parsec of sun,	Milky Way, 746
752	nongalactic, 759
spectroscopic, 768	number of, 757
spectroscopic eclipsing, 767	and galactic latitude, 756
visual, 761	and light, 757
brighter than magnitude m, 756	and magnitude, 756
Cepheids, 760	log. No. per square degree, 756
period-luminosity curve, 744	near sun, 735, 751, 752
clusters, classification, 769	per cubic parsec, 735
galactic, 769	our galaxy, 713
globular, 769	universe, 713
properties, 769	various classes, 748
concentration, 749	within 5 parsec of sun, 751
near sun, 751	within 10 parsec of sun, 752
constellations, abbreviations, 743	of large proper motion, 756
near sun, 751	parallax, mean annual, 750
degenerate, 762	magnitude 10, 750
diameters, 753	rotation of, 771
dwarfs, 762, 763	Russell-Hertzsprung diagram, 754
degenerate, 762	
	spectrum classes, 748, 750, 753
density, 762	galactic concentration, 749
white, 762	proper motion, 742
equivalent light from, 757	temperatures, 750
explosive, 761	and diameters, 753
first magnitude, 752	visual magnitude, 753
galactic concentration, 749	spectrum types, 753
magnitude, 749	
galaxies, 746, 748	magnitude, 750, 753, 754
local family, 748	temperatures, 750
our galaxy, 770	and diameter, 753
center, 770	variables: Be stars, 761
rotation, 770	classification, 760
	Cepheids, 760
stars, number, 770	period-luminosity curve, 744
giants, 762	erratic, 760
low density, 762	·
magnitude, 730	explosive, 760
absolute, 730	general characteristics, 760
bolometric, 754	long period, 760
first, and brightness, 752	luminosity curve, 744
per cubic parsec, 735	nebulosities, 761

Astronomy store scutinus	Atmosphone
Astronomy, stars—continued novae, 761	Atmosphere—continued potential gradient, 614
repeating, 761	pressure, above F ₂ layer, 595
pulsating, 760	up to F ₂ layer, 594
P Cygni, 761	vs. height, 594, 595
red, 760	regions, 592
RV Tauri, 760	standard, 4, 47, 345
semi-irregular red, 760	basis, 345
semiregular, 760	characteristics, 347
temperature, 750 with large radial velocities, 766	above F ₂ layer, 595
Z Camelopardalis, 761	height, 594, 595 ratio specific heats, 345, 349
stellar (see stars)	up to F ₂ layer, 594
stellar diameters, 753	density, 347
stellar radiation measurements, 759	extension of, 347
stellar spectra: classes, 748, 750, 753	properties, 347
dwarf, 762, 763	stratosphere, 592
galactic concentration, 749	temperature, above F ₂ layer, 595
luminosity classification, 747	harmonic mean, 346
percentage various classes, 748 proper motion, 742	up to F ₂ layer, 594 vs. height, 594, 595
related characteristics, 746	transmission of radiation, 538, 546
systems, 746	components, 538
brighter stars, 746	ultraviolet, 538
clouds of Magellan, 746	with direction, 720
Milky Way, 746	troposphere, 592
supergalaxies, 746	unit of pressure, 4
temperature, 753, 754	viscosity, 345, 347
types and magnitudes, 753 strata, age, 741	water-vapor pressure, 600, 605 saturated, weight, 601
sun (see Sun), eclipses, 742	Atmospheric electricity, 615
telescopes, largest in use, 728	charge, 615
temperature, interstellar space, 763	rain, 615
time, calendars, 732, 733	snow, 615
equation, 728	space, 615
transmission of light through space, 771	conductivity, air, 615
Astrophysics, 728	current, 614
Atmosphere (see also Air), 592 aqueous vapor, 599	density, 614 ions, 615
pressure, sea level, 605	equilibrium, 615
characteristics, above F2 layer, 595	life of, 615
up to F2 layer, 594	mobility, 617
density, above F2 layer, 595	rate of formation, 615
up to F ₂ layer, 594	lightning (see also Lightning), 614
vs. height, 594, 595	potential gradient, air, 614
electricity (see Lightning), 614 extent of, 592	Atom, 653
humidity, 596	angular momentum, 579
maintenance, 599	Bohr, 579 bomb, 653
pressure, 602	composition, 618
relative, dry-bulb temperature, 602	data, 582, 618-624
temperature, 602	diameters, 643
vapor pressure, 602	elements, 643
wet-dry thermometer, 604 ionic equilibrium, 615	diffusion coefficient, 644
layers:	gaseous ions, 644
ionosphere, 592	neutral gases, 644
E layer, 592	dimensions, 618
F1 layer, 592	effective radii, 643
F ₂ layer, 592	electric orbits, 624
G layer, 592	electron configuration, 622 elements, 622
stratosphere, 592	neutral atoms, 582
troposphere, 592 upper atmosphere, 592	ionization potential, 582
mass, 592	normal states, 622
and solar altitude, 725	singly ionized, 584
path through (radiation), 720	ionization potential, 584

Atom—continued	Bel, 309
elementary particles, 618, 664	Beta particles, 651, 653, 691
energy, 579, 653	Beta rays (see also Radioactivity), 653
heat, elements, 160	characteristics, 651, 672, 683, 691
ionized, 584	from radioactive materials, 683, 685
singly, 584	energy, 683, 684
isotopes, 654	isotopes, 683, 684
mass, 50, 51	spectrum: actinium 228, 685
mass units, 654	protactinium, 685
molecular data, 618	thallium, 679
names, 620	thorium 227, 685
foreign, 620	Betatron, 653, 657
obsolete, 620	Binding energy of electron, neutral atoms
neutral, electron binding energy, 649, 650	649, 652, 653
spectroscopic properties, 582	singly-ionized atoms, 650
number, 620	Blackbody, 7, 79, 80
periodic system, 621	brightness, 95, 96
radii, 643	calculated values, 81, 82, 85, 95, 104
effective, 643	changes due to changes in c2, 86
radioactive, 672, 673	precautions in using c1, 80
specific heats, 160	constants (radiation), 80
spectra (see also Series relations), 582	value of c2 at different times, 80
spectroscopic properties, 582-585	crova wavelength, 96
neutral, 582	efficiency of radiation, 96
singly ionized, 584	luminous, 93
susceptibility, 451	equations, 7, 79
volume (elements), 160	Planck, 7, 79
inert gas, 646	Stefan-Boltzmann, 7, 80
weights, 47, 619	Wien, 79
international, 619	displacement, 80
physical to chemical, 47	laws, 7, 79
units, 47	lumens/cm, 93, 96
Atomic (see Atom), 653	lumens/watt, 93, 96
Attenuation coefficient, radio waves, 442,	luminous efficiency, 93
443	temperature, 96
Avogadro's number, 4, 47, 51, 54	luminous intensity, 93
Avoirdupois, 62, 63, 64, 66	spectral vs. temperature, 95
,,	mechanical equivalent of light, 96
2.11.11.1.1.1.1.000	plane, lumens per unit, 80
Babbitt metal, physical properties, 226	solid angle, 80
Bakelite, 152	radiant energy, 79
Bar, 4, 277	calculated values: effect of change in
Barn, 653	c ₂ , 86
Barometer, 606	short method, 85
capillarity, correction for, 606	spectral, 82
metric units, 606	temperature, 82
determination of heights, 613	spectral intensity vs. temperature, 95
expansion, correction for, 607	spectral luminous intensity, 95
mercury meniscus, volume, 606	standard radiator, 79
pressure: columns of mercury, 606	symbols, 79
columns of water, 606	
reduction: barometric height to standard	total radiation, 81
temperature, 607	calculated values, 81
to standard gravity (different heights),	Blackening receivers of radiation, 548
608	Body moving through a liquid (see also
English units, 611	under Aeronautics), 337
metric units, 609	Bohr atom, 581
temperature correction, 607	magnetic moment, 49
Barye, 4, 277	magnetron, 49, 52, 54
mega, 6	radius first orbit, 51
Baryton, 653, 664	Boiling points: elements, 117
Batteries, 377	inorganic compounds, 120
composition, 377	metals with pressure, 119
emf, 377	organic compounds, 122
standard cells, 378	pressure, 119
Baumé scale: density of cane sugar, 305	salts in solution, 131
specific gravity of, 289	rise in, 133

Boiling points—continued	Building materials—continued
water, 133	stone: American, 231
pressure effect, 118, 169	stiffness, 231
rise of boiling point due to salts in	ultimate strength, 231
solution, 133	Bursts (cosmic ray), 653
Boltzmann's constant, 49, 52, 54, 80	
Bond energies, 633	c1, 80
Bougie decimal, 92	c2, 80
Brass, mechanical properties, 195	at different times, 80
Brazing alloys, 223	Cadmium red line, 569
brass, 223	lamp, 568
iron, 223	Calendar, Julian day, 733
steel, 223	perpetual, 732
Brazing flux, 223	Calcite: density, 48
Brightness, 93	grating space, 48
blackbody, 94, 96 blue and candlepower, various materials,	molecular weight, 48 ratio grating vs. Seigbahn, 48
104	structural constant, 48
candle, 104	Calcium fluoride, 515
flames, 104	Calorie, 7, 21
fluorescent lamp, 110	international, 8, 60
lamps, acetylene, 104	Candle, 93
filaments, 104	foot-, 91, 94
molybdenum, 103	international, 94
moon, 104	meter, 93
Nernst glower, 104	1948, 94
oxides, 104	old, 92
sky, 104	spherical, 93
sun, 104	Waidner-Burgess, 94
tantalum, 103	color, 94
temperature, 7	Candlepower, 93
correction to true, 100	distance, 95
materials, 104	inverse square law, 95
various illuminants, 104	disk, 95
tungsten, 102	line, 95
units of, 93	Capacitance, 11
various materials, 104	Capacity, electric, 16
Welsbach mantle, 104	physical, 60
Brinell hardness, 187	Carat, 4
British Imperial system of weights and	metric, 4
	Carboloy, characteristics, 224
measures, 64	Carbon, 105
metric equivalents, 64 British Thermal Unit btp. 7 21 60	arc, 105
British Thermal Unit, btu, 7, 21, 60	light output, 105
Brix degrees, 305 Bronze, mechanical properties, 107	cycle, 666
Bronze, mechanical properties, 197	energy, 666 lamps, 104, 105
Brownian movement, 630 Btu, 7, 21, 60	untreated, 105
	Carbon dioxide, compressibility, 265
Building materials, 229 brick masonry, 231	Joule-Thompson effect, 280
	values of pv, 265
strength, 231	Carcel unit, 92
bricks: characteristics of, 230	Castor oil, density, 322
coefficient of expansion, 152	viscosity, 322
water absorption, 230	Cathode rays (see also Electron), 653, 691
weighted average strength, 230, 231	constants for speed, 690, 691
characteristics, 229 concrete: compressive and tensile	impinge on matter, 690
	ionization, 672
strengths, 230 elastic properties, 230	path, 690
	speed in matter, 690
strength, 230	three headings, 691
effect of quantity of mixing water, 230	velocity, 691
	and voltage, 691
compressive; effect of entrained air,	voltage, 691
	Cells (batteries), composition, 377
tensile, 229	emf, 377
masonry mortars, 229	standard, 378 Celsius temperature scale, 8
reflection factor, 553	Censius temperature scare, o

Centigrade temperature scale, 8	Color—continued
Centipoise, 318	minus brightness temperature, carbon,
Centistoke, 321	104
	Combustion, constants (some substances),
Cgs, 15 Chain (Gunter) 62	179
Chain (Gunter), 62	flame temperatures, 179
Chain reaction, 653	heats of, carbon, 179, 180
Charcoal:	carbon compounds, 179
adsorbing power, 632	coals, 181
activation, 632 increased by treatment, 632	gases, 182
heats of, 632	liquid fuels, 181
gases, 633	miscellaneous compounds, 180
vapors, 632	peat, 181
physical properties, 632	petroleum (crude), 182 various sources, 182
types of, 632	solids, 181
Charge, electron, 47	sugars, 182
hydrogen atom, 49	values, fuels, 181
rain, 615	woods, 181
snow, 615	Common units of measurement, spelling and
unit, 10	abbreviations, 56
Chemical composition, earth, 626	Compressibility: ammonia, 266
meteors, 626	carbon dioxide, 261
sun (atmosphere), 627	compounds, 286
Chemical energy data, 185	crystals, 287
Circular area, 4	elements, 285
Circular functions, 32	ether, 282
Circular inch, 4	gases, 267
Coal, 181	low temperature, 264
analysis, 181	under high pressure, 265
heats of combustion, 181	glasses, 288, 289
Coefficient of thermal expansion, 8	liquids, 282
Colloids, 630	mercury, 282 metals, high pressure, 286
bond energies, 633	petroleum oils, 284
Brownian movement, 630	quartz, 288
charcoals, adsorbing power, 632	rocks, 288
effect of activation, 632	rubber, 235, 237
heats of adsorption, gases, 633	solids, 283
vapors, 632	sulfur dioxide, 266
dimensions, 630	water, 283
dusts, explosion limits, lower, 634	Compton effect, 49, 52, 55
explosion pressures, 634	Concrete (see Building materials)
ignition temperatures, 634	Conductance, 11, 12
particle size, 630	electrolytic, 397
propagation temperature, 634	temperature effects, 397
field, 630	Conduction (see also Thermal conduction):
heat of sorption, 632	gases, 115
particle size, 630 dusts, 630	heat across air space, 114
influence of solubility, 631	high temperature, 115
protein molecules, 631	Conductivity (see also Resistivity): acid solutions, 398
properties due to, 630, 631	air, 616
solubility, 631	alloys, 384, 390
proteins: characteristics, 631	temperature coefficient, 390
molecules, 631	bases, solutions, 398
pH stability range, 634	calculating, 417
spreading coefficients, organic liquids, 633	dielectrics, 395
types, 630	electrical, 11, 12
Color, equation, 729	electrolytic solutions, 397
index, 729	molecular, 398
of light emitted by various sources, 103	temperature coefficient, 397
screens, 535	equivalent vs. temperature, 397
temperature, 8	ions, 399
blue brightness and candlepower, vari-	separate, 399
ous materials, 104	solutions: acids, 400
illuminants, 104	bases, 400

Conductivity—continued	Conversion factors, units—continued
glass, 396	National Bureau of Standards to
high-frequency, 396	international, 20
metals, 384, 389	three systems, 20
molecular (specific), 398 nonconductors, 428	energy, 17, 20, 21
oxides, 395	flow, 781 molecular, 618
plastics, 239	gage pressure (lb./in.2) to atmosphere,
pressure effects, 388	267
rocks, 395	gas laws, 260, 267
salts (solutions), 398	gaseous states (thermal), 268
soils, 395, 440	general, 781, 785
solids, 395	gravitational, 782
solutions, 397	heat, 58, 784
specific molecular, 398	flow, 136
super, 394	for different gradients, 137
alloys, 394	illumination, 93, 94
compounds, 394	length, 60
metals, 394	linear, 60, 782
tellurium, 380	magnetic quantities, 16, 18
temperature coefficient, 390, 391 tension effects, 387	mass, 60
thermal (see Thermal conductivity)	metric, to British, 64, 66 to U.S.A., 61, 63
Conductor, resistance of, 11	Mey to atomic mass, 21, 53, 54
Cones in eye (see also under Eye), 90	miscellaneous, 63, 781, 785
Constants: critical gases, 276	molecular energy, 618
mathematical, 25	paper measure, 783
physical (see also Units), 47, 51, 54	photometric, 93, 94, 783
Bearden and Watts, 54	photometry, 93
Birge, 47	brightness, 93
DuMond and Cohen, 51	illumination, 93
radiation, 80	pressure, 277, 783
Constellations, abbreviations, 743	radiation, 136
Contact potentials: liquids, 376	resistivity, 784
solids, 376	speed, 784
various metals, 379-381	temperature, 784
Continents, 772	per area, 784
area, 772	thermal, 784
highest point, 772 lowest point, 772	time, 784 U.S. customary to metric, 61-63
Convection of heat, 114	volume, 60, 785
air, 114	wavelength, 509
cooling by, 112	weight, 785
gases, 115	per volume, 785
pressure, 115	Cooling: by convection, 112
temperature, 114, 115	by radiation, 112
Conversion factors, 2, 57	effect of pressure, 112
Centigrade to Fahrenheit, inside front	platinum wire, 113
cover	Copper (see also under Wire), 198
dimensional formulas, 2, 58, 59	alloys, properties, 198
Fahrenheit to Centigrade, inside front	freezing point, 72
cover formulae, 57	high conductivity, 404
methods of calculating, 2, 57	mechanical properties, 198
units: ampere turns to ordinary, 18	resistance standards, 404
area, 60, 781	wire, 208
atomic mass to Mev, 54	annealed, 208
British imperial to metric, 67	characteristics, 408-414
capacity, 60, 62, 781	medium hard, 208
changing, 57	ratio, ac-dc resistances, 419
conduction of heat, 137	resistance, to compute, 416
density	temperature coefficient, 406
API, 290	safe carrying capacity, 416
Baumé, 289	soft, 208 specification values, 208
electrical equivalents, 20	
former, 22	standard annealed, 408 Core losses, electric steel sheets, 456
electricity, 10, 20, 781	Cosines, 32
international to 1948, 20	

Cosmic rays, 653, 710	Crystals—continued
bursts, 711	infrared, 516-527
characteristics, 711	transmission (spectral), 517, 545
top atmosphere, 710	inversion, 126
critical energy, 712	ionic, lattice spacing, 647
at geometric latitude 30°, 713	radii, 648 isotropic minerals, 522
data, 712	
earth's magnetic field, 710	metals, interatomic distances, 648 structure, 648
energy, 710	optical, 515-521
critical, 712	orthorhombic, 430, 432
total, 712	phases, 126
entering atmosphere, 712	size, 515
hard component, 711	thermal expansion, 152
ionization, 710, 711	transitions, reversible, 126
intensity, 710	pressure, 126
50° geometric latitude, 712	transmission, 517, 545
sea level, 711	range, 515-545
top atmosphere, 710	spectral, 517-545
meson, 711 origin, 710	types, 515
penetration, 711	uniaxial, 430 uses, 515
variation with latitude, 712	Cubical expansion (thermal): elements, 148
primary, 710	gases, 154
characteristics, 710	leather, 233
source, 710	liquids, 153
radiation, composition and latitude, 712	organic, 153
earth's surface, 712	water, 153
our galaxy, 713	Cubit, 4
universe, 713	Curie (unit radioactive decay), 672
reaction, atmosphere, 711	Curie constant for paramagnetic substances,
secondary, 711	461
hard, characteristics, 711	Current, electric, 12, 20 effect on human body, 375
intensity and altitude, 711	Cyclotron, 653, 657
earth's surface (sea level), 711 latitude, 710	Cyclotron, 055, 057
soft, 711	D-14 5
showers, 711	Dalton, 5
soft component, 711	Data, experimental, 1-37
source, 710	treatment of, 37-40 average deviation, 37
stars, 711	errors, 37
theories, 710	equations for: least squares solutions,
total energy, 710	38
variation, latitude, 710	linearly related quantities, 38
Josmos, 653	quadratic and other related quanti-
otangents, 32-36	ties, 39
otton, thermal conductivity, 139 Fraters (see also Astronomy), 736	indexes of precision, 37
ritical constants: gases, 276	least squares: relations, 37-39
light hydrocarbons, 293	solutions, 39 terms, even, 42
ross section (particle), 653	odd, 42
fission products, 709	tables, 41-43
fissionable nuclei, 708	methods of averaging, 37
organic molecules, 646	modulus of precision, 37
rova wavelength, 96	precision constants, 37
ryostats, liquids for (noninflammable), 183	average deviation, 37
viscosity, 183	probable error, 37, 43
rystals: artificial (optical), 515 biaxial, 529	reciprocal, 37
characteristics, 515, 529	modulus of precision, 37
compressibility, 287	relation of, 37
cubic, 430	standard deviation, 37
dielectric: constant, 430	Date, international line, 729 Day (see Astronomy), 729
monoclinic, 431	change of, 780
strength, 430	De Broglie wavelength, 653, 665
index of refraction, 516, 518-529	Debye unit, 441
temperature, 520	various particles 441

797

Decibel, 309	Density—continued
Declination, 729	minerals, artificial, 294
magnetic, 468	natural, 294
Definitions: astronomy, 729	organic compounds, 122 photographic, 562
atomic physics, 653	planets, 734
blackbody, 79 electric: 10-20	plastics, 238, 239
international units, 20	reduction in air to vacuum, 69
1948 units, 20	salts, 531
electromagnetic, 10	satellites, 734
gas laws, 259	solids, various, 292
geomagnetism, 468, 469	cgs, 292 English, 292
geometric, 4	stars, high, 753, 762
heat, 7 illumination, 93	Iow, 753, 762
magnetic, 10, 451	sugar: Baumé degree, 305
magnetism, 451	Brix, 305
mechanical, 4	solutions, 304, 305
nuclear, 653	sulfuric acid and water solutions, 304
photography, 562	sun, 731
photometry, 93	vapors, 269 water, 295, 296
physical properties, 187 radiation, 79	air-free, 296
temperature, 9, 70	and volume, 298
viscosity, 319	woods, 246, 258
Degeneration (see Artificial disintegration)	Derivatives and integrals, 23
Delaunay's γ, 729	Deuterium, 653
Delta rays, 653	Deuteron, 653
Demagnetization factor for rods, 467	Developers, photographic, 563
Denier, 242	Deviation in experimental data (see under
Density, 5, 291	Data), average, 37 standard, 37
air, 269, 270	Diamagnetic elements, temperature effect,
moist, 598 alloys, 293	461
API, 290	Diamagnetic substance, 451
aqueous solutions, 300	susceptibility, 451
alcohol, ethyl, 302	temperature effects, 461
methyl, 304	Diatomic constants, 586
cane sugar, 304	Diatomic molecules, 586
Baumé and Brix degrees, 305 sulfuric acid, 304	energy: electronic, 586 rotational, 586
Baumé scale, 305	formula, 586
Brix, 305	vibrational, 586
calcite, 48	formula, 586
castor oil, 322	level, 589
critical, 276	states, 586, 589
earth, 48	molecular constants, 587
variation with depth, 739	Dielectric constant (specific inductive capacity), 10, 423
elements, 291 liquids, 291	air, 423, 424
solids, 291	pressure, 422, 424
ethyl-alcohol mixtures, 302	alcohol, 424
gases (various units), 269	ceramics, 437
gasolene, 322	crystals, 437
glycerol-water, 321	clamped, 430
hydrocarbons, 329 inorganic compounds, 120	free, 430 elastomers, 438
kerosene, 295	gases, 423, 424
leather, 233	liquefied, 426
liquids, 295	nonpolar, 436
methyl alcohol and water solutions, 304	pressure, 424
cane sugar, 304	temperature, 423
sulfuric acid, 304	glasses, 427
mercury, 299	guttapercha, 427
and volume, 299	ice, 427

Dielectric constant—continued	Dielectric strength, 421
insulating materials, 429	air, 421
at radio frequencies, 429	electrodes, 421
kerosene, 425	spacing, 421, 422
liquids, 425	potential, 421
formula, 426	pressure, 422
pressure, 424	voltage for spark: ac, 421
temperature, 426	voltage for spark: dc, 421, 422
coefficient, 426	materials (various), 423
wavelengths, long, 426	glass, 423
loss tangent of dielectric materials, 437	guttapercha, 423
lucite, 438	kerosene, 422
materials (various), 427, 428	voltage for spark, 422
dielectric, 437	liquid air, 423
oils, 425, 426	mica, 423
organic, 425	oils, 423
	paper, 423
pressure effects, 424	paraffin, 423
silicone, 438	rubber, 423
soils, 440	unit, 423
vaseline, 439	Diffusion: aqueous solutions into water, 354
mica, 427	coefficients
minerals, 428	gaseous ions, 644
nonconductors, 428	gases, neutral, 644
radio-frequencies, 429	constants, water vapor through leather,
paper, 427	232
paraffin, 427	gases, 356
plastics, 437	ions, positive, mobility in noble gases, 644
quartz (fused), 428	metals into metals, 356
quartz crystals, 430	vapors, 355, 356
rochelle salt, 431	Diffusivities for materials, 143
rock salt. 430 rocks, 426	Digit, 5
rubber, 438	Dimensional equations, 2
artificial, 438	examples, 57
shellac, 427, 438	Dimensional formulas, 2, 58
soils, 440	use of, 3
solids, 427	Dimensional formulas of units, 2
standard solutions, 428	derived, 58
sulfur, 430	dynamical, 58
unit, 10, 423, 430	electrical, 59
water, 425	fundamental, 57
woods, 438	geometrical, 58
Dielectric materials (dielectric constant and	heat, 58
loss tangent): amber, 438	light, 58 magnetic, 59
ceramics, 437	mechanical, 58
erystals, 437	photometric, 58
frequency, 437	thermal, 58
glasses, 437	use of, 57
guttapercha, 438	Diopter, 5
liquids, 439	Dip: horizon, 730
inorganic, 439	magnetic, 468
organic, 439	Dipole moment, 441
lucite, 438	inorganic, 441
nylon, 437	organic, 441
oils, 439	unit, 441
paraffin, 438	Debye, 441
plastics, 437	Discharge in air, 421
rubber, 438	ac, 421
shellac, 438	dc, 421
solids, 437	effect of electrode shape, 421
temperature, 423	effect of pressure, 422
vaseline, 439	length of gap, 421, 422
water, 439	voltage required, 422
waxes, 438	Disintegration, artificial, 651, 653, 669
woods, 438	types, 669
Dielectric properties of nonconductors, 428	Disk source, 95

Dispersion, glass, 509	Earthquake waves (see also under Astron
Displacement constant (Wien), 80	omy), 740
Displacement law (Wien), 79, 80	Effective wavelength, red pyrometer glass
Dominical letter, 732	537
Dowmetal, 220	Efficiency, lamps, 105, 110
Duralumin, 220	Elastic limit, 187
Dusts (see under Colloids)	Electric arcs, 105, 109
Dyestuffs, transmission of radiation, 538	capacity, 16
Dyne, 5	current, 11
	effect on human body, 375
Ear (see also under Sound), 306, 314	dipole moment, 441
Earth (see also under Astronomy), 728	field intensity, 11, 12
age, 741	inductance, 17
angular velocity, 780	potential, 11, 12, 20
area, 729, 772	difference, 11
land, 772	power, 17
oceans and seas, 772	quantity, 13
atmosphere (see also Atmosphere), 592	standards, 13, 19
characteristics, 734, 739	surface density, 11
composition, 625	units, 10, 15, 16
constants, various, 729, 772	definitions, 10-20
craters, 736	1948, 19
density, 48, 739	relative values, three systems, 20
vs. depth, 739	Electrical capacity, 16
depth, oceans, 773	characteristics of materials, 375, 380
dimensions, 729, 772, 773, 774	conductivity, 12
distance to moon, 729, 730	alloys, 390
	metals, 390
distance to sun, 729, 730	
earthquake waves, velocity, 740	conversion factors, 18, 20 definitions, 10-20
electrical data, 502	
elements, percent, 625	effect on human body, 375
elevation, mountains, 772	equivalents, former, 22
energy, rotational, 729	fundamental standards, 13, 19
gravitation (see also Gravitation), 714	inductance, 17
interior characteristics: density, 739	properties of insulating materials, 429
elastic constants, 739	resistivity, metals, 393
pressure, 739	sheets, magnetic properties, 456, 459
land area, 772	standards, 10, 20
liquefaction, 740	steel sheets, core losses, 456
magnetic data, 502	units: ampere turn, 18
magnetism (see also under Geomagnet-	basis of each, 16
1sm), 470	capacity, 16
mass, 729	conversion factors, 20
moment of inertia, 739	electromagnetic, 10, 20
oceans and seas, 772	electrostatic, 10, 20
orbit, 729	unit quantity, 10
dimensions, 729, 774	former, 22
eccentricity, 729	international prior to 1948, 16, 19
general precession, 729	new (1948), 19
obliquity, 734	absolute, 19
physical data, 729, 734	how maintained, 19
radius, 729, 734, 772	relation to electromagnetic, 20
equatorial, 729, 734	relation to electrostatic, 20
polar, 729, 734	relation to international (prior to
rigidity, 740	1908), 20
rotational energy, 729	old, 22
solidification, 741	practical, 20
temperature: depth, 726, 727	relation of three systems, 20
oceans, 774	Electricity:
surface, 726	atmospheric, 614
highest, 726	constants, 615
lowest, 726	charge on rain, 615
selected stations, 726	charge on snow, 615
variation, 726	elements, 615
velocity: in orbit, 729	ionic equilibrium, 615
rotation, 729	lightning, 614
volume, 729	piezo, 432
,	promoj rom

Elementary particles, 651, 664 Electricity-continued alpha particle, 664 quantity, 16, 20 deuteron, 664 specific heat, 379 electron, 664 thunderstorm, 614 negative, 664 characteristics, 614 positive, 664 unit quantity, 10 Electrochemical equivalents, 397 meson (several types), 664 neutrino, 664 iodine, 48 neutron, 664 normal solutions, 397 photon, 664 silver, 48 proton, 664 Electrode potential, 637 Elements: Electromagnetic properties, 451 Electromagnetic systems, 10-13 atomic: heats, 160 Electromagnetic units, 10, 451 numbers, 620 radii, 643 definitions, 10 difference of potential between metals in volume, 160 weights, 619 solutions of salts, 378 Electrolytes, 397 beyond uranium, 623, 651, 663 production, 670 solutions, 397 binding energy: neutral atoms, 649 vs. temperature, 397 Electron, 653, 664 singly-ionized atoms, 650 affinity, elements, 636 boiling point, 117 chemical: absorption wavelength, 701 angular momentum, 580 abundance: atmosphere, 592, 625 atomic weight, 49 early type stars, 628 binding energy, 649, 650 earth, 625 neutral atoms, 649 singly-ionized atoms, 650 earth-meteorites, 626 gases, interstellar space, 629 charge, 47, 50, 51, 54 specific, 47 matter, interstellar space, 629 meteorites, 626 configuration, 622 nebulae, 629 neutral atoms, 582 rare gases, cosmos, 626 normal states, 622 sun, 627, 628 singly ionized atoms, 584 sun's atmosphere, 626 emission, 635 universe, 625 carbon, 635 equation, 635 composition, 618 hot solids, 635 compressibility, 285 materials, various, 636 configuration, 622 density, 291 metals, 635, 636 diameters, 643 temperature, 635, 636 electrochemical equivalents, 403 photoelectric effect, 636 electron configuration, 622 potentials, 637 neutral atoms, 582 contact (volta), 637 electrode, 637 normal states, 622 radius of orbits, 624 solids, hot, 635 singly-ionized atoms, 584 formula, 635 electron emission, 635 energy levels, 579 energy relations, 651 emissivities, 98 energy levels, x-ray, 697 energy-velocity, 651 energy units, 618, 653 mass, 651 mass-velocity relations, 651 evaporation, 363 negatron, 654 hardness, relative, 228 heat: capacities, 155, 157 positron, 654 evaporation, 165 shell, 622, 653 terms: from equivalent electrons, 580, 581 fusion, 157 ionization potential: neutral atoms, 582 from nonequivalent electrons, 580 singly-ionized atoms, 584 velocity relations, 651 volt, 49, 54, 654 isotopes, 654, 655 weight, 50, 51, 54 abundance, 655 work function, 635 atomic mass, 658 radioactive, 655-663 Electronic charge, 47, 51, 54 K-wavelength series, 697 orbits, 624 L-wavelength series, 698 Electrostatic capacity, 12 definitions, 11 latent heat of fusion, 157 latent heat of vaporization, 165 generator, 657 mass absorption, 704 units, 10 mechanical properties, 189 Electrostriction, 427

Elements—continued	Energy—continued
melting points, 117	radiant, 9, 79
standards, 9, 117	radiated by a number of radioactive ma-
number 1952, 651	terials, 689
optical constants (metals), 558	temperature for 1 ev, 55
periodic system, 621	transformer steel (losses), 459
physical properties, 189	units, 21, 653, 618
Poisson's ratio, 227	conversion factors, 21, 618
radii, electron orbits, 624 resistivity, 384	Enthalpy, 8, 270 Entropy, 8, 270
temperature coefficient, 384	Equation of time, 728
specific heat, 155, 160	Erg, 5
formula for, 157	Erichsen value, 187
true, 157	Error, probable, 37
spectroscopic properties: neutral atoms,	Esu/emu, 48
582	Ether, volume-pressure, 283
singly-ionized, 584	Ethylene, 265
symbols, 117	Ettinghausen effect, 507
thermal conductivity, 138	Eutectic mixtures, 130
thermal expansion: crystals, 145	Ev, 618, 653
cubical, 148	Evaporation of metals, 363
linear, 145	formulas, 363 constants (various metals), 364
vapor pressure, 362, 363	rate of, 363
Emf (thermal), alloys vs. lead, 379	Expansion (thermal), 145
alloys vs. platinum, 381	cubical, 148
aluminum vs. platinum, 376 batteries, 377	linear, 145
cadmium vs. platinum, 383	Experimental data (see also under Data),
low temperature, 381	· 37-40
metals, in solution of salts, 378	Explosives, 183
vs. platinum, 381	analysis, 184
vs. silver alloys, 381	chemical properties, 184
vs. zinc solutions, 377	ignition temperatures, 183, 634
nickel, vs. copper, 381	physical properties, 184
vs. platinum, 389	pressures, 634
platinum-rhodium vs. platinum, 381, 387	time of heating, 183 Exponential formulas for mass absorption
vs. lead, 379	values, elements, 694
zinc vs. platinum, 390	Exponential functions, 43
Emissivity, 8, 98	Exposure, photographic, 562
spectral, 8, 98	Eye: as measuring instrument for radia-
alloys, 99 correction to brightness temperature, 99	tion, 87
liquids, 98	blind spot, 90
materials, 98	contrast sensibility, 89
metals and oxides, 101	diameter of pupil, 90
at melting point, 98	and flux density, 90
out-gassed, 99	distribution coefficients, 91 glare sensibility, 89
molybdenum, 103	I.C.I. standard observer, 90, 91
solids, 100, 101, 102	distribution coefficients, 91
tantalum, 103	instantaneous thresholds, 88
tungsten, 99, 102	luminosity factors, 87
total: glass, 100	and brightness, 88
materials, 100	macula lutea, 90
metals, 101	minimum energy to produce sensation, 89
at low temperatures, 101 oxides, 101	miscellaneous data, 90
relative, 100	physical properties, 90
Emu, 20	Purkinge effect, 87
Energy, 5, 17, 21	rate of adaptation, 89 relative luminosity factors, 87
blackbody radiation, 79, 85, 96	various brightnesses, 87, 88, 89
bond, 633	sensitivity, 87, 89
conversion factors, 20, 21	standard observer, 90
cosmic ray, 712	distribution coefficients, 91
dissipation in cycle (magnetism), 460	thresholds, 88
electron-volt, 49	various field brightness, 88
levels, 581	vision, persistence of, 90
losses, magnetic, 459, 460	visual range for white light, 92

Factorials, 26	Flame temperatures, 179, 182, 183
log of, 26	Flash lamps, 110
Factors, conversion (see Conversion factors)	Flash tubes, 111
Fahrenheit temperature scale, 8	Fluidity, 5, 318
conversion to Centigrade, inside front	Fluorescent lamps, characteristics of, 110
cover	Fluorite 515 520
Farad, 20	Flux (see under type of) 03
Faraday, 47, 51, 54	Flux (see under type of), 93 Foot-candle, 93
constant, 47, 54 Fathom, 62	Foot-lambert, 93
Ferromagnetic substances, 451	Foot-pound, 5, 21
Fibers:	Foot-poundal, 5
artificial, 243	Force, 5
acetate, 244	magnetic, 18
glass, 244	Formulas (see under name of)
nylon, 244	Fourier, 144
polyethylene, 244	Fraunhofer lines, wavelengths, 577
quartz, 534	Freezing mixtures, 134
rayon, 243	anti, for radiators, 135
resin, 243	Freezing point, lowered by various salts in
characteristics, 242	solution, 131
miseellaneous, 244	water-pressure effect, 118
natural, 242	Fresnel formula, reflection of light, 549
cotton, 242	Friction, different materials, 336
flax, 242	interior, at low temperatures, 227
hemp, 242	Frictional electric series, 375
jute, 242	Fuels (see also under Combustion), 180
linen, 242	coal, 181
ramie, 242	analysis, 181
silk, 242	gas, 182
spider, 242	gravity, 182
wool, 242	heat values, 180
properties of, 241, 243	liquid, 181
rope, 245	gravity, 181
various kinds, 245	petroleum, 182
Filaments, incandescent, heat loss from, 116	density, 182
temperature, 102, 116 Filters (see also Color, screens), for obtain-	woods, 181 analysis, 181
ing monochromatic x-rays, 696	Fundamental particles, 664
light, 537	alpha-particles, 664
narrow spectrum region. 536	deuteron, 664
Fine structure constant, 49, 51, 54	electron, 664
First radiation constant, 80	negatron, 664
units, 80	positron, 664
Fission, 653, 706	meson, μ (charge +, -), 664
binding energy, 707	π (charge +, -, 0), 664
cause, 706	neutrino, 664
critical energy for, 707	neutron, 664
eross section of fissionable nuclei for neu-	photon, 664
trons, 708	proton, 664
cross section of fission products for	Fundamental standards, 1, 13
thermal neutrons, 708	maintenance of, 14
data, 706	primary, 13
elements, 706	qualities of, 13, 14
energy, 706	secondary, 13, 14
eritical, 707	selection of, 1, 2 standards of, international temperature
released by, 707 examples, 706	scale, 14, 70
neutron-binding energy of divided nu-	length, 14
cleus, 707	mass, 14
produced, 706	temperature, 14
elements, 706	Celsius scale (Centigrade), 14
products of long life, 708	Fahrenheit, 8
spontaneous, half-life, 707	Kelvin scale, 9
thresholds (Mev), 706	Reaumur, 9
Fixed points, temperature scale, primary, 71	thermodynamic, 9
secondary, 72	time, 14

Fundamental units (see under Units)	Gas, kinetic theory—continued
Fusion, latent heats of, 157	discussion, 638
alloys, 165	incidences, ratios of, 640
metals, 165	mass, 640
substances, various, 165	mean free path, 641
	molecular, 640
Gage pressure to atmospheres, 267	diameters, 638
Gages, wire, 405	energies, 639
Gal, 5	mass, 640
Galvanometric effects (see under Magnetic)	mean free path, 638 number, 638
Gamma (photography), 562	velocities, 639, 640
Gamma infinity (photography), 562	average, 639
Gamma-rays, 653, 686-688	distribution law, 639
absorption, mass, 687	pressure, units, 638
characteristics of, 672, 687, 688	laws, 259
energy, of artificial radioactive isotopes, low atomic weight, 687	simple, 259
of heavy isotopes, 686	value of R, 259
artificial, 686	different conditions, 259
natural, 686	units, 259
to produce ion pair, 711	long-wavelength absorption, 532
ionization energy, 672	mean free path, 641
mass absorption, 687	mixtures, 259
various elements, 687	ignition temperature, 186
spectrum, radioactive breakdowns, 686	mobility, of positive ions, 644
Thorium "C," 686	of singly charged ions, 645
total mass absorption coefficient, 687	mol, 6, 259
Gas, absorption by liquids, 360	molecules:
abundance, cosmic, 626	diameters, 638, 644
combustion values, 182	attractive spheres, 644 Bragg, 645
compressibility (various gases and va-	number per cm³, 638
pors), 264	velocities, 639
low temperature, 264	neon, 262, 264
under high pressure, 267	perfect, 261
conduction of heat by, 115	volume, 47, 54
conductivity, thermal, 142 constant, 49, 259	pressure, 268
convection of heat by, 115	critical, 276
eritical points, 276	high, 260
definition of laws, 259	temperature, 263
densities, 163	Van der Waal's equation, 261
critical, 276	constants, 262
dielectric constant, 423	volume, 261
liquefied gases, 426	with vapors, 260
nonpolar, 436	properties, 259
variation, with pressure, 424	saturated, 263
with temperature, 424	correcting factor, 263
diffusion coefficient, 356, 644	temperature, critical, 276
neutral gases, 644	thermal expansion, 154 thermal properties, 259
energy, 259	Van der Waal's equation, 261
fuels, 182	constants of (imperfect gases), 262
heat, absorption, 633	velocity of sound in, 306
capacity, 164	Verdet's constant, 506
combustion, 182	viscosity, 331, 642
helium, 260, 261	liquefied gases, 329
hydrogen, 260, 261, 268	volume:
ideal gas state, 638	conversion, 259, 260
ideal, 261	factor (Z), 260
in interstellar space, 629	correction factor, 260
inert, atomic volume, 646	saturated gas, 263
infrared transmission, 546	ideal gas, 47, 54
ions (see also Ions), diffusion coefficient,	inert gas atoms, 646
	pressure relations, 263, 265
Joule-Thompson effect, 278 kinetic theory, 638	relative with pressure, 263-267
	weight, 259
calculations, 638-642 collision frequencies, 641	Gasoline, density, 322
combion frequencies, 041	viscosity, 322

Gauss, 18	Gilbert, 18, 22
Gaussian system of units, 15	Glass, compressibility, 289
Gem lamps, color temperature, 104	emissivity at low temperatures, 100
General physical constants, 46 discussion of, 46	optical, 509 characteristics, American made, 509
tables according to Bearden and Watts, 54	foreign made, 514
Birge, 47	National Bureau of Standards, 510
Du Mond and Cohen, 51	coefficient of expansion, 529
General precession, 738	index of refraction, 509
Geographical data (see also under Astron-	change with temperature, 513
omy and Oceanography), 728, 772	nu values, 509
Geologic strata, ages, 741 Geomagnetism, 468	temperature, 513 physical properties, special glasses, 534
coordinates, 468	specific gravity, 529
north magnetic pole, 470	stain class, 529
position on earth, 493	physical properties, 529
south magnetic pole, 471	transmission, 512, 514, 535
earth, as a dipole, 469	red pyrometer, effective wavelength, 537
geomagnetic coordinates of position, 493	transmission, 537
magnetic— axis, 502	reflection, Fresnel formula, 549 resistivity, 396
characteristics, 502	special, physical properties, 534
data, 502	stain, 529
dip in U.S.A., 471	expansion, 529
disinclination, hourly departure from	specific gravity, 529
normal, 477, 478	vessels, volume, 68
isogonic, 472 secular change in U.S.A., 479	viscosity, 330 Glycerol-water, 321
field, elements of, 468	Gram, 5
horizontal intensity (isodynamic),	Gram-centimeter, 5, 21
474	Gram-mass, 21
inclination (isoclinic), 473	Gram-molecule, 5
intensity, horizontal, U.S.A., 478	Gravitation, 714
total, U.S.A., 480	acceleration of gravity at different lati- tudes, 714
vertical, U.S.A., 479, 480 moment, 470	free-air correction for altitude, 714
pole (earth), 470, 471	log, 714
potential, Gauss coefficients, 470	United States, 716
spherical harmonic coefficients, 470	various world stations, 715
surveys, 469	anomalous gravity, some places of, 718
United States, dip or inclination, 471	constant, 5, 47
horizontal magnetic intensity, 478 secular change of dip, 471	length of seconds pendulum, 717 Gravity, specific, 5
secular change of horizontal in-	unit, 5, 729
tensity, 479	API scale, 290
secular change of magnetic declina-	specific, Baumé scale, 289
tion, 478	Graybody, 8
secular change of total intensity, 480	Gunter's chain, length, 62
secular change of vertical intensity,	Gyration, radius of, 27
480	1 070
total magnetic intensity, 480	h, 653
vertical magnetic intensity, 479	H or k, 653 H-ray, 653
values of magnetic elements at ob-	Hall constant, 507
servatories, 481	variation with temperature, 508
variations, 469 world isoclinic lines, 473	Hall effect, 451
world isodynamic lines, 474	Hardness, 187, 227
horizontal intensity, 474	Brinell, 187
total intensity, 476	relative, of elements, 228
vertical intensity, 475	of plastics, 239
world isogonic lines, 472	of various materials, 228 Poisson's ratio, 227
sun, magnetic data, 502 Geometrical units, 4	scale of, 227
definitions, 3-4	Shore scleroscope, 188
Geophysical data, 739-741	Hearing (see also Sound), differential sensi-
Giga, 5	tivity, 314

Hearing—continued	Helium-continued
distribution of hearing losses (popula-	compressibility, 264
tion), 315	high pressure, 267
sensitivity of the ear, 314	conductivity, thermal, 142
Heat, 7	density, 269, 291
atomic, 160	eritical, 276
of elements, 160	dielectric constant, 436
capacity, gases, 163	electric dipole moment, 441
materials, various, 157	
vapors, 163	electron configuration, 582
	expansion, thermal, 154
combustion (see also Combustion, heats	heat, latent, 166
of), 179	heat capacity, 163
conduction, across air spaces, 114	index of refraction, 533
at high temperatures (gases), 115	ionization, energy for production of ion
content, ammonia, 162	pair, 711
steam, 169	isotopes, 655
convection in air, 114	Joule-Thomson effect, 278
at high temperature, 115	magnetic susceptibility, 462
definitions, 7	melting point, 117
dilution of H ₂ SO ₄ , 186	molecular data, 640
dimensional formulas, 2, 57, 58, 59	diameter, 644
entropy, 8	velocities, 640
steam, 169	molecules, number of, 645
flow, 136	percent in air, 592
conversion factors of units, 136	physical properties, 189
different gradients, 137	pressure, critical, 276
formation, compounds, 185	resistivity, thermal, 144
ions, 186	Rydberg constant, 48, 51, 54
index, 730	temperature, critical, 276
latent, 165	Van der Waal's constant, 261, 262
formula for, 167	vapor pressure, 360
fusion, 165	velocity of sound in, 306
elements, 165	viscosity, 331
materials, various, 165	volume conversions, 260
steam, 175	relative, 261
vaporization, 166	Henry, 17, 20
elements, 166	Heusler magnetic alloys, 451, 458
liquids, 166	High-energy particles, 657
formulas, 167	Horizon, 730
loss, effect of pressure, 113	dip, 729
from incandescent filaments, 116	Horsepower, 5
from platinum wires, 116	Horsepower-hour, 5, 21
mechanical equivalent, 8	Human body, electrical resistance of, 375
neutralization, 186	Humidity, 596
Peltier, 383	and density, 597
radioactive materials, 689, 691	relative, and vapor pressure, 602, 604
specific, 155	water-vapor pressure, 605
elements, 155	at sea level, 605
gases, 163	wet- and dry-bulb thermometer, 602, 604
liquids, 161	Hydrocarbons, physical properties (light),
mercury, 161	293
solids, 159	
vapors, 163	viscosity, 329 Hydrogen:
water, 161	
	abundance, 625
Thomson, 383	early type stars, 628
units, 7, 8 values, fuels, 181	earth, 625 interstellar space, 629
Hefner unit, 92	meteorites, 626
Height, determination by barometer, 613	nebulae, 629
Helium:	sun, 626, 627
abundance, early type stars, 628	universe, 625
nebulae, 629	atomic number, 620
sun's atmosphere, 627	atomic weight, 619
universe, 625	Bohr atom, 579, 622
atomic numbers, 620	boiling point, 117
atomic weights, 47, 619	charge on one gram, 49
boiling point, 117	combustion constant, 179

Hydrogen—continued	Illuminants—continued
compressibility, 264	color temperature, 104
factor, 264	photographic efficiency, 565
high pressure, 267	Illumination, 93
low temperature, 264	expressions, 93
cycle, 666	on surface, 93
De Broglie wavelength, 665	symbols, 94
density, 276, 291	units, relative magnitudes, 91
eritical, 276	conversion factors, 91, 94
dielectric constant, 423	Impulse generator, 657
doublet separation, 55	Incandescent filaments, heat losses, 116
electric dipole moment, 441	Incandescent lamps (see also Lamps): effi-
electron configuration, 582, 584	ciency of, 1878 to date, 105
heat, latent, 166	efficiency of tungsten, 106
heat capacity, 163	minature, 107
heavy, 54, 653, 655	photoflash, 110
index of refraction, 533	sealed-beam, 108
ions, diffusion coefficient, 644	temperature of tungsten, 106
ionization energy necessary for produc-	Inclination: magnetic (see also under Geo-
tion of ion pair, 711	magnetism), 471
ionizing potential, 53	moon's orbit, 735
mobility, 644	Index of refraction: air, 532
isotopes, 655	alums, 521
deuteron, 653	crystals, 515, 529
triton, 654	artificial, 515
long-wave absorption, 552	fats, 525, 530
magnetic susceptibility, 462	fluorite, 520
mass, 50	calcium, 520
relative to mass of proton, 50	lithium, 521
mass absorption coefficient, 704	gases, 533
melting point, 117	liquefied, 525
molecular, properties of, 268	glasses: change with temperature, 513,
molecules, diameter, 642, 643	520
mass, 640	foreign-made, 513
mean free path, 642	nonsilica, 512
number of, 645	Iceland spar, 521, 545
rate of incidence, 640	isotropic materials, 522
velocity, 640	monorefringent, 522
percent in air, 592	liquefied gases, 525
physical properties, 189	liquids, 530
pressure, critical, 276	relative to air, 530
radii of electronic orbit, 624	lithium fluoride, 521
Rydberg constant, 48, 54	media for determination with microscope,
Schrödinger constant, 51, 54	561
temperature, critical, 276	minerals, biaxial, 526
thermal conductivity, 142	monorefringent, 522
thermal properties, 268	uniaxial, 524
thermal resistivity, 144	nitroso-dimethyl-aniline, 519
Van der Waal's constant, 261, 262	oils, 525
velocity of sound in, 306	plastics, 240
viscosity, 642	potassium bromide, 519
volume, relative, 261, 264	potassium chloride, 519
with pressure, 267	formula, 519
Hydrolysis, ammonium acetate, 399	potassium iodide, 516
Hysteresis, 451	quartz, 518
losses, Steinmetz constant, 460	reflection vs. 549
	rock salt, 518
ce crystals, modifications of, 119	formulas, 518
ce point, 47, 71	silver chloride, 520
effect of pressure, 119	silvite, 519
celand spar, 521, 545	solutions, acids, relative to air, 531
I.C.I. standard observer, 90	salts, relative to air, 531
distribution coefficients, 91	thallium bromide-iodide, 516
gnition temperature: dusts in air, 634	vapors, 533
gas mixtures, 186	waxes, 525
Illuminants (see also Lamps): brightness,	Inductance (electrical), 17
104	mutual, 13
brightness temperature, 104	

Inductance—continued	Isotope— $continued$
self-, 13	atomic weight, 658
standards, 17	characteristics, 655, 658
Inertia: moment of, 27 photography, 562	gamma-ray energy, 686, 687 lead, 679
Infrared reflectivity: solids, 548	life, 667
tungsten, 555	magnetic moment, 658
Infrared transmission, 545	masses, 658
air, moist, 546	nuclear magnetron, 662
crystals, 545	number, 655 pile yields of, 670
gases, 547 solids, 547	quadrupole moment, 658
various substances, 546-547	radioactivity: artificial, 655
Inorganic compounds: boiling point, 120	natural, 655
density, 120	number, 655, 658
melting point, 120	spin, 658
solubility, 357	table of, 655, 658
and temperature, 357	
Insulating materials: electrical properties, 429	Jena glasses, 513
values: of dielectric constant, 429	Joule, 5, 20 Joule's equivalent, 8, 47
of power factor, 433	Joule-Thomson effect, 278
Integrals, 23	air, 278
Intensity: magnetic (see also under Geo-	argon, 279
magnetism), 478	carbon dioxide, 280
of magnetization, 12	helium, 278
Interior friction at low temperatures, 227	mixtures, of helium and argon, 280
International date line, 729 International electrical units, 16	of helium and nitrogen, 281 nitrogen, 279
Interstellar gases, 629	Julian day: calendar, 733
Interstellar matter, 629	number (days), 733
Interstellar temperature, 763	period, 730
Inverse square law (photometric), disk or	Jupiter, 734
source, 95	
Ionic crystals, lattice spacings, 647 Ionic equilibrium, atmospheric, 615	K. Boltzmann constant, 49, 52, 54
Ionic radii, 648	K-wavelength series (see also under
Ionization: energy, production of ion pair,	X-rays), 697 Kelvin temperature scale, 9, 14
711	Kerosene: density, 295
gamma rays, 711	dielectric constant, 425
potentials, elements, 582	dielectric strength, 422
neutral, 582 singly ionized, 584	discharge in, 422
water, 399	viscosity, 322
Ions: equilibrium in atmosphere, 615	Kerr constant, 507
equivalent conductivity, 399	Kerr effect, dispersion, 504, 508
gaseous, diffusion coefficient, 644	Kilodyne, 5
mobility, positive, 644	Kilowatt-hour, 21 Kinematic viscosity, 318
singly charged, 645 heat of formation, 186	Kinetic energy, 6
mobility, in noble gases, 644	Kinetic theory, 638
of singly charged, 645	mercury vapor: mean free paths, 638
positive, mobilities, 644	molecular diameters, 638
Iron: arc lines, 571	molecular constants, 640
magnetic properties, 452-456 cast, in intense fields, 464	molecular diameters, 638, 642 molecular distribution laws, 639
in very weak fields, 452	molecular energies, 639
soft, 458	molecular velocities, 639, 640
mechanical properties, 209	molecules:
permeability, 458	gases: mean free path, 638
resistivity, 384	molecular diameters, 638
spectral lines, 571	viscosity, 642 masses, 640
Irradiancy, 79 Isobar, 653	mean free path, 641
Isomer, 654	number of, 638
Isotope, 654-655	pressure, 638
abundance, relative, 655	rate of evaporation, 639

rate of incidence, 639, 640	Leather—continued
velocities, 640	elongation, 232
Kundt's constant, 506	physical properties and humidity, 232, 233
L. copies (and also under V reve) 606	tensile strength, 232
L series (see also under X-rays), 696 Lambert, 93	thermal conductivity, 233
Lamps (see also Illuminants):	thermal expansion cubic, 233
arcs, carbon, 105	types of, 232
mercury, 109	Leduc effect, 507
automobile, 107	Length, unit of, standard, 14, 60
carbon, 105	Light: color, various sources, 104
carbon arcs, 105	defined, 87
coiled-coil, 106	definitions, 93
color of light, 111	filters, red pyrometer glass, 537
CX, 106	mechanical equivalent, 93
early (incandescent), 105	minimum, 93
efficiencies, 105 filaments, coiled-coil, 106	minimum energy for, 89 polarization, rotation plane, 557
temperature, 106	quantity, 94
flash tube, 111	reflected, 549
fluorescent, 110	scattering of, 3
gem, 105	sources and source materials, 102, 103
incandescent (see Incandescent lamps)	characteristics, 102, 103
large, 106	standards of intensity, 92, 94
mercury arcs, 109	symbols, 94
miniature, 107	transmission through space, 771
photoflash, 110	velocity, 47, 51, 54, 80
photoflood, 106	visual range of white, 92
photographic, 106 projection, 106	white, 96 year, 731
sealed-beam (all glass), 108	Lightning, 614
small, 107	channel, 614
street series, 106	diameter, 614
tungsten, 106	constants, 614
characteristics, 106	current, 614
efficiency, 1968-1948, 106	data, 614
temperature, 106	peaks, 614
different types, 106	interval between, 614
efficiency, 106 various, 106	polarity, 614
Langley, 9	potential, 614 cloud, 614
Latent heat, 9, 165	gradient, air, 614
fusion, 615	beneath cloud, 614
alloys, 165	quantity of electricity discharged, 614
beeswax, 165	single current peak, 614
ice, 165, 167	total stroke, 614
metals, 165	strokes:
vaporization, 167	cloud to ground, 614
ammonia, 167	polarity, 614
liquid, 167 elements, 165	potential gradient, 614
formulas, 167	energy, 614 number strokes per mile², 614
liquids, 166	number strokes per year, 614
metals, 165, 366	thunder, 614
substances, various, 165	velocity, 614
total heat, 167	Light-year, 730
Latitude variation, 730	Lime-alumina-silica compounds, 130
Lead: age ratios, radioactive materials, 679	eutectic mixture, 130
atomic weight, 619	melting point, 130
common, isotope variation, 679 isotopes, 657, 662	transformation, 130
composition, locality, 679	Linear acceleration, 6 Linear accelerator, 657
protective thickness, X-rays, 693, 695	Linear expansion: alloys, 149
materials relative to, 694	elements, 145
Least squares solutions, 37-44	materials, various, 152
tables for, 40-47	Linear measurements, 62
Leather: diffusion constant, 232	Linear units, 62, 509
density, 233	wavelength, 509

Liquids: absorption of gases by, 360	Magnetic-continued
combustion, heats of, 181	effects (galvanometric), 451
compressibility, 282	Ettinghausen, 451, 507
conductivity, thermal, 143	Hall, 451, 508
contact difference of potential, 376	temperature, 508
cubical expansion, thermal, 153	hysteresis, 451
density, 295	Joule, 451
dielectric constant, 424, 425	Laduc, 451, 507
pressure effect, 424	Nernst, 451, 507
temperature coefficient, 426	Villari, 451
expansion, thermal, 153	Weidemann, 451
fuels, 181 index of refraction, 530	field strength (intensity), 12, 451 flux, 12, 451
latent heat of evaporization, 166	Maxwell, 18, 451
magnetic susceptibility, 462	force, 12, 451
media for determining refractive indices	hysteresis, 451
with microscope, 561	energy lost, 451, 460
melting temperatures, 118	Steinmetz constant, 460
vs. pressure, 118	induction, 12, 17, 451
noninflammable, for cryostat, 183	intensity, 12, 18, 451
organic: spreading coefficient, 633	moment, 12, 451
vapor pressure, 368	permeability, 451
viscosity, 323	and temperature, 457, 458
potential difference vs. other materials,	iron, 453
376	steel, 458, 459
specific heat, 161	pole strength, 12
surface tension, 361	unit pole, 10, 451
thermal conductivity, 143	poles, of earth (see also under Geomag-
thermal expansion, 153	netism), 470, 471
vapor pressure, 371 velocity of sound in, 307	potential, 12
Verdet's constant, 505	properties of materials:
viscosity, 319-328	alloys, 455
pressure effect, 333	alnico, 454, 455
Liter, 6, 47, 61	comal, 455
Liter-atm, 21	Heusler, 458
Lithium fluoride, index refraction, 515, 520,	nickel-iron, 457 nonmagnetic, 458
521	permalloy, 453
Logarithms, 28-31	permanent magnet, 454
Loschmidt number, 6, 49, 51, 54	composition, 454
Lubricants, 335	atomic susceptibility, 451
for cutting tools, 335	basic equations, 451
Lumen, 93	cobalt, 457
Luminosity, 93	composition, 453
factors, 87, 93	correction to ring specimens, 464
field brightnesses, 88	demagnetization factor for rods, 467
Luminous efficiency, 93 Luminous flux, 93	dissipation of energy, 460
Luminous intensity, 93	Steinmetz constant, 460
spectral, 95	earth (see under Geomagnetism), 470,
Lunar craters, 736	502
inequalities, 730	electrical sheets, 456
Lunar node, 730	energy loss, 460
Lunar orbits, 735	high permeability, 453
Lunar parallax, 730	iron, 452, 457, 458, 464, 465
Lunar parigee, 730	annealed, 452
Lunar solar precession, 730	cast, 464
Lux, 93	composition, 465
Hux, 00	intense field, 464
M (1 1. Y) 000	soft, 452, 458
M series (see also under X-rays), 696	temperature, 461
Mach number, 337	very pure, 452, 453
Magnet, permanent, 454	weak fields, 452
Magnetic (see also Magnetism)—	magnetite, 457 metals, 457
data, earth, 470, 502	nickel-iron alloy, 457
sun, 502	temperature, 457
definitions, 451	, , , , , , , , , , , , , , , , , , ,

Magnetic-continued		Magneto-strictive effects: Joule, 451
sheets (electrical), 456		Villari, 451
core losses, 456		Weidemann, 451
steel, 456		Magnets, permanent, 454
carbon, 454		Magnitudes (stellar): absolute, 730
composition, 465		bolometric, 759
electrical sheets, 456		Mass: electron, 50
permeability, 458		H^1 , 50
sheets, 156		H ¹ to electron, 50
temperature, 459, 461		neutron, 654, 664
transformer, 459		rest, 654
core loss (ac), 456 energy loss, 459		standard, 14, 16
		units of, 14
tungsten steel, 454 reluctance, 12		Mass-energy ratio, 654
susceptibility, 13, 18		Mass-velocity ratio, 654
atomic, 451		Mathematical tables: constants, 25
materials, 462		derivatives, 23
molecular, 451		exponentials, 43
specific, 451		factorials, 26
temperature effects, 461		log of, 26
units, 16, 18		formulas: moment of inertia, 27
Gauss, 18		radius of gyration, 27
Gilbert, 18		weights, 27
Maxwell, 18		integrals, 23
Oersted, 18		least squares, 42-45
pole, 451		logarithms, 28-31
Magnetism (see also Magnetic): Curie	con-	moment of inertia, 27
stant, 461		radius of gyration, 27
definitions, 18, 451		series, 24 trigonometric functions, 31-36
demagnetization factor for rods, 467		weights, 27
diamagnetic substances, 451, 461		Maximum velocity, 654
susceptibility vs. temperature, 461		Maxwell, 18, 451
dissipation of energy, 460		Mean free path, 641
energy losses, 460		Measurements (see also Data): definitions, 4
ferromagnetic substances, 451		derived, 2
hysteresis, 451, 460 Steinmetz constant, 460		two factors, 1
magnetic substances, 451		units, 1, 2
moment, 451		choice of, 1
paramagnetic substances, 451, 461		Mechanical equivalent: definition, 8, 93
susceptibility vs. temperature, 461		heat, 8
quantity of, 12		light, 93, 94, 96
and resistance (see Resistance),	463,	Mechanical properties (see also Physical
465		properties), 187
resistance effects: bismuth, 463		alloys, miscellaneous, 217
nickel, 463		special purpose, 220
various metals, 463		aluminum, 192
Steinmetz constant, 460		Babbitt metal, 226
susceptibility, 462		brass, 195
vs. temperature, 461	400	bronze, 195 building materials (see also under Build-
terrestrial (see under Geomagnetism),	468	ing materials), 229
Magnetization intensity, 12, 18		carboloy, 224
energy loss, various materials, 460		concrete (see also under Building ma-
specific: atomic, 451		terials), 229
molecular, 451		copper (see also Wire), 198
Steinmetz constant, 460		alloys. 198
Magnetizing force, 12, 451		wire, 208
Magnetomotive force, 12, 18		hard-drawn, 208
Magneton, Bohr, 49, 54, 654		soft, 208
Magneto-optic rotation, 503		definitions, 187
definitions, 503		elements, 189
Faraday effect, 503		fibers (see also under Fibers), 241
Verdet constant (see also Verdet of	con-	artificial, 243
stant), 504		miscellaneous, 244

Machanical proportion continued	Moreyry gentinged
Mechanical properties—continued	Mercury—continued evaporation, 365
natural, 242	expansion, cubical, 153
quartz, 534 ropes, 245	linear, 147
iron, 209	freezing point, 72
leather (see also Leathers)	heat: content, 177
masonic mortars (see also under Building	latent fusion, 165
	vaporization, 166
materials), 229	of formation of ions, 186
plastics, 239	
ropes, 245	specific, 156, 160, 161
special-purpose alloys, 220	isotopes, 657 magnetic susceptibility, 462
steel, 209 wire, 215	
	mean free path, 638 melting point, 72, 119
experimental value, 216 plow, 215	
	effect of pressure, 119 meniscus, volume, 606
rope, 215	molecular diameter, 638
tungsten, 225	optical constants, 560
white metal (Babbitt), 226	planet, 734
woods, hard, 246	
soft, 254	physical properties, 177
zinc, 225 Machanical units 4, 187	pressure, columns, 606 resistance, 389
Mechanical units, 4, 187	resistivity, 385
Megabarye, 6	
Melting point: alcohol vs. pressure, 118	pressure effect, 389 specific gravity, 48
argon, with pressure, 117, 118	specific heat, 161
compounds, inorganic, 120	
organic, 122	and temperature, 161
effect of pressure, 119	surface tension, 362
elements, 117	at solidifying point, 362
inorganic compounts, 120	temperature of equilibrium with vapor, 72
lime-alumina-silica compounds, 130	thermal conductivity, 138 thermal emf, 378
liquids, as a function of pressure, 118	
low-melting-point alloys, 125, 225	thermal properties, 177
metals, mixtures, 125	thermal resistivity, 144
pressure, 119	thermometers: corrections, 73
nitrogen, with pressure, 118	stem, 73
organic compounds, 122	vapor: mean free path, 638
salts in solution, 131	molecular diameter, 638
standard, 8, 14, 70, 71, 72, 117	pressure at low temperature, 369
secondary, 725	pressure vs. temperature, 372
water, 119	properties of, 177
vs. pressure, 118, 119	velocity of sound in, 307
Melting temperatures: elements, 117	viscosity, 328, 331, 332
eutectic mixtures, 130	effect of pressure, 334
lime-alumina-silica compounds, 130	volume, 299 and temperature, 299
metals, 72	of glass vessel from weight of Hg, 68
standard, 8, 14 Marianus, valuma of maraury, 606	wavelength, Hg ¹⁹⁸ , 568
Meniscus, volume of mercury, 606	Meson, 654, 664
Mercury:	Mesotron, 654
arcs, characteristics, 109	Metals: boiling points, 119
types, 109	compressibility, 285, 286
atomic: heat, 160	crystal structure, 648
radius, 643 volume, 160	diffusion of, into metals, 356
weight, 619	electrical conductivity, 384, 390
	emf vs. platinum, 376, 381
boiling point, 117 pressure, 119	emmissivities, 98
	evaporation, 363-367
compressibility, 282 conductivity, super, 394	equations for, 363
eritical points, 276	constants, 363
density, 48, 177, 299	rate of, 363
and volume, 299	friction, interior, 227
diffusivity, 143	interatomic distances, 648
electrochemical equivalents, 403	magnetic properties, 453, 457-461
electron configuration, 582, 583, 622	melting temperature of mixtures, 125
entropy, 177	molten, viscosity, 327
chicopy, it i	

Metals—continued	Molecule, 618, 654
optical constants, 558	diameter, 638, 642, 644, 645
reflecting factor, 558-560	diatomic, 586
resistance, with pressure, 388, 389	constants, 587
effect of tension on, 387	ground state, 586, 587
temperature, high and low, 393	dimensions, 631, 644
resistivity, 384	evaporation, 639
rigidity, 226	masses, 640
vs. temperature, 227	mean free path, 641
superconductivity, 394	formula, 641
thermal conductivity, 138	number, 638
vapor pressure, 363	of monolayer and equivalent volume, 645
variation of volume with pressure, 286	pressure, 638
Meteorology (see also Air and Atmosphere),	temperature, 638
592	organic, 646
Meteors, composition, 626	cross section, 646
Meter, 6, 61	length, 646
candle, 93	pressure, gases (units), 638
Metric slug, 337	protein, 631
Metric system: conversion to British Im-	rates of incidence, 639
perial, 64, 66	velocity, 639, 640
conversion to U. S., 61	formula, 639
prefixes, 782, 783	value, 640
values in British Imperial, 64	volume, inert gas atoms, 646
Mev, 21	Molybdenum, radiation and other proper-
licro-, 6, 782	ties, 103
Micron, 6, 63	Moment of inertia of various bodies, 27
Aicroscope, media for determination of re-	Momentum, 6
fractive index, 561	angular, of nucleus, 654
Ail, 6, 63	Month, 730
Mile, 6, 62	Moon: age, 741
nautical, 62	albedo, 737
statute, 6, 62	craters, 736
Milky Way, 746	dimensions, 734
pole, 731	mass, 734
Ailli-, 6	orbit, 735
Ailliambert, 93	eccentricity, 729
Ailliphot, 93	general precession, 730
Ainerals: density, 294	inclination, 730
dielectric constant, 428	parallactic, 731
electrical resistivity, 395 index of refraction	physical data, 734
biaxial, 526	temperature, 734 Mortars (see under Building materials)
monorefringent, 522	Mountains, 772
uniaxial, 523	Musical instruments (see also under Sound),
rock-forming, bulk moduli, 740	310, 311
specific heat, 162	peak power, 310
IKS system of units, 15	Musical scales, 312
Mobility of ions, 644, 645	Mutual inductance, 13
Modulus of elasticity, 6, 189	
Iodulus of rupture, 188	Nebulae (see also under Astronomy), lines,
Mol (mole), 6	745
Molecular constants of diatomic molecules,	Neptune, 734
586	Neon, compressibility, 264
energy, 586	standard wavelengths, 568
conversion factors, 618	Nernst effect, 451
dissociation, 586, 587	Nernst glower, 103, 104
electronic, 586	Neutralization, heats of, 186
rotational, 586	
states, 587	
characterized, 586	mental), 664
designated, 586	Neutron, 654
electronic, 586	slow to produce radioactive isotopes, 667
for ground state, 587	radioactivity, 667
intermolecular distances, 586	Newton, 6
equilibrium position, 587	Nickel, radiation from, 101
moment of inertia, 586	soot covered, 101

813

Nickel-iron alloy, temperature effects, 457	Nuclear reaction—continued
Nitrogen, abundance, 625, 626, 628	cycles, carbon, 666
atomic weight, 47	proton-proton, 666
boiling point, 117	temperature, 666
compressibility, 264	energy produced, 666
high pressure, 267	rates, 666
conductivity, thermal, 142	stars, 665
density, 269	carbon cycle, 666
critical, 276	proton-proton cycle, 666
dielectric constant, 436	time required, 666
diffusion, coefficient of, 356	Nucleon, 652, 654
electric dipole moment, 441	Nucleus, 654
electron configuration, 582, 584, 622	mass, 651
expansion, thermal, 154	Nutation, 730
heat, latent, 166	constant, 730
heat capacity, 163	Nylon, 244
index of refraction, 533	
ionization energy for production of ion	Obliquity of ecliptic, 730
pair, 711	Observatories, magnetic values (see also
isotopes, 655, 658	Geomagnetism), 481
Joule-Thomson effect, 279	Oceans, 772
magnetic susceptibility, 462	area, 773
melting parameters, 118	area vs. depth, 773, 774
melting point, 117	currents, 778
pressure, 119	depth and velocity, 778
molecular diameter, 643	volume transported, 778
molecular velocity, 640 molecules, number of, 638, 642	depth, greatest mean, 773
percent in air, 592	dissolved, material, 777
percent in atmosphere, 592	earthquake waves, velocity, 777
physical properties, 190	geochemistry, 776 greatest depth, Atlantic, 773
pressure, critical, 276	Indian, 773
solubility in water, 358	Pacific, 773
temperature, critical, 276	physical data, 773
thermal properties (molecular), 272	topography, ocean floor, 773
Van der Waal's constant, 262	volume, 773
vapor pressure, 360	waves (see Waves at sea)
at low temperatures, 360	Oersted, 18
relations, 119	Ohm, 20
velocity of sound in, 306	Oils, index of refraction, 530
Verdet's constant, 506	petroleum, compressibility, 284
viscosity, 331	thermal expansion, 284
volume, conversions, 260	viscosity, 334
pressure relation, 119	Optical constants, metals, 558
relative, 261	crystals (see also Crystals), 509, 513
Nitroso-dimethyl-anilene, 519	glass (see also Glass), 509-514
Noise (see also Sound), 309	pyrometry, 97
Novae (see also under Astronomy), 757	brightness temperature, 7, 97
Nuclear physics, 651	correction to true, 99
artificial disintegration, 651 produced, 651	calibration of pyrometer, 97
	effective wavelengths, 97
binding energy, 653 cosmic rays, 653	emissivity, 98
definition of terms, 653	monochromatic screen, 97
fields, 651	effective wavelengths, 97
mass-energy, 654	true temperature, 97, 99
mass-velocity, 654	wavelength used, 97, 537
particles, 652	Orbits, planets, 734
attraction, 652	Orchestral instruments, frequency range,
fundamental, 664	311
high-energy, device for producing, 657	Organic compounds, boiling point, 122
mass, 654	density, 122
formulas, 654	liquids, dielectric constant, 424, 439
velocity and mass, 654	spreading coefficients, 633
radioactivity, 654	vapor pressure, 368
Nuclear reaction, 665	melting point, 122
barrier penetration, 665	solubility vs. temperature, 358

Osmium filament, color temperature, 104 Particles-continued Oxides, brightness, 104 deuteron, 664 blue brightness, 104 electron, 664 electrical resistivity, 395 negative, 664 molten, viscosity, 326 positive, 664 percentage emissivities, 101 meson, 664 Oxygen, abundance, 625 neutrino, 664 atomic weight, 47, 619 neutron, 664 boiling point, 117 production, 664 combustion constant, 179 photon, 664 compressibility, 264 positron, 664 proton, 664 conductivity, thermal, 142 density, 48 high-energy, devices for producing, 657 mass and velocity, 652 critical, 276 diameter, 644 range, 654 dielectric constant, 436 various, De Broglie wavelength, 665 diffusion, coefficient of, 356 velocity, 665 electric dipole moment, 441 Peltier effect (see also Emf, thermal), 13, electrochemical equivalents, 403 379 electron configuration, 582, 584, 622 coefficient of, 13 entropy, 274 iron-constantan, 381 expansion, thermal, 154 metals vs. lead, 380 nickel-copper, 381 factor to ideal gas, 48 heat capacity, 163 Peltier heats, pressure effects, 382 index of refraction, 533 Pendulum, length of seconds, 717 ionization energy for production of ion vs. latitude, 717 Pentane candle, 92 pair, 711 isotopes, 655, 658 Perihelion, 731 magnetic susceptibility, 462 Periodic system, 621 melting point, 117 Permalloy, 453 Permeability, 10, 457 molecular data, 274 molecular diameter, 644 iron, 457, 458 nickel-iron, 456 molecular velocity, 640 molecules, number of, 642 steel, 458 Petroleum percent in air, 592 (seealsoOil): combustion values, 182 percent in atmosphere, 592 compressibility, 284 physical properties, 190 density, 284 point, 71 pressure, critical, 276 thermal expansion, 284 solubility in water, 358 viscosity, 284 рн, 634 temperature, critical, 276 thermal properties (molecular), 274 sea water, 777 Van der Waal's constant, 262 Phot, 93 vapor pressure, 360 Photoelectric effect, 636 at low temperatures, 360 equation, 636 velocity of sound in, 306 Photoflash lamps, characteristics, 110 Verdet's constant, 506 Photographic materials, 563 viscosity, 331, 642 range of, 566 volume, relative, 261 Photography, 562 volume conversions, 260 characteristic curves, 562, 566 comparison of nuclear and optical emul-Packing fraction, 654 sions, 564 definitions, 562 Palladium point, 72 Paramagnetic substances, 451 developers (formulas), 563 edge gradient values, 564 Curie constant, 461 formulas for developers, 563 temperature, 461 Parsec, 63, 731 illuminants, relative photographic efficiency, 565 Particles, attraction, 652 lamps for, 110, 111 range, 652 nuclear track plates, 567 De Broglie wavelength, 653 emulsions, 567 elementary, 651, 664 nuclear, 567 force, attractive, 652 specification, 567 optical emulsions, 564 range, 652 photoflash lamps, 110 fundamental, 664 alpha particle, 664 range of spectral sensitivity, 566 characteristics, 664 resolving power, 564

Photography—continued	Physical properties of materials—continued
edge gradient, 564	bronze, 195
value, 565 sensometric constants for type plates and	carboloy, 224 copper, 198
films, 563	Dow metal, 220
spectral sensitivity, 566	hardness, 187, 224 ,
films, 566	iron, 209
range, 566	low expansion, 221
Photometric standards, 92, 94	low melting, 225
candle, 94	magnetic, 455
color temperature, 94	alnico, 454, 455
international, 92	Heusler, 458
low brightness, 95 standard of 1948, 94	permalloy, 453
units, definitions, 93	superpermalloy, 453 mirror, 222
obsolete, 92	miscellaneous, 217
Waidner-Burgess standard, 94	resistance, 221
color, 94	sealing to glass, 220, 221
value, 94	soldering, 223
Photometry, 87	special purpose, 220
apostilb, 93	steel, 209
apparent candlepower with distance, 95	stainless, 213
brightness, 93	tungsten, 214, 224
candle, 93 Waidner and Burgess, 94	wire, 215 strength with lightness, 220
conversion factors, 94	thermocouples, 221, 222
definitions and units, 93	white metal bearing, 226
equivalents, 94	aluminum, 192
eye as measuring instrument, 89	concrete (see under Building Materials)
effect of color, 90	copper, 198
Fechner law, 90	crystals, 515, 529
foot-candle, 91, 93	definitions: elastic limit, 187
flux, luminous, 93, 94	Ericksen values, 187
radiant, 93, 79	hardness, 187 Brinell, 187
glare, effect on sensibility, 89 illumination, 93	Shore sceleroscope, 188
light, 87	modulus of elasticity, 188
lumen, 93	Young's, 188
luminosity factors, 87	proportional limits, 188
vs. field brightness, 88	ultimate strength, 188
lux, 91, 93	compression, 188
mechanical equivalent of light, 93	tension, 188
phot, 93	elements, 189
photon, 93 relation, instantaneous threshold to field	fibers (see Fibers) glass, 534
brightness, 88, 90	special, 534
vs. field brightness, 90	hardness, 187
spherical candle, 93	elements, relative, 228
standards (see Photometric standards),	measuring, 187
92, 94	units, 187
obsolete, 92	interior friction, 227
Waidner-Burgess, 94	iron, 228
stilb, 93 symbols and definitions, 94	isolated tubular conductors, 418 leather, 232
units, 93, 94	light hydrocarbons, 293
I'hoton, 93, 654	masonic mortars, 229
Physical constants (see also under name of),	plastics, 239
20, 46	optical, 240
relations, 46	Poisson's ratio, 227
Physical properties of materials (see also	rigidity modulus, 226
Mechanical properties), 187	temperature effects, 227
alloys: aluminum, 192	rope, 245
Babbitt metal, 226	rubber, 234 artificial, 236
bearing metal, 226 beryllium, 220	compression, 237
brass, 195	natural, 235
brazing, 223	rupture, modulus, 188
	, ,

Physical properties of materials—continued	Pressure—continued
steel, 228	freezing point of water, 119
strength, ultimate, 188	gases, critical, 276
tungsten, 225	melting point, 119
wood, 246	units of, 4, 638
zinc, 225	Van der Waal's equation, 262
Pi (values), 6, 25	volume relation (see also Compressi-
Piezoelectricity, 432	bility): argon, 118
crystals, 432	compounds, 286
strain coefficient, 432	gases, 261
unit, 432	metals, 286
Pile yield of isotopes, 670	nitrogen, 119
Planck's constant, 49, 51, 54, 79, 80	solids, 286-289
Planck's law, 7, 79	Probable error, 37
Planetary precession, 731	Propagation temperature, dust, 634
Planets (see also under Astronomy), 734	Proportional limit, 188
orbits, 734	Proteins (see also Colloids), 631
physical data, 734	Proton, 50, 654, 664
satellites, 735	mass, 50
temperature, 734	molecules, 631
Plastics, characteristics, 239	pH stability, 634
dielectric constant, 239	synchrotron, 657
dielectric strength, 239 elasticity, 239	Pyrometer, optical (see also Optical pyrom-
index refraction, 240	eter), 97 glass, 537
optical, 240	Pyron, 9
properties, 240	1 yron, s
specific gravity, 239	
thermal conductivity, 239	Quantity of electricity, 10, 11, 20
thermal expansion, 239	Quantity of light, 94
Platinum, color temperature, 103	Quantum, 21, 89, 654
cooling by radiation, 116	Quartz, crystal, 517, 518
emissivity, 98	compressibility, 287
freezing point, 72	dielectric constant, 428, 430
thermocouples, 75	fibers, characteristics, 534
Pluto, 734	fused, 518
Poise, 318	index of refraction, 518
Poisson's ratio, 227	physical properties, 534
Polarized light, rotation of plane, 557	relative, volume with pressure, 289
various materials, 557	resistivity, 396
Pole, Milky Way, 731	rotation of plane of polarized light, 558
North, 470	transparency, 517, 546
South, 471	
Positron, 651	Radian, 6
Potassium bromide, 515, 516	Radiancy, 79
Potassium chloride, index refraction, 515	Radiant energy, 79
Potassium iodide, 515, 516	absorption (see also Absorption), 517,
Potential difference, contact, 376	535, 546
alloys, 379	blackbody, 79
aluminum vs. platinum, 376	constants, 50, 80
electrode, 637	first (c ₁), 50, 54, 80
metals, 376, 378, 380	density, 50
in solution of salts, 378	second (c ₂), 50, 54, 80
solids vs. liquids, 376	different values, 80
voltaic cells, 377	definitions, 79
Potential excitation, 745	Stefan-Boltzmann constant, 50, 52, 80
Pound (see under name of)	Wien displacement constant, 54, 80
Pound weight, 6	cooling by, 112
Poundal, 6	definitions, 79
Power, 6, 17, 22	density, 50
factor, 433	flux, 79, 93, 94
insulating materials, 433	density, 79
radio frequency, 433	intensity of source, 79
Precession, 738	mechanical effects, 671
Pressure, boiling point, 119	nickel, 101
columns of mercury and water, 606	reflection, formula, 549
conversion factors, 267	light, 549

Radiant energy-continued	Radioactivity—continued
solar (see Solar radiation)	life
spectral, 79	range for determination, 618
standard radiator (see also under Black-	materials, 673, 675
body), 79	age, 679
symbols, 79	alpha-ray spectrum, 680
temperature, 70	beta-ray spectrum, 683
total, earth's surface, 713	energy emitted by, 689
our galaxy, 713	radium in equilibrium, 691
universe, 713	isotopes, 675
transmission, various substances, 535-556	number, 672
units, 36	natural, 673
wavelength units, 509	characteristics, 673
Radiation, alpha ray, 653-664	spectra, 680-689
beta ray, 653	original names of, 675 neptunium family, 676
cathode, 653	protection, distances, 686, 689, 690
constants, 50, 54, 80	lead, thickness, 690
cosmic, 651, 653, 710	other materials, 684
earth's surface, 713	radiation: alpha rays (see also Alpha
electromagnetic (see Radiant energy)	rays), 672
extraterrestrial, 449	beta rays (see also Beta rays), 672
gamma, 653, 672	gamma rays (see also Gamma rays),
mechanical effects, 671	672
our galaxy, 713	ionization, 672
radioactivity, 654, 672	radium in equilibrium, 691
receivers, 548 solar, 721, 723	thorium family, 676
over disk, 722	uranium family, 677
spectral, outside atmosphere, 721	Radio propagation, 434
sea level, 723	antenna array, 434
universe, 713	direction control, 434
	formula, 435
Radioactivity, 654, 672 actinium family, 678	pattern, 434
alpha rays, 680	attenuation, 443
artificial, 682	coefficient, 442
long life, 667	constant, 442
slow neutron produced, 667	formulas, 443
atoms (natural), 672, 680	ground, 444
number, 672, 680	low frequency, 442
beta rays (see also Beta rays), 672	formula, 442
breakdown: character, 672	oxygen (atm), 449
decay constant, 673, 675	rain, 449 sea water, 444
rate, 672	water vapor, 445
units of, Curie, 672	formulas, 443
Rutherford, 672	frequency: critical, 444, 445
danger from, 686, 689	different layers, 448
range, 686, 689	high, 446
disintegration, 672	low, 442
units for rate of, 672	maximum usable (muf): 445
elements, number, 672	2000 km, E-layer, 448
emission characteristics, 672	4000 km, F ₂ -layer, 446
three rays, 672	factors for calculating, 448
energy of, 672	F ₂ -layer muf, 448
radiated, 689	other distances, 448
families (natural), 675	path length layers, 448
artificial additions, 675	reflection, 444
characteristics, 675	different layers, 444
actinium $(4n+3)$, 678	frequency, 444
neptunium (4n+1), 676 thorium (4n), 676	ion density, 445
uranium (4n), 676 uranium (4n+2), 677	layers, 445 minimum height, 445
gamma rays (see also Gamma rays), 653,	skip distance, 445
672	Radio radiation, 434
isotopes, 672	directivity, 434
characteristics, 667	extraterrestrial, 449
neutron produced, 667	patterns, 434
nearron produced, 001	F

Radio radiation—continued	Resistance—continued
reflection, 444	increase of, due to transverse magnet
atmosphere layers, 444	field, nickel, 463
transmission, 444	manganin, under pressure, 389
factors, 444	mercury, under pressure, 389
over ground, 444	metals, effect of tension, 387
bad, 444	pressure, 388
good, 444	nickel, magnetic field, 463
over sea water, 444 Radium:	of conductor, 11 pressure coefficient, 388, 389
danger ranges for persons working with	proximity factor, 419
Ra, 686, 689, 690	ratio, wire diameters, ac to de resistance
amounts of radium, 690	419
emanation, vapor pressure (cmHg), 682	skin effect, 417
energy emitted by 1 g Ra in equilibrium	standard, 16, 19
691	annealed copper, 404
protection for 8 hours per day exposure,	temperature
686	high, 393
distance, 686	low, 393
thickness of lead, 690	tension, 387
safe working distance, 689	tubular conductors, 418
Radius: atomic, 643, 644	frequency, 418
gyration, 27	variation with pressure (metals), 388
ionic, 648	Resistivity (see also Conductivity), 12, 1
molecules, 645	19
Range of particles, 654	alloys, 384, 390
Rankin temperature scale, 9	aluminium, 404
Rayon, 243	at high and low temperatures, 393
Reaumur temperature scale, 9	copper, 404
Receivers for radiation, 548	temperature coefficient, 406 dielectrics (solid), surface, 395
blackening, 548 Reflection factor: angle, 549, 550	volume, 395
building materials, 553	elements, 384, 387
diffuse, 551, 555	glass vs. temperature, 396
formula, 549	mercury vs. pressure, 389
long wavelengths, 554, 555	metals, 384
materials for, 554, 555, 556	vs. pressure, 388
metals, 550, 552	vs. temperature, 385
ultraviolet, 550	minerals, miscellaneous, 395
pigments, dry, 551	oxides, 395
powders, 550, 551	plastics, 239
sand, 554	pressure effect, 388
snow, 554	rocks, 395
surfaces, with angle, 550	sea water, 396
tungsten, 555	soils, 395
Refraction, index of (see also Index of Re-	solutions (electrolytic), 397
fraction), 509, 532	surface, solid dielectric, 395
Refractive indices with microscope, 561	temperature: coefficient, 384
materials for, 561 Reluctance, 18	low, 393 thermal, 44
Resilience, 6	volume, of solid dielectrics, 395
Resistance (electric), 11	water, natural, 396
alternating to direct current, 419	sea (high-frequency), 396
diameter wire for ratio 1.01, 420	Resolving power (photography), 564
average pressure coefficients for metals,	Rest mass, 654
389	Restrahlung bands, various materials, 555
bismuth, temperature variation,	Reverberation time, 315
transverse magnetic field, 463	optimum, 316
change of: metals, transverse magnetic	room type, 317
field, 463	Reynolds number, 337
nickel, 463	Rigidity modulus, number of materials, 22
high-frequency, conductors, 417-419	and temperature, 227
calculation of, 417, 418	Ring (magnetic) specimens, corrections fo
resistance ratio, 418	464
temperature, 393	Rock salt: index of refraction, 518
human body, 375	transmission, 517

Rocks: bulk modulus (rock forming ma-	Showers, cosmic rays, 654
terials), 740	Siegbahn, wavelength scale, 48, 54
dielectric constant, 426	
elastic constants, 740, 741	Silver chloride, 520
electrical resistivity, 395	Sines, 32
specific heat, 162	Sky, illumination due to, 725
Rods, demagnetizing factor, 467	Slug, 6, 337
Rope, 245	metric, 337
fiber, 245	Snow reflection factors, 554
wire, 215	Sodium carbonate, 550
plow, 215	Sodium chloride, 531, 550
specification, 215	Solar constant, 719
steel, 215	monthly means, 720
values, 215	
Rotation of plane of polarized light, 557	1920-1952, 720
Rubber:	yearly means, 720
artificial, 236	Solar corona, 744
physical properties, 236	emission lines, 744
comparison, 237	flares, 743
compressibility, 237	Solar irradiation at sea level, 723
natural, 235	latitude, 725
physical properties, 235	monthly, 720
strength, 235	Solar motion, 731
Rupture, modulus, 188	elements, 731
Rutherford, 672	Solar parallax, 731
Rydberg constant, 48	Solar radiation, 719
deuterium, 48, 51, 54	air masses, 720
helium, 48, 51	vs. sun's elevation, 720
hydrogen, 48, 51, 54	atmospheric transmission, 719
infinite mass, 48, 51, 54	biological effective component, 724
mmirte mass, 40, 01, 01	constant, 720
Carlour Taturala constant 59	corona emission, 744
Sackur-Tetrode constant, 52	distribution over disk, 722
Satellites (see also under Astronomy), 734,	flares, 743
735 Saturn 735	illumination, 725
Saturn, 735	sky, 725
Schrödinger constant, 51, 54	sun, 725
Screens (woven wire), 188	intensity, 721, 725
Sealed-beam lamp, 108	outside atmosphere, 721
Seas, physical data (see also Oceans), 773	mean intensity, 721
Sea water (see also Water), 774	relative intensity, 724
Second radiation constant, 50, 80	spectral distribution, 724
precaution for use, 80	Mount Wilson, 724
value, 80 Seconds pendulum, length vs. latitude, 717	outside earth's atmosphere, 721, 722
	sea level, 723
Self-inductance, 13	sunlight, distribution over Mount Wilson,
Series, mathematical, 24 Series relations in atomic spectra, 578	724
Series relations in atomic spectra, 578	illumination due to, 725
Bohr atom, 579	sunshine, duration, 724
energy levels, designations, 579	total, 719
J values, 570, 580	to earth, 719
L values, 579 quantum principle, 581	variation with time and latitude, 725
	Wolf's sunspot number, 727
Rydberg constant, 578	
S values, 569 symbols, 580	Solder, 223 flux, 223
	hard, for aluminum, 223
spectral designation, 580, 581	for brass, 223
quantum principles, 581	for copper, 223
spectral levels, 581	for gold, 223
Pauli principle, 580	for iron, 223
spectral terms, 579	soft, for brass, 223
means of identification, 580	for copper, 223
spectroscopic properties, neutral atoms, 582	for gold, 223
	for iron, 223
singly-ionized atoms, 584 terms from electrons, 579, 580	for lead, 223
wave numbers, 578, 579	for zinc. 223

Solids, compressibility, 286	Sound—continued
contact difference of potential, 637	speech:
dielectric constant, 427	consonants, 309
electron emission, 635, 636	frequency of occurrence, 309
infrared reflection, 548	relative power, 309
infrared transmission, 547	power, 309
specific heat, 155-158	men, 310
velocity of sound in, 306	women, 310
Verdet's constant, 504	pressure field around head, 313
Solubility, 357	vowels, frequency of occurrence, 309
gases in alcohol, 360	relative power, 309
gases in water (temperature variation),	resonance values, 311
358, 360	velocity:
inorganic salts (temperature variation),	in air, 306
357	for various densities and heights, 594
organic salts (temperature variation), 358	in gases, 306
organic solvents, 359	in liquids, 307 in sea water, 307
pressure effect, 359	in solids, 306
vapors, 360	in vapors, 306
alcohol, 360	~
water, 360	Spark in air, voltage required vs. distance, 421-423
Solutions, density, 300-305	ac, 421
molecular conductivity, 398, 399	dc, 421
Solvents, organic, 359	
boiling point, 359	Specific gravity, 291
Sound (see also Acoustics), 309-317	API, 290
aconstics, architectural, 315	Baumé scale, 289
attenuation coefficient vs. humidity, 316	Specific heat, 9, 155
reverberation time, 315	aluminum oxide, 162
and frequency, 317	ammonia, liquid, 162
as function of volume, 317	saturated, 162
calculated, 315	at fusion, 157 atomic, 160
optimum, 316	electricity, 379
and volume of room, 317	elements, 155
bel, 309	formula for (true), 157
consonants, frequency of occurrence, 309	gas, 163
power, relative, 309	ratio, 164
decibel, 309, 314 ear sensitivity to: binaural, 314	hydrocarbons, light, 293
differential, 314	liquids, various, 161
frequency range, 314	materials, various, 158
monaural, 314	mercury, 161
threshold, 314	metals, 157
fundamental frequency, female voices, 310	minerals, 162
male voices, 310	rocks, 162
hearing acuity: and frequency, 314	silicates, 164
loss by groups, 315	solids, various, 158
thresholds, 314	true, 157
levels, various locations, 309	temperature, 157
musical: power peak, various instruments,	vapor, 163
310	water, 161
range frequency, orchestral instruments,	Specific inductive capacity (see Dielectric
311	constant), 11
scales, 312	Specific intensity of magnetization, 461
cent, 312	Specific luminous radiation, 93
equally tempered, 312	Specific susceptibility, 451
frequency and piano key numbers, 313	Spectra:
frequency ratios, two scales, 312	alpha ray, 681
intervals, 312	artificial, 682
just, 312	natural, 680, 681
semitone, 312	atomic, series relations, 578
noise levels, various locations, 309	energy state, 581
pressure levels, 309	beta ray, 653
pressure unit, 309	blackbody, 95
sensitivity of ear, 314	Bohr atom, 579

Spectra—continued	Steel—continued
Catalán's analysis, 579	stainless, 213
classes, stars, 746, 747, 753	transformer, energy losses, 459
emissivities, 8, 98-103	wire, 215
energy levels, 581	specifications, 215
quantum numbers, 579	wire rope, 215
rotation of electron, 580	specifications, 216
Rydberg constant, 578	Stefan-Boltzmann constant, 50, 80
spinning electron, 580	Stellar system (see also under Astronomy), 728, 746
terms, 579, 580 symbols, 579	Steradiancy, 79
X-rays, 699	Stilb, 93
Spectral intensity, 79, 82, 85	Stoke, 321
Spectral luminosity factors, 87, 90	Stone (see under Building materials)
Spectral luminous flux, 93	Strain, 7
Spectral luminous intensities, 95	Stress, 7
blackbody at various temperatures, 95	Sugar, combustion values, 182
brightness of blackbody, 96	Sugar solutions:
crova wavelength, 96	density, 304
mechanical equivalent of light, 93, 96	Baumé degrees, 305
Spectral radiant energy, 79	Brix degrees, 305
Spectral radiation, 79	specific gravity, 305
Spectral sensitivity (photographic), 566	Sulfur dioxide, 266
Speech (see Sound)	compressibility, 266
Speed (photography), 562	Sun (see also under Solar): area, 731
Spherical candlepower, 93	brightness, 92
Spin, 580 Spreading coefficient (see Colloids)	calculated, 92
Spreading coefficient (see Colloids) Square statute mile, 62	density, 731
Standard atmosphere, 47, 345, 593	diameter, 731
Standard observer, 1931 I.C.I., 90	distance to earth, 731
Standard temperature, 9, 71	eclipses 1950-2000, 742 electric data, 502
Standard wavelengths, 568	illumination due to, 725
cadmium red line, value of, 569	magnetic data, 502
elements, prominent lines in simple spec-	mass, 731
tra, 575, 577	orbit, 770
extreme ultraviolet standards, 571	matter within, 770
Fraunhofer lines, wavelengths, 577, 578	radiation, 719-725
preliminary values of mercury ¹⁰⁸ , 568	at sea level, 723
primary standard, 568	biological effective, 724
cadmium, 568 mercury, 568	over surface, 722
secondary standards, 568-571	radius, 731
iron, 571	shine, duration, 724
krypton, 570	latitude, 724 time, 724
neon, 568	spots, 727
simple spectra, wavelengths and relative	annual means, 727
intensities, 575, 577	volume, 731
solar wavelengths, 571, 572	Sun and sky illumination, 725
tertiary standards, iron, 571	Mount Wilson, 724
Standards, fundamental, 13	Superconductivity, 394
Stars (see also under Astronomy), 728, 746	Surface tension, 361
Statahenry, 20	liquids, 361, 362
Stateoulomb 20	miscellaneous, 361
Statcoulomb, 20 Statfarad, 20	metals at solidification point, 362
Statohm, 20	salts in water, 361
Statute mile, 63	solutions of salt and water, 361
Statvolt, 11, 20	various materials, 362
Steam: saturated, properties, 169, 175	water plus alcohol, 361
superheated, properties, 176	Sylvite, 519
Steel, composition of, 465	Synchro-cyclotron, 657
high speed, 224	Synchroton, 654, 657
magnetic properties, 452, 457	Tangents, 32
mechanical properties, 209	Tantalum: physical properties, 98, 103
permeability, 457, 458	radiation characteristics, 103

Tologopas largest in use 798	Temperature—continued
Telescopes, largest in use, 728	Temperature—continued
Temperature, 7	standard fixed points (see also Fixed
brightness, 97	points), 8
correction to true, 99	thermocouple data, 75
variation with c2, 86	true, 99
color, 8	less brightness, 99
and brightness, 104	various places (monthly means), 726
carbon, 104	Wien equation, corresponding tempera-
various substances, 104	tures on 1948 scale, 72
conversion tables, inside front cover	
	Tenth-meter, 7
correction to true, 99	Terrestrial magnetism (see Geomagnetism)
corrections to mercury thermometer, 72	Thallium brome-iodide, 515
critical (gas and vapors), 276	Thermal capacitance, 9
definition in different ranges, 70	
earth:	Thermal conduction vs. temperature, 114
highest. 726	Thermal conductivity, 9
lowest, 726	alloys, 138
selected stations, 726	cork, 139
surface, 726	cotton, 139
variation with depth, 727	fireclay, 141
electron volt, equivalent, 21, 54	fourier, 144
fixed points: °C 1948, 71	various materials, 144
	gases, 142
primary, 71, 72	insulating materials, 139
gold point, 71	leather, 233
ice point, 47, 71, 72, 73	liquids: as a function of pressure, 143
oxygen point, 71	organic, 142
silver point, 71	
steam point, 71	materials, various, 136, 139, 141
sulfur point, 71	metals, 138
secondary, 70, 72	organic liquids, 142
flames, 182, 293	plastics, 239
ice point, 47, 73	rocks, various, 136, 140
international temperature scale of 1927,	rubber, 140
70	salt solutions, 136
and older scales, 74	substances, various, 136, 141
international temperature scale of 1948,	water, 142
71	salt solutions, 136
	woods, 140
and 1927 scale, 74	wool, 140
interpretation for different ranges, 74	
Wien's equation, 72	Thermal emf (see Emf)
interstellar space, 763	Thermal expansion, coefficient of, 8, 145
measurement, 71, 72, 87, 97	alloys, 149
correction for emergent mercurial	crystals, 152
thread, 72, 73	cubical, 148, 153
old thermoelectric scales, 74	elements, 145
planets, 734	gases, 154
reduction to gas scale, 73	leather, 233
reduction to thermodynamic scale, 73	liquids, 153
reference tables for thermocouples, 75	metals, 145
scales, 75	miscellaneous materials, 152
Celsius, 8	plastics, 239
Centigrade, 8	rubber, 235
Fahrenheit, 8	Thermal properties: gases, 259
	liquid ammonia, 178
gas to thermodynamic, 73	saturated steam, 168, 169, 175
international:	
1927, 70, 71	saturated water, 168
1948, 70, 72	superheated steam, 176
comparison with 1927 scale, 71	Thermal resistivity in fouriers, 144
Kelvin, 9	Thermochemistry, various materials, 185
old, 74	heat of formation, 186
radiant, 9	Thermocouples, reference tables for, 74-78
Rankin, 9	chromel-alumel, °F, 78
Reaumur, 9	iron-constantin, °C-°F, 76, 77
thermodynamic, 9	platinum to platinum 10 percent, °C-°F,
secondary points (1948), 70, 71	75
standard, 71	Thermodynamic laws, 9

Thermodynamic temperature, 9, 14	Transmission of radiation-continued
Thermodynamics, 9	light through space, 771
Thermoelectric effect, 13, 379	long wavelength, 545, 547
properties at low temperatures, 381	magnesium oxide, 547
vs. copper, 379	optical crystals, 517, 545
vs. lead, 379 alloys, 379	red pyrometer glass, 537
metals, 379-381	rock salt, 517, 545 sapphire, 547
pressure effect, 382	silver chloride, 547
temperature, 387	solids, 547
vs. platinum	substances, various, 546, 547
alloys, 381	sylvite, 517
aluminium, 376	thallium bromide, 517
cadmium, 383	thallium bromide-iodide, 517
metals, 376-390 nickel, 389	thallium chloride, 547
zinc, 390	various materials, 554, 556 water, 536
Thermomagnetic effects, 508	Transparency:
Thermometry: correction for emergent	atmospheric, for ultraviolet, 538
thread, 72	substances, various, infrared, 546
mercury thermometers, 72	various, for long wavelengths, 555
reduction, gas thermometer to thermo-	ultraviolet, for atmospheric components
dynamic scale, 73	538
corrections for various gas thermometers, 73	water, 536
Thomson effect, microvolt per degree, 382	water vapor (steam), 545 Transverse galvanomagnetic and thermo
Thomson heats, 382, 383	magnetic effects, 507
pressure effects, 382	Treatment of experimental data (see under
temperature, 383	Data)
Thunderstorm electricity (see also Light-	Triboelectricity, series, 375
ning), 614	vs. silica, 375
Tides: height at various places, 779	Trigonometric functions, 32
mean sea level, 779	cosine, 32
geodetic, 779	cotangent, 32 sine, 32
geographic, 779 neap, 779	tangent, 32
spring, 779	Tritium, 654
Time, equation of, 728	Triton, 654
unit, 14	Troy measurements, 63, 64, 66
Torque, 7	Tungsten (Wolfram), characteristics, 102
Transformation: eutectic mixtures, 130	color temperature, 102, 103
lime-alumina-silica compounds, 130	emissivity, 99
of units, 1, 57 Transformer rectifier, 657	lamp, 106
Transitions, crystals, 126	melting point, 72 pressure, 119
Transmission of radiation:	radiation, 102
air, 538	Twilight, 731
components, 538	
moist, 546	Ultimate particles, 654, 657
alum, 545	strength, materials, 187, 188
atmospheric transparency for ultraviolet, 538	Ultraviolet, transparency for atmospheric
cesium bromide, 547	components, 538 Uniform point source, 92
color screens, 535	Unit pole, 451
erystals, 515, 517	United States system of weights and meas-
dyestuff solutions, 538	ures, 60, 61, 63
gases, 547	metric to, 60, 61
glass, 512	to metric, 60, 62
Jena, 514	Units: absolute, 2
lead chloride, 547 optical, 512	ampere turn, 18
red pyrometer glass, 537	capacity carrying copper wires, 416
effective wavelength, 537	electrical, 16
light filters: Bausch and Lomb, 537	mechanical, 60
Corning glass, 536	physical, 60-67
narrow band pass, 536	specific inductive, 11
spectral regions, 536	cgs, 15
Wratten, 536	changing, 57

Units-continued	Units-continued
choice of, 1	intensive, 1
common, 56	legal definitions, 60
abbreviations, 56	linear, 60 list of, 56
spelling, 56	magnetic, 18, 451
conversion (see Conversion factors)	mass, 60
cubic, 63	measurements, 1
defined (see under name of unit)	numeric, 1
derived, 2, 58 dimensions, 58	unit, 1
electrical and magnetic, 59	mechanical, 4
geometric and heat, 58	metric, 61, 62
different systems, 15	MKS, 15
absolute, electric and magnetic (1948),	number of, 2
19	numerically different, 15
relation to international (1927), 20	photometric, 94
ampere turns, 18	proposed systems, 15
cgs, 15, 20	radiant energy, 136
electrical, 10	radiant wavelength, 509
dimensional equations, 11, 59	relations among wire size units, 40
equivalents of discarded systems, 22	resistivity, 11
relative value of 3 systems, 20	square, 60 transformation of, 1, 57
Gaussian, 15	Universe:
heat, 58	abundance of elements, 625
dimensional equation, 58 flow, 136	cosmic rays, 713
international electrical, 19	mass density, 713
magnetic units, 451	radiant energy, 713
ampere turn, 18	Uranium:
Gauss, 18	elements beyond, 619, 623, 670
Gilbert, 18	americium, 619, 670
Maxwell, 18	berkelium, 619, 670
Oersted, 18	californium, 619, 670
ordinary, 18	curium, 619, 670
pole, 12	methods of producing, 670
practical, 16	neptunium, 619, 670
some proposed, 15	plutonium, 619, 670
MKS, 15	radioactive properties, 676, 677 Uranus, 734
dimensional formulas, 2, 58, 59	Clands, 701
use of, 2, 57 dimensions, 58, 59	
electric, 10, 15	Valence electrons, 654
absolute (1948), 19	Value of e, 47, 51, 54
maintained, 19	Van de Graff generator, 654
vs. international, 20	Van der Waal's equation, 261
electromagnetic, 12	constants for different gases, 262
practical, 16	Vapor pressure:
electrostatic, 12	alcohol, ethyl, 370
energy, 17, 618, 653	methyl, 370
established, 2	argon, 117
extensive, 1	critical, 276 diffusion, 354, 355
former electrical equivalents, 22	elements (some), 362
fundamental, 1, 56, 60	ethyl alcohol, 370
area, 60	gases (low temperature), 360
capacity, 60 choice of, 2	hydrocarbons, light, 293
dielectric constant, 1	liquids, 371
dimensions, 57-59	organic, 368, 371
heat, 58	mercury, 372
length, 1, 60	metals, 362, 363
magnetic permeability, 10, 451	rate of evaporation, 362, 363
mass, 60	methyl alcohol, 370
number of, 2	organic liquids, 368
temperature, 1, 14, 70	rate of evaporation, 362
scale of 1948, 70	solutions of salts in water, 373 temperature effects, 368, 369
time, 14	Vaporization, latent heat of, 167
volume, 2, 60	ammonia, 167
Gaussian system, 15 geometrical, 4	elements, 165
heat, 7	formula for, 167

Vaporization—continued	Viscosity—continued
liquids, 166 pressure variation, 167	Meyer's formula, constants, 331 molten metals, 327
water, 167	oxides, 326
Vapors: density, 269	number of gases, 331
diffusion, 354	oils, 328, 334
molecules, 640 mass, 640	pressure, 328 organic liquids, temperature effect, 323
velocity, 640	orthoclase-albite, 325
Velocity, 7	oxides, molten, 326
maximum, 654	pitch, 319
of light, 47, 51, 54 in different materials (see under name	pressure effects, 328, 333 liquids, 328
of material)	silicon dioxide, 325
of sound: in gases, 306	sodium silicates (temperature), 324
liquids, 307	solids, 319
sea water, 307	equations, 319
solids, 306 vapor, 306	Southerlands formula, 331 specific, 318
Verdet's constant: acids, 505	stoke, 321
gases, 506	temperature variation, 322-326
liquids, 505	units of, 318, 321
salts in water, 505	poise, 318, 319
solids, 504-506 Viscosity, 318	vapors, 319 Venice turpentine, 319
air, 331	water: at high temperatures, 320
alcohol-water mixtures, 320	at low temperatures, 319
boron trioxide, 326	heavy water, 320
castor oil, 322	pressure, 334
temperature, 322 centipoise, 319	water-alcohol mixture, 320 wax, shoemaker's, 319
coefficient, 318	Volt, 20
constants, 331	Voltaic cells, 377
Couette correction, 318	composition, 377
definition, 318	emf, 377
equations, 318 dimensions, 318	standard, 378 Volt-electron, 654
dimethyl-siloxane polymers, 325	Volume, 60
diopside-albite-anorthite, 327	gas, correction factor, 260
fluids, 319-324	relative at various pressures, 261
formulas, 319	glass vessel, 68
gases and vapors, 331, 332 pressure and temperature, 331, 332	pressure relation: argon, 117
gasoline, with temperature, 322	compounds, 286 gases, 261
glasses, with compositions, 330	metals, 119, 286
with temperature, 330	nitrogen, 118
glucose, 321	Water:
thermal effect, 321 glycerin-water mixtures, 322	absorption, gases, 360
glycerol in aqueous solution, 321	vapors, 360
with temperature, 321	barometric pressure, column of water, 606
heavy water, 320	boiling point, 71
hydrocarbons, 329	with pressure, 169
pure, 329 ice glacier, 319	compressibility, 283 cubical expansion, 153
kerosene, with temperature, 322	density, 295, 296, 298
kinematic, 318, 321	free from air, 296
unit, 321	maximum, 48, 297
liquefied gases and vapors, 329	water and alcohol, 302 ethyl, 302
liquids, 328, 333 miscellaneous, 328	methyl, 304
pressure effects, 333, 334	dielectric constant, 425
pure, 333	dielectric loss tangent, 439
lubricants, 334	diffusion of aqueous solution into, 354
oils, crank case, 334	diffusivity, 143 electrical resistivity, 396
metals, molten, 327 methods of measuring, 318, 319	freezing point, effect of pressure, 119
equations, 318	heat capacity, 161

Water continued	Water waren continued
Water—continued	Water, vapor—continued
heat of sorption, 632	density, 276
heavy water, comparative properties, 671	diffusion of, 355
viscosity, 320	heat capacity, 163
humidity, 602	index of refraction, 533
and wet-dry bulb temperature, 602	mean free path, 638
index of refraction, 530	molecular diameter, 638
ionization, 399	molecular velocities, 640
latent heat of vaporization, formula, 167	pressure in atmosphere, 599
magnetic susceptibility, 462	at sea level, 605
mean free path, 638	saturated: pressure, 600
melting temperatures, effect of pressure,	temperature, 600
118	weight, 601
mixture, with alcohol, density, 302, 304	transparency, 545
molecules, diameter, 638	variation of dielectric constant, 423
	velocity of sound in, 306
phases, 119	
freezing point, 119	viscosity, 332
pressure of columns, 606	weight of, 601
properties, heavy, 671	wet-dry bulb, 602
ordinary, 295	vapor pressure of salts in, 373
pure, free from air, 296	velocity of sound in, 307
relative volume, different pressures, 283	Verdet's constant for, 505
saturated, thermal properties, 168	viscosity, 319
sea:	effect of pressure, 334
absorption of light, 774	effect of temperature, 319
with wavelength, 776	volume, and density, 298
chlorinity, 774	and temperature, 298
composition, 776	at temperature of maximum density
concentration of dissolved material, 774	297
	free from air, 296
density, 774	
elements in, 777	influence of pressure, 297
evaporation, 774	of glass vessel from its weight in water
geochemistry, 776	68
osmotic pressure, 775	Watt, 20
pH, 777	Wavelength: cadmium red line, 569
physical properties, 775	conversion factor, 509
absorption of light, 775	De Broglie, 665
chlorinity, 774	elements, prominent lines in simple spec
concentration, 774	tra, 577
pressure, osmotic, 775	extreme ultraviolet, 571
vapor, 775	Fraunhofer lines, 577
salinity, 774	mercury ¹⁹⁶ , 568
transmission of radiation, 775	primary standards, 568
	sample spectra of some elements, 577
pressure, 774	secondary standards (international), 570
resistivity, 396	
salinity, 774	iron, 571
solids dissolved, 776	krypton, neon, 570
amount of, 776	solar lines, 572
yearly addition, 776	standard, 568
specific heat, 161	cadmium, 569
temperature, 774	mercury, 568
vapor pressure, 775	tertiary standards, iron, 571
vaporization, 774	units, 509
velocity of sound in, 307	ultraviolet, 571
solubility: of gases in, 358	Wave number, 578, 581
of salts in, 357	absolute volt, 50
inorganie, 358	electron volt, 54
organic, 358	moment of inertia and band spectra, 49
solution of salts in, 300	one volt, 50
	Waves at sea: earthquake, 777, 778
specific heat, 161	fetch, 778
spreading, 633	
surface tension, 362	height, 778
thermal conductivity, 136, 142	vs. fetch, 778
thermal properties, 168	vs. wind duration, 772
total heat of vaporization, 169	vs. wind velocity, 772, 778
transmission of radiation, 775	length, 778
transparency, 538	deep water, 777, 778
vapor: coefficient of diffusion, 356	shallow water, 777, 778

Waves at sea—continued	X-rays—continued
sea, 778	dosage units, 694
surf, 778	lead thickness to reduce, 695
swell, 778	rate, 695
height	emission, characteristic, materials, 696
vs. distance from source, 772	K series, 696 energy, radiated, 692
vs. wind, 778	filters for obtaining monochromatic, 696
velocity: deep water, 777 shallow water, 777	fluorescence, excited by, 693
Weighing: effect of the air, 69	materials, 693
reduction to vacuo, 69	wavelength, 693
Weight, calculated, various bodies, 27	generated, 692
Wet-dry bulb temperature and humidity,	ionization, 693
602	gas and vapors, 693 mass absorption, 694
Wien displacement constant, 80	formula, 694
Wien displacement law, 80	nature, 692
Wire (see also Copper):	production, 692
aluminum, properties of, 415	quantity, 692
mass resistivity, 404	protection against, 693, 694, 695
copper, properties of, 406 annealed, 408	concrete, 694 distance vs. voltage, 695
characteristics of, 408	lead, 695
electric, 408	materials vs., 694
carrying capacity (safe), 416	minimum thickness vs. intensity, 693
mass resistivity, 404	requirement vs. voltage, 693, 695
resistance, computing, 417	for 400 ky pulsating, 695
resistance to standard temperature, 407	for 1000 kv pulsating, 696
temperature coefficient of resistance,	for 10 ma pulsating, 695 thickness vs. voltage, 695
electrical and mechanical characteristics,	quantity, tungsten target, 692
408	safe rating of tubes, 698
gages, comparison of, 405	spectrum, 692
high-frequency resistance, 417	limit, 692
calculations, 417, 419	terms, various elements, 698
of conductors, 417, 419	tubes, safe operating, 698 types, 692
maximum diameter for high-frequency re-	characteristics, 692
sistance ratio of 1.01, 420 ratio of alternating to direct current	continuous spectrum, 699
resistance, 419	wavelength limit, 692
rope, 216	wavelength, 692
steel, 216	characteristic, 692
tables, comparison (gages), 405	critical absorption for elements, 701
for computing resistances, 416	fluorescent, 693 K scries, elements, 696, 697
tubular conductors, resistance, 418	L series, elements, 699
Wolf's sunspot number, 727	M series (72Ta to 92 U), 700
Wolfram (see Tungsten)	tungsten L series, 698
V 074 000	various elements, 700
X-rays, 654, 692	various transitions, 697
absorption, 693 coefficients, 693, 694	voltage and, 692 X-unit, 509
formulas, 693	A-unit, 000
constants, 693	Year: anomalistic, 731
critical, 692	light, 730
K series, 696, 698	sidereal, 731
L series, 696, 699	tropical, 731 Yearly means: magnetic characteristics,
M series, 696	Yearly means: magnetic characteristics, 481-492
mass absorption, 704 calculated, 704	solar constant, 719
elements, 695, 697	sunspots, 727
materials, 696	temperature, 726
formula, 693	Yield point (materials), 188
wavelengths, critical, 692	Young's modulus, 7, 188
elements, 697	Zeeman effect, 50
voltage, 692 characteristics, intensity, 692, 693	Zero, absolute, 9, 47, 73
wavelength, 692, 693	Zinc, physical properties, 225