TABLE 1,-TEMPERATURE CONVERSION TABLE*
以 Nom

\|	

 		凶
 		がーべべヴがいう

SMITHSONIAN PHYSICAL TABLES

NINTH REVISED EDITION
(Fourth Reprint)

Prepared by
WILLIAM ELMER FORSYTHE

CITY OF WASHINGTON

PUBLISHED BY THE SMITHSONIAN INSTITUTION PRESS

Standard Book Number 87474-015-0
Library of Congress Catalog Card Number 54-60067
Distributed in the United States and Canada by Random House, Inc.
Distributed in the United Kingdom and Europe by David \& Charles (Publishers), Ltd.
South Devon House, Newton Abbot, Devon
Printed in the United States of America

PREFACE TO THE NINTH REVISED EDITION

This edition of the Smithsonian Physical Tables consists of 901 tables giving data of general interest to scientists and engineers, and of particular interest to those concerned with physics in its broader sense. The increase in size over the Eighth Edition is due largely to new data on the subject of atomic physics. The tables have been prepared and arranged so as to be convenient and easy to use. The index has been extended. Each set of data given herein has been selected from the best sources available. Whenever possible an expert in each field has been consulted. This has entailed a great deal of correspondence with many scientists, and it is a pleasure to add that, almost without exception, all cooperated generously.

When work first started on this edition, Dr. E. U. Condon, then director of the National Bureau of Standards, kindly consented to furnish any assistance that the scientists of that institution were able to give. The extent of this help can be noted from an inspection of the book. Dr. Wallace R. Brode, associate director, National Bureau of Standards, gave valuable advice and constructive criticism as to the arrangement of the tables.
D. H. Menzel and Edith Jenssen Tebo, Harvard University, Department of Astronomy, collected and arranged practically all the tables on astronomy.

A number of experts prepared and arranged groups of related data, and others either prepared one or two tables or furnished all or part of the data for certain tables. Care has been taken in each case to give the names of those responsible for both the data and the selection of it. A portion of the data was taken from other published sources, always with the.consent and approval of the author and publisher of the tables consulted. Due credit has been given in all instances. Very old references have been omitted. Anyone in need of these should refer to the Eighth Edition.

It was our intention to mention in this preface the names of all who took part in the work, but the list proved too long for the space available. We wish, however, to express our appreciation and thanks to all the men and women from various laboratories and institutions who have been so helpful in contributing to this Ninth Edition.

Finally, we shall be grateful for criticism, the notification of errors, and new data for use in reprints or a new edition.

W. E. FORSYTHE

Astrophysical Observatory
Smithsonian Institution
January 1951

EDITOR'S NOTE

The ninth edition of the Physical Tables was first published in June 1954. In the first reprint (1956), the second reprint (1959), and the third (1964) a few misprints and errata were corrected.

CONTENTS

(For detailed breakdown of tables, see index.)

Pages
Temperature conversion table (Table 1) Inside front cover
Preface to the ninth revised edition iii
Introduction 1
Units of measurement 1
Conversion factors and dimensional formulae 2
Some fundamental definitions (Table 2) 4
Part 1. Geometrical and mechanical units 4
Part 2. Heat units 7
Part 3. Electric and magnetic units 10
Fundamental standards (Table 3) 13
Part 1. Selection of fundamental quantities. 13
Part 2. Some proposed systems of units 15
Part 3. Electric and magnetic units 16
Part 4. The ordinary and the ampere-turn magnetic units 18
The new (1948) system of electrical units (Table 4) 1°
Relative magnitude of the old international electrical units and the new 1948 absolute electrical units (Table 5) 20
Relative values of the three systems of electrical units (Table 6) 20
Conversion factors for units of energy (Table 7) 21
Former electrical equivalents (Table 8) 22
Some mathematical tables (Tables 9-15) 23- 36
Treatment of experimental data (Tables 16-25) 37-45
General physical constants (Tables 26-28) 46- 55
Common units of measurement (Tables 29-36) 56-69
Constants for temperature measurement (Tables 37-51) 70-78
The blackbody and its radiant energy (Tables 52-57) 79-86
Photometry (Tables 58-77) 87-97
Emissivities of a number of materials (Tables 78-84) 98-101
Characteristics of some light-source materials, and some light sources (Tables 85-102) 102-111
Cooling by radiation and convection (Tables 103-110) 112-116
Temperature characteristics of materials (Tables 111-125) 117-130
Changes in freezing and boiling points (Tables 126-129) 131-135
Heat flow and thermal conductivity (Tables 130-141) 136-144
Thermal expansion (Tables 142-146) 145-154
Specific heat (Tables 147-158) 155-164
Latent heat (Tables 159-164) 165-167
Thermal properties of saturated vapors (Tables 165-170) 168-178
Heats of combustion (Tables 171-183) 179-186
Physical and mechanical properties of materials (Tables 184-209) 187-228
Characteristics of some building materials (Tables 210-217) 229-231
Physical properties of leather (Tables 218-223) 232-233
Values of physical constants of different rubbers (Tables 224-229) 234-238
Characteristics of plastics (Tables 230-232) 239-240
Properties of fibers (Tables 233-236) 241-245
Properties of woods (Tables 237-240) 246-258
Temperature, pressure, volume, and weight relations of gases and vapors (Tables 241-253) 259-267
Thermal properties of gases (Tables 254-260) 268-277
The Joule-Thomson effect in fluids (Tables 261-267) 278-281
Compressibility (Tables 268-280) 282-290
Densities (Tables 281-295) 291-305
Velocity of sound (Tables 296-300) 306-308
Acoustics (Tables 301-310A) 309-317
Viscosity of fluids and solids (Tables 311-338) 318-336
Aeronautics (Tables 339-346A) 337-353
Diffusion, solubility, surface tension, and vapor pressure (Tables 347-369) 354-374
Various electrical characteristics of materials (Tables 370-406) 375-396
Electrolytics conduction (Tables 407-415) 397-403
Pages
Electrical and mechanical characteristics of wire (Tables 416-428) 404-420
Some characteristics of dielectrics (Tables 429-452) 421-433
Radio propagation data (Tables 453-465) 434-450
Magnetic properties of materials (Tables 466-494) 451-467
Geomagnetism (Tables 495-512) 468-502
Magneto-optic effects (Tables 513-521) 503-508
Optical glass and optical crystals (Tables 522-555) 509-534
Transmission of radiation (Tables 556-573) 535-548
Reflection and absorption of radiation (Tables 574-592) 549-556
Rotation of plane of polarized light (Tables 593-597) 557-560
Media for determinations of refractive indices with the microscope (Tables 598-601) 561
Photography (Tables 602-609) 562-567
Standard wavelengths and series relations in atomic spectra (Tables 610-624) 568-585
Molecular constants of diatomic molecules (Tables 625-625a) 586-591
The atmosphere (Tables 626-630) 592-595
Densities and humidities of moist air (Tables 631-640) 596-605
The barometer (Tables 641-648) 606-613
Atmospheric electricity (Tables 649-653) 614-617
Atomic and molecular data (Tables 654-659) 618-624
Abundance of elements (Tables 660-668) 625-629
Colloids (Tables 669-682) 630-634
Electron emission (Tables 683-689) 635-637
Kinetic theory of gases (Tables 690-696) 638-642
Atomic and molecular dimensions (Tables 697-712) 643-650
Nuclear physics (Tables 713-730) 651-671
Radioactivity (Tables 731-758) 672-691
X-rays (Tables 759-784) 692-705
Fission (Tables 785-793) 706-709
Cosmic rays (Tables 794-801) 710-713
Gravitation (Tables 802-807) 714-718
Solar radiation (Tables 808-824) 719-727
Astronomy and astrophysics (Tables 825-884) 728-771
Oceanography (Tables 885-899) 772-779
The earth's rotation: its variation (Table 900) 780
General conversion factors (Table 901) 781-785
Index 787

INTRODUCTION

UNITS OF MEASUREMENT

The quantitative measure of anything is expressed by two factors-one, a certain definite amount of the kind of physical quantity measured, called the unit ; the other, the number of times this unit is taken. A distance is stated as 5 meters. The purpose in such a statement is to convey an idea of this distance in terms of some familiar or standard unit distance. Similarly quantity of matter is referred to as so many grams; of time, as so many seconds, or minutes, or hours.

The numerical factor definitive of the magnitude of any quantity must depend on the size of the unit in terms of which the quantity is measured. For example, let the magnitude factor be 5 for a certain distance when the mile is used as the unit of measurement. A mile equals 1,760 yards or 5,280 feet. The numerical factor evidently becomes 8,800 and 26,400 , respectively, when the yard or the foot is used as the unit. Hence, to obtain the magnitude factor for a quantity in terms of a new unit, multiply the old magnitude factor by the ratio of the magnitudes of the old and new units; that is, by the number of the new units required to make one of the old.

The different kinds of quantities measured by physicists fall fairly definitely into two classes. In one class the magnitudes may be called extensive, in the other, intensive. To decide to which class a quantity belongs, it is often helpful to note the effect of the addition of two equal quantities of the kind in question. If twice the quantity results, then the quantity has extensive (additive) magnitude. For instance, two pieces of platinum, each weighing 5 grams, added together weigh 10 grams; on the other hand, the addition of one piece of platinum at $100^{\circ} \mathrm{C}$ to another at $100^{\circ} \mathrm{C}$ does not result in a system at $200^{\circ} \mathrm{C}$. Volume, entropy, energy may be taken as typical of extensive magnitudes; density, temperature and magnetic permeability, of intensive magnitudes.

The measurement of quantities having extensive magnitude is a comparatively direct process. Those having intensive magnitude must be correlated with phenomena which may be measured extensively. In the case of temperature, a typical quantity with intensive magnitude, various methods of measurement have been devised, such as the correlation of magnitudes of temperature with the varying lengths of a thread of mercury.
Fundamental units.-It is desirable that the fewest possible fundamental unit quantities should be chosen. Simplicity should regulate the choicesimplicity first, psychologically, in that they should be easy to grasp mentally, and second, physically, in permitting as straightforward and simple definition as possible of the complex relationships involving them. Further, it seems desirable that the units should be extensive in nature. It has been found possible to express all measurable physical quantities in terms of five such units: first, geometrical considerations-length, surface, etc.-lead to the need of a length; second, kinematical considerations-velocity, acceleration, etc.-introduce time ; third, mechanics-treating of masses instead of immaterial points-in-
troduces matter with the need of a fundamental unit of mass; fourth, electrical, and fifth, thermal considerations require two more such quantities. The discovery of new classes of phenomena may require further additions.

As to the first three fundamental quantities, simplicity and good use sanction the choice of a length, L, a time interval, T, and a mass, M. For the measurement of electrical quantities, good use has sanctioned two fundamental quan-tities-the dielectric constant, K, the basis of the "electrostatic" system, and the magnetic permeability, μ, the basis of the "electromagnetic" system. Besides these two systems involving electrical considerations, there is in common use a third one called the "absolute" system, which will be referred to later. For the fifth, or thermal fundamental unit, temperature is generally chosen. ${ }^{1}$

Derived units.-Having selected the fundamental or basic units-namely, a measure of length, of time, of mass, of permeability or of the dielectric constant, and of temperature-it remains to express all other units for physical quantities in terms of these. Units depending on powers greater than unity of the basic units are called "derived units." Thus, the unit volume is the volume of a cube having each edge a unit of length. Suppose that the capacity of some volume is expressed in terms of the foot as fundamental unit and the volume number is wanted when the yard is taken as the unit. The yard is three times as long as the foot and therefore the volume of a cube whose edge is a yard is $3 \times 3 \times 3$ times as great as that whose edge is a foot. Thus the given volume will contain only $1 / 27$ as many units of volume when the yard is the unit of length as it will contain when the foot is the unit. To transform from the foot as old unit to the yard as new unit, the old volume number must be multiplied by $1 / 27$, or by the ratio of the magnitude of the old to that of the new unit of volume. This is the same rule as already given, but it is usually more convenient to express the transformations in terms of the fundamental units directly. In the present case, since, with the method of measurement here adopted, a volume number is the cube of a length number, the ratio of two units of volume is the cube of the ratio of the intrinsic values of the two units of length. Hence, if l is the ratio of the magnitude of the old to that of the new unit of length, the ratio of the corresponding units of volume is l^{3}. Similarly the ratio of two units of area would be l^{2}, and so on for other quantities.

CONVERSION FACTORS AND DIMENSIONAL FORMULAE

For the ratio of length, mass, time, temperature, dielectric constant, and permeability units the small bracketed letters, $[l],[m],[t],[\theta],[k]$, and $[\mu]$ will be adopted. These symbols will always represent simple numbers, but the magnitude of the number will depend on the relative magnitudes of the units the ratios of which they represent. When the values of the numbers represented by these small bracketed letters as well as the powers of them involved in any particular unit are known, the factor for the transformation is at once obtained. Thus, in the above example, the value of l was $1 / 3$, and the power involved in the expression for volume was 3 ; hence the factor for transforming from cubic feet to cubic yards was l^{3} or $1 / 3^{3}$ or $1 / 27$ These factors will be called conversion factors.

[^0]To find the symbolic expression for the conversion factor for any physical quantity, it is sufficient to determine the degree to which the quantities, length, mass, time, etc., are involved. Thus a velocity is expressed by the ratio of the number representing a length to that representing an interval of time, or [$L / T]$, and acceleration by a velocity number divided by an interval-of-time number, or $\left[L / T^{2}\right]$, and so on, and the corresponding ratios of units must therefore enter in precisely the same degree. The factors would thus be for the just-stated cases, $[l / t]$ and $\left[l / t^{2}\right]$. Equations of the form above given for velocity and acceleration which show the dimensions of the quantity in terms of the fundamental units are called dimensional equations. Thus $[E]=\left[M L^{2} T^{-2}\right]$ will be found to be the dimensional equation for energy, and $\left[M L^{2} T^{-2}\right]$ the dimensional formula for it. These expressions will be distinguished from the conversion factors by the use of bracketed capital letters.

In general, if we have an equation for a physical quantity,

$$
Q=C L^{a} M^{b} T^{c},
$$

where C is a constant and L, M, T represent length, mass, and time in terms of one set of units, and it is desired to transform to another set of units in terms of which the length, mass, and time are L_{1}, M_{1}, T_{1}, we have to find the value of $L_{1} / L, M_{1} / M, T_{1}^{\circ} / T$, which, in accordance with the convention adopted above, will be l, m, t, or the ratios of the magnitudes of the old to those of the new units.

Thus $L_{1}=L l, M_{1}=M m, T_{1}=T t$, and if Q_{1} be the new quantity number,

$$
\begin{aligned}
Q_{1} & =C L_{1}{ }^{a} M_{1}{ }^{b} T_{1}{ }^{c}, \\
& =C L^{a} l^{a} M^{b} m^{b} T^{c} t^{c}=Q l^{a} m^{b} t^{c},
\end{aligned}
$$

or the conversion factor is $\left[l^{a} m^{b} t^{c}\right]$, a quantity precisely of the same form as the dimension formula [$L^{a} M^{b} T^{c}$].

Dimensional equations are useful for checking the validity of physical equations. Since physical equations must be homogeneous, each term appearing in then must be dimensionally equivalent. For example, the distance moved by a uniformly accelerated body is $s=v_{0} t+\frac{1}{2} a t^{2}$. The corresponding dimensional equation is $[L]=[(L / T) T]+\left[\left(L / T^{2}\right) T^{2}\right]$, each term reducing to $[L]$.

Dimensional considerations may often give insight into the laws regulating physical phenomena. ${ }^{2}$ For instance, Lord Rayleigh, in discussing the intensity of light scattered from small particles, in so far as it depends upon the wavelength, reasons as follows: ${ }^{3}$

The object is to compare the intensities of the incident and scattered ray; for these will clearly be proportional. The number (i) expressing the ratio of the two amplitudes is a function of the following quantities:- V, the volume of the disturbing particle; r, the distance of the point under consideration from it; λ, the wavelength; c, the velocity of propagation of light ; D and D^{\prime}, the original and altered densities: of which the first three depend only on space, the fourth on space and time, while the fifth and sixth introduce the consideration of mass. Other elements of the problem there are none, except mere numbers and angles, which do not depend upon the fundamental measurements of space, time, and mass. Since the ratio i, whose expression we seek, is of no dimensions in mass, it follows at once that D and D^{\prime} occur only under the form $D: D^{\prime}$, which is a simple number and may therefore be omitted. It remains to find how i varies with V, r, λ, c.

Now, of these quantities, c is the only one depending on time; and therefore, as i is of no dimensions in time, c cannot occur in its expression. We are left, then, with V, r, and λ; and from what we know of the dynamics of the question, we may be sure that i varies directly as V and inversely as r, and must therefore be proportional to $V \div \lambda^{2} r, V$ being of three di-

[^1]mensions in space. In passing from one part of the spectrum to another λ is the only quantity which varies, and we have the important law:

When light is scattered by particles which are very small compared with any of the wavelengths, the ratio of the amplitudes of the vibrations of the scattered and incident light varies inversely as the square of the wavelength, and the intensity of the lights themselves as the inverse fourth power.

The dimensional and conversion-factor formulae for the more commonly occurring derived units are given in Table 30.

TABLE 2.-SOME FUNDAMENTAL DEFINITIONS

Part 1.-Geometrical and mechanical units 4
Activity (power).-Time rate of doing work; unit, the watt.
Angle (ϕ).-The ratio of the length of its circular arc to its radius; unit, the radian.

Angstrom.-Unit of wavelength $=10^{-10}$ meter. (See Table 522.)
Angular acceleration $\left(\alpha=\frac{d \omega}{d t}\right)$.-The rate of change of angular velocity.
Angular momentum ($I \omega$). -The product of its moment of inertia about an axis through its center of mass perpendicular to its plane of rotation and its angular velocity.

Angular velocity. - The time rate of change of angle.
Area.-Extent of surface. Unit, a square whose side is the unit of length. The area of a surface is expressed as $S=C L^{2}$, where the constant C depends on the contour of the surface and L is a linear dimension. If the surface is a square and L the length of a side, C is unity; if a circle and L its diameter, C is $\pi / 4$. (See Table 31.)

Atmosphere.-Unit of pressure. (See Table 260.)

$$
\begin{gathered}
\text { English normal }=14.7 \mathrm{lb} / \mathrm{in.}^{2}=29.929 \mathrm{in} . \mathrm{Hg}=760.1 \mathrm{~S} \mathrm{mmHg}\left(32^{\circ} \mathrm{F}\right) \\
\mathrm{U} . \mathrm{S} .
\end{gathered}=760 \mathrm{mmHg}\left(0^{\circ} \mathrm{C}\right)=29.921 \mathrm{in} . \mathrm{Hg}=14.70 \mathrm{lb} / \mathrm{in} .^{2} .
$$

Avogadro number.-Number of molecules per mole, 6.0228×10^{23} molecules/mole.

Bar. ${ }^{4 a}$-International unit of pressure 10^{6} dyne $/ \mathrm{cm}^{2}$.
Barye.-cgs pressure unit, one dyne/ cm^{2}.
Carat.-The diamond carat standard in U. S. $=200 \mathrm{mg}$. Old standard $=$ $205.3 \mathrm{mg}=3.168$ grains. The gold carat: pure gold is 24 carats; a carat is 1/24 part.

Circular area.-The square of the diameter $=1.2733 \times$ true area. True area $=0.785398 \times$ circular area.

Circular inch.-Area of circle 1 inch in diameter.
Cubit $=18$ inches

[^2]Dalton (atomic mass unit M_{0}). -Unit of mass, $1 / 16$ mass of oxygen $\left({ }_{8} 0^{16}\right)$ atom, $1.66080 \times 10^{-24} \mathrm{~g}$ (Phys. scale). (See Table 26.)

Density.-The mass per unit volume. The specific gravity of a body is the ratio of a density to the density of a standard substance. Water and air are commonly used as the standard substance.

Digit.-3/4 in.; $1 / 12$ the apparent diameter of the sun or moon.
Diopter.-Unit of "power of a lens." The diopter $=$ the reciprocal of the focal length in meters.

Dyne.-The cgs, unit of force $=$ that unbalanced force which acting for 1 second on body of 1 gram mass produces a velocity change of $1 \mathrm{~cm} / \mathrm{sec}$.

Energy.-The work done by a force produces either a change in the velocity of a body or a change of its shape or position or both. In the first case it produces a change of kinetic energy, in the second, of potential energy.

Erg.-The cgs unit of work and energy $=$ the work done by 1 dyne acting through 1 centimeter.

Fluidity.-Reciprocal of viscosity.
Foot-pound.-The work which will raise 1 pound body 1 foot high for standard g.

Foot-poundal.-The work done when a force of 1 poundal acts through 1 foot.

Force (f).-Force is the agent that changes the motion of bodies and is measured by the rate of change of momentum it produces on a free body.
$\mathrm{Gal}=$ gravity standard $=$ an acceleration of $1 \mathrm{~cm} \mathrm{sec}^{-2}$.
Giga $=10^{9}$.
Gram.-The standard of mass in the metric system. (See Table 31.)
Gram-centimeter.-The cgs gravitation unit of work.
Gram-molecule.-The mass in grams of a substance numerically equal to its molecular weight.

Gravitation constant.- $\left(G\right.$, in formula $\left.F=G m_{1} m_{2} / r^{2}\right)=6.670 \times 10^{-8}$ dyne $\mathrm{cm}^{2} \mathrm{~g}^{-2}$.

Gravity (g).-The attraction of the earth for any mass. It is measured by the acceleration produced on the mass under standard conditions. This acceleration g equals $980.665 \mathrm{~cm} \mathrm{sec}^{-2}$ or $32.17 \mathrm{ft} \mathrm{sec}^{-2}$.

Horsepower.-A unit of mechanical power. The English and American horsepower is defined by some authorities as 550 foot-pounds/sec and by others as 746 watts. The continental horsepower is defined by some authorities as $75 \mathrm{kgm} / \mathrm{sec}$ and by others as 736 watts.

Joule.-Unit of work (energy) $=10^{7}$ ergs. Joules $=\left(\right.$ volts $\left.^{2} \times \mathrm{sec}\right) /$ ohms $=$ watts \times sec $=$ amperes $^{2} \times$ ohms \times sec $=$ volts \times amperes \times sec.

Kilodyne.- 1,000 dynes. About 0.980 gram weight.

Kinetic energy.-The energy associated with the motion $=\frac{m v^{2}}{2}$ in ergs if m is in grams and v in $\mathrm{cm} / \mathrm{sec}$.

Linear acceleration $\left(a=\frac{d v}{d t}\right)$.-The rate of change of velocity.
Liter.-See Table 32.
Loschmidt number.-The number of molecules per cm^{3} of an ideal gas at $0^{\circ} \mathrm{C}$ and normal pressure $=2.6870 \times 10^{19}$ molecules $/ \mathrm{cm}^{3}$.

Megabaryes.-Unit of pressure $=1,000,000$ baryes $=1$ bar $=0.987$ atmosphere.

Meter.-See Table 31.
Micro.-A prefix indicating the millionth part. (See Table 901.)
Micron $(\mu)=$ one-millionth of a meter $=$ one-thousandth of a millimeter.
Mil.-One-thousandth of an inch.
Mile.-Statute $=5,280$ feet $;$ nautical or geographical $=6,080.20$ feet.
Milli.-A prefix denoting the thousandth part.
Modulus of elasticity.-Ratio of stress to strain. The dimension of strain, a change of length divided by a length, or change of volume divided by a volume, is unity.

Mole or mol.-Mass equal numerically to molecular weight of substance.
Momentum ($M=m v$).-The quantity of motion in the Newtonian sense; the product of the mass and velocity of the body.

Moment of inertia (I) of a body about an axis is the $\Sigma m r^{2}$, where m is the mass of a particle of the body and r its distance from the axis.

Newton.-The unit of force in the MKS system $=10^{5}$ dynes. (See Table 3, part 2.)

Pound weight.-A force equal to the earth's attraction for a mass of 1 pound. This force, acting on 1 lb mass, will produce an acceleration of 32.17 $\mathrm{ft} / \mathrm{sec}^{2}$.

Poundal.-The ft-lb sec unit of force. That unbalanced force which acting on a body of 1 lb mass produces an acceleration of $1 \mathrm{ft} / \mathrm{sec}^{2}$.

Pi $(\pi)=3.1416$. (See Table 11.)
Power.-Activity $\left(p=\frac{d W}{d t}\right)$ is the time rate of doing work.
Radian.-An angle subtended by an arc equal to the radius. This angle equals $180^{\circ} / \pi=57.29578^{\circ}=57^{\circ} 17^{\prime} 45^{\prime \prime}=206265^{\prime \prime}$.

Resilience.-The work done per unit volume of a body in distorting it to the elastic limit or in producing rupture.

Slug.-Mass (32.17 lb) acquiring acceleration $1 \mathrm{ft} \mathrm{sec}^{-2}$ when continuously acted upon by force of 1 lb weight.

Smithsonian physical tables

Strain.-The deformation produced by a stress divided by the original dimension.

Stress.-The force per unit area of a body that tends to produce a deformation.

Tenth-meter. -10^{-10} meter $=1$ angstrom.
Torque, moment of a couple, about an axis is the product of a force and the distance of its line of action from the axis.

Volume.-Extent of space. Unit, a cube whose edge is the unit of length. The volume of a body is expressed as $V=C L^{3}$. The constant C depends on the shape of the bounding surfaces.

Velocity $\left(\mathrm{v}=\frac{d L}{d t}\right)$ is distance traversed per unit time.
Viscosity.-The property of a liquid by virtue of which it offers resistance to flow. The coefficient of viscosity is the tangential force that must be applied to the upper surface of a $1-\mathrm{cm}$ cube of the liquid on an edge to produce a velocity of $1 \mathrm{~cm} / \mathrm{sec}$ in the face when the lower face is at rest.

Work (W).-The work done by an unbalanced force is the product of the force by the component of the resulting displacement produced in the direction of the force.

Young's modulus.-Ratio of longitudinal stress within the proportional limit to the corresponding longitudinal strain.

Part 2.—Heat Units ${ }^{5}$

Blackbody.-A body that absorbs all the radiation that falls upon it. From this definition and certain assumptions it can be shown that its total radiation $=$ σT^{4} (Stefan-Boltzmann Law) and that the spectral distribution of the radiation is given by the Planck Law: ${ }^{5 \mathrm{a}}$

$$
J_{\lambda}=\frac{A c_{1} \lambda^{-8}}{e^{\frac{c_{2}}{\lambda T}}-1}
$$

Brightness temperature (S).-The temperature of a non-blackbody determined from its brightness (with an optical pyrometer, see Table 77) as if it were a blackbody. Such temperatures are always less than the true temperatures.

British thermal unit (Btu). -The amount of heat required to raise 1 pound of water at $60^{\circ} \mathrm{F}, 1^{\circ} \mathrm{F}$. This unit is defined for various temperatures, but the general usage seems to be to take the Btu as equal to 252 calories. (See calorie. See Table 7.)

Calorie.-The amount of heat necessary to raise 1 gram of water at $15^{\circ} \mathrm{C}$, $1^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& { }^{5} \text { For dimensional formulas see Table } 30 \text {, part } 2 \text {. } \\
& { }_{5 \Omega} \text { An easier way to write this exponential term is: } \\
& \qquad . J_{\lambda}=c_{1} \lambda^{-3} /\left[\left(\exp \left(\frac{c z}{\lambda T}\right)\right)-1\right]
\end{aligned}
$$

This form will be used hereafter.

There are various calories depending upon the interval chosen. Sometimes the unit is written as the gram-calorie or the kilogram-calorie, the meaning of which is evident. There is some tendency to define the calorie in terms of its mechanical equivalent. Thus the National Bureau of Standards defines the calorie as 4.18400 joules. At the International Steam Table Conference held in London in 1929 the international calorie was defined as $1 / 860$ of the international watt hour (see Table 7), which made it equal to 4.1860 international joules. With the adoption of the absolute system of electrical units, this becomes $1 / 859.858$ watt hours or 4.18674 joules. The Btu was defined at the same time as 251.996 international calories. Thus, until such a time as these differences are taken care of, there will be some confusion.

Celsius temperature scale.-The present-day designation of the scale formerly known as the Centigrade scale.

Centigrade temperature scale.-The temperature scale that divides the interval between the ice point, taken as $0^{\circ} \mathrm{C}$, and the boiling point of water with 100°.

Coefficient of thermal expansion.-Ratio of the change of length per unit length (linear), or change of volume per unit volume (voluminal), to the change of temperature.

Color temperature ${ }^{6}\left(T_{S}\right)$.-The color temperature of a non-blackbody is the temperature at which it is necessary to operate the blackbody so that the color of its emitted light will match that of the source studied.

Emissivity.-Ratio of the energy radiated at any temperature by a nonblackbody to that radiated by a blackbody at the same temperature. The spectral emissivity is for a definite wavelength, and the total emissivity is for all wavelengths.

Enthalpy.-Total energy that a system possesses by virtue of its temperature. Thus, where U is the internal energy, then the enthalpy $=U+P V$ where $P V$ represents the external work.

Entropy.-A measure of the extent to which the energy of the system is unavailable.

Fahrenheit temperature scale.-A scale based on the freezing point of water taken as 32° and the boiling point of water taken as 212°.

Graybody.-A body that has a constant emissivity for all wavelengths.
Heat.-Energy transferred by a thermal process. Heat can be measured in terms of the dynamical units of energy, as the erg, joule, etc., or in terms of the amount of energy required to produce a definite thermal change in some substance, as for example the energy required per degree to raise the temperature of a unit mass of water at some temperature. The mechanical unit of heat has the dimensional formula of energy $\left(M L^{2} T^{-2}\right)$. The thermal unit (H), as used in many of these tables, is $(M \theta)$ where θ denotes a temperature interval.

Joule's equivalent (J) or the mechanical equivaient of heat.-Conversion factor for changing an expression of mechanical energy into an expression of thermal energy or vice versa ($4.1855 \mathrm{~J} / \mathrm{cal}$).

[^3]Kelvin temperature scale.-Scale of temperature based on equal work for equal temperatures for a working substance in a carnot cycle $=$ Celsius (Centigrade) scale +273.16

Langley (ly).-A new unit of radiation, surface density, has been suggested ${ }^{7}$ which equals 1 calorie $\left(15^{\circ} \mathrm{C}\right)$ per cm^{2}.

Latent heat.-Quantity of heat required to change the state of a unit mass of matter.

Pyron.-A unit of radiant intensity $=1 \mathrm{cal} \mathrm{cm}^{-2} \mathrm{~min}^{-1}$.
Radiant energy.-Energy traveling in the form of electromagnetic waves.
Radiant temperature.-The temperature obtained by use of a total radiation pyrometer when sighted upon a non-blackbody. This is always less than the true temperature.

Rankin temperature scale.-Absolute Fahrenheit scale $=$ Fahrenheit scale +459.7 .

Reaumur temperature scale.-A scale based upon the freezing point of water taken as $0^{\circ} \mathrm{R}$ and the boiling point of water taken as $80^{\circ} \mathrm{R}$.

Specific heat.-Ratio of the heat capacity of a substance to the heat capacity of an equal mass of water. When so expressed, the specific heat is a dimensionless number.

Standard temperature.-A temperature that depends upon some characteristic of some substance, such as the melting, boiling, or freezing point, that is used as a reference standard of temperature.

Thermal capacitance.-The heat capacity of a body is the limiting value, as T approaches zero, of the ratio $\frac{\Delta Q}{\Delta T}$, where ΔT is the rise in temperature resulting from the addition to the body of a quantity of heat equal to ΔQ.

Thermal conductivity.-Quantity of heat, Q, which flows normally across a surface of unit area per unit of time and per unit of temperature gradient normal to the surface. In thermal units it has the dimensional formula ($H \theta^{-1} L^{-1} T^{-1}$) or ($M L^{-1} T^{-1}$), in mechanical units ($M L T^{-3} \theta^{-1}$).

Thermodynamic temperature.-See Kelvin temperature scale.
Thermodynamics.-Study of the flow of heat.
Thermodynamic laws: Zeroth laze.-Two systems that are in thermal equilibrium with a third are in thermal equilibrium with each other. First lazv: When equal quantities of mechanical effect are produced by any means whatever from purely thermal effects, equal quantities of heat are put out of existence or are created. Second lazu: It is impossible to transfer heat from a cold body to a hot body without the performance of mechanical work. Third laze: It is impossible by any means whatever to superpose only the images of several light sources to obtain an image brighter than the brightest of the source.
${ }^{7}$ Aldrich et al., Science, vol. 106, p. 225, 1947.

A system of units of electric and magnetic quantities requires four fundamental quantities. A system in which length, mass, and time constitute three of the fundamental quantities is known as an "absolute" system. There are two absolue systems of electric and magnetic units. One is called the electrostatic, in which the fourth fundamental quantity is the dielectric constant, and one is called the electromagnetic, in which the fourth fundamental quantity is magnetic permeability. Besides these two systems there will be described a third, to be known as the absolute system, that was introduced January 1, 1948. (See Table 4.)
In the electrostatic system, unit quantity of electricity, Q, is the quantity which exerts unit mechanical force upon an equal quantity a unit distance from it in a vacuum. From this definition the dimensions and the units of all the other electric and magnetic quantities follow through the equations of the mathematical theory of electromagnetism. The mechanical force between two quantities of electricity in any medium is

$$
F=\frac{Q Q^{\prime}}{K r^{2}},
$$

where K is the dielectric constant, characteristic of the medium, and r the distance between the two points at which the quantities Q and Q^{\prime} are located. K is the fourth quantity entering into dimensional expressions in the electrostatic system. Since the dimensional formula for force is $\left[M L T^{-2}\right]$, that for Q is [$\left.M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1} K^{\frac{1}{2}}\right]$.
The electromagnetic system is based upon the unit of the magnetic pole strength (see Table 466). The dimensions and the units of the other quantities are built up from this in the same manner as for the electrostatic system. The mechanical force between two magnetic poles in any medium is

$$
F=\frac{m m^{\prime}}{\mu r^{2}},
$$

in which μ is the permeability of the medium and r is the distance between two poles having the strengths m and $m^{\prime} . \mu$ is the fourth quantity entering into dimensional expressions in the electromagnetic system. It follows that the dimensional expression for magnetic pole strength is $\left[M^{\frac{3}{2}} L^{\frac{1}{2}} T^{-1} \mu^{3}\right]$.

The symbols K and μ are sometimes omitted in the dimensional formulae so that only three fundamental quantities appear. There are a number of objections to this. Such formulae give no information as to the relative magnitudes of the units in the two systems. The omission is equivalent to assuming some relation between mechanical and electrical quantities, or to a mechanical explanation of electricity. Such a relation or explanation is not known.

The properties K and μ are connected by the equation $1 / V K \mu=v$, where v is the velocity of an electromagnetic wave. For empty space or for air, K and μ leeing measured in the same units, $1 \sqrt{ } K \mu=c$, where c is the velocity of light in vacuo, $2.99776 \times 10^{10} \mathrm{~cm}$ per sec. It is sometimes forgotten that the omission of the dimensions of K or μ is merely conventional. For instance, magnetic field intensity and magnetic induction apparently have the same dimensions when μ is omitted. This results in confusion and difficulty in understanding the theory of magnetism. The suppression of μ has also led to the use of the "centimeter" as a unit of capacity and of inductance; neither is physically the same as length.

Capacitance of an insulated conductor is proportional to the ratio of the quantity of electricity in a charge to the potential of the charge. The dimensional formula is the ratio of the two formulae for electric quantity and potential or [$M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1} K^{\frac{3}{2}} / M^{\frac{1}{3}} L^{\frac{1}{2}} T^{-1} K^{-\frac{1}{2}}$] or [$\left.L K\right]$.

Conductance of any part of an electric circuit, not containing a source of electromotive force, is the ratio of the current flowing through it to the difference of potential between its ends. The dimensional formula is the ratio of the formulae for current and potential or [$M^{\frac{3}{3}} L^{\frac{3}{2}} T^{-2} K^{3} / M^{3} L^{\frac{3}{2}} T^{-1} K^{-\frac{1}{2}}$] or $\left[L T^{-1} K\right]$.

Electrical conductivity, like the corresponding term for heat, is quantity per unit area per unit potential gradient per unit of time. The dimensional formula is $\left[M^{\frac{3}{3}} L^{\frac{3}{2}} T^{-1} K^{\frac{1}{3}} / L^{2}\left(M^{\frac{1}{3}} L^{\frac{3}{2}} T^{-1} K^{-\frac{1}{3}} / L\right) T\right.$] or [$T^{-1} K$].

Electric current (statampere-unit quantity) is quantity of electricity flowing through a cross section per unit of time. The dimensional formula is the ratio of the formulae for electric quantity and for time or $\left[M^{3} L^{\frac{1}{2}} T^{-1} K^{\ddagger} / T\right]$ or [$M^{\frac{3}{2}} L^{\frac{1}{2}} T^{-2} K^{\frac{1}{3}}$.

Electric field intensity strength at a point is the ratio of the force on a quantity of electricity at a point to the quantity of electricity. The dimensional formula is therefore the ratio of the formulae for force and electric quantity or $\left[M L T^{-2} / M^{\frac{3}{2}} L^{\frac{1}{2}} T^{-1} K^{3}\right]$ or $\left[M^{3} L^{-4} T^{-1} K^{-3}\right]$.

Electric potential difference and electromotive force (emf) (statvoltwork $=1 \mathrm{erg}$). -Change of potential is proportional to the work done per unit of electricity in producing the change. The dimensional formula is the ratio of the formulae for work and electrical quantity or $\left[M L^{2} T^{-2} / M^{3} L^{\frac{1}{2}} T^{-1} K^{3}\right]$ or [$\left.M^{3} L^{3} T^{-1} K^{-4}\right]$.

Electric surface density of an electrical distribution at any point on a surface is the quantity of electricity per unit area. The dimensional formula is the ratio of the formulae for quantity of electricity and for area or $\left[M^{\frac{1}{2}} L^{-\frac{1}{2}} T^{-1} K^{\frac{1}{3}}\right]$.

Quantity of electricity has the dimensional formula $\left[M^{3} L^{\frac{1}{2}} T^{-1} K^{3}\right]$, as shown above.

Resistance is the reciprocal of conductance. The dimensional formula is [$L^{-1} T K^{-1}$].

Resistivity is the reciprocal of conductivity. The dimensional formula is [$T K^{-1}$].

Specific inductive capacity is the ratio of the inductive capacity of the substance to that of a standard substance and therefore is a number.

Exs.-Find the factor for converting quantity of electricity expressed in ft -grain-sec units to the same expressed in cgs units. The formula is [$\left.m^{3} l \sqrt{2} t^{-1} k^{3}\right]$, in which $m=0.0648$, $l=30.48, t=1, k=1$; the factor is $0.0648^{3} \times 30.48^{\frac{1}{2}}$, or 42.8 .

Find the factor required to convert electric potential from mm-mg-sec units to cgs units. The formula is [$m^{3} l^{3} t^{-1} k^{-\frac{1}{2}}$], in which $m=0.001, l=0.1, t=1, k=1$; the factor is $0.001^{\frac{1}{2}} \times 0.1^{\frac{1}{2}}$, or 0.01 .

Find the factor required to convert electrostatic capacity from ft -grain-sec and specificinductive capacity 6 units to cgs units. The formula is $[l k]$ in which $l=30.48, k=6$; the factor is 30.48×6, or 182.88 .

Many of the magnetic quantities are analogues of certain electric quantities. The dimensions of such quantities in the electromagnetic system differ from those of the corresponding electrostatic quantities in the electrostatic system only in the substitution of permeability μ for K.

Conductance is the reciprocal of resistance, and the dimensional formula is [$L^{-1} T \mu^{-1}$].

Conductivity is the quantity of electricity transmitted per unit area per unit potential gradient per unit of time. The dimensional formula is $\left[M^{\frac{1}{2}} L^{\frac{3}{4}} \mu^{-\frac{3}{2}} /\right.$ $\left.L^{2}\left(M^{\frac{1}{2}} L^{\frac{3}{2}} T^{-2} / L\right) T\right]$ or $\left[L^{-2} T \mu^{-1}\right]$.

Current, I (abampere-unit magnetic field, $r=1 \mathrm{~cm}$), flowing in circle, radius r, creates magnetic field at its center, $2 \pi I / r$. Dimensional formula is product of formulae for magnetic field intensity and length or $\left[M^{3} L^{3} T^{-1} \mu^{-\frac{1}{2}}\right]$.

Electric field intensity is the ratio of electric potential or electromotive force and length. The dimensional formula is $\left[M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-2} \mu^{\frac{1}{2}}\right]$.

Electric potential, or electromotive force (emf) (abvolt-work=1 erg), as in the electrostatic system, is the ratio of work to quantity of electricity. The dimensional formula is [$M L^{2} T^{-2} / M^{\frac{1}{2}} L^{\frac{1}{2}} \mu^{-\frac{1}{2}}$] or $\left[M^{\frac{3}{2}} L^{\frac{3}{2}} T^{-2} \mu^{\frac{1}{2}}\right]$.

Electrostatic capacity is the ratio of quantity of electricity to difference of potential. The dimensional formula is $\left[L^{-1} T^{2} \mu^{-1}\right]$.

Intensity of magnetization (I) of any portion of a magnetized body is the ratio of the magnetic moment of that portion and its volume. The dimensional formula is [$M^{\frac{3}{3}} L^{\frac{1}{2}} T^{-1} \mu^{\frac{3}{2}} / L^{3}$] or $\left[M^{\frac{1}{2}} L^{-\frac{1}{2}} T^{-1} \mu^{\frac{1}{3}}\right]$.

Magnetic field strength, magnetic intensity or magnetizing force (J) is the ratio of the force on a magnetic pole placed at the point and the magnetic pole strength. The dimensional formula is therefore the ratio of the formulae for a force and magnetic quantity, or $\left[M L T^{-2} / M^{\frac{1}{3}} L^{\frac{1}{2}} T^{-1} \mu^{\frac{2}{2}}\right]$ or $\left[M^{\frac{3}{3}} L^{-\frac{1}{3}} T^{-1} \mu^{-\frac{1}{2}}\right]$.

Magnetic flux (Φ) characterizes the magnetized state of a magnetic circuit. Through a surface enclosing a magnetic pole it is proportional to the magnetic pole strength. The dimensional formula is that for magnetic pole strength.

Magnetic induction (B) is the magnetic flux per unit of area taken perpendicular to the direction of the magnetic flux. The dimensional formula is [$\left.M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1} \mu^{\frac{1}{3}} / L^{2}\right]$ or $\left[M^{\frac{1}{3}} L^{-\frac{1}{2}} T^{-1} \mu^{\frac{1}{2}}\right]$.

Magnetic moment (M) is the product of the pole strength by the length of the magnet. The dimensional formula is $\left[M^{\frac{1}{2}} L^{\frac{5}{2}} T^{-1} \mu^{\frac{1}{2}}\right]$.

Magnetic pole strength or quantity of magnetism (m) has already been shown to have the dimensional formula [$M^{\frac{1}{2}} L^{\frac{3}{2}} T^{-1} \mu^{\frac{1}{2}}$].

Magnetic potential or magnetomotive force at a point is measured by the work which is required to bring unit quantity of positive magnetism from zero potential to the point. The dimensional formula is the ratio of the formulae for work and magnetic quantity $\left[M L^{2} T^{-2} / M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1} \mu^{\frac{1}{2}}\right]$ or $\left[M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-1} \mu^{-\frac{3}{2}}\right]$.

Magnetic reluctance is the ratio of magnetic potential difference to magnetic flux. The dimensional formula is $\left[L^{-1} \mu^{-1}\right]$.

Magnetic susceptibility (κ) is the ratio of intensity of magnetization produced and the intensity of the magnetic field producing it. The dimensional formula is $\left[M^{\frac{3}{4}} L^{-\frac{1}{2}} T^{-1} \mu^{\frac{3}{2}} / M^{\frac{3}{3}} L^{-\frac{1}{3}} T^{-1} \mu^{-\frac{1}{2}}\right]$ or $[\mu]$.

Mutual inductance of two circuits is the electromotive force produced in one per unit rate of variation of the current in the other. The dimensional formula is the same as for self-inductance.

Peltier effect, coefficient of, is measured by the ratio of the quantity of heat and quantity of electricity. The dimensional formula is [$M L^{2} T^{-2} / M M^{3} L^{3} \mu^{-3}$] or $\left[M^{3} L^{3} T^{-2} \mu^{3}\right]$, the same as for electromotive force.

Quantity of electricity is the product of the current and time. The dimensional formula is $\left[M^{3} L^{3} \mu^{-\frac{1}{2}}\right]$.

Resistance of a conductor is the ratio of the difference of potential between its ends and the constant current flowing. The dimensional formula is [$M^{3} L^{3} T^{-2} \mu^{\frac{3}{3}} / M^{\frac{3}{3}} L^{\frac{3}{2}} T^{-1} \mu^{-\frac{1}{3}}$] or $\left[L T^{-1} \mu\right]$.

Resistivity is the reciprocal of conductivity as just defined. The dimensional formula is $\left[L^{2} T^{-1} \mu\right]$.

Self-inductance is for any circuit the electromotive force produced in it by unit rate of variation of the current through it. The dimensional formula is the product of the formulae for electromotive force and time divided by that for current or $\left[M^{\frac{1}{3}} L^{\frac{3}{2}} T^{-2} \mu^{3} \times T \div M^{\frac{1}{3}} L^{\frac{3}{2}} T^{-1} \mu^{-\frac{3}{3}}\right]$ or $[L \mu]$.
Thermoelectric power is measured by the ratio of electromotive force and temperature. The dimensional formula is $\left[M^{\frac{1}{2}} L^{\frac{1}{2}} T^{-\frac{2}{2}} \mu^{\frac{1}{-1}}\right]$.

Exs.-Find the factor required to convert intensity of magnetic field from ft-grain-min units to cgs units. The formula is $\left[m^{\frac{1}{2}} l^{-\frac{1}{2}} t^{-1} \mu^{-\frac{1}{2}}\right] ; m=0.0648, l=30.48, t=60$, and $\mu=1$; the factor is $0.0648^{1} \times 30.48^{-\frac{1}{2}}$, or 0.046108 .

How many cgs units of magnetic moment make one ft-grain-sec unit of the same quantity? The formula is $\left[m^{\frac{1}{1}} l t^{-1} \mu^{\frac{1}{2}}\right] ; m=0.0648 . l=30.48, t=1$, and $\mu=1$; the number is $0.0648^{\frac{1}{2}} \times 30.48^{\frac{5}{2}}$, or 1305.6 .

If the intensity of magnetization of a steel bar is 700 in cgs units, what will it be in mm-mg-sec units? The formula is [$\left.m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} \mu^{\frac{1}{2}}\right] ; m=1000, l=10, t=1, \mu=1$; the intensity is $700 \times 1000^{\frac{1}{2}} \times 10^{\frac{1}{2}}$, or 70000 .

Find the factor required to convert current from cgs units to earth-quadrant-10 0^{-11} gram-sec units. The formula is $\left[m^{\frac{1}{2}} l^{\frac{1}{2}} t^{-1} \mu^{-\frac{1}{2}}\right] ; m=10^{11}, l=10^{-\theta}, \mu=1$; the factor is $10 \stackrel{12}{2} \times 10^{-2}$, or 10 .

Find the factor required to convert resistance expressed in cgs units into the same expressed in earth-quadrant- 10^{-11} gram-sec units. The formula is $\left[l t^{-1} \mu\right] ; l=10^{-9}, t=1$, $\mu=1$; the factor is 10^{-0}.

TABLE 3.-FUNDAMENTAL STANDARDS

Part 1.-Selection of fundamental quantities

The choice of the nature of the fundamental quantities already made does not sufficiently define the system for measurements. Some definite unit or arbitrarily chosen standard must next be taken for each of the fundamental quantities. This fundamental standard should have the qualities of permanence, reproducibility, and availability and be suitable for accurate measures. Once chosen and made it is called the primary standard and is generally kept at some central bureau-for instance, the International Bureau of Weights and Measures at Sèvres, France. A primary standard may also be chosen and made for derived units (e.g., the new absolute (1948) ohm standard), when it is simply a standard closely representing the unit and accepted for practical
purposes, its value having been fixed by certain measuring processes. Secondary or reference standards are accurately compared copies, not necessarily duplicates, of the primaries for use in the work of standardizing laboratories and the production of working standards for everyday use.

Standard of length.-The primary standard of length which now almost universally serves as the basis for physical measurements is the meter. It is defined as the distance between two lines at $0^{\circ} \mathrm{C}$ on a platinum-iridium bar deposited at the International Bureau of Weights and Measures. This bar is known as the International Prototype Meter, and its length was derived from the "métre des Archives," which was made by Borda. Borda, Delambre, Laplace, and others, acting as a committee of the French Academy, recommended that the standard unit of length should be the ten-millionth part of the length, from the equator to the pole, of the meridian passing through Paris. In 1795 the French Republic passed a decree making this the legal standard of length, and an arc of the meridian extending from Dunkirk to Barcelona was measured by Delambre and Mechain for the purpose of realizing the standard. From the results of that measurement the meter bar was made by Borda. The meter is now defined as above and not in terms of the meridian length; hence, subsequent measures of the length of the meridian have not affected the length of the meter.

Standard of mass.-The primary standard of mass now almost universally used as the basis for physical measurements is the kilogram. It is defined as the mass of a certain piece of platinum-iridium deposited at the International Bureau of Weights and Measures. This standard is known as the International Prototype Kilogram. Its mass is equal to that of the older standard, the "kilogram des Archives," made by Borda and intended to have the same mass as a cubic decimeter of distilled water at the temperature of $4^{\circ} \mathrm{C}$.

Copies of the International Prototype Meter and Kilogram are possessed by the various governments and are called National Prototypes.

Standard of time.-The unit of time universally used is the mean solar second, or the 86400 th part of the mean solar day. It is based on the average time of one rotation of the earth on its axis relatively to the sun as a point of reference $=1.00273791$ sidereal second.

Standard of temperature.-The standard scale of temperature, adopted by the International Committee of Weights and Measures (1887), depends on the constant-volume hydrogen thermometer. The hydrogen is taken at an initial pressure at $0^{\circ} \mathrm{C}$ of 1 meter of mercury, $0^{\circ} \mathrm{C}$, sea-level at latitude 45°. The scale is defined by designating the temperature of melting ice as 0° and of condensing steam as 100° under standard atmospheric pressure.

Thermodynamic (Kelvin) Scale (Centigrade degrees).-Such a scale independent of the properties of any particular substance, and called the thermodynamic, or absolute scale, was proposed in 1848 by Lord Kelvin. The temperature is proportional to the average kinetic energy per molecule of a perfect gas.

International temperature scale.-See Table 37.
Numerically different systems of units.-The fundamental physical quantities which form the basis of a system for measurements have been chosen and the fundamental standards selected and made. Custom has not however
generally used these standards for the measurement of the magnitudes of quantities but rather multiples or submultiples of them. For instance, for very small quantities the micron (μ) or one-millionth of a meter is often used. The following table ${ }^{8}$ gives some of the systems proposed, all built upon the fundamental standards already described. The centimeter-gram-second (cm-g-sec or cgs) system proposed by Kelvin is the only one generally accepted.

Part 2.-Some proposed systems of units

	Weber and Gauss	Kelvin cgs	$\begin{gathered} \text { Moon } \\ 1891 \end{gathered}$	$\begin{aligned} & \text { Giorgi } \\ & \text { MKS } \\ & \text { (Prim. } \\ & \text { Stds.) } \end{aligned}$	France 1914	B. A. Com., 1863	$\begin{aligned} & \text { Practical } \\ & \text { (B. A. } \\ & \text { Com.; } \\ & \text { 1873) } \end{aligned}$	$\begin{aligned} & \text { Strout } \\ & 1891 \end{aligned}$
Length	mm	cm	dm	m	m	m	$10^{\circ} \mathrm{cm}$	$10^{9} \mathrm{~cm}$
Mass	mg	g	Kg	Kg	$10^{6} \mathrm{~g}$	g	$10^{-11} \mathrm{~g}$	$10^{-9} \mathrm{~g}$
Time	sec	sec	$\frac{\mathrm{sec}}{10}$	sec	sec	sec	sec	sec

Further, the choice of a set of fundamental physical quantities to form the basis of a system does not necessarily determine how that system shall be used in measurements. In fact, upon any sufficient set of fundamental quantities, a great many different systems of units may be built. The electrostatic and electromagnetic systems are really systems of electric quantities rather than units. They were based upon the relationships $F=Q Q^{\prime} / K r^{2}$ and $m n^{\prime} / \mu r^{2}$, respectively. Systems of units built upon a chosen set of fundamental physical quantities may differ in two ways: (1) the units chosen for the fundamental quantities may be different ; (2) the defining equations by which the system is built may be different.

The electrostatic system generally used is based on the centimeter, gram, second, and dielectric constant of a vacuum. Other systems have appeared, differing from this in the first way-for instance using the foot, grain, and second in place of the centimeter, gram, and second. A system differing from it in the second way is that of Heaviside which introduces the factor 4π at different places than is usual in the equations. There are similarly several systems of electromagnetic units in use.

Gaussian systems.-"The complexity of the interrelations of the units is increased by the fact that not one of the systems is used as a whole, consistently for all electromagnetic quantities. The 'systems' at present used are therefore combinations of certain of the systems of units."

Some writers ${ }^{9}$ on the theory of electricity prefer to use what is called a Gaussian system, a combination of electrostatic units for purely electrical quantities and electromagnetic units for magnetic quantities. There are two such Gaussian systems in vogue-one a combination of cgs electrostatic and cgs electromagnetic systems, and the other a combination of the two corresponding Heaviside systems.

When a Gaussian system is used, caution is necessary when an equation contains both electric and magnetic quantities. A factor expressing the ratio between the electrostatic and electromagnetic units of one of the quantities has to be introduced. This factor is the first or second power of c, the number

[^4]of electrostatic units of electric charge in one electromagnetic unit of the same.
There is sometimes a question as to whether electric current is to be expressed in electrostatic or electromagnetic units, since it has both electric and magnetic attributes. It is usually expressed in electrostatic units in the Gaussian system.

It may be observed from the dimensions of K given in Table 2, part 3, that $[I / K \mu]=\left[L^{2} / T^{2}\right]$ which has the dimensions of a square of a velocity. This velocity was found experimentally to be equal to that of light, when K and μ were expressed in the same system of units. Maxwell proved theoretically that $1 / \sqrt{K} \mu$ is the velocity of any electromagnetic wave. This was subsequently proved experimentally. When a Gaussian system is used, this equation becomes $c / \sqrt{ } K \mu=\tau^{\prime}$. For the ether $K=1$ in electrostatic units and $\mu=1$ in electromagnetic units. Hence $c=v$ for the ether, or the velocity of an electromagnetic wave in the ether is equal to the ratio of the cgs electromagnetic to the cgs electrostatic unit of electric charge. This constant c is of primary importance in electrical theory. Its most probable value is 2.99776×10^{10} centimeters per second.

Part 3.-Electrical and magnetic units

Absolute ("practical") electromagnetic system (1948).-This electromagnetic system is based upon the units of $10^{9} \mathrm{~cm}, 10^{-11} \mathrm{~g}$, the sec and μ of the ether. The principal quantities are the resistance unit, the ohm $=10^{9} \mathrm{emu}$ units; the current unit, the ampere $=10^{-1}$ emu units; and the electromotive force unit, the volt $=10^{8}$ emu units. (See Table 6.)

The International electric units.-The units used before January 1, 1948, in practical electrical measurements, however, were the "International Units." They were derived from the "practical" system just described, or as the latter is sometimes called, the "absolute" system. These international units were based upon certain concrete standards that were defined and described. With such standards electrical comparisons can be more accurately and readily made than could absolute measurements in terms of the fundamental units. Two electric units, the international ohm and the international ampere, were chosen and made as nearly equal as possible to the ohm and ampere of the "practical" or "absolute" system. ${ }^{10}$

QUANTITY OF ELECTRICITY

The unit of quantity of electricity is the coulomb. The faraday is the quantity of electricity necessary to liberate 1 gram equivalent in electrolysis. It is equivalent to 96,488 absolute coulombs (Birge).

Standards.-There are no standards of electric quantity. The silver voltameter may be used for its measurement since under ideal conditions the mass of metal deposited is proportional to the amount of electricity which has flowed.

CAPACITY

The unit used for capacity is the microfarad or the one-millionth of the farad, which is the capacity of a condenser that is charged to a potential of 1 volt by 1 coulomb of electricity. Capacities are commonly measured by comparison with standard capacities. The values of the standards are determined by

[^5]measurement in terms of resistance and time. The standard is some form of condenser consisting of two sets of metal plates separated by a dielectric. The condenser should be surrounded by a metal shield connected to one set of plates rendering the capacity independent of the surroundings. An ideal condenser would have a constant capacity under all circumstances, with zero resistance in its leads and plates, and no absorption in the dielectric. Actual condensers vary with the temperature, atmospheric pressure, and the voltage, frequency, and time of charge and discharge. A well-constructed air condenser with heavy metal plates and suitable insulating supports is practically free from these effects and is used as a standard of capacity.

Practically, air-condenser plates must be separated by 1 mm or more and so cannot be of great capacity. The more the capacity is increased by approaching the plates, the less the mechanical stability and the less constant the capacity. Condensers of great capacity use solid dielectrics, preferably mica sheets with conducting plates of tinfoil. At constant temperature the best mica condensers are excellent standards. The dielectric absorption is small but not quite zero, so that the capacity of these standards found varies with different methods of measurement, so for accurate results care must be taken.

INDUCTANCE

The henry, the unit of self-inductance and also the unit of mutual inductance, is the inductance in a circuit when the electromotive force induced in this circuit is 1 volt, while the inducing current varies at the rate of 1 ampere per second.

Inductance standards.-Inductance standards are measured in international units in terms of resistance and time or resistance and capacity by alter-nate-current bridge methods. Inductances calculated from dimensions are in absolute electromagnetic units. The ratio of the international to the absolute henry is the same as the ratio of the corresponding ohms.

Since inductance is measured in terms of capacity and resistance by the bridge method about as simply and as conveniently as by comparison with standard inductances, it is not necessary to maintain standard inductances. They are however of value in magnetic, alternating-current, and absolute electrical measurements. A standard inductance is a circuit so wound that when used in a circuit it adds a definite amount of inductance. It must have either such a form or so great an inductance that the mutual inductance of the rest of the circuit upon it may be negligible. It ustually is a wire coil wound all in the same direction to make self-induction a maximum. A standard, the inductance of which may be calculated from its dimensions, should be a single layer coil of very simple geometrical form. Standards of very small inductance, calculable from their dimensions, are of some simple device, such as a pair of parallel wires or a single turn of wire. With such standards great care must be used that the mutual inductance upon them of the leads and other parts of the circuit is negligible. Any inductance standard should be separated by long leads from the measuring bridge or other apparatus. It must be wound so that the distributed capacity between its turns is negligille; otherwise the apparent inductance will vary with the frequency.

POWER AND ENERGY

Power and energy, although mechanical and not primarily electrical quantities, are measurable with greater precision by electrical methods than in any
other way. The watt and the electric units were so chosen in terms of the cgs units that the product of the current in amperes by the electromotive force in volts gives the power in watts (for continuous or instantaneous values). The watt is defined as the energy expended per second by an unvarying electric current of 1 ampere under an electric pressure of 1 volt.
Standards and measurements.-No standard is maintained for power or energy. Measurements are always made in electrical practice in terms of some of the purely electrical quantities represented by standards.

MAGNETIC UNITS

Cgs units are generally used for magnetic quantities. American practice is fairly uniform in names for these units: the cgs unit of magnetomotive force is called the gilbert; magnetic intensity, the oersted; magnetic induction, the gauss; magnetic flux, the maxwell, following the definitions of the American Institute of Electrical Engineers (1894).

Oersted, the cgs emu of magnetic intensity exists at a point where a force of 1 dyne acts upon a unit magnetic pole at that point, i.e., the intensity 1 cm from a unit magnetic pole.

Maxwell, the cgs emu magnetic flux is the flux through a cm^{2} normal to a field at 1 cm from a unit magnetic pole.

Gauss, the cgs etnu of magnetic induction has such a value that if a conductor 1 cm long moves through the field at a velocity of $1 \mathrm{~cm} / \mathrm{sec}$, length and induction mutually perpendicular, the induced emf is 1 abvolt.
Gilbert, the cgs emu of magnetomotive force is a field such that it requires 1 erg of work to bring a unit magnetic pole to the point.

A unit frequently used is the ampere-turn. It is a convenient unit since it eliminates 4π in certain calculations. It is derived from the "ampere turn per cm ." The following table shows the relations between a system built on the ampere-turn and the ordinary magnetic units. ${ }^{11}$
${ }^{11}$ Dellinger, International system of electric and magnetic units, Nat. Bur. Standards Bull., vol. 13, p. 599, 1916.

Part 4.-The ordinary and the ampere-turn magnetic units

Quantity		Ordinary magnetic units	Ampere-turn units	Ordinary units in 1 ampereturn unit
Magnetomotive force	\mathfrak{F}	gilbert	ampere-turn	$4 \pi / 10$
Magnetizing force	H	gilbert per cm	ampere-turn per cm	$4 \pi / 10$
Magnetic flux	Φ	maxwell	maxwell	1
Magnetic induction	B	$\left\{\begin{array}{l}\text { maxwell per } \\ \mathrm{cm}^{2} \text { gauss }\end{array}\right.$	$\left\{\begin{array}{l}\text { maxwell per } \mathrm{cm}^{2} \\ \text { gauss }\end{array}\right.$	1
Permeability	μ			
Reluctance	R	oersted	$\left\{\begin{array}{l} \text { ampere-turn per } \\ \text { maxwell } \end{array}\right.$	$4 \pi / 10$
Magnetization intensity	J		maxwell per cm^{2}	$1 / 4 \pi$
Magnetic susceptibility	κ			$1 / 4 \pi$
Magnetic pole strength.	m		maxwell	$1 / 4 \pi$

In pursuance of a decision of the International Committee on Weights and Measures, the National Bureau of Standards introduced, as of January 1, 1948, revised values of the units of electricity. This consummated a movement, initiated in 1927 by the American Institute of Electrical Engineers, asking that the National Bureau of Standards undertake the additional research necessary in order that the absolute ohm and absolute ampere based on the cgs electromagnetic system and the absolute volt, watt, and other units derived from them could be legalized in place of the international ohm and ampere and their derived units. This work was done, and the magnitude of the old international units in terms of the adopted absolute units is given in Table 5. This means that the electrical units now in use represent, as nearly as it is possible to make them, exact multiples of the cgs emu system, with the numerical relations shown in Table 6. Units of the new system will actually be maintained, as were the old international units, by groups of standard resistors and of standard cells, and consequently the change to be made is most simply represented by stating the relative magnitudes of the ohms and of the volts of the two systems.

During the period of transition to the new units, in order to avoid any doubt as to the units used in giving precise data, the International Committee on Weights and Measures recommended that the abbreviations int. and abs. be used with the names of the electrical units. In a few years this will be unnecessary, except when referring to old data.

The international units were intended to be exact multiples of the units of the centimeter-gram-second electromagnetic system, but to facilitate their reproduction, the ampere, the ohm, and the volt were defined by reference to three physical standards, namely (1) the silver voltameter, (2) a specified column of mercury, and (3) the Clark standard cell. This procedure was recommended by the International Electrical Congress of 1893 in Chicago and was incorporated in an Act of Congress of July 12, 1894. However, modifications of the international system were found to be necessary or expedient for several reasons. The original proposals were not sufficiently specific to give the precision of values that soon came to be required, and the independent definitions of three units brought the system into confict with the customary simple form of Ohm's Law, $I=E / R$. Furthermore, with the establishment of national standardizing laboratories in several of the larger countries, other laboratories no longer needed to set up their own primary standards, and facility of reproduction of those standards became less important than the reliability of the units.

In preparation for the expected change in units, laboratories in several countries made absolute measurements of resistance and of current. The results of these measurements and the magnitudes of the international units as maintained in the national laboratories of France, Great Britain, Germany, Japan, the U.S.S.R., and the United States were correlated by periodic comparisons of standard resistors and of standard cells sent to the International Bureau of Weights and Measures. Nearly all the absolute measurements at the National Bureau of Standards were carried out under the direct supervision of Harvey L. Curtis, and the results of such measurements at the Bureau accepted by the International Committee on Weights and Measures at its meeting in Paris in October 1946 are as follows :

1 mean international ohm $=1.00049$ absolute ohms
1 mean international volt $=1.00034$ absolute volts

[^6]The mean international units to which the above equations refer are the averages of units as maintained in the national laboratories of the six countries (France, Germany, Great Britain, Japan, U.S.S.R., and U.S.A.) which took part in this work before the war. The units maintained by the National Bureau of Standards differ from these average units by a few parts in a million, so that the conversion factors for adjusting values of standards in this country will be as follows:

> 1 mean international ohm U.S. $=1.000495$ absolute ohms
> 1 mean international volt U.S. $=1.000333$ absolute volts

Other electrical units will be changed by amounts shown in Table 5. The factors given should be used in converting values given in international units in National Bureau of Standards certificates to the new absolute system.

table 5.-RELATIVE MAGNITUDE OF THE OLD INTERNATIONAL ELECTRICAL UNITS AND THE NEW 1948 ABSOLUTE ELECTRICAL UNITS

| 1 mean international ohm | $=1.00049$ absointe ohms |
| :--- | :--- | :--- |
| 1 mean international volt | $=1.00034$ absolute volts |
| 1 international ohm (U.S.) | $=1.00495$ absolute ohms |
| 1 international volt (U.S.) | $=1.00033$ absolute volts |
| 1 international ampere | $=0.999835$ absolute ampere |
| 1 international coulomb | $=0.99835$ absolute coulomb |
| 1 international henry | $=1.000495$ absolute henries |
| 1 international farad | $\equiv 0.999505$ absolute farad |
| 1 international watt | $=1.000165$ absolute watts |
| 1 international joule | $=1.000165$ absolute joules |

TABLE 6.-RELATIVE VALUES OF THE THREE SYSTEMS OF ELECTRICAL UNITS

Quantity	Symbol	Absolute unit		Electromagnetic system emu			Electrostatic system * esu
Current strength		1 ampere	$=$	10^{-1}	abampere	$=$	3×10^{8} statampere
Potential difference	. E	1 volt	二	10^{8}	abvolts	二	$1 / 300$ statvolt
Resistance	R	1 ohm	=	10^{8}	abohms	=	(1/9) $\times 10^{-11}$ statohm
Energy	W	1 joule	=	10^{7}	ergs	=	10^{7} ergs
Power	P	1 watt	=	10^{7}	ergs/sec	$=$	$10^{7} \mathrm{ergs} / \mathrm{sec}$
Capacitance		1 farad	=	10^{-8}	abfarads	$=$	9×10^{11} statafarad
Inductance		1 henry	$=$	10^{9}	abhenries	$=$	$(1 / 9) \times 10^{-11} \text { stata- }$
Charge	Q	1 coulomb			abcoulom		3×10^{9} statcoulomb

[^7]TABLE 7.-CONVERSION FACTORS FOR UNITS OF ENERGY *

[^8]Abbreviations: int., international ; emu, electromagnetic units; esu, electrostatic units; cgs, centimeter-gram-second units.

Resistance:
1 international ohm $=$
1.00051 absolute ohms
1.0001 int . ohms (France, before 1911)
1.00016 Board of Trade units (England, 1903)
1.01358 B. A. units
1.00283 "legal ohms" of 1884
1.06300 Siemens units

1 absolute ohm =
0.99949 int. ohms

1 "practical" emu
$10^{\circ} \mathrm{cgs}$ emu
1.11262×10^{-12} cgs esu

Current:

1 international ampere $=$
0.99995 absolute ampere
1.00084 int. amperes (U. S. before 1911)
1.00130 int. amperes (England, before 1906)
1.00106 int. amperes (England, 190608)
1.00010 int. amperes (England, 190910)
1.00032 int. amperes (Germany, before 1911)
1.0002 int. amperes (France, before 1911)

1 absolute ampere $=$
1.00005 int. amperes

1 "practical" emu
0.1 cgs emu
$2.99776 \times 10^{\circ}$ esu
Electromotive force:
1 international volt =
1.00046 absolute volts
1.00084 int. volts (U. S. before 1911)
1.00130 int. volts (England, before 1906)
1.00106 int. volts (England, 1906-08)
1.00010 int. volts (England, 1909-10)
1.00032 int. volts (Germany, before 1911)
1.00032 int. volts (France, before 1911)

1 absolute volt $=$
0.99954 int. volt

1 "practical" emu
10^{4} cgs emu
0.00333560 cgs esu

Quantity of electricity:
(Same as current equivalents.)
1 international coulomb $=$
1/3600 ampere-hour
1/96494 faraday

Capacity:

1 international farad= 0.99949 absolute farad

1 absolute farad = 1.00051 int. farads

1 "practical" emu
$10^{-0} \mathrm{cgs} \mathrm{emu}$
8.98776×10^{11} cgs esu

lnductance:

1 international henry $=$
1.00051 absolute henries

1 absolute henry $=$
0.99949 int. henry

1 "practical" emu
$10^{\circ} \mathrm{emu}$
1.11262×10^{-12} cgs esu
Energy and power:
(standard gravity $=980.665 \mathrm{~cm} / \mathrm{sec}^{-2}$) -
1 international joule $=$
1.00041 absolute joules

1 absolute joule $=$
0.99959 int. joule
10^{7} ergs
0.737560 standard foot-pound
0.101972 standard kilogram-meter
0.277778×10^{-6} kilowatt-hour

Resistivity :

1 ohm- $\mathrm{cm}=0.393700$ ohm-inch
$=10,000$ ohm (meter, mm^{2})
$=12.732 .4 \mathrm{ohm}$ (meter, mm)
$=393,700$ microhm-inch
$=1,000,000$ microhm- cm
$=6,015,290 \mathrm{ohm}$ (mil, foot)
$1 \mathrm{ohm}($ meter, gram$)=5710.0 \mathrm{ohm}($ mile, pound)

Magnetic quantities:

1 int. gilbert	$=0.99995$ absolute gil-
1 abso	$=1.00005$ int. gilberts
1 int. maxwell	$\begin{aligned} & =1.00046 \text { absolute } \\ & \text { maxwells } \end{aligned}$
1 absolute maxwel	$=\begin{aligned} & 0.99954 \text { int. max- } \\ & \text { well } \end{aligned}$
1 gilbert	$=0.7958$ ampere-turn
1 gilbert per cm	$\begin{aligned} & =0.7958 \text { ampere-turn } \\ & \text { per cm } \\ & =2.021 \text { ampere-turns } \\ & \text { per inch } \end{aligned}$
1 maxwell	line
axwell perc	$=10^{-8}$ volt-second 6.452 maxwells per in. ${ }^{2}$

[^9]TABLE 9.-DERIVATIVES AND INTEGRALS

	$\int . x^{n} d . x$	$=\frac{x^{n+1}}{n+1} \text {, unless } n=-1$
$d u z=\left(1 \frac{d z}{d x}+2 \cdot \frac{d u}{d x}\right) d x$	$\int \frac{d . r}{x}$	$=\log x$
$d \frac{u}{v} \quad=\left(\frac{v \frac{d u}{d \cdot v}-u \frac{d v^{2}}{d v}}{v^{2}}\right) d . r$	$\int c^{s} d x$	$=e^{*}$
$d . x^{n} \quad=n \cdot x^{n-1} d x$	$\int c^{a c^{a x}} d . r$	$=\frac{1}{a} e^{a s}$
$d f(u)=d \frac{f(u)}{d u} \cdot \frac{d u}{d r} \cdot d x$	$\int . x^{m m^{\text {cosex }}} d x$	$=\frac{x^{m} c^{a r}}{a}-\frac{m}{a} \int_{-1}^{m-1} c^{a \alpha x} d x$
$d c^{*} \quad=c^{*} d . r$	$\int \log x d x$	$=x \log x-x$
$d c^{a s}=a e^{a x} d x$	$s_{u} d v$	$=u v-\int v d u$
${ }^{2} \log \cdot x=\frac{1}{x} d x$	$\int(a+b x)^{n} d x$	$=\frac{(a+b, r)^{n+1}}{(n+1) b}$
$d x^{x} \quad=x^{x}(1+\log$, $x) d . t$		
$d \sin x=\cos x d x$	$\int\left(a^{2}+x^{2}\right)^{-1} d x$	$=\frac{1}{a} \tan ^{-1} \frac{x}{a}=\frac{1}{a} \sin ^{-1} \quad \begin{array}{r} x \\ \vee x^{2}+a^{2} \end{array}$
$d \cos x=-\sin x d x$	$\int\left(a^{2}-x^{2}\right)^{-1} d x$	$=\frac{1}{2 a} \log \frac{a+x}{a-x}$
$d \tan x=\sec ^{2} x d x$	$\int\left(a^{2}-x^{2}\right)^{-\frac{4}{4}} d x$	$=\sin ^{-1} \frac{x}{a}$, or $-\cos ^{-1} \frac{x}{a}$
$d \cot x=-\csc ^{2} x d x$	$\int x\left(a^{2} \pm x^{2}\right)^{-4} d x$	$= \pm\left(a^{2} \pm x^{2}\right)^{\text {m }}$
$d \sec x=\tan x \sec x d x$	$\int \sin ^{2} \cdot x d x$	$=-\frac{1}{2} \cos x \sin x+\frac{1}{2} x$
$d \csc x=-\cot x \cdot \csc . t d x$	$\int \cos ^{2} x d x$	$=\frac{1}{1} \sin x \cos x+\frac{1}{2} x$
$d \sin ^{-1} \cdot x=\left(1-x^{2}\right)^{-4} d x$	$\int \sin x \cos x d x$	$=\frac{1}{2} \sin ^{2} x$
$d \cos ^{-1} \cdot x=-\left(1-x^{2}\right)^{-\frac{4}{4}} d x$	$\int(\sin x \cos x)^{-1} d x$	$=\log \tan x$
$d \tan ^{-1} \cdot x=\left(1+x^{2}\right)^{-1} d x$	$\int \tan x d x$	$=-\log \cos x$
$d \cot ^{-2} x=-\left(1+x^{2}\right)^{-1} d x$	$\int \tan ^{2} x d x$	$=\tan x-x$
$d \sec ^{-1} x=x^{-1}\left(x^{2}-1\right)^{-\frac{1}{4}} d x$	$\int \cot x d x$	$=\log \sin x$
$d \csc ^{-1} x=-x^{-1}\left(x^{2}-1\right)^{-\frac{1}{4}} d x$	$\int \cot ^{2} x d x$	$=-\cot \cdot x-x$
$d \sinh x=\cosh x d x$	$\int \csc . x d x$	$=\log \tan \frac{1}{2} x$
$d \cosh x=\sinh x d x$	$\int x \sin x d x$	$=\sin x-x \cos x$
$d \tanh \cdot x=\operatorname{sech}^{2} \cdot x d x$	$\int x \cos x d x$	$=\cos x+x \sin x$
$d \operatorname{coth} . x=-\operatorname{csch}^{2} x d x$	$\int \tanh x d x$	$=\log \cosh x$
$d \operatorname{sech} x=-\operatorname{sech} x \tanh . x d x$	$\int \operatorname{coth} x d x$	$=\log \sinh x$
$d \operatorname{csch} x=-\operatorname{csch} x^{*} \operatorname{coth} x d x$	$\int \operatorname{sech} x d x$	$=2 \tan ^{-1} c^{x}=g d u$
$d \sinh ^{-1} x=\left(x^{2}+1\right)^{-\frac{4}{4}} d x$	$\int \operatorname{csch} x d x$	$=\log \tanh \frac{x}{2}$
$d \cosh ^{-1} x=\left(x^{2}-1\right)^{-\frac{4}{4}} d x$	$\int x \sinh x d x$	$=r \cosh x-\sinh x$
$d \tanh ^{-1} x=\left(1-x^{2}\right)^{-1} d x$	$\int . x \cosh x d x$	$=x \sinh x-\cosh x$
$d \operatorname{coth}^{-1} x=\left(1-x^{2}\right)^{-1} d x$	$\int \sinh ^{2} x d x$	$=\frac{1}{2}(\sinh x \cosh x-x)$
$d \operatorname{sech}^{-1} x=-x^{-1}\left(1-x^{2}\right)^{-\frac{1}{4}} d . r$	$\int \cosh ^{2} x d x$	$\left.=\frac{1}{(\sinh } x \cosh x+x\right)$
$d \operatorname{csch}^{-1} x=-x^{-1}\left(x^{2}+1\right)^{-4} d x$	$\int \sinh x \cosh x d x$	$=\cosh (2 x)$

$$
\begin{align*}
& (x+y)^{n}=x^{n}+\frac{x}{1} x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\ldots \\
& \frac{n(n-1) \ldots(n-m+1)}{m!} x^{n-m} y^{m}+\ldots \quad\left(y^{2}<x^{2}\right) \\
& (1 \pm x)^{n}=1 \pm n x+\frac{n(n-1) x^{2}}{2!} \pm \frac{n(n-1)(n-2) x^{2}}{3!}+\ldots+ \\
& \frac{(\pm 1)^{k} n!x^{k}}{(n-k)!k!}+\ldots\left(x^{2}<1\right) \\
& (1 \pm x)^{-n}=1 \mp n x+\frac{n(n+1)}{2!} x^{2} \mp \frac{n(n+1)(n+2) x^{8}}{3!}+\cdots \\
& (\mp 1)^{k} \frac{(n+k-1) x^{k}}{(n-1)!k!}+\ldots\left(x^{2}<1\right) \\
& \begin{array}{l}
(1 \pm x)^{-1}=1 \mp x+x^{2} \mp x^{3}+x^{4} \mp x^{5}+\ldots \\
(1 \pm x)^{-2}=1 \mp 2 x+3 x^{2} \mp 4 x^{3}+5 x^{4} \mp 6 \lambda^{5}+\ldots \\
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\ldots+\frac{h^{n}}{n!} f^{(n)}(x)+\ldots
\end{array} \tag{2}\\
& f(x)=f(0)+\frac{x}{1} f^{\prime}(o)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots \frac{x^{n}}{n!} f^{(n)}(o)+\ldots \\
& e=\lim \left(1+\frac{1}{n}\right)^{n}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \tag{2}\\
& a^{x}=1+x \log a+\frac{(x \log a)^{2}}{2!}+\frac{(x \log a)^{3}}{3!}+\ldots \tag{2}\\
& \log x=\frac{x-1}{x}+\frac{1}{2}\left(\frac{x-1}{x}\right)^{2}+\frac{1}{3}\left(\frac{x-1}{x}\right)^{3}+\ldots \tag{1}\\
& =(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\ldots \tag{2>x>0}\\
& =2\left[\frac{x-1}{x+1}+\frac{1}{3}\left(\frac{x-1}{x+1}\right)^{3}+\frac{1}{5}\left(\frac{x-1}{x+1}\right)^{5}+\ldots .\right] \tag{x>0}\\
& \text { (} x^{2}<1 \text {) } \\
& \text { Taylor's } \\
& \text { series } \\
& \log (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{2}-\frac{1}{4} x^{4}+\ldots . \tag{2}\\
& \sin x=\frac{1}{2 i}\left(e^{1 x}-e^{-1 x}\right)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
& \cos x=\frac{1}{2}\left(e^{4 x}+e^{-4 x}\right)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=1-\mathrm{versin} x \\
& \tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62}{2835} x^{0}+\ldots \\
& \left(x^{2}<\frac{\pi^{2}}{4}\right) \\
& \left(x^{2}<1\right) \tag{2}\\
& =\frac{\pi}{2}-\frac{1}{x}+\frac{1}{3 x^{3}}-\frac{1}{5 x^{5}}+\ldots \tag{2}\\
& \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots \tag{2}\\
& \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{0}}{6!}+\ldots \tag{2}\\
& \text { (continued) }
\end{align*}
$$

$$
\begin{aligned}
& \tanh x=x-\frac{1}{3} x^{3}+\frac{2}{15} x^{5}-\frac{17}{315} x^{7}+\ldots \\
& \left(x^{2}<\frac{1}{4} \pi^{2}\right) \\
& \sinh ^{-1} x=x-\frac{1}{2} \frac{x^{3}}{3}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{-5}}{5}-\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \frac{x^{7}}{7}+\ldots \\
& \left(x^{2}<1\right) \\
& =\log 2 . x+\frac{1}{2} \frac{1}{2 \cdot r^{2}}-\frac{1}{2} \frac{3}{4} \frac{1}{4 \cdot x^{4}}+\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6 x^{0}}-\ldots \\
& \left(x^{2}>1\right) \\
& \cosh ^{-1} x=\log 2 x-\frac{1}{2} \frac{1}{2 x^{2}}-\frac{1}{2} \frac{3}{4} \frac{1}{4 x^{4}}-\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{1}{6 x^{0}}-\ldots \\
& \tanh ^{-1} x=x+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\frac{1}{7} x^{7}+\ldots \\
& \left(x^{2}<1\right) \\
& \operatorname{gd} x=\phi=x-\frac{1}{6} \cdot x^{3}+\frac{1}{24} x^{5}-\frac{61}{5040} x^{7}+\ldots \\
& \text { (} x \text { small) } \\
& =\frac{\pi}{2}-\operatorname{sech} . x-\frac{1}{2} \frac{\operatorname{sech}^{3} x}{3}-\frac{1}{2} \frac{3}{4} \frac{\operatorname{sech}^{5} x}{5}-\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} x \text { large) } \\
& \left(\phi<\frac{\pi}{2}\right) \\
& f(x)=\frac{1}{2} b_{0}+b_{1} \cos \frac{\pi \cdot x}{c}+b_{2} \cos \frac{2 \pi \cdot x}{c}+\ldots \\
& +a_{1} \sin \frac{\pi x}{c}+a_{2} \cos \frac{2 \pi x}{c}+\ldots(-c<x<c) \\
& a_{m}=\frac{1}{c} \int-{ }_{c}^{+} f(x) \sin \frac{m \pi x}{c} d x \\
& b_{\mathrm{m}}=\frac{1}{c} \int-c \quad+(x) \cos \frac{m \pi x}{c} d x
\end{aligned}
$$

TABLE 11.-MATHEMATICAL CONSTANTS

$c=2.7182818285$	$\begin{gathered} \text { Numbers } \\ \pi=3.1415926536 \end{gathered}$	$\begin{gathered} \text { Logarithms } \\ 0.4971498727 \end{gathered}$
$c^{-1}=0.3678794412$	$\pi^{2}=9.8696044011$	0.9942997454
$M=\log _{10}{ }^{2}=0.4342944819$	$\frac{1}{\pi}=0.3183098862$	9.5028501273
$(M)^{-1}=\log _{e} 10=2.3025850930$	$\checkmark \pi=1.7724538509$	0.2485749363
$\log _{10} \log _{10} 0=9.6377843113$	$\frac{\mathrm{V} \pi}{2}=0.8862269255$	9.9475449407
$\log _{10} 2=0.3010299957$	$\frac{1}{V \pi}=0.5641895835$	9.7514250637
$\log _{e} 2=0.6931471806$	$\frac{2}{V \pi}=1.1283791671$	0.0524550593
$\log _{10 .} \mathrm{r}=\mathrm{M} \cdot \log _{\text {e }} . \mathrm{x}$	$\sqrt{ } \frac{\pi}{2}=1.2533141373$	0.0980599385
$\log _{B} x=\log _{e} x \cdot \log _{B} C$	$\sqrt{\frac{2}{\pi}}=0.7978845608$	9.9019400615
$=\log _{e} x \div \log _{e} B$	$\frac{\pi}{4}=0.7853981634$	9.8950898814
$\log _{e} \pi=1.1447298858$	$\frac{\vee \pi}{4}=0.4431134627$	9.6465149450
$\rho=0.4769362762$ *		0.6220886093
$\log \rho=9.6784603565$	$\frac{c}{\sqrt{2 \pi}}=1.0844375514$	0.0352045477

* Probable error, modulus of precision.

Part 1.-Numerical

n			$\frac{1}{n}$			$n:=1.2 .3 .4 \ldots n$				n
1	1.								1	1
2	0.5									2
3	. 16666	66666	66666	66666	66667				6	3
4	. 04166	66666	66666	66666	66667				24	4
5	. 00833	33333	33333	33333	33333				120	5
6	0.00138	88888	88888	88888	88889				720	6
7	. 00019	84126	98412	69841	26984				5040	7
8	. 00002	48015	87301	58730	15873				40320	8
9	. 00000	27557	31922	39858	90653			3	62880	9
10	. 00000	02755	73192	23985	89065			36	28800	10
11	0.00000	00250	52108	38544	17188			399	16800	11
12	. 00000	00020	87675	69878	68099			4790	01600	12
13	. 00000	00001	60590	43836	82161			62270	20800	13
14	. 00000	00000	11470	74559	77297		8	71782	91200	14
15	. 00000	00000	00764	71637	31820		130	76743	68000	15
16	0.00000	00000	00047	79477	33239		2092	27898	88000	16
17	. 00000	00000	00002	81145	72543		35568	74280	96000	17
18	. 00000	00000	00000	15619	20697	6	40237	37057	28000	18
19	. 00000	00000	00000	00822	06352	121	64510	04088	32000	19
20	. 00000	00000	00000	00041	10318	2432	90200	81766	40000	20

Part 2.-Logarithmic

Logarithms of the products $1.2 .3 . \ldots . . . n, n$ from 1 to 100.

n	$\log (n)$)	n	$\log (n!)$	n	$\log (n)$)	n	$\log (n)$
1	0.000000	26	26.605619	51	66.190645	76	111.275425
2	0.301030	27	28.036983	52	67.906648	77	113.161916
3	0.778151	28	29.484141	53	69.630924	78	115.054011
4	1.380211	29	30.946539	54	71.363318	79	116.951638
5	2.079181	30	32.423660	55	73.103681	80	118.854728
6	2.857332	31	33.915022	56	74.851869	81	120.763213
7	3.702431	32	35.420172	57	76.607744	82	122.677027
8	4.605521	33	36.938686	58	78.371172	83	124.596105
9	5.559763	34	38.470165	59	80.142024	84	126.520384
10	6.559763	35	40.014233	60	81.920175	85	128.449803
11	7.601156	36	41.570535	61	83.705505	86	130.384301
12	8.680337	37	43.138737	62	85.497896	87	132.323821
13	9.794280	38	44.718520	63	87.297237	88	134.268303
14	10.940408	39	46.309585	64	89.103417	89	136.217693
15	12.116500	40	47.911645	65	90.916330	90	138.171936
	13.320620	41	49.524429	66	92.735874	91	140.130977
17	14.551069	42	51.147678	67	94.561949	92	142.094765
18	15.806341	43	52.781147	68	96.394458	93	144.063248
19	17.085095	44	54.424599	69	98.233307	94	146.036376
20	18.386125	45	56.077812	70	100.078405	95	148.014099
21	19.708344	46	57.740570	71	101.929663	96	149.996371
22	21.050767	47	59.412668	71	103.786996	97	151.983142
23	22.412494	48	61.093909	73	105.650319	98	153.974368
24	23.792706	49	62.784105	74	107.519550	99	155.970004
25	25.190646	50	64.483075	75	109.394612	100	157.970004

TABLE 13.-FORMULAS FOR MOMENTS OF INERTIA, RADII OF GYRATION, AND WEIGHTS OF VARIOUS SHAPED SOLIDS

In each case the axis is supposed to traverse the center of gravity of the body. The axis is one of symmetry. The mass of a unit of volume is 2 e.

Splacre of radius r Roly	Diameter	$\begin{aligned} & \text { Weight } \\ & \frac{4 \pi z c r^{3}}{3} \end{aligned}$	Moment of $\frac{8 \pi \text { r }^{5}}{15}$	Square of radius of gyration $\rho_{0}{ }^{2}$ $\frac{2 r^{2}}{5}$
Spheroid of revolution, pular axis $2 n$, erpuatorial diametcr $2 r$	Polar axis	$\frac{4 \pi z e a r^{2}}{3}$	$\frac{8 \pi z e a r}{}{ }^{4}$	$\frac{2 r^{2}}{5}$
Fllipsoid, axis $2 a, 2 b, 2 c .$.	Axis $2 a$	$\frac{4 \pi z e a b c}{3}$	$\frac{4 \pi \text { acalce }\left(h^{2}+c^{2}\right)}{15}$	$\frac{b^{2}+c^{2}}{5}$
Spherical shell, external radints r, internal r^{\prime}........	1)iameter	$\frac{4 \pi r^{\prime}\left(r^{3}-r^{\prime 3}\right)}{3}$	$\frac{8 \pi z c^{\prime}\left(r^{5}-r^{\prime 5}\right)}{15}$	$\frac{2\left(r^{5}-r^{\prime 5}\right)}{5\left(r^{3}-r^{13}\right)}$
Ditto, insensibly thin, radius r, thickness $d r$..	1)iameter	$4 \pi 2 w r^{2} d r$	$\frac{8 \pi z u r^{4} d r}{3}$	$\frac{2 r^{2}}{3}$
Circular cylinder, length $2 a$, radius r	Longitudinal axis $2 a$	$2 \pi z 6 a r^{2}$	$\pi z<a{ }^{4}$	$\frac{r^{2}}{2}$
Elliptic culinder, length $2 u$, transverse axes $26,2 c$.	Longitudinal axis $2 a$	$2 \pi z{ }^{\text {a }}$ abc	$\frac{\pi r e a b c}{} \frac{\left.b^{2}+c^{2}\right)}{2}$	$\frac{b^{2}+c^{2}}{4}$
Hollow circular cylinder. length $2 a$, external radius r, internal $r^{\prime} \ldots \ldots$.	Longitudinal axis $2 a$	$2 \pi z \mathrm{ca}\left(r^{2}-r^{\prime 2}\right)$	$\pi 2800\left(r^{4}-r^{\prime 4}\right)$	$\frac{r^{2}+r^{\prime 2}}{2}$
Ditto, insensibly thin, thickness $d r$	Longitudinal axis $2 a$	$4 \pi z c^{\prime} a r d r$	$4 \pi z \operatorname{car}^{3} d r$	r^{2}
Circular cylinder, length $2 a$, radius r	Transverse diameter	$2 \pi z \cdots a r^{2}$	$\frac{\pi \tau \mathrm{c} a r^{2}\left(3 r^{2}+4 a^{2}\right)}{6}$	$\frac{r^{2}}{4}+\frac{a^{2}}{3}$
Elliptic cylinder, length $2 a$ transwerse axes $2 a, 2 h$..	Transverse axis 2h	$2 \pi z c a b c$	$\frac{\text { Tuialic }\left(3 c^{2}+4 a^{2}\right)}{6}$	$\frac{c^{2}}{4}+\frac{a^{2}}{3}$
Hollow circular cylinder, length $2 a$, external radius r. internal r^{\prime}.......	Transverse diameter	$2 \pi z \sim a\left(r^{2}-r^{\prime 2}\right)$	$\frac{\pi \tau i^{\prime} a}{6}\left\{\begin{array}{c} 3\left(r^{4}-r^{\prime 4}\right) \\ +4 a^{2}\left(r^{2}-r^{\prime 2}\right) \end{array}\right\}$	$\frac{r^{2}+r^{\prime 2}}{4}+\frac{a^{2}}{3}$
Ditto, insensibly thin, thickness $d r$	Transverse diameter	$4 \pi z c a r d r$	$\pi z e a\left(2 r^{3}+\frac{4}{3} a^{2} r\right) d r$	$\frac{r^{2}}{2}+\frac{a^{2}}{3}$
Rectangular prism, dimensions $2 a, 2 l, 2 c \ldots \ldots \ldots$	Axis $2 a$	8uabc	$\frac{\left.8 a c a l c(1)^{2}+c^{2}\right)}{3}$	$\frac{b^{2}+c^{2}}{3}$
Rhombic prism, length $2 a$, diagonals $2 k, 2 c, \ldots .$.	Axis $2 a$	treabc	$\frac{2 \text { zeabc }\left(b^{2}+c^{2}\right)}{3}$	$\frac{b^{2}+c^{2}}{6}$
Ditto	Diagonal 2b,	4reabc	$\frac{2 \text { acalc }\left(c^{2}+2 a^{2}\right)}{3}$	$\frac{c^{2}}{6}+\frac{a^{2}}{3}$

Fur further mathematical data see Smithsonian Mathematical Tables, Becker and Van Orstrand (Hyperbolic. Circular and Exponential Functions) ; Smithsonian Mathematical Formulae and Tables of Flliptic Functions, Adans and Hippisley; Smithsonian Elliptic Functions Tables, Spenceley; Sunithsonian Logarithmic Tables, Spenceley and Epperson; Functionentafeln, Jahnke und Emde (xtgx, $\mathrm{x}^{-1} \mathrm{tgx}$, Roots of Transcondental Equations, $a+b i$ and $r e^{\rho^{i}}$, Exponentials, Hyperbolic Functions,
$\int_{0}^{x} \frac{\sin u}{u} d u, \int_{x}^{x} \frac{\cos u}{u} d u, \int_{2}^{-x} \frac{c^{-u}}{u} d u$, Fresnel Integral, Gamma Function, Gauss Integral $\frac{2}{\sqrt{\pi}} \int_{0}^{x} c^{-x^{3}} d x$, Pearson Function $c^{-3 \pi \nu} \int_{0}^{\pi} \sin ^{r} e^{\nu x} d x$, Elliptic Integrals and Functions, Spherical and Cylindrical Functions, etc.). For further references see under Tables, Mathematical, in the 16th ed. Encyclopædia Britannica. See also Carr's Synopsis of Pure Mathematics and Mellor's Higher Mathematics for Students of Chemistry and Physics.

											P. P.				
N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	11	15	19
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	10	14	17
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6	10	13	16
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	15
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	8	11	14
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	5	7	
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9
25	3979	3997	4014	4031	4048	4055	4082	4099	4116	4133	2	3	5	7	9
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	,	3	4	6	7
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6
36	5563	5575	5587	5589	5611	5623	5635	5647	5658	5670	1	2	4	5	
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	6
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5
43	6335	6345	6355	. 6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4
						(cont	inued)								

											P. P.				
N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	I	2	3	4
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1		2	3	3
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	3	3
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	,	2	2	3
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1		2	2	3
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	,	2	2	3
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971			2	2	3
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025		1	2	2	3
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	,	2	2	3
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	,	2	2	3
83	9191	9196	9201	9206	9212	9217	9222	9237	9232	9238	1	1	2	2	3
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1		2	2	3
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3
87	9395	9400	9405	9410	9415	94?0	9425	9430	9435	9440	0	1	1	2	
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2
91	9590	9595	5600	9605	9609	9614	9619	9624	9628	9633	0	,		2	2
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2

(continued)

N	0	1	2	3	4	5	6	7	8	9	10
100	0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	0043
101	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	0086
102	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	0128
103	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	0170
104	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	0212
105	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249	0253
106	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	0294
107	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	0334
108	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370	0374
109	0374	0378	0382	0386	0390	0394	0398	0402	0406	0410	0414
110	0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	0453
111	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	0492
112	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	0531
113	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565	0569
114	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603	0607
115	0607	0611	0615	0618	0622	0626	0630	0633	0637	0641	0645
116	0645	0648	0652	0656	0660	0663	0667	0671	0674	0678	0682
117	0682	0686	0689	0693	0697	0700	0704	0708	0711	0715	0719
118	0719	0722	0726	0730	0734	0737	0741	0745	0748	0752	0755
119	0755	0759	0763	0766	0770	0774	0777	0781	0785	0788	0792
120	0792	0795	0799	0803	0806	0810	0813	0817	0821	0824	0828
121	0828	0831	0835	0839	0842	0846	0849	0853	0856	0860	0864
122	0864	0867	0871	0874	0878	0881	0885	0888	0892	0896	0899
123	0899	0903	0906	0910	0913	0917	0920	0924	0927	0931	0934
124	0934	0938	0941	0945	0948	0952	0955	0959	0962	0966	0969
125	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	1004
126	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	1038
127	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	1072
128	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	1106
129	1106	1109	1113	1116	1119	1123	1126	1129	1133	1136	1139
130	1139	1143	1146	1149	1153	1156	1159	1163	1166	1169	1173
131	1173	1176	1179	1183	1186	1189	1193	1196	1199	1202	1206
132	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235	1239
133	1239	1242	1245	1248	1252	1255	1258	1261	1265	1268	1271
134	1271	1274	1278	1281	1284	1287	1290	1294	1297	1300	1303
135	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332	1335
136	1335	1339	1342	1345	1348	1351	1355	1358	1361	1364	1367
137	1367	1370	1374	1377	1380	1383	1386	1389	1392	1396	1399
138	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427	1430
139	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	1461
140	1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	1492
141	1492	1495	1498	1501	1504	1508	1511	1514	1517	1520	1523
142	1523	1526	1529	1532	1535	1538	1541	1544	1547	1550	1553
143	1553	1556	1559	1562	1565	1569	1572	1575	1578	1581	1584
144	1584	1587	1590	1593	1596	1599	1602	1605	1608	1611	1614
145	1614	1617	1620	1623	1626	1629	1632	1635	1638	1641	1644
146	1644	1647	1649	1652	1655	1658	1661	1664	1667	1670	1673
147	1673	1676	1679	1682	1685	1688	1691	1694	1697	1700	1703
148	1703	1706	1708	1711	1714	1717	1720	1723	1726	1729	1732
149	1732	1735	1738	1741	1744	1746	1749	1752	1755	1758	1761

(continued)

TABLE 14.-LOGARITHMS (concluded)

N	0	1	2	3	4	5	6	7	8	9	10
150	1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	1790
151	1790	1793	1796	1798	1801	1804	1807	1810	1813	1816	1818
152	1818	1821	1824	1827	1830	1833	1836	1838	1841	1844	1847
153	1847	1850	1853	1855	1858	1861	1864	1867	1870	1872	1875
154	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	1903
155	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	1931
156	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	1959
157	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	1987
158	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	2014
159	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	2041
160	2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	2068
161	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	2095
162	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119.	2122
163	2122	2125	2127	2130	21.33	2135	2138	2140	2143	2146	2148
164	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	2175
165	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	2201
166	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	2227
167	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	2253
168	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	2279
169	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	2304
170	2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2330
171	2330	2333	2335	2338	2340	2343	2345	2348	2350	2353	2355
172	2355	2358	2360	2363	2365	2368	2370	2373	2375	2378	2380
173	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	2405
174	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	2430
175	2430	2433	2435	2438	2440	2443	2445	2448	2450	2453	2455
176	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	2480
177	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	2504
178	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	2529
179	2529	2531	2533	2536	2538	2541	2543	2545	2548	2550	2553
180	2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	2577
181	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	2601
182	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	2625
183	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	2648
184	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	2672
185	2672	2674	2676	2679	2681	2683	2686	2688	2690	2693	
186	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	2718
187	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	2742
188	2742	2744	2746	2749	2751	2753	2755	2758	2760	2762	2765
189	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	2788
190	2788	2790	2792	2794	2797	2799	2801	2804	2806	2808	2810
191	2810	2813	2815	2817	2819	2822	2824	2826	28.8	2831	2833
192	2833	2835	2838	2840	2842	2844	2847	2849	2851	2853	2856
193	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876	2878
194	2878	2880	2882	2885	2887	2889	2891	2894	2896	2898	2900
195	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	2923
196	2923	2925	2927	2929	2931	2934	2936	2938	2940	2942	2945
197	2945	2947	2949	2951	2953	2956	2958	2960	2962	2964	2967
198	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986	2989
199	2989	2991	2993	2995	2997	2999	3002	3004	3006	3008	3010

TABLE 15.-CIRCULAR (TRIGONOMETRIC) FUNCTIONS*

		Sines		Cosines		Tangents		Cotangents		$90^{\circ} 00^{\prime}$	1.5708
Radi- ans	$\begin{aligned} & \text { De- } \\ & \text { grees } \end{aligned}$	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.0000	$0^{\circ} 00^{\prime}$. 0000	∞	1.0000	0.0000	. 0000	∞	∞	∞		
0.0029	10	.0029	7.4637	1.0000	. 0000	. 0029	7.4637	343.77	2.5363	50	1.5679
0.0058	20	. 0058	. 7648	1.0000	. 0000	. 0058	. 7648	171.89	. 2352	40	1.5650
0.0087	30	. 0087	. 9408	1.0000	. 0000	. 0087	. 9409	114.59	. 0591	30	1.5621
0.0116	40	. 0116	8.0658	. 9999	. 0000	. 0116	8.0658	85.940	1.9342	20	1.5592
0.0145	50	. 0145	. 1627	. 9959	. 0000	. 0145	. 1627	68.750	. 8373	10	1.5563
0.0175	$1^{\circ} 00^{\prime}$. 0175	8.2419	. 9998	9.9999	. 0175	8.2419	57.290	1.7581	$89^{\circ} 00^{\prime}$	1.5533
0.0204	10	. 0204	. 3088	. 9998	. 9999	. 0204	. 3089	49.104	. 6911	50	1.5504
0.0233	20	. 0233	. 3668	. 9997	. 9999	. 0233	. 3669	42.964	. 6331	40	1.5475
0.0262	30	. 0262	. 4179	. 9997	. 9999	. 0262	. 4181	38.188	. 5819	30	1.5446
0.0291	40	. 0291	. 4637	. 9996	. 9998	. 0291	. 4638	34.368	. 5362	20	1.5417
0.0320	50	. 0320	. 5050	. 9995	. 9998	. 0320	. 5053	31.242	. 4947	10	1.5388
0.0349	$2^{\circ} 00^{\prime}$. 0349	8.5428	. 9994	9.9997	. 0349	8.5431	28.636	1.4569	$88^{\circ} 00^{\prime}$	1.5359
0.0378	10	. 0378	. 5776	. 9993	. 9997	. 0378	. 5779	26.432	. 4221	50	1.5330
0.0407	20	. 0407	. 6097	. 9992	. 9996	. 0407	. 6101	24.542	. 3899	40	1.5301
0.0436	30	. 0436	. 6397	. 9990	. 9996	. 0437	. 6401	22.904	. 3599	30	1.5272
0.0465	40	. 0465	. 6677	. 9989	. 9995	. 0465	. 6682	21.470	. 3318	20	1.5243
0.0495	50	. 0494	. 6940	. 9988	. 9995	. 0495	. 6945	20.206	. 3055	10	1.5213
0.0524	$3^{\circ} 00^{\prime}$. 0523	8.7188	. 9986	9.9994	. 0524	8.7194	19.081	1.2806	$87^{\circ} 00^{\prime}$	1.5184
0.0553	10	. 0552	. 7423	. 9985	. 9993	. 0553	. 7429	18.075	. 2571	50	1.5155
0.0582	20	. 0581	. 7645	. 9983	. 9993	. 0582	. 7652	17.169	. 2348	40	1.5126
0.0611	30	. 0610	. 7857	. 9981	. 9992	. 0612	. 7865	16.350	. 2135	30	1.5097
0.0640	40	. 0640	. 8059	. 9980	. 9991	. 0641	. 8067	15.605	. 1933	20	1.5068
0.0669	50	. 0669	. 8251	. 9978	. 9990	. 0670	. 8261	14.924	. 1739	10	1.5039
0.0698	$4^{\circ} 00^{\prime}$. 0698	8.8436	. 9976	9.9989	. 0699	8.8446	14.301	1.1554	$86^{\circ} 00^{\prime}$	1.5010
0.0727	10	. 0727	. 8613	. 9974	. 9989	. 0729	. 8624	13.727	. 1376	50	1.4981
0.0756	20	. 0756	. 8783	. 9971	. 9988	. 0758	. 8795	13.197	. 1205	40	1.4952
0.0785	30	. 0785	. 8946	. 9969	. 9987	. 0787	. 8960	12.706	. 1040	30	1.4923
0.0814	40	. 0814	. 9104	. 9967	. 9986	. 0816	. 9118	12.251	. 0882	20	1.4893
0.0844	50	. 0843	. 9256	. 9964	. 9985	. 0846	. 9272	11.826	. 0728	10	1.4864
0.0873	$5^{\circ} 00^{\prime}$. 0872	8.9403	. 9962	9.9983	. 0875	8.9420	11.430	1.0580	$85^{\circ} 00^{\prime}$	1.4835
0.0902	10	. 0901	. 9545	. 9959	. 9982	. 0904	. 9563	11.059	. 0437	50	1.4806
0.0931	20	. 0929	. 9682	. 9957	. 9981	. 0934	. 97.01	10.712	. 0299	40	1.4777
0.0960	30	. 0958	. 9816	. 9954	. 9980	. 0963	. 9836	10.385	. 0164	30	1.4748
0.0989	40	. 0987	. 9945	. 9951	. 9979	. 0992	. 9966	10.078	. 0034	20	1.4719
0.1018	50	. 1016	9.0070	. 9948	. 9977	. 1022	9.0093	9.7882	0.9907	10	1.4690
0.1047	$6^{\circ} 00^{\prime}$. 1045	9.0192	. 9945	9.9976	. 1051	9.0216	9.5144	0.9784	$84^{\circ} 00^{\prime}$	1.4661
0.1076	10	. 1074	. 0311	. 9942	. 9975	. 1080	. 0336	9.2553	. 9664	50	1.4632
0.1105	20	. 1103	. 0426	. 9939	. 9973	. 1110	. 0453	9.0098	. 9547	40	1.4603
0.1134	30	. 1132	. 0539	. 9936	. 9972	. 1139	. 0567	8.7769	. 9433	30	1.4574
0.1164	40	. 1161	. 0648	. 9932	. 9971	. 1169	. 0678	8.5555	. 9322	20	1.4544
0.1193	50	. 1190	. 0755	. 9929	. 9969	. 1198	. 0786	8.3450	. 9214	10	1.4515
0.1222	$7^{\circ} 00^{\prime}$. 1219	9.0859	. 9925	9.9968	. 1228	9.0891	8.1443	0.9109	$83^{\circ} 00^{\prime}$	1.4486
0.1251	10	. 1248	. 0961	. 9922	. 9966	. 1257	. 0995	7.9530	. 9005	50	1.4457
0.1280	20	. 1276	. 1060	. 9918	. 9964	. 1287	. 1096	7.7704	. 8904	40	1.4428
0.1309	30	. 1305	. 1157	. 9914	. 9963	. 1317	. 1194	7.5958	. 8806	30	1.4399
0.1338	40	. 1334	. 1252	. 9911	. 9961	. 1346	. 1291	7.4287	. 8709	20	1.4370
0.1367	50	. 1363	. 1345	. 9907	. 9959	. 1376	. 1385	7.2687	. 8615	10	1.4341
0.1396	$8^{\circ} 00^{\prime}$. 1392	9.1436	. 9903	9.9958	. 1405	9.1478	7.1154	0.852?	$82^{\circ} 00^{\prime}$	1.431?
0.1425	10	. 1421	. 1525	. 9899	. 9956	. 1435	. 1569	6.9682	. 9431	50	1.4283
0.1454	20	. 1449	. 1612	. 9894	. 9954	. 1465	. 1658	6.8269	. 8342	40	1.4254
0.1484	30	. 1478	. 1697	. 9890	. 9952	. 1495	. 1745	6.6912	. 8255	30	1.4224
0.1513	40	. 1507	. 1781	. 9886	. 9950	.1524	. 1831	6.5606	. 8169	20	1.4195
0.1542	50	. 1536	. 1863	. 9881	. 9948	. 1554	. 1915	6.4348	. 8085	10	1.4166
0.1571	$9^{\circ} 00^{\prime}$. 1564	9.1943	. 9877	9.9946	. 1584	9.1997	6.3138	0.8003	$81^{\circ} 00^{\prime}$	1.4137
		Nat.	L.og.	Nat.	I.ng.	Nat.	L_og.	Nat.	I.og.		
										$\begin{aligned} & \text { De- } \\ & \text { grees } \end{aligned}$	Radians

[^10]

34 TABLE 15.-CIRCULAR (TRIGONOMETRIC) FUNCTIONS (continued)

		Sines		Cosines		Tangents		Cotangents		$72^{\circ} 00^{\prime}$	1.2566
Radi- ans	$\begin{aligned} & \text { De- } \\ & \text { grees } \end{aligned}$	Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.3142	$18^{\circ} 00^{\prime}$. 3090	9.4900	. 9511	9.9782	. 3249	9.5118	3.0777	0.4882		
0.3171	10	. 3118	. 4939	. 9502	. 9778	. 3281	. 5161	3.0475	. 4839	50	1.2537
0.3200	20	. 3145	. 4977	. 9492	. 9774	. 3314	. 5203	3.0178	. 4797	40	1.2508
0.3229	30	. 3173	. 5015	. 9483	. 9770	. 3346	. 5245	2.9887	. 4755	30	1.2479
0.3258	40	. 3201	. 5052	. 9474	. 9765	. 3378	. 5287	2.9600	. 4713	20	1.2450
0.3287	50	. 3228	. 5090	. 9465	. 9761	. 3411	. 5329	2.9319	. 4671	10	1.2421
0.3316	$19^{\circ} 00^{\prime}$. 3256	9.5126	. 9455	9.9757	. 3443	9.5370	2.9042	0.4630	$71^{\circ} 00^{\prime}$	1.2392
0.3345	10	. 3283	. 5163	. 9446	. 9752	. 3476	. 5411	2.8770	. 4589	50	1.2363
0.3374	20	. 3311	. 5199	. 9436	. 9748	. 3508	. 5451	2.8502	. 4549	40	1.2334
0.3403	30	. 3338	. 5235	. 9426	. 9743	. 3541	. 5491	2.8239	. 4509	30	1.2305
0.3432	40	. 3365	. 5270	. 9417	. 9739	. 3574	. 5531	2.7980	. 4469	20	1.2275
0.3462	50	. 3393	. 5306	. 9407	. 9734	. 3607	. 5571	2.7725	. 4429	10	1.2246
0.3491	$20^{\circ} 00^{\prime}$. 3420	9.5341	. 9397	9.9730	. 3640	9.5611	2.7475	0.4389	$70^{\circ} 00^{\prime}$	1.2217
0.3520	10	. 3448	. 5375	. 9387	. 9725	. 3673	. 5650	2.7228	. 4350	50	1.2188
0.3549	20	. 3475	. 5409	. 9377	. 9721	. 3706	. 5689	2.6985	. 4311	40	1.2159
0.3578	30	. 3502	. 5443	. 9367	. 9716	. 3739	. 5727	2.6746	. 4273	30	1.2130
0.3607	40	. 3529	. 5477	. 9356	. 9711	. 3772	. 5766	2.6511	. 4234	20	1.2101
0.3636	50	. 3557	. 5510	. 9346	. 9706	. 3805	. 5804	2.6279	. 4196	10	1.2072
0.3665	$21^{\circ} 00^{\prime}$. 3584	9.5543	. 9336	9.9702	. 3839	9.5842	2.6051	0.4158	$69^{\circ} 00^{\prime}$	1.2043
0.3694	10	. 3611	. 5576	. 9325	. 9697	. 3872	. 5879	2.5826	. 4121	50	1.2014
0.3723	20	. 3638	. 5609	. 9315	. 9692	. 3906	. 5917	2.5605	. 4083	40	1.1985
0.3752	30	. 3665	. 5641	. 9304	. 9687	. 3939	. 5954	2.5386	. 4046	30	1.1956
0.3782	40	. 3692	. 5673	. 9293	. 9682	. 3973	. 5991	2.5172	. 4009	20	1.1926
0.3811	50	. 3719	. 5704	. 9283	. 9677	. 4006	. 6028	2.4960	. 3972	10	1.1897
0.3840	$22^{\circ} 00^{\prime}$. 3746	9.5736	. 9272	9.9672	. 4040	9.6064	2.4751	0.3936	$68^{\circ} 00^{\prime}$	1.1868
0.3869	10	. 3773	. 5767	. 9261	. 9667	. 4074	. 6100	2.4545	. 3900	50	1.1839
0.3898	20	. 3800	. 5798	. 9250	. 9661	. 4108	. 6136	2.4342	. 3864	40	1.1810
0.3927	30	. 3827	. 5828	. 9239	. 9656	. 4142	. 6172	2.4142	. 3828	30	1.1781
0.3956	40	. 3854	. 5859	. 9228	. 9651	. 4176	. 6208	2.3945	. 3792	20	1.1752
0.3985	50	. 3881	. 5889	. 9216	. 9646	. 4210	. 6243	2.3750	. 3757	10	1.1723
0.4014	$23^{\circ} 00^{\prime}$. 3907	9.5919	. 9205	9.9640	. 4245	9.6279	2.3559	0.3721	$67^{\circ} 00^{\prime}$	1.1694
0.4043	10	. 3934	. 5948	. 9194	. 9635	. 4279	. 6314	2.3369	. 3686	50	1.1665
0.4072	20	. 3961	. 5978	. 9182	. 9629	. 4314	. 6348	2.3183	. 3652	40	1.1636
0.4102	30	. 3987	. 6007	. 9171	. 9624	. 4348	.638,3	2.2998	. 3617	30	1.1606
0.4131	40	. 4014	. 6036	. 9159	. 9618	. 4383	. 6417	2.2817	. 3583	20	1.1577
0.4160	50	. 4041	. 6065	. 9147	. 9613	. 4417	. 6452	2.2637	. 3548	10	1.1548
0.4189	$24^{\circ} 00^{\prime}$. 4067	9.6093	. 9135	9.9607	. 4452	9.6486	2.2460	0.3514	$66^{\circ} 00^{\prime}$	1.1519
0.4218	10	. 4094	. 6121	. 9124	. 9602	. 4487	. 6520	2.2286	. 3480	50	1.1490
0.4247	20	. 4120	. 6149	. 9112	. 9596	. 4522	. 6553	2.2113	. 3447	40	1.1461
0.4276	30	. 4147	. 6177	. 9100	. 9590	. 4557	. 6587	2.1943	. 3413	30	1.1432
0.4305	40	. 4173	. 6205	. 9088	. 9584	. 4592	. 6620	2.1775	. 3380	20	1.1403
0.4334	50	. 4200	. 6232	. 9075	. 9579	. 4628	. 6654	2.1609	. 3346	10	1.1374
0.4363	$25^{\circ} 00^{\prime}$. 4226	9.6259	. 9063	9.9573	. 4663	9.6687	2.1445	0.3313	$65^{\circ} 00^{\prime}$	1.1345
0.4392	10	. 4253	. 6286	. 9051	. 9567	. 4699	. 6720	2.1283	. 3280	50	1.1316
0.4422	20	. 4279	. 6313	. 9038	. 9561	. 4734	. 6752	2.1123	. 3248	40	1.1286
0.4451	30	. 4305	. 6340	. 9026	. 9555	. 4770	. 6785	2.0965	. 3215	30	1.1257
0.4480	40	. 4331	. 6366	. 9013	. 9549	. 4806	. 6817	2.0809	. 3183	20	1.1228
0.4509	50	. 4358	. 6392	. 9001	. 9543	. 4841	. 6850	2.0655	. 3150	10	1.1199
0.4538	$26^{\circ} 00^{\prime}$. 4384	9.6418	. 8988	9.9537	. 4877	9.6882	2.0503	0.3118	$64^{\circ} 00^{\prime}$	1.1170
0.4567	10	. 4410	. 6444	. 8975	. 9530	. 4913	. 6914	2.0353	. 3086	50	1.1141
0.4596	20	. 4436	. 6470	. 8962	. 9524	. 4950	. 6946	2.0204	. 3054	40	1.1112
0.4625	30	. 4462	. 6495	. 8949	. 9518	. 4986	. 6977	2.0057	. 3023	30	1.1083
0.4654	40	. 4488	. 6521	. 8936	. 9512	. 5022	. 7009	1.9912	. 2991	20	1.1054
0.4683	50	. 4514	. 6546	. 8923	. 9505	. 5059	. 7040	1.9768	. 2960	10	1.1025
0.4712	$27^{\circ} 00^{\prime}$.45409 .6570		. 89109.9499		. 50959.7072		1.96260 .2928		$63^{\circ} 00^{\prime}$	1.0996
		$\underbrace{\text { Nat. } \quad \text { Log. }}_{\text {Cosines }}$		Nat.	Log.	$\underbrace{\text { Nat. Log. }}_{\text {Cotangents. }}$		$\underbrace{\text { Nat. Log. }}_{\text {Tangents }}$		$\begin{aligned} & \text { De- } \\ & \text { grees } \end{aligned}$	Radians
				Sin							

(continued)

TABLE 15.-CIRCULAR (TRIGONOMETRIC) FUNCTIONS (continued)

Radi-	$\begin{aligned} & \text { De. } \\ & \text { grees } \end{aligned}$	Sines		Cosines		Tangents		Cotangents		$54^{\circ} 00^{\prime}$	0.9425
		Nat.	Log.	Nat.	Log.	Nat.	Log.	Nat.	Log.		
0.6283	$36^{\circ} 00^{\prime}$. 5878	9.7692	. 8090	9.9080	. 7265	9.8613	1.3764	0.1387		
0.6312	10	. 5901	. 7710	. 8073	. 9070	. 7310	. 8639	1.3680	. 1361	50	0.9396
0.6341	20	. 5925	. 7727	. 8056	. 9061	. 7355	. 8666	1.3597	. 1334	40	0.9367
0.6370	30	. 5948	. 7744	. 8039	. 9052	. 7400	. 8692	1.3514	. 1308	30	0.9338
0.6400	40	. 5972	. 7761	. 8021	. 9042	. 7445	. 8718	1.3432	. 1282	20	0.9308
0.6429	50	. 5995	. 7778	. 8004	. 9033	. 7490	. 8745	1.3351	. 1255	10	0.9279
0.6458	$37^{\circ} 00^{\prime}$. 6018	9.7795	. 7986	9.9023	. 7536	9.8771	1.3270	0.1229	$53^{\circ} 00^{\prime}$	0.9250
0.6487	10	. 6041	. 7811	. 7969	. 9014	. 7581	. 8797	1.3190	. 1203	50	0.9221
0.6516	20	. 6065	. 7828	. 7951	. 9004	. 7627	. 8824	1.3111	. 1176	40	0.9192
0.6545	30	. 6088	. 7844	. 7934	. 8995	. 7673	. 8850	1.3032	. 1150	30	0.9163
0.6574	41)	. 6111	. 7861	. 7916	. 8985	. 7720	. 8876	1.2954	. 1124	20	0.9134
0.6603	$51)$. 6134	. 7877	. 7898	. 8975	. 7766	. 8902	1.2876	. 1098	10	0.9105
0.6632	$38^{\circ} 00^{\prime}$. 6157	9.7893	. 7880	9.8565	. 7813	9.8928	1.2799	0.1072	$52^{\circ} 00^{\prime}$	0.9076
0.6661	10	. 6180	. 7910	. 7862	. 8955	. 7860	. 8954	1.2723	. 1046	50	0.9047
0.6690	20	. 6202	. 7926	. 7844	. 8945	. 7907	. 8980	1.2647	. 1020	40	0.9018
0.6720	30	. 6225	. 7941	. 7826	. 8935	. 7954	. 9006	1.2572	. 0994	30	0.8988
0.6749	40	. 6248	. 7957	. 7808	. 8925	. 8002	. 9032	1.2497	. 0968	20	0.8959
0.6778	50	. 6271	. 7973	. 7790	. 8915	. 8050	. 9058	1.2423	. 0942	10	0.8930
0.6807	$39^{\circ} 00^{\prime}$. 6293	9.7989	.7771	0.8905	. 8098	9.9084	1.2349	0.0916	$51^{\circ} 000^{\prime}$	0.8901
0.6836	10	. 6316	. 8004	. 7753	. 8895	. 8146	. 9110	1.2276	. 0890	50	0.8872
0.6865	20	. 6338	. 8020	-. 7735	. 8884	. 8195	. 9135	1.2203	. 0865	40	0.8843
0.6894	30	. 6361	. 8035	. 7716	. 8874	. 8243	. 9161	1.2131	. 0839	30	0.8814
0.6923	40	. 6383	. 8050	. 7698	. 8864	. 8292	. 9187	1.2059	. 0813	20	0.8785
0.6952	50	. 6406	. 8066	. 7679	. 8853	. 8342	. 9212	1.1988	. 0788	10	0.8756
0.6981	$40^{\circ} 00^{\prime}$. 6428	9.8081	. 7660	9.8843	. 8391	9.9238	1.1918	0.0762	$50^{\circ} 00^{\prime}$	0.8727
0.7010	10	. 6450	. 8096	. 7642	. 8832	. 8441	. 9264	1.1847	. 0736	50	0.8698
0.7039	20	. 6472	. 8111	. 7623	. 8821	. 8491	. 9289	1.1778	. 0711	40	0.8668
0.7069	30	. 6494	. 8125	. 7604	. 8810	. 8541	. 9315	1.1708	. 0685	30	0.8639
0.7098	40	. 6517	. 8140	. 7585	. 8800	. 8591	. 9341	1.1640	. 0659	20	0.8610
0.7127	50	. 6539	. 8155	. 7566	. 8789	. 8642	.9366	1.1571	. 0634	10	0.8581
0.7156	$41^{\circ} 00^{\prime}$. 6561	9.8169	. 7547	9.8778	. 8693	9.9392	1.1504	0.0608	$49^{\circ} 00^{\prime}$	0.8552
0.7185	10	. 6583	. 8184	. 7528	. 8767	. 8744	. 9417	1.1436	. 0583	50	0.8523
0.7214	20	. 6604	. 8198	. 7509	. 8756	. 8796	. 9443	1.1369	. 0557	40	0.8494
0.7243	30	. 6626	. 8213	. 7490	. 8745	. 8847	. 9468	1.1303	. 0532	30	0.8465
0.7272	40	. 6648	. 8227	. 7470	. 8733	. 8899	. 9494	1.1237	. 0506	20	0.8436
0.7301	50	. 6670	. 8241	. 7451	. 8722	. 8952	. 9519	1.1171	. 0481	10	0.8407
0.7330	$42^{\circ} 00^{\prime}$. 6691	9.8255	. 7431	9.8711	. 9004	9.9544	1.1106	0.0456	$48^{\circ} 00^{\prime}$	0.8378
0.7359	10	. 6713	. 8269	. 7412	. 8659	. 9057	. 9570	1.1041	. 0430	50	0.8348
0.7389	20	. 6734	. 8283	. 7392	. 8688	. 9110	. 9595	1.0977	. 0405	40	0.8319
0.7418	30	. 6756	. 8297	. 7373	. 8676	. 9163	. 9621	1.0913	. 0379	30	0.8290
0.7447	40	. 6777	. 8311	. 7353	. 8665	. 9217	. 9646	1.0850	. 0354	20	0.8261
0.7476	50	. 6799	. 8324	. 7333	. 8653	. 9271	. 9671	1.0786	. 0329	10	0.8232
0.7505	$43^{\circ} 00^{\prime}$. 6820	9.8338	. 7314	9.8641	. 9325	9.9697	1.0724	0.0303	$47^{\circ} 00^{\prime}$	0.8203
0.7534	10	. 6841	. 8351	. 7294	. 8629	. 9380	. 9722	1.0661	. 0278	50	0.8174
0.7563	20	. 6862	. 8365	. 7274	. 8618	. 9435	. 9747	1.0599	. 0253	40	0.8145
0.7592	30	. 6884	. 8378	. 7254	. 8606	. 9490	. 9772	1.0538	. 0228	30	0.8116
0.7621	40	. 6905	. 8391	. 7234	. 8594	. 9545	. 9798	1.0477	. 0202	20	0.8087
0.7650	50	. 6926	. 8405	. 7214	. 8582	. 9601	. 9823	1.0416	. 0177	10	0.8058
0.7679	$44^{\circ} 00^{\prime}$. 6947	9.8418	. 7193	0.8569	. 9657	9.9848	1.0355	0.0152	$46^{\circ} 00^{\prime}$	0.8029
0.7709	10	. 6967	. 8431	. 7173	. 8557	. 9713	. 9874	1.0295	. 0126	50	0.7999
0.7738	20	. 6988	. 8444	. 7153	. 8545	. 9770	. 9899	1.0235	. 0101	40	0.7970
0.7767	30	. 7009	. 8457	. 7133	. 8532	. 9827	. 9924	1.0176	. 0076	30	0.7941
0.7796	40	. 7030	. 8469	. 7112	. 8520	. 9884	. 9949	1.0117	. 0051	20	0.7912
0.7825	50	. 7050	. 8482	. 7092	. 8507	. 9942	. 9975	1.0058	. 0025	10	0.7883
0.7854	$45^{\circ} 00^{\prime}$. 7071	9.8495	. 7071	9.8495	1.0000	0.0000	1.0000	0.0000	$45^{\circ} 00^{\prime}$	0.7854
		$\underbrace{\text { Nat. }}$	Log.	$\underbrace{\text { Nat. }}$	Log.	Nat.	Log.	Nat.	Log.	De.	Radi.
						Cotan	gents	Tang		grees	ans

TABLES 16-25.-TREATMENT OF EXPERLMIENTAL DAT. ${ }^{*}$

TABLE 16. METHODS OF AVERAGING DATA

When a number of measurements are made of any quantity variations will be found. The question is: What is the best representat ve value for the (fwantity thus measured: and how shall the precision of the measurements be stated? The arithmetic mean of all the readings is generally taken as the best value. To tell something about the precision of the final result any one of five measures of variation which are discussed in books dealing with this subject may be given. These measures of deviation are:

$$
\begin{aligned}
p & =\text { probable error } \\
a & =\text { the average deviation (from the aritlumetic mean) } \\
\sigma & =\text { the standard deviation } \\
1 / h & =\text { the reciprocal of the modulus of precision } \\
k / z c & =\text { the reciprocal of the "precision constant" }
\end{aligned}
$$

Of these precision indexes the standard deviation, σ, is most easily computed. For the set of observed values $x_{1}, x_{2}, \ldots r_{n}$ of equal weight, the σ for a single ubservation is given by
and for the mean by

$$
\sigma=\sqrt{\frac{\Sigma(\cdot r-F)^{2}}{n-1}} \cong \sqrt{\frac{\Sigma(. r-\bar{r})^{2}}{n}}
$$

$$
\sigma=\frac{\sigma}{\sqrt{n}}=\sqrt{\frac{\overline{\Sigma(x-\bar{r})^{2}}}{n(n-1)}} \cong \sqrt{\frac{\sqrt{(x-r)^{2}}}{n^{2}}}
$$

The ratios of these precision indexes to one another for a normal (or Gaussian) distribution are:

$$
\begin{aligned}
& f: a: \sigma: 1 h: k a: 0.47(1936: 1 \vee \bar{\pi}: \vee \overline{(12)}: 1.000: \sqrt{\pi} \\
& \text { or soughly as } p: a: \sigma: 1 h: k a: 7: 8: 10: 17: 25
\end{aligned}
$$

Most experimental data can be represented by an equation of some form. One of the recommended methods for determining the coefficients of such ecquations is the use of a least-squares solution. This means that an attempt is made to find values for the coefficients such that the sum of the squares of the deviations of the expermental points from the resulting curve has the least pussible value. Certain tables are of help in making such solutions (Tables 16-26), and reference should be made to books or papers on this subject for their use.

An example of one method of finding the coneficients of such selected equations (based on "Treatment of Experimental Data," by Worthing and Geffiner. published by Wiley. 1943) follows.

Part 1.-Least squares adjustment of measurements of linearly related quantities

Let $Q_{1} . Q_{2} \ldots Q_{k}$ be the k adjusted, but initially unknown. values of the linearly related quantities. Let $\lambda_{1}, X_{2} \ldots X_{n}$ be $n(>k)$ measured values of (ors of linear combinations of two or more, Q 's.

Let $\Delta_{1}, \Lambda_{2} \ldots \Delta_{n}$ be the adjustments or corrections that must be applied to the measured X 's to tield consistent least-squares values for the Q 's. See below for a simple illustration.

As obscratation cquations we have

$$
\begin{align*}
& a_{1} Q_{1}+b_{1} Q_{2}+\ldots k_{2} Q_{k}-X_{1}=\Delta_{1} \\
& a_{2} Q_{1}+b_{2} Q_{2}+\ldots k_{2} Q_{k}-X_{z}=د_{2} \tag{1}\\
& \ldots \\
& a_{n} Q_{1}+b_{n} Q_{2}+\ldots k_{n} Q_{k}-X_{n}=د_{n}
\end{align*}
$$

of which $a_{1}, b_{i} \ldots k_{i}$ are constants. whose values are frequently $+1,-1$, or 0 .
From the observation equations k normal ciguations are formed. For equally weighted observed values of X. they are

$$
\begin{align*}
& \left.\left[a_{i} a_{i}\right] Q_{1}+\left[a_{i} b_{i}\right] Q+\left[a_{i} c_{i}\right] Q_{3}+\ldots \mid a_{i} k_{i}\right] Q_{k}-\left[a_{1} \mathcal{X}_{i}\right]=0 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \left.\left.\left[k_{i} a_{i}\right] Q_{2}+\left[k_{i} h_{i}\right] Q_{2}+\mid k_{i} i_{i}\right] Q_{3}+\ldots \mid k_{i} k_{i}\right] Q_{k}-\left[k_{i} X_{i}\right]=0
\end{aligned}
$$

[^11](continuct)
of which, as representative bracketed [] coefficients, we have
\[

$$
\begin{aligned}
& {\left[a_{1} a_{4}\right]=a_{1} a_{1}+a_{2} a_{2}+a_{3} a_{3}+\ldots a_{n} a_{n}} \\
& {\left[a_{1} b_{1}\right]=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\ldots a_{n} b_{n}} \\
& {\left[a_{1} X_{1}\right]=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+\ldots a_{n} X_{n}} \\
& \ldots \\
& {\left[k_{1} a_{i}\right]=k_{1} a_{1}+k_{2} a_{2}+k_{3} a_{3}+\ldots k_{n} a_{n}}
\end{aligned}
$$
\]

Solutions of equation (2) yield the least-squares adjusted values of $Q_{1}, Q_{2} \ldots Q_{k}$.
For unequally weighted values of X, that is $z v_{1}, \tau v_{2}, \ldots \psi_{n}$ for $X_{1} X_{3} \ldots X_{n}$, the normal equations become

$$
\begin{align*}
& {\left[w_{1} a_{i} a_{i}\right] Q_{1}+\left[w_{1} a_{i} b_{1}\right] Q_{2}+\left[w_{1} a_{i} c_{i}\right] Q_{3}+\ldots\left[w_{1} a_{i} k_{1}\right] Q_{k}-\left[w_{i} a_{i} X_{i}\right]=0} \\
& {\left[w_{i} b_{i} a_{1}\right] Q_{1}+\left[w_{i} b_{i} b_{i}\right] Q_{2}+\left[w w_{i} b_{i} c_{1}\right] Q_{3}+\ldots\left[w w_{i} b_{i} k_{i}\right] Q_{k}-\left[w_{i} b_{i} X_{i}\right]=0} \tag{4}
\end{align*}
$$

$$
\left[w_{i} k_{i} a_{i}\right] Q_{1}+\left[w_{i} k_{i} b_{i}\right] Q_{2}+\left[z w_{i} k_{i} c_{1}\right] Q_{3}+\ldots\left[w_{i} k_{i} k_{i}\right] Q_{k}-\left[z w_{i} k_{i} X_{i}\right]=0
$$

of which

$$
\begin{align*}
& {\left[w_{1} a_{i} a_{i}\right]=v e_{r} a_{1} a_{1}+\tau v_{2} a_{2} a_{2}+w w_{3} a_{3} a_{3}+\ldots w_{n} a_{n} a_{n}} \\
& {\left[w_{i} a_{i} b_{4}\right]=w_{1} a_{1} b_{1}+\tau w_{2} a_{2} b_{2}+w w_{3} a_{3} b_{3}+\ldots w_{n} a_{n} b_{n}} \tag{5}
\end{align*}
$$

$$
\left[w_{1} k_{1} a_{4}\right]=w w_{1} k_{1} a_{1}+w w_{2} k_{2} a_{2}+w w_{3} k_{3} a_{3}+\ldots z v_{n} k_{n} a_{n}
$$

The weights $w_{1}, w_{2} \ldots w_{n}$ associated with the $X_{1}, X_{2} \ldots X_{n}$ and with the successive observation equations are taken as inversely proportional to the squares of the probable errors (or of the standard deviations) of the corresponding X 's. It is customary to take simple rounded numbers for the proportional values. A precise set of $28,50,41$, and 78 may be rounded to $3,5,4$, and 8 .

As a simple application, consider the elevations of stations B, C, and D above A. Let those elevations in order be Q_{1}, Q_{2}, and Q_{3}. Let the quantities measured and the observed elevations be such as to yield the following observation equations:

$$
\begin{align*}
Q_{1}-10 \mathrm{ft} & =\Delta_{1} \\
Q_{2}-18 \mathrm{ft} & =\Delta_{2} \\
Q_{3}-4 \mathrm{ft} & =\Delta_{3} \tag{6}\\
-Q_{1}+Q_{2}-9 \mathrm{ft} & =\Delta_{4} \\
Q_{2}-Q_{3}-12 \mathrm{ft} & =\Delta_{\mathrm{s}} \\
Q_{1}-Q_{3}-5 \mathrm{ft} & =\Delta_{6}
\end{align*}
$$

The coefficients a_{1}, b_{1}, and c_{1} are seen to be 1,0 , and 0 . The values of the other coefficients are obvious. Substitution in equation (2) yields for the normal equations

$$
\begin{array}{r}
3 Q_{2}-Q_{2}-Q_{3}-6 \mathrm{ft}=0 \\
-Q_{1}+3 Q_{2}-Q_{3}-39 \mathrm{ft}=0 \tag{7}\\
-Q_{1}-Q_{2}+3 Q_{3}+13 \mathrm{ft}=0
\end{array}
$$

Solutions of equation (7) yield $9 \frac{1}{2} \mathrm{ft}, 17 \frac{3}{4} \mathrm{ft}$, and $4 \frac{3}{4} \mathrm{ft}$ for the elevations of B, C, and D above A.

Part 2.-Least-squares equations of the type $y=a+b x$, to represent a series of observed (x, y) values

For equally weighted pairs of (x, y) of which the errors of measurement are associated with the determinations of the y 's

$$
\begin{align*}
& a=\frac{\Sigma x^{2} \Sigma y-\Sigma x \Sigma x y}{n \Sigma x^{2}-(\Sigma x)^{2}}=\frac{\overline{x^{2}} \bar{y}-\bar{x} \overline{x y}}{\overline{x^{2}}-\overline{x^{2}}} \\
& b=\frac{n \Sigma x y-\Sigma x \Sigma \Sigma}{n \Sigma x^{2}-(\Sigma x)^{2}}=\frac{\overline{x y}-\overline{x y}}{\overline{x^{2}}-\bar{x}^{2}} \tag{8}
\end{align*}
$$

of which

$$
\begin{aligned}
& n x=\Sigma x, n \cdot \overline{x^{2}}=\Sigma x^{2}, \overline{x y}=n \Sigma x y \\
& \bar{n}^{2} \cdot \bar{x}^{2}=(\Sigma x)^{2}, \text { etc. }
\end{aligned}
$$

The probable errors of the a and the b of equation (8) are given by

$$
\begin{align*}
& p_{a}=0.675 \sqrt{\frac{1}{n-2}\left[\frac{\overline{x^{2}} \overline{y^{2}}-2 \bar{x} \bar{y} \overline{x y}+\overline{x^{2}} \overline{y^{2}}}{\overline{x^{2}}-\bar{x}^{2}}-a^{2}\right]} \\
& p_{b}=0.675 \sqrt{\frac{1}{n-2}\left[\frac{\overline{y^{2}}-\overline{y^{2}}}{\overline{x^{2}}-\overline{x^{2}}}-b^{2}\right]} \tag{9}
\end{align*}
$$

For unequally weighted measurements of which the errors of measurement are associated with the determinations of the y 's,

$$
\begin{align*}
& a=\frac{\Sigma w_{i} x_{i}{ }^{2} \Sigma w_{i} y_{i}-\Sigma w_{i} x_{i} \Sigma w_{i} x_{i} y_{i}}{\Sigma w^{\prime} \Sigma w_{i} x_{i}{ }^{2}-\left(\Sigma w_{i} x_{i}\right)^{2}} \\
& b=\frac{\Sigma w^{2} w_{i} x_{i} y_{i}-\Sigma w_{i} x_{i} \Sigma w_{i} y_{i}}{\Sigma w_{i} \Sigma w_{i} x_{i}{ }^{2}-\left(\Sigma w_{i}^{\prime} x_{i}\right)^{2}} \tag{10}
\end{align*}
$$

Where the errous of measurement are associated with the x-determination only, the corresponding coefficients of an equation of the type $x=a^{\prime}+b^{\prime} y$ can be obtained by merely interchanging x and y in equation (8).

Where the errors of measurement are associated with both the x - and the y-determinations, the expressions are complicated. ${ }^{13}$

[^12]
Part 3.-Least-squares equation of the type $y=a+b x+c x^{2}+d x^{3}$ to represent a series of observed (x, y) values

For the general case involving irregularly spaced x-values, the formulae for a, b, c, etc., are very complex. ${ }^{14}$ However, for the case of equally weighted observations with errors of measurement associated entirely with the y-values in which succeeding x-values are equally spaced, the mechanics of the computations for least-squares constants are very greatly simplified, thanks to tables computed by Baily ${ }^{35}$ and by Cox and Matuschak. ${ }^{16}$ The procedure requires a change of the x-variable to yield a new X-variable with a zero-value at the midpoint of the series. In case of an even number of terms, the shift is given by

$$
\begin{equation*}
X_{e}=\frac{x-\bar{x}}{\Delta x} \tag{11}
\end{equation*}
$$

of which Δx is the even spacing between successive x-values; and, if the number of terms is odd, the shift is given by

$$
\begin{equation*}
X_{0}=\frac{x-\bar{x}}{\Delta x / 2} \tag{12}
\end{equation*}
$$

The further procedure consists in determining the appropriate summations indicated in Table 17, the appropriate k-terms given as a function of the number of terms n in Tables 19 and 20 , combining the appropriate summations and k-terms, to give parameters for the equation $y=f(X)$, and finally transferring the function to the original coordinate system to yield $y=f_{2}(x)$.

How to apply the simplified procedure to determine the coefficient of x^{2} in the leastsquares equation $y=a+b x+c x^{2}$ to represent the $x y$ values of the first two columns of the following tabulations is shown in the remainder of the tabulation.

x				
$\frac{x}{(\mathrm{sec})}$	$\frac{y}{(\mathrm{~cm})}$	X	$\frac{X^{2} y}{(\mathrm{~cm})}$	$c^{\prime}=k_{5} \Sigma X^{2} y-k_{4} \Sigma y$
3	12.0	-5	300.0	$n=6$
6	20.6	-3	185.4	$k_{5}=16,741,071 \times 10^{-10}$
9	33.7	-1	33.7	$k_{4}=19,531,250 \times 10^{-9}$
12	51.1	+1	51.1	$k_{5} \Sigma X^{2} y=6.2005 \mathrm{~cm}$
15	72.9	+3	656.1	$k_{4} \Sigma y=5.6523 \mathrm{~cm}$
18	99.1	+5	2477.5	$c^{\prime}=0.5482 \mathrm{~cm}$
	--		---	$\Delta x=3 \mathrm{sec}$
	289.4		3703.8	c

[^13]40

TABLE 17.-SHOWING THE MAKE.UP OF THE CONSTANTS OF THE LEASTSQUARES EQUATION OF THE TYPE $y=a+b x+c x^{2}+d x^{3}$ FOR EQUA. TIONS OF VARYING DEGREES WHEN THE ABBREVIATED METHOD OF BAILEY AND OF COX AND MATUSCHAK IS USED*

This method is applicable only when succeeding values of x have a common difference and are equally weighted. The independent variable, changed if necessary, must have a zero value at the midpoint of the scries with succeeding values differing by unity if the number of terms is odd and by two if even. Values for the various k 's, as computed by Cox and Matuschak, are to be found in Tables 14 and 20.

Degree of equation	Parameters			
	a	b	c	d
1	$k, \Sigma y$	$k_{2} \Sigma x y$		
2	$k_{3} \Sigma y^{\prime}-k_{4} \Sigma x^{2} y$	$k_{2} \Sigma x y$	$k_{5} \Sigma x^{2} y-k_{4} \Sigma y^{\prime}$	
3	$k_{3} \Sigma y-k_{s} \Sigma x^{2} y$	$k_{0} \Sigma . r y-k_{i} \Sigma x^{3} y$	$k_{5} \Sigma x^{2} y-k_{5} \Sigma y$	$k_{8} \Sigma x^{3} y-k_{7} \Sigma x y$

* For references, see footnotes 15 and 16 , p. 39.

TABLE 18.-VALUES OF $P=\frac{2}{\sqrt{\pi}} \int_{0}^{h x} e^{-(h x) 2} d(h x)$
P, the probability of an observational error having a value positive or negative equal to or less than x when h is the measure of precision, $P=\frac{2}{V \pi} \int_{0}^{h_{x}} e^{-(h x) 2} d(h x) \cdot h^{2}=\left(\frac{1}{2} m \Delta x^{2}\right)$ where $m=$ no. obs. of deviation Δx.

$h \boldsymbol{x}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	
$\mathbf{0 . 0}$.01128	.02256	.03384	.04511	.05637	.06762	.07886	.09008	.10128	
$\mathbf{1}$.11246	.12362	.13476	.14587	.15695	.16800	.17901	.18999	.20094	.21184	
.2	.22270	.23352	.24430	.25502	.26570	.27633	.28690	.29742	.30788	.31828	
.3	.32863	.33891	.34913	.35928	.36936	.37938	.38933	.39921	.40901	.41874	
.4	.42839	.43797	.44747	.45689	.46623	.47548	.48466	.49375	.50275	.51167	
$\mathbf{0 . 5}$.52050	.52924	.53790	.54646	.55494	.56332	.57162	.57982	.58792	.59594	
.6	.60386	.61168	.61941	.62705	.63459	.64203	.64938	.65663	.66378	.67084	
.7	.67780	.68467	.69143	.69810	.70468	.71116	.71754	.72382	.73001	.73610	
.8	.74210	.74800	.75381	.75952	.76514	.77067	.77610	.78144	.78669	.79184	
.9	.79691	.80188	.80677	.81156	.81627	.82089	.82542	.82987	.83423	.83851	
$\mathbf{1 . 0}$.84270	.84681	.85084	.85478	.85865	.86244	.86614	.86977	.87333	.87680	
.1	.88021	.88353	.88679	.88997	.89308	.89612	.89910	.90200	.90484	.90761	
.2	.91031	.91296	.91553	.91805	.92051	.92290	.92524	.92751	.92973	.93190	
.3	.93401	.93606	.93807	.94002	.94191	.94376	.94556	.94731	.94902	.95067	
.4	.95229	.95385	.95538	.95686	.95830	.95970	.96105	.96237	.96365	.96490	
$\mathbf{1 . 5}$.96611	.96728	.96841	.96952	.97059	.97162	.97263	.97360	.97455	.97546	
.6	.97635	.97721	.97804	.97884	.97962	.98038	.98110	.98181	.98249	.98315	
.7	.98379	.98441	.98500	.98558	.98613	.98667	.98719	.98769	.98817	.98864	
.8	.98909	.98952	.98994	.99035	.99074	.99111	.99147	.99182	.99216	.99248	
.9	.99279	.99309	.99338	.99366	.99392	.99418	.99443	.99466	.99489	.99511	
$\mathbf{2 . 0}$.99532	.99552	.99572	.99591	.99609	.99626	.99642	.99658	.99673	.99688	
.1	.99702	.99715	.99728	.99741	.99753	.99764	.99775	.99785	.99795	.99805	
.2	.99814	.99822	.99831	.99839	.99846	.99854	.99861	.99867	.99874	.99880	
.3	.99886	.99891	.99897	.99902	.99906	.99911	.99915	.99920	.99924	.99928	
.4	.99931	.99935	.99938	.99941	.99944	.99947	.99950	.99952	.99955	.99957	
$\mathbf{2} \mathbf{5}$.99959	.99961	.99963	.99965	.99967	.99969	.99971	.99972	.99974	.99975	
.6	.99976	.99978	.99979	.99980	.99981	.99982	.99983	.99984	.99985	.99986	
.7	.99987	.99987	.99988	.99989	.99989	.99590	.99991	.99991	.99992	.99992	
.8	.99992	.99993	.99993	.99994	.99994	.99994	.99995	.99995	.99995	.99996	
.9	.99996	.99996	.99996	.99997	.99997	.99997	.99997	.99997	.99997	.99998	
$\mathbf{3 . 0}$.99998	.99999	.99999	1.00000							

TABLE 19.-VALUES OF THE CONSTANTS, k_{n}, ENTERING LEAST-SQUARES SOLUTIONS, USING THE ABBREVIATED METHOD OF BAILY AND OF COX AND MATUSCHAK, WHEN THE NUMBER OF TERMS, n, IS ODD*

The numbers in parentheses show the negative powers of 10 by which the adjacent numbers must be multiplied in order to obtain appropriate k_{n} 's. To illustrate, k_{2} for $n=13$ is $54,945,055 \times 10^{-10}$.

n	k_{1}	k_{2}	k_{3}	k_{4}	k_{5}	k_{0}	k_{7}	k_{*}
3	3333 3333(8)	$50000000(8)$	$10000000(7)$	1000 0000(7)	15000000 (7)			
5	20000000	10000000	4857 1429(8)	1428 5714(6)	71428571 (9)	9027 7778(8)	2361 1111(8)	6944 4444(9)
7	14285714	3571 4286(9)	33333333	4761 9048(9)	11504762	26256614	32407407 (9)	4629 6296(10)
9	11111111	16666667	25541126	21645022	$32467532(10)$	11433782	8277 2166(10)	$70145903(11)$
11	9090 9091(9)	90909091 (10)	20745921	11655012	11655012	6037 9435(9)	28813779	16187516
13	76923077	54945055	17482517	$69930070(10)$	$49950050(11)$	35846098	12140637	$48562549(12)$
15	66666667	35714286	15113122	45248869	24240465	23045899	58306799 (11)	17457125
17	58823529	24509803	13312693	30959752	12899897	15702041	30816420	7166 6093(13)
19	52631579	17543860	11897391	22114109	$73713696(12)$	11183168	17525617	32575497
21	47619048	12987013	10755149	16345211	44577848	8248 5070(10)	10562015	16051694
23	43478261	$98814229(11)$	9813 6646(9)	12422360	28232637	62590791	6672 0719(12)	8445 6606(14)
25	40000000	76923077	90241546	$96518357(11)$	18580453	48623545	43823595	46920337
27	37037037	61050061	83524904	76628352	12631047	38527423	29745336	27289299
29	34482759	49261084	77740700	61797058	8828 1512(13)	31047316	20764076	16505625
31	32258065	40322581	72707048	50561230	63201537	25386983	14850296	10327049
33	30303030	33422460	68286552	41893590	46206166	21024471	10847991	6655 2091(15)
35	28571429	28011204	64373464	35100035	34411799	17607811	80734407 (13)	44020942
37	27027027	23707918	60885061	29700030	26052658	14893734	61087522	29798791
39	25641026	20242915	57755692	25353684	20016066	12710408	46910081	20592661
41	24390244	17421603	54932589	21815961	15582829	10934097	36504910	14497581
43	23255814	15101178	52372849	18907166	12277380	94741490 (11)	28751015	10379428
45	22222222	13175231	50041234	16493485	97787451 (14)	82631159	22892527	$75453288(16)$
47	21276596	11563367	47908525	14473875	78662362	72501033	18410171	55619852
49	20408163	10204082	45950295	12771066	63855329	63962170	14941103	41526134
51	19607843	9049 7738(12)	44145960	11325285	52270545	56713855	12227830	31369497

* For references, see footnotes 15 and 16, 1. 39
TABLE 20.-VALUES OF THE CONSTANTS, k_{n}, ENTERING LEAST-SQUARES SOLUTIONS, USING THE ABBREVIATED METHOD OF BAILY AND OF COX AND MATUSCHAK, WHEN THE NUMBER OF TERMS, n, IS EVEN *

4	k_{1}	k_{2}	k_{3}	k_{4}	k_{5}	k_{6}	k_{7}	k_{8}
4	2500 0000(8)	5000 0000(9)	$64062500(8)$	7812 5030(9)	15625000 (9)	6336 8056(8)	7118 0556(9)	8680 5556(10)
6	16666667	14285714	39453125	19531250	1674 1071(10)	11267499	$48707562(10)$	$\begin{aligned} & 80805356(10) \\ & 24112654(11) \end{aligned}$
8	12500000	59523810 (10)	28906250	7812 5000(10)	3720 2381(11)	$41963534(9)$	$48327441(11)$	$24112654(11)$ 2630 4714(12)
10	10000000	30303030	22890625	39062500	11837121	20401329	29643389	5058 5988(13)
12	8333 3333(9)	17482517	18973214	22321429	$46828172(12)$	11494485	11466157	13489597
14	71428571	10989011	16210938	13950893	21462912	71256741 (10)	$51865517(12)$	4463 4695(14)
16	62500000	$73529412(11)$	14155506	93005952 (11)	10941877	47259799	26220143	17227426
18	55555556	51599587	12565104	65104167	6046 8266(13)	32967149	14407871	7465 2181(15)
20	50000000	37593985	11297349	47348485	35600365	23917243	84483844 (13)	35408149
22	45454545	28232637	10262784	35511364	22056748	17905616	52188071	18058156
24	41666667	21739130	9402 3164(9)	27316434	14252052	13754794	33645781	9775 0702(16)
26	38461538	17094017	86753091	21462912	95390720 (14)	10795940	22480302	55616779
28	35714286	13683634	80528846	17170330	65786704	$86295508(11)$	15482276	33011249
30	33333333	11123471	75139509	13950893	46554704	70068080	10944042	20319424
32	31250000	9164 2229(12)	70427390	11488971	33691596	57671532	7913 1009(14)	12908811
34	29411765	76394194	66272213	9574 1423(12)	24867902	48037846	58362361	84314304 (17)
36	27777778	64350064	62580624	80624358	18677458	40437597	43806481	56437105
38	26315789	54710581	59279058	68530703	14247547	34360952	33398722	38611239
40	25000000	46904315	56308741	57740602	11020751	29444203	25822837	26938074
42	23809524	40515355	53622160	50730520	8632 5332(15)	25423116	20219092	19128753
44	22727273	35236081	51180477	44113495	68393016	22102564	16013580	13802431
46	21739130	30835646	48951643	38599309	54750792	19336316	12815606	10105351
48	20833333	27138515	46908968	33967392	44247580	17013314	10354426	7497 7742(18)
50	20000000	24009604	45030048	30048077	36072121	15048177	84393542 (15)	56314922

* For references, see footnotes 15 and 16, p. 39.

\boldsymbol{x}	e^{x}	$\log e^{x}$	e^{-x}		e^{x}	$\log e^{x}$	e^{-x}
$1 / 64$	1.0157	0.00679	0.98450	$1 / 3$	1.3956	0.14476	0.71653
$1 / 32$.0317	.01357	.96923	$1 / 2$.6487	.21715	.60653
$1 / 16$.0645	.02714	.93941	$3 / 4$	2.1170	.32572	.47237
$1 / 10$.1052	.04343	.90484	1	. .7183	.43429	.36788
$1 / 9$.1175	.04825	.89484	$5 / 4$	3.4903	.54287	.28650
$1 / 8$	1.1331	0.05429	0.88250	$3 / 2$	4.4817	0.65144	0.22313
$1 / 7$.1536	.06204	.86688	$7 / 4$	5.7546	.76002	.17377
$1 / 6$.1814	.07238	.84648	2	7.3891	.86859	.13534
$1 / 5$.2214	.08686	.81873	$9 / 4$	9.4877	.97716	.10540
$1 / 4$.2840	.10857	.77880	$5 / 2$	12.1825	1.08574	.08208

TABLE 22.-FURTHER VALUES OF P

This table gives the values of the probability P, as defined in Table 18 , corresponding to different values of x / r where r is the "probable error." The probable error r is equal to $0.47694 / h$.

$\frac{x}{r}$	0	1	2	3	4	5	6	7	8	9
0.0	. 00000	. 00538	. 01076	. 01614	. 02152	. 02690	. 03228	. 03766	. 04303	. 04840
0.1	. 05378	. 05914	. 06451	. 06987	. 07523	. 08059	. 08594	. 09129	. 09663	. 10197
0.2	. 10731	. 11264	. 11796	. 12328	. 12860	. 13391	. 13921	. 14451	. 14980	. 15508
0.3	. 16035	. 16562	. 17088	. 17614	. 18138	. 18662	. 19185	. 19707	. 20229	. 20749
0.4	. 21268	. 21787	. 22304	. 22821	. 23336	. 23851	. 24364	. 24876	. 25388	. 25898
0.5	. 26407	. 26915	. 27421	. 27927	. 28431	. 28934	. 29436	. 29936	. 30435	. 30933
0.6	. 31430	. 31925	. 32419	. 32911	. 33402	. 33892	. 34380	. 34866	. 35352	. 35835
0.7	. 36317	. 36798	. 37277	. 37755	. 38231	. 38705	. 39178	. 39649	. 40118	. 40586
0.8	. 41052	. 41517	. 41979	. 42440	. 42899	. 43357	. 43813	. 44267	. 44719	. 45169
0.9	. 45618	. 46064	. 46509	. 46952	. 47393	. 47832	. 48270	. 48705	. 49139	. 49570
1.0	. 50000	. 50428	. 50853	. 51277	. 51699	. 52119	. 52537	. 52952	. 53366	. 53778
1.1	. 54188	. 54595	. 55001	. 55404	. 55806	. 56205	. 56602	. 56998	. 57391	. 57782
1.2	. 58171	. 58558	. 58942	. 59325	. 59705	. 60083	. 60460	. 60833	. 61205	. 61575
1.3	. 61942	. 62308	. 62671	. 63032	. 63391	. 63747	. 64102	. 64454	. 64804	. 65152
1.4	. 65498	. 65841	. 66182	. 66521	. 66858	. 67193	. 67526	. 67856	. 68184	. 68510
1.5	. 68833	. 69155	. 69474	. 69791	. 70106	. 70419	. 70729	. 71038	. 71344	. 71648
1.6	. 71949	. 72249	. 72546	. 72841	. 73134	. 73425	. 73714	. 74000	. 74285	. 74567
1.7	. 74847	. 75124	. 75400	. 75674	. 75945	. 76214	. 76481	. 76746	. 77009	. 77270
1.8	. 77528	. 77785	. 78039	. 78291	. 78542	. 78790	. 79036	. 79280	. 79522	. 79761
1.9	. 79999	. 80235	. 80469	. 80700	. 80930	. 81158	. 81383	. 81607	. 81828	. 82048
2.0	. 82266	. 82481	. 82695	. 82907	. 83117	. 83324	. 83530	. 83734	. 83936	. 84137
2.1	. 84335	. 84531	. 84726	. 84919	. 85109	. 85298	. 85486	. 85671	. 85854	. 86036
2.2	. 86216	. 86394	. 86570	. 86745	. 86917	. 87088	. 87258	. 87425	. 87591	. 87755
2.3	. 87918	. 88078	. 88237	. 88395	. 88550	. 88705	. 88857	. 89008	. 89157	. 89304
2.4	. 89450	. 89595	. 89738	. 89879	. 90019	. 90157	. 90293	. 90428	. 90562	. 90694
2.5	. 90825	. 90954	. 91082	. 91208	. 91332	. 91456	. 91578	. 91698	. 91817	. 91935
2.6	. 92051	. 92166	. 92280	. 92392	. 92503	. 92613	. 92721	. 92828	. 92934	. 93038
2.7	. 93141	. 93243	. 93344	. 93443	. 93541	. 93638	. 93734	. 93828	. 93922	. 94014
2.8	. 94105	. 94195	. 94284	. 94371	. 94458	. 94543	. 94627	. 94711	. 94793	. 94874
2.9	. 94954	. 95033	. 95111	. 95187	. 95263	. 95338	. 95412	. 95484	. 95557	. 95628
	0	1	2	3	4	5	6	7	8	9
3	. 95698	. 96346	. 96910	. 97397	. 97817	. 98176	. 98482	. 98743	. 98962	. 99147
4	. 99302	. 99431	. 99539	. 99627	. 99700	. 99760	. 99808	. 99848	. 99879	. 99905
5	. 99926	. 99943	. 99956	. 99966	. 99974	. 99980	. 99985	. 99988	. 99991	. 99993

This factor occurs in the equation $r_{s}=0.6745 \sqrt{\frac{\Sigma v^{2}}{n-1}}$ for the probable error of a single observation, and other similar equations.

n	0	1	2	3	4	5	6	7	8	9
00			0.6745	0.4769	0.3894	0.3372	0.3016	0.2754	0.2549	0.2385
10	0.2248	0.2133	. 2034	. 1947	. 1871	. 1803	. 1742	. 1686	. 1636	. 1590
20	. 1547	. 1508	. 1472	. 1438	. 1406	. 1377	. 1349	. 1323	. 1298	. 1275
30	. 1252	. 1231	. 1211	. 1192	. 1174	. 1157	. 1140	. 1124	. 1109	. 1094
40	. 1080	. 1066	. 1053	. 1041	. 1029	. 1017	. 1005	. 0994	. 0984	. 0974
50	0.0964	0.0954	0.0944	0.0935	0.0926	0.0918	0.0909	0.0901	0.0893	0.0886
60	. 0878	. 0871	. 0864	. 0857	. 0850	. 0843	. 0837	. 0830	. 0824	. 0818
70	. 0812	. 0806	. 0800	. 0795	. 0789	. 0784	. 0779	. 0774	. 0769	. 0764
80	. 0759	. 0754	. 0749	. 0745	. 0740	. 0736	. 0732	. 0727	. 0723	. 0719
90	. 0715	. 0711	. 0707	. 0703	. 0699	. 0696	. 0692	. 0688	. 0685	. 0681

TABLE 24.-VALUES OF THE FACTOR $0.6745 \sqrt{\frac{1}{n(n-1)}}$
This factor occurs in the equation $r_{0}=0.6745 \sqrt{\frac{\Sigma v^{2}}{n(n-1)}}$ for the probable error of the arithmetical mean.

n		$\mathbf{1}$	$\mathbf{2}$		$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
\mathbf{n}			0.4769	0.2754	0.1947	0.1508	0.1231	0.1041	0.0901	0.0795
$\mathbf{0 0}$	0.0711	0.0643	.0587	.0540	.0500	.0465	.0435	.0409	.0386	.0365
10	.0346	.0329	.0314	.0300	.0287	.0275	.0265	.0255	.0245	.0237
20	.0229	.0221	.0214	.0208	.0201	.0196	.0190	.0185	.0180	.0175
30	.0171	.0167	.0163	.0159	.0155	.0152	.0148	.0145	.0142	.0139
40	.0136	0.0134	0.0131	0.0128	0.0126	0.0124	0.0122	0.0119	0.0117	0.0115
$\mathbf{5 0}$.0113	.0111	.0110	.0108	.0106	.0105	.0103	.0101	.0100	.0098
60	.0113	.0096	.0094	.0093	.0092	.0091	.0089	.0088	.0087	.0086
70	.0097	.0084	.0083	.0082	.0081	.0000	.0079	.0078	.0077	.0076
80	.0085	.0075	.0074	.0073	.0072	.0071	.0071	.0070	.0069	.0068
0	.0075	.0075								

Part 1.-Values of the factor $0.8453 \sqrt{\frac{1}{n(n-1)}}$
This factor occurs in the approximate equation $r=0.8453 \frac{\Sigma|v|}{\sqrt{n(n-1)}}$ for the probable error of a single observation.

n		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0 0}$			0.5978	0.3451	0.2440	0.1890	0.1543	0.1304	0.1130	0.0996
10	0.0891	0.0806	.0736	.0677	.0627	.0583	.0546	.0513	.0483	.0457
20	.0434	.0412	.0393	.0376	.0360	.0345	.0332	.0319	.0307	.0297
30	.0287	.0277	.0268	.0260	.0252	.0245	.0238	.0232	.0225	.0220
40	.0214	.0209	.0204	.0199	.0194	.0190	.0186	.0182	.0178	.0174
$\mathbf{5 0}$	0.0171	0.0107	0.0164	0.0161	0.0158	0.0155	0.0152	0.0150	0.0147	0.0145
60	.0142	.0140	.0137	.0135	.0133	.0131	.0129	.0127	.0125	.0123
70	.0122	.0120	.0118	.0117	.0115	.0113	.0112	.0111	.0109	.0108
80	.0106	.0105	.0104	.0102	.0101	.0100	.0099	.0098	.0097	.0090
90	.0094	.0093	.0092	.0091	.0090	.0089	.0089	.0088	.0087	.0086

$$
\text { Part 2.-Values of } 0.8453 \frac{1}{n \sqrt{n-1}}
$$

This factor occurs in the approximate equation $r_{0}=0.8453 \frac{\Sigma|v|}{n \sqrt{n-1}}$ for the probable error of the arithmetical mean.

n		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0 0}$			0.4227	0.1993	0.1220	0.0845	0.0630	0.0493	0.0399	0.0332
10	0.0282	0.0243	.0212	.0188	.0167	.0151	.0136	.0124	.0114	.0105
20	.0097	.0090	.0084	.0078	.0073	.0369	.0065	.0061	.0058	.0055
30	.0052	.0050	.0047	.0045	.0043	.0041	.0040	.0038	.0037	.0035
40	.0034	.0033	.0031	.0030	.0029	.0028	.0027	.0027	.0026	.0025
$\mathbf{5 0}$	0.0024	0.0023	0.0023	0.0022	0.0022	0.0021	0.0020	0.0020	0.0019	0.0019
60	.0018	.0018	.0017	.0017	.0017	.0016	.0016	.0016	.0015	.0015
70	.0015	.0014	.0014	.0014	.0013	.0013	.0013	.0013	.0012	.0012
80	.0012	.0012	.0011	.0011	.0011	.0011	.0011	.0010	.0010	.0010
90	.0010	.0010	.0010	.0009	.0009	.0009	.0009	.0009	.0009	.0009

Some of the most important results of physical science are embodied in the numerical magnitudes of various universal physical constants. The accurate determination of such constants has engaged the time and labor of many of the most eminent scientists. Some of these constants can be evaluated by various methods. The experiments used to study and measure these constants, in many instances have yielded some function of two or more of the constants (see Table 26) such as $h / e ; e / m, F / N, h / m, m N, F(e / m), e^{2} /(m / h)$, etc., rather than the direct value of the constant. Each of the many relations has been investigated by various experimenters at various times, and each investigation normally produces a result more or less different from that of any other investigation. Under such conditions there arises a general and continuous need for a searching examination of the most probable value of each important constant. This makes necessary some comparison and analysis of all these experimental data to arrive at the most probable value. An important factor in such work is that there are but few of the constants that do not require for their evaluation a knowledge of certain other constants. These relations are so extensive that most of the physical constants can be calculated from the value of five or six of the selected principal constants and certain ratios.

Many such critical reviews of these natural constants and conversion factors have appeared in the last 30 to 40 years. The data and discussion given here for the constants and their probable errors are the values arrived at by three physicists, R. T. Birge, ${ }^{17}$ J. W. DuMond, and J. A. Bearden, and their associates, who have made some very careful reviews and critical studies of the published experimental data on these general physical constants and have published several papers giving what they consider as the most probable value. Reference should be made to their original papers for details.

Birge says in his 1941 paper that as a result of such critical work the situation in respect to these constants has vastly improved over values of about 10 years ago, and again one can say that such studies have resulted in more work and thus a more accurate set of constants.

In 1941 Birge ${ }^{17}$ published a very extended list of physical constants and gave calculated values of many other physical constants that depend upon the fundamental constants. Because of the extent of this list, and also because so many of the relations among these constants are given therein, this 1941 list is given here. Almost all these constants in this table (Table 26) are accurate within the limits given.

DuMond and Cohen ${ }^{18}$ prepared a table of some of these constants for the Atomic Energy Commission. A part of this appeared in the July 1953 issue of the Review of Modern Physics. Table 27 gives their values of a number of these physical constants.

Bearden and Watts ${ }^{184}$ in 1950 made a study of values of a number of physical constants, using some new values in their calculations. They are continuing this work and are now ${ }^{18 \mathrm{~b}}$ offering some new and more accurate values. Table 28 contains their 1950 values (corrected for their newer values) and newer calculated values of some additional constants.

A comparison of the final values of these fundamental physical constants arrived at by these physicists shows in a real manner the accuracy that may now be claimed. A number of the principal radiation constants were taken from these tables (Tables 26-28) and are given in Table 53. These values have been used for the calculations in the tables in this book since they were available when the work was started and since the newer values would make no practical changes.

[^14]
Part 1.—Principal constants and ratios

Part 2.-Atomic weights

(1) Physical scale $\left(\mathrm{O}^{16}=16.0000\right)$

$$
\begin{array}{ll}
{ }_{1} \mathrm{H}^{\mathrm{d}}=1.00813 \pm 0.00001_{7} \\
{ }_{1} \mathrm{H}=1.00827_{\mathrm{e}} \pm 0.0001_{7} & { }_{3} \mathrm{H}^{2}=2.01473 \pm 0.00001 \text {, }
\end{array}
$$

$$
{ }_{2} \mathrm{He}^{4}=4.00389 \pm 0.00007
$$

$$
\text { (from H }{ }^{1} / \mathrm{H}^{2} \text { abundance }=6900 \pm 100 \text {) }
$$

$$
{ }^{2} \mathrm{C}^{12}=12.00386 \pm 0.0004 \quad{ }_{\circ} \mathrm{C}^{13}=13.00761 \pm 0.00015
$$

$$
\mathrm{C}=12.01465 \pm 0.00023
$$

$$
\text { (from } \mathrm{C}^{12} / \mathrm{C}^{13} \text { abundance }=92 \pm 2 \text {) }
$$

$$
{ }_{7} \mathrm{~N}^{14}=14.00753 \pm 0.00005 \quad{ }_{7} \mathrm{~N}^{18}=15.0049 \pm 0.0002
$$

$$
\mathrm{N}=14.01121 \pm 0.00009_{\mathrm{s}}
$$

$$
\text { (from } N^{14} / N^{15} \text { abundance }=270 \pm 6 \text {) }
$$

$$
{ }_{8} \mathrm{O}^{16}=16.0000 \quad{ }_{8} \mathrm{O}^{17}=17.0045 \quad{ }_{8} \mathrm{O}^{18}=18.0049
$$

$$
\mathrm{O}=16.00435_{7} \pm 0.00008_{0}
$$

$$
\text { [from abundance } \mathrm{O}^{18}: \mathrm{O}^{18}: \mathrm{O}^{17}=(506 \pm 10): 1:(0.204 \pm 0.008) \text {] }
$$

(2) Chemical scale $(0=16.0000)$

Ratio physical to chemical scale :
$r=(16.004357 \pm 0.000086) / 16=1.00272 \pm 0.000005$
$\mathrm{H}^{1}=1.00785_{\mathrm{f}} \pm 0.00001_{\mathrm{g}}$ (from physical scale)
$\mathrm{H}^{2}=2.01418_{2} \pm 0.00002_{1}$ (from physical scale)
$\mathrm{H}=1.00800_{2} \pm 0.00001_{8}$ (from physical scale)
$\mathrm{He}^{4}=4.00280 \pm 0.00007$ (from physical scale)
$\mathrm{C}=12.01139 \pm 0.00024$ (from physical scale)
$\mathrm{N}=14.00740 \pm 0.00012$ (from physical scale)
$\mathrm{N}=14.0086 \pm 0.0007$ (direct observation)
$\mathrm{Na}=22.994 \pm 0.003$
$\mathrm{Cl}=35.457 \pm 0.001$
$\mathrm{Ca}=40.080 \pm 0.005$
$\mathrm{Ag}=107.880 \pm 0.002$
$\mathrm{I}=126.915 \pm 0.004$

[^15](continued)

Part 3.-Additional quantities evaluated or used in connection with Part 1

```
Ratio of esu to emu (direct) \(\ldots \ldots \ldots \ldots c^{\prime}=\left(2.9971_{2} \pm 0.0001\right) \times 10^{10} \mathrm{~cm}^{1 / 2} \mathrm{sec}^{-1 / 2} \mathrm{ohm}^{1 / 2}\)
    \(=\left(2.9978 \pm 0.0001_{0}\right) \times 10^{10} \mathrm{~cm} / \mathrm{sec}\)
Ratio of esu to emu (indirect) \(\ldots \ldots . c^{\prime}=c=(2.99776 \pm 0.0004) \times 10^{10} \mathrm{~cm} / \mathrm{ser}\)
Average density of earth.............. \(\delta=5.517 \pm 0.004 \mathrm{~g} / \mathrm{cm}^{3}\)
Maximum density of water..... \(\delta_{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.999 \mathrm{~S}_{2} 2 \pm 0.000002 \mathrm{~g} / \mathrm{cm}^{3}\)
Acceleration of gravity (standard) \(\ldots . . g_{0}=980.665 \mathrm{~cm} / \mathrm{sec}^{2}\)
Acceleration of gravity \(\left(45^{\circ}\right) \ldots . . . g_{45}=980.616 \mathrm{~cm} / \mathrm{sec}^{2}\)
Density of oxygen gas \(\left(0^{\circ} \mathrm{C}, A_{45}\right) \ldots . L_{1}=1.42897 \pm 0.0003 \mathrm{~g} /\) liter
Limiting density of oxygen gas \(\left(0^{\circ} \mathrm{C}, A_{45}\right)\)
                                    \(L_{11 m}=1.427609 \pm 0.000037 \mathrm{~g} /\) liter
Factor converting oxygen \(\left(0^{\circ} \mathrm{C}, A_{45}\right)\)
    to ideal gas....................... \(1-a=1.000953_{5} \pm 0.000009_{4}\)
Specific gravity of \(\mathrm{Hg}\left(0^{\circ} \mathrm{C}, A_{0}\right)\) re-
    ferred to air-free water at maximum
```



```
Density of \(\ddot{\mathrm{Hg}}\left(0^{\circ} \stackrel{\mathrm{C}}{\mathrm{C}}, \dddot{A}_{0}\right) \ldots \ldots \ldots \ldots . D_{0}=13.59504_{0} \pm 0.00005_{\mathrm{r}} \mathrm{g} / \mathrm{cm}^{8}\)
Electrochemical equivalents (chemical
    scale) :
        Silver (apparent) \(\ldots . .\).
                (corrected) \(\ldots . . . . . . . . . E_{\text {Ag }}=(1.11807 \pm 0.00012) \times 10^{-8} \mathrm{~g} / \mathrm{abs}\) coul
    Iodine (apparent) \(\ldots \ldots . . . . . . E_{1}=(1.315026 \pm 0.000025) \times 10^{-3} \mathrm{~g} / \mathrm{int}\) coul
                        (corrected) \(\ldots \ldots . . . . . . . E_{1}=(1.31535 \pm 0.00014) \times 10^{-8} \mathrm{~g} / \mathrm{abs}\) coul
Effective calcite grating space \(\left(18^{\circ} \mathrm{C}\right)\)
    Siegbahn system \(\quad d^{\prime \prime}{ }_{18}=3.02904 \times 10^{-8} \mathrm{~cm}\)
True calcite grating space \(\left(20^{\circ} \mathrm{C}\right) \ldots d^{\prime}{ }_{20}=3.02951_{2} \times 10^{-8} \mathrm{~cm}\)
    Siegbahn system
True calcite grating space \(\left(20^{\circ} \mathrm{C}\right) \ldots d_{20}=\left(3.03567_{4} \pm 0.00018\right) \times 10^{-8} \mathrm{~cm}\)
    cgs system
Ratio of grating and Siegbahn scales of
    wavelengths
Density of calcite \(\left(20^{\circ} \mathrm{C}\right) \ldots \ldots \ldots \ldots . . \rho=2.71029 \pm 0.00003 \mathrm{~g} / \mathrm{cm}^{3}\)
Structural constant of calcite \(\left(20^{\circ} \mathrm{C}\right) \ldots \Phi=1.09594 \pm 0.00001\)
Molecular weight of calcite (chemical
    scale) \(\ldots .\). ........................... \(M=100.091_{4} \pm 0.005\)
Rydberg constant for hydrogen ( \(\mathrm{H}^{1}\) ) \(. R_{H}=109677.581_{2} \pm 0.007_{\mathrm{s}} \mathrm{cm}^{-1}\) (I.A. scale)
Rydberg constant for deuterium ( \(\mathrm{H}^{2}\) ) . . \(R_{D}=109707.419_{3} \pm 0.007_{5} \mathrm{~cm}^{-1}\) (I.A. scale)
Rydberg constant for helium........ \(R_{H e}=109722.263 \pm 0.012 \mathrm{~cm}^{-1}\) (I.A. scale)
Rydberg constant for infinite mass..... \(R_{s}=109737.303 \pm 0.017 \mathrm{~cm}^{-1}\) (I.A. scale)
                                    or \(\pm 0.05 \mathrm{~cm}^{-1}\) (cgs system)
```


TABLE 26.-GENERAL PHYSICAL CONSTANTS ACCORDING TO BIRGE (continued)

Part 4.-Partial list of derived quantities
Planck's constant:

$$
\begin{aligned}
& h=\left\{\frac{2 \pi^{2} c^{3} F^{5}}{R_{\times} N_{0}{ }^{5}(c / m)}\right\}^{1 / 3} \ldots \ldots \ldots . .=\left(6.624_{2} \pm 0.002_{4}\right) \times 10^{-27} \mathrm{erg} \mathrm{sec} \\
& h / c=\left\{\frac{2 \pi^{2} c^{3} F^{2}}{R_{4} N_{0}^{2}(c / m)}\right\}^{1 / 3} \ldots \ldots \ldots . .=\left(4.1349_{0} \pm 0.0007_{1}\right) \times 10^{-7} \mathrm{erg} \sec \text { abs emu }{ }^{-1} \\
& h / \mathfrak{c}^{\prime}=h /(e c)=\left\{\frac{2 \pi^{2} F^{2}}{R_{x} N_{0}{ }^{2}(c / m)}\right\}^{1 / 3}=\left(1.3793_{3} \pm 0.0002_{3}\right) \times 10^{-17} \mathrm{erg} \text { sec abs esu }{ }^{-1}
\end{aligned}
$$

Atomic weight of electron: $\ldots E=F /(c / m)$
(Physical scale) $\ldots=\left(5.4862_{4} \pm 0.0017\right) \times 10^{-4}$
(Chemical scale) $\ldots=\left(5.4847_{5} \pm 0.0017\right) \times 10^{-4}$
Band spectra constant connecting wave
number and moment of inertia:
$h /\left(8 \pi^{2} c\right)=\left\{\frac{F^{5}}{256 \pi^{4} R_{e} N_{0}{ }^{5}(e / m)}\right\}^{1 / 3} \ldots .=\left(27.98_{c 5} \pm 0.01_{0}\right) \times 10^{-40} \mathrm{~g} \mathrm{~cm}$
Boltzmann constant:

$$
K=R_{0} / N_{0}=V_{0} A_{0} /\left(T_{0} N_{0}\right) \ldots \ldots \ldots=(1.38047, \pm 0.00026) \times 10^{-16} \mathrm{erg} / \mathrm{deg}
$$

Charge in electrolysis of 1 gram of H

$$
F / H=9572.1_{\mathrm{ra}} \pm 1.0 \mathrm{abs} . \mathrm{emu} / \mathrm{g}
$$

Charge in electrolysis of one gram of
$\mathrm{H}^{\mathrm{L}} \ldots \mathrm{c} / M_{n^{1}}=F H^{\prime}=9573.5_{60} \pm 1.0 \mathrm{absemu} / \mathrm{g}$
Compton shift at 90° :

$$
h /(m c)=\left\{\frac{2 \pi^{2} F^{2}(c / m)^{2}}{R_{x} N_{0}^{2}}\right\}^{1 / 3} \ldots \ldots=\left(0.024265_{14} \pm 0.000005_{7}\right) \times 10^{-8} \mathrm{~cm}
$$

Energy in ergs of one abs volt-electron:

$$
E_{0}=10^{5} \mathrm{c}=10^{5} \mathrm{~F} / \mathrm{S}_{0} \ldots \ldots \ldots \ldots \ldots=\left(1.60203_{3} \pm 0.00034\right) \times 10^{-12} \mathrm{erg}
$$

Energy in calories per mole for one abs volt-electron per molecule:

$$
\frac{F(\text { abs coul } / \mathrm{gram-equiv.})}{J_{15}(\text { abs joules } / \mathrm{cal})} \ldots \ldots \ldots \ldots=23052 . \mathrm{s5} \pm 3.2 \mathrm{cal}_{15} \mathrm{~mole}^{-1}
$$

Fine structure constant:

$$
\begin{aligned}
a=2 \pi\left(c^{\prime}\right)^{2} /(h c)=\left\{\frac{4 \pi R_{x} F(c / m)}{N_{0}}\right\}^{1 / 3} & =\left(7.2976_{\mathrm{s}} \pm 0.0008_{6}\right) \times 10^{-3} \\
1 / a & =137.030_{2} \pm 0.016 \\
a^{2} & =(5.3255 \pm 0.0013) \times 10^{-5}
\end{aligned}
$$

Gas constant per mole:

$$
\begin{aligned}
& R_{\mathrm{n}}=V_{0}{ }_{0} A_{0} \gamma_{0} \ldots \ldots \ldots \ldots \ldots \ldots . . \\
& R^{\prime}{ }_{0}=R_{11} \times 10^{-7} / J_{15} \ldots \ldots=1.98646_{\mathrm{i}} \pm 0.00021 \mathrm{cal}_{15} \mathrm{deg}^{-1} \mathrm{~mole}^{-1} \\
& R^{\prime \prime}{ }_{0}=l^{\prime \prime}{ }_{0} / T_{0} \ldots \ldots \ldots \ldots \ldots \ldots=\left(8.20544_{7} \pm 0.00037\right) \times 10^{-2} 1 \mathrm{~atm} \mathrm{deg}^{-1} \mathrm{~mole}^{-1} \\
& R^{\prime \prime \prime}{ }_{0}=R_{\mathrm{e}} / A_{0}=V_{0} / T_{0} \ldots \ldots \ldots \ldots .=82.0566_{\mathrm{i}} \pm 0.0037 \mathrm{~cm}^{3} \mathrm{~atm} \mathrm{deg}^{-1} \mathrm{~mole}^{-1}
\end{aligned}
$$

also:
$R_{0} T_{0}=I_{0.4_{0}} \ldots \ldots \ldots \ldots \ldots \ldots=\left(2.27115_{0} \pm 0.00006\right) \times 10^{10} \mathrm{erg}$ mole ${ }^{-1}$ Loschmidt number $\left(0^{\circ} \mathrm{C}, \ddot{A}_{v}\right) \mu_{0}=\mathscr{V}_{0} / \mathscr{V}_{0} .=\left(2.6870_{12} \pm 0.0005_{0}\right) \times 10^{1.2}$ molecules $/ \mathrm{cm}^{3}$ Magnetic moment of one Bohr magneton:

$$
\begin{aligned}
\mu_{1}= & (h / 4 \pi)(c / m)= \\
& \frac{1}{4 \pi}\left\{\frac{2 \pi^{2} c^{3} F^{5}(c / m)^{2}}{R_{x} N_{0}{ }^{5}}\right\}^{1 / 3} \ldots \ldots \ldots=\left(0.9273_{45} \pm 0.0003_{\mathrm{z}}\right) \times 10^{-50} \mathrm{erg} / \text { gauss }
\end{aligned}
$$

Magnetic moment per mole for one Bohr
magneton per molecule:

$$
\mu_{1} V_{0}=\frac{1}{4 \pi}\left\{\frac{2 \pi^{2} c^{3} F^{5}(c / m)^{2}}{R_{x} N_{0}^{2}}\right\}^{1 / 3} \ldots \ldots=5585.24 \pm 1.6 \mathrm{erg} \text { gauss }^{-1} \mathrm{~mole}^{-1}
$$

Mass of a-particle..Ma $=(H c-2 E) / N_{0}=\left(6.6442_{2} \pm 0.0012\right) \times 10^{-24} \mathrm{~g}$

TABLE 26.-GENERAL PHYSICAL CONSTANTS ACCORDING TO BIRGE (concluded)

Mass of atom of unit atomic weight,

$$
M_{0}=1 / N_{0}=(1.66035 \pm 0.00031) \times 10^{-24} \mathrm{~g}
$$

Mass of electron;

$$
m=e /(e / m)=\left(F / N_{0}\right) /(e / m)=\left(9.1066_{0} \pm 0.0032\right) \times 10^{-28} \mathrm{~g}
$$

Mass of H^{1} atom......... $M_{H} 1=H^{1} / N_{0}=\left(1.67339_{3} \pm 0.0031\right) \times 10^{-24} \mathrm{~g}$
Mass of proton. $\ldots . . M_{P}=\left(H^{1}-E\right) / N_{0}=\left(1.67248_{2} \pm 0.00031\right) \times 10^{-24} \mathrm{~g}$
Ratio mass H^{1} atom to mass electron:

$$
M_{H} 1 / m=(e / m)\left(H^{1} / F\right) \quad \ldots \ldots \ldots . .=1837.5_{01} \pm 0.5_{\varepsilon}
$$

Ratio mass proton to mass electron:

$$
M_{p / m}=(e / m)\left(\frac{\left(H^{1}-E\right)}{F}\right) \ldots \ldots \ldots=1836.5_{e 1} \pm 0.5_{\mathrm{b}}
$$

First radiation constant..... $c_{2}^{* *}=8 \pi h c^{2}=(4.9908 \pm 0.0024) \times 10^{-18} \mathrm{erg} \mathrm{cm}$

$$
=h c^{2}=(0.59542 \pm 0.0024) \times 10^{-5} \mathrm{erg} \mathrm{~cm}^{2} \mathrm{sec}^{-1}
$$

Second radiation constant :

$$
=2 \pi h c^{2}=(3.7403 \pm 0.0024) \times 10^{-8} \mathrm{erg} \mathrm{~cm}^{2} \mathrm{sec}^{-1}
$$

$$
c_{2}=h c / k=\frac{T_{0} c^{2}}{V_{0} A_{0}}\left\{\frac{2 \pi^{2} F^{6}}{R_{\infty} N_{0}^{2}(e / m)}\right\}^{1 / 3}=1.4384_{8} \pm 0.0003_{4} \mathrm{~cm} \mathrm{deg}
$$

Specific charge of α-particle:

$$
2 e / M_{a}=\frac{2 F}{H e-2 E} \cdots \cdots \cdots \cdots \cdots=4822.3_{3} \pm 0.5_{1} \mathrm{abs} \mathrm{emu} / \mathrm{g}
$$

Specific charge of proton:

$$
\varepsilon / M_{P}=\frac{F}{H^{1}-E} \ldots \ldots \ldots \ldots \ldots=9578.7_{\mathrm{r}} \pm 1.0 \mathrm{abs} \mathrm{emu} / \mathrm{g}
$$

Radiation density constant,

$$
a=8 \pi^{8} k^{4} /\left(15 c^{3} h^{8}\right)=
$$

$$
\left(\frac{V_{0} A_{0}}{T_{0}}\right) \frac{4 \pi^{3} N_{0} R_{\infty}(c / m)}{15 c^{6} F^{5}} \cdots \cdots \cdots \cdots=\left(7.569_{42} \pm 0.004_{0}\right) \times 10^{-15} \mathrm{erg} \mathrm{~cm}^{-8} \mathrm{deg}^{-1}
$$

Stefan-Boltzmann constant : \dagger

$$
\begin{aligned}
\sigma=a c / 4=2 \pi^{5} k^{4} /\left(15 c^{2} h^{3}\right) \quad \ldots \ldots \ldots & =\left(\frac{V_{0} A_{0}}{T_{0}}\right)^{4} \frac{\pi^{3} N_{0} R_{\infty}(e / m)}{15(F c)^{5}} \\
& =\left(5.672_{83} \pm 0.003_{7}\right) \times 10^{-8} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{deg}^{-4} \mathrm{sec}^{-1}
\end{aligned}
$$

Wien's displacement-law constant..... $A=c_{2} / 4.965114=0.28971_{8} \pm 0.00007 \mathrm{~cm}$ deg
Wavelength associated with 1 abs volt:
$\lambda_{0}=10^{-8} c^{2}\left(h / e^{\prime}\right)=\frac{c^{2}}{10^{8}}\left\{\frac{2 \pi^{2} F^{2}}{R_{\infty} N_{0}^{2}(e / m)}\right\}^{1 / 3}=(12395.4 \pm 2.1) \times 10^{-8} \mathrm{~cm}$ abs volt
Wave number associated with 1 abs volt:

$$
s_{0}=1 / \lambda_{0}=\frac{10^{8}}{c^{2}}\left\{\frac{R_{\propto} N_{0}{ }^{2}(e / m)}{2 \pi^{2} F^{2}}\right\}^{1 / 3}=8067.4_{v} \pm 1.4 \mathrm{~cm} / \text { abs volt }
$$

Zeeman displacement per gauss $\left.(e / m) /(4 \pi c)=4.6699_{1} \pm 0.0013\right) \times 10^{-5} \mathrm{~cm} /$ gauss

[^16]Part 5.-Birge's 1944 values of 3 constants

TABLE 27.-TABLE OF LEAST-SQUARES ADJUSTED OUTPUT VALUES OF PHYSICAL CONSTANTS (BY DUMOND AND ASSOCIATES)
(November 1952)

Part 1.-Auxiliary constants used

These auxiliary constants are quantities which are uncorrelated (observationally) with the variables of the least-squares adjustment.
Rydberg wave number for infinite mass. $R_{x}=109737.309 \pm 0.012 \mathrm{~cm}^{-1}$
Rydberg wave numbers for the light nuclei

$$
R_{H}=109677.576 \pm 0.012 \mathrm{~cm}^{-1}
$$

$$
R_{D}=109707.419 \pm 0.012 \mathrm{~cm}^{-1}
$$

$$
R_{H e}=109717.345 \pm 0.012 \mathrm{~cm}^{-1}
$$

Atomic mass of neutron

$$
R_{H e}=109722.267 \pm 0.012 \mathrm{~cm}^{-1}
$$

Atomic mass of hydrogen.................. $H=1.008142 \pm 000003$
Atomic mass of deuterium.............. $D=2.014735 \pm 0.000006$
Gas constant per mole (physical scale). $R_{0}=(8.31662 \pm 0.00038) \times 10^{7} \mathrm{erg}_{\mathrm{mole}}{ }^{-1} \mathrm{deg}^{-1} \mathrm{C}$
Standard volume of a perfect gas
(physical scale)
$. V_{0}=22420.7 \pm 0.6 \mathrm{~cm}^{3} \mathrm{atmos}^{-1} \mathrm{~mole}^{-1}$

Part 2.—Least-squares adjusted output values
(The quantity following each \pm sign is the standard error by external consistency)
Velocity of light.c $=299792.9 \pm 0.8 \mathrm{~km} \mathrm{sec}^{-1}$
Avogadro's constant (physical scale) $\ldots . N=(6.02472 \pm 0.00036) \times 10^{23}(\text { molecules mol })^{-1}$
Loschmidt's constant (physical scale)

$$
L_{0}=N / \ddot{V}_{0}=(2.68713 \pm 0.00016) \times 10^{19} \text { molecules } \mathrm{cm}^{-3}
$$

Electronic charge $. e=(4.80288 \pm 0.00021) \times 10^{-10} \mathrm{esu}$
$\because=c / c=(1.60207 \pm 0.00007) \times 10^{-20} \mathrm{emu}$
Electron rest mass...................... $m=(9.1085 \pm 0.0006) \times 10^{-28} \mathrm{~g}$
Proton rest mass................ $m_{p}=M_{p} / N=(1.67243 \pm 0.00010) \times 10^{-24} \mathrm{~g}$
Neutron rest mass.............. $m_{n}=n / N=(1.67474 \pm 0.00010) \times 10^{-24} \mathrm{~g}$
Planck's constant $\ldots . . \ldots \ldots h=(6.6252 \pm 0.0005) \times 10^{-27} \mathrm{erg} \sec$
$\hbar=h /(2 \pi)=(1.05444 \pm 0.00009) \times 10^{-27} \mathrm{erg} \mathrm{sec}$
Conversion factor from Siegbahn X-units
to milliangstroms $\lambda_{o} / \lambda_{s}=1.002063 \pm 0.000034$
Faraday constant (physical scale) $F=N e=(2.89360 \pm 0.00007) \times 10^{14}$ esu (g mol $)^{-1}$

$$
F^{\prime}=N_{e} / c=(9652.01 \pm 0.25) \text { emu }(\mathrm{gm} \mathrm{~mol})^{-1}
$$

Charge-to-mass ratio of the electron.. $\varepsilon / m=(5.27299 \pm 0.00016) \times 10^{17}$ esu g $^{-1}$ $c^{\prime} / m=e /(m c)=(1.7588 \pm 0.00005) \times 10^{7} \mathrm{emug}^{-1}$
Ratio $h / e \ldots \ldots h / e=(1.37943 \pm 0.00005) \times 10^{-17} \mathrm{erg} \sec (\mathrm{esu})^{-1}$
Fine structure constant $\ldots \ldots a=e^{2} /(\hbar c)=(7.29726 \pm 0.00008) \times 10^{-3}$ $1 / a=137.0377 \pm 0.0016$ $a / 2 \pi=(1.161396 \pm 0.000013) \times 10^{-3}$
$a^{2}=(5.32501 \pm 0.00012) \times 10^{-5}$
$1-\left(1-a^{2}\right)^{\frac{1}{2}}=(0.266254 \pm 0.000006) \times 10^{-4}$
Atomic mass of the electron (physical

Ratio of mass of hydrogen to mass of
proton ${ }^{\text {s }}$

$$
H / H^{+}=\left[1-\frac{N m}{H}\left(1-\frac{1}{2} a^{2}\right)\right]^{-1}=1.000544610 \pm 0.000000013
$$

Atomic mass of proton................ $H^{+}=1.007593 \pm 0.000003$
Ratio of proton mass to electron mass.

$$
\mathrm{H}^{+} / \mathrm{Nm}=1836.13 \pm 0.04
$$

Reduced mass of electron in hydrogen
atom $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \mu=m H^{+} / H=(9.1035 \pm 0.0006) \times 10^{-29} \mathrm{~g}$
Schrödinger constant for a fixed nucleus

$$
2 m / \hbar^{2}=(1.63844 \pm 0.00016) \times 10^{-7} \mathrm{erg}^{-1} \mathrm{~cm}^{-2}
$$

Schrödinger constant for the hydrogen
atom $\ldots \ldots \ldots \ldots2 \mu / \hbar^{2}=(1.63755 \pm 0.00016) \times 10^{27} \mathrm{erg}^{-1} \mathrm{~cm}^{-2}$
First Bohr radius. $a_{0}=\hbar^{2} /\left(m e^{2}\right)=(5.29171 \pm 0.00006) \times 10^{-9} \mathrm{~cm}=a /\left(4 \pi R_{x}\right)$

[^17]Radius of electron orbit in normal H^{1},
referred to center of mass.

$$
a_{0}^{\prime}=a_{0}\left(1-a^{2}\right)^{3}=(5.29157 \pm 0.00006) \times 10^{-8} \mathrm{~cm}
$$

Separation of proton and electron in nor-
mal H^{1}

$$
a_{0}^{\prime \prime}=a_{0}^{\prime} R_{\alpha} / R_{H I}=(5.29445 \pm 0.00006) \times 10^{-0} \mathrm{~cm}
$$

Compton waveiength of the electron.

$$
\begin{aligned}
& \lambda_{c e}=h /(m c) \\
& \lambda_{c e}=\lambda_{c e} /(2 \pi)=(24.2625 \pm 0.0006) \times 10^{-11} \mathrm{~cm}=a^{2} /\left(2 R_{\infty}\right) \\
&3.86150 \pm 0.00009) \times 10^{-11} \mathrm{~cm}=a^{2} /\left(4 \pi R_{\infty}\right)
\end{aligned}
$$

Compton wavelength of the proton......

$$
\begin{aligned}
\lambda_{c p}=h / m_{p} c & =(13.2139 \pm 0.0004) \times 10^{-14} \mathrm{~cm} \\
\star_{c p} & =\lambda_{c p} /(2 \pi)
\end{aligned}=(2.10307 \pm 0.00007) \times 10^{-14} \mathrm{~cm}
$$

Compton wavelength of the neutron.....

$$
\lambda_{c n}=h / m_{n} c=(13.1958 \pm 0.0004) \times 10^{-14} \mathrm{~cm}
$$

$$
\lambda_{c n}=\lambda_{c n} /(2 \pi)=(2.10017 \pm 0.00007) \times 10^{-14} \mathrm{~cm}
$$

Classical electron radius.... $r_{0}=c^{2} /\left(m c^{2}\right)=(2.81784 \pm 0.00010) \times 10^{-13} \mathrm{~cm}=a^{3} /\left(4 \pi R_{x}\right)$

$$
r_{0}{ }^{2}=(7.9402 \pm 0.0005) \times 10^{-20} \mathrm{~cm}^{2}
$$

Thompson cross section

$$
\frac{8}{3} \pi r_{0}^{2}=(6.65196 \pm 0.0005) \times 10^{-25} \mathrm{~cm}^{2}
$$

Fine structure doublet separation in
hydrogen

$$
\begin{aligned}
\Delta E_{u} & =\frac{1}{16} R_{u} a^{2}\left[1+\frac{a}{\pi}+\left(\frac{5}{8}-\frac{5.946}{\pi^{2}}\right) a^{2}\right] \\
& =0.365869 \pm 0.000008 \mathrm{~cm}^{-1} \\
& =10968.49 \pm 0.25 \mathrm{Mc} \mathrm{sec}^{-1}
\end{aligned}
$$

Fine structure separation in deuterium

$$
\begin{aligned}
\Delta E_{D}=\Delta E_{n} R_{D} / R_{n} & =0.365969 \pm 0.000008 \mathrm{~cm}^{-1} \\
& =10971.48 \pm 0.25 \mathrm{Mc} / \mathrm{sec}^{-1}
\end{aligned}
$$

Zeeman displacement per gauss

$$
(c / m c) /(4 \pi c)=(4.66879 \pm 0.00015) \times 10^{-5} \mathrm{~cm}^{-1} \text { gauss }^{-1}
$$

Boltzmann's constant $\ldots \ldots \ldots k=R_{0} / N=(1.38042 \pm 0.00010) \times 10^{-16} \mathrm{ergs}^{\mathrm{er}} \mathrm{deg}^{-1}$ $k=(8.6164 \pm 0.0004) \times 10^{-8} \mathrm{ev} \mathrm{deg}^{-1}$

$$
1 / k=11605.7 \pm 0.5 \mathrm{deg}^{-1} .
$$

First radiation constant.......c.c. $=8 \pi h c=(4.9919 \pm 0.0004) \times 10^{-15} \mathrm{erg} \mathrm{cm}$
Second radiation constant.......c.c $=h c / k=(1.43884 \pm 0.00008) \mathrm{cm} \mathrm{deg}$
Atomic specific heat constant. $c_{2} / c=(4.79946 \pm 0.00027) \times 10^{-11} \mathrm{sec} \mathrm{deg}$
Wien displacement law constant ${ }^{\mathrm{b}} \ldots \lambda_{\text {max }} T=c_{2} /(4.96511423)=0.28979 \pm 0.00005 \mathrm{~cm} \mathrm{deg}$
Stefan-Boltzmann constant

$$
\sigma=\left(\pi^{2} / 60\right)\left(k^{4} / \hbar c^{2}\right)=(0.56686 \pm 0.00005) \times 10^{-4} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{deg}^{-4} \mathrm{sec}^{-1}
$$

Sackur-Tetrode constant $\ldots \ldots \ldots . S_{0} / R_{0}=\frac{5}{2}+\ln \left\{\left(2 \pi R_{0}\right)^{3 / 2} h^{-3} N^{-4}\right\}$

$$
\begin{aligned}
& =-5.57324 \pm 0.00011 \\
S_{0} & =-(46.3505 \pm 0.0017) \times 10^{7} \mathrm{erg} \mathrm{~mole}^{-1} \mathrm{deg}^{-1}
\end{aligned}
$$

Bohr masneton

$$
\mu_{0} \mp h e /(4 \pi m c)=\frac{1}{2} e \star_{c o}=(0.92732 \pm 0.00006) \times 10^{-80} \mathrm{erg}_{\mathrm{gauss}}{ }^{-1}
$$

Anomalous electron moment correction...

$$
\left[1+\frac{a}{2 \pi}-2.973 \frac{a^{2}}{\pi^{2}}\right]=\mu_{0} / \mu_{0}=1.001145356 \pm 0.000000013
$$

Magnetic moment of the electron....... $\mu_{0}=(0.92838 \pm 0.00006) \times 10^{-20} \mathrm{erg}_{\mathrm{g}}$ gauss $^{-1}$
Nuclear magneton

$$
\left.\mu_{n}=h c /\left(4 \pi m_{p} c\right)=\mu_{0} N m / H^{+}=0.505038 \pm 0.000036\right) \times 10^{-23} \mathrm{erg} \mathrm{gauss}^{-1}
$$

Proton moment $\ldots . . \ldots \mu \mu=2.79277 \pm 0.00006$ nuclear magnetons

$$
=(1.41045 \pm 0.00009) \times 10^{-23} \mathrm{erg}^{2} \text { gauss }^{-1}
$$

Gyromagnetic ratio of the proton in hy-
drogen (uncorrected for diamagnetism)

$$
\gamma^{\prime}=(2.67520 \pm 0.00008) \times 10^{4} \text { radians sec }^{-1} \text { gauss }^{-1}
$$

Gyromagnetic ratio of the proton (cor-

Multiplier of (Curie constant) ${ }^{\frac{1}{2}}$ to give
magnetic moment per molecule. $(3 k / N)^{\frac{1}{2}}=(2.62178 \pm 0.00017) \times 10^{-20}\left(\mathrm{erg} \text { mole deg }{ }^{-1}\right)^{\frac{1}{1}}$

[^18](continued)

TABLE 27.-TABLE OF LEAST-SQUARES ADJUSTED OUTPUT VALUES OF PHYSICAL CONSTANTS (concluded)

de Broglie wavelengths, λ_{D} of elementary
particles ${ }^{\text {c }}$
Electrons $\lambda_{D_{e}}=(7.27373 \pm 0.00016) \mathrm{cm}^{2} \mathrm{sec}^{-1} / \mathrm{v}$ $=(1.55226 \pm 0.00008) \times 10^{-13} \mathrm{~cm}(\mathrm{erg})^{\frac{1}{2}} / \sqrt{E}$ $=(1.226377 \pm 0.000032) \times 10^{-7} \mathrm{~cm}(\mathrm{ev})^{\frac{1}{2}} / \sqrt{E}$
Protons $n_{p}=(3.96145 \pm 0.00013) \times 10^{-3} \mathrm{~cm}^{2} \mathrm{sec}^{-1} / \mathrm{v}$
$=(3.62261 \pm 0.00020) \times 10^{-15} \mathrm{~cm}(\mathrm{erg})^{\frac{1}{2}} / \sqrt{E}$
$=(2.86208 \pm 0.00012) \times 10^{-9} \mathrm{~cm}(\mathrm{ev})^{\frac{3}{2}} / \sqrt{E}$
Neutrons $\ldots \ldots \lambda_{D n}=(3.95599 \pm 0.00013) \times 10^{-3} \mathrm{~cm}^{2} \mathrm{sec}^{-1} / \mathrm{v}$

$$
=(3.62005 \pm 0.00020) \times 10^{-15} \mathrm{~cm}(\mathrm{erg})^{1} / \sqrt{E}
$$

$$
=(2.86005 \pm 0.00012) \times 10^{-9} \mathrm{~cm}(\mathrm{ev})^{\frac{1}{2}} / \sqrt{E}
$$

Energy of $2200 \mathrm{~m} / \mathrm{sec}$ neutron....... $E_{2220}=0.0252977 \pm 0.0000006 \mathrm{ev}$
Velocity of $1 / 40 \mathrm{ev}$ neutron. $v_{0.025}=2187.017 \pm 0.028 \mathrm{~m} / \mathrm{sec}$
The Rydberg and related derived constants

$$
\begin{aligned}
R_{x} & =109737.309 \pm 0.012 \mathrm{~cm}^{-1} \\
R_{x} c & =(3.289847 \pm 0.000008) \times 10^{15} \mathrm{sec}^{-1} \\
R_{x} c & =(2.17961 \pm 0.00018) \times 10^{-11} \mathrm{ergs}^{-1} \\
\frac{R_{x} h c^{2} \times 10^{-8}}{e} & =13.6050 \pm 0.0005 \mathrm{ev}
\end{aligned}
$$

Hydrogen ionization potential.......... $I_{0}=13.5978 \pm 0.0005 \mathrm{ev}$

$$
=R_{H} \frac{h c^{2}}{c}\left[1+\frac{a^{2}}{4}+\cdots\right] \times 10^{-8}
$$

[^19]Part $1 \dagger$ (atomic weights according to the physical scale unless otherwise indicated)

[^20]
Part $2 \ddagger$

TABLE 28.-GENERAL PHYSICAL CONSTANTS ACCORDING TO BEARDEN AND ASSOCIATES (concluded)

Energy equivalent of electron mass. . $m c^{2}=(.510969 \pm .000009) \mathrm{Mev}$
Energy associated with $1^{\circ} \mathrm{K}$
$\left(R_{0} / \mathscr{F}\right) \times 10^{-8}=(8.61632 \pm .00042) \times 10^{-5} \mathrm{ev}$
Temperature associated with $1 \mathrm{ev} \ldots . . T_{0}=(11605.9 \pm .6) \mathrm{deg} \mathrm{K}$
Grating space calcite at $20^{\circ} \mathrm{C} \ldots \ldots d_{20}=(3.03567 \pm .00005) \times 10^{-8} \mathrm{~cm}$
Density of calcite at $20^{\circ} \mathrm{C}$. $\rho=(2.71030 \pm .00003) \mathrm{g} \mathrm{cm}^{-3}$
Compton wavelength of electron....h/mc $=(2.426045 \pm .000025) \times 10^{-10} \mathrm{~cm}$
Zeeman displacement per gauss $c /(4 \pi m c)=(4.668885 \pm .00008) \times 10^{-5} \mathrm{~cm}^{-1} \mathrm{gauss}^{-1}$
Doublet separation in hydrogen.

$$
\frac{1}{16} \quad R_{H} a^{2}=(.3649900 \pm .0000037) \mathrm{cm}^{-1}
$$

TABLE 29.-SPELLING AND ABBREVIATIONS OF THE COMMON UNITS OF WEIGHT AND MEASURE

The spelling of the metric units is that adopted by the International Committee on Weights and Measures and given in the law legalizing the metric system in the United States (1866). The use of the same abbreviation for singular and plural is recommended. It is also suggested that only small letters be used for abbreviations except in the case of A for acre, where the use of the capital letter is general.

Unit	Abbreviation	Unit	Abbreviation
acre	A	kilogram	kg
are	a	kiloliter	kl
a voirdupois	av	kilometer	km
barrel	bbl	link	1 l.
board foot	bd ft	liquid	liq
bushel	bu	liter	1
carat, metric	c	meter	m
centare	ca	metric ton	t
centigram	cg	micron	μ
centiliter	cl	mile	mi
centimeter	cm	milligram	mg
chain	ch	milliliter	ml
cubic centimeter	cm^{8}	millimeter	mm
cubic decimeter	dm^{3}	millimicron	$\mathrm{m} \mu$
cubic dekameter	dkm^{3}	minim	min. or m
cubic foot	ft^{3}	ounce	$o z$
cubic hectometer	hm^{3}	ounce, apothecaries'	oz ap or 3
cubic inch	in. ${ }^{3}$	ounce, avoirdupois	ozav
cubic kilometer	km^{3}	ounce, fluid	floz
cubic meter	m^{3}	ounce, troy	ozt
cubic mile	mi^{3}	peck	pk
cubic millimeter	mm^{3}	pennyweight	dwt
cubic yard	$y^{\text {d }}$	pint	nt
decigram	dg	pound	ib
deciliter	dl	pound, apothecaries'	lb ap
decimeter	dm	pound, a voirdupois	lb av
decistere	ds	pound, troy	1 bt
dekagram	dkg	quart	qt
dekaliter	dkl	rod	rd
dekameter	dkm	scruple, apothecaries'	sap or 3
dekastere	dks	square centimeter	cm^{2}
dram	dr	square chain	ch^{2}
dram, apothecarics'	drap or 3	square decimeter	dm^{2}
dram, a voirdupois	drav	square dekameter	dkm ${ }^{2}$
dram, fluid	$f \mathrm{dr}$	square foot	ft^{2}
fathom	fath	square hectometer	hm^{2}
foot	ft	square inch	in. ${ }^{2}$
firkin	fir	square kilometer	km^{2}
furlong	fur	squarë meter	m^{2}
gallon	gal	square mile	$m i^{2}$
grain	gr	square millimeter	mm^{2}
gram	g	square rod	$r d^{2}$
hectare	ha	square yard	$y d^{2}$
hectogram	hg	stere	s
hectoliter	hl	ton	tn
hectometer	hm	ton, metric	t
hogshead	hhd	troy	t
hundredweight	cwt	yard	yd

TABLE 30.-DIMENSIONAL EQUATIONS OF FUNDAMENTAL AND DERIVED UNITS

Conversion factors.-The dimensional formulas given in this table have many uses. One is to assist in changing a quantity from one system of units to another (see page 2). A simple scheme for transforming an expression from one set of units to another is given in Weniger's text, "Fundamentals of College Physics." Place the known number of the quantity with its units properly given, equal to an unknown number, x, of the same quantity properly expressed in the desired units. Proceed to cancel, treating the units just like algebraic quantities. Suppose it be desired to express 60 meters per second in miles per hour. Write:

$$
\frac{60 \mathrm{~m}}{\mathrm{sec}}=\frac{x \mathrm{mi}}{\mathrm{hr}}
$$

Cancel sec and $h r$ and write 3600 near the larger unit. Cancel m and $m i$ and write 1609.3 near the larger unit. This gives:

$$
\frac{60 \mathrm{~m}}{\mathrm{sec}}=\frac{x \mathrm{mi}}{\mathrm{hr}} \quad \frac{1609.3}{3600}
$$

Solving, $X=134$, and the desired expression is $134 \mathrm{mi} / \mathrm{hr}$.
More complicated expressions are handled in a similar manner. In a heat-flow problem, suppose it becomes necessary to express $15 \mathrm{Btu} \mathrm{hr}^{-1} \mathrm{ft}^{-2}$ with a temperature gradient of $1^{\circ} \mathrm{F}$ per ft in terms of cal $\mathrm{sec}^{-1} \mathrm{~cm}^{-2}$ with a gradient of $1^{\circ} \mathrm{C} / \mathrm{cm}$. Write:

$$
\frac{15 \mathrm{Btu}}{\mathrm{hr} \mathrm{ft}{ }^{2}} \times \frac{\mathrm{ft}}{{ }^{\circ} \mathrm{F}}=\frac{x \mathrm{cal}}{\sec \mathrm{~cm}^{2}} \times \frac{\mathrm{cm}}{{ }^{\circ} \mathrm{C}}
$$

Cancel $f t$ in numerator and denominator, and cm similarly. Remember that 1 Btu is 252 cal, and cancel. A scc goes into 1 hr 3600 times. Cancel cm and ft and write 30.48 . Remember that $9^{\circ} \mathrm{F}$ equal $5^{\circ} \mathrm{C}$. Solving, $x=0.062$. (See Table 2.)

If the numeric before the known quantity is unity, x comes out as the conversion factor for these units.
The dimensional formulæ lack one quality which is needed for completeness, an indication of their vector characteristics; such characteristics distinguish plane and solid angle, torque and energy, illumination and brightness.

Part 1.-Fundamental units

The fundamental units most commonly used are: length $[l]$; mass $[m]$; time $[t]$; temperature $[\theta]$; and for the electrostatic system, dielectric constant $[k]$; for the electromagnetic system, permeability $[\mu]$. The formulæ will also be given for the International System of electric and magnetic units based on the units length, resistance [r], current [i], and time.

When writing fractions, using the solidus, care is required to make the meaning definite: i.e., Btu/hr/ $/ \mathrm{ft}^{2}\left({ }^{\circ} \mathrm{F} / \mathrm{m}\right)$, or $\mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{F} / \mathrm{nn}\right)$ is not clear, but $\mathrm{Btu} /\left[\mathrm{hr} \times \mathrm{ft}^{2} \times\left({ }^{\circ} \mathrm{F} / \mathrm{m}\right]\right.$ is definite. DERIVED UNITS (continued)

Part 2.-Derived units (geometric and heat)

		$\begin{gathered} \text { Conversion } \\ \text { factor } \\ {\left[m^{\left[!y^{2} t^{2}\right.}\right]} \end{gathered}$		Name of units	$\begin{aligned} & \text { Conversion } \\ & \text { factor } \\ & {\left[m^{\left.r \mid v t=H^{\prime}\right]}\right.} \end{aligned}$			
Name of unit	x	\overbrace{y}	z	(Heat and light)	r	y	z	v
Area, surface	0	2	0	Quantity of heat :				
Volume	0	3	0	thermal units	1	0	0	1
Angle	0	0	0	thermometric units.	0	3	0	1
Solid angle	0	0	0	dynamical units	,	2	-2	0
Curvature .	0	-1	0	Coefficient of thermal				
Angular velocity	0	0	-1	expansion	0	0	0	-1
Linear velocity	0		-1	Thermal conductivity :				
Angular acceleration	0	0	-2	thermal units	1	-1	-1	0
Linear acceleration	0	1	-2	thermometric units				
Density	1	-3	0	or diffusivity... dymamical mints ...	0 1	2	-1 -3	-
Moment of inertia.....	1	2	0					
Intensity of attraction.	0	1	-2	Thermal capacity	1	0	0	0
Momentum	1	1	-1	Latent heat:				
Moment of momentum.	1	2	-1	thermal units	0	0	0	
Angular momentum ..	1	2	-1	dynamical units	0	2	-2	0
Force	1	1	-2	Joule's equivalent....	0	2	-2	-1
Moment of couple, torque	1	2	-2	Entropy :				
Work. energy	1	2	-2	heat in thermal units. heat in dynamical	1	0	0	0
Power, activity	1	2	-3	minits	1	2	-2	1
Intensity of stress.....	,	-1	-2					
Modulus of elasticity..	1	-1	-2	L.uminous intensity Illumination	0	0 -2	0	1^{*}
Compressibility		1	2	Brightness		-2	0	1*
Resilience	,	-1	-2	Visibility		-2	3	1*
Viscosity	1	-1	-1	Luminous efficiency..		-2	3	1*

[^21](continuted)

Part 3.-Derived units (electrical and magnetic)

[^22]TABLE 31.-FUNDAMENTAL UNITS OF LENGTH, AREA, VOLUME, AND MASS

Part 1-Some definitions and legal relations						
$\begin{aligned} 1 \mathrm{in} .^{*} & =(1 / 0.3937) \mathrm{cm}=2.54000508 \mathrm{~cm} \\ 1 \mathrm{lb} * & =453.5924277 \mathrm{~g} \\ 1 \mathrm{gal}^{*} & =2231 \mathrm{in}^{3}=3.785329 \text { liter } \\ 1 \mathrm{I} . \mathrm{T} . \mathrm{cal}^{\dagger} & =4.18674 \text { joules } \\ 1 \mathrm{Btu}^{\dagger} & \equiv 1.00064 \mathrm{cal}_{15} \\ & =251.996 \mathrm{l} . \mathrm{T} . \mathrm{cal} \\ & =252.161 \mathrm{cal}_{15} \end{aligned}$						
Part 2.-Conversion factors, units of length						
$1 \mathrm{~cm}=$	$1{ }^{\text {cm }}$	0.01^{m}	$\begin{gathered} \text { in. } \\ 0.3937 \end{gathered}$	$\begin{gathered} \mathrm{ft} \\ 0.032808333 \end{gathered}$	$\begin{gathered} \mathrm{yd} \\ 0.010936111 \end{gathered}$	
$1 \mathrm{~m}=$	100	1	39.37	3.2808333	1.0936111	
1 in . $=$	2.5400051	0.025400051	1	0.083333333	0.027777778	
$1 \mathrm{ft}=$	30.480061	0.30480061	12	1	0.33333333	
$1 \mathrm{yd}=$	91.440183	0.91440183	36	3	1	
Part 3.-Conversion factors, units of area						
	cm^{2}	m^{2}	in. ${ }^{2}$	ft^{2}	yd^{2}	
$1 \mathrm{~cm}^{2}=$	1	10^{-4}	0.15499969	1.0763867×10^{-8}	1.1959853×10^{-4}	
$1 \mathrm{~m}^{2}=$	10^{4}	1	1549.9969	10.763867	1.1959853×10	
$1 \mathrm{in}^{.}{ }^{2}=$	6.4516258	6.4516258×10^{-4}	1	6.9444444×10^{-3}	7.7160494×10^{-4}	
$1 \mathrm{ft}^{2}=$			144	1	0.11111111	
$1 \mathrm{yd}^{2}=$	8361.3070	0.83613070	1296	9		
Part 4.-Conversion factors, units of volume						
	cm^{3}	in. ${ }^{3}$	ft^{3}	ml	liter	gal
$1 \mathrm{~cm}^{3}=$	1	0.061023378	3.5314455×10^{-5}	0.9999720	0.9999720×10^{-3}	2.6417047×10^{-4}
$1 \mathrm{in}^{3}=$	16.387162	1	5.7870370×10^{-4}	16.38670	1.638670×10^{-2}	4.3290043×10^{-8}
$1 \mathrm{ft}^{3}=$	2.8317017×10^{4}	1.728×10^{3}		2.831622×10^{4}	28.31622×1	7.4805195
$1 \mathrm{ml}=$	$1.000028 \times 1{ }^{\text {s }}$	0.06102509	3.531544×10^{-5}	1	0.001	2.641779×10^{-4}
1) liter =	1.000028×10^{3}	${ }^{631.02509}$	0.03531544	10^{3}	$\frac{1}{3} 785329$	0.2641779
$1 \mathrm{gal}=$	3.7854345×10^{3}	231	0.13368056	3.785329×10^{3}	3.785329	
Part 5.-Conversion factors, units of mass						
	g	kg	1 b	metric ton	ton	
$1 \mathrm{~g}=$	1	10^{-3}	2.2046223×10^{-8}	10^{-6}	1.1023112×10^{-6}	
$1 \mathrm{~kg}=$	10^{3}	1	2.2046223	10^{-3}	1.1023112×10^{-8}	
1 metric $1 \mathrm{lb}=$	4.5359243×10^{2}	0.45359243	1	4.5359243×10^{-4}	0.0005	
1 metric ton 1 ton $=$	10^{8}	10^{3}	2204.6223	1	1.1023112	
1 ton=	9.0718486×10^{5}	907.18486	2000	0.90718486		

TABLE 32.-TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES*
Part 1.-Metric to customary

In the United Staies since 1893 all units in the above table have been derived from the same standartls of leroth and mass. Therefore all equivalents (except those involving the liter) depend only on wimerical definitions. The liter is the volume of one kilograna of pure water at the temperatne of its maximum density and under a pressure equivalent to 760 millineters of nemeury. The liter was determined by the International Bureau of Weights and Measures in 1910 to equal $1.000027 \mathrm{dm}^{3}$. (National Bureau of Standards.)

[^23](continued)

Part 2.-Customary to metric

The length of the nautical mile given above, and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

(continued)

TABLE 32.-TABLES FOR CONVERTING U. S. WEIGHTS AND MEASURES

(concluded)

Part 3.-Miscellaneous equivalents of U. S. and metric weights and measures ${ }^{18}$ (For other equivalents than those below, see Tables 30, 31, and 33.)

LINE.\R MEASURES	MASS ME.ISURES
1 mil (. 001 in.) $=25.4001 \mu$	Avoirdupois zeights
$1 \mathrm{in} .=.000015783$ mile	$1 \mathrm{grain}=.064798918 \mathrm{~g}$
1 hand (4 in. $)=10.16002 \mathrm{~cm}$	1 dram av. $(27.34375 \mathrm{gr})=1.771845 \mathrm{~g}$
1 link (. 66 ft) $=20.11684 \mathrm{~cm}$	$1 \mathrm{oz} \mathrm{av}.(16 \mathrm{dr}$ av. $)=28.349527 \mathrm{~g}$
$1 \mathrm{span}(9 \mathrm{in})=.22.86005 \mathrm{~cm}$	1 lb av ($16 \mathrm{oz} \mathrm{av}$.or 7000 gr)
1 fathom (6 ft) $=1.828804 \mathrm{~m}$	$=14.583333$ oz ap. (5) or oz t.
$1 \mathrm{rod}\left(5 \frac{1}{2} \mathrm{yd}\right)(25 \mathrm{links})=5.02910 \mathrm{~m}$	$=1.2152778$ or $7000 / 5760 \mathrm{lb} \mathrm{ap}$.
1 chain (4 rods) $=20.11684 \mathrm{~m}$	or t.
1 light year $\left(9.5 \times 10^{12} \mathrm{~km}\right)=5.9 \times 10^{12}$ miles	$\begin{aligned} & =453.5924277 \mathrm{~g} \\ 1 \mathrm{~kg} & =2.204622341 \mathrm{lb} \mathrm{av} . \end{aligned}$
1 parsec $\left(31 \times 10^{12} \mathrm{~km}\right)=19 \times 10^{12}$ miles	$1 \mathrm{~g}=15.432356 \mathrm{gr}=.5643833 \mathrm{drav}$.
${ }_{6.1}^{1 / 4} \mathrm{in} .=.397 \mathrm{~mm} \quad \stackrel{3}{1.2} \mathrm{in} .=.794 \mathrm{~mm}$	$=.03527396$ oz av.
$\frac{1}{16} \mathrm{in} .=1.588 \mathrm{~mm} \quad \frac{1}{8} \mathrm{in} .=3.175 \mathrm{~mm}$	1 short hundred weight (100 lb)
${ }_{4}^{1} \mathrm{in} .=6.350 \mathrm{~mm} \quad{ }^{\frac{1}{2}} \mathrm{in} .=12.700 \mathrm{~mm}$	$=45.359243 \mathrm{~kg}$
1 angstrom unit $=.0000000001 \mathrm{~m}$	1 long hundred weight (112 1b)
1 micron $(\mu)=.000001 \mathrm{~m}=.00003937 \mathrm{in}$.	$=50.802352 \mathrm{~kg}$
1 millimicron ($\mathrm{m} \mu)=.000000001 \mathrm{~m}$	1 short ton (2000 lb)
$1 \mathrm{~m}=4.970960$ links $=1.093611 \mathrm{yd}$	$=907.18486 \mathrm{~kg}$
$=.198838 \mathrm{rod}=.0497096$ chain	1 long ton (2240 lb) $=1016.04704 \mathrm{~kg}$
SQU.IRE MEASURES	1 metric ton $=0.98420640$ long ton
$1 \mathrm{sq} . \mathrm{link}\left(62.7264 \mathrm{in}^{2}{ }^{2}\right)=404.6873 \mathrm{~cm}^{2}$	$=1.1023112$ short tons
$1 \mathrm{sq} . \mathrm{rod}(625 \mathrm{sq}$. links $)=25.29295 \mathrm{~m}^{2}$	
1 sq. chain (16 sq. rods) $=404.6873 \mathrm{~m}^{2}$	Troy weights
1 acre (10 sq. chains) $=4046.873 \mathrm{~m}^{2}$	1 pennyweight (dwt 24 gr) $=1.555174 \mathrm{~g}$
1 sq. mile (640 acres $)=2.589998 \mathrm{~km}^{2}$	gr, oz, pd are same as apothecary
$1 \mathrm{~km}^{2}=.3861006$ sq. mile	
$1 \mathrm{~m}^{2}=24.7104$ sq. links $=10.76387 \mathrm{ft}^{2}$	Apothecaries' weights
$=.039537$ sq. \quad rod $=.00247104$ sq.	$1 \mathrm{gr}=64.798918 \mathrm{mg}$
chain	$1 \mathrm{scruple}(3,20 \mathrm{gr})=1.2959784 \mathrm{~g}$
CUBIC ME.\SURES	$1 \mathrm{dram}(3,3-)=3.8879351 \mathrm{~g}$
1 board (${ }^{\text {c }}$	$1 \mathrm{oz}(\underset{5}{2}, 83) \quad=31.103481 \mathrm{~g}$
1 board foot (144 in. ${ }^{8}$) $=2359.8 \mathrm{~cm}^{8}$	$1 \mathrm{lb}(12 \overline{3}, 5760 \mathrm{gr})=373.24177 \mathrm{~g}$
$1 \operatorname{cord}\left(128 \mathrm{ft}^{8}\right)=3.625 \mathrm{~m}^{3}$	$1 \mathrm{~g}=15.432356 \mathrm{gr}=0.771618$ Э
CAPACITY MEASURES	$=0.25720593=.03215074 \%$
$1 \mathrm{minim}(\mathrm{m})=.0616102 \mathrm{ml}$	$1 \mathrm{~kg}=32.1507423=2.6792285 \mathrm{lb}$
1 fl . dram $(60 \mathrm{ml})=3.69661 \mathrm{ml}$	1 metric carat $=200 \mathrm{mg}=3.0864712 \mathrm{gr}$
$\begin{aligned} & 1 \mathrm{f} . \mathrm{oz}(8 \mathrm{fl} . \mathrm{dr})=1.80469 \mathrm{in} .^{8} \\ & =29.5729 \mathrm{ml} \end{aligned}$	U. S. $\frac{1}{2}$ dollar should weigh 12.5 g and the
```1 gill (4 f. oz.) = 7.21875 in. }\mp@subsup{}{}{3}=118.29 ml```	smaller silver coins in proportion.
$1 \mathrm{liq} . \mathrm{pt}\left(28.875 \mathrm{in}^{8}\right.$ ) $=.4731671$	
1 liq. qt $\left(57.75\right.$ in. $^{\text {s }}$ ) $=.9463331$	
1 gallon (4 qt, $231 \mathrm{in}^{\text {a }}{ }^{\text {a }}$ ) $=3.7853321$	
1 dry pt $\left(33.6003125\right.$ in. ${ }^{\text {8 }}$ ) $=.5505991$	
1 dry qt $\left(67.200625\right.$ in. $\left.^{3}\right)=1.1011981$	
$1 \mathrm{pk}\left(8\right.$ dry qt, $\left.537.605 \mathrm{in} .^{8}\right)=8.809581$	
$1 \mathrm{bu}\left(4 \mathrm{pk}, 2150.42 \mathrm{in}{ }^{\text {a }}\right.$ ) ${ }^{\text {a }}$ ) 35.23831	
1 firkin (9 gallons) $=34.067991$	
$\begin{aligned} 1 \text { liter } & =264178 \text { gal }=1.05671 \text { liq. qt } \\ & =33.8147 \mathrm{fl} . \mathrm{oz}=270.518 \mathrm{fl} . \mathrm{dr} \end{aligned}$	
$1 \mathrm{ml} .=16.2311 \mathrm{minims}$.	
$\begin{aligned} 1 \mathrm{dkl} & =18.1620 \mathrm{dry} \mathrm{pt}=9.08102 \mathrm{dry} \mathrm{qt} \\ & =1.13513 \mathrm{pk}=.28378 \mathrm{bu} \end{aligned}$	

[^24](For U. S. Weights and Measures, see Table 32.)
Part 1.-Metric to imperial


Note.-The Meter is the length, at the temperature of $0^{\circ} \mathrm{C}$, of the platinum-iridium bar deposited at the International Bureau of Weights and Measures at Sèvres, near Paris, France.
The present legal equivalent of the meter is 39.370113 inches, as above stated.
The Kilogram is the mass of a platinum-iridium weight deposited at the same place.
The Liter contains 1 kilogram weight of distilled water at its maximum density ( $4^{\circ} \mathrm{C}$ ), the barometer being at 760 millimeters.

[^25] (continued)

TABLE 33.-EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES (continued)
(For U. S. Weights and Measures, see Table 32.)
Part 2.-Metric to imperial, multiples

	Linear measure					Measure ${ }^{\text {of capacity }}$			
	$\begin{gathered} \text { Millimeters } \\ \text { to } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { Meters } \\ \text { to } \\ \text { feet } \end{gathered}$	$\begin{gathered} \text { Meters } \\ \text { to } \\ \text { yards } \end{gathered}$	$\underset{\substack{\text { Kiloo- } \\ \text { moters } \\ \text { to miles }}}{\text { cosen }}$		$\begin{gathered} \text { Liters } \\ \text { to } \\ \text { pints } \end{gathered}$	Dekaliters to gallons	Hecto. liters to bushels	$\begin{gathered} \text { Kilo- } \\ \text { liters to } \\ \text { quarters } \end{gathered}$
1	0.03937011	3.28084	1.09361	0.62137	1	1.75980	2.19975	2.74969	3.43712
2	0.07874023	6.56169	2.18723	1.24274	2	3.51961	4.39951	5.49938	6.87423
3	0.11811034	9.84253	3.28084	1.86412	3	5.27941	6.59926	8.24908	10.31135
4	0.15748045	13.12337	4.37446	2.48549	4	7.03921	8.79902	10.99877	13.74846
5	0.19685056	16.40421	5.46807	3.10686	5	8.79902	10.99877	13.74846	17.18558
6	0.23622068	19.68506	6.56169	3.72823	6	10.55882	13.19852	16.49815	20.62269
7	0.27559079	22.96590	7.65530	4.34960	7	12.31862	15.39828	19.24785	24.05981
8	0.31496090	26.24674	8.74891	4.97097	8	14.07842	17.59803	21.99754	27.49692
9	0.35433102	29.52758	9.84253	5.59235	9	15.83823	19.79778	24.74723	30.93404


$\underbrace{\text { Square measure }}$					Weight (Avoirdupois)					
	Square									
	centimeters	Square meters	Square meters		Milli-		Kilo•	$\begin{aligned} & \text { Kilo- } \\ & \text { grams } \end{aligned}$	Quintals	
	to	to	to	Hectares			to			
	square inches	square feet	square   yards	to		$\begin{aligned} & \text { to } \\ & \text { grains } \end{aligned}$		$\begin{aligned} & \text { to } \\ & \text { grains } \end{aligned}$	$\begin{aligned} & \text { to } \\ & \text { pounds } \end{aligned}$	hundredweights
1	0.15500	10.76393	1.19599	2.4711	1	0.01543	15432.356	2.20462	1.96841	
2	0.31000	21.52786	2.39198	4.9421	2	0.03086	30864.713	4.40924	3.93683	
3	0.46500	32.29179	3.58798	7.4132	3	0.04630	46297.069	6.61387	5.90524	
4	0.62000	43.05572	4.78397	9.8842	4	0.06173	61729.426	8.81849	7.87365	
5	0.77500	53.81965	5.97996	12.3553	5	0.07716	77161.782	11.02311	9.84206	
6	0.93000	64.58357	7.17595	14.8263	6	0.09259	92594.138	13.22773	11.81048	
7	1.08500	75.34750	8.37194	17.2974	7	0.10803	108026.495	15.43236	13.77889	
8	1.24000	86.11143	9.56794	19.7685	8	0.12346	123458.851	17.63698	15.74730	
9	1.39501	96.87536	10.76393	22.2395	9	0.13889	138891.208	19.84160	17.71572	
		ubic measure		Apothecaries' measure		Avoirdupo (cont.)			Apothecaries weight	
	Cubic decimeters to cubic inches	Cubic meters to cubic feet	Cubic meters to. cubic yards	Cubic centimeters to fluid drachms		$\begin{aligned} & \text { Milliers } \\ & \text { or } \\ & \text { tonnes to } \\ & \text { tons } \end{aligned}$	$\begin{gathered} \text { Grams } \\ \text { to } \\ \text { ounces } \\ \text { troy } \end{gathered}$	Grams   to penny-	$\begin{gathered} \text { Grams } \\ \text { to } \\ \text { scruples } \end{gathered}$	
1	61.02390	35.31476	1.30795	0.28157	1	0.98421	0.03215	0.64301	0.77162	
2	122.04781	70.62952	2.61591	0.56314	2	1.96841	0.06430	1.28603	1.54324	
3	183.07171	105.94428	3.92386	0.84471	3	2.95262	0.09645	1.92904	2.31485	
4	244.09561	141.25904	5.23182	1.12627	4	3.93683	0.12860	2.57206	3.08647	
5	305.11952	176.57379	6.53977	1.40784	5	4.92103	0.16075	3.21507	3.85809	
6	366.14342	211.88855	7.84772	1.68941	6	5.90524	0.19290	3.85809	4.62971	
7	427.16732	247.20331	9.15568	1.97098	7	6.88944	0.22506	4.50110	5.40132	
8	488.19123	282.51807	10.46363	2.25255	8	7.87365	0.25721	5.14412	6.17294	
9	549.21513	317.83283	11.77159	2.53412	9	8.85786	0.28936	5.78713	6.94456	

(continued)
(For U. S. Weights and Measures, see Table 32.)
Part 3.-Imperial to metric

LINEAR MEASURE


## SQUARE MEASURE

$1 \mathrm{in.}^{2}$. . . . $=$	$6.4516 \mathrm{~cm}^{2}$
$1 \mathrm{ft}^{2}\left(144 \mathrm{in}^{2}{ }^{\text {a }}\right.$ )	$9.2903 \mathrm{dm}^{2}$
$1 \mathrm{YD}^{2}\left(9 \mathrm{ft}^{2}\right) . .=$	$0.836126 \mathrm{~m}^{2}$
1 perch ( $30 \frac{1}{4} \mathrm{yd}^{2}$ ) $=$	$25.293 \mathrm{~m}^{2}$
$1 \mathrm{rood}(40$ perches $)=$	10.117 ares
1 ACRE (4840 $\mathrm{yd}^{2}$ )	0.40468 hectare
$1 \mathrm{mi}^{2}$ (640 acres)	9.00 hectares

CUBIC ME.ISURE
$1 \mathrm{in}^{3}{ }^{3}$. . . . $=16.387 \mathrm{~cm}^{3}$
$1 \mathrm{ft}^{8}\left(1728 \mathrm{in}^{3}\right)=\left\{\begin{array}{c}0.028317 \mathrm{~m}^{3} \text { or } 28.317 \\ \mathrm{dm}^{3}\end{array}\right.$
$1 \mathrm{yd}^{8}\left(27 \mathrm{ft}^{8}\right) .=0.76455 \mathrm{~m}^{3}$

## APOTHECARIES' MEASURE

$\left.\begin{array}{l}1 \text { gallon ( } 8 \text { pints or } \\ 160 \text { fluid ounces })\end{array}\right\}=4.5459631$ liters
1 fluid ounce, f 3 ( 8 drachms)
$\left.\begin{array}{l}1 \text { fluid drachm, f } 3 \\ (60 \text { minims) }\end{array}\right\}=3.5515 \mathrm{~cm}^{3}$
$1 \underset{\text { grain weight })}{\operatorname{minim}, ~} \quad(0.91146\}=0.05919 \mathrm{~cm}^{8}$
Note.-The apothecaries' gallon is of the same capacity as the Imperial gallon.

MEASLRE OF CAP.ICITY
1 gill $\cdot$. . $=1.42$ deciliters
1 pint ( 4 gills) . . $=0.568$ liter
1 quart ( 2 pt ) . . . $=1.136$ liters
1 gallon ( 4 qt ) $\quad .=4.5459631$ liters
1 peck (2 gal) . . $=9.092$ liters
1 bushel ( 8 gal ) . . $=3.637$ dekaliters
1 quarter ( 8 bu ) . $=2.909$ hectoliters

## AVOIRDUPOIS WEIGHT



## TROY WEIGHT

$\left.\begin{array}{c}1 \text { troy ounCe }(480 \\ \begin{array}{c}\text { grains av }) \\ 1 \begin{array}{c}\text { pennyweight } \\ \text { grains) }\end{array}\end{array}(24\end{array}\right\}=31.1035$ grams
$=1.5552$ grams
Note.-The troy grain is of the same weight as the avoirdupois grain.

## APOTHECARIES' WEIGHT

1 ounce ( 8 drachms) ..$=31.1035$ grams
1 drachm, 3 i ( 3 scruples $)=3.888$ grams
1 scruple, Эi (20 grains) $=1.296$ grams
Note.-The apothecaries' ounce is of the same weight as the troy ounce. The apothecaries' grain is also of the same weight as the avoirdupois grain.

Note.-The Yard is the length at $62^{\circ} \mathrm{F}$, marked on a bronze bar deposited with the Board of Trade.
The Pound is the weight of a piece of platinum weighed in vacuo at the temperature of $0^{\circ} \mathrm{C}$, and which is also deposited with the Board of Trade.
The Gallon contains 10 lb weight of distilled water at the temperature of $62^{\circ} \mathrm{F}$, the barometer being at 30 inches.
(continued)

TABLE 33.-EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES (concluded)
(For U. S. Weights and Measures, see Table 32.)
Part 4.-Imperial to metric, multiples

	$\mathrm{Linear}^{\text {measure }}$					Measure of capacity			
	Inches centimeters	$\begin{gathered} \text { Feet } \\ \text { to } \\ \text { meters } \end{gathered}$	$\begin{aligned} & \text { Yards } \\ & \text { to } \\ & \text { meters } \end{aligned}$	$\begin{gathered} \text { Miles } \\ \text { to } \\ \text { kilo- } \\ \text { meters } \end{gathered}$		$\begin{aligned} & \text { Quarts } \\ & \text { to } \\ & \text { liters } \end{aligned}$	$\begin{aligned} & \text { Gallons } \\ & \text { to } \\ & \text { liters } \end{aligned}$	$\begin{gathered} \text { Bushels } \\ \text { to } \\ \text { deka- } \\ \text { liters } \end{gathered}$	Quarters   to   heto-   liters
1	2.539998	0.30480	0.91440	1.60934	1	1.13649	4.54596	3.63677	2.90942
2	5.079996	0.60960	1.82880	3.21869	2	2.27298	9.09193	7.27354	5.81883
3	7.619993	0.91440	2.74320	4.82803	3	3.40947	13.63789	10.91031	8.72825
4	10.159991	1.21920	3.65760	6.43737	4	4.54596	18.18385	14.54708	11.63767
5	12.699989	1.52400	4.57200	8.04671	5	5.68245	22.72982	18.18385	14.54708
6	15.239987	1.82880	5.48640	9.65606	6	6.81894	27.27578	21.82062	17.45650
7	17.779984	2.13360	6.40080	11.26540	7	7.95544	31.82174	25.45739	20.36591
8	20.319982	2.43840	7.31519	12.87474	8	9.09193	36.36770	29.09416	23.27533
9	22.859980	2.74320	8.22959	14.48408	9	10.22842	40.91367	32.73093	26.18475


	Square measure					Weight (avoirdupois)			
	Square inches to square centimeters	Square feet to square decimeters	Square yards to square meters	Acres to hectares		Grains to milligrams	$\begin{aligned} & \text { Ounces } \\ & \text { to } \\ & \text { grams } \end{aligned}$	Pounds to kilograms	Hun-dredweights quintals
1	6.45159	9.29029	0.83613	0.40468	1	64.79892	28.34953	0.45359	0.50802
2	12.90318	18.58058	1.67225	0.80937	2	129.59784	56.69905	0.90718	1.01605
3	19.35477	27.87086	2.50838	1.21405	3	194.39675	85.04858	1.36078	1.52407
4	25.80636	37.16115	3.34450	1.61874	4	259.19567	113.39811	1.81437	2.03209
5	32.25794	46.45144	4.18063	2.02342	5	323.99459	141.74763	2.26796	2.54012
6	38.70953	55.74173	5.01676	2.42811	6	388.79351	170.09716	2.72155	3.04814
7	45.16112	65.03201	5.85288	2.83279	7	453.59243	198.44669	3.17515	3.55616
8	51.61271	74.32230	6.68901	3.23748	8	518.39135	226.79621	3.62874	4.06419
9	58.06430	83.61259	7.52513	3.64216	9	583.19026	255.14574	4.08233	4.57221


	Cubic measure			Apothecaries' Measure		Avoirdupois			Apothecaries
	Cubic inches to cubic centimeters	Cubic feet to cubic meters	Cubic yards to cubic meters	Fluid drachms to cubic centimeters		Tons to milliers or tonnes	$\begin{aligned} & \text { Ounces } \\ & \text { to } \\ & \text { grams } \end{aligned}$	Pennyweights to grams	Scruples to grams
1	16.38702	0.02832	0.76455	3.55153	1	1.01605	31.10348	1.55517	1.29598
2	32.77404	0.05663	1.52911	7.10307	2	2.03209	62.20696	3.11035	2.59196
3	49.16106	0.08495	2.29366	10.65460	3	3.04814	93.31044	4.66552	3.88794
4	65.54808	0.11327	3.05821	14.20613	4	4.06419	124.41392	6.22070	5.18391
5	81.93511	0.14158	3.82276	17.75767	5	5.08024	155.51740	7.77587	6.47989
6	98.32213	0.16990	4.58732	21.30920	6	6.09628	186.62088	9.33104	7.77587
7	114.70915	0.19822	5.35187	24.86074	7	7.11233	217.72437	10.88622	9.07185
8	131.09617	0.22653	6.11642	28.41227	8	8.12838	248.82785	12.44139	10.36783
9	147.48319	0.25485	6.88098	31.96380	9	9.14442	279.93133	13.99657	11.66381

TABLE 34.-VOLUME OF A GLASS VESSEL FROM THE WEIGHT OF ITS EQUIVALENT VOLUME OF MERCURY OR WATER

If a glass vessel contains at $t^{\circ} \mathrm{C}, P$ grams of mercury, weighed with brass weights in air at 760 mmHg pressure, then its volume in $\mathrm{cm}^{3}$
at the same temperature, $t: V=P R=P \frac{p}{d}$,
at another temperature, $t_{1}: V=P R_{1}=P \frac{p}{d}\left\{1+\gamma\left(t_{1}-t\right)\right\}$
$p=$ the weight, reduced to vacuum, of the mass of mercury or water which, weighed with brass weights, equals 1 gram;
$a=$ the density of mercury or water at $t^{\circ} \mathrm{C}$,
and $\gamma$ the cubical expansion coefficient of glass.

Temperature	${ }^{\text {Water }}$			Mercury		
	$R$	$R_{2}, t_{1}=10^{\circ}$	$R_{1}, t_{1}=20^{\circ}$	R	$R_{1}, t_{1}=10^{\circ}$	$R_{1}, t_{1}=20^{\circ}$
$0^{\circ}$	1.001192	1.001443	1.001693	0.0735499	0.0735683	0.0735867
1	1133	1358	1609	5633	5798	5982
2	1092	1292	1542	5766	5914	6098
3	1068	1243	1493	5900	6029	6213
4	1060	1210	1460	6033	6144	6328
5	1068	1193	1443	6167	6259	6443
6	1.001092	1.001192	1.001442	0.0736301	0.0736374	0.0736558
7	1131	1206	1456	6434	6490	6674
8	1184	1234	1485	6568	6605	6789
9	1252	1277	1527	6702	6720	6904
10	1333	1333	1584	6835	6835	7020
11	1.001428	1.001403	1.001653	0.0736969	0.0736951	0.0737135
12	1536	1486	1736	7103	7066	7250
13	1657	1582	1832	7236	7181	7365
14	1790	1690	1940	7370	7297	7481
15	1935	1810	2060	7504	7412	7596
16	1.002092	1.001942	1.002193	0.0737637	0.0737527	0.0737711
17	2261	2086	2337	7771	7642	7826
18	2441	2241	2491	7905	7757	7941
19	2633	2407	2658	8039	7872	8057
20	2835	2584	2835	8172	7988	8172
21	1.003048	1.002772	1.003023	0.0738306	0.0738103	0.0738288
22	3271	2970	3220	8440	8218	8403
23	3504	3178	3429	8573	8333	8518
24	3748	3396	3647	8707	8449	8633
25	4001	3624	3875	8841	8564	8748
26	1.004264	1.003862	1.004113	0.0738974	0.0738679	0.0738864
27	4537	4110	4361	9108	8794	8979
28	4818	4366	4616	9242	8910	9094
29 30	5110 5410	4632	4884	9376	9025	9210
30	5410	4908	5159	9510	9140	9325

## Reductions of weighings in air to vacuo

When the weight $M$ in grams of a body is determined in air, a correction is necessary for the buoyancy of the air equal to $M \delta\left(1 / d-1 / d_{1}\right)$ where $\delta=$ the density (wt. of $1 \mathrm{~cm}^{3}$ in grams $=0.0012$ ) of the air during the weighing, $d$ the density of the body, $d_{1}$ that of the weights. $\delta$ for various barometric values and humidities may be determined from Tables 631-632. The following table is computed for $\delta=0.0012$. The corrected weight $=$ $M+k M / 1000$.

Density weighed$\qquad$	Correction factor, $k$			Density oirhed weighe	Correction factor, $k$		
	$\overbrace{\substack{\text { Pt. Ir. } \\ \text { weirhts } \\ d_{1}=21.5}}$	$\underset{\substack{\text { Brass } \\ \text { weights } \\ 8.4}}{ }$	$\begin{aligned} & \text { Quartz or } \\ & \text { Al. weights } \\ & 2.65 \end{aligned}$		$\overbrace{\substack{\text { Pt Ir. } \\ \text { weights } \\ d_{1}=21.5}}$	$\underset{\substack{\text { Brass } \\ \text { weights } \\ 8.4}}{ }$	Ouartz or   Al. weights 2.65
. 5	$+2.34$	$+2.26$	+ 1.95	1.6	+0.69	+0.61	$+0.30$
. 6	+1.94	+1.86	+1.55	1.7	+ . 65	+ . 56	+ . 25
. 7	+1.66	+1.57	+1.26	1.8	+ . 62	+ . 52	+ . 21
. 75	+1.55	+1.46	+1.15	1.9	+ . 58	+. 49	+ . 18
. 80	+ 1.44	+1.36	+1.05	2.0	+ . 54	+ . 46	+. 15
. 85	+1.36	+1.27	+0.96	2.5	+. 43	+ . 34	+ . 03
. 90	+1.28	+1.19	+ . 88	3.0	+ . 34	+. 26	- . 05
. 95	+1.21	+1.12	+ .81	4.0	+. 24	+ . 16	-. 15
1.00	+1.14	+1.06	+ . 75	6.0	+ . 14	+. 06	-. 25
1.1	+1.04	+0.95	+. 64	8.0	+. 09	+ . 01	-. 30
1.2	+0.94	+ 86	+ . 55	10.0	+. 06	-. 02	-. 33
1.3	+ . 87	+ . 78	+. 47	15.0	+. 03	- . . 06	-. 37
1.4	+ .80	+. 71	+. 40	20.0	+. 004	- . 08	-. 39
1.5	+ . 75	+ .66	+. 35	22.0	-. 001	- . 09	- . 40

## TABLE 36.-REDUCTIONS OF DENSITIES IN AIR TO VACUO

(This correction may be accomplished through the use of the above table for each separate weighing.)
If $s$ is the density of the substance as calculated from the uncorrected weights, $S$ its true density, and $L$ the true density of the liquid used, then the vacuum correction to be applied to the uncorrected density, $s$, is $0.0012(1-s / L)$.
Let $W_{s}=$ uncorrected weight of substance, $W_{i}=$ uncorrected weight of the liquid displaced by the substance, then by definition, $s=L W_{s} / W_{l}$. Assuming $D$ to be the density of the balance of weights, $W_{s}\{1+0.0012(1 / S-1 / D)\}$ and $W_{1}\{1+0.0012$ ( $1 / L-1 / D$ ) \} are the true weights of the substance and liquid respectively (assuming that the weighings are made under normal atmospheric corrections, so that the weight of $1 \mathrm{~cm}^{8}$ of air is 0.0012 gram ).
Then the true density $S=\frac{W_{s}\{1+0.0012(1 / S-1 / D)\}}{W_{\imath}\{1+0.0012(1 / L-1 / D)\}} L$
But from above $W_{s} / W_{t}=s / L$, and since $L$ is always large compared with 0.0012 ,

$$
S-s=0.0012(1-s / L)
$$

The values of $0.0012(1-s / L)$ for densities up to 20 and for liquids of density 1 (water), 0.852 (xylene), and 13.55 (mercury) follow:

Density of substance $s$	Corrections			Density of sub. stance	Corrections	
	$L=1$	$L=0.852$	$L=13.55$		$L=1$	$L=13.55$
	Water	Xylene	Mercury	$s$	Water	Mercury
0.8	+ 0.00024	-	-	11.	-0.0120	+ 0.0002
0.9	+ . 00012	-	-	12.	- . 0132	+ .0001
1.	0.0000	$-0.0002$	$+0.0011$	13.	- . 0144	0.0000
2.	- . .0012	- . 0016	+ . 0010	14.	- . 0156	0.0000
3.	- . 0024	-. 0030	+ . 0009	15.	- . 0168	- . 0001
4.	- . 0036	-. . 0044	+ . 0008	16.	-. 0180	-. 0002
5.	- . 0048	-. 0058	+ . 0008	17.	-. 0192	-. 0003
6.	-. 0060	-. 00073	+ . 0007	18.	- . 0204	-. 0004
7.	- . 0072	- . 0087	+ . 0006	19.	- . 0216	-. 0005
8.	- . 0084	- . 0101	+ . 0005	20.	- . 0228	- . 0006
9.	- . 0096	-. 0115	+. 0004			
10.	-. . 0108	- . 0129	+. 0003			

TABLE 37.-THE INTERNATIONAL TEMPERATURE SCALE OF $1948{ }^{20}$
The International Temperature Scale that was adopted in 1927 was revised during 1948 and is designed to conform as nearly as practicable to the thermodynamic Celsius ${ }^{21}$ (Centigrade) scale as now known. This 1948 International Temperature Scale incorporates certain refinements based on experience to make it more uniform and reproducible than its predecessor. The new scale is essentially the same as the one it displaces, but it was improved by changing certain formulas and values for temperatures and constants.

Only three of the revisions in the definition of the scale result in appreciable changes in the numerical values assigned to measured temperatures. The change in the value for the silver point from $960.5^{\circ} \mathrm{C}$ to $960.8^{\circ} \mathrm{C}$ changes temperatures measured with the standard thermocouple. The adoption of a different value for the radiation constant $c_{2}$ changes all temperatures above the gold point, while the use of the Planck radiation formula instead of the Wien formula affects the very high temperatures. (See Table 40 for the magnitude of the changes due to these two causes for high temperatures.) The 1948 temperature scale, like the 1927 scale, is based upon six fixed points (Table 38) and upon specified formulas for the relations between temperature and the indications of the instruments calibrated at these fixed points. Temperature on the 1948 scale will be designated as ${ }^{\circ} \mathrm{C}$, or ${ }^{\circ} \mathrm{C}$ (Int. 1948) and denoted by the symbol $t$.

The means available for interpolation between the fixed points lead to a division of the scale into four parts:
(a) From $0^{\circ} \mathrm{C}$ to the freezing points of antimony the temperature $t$ is defined by the formula

$$
R_{t}=R_{0}\left(1+A t+B t^{2}\right)
$$

where $R_{t}$ is the resistance, at temperature $t$, of a standard platinum resistance thermometer.
(b) From the oxygen point (Table 38) to $0^{\circ} \mathrm{C}$ the temperature $t$ is similarly defined by the formula

$$
R_{t}=R_{0}\left[1+A t+B t^{2}+C(t-100) t^{3}\right]
$$

(c) From the freezing point of antimony to the gold point (Table 38) the temperature $t$ is defined by the formula

$$
E=a+b t+c t^{2},
$$

where $E$ is the electromotive force of a standard thermocouple of platinum and platinumrhodium alloy, when one junction is at $0^{\circ} \mathrm{C}$ and the other at temperature $t$.

Recommendations are given for the construction, calibration, and use of these two types of measuring devices.
(d) Above the gold point the temperature $t$ is defined by the formula

$$
\frac{J_{\mathrm{t}}}{J_{\Delta \mathrm{u}}}=\frac{\exp \left[c_{2} /\left(\lambda\left(t_{\Delta u}+T_{0}\right)\right)\right]-1^{*}}{\exp \left[c_{2} /\left(\lambda\left(t+T_{0}\right)\right)\right]-1}
$$

where $J_{t}$ and $J_{A \mathrm{u}}$ are the radiant energies per unit wavelength interval at wavelength $\lambda$, emitted per unit time by unit area of a blackbody at temperature $t$, and at the gold point $t_{\text {Au }}$, respectively.
$c_{2}$ is 1.438 cm degrees.
$T_{0}$ is the temperature of the ice point in ${ }^{\circ} \mathrm{K}$.
$\lambda$ is a wavelength of the visible spectrum.
$e$ is the base of Naperian logarithms.
Secondary fixed points.-In addition to the six fundamental and primary fixed points (Table 38), a number of secondary fixed points are available and may be useful for various purposes. Some of the more constant and reproducible of these fixed points and their temperatures on the International Temperature Scale of 1948 are listed in Table 41. The relation between this new temperature scale and the thermodynamic Celsius scale is discussed in this paper also.

The resulting changes in the 1927 International Temperature Scale below the gold point $\left(1063^{\circ} \mathrm{C}\right)$ to correct it to the 1948 International Temperature Scale are given in Table 39.
The use of the Planck formula and a wavelength interval within the visible spectrum to determine temperatures presupposes the use of an optical pyrometer. (See Table 77.)

[^26]TABLE 38.-FUNDAMENTAL AND PRIMARY FIXED POINTS UNDER THE STANDARD PRESSURE OF 1013250 DYNES/CM $=$

	Temperature
Temperature of equilibrium between liquid oxygen and its vapor (oxyger: point)	- 182.970
Temperature of equilibrium between ice and air saturated water (ice point) fundamental fixed point.	0
Temperature of equilibrium between liquid water and its vapor (steam point) fundcmental fixed point.	100
Temperature of equilibrium between liquid sulfur and its vapor (sulfur point)	444.600
Temperature of equilibrium between solid and liquid silver (silver point)	960.8
Temperature of equilibrium between solid and liquid gold (gold point)	1063.0

TABLE 39.-DIFFERENCES BETWEEN THE INTERNATIONAL TEMPERATURE SCALES OF 1948 AND 1927 IN THE THERMOCOUPLE RANGE

Temperature					
${ }^{\circ} \mathrm{C}$ (Int. 1948)	$\begin{aligned} & { }^{\circ} \mathrm{C} \text { (Int. 1948) } \\ & { }^{\circ} \mathrm{C} \text { minus } \text { (Int. 1927) } \end{aligned}$	${ }^{\circ} \mathrm{C}$ (Int. 1948)	$\begin{aligned} & { }^{\circ} \mathrm{C} \text { ( (Int. 1948) } \\ & { }^{\circ} \mathrm{C} \text { (Ininus. } \end{aligned}$	${ }^{\circ} \mathrm{C}$ (Int. 1948)	$\begin{aligned} & { }^{\circ} \mathrm{C} \text { ( Int. 1948) } \\ & \text { minus } \\ & { }^{\circ} \mathrm{C} \text { (Int. 1927) } \end{aligned}$
630.5	. 00	800	. 42	950	. 32
650	+. 08	839.5	.43. (max.)	960.8	. 30
700	. 24	850	. 43	1000	. 20
750	. 35	900	. 40	1050	. 05
				1063	. 00

TABLE 40.-CORRESPONDING TEMPERATURES ON THE INTERNATIONAL TEMPERATURE SCALES OF 1948 AND 1927

$\begin{gathered} { }^{\circ} \mathrm{C} \\ \text { (Int. 1948) } \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \text { Int. 1927) } \end{gathered}$	Corresponding Fahrenheit temperatures		$\begin{gathered} { }^{\circ} \mathrm{C} \\ \text { Int. 1948) } \end{gathered}$	$\stackrel{\circ}{(\text { Int. }}{ }^{\mathrm{C}}$	Corresponding Fahrenheit temperatures	
		(1948)	(1927)			(1948)	(1927)
630.50	630.50	1166.9	1166.9	2100	2107	3812	3825
650	649.92	1202	1201.9	2200	2208	3992	4007
700	699.76	1292	1291.6	2300	2310	4172	4189
750	749.65	1382	1381.4	2400	2411	4352	4372
				2500	2512	4532	4554
800	799.58	1472	1471.2				
850	849.57	1562	1561.2	2600	2613	4712	4736
900	899.60	1652	1651.3	2700	2715	4892	4919
950	949.68	1742	1741.4	2800	2816	5072	5102
				2900	2918	5252	5285
960.80	960.50	1761.4	1760.9	3000	3020	5432	5468
1000	999.80	1832	1831.6				
1050	1049.95	1922	1921.9	3100	3122	5612	5651
1063.00	1063.00	1945.4	1945.4	3200	3223	5792	5834
				3300	3325	5972	6018
1100	1100.2	2012	2012	3400	3428	6152	6202
1200	1200.6	2192	2193	3500	3530	6332	6386
1300	1301.1	2372	2374				
1400	1401.7	2552	2555	3600	3632	6512	6570
1500	1502.3	2732	2736	3700	3735	6692	6754
				3800	3837	6872	6939
1600	1603.0	2912	2917	3900	3940	7052	7124
1700	1703.8	3092	3099	4000	4043	7232	7309
1800	1804.6	3272	3280				
1900	1905.5	3452	3462	4100	4146	7412	7495
2000	2006.4	3632	3644	4200	4249	7592	7681
				4300	4353	7772	7867



TABLE 42.-CORRESPONDING TEMPERATURES ON THE INTERNATIONAL TEMPERATURE SCALE OF 1948 AND RESULTS USING WIEN'S EQUATION

$t,{ }^{\circ} \mathrm{C}$   (Int. 1948 )	$t_{w},{ }^{\circ} \mathrm{C}$	$t,{ }^{\circ} \mathrm{C}$   (Int. 1948 )	$t_{w,},{ }^{\circ} \mathrm{C}$	$t,{ }^{\circ} \mathrm{C}$   (Int. 1948 )	$t_{\boldsymbol{w},}{ }^{\circ} \mathrm{C}$
1063	1063.0	2500	2500.2	4000	4005.4
1500	1500.0	3000	3000.7	4500	4511.3
2000	2000.0	3500	3502.1	5000	5021.5

## TABLE 43.-CORRECTION FOR TEMPERATURE OF EMERGENT MERCURIAL THERMOMETER THREAD

When the temperature of a portion of a thermometer stem with its mercury thread differs much from that of the bulb, a correction is necessary to the observed temperature unless the instrument has been calibrated for the experimental conditions. This stem correction is proportional to $n \beta(T-t)$, where $n$ is the number of degrees in the exposed stem, $\beta$ the apparent coefficient of expansion of mercury in the glass, $T$ the measured temperature, and $t$ the mean temperature of the exposed stem. For temperatures up to $100^{\circ} \mathrm{C}$, the value of $\beta$ is for Jena $16^{111}$ or Greiner and Friedrich resistance glass, 0.000159 , for Jena $59^{111}$, 0.000164 , and when of unknown composition it is best to use a value of about 0.000155 . The formula requires a knowledge of the temperature of the emergent stem. This may be approximated in one of three ways: (1) by a "fadenthermometer"; (2) by exploring the temperature distribution of the stem and calculating its mean temperature; and (3) by suspending along the side of, or attaching to, the stem, a single thermometer.

TABLE 44.-STEM CORRECTION FOR CENTIGRADE THERMOMETER ${ }^{22}$

Values of $0.000155 n(T-t)$								
	( $T-{ }^{t}$							
$n$	$10^{\circ}$	$20^{\circ}$	$30^{\circ}$	$40^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$
$10^{\circ} \mathrm{C}$	0.02	0.03	0.05	0.06	0.08	0.09	0.11	0.12
20	0.03	0.06	0.09	0.12	0.16	0.19	0.22	0.25
30	0.05	0.09	0.14	0.19	0.23	0.28	0.33	0.37
40	0.06	0.12	0.19	0.25	0.31	0.37	0.43	0.50
50	0.08	0.16	0.23	0.31	0.39	0.46	0.54	0.62
60	0.09	0.19	0.28	0.37	0.46	0.56	0.65	0.74
70	0.11	0.22	0.33	0.43	0.54	0.65	0.76	0.87
80	0.12	0.25	0.37	0.50	0.62	0.74	0.87	0.99
90	0.14	0.28	0.42	0.56	0.70	0.84	0.98	1.12
100	0.16	0.31	0.46	0.62	0.78	0.93	1.08	1.24

${ }^{22}$ Taken from Smithsonian Meteorological Tables.

## TABLE 45.-REDUCTION OF GAS THERMOMETERS TO THERMODYNAMIC SCALE

The final standard scale is Kelvin's thermodynamic scale, independent of the properties of any substance, a scale resulting from the use of a gas thermoneter using a perfect gas. A discussion of this is given by Buckingham, ${ }^{228}$ "The thermodynamic correction of the centigrade constant-pressure scale at the given temperature is very nearly proportional to the constant pressure at which the gas is kept" and "the thermodynamic correction to the centigrade constant-volume scale is approximately proportional to the initial pressure at the ice point." These two rules are very convenient, since from the corrections for any one pressure, one can calculate approximately those for the same gas at any other pressure.

The highest temperature possible is limited by the container for the gas. Day and Sosman carried a platinum-rhodium gas thermometer up to the melting point of palladium. For most work, however, the region of the gas thermometer should be considered as ending at about $1000^{\circ} \mathrm{C}\left(1273^{\circ} \mathrm{K}\right)$.
Note: All corrections in the following table are to be added alycbraically.

${ }^{\text {Temp. }}{ }^{\text {C }}$ C	$273.16^{\circ} \mathrm{K}$ (ice point)					
	Constant pressure $=100 \mathrm{~cm}$			Constant vol., $p_{0}=100 \mathrm{~cm}, t_{0}=0^{\circ} \mathrm{C}$		
	He	H	N	He	H	N
- 240	-	$+1.0$	-	+0.02	+0.18	-
- 200	$+0.13$	+ . 26		+ . 01	$+.06$	
- 100	+ . 04	+. 03	$+0.40$	. 000	+ . 010	$+0.06$
- 50	+ . 012	+. 02	+. 12	. 000	$+.004$	+ . 02
+ 25	-. 003	-. 003	-. 020	. 000	. 000	- . 006
$+\quad 50$ $+\quad 15$	- . 003	-. 003	- . 025	. 000	. 000	-. 006
+ 75	- . 003	- . 003	-. 017	. 000	. 000	- . 004
+150	$+.007$	$+.01$	$+.04$	$+.000$	+. 001	$+.01$
+ 200 +150	$+.01$	+. 02	+.11	. 000	$+.002$	+. 04
+ 450	+. 1	+0.04	+. 5	0.00	$+0.01$	+. 2
$+1000$	$+0.3$	-	$+1.7$	-	-	+ 7
$+1500$	-	-	+ 3 .	-	-	+1.3

[^27]
## Comparlsons

Prior to the adoption of the 1927 International Temperature Scale, the Pt-Pt10\% Rh thermocouple was almost universally used for scales $450^{\circ}$ to $1100^{\circ} \mathrm{C}$, and defining equations were quadratic or cubic depending upon the number of calibration points.

The scale based on the work of Holborn and Day was calibrated at the freezing point of $\mathrm{Zn}\left(419.0^{\circ} \mathrm{C}\right), \mathrm{Sb}\left(630.6^{\circ} \mathrm{C}\right)$, and $\mathrm{Cu}\left(1084.1^{\circ} \mathrm{C}\right)$, and a quadratic equation, $E=a+v t+$ $\mathrm{ct}^{2}$, for interpolation. This was almost universally used from 1900-1909. Work of Waidner, Burgess, 1909, and Day, Sosman, 1910-1912, necessitated a readjustment. In 1912 the Bureau of Standards redefined its scale, assigning values determined with the resistance thermometer to the Zn and Sb points, while the freezing point of Cu was taken as $1083.0^{\circ} \mathrm{C}$. This 1912 scale, used from 1912-1916, will be called the $\mathrm{Zn}, \mathrm{Sb}, \mathrm{Cu}$ temperature scale.
A scale proposed by Sosman and revised by Adams was realized by using a standard reference table, giving the average $t$-emf relation for thermocouple used by Day and Sosman. A deviation curve, determined by any other couple by calibration at several points would be plotted relating the difference between observed emf and the emf from the reference table against the obs. emf of the couple. This scale, although very convenient, is not completely defined and no comparison is made here.

In 1916, the Physikalische-Technische Reichsanstalt adopted a scale with the couple calibrated at the Sd point $\left(320.9^{\circ} \mathrm{C}\right), \mathrm{Sb}\left(630^{\circ} \mathrm{C}\right), \mathrm{Au}\left(1063^{\circ} \mathrm{C}\right)$, and $\operatorname{Pd}\left(1557^{\circ} \mathrm{C}\right)$. No comparison will be made here.

A scale adopted by the Bureau of Standards in 1916 was defined by calibration at the Zn and Al points with a Cu point $\left(1083.0^{\circ} \mathrm{C}\right)$. This was used from 1916-1926 and is here designated the $\mathrm{Zn}, \mathrm{Al}, \mathrm{Cu}$ scale.

The scale adopted by the P.-T.R. and the Bureau of Standards in 1924 was calibrated at Zn and Sb points (determined by resistance thermometer), the Ag point $\left(960.5^{\circ} \mathrm{C}\right)$, and the Au point $\left(1063.0^{\circ} \mathrm{C}\right)$. It will be designated the $\mathrm{Zn}, \mathrm{Sb}, \mathrm{Ag}, \mathrm{Au}$ scale.

The 1927 7th Annual Conference of Weights and Measures ( 31 nations) unanimously adopted what is between $660^{\circ}$ and $1063^{\circ} \mathrm{C}$ the $\mathrm{Zn}, \mathrm{Sb}, \mathrm{Ag}, \mathrm{Cu}$ scale with the Zn point omitted. The table below shows a comparison of the various scales. The following values for the freezing points were used:

$\mathrm{Zn} 419.47^{\circ} \mathrm{C}$	$\mathrm{Al} 659.23^{\circ} \mathrm{C}$	Au	$1063.0^{\circ} \mathrm{C}$
$\mathrm{Sb} 630.52^{\circ} \mathrm{C}$	$\mathrm{Ag} 960.5^{\circ} \mathrm{C}$	$\mathrm{Cu}\left(\right.$ reducing atm $\left.{ }^{\circ}\right)$	$1083.0^{\circ} \mathrm{C}$

## Temperature differences between 1927 I.T.S. and various older scales

	I.T.S.-	I.T.S	T.S		I.T.S	I.T.S.-	I.T		I.T.S.-	I.T.S.-	
	$\mathrm{ZnSb}$	ZnAl -	ZnSb	${ }^{\circ} \mathrm{C}$	$\mathrm{ZnSb}_{\mathrm{Cu}}$	ZnAl -	$\mathrm{ZnSb}$		$\mathrm{ZnSb}^{\text {che }}$	ZnA1.	ZnSb
				${ }^{\circ} \mathrm{C}$			Ag.lu	${ }^{\circ} \mathrm{C}$		Cu	u
600	- ${ }^{\circ} .08$	${ }^{\circ} .00$	- ${ }^{\circ} .04$	900	- ${ }^{\circ} .26$	$-^{\circ} .21^{\circ}$	- ${ }^{\circ} .03$	1050	- ${ }^{\circ} .04$	- ${ }^{\circ} .03$	${ }^{\circ} .00$
700	-. 16	-. 08	-. 08	950	-. 23	-. 18	-. 01	1063	-. 01	. 00	. 00
750	. 24	. 16	-. 09	960.5	-. 21	-. 16	. 00	1083	+. 04	$+.03$	-. 01
800	- . 28	-. 20	-. 08	1000	-. 15	-. 12	. 01	1100	+ . 08	+ . 08	. 03
850	- . 29	-. 22	- . 06								

## REFERENCE TABLES FOR THERMOCOUPLES ${ }^{23}$

The emf developed by thermocouples of the same materials, even very carefully made, differ slightly for the same temperature. It has been found convenient to compare the emf of a couple being calibrated with that of a standard thermocouple of the same materials. If the differences in emf's between the standard and the calibrated couple be plotted against the temperature, the temperature for an observed emf can be read very accurately. Reference tables for three types of thermocounles follow.

[^28]
table 49.-CORRESPONDING VALUES OF TEMPERATURE AND ELECTRO. MOTIVE FORCE FOR IRON-CONSTANTAN THERMOCOUPLES
(Reference junctions at $0^{\circ} \mathrm{C}$ )

	Electromotive force mv mv	${ }^{\text {Temp. }}{ }^{\text {C }}$.	Electro motive mv	${ }^{\text {Temp }}{ }^{\circ} \mathrm{C}$.	Electromotive mv	${ }^{\text {Temp }} \mathrm{C}$.	Electro motive force mv
		0	. 00	400	22.06	800	45.68
		10	. 52	410	22.61	810	46.33
		20	1.05	420	23.16	820	46.99
		30	1.58	430	23.71	830	47.65
		40	2.12	440	24.26	840	48.30
		50	2.66	450	24.81	850	48.96
		60	3.20	460	25.36	860	49.62
		70	3.75	470	25.91	870	50.28
		80	4.30	480	26.46	880	50.94
		90	4.85	490	27.01	890	51.59
		100	5.40	500	27.57	900	52.22
		110	5.95	510	28.13	910	52.84
			6.51	520	28.69	920	53.43
		130	7.07	530	29.25	930	54.02
		140	7.63	540	29.81	940	54.61
		150	8.19	550	30.38	950	55.21
		160	8.75	560	30.95	960	55.80
		170	9.31	570	31.52	970	56.39
		180	9.87	580	32.10	980	56.99
		190	10.43	590	32.68	990	57.59
-200	--8.27	200	10.99	600	33.26 33.85	1000	58.19
- 190	-8.02		11.55		33.85		
- 180	$-7.75$	220	12.11	620	34.44		
- 170	$-7.46$	230	12.67	630	35.02		
-160	-7.14	240	13.23	640	35.62		
-150	$-6.80$	250	13.79	650	36.22		
- 140	-6.44	260	14.35	660	36.82		
-130	-6.06	270	14.90	670	37.43		
-120	- 5.66	280	15.45	680	38.04		
-110	-5.25	290	16.00	690	38.66		
$-100$	-4.82	300	16.55	700	39.28		
- 90	-4.38	310	17.11	710	39.90		
- 80	-3.93	320	17.66	720	40.53		
- 70	-3.47	330	18.21	730	41.16		
- 60	-3.00	340	18.76	740	41.80		
- 50	$-2.52$	350	19.31	750	42.45		
- 40	$-2.03$	360	19.86	760	43.09		
- 30	-1.53	370	20.41	770	43.74		
- 20	-1.03	380	20.96	780	44.39		
- 10	-0.52	390	21.51	790	45.04		
0	. 00	400	22.06	800	45.68		

TABLE 50.-CORRESPONDING VALUES OF TEMPERATURE AND ELECTROMOTIVE FORCE FOR IRON-CONSTANTAN THERMOCOUPLES
(Reference junctions at $32^{\circ} \mathrm{F}$ )

$\underset{\substack{\text { Temp. }}}{ }$	Electromotive force mv	$\stackrel{\text { Temp. }}{\circ} \mathrm{F}$.	Electro. motive force m		Electromotive force mv		Electromotive force mv	$\underset{\mathrm{F}}{\text { Temp. }}$	Electromotive mv
		0	-. 92	500	14.35	1000	29.69	1500	46.70
		10	-. 63	510	14.65	1010	30.00	1510	47.06
		20	-. 35	520	14.96	1020	30.32	1520	47.43
		30	-. 06	530	15.27	1030	30.63	1530	47.79
		40	+. 23	540	15.57	1040	30.95	1540	48.16
		50	. 52	550	15.88	1050	31.27	1550	48.52
		60	. 82	560	16.19	1060	31.59	1560	48.89
		70	1.11	570	16.49	1070	31.91	1570	49.25
		80	1.41	580	16.80	1080	32.23	1580	49.62
		90	1.70	590	17.11	1090	32.55	1590	49.98
		100	2.00	600	17.42	1100	32.87	1600	50.35
		110	2.30	610	17.72	1110	33.19	1610	50.71
		120	2.60	620	18.03	1129	33.52	1620	51.08
		130	2.90	630	18.33	1130	33.85	1630	51.45
		140	3.20	640	18.64	1140	34.17	1640	51.81
		150	3.50	650	18.94	1150	34.50	1650	52.17
		160	3.81	660	19.25	1160	34.83	1660	52.51
		170	4.11	670	19.55	1170	35.16	1670	52.84
		180	4.42	680	19.86	1180	35.48	1680	53.17
		190	4.72	690	20.17	1190	35.82	1690	53.50
-300	$-7.87$	200	5.03	700	20.47	1200	36.15	1700	53.83
- 290	$-7.75$	210	5.34	710	20.78	1210	36.48	1710	54.16
- 280	- 7.55	220	5.64	720	21.08	1220	36.82	1720	54.48
- 270	- 7.38	230	5.95	730	21.39	1230	37.16	1730	54.81
- 260	- 7.20	240	6.26	740	21.69	1240	37.50	1740	55.14
-250	- 7.02			750	22.00	1250	37.84	1750	55.47
- 240	-6.83	260	6.88	760	22.30	1260	38.18	1760	55.80
- 230	-6.63	270	7.19	770	22.61	1270	38.52	1770	56.13
- 220	-6.43	280	7.50	780	22.91	1280	38.86	1780	56.46
-210	$-6.22$	290	7.81	790	23.22	1290	39.21	1790	56.79
- 200	$-6.01$	300	8.12	800	23.52	1300	39.55	1800	57.12
- 190	$-5.79$	310	8.43	810	23.83	1310	39.89		
-180	$-5.57$	320	8.75	820	24.13	1320	40.24		
- 170	$-5.34$	330	9.06	830	24.44	1330	40.59		
-160	-5.11	340	9.37	840	24.74	1340	40.94		
-150	-4.87	350	9.68	850	25.05	1350	41.30		
-140	- 4.63	360	10.00	860	25.36	1360	41.65		
- 130	-4.38	370	10.31	870	25.66	1370	42.01		
- 120	$-4.13$	380	10.62	880	25.97	1380	42.36		
- 110	$-3.88$	390	10.93	890	26.28	1390	42.72		
- 100	$-3.63$	400	11.24	900	26.58	1400	43.08		
- 90	-3.37	410	11.56	910	26.89	1410	43.44		
- 80	-3.11	420	11.87	920	27.20	1420	43.80		
- 70	-2.85	430	12.18	939	27.51	1430	44.16		
- 60	-2.58	440	12.49	940	27.82	1440	44.52		
- 50	-2.31	450	12.80	950	28.13	1450	44.88		
- 40	$-2.04$	460	13.11	960	28.44	1460	45.24		
- 30	-1.76	470	13.42	970	28.75	1470	45.61		
- 20	- 1.48	480	13.73	980	29.06	1480	45.97		
- 10	-1.20	490	14.04	990	29.38	1490	46.33		
0	- . 92	500	14.35	1000	29.69	1500	46.70		

TABLE 51.-STANDARD FAHRENHEIT TABLE FOR CHROMEL.ALUMEL* THERMOCOUPLES


[^29]TABLE 52.-SYMBOLS AND DEFINING EXPRESSIONS FOR RADIANT ENERGY ${ }^{\text {na }}$

Radiant energy is energy traveling in the form of electromagnetic waves. It is measured in units of energy such as ergs, joules, calories, and kilowatt hours. Some units, symbols, and abbreviations used in discussing radiant energy are as follows:

Designation	Symbol and defining expression	Unit	Proposed term ${ }^{28}$
Radiant energy	U		Radiant energy
Spectral radiant energy.	$U_{\lambda}=\frac{d U}{d \lambda}$		Spectral radiant energy
Radiant energy density.	$u=\frac{d U}{d V}$	$\mathrm{erg} / \mathrm{cm}^{8}$	Radiant energy density
Radiant flux	$\phi(P)=\frac{d U}{d t}$	watt, erg/sec	Radiant flux (radiance *)
Radiant flux density...	$W=\frac{d \phi}{d A}$	watt/cm ${ }^{2}$	$\begin{aligned} & \text { Radiant flux } \\ & \left(\text { radiancy }{ }^{*}\right. \text { ) density } \end{aligned}$
source $\qquad$	$J=\frac{d \phi}{d \omega}$	watt/steradian	Radiant intensity
Spectral radiant intensity	$J_{\lambda}=\frac{d J}{d \lambda}$	watt/steradian	Spectral radiant intensity
Radiant flux density of a source per unit solid angle	$B,(N)=\frac{d W}{d \omega}$	watt/(steradian $\mathrm{cm}^{2}$ )	Steradiancy *
Radiant intensity of a source per unit area..	$B=\frac{d J}{d A}$	watt/(steradian $\mathrm{cm}^{2}$ )	Steradiancy*
Radiant flux per unit area	$E=\frac{d \phi}{d A}$		Irradiancy

The standard radiator is the blackbody, which may be defined as a body that absorbs all the radiation that falls upon it, i.e., it neither reflects nor transmits any of the incident radiation. From this simple definition and some very plausible assumptions it can be shown that the blackbody radiates more energy than any other temperature radiator when both are at the same temperature. The total amount of energy (i.e., for all wavelengths) radiated by a blackbody depends upon the temperature raised to the fourth power and a constant $\sigma$ that had to be measured:

$$
W=\sigma T^{4}
$$

If a blackbody is radiating to another blackbody it will at the same time receive radiation from the second blackbody and, under the proper geometrical conditions, the net radiation lost by the first blackbody is

$$
W=\sigma\left(T_{1}^{4}-T_{2}^{4}\right)
$$

The spectral distribution of this radiation is given by the Planck equation:

$$
J_{\lambda}=c_{1} \lambda^{-5} /\left[\exp \left(c_{2} / \lambda T\right)-1\right] \dagger
$$

For values of the product $\lambda T$ less than $3000 \mu \mathrm{deg}$, the Wien equation

$$
J_{\lambda}=c_{1} \lambda^{-5} /\left[\exp \left(c_{2} / \lambda T\right)\right]
$$

gives values that are correct to better than 1 percent.
The values of a number of the radiation constants have been selected from Table 26 and are given in Table 53. All the blackbody calculations given were made with these constants. Some calculated results ${ }^{24}$ for the total radiation $W$ for a series of temperatures and of $J_{\lambda}$ for a range of temperatures and for wavelengths have been calculated and are given in Tables 54-56.

[^30]| Velocity of light. | $c=2.99776 \times 10^{10} \mathrm{~cm} \mathrm{sec}^{-1}$ |
| :---: | :---: |
| Planck's constant | $h=6.6242 \times 10^{-27}$ erg_sec |
| Boltzmann's constant. | $k=1.3805 \times 10^{-18} \mathrm{erg} \mathrm{deg}^{-1}$ |
| Stefan-Boltzmann constant* | $\sigma=5.673 \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{deg}^{-4} \mathrm{sec}^{-1}$ |
| Wien's displacement law... | $J_{\lambda}=A c_{1} \lambda^{-5} F(\lambda T)$ |
| The principal corollaries are: | $\lambda_{m} T=b$ |
|  | $\frac{J_{m}}{A T^{8}}=b_{1}$ |

The first corollary is sometimes given as the Wien's displacement law, and $b$ as the displacement constant.
Wien displacement constant........................ $b=0.2897 \mathrm{~cm}$ deg
First radiation constant $\dagger$

$$
\begin{aligned}
\text { All lengths in } \mathrm{cm}, d \lambda=1 \mathrm{~cm} \ldots \ldots \ldots \ldots \ldots & c_{1}=3.740 \times 10^{-5} \mathrm{erg} \mathrm{sec}^{-1} \mathrm{~cm}^{2} \\
\text { Area } \mathrm{cm}^{2}, \lambda \text { in } \mu, d \lambda=0.01 \mu \ldots \ldots \ldots \ldots & c_{1}=3.740 \times 10^{9} \mathrm{erg} \mathrm{sec}^{-1} \mathrm{~cm}^{2} \\
\text { Second radiation constant.................................... } & c_{2}=1.4380 \mathrm{~cm} \mathrm{deg}
\end{aligned}
$$

The unit of energy chosen for the above values is the erg. Any other unit of energy (or power) may be used if the proper conversion factor is used (Table 7).

Values of $c_{2}$ used at different times.-This second radiation constant has been determined many times in the last 40 years. Shown below are the values used at different times. [A new determination of the value of $c_{2}$ by G. A. W. Rutgers (Physica, vol. 15, p. 985,1949 ) gives two values: $14325 . \pm 20$ and $14310 . \pm 20 \mu$ deg.]

Date	National Bureau of Standards	Nela   Park	
1911	$14500 \mu^{\circ} \mathrm{K}$	$14500 \mu^{\circ} \mathrm{K}$	
1915.	-	14460	
1917.	. 14350	14350	
1922.	$14320 \ddagger$	14350	
1925.	. 143208	14320	
1936.	. 14320 \|		14320
1944.	. 14320	14320	
1949.	. 14380	-	

*For $2 \pi$ solid angle. $\dagger$ For the general case, $c_{1}$ may be written in the following symbolic form:

$$
c_{1}=\text { numeric } \frac{\left(\text { wavelength unit) }{ }^{5} \times\right. \text { power unit }}{\text { area } \times \text { wavelength interval } \times \text { solid angle }}
$$

This form shows that the value of the numeric depends upon the several units used-in this case 5 . If $J_{\lambda_{0}}$ is the normal intensity, i.e., per unit solid angle perpendicular to the surface, $\pi J_{\lambda_{0}}$ gives the radiation per $2 \pi$ solid angle. The energy radiated within a unit solid angle around the normal, is $0.92 J_{0}$. The above values are for a plane blackbody; for a spherical blackbody the radiation for $2 \pi$ solid angle equals $2 \pi J_{0}$.

For calculations the use of the radiation constants $\sigma$ and $c_{2}$ as given follows directly and causes but little trouble. The numeric for $c_{2}$ must be expressed in the unit of wavelength times the absolute temperature. If the wavelength is expressed in $\mu$ the numeric becomes 14380 .

When Planck's equation is used for calculations, it may be written as follows for blackbody of area A:

$$
J_{\lambda} d \lambda=\left(A c_{1} \lambda-5 /\left[\exp \left(c_{2} / \lambda T\right)-1\right]\right) d \lambda
$$

where $d \lambda$ is the wavelength interval for which the radiation is to be calculated. The first value of $c_{1}$ given in the table is for all dimensions in centimeters-a condition almost never met in practice. The second value is for the wavelength expressed in microns and $d \lambda=0.01 \mu$.

If this second value of $c_{2}$ be used in calculation with Planck's equation and summed step by step, the results will be the total energy per second, per $2 \pi$ solid angle, per unit area for the wavelength interval covered, $\lambda$ expressed in $\mu$.
$\ddagger$ I. G. Priest, in January 1922, used $c_{2}=14350$ in his work on color temperature. $\$$ J. F. Skogland in 1929, used $c_{2}=14330$ in his tables of spectral energy distrihution of a blacklody.
D. B. Judd, in 1933, used $c_{2}=14350$ in his calculations related to the I.C.I. standard observer.
TABLE 54.-RADIATION IN ERGS ( $\mathrm{W} \times 10^{n}$ ) AND GRAM-CALORIES ( $\mathrm{W}^{\prime} \times 10^{n \prime}$ ) PER CM ${ }^{2}$ PER SEC, FOR $2 \pi$ SOLID ANGLE,

$\begin{gathered} \text { Temp. } \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{erg} \mathrm{cm}{ }^{-2} \mathrm{sec}^{-1}$		cal cm-2 ${ }^{\text {sec }}{ }^{-1}$		$\sigma=5.672 \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{deg}^{-4} \mathrm{sec}^{-1}$								$\overbrace{}^{\text {cal } \mathrm{cm}^{-2} \mathrm{sec}^{-1}}$	
			$\underset{{ }^{\circ} \mathrm{C}}{\text { Temp. }}$	$\mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$		$\overbrace{}^{\text {cal cm}}{ }^{-2} \mathrm{sec}^{-1}$		$\underset{{ }^{\circ} \mathrm{K}}{\text { Temp. }}$	erg cm-2 ${ }^{\text {sec }}{ }^{-1}$					
						$\overbrace{\mathrm{W}}$	$n$		${ }^{\text {W }}{ }^{\prime}$		$\overparen{W}$	$n$	W'	$\overline{n^{\prime}}$
-270	5.656	-3	1.351	$-10$	4	3.347	5	7.998	-3	309 *	4.5944	5	1.0978	-2
-250	1.632	1	3.899	$-7$	6	3.445	5	8.231	$-3$	373.16	1.0998	6	2.6280	-2
-200	1.625	3	3.883	$-5$	8	3.545	5	8.470	$-3$	400	1.4520	6	3.4700	-2
-190	2.713	3	6.482	$-5$	10	3.646	5	8.713	-3	500	3.5450	6	8.4707	-2
$-180$	4.272	3	1.021	$-4$	12	3.751	5	8.962	-3	600	7.3509	6	1.7565	-1
-160	9.301	3	2.222	$-4$	14	3.857	5	9.216	$-3$	700	1.3619	7	3.2542	-1
$-150$	1.305	4	3.118	$-4$	16	3.965	5	9.475	$-3$	800	2.3233	7	5.5515	$-1$
$-140$	1.783	4	4.261	$-4$	18	4.076	5	9.740	-3	900	3.7214	7	8.8922	-1
$-130$	2.382	4	5.693	$-4$	20	4.189	5	1.001	-2	1000	5.6720	7	1.3553	0
-120	3.121	4	7.458	$-4$	22	4.305	5	1.029	-2	1500	2.8715	8	6.8614	0
$-110$	4.020	4	9.605	$-4$	24	4.423	5	1.057	-2	2000	9.0752	8	2.1685	1
$-100$	5.100	4	1.219	$-3$	26	4.543	5	1.086	$-2$	2500	2.2156	9	5.2942	1
-90	6.383	4	1.525	$-3$	28	4.666	5	1.115	$-2$	3500	8.5115	9	2.0338	2
-80	7.896	4	1.887	$-3$	30	4.791	5	1.145	-2	4500	2.3259	10	5.5577	2
-70	9.662	4	2.309	$-3$	32	4.919	5	1.175	-2	5500	5.1902	10	1.2402	3
- 60	1.171	5	2.798	-3	34	5.049	5	1.206	-2					
- 50	1.407	5	3.361	-3	36	5.182	5	1.238	-2					
- 40	1.676	5	4.006	-3	38	5.317	5	1.271	-2					
- 30	1.983	5	4.738	$-3$	40	5.455	5	1.304	-2					
- 20	2.330	5	5.567	$-3$	42	5.596	5	1.337	-2					
$-10$	2.720	5	6.500	$-3$	44	5.739	5	1.371	-2					
$-8$	2.804	5	6.700	$-3$	46	5.885	5	1.406	-2					
- 6	2.890	5	6.904	-3	48	6.034	5	1.442	-2					
- 4	2.977	5	7.114	-3	50	6.186	5	1.478	-2					
- 2	3.067	5	7.327	$-3$	52	6.341	5	1.515	-2					
0	3.158	5	7.546	$-3$	54	6.498	5	1.553	-2					
2	3.252	5	7.769	- 3	56	6.658	5	1.591	-2					

[^31]
## TABLE 55.-CALCULATED SPECTRAL INTENSITIES $J_{\lambda}$ FOR A RANGE OF WAVELENGTHS FOR A BLACKBODY OF UNIT AREA FOR A RANGE OF TEMPERATURES FROM $50^{\circ} \mathrm{K}$ TO $25,000^{\circ} \mathrm{K}$ *

These values have been calculated for $c_{1}=\frac{3740 \text { micron }^{5} \text { watts }}{\mathrm{cm}^{2} d \lambda 2 \pi \text { solid angles }} ; c_{2}=14380 \mu: \mathrm{deg} ; d \lambda=$ $0.1 \mu, J_{\lambda}=$ tabular $J_{\lambda} \times 10^{n}$ watts for $\mathrm{cm}^{2}$ for $2 \pi$ solid angle per $0.1 \mu$.

	$50^{\circ}$		$75^{\circ}$		$100^{\circ}$		$150^{\circ}$		$200^{\circ}$	
$\lambda$	$J_{\lambda}$	$n$	$J_{\lambda}$	$n$	$J_{\lambda}$	$n$	$J_{\lambda}$	$n$	$J_{\lambda}$	
1.0	4.675	-122	2.0145	-80	1.3224	-59	8.679	-39	2.2235	-28
1.5	2.6529	-81	1.5131	-53	1.1427	-39	8.634	-26	7.503	-19
2.0	4.133	- 61	2.7124	--40	6.949	-30	1.7803	-19	2.8499	-14
2.5	4.186	- 49	1.8865	-32	4.005	-24	8.501	-16	1.2384	-11
3.0	3.5716	- 41	2.6982	-27	2.344	-20	2.0377	-13	6.007	-10
3.5	1.4652	- 35	1.1519	-23	1.0214	-17	9.057	-12	8.529	-9
4.0	2.1714	- 31	5.564	-21	8.906	-16	1.4255	-10	5.703	-8
5.0	1.2515	- 25	2.6566	-17	3.8701	-13	5.638	-9	6.806	-7
6.0	7.326	- 22	6.367	-15	1.8773	-11	5.534	-8	3.0050	- 6
7.0	3.1917	- 19	2.8304	-13	2.6652	-10	2.5096	-7	7.701	- 6
8.0	2.7831	$-17$	4.455	-12	1.7823	-9	7.131	-7	1.4265	
9.0	8.386	- 16	3.5449	-11	7.288	-9	1.4984	-6	2.1492	
10.0	1.2094	- 14	1.7620	-10	2.1269	-8	2.5671	- 6	2.8224	
12.0	5.867	- 13	1.7294	-9	9.391	-8	5.100	- 6	3.7662	-
14.0	8.3288	- 12	7.843	-9	2.4062	-7	7.393		4.115	-
16.0	5.570	- 11	2.2284	-8	4.458	$-7$	8.937	-6	4.032	-
18.0	2.2775	- 10	4.682	-8	6.716	-7	9.674	- 6	3.7137	-
20.0	6.647		8.022	-8	8.820	- 7	9.763	- 6	3.3001	
25.0	3.8640	- 9	1.7882	- 7	1.2204	-6	8.458	-6	2.2874	-
30.0	1.0564	8	2.5801	-7	1.2857	- 6	6.571	-6	1.5411	-
40.0	2.7563	8	3.0513	$-7$	1.0313	-6	3.6674		7.255	
50.0	3.8137	8	2.6437	$-7$	7.148	-7	2.0625	- 6	3.7257	-
100.0	3.4809		1.3255	-7	2.7160	-7	6.084	-?	9.800	-7
	2.2338	8	6.445	-7	1.1788	-7	2.3256	-7	3.5536	-7
	$273.16^{\circ}$		$300^{\circ}$		$373.16^{\circ}$		$500^{\circ}$		$600^{\circ}$	
$\lambda$	$J_{\lambda}$	$n$								
1.0	5.132	- 20	5.698	-18	6.870	-14	1.2094	-9	1.4597	- 7
1.5	2.8227	- 13	6.520	-12	3.4290	-9	2.3203	- 6	5.667	- 5
2.0	4.329	- 10	4.562	-9	5.009	- 7	6.647	- 5	7.302	-
2.5	2.7422	- 8	1.8043	-7	7.741	- 6	3.8640	-4	2.6287	-
3.0	3.6847	- 7	1.7710	-6	4.061	-5	1.0564		5.223	-
3.5	2.0910	- 6	8.031	- 6	1.1772	-4	1.9230	$-3$	7.570	-
4.0	7.029		2.2819	- 5	2.3911	-. 4	2.7563	-3	9.152	
5.0	3.2026	- 5	8.215	-5	5.383	-4	3.8137	-3	9.9983	-
6.0	7.443	- 5	1.6321	-4	7.825	- 4	4.018	-3	9.024	-
7.0	1.2065	4	2.3657	-4	9.085	-4	3.7175	$-3$	7.496	-
8.0	1.5856	4	2.8600	-4	9.310	-4	3.2227	- 3	6.007	
9.0	1.8307	4	3.0957	-4	8.875	-4	2.7040	$-3$	4.748	-
10.0	1.9447	- 4	3.1245	-4	8.102	-4	2.2338	-3	3.7449	-
12.0	1.8931	- 4	2.8201	-4	6.312	-4	1.5050		2.3601	
14.0	1.6573	- 4	2.3425	-4	4.736	-4	1.0224	- 3	1.5319	- 3
16.0	1.3798	- 4	1.8770	-4	3.5255	-4	7.085	- 4	1.0272	-
18.0	1.1229	-- 4	1.4838	-4	2.6366	-4	5.021	- 4	7.103	-
20.0	9.057	- 5	1.1703	-4	1.9919	-4	3.6384	- 4	5.049	-
25.0	5.309	- 5	6.600	-5	1.0432	-4	1.7735	-4	2.3814	-
30.0	3.2185	5	3.9044	-5	5.890	-5	9.570		1.2584	-
40.0	1.3385	- 5	1.5780	-5	2.2537	-5	3.4705	-5	4.451	
50.0	6.414	- 6	7.442	- 6	1.0306	-5	1.5393	-5	1.9460	-
75.0	1.5488	- 6	1.7613	-6	2.3463	- 6	3.3726	- 6	4.189	
100.0	5.398	- 7	6.081	- 7	7.954	- 7	1.1225		1.3811	

[^32]TABLE 55.-CALCULATED SPECTRAL INTENSITIES J $\mathrm{J}_{\lambda}$ FOR A RANGE OF WAVELENGTHS FOR A BLACKBODY OF UNIT AREA FOR A RANGE

OF TEMPERATURES FROM $50^{\circ} \mathrm{K}$ TO $25,000^{\circ} \mathrm{K}$ (continued)

$\lambda$	$J_{\lambda}$	n
. 10	3.22+1	- 70
. 20	1.0851	- 32
. 30	1.4647	- 20
. 40	1.1129	- 14
. 45	9.103	- 13
. 50	2.9182	- 11
. 55	4.759	- 10
. 60	4.692	- 9
. 65	3.1506	- 8
. 70	1.5675	- 7
. 75	6.1514	- 6
. 80	1.9924	- 6
. 90	1.3423	5
1.00	5.840	- 5
1.50	3.0769	- 3
2.00	1.4607	2
2.50	2.8902	- 2
3.00	3.8565	2
4.00	4.129	2
5.00	3.3793	- 2
10.00	7.429	- 3
50.00	2.7665	- 5
100.00	1.8994	-

$\lambda$

.10	7.543	-27
.20	5.249	-11
.30	4.190	-6
.40	7.740	$=4$
.45	3.9513	-3
.50	1.3771	-2
.55	3.6546	-2
.60	7.935	$=2$
.65	1.4810	$=1$
.70	2.4599	-1
.75	3.7284	-1
.80	5.254	-1
.90	8.845	-1
1.00	1.2691	0
1.50	2.4072	0
2.00	2.1930	0
2.50	1.6350	0
3.00	1.1538	0
4.00	5.735	-1
5.00	3.0360	-1
10.00	3.0578	-2
50.00	6.908	$=5$
100.00	4.497	-6


$2000{ }^{\circ}$	
$J_{\lambda}$	$n$
2.2235	-23
2.8499	-9
6.007	-5
5.703	-3
2.3321	-2
6.806	- 2
1.5618	- 1
3.0050	- 1
5.0622	- 1
7.701	- 1
1.0817	0
1.4265	
2.1492	0
2.8224	0
4.115	0
3.3001	0
2.2874	0
1.5411	0
7.255	-1
3.7257	-1
3.5536	
7.7413	-5
5.020	

TABLE 55.-CALCULATED SPECTRAL INTENSITIES $J_{\lambda}$ FOR A RANGE OF WAVELENGTHS FOR A BLACKBODY OF UNIT AREA FOR A RANGE OF TEMPERATURES FROM $50^{\circ} \mathrm{K}$ TO $25,000^{\circ} \mathrm{K}$ (concluded)


Auxiliary table for a short method of calculating $J_{\lambda}$ for any temperature. (Menzel, Harvard University.)
Let $J_{0}=$ intensity for $T_{0}=10,000{ }^{\circ} \mathrm{K}$; for another temperature $T^{\circ} \mathrm{K}$ :

$$
J / J_{0}=\left[\lambda_{0}{ }^{6}\left(\exp \left(c_{2} / \lambda_{0} T_{0}\right)-1\right)\right] /\left[\lambda^{5}\left(\exp \left(c_{2} / \lambda T\right)-1\right)\right]
$$

For ease of calculation $T_{0}$ was taken as $10,000{ }^{\circ} \mathrm{K} . J_{\lambda}=$ tabular $J_{\lambda} \times 10^{n}$ watts, for $\mathrm{cm}^{2}$ for $2 \pi$ solid angle per $0.1 \mu$. Choose $\lambda=\lambda_{0} T_{0} / T$; then $J_{\lambda}=J_{0}\left(T / T_{0}\right)^{5}$. As an example find $J_{\lambda}$ for $0.5 \mu$ and $6000{ }^{\circ} \mathrm{K}$ from value of $J_{\lambda}$ for $0.3 \mu$ given in Table 55. $0.5 \mu=0.3 \mu 10,000 / 6000$. $J_{\lambda}$ for $0.3 \mu=1.2857 \times 10^{4}$. $J_{\lambda}$ for $\lambda=0.5 \mu=1.2857 \times 10^{4} \times(6,000 / 10,000)^{6}=9.998 \times 10^{2}$.

$\underbrace{10,000^{\circ}}$											
$\lambda$	$J_{2}$	$n$	$\lambda$	$J_{\text {, }}$	n	$\lambda$	$J_{1}$	n	$\lambda$	$J_{2}$	$n$
. 0100	1.3224	-49	. 1450	2.8776	3	. 5500	5.869	3	4.500	5.383	0
. 0150	1.1427	-29	. 1500	3.3806	3	. 6000	4.816	3	5.000	3.5918	0
. 0200	6.949	-20	. 1600	4.458	3	. 6500	3.9614	3	6.000	1.7761	0
. 0250	4.005	-14	. 1700	5.586	3	. 7000	3.2718	3	7.000	9.756	1
. 0300	2.3444	-10	. 1800	6.716	3	. 7500	2.7160	3	8.000	5.797	1
. 0350	1.0214	$-7$	. 1900	7.805	3	. 8000	2.2670	3	9.000	3.6548	-1
. 0400	8.906	- 6	. 2000	8.820	3	. 8500	1.9031	3	10.00	2.4184	1
. 0450	2.6833	-4	. 2100	9.735	3	. 9000	1.6067	3	12.00	1.1807	-1
. 0500	3.8700	- 3	. 2200	1.0536	4	. 9500	1.3641	3	14.00	6.433	2
. 0550	3.2828	-2	. 2300	1.1215	4	1.000	1.1643	3	16.00	3.7904	-2
. 0600	1.8773	-1	. 2400	1.1769	4	1.100	8.613	2	18.00	2.3790	-2
. 0650	7.950	-1	. 2500	1.2204	4	1.200	6.494	2	20.00	1.5667	-2
. 0700	2.6652	0	. 2600	1.2524	4	1.300	4.980	2	25.00	6.4692	-3
. 0750	7.427	0	. 2700	1.2739	4	1.400	3.8782	2	30.00	3.1346	-3
. 0800	1.7823	1	. 2800	1.2859	4	1.500	3.0625	2	35.00	1.6954	-3
. 0850	3.7891	1	. 2900	1.2895	4	1.600	2.4487	2	40.00	9.979	-4
. 0900	7.288	1	. 3000	1.2857	4	1.700	1.9805	2	45.00	6.236	-4
. 0950	1.2894	2	. 3200	1.2601	4	1.800	1.6183	2	50.00	4.099	-4
. 1000	2.1269	2	. 3400	1.2163	4	1.900	1.3348	2	55.00	2.8042	-4
. 1050	3.3049	2	. 3600	1.1606	4	2.000	1.1106	2	60.00	1.9793	-4
. 1100	4.881	2	. 3800	1.0977	4	2.200	7.867	1	65.00	1.4390	-4
. 1150	6.899	2	. 4000	1.0313	4	2.400	5.724	1	70.00	1.0698	-4
. 1200	9.391	2	. 4200	9.640	3	2.600	4.262	1	80.00	6.306	-5
. 1250	1.2365	3	. 4400	8.977	3	2.800	3.2372	1	90.00	3.9340	-5
. 1300	1.5819	3	. 4600	8.335	3	3.000	2.5026	1	100.00	2.5793	-5
. 1350	1.9732	3	. 4800	7.724	3	3.500	1.4015	1			
. 1400	2.4062	3	. 5000	7.148	3	4.000	8.443	0			

The adoption of a new value for $c_{2}$ changes the calculated values for $J_{\lambda}$ by an amount that varies indirectly with both the wavelength and the temperature for values of $\lambda T$ $<3000$, as follows:

$$
\frac{d J_{\lambda}}{J_{\lambda}}=\frac{-d c_{2}}{\lambda T}
$$

that is, a larger value of $c_{2}$ results in a smaller value of $J_{\lambda}$. Values of this correction factor for this change in $c_{2}$ have been calculated and are given in the tables for five temperatures and a range of wavelengths that cover the visible spectrum. As these percentage correction factors are given they are the percentage of the $J_{\lambda}$ for $14320 \mu$ deg that must be subtracted from it to give $J_{19330}$.

A change in $c_{2}$ also results in a different value of the extrapolated temperature as measured with an optical pyrometer for a definite ratio of brightness. Thus

$$
\left(\frac{1}{T_{0}}-\frac{1}{T_{1}}\right)=\frac{c_{2}^{1}}{c_{2}}\left(\frac{1}{T_{0}}-\frac{1}{T_{0}^{1}}\right)
$$

To the accuracy necessary for most work, values for other wavelengths, other temperatures, or other values of $c_{2}$ within these ranges can be found by interpolation.

Part 1.-Percentage change in $J_{\lambda}$ for a change in $c_{2}$ from 14320 to $14380 \mu$ degrees

$\lambda$ in $\mu$	${ }^{2000}$	${ }^{2300}{ }^{\text {¢ }}$ K	${ }^{2600}{ }_{0}{ }^{\text {K }}$	${ }^{2900} \mathrm{~K}$	$\stackrel{3200}{ }{ }^{\mathrm{K}}$	$\lambda$ in $\mu$	${ }^{2000}$	${ }^{23000}$	${ }^{2600} \mathrm{~K}$	$\stackrel{2900}{ }{ }^{\mathrm{K}}$	${ }^{3200}{ }^{\circ} \mathrm{K}$
. 32	9.8	8.5	7.5	6.7	6.0	. 58	5.3	4.6	4.1	3.6	3.3
. 34	9.2	7.9	7.0	6.3	5.7	. 60	5.1	4.4	3.9	3.5	3.2
. 36	8.7	7.5	6.6	5.9	5.3	. 62	4.9	4.3	3.8	3.4	3.1
. 38	8.2	7.1	6.3	5.6	5.0	. 64	4.8	4.1	3.7	3.3	3.0
. 40	7.8	6.7	5.9	5.3	4.8	. 66	4.6	4.0	3.6	3.2	2.9
. 42	7.4	6.4	5.7	5.0	4.6	. 68	4.5	3.9	3.5	3.1	2.8
. 44	7.0	6.1	5.4	4.8	4.4	. 70	4.4	3.8	3.4	3.0	2.7
. 46	6.7	5.8	5.1	4.6	4.2	. 72	4.2	3.7	3.3	2.9	2.6
. 48	6.4	5.6	4.9	4.4	4.0	. 74	4.1	3.6	3.2	2.8	2.6
. 50	6.2	5.3	4.7	4.2	3.8	. 76	4.0	3.5	3.1	2.8	2.5
. 52	5.9	5.1	4.5	4.1	3.7	. 78	3.9	3.4	3.0	2.7	2.4
. 54	5.7	4.9	4.4	3.9	3.5	. 80	3.8	3.3	2.9	2.6	2.3
. 56	5.5	4.8	4.2	3.8	3.4						

Part 2.-Change in temperatures, $\Delta T$, extrapolated from 1336 to the temperature $T$ given, $c_{2}$ changed from 14320 to $14380_{\mu}$ degrees

$T^{\circ} \mathrm{K}$	$1500^{\circ} \mathrm{K}$	$1800^{\circ} \mathrm{K}$	$2000^{\circ} \mathrm{K}$	$2500^{\circ} \mathrm{K}$	$3000^{\circ} \mathrm{K}$	$3500^{\circ} \mathrm{K}$	$4000^{\circ} \mathrm{K}$	$5000^{\circ} \mathrm{K}$
$\Delta T$	-.6	-2.4	-4.1	-8.7	-15.5	-22.3	-33.0	-56.4

Photometry is the measurement of light, and light has been defined by the Illuminating Engineering Society as radiant energy evaluated according to its capacity to produce visual sensations.

# TABLE 58.-THE EYE AS A MEASURING INSTRUMENT FOR RADIATION 

Part 1.—Theory


#### Abstract

As a measuring instrument for radiation, the eye is very selective, that is, it does not


 respond equally to radiation of various wavelengths. The data in Part 2 give the relative sensitivity of the eye to radiation of different wavelengths. Another peculiarity of the eye is that its relative sensitivity changes with the intensity of the radiation that falls upon it. This is shown by the data in Table 59. Also the absolute sensitivity of the eye varies with the intensity of the radiation that falls upon it. This is shown by the data given in Table 60 .The data ${ }^{20}$ on which Table 60 is based are not very extensive, but inasmuch as there is now some active work on this subject by Lowry of the Eastman Kodak Co. there should soon be available data for a wider range of field brightness. The data in Table 59 show that the sensitivity of the eye to radiation of lower intensity increases faster toward the blue end of the spectrum than in the red end. This is called the Purkinje effect.

For light measurement at very low brightness care must be taken as to the standards used. From the data given in Table 59 it can be shown that sources giving light of different colors that were rated as equal by the average eye adapted to a field brightness of about 1 to 2 millilamberts would be rated quite differently for low field brightness, that is, for the eye adapted to a field brightness of $10^{-5}$ millilamberts.

If the brightness given by two sources such as daylight and a carbon lamp be set equal for a field brightness 1 to 2 millilamberts and then these brightnesses both reduced mechanically to about $10^{-5}$ millilamberts, the field of the daylight source would seem to be about $2 \frac{1}{2}$ times as bright as that of the carbon lamp.

[^33]Part 2.-Relative luminosity factors ${ }^{2 n}\left[K_{\lambda}\right]$ (unity at wavelength of maximum luminosity)

$\lambda$ in	Standard	Values interpolated at intervals of one millimicron								
m $\mu$	factors	1	2	3	4	5	6	7	8	9
380	. 00004	.000045	. 000049	. 000054	. 000059	.000064	. 000071	. 000080	. 000090	. 000104
390	. 00012	. 000138	. 000155	. 000173	. 000193	. 000215	. 000241	. 000272	. 000308	. 000350
$+00$	. 0004	. 00045	. 00049	. 00054	. 00059	. 00064	. 000071	. 00080	. 00090	. 00104
410	. 0012	. 00138	. 00156	. 00174	. 00195	. 00218	. 00244	. 00274	. 00310	. 00352
420	. 0040	. 00455	. 00515	. 00581	. 00651	. 00726	. 00806	. 00889	. 00976	. 01066
430	. 0116	. 01257	. 01358	. 01463	. 01571	. 01684	. 01800	. 01920	. 02043	. 02170
440	. 023	. 0243	. 0257	. 0370	. 0284	. 0298	. 0313	. 0329	. 0345	. 0362
450	. 038	. 0399	. 0418	. 0438	. 0459	. 0480	. 0502	. 0525	. 0549	. 0574
460	. 060	. 0627	. 0654	. 0681	. 0709	. 0739	. 0769	. 0802	. 0836	. 0872
470	. 091	. 0950	.0993	. 1035	. 1080	. 1126	. 1175	. 1225	. 1278	. 1333
480	. 139	. 1448	. 1507	. 1567	. 1629	. 1693	. 1761	. 1833	. 1909	. 1991
490	. 208	. 2173	. 2270	. 2371	. 2476	. 2586	. 2701	. 2823	. 2951	. 3087
500	. 323	. 3382	. 3544	. 3714	. 3890	. 4073	. 4259	. 4450	. 4642	. 4836
510	. 503	. 5229	. 5436	. 5648	. 5865	. 6082	. 6299	. 6511	. 6717	. 6914
520	. 710	. 7277	. 7449	. 7615	. 7776	.7932	. 8083	. 8225	. 8363	. 8495
530	. 862	. 8739	. 8851	. 8956	. 9056	. 9149	. 9238	. 9320	. 9398	. 9471
540	. 954	. 9604	. 9661	. 9713	. 9760	. 9803	. 9840	. 9873	. 9902	. 9928
550	. 995	. 9969	. 9983	. 9994	1.0000	1.0002	1.0001	. 9995	. 9984	. 9969
560	. 995	. 9926	. 9898	. 9865	. 9828	. 9786	. 9741	. 9691	. 9638	. 9581
570	. 953	. 9455	. 9386	. 9312	. 9235	. 9154	. 9069	. 8981	. 8890	. 8796
580	. 870	. 8600	. 8496	. 8388	. 8277	. 8163	. 8046	. 7928	. 7809	. 7690
590	. 757	. 7449	. 7327	. 7302	. 7076	. 6949	. 6822	. 6694	. 6565	. 6437
600	. 631	.6183	. 6054	. 5926	. 5797	. 5668	. 5539	. 5410	. 528 ?	. 5156
610	. 503	. +905	. 4781	. 4658	. 4535	. 4412	. 4291	. 4170	. 4049	. 3929
630	. 381	. 3690	. 3570	. 3449	. 3329	. 3210	. 3092	. 2977	. 2864	. 2755
630	. 265	. 2548	. 2450	. 2354	. 2261	. 2170	. 2082	. 1996	. 1912	. 1830
640	. 175	.1673	. 1596	. 1523	. 1453	. 13816	.1316	. 1251	. 1188	. 1128
650	. 107	. 1014	. 0961	. 0910	. 0862	. 0816	. 0771	. 0729	. 0688	. 0648
660	. 061	. 0574	. 0539	. 0506	. $0+775$	. 0446	. $0+18$	. 0391	. 0366	. 0343
670	. 032	. 0299	. 0288	. 0263	. 0247	.0232	. 0219	. 0206	. 0194	. 0182
680	. 017	. 01585	.01477	. 01376	. 01281	. 01192	. 01108	. 01030	. 00956	. 00886
690 700	.0082	.00759 .00381	. 00705	. 00656	. 00612	. 00572	. 00536	. 00503	. 00471	. 00440
700 710	.0041	. 000381	. 00355	.00332	. 00310	.00291	.00273	. 00256	.00241	. 00225
720	. 00105	. 000975	. 000907	. 000845	. 0000788	. 0000736	. 001.387	.001297 $.00064 t$	. 0001212	. 0001130
730	. 00053	. 000482	. 000447	. $000+15$	. 0000387	. 000360	. 0000888	. $0006+1$	. 0000601	.000560 .000270
740	.00025	. 000231	. 000214	. 000198	. 000185	.000172	. 000160	. 000149	. 000139	. 000130
750	.00012	. 000111	. 000103	. 000096	. 000090	. 000084	. 000078	. 000074	. 000069	. 000064
760	. 00006	. 000056	. 000052	. 000048	. 000045	. 000042	. 000039	. 000037	.000035	. 000032

[^34](Logarithms of field brightness in first line)

Wavelength $\mathrm{m} \mu$	ICI	-0.5	-1.0	-1.5	-2.0	-2.5	-3.0	-3.5	-4.0	-4.187*	-4.50	-5.00
350									. 0002	. 000265	. 0003	. 0003
360							. 0003	. 0004	. 0007	. 00073	. 0008	. 0008
370					. 0002	. 0005	. 0009	. 0013	. 0018	. 0019	. 0020	. 0022
380	.00004	. 00000	. 0001	. 0002	. 0008	. 0015	. 0025	. 0034	. 0045	. 0048	. 0051	. 0055
390	. 00012	. 0001	. 0002	. 0008	. 0022	. 0040	. 0063	. 0083	. 0104	. 0112	. 0119	. 0127
400	. 0004	. 0004	. 0008	. 0022	. 0059	. 0098	. 0147	. 0185	. 0228	. 0243	. 0253	. 0270
410	. 0012	. 0014	. 0023	. 0062	. 0140	. 0227	. 0305	. 0370	. 0452	. 0485	. 0500	. 0530
420	. 0040	. 0044	. 0069	. 0152	. 0280	. 0427	. 0580	. 0690	. 0820	. 087	. 0900	. 0950
430	. 0116	. 0121	. 0165	. 0292	. 0505	. 0755	. 101	. 118	. 138	. 145	. 149	. 157
440	. 023	. 0240	. 0300	. 0496	. 0850	. 123	. 160	. 183	. 216	. 225	. 230	. 239
450	. 038	. 0395	. 0490	. 0810	. 136	. 187	. 237	. 268	. 310	. 321	. 326	. 339
460	. 060	. 0627	. 0775	. 127	. 202	. 277	. 339	. 376	. 423	. 434	. 441	. 455
470	. 091	. 0960	. 118	. 191	. 301	. 394	. 467	. 510	. 551	. 560	. 568	. 576
480	. 139	. 146	. 180	. 288	. 432	. 540	. 604	. 649	. 685	. 695	. 702	. 714
490	. 208	. 220	. 274	. 426	. 592	. 688	. 734	. 782	. 814	. 827	. 830	. 842
500	. 323	. 340	. 416	. 603	. 744	. 826	. 864	. 902	. 930	. 932	. 941	. 948
510	. 503	. 524	. 617	. 766	. 876	. 935	. 962	. 977	. 992	. 997	. 997	. 999
520	. 710	. 726	. 792	. 894	. 965	. 992	. 999	. 988	. 974	. 963	. 960	. 953
530	. 862	. 872	. 910	. 972	1.000	. 982	. 951	. 924	. 883	. 871	. 862	. 848
540	. 954	. 959	. 979	1.000	. 969	. 909	. 842	. 796	. 744	. 734	. 715	. 697
550	. 995	. 997	1.000	. 971	. 886	. 785	. 698	. 642	. 583	. 555	. 552	. 531
560	. 995	. 992	. 973	. 898	. 760	. 640	. 543	. 478	. 419	. 390	. 388	. 365
570	. 952	. 944	. 907	. 782	. 617	. 485	. 384	. 330	. 281	. 263	. 260	. 243
580	. 870	. 860	. 802	. 648	. 468	. 340	. 259	. 218	. 182	. 167	. 164	. 155
590	. 757	. 742	. 673	. 509	. 333	. 227	. 166	. 137	. 112	. 102	. 101	. 0945
600	. 631	. 616	. 544	. 374	. 224	. 145	. 101	. 0830	. 0670	. 0613	. 060	. 0560
610	. 503	. 490	. 416	. 257	. 142	. 0870	. 0600	. 0488	. 0388	. 0366	. 0348	. 0324
620	. 381	. 366	. 296	. 168	. 0845	. 0504	. 0344	. 0280	. 0225	. 0212	. 0202	. 0188
630	. 265	. 250	. 197	. 102	. 0480	. 0282	. 0194	. 0156	. 0127	. 0118	. 0114	. 0105
640	. 175	. 162	. 122	. 0590	. 0270	. 0146	. 0107	. 0085	. 0070	. 00653	. 0062	. 0058
650	. 107	. 0990	. 0710	. 0327	. 0147	. 0084	. 0058	. 0046	. 0037	. 00353	. 0034	. 0032
660	. 061	. 0560	. 0390	. 0174	. 0078	. 0045	. 0031	. 0025	. 0020	. 00189	. 0018	. 0017
670	. 032	. 0303	. 0206	. 0090	. 0041	. 0024	. 0017	. 0013	. 0011	. 00098	. 0010	. 0009
680	. 017	. 0153	. 0103	. 0046	. 0022	. 0014	. 0009	. 0007	. 0006	. 00050	. 0005	. 0005
690	. 0082	. 0076	. 0052	. 0024	. 0011	. 0007	. 0004	. 0003	. 0003	. 00025	. 0002	. 0002
700	. 0041	. 0038	. 0026	. 0012	. 0006	. 0003	. 0002	. 0002	. 00016	. 00013	. 0001	. 0001
710	. 0021	. 0019	. 0014	. 0006	. 0003	. 0002	. 0001					
720	. 00105	. 0010	. 0007	. 0003	. 0001							
730	. 00052	. 0005	. 0003	. 0001								
740	. 00025	. 0002	. 0002									
750	. 00012	. 0001										
760	. 00006											
770	. 00003	$\ldots$	. . .		$\ldots$	....	$\ldots$	....	....			

${ }^{27}$ L. A. Jones, private communication.

* Average of Weaver and Hecht's values.


## TABLE 60.-BLANCHARD'S DATA RELATING INSTANTANEOUS THRESHOLD TO FIELD BRIGHTNESS**

Field bright-   ness $*$	Instantaneous   threshold $\dagger$	Relative   sensitivity $\ddagger$   $(\mathrm{n})$		Ratio $\S$

[^35]
## Part 1.-Contrast or photometric sensibility

For the following table the eye was adapted to a field of 0.1 millilambert and the sensitizing field flashed off. A neutral gray test spot (angular size at eye, $5 \times 2.5^{\circ}$ ) the two halves of which had the contrast indicated ( $\frac{1}{2}$ transparent, $\frac{1}{2}$ covered with neutral screen of transparency $=$ contrast indicated) was then observed and the brightness of the transparent part measured necessary to just perceive the contrast after the lapse of the various times. One eye only used, natural pupil. Values are log brightness of brighter field in millilamberts.


## Part 2.-Glare Sensibility

When an eye is adapted to a certain brightness and is then exposed suddenly to a much greater brightness, the latter may be called glaring if uncomfortable and instinctively avoided. Observers naturally differ widely. The data are the means of three observers, and are $\log$ brightnesses in millilamberts. The glare intensity may be taken as roughly 1700 times the cube root of the field intensity in millilamberts. Angle of glare spot, $4^{\circ}$.

Log. field $\ldots \ldots$	-6.0	-4.0	-2.0	-1.0	.0	+1.0	2.0	3.0	4.0
Log. glare $\ldots$.	1.35	1.90	2.60	2.90	3.28	3.60	3.90	4.18	4.48

## Part 3.-Rate of adaptation of sensibility

This table furnishes a measure of the rate of increase of sensibility after going from light into darkness, and the values were obtained immediately from the instant of turning off the sensitizing field. Both eyes were used, natural pupil, angular size of test spot, $4.9^{\circ}$, viewed at 35 cm . Retinal light persists only 10 to 20 minutes when one has been recently in darkness, then in a dimly lighted room; it persists fully an hour when a subject has been in bright sunlight for some time. A person who has worked much in the dark "gets his eyes" quicker than one who has not, but his final sensitiveness may be no greater.

Sensitizing field		Logarithmic thresholds in millilamberts after										
		0 sec	1 sec	2 sec	5 sec	10 sec	20 sec	40 sec	60 sec	5 min	30 min	60 min
White	0.1 ml .	-2.79	-3.82	-4.13	-4.50	$-4.75$	-4.96	-5.16	-5.32	-5.68	-5.91	-6.06
	1.0 ml .	-2.20	-2.99	$-3.27$	-3.79	-4.15	-4.51	$-4.82$	-5.06	-5.52	-5.86	-6.04
	10.0 ml .	-1.60	$-2.30$	-2.53	-3.08	$-3.54$	-3.94	-4.31	-4.61	-5.22	-5.83	-6.01
Blue ${ }^{1}$	100.0 ml .	-0.90	-1.66	$-2.00$	--2.46	-2.64	-2.88	-3.20	-3.84	-4.76	-5.77	-5.97
	0.1 ml .	-2.82	-3.92	-4.36	-4.91	$-5.27$	$-5.53$	-5.68	-5.81	-6.23		
Green	0.1 ml .	-2.69	-4.08	-4.39	$-4.82$	-5.11	-5.26	$-5.43$	$-5.56$	$-5.80$	-	
Yellow	0.1 ml .	-2.61	-3.84	-4.17	-4.41	-4.65	-4.78	-5.02	$-5.09$	-5.39		
Red	0.1 ml .	-2.32	-2.69	$-2.98$	$-3.37$	$-3.57$	-3.65	$-3.73$	$-3.80$	-4.02		

* For reference, see footnote 25, p. 87.

TABLE 62.-MINIMUM ENERGY NECESSARY TO PRODUCE THE SENSATION

Ives	erg sec
Russell	$7.7 \times 10^{-10}$ " ${ }^{\text {c }}$
Reeves	$19.5 \times 10^{-10}$
Buisson	. $12.6 \times 10^{-10}$ "
Taylor	Minimum threshold for dark-adapted eye, a surface, at a brightness of $1.8 \times 10^{-7}$ millilamberts, source color temperature $2850^{\circ} \mathrm{K}$.
Hecht	$2.2-5.7 \times 10^{-10}$ ergs at cornea, considering losses the amount of energy that reaches the retina is such that I quanta is absorbed by from 5-14 retinal rods.

Astrophys. Journ., vol. 44, p. 124, 1916.
Astrophys. Journ., vol. 45, p. 60, 1917.
Astrophys. Journ., vol. 46, p. 167, 1917.
Journ. de phys., vol. 7, p. 68, 1917.
Journ. Opt. Soc. Amer., vol. 32, p. 506, 1942.

Journ. Opt. Soc. Amer., vol. 32, p. 42, 1942.

## TABLE 63.-APPARENT DIAMETER OF PUPIL AND FLUX DENSITY AT RETINA

Flashlight measures of the pupil (both eyes open) viewed through the eye lens and adapted to various field intensities. For eye accommodated to 25 cm , ratio apparent to true pupil, 1.02 , for the unaccommodated eye, 1.14 . The pupil size varies considerably with the individual. It is greater with one eye closed; e.g., it was found to be for 0.01 millilambert, 6.7 and 7.2 mm ; for $0.6 \mathrm{ml}, 5.3$ and 6.5 ; for $6.3 \mathrm{ml}, 4.1$ and 5.7 ; for $12.6 \mathrm{ml}, 4.1$ and 5.7 mm for both eyes and one eye open respectively for a certain individual. At the extreme intensities the two values approach each other. The ratio of the extreme pupil openings is about $\frac{1}{16}$, whereas the light intensities investigated vary over $1,000,000$-fold.

Field millila mberts	Observed	$\begin{aligned} & (1.14 / 1.02) \\ & \times \text { obs. } \end{aligned}$	$\begin{aligned} & \text { Effective } \\ & \text { area } \end{aligned}$	Flux at retina, lumens per mm
. 00001	8 mm	8.96 mm	$64 \mathrm{~mm}^{2}$	$8.4 \times 10^{-12}$
. 001	7.6	8.51		$7.6 \times 10^{-10}$
. 1	6.5	7.28	42	$5.6 \times 10^{-8}$
10	4.0	4.48	16	$2.1 \times 10^{-8}$
1000	2.07	2.35	4.3	$5.8 \times 10^{-5}$

## TABLE 64.-MISCELLANEOUS EYE DATA

Light passing to the retina traverses in succession (a) front surface of the cornea (curvature, 7.9 mm ) ; (b) cornea (equivalent water path for energy absorption, 0.06 cm ); (c) back surface cornea (curv., 7.9 mm ) ; (d) aqueous humour (equiv. $\mathrm{H}_{2} \mathrm{O}, 0.34 \mathrm{~cm}$, $n=1.337$ ) ; (c) front surface lens (c, 10 mm ) ; ( $f$ ) lens (equiv. $\mathrm{H}_{2} \mathrm{O}, 0.42 \mathrm{~cm}, n=1.445$ ); (g) back surface lens (c, 6 mm ) ; ( $h$ ) vitreous humour (equiv. $\mathrm{H}_{2} \mathrm{O}, 1.46 \mathrm{~cm}, n=1.337$ ). An equivalent simple lens has its principal point 2.34 mm behind (a), nodal point 0.48 mm in front of ( $g$ ), posterior principal focus 22.73 mm behind ( $a$ ), anterior principal focus 12.83 mm in front of $(a)$, curvature, 5.125 mm . At the rear surface of the retina $(0.15 \mathrm{~mm}$ thick) are the rods ( $30 \times 2 \mu$ ) and cones ( 10 ( 6 outside fovea) $\mu$ long). Rods are more numerous, 2 to 3 between 2 cones, over $3,000,000$ cones in eye. Macula lutea, yellow spot, on temporal side, 4 mm from center of retina, long axis 2 mm . Central depression, fovea centralis, 0.3 mm diameter, 7000 cones alone present, $6 \times 2$ or $3 \mu$. In region of distinct vision (fovea centralis) smallest angle at which two objects are seen separate is $50^{\prime \prime}$ to $70^{\prime \prime}=3.65$ to $5.14 \mu$ at retina; 50 cones in $100 \mu$ here; $4 \mu$ between centers, $3 \mu$ to cone, $1 \mu$ to interval. Distance apart for separation greater as depart from fovea. No vision in blind spot, nasal side, 2.5 mm from center of eye, 15 mm in diameter.
Persistence of vision as related to color and intensity is measured by increasing speed of rotating sector until flicker disappears: for color, $0.4 \mu, 0.031 \mathrm{sec} ; 0.45 \mu, 0.020 \mathrm{sec} ; 0.5 \mu$, $0.015 \mathrm{sec} ; 0.57 \mu, 0.012 \mathrm{sec} ; 0.68 \mu, 0.014 \mathrm{sec} ; 0.76 \mu, 0.018 \mathrm{sec} ;$ for intensity, 0.06 metercandle, $0.028 \mathrm{sec} ; 1 \mathrm{mc}, 0.020 \mathrm{sec} ; 6 \mathrm{mc}, 0.014 \mathrm{sec} ; 100 \mathrm{mc}, 0.010 \mathrm{sec} ; 142 \mathrm{mc}, 0.007 \mathrm{sec}$.
Sensibility to small differences in color has two pronounced maxima (in yellow and green) and two slight ones (extreme blue, extreme red). The sensibility to small differences in intensity is nearly independent of the intensity (Fechner's law) as indicated by the following data due to König:

$d I / I$,	$I / I_{0}$	$\begin{gathered} 1,000,- \\ 000 \end{gathered}$	100.000	10,000	1000	100	50	10	5	1	0.1	$I_{8}$ in mc
	white.	. 036	. 019	. 018	. 018	. 030	. 032	. 048	. 059	. 123	. 377	. 00072
	. $60 \mu$.	-	. 024	. 016	. 020	. 028	. 038	. 061	. 103	. 212	-	. 0056
	$.50 \mu$.	-	-	. 018	. 018	. 024	. 025	. 036	. 049	. 080	. 133	.00017
	. $43 \mu$.	-	-	-	. 018	. 025	. 027	. 040	. 049	. 074	. 137	. 00012

TABLE 65.-DISTRIBUTION COEFFICIENTS FOR EQUAL.ENERGY STIMULUS 1931 I.C.I. standard observer ${ }^{28}$
The fact that almost any color can be produced by the proper mixture of red, green, and blue light, has been used as a basis of a system of color specifications that has been adopted by the International Commission on Illumination. In the system adopted by that Commission in 1931, the primaries are called the $X, Y$, and $Z$ stimuli. The properties of the standard observer are given by his tristimulus specifications of the spectrum stimuli as a function of wavelength. This table gives this specification for the equal energy spectrum.

[^36]TABLE 65.-DISTRIBUTION COEFFICIENTS FOR EQUAL-ENERGY
STIMULUS (concluded)

Wave length ( $\mathrm{m} \mu \mathrm{\mu}$ )	Coefficients			Wave. (m $\mu$ )	Coefficients		
	\%	$y$	$z$		.	y	$\bar{z}$
380	. 0014	. 0000	. 0065	580	. 9163	. 8700	. 0017
385	. 0022	. 0001	. 0105	585	. 9786	. 8163	. 0014
390	. 0042	. 0001	. 0201	590	1.0263	. 7570	. 0011
395	. 0076	. 0002	. 0362	595	1.0567	. 6949	. 0010
400	. 0143	. 0004	. 0679	600	1.0622	. 6310	. 0008
405	. 0232	. 0006	. 1102	605	1.0456	. 5668	. 0006
410	. 0435	. 0012	. 2074	610	1.0026	. 5030	. 0003
415	. 0776	. 0022	. 3713	615	. 9384	. 4412	. 0002
420	¢1344	. 0040	. 6456	620	. 8544	. 3810	. 0002
425	¢2148	. 0073	1.0391	625	. 7514	. 3210	. 0001
430	. 2839	. 0116	1.3856	630	. 6424	. 2650	. 0000
435	. 3285	. 0168	1.6230	635	. 5419	. 2170	. 0000
440	. 3483	. 0230	1.7471	640	. 4479	. 1750	. 0000
445	. 3481	. 0298	1.7826	645	. 3608	. 1382	. 0000
450	. 3362	. 0380	1.7721	650	. 2835	. 1070	. 0000
455	. 3187	. 0480	1.7441	655	. 2187	. 0816	. 0000
460	. 2908	. 0600	1.6692	660	. 1649	. 0610	. 0000
465	. 2511	. 0739	1.5281	665	. 1212	. 0446	. 0000
470	. 1954	. 0910	1.2876	670	. 0874	. 0320	. 0000
475	. 1421	. 1126	1.0419	675	. 0636	. 0232	. 0000
480	. 0956	. 1390	. 8130	680	. 0468	. 0170	. 0000
485	. 0580	. 1693	. 6162	685	. 0329	. 0119	. 0000
490	. 0320	. 2080	. 4652	690	. 0227	. 0082	. 0000
495	. 0147	. 2586	. 3533	695	. 0158	. 0057	. 0000
500	. 0049	. 3230	. 2720	700	. 0114	. 0041	. 0000
505	. 0024	. 4073	. 2123	705	. 0081	. 0029	. 0000
510	. 0093	. 5030	. 1582	710	. 0058	. 0021	. 0000
515	. 0291	. 6082	. 1117	715	. 0041	. 0015	. 0000
520	. 0633	. 7100	. 0782	720	. 0029	. 0010	. 0000
525	. 1096	. 7932	. 0573	725	. 0020	. 0007	. 0000
530	. 1655	. 8620	. 0422	730	. 0014	. 0005	. 0000
535	. 2257	. 9149	. 0298	735	. 0010	. 0004	. 0000
540	. 2904	. 9540	. 0203	740	. 0007	. 0003	. 0000
545	. 3597	. 9803	. 0134	745	. 0005	. 0002	. 0000
550	. 4334	. 9950	. 0087	750	. 0003	. 0001	. 0000
555	. 5121	1.0002	. 0057	755	. 0002	. 0001	. 0000
560	. 5945	. 9950	. 0039	760	. 0002	. 0001	. 0000
565	. 6784	. 9786	. 0027	765	. 0001	. 0000	. 0000
570	. 7621	. 9520	. 0021	770	. 0001	. 0000	. 0000
575	. 8425	. 9154	. 0018	775	. 0000	. 0000	. 0000
580	. 9163	. 8700	. 0017	780	. 0000	. 0000	. 0000
Totals..	...	$\ldots$	.....	...	21.3713	21.3714	21.3715

TABLE 66.-RELATIVE MAGNITUDE OF UNITS OF ILLUMINATION

Units	Lux	Phot	Milliphot	Foot-candle
1 lux	$=1$	. 0001	. 1	. 0929
1 phot	$=10,000$	1.	1000.	929.
1 milliphot	$=10$	. 001		. 929
1 foot-candle	10.76	. 001076	1.076	1.

Candlepower $c$ candles at visual threshold of steady point source of white light seen against white hackground brightness $b$ millimicrolanbert (m $m$ ) at range $r$ sea miles through an atmosphere of attenuation a per sea mile is given by

$$
C=3.7 \times 10^{-2}(1+b): r^{2} a^{-r},
$$

which is valid within a factor of 3 for $b$ from total darkness to full daylight. For practical signaling or mavigation multiply $c$ by at least 100.

Ranger   sea mile	Threehold $\%$ candles, $b=100 \mathrm{~m} \mu \mathrm{~L}$., at night			
	$a=1$	$a=0.8$	$a=0.6$	$a=0.4$
1	. 04	. 05	. 06	. 09
2	. 15	. 23	. 41	. 9
3	. 33	. 65	1.5	5.2
5	.91	2.9	12	90
7	1.8	8.6	62	1100
10	3.6	34	610	35000

Knoll, H. . ... Tousey, R., and Hulhurt. E. O., Journ. Opt. Soc. Amer., vol. 36, p. 480, 1946.

## TABLE 68.-THE BRIGHTNESS OF THE SUN

From the definition of a lumen, the lumen output from a point source within a unit solid angle is numerically equal to the candlcpower of the source. This also holds for any radiating source that behaves as a point, such as a spherical blackbody,* or any spherical radiator of uniform brightness that obeys the Lambert cosine law of radiation, providing the measurements are nade at such a distance from the source that the inverse square law is obeyed. (See Table 74.) As an example of this, consider the brightness of the sun. The sun when directly overhead on a clear day gives an illumination of about 10,000 footcandles. This is equal to 10,000 lumens per $\mathrm{ft}^{2}{ }^{2}$ (See Table 73.) To change this to lumens for a unit solid angle, multiply by the radius of the earth's orbit squared (i.e., $2.41 \times 10^{23}$ $\mathrm{ft}^{2}$ ). Thus, the candlepower of the sun is $2.41 \times 10^{27}$. To get the brightness per $\mathrm{cm}^{2}$ divide this by the projected area of the sun in $\mathrm{cm}^{2}$ (i.e., $1.52 \times 10^{22}$ ), which gives about 160,000 $\mathrm{c} / \mathrm{cm}^{2}$ for the brightness of the sun as observed at the earth's surface. This, of course, assumes that the sun's surface is of uniform brightness and that its radiation obeys the Lambert cosine law. The data (Table 813) on the distribution of energy of the solar spectrum give a brightness of the sun of $146,000 \mathrm{c} / \mathrm{cm}^{2}$.

[^37]
## TABLE 69.-SOME OBSOLETE PHOTOMETRIC STANDARDS

(In use prior to 1948.)
In Germany the Hefner lamp was most used; in England the Pentane lamp and sperm candles; in France the Carcel lamp was preferred; in America the Pentane and Hefner lamps were used to some extent, but candles were largely employed in gas photometry. For the photometry of electric lamps, and in accurate photometric work, electric lamps, standardized at a national standardizing institution, were employed.
The "international candle" designated the value of the candle as maintained by cooperative effort between the national laboratories of England, France, and America; and the value of various photometric units in terms of this is given in the following table (Circular No. 15 of the Bureau of Standards) :

1 international candle $=1$ Pentane candle.
1 international candle $=1$ Bougie decimale.
1 international candle $=1$ American candle.
1 international candle $=1.11$ Hefner unit.
1 international candle $=0.104$ Carcel unit.

1. Standard Pentane lamp, burning pentane.............. 10.0 candles.
2. Standard Hefner lamp, burning amyl acetate........... 0.9 candles.
3. Standard Carcel lamp, burning colza oil................. 9.6 candles.
4. Standard English sperm candle, approximately......... 1.0 candles.

The international candle was in reality taken from the candlepower of a number of incandescent lamps, operated under definite conditions and kept at the standard laboratories of France, Britain, and the United States.
(Adapted from Reports of Committee on Nomenclature and Standards of Illuminating Engineering Society, 1942.)

Apostilb $=0.1$ millilambert.
Brightness of a luminous surface may be expressed in two ways:
(1) $b_{t}=d I / d A \cos \theta$ where $\theta$ is the angle between normal to surface and the line of sight; normal brightness when $\theta$ is zero.
(2) $b_{F}=d F / d A$ assuming that the surface is a perfect diffuser, obeying cos law of emission or reflection. Unit, the lambert.
Candle per $\mathrm{cm}^{2}=3.1416$ lamberts $=1$ stilb.
Candle per in. ${ }^{2}=.4868$ lambert $=486.8$ millilamberts.
Foot-candle $=1$ lumen incident per $\mathrm{ft}^{2}=1.076$ milliphots $=10.76$ lux.
Illumination on surface $=E=$ flux density on surface $=d F / d A$ ( $A$ is surface area) $=$ $F / A$ when uniform. Units, meter-candle, foot-candle, phot, lux.
Lambert, the cgs unit of brightness, is the brightness of a perfectly diffusing surface radiating or reflecting one lumen per $\mathrm{cm}^{2}$. Equivalent to a perfectly diffusing surface with illumination of one phot. A perfectly diffusing surface emitting one lumen per $\mathrm{ft}^{2}$ has a brightness of 1.076 millilamberts. Brightness in candles per $\mathrm{cm}^{2}$ is reduced to lamberts by multiplying by $\pi$.

Lambert $=1$ lumen emitted per $\mathrm{cm}^{2}$ of a perfectly diffusing surface.
Lambert $=.3183$ candle per $\mathrm{cm}^{2}=2.054$ candles per $\mathrm{in}^{2}$.
Lumen is emitted by .07958 spherical candle.
Lumen emitted per $\mathrm{ft}^{2}=1.076$ millilamberts (perfect diffusion).
Luminous efficiency $=F / \Phi$ expressed in lumens/watt.
Luminous flux $=F$ or $\psi=$ rate of flow of radiation measured according to power to produce visual sensation. Although strictly thus defined, for photometric purposes it may be regarded as an entity, since the rate of flow for such purposes is invariable. Unit is the lumen, the flux emitted in a unit solid angle (steradian) by a point source of unit candle power.

Luminous intensity of (approximate) point source $=I=$ solid-angle ( $\omega$ ) density of luminous flux in direction considered $=d F / d \omega$, or $F / \omega$ when the intensity is uniform. Unit, the candle.
Luminosity factor of radiation of wave-length $\lambda=K_{\lambda}=$ ratio of luminous to radiant flux for that $\lambda,=F_{\lambda} / \Phi_{\lambda}$.

Lux $=1$ lumen incident per $\mathfrak{m}^{2}=.0001$ phot $=.1$ milliphot.
Mechanical equivalent of light $=$ ratio of $\Phi / F$ for the $\lambda$ of max. visibility expressed in (ergs $/ \mathrm{sec}$ )/lumen or watts/lumen; it is the reciprocal of max. luminosity. See Table 58.

Millilambert $=.929$ lumen per $\mathrm{ft}^{2}$ (perfect diffusion).
Milliphot $=.001$ phot $=.929$ foot-candle.
Phot $=1$ lumen incident per $\mathrm{cm}^{2}=10,000$ lux $=1000$ milliphots.
Photon $=$ small bundle of energy ( $h v$ ), also called a quantum.
Radiant flux $=\Phi=$ rate of flow of radiation as energy, measured as ergs per second or watts.

Specific luminous radiation, $E^{\prime}=$ luminous flux density emitted by a surface, or the flux emitted per unit of emissive area, expressed in lumens per $\mathrm{cm}^{2}$. For surfaces obeying Lambert's cosine law, $E^{\prime}=\pi b_{0}$.

Spectral luminous flux at wavelength $\lambda=\left(K_{\lambda}\right)\left(\Phi_{\lambda}\right)$. Spectral luminous curve expresses this as a function of $\lambda$ and is different for various sources.

One spherical candle emits 12.57 lumens.
Uniform point source of one candle emits $4 \pi$ lumens.

TABLE 71.-RELATIVE MAGNITUDES OF UNITS OF BRIGHTNESS


[^38]This standard of light intensity is the brightness of a blackbody at the temperature of freezing platinum. The blackbody used was made of thorium oxide and was immersed in the melting platinum: very pure platinum ( 99.997 percent) was used. Reproducible to 0.1 percent, the brightness was found to be 58.84 international candles per $\mathrm{cm} .^{2}$. This $W^{1}$ aidner-Burgess standard, taking the brightness of the blackbody at the freezing point of platinum as 60 candles per $\mathrm{cm}^{2}$, was adopted by the International Committee on Weights and Measures in 1937 as the new unit of light intensity and was put into effect January 1, $1948 .{ }^{31}$

The light from the blackbody at the temperature of freezing platinum is not greatly different in color from that given by carbon-filament standard lamps, as the color temperature of the lamp filaments is about $2100^{\circ} \mathrm{K}$, whereas the freezing point of platinum is $2042^{\circ} \mathrm{K}$. In this range of color the new unit of intensity is about 1.9 percent smaller than the old international candle, and sources of light are correspondingly given higher numerical ratings. However, when light sources of higher color temperature are compared with these basic standards, the accepted spectral luminosity factors give slightly lower values for the "whiter" sources than were obtained by visual measurements when the present international units were established. The difference between the two scales therefore grows less as the color temperature of the sources measured is increased, and for sources in the range of ordinary vacuum tungsten-filament lamps, around $2500^{\circ} \mathrm{K}$, the new scale crosses the international scale as used in the United States. Furthermore, when the range of standards was extended to gas-filled tungsten-filament lamps and other new types, the measurements were made by methods nearly in accord with the luminosity factors. Consequently the present ratings of tungsten-filament lamps in this country will be practically unaffected by the change, no type being changed by more than 1 percent.

[^39]TABLE 73.-SYMBOLS AND DEFINING EXPRESSIONS FOR.PHOTOMETRY*

DesignationSymbol and   defining   equation	Unit	Proposed
Luminous flux .................. $F$	Lumen	1 m
Luminous intensity (candlepower).. $\quad I=\frac{d F}{d \omega}$	Candle	c
Illumination $\dagger \ldots \ldots \ldots \ldots \ldots . E=\frac{d F}{d / A}$	Foot-candle   Lux, Phot	$\begin{aligned} & \mathrm{ft-c} \\ & \mathrm{~lx}, \mathrm{ph} \end{aligned}$
Quantity of light................ $Q=F d t$ $t=$ time in hours	Lumen-hour	1 m -hr
	Candle per unit area Stilb	$\begin{aligned} & \mathrm{c} / \mathrm{in}^{2}{ }^{2} \\ & \mathrm{c} / \mathrm{cm}^{2} \\ & \mathrm{sb}=\mathrm{c} / \mathrm{cm}^{2} \end{aligned}$

The mechanical equivalent of light $m$ is the least amount of mechanical energy in watts necessary to produce 1 lumen. This energy must, of course, produce light at the wavelength ( $\lambda=0.556 \mu$ ) where the average eye has its maximum sensitivity.

Suppose $B_{u}$ is the brightness of a blackbody in candles per $\mathrm{cm}^{2}$, then

$$
B_{0}=\frac{1}{m \pi} \int\left[c_{1} \lambda^{-5} /\left(\exp \left(c_{2} / \lambda T\right)-1\right)\right] K_{\lambda} d \lambda
$$

where $K_{\lambda}$ is the relative luminosity factor (Table 58). The integration is taken over the visible spectrum. The constant $c_{1}$ is to be so chosen as to give the energy per unit wavelength for a $2 \pi$ solid angle, then $m$ is the mechanical equivalent of light. Using the new value of the brightness of the blackbody at the platinum point ( 60 candles $/ \mathrm{cm}^{2}$ ) and making the above calculation for the platinum point ( $2042.16{ }^{\circ} \mathrm{K}$ ) using the new radiation constants (Table 53), gives $m=0.00147$ watts/lumen. The reciprocal of this, 680 lumens/ watt, is the value generally given.
Equivalents and conversion factors for photometry.-The total flux from a source of unit spherical candlepower is 12.57 hmmens.

$$
\begin{aligned}
1 \text { lux } & =1 \text { lumen incident per } \mathrm{m}^{2} \\
1 \text { phot } & =1 \text { lumen incident per } \mathrm{cm}^{2} \\
1 \text { foot-candle } & =1 \text { lumen incident per } \mathrm{ft}^{2}
\end{aligned}
$$ VARIOUS DISTANCES

d/L	$d=$ distance ; $L=$ length or diameter of (disk) source.				
	Line	Disk	$d / L$	Line	Disk
5	99.31	99.0	12	99.88	99.83
10	99.83	99.74	15	99.94	99.90
			20	99.98	99.95

## TABLE 75.-SPECTRAL LUMINOUS INTENSITIES

From Planck's equation and constants given in Table 53 and the relative luminosity factors (Table 58) the spectral luminous intensities were calculated for a series of wavelengths ( $d \lambda=.01 \mu$ ), and for a number of temperatures and then reduced to equal total luminous intensities. These relative values tor the brightness (photometric) of the blackbody at different temperatures hold for measurements made with a field brightness above about 1 millilambert but do not hold for measurements made for low field brightness. Some time ago some engineers engaged in photometry found a need for agreement for a standard for low intensity. It was then decided ${ }^{32}$ to use a source at a color temperature of $2360{ }^{\circ} \mathrm{K}$. Recently ${ }^{33}$ the International Committee on Weights and Measures adopted the blackbody at the freezing point of platinum $\left(2042^{\circ} \mathrm{K}\right)$ as the standard for low-intensity brightness in photometry.

$\lambda$ in	$\begin{aligned} & 2000 \\ & { }^{2} \mathrm{~K} \end{aligned}$	${ }^{20}{ }^{\circ} \mathrm{K}$. ${ }^{*}$	${ }^{2100}{ }^{\circ} \mathrm{K}$	${ }^{2200}$	${ }^{23} \mathrm{C}$	2400 ${ }^{\mathrm{K}} \mathrm{K}$	$\begin{gathered} 2500 \\ { }^{\circ} \mathrm{K} \end{gathered}$	$\begin{gathered} 2600 \\ \circ \mathrm{~K} \end{gathered}$	$\begin{gathered} 2700 \\ 0 \mathrm{~K} \end{gathered}$	$2800$	$2900$	$3000$
. 38	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000
. 39	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000
. 40	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00000	. 00001
. 41	. 00000	. 00000	. 00001	. 00001	. 00001	.00001	. 00001	. 00001	. 00002	. 00002	. 00002	. 00002
. 42	. 00002	. 00002	. 00002	. 00003	. 00004	. 00004	. 00005	. 00006	. 00007	. 00007	. 00008	. 00009
. 43	. 00008	. 00008	. 00009	. 00011	. 00013	. 00015	. 00018	. 00020	. 00023	. 00025	. 00028	. 00030
. 44	. 00019	. 00021	. 00023	. 00028	. 00032	. 00037	. 00042	. 00047	. 00053	. 00058	. 00064	. 00069
. 45	. 00041	. 00044	. 00049	. 00057	. 00065	. 00074	. 00083	. 00093	. 00102	. 00111	. 00121	. 00131
. 46	. 00083	. 00088	. 00096	. 00111	. 00125	. 00140	. 00155	. 00171	. 00186	. 00202	. 00217	. 00233
. 47	. 00157	. 00167	. 00180	. 00204	. 00228	. 00252	. 00276	.00301	. 00325	. 00349	. 00372	. 00396
. 48	. 00297	. 00313	. 00336	. 00374	. 00413	. 00452	. 00490	. 00528	. 00565	. 00602	. 00638	. 00673
. 49	. 00544	. 00570	. 00606	. 00667	. 00728	. 00786	. 00845	. 00902	. 00957	. 01011	. 01063	. 01114
. 50	. 01024	. 01067	. 01125	. 01223	. 01318	. 01411	. 01501	. 01587	. 01670	. 01750	. 01827	. 01901
. 51	. 01915	. 01983	. 02075	. 02229	. 02376	. 02517	. 02652	. 02780	. 02903	. 03019	. 03131	. 03237
. 52	. 03217	. 03313	. $034+2$	. 03654	. 03853	. 04042	. 04220	. 04387	. 04545	. 04694	. 04834	. 04967
. 53	. 04609	. 04721	. 04871	. 05112	. 05336	. 05544	. 05739	. 05919	. 06087	. 06243	. 06388	. 06524
. 54	. 05972	. 06086	. 06236	. 06475	. 0669 ?	. 06890	. 07073	. 07238	. 07390	. 07530	. 07659	. 07776
. 55	. 07240	. 07341	. 07473	. 07678	. 07861	. 08022	. 08168	. 08297	. 08412	. 08517	. 08613	. 08695
. 56	. 08356	. 08432	. 08528	. 08675	. 08800	. 08905	. 08996	. 09073	. 09139	. 09198	. 09243	. 09284
. 57	. 09167	. 09207	. 09255	. 09323	. 09374	. 09409	. 09433	. 09449	. 09457	. 09459	. 09455	. 09447
. 58	. 09545	. 09544	. 09539	. 09518	. 09488	. $09+49$	. 09405	. 09358	. 09307	. 09256	. 09203	. 09150
. 59	. 09408	. 09366	. 09307	. 09203	. 09098	. 08992	. 08889	. 08786	. 08686	. 08591	. 08498	. 08409
. 60	. 08833	. 08757	. 08654	. 08483	. 08319	. 08163	. 08013	. 07873	. 07739	. 07611	. 07491	. 07379
. 61	. 07890	. 07791	. 07658	. 07443	. 07243	. 07056	. 06882	. 06720	. 06570	. 06428	. 06296	. 06173
. 62	. 06663	. 06554	. 06409	. 06178	. 05966	. 05774	. 05595	. 05432	. 05281	. 05141	. 05012	. 04893
. 63	. 05143	. 05039	. 04904	. 04689	. 04495	. 04322	. 04162	. 04018	. 03886	. 03765	. 03654	. 03552
. 64	. 03752	. 03663	. 03547	. 03366	. 03204	. 03061	. 02930	. 02813	. 02708	. 02610	. 02522	. 02442
. 65	. 02523	. 02455	. 02366	. 02228	. 02107	. 02000	. 01904	. 01818	. 01741	. 01671	. 01608	. 01550
. 66	. 01576	. 01528	. 01466	. 01371	. 01287	. 01215	. 01150	. 01092	. 01041	. 00995	. 00953	. 00916
. 67	.00902	. 00872	. 00833	. 00773	. 00721	. 00677	. 00637	. 00602	. 00571	. 00544	. 00519	. 00497
. 68	. 00521	. 00502	. 00477	. 00440	. 00408	. 00381	. 00357	. 00335	. 00317	. 00300	. 00285	. 00272
. 69	. 00272	. 00262	. 00248	. 00227	. 00209	. 00194	. 00181	. 00169	. 00159	. 00150	. 00142	. 00135
. 70	. 00147	. $0001+1$	. 00133	. 00121	. 00111	. 00103	. 00095	. 00088	. 00083	. 000078	. 00073	. 00069
. 71	. 00081	. 00077	. 000073	. 00066	. 00060	. 00055	. 00051	. 000047	. 00044	. 00041	. 00039	. 00037
. 72	. 000044	. 00041	. 00039	. 00035	. 000032	. 00029	. 00026	. 00024	. 00023	. 00021	.00020	. 00019
. 73	. 00023	. 00022	. 00020	. 00018	. 00016	. 00015	. 00014	. 00013	. 00012	. 00011	. 00010	. 00009
. 74	. 00012	. 00011	. 00010	. 00009	. 000008	. 000007	. 00007	. 00006	. 00006	. 00005	. 00005	. 00005
. 75	. 00006	. 000006	. 00005	. 00005	. 00004	. 00004	. 00003	. 00003	. 00003	. 00003	. 00002	. 00002
. 76	. 00003	. 00003	. 00003	. 00002	. 00002	. 00002	. 00002	. 00002	. 00001	. 00001	. 00001	. 00001
Relative light												
output:	. 775	1.000	1.399	2.398	3.927	6.178	9.383	13.810	19.765	27.594	37.661	50.372
$\lambda \max$ :	. 5825	. 5830	. 5805	. 5785	. 5770	. 5755	. 5745	. 5730	. 5715	. 5705	. 5695	. 5685

[^40]96

## TABLE 76.-BRIGHTNESS OF BLACKBODY, CROVA WAVELENGTH, MECHANICAL EQUIVALENT OF LIGHT, LUMINOUS INTENSITY, and luminous efficiency of blackbody

The values of the luminous intensity $I$ in candles and the luminous flux $F$ in lumens have been calculated using Planck's equation and the values of the luminosity factors $K_{\text {s }}$ given in Table 58. The basis of these values is the value of the Waidner-Burgess standard of light intensity.
The following equation is used :

$$
B_{0}=\frac{1}{m \pi} \int J(\lambda T) K_{\lambda} d \lambda,
$$

where $B_{0}=60$ candles per $\mathrm{cm}^{2}, T=2042.16^{\circ} \mathrm{K}$, and $m=$ the minimum mechanical equivalent of light expressed in watts per lumen.
The radiation constants (Table 53) used in these calculations and the value given in the table as the brightness of the blackbody at this temperature (2042.16) give for the reciprocal of the mechanical equizalcht of light 680 lumens per zott. This means that 1 watt of radiated energy at about $\lambda=0.555 \mu$ will give 680 lumens.
White light has sometimes been defined as that emitted by a blackbody at a temperature of $6000{ }^{\circ} \mathrm{K}$.

The crova wavelength for a blackbody is that wavelength $\lambda_{c}$, at which the spectral luminous intensity varies at the same rate as the total luminous intensity varies for a change in the temperature.

${ }^{\text {Temperature }}$	$\begin{gathered} \text { Total } \\ \text { intensity } \\ \text { watts } / \mathrm{cm}^{2} \end{gathered}$	Brightness candles $/ \mathrm{cm}^{2}$	Lumens/ $/ \mathrm{cm}^{2}$	Lumens/watt	$\begin{aligned} & \text { Crova } \\ & \text { wave } \\ & \text { length } \end{aligned}$
1200	11.16	. 0140	. 04	0035	
1400	21.79	. 245	. 77	.035	
1600	37.18	2.145	6.74	. 18	
1700	47.38	5.28	16.57	. 35	. $584 \mu$
1800	59.55	11.78	37.00	. 62	
1900	73.92	24.23	76.11	1.03	
2000	90.76	46.47	$1.460 \times 10^{2}$	1.61	. 578
2042.16	98.65	$60.00{ }^{\dagger}$	$1.885 \times 10^{2}$	1.91	
2200	$1.3288 \times 10^{2}$	$1.439 \times 10^{2}$	$4.520 \times 10^{2}$	3.40	
2500	$2.2158 \times 10^{2}$	$5.628 \times 10^{2}$	$1.7679 \times 10^{3}$	7.98	. 572
2700	$3.0146 \times 10^{2}$	$1.186 \times 10^{3}$	$3.726 \times 10^{3}$	12.36	
3000	$4.5946 \times 10^{2}$	$3.021 \times 10^{3}$	$9.491 \times 10^{3}$	20.7	. 568
3500	$8.5122 \times 10^{2}$	$1.031 \times 10^{4}$	$3.183 \times 10^{4}$	37.4	. 564
4000	$1.4521 \times 10^{3}$	$2.525 \times 10^{4}$	$7.932 \times 10^{4}$	54.6	
4500	$2.3260 \times 10^{3}$	$5.158 \times 10^{4}$	$1.620 \times 10^{5}$	69.7	. 560
5000	$3.5453 \times 10^{3}$	$9.164 \times 10^{4}$	$2.879 \times 10^{5}$	81.2	. 558
5500	$5.1906 \times 10^{3}$	$1.4705 \times 10^{5}$	$4.620 \times 10^{5}$	89.0	. 557
6000	$7.3514 \times 10^{3}$	$2.186 \times 10^{5}$	$6.868 \times 10^{5}$	93.4	. 556
6500	$1.0126 \times 10^{4}$	$3.065 \times 10^{5}$	$9.629 \times 10^{5}$	95.1	. 555
7000	$1.3619 \times 10^{4}$	$4.103 \times 10^{5}$	$1.289 \times 10^{6}$	94.6	. 555
7500	$1.7948 \times 10^{4}$	$5.294 \times 10^{5}$	$1.663 \times 10^{6}$	92.7	
8000	$23234 \times 10^{4}$	$6.630 \times 10^{5}$	$2.083 \times 10^{8}$	89.6	. 554
10,000	$5.6724 \times 10^{4}$	$1.3221 \times 10^{6}$	$4.153 \times 10^{6}$	73.2	

[^41]An optical pyrometer is a device for measuring the temperature of a high-temperature radiating body by comparing its brightness for a selected wavelength interval (within the visible spectrum to be sure) with that of some standard selected source. The wavelength, or wavelength interval, is generally selected by the use of a red glass in the eycpiece. This gives rise to the term effective wavelength. (See Table 562.) The effective wavelength of a monochromatic screen for a definite temperature interval has been defined as the wavelength for which the relative brightness, as calculated from Wien's equation for this temperature interval, is the same as the ratio of the integral luminosities for these two temperatures, as measured through the red screen.

Various devices are used to make these comparisons, and different devices have been used as the comparison source. It seems that most users of the optical pyrometer today prefer to use the disappearing-filament type, which has a small filament as the comparison source.

The optical pyrometer as generally calibrated gives the true temperature of blackbodies but not of other radiators. If one radiating characteristic of any other radiator-e.g., its emissivity-is known, true temperatures can be determined of such radiators, e.g., an incandescent tungsten filament, by the use of the optical pyrometer. The emissivities of a number of sources are given in Table 78.

The true temperature $T$ of a non-blackbody may be determined from its brightness temperature, $S_{\lambda}$ (the apparent temperature), and its emissivity $\mathfrak{c}_{\lambda}$ from the following relation:

$$
\frac{1}{T}-\frac{1}{S_{\lambda}}=\frac{\lambda \log c_{\lambda}}{c_{2} \log c}
$$

For some calculated values see Table 79.
This entire subject is extensively treated in "Temperature, Its Measurement and Control," a report of a symposium on this subject published by the Reinhold Publishing Co. in 1941.

## TABLES 78-84.-EMISSIVITIES OF A NUMBER OF MATERIALS

## TABLE 78.—NORMAL SPECTRAL EMISSIVITIES FOR SOME ELEMENTS AND ALLOYS

The emissivity, spectral or total, of any non-blackbody shows the relation between the intensity of its radiation and that of the blackbody when both are at the same temperature. Spectral emissivities have been measured for a number of materials for different temperatures and different wavelength intervals and are shown in Part 1.

## Part 1.-At temperatures generally above $1000{ }^{\circ} \mathrm{K}^{\text {s }}$

Room temperature values are given in a few instances where they, along with values at higher temperatures, form a connected series and where the values given for the higher temperatures depend on those given for low temperatures.

Material Carbon	$\begin{aligned} & \text { Temperature } \\ & { }^{2} \mathrm{~K} \\ & \hline . \quad 1600 \\ & 2500 \end{aligned}$	Emıssivity						Remarks
		Red		Green		${ }^{\text {Blue }}$		
		$\begin{gathered} \overparen{\lambda \text { in } \mu} \\ .66 \\ .66 \end{gathered}$	$\begin{gathered} \mathbf{c}_{\lambda} \\ .89 \\ .84 \end{gathered}$	$\overbrace{\lambda \text { in } \mu}$	$e_{\lambda}$	入in $\mu$	$e_{\lambda}$	
Copper	$\begin{array}{r} 1275 \\ 1350 \\ 1375 \\ 1450 \\ 1500 \end{array}$	$\begin{aligned} & .66 \\ & .66 \\ & .66 \\ & .66 \\ & .66 \end{aligned}$	$\begin{aligned} & .105 \\ & .120 \\ & .150 \\ & .140 \\ & .13 \end{aligned}$					Solid   Solid   Liquid   Liquid   Liquid
Iron ....	$\begin{aligned} & .1480-1500 \\ & 1000 \\ & 10 \end{aligned}$	$\begin{aligned} & .66 \\ & .65 \end{aligned}$	$\begin{aligned} & .27 \\ & .37 \end{aligned}$					Solid   Solid and liquid
Konal	. 1200	. 665	. 43					
Molybdenum	$\begin{array}{r} 300 \\ 1300 \\ 2000 \\ 2750 \end{array}$	$\begin{aligned} & .665 \\ & .665 \\ & .665 \\ & .665 \end{aligned}$	$\begin{aligned} & .420 \\ & .378 \\ & .353 \\ & .332 \end{aligned}$			$\begin{array}{r} .467 \\ .467 \\ .467 \\ .467 \end{array}$	$\begin{aligned} & .425 \\ & .395 \\ & .380 \\ & .365 \end{aligned}$	
Nickel	1200-1650	. 665	. 375	. 535	. 425	460	. 450	Solid
Tantalum	$\begin{array}{r} 300 \\ 1400 \\ 2100 \\ 2800 \end{array}$	$\begin{aligned} & .665 \\ & .665 \\ & . .65 \\ & .665 \end{aligned}$	$\begin{aligned} & .493 \\ & .442 \\ & .415 \\ & .390 \end{aligned}$			$\begin{aligned} & .467 \\ & .467 \\ & .467 \\ & .467 \end{aligned}$	$\begin{aligned} & .565 \\ & .505 \\ & .460 \\ & \cdots \end{aligned}$	

[^42]Part 2.-Emissivity of a number of metals at their melting point ${ }^{35}$
( $c_{\lambda}$ expressed in percent)

Metal	$\lambda=.55 \mu$		$\lambda=.65 \mu$		Metal	$\lambda=.55 \mu$		$\lambda=\underbrace{65 \mu}$	
	Solid	Liquid	Solid	Liquid		Solid	Liquid	Solid	Liquid
Beryllium	61	81	61	61	Niobium	61		49	40
Chromium	53		39	39	Palladium	38		33	37
Cobalt			36	37	Platinum	38		33	38
Copper	38	36	10	15	Rhodium			29	30
Erbium		30	55	38	Silver	<35	< 35	4	7
Gold	<38	<38	14	22	Thorium	36		36	40
Iridium			30		Titanium	75	75	63	65
Iron			37	37	Uranium	77		54	34
Manganese			59	59	Vanadium	29		35	32
Moly bdenum			43	40	Ytterbium			35	35
Nickel ......		46	36	37	Zirconium	.		32	30
${ }^{35}$ Internationa	ritical	Tables.							

TABLE 78.-NORMAL SPECTRAL EMISSIVITIES FOR SOME ELEMENTS AND ALLOYS (concluded)
Part 3.-Emissivities of tungsten ${ }^{*}$

Tempera ture ${ }^{\circ} \mathrm{K}$	Wavelength												Total emissivity
	. $30 \mu$	. 38	. 467	. 665	. 8	1.0	1.5	1.8	2.0	2.5	3.0	4.0	
1200	. 503	. 495	.483	. 452	. 428	. 390	. 275	. 177	. 148	. 127	. 116	. 100	. 138
1500	. 502	. 492	. 476	. +45	. 422	. 385	. 280	. 191	. 164	. 145	. 132	. 115	. 192
1800	. 500	. 488	. 472	. 439	. +17	. 382	. 284	. 206	. 180	. 161	. 148	. 127	. 236
2000	. 498	. 485	. +69	. 435	. +14	. 380	. 287	. 215	. 191	. 170	. 158	. 135	. 259
2200	.496	.483	. +66	. +31	. +10	. 378	. 290	. 225	. 201	. 180	. 167	. 144	. 278
2500	.493	. 477	. +62	. +25	.405	. 375	. 295	. 240	. 217	. 195	. 180	. 155	. 301
2600	.493	. 476	. +60	.423	. 403	. 373	. 297	. $2+5$	. 222	. 200	. 184	. 159	. 309
2700	. 491	. +75	. +59	.421	. 401	. 372	. 298	. 249	. 228	. 205	. 188	. 163	. 315
2800	.490	. 473	. +58	. +19	. 399	. 371	. 299	. 254	. 233	. 210	. 192	. 167	. 321
2900	.489	.472	. 456	. +17	. 398	. 370	. 300	. 259	. 239	. 215	. 197	. 170	. 329
3000	. 488	.470	. 455	. +15	. 396	. 368	. 302	. 264	. $2+5$	. 230	. 200	. 173	. 334
3200	. 486	. +68	. +5 ?	. +11	. 393	. 366	. 305	. 273	. 255	.231	. 208	. 180	. 341
3400	.484	. 465	. 450	. 407	. 388	. 363	. 308	. 283	. 265	. $2+1$	. 216	. 186	. 348

${ }^{30}$ Forsythe, WY. E., and Adims, E. Q., Journ. Opt. Soc. Imer., vol. 35, p. 108, 1945.

For $\lambda=1.27 \mu$ the spectral emissivity is constant and equals 0.335 .
Part 4.-Emissivities of some metals specially prepared by heat-treating and out-gassing ${ }^{37}$

Element	$\lambda$ in $\mu$	Emissivity	Tempera- ture ${ }^{\circ} \mathrm{K}$	Flement	$\lambda$ in $\mu$	Emissivity	$\begin{aligned} & \text { Tempera- } \\ & \text { ture } \\ & \circ \mathrm{K} \end{aligned}$
Chromium	. 66	. 334	1050-1560	Palladium		. 311	1200-1400
Cobalt		. 327	1240-1378			. 291	1200-1400
		. 342	1378-1450	Platinum		.295-. 310	1200-1800
Iron a		. 344	below 1178	Rhodium		. 242	1300-2000
$\gamma$		. 325	1178-1677	Tantalum		.439-. 384	1200-2400
$\delta$		. 337	1677-1725	Thorium		. 380	1300-1700
Molybdenum		. 382	1300-2100	Tungsten		. 46	12002200
Nickel		. 350	1200-1400	Uranium	. 6605	. 453	1180-1320
Niobium		. 374	1300-2200			. 416	1325-1370

[^43]TABLE 79.-CORRECTIONS IN ${ }^{\circ} \mathrm{C}$ TO ADD TO BRIGHTNESS TEMPERATURE READINGS, FOR DIFFERENT EMISSIVITY, TO OBTAIN THE TRUE TEMPERATURE *

Pyrometer using red light, wavelength, $\lambda=.665 \mu$. and $c_{2}=14380 \mu{ }^{\circ} \mathrm{K}$ at observed
temperatures degrees Kelvin, of

Emissivity	temperatures degrees Kelvin, of								
	1000	1100	1200	1300	1400	1500	1600	1700	1800
. 10	119.2	145.9	175.8	208.9	245.3	285.1	328.6	375.7	426.8
. 20	80.4	98.1	117.7	139.3	162.8	188.5	216.3	246.2	278.4
. 30	59.0	71.8	85.9	101.4	118.3	136.7	156.5	177.7	200.5
. 40	44.2	53.8	64.3	75.8	88.3	101.8	116.4	132.0	148.6
. 50	33.1	40.2	48.0	56.5	65.8	75.8	86.5	98.0	110.2
. 60	24.2	29.3	35.0	41.2	47.9	55.1	62.9	71.1	79.9
. 70	16.8	20.3	24.2	28.5	33.1	38.0	43.4	49.0	55.1
. 80	10.4	12.6	15.1	17.7	20.5	23.6	26.9	30.3	34.1
. 85	7.5	9.3	10.9	12.6	14.9	17.1	19.5	22.0	24.7
. 90	4.9	5.9	7.1	8.3	9.6	11.0	12.6	14.2	15.9
. 95	2.4	2.9	3.4	4.0	4.7	5.3	6.1	6.9	7.7

[^44]TABLE 79.-CORRECTIONS IN ${ }^{\circ} \mathrm{C}$ TO ADD TO BRIGHTNESS TEMPERATURE READINGS, FOR DIFFERENT EMISSIVITY, TO OBTAIN THE TRUE TEMPERATURE (concluded)

Emissivity	Pyrometer using red light, wavelength, $\lambda=.665 \mu$, and $c_{2}=14380 \mu{ }^{\circ} \mathrm{K}$ at olserved temperatures degrees Kelvin, of							
	1900	2000	2200	2400	2600	2800	3000	3600
. 10	481.9	541.2	673.0	823.9	995.2	1189.5	1408.3	2237.8
. 20	312.9	349.8	430.7	521.9	623.8	737.2	862.5	1317.6
. 30	224.8	250.6	307.0	370.1	440.0	517.2	601.6	902.4
. 40	166.3	185.2	226.1	271.7	330.4	377.0	436.9	648.0
. 50	123.2	137.0	166.9	200.0	236.4	276.1	319.2	469.6
. 60	89.3	99.2	120.6	144.2	170.1	198.3	228.9	334.6
. 70	61.5	68.2	82.8	98.9	116.5	135.6	156.2	227.2
. 80	38.0	42.1	51.1	60.9	71.6	83.3	95.9	138.9
. 85	27.5	30.5	37.0	44.1	51.8	60.2	69.2	100.1
. 90	17.7	19.7	23.8	28.4	33.3	38.7	44.5	64.2
. 95	8.6	9.5	11.5	13.7	16.1	18.7	21.5	31.0

TABLE 80.-COMPUTATION OF TOTAL EMISSIVITY VALUES FOR VARIOUS
GLASS SAMPLES AT LOW TEMPERATURES ${ }^{* 8}$

Sampie	Thickness (mm)	Apparent emissivity *			Computed transmittance $\dagger$			Temperature differential $\ddagger$			Corrected emissivity		
		${ }^{5}{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 320 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	${ }^{10}{ }^{100} \mathrm{C}$	500	320	100	500	320	100	475	$\underbrace{}_{320}$	100
Fused quartz	1.96	. 78	. 80	. 75	. 266	. 134	. 023	19	8	1	. 67	. 76	. 775
Corex D	3.40	. 80	. 80	. 76	. 113	. 041	. 002	49	18	2	. 91	. 90	. 83
Nonex	1.57	. 82	. 82	. 78	. 145	. 041	. 004	31	12	1.5	. 82	. 87	. 835

Dissipating of energy by lamp bulbs.-The bulb of a 120 -volt 500 -watt lamp dissipates 18.5 percent of the input energy to the lamp. About 10 percent is lost by radiation and 8.5 percent by conduction and convection by the surrounding air. The losses from other similar lamp bulbs probably agree with this.

[^45]
## TABLE 81.-RELATIVE EMISSIVITIES FOR TOTAL RADIATION

Emissive power of blackbody $=1$. Receiving surface platinum black at $25^{\circ} \mathrm{C}$; oxidized at $600+{ }^{\circ} \mathrm{C}$.

	Temperature, ${ }^{\circ} \mathrm{C}$		
	200	400	600
Silver	. 020	. 030	. 038
Platinum (1)	. 060	. 086	. 110
Oxidized zinc		. 110	
Oxidized aluminum	. 113	. 153	. 192
Calorized copper, oxidized.	. 180	. 185	. 190
Cast iron	. 210		
Oxidized nickel	. 369	. 424	. 478
Oxidized monel	. 411	. 439	. 463
Calorized steel, oxidized.	. 521	. 547	. 570
Oxidized copper	. 568	. 568	. 568
Oxidized brass.	. 610	. 600	. 589
Oxidized lead	. 631		
Oxidized cast iron.	. 643	. 710	. 777
Oxidized steel	. 790	. 788	. 787

For radiation properties of bodies at temperatures so low that the radiations of wavelength greater than $20 \mu$ or thereabouts are important, doubt must exist because of the possible and perhaps probable lack of blackness of the receiving body to radiations of those wavelengths or greater. For instance, see Tables 568 and 573 for the trarsparency of soot.

TABLE 82.-TOTAL EMISSIVITY VALUES OF VARIOUS MATERIALS AT LOW TEMPERATURES *

Material	Condition	At $100^{\circ} \mathrm{C}$	$320^{\circ} \mathrm{C}$	$500^{\circ} \mathrm{C}$
Alleghany alloy No.	Polished	. 11		
Alleghany metal . .	No. 4 polish	. 13		
Aluminum	Commercial sheet	. 09		
Aluminum	Polish	. 095		
Aluminum	Rough polish	. 18		
Aluminum paint		. 29		
Brass	Polished	. 059		
Carbon	Rough plate	. 77	. 77	. 72
Carbon, graphitized	Rough plate	. 76	. 75	. 71
Chromium	Polished	. 075		
Copper	Polished	. 052		
Copper-nickel	Polished	. 059		
Iron	Dark gray surface	. 31		
Iron	Roughly polished	. 27		
Lamp black	Rough deposit	. 84		. 78
Molybdenum	Polished	. 071		
Nickel	Polished	. 072		
Nickel-silver	Polished	. 135		
Radiator paint, black		. 84		
Radiator paint, bronze		. 51		
Radiator paint, cream		. 77		
Radiator paint, white		. 79		
Silver .............	Polished	. 052		
Stainless steel	Polished	. 074		
Steel	Polished	. 066		
Tin	Polished	. 069		
Tin	Commercial coat	. 084		
Tungsten	Polished coat	. 066		
Zinc .	Commercial coat	. 21		

* For reference, see footnote 38, p. 100.

TABLE 83.-PERCENTAGE EMISSIVITIES OF METALS AND OXIDES

True temperature ${ }^{\circ} \mathrm{C}$	500	600	700	800	900	1000	1100	1200
$60 \mathrm{FeO} .40 \mathrm{Fe}_{2} \mathrm{O}_{3}$ Total	85	85	86	87	87	88	88	89
in air......... $\lambda=.65 \mu$	-	-	-	98	97	95	93	92
NiO . . . . . . . . . . . . . Total	-	54	62	68	72	75	81	86
.............. $\lambda=$. $65 \mu$	-	-	98	96	94	92	88	87

Platinum:

| True temp. ${ }^{\circ} \mathrm{C} .$. | 0 | 100 | 200 | 300 | 400 | 500 | 750 | 1000 | 1200 | 1400 | 1600 | 1700 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| App. ${ }^{*}$ temp. ${ }^{\circ} \mathrm{C} \ldots$ | - | - | - | - | - | - | - | 486 | 630 | 780 | 930 | 1005 |
| Total emiss. Pt.. | 31 | 4.0 | 5.1 | 6.1 | 7.0 | 8.0 | 10.3 | 12.4 | 14.0 | 15.5 | 16.9 | 17.5 |


| Oxides: $\quad \lambda=.65 \mu$ | NiO | $\mathrm{Co}_{3} \mathrm{O}_{4}$ | $\mathrm{Fe}_{3} \mathrm{O}_{4}$ | $\mathrm{Mn}_{3} \mathrm{O}_{4}$ | $\mathrm{TiO}_{2}$ | $\mathrm{ThO}_{2}$ | $\mathrm{Y}_{2} \mathrm{O}_{3}$ | BeO | $\mathrm{NhO}_{x}$ | $\mathrm{~V}_{2} \mathrm{O}_{3}$ | $\mathrm{Cr}_{2} \mathrm{O}_{3}$ | $\mathrm{r}_{3} \mathrm{O}_{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Solid | $\ldots \ldots \ldots \ldots$ | 89 | 77 | 63 | $\ldots$ | 52 | 57 | 61 | 37 | 71 | 69 | 60 | 30 |
| Liquid | $\ldots \ldots \ldots$ | 68 | 63 | 53 | 47 | 51 | 69 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 31 |

[^46]TABLE 84.-TOTAL RADIATION FROM BARE AND SOOT.COVERED NICKEL ${ }^{3}$ (watts/cm ${ }^{2}$ )

${ }^{\circ} \mathrm{K}$	400	500	600	700	800	900	1000	1200	1400
Soot-covered Ni	. 096	. 28	. 59	1.87	3	3	4.8		
Polished Ni initial heat..	. 0092	. 032	. 079	. 166	. 31	. 55	. 91	2.17	4.49
" after above..	. 0066	. 023	. 058	. 123	. 24	. 44	. 76	2.04	4.49

TABLES 85-102.-CHARACTERISTICS OF SOME LIGHT-SOURCE MATERIALS, AND SOME LIGHT SOURCES


TABLE 86.—RADIATION AND OTHER PROPERTIES OF TANTALUM *1

${ }^{\circ} \mathrm{K}$	Emissivity		$\mathrm{Temperature}^{\text {a }}$			Resistivity   $\mu$-ohmcm	Radiation watt/ $\mathrm{cm}^{2}$	$\frac{T d n}{n d T}$	Total emissivity
			Bright-						
	. $665 \mu$	. $463 \mu$	$\begin{aligned} & \text { ness } \\ & .665 \mu \end{aligned}$	Color ${ }^{\circ} \mathrm{K}$	tion - K				
300	. 493	. 56							
1000	. 459	. 52	966					...	.
1200	. 450	. 51	1149		....	. . .			. . .
1400	. 442	. 50	1329						
1600	. 434	. 49	1506	1642	1062	67.6	7.3	4.80	. 194
1800	. 426	. 48	1680	1859	1222	74.1	12.8	4.80	. 213
2000	. 418	. 47	1851	2075	1390	80.5	21.2	4.80	. 232
2200	. 411	. 46	2018	2288	1556	86.9	33.4	4.80	. 251
2400	. 404	. 45	2180	2497	1730	92.9	50.7	4.80	. 269
2600	. 397	. 44	2339	2705	1901	99.1	75	4.80	. 287
2800	. 390		2495	2911	2080	105.0	106	4.80	. 304
3000	. 384		2647				....		
3300 mp	. 375		2870						

${ }^{41}$ Worthing, A. G., Phys. Rev., vol. 28, p. 190, 1926.

TABLE 87.-RADIATION AND OTHER PROPERTIES OF MOLYBDENUM *

${ }^{\circ} \mathrm{K}$	$\overbrace{\text { Emissivity }}$		Temperature			Resistivity $\mu$-ohmcm	$\begin{gathered} \text { Bright- } \\ \text { ness } \\ \text { normally } \\ \text { candles } \\ \mathrm{cm}^{2} \end{gathered}$	$\begin{aligned} & \text { Radia- } \\ & \text { tion } \\ & \text { in- } \\ & \text { tensity } \\ & \text { watts/ } \\ & \mathrm{cm}^{2} \end{aligned}$	
			$\begin{gathered} \text { Bright- } \\ \begin{array}{c} \text { ness } \\ S_{. \operatorname{ses} \mu \mu} \\ { }^{\circ} \mathrm{K} \end{array} \end{gathered}$	$\begin{gathered} \text { Color } \\ { }^{\circ} \mathrm{K} \end{gathered}$	$\begin{aligned} & \text { Radia- } \\ & \text { tion } \\ & \circ \mathrm{K} \end{aligned}$				
	. $665 \mu$	. $475 \mu$							
273	. 420	. 425				5.14			
1000	. 390	. 403	958	1004	557	23.9	. 0001	. 55	
1400	. 375	. 393	1316	1411	864	35.2	. 089	3.18	. 093
1600	. 367	. 388	1489	1616	1024	41.1	. 765	6.30	. 40
1800	. 360	. 383	1658	1823	1187	47.0	4.13	11.3	1.22
2000	. 353	. 379	1824	2032	1354	53.1	15.9	19.2	2.75
2200	. 347	. 375	1986	2244	1523	59.2	48.5	30.7	5.28
2400	. 341	. 371	2143	2456	1693	65.5	123	47.0	8.70
2600	. 336	. 368	2297	2672	1866	71.8	270	69.5	13.0
2800	. 331	. 365	2448	2891	2039	78.2	540	98	18.4
2895	. 328	. 363	2519	2997	2122	81.4	730	116	

*For reference, see footnote 41, above.

TABLE 88.-RELATION BETWEEN BRIGHTNESS TEMPERATURE AND COLOR TEMPERATURE FOR VARIOUS SUBSTANCES

Brightness temperature	Corresponding color temperature for-						
	Untreated carbon	Gem	Platinum	Nernst glower	Osmium	Tantalum	Tungsten
$1400^{\circ} \mathrm{K}$	1414		$1568{ }^{\circ} \mathrm{K}$	1538	1444	1507	1492
1500	1515		1692	1642	1562	1631	1607
1600	1616	1620	1821	1747	1680	1758	1723
1700	1718	1735	1952	1852	1799	1883	1841
1800	1820	1852	2086	1954	1919	2010	1961
1900	1923	1962		2053	2045	2137	2082
2000	2028	2064		2146	2168	2265	2206
2200	2240	2255	. . .	2310	2427	2500	2457
2400					2688	2785	2718
2600		....					2988
3000				. . .			3564

TABLE 89.-COLOR MINUS BRIGHTNESS TEMPERATURE FOR CARBON

Brightness temp. ${ }^{\circ} \mathrm{K} \ldots$	$1600^{\circ}$	$1700^{\circ}$	$1800^{\circ}$	$1900^{\circ}$	$2000^{\circ}$	$2100^{\circ}$	$2200^{\circ}$	
Color-brightness	$\ldots \ldots$	2	7	12	16	22	28	33

## TABLE 90.-RELATIVE BLUE BRIGHTNESS, B, AND BRIGHTNESS IN CANDLES PER $C^{2}{ }^{2} \mathrm{C}$, OF SOME INCANDESCENT OXIDES AT VARIOUS RED $(0.665 \mu)$ BRIGHTNESS TEMPERATURES, $S_{\lambda}$



TABLE 91.-COLOR TEMPERATURE, BRIGHTNESS TEMPERATURE, AND BRIGHTNESS OF VARIOUS ILLUMINANTS

Source	$T$ 。	$S(\lambda=.665)$	Brightness $\mathrm{c} / \mathrm{cm}^{2}$
Gas flame:			
Batswing	2160		
Candle shape about 1	1875		
Hefner as a whole...	1880		
Candle:			
Sperm	1930		
Paraffin	1925		
Pentane 10-cp. std.	1920		
Kerosene:			
Flat wick	2055	: 500	1.27
Round wick	1920	1530	1.51
4 wpc carbon.	2080	2030	54.9
3.1 wpc treated carbon	2165	2065	70.6
2.5 wpc gem.	2195	2130	78.1
2 wpc osmium.	2185	2035	60.8
2 wpc tantalum	2260	2000	53.1
Acetylene as a whole.	2380		
One spot	2465	1660	6.69
Mees burner	2360	1730	10.8
1.25 wpc tungsten.	2400	2150	125
2.3 wpc Nernst.	2400	2320	258
Sun:			
Outside atmosphere	6500		224000
At earth's surface...	5600		165000
Clear sky			. 4
Moon			. 5
Welsbach mantle			9.0

Low intensity and high intensity carbon arcs

Positive carbon	Amperes	Arc $\dagger$ volts	Lumens per are watt
Low-intensity carbons			
10 mm low intensity.	20	55	14.9
12	32	55	15.7
13 " "	40	55	16.3
High-intensity projection carbons 30			
6 mm "suprex"....	40	37	28.6
7 " "	50	37	29.7
8 "	70	40	34.6
9 " rotating positive	85	58	26.4
11 " " "	115	55	32.5
13.6 "	125	68	27.0
" " "	150	78	35.0
" "	170	75	33.6
16 "	225	75	32.2
High-intensity searchlight carbons			
10 mm rotating positive	100	75	32.3
12 " "	120	75	33.0
16 " "	150	78	32.0
16 " "	195	90	31.5

Vertical trim ac and dc flame arcs

Carbons		Amperes	$\begin{gathered} \text { Arc } \\ \text { volts } \end{gathered}$	Upper polarity	Lumens per arc watt
Upper	Lower				
$\frac{1}{2}^{\prime \prime}$ WF	$\frac{1}{2}^{\prime \prime}$ WF			$+$	
Photo $\ddagger$	Photo $\ddagger$	40	55 ac	-	39
"	"	40	55 dc	$+$	55
"	"	40	55 dc	-	50
$\frac{1}{2}{ }^{\prime \prime} 2 \mathrm{~F}$ §	"	40	55 dc	-	44
Alternating-current high-intensity carbon arcs					
Carbon			Arc volts		Lumens per arc watt
7 mm			26 ac		60.5
8 mm			29 ac		61.5
9 mm			26 ac		68.5

[^47]
## TABLE 93.-EFFICIENCIES OF SOME EARLY INCANDESCENT LAMPS OF ABOUT 60-WATT SIZE ${ }^{42}$

	Lumens per watt	Life
Edison's early carbon lamp	1.8	600 hr
Treated carbon lamp.	3.2	600
Gem lamp	4.0	600
Nernst glower	5.0	600
Tantalum lamp	4.9	900
Osmium lamp	4.9	
Tungsten lamp (1907)	7.8	1,000
Tungsten lamp (1949) coiled	14.0	1,000

[^48]TABLE 94.-INCREASE IN TUNGSTEN LAMP EFFICIENCY OVER A PERIOD OF YEARS

Lamp	Date measured	Temperature ${ }^{\circ} \mathrm{K}$	Efficiency in lumens per watt
100-watt squirted filament	1908 †	2,355	8.8
100-watt drawn wire	$1909 \dagger$	2,360	9.3
100-watt drawn wire	1915 †	2,475	10.3
100-watt gas-filled	1921	2,740	12.6
100 -watt gas-filled	1932	2,800	14.3
100-watt gas-filled	1936	2,845	14.9
100-watt gas-filled *	1936	2,855	15.5
100-watt gas-filled * coiled coil.	1948	2,860	16.3
* 750 hours life. † Vacuum lamps.			

TABLE 95.-TEMPERATURE AND EFFICIENCY OF SOME TUNGSTENFILAMENT LAMPS *


10 kw.	120	23.3	10,000	280,000	28	3300	33,000
50 kw.	120	416	50,000	$1,400,000$	28	3300	166,000

[^49]TABLE 95.-TEMPERATURE AND EFFICIENCY OF SOME TUNGSTEN. FILAMENT LAMPS (concluded)

Lamp for type B Kodachrome


TABLE 96.—SOME CHARACTERISTICS OF FLUORESCENT CHEMICALS *

Phosphor	$\underset{\substack{\text { Lamp } \\ \text { color }}}{\text { Lem }}$	Exciting range, $\uparrow$	Sensitivity peak,	Emitted range,	Emitted peak,
Calcium tungstate	blue	2200-3000	2720	3100-7000	4400
Magnesium tungstate	blue-white	2200-3200	2850	3600-7200	4800
Zinc silicate ............	green	2200-2960	2537	4600-6400	5250
Calcium halophosphates..	white	2000-2600	2500	3500-6800	4800, 5800
Cadmium silicate .......	yellow-pink	2200-3200	2400	4800-7400	5950
Cadmium borate .........	pink	2200-3600	2500	5200-7500	6150
BL phosphor $\mathrm{BaSi}_{2} \mathrm{O}_{5}$ with $\mathrm{Pb} \quad$....................	blue ultra	2200-2700	2500	3100-4100	3500
Calcium phosphate with Ce and Mn............		2200-3400	3130	$\begin{aligned} & 5600-8100 \\ & \text { plus UV } \end{aligned}$	6500

[^50]TABLE 97.-ENGINEERING DATA ON SOME LAMPS OF THE INTEGRAL, ALL-GLASS SEALED BEAM TYPE*


[^51]TABLE 98.-MERCURY ARCS *


[^52]| Dimensions，electrical data |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal lamp |  |  |  |  |  | 15 | 15 |  |  |  | 40 | 40 |  |  |
|  | 4 | 6 | 8 | 13 | 14 | （T－8） | （T－12） | 20 | 25 | 30 | （T－12） | （T－17） | 85 | 100 |
| Nom．length |  | 9＂ | 12＂ | $21^{\prime \prime}$ | 15＂ | 18＂ | 18＂ | $24^{\prime \prime}$ | 33＂ | 36＂ | 48＂ | 60＂ | 60＂ | 60＂ |
| Diameter ． | $\frac{8}{8 \prime \prime}$ | $\frac{5}{8 \prime \prime}$ | 知＂ | $8^{\prime \prime}$ | $1{ }^{\prime \prime}$ | 1 | $11^{\prime \prime}$ | $1^{\prime \prime}{ }^{\prime \prime}$ | $1{ }^{\prime \prime \prime}$ | 1 | 12＂ | 21 ＂＇ | $21^{\prime \prime}$ | $21^{\prime \prime}$ |
| Bulb ．．． |  | T－5 | T－5 | T－5 | T－12 | T． 8 | T－12 | T－12 | T－12 | T－8 | T． 12 | T－17 | T－17 | T－17 |
| Lamp amps \＄ |  | ． 145 | ． 16 | ． 16 | ． 395 | ． 31 | ． 33 | ． 36 | ． 52 | ． 355 | ． 42 | ． 40 | 1.6 | 1.50 |
| Lamp volts 8 | 36 | 48 | 57 | 100 | 38 | 55 | 46 | 59 | 53 | 98 | 106 | 110 | 57 | 71 |


Lumen output and brightness－4500 white lamps｜｜												
Lumens	200	310	545	460	585	555	860	1380	2100	2100	4000	4000
Lumens／watt	33	39	42	33	39	37	43	46	53	53	47	40
Brightness：												
Footlamberts	2500	2770	2520	1310	1980	1250	1360	2120	1610	920	1760	1760
Candles／in．${ }^{2}$	5.5	6.1	5.6	2.9	4.4	2.8	3，0	4.7	3.6	2.0	3.9	3.9

4500 white slimline lamps for multiple operation

Nominal length， inches	Dim． inches	Bulb	Lamp current， Ma	Nominal lamp watts	Lamp volts	Rec．min． starting voltage	Footlamberts and （candles／in．${ }^{2}$ ）	Lumen output and lpw
42	$\frac{9}{4}$	T－6	$\begin{aligned} & 120 \\ & 200 \end{aligned}$	18 25	175 150	450	$1570(3.5)$	$990(55)$ $320(53)$
			300	33	130		2570 （5．7）	1620（49）
64	$\frac{3}{4}$	T－6	120	27.5	270	600	1580 （3．5）	1570（57）
			200	39	230		2170（4．8）	2150（55）
			300	51	200		2620（5．8）	2600（57）
72	1	T－8	120	26	240	600	1200（2．7）	1590（61）
			200	38	220		1700 （3．8）	2250（59）
			300	51	200		2200 （4．9）	2850（56）
96	1	T－8	120	34	320	750	1200 （2．7）	2100（62）
			200	51	295		$1700(3.8)$	3050 （60）
			300	69	265		2200（4．9）	3950（57）

[^53]TABLE 100．—CHARACTERISTICS＊OF TYPICAL PHOTOFLASH LAMPS

								合		\％
Fast	SM	3	6	7	$4.7 \pm$	． 908	3300	B11	$2{ }^{3}$	S．S．Bay
	SF	3－9	6	5	5.0	． 80	3400	B12	$2{ }^{\frac{3}{8}}$	S．C．Bay
Medium	5	3	21	13	16	1.2	3800	B11	$2{ }^{\text {s }}$	S．C．Bay
	Press 25	3－9	20	14	20	1.25	4000	B12	23	S．C．Bay
	0	3－125	20	14	20	1.2	4000	S13	$3{ }^{\text {d }}$	Medium
	11	3	21	13	30	1.8	3800	A15	4	Medium
	Press 40	3－125	20	17	30	1.6	4000	A15	315	Medium
	22	3－125	21	14	63	4.0	3800	A19	5	Medium
	2	3－125	20	18	62	3.0	4000	A19	$4 \frac{3}{4}$	Medium
Slow	50	3－125	30	17	95	5.0	3800	A21	$5 \frac{3}{8}$	Medium
	3	3－125	30	18	110	5.0	4000	A23	$6{ }^{\frac{5}{8}}$	Medium
Focal plane	6			30	16	． 62	3800	B11	2 2	S．C．Bay
	26			24	15	． 60	3800			S．C．Bay
	31	3	$\cdots$	53	77	1.5	3800	A21	$5{ }^{\frac{3}{8}}$	Medium
	2A	3－9	$\cdots$	64	77	1.0	4000	A21	$5 \frac{8}{8}$	Medium
Blue for color photography	5B	3	21	13	7.5	． 55	6000	B11	$2 \frac{5}{8}$	S．C．Bay
	Press 25B	3－9	20	14	8.0	． 50	6000	B12	2 2	S．C．Bay
	118		21	14	13.0	． 82	6000			
	Press 40B		20	17	14	． 75	6000			
	22B	3－125	21	14	29	1.8	6000	A19	5	Medium
	2B	3－125	20	18	28	1.35	6000	A19	$4{ }^{3}$	Medium
	50B	3－125	30	17	43	2.3	6000	A21	$5{ }^{\frac{3}{8}}$	Medium
	3B	3－125	30	18	50	2.25	6000	A23		Medium

[^54]TABLE 101.-PHYSICAL AND ELECTRICAL CHARACTERISTICS OF FLASHTUBES AND FLASHLAMPS DESIGNED PRIMARILY FOR PHOTOGRAPHIC APPLICATIONS


[^55]TABLE 102.-COLOR OF LIGHT EMITTED BY VARIOUS SOURCES

Source	Color, percent white white	Hue	Source	Color, percent white	Hue
Sunlight	100		N -filled tungsten, .50 wpc.	45	584
Average clear sky	60	472	N-filled tungsten, 35 wpc.	53	584
Standard candle	13	593	Mercury vapor arc.	70	490
Hefner lamp	14	593	Helium tube	32	598
Pentane lamp	15	592	Neon tube	6	605
Tungsten glow lamp, 1.25 wpc.	35	588	Crater of carbon arc, 1.8 amp .	59	585
Carbon glow lamp, 3.8 wpc....	25	592	Crater of carbon arc, 3.2 amp .	62	585
Nernst glower, 1.50 wpc	31	587	Crater of carbon arc, 5.0 amp .	67	583
N -filled tungsten, 1.00 wpc .	34	586	Acetylene flame (flat).......	36	586

## TABLES 103-110.-COOLING BY RADIATION AND CONVECTION

## TABLE 103.-AT ORDINARY PRESSURES

According to McFarlane the rate of loss of heat by a sphere placed in the center of a spherical enclosure which has a blackened surface, and is kept at a constant temperature of about $14^{\circ} \mathrm{C}$, can be expressed by the equations

$$
c=.000238+3.06 \times 10^{-6} t-2.6 \times 10^{-8} t^{2}
$$

when the surface of the sphere is blackened. or

$$
\varepsilon=.000168+1.98 \times 10^{-8} t-1.7 \times 10^{-8} t^{2},
$$

when the surface is that of polished copper. In these equations, $e$ is the amount of heat lost in cgs units, that is, the quantity of heat, small calories, radiated per second per square centimeter of surface of the sphere, per degree difference of temperature $t$, and $t$ is the difference of temperature between the sphere and the enclosure. The medium through which the heat passed was moist air. The following table gives the results.

Differ-   ence of   temper.   ature   $t$	Polished   surface	Blackened   surface	Ratio
5	.000178	.000252	.707
10	.000186	.000266	.699
15	.000193	.000279	.692
20	.000201	.000289	.695
25	.000207	.000298	.694
30	.000212	.000306	.693
35	.000217	.000313	.693
40	.000220	.000319	.693
45	.000223	.000323	.690
50	.000225	.000326	.690
55	.000226	.000328	.690
60	.000226	.000328	.690

## TABLE 104.-AT DIFFERENT PRESSURES

Experiments made in Tait's Laboratory show the effect of pressure of the enclosed air on the rate of loss of heat. In this case the air was dry and the enclosure kept at about $8^{\circ} \mathrm{C}$.

Polished surface		Blackened surface	
$t$	et	$t$	${ }_{\text {ct }}$
Pressure 76 cmHg			
63.8	. 00987	61.2	. 01746
57.1	. 00862	50.2	. 01360
50.5	. 00736	41.6	. 01078
44.8	. 00628	34.4	. 00860
40.5	. 00562	27.3	. 00640
34.2	. 00438	20.5	. 00455
29.6	. 00378	-	-
23.3	. 00278	-	
18.6	. 00210	-	

Pressure 10.2 cmHg

67.8	.00492	62.5	.01298
61.1	.00433	57.5	.01158
55	.00383	53.2	.01048
49.7	.00340	47.5	.00898
44.9	.00302	43.0	.00791
40.8	.00268	28.5	.00490
Pressure 1 cmHg			
65	.00388	62.5	.01182
60	.00355	57.5	.01074
50	.00286	54.2	.01003
40	.00219	41.7	.00726
30	.00157	37.5	.00639
23.5	.00124	34.0	.00569
-	-	27.5	.00446
-	-	24.2	.00391

## TABLE 105.-COOLING OF PLATINUM WIRE IN COPPER ENVELOPE

Bottomley gives for the radiation of a bright platinum wire to a copper envelope when the space between is at the highest vacuum attainable the following numbers:

$$
\begin{aligned}
& t=408^{\circ} \mathrm{C}, \text { et }=378.8 \times 10^{-4}, \text { temperature of enclosure } 16^{\circ} \mathrm{C} . \\
& t=505^{\circ} \mathrm{C}, \text { et }=726.1 \times 10^{-4}, \quad " \quad " \quad 17^{\circ} \mathrm{C} .
\end{aligned}
$$

It was found at this degree of exhaustion that considerable relative change of the vacuum produced very small change of the radiating power. The curve of relation between degree of vacuum and radiation becomes asymptotic for high exhaustions. The following table illustrates the variation of radiation with pressure of air in enclosure.

Temp. of enclosure $16^{\circ} \mathrm{C}, t=408^{\circ} \mathrm{C}$		Temp. of enclosure $17^{\circ} \mathrm{C}, t=505^{\circ} \mathrm{C}$	
Pressure in mm	${ }^{\text {ct }}$	Pressure in mm	${ }^{c t}$
740.	$8137.0 \times 10^{-4}$	. 094	$1688.0 \times 10^{-4}$
440.	7971.0	. 053	1255.0 "
140.	7875.0	. 034	1126.0 "
42.	7591.0 "	. 013	920.4 "
4.	6036.0 "	. 0046	831.4 "
. 444	2683.0 "	. 00052	767.4 "
. 070	1045.0 "	. 00019	746.4 "
. 034	727.3 "	Lowest reached $\}$	726.1 "
. 012	539.2 "	but not measured $\}$	726.1
. 0051	436.4 378.8		
. 00007	378.8 "		

TABLE 106.-EFFECT OF PRESSURE ON LOSS OF HEAT AT DIFFERENT TEMPERATURES

The temperature of the enclosure was about $15^{\circ} \mathrm{C}$. The numbers give the total radiation in calories per square centimeter per second.

Temp. of wire in ${ }^{\circ} \mathrm{C}$	Pressure in $\underbrace{\mathrm{mmHg}}$				
	10.0	1.0	. 25	. 025	About
100	. 14	. 11	. 05	. 01	. 005
200	. 31	. 24	. 11	-. 02	. 0055
300	. 50	. 38	. 18	. 04	. 0105
400	. 75	. 53	. 25	. 07	. 025
500	-	. 69	. 33	. 13	. 055
600	-	. 85	. 45	. 23	. 13
700	-		-	. 37	. 24
800	-	-	-	. 56	. 40
900	-	-	-	-	. 61

Note.-An interesting feature (because of its practical importance in electric lighting) is the effect of difference of surface condition on the radiation of heat. The energy required to keep up a certain degree of incandescence in a lamp when the filament is dull black and when it is "flashed" with coating of hard carbon, was found to be as follows :

Dull black filament, 57.9 watts.
Bright " " 39.8 watts.

Loss of heat by air from surfaces takes place by radiation, conduction, and convection. The two latter are generally inextricably mixed. For horizontal air spaces, upper surface warm, the loss is all radiation and conduction; with warm lower surface the loss is greater than for similar vertical space.

Vertical spaces: The following table shows that for spaces of less than 1 cm width the loss is nearly proportional to the space width, when the radiation is allowed for; for greater widths the increase is less rapid, then reaches a maximum, and for yet greater widths is slightly less.

Heat conduction and thermal resistances, radiation eliminated, air space 20 cm high

$\underset{\substack{\text { Air } \\ \text { space, } \\ \mathrm{cm}}}{\text { and }}$	Heat conduction cal hr-1 $\mathrm{cm}^{-10} \mathrm{C}-1$ Temperature difference				Thermal resistance Reciprocal of conductance Temperature difference			
	$10^{\circ}$	$15^{\circ}$	$20^{\circ}$	$25^{\circ}$	$10^{\circ}$	$15^{\circ}$	$20^{\circ}$	$25^{\circ}$
. 5	. 46	. 46	. 46	. 46	2.17	2.17	2.17	2.17
1.0	. 24	. 24	. 24	. 24	4.25	4.20	4.15	4.10
1.5	. 160	. 172	. 182	. 192	6.25	5.80	5.50	5.20
2.0	. 161	. 178	. 200	. 217	6.20	5.60	5.00	4.60
3.0	. 172	. 196	. 208	. 217	5.80	5.10	4.80	4.60

Variation with height of air space: Max. thermal resistance $=4.0$ at 1.4 cm air space, 10 cm high; 6.0 at $1.6 \mathrm{~cm}, 20 \mathrm{~cm}$ high; 8.9 at $2.5 \mathrm{~cm}, 60 \mathrm{~cm}$ high.

## TABLE 108.-CONVECTION OF HEAT IN AIR AT ORDINARY TEMPERATURES *

In very narrow layers of air between vertical surfaces at different temperatures the convection currents, in the main, flow up one side and down the other, with eddyless (streamline) motion. It follows that these currents transport heat to or from the surfaces only when they turn and flow horizontally, from which fact it follows, in turn, that the convective heat transfer is independent of the height of the surface. It is, according to the laws of eddyless flow, proportional to the square of the temperature difference. and to the cube of the distance between the surfaces. As the flow becomes more rapid (e.g., for a $20^{\circ}$ difference and a distance of 1.2 cm ) turbulence enters, and the above relations begin to change. For the dimensions tested, convection in horizontal layers was a little over twice that in vertical.

## Heat transfer, in the usual cgs unit, i.e., calories per second per degree of thermal head per $\mathrm{cm}^{2}$ of flat surface at $22.8^{\circ}$ mean temperature

Where two values are given, they show the range among determinations with different methods of getting the temperature of the outer plate. It will be seen that the value of the convection is practically unaffected by this difference of method.

Thermal head	8 mm gap		12 mm gap		24 mmgap	
	Total	Convection	Total	Convection	Total	Convection
$.99^{\circ}$	-	-	$\left.\begin{array}{rrr} .000 & 083 & 9 \\ .000 & 084 & 8 \end{array}\right\}$	-	. 000065	-
$1.98{ }^{\circ}$	$\left\{\begin{array}{rr}.000 & 109 \\ & 110\end{array}\right.$	-	$\left.\begin{array}{l}.000 \\ .000 \\ \hline 084 \\ 085 \\ 2\end{array}\right\}$	$\begin{array}{r} .0000001 \\ 0004 \end{array}$	-	-
$4.95^{\circ}$	. 000111	. 000001	$\left\{\begin{array}{r}.0000866 \\ 881\end{array}\right.$		. 000090	over . 000025
$9.89{ }^{\circ}$	$\left\{\begin{array}{rr}.000 & 112 \\ & 113\end{array}\right.$	.000003 003	.0000937 952	$\left.\begin{array}{l}.000 \\ .000 \\ 011\end{array}\right\}$	. 000106	over . 000040
$19.76^{\circ}$	. 000116	. 000007	$\left\{\begin{array}{rr}.000 & 1077 \\ 1094\end{array}\right.$	$\left.\begin{array}{r}.000 \\ 024 \\ 026\end{array}\right\}$	. 000126	over . 000060

[^56]
## TABLE 109.-CONVECTION AND CONDUCTION OF HEAT BY GASES AT HIGH TEMPERATURES

The loss of heat from wires at high temperatures occurs as if by conduction across a thin film of stationary gas adhering to the wire (vertical and horizontal losses very similar). Thickness of film is apparently independent of temperature of wire, but probably increases with the temperature of the gas and varies with the diameter of the wire according to the formula $b \log (b / a)=2 B$, where $B=$ constant for any gas, $b=$ diameter of film, $a$, of wire. The rate of convection (conduction) of heat is the product of two factors, one the shape factor, $s$, involving only $a$ and $B$, the other a function $\phi$ of the heat conductivity of the gas. If $W=$ the energy loss in watts $/ \mathrm{cm}$, then $W=\mathrm{s}\left(\phi_{2}-\phi_{1}\right)$, $s$ may be found from the relation

$$
\frac{s}{\pi} e^{-\frac{2 \pi}{s}}=\frac{a}{B} ; \phi=4.19 \int_{0}^{\tau} k d t,
$$

where $k$ is the heat conductivity of the gas at temperature $T$ in calories $/ \mathrm{cm}^{\circ} \mathrm{C} . \phi_{2}$ is taken at the temperature $T_{2}$ of the wire, $\phi_{1}$ at that of the atmosphere. The following may be taken as the conductivities of the corresponding gases at high temperatures:

$$
\begin{aligned}
& \text { For hydrogen } \ldots \ldots \ldots . k=28 \times 10^{-6} \sqrt{T}\left\{(1+.0002 T) /\left(1+77 T^{-1}\right)\right\} \\
& \quad \text { air } \ldots \ldots \ldots \ldots k=4.6 \times 10^{-6} \sqrt{T}\left\{(1+.0002 T) /\left(1+124 T^{-1}\right)\right\} \\
& \quad \text { mercury vapor } \ldots . k=2.4 \times 10^{-6} \vee \bar{T}\left\{1 /\left(1+960 T^{-1}\right)\right\} .
\end{aligned}
$$

To obtain the heat loss: $B$ may be assumed proportional to the viscosity of the gas and inversely proportional to the density. For air [see Table 110 part 2] $B$ may be taken as 0.43 cm ; for $\mathrm{H}_{2}, 3.05 \mathrm{~cm}$; for Hg vapor as 0.078 . Obtain $s$ from Part 1 below from $a / B$; then from Part 2 obtain $\phi_{2}$ and $\phi_{1}$ for the proper temperatures; the loss will be $s\left(\phi_{2}-\phi_{1}\right)$ in watts $/ \mathrm{cm}$.

Part 1.-s as function of $a / B$

$s$	$a / B$	$s$	$a / B$	$s$	$a / B$	$s$	$a / B$
.0	.0	$535 \times 10^{-6}$	5.0	.453	10	1.696	30
.5	.753	7.738					
1.0	$.584 \times 10^{-3}$	6.0	.671	12	2.263	32	8.370
1.5	$.725 \times 10^{-2}$	6.5	.788	16	2.844	34	8.995
2.0	$2.75 \times 10^{-2}$	7.0	.908	18	3.438	36	9.622
2.5	.0644	7.5	1.032	20	4.040	38	10.25
3.0	.1176	8.0	1.160	22	5.263	40	10.87
3.5	.185	8.5	1.291	24	5.877	42	11.50
4.0	.265	9.0	1.424	26	6.505	46	12.14
4.5	.354	9.5	1.561	28	7.122	48	13.14
5.0	.453	10.0	1.696	30	7.738	50	14.03

Part 2.-Table of $\phi$ in watts per cm as function of absolute temp. ( ${ }^{\circ} \mathrm{K}$ )

$T^{\circ} \mathrm{K}$	$\mathrm{H}_{2}$	Air	Hg	$T^{\circ} \mathrm{K}$	$\mathrm{H}_{2}$	Air	Hg
0	.0000	.0000	-	$1500^{\circ}$	4.787	.744	.1783
100	.0329	.0041	-	1700	5.945	.931	.228
200	.1294	.0168	-	1900	7.255	1.138	.284
300	. .278	.0387	-	2100	8.655	1.363	.345
400	.470	.0669	-	2300	10.18	1.608	.411
500	.700	.1017	.0165	2500	11.82	1.871	.481
700	1.261	.189	.0356	2700	13.56	-	.556
900	1.961	.297	.0621	2900	15.54	-	.636
1100	2.787	.426	.0941	3100	17.42	-	.719
1300	3.726	.576	.1333	3300	19.50	-	.807
1500	4.787	.744	.1783	3500	21.79	-	.898

# Part 1.-Wires of platinum sponge served as radiators to room-temperature 

 surroundings| Observed heat losses in watts per cm |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| eter | Absolute temperatures |  |  |  |  |  |  |  |  |  |  |  |
| cm | $900^{\circ}$ | $1000^{\circ}$ | $110{ }^{\circ}$ | $1200^{\circ}$ | $1300^{\circ}$ | $1400^{\circ}$ | $1500^{\circ}$ | $1600^{\circ}$ | $1700^{\circ}$ | $1800^{\circ}$ | $1900^{\circ}$ | $2000^{\circ}$ |
| . 0690 | 1.70 | 2.26 | 3.01 | 3.88 | 4.92 | 6.18 | 7.70 | 9.63 | 12.15 | 15.33 | 19.25 | 23.75 |
| . 0420 | 1.35 | 1.75 | 2.26 | 2.84 | 3.53 | 4.29 | 5.33 | 6.60 | 8.25 | 10.20 | 12.45 | 14.75 |
| . 0275 | 1.12 | 1.40 | 1.76 | 2.23 | 2.73 | 3.23 | 3.91 | 4.67 | 5.72 | 7.00 | 8.64 | 10.45 |
| . 0194 | . 92 | 1.15 | 1.39 | 1.74 | 2.12 | 2.54 | 3.04 | 3.64 | 4.32 | 5.10 | 6.10 | 7.35 |
| Heat losses corrected for radiation, watts per cm (A-C) |  |  |  |  |  |  |  |  |  |  |  |  |
| . 0690 | . 91 | 1.05 | 1.23 | 1.36 | 1.45 | 1.51 | 1.54 | 1.66 | 2.00 | 2.56 | 3.40 | 4.30 |
| . 0420 | . 87 | 1.02 | 1.17 | 1.31 | 1.42 | 1.45 | 1.57 | 1.76 | 2.08 | 2.43 | 2.80 | 3.26 |
| . 0275 | . 80 | . 92 | 1.05 | 1.22 | 1.35 | 1.37 | 1.46 | 1.50 | 1.67 | 1.91 | 2.32 | 2.70 |
| . 0194 | . 70 | . 81 | . 89 | 1.03 | 1.15 | 1.23 | 1.31 | 1.40 | 1.47 | 1.51 | 1.64 | 1.88 |
| Computed radiation, watts per $\mathrm{cm}, \sigma=5.61 \times 10^{-12} *$ |  |  |  |  |  |  |  |  |  |  |  |  |
| . 0690 | . 79 | 1.21 | 1.78 | 2.52 | 3.47 | 4.67 | 6.16 | 7.97 | 10.15 | 12.77 | 15.85 | 19.45 |
| . 0420 | . 48 | . 73 | 1.09 | 1.53 | 2.11 | 2.84 | 3.74 | 4.84 | 6.17 | 7.77 | 9.65 | 11.85 |
| . 0275 | . 32 | . 48 | . 71 | 1.01 | 1.38 | 1.86 | 2.45 | 3.17 | 4.05 | 5.09 | 6.32 | 7.75 |
| . 0195 | . 22 | . 34 | . 50 | . 71 | 97 | 1.31 | 1.73 | 2.24 | 2.85 | 3.59 | 4.46 | 5.47 |
| Conduction loss by silver leads, watts per cm |  |  |  |  |  |  |  |  |  |  |  |  |
| . 0420 | . 42 | . 46 | . 49 | . 61 | . 75 | . 88 | 1.00 | 1.07 | 1.13 | 1.22 | - |  |
| . 0275 | . 18 | . 21 | . 28 | . 35 | . 43 | . 48 | . 55 | . 57 | . 60 | . 67 | - |  |
| . 0195 | . 06 | . 08 | . 08 | . 09 | . 11 | . 12 | . 14 | . 15 | . 22 | . 23 | - | - |
| Convection loss by air, watts per cm |  |  |  |  |  |  |  |  |  |  |  |  |
| . 0420 | . 45 | . 56 | . 68 | . 70 | . 67 | . 57 | . 59 | .69 | . 95 | 1.21 | - | - |
| . 0275 | . 62 | . 71 | . 77 | . 87 | . 92 | . 89 | . 91 | . 93 | 1.07 | 1.24 | - |  |
| . 0195 | . 64 | . 73 | . 81 | . 94 | 1.04 | 1.11 | 1.17 | 1.25 | 1.29 | 1.30 | - | - |

* This value is lower than the presently (1950) accepted value of 5.67 .

Part 2.-Wires of bright platinum $40-50 \mathrm{~cm}$ long served as radiators to surroundings at $300^{\circ} \mathrm{K}$


[^57]
## TABLES 111-125-TEMPERATURE CHARACTERISTICS OF MATERIALS

table 111.-MELTING AND BOILING POINTS OF THE CHEMICAL ELEMENTS (Metals in boldface type are often used as standard melting points.)

Element			Melting ${ }^{\circ} \mathrm{C}$ C ${ }^{\circ} \mathrm{C}$	$\underset{\substack{\text { Boiling } \\ \text { point } \\ \text { poic }}}{ }$	Element	$\begin{gathered} \text { Symbol } \\ \text { and } \\ \text { atomic No. } \end{gathered}$	Melting $\begin{aligned} & \text { point } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Boiling ${ }^{\text {point }}$ ${ }^{\circ} \mathrm{C}$
Actinium	Ac	89	1197		Neodymium	Nd 60	1024	
Aluminum	Al	13	660.1	2450	Neon	Ne 10	$-248.59$	- 246.08
Antimony	Sb	51	630.5	1637	Nickel	Ni 28	1453	2850
Argon	Ar	18	- 189.37	- 185.86	Niobium	Nb 41	2480	5000
Arsenic	As	33	817	613	Nitrogen	N 7	- 209.97	- 195.80
Astatine	At	85			Osmium	Os 76	2700	4400
Barium	Ba	56	710	1637	Oxygen	O 8	- 218.79	- 182.97
Beryllium	Be	4	1283	2480	Palladium	Pd 46	1552	3100
Bismuth	Bi	83	271.3	1560	Phosphorus	P 15	44.2	280
Boron	B	5			Platinum	Pt 78	1769	3800
Bromine	Br	35	- 7.20	59	Plutonium	Pu 94	639	
Cadmium	Cd	48	321.03	765	Polonium	Po 84	254	960
Calcium	Ca	20	850	1492	Potassium	K 19	63.2	766
Carbon	C	6			Praseodymium	Pr 59	935	3000
Cerium	Ce	58	804	2900	Promethium .	Pm 61		
Cesium	Cs	55	28.64	685	Protactinium	Pa 91		
Chlorine	Cl	17	- 100.99	- 34.06	Radium	Ra 88	700	
Chromium	Cr	24	1903	2640	Radon	Rn 86	- 71	- 62
Cobalt	Co	27	1492	3150	Rhenium	Re 75	3150	5600
Copper	Cu	29	1083.0	2580	Rhodium	Rh 45	1960	3960
Dysprosium	Dy	66	1500	2300	Rubidium	.Rb 37	38.8	701
Erbium	Er	68	1500	2600	Ruthenium	.Ru 44	2400	4000
Europium	Eu	63			Samarium	Sm 62	1050	1600
Fluorine	F	9	- 219.61	- 188.44	Scandium	Sc 21	1400	3900
Francium	Fr	87			Selenium	. Se 34	217.4	684.8
Gadolinium	Gd	64	1420		Silicon	.Si 14	1410	
Gallium		31	29.80	2240	Silver	Ag 47	960.8	2190
Germanium		32	938	2800	Sodium	Na 11	97.82	890
Gold	Au	79	1063.0	2700	Strontium	Sr 38	770	1370
Hafnium	Hf	72	2220	5200	Sulfur	. ${ }^{16}$	119	444.60
Helium	He	2		- 269.93	Tantalum	.Ta 73	2980	5500
Holmium	Но	67	1500		Technetium	Tc 43		
Hydrogen	H	1	- 259.19	- 252.76	Tellurium	Te 52	450	990
Indium	In	49	156.61	2000	Terbium	Tb 65	1450	
Iodine	I	53	113.6	183	Thallium	T1 81	303.6	1460
Iridium		77	2443		Thorium		1695	
Iron		26	1535	2900	Thulium	Tm 69	1650	
Krypton		36	- 157.3	- 153.35	Tin ${ }^{\text {Titanium }}$	Ti 22	1675	3300
Lanthanum		57	920	3370	Tungsten	W 74	3380	5500
Lead	Pb	82	327.3	1750	Uranium	U 92	1132	4000
Lithium	Li	3	180.55	1331	Vanadium	. V 23	1890	3400
Lutetium	Lu	71	1700		Xenon ...	Xe 54	- 112.5	-108.1
Magnesium		12	650	1120	Ytterbium	Yb 70	824	
Manganese	Mn	25	1244	2050	Yttrium .	Y 39		
Mercury	Hg	80	- 38.87	356.57	Zinc	Zn 30	419.50	908
Molybdenum	Mo	42	2610		Zirconium	Zr 40	1852	4400

TABLE 112.-MELTING PARAMETERS OF ARGON ${ }^{43}$

Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$	Melting point	$\frac{d T}{d p}$	$\begin{gathered} \left.\mathrm{cm}^{v} / \mathrm{g}\right) \end{gathered}$	Latent heat kg cal/g
1	$83.9^{\circ} \mathrm{K}$.	. 0238	. 0795	280
1,000	106.4	. 0211	. 0555	280
2,000	126.3	. 0192	. 0425	279
3,000	144.9	. 0178	. 0340	277
4,000	161.9	. 0165	. 0280	275
5,000	177.8	. 0155	. 0240	276
6,000	192.9	. 0146	. 0210	277

[^58]
## TABLE 113.-MELTING TEMPERATURES IN ${ }^{\circ} \mathrm{C}$ FOR A NUMBER OF LIQUIDS AS A FUNCTION OF PRESSURE "

$\begin{aligned} & \text { Pres- } \\ & \text { sure } \\ & \mathrm{kg} / \mathrm{cm}^{2} \end{aligned}$	Ethyl alcohol	n-Butyl alcohol	Ethyl bromide	n-Propyl bromide	Chloroform	Carbon bisulfide	Chlorobenzene	Methylene chloride	Water
0 5,000	$\begin{aligned} & -117.3^{\circ} \mathrm{C} \\ & -76 \end{aligned}$	$\begin{aligned} & -89.8^{\circ} \mathrm{C} \\ & -33 \end{aligned}$	$\begin{aligned} & -119^{\circ} \mathrm{C} \\ & -70 \end{aligned}$	$\begin{aligned} & -110^{\circ} \mathrm{C} \\ & -56 \end{aligned}$	$\begin{aligned} & -63.5^{\circ} \mathrm{C} \\ & +10 \end{aligned}$	$\begin{aligned} & -111.6^{\circ} \mathrm{C} \\ & -51 \end{aligned}$	$\begin{aligned} & -45.2^{\circ} \mathrm{C} \\ & +25 \end{aligned}$	$\begin{aligned} & -96.7^{\circ} \mathrm{C} \\ & -46 \end{aligned}$	
10,000	- 39	$+12$	- 29	- 8	$+76$	0	$\left.\begin{array}{l}+80 \\ +30\end{array}\right\}^{+}$	0	.
15,000	- 5	$+49$	+ 5	+ 34	+137	+ 46	+130	$+42$	$+52.5{ }^{\circ} \mathrm{C}$
20,000	$+25$	+80	+ 34	+ 71	+192	+ 89	+166	+82	+72.8
25,000	54	108	58	105	243	130	222	120	102.8
39,000	82	132	80	138		170		157	137.1
35,000	109	155		169	.	209		. .	166.6
40,000	. .	. .	-	197	-	.	.	.	192.3

[^59]TABLE 114.-VOLUME-PRESSURE RELATION FOR ARGON*
Volume, $\mathrm{cm}^{8}$

Pres.   sure   $\mathrm{kg} / \mathrm{cm}^{2}$	$+55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$-90^{\circ} \mathrm{C}$	$-101.4^{\circ} \mathrm{C}$	$-117^{\circ} \mathrm{C}$	$-135.1^{\circ} \mathrm{C}$	$-153.5^{\circ} \mathrm{C}-172^{\circ} \mathrm{C}$
700	-	1.262	1.179	-	-	-	-	.724
800	-	1.175	1.105	-	-	-	-	.690
1,000	-	1.060	1.006	-	-	-	-	.697
1,300	-	.962	.920	-	-	-	-	.677
1,600	-	.898	.864	-	-	-	-	.657
2,000	.880	.846	.818	-	-	-		
2,500	.831	.808	.785	-	.687	-	.653	-
3,500	.772	.751	.733	.661	.656	.638	-	-
4,500	.730	.712	.697	.641	.632	-	-	-
5,500	.698	.682	.669	.624	-	-	-	-
6,000	.685	-	-	-	-	-	-	-
10,000	.617	-	-	-	-	-	-	-
12,000	.596	-	-	-	-	-	-	-
15,000	.573	-	-	-	-	-	-	-

*For reference, see footnote 43, p. 117.

TABLE 115.-MELTING PARAMETERS OF NITROGEN *

Pressure   $\mathrm{kg} / \mathrm{cm}^{2}$   $\rho$	Melting   point	$63.2^{\circ} \mathrm{K}$	$\frac{d T}{d \phi}$	.0209

*For reference, see foot note 43, p. 117.

Volume, $\mathrm{cm}^{3}$

Pressure   $\mathrm{kg} / \mathrm{cm}^{2}$	$+23.5^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$	$-100^{\circ} \mathrm{C}$	$-140^{\circ} \mathrm{C}$
3,000	1.2374	1.2069	1.1422	1.0754	1.0226
4,000	1.1615	1.1391	1.0881	1.0327	.9876
5,000	1.1061	1.0870	1.0451	.9997	.9613
6,000	1.0652	1.0487	1.0117	.9729	.9412

* For reference, see footnote 43 , p. 117.

TABLE 117.-EFFECT OF PRESSURE ON MELTING POINT

	Substance	Melting point at $1 \mathrm{~kg} / \mathrm{cm}^{2}$	Highest experimental pressure $\mathrm{kg} / \mathrm{cm}^{2}$	$\begin{aligned} & d t / d p \\ & \text { at } 1 \mathrm{~kg} / \mathrm{cm}^{2} \end{aligned}$	$\begin{aligned} & \Delta t \text { (observed) } \\ & \text { for } 1000 \mathrm{~kg} / \mathrm{cm}^{2} \end{aligned}$
Hg		-38.85	12,000	. 00511	5.1 *
K		59.7	2,800	. 0136	13.8
Na		97.62	12,000	. 00860	+12.3 $\dagger$
Bi		271.0	12,000	$-.00342$	$-3.5 \dagger$
Sn		231.9	2,000	. 00317	3.17
Bi		270.9	2,000	-. 00344	- 3.44
Cd		. 320.9	2,000	. 00609	6.09
Pb		327.4	2,000	. 00777	7.77

* $\Delta t$ (observed) for $10,000 \mathrm{~kg} / \mathrm{cm}^{2}$ is $50.8^{\circ}$. $\quad \dagger \mathrm{Na}$ melts at $177.5^{\circ}$ at $12,000 \mathrm{~kg} / \mathrm{cm}^{2} ; \mathrm{K}$ at $179.6^{\circ}$; Bi at $218.3^{\circ} ; \mathrm{Pb}$ at $644^{\circ}$. Luckey obtains melting point for tungsten as follows: 1 atm, $3623^{\circ} \mathrm{K}$; 8, 3594; 18, 3572; 28, 3564.

TABLE 118.-EFFECT OF PRESSURE ON FREEZING OF WATER*

Pressure $\mathrm{kg} / \mathrm{cm}^{2}$	Freezing point	Phases in equilibrium
1	.0	Ice I-liquid
1,000	-8.8	Ice I-liquid
2,000	-20.15	-22.0
2,115	-18.40	Ice I-liquid
3,000	-17.0	Ice I-ice III-liquid liquid (triple point)
3,530	-13.7	Ice III-ice V-liquid (triple point)
4,000	-1.6	Ice V—liquid
6,000	+.16	Ice V—liquid
6,380	12.8	Ice V—ice VI-liquid (triple point)
8,000	37.9	Ice VI-liquid
12,000	57.2	Ice VI-liquid
16,000	73.6	Ice VI-liquid
20,000		

* For reference, see footnote 43, p. 117.

TABLE 119.-EFFECT OF PRESSURE ON BOILING POINT

Metal	Pressure	${ }^{\circ} \mathrm{C}$	Metal	Pressure	${ }^{\circ} \mathrm{C}$	Metal	Pressure	$\circ \mathrm{C}$
Bi	$\ldots$	10.2 cmHg	1200	Ag	$\ldots$	26.3 cmHg	1780	Pb
Bi	$\ldots$	25.7 cmHg	1310	Cu	$\ldots$	10.0 cmHg	1980	Pb
Bi	$\ldots$	6.3 atm	1740	Cu	$\ldots$	25.7 cmHg	6.3 atm	1410
Bi	$\ldots$	11.7 atm	1950	Sn	$\ldots$	10.1 cmHg	1970	Pb
Bi	$\ldots$	11.7 atm	2100					
Ag	$\ldots$	16.5 atm	10.3 cmHg	1660	Sn	$\ldots$	26.2 cmHg	2100
Pb	$\ldots$	10.5 cmHg	1315	Zn	$\ldots$	21.5 atm	1230	

TABLE 120.-DENSITIES AND MEITING AND BOILING POINTS OF INORGANIC COMPOUNDS *

Substance	Chemical formula	Density about $20^{\circ} \mathrm{C}$	Melting point, ${ }^{\circ} \mathrm{C}$	$\underset{\text { point, }}{\substack{\text { Boiling } \\ \text { C }}}$	Pressure mmHg
Aluminum chloride	$\mathrm{AlCl}_{3}$	2.44	$190 \ddagger$	182.7	752
nitrate	$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+9 \mathrm{H}_{2} \mathrm{O}$		70.0	$134 \dagger$	
oxide	$\mathrm{Al}_{2} \mathrm{O}_{3}$	4.00	2050	2580	53
Ammonia	$\mathrm{NH}_{3}$		- 77.7	- 33.35	760
Ammonium nitrate	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	1.72	169.6	$210{ }^{\dagger}$	...
phosphite	$\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{3}$		123	$145 \dagger$	
sulfate	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	1.77	146.9 †	$\ldots{ }^{\text {. }}$ +	
Antimony pentachloride	$\mathrm{SbCl}_{3}$	2.35	2.8	140	68
trichloride	$\mathrm{SbCl}_{3}$	3.14	73.4	223	760
Arsenic hydride	$\mathrm{AsH}_{3}$		-113.5	- 54.8	760
trichloride	$\mathrm{AsCl}_{3}$	2.20	- 18	130.2	760
Barium chloride	$\mathrm{BaCl}_{2}$	3.86	962	1560	760
nitrate	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	3.24	592		
perchlorate	$\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}$		505		
Bismuth trichloride.	$\mathrm{BiCl}_{3} \ldots$	4.75	232.5	447	760
Boric acid	$\mathrm{H}_{3} \mathrm{BO}_{3}$	1.46	185		
anhydride	$\mathrm{B}_{2} \mathrm{O}_{3}$	1.79	450		
Borax (sodium borate)	$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$	2.36	741	$1570{ }^{\dagger}$	
Cadmium chloride ...	$\mathrm{CdCl}_{2}$	4.05	561		
nitrate	$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}$	2.45	59.5		
Calcium chloride	$\mathrm{CaCl}_{2}$	2.26	774.0		
chloride	$\mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.68	29.6	200	
nitrate	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	2.36	561		
nitrate	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{Oa}$	1.82	42.3		
oxide	CaO	3.40	2570	2850	
Carbon tetrachloride	$\mathrm{CCl}_{4}$	1.59	- 24	76.7	760
dioxide	$\mathrm{CO}_{2}$		$-56.6^{8}$	- 78.5	subl.
disulfide	$\mathrm{CS}_{2}$	1.26	$-111.6$	46.2	760
monoxide	CO		-207	-192	760
trichloride	$\mathrm{C}_{2} \mathrm{Cl}_{8}$	1.63	184	185	
Chloric (per) acid.	$\mathrm{HClO}_{4}$	1.764	$-112$	$39 \dagger$	56
Chlorine dioxide ..	$\mathrm{ClO}_{2}$		- 59	9.9	731
Chrome alum ..	$\mathrm{KCr}\left(\mathrm{SO}_{4}\right)_{2}+12 \mathrm{H}_{2}$	1.83	89		
nitrate	$\mathrm{Cr}_{2}\left(\mathrm{NO}_{3}\right)_{6}+18 \mathrm{H}_{2} \mathrm{O}$		37	170	760
Chromium oxide	$\mathrm{CrO}_{3} \ldots . . . .$.	5.21	1990		
Cobalt sulfate..	$\mathrm{CoSO}_{4}$	3.710	989		
Cupric chloride	$\mathrm{CuCl}_{2} \ldots$	3.05	498	+	
nitrate.	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+3 \mathrm{H}_{2} \mathrm{O}$	2.05	114.5	$170{ }^{\dagger}$	760
Cuprous chloride	$\mathrm{Cu}_{2} \mathrm{Cl}_{2}$	3.7	421	1366土	760
Hydrogen bromide	HBr		$-88.5$	- 67.0	760
chloride	HCl		$-111.3$	- 83.7	755
fluoride	HF	. 99	- 92.3	19.4	755
iodide	HI		- 50.8	$-35.7$	760
peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	1.5	- 2	152.1	47
phosphide	$\mathrm{PH}_{3}$		133.5	- 87.4	. . .
sulfide ..	$\mathrm{H}_{2} \mathrm{~S}$		- 82.9	- 62	
Iron chloride	$\mathrm{FeCl}_{3}$	2.80	282	315	
nitrate	$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+9 \mathrm{H}_{2} \mathrm{O}$	. 1.68	47.2	+	
sulfate	$\mathrm{FeSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$...	. 1.90	64	1	
Lead chloride	$\mathrm{PbCl}_{2}$.	. 5.8	501	950土	760
Magnesium chloride	MgCl 2	. 2.18	708	1412	
oxide .	MgO	. 3.4	2800		
nitrate	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	. 1.46	100	$\dagger$	760
sulfate . .	$\mathrm{MgSO}_{4}$ …......	. 2.66	$1124{ }^{\dagger}$		
Manganese chloride .	$\mathrm{MnCl}_{2}+4 \mathrm{H}_{2} \mathrm{O}$	. 2.01	58	$\dagger$	760
nitrate ..	$\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	. 1.82	26	$129 \dagger$	760
sulfate	$\mathrm{MnSO}_{4}$	. 3.25	700	$850{ }^{+}$	
Mercuric chloride . . .	$\mathrm{HgCl}_{2} \ldots$	. 5.42	276	302	

[^60](continued)

# TABLE 120.-DENSITIES AND MELTING AND BOILING POINTS OF INORGANIC COMPOUNDS (concluded) 

Substance	Chemical formula	$\begin{aligned} & \text { Density } \\ & \text { about } \\ & 20^{\circ} \mathrm{C} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Melting } \\ & \text { point, }{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Boiling } \\ & \text { point, } \end{aligned}$	$\underset{\substack{\text { Pressure } \\ \text { mmHz }}}{ }$
Mercurous chloride	$\mathrm{Hg}_{2} \mathrm{Cl}_{2}$	7.10	$302 \pm$	384	
Nickel carbonyl	$\mathrm{NiC}_{4} \mathrm{O}_{4}$	1.32	- 25	43	760
nitrate	$\mathrm{Ni}\left(\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}\right.$	2.05	56.7	$136.7{ }^{\dagger}$	760
oxide	NiO	6.69	2090		
Nitric acid	$\mathrm{HNO}_{3}$	1.502	- 42	86	760
anhydride	$\mathrm{N}_{2} \mathrm{O}_{5}$	1.64	30	$48^{\dagger}$	760
oxide	NO		$-163.6$	-151.8	760
peroxide	$\mathrm{N}_{2} \mathrm{O}_{4}$	1.49	- 9.3	$21.3 \dagger$	760
Nitrous anhydride	$\mathrm{N}_{2} \mathrm{O}_{3}$	1.45	-102	$3.5 \dagger$	760
	$\mathrm{N}_{2} \mathrm{O}$		-102.4	$3.5 \dagger$	760
Phosphoric acid (ortho)	$\mathrm{H}_{3} \mathrm{PO}_{4}$	1.83	42.45		
Phosphorous acid .....	$\mathrm{H}_{3} \mathrm{PO}_{3}$	1.65	73.6		
disulfide	$\mathrm{P}_{3} \mathrm{~S}_{8}$		298	$3371 \mid$	760
oxychloride	$\mathrm{POCl}_{3}$	1.68	1.3	108	760
pentasulfide	$\mathrm{P}_{2} \mathrm{~S}_{5}$	2.03	276	514	760
trichloride	$\mathrm{PCl}_{3}$	1.57	-91	75.5	750
trisulfide	$\mathrm{P}_{4} \mathrm{~S}_{3}$	2.03	172.5	407.5	760
Potassium acid phosphate.	$\mathrm{KH}_{2} \mathrm{PO}$	2.34	$252.6{ }^{\dagger}$	.	
carbonate ...	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2.43	891		
chlorate	$\mathrm{KClO}_{3}$	2.34	368.4	$400 \dagger$	
chloride	KCl	1.99	776	1500	760
chromate	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	2.72	968.3	$\dagger$	
cyanide	KCN	1.52	634		
dichromate	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	2.69	398		
hydroxide	KOH	2.04	360	1320	760
nitrate ..	$\mathrm{KNO}_{3}$	2.10	334	$400{ }^{\dagger}$	
perchlorate	$\mathrm{KClO}_{4}$	2.52	610	$410 \dagger$	760
sulfate	$\mathrm{K}_{2} \mathrm{SO}_{4}$	2.66	1076	$\dagger$	
Silver chloride	AgCl	5.56	455	1550	
nitrate	$\mathrm{AgNO}_{3}$	4.35	212	$444 \dagger$	
perchlorate	$\mathrm{AgClO}_{4}$	2.81	$486{ }^{\dagger}$		
phosphate	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	6.37	849		
metaphosphate	$\mathrm{AgPO}_{3}$		482		
sulfate .....	$\mathrm{AgSO}_{4}$	5.45	652	$1085 \dagger$	
Sodium carbonate	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	2:51	851	$\dagger$	
chlorate	$\mathrm{NaClO}_{3}$	2.48	248	${ }_{141}^{\dagger}$	
chloride	NaCl	2.17	801	1413	760
hydroxide	NaOH	2.13	318		
hyposulfite	$\mathrm{Na}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{3} \mathrm{O}$		52 †	$\dagger$	760
metaphosphate	$\mathrm{NaPO}_{3}$	2.18	640	$\begin{array}{r} \text { subl. } \\ >1100 \end{array}$	
nitrate ......	$\mathrm{NaNO}_{3}$	2.26	310	$380 \dagger$	
perchlorate	$\mathrm{NaClO}_{4}$	2.53	482 †	$\dagger$	
pyrophosphate	$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	2.45	880		
sulfate	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	2.67	884	$\dagger$	
sulfate	$\mathrm{Na}_{2} \mathrm{SO}_{4}+10 \mathrm{H}_{2} \mathrm{O}$	1.46	32.88		
tetraborate	$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$	2.36	741	1570	760
Sulfur dioxide	$\mathrm{SO}_{2}$		- 72.7	- 10	760
trioxide	$\mathrm{SO}_{3} \mathrm{a}$	1.91	16.8	44.9	760
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.83	10.5	$338{ }^{\dagger}$	760
acid acid (pyro)	$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$	1.79		$290 \dagger$	760
acid (pyro)	$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	1.89	35	${ }^{\dagger}$	
Tin, stannic chloride	${ }_{\substack{\mathrm{SnCl}_{4} \\ \mathrm{SnCl}_{2}}}$	2.23 3.39	- 33	114	760
stannous chloride Water	$\mathrm{SnCl}_{2}$	3.39 (24	45 246	623	760
Water ......	$\mathrm{H}_{2} \mathrm{O}$	0.998	0	100	760
Zinc chloride	$\mathrm{ZnCl}_{2}$	2.91	262	732	760
nitrate	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O}$	2.06	$36.4{ }^{\dagger}$	131	760
sulfate	$\mathrm{ZnSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$	1.97	$39 \dagger$	$\dagger$	

[^61]TABLE 121.-DENSITIES AND MELTING AND BOILING POINTS OF ORGANIC COMPOUNDS

Substance	Chemicalformula $\quad$Density   $\mathrm{g} / \mathrm{cm}^{3}$	${ }_{\text {Temp }}{ }_{\text {C }}{ }^{\text {c }}$	$\underset{\substack{\text { Melting } \\ \text { point } \\ \text { oin }}}{\substack{\text { nel }}}$	$\begin{gathered} \text { Boiling } \\ \text { point } \\ \text { Point } \end{gathered}$	Pressure 1 atm unless otherwise stated
	Paraffin series: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$.	Normal	compounds	only	
Methane	$\mathrm{CH}_{4}$.......... . 415	-164	-184	-161.4	
Ethane	$\mathrm{C}_{2} \mathrm{H}_{8}$........ . 546	- 88	-172.0	- 88.3	
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$........ . . 595	- 44	-189.9	- 42.0	
Butane	C. $\mathrm{H}_{10} \ldots \ldots .$. . . . 6011	0	-135.0	$+\quad .6$	
Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$........ . 631	20	-138.0	+ 36.2	
Hexane	$\mathrm{C}_{0} \mathrm{H}_{14}$. . . . . . . . 660	20	- 94.3	69.0	
Heptane	$\mathrm{C}_{7} \mathrm{H}_{18} \ldots . . . .$. . . 684	20	- 90.0	98.4	
Octane	$\mathrm{C}_{8} \mathrm{H}_{18} \ldots . . . \mathrm{C}^{\text {. }} .704$	17	- 56.5	124.6	
Nonane	$\mathrm{C}_{9} \mathrm{H}_{20}$. . . . . . . . 718	20	- 53	150.6	
Decane	$\mathrm{C}_{10} \mathrm{H}_{22} \ldots . . . .{ }^{\text {a }} .747$	20	- 32.0	174	
Undecane	$\mathrm{C}_{11} \mathrm{H}_{24} \ldots \ldots . .{ }^{\text {a }}$. 741	20	- 26.5	197	
Dodecane	$\mathrm{C}_{12} \mathrm{H}_{20} \ldots \ldots . . .768$	20	- 12	216	
Tridecane	$\mathrm{C}_{13} \mathrm{H}_{28} \ldots \ldots . . .857$	20	- 6.2	234	
Tetradecane	$\mathrm{C}_{14} \mathrm{H}_{30} \ldots . . . .{ }^{\text {a }} 765$	20	+ 5.5	252.5	
Pentadecane	$\mathrm{C}_{15} \mathrm{H}_{32} \ldots \ldots . . .{ }^{\text {a }}$. 772	20	+ 10	270.5	
Hexadecane	$\mathrm{C}_{10} \mathrm{H}_{34} \ldots \ldots . . .{ }^{\text {a }}$. 775	20	20	287.5	
Heptadecane	$\mathrm{C}_{17} \mathrm{H}_{38} \ldots \ldots . .{ }^{\text {a }}$. 778	20	22.5	303	
Octadecane	$\mathrm{C}_{18} \mathrm{H}_{38} \ldots . . . .{ }^{\text {a }}$. 777	20	28	317	
Nonadecane	$\mathrm{C}_{10} \mathrm{H}_{40} \ldots . . . .{ }^{\text {a }} .777$	32	32	330	
Eicosane	$\mathrm{C}_{20} \mathrm{H}_{42} \ldots . . . . . . .778$	37	38	205	15 mmHg
Heneicosane	$\mathrm{C}_{21} \mathrm{H}_{44} \ldots . . . .^{\text {. }} .775$	45	40.4	215	15 mmHg
Docosane	$\mathrm{C}_{22} \mathrm{H}_{48} \ldots . . .{ }^{\text {che }} .778$	44	44.4	224.5	15 mmHg
Tricosane	$\mathrm{C}_{23} \mathrm{H}_{48} \ldots \ldots . . .{ }^{\text {a }}$. 779	48	47.7	320.7	
Tetracosane	$\mathrm{C}_{24} \mathrm{H}_{50} \ldots . . . . .{ }^{\text {a }} .779$	61	54	324	
Pentacosane	$\mathrm{C}_{25} \mathrm{H}_{52} \ldots . . .$. . 779	20	54	284	40 mmHg
Hexacosane	$\mathrm{C}_{26} \mathrm{H}_{54} \ldots \ldots . . . . .779$	20	60	296	40 mmHg
Heptacosane	$\mathrm{C}_{22} \mathrm{H}_{58}$. . . . . . . 779	60	59.5	270	15 mmHg
Octacosane		20	65	318	40 mmHg
Nonacosane	$\mathrm{C}_{29} \mathrm{H}_{80} \ldots . . . . .{ }^{\text {c }} 780$	20	63.6	348	40 mmHg
Triacontane	$\mathrm{C}_{30} \mathrm{H}_{02}$....... . 780	20	70	235	1.0 mmHg
Hentriacontane	$\mathrm{C}_{31} \mathrm{H}_{84} \ldots \ldots . .{ }^{\text {a }}$. 781	68	68.1	302	15 mmHg
Dotriacontane	$\mathrm{C}_{32} \mathrm{H}_{68} \quad . . . . . .{ }^{\text {a }} .775$	79	75	310	15 mmHg
Tetratriacontane	$\mathrm{C}_{34} \mathrm{H}_{70} \quad . . . . . . .^{781}$	20	76.5	255	1.0 mmHg
Pentatriacontane	. $\mathrm{C}_{35} \mathrm{H}_{72} \ldots . . .{ }^{\text {a }}$. 782	75	74.7	331	15 mmHg
Hexatriacontane	$\ldots \mathrm{C}_{34} \mathrm{H}_{74}$. ...... . 782	76	76.5	265	1.0 mmHg


(continued)

# TABLE 121.-DENSITIES AND MELTING AND BOILING POINTS OF ORGANIC COMPOUNDS (continued) 

Substance	Chemical formula	Density	${ }^{\text {Temp }}$ C ${ }^{\text {c }}$	$\underset{\substack{\text { Melting } \\ \text { point } \\{ }^{\circ} \mathrm{C}}}{\text { Mely }}$	Boiling ${ }^{\text {point }}$	Pressure 1 atm unless stated
	Acetylene	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$.	Normal	compoun	only	
Acetylene	$\ldots \mathrm{C}_{2} \mathrm{H}_{2}$	. 613	-80	-81.8	-83.6	
Ally lene	$\mathrm{C}_{3} \mathrm{H}_{4}$	. 660	$-13$	-104.7	- 27.5	
Ethylacetylene	$\mathrm{C}_{4} \mathrm{H}_{8}$	. 668		-130	+ 18.5	
Propylacetylene	$\mathrm{C}_{5} \mathrm{H}_{8}$	. 722		-95	+ 40	
Butylacetylene	$\mathrm{C}_{6} \mathrm{H}_{10}$			-150	71.5	
Amylacetylene	. $\mathrm{C}_{7} \mathrm{H}_{12}$	. 738	13	- 70	110.5	
Hexylacetylene	$\mathrm{C}_{8} \mathrm{H}_{4}$	. 770	0		125	
Undecylidene					213	
Dodecylidene		. 810	- 9	- 9	105	15 mmHg
Tetradecylidene		. 806	+ 6.5	+ 6.5	134	" " ${ }^{\text {c }}$
Hexadecylidene		. 804	20	20	160	" "
Octadecylidene		. 802	30	30	184	" " ،

Monatomic alcohols: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+1} \mathrm{OH}$. Normal compounds only

Methyl alcohol	$\mathrm{CH}_{3} \mathrm{OH}$	. 792	20	- 97.8	64.5	
Ethyl alcohol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	. 789	20	-117.3	78.5	
Propyl alcohol	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{OH}$	. 804	20	-127	97.8	
Butyl alcohol	C. $\mathrm{H}_{4} \mathrm{OH}$	. 810	20	- 89.8	117.7	
Amyl alcohol	$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$	. 817	20	- 78.5	137.9	
Hexyl alcohol	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{OH}$	. 820	20	- 51.6	155.8	
Heptyl alcohol	$\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{OH}$	. 817	22	- 34.6	175.8	
Octyl alcohol	$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OH}$	. 827	20	$-16.3$	194	
Nonyl alcohol	$\mathrm{C}_{6} \mathrm{H}_{19} \mathrm{OH}$	. 828	20		215	
Decyl alcohol	$\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OH}$	. 829	20	+ +	231	
Undecyl alcohol	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{OH}$	. 833	20	+19	146	30 mmHg
Dodecyl alcohol	$\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{OH}$	. 831	20	24	259	
Tridecyl alcohol	$\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{OH}$	. 822	31	30.5	156	15 mmHg
Tetradecyl alcohol	$\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{OH}$	. 824	38	38	167	15 mmHg
Pentadecyl alcohol	$\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{OH}$			46		.
Cetyl alcohol	$\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{OH}$	. 798	79	49.3	344	
Octadecyl alcohol	$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{OH}$	. 812	59	58.5	210.5	15 mmHg



	Ethyl ethers: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \mathrm{O}$				
Ethyl-methyl	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	. . 73	20		
-propyl	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	. . 747	20	$<-79$	61.4
-isopropyl		. 745	0		54
-n. butyl	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	. 752	20		91.4
-iso-butyl		. 751	20		80
-iso-amyl	$\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}$	. 764	18		112
-n. hexyl	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$	. 63			137
" -n. heptyl	$\mathrm{C}_{6} \mathrm{H}_{20} \mathrm{O}$	. . 790	16		166.6
-n. octyl.	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}$	. 794	17		183

(continued)

TABLE 121.-DENSITIES AND MELTING AND BOILING POINTS OF ORGANIC COMPOUNDS (concluded)

Miscellaneous					
Substance	Chemical formula	Density and temperature ${ }^{\circ} \mathrm{C}$		$\underset{\substack{\text { Melting } \\ \text { point }}}{\text { Po } \mathrm{C}}$	$\underset{\substack{\text { Boiling } \\ \text { point } \\ \text { oc }}}{\text { cosen }}$
Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	1.115	0	16.7	118.5
Acetone	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	. 792	0	- 94.6	56.1
Aldehyde	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	. 783	0	-124	20.8
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	1.038	0	- 6	183.9
Beeswax		. $96 \pm$		62	
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	. 879	20	5.48	80.2
Benzoic acid	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$	1.293	4	121	249
Benzophenone	$\left(\mathrm{C}_{0} \mathrm{H}_{5}\right)_{2} \mathrm{CO}$	1.090	50	48	305.9
Butter		. 90		25	
Cauphor	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$	. 99	10	176	209
Carbolic acid	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	1.060	21	41	182
Carbon bisulfide	$\mathrm{CS}_{2}$	1.292	0	-108	46.2
tetrachloride	$\mathrm{CCl}_{4}$	1.582	21	- 28	76.7
Chlorobenzene	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	1.111	15	- 40	132
Chloroform	$\mathrm{CHCl}_{3}$	1.4989	15	-63.3	61.2
Cyanogen	$\mathrm{C}_{2} \mathrm{~N}_{2}$			- 35	-21
Ethyl bromide	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$		15	-117	38.4
chloride	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	. 918	8	-141.6	12
ether	$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{O}$	. 716	0	-116	34.6
iodide	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	1.944	14	108	72
Formic acid	HCOOH	1.242	0	8.6	100.8
Gasoline		. $68 \pm$	.		70-90
Glucose	$\mathrm{CHO}(\mathrm{HCOH}$	1.56		146	
Glycerine	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{3}$	1.269	0	17	290
Iodoform	$\mathrm{CHI}_{3}$	4.01	25	119	
Lard		. 90		$29 \pm$	
Methyl chloride	$\mathrm{CH}_{3} \mathrm{Cl}$	. 0992	-24	- 98	-24.1
iodide	$\mathrm{CH}_{3} \mathrm{I}$	2.285	15	-64	42.3
Naphthalene	$\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4}$	1.152		80	218
Nitrobenzene	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}$	1.212	7.5	5	211
Nitroglycerine	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{8}$	1.60		3	
Oleomargarine		.92-. 93	20	35-38	
Olive oil				$20 \pm$	$300 \pm$
Oxalic acid	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1.68		190	
Paraffin wax, soft				$\begin{aligned} & 35-52 \\ & 52-56 \end{aligned}$	$\begin{array}{r} 350-390 \\ 390-430 \end{array}$
Pyrogallol	$\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OH})_{3}$	1.46	40	133	293
Spermaceti		. 95	15	$45 \pm$	
Starch	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$	1.56		none	
Stearine	$\left(\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2}\right)_{3} \mathrm{C}_{3}$	. 925	65	71	
Sugar, cane	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{12}$	1.588			
Tallow, beef ...		. 94	15	$27-38$	
mutton		. 94	15	32-41	
Tartaric acid	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{8}$	1.754		170	
Toluene	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{CH}_{3}$	. 822	0	-92	110.31
Xylene (o)	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$	. 863	20	- 28	142
(m)	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$	. 864	20	54	140
(p)	$\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right)_{2}$	. 861	20	15	138


	Melting points, ${ }^{\circ} \mathrm{C}$										
				Perce	lage	tal	econd	colum			
Metals	0	10	20	30	40	50	60	70	80	90	100
Pb Sn	327	295	276	262	240	220	190	185	200	216	232
Bi	327	290			179	145	126	168	205		271
Te	327	710	790	880	917	760	600	480	410	425	452
Ag	327	460	545	590	620	650	705	775	840	905	961
Na	327	360	420	400	370	330	290	250	200	130	97.5
Cu	327	870	920	925	945	950	955	985	1005	1020	1083
Sb	327	250	275	330	395	440	490	525	560	600	630
Al Sb	660	750	840	925	945	950	970	1000	1040	1010	630
Cu	660	630	600	560	540	580	610	755	930	1055	1083
Au	660	675	740	800	855	915	970	1025	1055	675	1063
Ag	660	625	615	600	590	580	575	570	650	750	961
Zn	660	640	620	600	580	560	530	510	475	425	419
Fe	660	860	1015	1110	1145	1145	1220	1315	1425	1500	1533
Sn	660	645	635	625	620	605	590	570	560	540	232
Sb Bi	631	610	590	575	555	540	520	470	405	330	271
Ag	631	595	570	545	520	500	505	545	680	850	961
Sn	631	600	570	525	480	430	395	350	310	255	232
Zn	631	555	510	540	570	565	540	525	510	470	419
Ni Sn	1453	1380	1290	1200	1235	1290	1305	1230	1060	800	232
Na Bi	97.5	425	520	590	645	690	720	730	715	570	271
Cd	97.5	125	185	245	285	325	330	340	360	390	321
Cd Ag	321	420	520	610	700	760	805	850	895	940	961
T1	321	300	285	270	262	258	245	230	210.	235	303
Zn	321	280	270	295	313	327	340	355	370	390	419
Au Cu	1063	910	890	895	905	925	975	1000	1025	1060	1083
Ag	1063	1062	1061	1058	1054	1049	1039	1025	1006	982	961
Pt	1063	1125	1190	1250	1320	1380	1455	1530	1610	1685	1769
K Na	63	17.5	-10	-3.5	5	11	26	41	58	77	97.5
Hg	63					90	110	135	162	265	
T1	63	133	165	188	205	215	220	240	280	305	303
CuNi	1083	1180	1240	1290	1320	1335	1380	1410	1430	1440	1453
Ag	1083	1035	990	945	910	870	830	788	814	875	961
Sn	1083	1005	890	755	725	680	630	580	530	440	232
Zn	1083	1040	995	930	900	880	820	780	700	580	419
Ag Zn	961	850	755	705	690	660	630	610	570	505	419
$\mathrm{Sn}^{\text {n }}$	961	870	750	630	550	495	450	420	375	300	232
Na Hg	97.5	90	80	70	60	45	22	55	95	215	

TABLE 123.-MELTING POINT ${ }^{\circ} \mathrm{C}$ OF LOW-MELTING-POINT ALLOYS *

	$\overbrace{}^{\text {Percent }}$									
Cadmium	10.8	10.2	14.8	13.1	6.2	7.1	6.7			
Tin	14.2	14.3	7.0	13.8	9.4	-	-			
Lead	24.9	25.1	26.0	24.3	34.4	39.7	43.4			
Bismuth		50.4	52.2	48.8	50.0	53.2	49.9			
Solidification at	$65.5^{\circ}$	$67.5^{\circ}$	$68.5^{\circ}$	$68.5^{\circ}$	$76.5^{\circ}$	$89.5{ }^{\circ}$	$95^{\circ}$			
					Perc					
Lead		25.8	25.0	43.0	33.3	10.7	50.0	35.8	20.0	70.9
Tin	15.5	19.8	15.0	14.0	33.3	23.1	33.0	52.1	60.0	9.1
Bismuth		54.4	60.0	43.0	33.3	66.2	17.0	12.1	20.0	20.0
Solidification at		$101^{\circ}$	$125^{\circ}$	$128^{\circ}$	$145^{\circ}$	$148^{\circ}$	$161^{\circ}$	$181^{\circ}$	$182^{\circ}$	$234^{\circ}$

[^62]Values are given, for the more important crystals, of the inversion temperature in ${ }^{\circ} \mathrm{C}$, the heat of inversion in $\mathrm{cal} / \mathrm{g}$ and the inversion volume change in $\mathrm{cm}^{3} / \mathrm{g}$. No monotropic inversions have been included.
$h_{1}$, inversion temperature on heating; m, metastable inversion temperature; e, estimated; g , gradual inversion (not to be confused with slow retarded inversions).


[^63]TABLE 124.-REVERSIBLE TRANSITIONS IN CRYSTALS (continued)

Substance	Phases	Transition $t^{\circ} \mathrm{C}$	Pressure atm	Transition heat $\mathrm{cal} / \mathrm{g}$	Transition volume change $\mathrm{cm}^{3} / \mathrm{g}$
$\mathrm{C}_{6} \mathrm{H}_{6}$ (Benzene)	I-II	$\{100$	11680	8.68	. 0105
	I-II	\{218	11680	$7.73{ }^{\circ}$	. $0132^{\text {e }}$
	L-I	\{ 5.4	1	30.2	. 1317
	L-I	\{218	11680	$33.25{ }^{\text {e }}$	. $0369{ }^{\text {e }}$
	L-II	218	11680	$25.5{ }^{\text {e }}$	. $0501{ }^{\text {e }}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ (Phenol)	L-I	$\{40.9$	$1 \frac{1}{1}$	29.8	. 0567
	L-I	(64	2015	24.8	. 0270
	L-II	64	2015	30	. 0825
	I-II	64	2015	5.2	. 0555
$\mathrm{CH}_{3} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{OH}$ (o.Cresol).	L-I	$\{30.8$	1	33.8	. 0838
		$\{103.2$	5900	34.2	. 0317
	L-II	103.2	5900	35	. 0555
	I-II	103.2	5900	. 8	. 0238
Camphor \%	I-II	87.1	1	. 25	. 00187
$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}$	I-II	-9	1	9.38	
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \mathrm{HNO}_{3}$		97.6			
CaSO.		1193			
$\mathrm{CaCO}^{\text {- }}$	I-II	970 h	high $\mathrm{CO}_{2}$		
$\mathrm{CaO} . \mathrm{SiO}_{2}$		$1190 \pm 10$		Ca. 10	
$2 \mathrm{CaO} . \mathrm{SiO}_{2}$		1420, 675			10\%, 675
Co ......	Curie point	$\sim 1100$	. . .	1.3	....
	I-II	1015			
	II-III	400			
CoO	....	$350 \pm 10$			
CoOH	. . .	223		11.8	
CsCl	...	460		8	
$\mathrm{CsClO}_{4}$	....	219	....	. . .	$\ldots$
$\mathrm{Cs}_{2} \mathrm{SO} 4$	....	660			
$\mathrm{CsNO}_{3}$		153.5	1	4.3	. 00405
$\mathrm{Cs}_{2} \mathrm{Ca}_{2}\left(\mathrm{SO}_{4}\right)_{3}$		722			....
$\mathrm{Cu}_{2} \mathrm{Br}_{2} \ldots \ldots$	I-II-III	390, 470			
$\mathrm{Cu}_{2} \mathrm{I}_{2}$	I-II-III	402, 440	1		
	II-III	200	9600	1.091	. 00485
	II-III	100	11560	. 948	. 00535
$\mathrm{Cu}_{2} \mathrm{~S}$		91	. . . .	5.6	
$\mathrm{Cu}_{2} \mathrm{Se}$		110	....	5.4	. . .
$\mathrm{Cu}_{2} \mathrm{Te}$$\mathrm{Fe} .$.		351, 387	. . .		....
	Curie point	730	. . .	$6.7 \pm$	. . .
	$\beta-\gamma$	920	. . .	$6.7 \pm$	. . .
	$\boldsymbol{\gamma} \boldsymbol{\delta}$	1400		2	
$\mathrm{Fe}_{3} \mathrm{O}_{4}$	Curie point	$570 \pm$			....
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	II-III	-163 to -148	....	2.25	. . . .
	I-II	$500 \pm$	....	....	. . .
		140	....		
FeS FeS 2	pyrite, marcasite		....	....	....
		80		....	.
$\mathrm{Fe}_{3} \mathrm{P}$		440	.	. . .	....
$\mathrm{FeTiO}_{3}$		215			
$\mathrm{HgI}_{2}$	red-yellow	127.5	...	1.3	. 00342
$\mathrm{Hg}_{2} \mathrm{I}_{2}$	green-yellow	. . .		. $5 \pm$	. . .
HgS ..................	$\left\{\begin{array}{l}\text { cinnabar } \\ \text { metacinnabar }\end{array}\right\}$	$386 \pm$			....
$\begin{aligned} & \mathrm{ICl}_{\mathrm{KOH}}^{\mathrm{KClO}_{3}} \end{aligned}$	ruby-brown				
	I-İI	248	5500	27.1	$\ldots$
	II-III	$P=5500$	+10.9t		
	$\Delta v_{i}=.02510$	$2.2 t \times 10^{-6} \Delta h_{1}$	¢ $=.165 \mathrm{a}$	$0^{\circ}, .281$	$200^{\circ}$
KClO		295 146.4		- 765	00095
$\mathrm{K}_{2} \mathrm{~S}$	I-II	$\left\{\begin{array}{l} 146.4 \\ t=146.4 \end{array}\right.$	$4+.0124 p$	. 765	. 00095
$\mathrm{KNO}_{3}$	I-II	$\{127.7$	1	10.5	. 00484
	I-II	$\{128$	81	10.3	. 0049
	I-III	128	81	5.6	. 0138
	II-III	$\{128$	81	4.7	. 0089
	I-III	$\{21.3$	2840	1.3	. 0156
	III-IV	21.3	2840	5.1	. 0284
	II-IV	21.3	2840	3.8	. 0440
MITHSONIAN PHYSICAL TABLES	(continucd)				

TABLE 124.-REVERSIBLE TRANSITIONS IN CRYSTALS (continued)

Substance	Phases	$\begin{gathered} \text { Transition } \\ t^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { Pressure } \\ \mathrm{atm} \end{gathered}$	Transition heat cal $/ \mathrm{g}$	$\begin{gathered} \text { Transition } \\ \text { volumee } \\ \text { change } \\ \mathrm{cm}^{\mathrm{a}} / \mathrm{g} \end{gathered}$
$\mathrm{K}_{2} \mathrm{SO}_{4}$		588		13	
KHSO4	I-II	$\{180.5$	17	. 71	. 00066
	1-11	$\{198.6$	1773	2.29	. 00197
	II-III	\{164.2	11	3.61	. 00566
	IT-II	$\{118.2$	2810	3.30	. 00570
	II-IV	$\{198.6$	1773	. 166	. 000113
	H-IV	\{118.2	2810	. 134	. 00110
	I-IV	198.6	1773	2.03	. 00310
	III-IV	118.2	2810	3.44	. 00680
$\mathrm{KPO}_{3}$		450	:...	....	....
$\mathrm{K}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	....	278	:...	....	....
$\mathrm{K}_{2} \mathrm{CO}_{3}$		410			
KCNS	....	143	1	3.10	. 00306
$\mathrm{K}^{\mathrm{K}} \mathrm{K}_{2} \mathrm{~Pb}\left(\mathrm{SO}_{4}\right)_{2}$	....	544	$\ldots$	....	....
	....	215			
${ }_{\text {K }} \mathrm{K}_{2} \mathrm{~K}_{2} \mathrm{CrO}_{2} \mathrm{O}_{4}$	....	666	$\ldots$	12.6	
	....	243		1.40	
$\mathrm{K}_{2} \mathrm{MoO}_{4}$	....	327, 454, 477	$\ldots$		
$\mathrm{K}_{2} \mathrm{WO}_{4}$	$\ldots$	388	....	8.2	
	....	575	$\ldots$	1.6	
$\mathrm{K}_{2} \mathrm{Ca}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	....	937	....	....	$\ldots$
$\mathrm{K}_{2} \mathrm{Sr}\left(\mathrm{SO}_{4}\right)_{3}$	$\ldots$	775	....	....	
KLiSO4	....	435			
$\mathrm{KNO}_{2}$	I-II	$\{122.3$	5000	11.7	. 0315
$\mathrm{K} \mathrm{O}\left(\mathrm{SiO}_{2}\right)_{2}$		290	100	...	
$2 \mathrm{~K}_{2} \mathrm{O}\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)\left(\mathrm{SiO}_{2}\right)_{4}{ }^{\text {a }}$	$\ldots$	714	....	...	
$\mathrm{LiClO}_{3} \ldots \ldots . . . . .$.	....	41.5, 99	....		
$\mathrm{Li}_{2} \mathrm{SO}_{4} \ldots \ldots \ldots \ldots .$.	....	580	$\ldots$	$55 \pm 1$	
$(\mathrm{MgO})_{8}\left(\mathrm{~B}_{3} \mathrm{O}_{3}\right)_{8} \mathrm{MgCl}$	....	266		1.8	
$\mathrm{MgO} . \mathrm{SiO}_{2}{ }^{\text {b }}$. $\ldots \ldots \ldots$	$\ldots$			$\ldots$	
Mn MnSO 4	$\ldots$	742,1191	$\ldots$	$\ldots$	
$\mathrm{MnO}_{2}$	....	-185 to -175		. 88	$\ldots$
MnO	....	-153 to -163		2.08	$\ldots$
$\mathrm{N}_{2}$	....	-237.6.	....	$1.9{ }^{\circ}$	
NH 4 Cl	I-II	-184.3	$\ldots$	$1{ }_{16} 3$	. 0985
$\mathrm{NH}_{4} \mathrm{Br}$		$-38^{\circ}$			
	I-II	137.8	1	7.78	. 0647
NH4	I-II	-42.5 ${ }^{\circ} \mathrm{l}$	1	4.80	. 0561
$\mathrm{NH}_{4} \mathrm{ClO}_{4}$		240			
NH.HSO4	I-II-III	126.2	1800	$\ldots$	
	II-III-IV	176.9	5480		
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{H}\left(\mathrm{SO}_{4}\right)_{2}$		134	....	....	
NH4CNS	I-II	120			
	II-III	87.7		10.36	. 0409
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	L-I	169.5	1	${ }_{12}^{12.9}$	
	I-II	$\left\{\begin{array}{l}125.5 \\ 186.7\end{array}\right.$	8730	12.6	. 00475
	I-VI	186.7	8730	12.3	. 00855
	II-VI	\{ 169.2	8870	. 27	. 00309
		186.7	8730	. 33	. 00380
	II-III	$\{84$	83		. 00758
		63.3	830	2.48	. 00925
	III-IV	$\left\{\begin{array}{l}32 \\ 63.3\end{array}\right.$	830	4.67	. 02135
		\{ 63.3	830	6.51	. 01210
	IT-IV	169.2	8870	11.84	. 01267
	IV-VI	169.2	8870	12.1	. 00958
	IV-V	-18	1	1.6	. 017
NaOH	....	300	....	24.7	....
$\mathrm{NaClO}_{4}$		308	$\ldots$	....	$\ldots$
$\mathrm{NaClO}_{3}$		248			
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	IV-III	185 241	.....	$\begin{array}{r} 8.6 \\ 15.5 \end{array}$	$\begin{aligned} & .0034 \\ & .0070 \end{aligned}$
(continued)					


Substance	Phases	Transition   $t^{\circ} \mathrm{C}$	$\underset{\text { atm }}{\substack{\text { Pressure }}}$	$\begin{gathered} \text { Transition } \\ \text { heat } \\ \text { cal } / \mathrm{g} \end{gathered}$	Transition change $\mathrm{cm}^{3} / \mathrm{g}$
$\mathrm{NaF} . \mathrm{Na}_{2} \mathrm{SO} 4$	....	105	....	....	....
$\mathrm{Na}_{2} \mathrm{CO}_{2} \ldots$	$\ldots$	430	$\ldots$		
$\mathrm{NaNO}_{3}$		$275{ }^{\circ}$		(8 $\pm 2$ )	(.0081)
$\mathrm{Na}_{2} \mathrm{AlF}_{0}$		568	....	59	
$\mathrm{Na}_{2} \mathrm{MoO}_{4}$		424, 585, 623	....		
$\mathrm{Na}_{2} \mathrm{WO}_{4}$	I-L	581.6	....	25.1	. 018
	II-I	588.8		3.3	. 00
	III-II	695.5		19.4	. 035
NaAlSiO 4	neph.-carn. carnegieite	$\begin{gathered} 1250 \\ 226,650-690 \end{gathered}$	$\cdots$	cal	.
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{\text {e }}$		-1988		cal	
Ni	Curie point	355	....	....	
$\mathrm{Ni}_{3} \mathrm{~S}_{2}$		545	....	....	
$\mathrm{Ni}_{6} \mathrm{As}_{3}$		970			
Oxygen	I-II	-229.5	$\ldots$	6.2	
	II-III	-249.5		. 75	
Phosphorus	L-I	$\left\{\begin{array}{l}44.2 \\ 196\end{array}\right.$	1	4.90	. 0193
		$\int^{196} 1$	6000	43.9	. 012846
	I-II	\{ 68.4	12000	55.2	. 00684
PbO	red-yellow	587	....		....
PbSO.	,	870	....	13.4	....
$\mathrm{PbCrO}_{4}$	....	707, 783	....	....	
PbWO.		877	.		
RbOH	$\ldots$	245	$\ldots$	16.8	
$\mathrm{RbClO}_{4}$	$\ldots$	279	....	....	$\ldots$
$\mathrm{Rb}_{2} \mathrm{SO}_{4}$	$\ldots$	653	$\ldots$	$\ldots$	
$\mathrm{Rb}_{2} \mathrm{Ca}_{2}\left(\mathrm{SO}_{4}\right)_{3}$		787,915	....	....	
RbLiSO4		142	$\ldots$	$\ldots$	
$\mathrm{RbNO}_{3}$	I-II	219			
	II-III	164.4	1	7.12	. 00688
		218.6	5810	5.93	. 00434
RbCl	...	50	5525	....	....
RbBr	....	50	4925	....	....
RbI		50	4050		
Sulphur	1-II	95.5	1	2.7	$\ldots$
	L-I-II	155	1410	....	
$\mathrm{Sb}_{2} \mathrm{O}_{3}$	rhomb.-reg.	570	....	$\ldots$	$\ldots$
$\mathrm{SbCl}_{3} \mathrm{SiO}_{3}$	I-II-III	65, 69.5	$\ldots$		
	I-II	573	....	2.6	$\ldots$
	I-II	$215{ }^{\text {n }}$	....	2.7	
$\mathrm{SiO}_{2}{ }^{\wedge}$	II-IIII	$150{ }^{\text {n }}$	$\ldots$	. 63	
$\mathrm{SiO}_{2}$	e, ${ }^{\text {a }}$	867	$\ldots$	$8.7{ }^{\circ}$	....
	0,1	1250		$25^{\circ}$	
	A, 1	1470	$\ldots$	$7.5{ }^{\text {e }}$	
Sn	$\ldots$	161		. 2	small
	....	18	$\ldots$	4.4	
$\mathrm{SnO}_{2}$	....	430,540	....	....	
SrSO4	....	1152		....	
$\mathrm{SrCO}_{2}$	....	925	high $\mathrm{CO}_{2}$	....	....
T1C1O		226	.	...	
TII		173			
$\mathrm{TiNO}_{3}$	I-II	144.6	1	2.86	. 00244
	II-III	75	1	. 89	. 00073
Tl picrate	....	44	....		. 018
T1	....	230	....	. $3 \pm$	
$\mathrm{TiBr}_{4}$	....	-15	$\ldots$	...	....
$\mathrm{W}_{2} \mathrm{C}$	.	2400			
ZnS ${ }^{\text {a }}$		1020	....	$\ldots$	
$\mathrm{ZrO}_{2}$	....	ca 1000	....	$\ldots$	$\ldots$

[^64]TABLE 125．－TRANSFORMATION AND MELTING TEMPERATURES OF LIME－ ALUMINA－SILICA COMPOUNDS AND EUTECTIC MIXTURES＊

Percent					Transformation				
Substance		CaO	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{SiO}_{2}$					Temp．${ }^{\circ} \mathrm{C}$
$\mathrm{CaSiO}_{3}$		48.2	－	51.8	Melting $\dagger$				$1540 \pm 2$
$\mathrm{CaSiO}_{3}$		48.2	－	51.8	$\alpha$ to $\beta$ and reverse				$1200 \pm 2$
$\mathrm{Ca}_{2} \mathrm{SiO}_{4}$		65.	－	35.	Mclting ．．．．．．．．．				$2130 \pm 10$
		65.	－	35.	$\gamma$ to $\beta$ and reverse				675士5
		65.	－	35.	$\beta$ to $a$ and reverse				$1420 \pm 2$
$\mathrm{Ca}_{3} \mathrm{Si}_{2} \mathrm{O}_{7}$		58.2	－	41.8	Dissociation into C	$\mathrm{O}_{4}$ an	nd liqu	uid．．	$1475 \pm 5$
$\mathrm{Ca}_{3} \mathrm{SiO}_{5}$		73.6	－	26.4	Dissociation into Ca	$\mathrm{SiO}_{4}$	and C	aO．．	$1900 \pm 5$
$\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{0}$		62.2	37.8	－	Dissociation into Ca	and	liquid		1535土5
$\mathrm{Ca}_{5} \mathrm{Al}_{6} \mathrm{O}_{14}$		47.8	52.2	－	Melting ．．．．．．．．．．				$1455 \pm 5$
$\mathrm{CaAl}_{2} \mathrm{O}_{4}$		35.4	64.6	－	Melting				$1600 \pm 5$
$\mathrm{Ca}_{3} \mathrm{Al}_{10} \mathrm{O}_{18}$		24.8	75.2	－	Melting				$1720 \pm 10$
$\mathrm{Al}_{2} \mathrm{SiO}_{5}$		8	62.8	37.1	Melting				$1816 \pm 10$
$\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$		20.1	36.6	43.3	Melting				$1550 \pm 2$
$\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7}$		40.8	37.2	22.0	Melting				$1590 \pm 2$
$\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{SiO}_{8}$		50.9	30.9	18.2	Dissociation into C and liquid	$\mathrm{O}_{4}+$	$\mathrm{a}_{2} \mathrm{Al}_{2}$	${ }_{2} \mathrm{SiO}_{7}$	$1335 \pm 5$
Crystalline phases	Eutectics Percent			Melting lemp． ${ }^{\circ} \mathrm{C}$	Eutectics Percent				Melting temp． ${ }^{\circ} \mathrm{C}$
		$\overbrace{\mathrm{Al}_{2} \mathrm{O}_{3}}$	$\mathrm{SiO}_{2}$		Crystalline phases				
$\mathrm{CaSiO}_{3}, \mathrm{SiO}_{2}$	37	－	63.	1436	$\mathrm{CaAl} \mathrm{Si}_{2} \mathrm{O}_{8}$				
$\left.\mathrm{Ca}, \mathrm{SiO}_{3} \mathrm{O}_{2}\right\}$	54.5		45.5	1455士	$\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7}$	38.	20.		1265
$\left.3 \mathrm{CaO}, 2 \mathrm{SiO}_{2}\right\}$	54.5	－	45.5	$1455 \pm$	$\mathrm{Ca}_{2} \mathrm{SiO}_{4}$				
$\left.\begin{array}{l} \mathrm{Ca}_{2} \mathrm{SiO}_{4} \\ \mathrm{CaO} . \end{array}\right\}$	67.5	－	32.5	2065士	$\left.\begin{array}{l} \mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8} \\ \mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7} \end{array}\right\}$				
$\mathrm{Al}_{2} \mathrm{SiO}_{5}, \mathrm{SiO}_{2}$	－	13.	87.		$\left.\begin{array}{l}\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7} \\ \mathrm{Al}_{2} \mathrm{O}_{3}\end{array}\right\}$				1380
$\mathrm{Al}_{2} \mathrm{SiO}_{5}, \mathrm{Al}_{2} \mathrm{O}_{3}$	－	64.	36.	1810	$\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ \}				
$\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$	34.1	18.6	47.3	1299	$\mathrm{CaAl}_{2} \mathrm{O}_{4}$	49.5	43.7	6.8	1335
$\mathrm{CaSiO}_{3},$	34.1	18.6	47.3	1299	$\mathrm{Ca}_{5} \mathrm{Al}_{8} \mathrm{O}_{14}$				
$\left.\begin{array}{l} \mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8} \\ \mathrm{SiO}_{2} \end{array}\right\}$	10.5	19.5	70.	1359					
$\left.\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right\}$									
$\left.\mathrm{SiO}_{2}, \mathrm{CaSiO}_{3}\right\}$	23.2	14.8	62.	1165					
$\left.\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7}\right\}$	49.6	23.7	26.7	1545		tuple	poin		
$\left.\mathrm{Ca}_{2} \mathrm{SiO}_{4}\right\}$	49.6	23.7	26.7	1545	$\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7}$				
$\left.\begin{array}{l} \mathrm{Al}_{2} \mathrm{O}_{3} \\ \mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8} \end{array}\right\}$	19.3	39.3	41.4	1547	$\begin{aligned} & \mathrm{Ca}_{3} \mathrm{Si}_{2} \mathrm{O}_{7} \\ & \mathrm{Ca}_{2} \mathrm{SiO}_{4} \end{aligned}$		11.9	39.9	1335
$\left.\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right\}$	9.8	19.8	70.4	1345	$\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7}$				
$\left.\mathrm{Al}_{2} \mathrm{SiO}_{3}, \mathrm{SiO}_{2}\right\}$	9.8	19.8	70.4	1345	$\mathrm{Ca}_{2} \mathrm{SiO}_{4}$	48.3	42.	9.7	1380
$\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7}$	35.	50.8	14.2	1552	$\mathrm{CaAl}_{2} \mathrm{O}_{4}$				
$\mathrm{Ca}_{3} \mathrm{Al}_{10} \mathrm{O}_{18}{ }^{8}$	35.	50.8	14.2	1552	$\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$				
$\left.\begin{array}{l} \mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7} \\ \mathrm{CaAl}_{2} \mathrm{O}_{4} \end{array}\right\}$	37.8	52.9	9.3	1512	$\mathrm{Al}_{2} \mathrm{O}_{3}$   $\mathrm{Al}_{2} \mathrm{SiO}_{5}$		36.5	47.9	1512
$\begin{aligned} & \mathrm{CaAl}_{2} \mathrm{O}_{4} \\ & \mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7} \end{aligned}$	37.8	52.9	9.3	1512	$\begin{aligned} & \mathrm{Al}_{2} \mathrm{SiO}_{5} \\ & \mathrm{Ca}_{3} \mathrm{Al}_{10} \mathrm{O}_{18} \end{aligned}$				
$\mathrm{CaAl}_{2} \mathrm{O}_{4}$	37.5	53.2	9.3	1505	$\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7}$	31.2	44.5	24.3	1475
$\mathrm{Ca}_{3} \mathrm{Al}_{10} \mathrm{O}_{18}$					$\mathrm{Al}_{2} \mathrm{O}_{3}$				
$\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$	30.2	36.8	33.	1385					
$\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7}$									
$\left.\begin{array}{l} \mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7} \\ \mathrm{Ca}_{3} \mathrm{Si}_{2} \mathrm{O}_{7} \end{array}\right\}$	47.2	11.8	41.	1310					
$\mathrm{CaSiO}_{3}$				1310		druple	poin		
$\left.\begin{array}{l} \mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7} \\ \mathrm{CaSiO}_{3} \end{array}\right\}$	45.7	13.2	41.1	1316	$\left.\begin{array}{l} 3 \mathrm{CaO} .2 \mathrm{SiO}_{2} \\ 2 \mathrm{CaO} . \mathrm{SiO}_{2} \end{array}\right\}$	55.5	－	44.5	1475

[^65]
## TABLE 126.—LOWERING OF FREEZING POINTS BY SALTS IN SOLUTION

In the first column is given the number of gram-molecules (anhydrous) dissolved in 1000 $g$ of water; the second contains the molecular lowering of the freezing point ; the freezing point depression is the product of these two columns. After the chemical formula is given the molecular weight. Temperatures in ${ }^{\circ} \mathrm{C}$.


TABLE 126.-LOWERING OF FREEZING POINTS BY SALTS IN SOLUTION (concluded)


## TABLE 127.-RISE OF BOILING POINT PRODUCED BY SALTS DISSOLVED IN WATER

This tables gives the number of g of the salt which, when dissolved in 100 g of water, will raise the boiling point by the amount stated in the headings of the different columns. The pressure is supposed to be 76 cmHg .


Column 1 gives the name of the principal refrigerating substance, $A$ the proportion of that substance, $B$ the proportion of a second substance named in the column, $C$ the proportion of a third substance, $D$ the temperature of the substances before mixture, $E$ the temperature of the mixture, $F$ the lowering of temperature, $G$ the temperature when all snow is melted, when snow is used, and $H$ the amount of heat absorbed in heat units (calories when $A$ is grams). Temperatures are in ${ }^{\circ} \mathrm{C}$.


[^66](For automobile radiators, etc.)


* This table was prepared from data furnished by F. G. Church, of the National Carbon Co., and A. J. Kathman, of Procter \& Gamble Co. † Glycerine and ethylene glycol are practically nonvolatile. All types must be suitably inhibited to prevent cooling-system corrosion. Commercial antifreeze solutions based on ethylene glycol (Prestone) and on glycerine (Zerex) are in use at the present time.


## TABLES 130-141.—HEAT FLOW AND THERMAL CONDUCTIVITY

TABLE 130.-CONVERSION FACTORS BETWEEN UNITS OF HEAT FLOW


TABLE 131.-THERMAL CONDUCTIVITY OF VARIOUS SUBSTANCES
Part 1.-Various Substances

Substance, temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} k_{1} \\ \mathrm{cgs} \end{gathered}$	Suhstance temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} k, \\ c g s \end{gathered}$	Substance   temperature ${ }^{\circ} \mathrm{C}$	$\begin{gathered} k, \\ c g s \end{gathered}$		
Aniline BP 183, - 160..	. 000112	Lime	. 00029	Quartz $\perp$ to axis, -190.	. 0586		
Carbon, gas	. 010	Mica	. 0018	"t 10	. 0173		
Carbon, graphite	. 012	Flagstone $\perp$ to c'eavare.	. 0063	" , 100	. 0133		
Carborundum	. 00050	Micaceous $\\|$ to cleavage.	. 0044	Quartz \\| to axis, 0	. 0325		
Concrete, cinder	. 00022	Naphthalene MP -160	. 0013	Rock salt, 0. Rock salt, 30	.0167 .0150		
Diatomaceous earth	. 00013	Naphthalene MP 79	. 00081	Rubber, vulcanized,			
Earth's crust	. 004	Naphthol- $\beta$ MP 122,		-160	. 00033		
Fire-hrick	. 00028	-160	. 00068	Rubher, 0	. 00037		
Fluorite, -190	. 093	Naphthol, 0	. 00062	Ruhber, para	. 00045		
Fluorite, 0	. 025	Nitrophenol MP 114,		Sawdust ...	. 00012		
Glycerine, - 160	. 00077	-160........	. 00106	Snow, fresh, dens.=.11.	. 00026		
Iceland spar, -190.	. 038	Nitrophenol. 0	. 00065	Vaseline, 20	. 00022		
Iceland spar, 0.	. 0103	Paraffin MP 54, -160	.00062	Vulcanite	. 00087		

Part 2.-Rocks ${ }^{45}$

${ }^{45}$ Birch, Francis, Handhook of physical constants, Geological Society of America, 1942. Used by permission.

TABLE 132.-THERMAL CONDUCTIVITY OF WATER AND SALT SOLUTIONS

Substance ${ }^{\circ} \mathrm{C}$	$\begin{gathered} k t \\ c \mathrm{cgs} \end{gathered}$	Solution in water	Density	${ }^{\circ} \mathrm{C}$	$\begin{gathered} k g \\ \mathrm{cgs} \end{gathered}$	Solution in water	Density	${ }^{\circ} \mathrm{C}$	$\begin{gathered} k t \\ \mathrm{cgs} \end{gathered}$
$\int 0$	. 00150	CuSO 4	1.160	4.4	. 00118	$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.054	20.5	. 00126
Water 11	. 00147	KCl	1.026	13.	. 00116	-6	1.180	21.	. 00130
Water $\left\{\begin{array}{l}115 \\ 25\end{array}\right.$	. 00136	NaCl	1.178	4.4	. 00115	$\mathrm{ZnSO}_{4}$	1.134	4.5	. 00118
20	. 00143	"	-	26.3	. 00135	${ }^{4}$	1.136	4.5	. 00115

TABLE 133.-CONVERSION FACTORS BETWEEN UNITS OF HEAT FLOW FOR DIFFERENT GRADIENTS

$\frac{\mathrm{cal}}{\mathrm{sec} \mathrm{cm}}{ }^{2}{ }^{\text {cm }}{ }^{\text {c }}$	$\frac{\text { watts }}{\mathrm{cm}^{2}} \frac{\mathrm{~cm}}{{ }^{\circ} \mathrm{C}}$	$\frac{\left.\mathrm{kg} \mathrm{cal}_{\mathrm{hr}} \frac{\mathrm{~m}}{\mathrm{o}^{\mathrm{C}}}\right)}{}$	$\frac{\text { Btu }}{\mathrm{ft}^{2} \mathrm{hr}} \frac{\mathrm{ft}}{{ }^{\circ} \mathrm{F}}$	$\frac{\mathrm{hp}}{\mathrm{ft}^{2}} \frac{\mathrm{in}}{{ }^{\circ} \mathrm{C}}$	$\frac{\mathrm{hp}}{\mathrm{ft}^{2}} \frac{\mathrm{ft}}{{ }^{\mathrm{F}}}$	$\frac{h p}{f^{2}} \frac{i n}{\sigma_{F}}$	$\frac{\text { watts }}{\text { in. }^{2}} \frac{\text { in. }}{{ }^{\circ} \mathrm{C}}$
$1 \frac{\mathrm{cal}}{\mathrm{sec} \mathrm{cm}}{ }^{2} \frac{\mathrm{~cm}}{{ }^{\circ} \mathrm{C}}=1$.	4.185	360	241.9	2.053	$9.503 \times 10^{-2}$	1.141	10.63
$1 \frac{\text { watts }}{\mathrm{cm}^{2}} \frac{\mathrm{~cm}}{{ }^{\circ} \mathrm{C}}=.2390$	1.	86.02	57.78	. 4907	$2.271 \times 10^{-2}$	. 2727	2.540
$1 \frac{\mathrm{~kg} \mathrm{cal}}{\mathrm{hr} \mathrm{m}^{2}} \frac{\mathrm{~m}}{{ }^{\circ} \mathrm{C}}=2.778 \times 10^{-8}$	$1.163 \times 10^{-2}$	1.	$6.720 \times 10^{-1}$	$5.703 \times 10^{-8}$	$2.640 \times 10^{-6}$	$3.170 \times 10^{-8}$	$2.953 \times 10^{-2}$
$1 \quad \frac{\mathrm{Btu}}{\mathrm{ft}^{2} \mathrm{hr}} \frac{\mathrm{ft}}{{ }^{\circ} \mathrm{F}}=4.134 \times 10^{-3}$	$1.730 \times 10^{-2}$	1.488	1.	$8.487 \times 10^{-8}$	$3.929 \times 10^{-4}$	$4.717 \times 10^{-8}$	4.394
$1 \quad \frac{\mathrm{hp}}{\mathrm{ft}^{2}} \frac{\mathrm{in} .}{{ }^{\circ} \mathrm{C}}=.4871$	2.039	175.4	117.8	1.	$4.629 \times 10^{-2}$	. 5558	5.178
$1 \quad \frac{\mathrm{hp}}{\mathrm{ft}^{2}} \frac{\mathrm{ft}}{{ }^{\circ} \mathrm{F}}=10.52$	44.03	3787.	2546.	21.60	1.	12.00	111.8
$1 \frac{\mathrm{hp}}{\mathrm{ft}^{2}}{ }^{\circ} \mathrm{in} \mathrm{F}=.8764$	3.668	315.5	212.0	1.8	$8.333 \times 10^{-2}$	1.	9.316
$1 \frac{\text { watts }}{\mathrm{in}^{2}{ }^{2}} \frac{\mathrm{in} .}{{ }^{\circ} \mathrm{C}}=9.407 \times 10^{-2}$	. 3937	33.87	22.76	. 1931	$8.939 \times 10^{-8}$	. 1073	1.

## 138 TABLE 134.-THERMAL CONDUCTIVITY, METALS AND ALLOYS

The coefficient $k$ is the quantity of heat in small calories which is transmitted per second through a plate one centimeter thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is $1^{\circ} \mathrm{C}$. The coefficient $k$ is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_{t}=k_{0}\left[1+a\left(t-t_{0}\right)\right]$. $k_{0}$ is the conductivity at $t_{0}$, the lower temperature of the bracketed pairs in the table, $k_{t}$ that at temperature $t$, and $a$ is a constant. $k_{t}$ in g -cal per degree $C$ per sec across $\mathrm{cm}^{3}=0.239 \times k_{t}$ in watts per degree $C$ per sec across $\mathrm{cm}^{3}$.

Substance	$t^{\circ} \mathrm{C}$	$\begin{gathered} k t \\ \mathrm{cgs} \end{gathered}$	a	Substance	$t^{\circ} \mathrm{C}$	$\begin{gathered} k, \\ \mathrm{cgs} \end{gathered}$	a
Aluminum	-190	497		Mercury	0	. 0148 \}	
	30	. 497	$+.0030$		50	. 0189 \}	$+.0055$
."	76.4	. 550		Molybdenum	17	. 346	-. 0001
Antimony	100	. 0442 \}	-. 00104	Nickel	-160	$.129$	
Bismuth .	$\begin{array}{r} 100 \\ -186 \end{array}$	$\begin{aligned} & .0396\} \\ & .025 \end{aligned}$	-. 00104	"	18 0	.1420   .125	
Bismuth	$\begin{array}{r} -186 \\ 18 \end{array}$	. 025	. 0021	"	100	. 13885	$-.00032$
"........	100	. 0161 \}	-. 0021	"	200	. 1325 \}	-. 00095
Brass	-160	. 181		"	700	. 0669	-. 0009
"، yellow.....	17	. 260		"	1000 1200	$.064\}$	$-.00047$
yellow	0	. 246	+.0024 +.0015	Palladium	18	. 1683	
Cadmium, pure	-160	. 239			100	. 182	+.0010
	18	. 2222 \}	-. 00038	Platinum	18	$\left.\begin{array}{l} .1664 \\ .1733 \end{array}\right\}$	$+.00051$
ren	100	. 215	-. 00038	Pt 10\% Ir	17	. 074	$+.0002$
$\begin{aligned} & \text { Constantan } \\ & (60 \mathrm{Cu}+40 \dddot{\mathrm{Ni}}) . . \end{aligned}$	$\begin{array}{r} 18 \\ 100 \end{array}$	$\left.\begin{array}{l} .0540 \\ .0640 \end{array}\right\}$	$+.00227$	$\mathrm{Pt}^{\text {Pt }} 10 \% \mathrm{Rh}$	17	. 072	+. 0002
Copper,* pure ...	-160	. 1.079	-	Platinoid	18	. 060	
	18	. 918 \}	-. 00013	Potassium	57.4	. 216	-. 0013
" " ....	100	. 908 )	-.00013	Rhodium	17	. 210	-. 0010
German silver	0	. 070	$+.0027$	Silver, pure	-160	. 998	
Gold	-190	. 793	$-.00007$	.	18	1.006	-. 00017
Graphite	17 17	. 7035	$+.0003$	Sodium		.992 .321	-.00017
Iridium	17	. 141	$-.0005$		88.1	. 288 \}	-. 0012
Iron,t pure	18	. 161$\}$		Steel	18	. 110	-
"', "	100	. 151	. 0008	Tantalum	17	. 130	-. 0001
Iron, wrought	-160	. 152	-	"	1700	. 174	-
Iron, polycrystalline		173		"	1900 2100	. 186	$+.00032$
polycrystaline..   Iron,				Tin		. 155	-. 00069
polycrystalline . .	100	. 163	-. 0008		-100	.145	-. 00069
Iron, polycrystalline. .	200	. 147	-. 0008	Tungsten	-160 17 1600	. 192	-. 0001
Iron, polycrystalline . .	800			"	1600 2000	. 272 \}	$+.00023$
Iron, steel, 1\% ¢ C. .	18	. 108 \}	-. 0001	"	2400	. 3134	$+.00016$
	100 -160	. 1073	-.0001	Wood's alloy	280	. 319	-
lead, pure		.092 .083		Zinc, pure ..		. 278	-
	100	. 081 \}	-. 0001	Zinc, polycrystalli		$.2807$	
Magnesium	$\left.\begin{array}{l} 0 \text { to } \\ 100 \end{array}\right\}$	. 376	-	Zinc,			-
Manganin	-160	. 035	-	Zinc,			
" (84 Cu +4	18	. 0519	$+.0026$	polycrystallin	400	. 231	
Ni 12 Mn ).	100	. 0630 )	$+.0026$	Zinc, liquid	500	. 144	-

[^67]TABLE 135.-THERMAL CONDUCTIVITY OF INSULATING MATERIALS**

			Conductivity	
Material	$\begin{gathered} \text { Density } \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$	$t^{\circ} \mathrm{C}$	$\overbrace{\substack{\text { joule } \\\left(\mathrm{cm}^{2} \text { sec } \\ \mathrm{cm}\right)}}{ }^{\circ} \mathrm{C} /$	$\underset{\substack{\mathrm{cal} / \mathrm{cm} /{ }^{2} \mathrm{sec} \\(\mathrm{~cm})}}{ }{ }^{\circ} \mathrm{C} /$
Air, 76 cmHg .	. 00129	0	. 00023	. 000055
Asbestos wool	. 40	- 100	. 00068	. 000162
". ${ }^{\text {a }}$	. 40	0	. 00090	. 000215
"	. 40	$+100$	. 00101	. 00024
" with 85 percent MgO	. 3	30	. 00075	. 000179
Brick, very porous, dry...........	$.71$	20	. 00174	. 00042
". machine-made, dry moist, $1.2 \%$	$1.54$	0	. 00038	. 000091
vol. ............................		50	. 00096	. 00023
Calorox, fluffy mineral matter...	. 064	30	. 00032	. 000076
Celluloid, white	1.4	30	. 00021	. 000050
Cement mortar	2.0	90	. 0055	. 0013
Chalk			. 0092	. 0022
Charcoal	. 18	20	. 00055	. 00013
Coke dust	1.0	20	. 0015	. 00036
Concrete	1.6	0	. 008	. 002
Cork	. 05	0	. 00032	. 000076
	. 05	100	. 00041	. 000098
"	. 35	0	. 00061	. 000146
" $\quad .$. ........................	. 35	100	. 00079	. 000189
Cotton, tightly packed.	. 08	- 150	. 00038	. 000091
	. 08	0 +150	. 000056	. 0000133
" " "	. 08	+150	. 00076	. 00018
Cotton wool tightly packed.....	. 08	30	. 00042	. 00010
Diatomite (binders may increase	. 20	0	. 00052	. 00012
Diatomite, ditto ..............	. 20	400	. 00094	. 00022
	. 50	0	. 00086	. 00021
" ${ }^{\text {" }}$	. 50	400	. 00157	. 00037
Ebonite	1.19	-190	. 00138	. 00033
"	1.19	- 78	. 00157	. 00038
	1.19	0	. 00160	. 00038
Felt, flax fibers	. 27	30 30	. 00047	. 000011
wool	. 15	40	. 00063	. 000151
"	. 33	30	. 00052	. 000124
Flannel ....				. 000023
Fuller's earth	. 53	30	. 00101	. 00024
Glass, lead .		15	. 0060	. 00143
" soda	2.59	20	. 0072	. 00172
" wool	2.59 .22	100 50	. 0076	.00182 .000100
"	. 22	100	. 00050	. 000120
" "، .....................	. 22	200	. 00065	. 000155
de 100 mes	. 22	300	. 00081	. 000195
Graphite, 100 mesh.	. 48	40	. 0018	. 00044
"، 20 to 40 mesh.	. 42	40 40	. 00388	. 00093
Horsehair, compressed .	. 17	20	. 00051	. 000122
Ice	. 92	0	. 022	. 0053
Leather, chamois		85	. 00063	. 000151
" cowhide		85	. 00176	. 000421
" sole	1.0	30	. 0016	. 00038
Linen		20	. 00086	. 00021
Linoleum, cork	. 54	20	. 00080	. 000191
Mica, average ...................		50	. 0050	. 0012

[^68](continued)

TABLE 135.-THERMAL CONDUCTIVITY OF INSULATING MATERIALS (continued)


## TABLE 135.-THERMAL CONDUCTIVITY OF INSULATING MATERIALS (concluded)

Substance	$\underset{\substack{\text { Density } \\ \mathrm{g} / \mathrm{cm}^{3}}}{ }$	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & k t \\ & \mathrm{cgs} \end{aligned}$	Substance	kg cgs
Asbestos fiber	. 201	500	. 00019	Asbestos paper	. 00043
85\% magnesia asbestos	. 216	$\left\{\begin{array}{l}100 \\ 500\end{array}\right.$	. 000016	Blotting paper	. 00015
Cotton	. 021	100	. 000111	Portland cement	. 0020
	. 101		. 000071	Ebonite, $t, 49^{\circ}$	. 00037
Eiderdown	. 0021	150	. 00015	Glass, mean	. 002
	. 109		. 000046	Ice .....	. 0057
Lampblack, Cabot number	. 193	$\left\{\begin{array}{l}100 \\ 500\end{array}\right.$	. 0000074	Leather, cow-hide	. 000042
Quartz, mesh 200.	1.05	500	. 00024	Linen	. 00021
	. 093	$\{200$	. 000091	Silk.	. 000095
Poplox, popped N	. 093	(500	. 000160	Caen stone, limes	$.0043$



TABLE 136.-THERMAL CONDUCTIVITY OF VARIOUS SUBSTANCES ${ }^{4 n}$


[^69]TABLE 137.-THERMAL CONDUCTIVITY OF ORGANIC MATERIALS AND WATER
Part 1

Substance	${ }^{\circ} \mathrm{C}$	$\begin{gathered} k t \\ c g s \end{gathered}$	Substance	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & k t \\ & \mathrm{cgs} \end{aligned}$	Substance	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & k t \\ & \mathrm{cgs} \end{aligned}$
Acetic acid	9-15	.0,472	Carbon disulfide	0	.03387	Oils: olive	-	. 03395
Alcohols: methyl.	11	.0:352	Chloroform	9-15	. 03288	castor		. 03425
Alhyl..	11	. $0: 346$	Ether	9-15	. 03303	Toluene	0	. 03349
amyl.	0	.0:345	Glycerine	25	. 0368	Vaseline	25	. 0344
Aniline	0	.03434	Oils: petroleum	13	.03355	Xylene	0	. 03343
Benzene	9-15	.0:333	turpentine	13	. 03325			

Part 2*

Substance	${ }^{\text {Temp. }}$	Conductivity at 1 atm watt $\mathrm{cm}^{-1}$ $\mathrm{deg}^{-1}$	Substance	${ }^{\mathrm{Temp}}{ }^{\circ} \mathrm{C} .$	Conductivity at 1 atm watt $\mathrm{cm}^{-1}$ $\mathrm{deg}^{-1}$	Substance	$\stackrel{\text { Temp. }}{{ }^{\circ} \mathrm{C}}$	Conductivity at 1 atm watt $\mathrm{cm}^{-1}$ $\mathrm{deg}^{-1}$
Normal pentane.		$\begin{aligned} & 1.347 \times 10^{-8} \\ & 1.285 \end{aligned}$	Carbon disulfide.		$\begin{aligned} & 1.599 \times 10^{-3} \\ & 1.515 \end{aligned}$	Water	$\begin{aligned} & 30 \\ & 75 \end{aligned}$	$\begin{aligned} & 6.026 \times 10^{-3} \\ & 6.445 \end{aligned}$
Sulfuric ether..	$\begin{aligned} & 30 \\ & 75 \end{aligned}$	$\begin{aligned} & 1.377 \\ & 1.347 \end{aligned}$	Petroleum ether.	30 75	$\begin{aligned} & 1.306 \\ & 1.264 \end{aligned}$	Water	0 10 20	$\begin{aligned} & 5.524 \\ & 5.692 \\ & 5.859 \end{aligned}$
Acetone .......	30 75	$\begin{aligned} & 1.795 \\ & 1.687 \end{aligned}$	Kerosene . . .	30 75	1.494 1.394		$\begin{aligned} & 30 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 70 \\ & 80 \end{aligned}$	$\begin{aligned} & 1.026 \\ & 6.194 \\ & 6.361 \\ & 6.529 \\ & 6.696 \\ & 6.863 \end{aligned}$

* For reference, see footnote 45 , p. 136.


## TABLE 138.-THERMAL CONDUCTIVITY OF GASES

The conductivity of gases, $k_{t}=\frac{1}{4}(9 \gamma-5) \mu C_{v}$, where $\gamma$ is the ratio of the specific heats, $C_{p} / C_{v}$, and $\mu$ is the viscosity coefficient (Jeans, Dynamical theory of gases, 1916). Theoretically $k_{t}$ should be independent of the density and has been found to be so by Kundt and Warburg and others within a wide range of pressure below one atm. It increases with the temperature.

Gas	$t^{\circ} \mathrm{C}$	$\begin{gathered} k t \\ c g s \end{gathered}$	Gas	$t^{\circ} \mathrm{C}$	$\begin{gathered} k_{t} \\ c g s \end{gathered}$	Gas	$t^{\circ} \mathrm{C}$	$\begin{aligned} & k t \\ & \mathrm{kgs} \end{aligned}$
人ir*	-191	. 0000180	CO	100	. 0000496	Hg	203	. 0000185
'،	0	. 0000566	$\mathrm{C}_{3} \mathrm{H}_{4}$	0	. 0000395	$\mathrm{N}_{3}$	-191	. 0000183
"	100	. 0000719	He	-193	. 000146			. 0000568
A	-183	. 0000142		0	. 000344	"	100	. 0000718
	0	. 0000388	"	100	. 000398	$\mathrm{O}_{2}$	-191	. 0000172
"	100	. 0000509	$\mathrm{H}_{2}$	-192	. 000133		0	. 0000570
CO	0	. 0000542		0	. 000416	"	100	. 0000743
CO	- 78	. 0000219	C	100	. 000499	NO	8	. 000046
	0	. 0000332	$\mathrm{CH}_{4}$	0	. 0000720	$\mathrm{N}_{2} \mathrm{O}$	0	. 0000353

[^70]The diffusivity of a substance $=h^{2}=k / c \rho$, where $k$ is the conductivity for heat, $c$ the specific heat and $\rho$ the density (Kelvin). The values are mostly for room temperatures, about $18^{\circ} \mathrm{C}$.

Material	Diffusivity	Material	Diffusivity
Aluminum	. 860	Coal	. 002
Antimony	. 135	Concrete (cinder)	. 0032
Bismuth	. 069	Concrete (stone)	. 0048
Brass (yellow)	. 339	Concrete (light slag)	. 006
Cadmium	467	Cork (ground)	. 0017
Copper	1.140	Ebonite	. 0010
Gold	1.209	Glass (ordinary)	. 0057
Iron (wrought, also	. 173	Granite	. 0127
Ifon (cast, also $1 \%$	. 121	Ice	. 0112
lead	. 245	Limestone	. 0081
Magnesium	. 932	Marble (white)	. 0097
Mercury	. 45	Paraffin	. 00098
Nickel	. 155	Rock material (earth aver.)	. 0118
Palladium	. 261	Rock material (crustal rocks)	. 0064
Platinum	. 243	Sandstone	. 0113
Silver	1.700	Snow (fresh)	. 0033
Tin	. 407	Soil (clay or sand, slightly d	. 005
Zinc	. 413	Soil (very dry).	. 0031
Air 1 atm	. 179	Water	. 0017
Asbestos (loose)	. 0025	Wood (pine, cross grain)	. 00068
Brick (average fire)	. 0052	Wood (pine with grain).	. 0023
Brick (average build	. 0044		

TABLE 140.-THERMAL CONDUCTIVITY—LIQUIDS, PRESSURE EFFECT ${ }^{47}$

No.*	Liquid	${ }^{\circ} \mathrm{C}$	Conduc. tivity at $0 \mathrm{~kg} / \mathrm{cm}^{2}$ (cgs	Conductivity relative to unity ( $0 \mathrm{~kg} / \mathrm{cm}^{2}$ ) as function of pressure in $\mathrm{kg} / \mathrm{cm}^{2}$							
				1000	2000	4000	6000	8000	10000	11000	12000
1	Methyl	30	. 000505	1.201	1.342	1.557	1.724	1.864	1.986	2.043	2.097
	alcohol	75	. 000493	1.212	1.365	1.601	1.785	1.939	2.072	2.133	2.191
2	Ethyl	30	. 000430	1.221	1.363	1.574	1.744	1.888	2.014	2.070	2.122
	alcohol	75	. 000416	1.233	1.400	1.650	1.845	2.007	2.152	2.217	2.278
3	Isopropyl	30	. 000367	1.205	1.352	1.570	1.743	1.894	2.028	2.091	2.150
	alcohol	75	. 000363	1.230	1.399	1.638	1.812	1.962	2.093	2.154	2.211
4	Normal butyl	30	. 000400	1.181	1.307	1.495	1.648	1.780	1.900	1.955	2.008
	alcohol . .	75	. 000391	1.218	1.358	1.559	1.720	1.859	1.985	2.043	2.099
5	Isoamyl	30	. 000354	1.184	1.320	1.524	1.686	1.828	1.955	2.013	2.069
	alcoho	75	. 0000348	1.207	1.348	1.557	1.724	1.868	1.998	2.063	2.126
6	Ether	30	. 000329	1.305	1.509	1.800	2.009	2.177	2.322	2.388	2.451
		75	. 000322	1.313	1.518	1.814	2.043	2.231	2.394	2.469	2.537
7	Acetone	30	. 000429	1.184	1.315	1.511	1.659	1.786	1.900	Fr	zes
		75	. 000403	1.181	1.325	1.554	1.738	1.891	2.024	2.083	2.137
8	Carbo	30	$.000382$	1.174	1.310	1.512	1.663	1.783	1.880	1.923	1.962
	bisulphide	75	$.000362$	1.208	1.366	1.607	1.789	1.935	2.054	2.107	2.154
9	Ethyl	30	. 000286	1.193	1.327	1.517	1.657	1.768	1.858	1.895	1.928
	bromide	75	. 000273	1.230	1.390	1.609	1.772	1.907	2.022	2.073	2.121
10	Ethyl	30	. 000265	1.125	1.232	1.394	1.509	1.592	1.662	1.694	1.724
	iodide	75	. 000261	1.148	1.265	1.442	1.570	1.671	1.757	1.799	1.837
11	Water	30	. 00144	1.058	1.113	1.210	1.293	1.366	1.428	1.456	Freez
		75	. 00154	1.065	1.123	1.225	1.308	1.379	1.445	1.476	1.506
12	Toluol	30	. 000364	1.159	1.286	1.470	1.604	1.716		(2.394 ${ }^{\dagger}$	
		75	. 000339	1.210	1.355	1.573	1.738	1.872	1.987	2.039	2.089
13	Normal	30	$.000322$	1.281	1.483	1.777	1.987	2.163	2.325	2.404	2.481
	pentane	$75$	$.000307$	1.319	1.534	1.855	2.112	2.335	2.543	2.642	2.740
14	Petroleum	$30$	$.000312$	1.266	1.460	1.752	1.970	2.143	2.279	2.333	2.379
	ether	$75$	$.000302$	1.268	1.466	1.780	2.026	2.232	2.409	2.488	2.561
15	Kerosene	75	. 000333	1.185	1.314	1.502	1.654	1.792	1.925	1.990	2.054

[^71]
## 144

TABLE 141.-THERMAL RESISTIVITIES AT $20^{\circ} \mathrm{C}$ EXPRESSED IN FOURIERS FOR A cm ${ }^{3}$

The fourier ${ }^{48}$ is defined as that thermal resistance that will transfer heat energy at the rate of 1 joule per sec ( 1 watt) for each degree (C) temperature difference between the terminal surfaces (equivalent roughly to a prism of Ag or Cu 4 cm long by $1 \mathrm{~cm}^{2}$ cross section).

Silver	. 239	Water ............ 170	Rubber * (over	
Copper	. 258	Mica* ( $\perp$ to	90\%)	700
Aluminum	. 49	laminations . ..... 200	Wood (Virginia	
Brass ( $30 \% \mathrm{Zn}$ )	. 93	Firebrick * ........ 200	pine across	
Iron	1.6	[Firebrick $25^{\circ} \mathrm{C}$	grain).	710
Nickel	1.7	to $\left.1000^{\circ} \mathrm{C}\right] \ldots . .$. . 90	Paper *	1000
Steel (1\% C)	2.1	Brick masonry * .... 250	Asbestos* (wool)	1100
Constantan	4.4	Leather * . . . . . . . . . 600	Cork*	2000
Mercury	12.0	Hydrogen .......... 600	Cotton batting	
[ Ice at $0^{\circ} \mathrm{C}$ ]	45	Hard rubber ....... 610	(loose) ...	2500
Glass*	133	Helium ............ 690	Wool (loose)	2500
Concrete*	140			4100
			Carbon dioxide	6700

[^72]TABLE 142.-EXPANSION OF THE ELEMENTS*
Part 1.-Coefficients of linear $\dagger$ thermal expansion of chemical elements (Polycrystalline)

Element	Temperature or temperature range ${ }^{\circ} \mathrm{C}$	Coefficient of linear thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$		Element	Temperature or temperature range ${ }^{\circ} \mathrm{C}$	Coefficient of linear thermal expansion $\times 10^{8}$ per ${ }^{\circ} \mathrm{C}$	
Aluminum	-191 to 0	18.0	1,3**	Gold	-190 to 16	13.1	1,5,
	+20 to 100	23.8			0 to 100	14.2	30,32
	20 to 300	25.7			0 to 400	14.9	
	20 to 600	28.7			0 to 700	15.8	
					0 to 900	16.5	
Antimony $\ddagger$	-190 to 20	8. to 10.	4,5,6				
	+20 to 100	8.4 to 11.0		Indium	-180 to 20	26.7	33
	$\begin{aligned} & 20 \text { to } 300 \\ & 20 \text { to } 500 \end{aligned}$	$\begin{aligned} & 9.2 \text { to } 11.4 \\ & 9.5 \text { to } 11.6 \end{aligned}$			+20 to 100	30.5	
Arsenic	40	5.6	7	Iridium	-183 to 19	5.7	5,34
		18.1 to 21.0	8		0 to 1000	7.9	
Barium	0 to 300	18.1 to 21.0	8		0 to 1700	8.7	
Beryllium	-120 to 0	8.1	9,10				
	+20 to 100	12.3		Iron	-182 to 0	9.1	1,35
	20 to 300 20 to 700	14.0 16.8			-100 to 0 0 to 20	10.4	30,36
	1200	23.7			20 to 100	12.1	
					20 to 300	13.4	
Bismuth $\ddagger$	-190 to 17	13. to 17.	5,11		20 to 600	14.7	
	- 15 to 100 $+\quad 75$ to 265	$13.4 \text { to } 14$			20 to 900	15.0	
Boron				Lead	-190 to 20	26.7	2,5,
	20 to 750	8.3	12		+20 to 100	29.2	37,38,
Cadmium	-220	20.6	13,4		20 to 200 20 to 300	30.0	39,40, 41,42
	$-160$	27.4			20 to 300	31.3	41,42
	$+\begin{aligned} & 10 \\ & 20\end{aligned}$ to 100	29.7 31.8		Lithium	-178	17.0	43,44
	20 to 100	31.8			- 98	36.3	
Calcium	-150	18.0	8,14,		- 3	45.7	
	- 50	20.9	15		0 to 95	56.	
	$+30$	22.5					
	20 to 100 0 to 300	25.2 22.0		Magnesium	-190 to 20 20 to 100	21.3 25.9	5,30, 32,39,
	0 to 300	22.0			20 to 100 20 to 300	25.9 28.0	32,39, 45,46,
Carbon ... Diamond	-180 to 0	. 4	16.17,		20 to 500	29.8	
	0 to 78	1.2	18				
	0 to 400	2.8		Manganese :			46,48
	0 to 750	4.5		Alpha phase.	-190 to 0	15.9	
Graphite	20 to 100	. 6 to 4.3		Alpha phase.	-183 to 0	17.6	
	20 to 400	1.3 to 4.8			0 to 20	22.3	
	20 to 800	1.8 to 5.3			0 to 100	22.8	
Chromium					0 to 300	25.2	
	$\begin{aligned} & -216 \text { to } 0 \\ & -100 \text { to } 0 \end{aligned}$	4.1 5.1	19,20	Beta phase..	-183 to 0	12.8 to 20.4	
	-ro to 100	5.7 to 8.3		Gamma phase.	0 to 20 -70 to 0	18.7 13.6	
	0 to 300	7.8 to 8.9		Gamma phase.	- 0 to 20	14.8	
	0 to 700	9.1 to 10.3					
Cobalt	20 to 100	12.4	21,22	Molybdenum \& .	-190 to 0	4.2	
	20 to 400	14.0			$\begin{array}{r} -100 \text { to } 0 \\ 20 \text { to } 100 \end{array}$	3.8 to 5.3	$\begin{aligned} & 46,49, \\ & 50,51 \end{aligned}$
Copper	-253 to 10	11.7			25 to 500	4.7 to 5.8	
	-191 to 16	14.1	26,27,		27 to 2127	7.2	52
	+25 to 100	16.8	28,29,	Neodymium	100 to 260	. 4	52
	25 to 300	17.8	30				
	0 to 500	18.2		Nickel	-253 to 10	8.1	
	0 to 1000	20.3			-192 to 16 0 to 100	10.0 13.1	$\begin{gathered} \text { 25,26,27, } \\ 46,53 \mathrm{a}, \end{gathered}$
Germanium	20 to 230	6.0	31		0 to 300	14.4	118
	230 to 450	7.3			25 to 600	15.5	
	450 to 840	7.5			25 to 900	16.3	

[^73]
## (continued)


(continued)

Part 2.-Coefficients of linear $\mathbb{I}$ thermal expansion of chemical elements (crystals)


If there is random orientation of the crystals in a polycrystalline element such as antimony or cadmium, the coefficient of linear expansion of the polycrystalline element may be computed from the following equation:

$$
a=\frac{1}{3}(a \|+2 a \perp)
$$

where $a \|$ is the coefficient of linear expansion of the crystal parallel to its axis, and $a \perp$ is the coefficient of linear expansion of the crystal in the direction perpendicular to its axis. (See Part 1 for determined coefficients of linear expansion of polycrystalline elements.)

Part 3.-Coefficients of cublcal thermal expansion of chemical elements


## Authorities

1. Nix and MacNair, 1941; 2. Nix and MacNair, 1942; 3. Hidnert, 1923; 4. Dorsey, 1907 ; 5. Grüneisen, 1910; 6. Hidnert, 1935; 7. Fizeau, 1869; 8. Cath and Steenis, 1936; 9. Hidnert and Sweeney, 1927; 10. Losana, 1939; 11. Jacobs and Goetz, 1937; 12. Dupuy \& Hackspill, 1933; 13. Grüneisen \& Goens, 1924; 14. Erfling, 1942; 15. Bastien, 1934; 16. Röntgen, 1912; 17. Joly, 1898; 18. Hidnert, 1934 ; 19. Erfling, 1939; 20. Hidnert, 1941; 21. Schulze, 1927; 22. Masumoto, 1931; 23. Hidnert and Krider, 1933; 24. Matthies, 1936; 25. Krupkowski, 1929; 26. Henning, 1907; 27. Aoyama and Ito, 1939; 28. Hidnert, 1922; 29. Dittenberger, 1902; 30. Esser and Eusterbrock, 1941 ; 31. Nitka, 1937; 32. Austin, 1932; 33. Hidnert and Blair, 1943; 34. Holborn and Valentiner, 1907; 35. Hidnert, 1942; 36. Souder and Hidnert, 1922; 37. Dorsey, 1908; 38. Lindemann, 1911; 39. Ebert, 1928; 40. Rauramo and Saarialho, 1911; 41. Friend and Vallance, 1924; 42. Hidnert and Sweeney, 1932; 43. Simon and Bergman, 1930; 44. Bridgman, 1936; 45. Hidnert and Sweeney, 1928; 46. Disch, 1921; 47. Schulze, 1921; 48. Erfling, 1940; 49. Schad and Hidnert, 1919; 50. Hidnert and Gero, 1924; 51. Worthing, 1926; 52. Jaeger, Bottema, and Rosenbohm, 1938; 53. Souder and Hidnert, 1922; 53a. Hidnert, 1930; 54. Scheel, 1907; 55. Holzmann, 1931; 56. Scheel and Heuse, 1907; 57. Hagan, 1911; 58. Valentiner and Wallot, 1915; 59. Sweeney, 1929; 60. Ebert, 1938; 61. Hume-Rothery and Lonsdale, 1945 ; 62. Bridgman, 1933; 63. Borelius and Paulson, 1946; 64. Schulze, 1930; 65. Keesom and Jansen, 1927; 66. Scheel, 1921; 67. Owen and Roberts, 1939; 68. Siegel and Quimby, 1938; 69. Hagan, 1883; 70. Hidnert, 1929; 71. Hidnert and Sweeney, 1933; 72. Kroll, 1939; 73. Grube and Vosskühler, 1934; 74. Bochvar and Maurakh, 1930; 75. Hidnert, 1943; 76. Greiner and Ellis, 1948;77. Adenstedt, 1949; 78. Hidnert and Sweeney, 1924; 79. Dodge, 1918; 80. Forsythe, 1927; 81. Worthing, 1917; 82. Souder and Hidnert, 1924; 83. Bauer and Sieglerschmidt, 1929; 84. Bridgman, 1924; 85. Kossolapow and Trapesnikow, 1936: 86. Roberts, 1924; 87. Goetz and Hergenrother, 1932; 88. McLennan and Monkman, 1929; 89. Shinoda, 1934; 90. Kossolapow and Trapesnikow, 1935; 91. Pierry, 1946; 92. Backhurst, 1922; 93. Frevel and Ott, 1935; 94. Shinoda, 1933; 95. Goens and Schmid, 1931; 96. Hill, 1935; 97. Grüneisen and Sckell, 1934; 98. Owen and Roberts, 1937; 99. Becker, 1931; 100. Straumanis, 1940; 101. Bridgman, 1925; 102. Ievens, Straumanis, and Karlsons, 1938; 103. Staker, 1942; 104. Owen and Iball, 1933: 105. Pfaff. 1859; 106. Uffelmann, 1930; 107. Krishnan, 1944; 108. Hack spill, 1913; 109. Klemm, 1931; 110. Richards and Boyer, 1921 ; 111. Dewar, 1902; 112. Sapper and Biltz, 1931; 113. Straumanis and Sauka, 1942; 114. Bernini and Cantoni, 1914; 115. Leduc, 1891; 116. Spring, 1881 ; 117. Griffiths and Griffiths, 1915; 118. Schad, 1927.

## TABLE 143.-COEFFICIENTS OF LINEAR THERMAL EXPANSION OF SOME ALLOYS *

Alloy $\dagger$	Temperature or tempera${ }^{\circ} \mathrm{C}$ ture	Coefficient $\ddagger$ of linear thermal ex. $\underset{\text { pansion }}{ } \times{ }^{\circ} \mathrm{C}{ }^{10^{6}}$	Authority
Aluminum-beryllium, 4.2 to 32.7 Be.......	$\begin{aligned} & 20 \text { to } 100 \\ & 20 \text { to } 500 \end{aligned}$	$\begin{aligned} & 22.4 \text { to } 17.8 \\ & 26.6 \text { to } 22.2 \end{aligned}$	1 **
Aluminum-copper, 99.9 $\mathrm{Cu} \ldots \ldots . . . . . . . . .$.		$\begin{aligned} & 22.0 \\ & 23.8 \\ & 19.7 \\ & 20.8 \end{aligned}$	2
	$\begin{aligned} & 20 \text { to } 100 \\ & 20 \text { to } 300 \\ & 20 \text { to } 100 \\ & 20 \text { to } 300 \end{aligned}$	$\begin{aligned} & 21.9 \\ & 23.7 \\ & 18.2 \\ & 19.5 \end{aligned}$	2
	$\begin{aligned} & 20 \text { to } 100 \\ & 20 \text { to } 300 \\ & 20 \text { t } 100 \\ & 20 \text { to } 300 \\ & 20 \text { to } 100 \\ & 20 \text { to } 300 \end{aligned}$	$\begin{aligned} & 22.2 \text { to } 19.4 \\ & 24.8 \text { to } 22.1 \\ & 18.5 \\ & 19.0 \\ & 14.7 \\ & 17.1 \end{aligned}$	3,2
Aluminum-zinc, 0 to 50 Zn .	20 to 100	23.6 to 26.5	4
Brass, 3 to 40 Zn ...	$\begin{aligned} & 25 \text { to } 100 \\ & 25 \text { to } 300 \end{aligned}$	$\begin{aligned} & 16.9 \text { to } 19.7 \\ & 17.7 \text { to } 21.2 \end{aligned}$	5
Bronze, 4.2 to 10.1 Sn.	$\begin{aligned} & 25 \text { to } 100 \\ & 25 \text { to } 300 \end{aligned}$	$\begin{aligned} & 17.1 \text { to } 17.8 \\ & 17.8 \text { to } 19.0 \end{aligned}$	5
Cast iron	$\begin{aligned} & 20 \text { to } 100 \\ & 20 \text { to } 400 \end{aligned}$	$\begin{array}{r} 8.7 \text { to } 11.1 \\ 11.5 \text { to } 12.7 \end{array}$	6
Cobalt-iron-chromium, 53.0 to $55.5 \mathrm{Co}, 35.0$ to $37.5 \mathrm{Fe}, 9.0$ to 10.5 Cr .	20 to 60	-1.1 to +1.7	7
Copper-beryllium, 3.0 Cu .	$\begin{aligned} & 20 \text { to } 100 \\ & 20 \text { to } 300 \end{aligned}$	$\begin{aligned} & 15.9 \text { to } 17.3 \\ & 16.4 \text { to } 17.4 \end{aligned}$	8
Copper-nickel, $\begin{array}{r}19.5 \mathrm{Ni} \\ 49.8 \mathrm{Ni}\end{array}$	$\begin{array}{r} -182 \text { to } 0 \\ 0 \text { to } 40 \\ -182 \text { to } 0 \\ 0 \text { to } 40 \end{array}$	$\begin{aligned} & 13.0 \\ & 14.7 \\ & 11.8 \\ & 13.7 \end{aligned}$	9
Copper-tin (see Bronze)			
Copper-zinc (see Brass)			
	$\begin{aligned} & 20 \text { to } 300 \\ & 20 \text { to } 300 \end{aligned}$	$\begin{aligned} & 6.1 \text { to } 6.8 \\ & 8.0 \text { to } 10.0 \end{aligned}$	10
Duralumin	$\begin{aligned} & 20 \text { to } 100 \\ & 20 \text { to } 500 \end{aligned}$	$\begin{aligned} & 21.9 \text { to } 23.8 \\ & 25.4 \text { to } 27.6 \end{aligned}$	3
Fernico, 54 Fe , 31 Ni , $15 \mathrm{Co} . . . . . . . . . . . . . .$.	25 to 300	5.0	11
Invar, $64 \mathrm{Fe}, 36 \mathrm{Ni}$.	0 to 100	0 to 2	12
Iron-aluminum, . 5 to 10.5 Al . . . . . . . . . . .	20 to 100	11.6 to 12.2	13
Iron-chromium, 1 to 40 Cr .................	20 to 100	12.4 to 9.4	12

[^74](continued)

# TABLE 143.-COEFFICIENTS OF LINEAR THERMAL EXPANSION OF SOME ALLOYS (continued) 

Alloy	Temperature or temperature range ${ }^{\circ} \mathrm{C}$	Coefficient of linear thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$	Authority
Iron-cobalt 9.9 to 49.4 Co.	30 to 100	11.2 to 9.3	14
Iron-manganese, 2.8 to 14.4 Mn .	20 to 100	12.7 to 16.9	13
Iron-nickel, 3.6 Ni	20 to 100	10.9	15, 12,
34.5 Ni	20 to 100	3.7	14
36 Ni	0 to 100	0 to 2	
40 to 50 Ni .	30 to 100	4.1 to 9.7	
Iron-nickel-chromium, 6.6 to $74.7 \mathrm{Fe}, 1.3$ to $70.1 \mathrm{Ni}, 4.9$ to $26.7 \mathrm{Cr} . . . . . . . . . . . . . . .$.	20 to 100	8.7 to 18.4	16
	20 to 1000	13.1 to 20.6	
Iron-nickel-cobalt, 62.5 to $64.0 \mathrm{Fe}, 30.5$ to $34.0 \mathrm{Ni}, 3.5$ to $6.0 \mathrm{Co...........}. \mathrm{}. \mathrm{}$.	20		14,17
61.3 Fe, 31.8 Ni, 6.0 Co.	20 to 100	. 9	14,17
58.7 Fe, 32.4 Ni, 8.2 Co.	20 to 240	2.4	
	20 to 200	1.7	
	20 to 295	2.6	
Iron-silicon, 1.0 to 8.4 Si .	20 to 100	12.2 to 11.3	13
Kanthal (A, A-1, and D) \%.	20 to 100	11.4 to 11.7	18
Kovar (see Fernico)	20 to 900	13.9 to 15.1	
Lead-antimony, 2.9 to 39.6 Sb .	20 to 100	28.2 to 20.4	8
Magnesium-aluminum, $\begin{aligned} & 10.4 \mathrm{Al} \\ & 30 \mathrm{Al} \ldots\end{aligned}$	20 to 100	25.9	19, 20
	20 to 200	27.2	
	0 to 100	23.7	
	0 to 200	25.1	
Magnesium-tin, 20.4 Sn....................	30 to 100	24.3	21
	30 to 300	24.7	
46.3 Sn	30 to 100	21.1	
	30 to 300	21.3	
Magnesium-zinc, 20 Zn	40 to 100	29.5	22
	40 to 100	30.2	
Manganin	20 to 100	18.1	23, 24
	0 to 400	18.9	
	0 to 800	21.1	
Monel Metal	25 to 100	13.5 to 14.5	15,13
	25 to 600	15.9 to 16.7	
Nickel-chromium, 20.4 Cr	20 to 100	13.0	16,25
	20 to 1000	17.2	
	20 to 100	13.5	
	20 to 1000	17.7	
Nickel silver, 62.0 to $63.2 \mathrm{Cu}, 10.0$ to 20.2 Ni , 17.4 to 27.1 Zn .	0 to 100	14.8 to 15.4	26
	0 to 400	16.8 to 17.4	

[^75]TABLE 143.-COEFFICIENTS OF LINEAR THERMAL EXPANSION OF SOME ALLOYS (concluded)

Alloy	Temperature or temperature range ${ }^{\circ} \mathrm{C}$	Coefficient of linear thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$	Authority
Platinum-iridium, 20 Ir	-190 to 0	7.5	27
	0 to 100	8.3	
	0 to 1000	9.6	
	0 to 1600	10.5	
Platinum-rhodium, 20 Rh................	0 to 500	9.6	28
	0 to 1000	10.4	
	0 to 1400	11.0	
SAE carbon steels ll.	20 to 100	8.8 to 14.4	12
SAE stainless chromium irons.	20 to 100	9.4 to 10.7	12
Speculum metal	20 to 100	16.0	29
	20 to 100	10.0	30, 16
	20 to 100	16.4	
Stellite, 55 to $80 \mathrm{Co}, 20$ to $40 \mathrm{Cr}, 0$ to 10 W , 0 to 2 C .			31
	$20 \text { to } 600$	$\begin{aligned} & 11.0 \text { to } 14.1 \\ & 13.6 \text { to } 16.5 \end{aligned}$	31
Tantalum carbide	20 to 2377	8.2	32
$\begin{aligned} \text { Tungsten carbide } & +5.9 \mathrm{Co} \\ & +13.0 \mathrm{Co}\end{aligned}$	20 to 100	4.5	33
	20 to 403	5.2	
	20 to 100	5.2	
	20 to 400	6.0	
Zinc-aluminum, 22.6 Al. . . . . . . . . . . . . . . .	20 to 100	26.0	34.4
	20 to 200	28.3	
	20 to 100	26.5	
	20 to 200	27.6	

\# Coefficients of expansion of other S.IE steels (free-cutting, manganese, nickel, nickel-chromium, molybdenum, chromium, chromium-vanadium and chromium-nickel austenitic steels) are given in Metals Handbook of the American Society for Metals.

## Authorities

1. Hidnert and Sweeney, 1927; 2. Kempf, 1933; 3. Hidnert, 1925; 4. Schulze, 1921 ; 5. Hidnert, 1921 ; 6. Bolton, 1936; 7. Masumoto, 1934 ; 8. Hidnert, 1936; 9. Aoyama and Ito, 1938; 10. Hull and Burger, 1934 ; 11. Hull, Burger, and Navias, 1941; 12. Various; 13. Schulze, 1928; 14. Masumoto, 1931 ; 15. Souder and Hidnert, 1922; 16. Hidnert, 1931 ; 17. Scott, 1930; 18. Hidnert, 1938; 19. Hidnert and Sweeney, 1928; 20. Takahasi and Kikuti, 1936; 21. Grube and Vosskuhler, 1934; 22. Grube and Burkhardt, 1929: 23. Schulze, 1933; 24. Ebert, 1935 ; 25. Dean, 1930; 26. Cook, 1936; 27. Physikalische-Technische Reichanstalt, 1920; 28. Day and Sosman, 1910; 29. Scheel, 1921; 30. Hidnert, 1928; 31. Souder and Hidnert, 1921; 32. Becker and Ewest, 1930; 33. Hidnert, 1937; 34. Hidnert, 1924.

TABLE 144.-COEFFICIENTS OF LINEAR THERMAL EXPANSION OF SOME fiISCELLANEOUS MATERIALS *

Material	Temperature or temperature range ${ }^{\circ} \mathrm{C}$	Coefficient of linear thermal expansion $\times 10^{8}$ per ${ }^{\circ} \mathrm{C}$	Au. thority	Material	Tempera. ture or temperature ${ }^{\circ} \mathrm{C}$ C	Coefficient of linear thermal expansion $\times 10^{9}$ per ${ }^{\circ} \mathrm{C}$	Au. thority	
Alum:			1**	Mica, muscovite: Parallel to				
Ammonium	20 to 50	9.5						
Ammonium chrome	20 to 50	10.6		cleavage plane	0 to 100	8.5	14	
Potassium	20 to 50	11.0		Perpendicular				
Thallium	20 to 50	13.1		to cleavage			15	
Amber	0 to 50			plane $\dagger$..	to 300	8 to 25		
		53	2					
Bakelite	20 to 60	21 to 33	3	Mica, phlogopite: \|	to cleavage	0 to 100	13.5	14
				plane .....				
Beryl   Brick, clay build. ing ........	20 to 100	. 3 to 1.6	4	$\perp$ to cleavage plane $\dagger$.	20 to 100	1 to 179	15	
	10 to +40	3.0 to 12.4	5					
	0 to 500			Porcelain	20 to 200	1.6 to 19.6	3	
Carborundum		8.4	6	Quartz, crystalline			16	
	0 to 1800	9.2						
Concrete	13 to +27	6.8 to 12.7	7	\|	to axis .....	0 to 100	8.0	
	13 to +88	7.5 to 14.0			0 to 300 0 to 500	9.6 12.2		
Dental amalgam.	20 to 50	22 to 28	8	$\perp$ to axis	0 to 100	14.4		
					0 to 300	16.9		
Glass :   Miscellaneous.   Pyrex .......			9	Quartz, fused (silica)	$20 \text { to } 100$$20 \text { to } 1000$	20.9		
	0 to 300	. 8 to 12.8				$.5$	9	
	20 to 100 20 to 300	$\begin{aligned} & 3.1 \text { to } 3.5 \\ & 3.0 \text { to } 3.6 \end{aligned}$						
$\begin{aligned} & \text { Granites (Ameri- } \\ & \operatorname{can}) \end{aligned} \text {........ }$	- 20 to 60	4.8 to 8.3	10	Rocks (American): Igneous	$\begin{aligned} & 20 \text { to } 100 \\ & 20 \text { to } 100 \\ & 20 \text { to } 100 \end{aligned}$	3.4 to 11.9	17	
	$\begin{aligned} & -250 \\ & =200 \\ & =150 \\ & =100 \\ & -\quad 50 \end{aligned}$	$\begin{array}{r} -6.1 \\ +.8 \\ 16.8 \\ 33.9 \\ 4.9 \\ 52.7 \end{array}$	11				9	
				Sedimentary..		2.3 to 11.0		
				Rubber (hard) $\ddagger$.	§	50 to 84		
				Slate	20 to 100	6.3 to 8.3	17	
Magnesia	20 to 500	12.4	$\begin{array}{r} 6,12 \\ 13 \end{array}$	Tooth:Root	20 to 50	8.3	8	
Marble	20 to 1000	13.7						
	25 to 100	5 to 16	3	Across crown.   Root and crown	20 tc 50	11.4		
						7.8		
					20 to 50			
				Wood:	\$		9	
				Across grain. .	8	$32 \text { to } 73$	9	

[^76] ous temperature ranges between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.

## Authorities

1. Klug and Alexander, 1942; 2. Sweeney, 1928; 3. Souder and Hidnert, 1919; 4. Geller and Insley, 1932; 5. Ross, 1941: 6. Ebert and Tingwaldt, 1936; 7. Koenitzer, 1936; 8. Souder and Peters, 1920; 9. Various; 10. Hockman and Kessler, 1950; 11. Jakob and Erk, 1928; 12. White, 1938; 13. Austin, 1931; 14. Ebert, 1935; 15. Hidnert and Dickson, 1945; 16. Compiled by Sosman, 1927; 17. Griffith, 1936.

If $V_{0}$ is the volume at $0^{\circ}$ then at $t^{\circ}$ the expansion formula is $V_{t}=V_{0}(1+a t+$ $\left.\beta t^{2}+\gamma t^{3}\right)$. The table gives values of $\alpha, \beta$ and $\gamma$ and $k$, the true coefficient of cubical expansion, at $20^{\circ}$ for some liquids and solutions. $\Delta t$ is the temperature range of the observation.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Liquid \& ${ }^{\Delta}{ }_{\text {c }}$ C \& a $10^{3}$ \& $\beta 10^{3}$ \& $\gamma 10^{9}$ \& $k$
at $200^{3}$

a <br>
\hline Acetic acid \& 16-107 \& 1.0630 \& . 12636 \& 1.0876 \& 1.071 <br>
\hline Acetone \& 0-54 \& 1.3240 \& 3.8090 \& - . 87983 \& 1.487 <br>
\hline \multicolumn{6}{|l|}{Alcohol: ${ }^{\text {a }}$. ${ }^{\text {a }}$} <br>
\hline Amyl \& -15-80 \& . 9001 \& . 6573 \& 1.18458 \& . 902 <br>
\hline Ethyl, 30\% by vol. \& 18-39 \& . 2928 \& 10.790 \& -11.87 \& <br>
\hline " $50 \%$ " \& 0-39 \& . 7450 \& 1.85 \& . 730 \& <br>
\hline " $99.3 \%$ \& 27-46 \& 1.012 \& 2.20 \& - \& 1.12 <br>
\hline 500 atm pres \& 0-40 \& . 866 \& - \& - \& <br>
\hline " 3000 \& 0-40 \& . 524 \& \& \& <br>
\hline Methyl \& 0-61 \& 1.1342 \& 1.3635 \& . 8741 \& 1.199 <br>
\hline Benzene \& 11-81 \& 1.17626 \& 1.27776 \& . 80648 \& 1.237 <br>
\hline Bromine \& 0-59 \& 1.06218 \& 1.87714 \& - . 30854 \& 1.132 <br>
\hline \multicolumn{6}{|l|}{Calcium chloride :} <br>
\hline $5.8 \%$ solution \& 18-25 \& . 07878 \& 4.2742 \& - \& . 250 <br>
\hline 40.9\% " \& 17-24 \& . 42383 \& . 8571 \& \& . 458 <br>
\hline Carbon disulfide \& -34-60 \& 1.13980 \& 1.37065 \& 1.91225 \& 1.218 <br>
\hline 500 atm pressure \& 0-50 \& . 940 \& - \& - \& <br>
\hline 3000 " " \& 0-50 \& . 581 \& \& \& <br>
\hline Carbon tetrachloride \& 0-76 \& 1.18384 \& . 89881 \& 1.35135 \& 1.236 <br>
\hline Chloroform \& 0-63 \& 1.10715 \& 4.66473 \& - 1.74328 \& 1.273 <br>
\hline Ether \& -15-38 \& 1.51324 \& 2.35918 \& 4.00512 \& 1.656 <br>
\hline Glycerine \& - \& . 4853 \& . 4895 \& - \& . 505 <br>
\hline \multicolumn{6}{|l|}{Hydrochloric acid:} <br>
\hline Mercury ....... \& 0-100 \& . 18182 \& . 0078 \& \& . 18186 <br>
\hline Olive oil \& \& . 6821 \& 1.1405 \& - . 539 \& . 721 <br>
\hline Pentane \& 0-33 \& 1.4646 \& 3.09319 \& 1.6084 \& 1.608 <br>
\hline \multicolumn{6}{|l|}{Potassium chloride: 2605 2080 - 363} <br>
\hline $24.3 \%$
Phenol
solution \& 16-25 \& . 26945 \& 2.080
.10732 \& 4446 \& .353
1.090 <br>
\hline Phenol Petroleum \& 36-157 \& \& \& . 4446 \& 1.050 <br>
\hline Petroleum: ${ }_{\text {Density }} 8467$ \& 24-120 \& . 8994 \& 1.396 \& - \& . 955 <br>
\hline \multicolumn{6}{|l|}{Sodium chloride:} <br>
\hline 20.6\% solution \& 0-29 \& . 3640 \& 1.237 \& - \& . 414 <br>
\hline \multicolumn{6}{|l|}{Sodium sulfate:} <br>
\hline \multicolumn{6}{|l|}{Sulfuric acid:} <br>
\hline 10.9\% solution \& 0-30 \& . 2835 \& 2.580 \& - \& . 387 <br>
\hline 100.0\% \& 0-30 \& . 5758 \& $-.432$ \& \& . 558 <br>
\hline Turpentine \& - 9-106 \& . 9003 \& 1.9595 \& -. 44998 \& . 973 <br>
\hline Water ... \& 0-33 \& -. 06427 \& 8.5053 \& $-6.7900$ \& . 207 <br>
\hline
\end{tabular}

Temperatures in ${ }^{\circ} \mathrm{C}$


## TABLE 147.-SPECIFIC HEAT OF THE CHEMICAL ELEMENTS

When one temperature is given the true specific heat is given, otherwise the mean specific heat cal ${ }^{\circ} \mathrm{C}^{-1} \mathrm{~g}^{-1}$ between the given limits.


TABLE 147.-SPECIFIC HEAT OF THE CHEMICAL ELEMENTS (continued)


TABLE 147.-SPECIFIC HEAT OF THE CHEMICAL ELEMENTS (concluded)

Element	$t^{\circ} \mathrm{C}$	Spht	Element	$t^{\circ} \mathrm{C}$	$\mathrm{Sp}_{\mathrm{p}} \mathrm{ht}$
Tellurium	$-188 .+18$	. 047	Tungsten	-247.1	. 0012
	15, 100	. 0483		-218.4	. 0098
	15, 200	. 0487		-173.1	. 0205
Thallium	-135	. 288		-73.1	. 0288
		. 311		+ 26.9	. 0321
	20, 100	. 0326		100	. 0320
Thorium	-253, -196	. 0197		500	. 0344
Thorium	0, 100	. 0276		1000	. 0367
Tin	. -203.5	. 0385		1500	. 0390
	-186.7	. 0422	Uranium	0, 98	. 0280
	-150	. 0450	Vanadium	0, 100	. 1153
	-100	. 0483	Zinc	0, 100	. 095
	- 50	. 0512		-252.4	. 0071
	0	. 0536		- 201.3	. 0740
	+ 25	. 0548		- 100	. 0814
	100	. 0577		-	. 0871
	1100	. 0758		0	. 0913
Titanium	-185, +20	. 082		100	. 0957
	0, 100	. 1125		300	. 1043
				400	. 1089

TABLE 148.-FORMULAE FOR TRUE SPECIFIC HEATS

Element			$\begin{gathered} \text { Range } \\ { }^{\circ} \mathrm{C} \mathrm{C} \end{gathered}$
Antimony	$.0493+$	. 000012 t	0-500
Bismuth	$.0292+$	. $000012 t$	0-200
Chromium	$.1055+$	. $00010 t-.00000015 t^{2}$	0-400
Cobalt	$.1000+$	. 000067 t	0-400
Copper	$.0915+$	. $000024 t$	0-300
Iron	$.1060+$	. 000096 t	0-400
Lead	$.0295+$	. $00002 t$	0-300
Magnesium	. $2370+$	. $000142 t-.0000001 t^{2}$	0-400
Nickel	$.1020+$	. $000118 t-.00000006 t^{2}$	0-300
Platinum	$.03162+$	$.00000617 t+2.33 \times 10^{-10} t^{2}$	0-1625
Silver	$.0556+$	. 000008 t	0-400
Tin .	$.0525+$	. $000052 t$	0-200
Zinc	$.0913+$	. $000044 t$	0-300

TABLE 149.--HEAT CAPACITIES, TRUE AND MEAN SPECIFIC HEATS, AND LATENT HEATS AT FUSION
The constants $a, b$, and $c$ of the equations for the heat capacity: $W=a+b t+c t^{2}$; for the mean specific heat: $s=a t^{-1}+b+c t$; and for the true specific heat: $s^{\prime}=b+2 c t$; the latent heats at fusion are also given.

Element	Temperature range	$a$	$b$	$c \times 10^{6}$	Latent heat cal/g	Ele. ment	Tempera ture range ${ }^{\circ} \mathrm{C}$	$a$	$b$	$c \times 10^{6}$	Latent heat cal/g
Cr	0-1500	-	. 10233	33.47	-	Ag	0-961	3.	. 05725	5.48	26.0
Mo	0-1500	-	. 06162	10.99	-		961-1300	53.17	. 00710	28.30	
W	0-1500	-	. 03325	1.07	-	$\mathrm{Alu}^{\text {d }}$	0-1064		. 03171	1.30	15.9
Pt	0-1500	-	. 03121	3.54	-		1064-1300	26.35	. 01420	8.52	-
Sn	0-232	-	. 06829		13.8	Cu	0-1084		. 10079	3.05	41.0
	232-1000	14.33	. 07020	$-18.30$			1084-1300	130.74	-. 04150	65.6	
Bi	0-270	-	. 03141	5.22	10.2	Mn	0-1070	$\bigcirc$	. 12037	25.41	$36.6$
	270-1000	10.31	. 03107	5.41	10.8		1130-1210	$-7.41$	. 17700	-	$24.14^{*}$
Cd	0-321	-	. 05550	6.28	10.8		1230-1250	3.83	. 19800	5 4	
	321-1000	6.30	. 06952	6.37	5	Ni	0-320	-	. 10950	52.40	$56.1{ }^{*}$
Pb	0-327	6.0	. 03591	11.47	5.47		330-1451	. 4.41	. 12931	. 11	1.33*
	327-1000	6.07	. 02920	$-3.30$	-		1451-1520	50.21	. 13380	-	58.2
Zn	0-419	14.34	. 08777	43.48 -16.10	23.0	Co	$0-950$ $1100-1478$	22.00	.09119 .11043		$\begin{aligned} & 58.2 \\ & 14.70^{*} \end{aligned}$
	419-1000	14.34	. 13340	-16.10			$1100-1478$ $1478-1600$	22.00 57.72	.11043 .14720	14.57	$14.70^{*}$
So	$0-630$ $630-1000$	39.42	. 05179	3.00 2.96	38.9	Fe	1478-1600	57.72	.14720 .10545	56.84	49.4
A]	0-657		. 22200	38.57	94.0		785-919	$-1.63$	. 1592	-	6.56**
	657-1000	102.39	. 21870	24.00	-		919-1404	18.31	. 14472	. 05	6.67*
							1405-1528	-77.18	. 21416	-	1.94*
							1528-1600	70.03	. 15012	-	-

[^77]|  |  |  |
| :---: | :---: | :---: | :---: | :---: |

Part 2*

	$\mathrm{C}_{p}$ (joules per gram) for temperatures in ${ }^{\circ} \mathrm{C}$				
Compound Mineral -200	$0^{\circ}$	$200^{\circ}$	$400^{\circ}$	$800^{\circ}$	$1200^{\circ}$
$\mathrm{Al}_{2} \mathrm{O}_{3} \ldots \ldots . . . .$. corundum ... . 069	. 72	1.00	1.10	1.19	1.26
$\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{*}$. kaolin	. 99	1.17	1.35		
$2(\mathrm{AlF}) \mathrm{O} \cdot \mathrm{SiO}_{2}$. . topaz	(.83 a	$50^{\circ}$ )	. . .		
$\mathrm{Be}_{3} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18} \ldots \ldots$ beryl	(.84 a				
$\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8} \ldots . . .{ }^{\text {. }}$ anorthite	. 70	. 95	1.05	1.17	1.27
$\mathrm{CaCO}_{3} \ldots . . . .$. . calcite . . . . . . . 28	. 793	1.00	1.13		
$\mathrm{CaF}_{2}$. . . . . . . . . . fluorite . . . . . . 22	. 85	. 89	. 93	1.01	1.10
	. 69	. 98	1.06	1.15	1.20
$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \ldots .$. gypsum . . . . . . 322	1.03		. . .	. . .	
$\mathrm{CaWO}_{4}$......... scheelite	(. 40 a				
$\mathrm{Fe}_{2} \mathrm{O}_{3} \ldots \ldots . . . .$. hematite	. 61	. 79	. 90	1.08	
	. 606				
$\beta$ troilite		. 635	. 66	. 71	
$\mathrm{FeS}_{2}$. . . . . . . . . pyrite . . . . . . . 075	. 500	.59.4	. 69	...	
$\mathrm{H}_{2} \mathrm{O}$. . . . . . . . . . ice .......... . 653	2.06				
HgS ........... a cinnabar	. 214	. 227	. 240		
KCl . . . . . . . . . . sylvite . . . . . . . 418	. 682	. 715	. 749		
$\mathrm{KNO}_{3}$. . . . . . . . a niter . . . . . . . 326					
$\beta$ niter	1.19				
liquid		1.22			
$\mathrm{Mg}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12} \ldots .$. garnet	(. 74	$58^{\circ}$ )			
$\mathrm{MgCO}_{3} \ldots . . . .$. magnesite ... . 161	. 864				
$\mathrm{MgO} . . . . . . .$. . periclase . . . . . 066	. 870	1.09	1.16	1.24	1.30
$\mathrm{Mg}_{3} \mathrm{H}_{2} \mathrm{Si}_{4} \mathrm{O}_{12} \ldots .$. talc.					
NaCl . . . . . . . . . halite . . . . . . . 466	. 855	. 915	. 975	1.095	
de liquid				1.14	
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. borax ...... $\mathrm{ip}^{\text {a }}$	(.161	$35^{\circ}$ )		1.14	
PbS ............ galena ....... . 142	. 207	. 221	. 235		
$\mathrm{SiO}_{2} \ldots . . . . .$. a quartz ..... . 173	. 698	. 969	1.129		
$\beta$ quartz $\alpha$ cristobalite . . . crise	. $69{ }^{\circ}$	$1.01^{\circ}$		1.174	1.327
$\beta$ cristobalite . . .			$1 . \ddot{0} \dot{4}$	1.171	$1.21{ }^{\circ}$
glass . ....... . 184	.70	. 95	1.06	1.21	1.34
	. 45	. 53	. 56	. 587	. . .
*For reference, see foot note 45, p. 136.					

(continued)

Part 3

Rock	$\mathrm{C}_{\mathrm{p}}$ (joules per gram) for temperatures in ${ }^{\circ} \mathrm{C}$				
	$0^{\circ}$	$200^{\circ}$	$400^{\circ}$	$800^{\circ}$	$1200^{\circ}$
Igneous					
$\left.\begin{array}{l} \text { Granite : } \\ 65 \% \text { orthoclase } \\ 25 \% \text { quartz } \\ 9 \% \text { albite } \\ 1 \% \text { magnetite } \end{array}\right\} \text {. }$	. 65	. 95	1.07	1.13	$\ldots$
Basalt :   Syracuse   Aetna   Kilauea	. 85	1.04	1.145	1.32	1.49
Metamorphic Gneiss	. 74	1.01	$\ldots$	$\ldots$	$\ldots$
Sandstone: Micaceous Japanese (mean of 4) English (mean of 8)	( $\begin{aligned} & .93 \\ & .73 \\ & .81 \\ & \text { ( } 81\end{aligned}$				
Clay, amorphous	. 75	. 94	1.13	1.51	$\ldots$
Limestone   English (mean of 3) Japanese (mean of 10)	$(1.00$ (.68 (.83				

TABLE 151.-ATOMIC HEATS $\left(50^{\circ} \mathrm{K}\right)$, SPECIFIC HEATS $\left(50^{\circ} \mathrm{K}\right)$, ATOMIC VOLUMES OF THE ELEMENTS

			\# E 咅		范				كِ	
Li . . . . . 1924	1.35	13.0	Fe	. 0175	. 98	7.1	Sb	. 0240	2.89	18.2
Be . . . . 0137	. 125	4.9	Ni	. 0208	1.22	6.7	I	. . 0361	4.59	25.7
B . . . . 0212	. 24	4.5	Co	. . 0207	1.22	6.8	Te	. . 0288	3.68	21.2
$\mathrm{C}^{* *} \ldots . .0137$	. 16	5.1	Cu	. . 0245	1.56	7.1	Cs	. . 0513	6.82	71.0
C $\ddagger$. . . . . 0028	. 03	3.4	Zn	. 0384	2.52	9.2	Ball	. . . 0350	4.80	36.0
Na ... . 1519	3.50	23.6	As	. . 0258	1.94	15.9	La	.. . 0322	4.60	22.6
Mg ... . 0713	1.74	14.1	Se	. . 0361	2.86	18.5	Ce	.. . 0330	4.64	20.3
A1 . . . 0413	1.12	10.0	Br	. . .0453	3.62	24.9	W	. . . 0095	1.75	9.8
Si§ ... . 0303	. 86	14.2	Rb	. . 0711	6.05	55.8	Os	. . . 0078	1.49	8.5
Si' . . . 0303	. 77	11.4	Sr ${ }^{\text {* }}$	. . 0550	4.82	34.5	Ir	. . . 0099	1.92	8.6
P, yel. . . 0774	2.40	17.0	Zr	. . 0262	2.38	21.8	Pt	. . 0135	2.63	9.2
P, red. . . 0431	1.34	13.5	Mo	. . . 0141	1.36	9.3	Au	.. . 0160	3.16	10.2
S . . . . 0546	1.75	16.	Ru	. . 0109	1.11	9.0	Hg	. . 0232	4.65	14.8
Cl .... . 0967	3.43	24.6	Rh	. . 0134	1.38	8.5	Tl	. . . 0235	4.80	17.2
K .... . 1280	5.01	44.7	Pd	. . 0190	2.03	9.2	Pb	. . . 0240	4.96	18.3
Ca ... . 0714	2.86	25.9	Ag	. . 0242	2.62	10.2		. . 0218	4.54	21.3
Ti .... . 0205	. 99	10.7	$\mathrm{Cd}^{\text {d }}$	. . 0308	3.46	13.0	Th	. . 0197	4.58	21.1
Cr . . . . 0142	70	7.6	Sn	. 0286	3.41	20.3	U	. . 0138	3.30	12.8
Mn . . . . 0229	1.26	7.4								
* cal g ${ }^{-1}{ }^{\circ} \mathrm{C}^{-1}$.	$\dagger$ cal g	atom ${ }^{-1}$		Graphite.	$\ddagger$ Diam		§ Fused.	\% Crystalliz		mpure.

$(1 \mathrm{cal}=4.1840 \mathrm{~J})$

	Specific heat of water					Specific heat of mercury			
	C,		$C_{p}$		$C_{p}$		$C_{p}$		$C_{p}$
$\stackrel{\text { Temp. }}{{ }^{\circ} \mathrm{C}}$	${ }^{\text {cal g }}{ }^{\circ} \mathrm{C}^{-1}$	${ }^{\text {Temp. }}{ }^{\circ}$	${ }^{\text {cal }} \mathrm{g}^{-1} \mathrm{C}^{-1}$	$\stackrel{T_{0}}{{ }^{\circ} \mathrm{C}} \mathrm{P} .$	${ }^{\text {cal }} \mathrm{C}^{-1}$	$\stackrel{\text { Temp. }}{{ }^{\circ} \mathrm{C}}$	${ }^{\text {cal }} \mathrm{C}^{-1} \mathrm{~g}^{-1}$	${ }^{\mathrm{T} e \mathrm{Cmp}} \mathrm{C} .$	${ }^{\text {cal }}{ }^{\circ} \mathrm{C}^{-1}$
0	1.0080	25	. 9989	70	1.0013	0	. 03346	90	. 03277
5	1.0043	26	. 9989	75	1.0021	5	. 03340	100	. 03269
10	1.0019	27	. 9988	80	1.0029	10	. 03335	110	. 03262
15	1.0004	28	. 9987	85	1.0039	15	. 03330	120	. 03255
16	1.0002	29	. 9987	90	1.0050	20	. 03325	130	. 03248
17	1.0000	30	. 9987	95	1.0063	25	. 03320	140	. 03241
18	. 9998	35	. 9986	100	1.0076	30	. 03316	150	. 0324
19	. 9996	40	. 9987	120	1.0162*	35	. 03312	170	. 0322
20	. 9995	45	. 9989	140	1.0223*	40	. 03308	190	. 0320
21	. 9993	50	. 9992	160	1.0285*	50	. 03300	210	. 0319
22	. 9992	55	. 9996	180	1.0348*	60	. 03294		
23	. 9991	60	1.0001	200	1.0410*	70	. 03289		
24	. 9990	65	1.0006	220	1.0476*	80	. 03284		

* Nat. Bur. Standards Journ. Res., RP 1228, vol. 23, p. 197, 1939.
* Barnes-Regnault.

TABLE 153.-SPECIFIC HEAT OF VARIOUS LIQUIDS

Liquid	${ }^{\text {Temp }}{ }_{\text {c }}$	$\begin{gathered} \text { Spec } \\ \text { Seat } \\ \text { cgs } \end{gathered}$	Liquid		${ }^{\text {Temp }}{ }^{\text {c }}$	Spec
Alcohol, ethyl	-20	. 505	Ethyl ether		0	. 529
	0	. 548	Glycerine		15-50	. 576
" "	40	. 648	$\mathrm{KOH}+30 \mathrm{H}_{2} \mathrm{O}$		18	. 876
Alcohol, methyl	5-10	. 590	" +100 "		18	. 975
Anilin ........	${ }_{15}^{15-20}$	. 601			18 18	. 942
	30	. 520	$\mathrm{NaCl}+10 \mathrm{H}_{2} \mathrm{O}$		18	. 791
" ...	50	. 529	" + 200		18	. 978
Benzole, $\mathrm{C}_{6} \mathrm{H}_{6}$	10	. 340	Naphthalene, $\mathrm{C}_{10} \mathrm{H}$		80-85	. 396
	40	. 423			90-95	. 409
$\mathrm{C}_{6} \mathrm{H}_{8}$	65	. 482	Nitrobenzole		14	. 350
$\mathrm{CaCl}_{2}$, sp. gr. 1.14	-15	. 764			28	. 362
		. 775	Oils: Castor			. 434
" " "	+20	. 787	Citron		5.4	. 438
" " " 1.20	-20	. 695	Olive		6.6	. 471
" "	0	. 712	Sesame			. 387
" " "	$+20$	. 725	Turpentine			. 411
"، "، "1 1.26	-20	. 651	Petroleum .....		21-58	. 511
" " " "	0	. 663	Sea water, sp. gr.	1.0043.	17.5	. 980
" " ${ }^{\text {c }}$ " "	+20	. 676	" " " "	1.0235.	17.5	. 938
$\begin{gathered} \mathrm{CuSO}_{4}+50 \mathrm{H}_{2} \mathrm{O} \\ " 200 \\ " 400 " \end{gathered}$	12-15	. 848	"	1.0463.	17.5	. 903
	12-14	. 951	Toluol, $\mathrm{C}_{6} \mathrm{H}_{8}$		10	. 364
$\underset{\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}}{\text { Diphymine }}$	13-17	. 975			65 85	. 493
	53	. 464	$\mathrm{ZnSO}_{4}+50 \mathrm{H}_{2} \mathrm{O}$		20-52	. 842
	65	. 482	" +200 "		20-52	. 952

Expressed in calories so per gram per degree C

| Temp |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |  |  |

TABLE 155.-HEAT CONTENT OF SATURATED LIQUID AMMONIA
Heat content $=H=\epsilon+p v$, where $\epsilon$ is the internal or intrinsic energy.
Temperature ${ }^{\circ} \mathrm{C} \ldots-50^{\circ}-40^{\circ}-30^{\circ}-20^{\circ}-10^{\circ} \quad 0^{\circ}+10^{\circ}+20^{\circ}+30^{\circ}+40^{\circ}+50^{\circ}$ $H=\epsilon+p v \quad \ldots . .-53.8-43.3-32.6-21.8-11.0 \quad 0.0+11.1+22.4-33.9-45.5-57.4$

TABLE 156.-SPECIFIC HEAT OF MINERALS AND ROCKS

${ }^{50}$ Nat. Bur. Standards Journ. Res., vol. 38, p. 593, 1947.

Part 1

Gases	$\begin{gathered} \text { Density } \\ \text { (/liter } \\ \text { (normal) } \end{gathered}$	$\begin{gathered} \text { Heat capacity, } \\ C_{p} \text { in } \mathrm{J} / \mathrm{g} \\ \text { Temperature }{ }^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { Constants in } \\ C_{p}=a+b T-c T-2 \\ \mathrm{~J} / \mathrm{g}-c{ }^{\text {Cemperature }}= \\ \text { absolute } \end{gathered}$			$\begin{aligned} & \text { Tem- } \\ & \text { pera- } \\ & \text { ture } \\ & \text { range } \\ & { }^{\circ} \mathrm{C} \text { C } \end{aligned}$
		0	400	1200	a	$10^{3} \mathrm{~b}$	${ }^{10-5} c$	
Air	1.2920	1.004	1.057	1.16	. 968	. 132	0	0-2000
Ammonia	. 7598	2.06	2.74	3.86	1.822	1.395	. 1102	0-1500
Argon *	1.782	. 521	. 521	. 521	. 521	0	0	0
Bromine	7.1308	. 225	.232	. 236	223	. 01	0	0-1400
Carbon dioxide	1.9630	. 82	1.12	1.32	. 894	. 7	. 197	0-2000
Carbon monoxide	1.2492	1.04	1.103	1.245	. 980	. 18	0	0-2000
Chlorine	3.1638	. 497	. 511	. 537	. 48	. 033	0	0-1700
Fluorine	1.6954	. 774	. 818	. 906	. 744	. 11	0	0-2700
Helium *	. 1785	5.2	5.2	5.2	5.2	0	0	$0-$
Hydrogen * H	. 045	20.6	20.6	20.6	20.6		0	$0-$
$\mathrm{H}_{2}$	. 0899	14.23	14.87	16.14	13.796	1.59	0	0-2000
Hydrogen bromide	3.6104	. 363	. 381	. 416	. 352	. 434	0	0-1700
Hydrogen chloride	1.6269	. 795	. 834	. 911	. 769	. 096	0	0-1700
Hydrogen fluoride	. 8926	1.431	1.50	$1.63+$	1.384	. 169	0	0-1700
Hydrogen iodide	5.7075	. 234	. 245	. 266	. 227	. 027	0	0-1700
Hydrogen sulfide	1.5203	1.025	1.21	1.527	. 962	. 385	. 0314	0-1500
Iodine ....	11.3250	. 15	. 15	. 15	. 15	0	0	$0-$
Krypton *	3.7365	. 25	. 25	. 25	. 25	0	0	$0-$
Mercury * Hg	8.9501	. 104	. 104	. 104	. 104	0	0	$0-$
$\mathrm{Hg}_{2}$	17.9003	. 094	. 094	. 094	. 094	0	0	$0-$
Neon *	. 9005	1.03	1.03	1.03	1.03	0		$0-$
Nitric oxide	1.3388	1.00	1.047	1.142	. 968	. 118	0	0-2000
Nitrogen	1.2499	1.037	1.08	1.21	. 962	. 167	-. 021	0-1500
Nitrous oxide	1.9638	. 85	. 954	1.162	. 779	. 26	0	0-2000
Oxygen	1.4277	. 916	1.025	1.143	. 944	. 136	. 0486	0-2000
Phosphorus pentao	6.3371		1.084	1.084	1.084	0	0	360-1100
Potassium * K	1.744	. 532	. 532	. 532	. 532	0	0	
K	3.4889	. 482	. 482	. 482	. 482	0	0	0-1700
Sodium* Na	1.026	. 904	. 904	. 904	. 904	0	0	0
$\mathrm{Na}_{2}$	2.052	. 82	. 82	. 82	. 82	0	0	$0-$
Sulfur	2.8607	. 565	. 773	. 589	. 56	. 0196	0	30-2000
Sulfur dioxide	2.858	. 61	. 79	. 875	. 762	. 082	. 132	0-2000
Water		1.847	2.052	2.478	1.69	. 535	-. 008	0-2000
Xenon *	5.8579	. 158	. 158	. 158	. 158	0	0	$0-$

[^78](continued)

Part 2

Substance	$\begin{gathered} \text { Range of } \\ \text { temperature }{ }^{\circ} \mathrm{C} \end{gathered}$	Specific heat (cgs) constant pressure $C_{p}$	$\begin{gathered} \text { Range of } \\ \text { temperature }{ }^{\circ} \mathrm{C} \end{gathered}$	Mean ratio of specific heats $C_{p} / C_{v}$
Acetone, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	26-110	. 3468		
Alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	108-220	. 4534	$\begin{array}{r} 53 \\ 100 \end{array}$	$\begin{aligned} & 1.133 \\ & 1.134 \end{aligned}$
Alcohol, $\mathrm{CH}_{3} \mathrm{OH}$	101-223	. 4580	100	1.256
Benzene, $\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{array}{r} 34-115 \\ 35-180 \\ 116-218 \end{array}$	$\begin{aligned} & .2990 \\ & .3325 \\ & .3754 \end{aligned}$	$\begin{aligned} & 20 \\ & 60 \\ & 99.7 \end{aligned}$	$\begin{aligned} & 1.403 \\ & 1.403 \\ & 1.105 \end{aligned}$
Chloroform, $\mathrm{CHCl}_{3}$	$\begin{aligned} & 27-118 \\ & 28-189 \end{aligned}$	$\begin{aligned} & .1441 \\ & .1489 \end{aligned}$	$\begin{aligned} & 22-78 \\ & 99.8 \end{aligned}$	$\begin{aligned} & 1.102 \\ & 1.150 \end{aligned}$
Ether, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	$\begin{aligned} & 69-224 \\ & 25-111 \end{aligned}$	$\begin{aligned} & .4797 \\ & .4280 \end{aligned}$	$\begin{aligned} & 42-45 \\ & 12-20 \end{aligned}$	$\begin{aligned} & 1.029 \\ & 1.024 \end{aligned}$
Hydrochloric acid, HCl .	$\begin{aligned} & 13-100 \\ & 22-214 \end{aligned}$	$\begin{aligned} & .1940 \\ & .1867 \end{aligned}$	$\begin{array}{r} 20 \\ 100 \end{array}$	$\begin{aligned} & 1.389 \\ & 1.400 \end{aligned}$
Mercury			310	1.666
Water vapor, $\mathrm{H}_{2} \mathrm{O}$.	$\begin{array}{r} 0 \\ \cdots \\ \\ \\ 180 \end{array}$	$\begin{aligned} & .4655 \\ & .421 \\ & .51 \end{aligned}$	$\begin{array}{r} 78 \\ 94 \\ 100 \end{array}$	$\begin{aligned} & 1.274 \\ & 1.33 \\ & 1.305 \end{aligned}$

TABLE 158.-SPECIFIC HEAT OF SILICATES


TABLE 159.-LATENT HEAT OF FUSION AND VAPORIZATION ${ }^{51}$
( $\mathrm{Kg} \mathrm{cal} / \mathrm{mol}$ )
Part 1

Metals	L.m	$L_{v}$	Ionic   sulistances	I.m	$\mathrm{L}_{\mathrm{v}}$	Molecular sulistances	Lm	$L_{v}$
Al	. 2.55	67.6	AgBr	2.18		A	. 280	1.88
Ag	2.70.	69.4	AgCl	3.15		$\mathrm{CCl}_{4}$	. 577.	8.0
Au	3.03	90.7	$\mathrm{AgNO}_{3}$	2.76		$\mathrm{CH}_{4}$	224.	2.33
Bi	2.51	47.8	$\mathrm{BaCl}_{2}$.	5.75		$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{4}$	2.35	8.3
Cd	1.46.	27.0	$\mathrm{CaCl}_{2}$	6.03		$\mathrm{CH}_{3} \mathrm{COOH}$	2.64	20.3
Co	3.66.		$\mathrm{HgBr}_{2}$	4.62		$\mathrm{CH}: \mathrm{OH}$	. 525.	9.2
Cr	3.93.	89.4	$\mathrm{HgI}_{2}$	4.50		$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	1.10	10.4
Cs	. 50	18.7	KBr	2.84	159	$\mathrm{Cl}_{2}$	1.63	7.43
Cu	3.11.	81.7	KCl	6.41	165	CO	. 200.	1.90
Fe	3.56.	96.5	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	8.77		$\mathrm{CO}_{2}$	1.99	6.44
Ga	1.34.		KF	6.28.	190	$\mathrm{H}_{2}$	. 028.	. 22
Hg	. 58.	15.5	$\mathrm{KNO}_{3}$	2.57		HPr	. 620	5.79
In	. 78.		KOH	1.61		HCl	. 506.	4.85
K	. 58.	21.9	LiNO:	6.06		$\mathrm{H}_{2} \mathrm{O}$	1.43	11.3
Mg	1.16	34.4	NaCl	7.22	183	$\mathrm{N}_{2}$.	. 218.	1.69
Mn	3.45	69.7	NaF	7.81.	213	$\mathrm{NH}_{3}$	1.84	7.14
Na	. 63.	26.2	$\mathrm{NaClO}_{3}$	5.29		NO	. 551.	3.82
Ni	4.20	98.1	$\mathrm{NaNO}_{3}$	3.76		$\mathrm{O}_{2}$	. 096.	2.08
Pb	1.22	46.7	NaOH	1.60				
Pt	5.33.	125.	$\mathrm{PbBr}_{2}$	4.29.				
Rb	. 53.	20.6	$\mathrm{PbCl}_{2}$	5.65.				
Sb	4.77	54.4	$\mathrm{PbI}_{2}$	5.18.				
Sc	1.22.		${ }^{\mathrm{T} 1 \mathrm{Br}}$	5.99				
Sn	1.72.		TlCl .	4.26.				
T1	. 76.	43.0						
Zn	1.60	31.4						

Part 2

| Substance |
| :---: | :---: | :---: | :---: | :---: |

[^79]| Element | $t^{\circ} \mathrm{C}$ | Cal/g | Element | $t^{\circ} \mathrm{C}$ | $\mathrm{Cal} / \mathrm{g}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sb | 755 | 320 | I .... | 174 | 24 |
| A | 1 atm . | 37.6 | Kr | - 151 | 28 |
| Ba | 1537 | 308 | Pb | 1170 | 175 |
| Bi | 920 | 190 | Li | 1336 | 511 |
| Br | $60 \pm$ | 43 | Mg | 1110 | 136 |
| Cd | 778 | 240 | Hg | 358 | 71 |
| Ca | 143.9 | 101 | N | - 195.6 | 47.6 |
| Cl | - 63 | 63 | $\mathrm{O}_{2}$ | - 182.9 | 50.9 |
| F | - 188.2 | 40.5 | Sr | 1336 | 410 |
| He | - 271.3 | 5.6 | Xe | - 108.6 | 25.1 |
| $\mathrm{H}_{2}$ | - 253 | 108 | Zn | 918 | 475 |

TABLE 161.-LATENT HEAT OF VAPORIZATION OF LIQUIDS

Substance	Formula	$t^{\circ} \mathrm{C}$	Latent heat vaporization cal/g	Total heat from $0^{\circ} \mathrm{C}$ $\mathrm{cal} / \mathrm{g}$
Alcohol: Ethyl	$\mathrm{C}_{2} \mathrm{H}_{0} \mathrm{O}$	78.1	205	255
		0	236	236
	"	100		267
	"	150		285
Methyl	CH4O	64.5	267	307
		0	289	
	"	100	246	...
	"	150	206	
	"	200	152	
	"	238.5	44.2	
Aniline	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$	184	110	
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	80.1	92.9	127.9
Carbon dioxide, solid	$\mathrm{CO}_{4}$			138.7
		-25	72.23	...
	"	${ }^{0}$	57.48	$\cdots$
	"	12.35	44.97	...
	"	22.04	31.8	
	"	30.82	3.72	
disulfide	$\mathrm{CS}_{2}$	46.1	83.8	94.8
		0	90	
		100		100.5
Chloroform	$\mathrm{CHCl}_{3}$	60.9	58.5	72.8
Ether	$\mathrm{C}_{4} \mathrm{H}_{40} \mathrm{O}$	34.5	88.4	107
		0	94	94
	"	50	.	115.1
	"	120		140
Ethyl $\begin{gathered}\text { bromide } \\ \text { chloride } \\ \text { iodide }\end{gathered}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	38.2	60.4	
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	12.5		98
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	71	47	...
Heptane	$\mathrm{C}_{7} \mathrm{H}_{18}$	90	77.8	
Hexane	$\mathrm{Co}_{0} \mathrm{H}_{14}$	70	79.2	
Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	130	70.0	$\ldots$
Pentane .....	$\mathrm{C}_{5} \mathrm{H}_{12}$	30	85.8	
Sulfur dioxide	$\mathrm{SO}_{4}$	0	91.2	$\ldots$
Toluol	$\mathrm{C}_{2} \mathrm{H}_{8}$	111	68.4 86.0	$\ldots$
Turpentine	$\mathrm{C}_{10} \mathrm{H}_{10}$	159.3	74.04	

TABLE 162.-LATENT AND TOTAL HEAT OF VAPORIZATION, FORMULAE
$r=$ latent heat of vaporization at $t^{\circ} \mathrm{C} ; \mathrm{H}=$ total heat from fluid at $0^{\circ}$ to vapor at $t^{\circ} \mathrm{C}$. $T^{\circ}$ refers to Kelvin scale. Same units as preceding table.


TABLE 163.-LATENT HEAT OF VAPORIZATION OF AMMONIA
Calories per gram

${ }^{\circ} \mathrm{C}$	0	1	2	3	+	5	6	7	8	9
-40	331.7	332.3	333.0	333.6	$33+3$	334.9	335.5	336.2	336.8	337.5
-30	324.8	325.5	326.2	326.9	327.6	328.3	329.0	329.7	330.3	331.0
-20	317.6	318.3	319.1	319.8	320.6	321.3	322.0	322.7	323.4	324.1
-10	309.9	310.7	311.5	312.2	313.0	313.8	314.6	315.3	316.1	316.8
-0	301.8	302.6	303.4	304.3	305.1	305.9	306.7	307.5	308.3	309.1
+0	301.8	300.9	300.1	299.2	298.4	297.5	296.6	295.7	294.9	294.0
+10	293.1	292.2	291.3	290.4	289.5	288.6	287.6	286.7	285.7	284.8
+20	283.8	282.8	281.8	280.9	279.9	278.9	279.9	276.9	275.9	274.9
+30	273.9	272.8	271.8	270.7	269.7	268.6	276.5	266.4	265.3	264.2
+40	263.1	262.0	260.8	259.7	258.5	257.4	256.2	255.0	253.8	252.6

## TABLE 164.-"LATENT HEAT OF PRESSURE VARIATION" OF LIQUID AMMONIA

When a fluid undergoes a change of pressure, there occurs a transformation of energy into heat or vice versa, which results in a change of temperature of the substance unless a like amount of heat is abstracted or added. This change expressed as the heat so transformed per unit change of pressure is the "latent heat of pressure variation." It is expressed below as $J_{g^{-1}} \mathrm{~kg}^{-1} \mathrm{~cm}^{2}$.

Temperature ${ }^{\circ} \mathrm{C}$.	-44.1	-39.0	-24.2	-.2	+16.5	+26.5	+35.4	+40.3		
Latent heat $\ldots .-.055$	-.057	-	.068	-.088	-	.107	-	.123	-.140	-

## TABLE 165.-THERMAL PROPERTIES OF SATURATED WATER AND STEAM

Accuracy: It is estimated that there is only 1 chance in 100 that the values given for $H$ differ from the truth by as much as 1 part in 2000 ; it is equally unlikely that the values for $L$ and $H^{\prime}$ are as much as 1.5 joules/g from the truth in the range of the experiments, $100^{\circ}-270^{\circ} \mathrm{C}$.

$\begin{gathered} \text { Temperature } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Heat content of liquid, $H$ joules/g	Latent heat, $L$ joules/g	Heat content of vapor, $H^{\prime}$ joules/g	Entropy-	
				$\begin{aligned} & \text { of liquid } \\ & \text { joules } / \mathrm{g}^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { of vapor } \\ & \phi^{3} \\ & \text { joules } / g^{\circ} \mathrm{C} \end{aligned}$
0.	0	2494.02	2494.02	0	9.132
10.	42.02	2472.26	2514.28	. 1511	8.884
20.	83.83	2450.17	2534.00	. 2962	8.656
30.	125.59	2427.73	2553.32	. 4363	8.446
40.	167.34	2404.90	2572.24	. 5719	8.253
50.	209.11	2381.64	2590.75	. 7032	8.074
60.	250.90	2357.91	2608.81	. 8305	7.909
70.	292.75	2333.65	2626.40	. 9543	7.756
80.	334.66	2308.32	2643.48	1.0746	7.613
90.	376.65	2283.38	2660.03	1.1918	7.480
100.	418.75	2257.24	2675.99	1.3064	7.356
110.	460.97	2230.35	2691.32	1.4177	7.240
120.	503.36	2202.65	2706.01	1.5268	7.130
130.	545.93	2174.04	2719.97	1.6335	7.027
140.	588.71	2144.44	2733.15	1.7381	6.929
150.	631.75	2113.76	2745.51	1.8407	6.837
160.	675.06	2081.89	2756.95	1.9416	6.749
170.	718.66	2048.72	2767.38	2.0406	6.664
180.	762.72	2014.10	2776.82	2.1384	6.584
190.	807.15	1977.89	2785.04	2.2348	6.506
200.	. 852.02	1939.93	2791.95	2.3299	6.430
210.	897.35	1900.00	2797.35	2.4239	6.357
220.	943.24	1857.89	2801.13	2.5169	6.285
230.	989.75	1813.33	2803.08	2.6091	6.213
240.	1036.97	1766.02	2802.99	2.7007	6.143
250.	1084.97	1715.59	2800.56	2.7919	6.072
260.	1133.87	1661.60	2795.47	2.8828	6.000
270.	1184.32	1603.51	2787.83	2.9746	5.927

Metric and common units, $0^{\circ}$ to $220^{\circ} \mathrm{C}$
Heat of liquid, $q$, heat required to raise $1 \mathrm{~kg}(1 \mathrm{lb})$ to corresponding temperature from $0^{\circ} \mathrm{C}$. Heat of vaporization, $r$, heat required to vaporize $1 \mathrm{~kg}(1 \mathrm{lb})$ at corresponding temperature to dry saturated vapor against corresponding pressure. Total heat, $H=r+q$.

	Pressure			Heat of the liquid		Heat of vaporization		Heat equivalent of internal works		
${ }_{-0}$	$\mathrm{mmHg}^{\text {m }}$	$\mathrm{kg} / \mathrm{cm}^{2}$	1b/in. ${ }^{2}$	kg cal	Btu	kg cal	Btu	kg cal	Btu	0
$t$	¢	-		,	-				${ }^{\text {P }}$	
0	4.579	. 00623	. 0886	. 00	. 0	595.4	1071.7	565.3	1017.5	32.0
5	6.541	. 00889	. 1265	5.04	9.1	592.8	1067.1	562.2	1011.9	41.0
10	9.205	. 01252	. 1780	10.06	18.1	590.2	1062.3	559.0	1006.2	50.0
15	12.779	. 01737	. 2471	15.06	27.1	587.6	1057.6	555.9	1000.5	59.0
20	17.51	. 02381	. 3396	20.06	36.1	584.9	1052.8	552.7	994.8	68.0
25	23.69	. 03221	. 4581	25.05	45.1	582.3	1048.1	549.5	989.7	77.0
30	31.71	. 04311	. 6132	30.04	54.1	579.6	1043.3	546.3	983.4	86.0
35	42.02	. 05713	. 8126	35.03	63.1	576.9	1038.5	543.1	977.6	95.0
40	55.13	. 07495	1.0661	40.02	72.0	574.2	1033.5	539.9	971.7	104.0
45	71.66	. 09743	1.3858	45.00	81.0	571.3	1028.4	536.5	965.7	113.0
50	92.30	. 12549	1.7849	49.99	90.0	568.4	1023.2	533.0	959.6	122.0
55	117.85	. 16023	2.279	54.98	99.0	565.6	1018.1	529.7	953.5	131.0
60	149.19	. 20284	2.885	59.97	108.0	562.8	1013.1	526.4	947.5	140.0
65	187.36	. 2547	3.623	64.98	117.0	559.9	1007.8	523.0	941.3	149.0
70	233.53	. 3175	4.516	69.98	126.0	556.9	1002.5	519.5	935.0	158.9
75	289.0	. 3929	5.589	74.99	135.0	554.0	997.3	516.0	928.8	167.0
80	355.1	. 4828	6.867	80.01	144.0	551.1	991.9	512.6	922.6	176.0
85	433.5	. 5894	8.383	85.04	153.1	548.1	986.5	509.1	916.3	185.0
90	525.8	. 7149	10.167	90.07	162.1	544.9	980.9	505.4	909.9	194.0
91	546.1	. 7425	10.560	91.08	163.9	544.3	979.8	504.7	908.5	195.8
92	567.1	. 7710	10.966	92.08	165.7	543.7	978.7	504.0	907.2	197.6
93	588.7	. 8004	11.384	93.09	167.5	543.1	977.6	503.3	906.0	199.4
94	611.0	. 8307	11.815	94.10	169.3	542.5	976.5	502.6	904.7	201.2
95	634.0	. 8620	12.260	95.11	171.2	541.9	975.4	501.9	903.4	203.0
96	657.7	. 8942	12.718	96.12	173.0	541.2	974.2	501.1	902.1	204.8
97	682.1	. 9274	13.190	97.12	174.8	540.6	973.1	500.4	900.8	206.6
98	707.3	. 9616	13.678	98.13	176.6	539.9	971.9	499.6	899.4	208.4
99	733.2	. 9970	14.180	99.14	178.5	539.3	970.8	498.9	898.2	210.2
100	760.0	1.0333	14.697	100.2	180.3	538.7	969.7	498.2	896.9	212.0
101	787.5	1.0707	15.229	101.2	182.1	538.1	968.5	497.5	895.5	213.8
102	815.9	1.1093	15.778	102.2	183.9	537.4	967.3	496.8	894.1	215.6
103	845.1	1.1490	16.342	103.2	185.7	536.8	966.2	496.1	892.9	217.4
104	875.1	1.1898	16.923	104.2	187.6	536.2	965.1	495.4	891.6	219.2
105	906.1	1.2319	17.522	105.2	189.4	535.6	964.0	494.7	890.3	221.0
106	937.9	1.2752	18.137	106.2	191.2	534.9	962.8	493.9	889.0	222.8
107	970.6	1.3196	18.769	107.2	193.0	534.2	961.6	493.1	887.6	224.6
108	1004.3	1.3653	19.420	108.2	194.8	533.6	960.5	492.4	886.3	226.4
109	1038.8	1.4123	20.089	109.3	196.7	532.9	959.3	491.6	885.0	228.2
110	1074.5	1.4608	20.777	110.3	198.5	532.3	958.1	490.9	883.6	230.6
111	1111.1	1.5106	21.486	111.3	200.3	531.6	956.9	490.2	882.3	231.8
112	1148.7	1.5617	22.214	112.3	202.1	530.9	955.7	489.4	880.9	233.6
113	1187.4	1.6144	22.962	113.3	203.9	530.3	954.5	488.7	879.5	235.4
114	1227.1	1.6684	23.729	114.3	205.8	529.6	953.3	487.9	878.2	237.2
115	1267.9	1.7238	24.518	115.3	207.6	528.9	952.1	487.1	876.8	239.0
116	1309.8	1.7808	25.328	116.4	209.4	528.2	950.8	486.3	875.4	240.8
117	1352.8	1.8393	26.160	117.4	211.2	527.5	949.5	485.5	873.9	242.6
118	1397.0	1.8993	27.015	118.4	213.0	526.9	948.4	484.8	872.6	244.4
119	1442.4	1.9611	27.893	119.4	214.9	526.2	947.2	484.0	871.3	246.2
				(cont	tinued)					

## Metric and common units, $0^{\circ}$ to $220^{\circ} \mathrm{C}$

If $A$ is the reciprocal of the mechanical equivalent of heat, $p$ the pressure, $s$ and $\sigma$ the specific volumes of the liquid and the saturated vapor, $s-\sigma$, the change of volume, then the heat equivalent of the external work is $A p u=A p(s-\sigma)$. Heat equivalent of internal work, $\rho=r-A p u$, Entropy $=\int d Q / T$, where $d Q=$ amount of heat added at absolute temperature $T$.


TABLE 166.-PROPERTIES OF SATURATED STEAM (continued)
Metric and common units, $0^{\circ}$ to $220^{\circ} \mathrm{C}$


TABLE 166.—PROPERTIES OF SATURATED STEAM (continued)
Metric and common units, $0^{\circ}$ to $220^{\circ} \mathrm{C}$

	Heat equiva-   lent of exter nal work		Entropy of the	Entropy of evapo ration	Specific volume		Density		
5\%	kg cal						$\mathrm{kg} / \mathrm{m}^{3}$	$1 \mathrm{~b} / \mathrm{ft}^{\text {a }}$	츕
$t$	Apu	Apu	\%	$\frac{r}{T}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{ft}^{3} / \mathrm{lb}$	$\frac{1}{5}$	1	${ }_{t}$
120	42.2	76.0	. 3654	1.3372	. 8914	14.28	1.122	. 0700	248.0
121	42.3	76.2	. 3680	1.3321	. 8653	13.86	1.156	. 0721	249.8
122	42.4	76.4	. 3705	1.3269	. 8401	13.46	1.190	. 0743	251.6
123	42.5	76.5	. 3731	1.3218	. 8158	13.07	1.226	. 0765	253.4
124	42.6	76.7	. 3756	1.3167	. 7924	12.69	1.262	. 0788	255.2
125	42.7	76.8	. 3782	1.3117	. 7698	12.33	1.299	. 0811	257.0
126	42.8	77.0	. 3807	1.3067	. 7479	11.98	1.337	. 0835	258.8
127	42.9	77.1	. 3833	1.3017	. 7267	11.64	1.376	. 0859	260.6
128	43.0	77.3	. 3858	1.2967	. 7063	11.32	1.416	. 0883	262.4
129	43.0	77.4	. 3884	1.2917	. 6867	11.00	1.456	. 0909	264.2
130	43.1	77.6	. 3909	1.2868	. 6677	10.70	1.498	. 0935	266.0
131	43.2	77.7	. 3934	1.2818	. 6493	10.40	1.540	. 0961	267.8
132	43.3	77.9	. 3959	1.2769	. 6315	10.12	1.583	. 0988	269.6
133	43.3	78.0	. 3985	1.2720	. 6142	9.839	1.628	. 1016	271.4
134	43.4	78.1	. 4010	1.2672	. 5974	9.569	1.674	. 1045	273.2
135	43.5	78.3	. 4035	1.2623	. 5812	9.309	1.721	. 1074	275.0
136	43.6	78.4	. 4060	1.2574	. 5656	9.060	1.768	. 1104	276.8
137	43.6	78.5	. 4085	1.2526	. 5506	8.820	1.816	. 1134	278.6
138	43.7	78.7	. 4110	1.2479	. 5361	8.587	1.865	. 1165	280.4
139	43.8	78.8	. 4135	1.2431	. 5219	8.360	1.916	. 1196	282.2
140	43.9	78.9	. 4160	1.2383	. 5081	8.140	1.968	. 1229	284.0
141	43.9	79.1	. 4185	1.2335	. 4948	7.926	2.021	. 1262	285.8
142	44.0	79.2	. 4209	1.2288	. 4819	7.719	2.075	. 1296	287.6
143	44.0	79.3	. 4234	1.2241	. 4694	7.519	2.130	. 1330	289.4
144	44.2	79.5	. 4259	1.2194	. 4574	7.326	2.186	. 1365	291.2
145	44.2	79.6	. 4283	1.2147	. 4457	7.139	2.244	. 1401	293.0
146	44.3	79.7	. 4307	1.2100	. 4343	6.957	2.303	. 1437	294.8
147	44.4	79.9	. 4332	1.2054	. 4232	6.780	2.363	. 1475	296.6
148	44.4	80.0	. 4356	1.2008	. 4125	6.609	2.424	. 1513	298.4
149	44.5	80.1	. 4380	1.1962	. 4022	6.443	2.486	. 1552	300.2
150	44.6	80.2	. 4405	1.1916	. 3921	6.282	2.550	. 1592	302.0
151	44.6	80.4	. 4429	1.1870	. 3824	6.126	2.615	. 1632	303.8
152	44.7	80.5	. 4453	1.1824	. 3729	5.974	2.682	. 1674	305.6
153	44.8	80.6	. 4477	1.1778	. 3637	5.826	2.750	. 1716	307.4
154	44.8	80.7	. 4501	1.1733	. 3548	5.683	2.818	. 1759	309.2
155	44.9	80.9	. 4525	1.1688	. 3463	5.546	2.888	. 1803	311.0
156	45.0	81.0	. 4549	1.1644	. 3380	5.413	2.959	. 1847	312.8
157	45.0	81.1	. 4573	1.1599	. 3298	5.282	3.032	. 1893	314.6
158	45.1	81.2	. 4596	1.1554	. 3218	5.154	3.108	. 1940	316.4
159	45.2	81.4	. 4620	1.1509	. 3140	5.029	3.185	. 1988	318.2
160	45.3	81.5	. 4644	1.1465	. 3063	4.906	3.265	. 2038	320.0
161	45.3	81.6	. 4668	1.1421	. 2989	4.789	3.345	. 2088	321.8
162	45.4	81.7	. 4692	1.1377	. 2920	4.677	3.425	. 2138	323.6
163	45.5	81.8	. 4715	1.1333	. 2855	4.571	3.503	. 2188	325.4
164	45.5	81.9	. 4739	1.1289	. 2792	4.469	3.582	. 2238	327.2
165	45.6	82.0	. 4763	1.1245	. 2729	4.368	3.664	. 2289	329.0
166	45.6	82.1	. 4786	1.1202	. 2666	4.268	3.751	. 2343	330.8
167	45.7	82.2	. 4810	1.1159	. 2603	4.168	3.842	. 2399	332.6
168	45.7	82.4	. 4833	1.1115	. 2540	4.070	3.937	. 2457	334.4
169	45.8	82.5	. 4857	1.1072	. 2480	3.975	4.032	. 2516	336.2

(continued)

TABLE 166.-PROPERTIES OF SATURATED STEAM (continued)
Metric and common units, $0^{\circ}$ to $220^{\circ} \mathrm{C}$

	Pressure			Heat of the liquid		Heat of vaporization		Heat equivalent of internal works		Hud
$\stackrel{H}{ }$	$\mathrm{mmHg}^{\text {g }}$	$\mathrm{kg} / \mathrm{cm}^{2}$	1b/in. ${ }^{2}$	kg cal	Btu	kg cal	Btu	kg cal	Btu	
$t$	$p$	$p$	f	$q$	$q$	$r$	$r$	$\rho$	$\rho$	$t$
170	5937	8.071	114.8	171.6	308.9	488.7	879.6	442.8	797.0	338.0
171	6081	8.268	117.6	172.6	310.7	487.9	878.3	441.9	795.6	339.8
172	6229	8.469	120.4	173.7	312.6	487.1	876.9	441.1	794.1	341.6
173	6379	8.673	123.4	174.7	314.5	486.3	875.4	440.2	792.5	343.4
174	6533	8.882	126.3	175.7	316.3	485.5	873.9	439.4	790.9	345.2
175	6689	9.094	129.4	176.8	318.2	484.7	872.4	438.5	789.3	347.0
176	6848	9.310	132.4	177.8	320.0	483.9	871.0	437.7	787.8	348.8
177	7010	9.531	135.6	178.8	321.8	483.1	869.5	436.8	786.2	350.6
178	7175	9.755	138.8	179.9	323.7	482.3	868.1	436.0	784.7	352.4
179	7343	9.983	142.0	180.9	325.6	481.4	866.6	435.0	783.1	354.2
180	7514	10.216	145.3	181.9	327.5	480.6	865.1	434.2	781.5	356.0
181	7688	10.453	148.7	183.0	329.3	479.8	863.6	433.3	779.9	357.8
182	7866	10.695	152.1	184.0	331.2	479.0	862.2	432.5	778.4	359.6
183	8046	10.940	155.6	185.0	333.0	478.2	860.7	431.6	776.9	361.4
184	8230	11.189	159.2	186.1	334.9	477.4	859.2	430.8	775.3	363.2
185	8417	11.44	162.8	187.1	336.8	476.6	857.7	429.9	773.7	365.0
186	8608	11.70	166.5	188.1	338.6	475.7	856.3	429.0	772.2	366.8
187	8802	11.97	170.2	189.2	340.5	474.8	854.7	428.0	770.5	368.6
188	8999	12.24	174.0	190.2	342.4	474.0	853.2	427.2	768.9	370.4
189	9200	12.51	177.9	191.2	344.2	473.2	851.7	426.3	767.4	372.2
190	9404	12.79	181.8	192.3	346.1	472.3	850.2	425.4	765.8	374.0
191	9612	13.07	185.9	193.3	347.9	471.5	848.7	424.5	764.2	375.8
192	9823	13.36	190.0	194.4	349.8	470.6	847.1	423.6	762.5	377.6
193	10038	13.65	194.1	195.4	351.7	469.8	845.6	422.8	761.0	379.4
194	10256	13.94	198.3	196.4	353.5	468.9	844.1	421.9	759.4	381.2
195	10480	14.25	202.6	197.5	355.4	468.1	842.5	421.0	757.7	383.0
196	10700	14.55	207.0	198.5	357.3	467.2	841.0	420.1	756.1	384.8
197	10930	14.87	211.4	199.5	359.2	466.4	839.5	419.2	754.6	386.6
198	11170	15.18	216.0	200.6	361.1	465.6	838.0	418.4	753.4	388.4
199	11410	15.51	220.6	201.6	362.9	464.7	836.4	417.4	751.3	390.2
200	11650	15.84	225.2	202.7	364.8	463.8	834.8	416.5	749.7	392.0
201	11890	16.17	230.0	203.7	366.7	462.9	833.8	415.6	748.1	393.8
202	12140	16.51	234.8	204.7	368.5	462.1	831.8	414.8	746.6	395.6
203	12400	16.85	239.7	205.8	370.4	461.2	830.2	413.8	744.9	397.4
204	12650	17.20	244.7	206.8	372.3	460.3	828.6	412.9	743.3	399.2
205	12920	17.56	249.8	207.9	374.1	459.4	827.0	412.0	741.6	401.0
206	13180	17.92	254.9	208.9	376.0	458.6	825.4	411.1	740.0	402.8
207	13450	18.29	260.1	210.0	377.9	457.7	823.8	410.2	738.3	404.6
208	13730	18.66	265.4	211.0	379.8	456.8	822.2	409.3	736.7	406.4
209	14010	19.04	270.8	212.0	381.6	455.9	820.6	408.4	735.1	408.2
210	14290	19.43	276.3	213.1	383.5	455.0	819.1	407.5	733.6	410.0
211	14580	19.82	281.9	214.1	385.4	454.1	817.4	406.6	731.9	411.8
212	14870	20.22	287.6	215.2	387.3	453.2	815.8	405.7	730.2	413.6
213	15170	20.62	293.3	216.2	389.2	452.4	814.3	404.9	728.7	415.4
214	15470	21.03	299.2	217.3	391.1	451.5	812.7	404.0	727.1	417.2
215	15780	21.45	305.1	218.3	392.9	450.6	811.0	403.1	725.4	419.0
216	16090	21.88	311.1	219.3	394.8	449.6	809.3	402.1	723.7	420.8
217	16410	22.31	317.3	220.4	396.7	448.7	807.7	401.2	722.1	422.6
218	16730	22.74	323.5	221.4	398.5	447.8	806.1	400.3	720.5	424.4
219	17060	23.19	329.8	222.5	400.4	446.9	804.5	399.4	718.9	426.2
220	17390	23.64	336.2	223.5	402.3	446.0	802.9	398.5	717.3	428.0

Metric and common units, $0^{\circ}$ to $220^{\circ} \mathrm{C}$

	Heat equivalent of external work		Entropy of the liquid	Entropy of evaporation   $r$	Specific volume		Density		
-0	kg cal	Btu			$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{ft}^{3} / 1 \mathrm{~b}$	1	1	$\stackrel{\text { ¢ }}{\sim}$
$t$	$A p u$	Apu	-	$\vec{T}$	$s$	$s$	$\stackrel{1}{s}$	$\stackrel{1}{s}$	$t$
170	45.9	82.6	. 4880	1.1029	. 2423	3.883	4.127	. 2575	338.0
171	46.0	82.7	. 4903	1.0987	. 2368	3.794	4.223	. 2636	339.8
172	46.0	82.8	. 4926	1.0944	2314	3.709	4.322	. 2696	341.6
173	46.1	82.9	. 4949	1.0901	2262	3.626	4.421	. 2758	343.4
174	46.1	83.0	. 4972	1.0859	. 2212	3.545	4.521	. 2821	345.2
175	46.2	83.1	. 4995	1.0817	. 2164	3.467	4.621	. 2884	347.0
176	46.2	83.2	. 5018	1.0775	. 2117	3.391	4.724	. 2949	348.8
177	46.3	83.3	. 5041	1.0733	. 2072	3.318	4.826	. 3014	350.6
178	46.3	83.4	. 5064	1.0691	. 2027	3.247	4.933	. 3080	352.4
179	46.4	83.5	. 5087	1.0649	. 1983	3.177	5.04	. 3148	354.2
180	46.4	83.6	. 5110	1.0608	. 1941	3.109	5.15	. 3217	356.0
181	46.5	83.7	. 5133	1.0567	. 1899	3.041	5.27	. 3288	357.8
182	46.5	83.8	. 5156	1.0525	. 1857	2.974	5.38	. 3362	359.6
183	46.6	83.8	. 5178	1.0484	. 1817	2.911	5.50	. 3435	361.4
184	46.6	83.9	. 5201	1.0443	. 1778	2.849	5.62	. 3510	363.2
185	46.7	84.0	. 5224	1.0403	. 1740	2.787	5.75	. 3588	365.0
186	46.7	84.1	. 5246	1.0362	. 1702	2.727	5.88	. 3667	366.8
187	46.8	84.2	. 5269	1.0321	. 1666	2.669	6.00	. 3746	368.6
188	46.8	84.3	. 5291	1.0280	. 1632	2.614	6.13	. 3826	370.4
189	46.9	84.3	. 5314	1.0240	. 1598	2.560	6.26	. 3906	372.2
190	46.9	84.4	. 5336	1.0200	. 1565	2.507	6.39	. 3989	374.0
191	47.0	84.5	. 5358	1.0160	. 1533	2.456	6.52	. 4072	375.8
192	47.0	84.6	. 5381	1.0120	. 1501	2.405	6.66	. 4158	377.6
193	47.0	84.6	. 5403	1.0080	. 1470	2.355	6.80	. 4246	379.4
194	47.0	84.7	. 5426	1.0040	. 1440	2.306	6.94	. 4336	381.2
195	47.1	84.8	. 5448	1.0000	. 1411	2.259	7.09	. 4426	383.0
196	47.1	84.9	. 5470	. 9961	. 1382	2.214	7.23	. 4516	384.8
197	47.2	84.9	. 5492	. 9922	. 1354	2.169	7.38	. 4610	386.6
198	47.2	85.0	. 5514	. 9882	. 1327	2.126	7.53	. 4704	388.4
199	47.3	85.1	. 5536	. 9843	. 1300	2.083	7.69	. 4801	390.2
200	47.3	85.1	. 5558	. 9804	. 1274	2.041	7.84	. 4900	392.0
201	47.3	85.2	. 5580	. 9765	. 1249	2.001	8.00	. 4998	393.8
202	47.3	85.2	. 5602	. 9727	. 1225	1.962	8.16	. 510	395.6
203	47.4	85.3	. 5624	. 9688	. 1201	1.923	8.33	. 520	397.4
204	47.4	85.3	. 5646	. 9650	. 1177	1.885	8.50	. 531	399.2
205	47.4	85.4	. 5668	. 9611	. 1153	1.847	8.67	. 541	401.0
206	47.5	85.4	. 5690	. 9572	. 1130	1.810	8.85	. 552	402.8
207	47.5	85.5	. 5712	. 9534	. 1108	1.774	9.03	. 564	404.6
208	47.5	85.5	. 5733	. 9496	. 1086	1.739	9.21	. 575	406.4
209	47.5	85.5	. 5755	. 9458	. 1065	1.705	9.39	. 587	408.2
210	47.5	85.5	. 5777	. 9420	. 1044	1.673	9.58	. 598	410.0
211	47.5	85.5	. 5799	. 9382	. 1024	1.640	9.77	. 610	411.8
212	47.5	85.6	. 5820	. 9344	. 1004	1.608	9.96	. 622	413.6
213	47.5	85.6	. 5842	. 9307	. 0984	1.577	10.16	. 634	415.4
214	47.5	85.6	. 5863	. 9269	. 0965	1.546	10.36	. 647	417.2
215	47.5	85.6	. 5885	. 9232	. 0947	1.516	10.56	. 660	419.0
216	47.5	85.6	. 5906	. 9195	. 0928	1.486	10.78	. 673	420.8
217	47.5	85.6	. 5927	. 9157	. 0910	1.458	10.99	. 686	422.6
218	47.5	85.6	. 5948	. 9120	. 0893	1.430	11.20	. 699	424.4
219	47.5	85.6	. 5969	. 9084	. 0876	1.403	11.41	. 713	426.2
220	47.5	85.6	. 5991	. 9047	. 0860	1.376	11.62	. 727	428.0

## Common units, $400^{\circ}$ to $700^{\circ} \mathrm{F}$

Abridged from Steam tables and Mollicr's diagram, by Keenan. Printed by permission of the publisher, The American Society of Mechanical Engineers. For detailed discussion see Mechanical Engineering, February, 1929, $v$, specific vol., $\mathrm{ft}^{3} / \mathrm{lb}$; $h$, total heat, enthalpy, $\mathrm{Btu} / \mathrm{lb}$; $s$, entropy, Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{F}^{-1}$. The strict definition of total heat (internal energy + $144 / J$ ) is adhered to; zeros of both $h$ and $s$ are arbitrarily placed on the sat. liq. line at $32^{\circ} \mathrm{F}$. No internal energy values are tabulated but may be casily found by subtracting $144 \mathrm{pz} / \mathrm{J}$ from the total heat. The energy unit, the Btu, is $778.57 \mathrm{ft}-1 \mathrm{bb}(J)$ is $1 / 180$ of the change in total heat along the saturated liquid line between $32^{\circ}$ and $212^{\circ} \mathrm{F}$.

		Specificic volume			$\underbrace{\text { Total heat }}$			$\underbrace{\text { Entropy }}$		
$\begin{gathered} \text { Temp. } \\ \stackrel{\mathrm{O}}{\mathrm{~F}} \\ \boldsymbol{p} \end{gathered}$		$\begin{aligned} & \text { Sat. } \\ & \text { liq. } \\ & v_{q} \end{aligned}$	$\begin{gathered} \text { Evap. } \\ v_{f g} \end{gathered}$	$\begin{gathered} \text { Sat. } \\ \text { vapor } \\ v_{g} \end{gathered}$	$\begin{aligned} & \text { Sat. } \\ & \text { liq. } \\ & \text { liq. } \end{aligned}$	$\begin{gathered} \text { Evap. } \\ h_{f g} \end{gathered}$	$\begin{aligned} & \text { Sat. } \\ & \text { vap. } \\ & h_{0} \end{aligned}$	$\begin{aligned} & \text { Sat. } \\ & \text { liq. } \\ & s_{p} \end{aligned}$	$\begin{gathered} \text { Evap. } \\ s_{f g} \end{gathered}$	$\begin{gathered} \substack{\text { Sat. } \\ \text { vapor } \\ s_{g}} \end{gathered}$
400	247.25	. 01865	1.8421	1.8608	375.0	826	1200	. 5668	. 9602	1.5270
405	261.67	. 01873	1.7428	1.7615	380.4	821	1201	. 5730	. 9491	1.5221
410	276.72	. 01880	1.6493	1.6681	385.9	816	1202	. 5792	. 9381	1.5173
415	292.44	. 01888	1.5615	1.5804	391.3	811	1202	. 5854	. 9271	1.5125
420	308.82	. 01896	1.4792	1.4982	396.8	806	1203	. 5916	. 9161	1.5077
425	325.91	. 01904	1.4022	1.4212	402.4	801	1203	. 5978	. 9052	1.5029
430	343.71	. 01911	1.3295	1.3486	407.9	796	1203	. 6039	. 8942	1.4982
435	362.27	. 01919	1.2610	1.2802	413.5	790	1204	. 6101	. 8833	1.4934
440	381.59	. 01928	1.1965	1.2158	419.1	785	1204	. 6162	. 8724	1.4887
445	401.70	. 01936	1.1356	1.1550	424.7	779	1204	. 6224	. 8616	1.4839
450	422.61	. 0195	1.0782	1.0977	430	774	1204	. 6284	. 8507	1.4792
455	444.35	. 0195	1.0241	1.0436	436	768	1204	. 6346	. 8398	1.4744
460	466.94	. 0196	. 9730	. 9927	442	762	1204	. 6407	. 8290	1.4696
465	490.40	. 0197	. 9249	. 9446	447	756	1204	. 6468	. 8180	1.4649
470	514.76	. 0198	. 8793	. 8991	453	750	1204	. 6530	. 8071	1.4601
475	540.04	. 0199	. 8361	. 8560	459	744	1203	. 6592	. 7962	1.4554
480	566.26	. 0200	. 7951	. 8151	465	738	1203	. 6654	. 7852	1.4506
485	593.47	. 0201	. 7563	. 7764	471	731	1202	. 6716	. 7742	1.4458
490	621.67	. 0202	. 7195	. 7398	477	725	1202	. 6779	. 7632	1.4410
495	650.87	. 0204	. 6847	. 7050	483	718	1201	. 6842	. 7521	1.4362
500	681.09	. 0205	. 6516	. 6721	489	711	1200	. 6904	. 7410	1.4314
505	712.40	. 0206	. 6201	. 6408	495	704	1199	. 6968	. 7299	1.4266
510	744.74	. 0207	. 5903	. 6110	502	697	1198	. 7031	. 7187	1.4218
515	778.16	. 0209	. 5618	. 5826	508	690	1197	. 7094	. 7075	1.4170
520	812.72	. 0210	. 5347	. 5557	514	682	1196	. 7158	. 6963	1.4121
525	848.43	. 0211	. 5090	. 5301	521	675	1195	. 7222	. 6851	1.4073
530	885.31	. 0213	. 4845	. 5058	527	667	1193	. 7286	. 6738	1.4024
535	923.39	. 0214	. 4614	. 4828	533	659	1192	. 7350	. 6625	1.3975
540	962.73	. 0216	4394	.4610	540	651	1191	. 7414	. 6512	1.3926
545	1003.4	. 0218	4184	. 4401	547	643	1189	. 7478	. 6399	1.3877
550	1045.4	. 0219	. 3982	. 4201	553	634	1188	. 7543	. 6285	1.3828
555	1088.7	. 0221	. 3789	. 4010	560	626	1186	. 7607	. 6170	1.3778
560	1133.4	. 0223	. 3605	. 3828	567	618	1184	. 7672	. 6056	1.3728
565	1179.7	. 0225	. 3429	. 3654	574	609	1182	. 7737	. 5940	1.3677
570	1227.6	. 0227	. 3261	. 3488	580	600	1180	. 7802	. 5825	1.3626
575	1276.7	. 0229	. 3101	. 3330	587	591	1178	. 7867	. 5709	1.3576
580	1327.2	. 0231	. 2949	. 3180	594	581	1176	. 7932	. 5592	1.3524
585	1379.2	. 0234	. 2804	. 3037	602	572	1173	. 7998	. 5474	1.3472
590	1432.7	. 0236	. 2664	. 2900	609	562	1171	. 8064	. 5356	1.3420
595	1487.8	. 0239	. 2530	. 2769	616	552	1168	. 8131	. 5237	1.3368
600	1544.6	. 0241	. 2401	. 2642	623	542	1166	. 8198	. 5118	1.3316
610	1663.2	. 0247	. 2159	. 2406	638	521	1160	. 8332	. 4875	1.3208
620	1788.8	. 0254	. 1933	. 2186	653	499	1153	. 8470	4623	1.3093
630	1921.9	. 0261	. 1721	. 1982	670	475	1144	. 8612	. 4358	1.2970
640	2062.8	. 0269	. 1522	. 1791	687	448	1135	. 8763	. 4073	1.2836
650	2211.4	. 0278	. 1331	. 1610	705	417	1122	. 8924	. 3764	1.2688
660	2368.6	. 0290	. 1148	. 1437	725	384	1109	. 9097	. 3426	1.2523
670	2534.2	. 0304	. 0966	. 1269	748	344	1092	. 9287	. 3049	1.2336
680	2709.7	. 0322	. 0781	. 1102	773	299	1071	. 9499	. 2619	1.2119
690	2896.8	. 0347	. 0589	. 0936	803	241	1044	. 9755	. 2098	1.1852
700	3096.4	. 0394	. 0353	. 0747	846	157	1003	1.0117	. 1354	1.1471
705	3202.0	. 0462	. 0135	. 0597	888	73	962	1.0472	. 0630	1.1102
706.1	3226.0	. 0522	0	. 0522	925	0	925	1.0785	0	1.0785

Common units, $212^{\circ}$ to $3000^{\circ} \mathrm{F}$


[^80]$402^{\circ}$ to $1000^{\circ} \mathrm{F}$

Pressure   (abs.)   lb/in. ${ }^{2}$	Tem-pera${ }^{\text {ture }} \mathrm{F}$	Heat of liquid above $32^{\circ} \mathrm{F}$ Btu	Heat of vaporiBtu	Total heat Btu	Entropy of hiquid above 32 ${ }^{\circ} \mathrm{F}$	Entropy of vapori. zation	Total entropy	Specific volume $\mathrm{ft}^{3} / 11 \mathrm{l}$	Weight $\mathrm{lb} / \mathrm{ft}^{3}$
. 4	402	13.81	128.15	141.96	. 0209	. 1487	. 1696	114.50	. 008733
. 8	444	15.36	127.24	142.60	. 0227	. 1408	. 1635	59.72	. 016745
1.0	458	15.89	126.92	142.81	. 0233	. 1383	. 1616	48.45	. 02064
1.5	485	16.90	126.33	143.23	. 0244	. 1337	1581	33.14	. 03017
2.0	505	17.65	125.89	143.54	. 0251	. 1305	. 1556	25.32	. 03948
4.0	558	19.62	124.72	144.34	. 0271	. 1226	. 1497	13.26	. 07540
6.0	591	20.87	123.99	144.86	. 0283	. 1179	. 1462	9.096	. 10993
8.0	617	21.81	123.43	145.24	. 0292	. 1147	. 1439	6.9630	. 14361
10.0	637	22.58	122.98	145.56	. 0299	. 1121	. 1420	5.6610	. 17664
15.0	676	24.04	122.12	146.16	. 0312	. 1075	. 1387	3.8923	. 25691
20.0	706	25.15	121.46	146.61	. 0322	. 1042	. 1364	2.983	. 3352
25.0	730	26.05	120.93	146.98	. 0330	. 1016	. 1346	2.429	. 4117
30.0	751	26.81	120.48	147.29	. 0336	. 0995	. 1331	2.053	. 4871
35.0	769	27.49	120.08	147.57	. 0342	. 0977	. 1319	1.7815	. 5613
40.0	785	28.08	119.73	147.81	. 0346	. 0962	. 1308	1.5762	. 6344
45.0	799	28.62	119.42	148.04	. 0351	. 0949	. 1300	1.4147	. 7069
50	812	29.11	119.13	148.24	. 0355	. 0936	. 1291	1.284	. 7788
60	836	29.99	118.61	148.60	. 0361	. 0915	. 1276	1.086	. 9204
70	857	30.75	118.15	148.90	. 0367	. 0898	. 1265	. 9436	1.0597
80	875	31.44	117.75	149.19	. 0372	. 0882	. 1254	. 8349	1.1977
90	892	32.06	117.38	149.44	. 0377	. 0870	. 1247	-. 7497	1.3338
100	907	32.63	117.05	149.68	. 0381	. 0856	. 1237	. 6811	1.4682
110	921	33.16	116.74	149.90	. 0385	. 0845	. 1230	. 6242	1.6020
120	934	33.66	116.44	150.10	. 0389	. 0835	. 1224	. 5767	1.7340
130	947	34.12	116.17	150.29	. 0392	. 0826	. 1218	. 5360	1.8656
140	958	34.55	115.92	150.47	. 0395	. 0818	. 1213	. 5012	1.9952
150	969	34.96	115.67	150.63	. 0398	. 0809	. 1207	. 4706	2.125
180	1000	36.09	115.01	151.10	. 0406	. 0788	. 1194	. 3990	2.506

$-100^{\circ}$ to $+250^{\circ} \mathrm{F}$

$\underset{\mathrm{F}}{\substack{\text { Oemp. }}}$	Saturation						Latent heat of pressure variationBtu/lb $\frac{\mathrm{Btu} / \mathrm{lb}}{\mathrm{lb} / \mathrm{in} .^{2}}$	Variation of $h$ with $p$ $t$ constant    $\left(\frac{\partial h}{\partial p}\right)_{t}$	Com-   pressi-   bility per   $\mathrm{lb} / \mathrm{in} .^{2}$ $\times 10^{i}$ $-\frac{1}{v}\left(\frac{\partial v}{\partial p}\right)_{t}$
	Pressure (abs.) lb/in. ${ }^{2}$	Volume$\mathrm{ft}^{3} / \mathrm{lb}$	$\begin{aligned} & \text { Density } \\ & \mathrm{lb} / \mathrm{ft}^{3} \end{aligned}$	SpecificheatBtu/lbof	$\begin{aligned} & \text { Heat } \\ & \text { content } \\ & \text { Btu/lb } \end{aligned}$	Latent heat			
			$\underline{1}$			Btu/ lb			
$t$	$p$	$v$	$\bar{\nu}$	${ }^{\text {c }}$	$h$	$L$			
-100	1.24	. 02197	45.52	(1.040)	(-63.0)	(633)			
- 90	1.86	. 02216	45.12	(1.043)	(-52.6)	(628)			
- 80	2.74	. 02236	44.72	(1.046)	(-42.2)	(622)			
- 70	3.94	. 02256	44.32	(1.050)	(-31.7)	(616)			
- 60	5.55	. 02278	43.91	1.054	-21.18	610.8	-. 0016	. 0026	4.4
- 50	7.67	. 02299	43.49	1.058	-10.61	604.3	-. 0017	. 0026	4.6
- 40	10.41	. 02322	43.08	1.062	. 00	597.6	-. 00018	. 0025	4.8
- 30	13.90	. 02345	42.65	1.066	$+10.66$	590.7	-. 0019	. 0025	5.1
$-20$	18.30	. 02369	42.22	1.070	+21.36	583.6	-. 0020	. 0024	5.4
$-10$	23.74	. 02393	41.78	1.075	32.11	576.4	$-.0021$	. 0023	5.7
0	30.42	. 02419	41.34	1.080	42.92	568.9	-. 0022	. 0022	6.0
$+10$	38.51	. 02446	40.89	1.085	53.79	561.1	-. 0024	. 0021	6.4
+ 20	48.21	. 02474	40.43	1.091	64.71	553.1	-. 0025	. 0020	6.8
30	59.74	. 02503	39.96	1.097	75.71	544.8	$-.0027$	. 0019	7.3
40	73.32	. 02533	39.49	1.104	86.77	536.2	-. 0029	. 0018	7.8
50	89.19	. 02564	39.00	1.112	97.93	527.3	-. 0031	. 0017	8.4
60	107.6	. 02597	38.50	1.120	109.18	518.1	-. 0033	. 0015	9.1
70	128.8	. 02632	38.00	1.129	120.54	508.6	-. 0035	. 0013	10.0
80	153.0	. 02668	37.48	1.138	131.99	498.7	-. 0038	. 0011	10.9
90	180.6	. 02707	36.95	1.147	143.54	488.5	-. 0041	. 0009	12.0
$+100$	211.9	. 02747	36.40	1.156	155.21	477.8	$-.0045$	. 0006	13.3
125	307.8	. 02860	34.96	(1.189)	(185)	(449)			
150	433.2	. 02995	33.39	(1.23)	(216)	(416)			
175	593.5	. 03160	31.65	(1.29)	(248)	(377)			
200	794.7	. 03375	29.63	(1.38)	(283)	(332)			
250	1347	. 0422	23.7	(1.90)	(365)	(192)			

TABLE 171.-COMBUSTION CONSTANTS OF SOME SUBSTANCES ${ }^{52}$

Substance	Formula	$\begin{gathered} \text { Reciprocal of } \\ \text { density } \\ \mathrm{m}^{3} / 100 \mathrm{~kg} \end{gathered}$	Spec. gravity$\mathrm{air}=1.000$	Heat of combustion	
				Btu/ft ${ }^{3}$	$\mathrm{kg} \mathrm{cal} / \mathrm{m}^{3}$
Carbon					7840.*
Hydrogen	$\mathrm{H}_{2}$	1172.	$6.959 \times 10^{-2}$	275.0	2445.
Oxygen .		73.7	1.1053		
Carbon monoxide	CO	84.4	. 9672	321.8	2860.
Paraffin series: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$					
Methane	$\mathrm{CH}_{4}$	147.0	. 5543	913.1	8120.
Ethane	$\mathrm{C}_{2} \mathrm{H}_{5}$	77.6	1.04882	1641.	14,600
Propane	- $\mathrm{C}_{3} \mathrm{H}_{8}$	52.2	1.5617	2385.	21,200
Isobutane	- $\mathrm{C}_{4} \mathrm{H}_{10}$	39.5	2.06654	3105.	27,600
Olefin series: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$					
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	83.6	. 9740	1513.2	13,450
Propylene	$\mathrm{C}_{3} \mathrm{H}_{6}$	56.3	1.4504	2186.	19,400
Isobutene	$\mathrm{C}_{4} \mathrm{H}_{8}$	42.2	1.9336	2869.	25,500
Aromatic series: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-\mathrm{6}}$					
Benzene	$\mathrm{C}_{6} \mathrm{H}_{4}$	30.3	2.6920	3601.	32,000
Toluene	$\mathrm{C}_{7} \mathrm{H}_{8}$	25.6	3.1760	4284.	38,100
Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	22.2	3.6618	4980.	44,300
Miscellaneous gases					
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	89.5	. 9107	1448.	12,870
Naphthalene	- $\mathrm{C}_{10} \mathrm{H}_{5}$	18.4	4.4208	5654.	50,300
Methyl alcohol	. $\mathrm{CH}_{3} \mathrm{OH}$	73.7	1.1052	768.0	6830.
Ethyl alcohol	- $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	51.3	1.5890	1450.5	12,900
Ammonia	$\mathrm{NH}_{3}$	136.5	. 5961	365.1	3245.
Sulfur	. S				2210.*
Hydrogen sulfide	- $\mathrm{H}_{2} \mathrm{~S}$	68.5	1.1898	596.	5300.

${ }^{52}$ Shnidman, Louis (ed.), Gaseous fuels, p. 118, Amer. Gas Assoc., 1948.

* Expressed in cal/g.


## TABLE 172.-FLAME TEMPERATURES AS MEASURED BY VARIOUS METHODS *

Gas	Burner		Temp ${ }^{\circ} \mathrm{C}$
Amyl acetate	Bunsen		1420
	Meker	(center flame)	1700
		(edge of flame)	1850
Propane	Meker		1680
City gas	Bunsen		1760
City gas + air	Blast		1950
City gas + oxygen	"		2300
Carbon monoxide + air	"		1985
16\% [methane ( $\left.\mathrm{CH}_{4}\right)$ ] + air	"		. 1880
$10 \%\left(90 \mathrm{CH}_{4}+10 \% 0\right)+\mathrm{air}$	"		1905
$16 \%\left(80 \mathrm{CH}_{4}+20 \% 0\right)+$ air	"		1975
$10.8 \%\left(75 \mathrm{CH}_{4}+25 \% 0\right)+$ air	"		2005
$22 \%\left(60 \mathrm{CH}_{4}+40 \mathrm{H}_{2}\right)+$ air ..	"		1910
$32 \%\left(26 \mathrm{CH}_{4}+94 \mathrm{H}_{2}\right)+$ air	"		. 2015
$\mathrm{H}_{2}+$ air	"		. 2045
$9 \%\left(80 \mathrm{CH}_{4}+20 \mathrm{C}_{2} \mathrm{H}_{2}\right)+$ air	"		1970
(15CH4 $\left.+85 \mathrm{C}_{2} \mathrm{H}_{2}\right)+$ air	"		. 2275
Pittsburgh natural gas with air	"		. 1950
Butane-air .......	"		. 2000
Oxy-hydrogen	"		2800
Oxy-acetylene	"		3500

[^81]Given in kg cal ${ }_{16}$ at constant pressure per gram-molecular weight in vacuo. When reterred to constant volume the values should be $0.58 \mathrm{~kg} \mathrm{cal}_{15}$ smaller (at about $18^{\circ} \mathrm{C}$ ) for each condensed gaseous molecule. Combustion products are $\mathrm{CO}_{2}$, liquid $\mathrm{H}_{2} \mathrm{O}$, etc. Benzoic acid was adopted at Lyons as a primary standard, its heat of combustion, $6324 \mathrm{~g} \mathrm{cal} 1_{15}$, per gram in air, 6319 in vacuo. This is tacitly assumed as heat of isothermal combustion at $20^{\circ} \mathrm{C}$. In absolute joules, 26,466 and 26,445 respectively. The following ratios may be taken as standard: Naphthalene/benzoic acid $=$ $1.5201(\mathrm{air})$; benzoic acid/sucrose $=1.6028$ (air) ; naphthalene/sucrose $=2.4364$ (air).

${ }^{53}$ Karasch, Nat. Bur. Standards Journ. Res., vol. 2, p. 359, 1929.

TABLE 174.-HEATS OF COMBUSTION OF MISCELLANEOUS COMPOUNDS

Substance	Calories per g substance substance	Substance	Calories per g substance
Asphalt	9530	Oils :	
Butter	9200	petroleum:	
Carbon: amorphous	8080	crude	11500
charcoal	8100	light	10000
diamond	7860	heavy	10200
graphite	7900	rape	9500
Copper (to CuO )	590	sperm	10000
Dynamite, $75 \%$..	1290	Paraffin (to $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ i)	11140
Egg, white of..	5700	Paraffin (to $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O} \mathrm{g}$ ).	10340
Fgg, yolk of.	8100	Pitch .................	8400
Fats, animal	9500	Sulfur, rhombic	2200
Hemoglobin	5900	Sulfur, monoclinic	2240
Hydrogen	33900	Tallow ..........	9500
Iron (to $\mathrm{Fe}_{2} \mathrm{O}_{3}$ )	1582	Woods: beech, $13 \% \mathrm{H}^{2} \mathrm{O}$	4170
Magnesium (to MgO	6080	birch, $12 \% \mathrm{H}_{2} \mathrm{O}$	4210
Oils: cotton-seed ...	9500	oak, $13 \% \mathrm{H}_{2} \mathrm{O}$.	3990
lard olive	9300 9400	pine, $12 \% \mathrm{H}_{2} \mathrm{O}$.	4420

## Part 1．－Coals

	Coal		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{5}{5}$	$\frac{E}{3}$	$\begin{aligned} & \text { 駡 } \\ & \text { 苞 } \\ & \text { an } \end{aligned}$	$\begin{aligned} & \text { 坒 } \\ & \text { 愈 } \end{aligned}$		$\begin{aligned} & \text { E. } \\ & \text { E. } \\ & \text { O} \end{aligned}$	$\stackrel{\infty}{\mathrm{J}}_{\infty}^{\infty}$	$\stackrel{』}{\Xi}$
	\｛ Low grade	38.81	25.48	27.29	8.42	． 97	7.09	37.45	． 50	45.57	3526	6347
Lignite	\｛ High grade	33.38	27.44	29.62	9.56	． 94	6.77	41.31	． 67	40.75	3994	7189
Sub－bitu－	\｛ Low grade	22.71	34.78	36.60	5.91	． 29	6.14	52.54	1.03	34.09	5115	9207
minous	High grade	15.54	33.03	46.06	5.37	． 58	5.89	60.08	1.05	27.03	5865	10557
Bitu－	\｛ Low grade	11.44	33.93	43.92	10.71	4.94	5.39	60.06	1.02	17.88	6088	10958
minous	High grade	3.42	34.36	58.83	3.39	． 58	5.25	77.98	1.29	11.51	7852	14134
Semi－bitu－	\｛ Low grade	2.7	14.5	75.5	7.3	． 99	4.58	80.65	1.82	4.66	7845	14121
minous	\｛High grade	3.26	14.57	78.20	3.97	． 54	4.76	84.62	1.02	5.09	8166	14699
Semi－anthr	acite	2.07	9.81	78.82	9.30	1.74	3.62	80.28	1.47	3.59	7612	13702
Anthra－	\｛ Low grade	2.76	2.48	82.07	12.69	． 54	2.23	79.22	． 68	4.64	6987	12577
cite	\｛ High grade	3.33	3.27	84.28	9.12	． 60	3.08	81.35	79	5.06	7417	13351
Oven	\｛ Low grade	1.92	1.58	88.87	8.99	1.18					7946	14300
coke	\｛ High grade	1.14	． 04	94.66	3.57	． 69	－	－	－	－	8006	14410

Part 2．－Peats and Woods（air dried）

	$\begin{aligned} & \text { Vol. } \\ & \text { hydro- } \\ & \text { carbon } \end{aligned}$	Fixed	Ash	$\underset{\text { fur }}{\text { Sul－}}$	$\begin{gathered} \text { Hydro- } \\ \text { gen } \end{gathered}$	Carbon	$\begin{gathered} \text { Nitro- } \\ \text { gen } \end{gathered}$	$\underset{\text { Oxy. }}{\substack{\text { Oxen }}}$	Calories per $g$	$\begin{gathered} \text { Btu } \\ \text { per } \\ \text { pound } \end{gathered}$
Peats：										
Franklin County，N．Y．．．	67.10	28.99	3.91	． 15	5.93	57.17	1.48	31.36	5726	10307
Sawyer County，Wis．．．．	56.54	27.92	15.54	． 29	4.71	51.00	1.92	26.54	4867	8761
Woods：										
Oak，dry	－	－	． 37	－	6.02	50.16	． 09	43.36	4620	8316
Birch，dry	－	－	． 29	－	6.06	48.88	． 10	44.67	4771	8588
Pine，dry	－	－	． 37	－	6.20	50.31	． 04	43.08	5085	9153

Part 3．－Liquid fuels＊

Fuel   Aviation gasoline	$\begin{aligned} & \text { Gravity API } \dagger \\ & \ldots . .68 \end{aligned}$	Btu per pound 20，420	Btu per gallon $120,700$
Motor gasoline	58	20，120	125，800
Kerosene	．． 42	19，810	134，700
Domestic fuel oil．	． 32	19，450	141，200
Diesel fuel oil．	28	19，350	143，100
Medium industrial fuel oil．	． 18	18，930	149，400
Heavy industrial fuel oil．	． 11	18，590	153，900
Petroleum ether	． $68 \ddagger$	22，000	12，2208
Alcohol，fuel or denatured w and denaturing material．	．．．． $82 \ddagger$	11，600	6，4508

[^82]（continued）

## TABLE 175.-HEAT VALUES AND ANALYSES OF VARIOUS FUELS (concluded)

## Part 4.-Gases

Substance Spec. gravity   Air $=1.000$	Heat of combustion $\mathrm{kg} \mathrm{cal} / \mathrm{m}^{\mathrm{g}}$	Flame temperature   ${ }^{\circ} \mathrm{C}$ (no excess air)
Natural gas . . . . . . . . . . . . . . . . . . . .60-1.29	8040-17,400	1965
Propane (commercial) natural gas... 1.55	20,950	2015
Propane (commercial) refinery gas.. 1.77	20,600	-
Butane (commercial) natural gas.... 2.04	26,350	2005
Butane (commercial) refinery gas.... 2.00	26,100	-
Butane-air . ....................... . 1.16	4590.	-
Oil gas . . . . . . . . . . . . . . . . . . . . . . . 37	4535.	2000
Coal gas . . . . . . . . . . . . . . . . . . . . . . . 47	4320.	1980
Producer gas . . . . . . . . . . . . . . . . . . . 86	1182.	1655
Blue gas . . . . . . . . . . . . . . . . . . . . . . 57	2330.	-

** For reference, see footnote 52, p. 179.

Part 5.-Gross calorific values of crude petroleum ${ }^{54}$

Area	$\begin{aligned} & \text { Density } \\ & 20^{\circ} / 4^{\circ} \mathrm{C} \end{aligned}$	Btu/lb	Cal/g	Area	$\begin{aligned} & \text { Density } \\ & 20^{\circ} / 4^{\circ} \mathrm{C} \end{aligned}$	Btu/lb	$\mathrm{Cal} / \mathrm{g}$
Borneo	. 898	19,370	10,760	California	. 960	18,590	10,330
India	. 863	18,800	10,490	Ohio	. 838	19,710	10,950
Japan	. 925	20,670	11,480	Oklahoma	. 886	19,420	10,790
Poland	. 899	20,010	11.120	Pennsylvania	. 828	19,780	10,990
Rumania	. 936	18,920	10,510	Texas	. 943	18,950	10,520
Canada	. 855	19,420	10,790	Argentina	. 989	18,540	10,300
Mexico	. . 966	18,180	10,100	Patagonia	. 948	18,970	10,540
Trinidad	. 941	18,360	10,200				
${ }^{\text {of }}$ Science of Petroleum, vol. 2.							

Part 6.—Sugars ${ }^{\|}$

Sugar	$\mathrm{kg} \mathrm{cal} / \mathrm{mol}$	Sugar	kg cal/mol
$l$-Sorbose	670.30	$a-d$-Glucose	669.58
$\beta$ - $\alpha$-Levulose	671.70	$a-d$-Glucose hydrate	666.73
$\alpha-d$-Galactose	666.76	$\boldsymbol{a}$-Monopalmitin	2778.78
$\beta$-Lactose	1345.47	$\beta$-Monopalmitin	2788.30
$\beta$-Maltose monohydrate	1360.50	Ascorbic acid	560.60
$\alpha$-Lactose monohydrate	1354.66	$\boldsymbol{a}$-D-Glucose pentaacetate	1718.62
Sucrose	1349.00	$\beta$-D-Glucose pentaacetate	1722.63

[^83]	Liquid $\ldots \ldots \ldots$.	$\mathrm{CCl}_{4}$	$\mathrm{CHCl}_{3}$	$4^{*}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	32	$39 *$	No. 40	
Freezing point $\ldots \ldots$	${ }^{\circ} \mathrm{C}$	-23	-63	-81	-119	-139	-145	$-150 \pm$	Compositions: * No. $4 ; \mathrm{CCl}_{4}, 49.4 \% ; \mathrm{CHCl}_{3}, 50.6 \%$. No. $32 ; \mathrm{CHCl}_{3}, 19.7 \% ; \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}, 44.9 \% ; \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}, 13.8 \% ; \mathrm{C}_{2} \mathrm{HCl}_{3}$, $21.6 \%$.

No. $39 ; \mathrm{CHCl}_{3}, 14.5 \%$; $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}, 33.4 \% ; \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}, 10.4 \% ; \mathrm{C}_{2} \mathrm{HCl}_{3}$, $16.4 \%: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25.3 \%$.
No. $40 ; \mathrm{C}_{\mathrm{C}} \mathrm{HCl}_{3}, 17.9 \% ; \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, 9.3 \% ; \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}, 40.7 \% ; \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}, 12.5 \%$; $\mathrm{C}_{2} \mathrm{HCl}_{3}, 19.6 \%$.

		$\begin{aligned} & u \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \circ \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 1 \\ & \hline 1 \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{\circ}{7} \\ \hline \end{gathered}$	$\begin{gathered} \circ \\ \\ \hline \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{2} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { i }}{\sim}$	$\circ$
Viscosities in centipoises:	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	1.81	2.25	2.89	3.86	5.6				
	No. 32		3.03	4.57	7.4	13.7	29.3	81		
	No. 34	1.97	2.57	3.69	5.6	10	22.3	85	242	1480
	No. 40		2.88	3.89	5.9	10.2	22.5	71	170	631

[^84]
## TABLE 177.-DATA ON EXPLOSIVES

Explosive	Vol. gas per $g$ in $\stackrel{\mathrm{cm}}{=} \mathrm{V}$	Calories $\mathrm{g}=Q$	$\begin{aligned} & \text { Coeffi- } \\ & \text { cient } \\ & =0 . V \\ & \doteqdot 100 \end{aligned}$	$\begin{aligned} & \text { Coeffi- } \\ & \text { cient } \\ & G P \\ & =1 \end{aligned}$	Calculated tempera$\stackrel{\text { ture }}{Q / C}$   $C$, sp. ht.gases   $=$ $=.24$
Gunpowder	280	738	207	1	$2240{ }^{\circ} \mathrm{C}$
Nitroglycerine	741	1652	1224	6	6880
Nitrocellulose, $13 \% \mathrm{~N}_{2}$	923	931	859	4.3	3876
Cordite, Mk. I. (NG, 57 ; NC, 38; Vaseline, 5)		1242	1082	5.2	5175
Cordite, MD (NG, 30 ; NC, 65 ; Vaseline, 5).		1031	915	4.4	4225
Ballistite (NG, 50; NC, 50; Stabilizer, 5)...	817	1349	1102	5.3	5621 3375
Picric acid (Lyddite).....................	877	810	710	3.4	3375

Shattering power of explosive $=$ vol. gas per $\mathrm{g} \times$ cals $/ \mathrm{g} \times V_{d} \times$ density where $V_{d}$ is the velocity of detonation.

Trinitrotoluene: $V_{d}=7000 \mathrm{~m} / \mathrm{sec}$. Shattering effect $=.87$ picric acid.
Amatol (ammonium nitrate + trinitrotoluene, TNT): $V_{d}=4500 \mathrm{~m} / \mathrm{sec}$.
Ammonal (ammonium nitrate, TNT, Al): $1578 \mathrm{cal} / \mathrm{g} ; 682 \mathrm{~cm}^{3} \mathrm{gas} ; V_{d}=4000 \mathrm{~m} / \mathrm{sec}$.
Sabulite (ammonium nitrate, 78, TNT 8, Ca silicide 14): about same as ammonal.

TABLE 178.-TIME OF HEATING FOR EXPLOSIVE DECOMPOSITION

Temperature ${ }^{\circ} \mathrm{C}$	170	180	190	200	220	Ignition temperature	
Time	sec	sec	sec	sec	sec	${ }^{\circ} \mathrm{C}$ †	${ }^{\circ} \mathrm{C} \ddagger$
Black powder	$n$	$n$	$n$	$n$	$n$	440	-
Smokeless powder A	600	195	130	45	23	$\{300$	
Smokeless powder B	190	130	-	90	25	$\{300$	
Celluloid pyroxylin	170	60	-	21	9	-	-
Collodion cotton	870	165	67	56	18	300	
Celluloid *	160	100	60	50	30	590	450
Safety matches	$n$	340	240	150	60	-	-
Parlor matches	$n$	$n$	$n$	590	480		
Cotton wool	-	-	-	-	-	900	

[^85]TABLE 179.-CHEMICAL AND PHYSICAL PROPERTIES OF FIVE DIFFERENT CLASSES OF EXPLOSIVES


The total heat generated in a chemical reaction is independent of the steps from initial to final state. Heats of formation may therefore be calculated from steps chemically impracticable. Chemical symbols now represent the chemical energy in a gram-molecule or mol $(c)$; treat reaction equations like algebraic equations: $\mathrm{CO}+\mathrm{O}=\mathrm{CO}_{2}+68 \mathrm{~kg}$ cal ; subtract $\mathrm{C}+2 \mathrm{O}=\mathrm{CO}_{2}$ +97 kg cal, then $\mathrm{C}+\mathrm{O}=\mathrm{CO} 29 \mathrm{~kg}$ cal. We may substitute the negative values of the formation heats in an energy equation and solve $\mathrm{MgCl}_{2}+2 \mathrm{Na}=2 \mathrm{NaCl}+\mathrm{Mg}+\mathrm{xkg} \mathrm{cal} ;-151=$ $-196+x ; x=45 \mathrm{~kg}$ cal. Heats of formation of organic compounds can be found from the heats of combustion since burned to $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CO}_{2}$. When changes are at constant volume, energy of external work is negligible; also generally for solid or liquid changes in volume. When a gas forms a solid or liquid at constant pressure, or vice versa, it must be allowed for. For N mols of gas formed (disappearing) at $\mathrm{T}_{\mathrm{k}}{ }^{\circ}$ the energy of the substance is decreased (increased) by $0.002 \cdot \mathrm{~N} \cdot \mathrm{~T}_{\mathrm{K}} \mathrm{kg}$ cal $\mathrm{H}_{2}+\mathrm{O}=\mathrm{H}_{2} \mathrm{O}+67.5 \mathrm{~kg}$ cal at $18^{\circ} \mathrm{C}$ at constant volume; $\frac{1}{2}\left(2 \mathrm{H}_{2}+\mathrm{O}_{2}-\right.$ $\left.2 \mathrm{H}_{2} \mathrm{O}=135.0+0.002 \times 3 \times 291=136.7\right)=68.4 \mathrm{~kg}$ cal.

The heat of solution is the heat, + or - , liberated by the solution of 1 mol of substance in so much water that the addition of more water will produce no additional heat effects. Aq signifies this amount of water; $\mathrm{H}_{2} \mathrm{O}$, one $\mathrm{mol} ; \mathrm{NH}_{3}+\mathrm{Aq}=\mathrm{NH}_{4} \mathrm{OH} \cdot \mathrm{Aq}+8 \mathrm{~kg}$ cal.

Part 1.-Heats of formation from elements in kilogram-calories
At ordinary temperatures

Compound	Heat of formation	Compound	Heat of formation	Compound	Heat of formation	Compound	Heat of formation
$\mathrm{Al}_{2} \mathrm{O}_{3}$	380.	HgO	21.4	KCl	105.7	$\mathrm{Li}_{2} \mathrm{SO}_{4}$	334.2
$\mathrm{Ag}_{2} \mathrm{O}$	6.5	$\mathrm{Na}_{2} \mathrm{O}$	100.	LiCl	93.8	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	283.
BaO	126.	$\mathrm{Nd}_{2} \mathrm{O}_{3}$	435.	$\mathrm{MgCl}_{2}$	151.0	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	328.3
$\mathrm{BaO}_{2}$	142.	NiO	57.9	$\mathrm{MnCl}_{2}$	112.3	$\mathrm{MgSO}_{4}$	301.6
$\mathrm{Bi}_{2} \mathrm{O}_{3}$	138.	$\mathrm{P}_{2} \mathrm{O}_{5}$ sgs	370.	NaCl	97.8	$\mathrm{PbSO}_{4}$	216.2
CO am	29.0	PbO	50.3	$\mathrm{NdCl}_{3}$	250.	$\mathrm{Tl}_{2} \mathrm{SO}_{4}$	221.0
CO di	26.1	$\mathrm{PbO}_{2}$	62.4	$\mathrm{NH}_{4} \mathrm{Cl}$	76.3	$\mathrm{ZnSO}_{4}$	229.6
$\mathrm{CO}_{2} \mathrm{am}$	97.0	$\mathrm{Pr}_{2} \mathrm{O}_{3}$	412.	$\mathrm{NiCl}_{2}$	74.5	$\mathrm{CaCO}_{3}$	270.
$\mathrm{CO}_{2} \mathrm{gr}$	94.8	$\mathrm{Rb}_{2} \mathrm{O}$	89.2	$\mathrm{PbCl}_{2}$	83.4	$\mathrm{CuCO}_{3}$	143.
$\mathrm{CO}_{2} \mathrm{di}$	94.3	$\mathrm{So}_{2} \mathrm{rh} \mathrm{sgg}$	70.	$\mathrm{PdCl}_{2}$	40.5	$\mathrm{FeCO}_{3}$	179.
CaO	152.	$\mathrm{SiC}_{2}$	191.0	$\mathrm{PtCl}_{4}$	60.4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	280.
$\mathrm{CeO}_{2}$	225.	SnO	66.9	$\mathrm{SnCl}_{2}$	80.8	$\mathrm{MgCO}_{3}$	267.
$\mathrm{Cl}_{2} \mathrm{O} \mathrm{g}$	-16.5	$\mathrm{SnO}_{2} \mathrm{Cr}$	137.5	$\mathrm{SnCl}_{4}$	128.	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	272.
CoO am	50.5	$\mathrm{SrO}_{2}$	135.	$\mathrm{SrCl}_{2}$	185.	$\mathrm{ZnCO}_{3}$	194.
CoO cr	57.5	$\mathrm{ThO}_{2}$	326.	$\mathrm{ThCl}_{4}$	300.	$\mathrm{AgNO}_{3}$	28.7
$\mathrm{Co}_{3} \mathrm{O}_{4}$	193.4	$\mathrm{TiO}_{2}$ am	215.6	TlCl	48.6	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	209.
$\mathrm{CrO}_{3}$	140.	$\mathrm{TiO}_{2} \mathrm{cr}$	218.4	RbCl	105.9	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}$	92.9
$\mathrm{Cs}_{2} \mathrm{O}$	91.3	$\mathrm{TlO}_{2}$	42.2	$\mathrm{ZnCl}_{2}$	97.3	$\mathrm{NHO}_{3} \mathrm{gggl}$	41.6
$\mathrm{Cu}_{2} \mathrm{O}$	42.3	$\mathrm{W}^{\left(\mathrm{O}_{2}\right.}$	131.	HBrglg	8.6	$\mathrm{KNO}_{3}$	119.2
CuO	37.2	$\mathrm{WO}_{3}$	194.	$\mathrm{NH}_{4} \mathrm{Br}$	66.	$\mathrm{LiNO}_{3}$	112.
FeO	65.7	ZnO	85.2	HIgsg	- 6.2	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	88.3
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	196.5	AgCl	29.2	HF ggg	38.	$\mathrm{NaNO}_{3}$	111.0
$\mathrm{Fe}_{3} \mathrm{O}_{4}$	270.8	$\mathrm{Ag}_{2} \mathrm{Cl}$	29.5	$\mathrm{Ag}_{2} \mathrm{~S}$	3.3	$\mathrm{TlNO}_{3}$	58.2
$\mathrm{H}_{2} \mathrm{Oggl}$	68.4	$\mathrm{AlCl}_{3}$	161.4	$\mathrm{CS}_{2} \mathrm{sgg}$	-26.0	$\mathrm{CH}_{4} \mathrm{sgg}$	20.
$\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{gg}$ l	46.8	$\mathrm{AuCly}_{y}$	5.81	CaS	90.8	$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{sgg}$	25.
$\mathrm{Hg}_{2} \mathrm{O}$.	22.2	$\mathrm{AuCl}_{3} \mathrm{y}$	22.8	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$	66.2	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{sgg}$	-53.
HgO	21.4	$\mathrm{BaCl}_{2}$	197.	$\mathrm{Cu}_{2} \mathrm{~S}$	18.3	HCN di gsgg	-30.5
$\mathrm{K}_{2} \mathrm{O}$	91.	$\mathrm{BeCl}_{2}$	155.	CuS	11.6	$\mathrm{NH}_{3} \mathrm{ggg}$	12.0
$\mathrm{La}_{2} \mathrm{O}_{3}$	447.	$\mathrm{BiCl}_{3}$	90.6	$\mathrm{H}_{2} \mathrm{~S}$ gsg	2.73	$\mathrm{Ca}(\mathrm{OH})_{2}$	230.
$\mathrm{LiO}_{2}$	141.6	$\mathrm{CCl}_{4} \mathrm{am}$	21.0	$\mathrm{K}_{2} \mathrm{~S}$.	103.4	$\mathrm{NH}_{4} \mathrm{OH}$	88.8
MgO	143.6	$\mathrm{CaCl}_{2}$	187.	MgS	79.4	NaOH	102.
MnO	90.8	$\mathrm{CdCl}_{2}$	93.2	$\mathrm{Na}_{2} \mathrm{~S}$	89.3	$\mathrm{Na} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Aq}-\mathrm{H}$	44.*
$\mathrm{MnO}_{2}$	123.	$\mathrm{CoCl}_{2}$	76.5	PbS	19.3	$\frac{1}{2}\left(2 \mathrm{Na} \cdot \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}\right)$	68.*
$\mathrm{Mn}_{3} \mathrm{O}_{4}$	325.	$\mathrm{CuCl}_{2}$	51.5	$\mathrm{CaSO}_{4}$	262.	${ }^{\frac{1}{2}}\left(\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Aq}\right)$	30.*
$\mathrm{MoO}_{2}$	143.	CuCl	34.1	$\mathrm{CuSO}_{4}$	111.5	KOH	103.5
$\mathrm{MoO}_{3}$	174.	$\mathrm{FeCl}_{2}$	82.1	$\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{sggg}$	193.	$\mathrm{K} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Aq}-\mathrm{H}$	45.*
$\mathrm{N}_{2} \mathrm{O} \mathrm{gggg}$	-18.2	$\mathrm{FeCl}_{3}$	96.0	$-\mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}^{*}$	21.3	$\frac{1}{3}\left(2 \mathrm{~K} \cdot \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}\right)$	69.*
NOggg	-21.6	HCl ggl	22.	$\mathrm{Hg}_{2} \mathrm{SO}_{4}$	175.	$\frac{1}{2}\left(\mathrm{~K}_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{Aq}\right)$.	35.5*
$\mathrm{NO}_{2}$	- 8.1	HgCl	31.3	$\mathrm{HgSO}_{4}$	165.		
$\mathrm{Na}_{2} \mathrm{O}_{4}$	- 2.6	$\mathrm{HgCl}_{2}$	53.3	$\mathrm{K}_{2} \mathrm{SO}_{4}$	344.3		

[^86]TABLE 180.-THERMOCHEMISTRY. CHEMICAL ENERGY DATA (concluded)

## Part 2.-Heats of formation of ions in kilogram-calories

+ and - signs indicate signs of ions and the number of these signs the valency. For the ionization of each gram-molecule of an element divide the numbers in the table by the valency, e. g., $9.00 \mathrm{~g} \mathrm{Al}=9.00 \mathrm{~g} \mathrm{Al}^{+}+40.3 \mathrm{~kg} \mathrm{cal}$. When a solution is of such dilution that further dilution does not increase its conductivity, then the heats of formation of substances in such solutions may be found as follows: $\mathrm{FeCl}_{2} \mathrm{Aq}=+22.2+2 \times 39.1=100.4 \mathrm{~kg}$ cal. $\mathrm{CuSO}_{4} \mathrm{Aq}=-15.8$ $+214.0=198.2 \mathrm{~kg} \mathrm{cal}$.

$\mathrm{Ag}+$	$-25.3$	$\mathrm{NH}_{4}+$	+32.7 +37.5	$\mathrm{AsO}_{4}-$ -	+215.0	$\mathrm{IO}_{3}-$	+ 55.8
Al +++	$+121.0$	$\mathrm{NH}_{4} \mathrm{O}+$	+ 37.5	$\mathrm{Br}-$	+ 28.2	$\mathrm{IO}_{4}-$	+ 46.5
Co + +	+170.0	$\mathrm{Na}+$	+ 57.3	$\mathrm{BrO}_{3}-$	+ 11.2	$\mathrm{OH}-$	+ 54.4
$\mathrm{Ca}++$	+133.?	$\mathrm{Ni}++$	+ 16.0	$\mathrm{CO}_{3}-$	+160.8	$\mathrm{PO}_{4}$ - - -	+298.0
$\mathrm{Cd}++$	+ 18.4	$\mathrm{Mg}++$	+108.8	$\mathrm{Cl}-$	+ 39.1	$\mathrm{S}_{2} \mathrm{O}_{3}-$ -	+1386
$\mathrm{Cu}++$	- 16.0	$\mathrm{Mn}++$	+ 50.2	ClO-	+ 26.0	$\mathrm{S}_{3} \mathrm{O}_{6}$--	+278.2
	-15.8?	$\mathrm{Pb}++$	+ 4.0	$\mathrm{ClO}_{3}-$	+ 23.4	$\mathrm{S}_{4} \mathrm{O}_{6}$--	+260.8
$\mathrm{Fe}++$	+ 22.2	$\mathrm{Rb}+$	+625.0	$\mathrm{ClO}_{4}-$	- 38.7	$\mathrm{SO}_{3}$--	+151.0
$\mathrm{Fe}+++$	- 9.3	$\mathrm{Sn}+++$	+ 3.3	$\mathrm{HCO}_{3}-$	+163.0	$\mathrm{SO}_{4}$ - -	+214.0
H+	0.0	$\mathrm{Sr}++$	+119.6	$\mathrm{HPO}_{2}-$	+143.9	Se - -	- 35.6
$\mathrm{Hg}+$	- 19.8	$\mathrm{Tl}+$	+ 1.7	$\mathrm{HPO}_{3}-$	+229.6	$\mathrm{SeO}_{3}$ - -	+119.6
K+	+ 61.8	$\mathrm{Zn}++$	+ 35.0	$\mathrm{HPO}_{4}$ - -	+304.8	$\mathrm{SeO}_{4}$ - -	+144.8
$\mathrm{Li}+$	+62.8	2n+		HS -	+ 1.2	Te--	- 34.8
				$\mathrm{NO}_{2}-$	+ 27.0	$\mathrm{TeO}_{3}$ - -	+ 77.0
				$\mathrm{NO}_{3}-$	+ 48.9	TeO4--	+ 98.4
				I -	+ 13.1	S - -	- 12.6

## TABLE 181.—IGNITION TEMPERATURES OF GASEOUS MIXTURES

Ignition temperature taken as temperature necessary for hot body immersed in gas to cause ignition; slow combination may take place at lower temperatures. Gases were mixed with air. Practically same temperatures as with $\mathrm{O}_{2}$.

Benzene and ai	$1062^{\circ} \mathrm{C}$	Ether and air................. 1033
Coal gas and air		Ethylene and air............... 1000
CO and air..	931	Hydrogen and air.............. 747

## TABLE 182.-HEATS OF NEUTRALIZATION IN KILOGRAM-CALORIES

The heat generated by the neutralization of an acid by a base is equal, for each gram-molecule of water formed, to 13.7 kg cal plus the heat produced by the amount of un-ionized salt formed, plus the sum of the heats produced in the completion of the ionizations of the acid and the base.

Base	$\mathrm{HCl} \cdot \mathrm{aq}$	$\mathrm{HNO}_{3}$-aq	$\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{aq}$	HCN aq	$\mathrm{CH}_{3} \mathrm{COOH} \cdot \mathrm{aq}$	$\mathrm{H}_{2} \cdot \mathrm{CO}_{3} \cdot \mathrm{aq}$
$\mathrm{KOH} \cdot \mathrm{aq}$	13.7	13.8	15.7	2.9	13.3	10.1
$\mathrm{NaOH} \cdot \mathrm{aq}$	13.7	13.7	15.7	2.9	13.3	10.2
$\mathrm{NH}_{4} \mathrm{OH} \cdot \mathrm{aq}$	12.4	12.5	14.5	1.3	12.0	8.
${ }_{\frac{1}{2}} \mathrm{Ca}(\mathrm{OH})_{2} \cdot \mathrm{aq}$	14.0	13.9	15.6	3.2	13.4	9.5
$\frac{1}{2} \mathrm{Zn}(\mathrm{OH})_{2} \cdot \mathrm{aq}$	9.9	9.9	11.7	8.1	8.9	5.5
$\frac{1}{2} \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{aq}$	7.5	7.5	9.2		6.2	-

## TABLE 183.-HEATS OF DILUTION OF $\mathrm{H}_{2} \mathrm{SO}_{4}$

In kilogram-calories by the dilution of 1 gram-molecule of sulfuric acid by m gram molecules of water.

$\mathrm{m} \ldots \ldots$.	1	2	3	5	19	49	99	199	399
kg cal $\ldots$	6.38	9.42	11.14	13.11	16.26	16.68	16.86	17.06	17.31

Introduction and definitions.-The mechanical properties of most materials vary between wide limits; the following figures are given as being representative rather than what may be expected from an individual sample. Figures denoting such properties are commonly given either as specification or experimental values. Unless otherwise shown, the values below are experimental.

Credit for the information included on metals is due to the National Bureau of Standards ${ }^{55}$ and the publications of the Aluminum Co. of America, ${ }^{56}$ the American Brass Co., and the Chase Brass \& Copper Co. ${ }^{57}$

Most of the data shown in these tables are as determined at ordinary room temperature, averaging $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$. The properties of most metals and alloys vary considerably from the values shown when the tests are conducted at higher or lower temperatures.

The following definitions govern the more commonly confused terms shown in the tables. In all cases the stress referred to in the definitions is equal to the total load at that stage of the test divided by the original cross-sectional area of the specimen (or the corresponding stress in the extreme fiber as computed from the flexure formula for transverse tests).
Brinell hardness numeral (abbreviated B. h. n.).-Ratio of pressure on a sphere used to indent the material to be tested to the area of the spherical indention produced. The standard sphere used is a $10-\mathrm{mm}$-diameter hardened steel ball. The pressures used are 3000 kg for steel and 500 kg for softer metals, and the time of application of pressure is 30 seconds. Values shown in the tables are based on spherical areas computed in the main from measurements of the diameters of the spherical indentations, by the following formula:

$$
\text { B. h. n. }=P \div \pi t D=P \div \pi D\left(D / 2-\sqrt{D^{2} / 4-d^{2} / 4}\right) \text {. }
$$

$P=$ pressure in kg, $t=$ depth of indentation, $D=$ diameter of ball, and $d=$ diameter of indentation-all lengths being expressed in mm. Brinell hardness values have a direct relation to tensile strength, and hardness determinations may be used to define tensile strengths by employing the proper conversion factor for the material under consideration.

Elastic limit.-Stress which produces a permanent elongation (or shortening) of 0.001 percent of the gage length, as shown by an instrument capable of this degree of precision (determined from set readings with extensometer or compressometer). In transverse tests the extreme fiber stress at an appreciable permanent deflection.

Erichsen value.-Index of forming quality of sheet metal. The test is conducted by supporting the sheet on a circular ring and deforming it at the center of the ring by a spherical pointed tool. The depth of impression (or cup) in mm required to obtain fracture is the Erichsen value for the metal. Erichsen standard values for trade qualities of soft metal sheets are furnished by the manufacturer of the machine corresponding to various sheet thicknesses.

Alloy steels are commonly used in the heat-treated condition, as strength increases are not commensurate with increases in production costs for annealed alloy steels. Corresponding strength values are accordingly shown for annealed alloy steels and for such steels after having been given certain recommended heat treatments of the Society of Automotive Engineers. The heat

[^87]treatments followed in obtaining the properties shown are outlined on the pages immediately following the tables on steel. It will be noted that considerable latitude is allowed in the indicated drawing temperatures and corresponding wide variations in physical properties may be obtained with each heat treatment. The properties vary also with the size of the specimens heat treated. The drawing temperature is shown with the letter denoting the heat treatment, wherever the information is available.

Modulus of elasticity (Young's modulus).-Ratio of stress within the proportional limit to the corresponding strain-as determined with an extensometer. Note.-All moduli shown are obtained from tensile tests of materials, unless otherwise stated.

Modulus of rupture.-Maximum stress in the extreme fiber of a beam tested to rupture, as computed by the empirical application of the flexure formula to stresses above the transverse proportional limit.

Proportional limit (abbreviated P-limit).-Stress at which the deformation (or deflection) ceases to lee proportional to the load (determined with extensometer for tension, compressometer for compression, and deflectometer for transverse tests).
Shore scleroscope hardness.-Height of rebound of diamond-pointed hammer falling by its own weight on the object. The hardness is measured on an empirical scale on which the average hardness of martensitic high carbon steel equals 100. On very soft metals a "magnifier" hammer is used in place of the commonly used "miversal" hammer and values may be converted to the corresponding "universal" value by multiplying the reading by $4 / 7$. The scleroscope hardness, when accurately determined, is an index of the tensile elastic limit of the metal tested.

Ultimate strength in tension or compression.-Maximum stress developed in the material during test.
Yield point.-Stress at which marked increase in deformation (or deflection) of specimen occurs without increase in loard (determined usually by drop of beam or with dividers for tension, compression, or transverse tests).

## TABLE 184.-INDUSTRIAL WOVEN-WIRE SCREENS*

Industrial wire cloth may be specified in any malleable metal, the physical characteristics of which will permit of its being commercially drawn into wirc and woven into cloth. This industrial wire screen is manufactured with openings from about 15 inches to a very fine wire cloth with openings of .0017 inch, using for larger screens rods 2 inches in diameter and for the smaller-opening cloth, wire .0014 inch in diameter.

Industrial wire cloth specification, market grade							
Mesh	Wire	Onen-	Percent	Mesh	Wire	Open-	Percent
lineal inch	diameter inch	ing inch	open   area	lineal inch	diameter inch	ing   inch	open   area
$1 \times 1$.	. 080	. 920	84.6	$30 \times 30$.	. 013	. 0203	37.1
$2 \times 2$.	. 063	. 437	76.4	$35 \times 35$.	. 011	. 0176	37.9
$3 \times 3$.	. 054	. 279	70.1	$40 \times 40 \ldots$	. 010	. 0150	36.0
$4 \times 4$.	. . 047	. 203	65.9	$50 \times 50 \ldots$	. . 009	. 0110	30.3
$5 \times 5$.	. 041	. 159	63.2	$60 \times 60$.	. 0075	. 0092	30.5
$6 \times 6$.	. . 035	. 132	62.7	$80 \times 80 \ldots$	. . 0055	. 0070	31.4
$8 \times 8$.	. 028	. 097	60.2	$100 \times 100$.	. . 0045	. 0055	30.3
$10 \times 10$.	. . 025	. 075	56.3	$120 \times 120$.	. . 0037	. 0046	30.7
$12 \times 12$.	. 023	. 060	51.8	$150 \times 150$.	. . 0026	. 0041	37.4
$14 \times 14$.	. 020	. 051	51.0	$180 \times 180$.	. 0023	. 0033	34.7
$16 \times 16$.	. . 018	. 0445	50.7	$200 \times 200$.	. . 0021	. 0029	33.6
$18 \times 18$.	. . 017	. 0386	48.3	$250 \times 250$	. 0016	. 0024	36.0
$20 \times 20$.	. 016	. 0340	46.2	$270 \times 270$.	. 0016	. 0021	32.2
$24 \times 24$.	. 014	. 0277	44.2	$325 \times 325$.	. 0014	. 0017	30.0

[^88]TABLE 185.-SOME PHYSICAL PROPERTIES OF THE ELEMENTS


$$
\begin{aligned}
& \quad \begin{array}{c}
\text { Tensile } \\
\text { strength } \\
\mathrm{kg} / \mathrm{mm}^{2}
\end{array} \\
& \ldots \\
& \cdots \\
& \cdots .33 \\
& \cdots .15 \text { (sand cast) } \\
& 39.0 \text { (annealed) } \\
& 120 \text { (annealed } \\
& \quad \begin{array}{l}
\text { wire) }
\end{array} \\
& \cdots \quad \\
& \cdots 32.3 \\
& \cdots \\
& \cdots \\
& \cdots \\
& \cdots
\end{aligned}
$$

4

$$
\begin{aligned}
& \text { ن } \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$



Element
${ }^{\circ} \mathrm{At}-62^{\circ} \mathrm{C}$.
TABLE 185.-SOME PHYSICAL PROPERTIES OF THE ELEMENTS (concluded)

Rela. tive hard ness	Density at $20^{\circ} \mathrm{C}$ $\mathrm{g} / \mathrm{cm}^{8}$	Melting point ${ }^{\circ} \mathrm{C}$	Specific heat at r. t . ${ }^{\mathrm{cal}} \mathrm{og}^{-1}{ }^{-1}$	Latent   heat of fusion $\mathrm{cal} / \mathrm{g}$	Coeff. of linear thermal expansion   ${ }^{\circ} \mathrm{C}$ at r.t. $\times 10^{8}$	Thermal conductivity at r.-t. watts $\mathrm{cm}^{-1}$	Electrical resistivity microhm-cm	Modulus of elas$\underset{\mathrm{kg} / \mathrm{mm}^{2}}{\substack{\text { ticit } \\ \text { 2 }}}$	Tensile strength $\mathrm{kg} / \mathrm{mm}^{2}$
	7.7	$>1050$							
	2.5	1400							
2.0	4.81	$217.4 \pm 5$	. 084	. .	37		$1.20\left(20^{\circ} \mathrm{C}\right)$		
7.0	2.4	$1410 \pm 20$	. 176		2.8-7.3	. 84	$85 \times 10^{3}\left(20^{\circ} \mathrm{C}\right)$	11000	
2.7	10.49	$960.8 \pm .0$	. 056	24.3	18.9	4.08	$1.62\left(20^{\circ} \mathrm{C}\right)$	7200	15.1 (rod, annealed)
. 4	. 97	$97.82 \pm .2$	. 295	27.5	71	1.35	$4.2\left(0^{\circ} \mathrm{C}\right)$	- ...	
1.8	2.6	$770 \pm 10$		25			$22.76\left(20^{\circ} \mathrm{C}\right)$		
2.0	2.07	$119 \pm .2$	. 175	9.3	$64 \ddagger$	$26.4{ }^{\circ}$	$2 \times 10^{23}\left(20^{\circ} \mathrm{C}\right)$		
7	16.6	$2980 \pm 100$	. 036		6.6	. 54	$14.6\left(18^{\circ} \mathrm{C}\right)$	19000	50 (wire)
3.3	6.24	$2700 *$ 450	. 047	.	$16.8 \ddagger$	. 060		210	
		$1450 \pm 5$	.	$\ldots$		. 06		21	1.12 (wire)
1.2	11.85	$303.6 \pm 3$	. 031	7.2	28	. 39	$17.65\left(0^{\circ} \mathrm{C}\right)$		
	11.5	$1695 \pm 150$	. 028		$11.1 \pm$		$18.62\left(20^{\circ} \mathrm{C}\right)$		56.0 (wire)
1.8	7.30	$231.91 \pm .1$	. 054	14.4	23	. 64	$11.5\left(20^{\circ} \mathrm{C}\right)$	41100	1.4
4.0	4.54	$1675 \pm 100$	. 142	4	8.5	1.99	$80\left(0^{\circ} \mathrm{C}\right)$	8500	
7	19.3	$3380 \pm 20$	. 034	44	4.3	1.99	$5.5\left(20^{\circ} \mathrm{C}\right)$	35000	270 (wire)
	18.7	$1132 \pm 1$	. 028	. . .	...		$60\left(18^{\circ} \mathrm{C}\right)$	...	
	5.68	$1890 \pm 50$	. 115	...	...		...		
	$5.495{ }^{\text {d }}$	$-112.5 \pm 1$	$\therefore$	...	...	$5.19{ }^{\circ}$	. .	...	$\ldots$
		824	...	$\ldots$		. .	...		
	5.51	$1490 \pm 200$							
2.5	7.14	$419.50 \pm .1$	. 09	24.1	17-39 $\dagger$	1.1	$5.92\left(20^{\circ} \mathrm{C}\right)$	8400	10.5
4.5	6.4	$1852 \pm 700$	. 066	...	5.6	. .	$41.0\left(0^{\circ} \mathrm{C}\right)$	7500	30.0 (rod, annealed)

[^89]TABLE 186.-MECHANICAL PROPERTIES OF ALUMINUM AND ALUMINUM ALLOYS **

$\begin{aligned} & \text { səquinu } \\ & \text { ssəupieH } \end{aligned}$	$\cdots 8$	:	8	$\stackrel{3}{7}$	$\underset{\sim}{\mathrm{O}}$	:	-	$\pm$	$\infty$
	$\begin{aligned} & i \\ & \dot{+} \end{aligned}$	:	$\frac{1}{2}$	$\underset{N}{+}$	$\infty$	:	$\ddagger$	:	-
иоџе8иоэ 岂		$\begin{aligned} & \underset{\dot{A}}{N} \\ & N \\ & N \end{aligned}$	$\stackrel{*}{N}$	.   N   $\stackrel{*}{N}$	$\stackrel{\odot}{\text { N }}$		.   N   士	$\underset{\sim}{N}$	-

[^90]



TABLE 186．－MECHANICAL PROPERTIES OF ALUMINUM AND ALUMINUM ALLOYS（continued）

8uวtis ${ }_{\text {® }}$	官	$\begin{aligned} & \text { O} \\ & \underset{\sim}{\ddot{H}} \\ & \stackrel{y}{0} \end{aligned}$	$\stackrel{\text { E. }}{\stackrel{\Delta}{む}}$	だ	た	だ	だ	だ	安	$\underset{\underset{\Delta g}{E}}{ }$
	ç ç ç	ֻ̊	$\stackrel{\text { ヘٌ }}{\substack{~}}$	$\stackrel{\text { č }}{\substack{4 \\ \hline}}$	ペ	$\stackrel{80}{\mathrm{~N}}$	ペ	$\begin{gathered} \text { ペ } \\ \text { Con } \end{gathered}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	ペ
	$\bigcirc$	$\alpha^{\infty}$	$0$	$\stackrel{0}{\circ}$	$\cdots$	$\stackrel{n}{N}$	$\pm$	$\mp$	$\cdots$	$\stackrel{\sim}{\square}$
	－	$\vdots$	：		：	：	：	：	：	：





uo！uspoduso

ио！！${ }^{\text {a }}$

Aluminum－copper－silicon alloys $\mathrm{Cu}-4.0, \mathrm{Si}-3.0 \quad$ Sand－cast（108） $\mathrm{Cu}-4.5, \mathrm{Si}-2.5 \quad$ Chill－cast：h．－t． Cu－7．0，Si－2．0，Sand－cast $\mathrm{Zn}-1.5, \mathrm{Fe}-1.2$
Aluminum－copper－zinc alloys $\mathrm{Cu}-7.0, \mathrm{Zn}-1.7, \quad$ Sand－cast（112） Aluminum－magnesium alloys $\mathrm{Mg}-1.0, \mathrm{Si}-.6 \quad$ Wrought；ann． $\mathrm{Mg}-1.3, \mathrm{Si}-.7$ （ra－2．5，Cr－ 25 （52S－H） Sand－cast（214） Chill－cast（A 214） Sand－cast h．－t．
$(220-\mathrm{T} 4)$ nese alloys
Wrought ；ann．（ $3 \mathrm{~S}-\mathrm{O}$ ）
$\mathrm{Mn}-1.25, \mathrm{Mg}-1.0$ Annealed

[^91]1
TABLE 186.-MECHANICAL PROPERTIES OF ALUMINUM AND ALUMINUM ALLOYS (concluded)

TABLE 187．－MECHANICAL PROPERTIES OF BRASSES AND BRONZES＊


	¢	以すへm心	以すへの：	FinNm：	Nonm	Nignm
प18uว」） ว！！suวป	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$	๗Niñ゙ホ		$\begin{aligned} & \text { MNM } \\ & \text { mincio } \end{aligned}$	$\begin{aligned} & \text { NーM } \\ & \text { MN } \\ & \text { Nin } \end{aligned}$	
	$\begin{aligned} & \square Y \\ & \dot{\sim} \end{aligned}$	$\rightarrow$ 以ñoos   サல゙オジウテ		$\begin{aligned} & \text { onvon } \\ & \text { Novinin } \end{aligned}$	バびす	تivNM
	$\begin{aligned} & i \\ & 0 \\ & \underset{x}{0} \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & i \\ & 0 \\ & X \\ & \underset{X}{X} \\ & \text { N } \end{aligned}$	$\begin{aligned} & i \\ & 0 \\ & x \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{x}{0} \\ & \underset{i}{2} \end{aligned}$		$\begin{aligned} & 0 \\ & \underset{\sim}{x} \\ & \underset{-\infty}{9} \end{aligned}$
Kไ！n！	$\begin{aligned} & \text { n } \\ & \text { ñ } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & 0 \end{aligned}$	$$	$\begin{aligned} & \infty \\ & \text { in } \\ & \text { in } \end{aligned}$	$\underset{\underset{\sim}{\mathrm{N}}}{\substack{0}}$	$\begin{aligned} & \text { K } \\ & \text { j} \end{aligned}$
	$\begin{aligned} & \text { + } \\ & \text { Ǹ } \end{aligned}$	$\underset{\text { N }}{\mathrm{N}}$	ষ্	N్ల	$\stackrel{\Im}{\nabla}$	ษ
	$\stackrel{\infty}{+}$	$\underset{\infty}{N}$	$\begin{aligned} & N \\ & N \\ & \infty \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \infty \end{aligned}$	$\cdots$	＋

ssoupser $\underset{\square}{\circ}$ ©NへN



$\stackrel{\infty}{\infty}$



uon!soduros

$$
\begin{aligned}
& \text { Hard-drawn } \\
& \text { Hard-drawn } \\
& \text { Hard-drawn }
\end{aligned}
$$

Hard-drawn
Hard-drawn
Hard-drawn
 $\stackrel{i}{\circ}$
$040^{\prime \prime}$ strip ; light ann. 040" strip; quarter hard .50 " strip; as hot-rolled ${ }^{1 \prime}$ " rod; soft ann. $1^{\prime \prime}$ rod; light ann.
$1^{\prime \prime}$ rod; quarter hard (9\%)
$1^{\prime \prime}$ rod; half hard ( $18 \%$ ) $1^{\prime \prime} \times .05^{\prime \prime}$ tube ; .025 mm ann. $.040^{\prime \prime}$ strip; half hard hard hard light ann.


No $\stackrel{\infty}{\circ} \stackrel{n}{\sim}$
$\stackrel{\infty}{\stackrel{\infty}{~}}$ ヘั๋ ษ
$\underset{\infty}{\text { Y }}$
$\underset{\infty}{\mathbb{N}} \underset{\infty}{\infty}$

Conductivity bronzes
$80 \%$ conductivity bronze - azuorq К!!и!
…әzuoдq Кұ!м!

## Special brasses

Naval brass
Antimonial $\ldots . . . . . . . .$. Cu-71; $\mathrm{Zn}-27.97$


Bushing bronze $\ldots \ldots \ldots . \mathrm{Cu}$ (90; $\mathrm{Zn}-9.5$;
TABLE 187.-MECHANICAL PROPERTIES OF BRASSES AND BRONZES (concluded)

		$\begin{aligned} & \stackrel{\stackrel{\rightharpoonup}{ज}}{\stackrel{y}{5}} \\ & \stackrel{0}{0} \\ & \mathrm{~g} / \mathrm{cm}^{3} \end{aligned}$							$\begin{gathered} \text { un } \\ \stackrel{0}{0} \\ \stackrel{0}{L} \\ \text { w. } \\ \text { No. } \end{gathered}$
Phosphor bronze 5\%  	$.040^{\prime \prime}$ strip; .035 mm anm.   $.040^{\prime \prime}$ strip; hard (37\%)   $.040^{\prime \prime}$ strip; spring ( $60 \%$ )   $.100^{\prime \prime}$ wire; spring ( $84 \%$ )	8.85	. 157	12.28	$1.78 \times 10^{-5}$	14.1   52.7   56.2	$\begin{aligned} & 34.5 \\ & 56.9 \\ & 70.3 \\ & 98.2 \end{aligned}$	$\begin{array}{r} 58 \\ 10 \\ 4 \\ 2 \end{array}$	$\begin{aligned} & \text { F } 75 \text {, } \\ & \text { B } 28 \\ & \text { B } 87 \\ & \text { B } 93 \end{aligned}$
Phosphor bronze $8 \%$ (grade C) $\ldots \ldots \ldots \ldots \underset{\mathrm{P}-.25}{\mathrm{Cu}} \underset{\mathrm{Cn}-7.75 \text {; }}{ }$	$.040^{\prime \prime}$ strip; .035 mm ann.   $.040^{\prime \prime}$ strip; hard ( $37 \%$ )   .040 " strip; spring ( $60 \%$ )   $.100^{\prime \prime}$ wire ; spring ( $68 \%$ )	8.80	. 120	15.65	$1.82 \times 10^{-5}$	$\begin{aligned} & 16.9 \\ & 50.6 \end{aligned}$	$\begin{aligned} & 40.8 \\ & 65.4 \\ & 78.7 \\ & 98.2 \end{aligned}$	$\begin{array}{r} 65 \\ 10 \\ 3 \end{array}$	$\begin{gathered} \text { F-80; B-50 } \\ \text { B } 93 \\ \text { B } 98 \end{gathered}$
444 Bronze $\ldots \ldots \ldots \ldots . .$$\mathrm{Cu}-88 ; \mathrm{Sn}-4$;   $\mathrm{Zn}-4 ; \mathrm{Pb}-4$	$.040^{\prime \prime}$ strip; .035 mm ann. $1^{\prime \prime}$ rod; hard $(20 \%)$	8.88	. 206	9.07	$1.72 \times 10^{-5}$	$\cdots$	$\begin{aligned} & 31.6 \\ & 457 \end{aligned}$	$\begin{aligned} & 55 \\ & 20 \end{aligned}$	F 65
Olympic bronze   Olympic bronze, type A... Cu-96; Si-3; $\mathrm{Zn}-1$	$.040^{\prime \prime}$ strip ; .070mm ann.   $.040^{\prime \prime}$ strip; spring ( $60 \%$ ) $1^{\prime \prime}$ rod; extra hard ( $50 \%$ )   $.100^{\prime \prime}$ wire ; hard ( $60 \%$ )   $.100^{\prime \prime}$ wire ; spring ( $80 \%$ )	8.52	. 087	24.6	$1.80 \times 10^{-5}$	$\begin{aligned} & 14.75 \\ & 43.8 \\ & 42.2 \\ & 45.7 \\ & 49.3 \end{aligned}$	$\begin{array}{r} 39.4 \\ 77.3 \\ 75.9 \\ 87.9 \\ 102.0 \end{array}$	$\begin{array}{r} 63 \\ 4 \\ 13 \\ 5 \\ 3 \end{array}$	$\begin{aligned} & \text { F } 75 \\ & \text { B } 97 \\ & \text { B } 95 \end{aligned}$
Special engineering alloy   Tellurium copper ......... Cu-99.5 ; Te-. 5	$\frac{1}{8}{ }^{\prime \prime}$ rod, $\frac{1}{2}$ hard ( $20 \%$ )	8.94	. 848	1.915	$1.79 \times 10^{-5}$	28.8	30.9	15	


		$\begin{gathered} \stackrel{\rightharpoonup}{\omega} \\ \stackrel{y}{ \pm} \\ \text { cgs } \end{gathered}$	$\begin{gathered} \text { n } \\ \text { cgs } \end{gathered}$	言				$\begin{gathered} \stackrel{5}{\Sigma_{0}} \\ \vdots \\ \vdots \\ \mathrm{~kg} / \mathrm{mm}^{2} \end{gathered}$				
Pure and commercial copper												
$\begin{aligned} & \text { Oxygen-free copper } \\ & \text { (OFHC); } \\ & \mathrm{Cu}-99.997 \end{aligned}$	Rod, $\frac{1}{2}$ in. diam. cold-drawn ( $29 \%$ red) from .125 mm grain size	8.95	. 93	1.706*	17.6*	12,500	$\ldots$	34.5(.5\% extn.)	36.0	$14^{\dagger}$	$12.0\left(3 \times 10^{8}\right)$	Rs 37
$\begin{aligned} & \text { Oxygen-free copper } \\ & \text { (OFHC); } \\ & \text { Cu-99.996 } \end{aligned}$	Rod, $\frac{3}{4}$ in. diam. cold-drawn ( $36 \%$ red) from .135 mm grain size	$\ldots$	$\ldots$	$\ldots$	$\ldots$	12,300	$\ldots$	33 (.5\% extn.)	33.5	$20^{\dagger}$	$\ldots$	$\ldots$
$\begin{aligned} & \text { Oxygen-free copper } \\ & \text { (OFHC); } \\ & \text { Cu-99.99 } \end{aligned}$	Rod, hard-drawn	$\ldots$	$\cdots$	$\ldots$	$\ldots$	13,000	3.45	12.7(.01\%)	29.0	298	$\ldots$	$\ldots$
Cu -99.95	Sheet, . 020 in ., soft	$\ldots$	...	$\ldots$	$\ldots$		4.8	$\ldots$	22.0	$35 \dagger$	7.7 (10 ${ }^{8}$ )	
"	Sheet, . 020 in., coldworked ( $21 \%$ red)	$\ldots$	$\ldots$	$\ldots$	$\ldots$		11.0	...	31.2	$7.8^{\dagger}$	$9.1\left(10^{8}\right)$	$\mathrm{R}_{\mathrm{B}} 33$
$\mathrm{Cu}-99.94 ; 0-.030$	Rod, drawn ( $37 \%$ red)	$\ldots$	$\ldots$	...	...	12,100	3.4	10.0(.01\%)	26.0	328	$\cdots$	$\cdots$
copper   Electrotough-pitch copper	Rod, 1 in. diam., hot-rolled	8.92	. 93	1.706*	17.6*	9,300	$\ldots$	$\begin{gathered} 4.55(.01 \% \\ \text { perm. }) \end{gathered}$	22.0	$59 \dagger$	$2.8 \pm$	41
Electrotough-pitch copper	Cold-rolled	$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	7.0	15 (.01\% perm.)	36.5	$13^{\dagger}$	11.0	$\ldots$
Copper-aluminum alloys												
Al-3.96	Cast, annealed		$\ldots$	$\ldots$	$\ldots$		4.30	6.1(.5\% extn.)	24.3	$84 \dagger$	$\ldots$	$\ldots$
"	Forged, annealed	$\ldots$	$\ldots$	...	$\ldots$		5.75	8.8(.5\% extn.)	33.0	$81{ }^{\dagger}$	$\ldots$	$\cdots$
A1-8.0	Sheet or plate, soft	7.78	. 17	11.8*	17.8*			17 (.5\% extn.)	42	$60^{\dagger}$	$\ldots$	Re 30
"	Sheet or plate, hard			...	...	10,500		42 (.5\% extn.)	84	$4{ }^{+}$	$\ldots$	$\mathrm{R}_{\mathrm{B}} 99$
** For references, $* \times 10^{-0} . \quad \dagger 2 \mathrm{in}$	se footnotes 55 and 57 , p. $\ddagger$ Alternating torsion.	\& 4 V			(con	tinued)						


AND COPPER ALLOYS (continued)



шว-шчохэыш
रนกดทุร!


रı! !


Copper-aluminum-iron alloys Al-5.39, Fe-5.14 Forged Al-8, Fe-2.5 Rod, soft Al-8.6, Fe-2.9 Sand-cast Al-9, Fe-3 Forged

Copper-aluminum-iron-manganese alloys Al-7.18, $\mathrm{Fe}-.62$, Sand-cast


	TABLE 188.-MECH	NIC		ERT	S	F COPP	PER AN	ND COPPER	ALLOYS	(contin		
percent										$\begin{aligned} & \stackrel{5}{0} \\ & \stackrel{.0}{\pi} \\ & \stackrel{\omega}{0} \\ & \text { percent } \end{aligned}$		
Copper-aluminum-manganese alloys												
Al-7, Mn-1	Sheet, . 2 in., coldrolled (50\% red)	...	$\ldots$	. .	. $\cdot$	...	54.0	$\ldots$	74	$12 \dagger$	. .	...
Al-10, Mn-1	Chill-cast					$\ldots$	...	25.0 (yld. pt.)	62.5	$25 \dagger$	. $\cdot$	...
Copper-aluminum-nickel alloys												
Al-7, $\mathrm{Ni}-1$	Sheet, . 2 in., coldrolled ( $50 \%$ red)	...	$\cdots$	. $\cdot$	-•	...	60.0	.	80.0	$6 \dagger$	...	...
$\begin{aligned} & \mathrm{Al}-9.4, \mathrm{Ni}-7.4, \\ & \mathrm{Fe}-4.1 \end{aligned}$	Rod, 1 in. diam., chill-cast	7.57	...	. $\cdot$	.	...	...	$\begin{gathered} 4.03(.15 \% \\ \text { perm. }) \end{gathered}$	67	$5 \dagger$	. $\cdot$	188
$\begin{aligned} & \mathrm{Al}-10.1, \mathrm{Ni}-7.6, \\ & \mathrm{Si}-.4 \end{aligned}$	Rod, 1 in. diam., chill-cast	7.58	. .	. $\cdot$	. $\cdot$	. $\cdot$	.	44 (.15\% perm.)	63.5	$2 \dagger$	...	. $\cdot$
Copper-aluminum-silicon alioys												
$\begin{aligned} & \mathrm{Al}-7.2, \mathrm{Si}-1.88 \\ & \mathrm{Fe}-.11 \end{aligned}$	Rod, 1 in. square, chill-cast from $2055^{\circ} \mathrm{F}$	$\cdots$	.	$\cdots$	- $\cdot$	.	. $\cdot$	22.0 (yld. pt.)	53.0	$19^{\text {a }}$	. $\cdot$	139
$\begin{aligned} & \mathrm{Al}-7.2, \mathrm{Si}-1.88 \text {, } \\ & \mathrm{Fe}-.11 \end{aligned}$	Rod, $\frac{3}{4}$ in. diam., forged	$\cdots$	.	$\cdots$	-	. $\cdot$	...	42 (yld. pt.)	69.5	$25^{\text {a }}$	$\ldots$	186
Copper-aluminum-zinc alloys												
$\begin{aligned} & \mathrm{Al}-8.89, \mathrm{Zn}-1.40, \\ & \mathrm{Fe}-.15 \end{aligned}$	Rod, $\frac{3}{4}$ in. diam., extruded and drawn	$\cdots$	. $\cdot$	-••	...	12,300	12.4	$\begin{gathered} 29.3(.01 \% \\ \text { perm. }) \end{gathered}$	25.2	378	.	-•
Copper-arsenic alloys												
As-.33, Ag-. 10	Rod, $\frac{7}{8}$ in. diam., drawn ( $7 \%$ red)	. $\cdot$	.	.	$\cdots$	$\cdots$	20.4	$\begin{gathered} 7.7(.01 \% \\ \quad \text { perm. }) \end{gathered}$	25.2	478	.	.
" "	Rod, $\frac{7}{8}$ in. diam., drawn ( $7 \%$ red) ann. 100 hr at $390^{\circ} \mathrm{F}$	.	.	. $\cdot$	$\cdots$	. .	10.4	$\cdots$	24.7	468	$\ldots$	-
21.3 in . ${ }^{\text {a }}$ (continued)												






(yld. pt.)
14.7 (yld. pt.)
$71.5\left(\mathrm{~mm}^{2}\right.$
30.0
66.1
$\begin{array}{ll}0 \\ 8 \infty & m\end{array}$




$\underset{\substack{\infty \\ \underset{\infty}{\infty}} \underset{\text { E }}{\infty} \quad \vdots \quad \vdots}{ }$
$12,900 \quad 39.0$



रı!suәa ©

jo sninpow

3
8

uo!u!puoう
uo!u!puoう
uo!u!̣soduoj

$B e-2.2$



（continued）
AND COPPER ALLOYS
ER
COPPER

フヲつIN甘HOヨW—｀881 ヨ78シ1



แว-шчо.лาи
К!! 1 ! $3!$ !say
Кไ!м! !
К1!suว
$\infty$
$\infty$
Sand-cast from 1750
$1900^{\circ} \mathrm{F}$
Copper-manganese alloys
Mn-13 ; Al-9
$\mathrm{Ni} 30.48 \mathrm{Mn}-22, \quad$ Rod, $\frac{3}{4}$ in. diam.,
cold-drawn (15\%
red) from .030 mm grain size
 red）from .030 mm
 $840^{\circ} \mathrm{F}$ Sand－cas $1400^{\circ} \mathrm{F}$ Rod， 1 hr at $1450^{\circ} \mathrm{F}$ ， Rod，cold－rolled $\mathrm{Ni}-30.48, \mathrm{Mn}-.22$,
$\mathrm{Fe}-.07$
Constantan
$\mathrm{Ni}-45, \mathrm{Mn}-.5-1.0$ ， $\mathrm{Ni}-44.77, \mathrm{Mn}-.89$, $\mathrm{Ni}-44.77, \mathrm{Mn}-.89$,
$\mathrm{Fe}-.66, \mathrm{C}-. \mathrm{U} 78$




$35.4(.2 \%)$
$60.0(.2 \%)$
$39.0(.01 \%$
perm. $)$




แว-ณบ๐ะว!ル


геயлачІ

ио!!!puoう
uo!u! soduoy
$\begin{array}{cc}\text { percent } \\ \text { Copper-nickel-beryllium alloys } \\ \mathrm{Ni}-2.0, \mathrm{Be}-.2 & \text { Quenched from } \\ & 1650^{\circ} \mathrm{F} \text {, cold-drawn, } \\ & (56 \% \text { red }) \\ " \quad \text { " } & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{array}$
Copper-nickel-manganese alloys
Ni-13.5, Mn-5, Rod, 1 in. diam.,
extruded, colddrawn ( $10 \%$ red)
Rod, 1 in. diam., cold-drawn, 2 hr
Copper-nickel-silicon alloys
$\mathrm{Cu}-94.15, \mathrm{Ni}-5.14$, Sheet, .020 in., soft
Si-rem.
Copper-nickel-tin alloys
$\mathrm{Ni}-29.08, \mathrm{Sn}-.95, \quad$ Rod, 1 in. diam.,
cold-drawn
Copper-nickel-zinc alloys
Sheet or plate, soft
Sheet or plate, hard
$\mathrm{Ni}-20.22, \mathrm{Zn}-5.26, \quad$ Rod, $\frac{3}{4}$ in. diam.. cold-drawn $15 \%$
red) from .060 mm grain size, 2 hr
at $840^{\circ} \mathrm{F}$

SMITHSONIAN PHYSICAL TABLES



M

戸゙ $\underset{\text { ले }}{\text { ले }}$

17 （．5\％extn．）
$8 \varepsilon I$
$\begin{array}{ll}8 & 8 \\ \text { \＆} & \text { 品 }\end{array}$
$\underset{7}{n}$ in
2
0
$x$
10
10
0

$\stackrel{\overparen{E}}{\stackrel{E}{E}}$	髟
8	＊
ت	$\checkmark$
ก̛\％	$\xrightarrow{\circ}$


	$\vdots$	$\vdots$	9	in	$\frac{0}{m}$	$\stackrel{1}{8}$	$\stackrel{\cong}{\beth}$	$\vdots$
	$\begin{aligned} & 8 \\ & 8 \\ & 1 \end{aligned}$	8 0 0 0		$\begin{aligned} & 8 \\ & \text { I } \\ & \text { In } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & n \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & \cdots \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 6 \\ & \hline 8 \end{aligned}$
	：	！	：	：	：	：	$\vdots$	：
шэ－шчодэฺш  	：	：		：	！	：	$\vdots$	：
人!!А!	$\vdots$	：	$\vdots$	：	：	：	：	：
	：	$\stackrel{\sim}{3}$	：	：	：	：	：	：

uo！！！soduro percent













か
r
$u$
$a$
0
0
0
0
0
2
$<$

TABLE 188.-MECHANICAL

saquinu   ssaup．ren $_{\mathrm{H}}$	$\stackrel{\infty}{\sim}$	ふ	$\underset{\sim}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \text { \& } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \text { m } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \text { m } \end{aligned}$	$\begin{aligned} & 20 \\ & 0 \\ & 0 \end{aligned}$	：	：	¢ $\stackrel{1}{1}$ d
	：	$\begin{aligned} & \text { o્ } \\ & \underset{\sim}{x} \\ & \underset{\sim}{0} \\ & 0 \\ & \end{aligned}$	：	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { ®⿹\zh26灬 } \\ & \underset{y}{=} \\ & \hline \end{aligned}$	！	－	！	$\begin{aligned} & \text { © } \\ & \underset{y}{\infty} \\ & \pm \end{aligned}$	
no！pesuorg ${ }_{\text {苞 }}^{\text {U．}}$	$\stackrel{+}{\sim}$	$\bar{m}$	$\pm$	$\stackrel{+}{\square}$	$\stackrel{\overleftarrow{N}}{ }$	$\stackrel{i}{n}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{+}{8}$	N	+ $\sim$ $\vdots$ -1
	$\begin{aligned} & \text { ơ } \\ & \text { Non } \end{aligned}$	웅	$\begin{aligned} & 0 \\ & \hline 8 \end{aligned}$	$\underset{\sim}{n}$	$i_{0}^{n}$	$\begin{aligned} & \text { n } \\ & \infty \end{aligned}$	$\begin{aligned} & \text { en } \\ & \text { n } \\ & \text { n } \end{aligned}$	$\frac{0}{m}$	$\bigcirc$	N1
	o	：		！	：	：		：	$\vdots$	
	$\vdots$	$\stackrel{n}{a}$	：	$\frac{3}{m}$	$\begin{aligned} & \text { y } \\ & \underset{N}{n} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\vdots$	：	N゙	：
	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & \hline \end{aligned}$	$\vdots$	$\begin{aligned} & \text { §ి } \\ & \text { ले } \end{aligned}$	8 $\cdots$	$\begin{aligned} & 8 \\ & \infty \\ & 0 \end{aligned}$	：	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8 8 0	：
	．	：	：	：	：	：	：	：	幺	：
шл－шчодтит  	：	：	：	：	：	：	！	：	：	：
	：	：	$\vdots$	：	：	：	：	：	：	：
${ }_{\text {St！}}$	！	¢	$\stackrel{9}{7}$	：	！	：	$\bigcirc$	$\cdots$	$\underset{\sim}{\sim}$	$\underset{\infty}{\sim}$
ио！！！puoว   иo！̣！？soduoう   ұนวэมวฮ		$\stackrel{\rightharpoonup}{n}$  								

Copper wire: Hard-drawn (and hard-rolled flat copper of thicknesses corresponding to diameter of wire). Specification values. (A. S. T. M. B1-15, U. S. Navy Dept.)

Specific gravity 8.89 at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.

Diameter		Minimum tensile strength		Minimum elongation, percent in 254 mm ( 10 in. )
${ }_{\mathrm{mm}}$	in.	kg/mm ${ }^{2}$	1b/in. ${ }^{2}$	
11.68	. 460	34.5	49,000	2.75
10.41	. 410	35.9	51,000	3.25
9.27	. 365	37.1	52,800	2.80
8.25	. 325	38.3	54,500	2.40
7.34	. 289	39.4	56,100	2.17
6.55	. 258	40.5	57,600	1.98
5.82	. 229	41.5	59,000	. 1524 1.79
				in 1524 mm ( 60 in .)
5.18	. 204	42.2	60,100	$1.24$
4.62	. 182	43.0	61,200	1.18
4.12	. 162	43.7	62,100	1.14
3.66	. 144	44.3	63,000	1.09
3.25	. 128	44.8	63,700	1.06
2.90	. 114	45.2	64,300	1.02
2.59	. 102	45.7	64,900	1.00
2.31	. 091	46.0	65,400	. 97
2.06	. 081	46.2	65,700	. 95
1.83	. 072	46.3	65,900	. 92
1.63	. 064	46.5	66,200	. 90
1.45	. 057	46.7	66,400	. 89
1.30	. 051	46.8	66,600	. 87
1.14	. 045	47.0	66,800	. 86
1.02	. 040	47.1	67,000	. 85

Note.-P-limit of hard-drawn copper wire must average 55 percent of ultimate tensile strength for four largest-size wires in table, and 60 percent of tensile strength for smaller sizes.

## TABLE 190.-COPPER WIRE—MEDIUM HARD-DRAWN

(A. S. T. M. B2-15) Minimum and maximum strengths.

Diameter		Tensile strength				$\underset{\substack{\text { Elongation, } \\ \text { minimum percent } \\ \text { in } 254 \mathrm{~mm}(10 \mathrm{in} .)}}{\text {. }}$
		$\overbrace{\text { Minimum }}$		$\underbrace{\text { Maximum }}$		
mm	in.	kg/mm ${ }^{2}$	1b/in. ${ }^{2}$	$\mathrm{kg} / \mathrm{mm}^{2}$	lb/in. ${ }^{2}$	
11.70	. 460	29.5	42,000	34.5	49,000	3.75
6.55	. 258	33.0	47,000	38.0	54,000	2.50
						in 1524 mm ( 60 in .)
4.12	. 162	34.5	49,000	39.5	56,000	1.15
2.59	. 102	35.5	50,330	40.5	57,330	1.04
1.02	. 040	37.0	53,000	42.0	60,000	. 88

Note.-Representative values only from table in specifications are shown above. P-limit of medium hard-drawn copper averages 50 percent of ultimate strength.

TABLE 191.-COPPER WIRE-SOFT OR ANNEALED
(A. S. T. M. B3-15) Minimum values.

$\underbrace{\text { Diameter }}$		Minimum tensile strength		Elongation in 254
mm	in.	$\mathrm{kg} / \mathrm{mm}^{2}$	lb/in. ${ }^{2}$	percent ${ }^{\text {m }}$
11.70 to 7.37	.460 to .290	25.5	36,000	35
7.34 to 2.62	. 289 to .103	26.0	37,000	30
2.59 to . 53	.102 to . 021	27.0	38,500	25
.51 to .08	. 020 to . 003	28.0	40,000	20

Note.-Experimental results show tensile strength of concentric-lay copper cable to approximate 90 percent of combined strengths of wires forming the cable.
TABLE 192.-MECHANICAL PROPERTIES OF IRON AND STEEL**





Composition percent	Condition
Chromium steel	
C-.20, Cr-.75, Mn-.57, Si-. 21	bar, $\frac{3}{4}$ in. diam., normalized at $1700^{\circ} \mathrm{F}$
$\mathrm{C}-.59, \mathrm{Cr}-.82, \mathrm{Mnn}-.83, \mathrm{Si}-.35$	forged
Chromium-niobium steels C-.09, Cr-5.62, Nb-1.04	bar, 1 in. diam., rolled
Chromium-copper steels $\underset{\mathrm{P}-.088}{\mathrm{C}-.11,} \mathrm{Cr}-.53, \quad \mathrm{Cu}-.37, \quad \mathrm{Si}-.82,$	bar, 1 in. diam., normalized
Chromium-molybdenum steels	
C-.08, Cr-5.81, Mo-. 45	bar, $\frac{3}{4}$ in. diam., 4 hr at $1380^{\circ} \mathrm{F}$, а.-с.
$\begin{aligned} & \mathrm{C}-.10, \mathrm{Cr}-12.75, \mathrm{Mo}-.35, \mathrm{Mn}-.40, \\ & \mathrm{Si}-.40, \mathrm{~S}-.30, \mathrm{Ni}-.25 \end{aligned}$	annealed
	heat-treated
Chromium-titanium steels	
C-.11, Cr-5.41, Ti-. 75	bar, 1 in . diam., rolled 4 hr at $1380^{\circ} \mathrm{F}$, a.-c.
Chromium-tungsten steels	
$\underset{\mathrm{Mn}-.49}{\mathrm{C}-46, \mathrm{Cr}-11.94, \text { W-4.80, Si-2.89, }}$	oil-quenched from $1875^{\circ} \mathrm{F}$, tempered at $1470^{\circ} \mathrm{F}$
Chromium-vanadium steels	
C-. 58, Cr-.73, V-.18, Mn-. 68	annealed at $1500^{\circ} \mathrm{F}$
"	water-quenched from $1650^{\circ} \mathrm{F}$, tempered at $1050^{\circ} \mathrm{F}$
$\mathrm{C}-.52, \mathrm{Cr}-.88, \mathrm{~V}-.21, \mathrm{Mn}-.66$	$z^{3} \mathrm{hr}$ at $1600^{\circ} \mathrm{F}$, quenched in oil at $130^{\circ} \mathrm{F}$, tempered 1 hr at $810^{\circ} \mathrm{F}$

TABLE 192. -MECHANICAL PROPERTIES OF IRON AND STEEL (continued)

 $\stackrel{n}{\text { N }} \underset{\sim}{\text { N }}$ N 111



TC-3.41, GC-2.85, CC -.56, Si-2.44,

Modulus of
elasticity
$\mathrm{kg} / \mathrm{mm}^{2}$

- 
- 

5,620
(at $\frac{1}{2}$ load)
11,400
(at $\frac{1}{2}$ load)

- 

17,550
20,000
-
-
-
-
-
-
(continued)

$$
\begin{array}{r}
\text { Condition } \\
\text { sheet, } .062 \text { in., rolled }
\end{array}
$$ P-.63, Mn-.57, S-. 070 , Ti-. 10 Alloy cast iron: TC-2.61, GC-1.73, Alloy cast iron: TC-2, Ni-18, Si-5, Cr-2, Mn-1, P-.01, S-.1 Malleable cast iron: TC-1.75-2.30,

$\begin{gathered}\mathrm{Si}-.85-1.20, \\ \mathrm{~S}-<12\end{gathered} \mathrm{Mn}-<.40, \quad \mathrm{P}-<.20$, $\xrightarrow{\text { Sure }-<.12}$
Pure iron: $\mathrm{Fe}-99.99$
Wrought iron: C-.017, Si-.122,
Wrought iron: C-.017, Si-. 122, P-. 084
Manganese steels C-.35, Mn-1.71, Si-. 30 Molybdenum steels $\mathrm{C}-.23, \mathrm{Mo}-.17, \mathrm{Mn}-.67, \mathrm{Si}-.52$, $\mathrm{C}-.24, \mathrm{Mo}-.22, \mathrm{Mn}-.85, \mathrm{Si}-.19$
$\mathrm{C}-.39, \mathrm{Cr}-.86, \mathrm{Mo}-.17, \mathrm{Mn}-.56$
annealed
cast
cast
cast
cast,

$$
\begin{aligned}
& \text { rod, } \frac{1}{3} \text { in., swaged ann. } 4 \mathrm{hr} \\
& \text { at } 1600^{\circ} \mathrm{F} \\
& \text { longitudinal }
\end{aligned}
$$

$$
\begin{aligned}
& \text { cast, annealed } \\
& \text { rod, } \frac{1}{4} \text { in., swaged ann. } 4 \mathrm{hr} \\
& \text { at } 1600^{\circ} \mathrm{F}
\end{aligned}
$$

transverse

$$
\text { annealed at } 1650^{\circ} \mathrm{F}
$$

$$
\text { plate, } \frac{5}{8} \text { in., rolled }
$$






a

$$
\underset{\sim}{\circ} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \quad 1 \quad 1
$$



$$
\begin{gathered}
\begin{array}{c}
\text { Modulus of } \\
\text { elasticity } \\
\mathrm{kg} / \mathrm{mm}^{2}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& 21,000 \\
& 19,800
\end{aligned}
$$

$$
\begin{array}{r}
- \\
- \\
- \\
20,000
\end{array}
$$

8
8


8	8
N	
§	
N	

bar, $1 \frac{1}{8}$ in. diam., h.-t.
hot-rolled
bar, $\frac{3}{4}$ in. diam., wrought; 1 hr at $1550^{\circ} \mathrm{F}, \circ$ o.-q. tem-
pered at $1000^{\circ} \mathrm{F}$ grain pered
size $7-8$ (ASTM std.),
, norHos8
H.006
H.000I
H.00ZI
$\mathrm{C}-.32, \mathrm{Ni}-1.92, \mathrm{Cr}-.86, \mathrm{Mo}-.30$, wrought, f.-c., from $1450^{\circ} \mathrm{F}$
$\mathrm{Mn}-.60, \mathrm{Si}-.16$

Nickel-chromium steels
C-.37, Ni-1.28, Cr-.52, Mn-. 55
$\underset{\mathrm{Si}-.18}{\mathrm{C}-.37, \mathrm{Ni}-1.33, \mathrm{Cr}-.65, \mathrm{Mn}-.75 \text {, }}$ C-.36, $\mathrm{Ni}-1.33, \mathrm{Mn}-.60, \mathrm{Cr}-.56$, $-.36, \mathrm{Ni}-1.33$, (basic open-hearth, deoxidized with Si and Al )

Nickel-chromium-molybdenum steel
TABLE 192. -MECHANICAL PROPERTIES OF IRON AND STEEL (continued)

Condition
Composition
Nickel-molybdenum steels C-.41, Ni-1.96, Mo-. 31
Nickel-copper steels
$\mathrm{C}-.08, \quad \mathrm{Ni}-2.00, \quad \mathrm{Cu}-1.00$,
$\mathrm{Si}-<.3$
Silicon steels
C-.07, Si-1.17, Mn-. 32
Silicon-manganese steels
C-.52, Si-1.95, Mn-1.05, Cr-. 05
C-.53, Si-1.96, Mn-. 83
Si-. 85 ,
Stainless steel
C-17, Cr-18, Ni-8 C-.07, Cr-18.95, Ni-7.69 C-13, $\mathrm{Cr}-24.5, \quad \mathrm{Ni}-20.3$,
C-.11, $\mathrm{Cr}-16.2, \mathrm{Ni}-11.5$

$$
\begin{aligned}
& \text { oil-quenched from } 1525^{\circ} \mathrm{F} \text {, } \\
& \text { tempered at } 1200^{\circ} \mathrm{F} \\
& \text { quenched from } 1525^{\circ} \mathrm{F} \text { into } \\
& \text { lead at } 840^{\circ} \mathrm{F} \text { (austem- } \\
& \text { pered) }
\end{aligned}
$$

$$
\text { plate, } \frac{1}{2}-\frac{3}{4} \text { in., rolled }
$$

rolled

$$
\begin{aligned}
& \text { oil-quenched from } 1600^{\circ} \mathrm{F} \text {, } \\
& \text { tempered at } 970^{\circ} \mathrm{F}
\end{aligned}
$$

$$
\frac{2}{3} \mathrm{hr} \text { at } 1600^{\circ} \mathrm{F} \text {, quenched in }
$$

$$
\begin{aligned}
& \text { water-quenched from } 1100^{\circ} \mathrm{F} \\
& \text { bar, } \frac{3}{8} \mathrm{in} \text {. diam., cold-rolled } \\
& \text { bar, } 1 \mathrm{in} \text {. diam., rolled } \\
& \text { water-quenched from } 2010^{\circ} \mathrm{F} \text {; } \\
& \text { room: }
\end{aligned}
$$

Composition percent	Condition	Modulus of elasticity $\mathrm{kg} / \mathrm{mm}^{2}$	Proportional $\mathrm{kg} / \mathrm{mm}^{2}$ $\qquad$	Yield strength $\mathrm{kg} / \mathrm{mm}^{2}$	Tensile strength $\mathrm{kg} / \mathrm{mm}^{2}$	Elongation percent	$\begin{gathered} \text { Endurance } \\ \text { limit } \\ \mathrm{kg} / \mathrm{mm}^{2} \end{gathered}$	Hardness number
C-.08, Cr-18.58, Ni-9.68, Ti-. 42	air-cooled from $1920^{\circ} \mathrm{F}$	-	-	26.8	60.8	$59(2 \mathrm{in}$.	-	-
C-.07, $\mathrm{Cr}-18.2$, Ni-9.42, Nb-.51	water-quenched from $2100^{\circ} \mathrm{F}$	-	-	25.3	62.9	60 (2 in.)	-	137
$\begin{gathered} \mathrm{C}-.40, \mathrm{Cr}-15.21, \mathrm{Si}-.59, \mathrm{Mn}-.28, \\ \mathrm{Ni}-.18 \end{gathered}$	bar, 1 in. diam., 1 hr at $1650^{\circ} \mathrm{F}$, w.-q., tempered 1 hr at $1200^{\circ} \mathrm{F}$	-	36.4	-	81.5	20 (2 in.)	$\begin{aligned} & 42.0 \\ & 21.1^{*} \end{aligned}$	-
$\mathrm{C}-.20, \mathrm{Cr}-16.17, \mathrm{Mn}-1.06, \mathrm{Si}-.30$	oil-quenched from $1740^{\circ} \mathrm{F}$, tempered 3 hr at $840^{\circ} \mathrm{F}$	23,100	35.7	62.5	133	10(2 in.)	-	357
C-.15, Cr-13.50, Si-. 11	oil-quenched from $1740^{\circ} \mathrm{F}$, tempered at $1110^{\circ} \mathrm{F}$	22,000	57.8	77.3	92.8	21 (2 in.)	-	285
"	$\begin{aligned} & \text { oil-quenched from } 1740^{\circ} \mathrm{F} \text {, } \\ & \text { tempered at } 1290^{\circ} \mathrm{F} \end{aligned}$	22,200	42.3	50.7	68.5	28(2 in.)	-	206
C-. $09, \mathrm{Cr}-16.53$	sheet, . 18 in ., hot-rolled	-	-	73.0	93.5	4.5(8 in.)	-	$\mathrm{R}_{\text {L }} 103$
" "	sheet, . 18 in ., ann.	-	-	34.5	49.2	20 (8in.)	-	$\mathrm{R}_{\mathrm{B}} 82$
$\underset{\mathrm{Ni}-.19}{\mathrm{C}-20,} \mathrm{Cr}-27.37, \quad \mathrm{Mn}-.32, \mathrm{Si}-.28,$	annealed	-	18.5	31.3	56.9	28(2 in.)	30.9	-
C-.08, Cr-5.81, Mo-. 45	bar, $\frac{3}{4} \mathrm{in}$. diam., 4 hr at $1380^{\circ} \mathrm{F}$, a.-c.	-	-	$\begin{gathered} 39.4 \\ \text { (yld. pt.) } \end{gathered}$	60.4	29(2 in.)	-	149
Tungsten steels $\mathrm{C}-.71, \mathrm{~W}-17.30, \mathrm{Cr}-3.86, \mathrm{~V}-.75$	normalized at $1740^{\circ} \mathrm{F}$; tempered at $1470^{\circ} \mathrm{F}$	-	-	$\begin{gathered} 62 \\ \text { (yld. pt.) } \end{gathered}$	92	19(2 in.)	-	-

S. A. E. carbon steel, No. 1050 or higher number specified (see carbon steels above). Steel used to be manufactured by acid open-hearth process, to be rolled, drawn, and then uniformly coated with pure tin to solder readily.

Ameri can or   S. wire   gage	$\underbrace{\text { Diameter }}$		$\begin{gathered} \text { Req'd } \\ \text { Rwists } \\ \text { in } 203.2 \\ \text { mmor or } \\ 8 \text { in. } \end{gathered}$	Weight		$\begin{gathered} \text { Req'd } \\ \text { bends } \\ \text { thru } 90^{\circ} \end{gathered}$	Spec. minimum tensile strength			
	mm	in.		$\overparen{\mathrm{kg} / 100}$	$1 \mathrm{bb} / 100$		kg		${\mathrm{kg} / \mathrm{mm}^{2}}$	$\mathrm{lb} / \mathrm{in}.{ }^{2}$
6	4.115	. 162	16	10.44	7.01	5	2040	4500	154	219,000
7	3.665	. 144	19	8.28	5.56	6	1680	3700	161	229,000
8	3.264	. 129	21	6.55	4.40	8	1360	3000	164	233,000
9	2.906	. 114	23	5.21	3.50	9	1135	2500	172	244,000
10	2.588	. 102	26	4.12	2.77	11	910	2000	172	244,000
11	2.305	. 091	30	3.28	2.20	14	735	1620	179	254,000
12	2.053	. 081	33	2.60	1.74	17	590	1300	177	252,000
13	1.878	. 072	37	2.06	1.38	21	470	1040	179	255,000
14	1.628	. 064	42	1.64	1.10	25	375	830	181	258,000
15	1.450	. 057	47	1.30	. 87	29	300	660	182	259,000
16	1.291	. 051	53	1.03	. 69	34	245	540	186	264,000
17	1.150	. 045	60	. 81	. 55	42	195	425	188	267,000
18	1.024	. 040	67	. 65	. 43	52	155	340	190	270,000
19	. 912	. 036	75	. 51	. 34	70	125	280	193	275,000
20	. 812	. 032	85	. 41	. 27	85	100	225	197	280,000
21	. 723	. 028	96	. 32	. 22	105	80	175	200	284,000

Note.-Number of $90^{\circ}$ bends specified above to be obtained by bending sample about 4.76 mm (. 188 in .) radius, alternately, in opposite directions.

## TABLE 194.-STEEL WIRE-EXPERIMENTAL VALUES

Data from tests at General Electric Co. laboratories. Commercial steel music wire (hardened).

Diameter		Ultimate strength tension   $\mathrm{kg} / \mathrm{mm}^{2} \mathrm{lb} / \mathrm{in} .^{2}$		$\mathrm{Diameter}^{\text {d }}$		Ultimate strength tension $\mathrm{kg} / \mathrm{mm}^{2} \mathrm{H} / \mathrm{in} .^{2}$	
mm	in.			mm	in.		
12.95	. 051	226.0	321,500	6.35	. 025	262.0	372,500
11.70	. 046	249.0	354,000	4.55	. 018	265.5	378,000
9.15	. 036	253.0	360,000	2.55*	. 010	386.5	550,000
7.60	. 030	260.0	370,000	1.65*	. 0065	527.0	750,000
				$4.55{ }^{\dagger}$	. 018	49.2	70,000

[^92]
## TABLE 195.-PLOW-STEEL HOISTING ROPE (BRIGHT)

Wire rope to be of best plow-steel grade, and to be composed of 6 strands, 19 wires to the strand, with hemp center. Wires entering into construction of rope to have an elongation in 203.2 mm or 8 in . of about $2 \frac{1}{2}$ percent.

Diameter		Spec. minimum strength		Diameter		Spec. minimum strength	
mm	in.	kg	1 b	mm	in.	kg	lb
9.5	${ }^{\frac{3}{8}}$	5,215	11,500	38.1	$1 \frac{1}{2}$	74,390	164,000
12.7	$\frac{1}{2}$	9,070	20,000	50.8	2	127,000	280,000
19.0	$\frac{3}{4}$	20,860	46,000	63.5	$2 \frac{1}{2}$	207.740	458,000
25.4	1	34,470	76,000	69.9	$2 \frac{3}{4}$	249,350	550,000

Cast steel wire to be of hard crucible steel with minimum tensile strength of 155 $\mathrm{kg} / \mathrm{mm}^{2}$ or $220,000 \mathrm{lb} / \mathrm{in}^{2}$ and minimum elongation of 2 percent in 254 mm ( 10 in .).

Plow steel wire to be of hard crucible steel with minimum tensile strength of 183 $\mathrm{kg} / \mathrm{mm}^{2}$ or $260,000 \mathrm{lb} / \mathrm{in} .^{2}$ and minimum elongation of 2 percent in 254 mm ( 10 in .).

Annealed steel wire to be of crucible cast steel, annealed, with minimum tensile strength of $77 \mathrm{~kg} / \mathrm{mm}^{2}$ or $110,000 \mathrm{lb} / \mathrm{in.}^{2}$ and minimum elongation of 7 percent in 254 mm ( 10 in .).

Type A: 6 strands with hemp core and 19 wires to a strand ( $=6 \times 19$ ), or 6 strands with hemp core and 18 wires to a strand with jute, cotton, or hemp center.
Type B: 6 strands with hemp core, and 12 wires to a strand with hemp center.
Type C: 6 strands with hemp core, and 14 wires to a strand with hemp or jute center.
Type AA: 6 strands with hemp core, and 37 wires to a strand ( $=6 \times 37$ ) or 6 strands with hemp core and 36 wires to a strand with jute, cotton, or hemp center.


## TABLE 197.-STEEL-WIRE ROPE-EXPERIMENTAL VALUES

Wire rope purchased under Panama Canal Spec. 302 and tested by National Bureau of Standards, Washington, D. C.

Description and analysis	$\underbrace{\text { Diameter }}$		Ultimate strength		Ultimate strength(net area) net area)	
	mm	in.	kg	1b	kg/mm ${ }^{2}$	1b/in. ${ }^{2}$
Plow steel, 6 strands $\times 19$ wires   C $90, \mathrm{~S} 034, \mathrm{P} 024 \mathrm{Mn}$						
$\mathrm{C} .90, \mathrm{~S} .034, \mathrm{P} .024, \mathrm{Mn}$ $48, \mathrm{Si} .172$	50.8	2	137,900	304,000	129.5	184,200
Plow steel, 6 strands $\times 25$ wires						
46, Si $152 \ldots \ldots \ldots . .$.	69.9	$2 \frac{3}{4}$	314,800	694,000	151.2	214,900
$\begin{aligned} & \text { C } .58, \text { S } .032, \text { P } .033, \text { Mn } \\ & .41, S i \\ & \text { Si } 160 \ldots \ldots \ldots \ldots . . \end{aligned}$	82.6	$3{ }^{\frac{1}{4}}$	392,800	866,000	132.2	187,900
Monitor plow steel, $6 \times 61$ plus						
$\begin{aligned} & 6 \times 19, \mathrm{C} .82, \mathrm{~S} .025, \mathrm{P} .019, \\ & \mathrm{Mn} .23, \mathrm{Si} .169 \ldots \ldots \ldots . . . \end{aligned}$	82.6	$3{ }_{4}^{1}$	425,000	937,000	142.5	202,400

[^93]TABLE 198.-MECHANICAL PROPERTIES OF MISCELLANEOUS ALLOYS**

Composition percent	Condition	Density $\mathrm{g} / \mathrm{cm}^{3}$	Modulus of elasticity $\mathrm{kg} / \mathrm{mm}^{2}$	Proportional $\mathrm{kg} / \mathrm{mm}^{2}$	Yield strength $\mathrm{kg} / \mathrm{mm}^{2}$	Tensile strength $\mathrm{kg} / \mathrm{mm}^{2}$	Elongation percent	Endurance limit $\mathrm{kg} / \mathrm{mm}^{2}$	Hardness number
Cadmium alloys $\mathrm{Cu}-1.5 ; \mathrm{Mg}-.95^{\circ}$	Cast	$\ldots$	5,600		$\begin{gathered} 5.48 \\ (.02 \% \text { offset }) \\ 9.84 \\ (.2 \% \text { off set }) \end{gathered}$	15.77	8.8(10 diam.)	3.8	42
Zn-5.0	Rod, 1 in. diam., chill-cast from $660^{\circ} \mathrm{F}$; aged one month at r.-t.	8.55	$\ldots$	$\ldots$	$6 \%$	9.2 (rate of strain $\% /$ minute)	6.5 (1.25 in.)	$\cdots$	32
Cobalt alloys $\mathrm{Fe}-1.4 ; \mathrm{Ni}-1.1 ; \mathrm{C}-.24$	Cast, ann. 2 hr at $1,650^{\circ} \mathrm{F}$	$\ldots$	20,800	$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$
$\begin{aligned} & \text { Co-45-55; Cr-30-35; } \\ & \text { W-12-17 } \end{aligned}$	Cast	8.76	24,900	$\ldots$	$\ldots$	45.7	0 (2 in.)	$\ldots$	Rc 61
Gold alloys $\mathrm{Cd}-4.6 ; \mathrm{Cu}-2.8 ; \mathrm{Zn}-1.0$		$\ldots$	$\ldots$	9.28	$\ldots$	30.8	55 (2 in.)	$\ldots$	44
$\mathrm{Cu}-6.3$; $\mathrm{Ag}-2.1$	Strip, $\frac{3}{8}$ in., ann. $\frac{1}{3} \mathrm{hr}$ at $1365^{\circ} \mathrm{F}$	$\ldots$	$\ldots$	13.2	$\ldots$	32.1	35	$\ldots$	$\ldots$
$\begin{gathered} \mathrm{Cu}-15.6 ; \mathrm{Ag}-6.0 ; \mathrm{Pt}-2.78 ; \\ \mathrm{Z11-2.38} ; \mathrm{Ni}-1.98 \end{gathered}$	Rod, $\frac{1}{8}$ in. diam., cast, w.-q. from $1290^{\circ} \mathrm{F}$	$\ldots$	9,140	37.6	$\cdots$	48.5	4 (3in.)	$\ldots$	$\cdots$.
$\begin{gathered} \mathrm{Cu}-17.95 ; \mathrm{Ni}-17.60 \\ \mathrm{Zn}-6.0 ; \mathrm{Mn}-.4 \end{gathered}$	Sheet, .050 in ., rolled ( $50 \%$ red) $\frac{1}{2} \mathrm{hr}$ at $1290^{\circ} \mathrm{F}$, a.-c.	$\ldots$	$\ldots$	$\ldots$	$\begin{gathered} 45.0 \\ \text { (yld. pt.) } \end{gathered}$	72.4	44(2 in.)	$\ldots$	$\cdots$
$\begin{aligned} & \mathrm{Cu}-34.9 ; \mathrm{Ni}-12.14 ; \\ & \mathrm{Ag}-11.11 \end{aligned}$	Sheet, .045 in., rolled ( $50 \%$ red), ann. $\frac{1}{3} \mathrm{hr}$ at $1300^{\circ} \mathrm{F}$, a.-c.	$\ldots$	$\ldots$	$\ldots$	$\begin{gathered} 49.3 \\ \text { (y\|d. pt.) } \end{gathered}$	63.5	19(1.25 in.)	$\ldots$	$\mathrm{R}_{\mathrm{B}} 94$
$\underset{\mathrm{Zn}-8.65}{\mathrm{Ni}-17.0 ; \mathrm{Cu}-16.0 ;}$	Sheet. 05 in., rolled ( $50 \%$ red), $\frac{1}{2} \mathrm{hr}$ at $1380^{\circ} \mathrm{F}$, a.-c.	$\ldots$	$\ldots$	$\ldots$	$\begin{gathered} 45.3 \\ \text { (yld. pt.) } \end{gathered}$	73.8	43 (2 in.)	$\ldots$	$\ldots$


TABLE 198．－MECHANICAL PROPERTIES OF MISCELLANEOUS ALLOYS（continued）
$\substack{\text { Endurance } \\ \text { limit } \\ \mathrm{kg} / \mathrm{mm}^{2}}$
．722（107）

$16(8 \mathrm{in}$.
$2(2 \mathrm{in}$.
$2.5(4 \sqrt{\text { area }})$
6.5
Elongation
percent
$4.6(8 \mathrm{in}$.

（u！8）tて
18（3in．）
$\overparen{E}$
in
N
N
 4．0（2 in．）
47
 －틀

.6
3.7

3．09（rate

of strain）  | N |
| :---: |
| $\infty$ |

8.4
1.34

$\underset{\substack{\text { Yield } \\ \text { strength } \\ \mathrm{kg} / \mathrm{mm}^{2}}}{\substack{ \\\hline}}$

Modulus of $\begin{gathered}\text { Propor－} \\ \text { tional } \\ \text { limit }\end{gathered}$
Modulus of
elasticity
elasticity
$\mathrm{kg} / \mathrm{mm}^{2}$ 14，050

7，000
$\stackrel{N}{0}$
15.8


育荡菏
Condition
Strip， .006 in．，w．－q．from
$1290^{\circ} \mathrm{F}$
Strip， .006 in．，w．－q．from
$1290^{\circ} \mathrm{F}$
Rod，$\frac{1}{8}$ in．diam．，cast，w．－q．
from $1290^{\circ} \mathrm{F}$
Cable sheath， 1 in．o．－d．
 Cast


Cast
Cable sheath， 2.87 in．o．－d．
$\times .159$ in．wall（ring $\underset{\substack{\times .159 \mathrm{in} . \\ \text { specimen）}}}{\text { wall（ring }}$ Rod，extruded from $2 \frac{15}{18} \mathrm{in}$.
to $\frac{3}{4}$ in．diam．at $350-$
$400^{\circ} \mathrm{F}$

Cast，h．－t．and aged


Magnesium alloys
Al－4．40；Mn－． 26
Al－10； $\mathrm{Mn}>.1 ; \mathrm{Si}<.5$ ；
$\mathrm{Cu}-13$
Manganese alloys
$\mathrm{Cu}-18 ; \mathrm{Ni}-10$

#  <br> $\mathrm{Bi}-.065$ ；Cu－ .013 ；Sb－． 0015 <br> Monotype： Sb－15．3；Sn－8．3 

8
$\underset{7}{2}$
$\underset{\sim}{2}$

12，240

（continued）
－$\quad$.
Hardness
山
岂
है
$\vdots \quad \vdots \quad \underset{\sim}{\circ}$ ²
苍


$$
\begin{aligned}
& 49.0 \\
& 88.0
\end{aligned}
$$

Elongation

$$
\begin{gathered}
\cdots \\
30(10 \mathrm{in} .)
\end{gathered}
$$

$$
30(2 \mathrm{in} .)
$$

$$
30(4 \mathrm{in} .)
$$

$$
6-9(2 \mathrm{in} .)
$$

$$
40(2 \text { in. })
$$ $\mathrm{kg} / \mathrm{mm}^{2}$


$\vdots \quad \vdots \quad \vdots \quad$ ヘั N゙ バ
TABLE 198．－MECHANICAL PROPERTIES OF MISCELLANEOUS ALLOYS（concluded）

$$
\begin{array}{ll}
\text { H. } \\
\text { N }
\end{array}
$$

$$
\begin{aligned}
& \infty \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

ヘ̀

$$
\underset{\infty}{+}
$$

$$
\stackrel{n}{n}
$$

Condition
Rod，$\frac{7}{8}$ in．diam．，hot－rolled，
ann． 2 hr at $1650^{\circ} \mathrm{F}$ ，
slowly cooled

Sand－cast
Quenched Cast
Sand－cast
Cast
Cast （ねวsџ๐ \％で）

$$
\therefore \underset{\infty}{\infty} \quad \underset{\infty}{\infty}
$$

Sheet ann．
Wrought

Nickel $\begin{gathered}\text { percent } \\ \text { alloys }\end{gathered}$
$\mathrm{Al}-4.78 ; \mathrm{Mn}-.26 ; \mathrm{C}-.17$ ；
$\mathrm{Ni}-80 ; \mathrm{Cr}-13 ; \mathrm{Fe}-\mathrm{rem}$.
$\mathrm{Cr}-20$
$\mathrm{Cu}-29 ; \mathrm{Fe}-1.5 ; \mathrm{Si}-1.25 ;$
$\mathrm{Mn} .9 ; \mathrm{C}-.2 ; \mathrm{S}<.015$ $\mathrm{Ni}-60 ; \mathrm{Cr}-15 ; \mathrm{Mo}-7$
$\mathrm{Be}-.6-1.0 ; \mathrm{Fe}-\mathrm{rem}$. $\mathrm{Be}-.6-1.0 ; \mathrm{Fe}-\mathrm{rem}$.
$\mathrm{Mo}-30 ; \mathrm{Fe}-5$
Silver alloys Cu－5．75；Cd－1．75 Tin alloys
Sb－6．87； $\mathrm{Cu}-5.69 ; \mathrm{Pb}-.19$ ；
Fe－．03；As－． 02 ，
$\mathrm{Sb}-10.01 ; \mathrm{Cu}-9.88 ; \mathrm{Pb}-.19 ;$
$\mathrm{Fe}-.08$

$$
\begin{aligned}
& \text { Density } \\
& \mathrm{g} / \mathrm{cm}^{3}
\end{aligned}
$$

$$
\ldots
$$

$$
\begin{aligned}
& 8.3 \\
& 9.24
\end{aligned}
$$

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Modulus of } \\
\text { elasticity } \\
\mathrm{kg} / \mathrm{mm}^{2}
\end{array} & \begin{array}{c}
\text { Propor. } \\
\text { tional } \\
\text { limit } \\
\mathrm{kg} / \mathrm{mm}^{2}
\end{array} & \begin{array}{c}
\text { Yield } \\
\text { strength } \\
\mathrm{kg} / \mathrm{mm}^{2}
\end{array} \\
21,500 & 9.4 & \begin{array}{c}
18.75 \\
(.01 \% \text { offset) }
\end{array} \\
21,800 & \ldots & \ldots \\
21,800 & \ldots & \begin{array}{c}
44.5 \\
\text { (yld. pt.) }
\end{array} \\
18,300 & \ldots & \begin{array}{c}
24.5 \\
(.2 \% \text { offset) }
\end{array} \\
15,500 & \ldots & \begin{array}{c}
41.8 \\
\text { (yld. pt.) } \\
38.5-40.0
\end{array} \\
\text { (yld. pt.) }
\end{array}
$$

$$
43(4 \sqrt{\text { area }})
$$

TABLE 199.-PHYSICAL PROPERTIES OF SOME SPECIAL.PURPOSE ALLOYS*

Composition percent $\quad$ Density	Resistivity microhms cm	Temperature coeff. of resistance	Thermal conduc- tivity cgs	Thermal expansion per ${ }^{\circ} \mathrm{C}$	Tensile strength $\mathrm{kg} / \mathrm{mm}^{2}$	$\begin{aligned} & \text { Yield } \\ & \text { strength } \\ & \mathrm{kg} / \mathrm{mm}^{2} \end{aligned}$	Young's $\mathrm{kg} / \mathrm{mm}^{2}$	Hardness number Rockwell	$\begin{gathered} \text { Elongation } \\ \text { 2in. } \\ \text { percent } \end{gathered}$
Alloys for strength with lightness									
$\begin{aligned} & \text { Duralumin }(\mathrm{A} 17 \mathrm{~S}) \\ & \mathrm{Al} 97, \mathrm{Cu} 2.5, \mathrm{Mg} .3 .2 .74 \end{aligned}$	4.3		. 37		30		7200	70	
Super duralumin ( 24 S ) Al 93, Cu 4.5, Mn 6									
Mg 1.5 .......... 2.77	5.7		. 29	$\begin{gathered} 20-200^{\circ} \\ 12.9 \times 10^{-6} \end{gathered}$	50		7200	120	
Dow metal   Mg 92, Al 8.......... 1.81	13				23		4.6		
Beryllium alloys									
Beryllium ${ }^{\dagger}$........... 1.83	4.3		. 385	$\begin{gathered} 20-200^{\circ} \\ 12.4 \times 10^{-8} \end{gathered}$	35	18.7	$2.6 \times 10^{4}$	90-110	.0-2.5
Alloys $\dagger$ ¢ ${ }^{\dagger}$									
Be .45, Co 2.6, Bal Ct wrought $\ldots . . . . . . . .8 .75$	3.4		. 50		81.	63.	$1.26 \times 10^{3}$	C23-28	10-15
$\begin{aligned} & \mathrm{Be} 2.60, \mathrm{Ni} 1.10, \mathrm{Bal} \\ & \mathrm{Cu} \ldots \ldots \ldots \ldots \ldots . . \\ & 7.6 \end{aligned}$	7.8		. 18	$\begin{aligned} & 20-200^{\circ} \\ & 17 \times 10^{-8} \end{aligned}$	112.	63.		C38	
$\begin{gathered} \mathrm{Be} 2.0, \mathrm{Co} \mathrm{.5,} \mathrm{Bal} \mathrm{Cu} \\ \text { cast } \ldots \ldots \ldots . \ldots . . .8 .1 \end{gathered}$	6.5		. 30		115.	98.	$1.33 \times 10^{3}$	C37-42	
$\begin{gathered} \text { Be 2.0, Co .3, Bal Cu } \\ \text { wrought } \ldots \ldots . .{ }^{2} 8.21 \end{gathered}$	12.7		. 16		49.	21.	$1.12 \times 10^{3}$	C85-95	. $35-.50$
Alloys for sealing to glass									
$42 \%$ nickel iron ${ }^{8}$									
			03	$5.4 \times 10^{-6}$			$14.7 \times 10$	cgs.	

TABLE 199.-PHYSICAL PROPERTIES OF SOME SPECIAL-PURPOSE ALLOYS (continued)
Elongation
2 in.
percent number
Rockwell percent (Specific heat

$\stackrel{\text { 5 }}{\text { ¢ }}$	
¢	
运边	8
	$\cdots$

Uses:
a Heater and resistance.
b Standard resistances.
e I.ow thermal expansion.
d Thermocouples.
e Mirrors; is an exceedingly hard untarnishable metal.
i Mirrors and retecting gratings; takes good polish and does not tarnish easily.
\& An alloy sometimes used as a getter for clearing off last traces of gas in an evacuated vessel.
b Used for making special casting and in art work.
(continued)

$\underset{\substack{\text { expermal } \\ \text { expersion }}}{\text { io }}$
$20-600^{\circ}$
$11.4 \times 10^{-8}$
$100-500^{\circ}$
$4.2-5.4 \times 10^{-8}$
$20-100^{\circ}$
$10.3 \times 10^{-6}$
Radial $8.0-$
$10 \times 10^{-8}$
Axial $6.1-$
$6.5 \times 10^{-0}$
8
8
Density
$\begin{gathered}\text { percent } \\ \text { Chrom iron } \\ \mathrm{Fe} 70-72,\end{gathered}$
Cr

$\mathrm{Mn} .5-.8 \ldots \ldots \ldots . .7 .8$
8
$\stackrel{T}{~}$

$$
\underset{\substack{\text { Composition } \\ \text { percent }}}{ }
$$

Tensile
strengtlı
$\mathrm{kg} / \mathrm{mm}^{2}$
Fernico
$\mathrm{Fe} 54, \mathrm{Ni} 28$, Co $18 .$.
$\begin{array}{cc}44 & <10^{-6} \text { at } 25^{\circ} \mathrm{C} \\ 100 & 4 \times 10^{-4} \\ 81 & 1.08 \times 10^{-3}\end{array}$
$\begin{aligned} & 8 \times 10^{-9} \\ < & 10^{-8} \text { at } 25^{\circ} \mathrm{C}\end{aligned}$
total weight ...........
Miscellaneous
Constantin \& :
Cu 53.3, Ni 45, Mn 1, 8.4
Dumet
$\mathrm{Ni} 42, \mathrm{Fe} 58, \mathrm{Cu} 20-30$
total weight $\ldots \ldots$.
Fe. 6 .............. 8.4
Manganin $8^{\mathrm{b}}$
$\mathrm{Cu} 84, \mathrm{Mn}$
$\mathrm{Cu} 84, \mathrm{Mn} 12, \mathrm{Ni} 4 \ldots 8.5$
Nichrome §
$59.9 \mathrm{Ni}, 25$

Invar
Fe
c
$63.8, \mathrm{Ni}$
36, C .2..
8.05
TABLE 199.-PHYSICAL PROPERTIES OF SOME SPECIAL-PURPOSE ALLOYS (continued)
Temperature
coeff. of
resistance
3.2
$20-100$
24.5

Linear expansio per ${ }^{\circ} \mathrm{C}$	Specific heat cos cgs	Resistivity microhmcm	$\begin{gathered} \text { Thermal } \\ \text { conductivity } \\ \text { cgs } \end{gathered}$
$\begin{aligned} & 13.1 \times 10^{-0} \\ & 20-100^{\circ} \mathrm{C} \end{aligned}$	. 107	4.25	1.92 watts
$\begin{aligned} & 12 \times 10^{-6} \\ & 20-100^{\circ} \mathrm{C} \end{aligned}$	. 125	25.	. 297 watts
Brinell hardness-512 at 3000 kg			
Spectral reflecting factor:   $\lambda .15, .20, .30, .50, .75,1.00,2.00,3.00,4.00,5.00,8.00$   $.32, .42, .50, .64, .67, .689, .747, .792, .825, .848, .880$			
Spectral reflecting factor:   $\lambda .188, .200, .251, .288, .305, .357, .385, .420, .450, .500$ $.23, .25, .299, .377, .417, .51, .531, .564, .600, .632$			
$\text { 入 . } .550, .600, .650, .700,1.00,1.50,2.00,3.00,4.00,5.00$			
$\begin{gathered} \lambda .7 .00,9.00,11.00,14.00 \\ .901, .922, .929,936 \end{gathered}$			



Speculum metal ${ }^{\text {t }}$. $67, \mathrm{Sn} 33$
Misch metal $8^{8}$
Ce $50-70$, Fe 1-5, La, Nd Pr
Pewter
$85 \mathrm{Sn}, 6.8 \mathrm{Cu}, 6 \mathrm{Bi}, 1.7 \mathrm{Sb}$
$\ddagger$ Hoskins Thermocouple (see Table 51).


TABLE 199.-PHYSICAL PROPERTIES OF SOME SPECIAL-PURPOSE ALLOYS (concluded)


Carboloy cemented carbides											
Grade desig-   nation	Composition				Hardness Rockwell A 60 kg load			Traverse rupture psi	Young's psi		Ultimatelimit incompression
	WC	Co	TaC	TiC							
44 A	94	6				91.0	14.95	$240{ }^{1}$	$84.5{ }^{\text {k }}$	$2.8{ }^{1}$	$700{ }^{1}$
55A	87	13				88.2	14.2	340	79.0	3.38	610
77 B	57	16	27			85.0	13.55	285	88.0	4.03	610
78 B	82	10		8		90.5	12.55	225			
831	61	7		32		92.5	9.1	165	88.5	3.89	725
Heat-treated steel ${ }^{1}$											
SAE 1095-. 9 C , $.3 \mathrm{Mn}, .04 \mathrm{P}, .05 \mathrm{~S}$ H.S.S. -17 W. 4 Cr. 11						39 Rc	7.8	$\ldots$	30	8.2	172
						64 Rc	8.6		32.5	7.1	600
Hardness versus temperature, ${ }^{\circ} \mathrm{F}{ }^{\text {¢ }}$											
Grade			200		400		600	800			1100
831			93.7		92.3		90.6	89.5			83.3
78B			90.1		90.4		89.0	86.0			80.8
77 B			87.0		85.8		82.8	82.5			77.9
44A			90.5		90.0		88.0	86.5			84.1
55A			88.0		87.1		85.5	83.0			77.0
${ }^{1}$ For comparison.		$10^{3}$	10.		${ }_{7}$ Prer	pared by N.	Waldrop, C	Co.			



[^94]TABLE 201.-LOW-MELTING ALLOYS *

Nam	Composition, percent					Melting point	
	Bi	Cd	Pb	Sn	Other	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
Anatomical alloy	53.5		17	19	Hg 10.5	140	60
Wood's alloy	50	12.5	25	12.5	-	154.4	68
Quaternary eutectic alloy.	49.5	10.10	27.27	13.13	-	158	70
Fusible alloy . $\quad . . . . . . .$.	38.4	15.4	30.8	15.4	-	159.8	71
Eutectic alloy ( $\mathrm{Bi}-\mathrm{Cd}-\mathrm{Pb}$ )	51.6	8.1	40.2		-	196.7	91.5
Alloy for fine castings..	50	-	32.2	17.8	-	212	100
Rose's alloy ........	50	-	28	22	-	212	100
Bismuth solder	40	-	40	20	-	235.4	113
Eutectic alloy ( $\mathrm{Bi}-\mathrm{Sn}$ )	57	-	-	43	-	280.4	138
Eutectic alloy(Bi-Cd)	60	40		-	-	291.2	144
Eutectic alloy ( $\mathrm{Bi}-\mathrm{Pb}-\mathrm{Sn}$ )	13.7	-	44.8	41.5		320	160
Eutectic alloy ( $\mathrm{Cd}-\mathrm{Sn}$ )		32		68	-	350.6	177
Eutectic alloy ( $\mathrm{Pb}-\mathrm{Sn}$ )	-	-	38	62	-	361.4	183

[^95]
## IABLE 202.-MECHANICAL PROPERTIES OF WHITE METAL BEARING ALLOYS (BABBITT METAL)

Experimental permanent deformation values from compression tests on cylinders 31.8 mm ( $1 \frac{1}{4} \mathrm{in}$.) diam. by 63.5 mm ( $2 \frac{1}{2} \mathrm{in}$.) long, tested at $21^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{F}\right.$ ). (Set readings after removing loads.)

$\begin{aligned} & \text { Alloy } \\ & \text { No. } \end{aligned}$		Formula, percent			Pouring temp.		$\underbrace{\text { Weight }}$		Permanent deformation \& $21{ }^{\circ} \mathrm{C}$						$\underbrace{\text { Hardness }}$			
						$\begin{aligned} & 54 \mathrm{~kg} \\ & 000 \mathrm{lb} \end{aligned}$				$\begin{aligned} & 268 \mathrm{~kg} \\ & 000 \mathrm{lb} \end{aligned}$		$\begin{aligned} & 36 \mathrm{~kg} \\ & 000 \mathrm{lb} \end{aligned}$	$=\stackrel{\cup}{\bar{\sim}}$	$\begin{aligned} & \text { by } \\ & 80 \\ & 80 \\ & \hline \end{aligned}$				
	Sn	Sl)	Cu	Pb					$\mathrm{cm}^{3}$	$\mathrm{ft}^{3}$	m	in.	mm	in.	mm		L	(e)
									Base									
1	91.0	4.5	4.5	-	440	824	7.34	458	. 000	. 0000	. 025	. 0010	. 380	. 0150	28.6	12.8		
2 *	89.0	7.5	3.5	-	432	808	7.39	461	. 000	. 0000	. 038	. 0015	. 305	. 0120	28.3	12.7		
3	83.3	8.3	8.3	-	491	916	7.46	465	. 025	. 0010	. 114	. 0045	. 180	. 0070	34.4	15.7		
4	75.0	12.0	3.0	10.0	360	680	7.52	469	. 013	. 0005	. 064	. 0025	. 230	. 0090	29.6	12.8		
5	65.0	15.0	2.0	18.0	350	661	7.75	484	. 025	. 0010	. 076	. 0030	. 230	. 0090	29.6	11.8		
								Lead	Base									
6	20.0	15.0	1.5	63.5	337	638	9.33	582	. 038	. 0015	. 127	. 0050	. 457	. 0180	24.3	11.1		
7	10.0	15.0	-	75.0	329	625	9.73	607	. 025	. 0010	. 127	. 0050	. 583	. 0230	24.1	11.7		
8	5.0	15.0	-	80.0	329	625	10.04	627	. 051	. 0020	. 229	. 0090	1.575	. 0620	20.9	10.3		
9	5.0	10.0	-	85.0	319	616	10.24	640	. 102	. 0040	. 305	. 0120	2.130	. 0840	19.5	8.6		
10	2.0	15.0	-	83.0	325	625	10.07	629	. 025	. 0010	. 254	. 0100	3.910	. 1540	17.0	8.9		
11	-	15.0	-	85.0	325	625	10.28	642	. 025	. 0010	. 254	. 0100	3.020	. 1190	17.0	9.9		
12	-	10.0	-	90.0	334	634	10.67	666	. 064	. 0025	. 432	. 0170	7.240	. 2850	14.3	6.4		

[^96]
## TABLE 203.-RIGIDITY MODULUS FOR A NUMBER OF MATERIALS

If to the four consecutive faces of a cube a tangential stress is applied, opposite in direction on adjacent sides, the modulus of rigidity is obtained by dividing the numerical value of the tangential stress per unit area ( $\mathrm{kg} / \mathrm{mm}^{2}$ ) by the number representing the change of angles on the nonstressed faces, measured in radians.


TABLE 204.-VARIATION OF THE RIGIDITY MODULUS WITH THE TEMPERATURE
$n_{t}=n_{0}\left(1-a t-\beta t^{2}-\gamma t^{3}\right)$, where $t=$ temperature Centigrade

Substance	$n_{0}$	a $10^{8}$	$\beta 10^{8}$	$\gamma 10^{10}$	Sulstance	$n_{0}$	a $10^{8}$	$\beta 10^{8}$	$\gamma 10^{10}$
Brass	2652	2158	48	32	Iron	8108	206	19	-11
"	3200	455	36	-	" . ....	6940	483	12	
Copper	3972	2716	-23	47	Platinum	6632	111	50	-8
	3900	572	28	-	Silver ...	2566	387	38	11
					Steel . . . .	8290	187	59	$-9$



* Modulus of rigidity in $10^{11}$ dynes per $\mathrm{cm}^{2}$.


## TABLE 205.-INTERIOR FRICTION AT LOW TEMPERATURES

$C$ is the damping coefficient for infinitely small oscillations; $T$, the period of oscillation in seconds; $N$, the modulus of rigidity dynes $/ \mathrm{cm}^{2}$.

Substance Length of wire i	$\underset{22.5}{\mathrm{Cu}_{2}}$	$\begin{gathered} \mathrm{Ni} \\ 22.2 \end{gathered}$	$\begin{gathered} \mathrm{Au} \\ 22.3 \end{gathered}$	$\begin{gathered} \mathrm{Pd} \\ 2.2 \end{gathered}$	$\begin{array}{r} \mathrm{Pt} \\ 23.0 \end{array}$	$\begin{aligned} & \mathrm{Ag} \\ & 17.2 \end{aligned}$	Quartz
Diameter in mm.	. 643	. 411	. 609	. 553	. 812	. 601	. 612
$100^{\circ} \mathrm{C} \quad C$	24.1	1.34	27.5	1.67	2.98	55.8	-
	2.381	3.831	3.010	2.579	1.143	1.808	
$N \times 10^{-11}$	3.32	7.54	2.55	5.08	5.77	2.71	
$0^{\circ} \mathrm{C} \quad{ }^{\text {C }}$	5.88	. 417	4.82	1.25	4.60	7.19	4.69
	2.336	3.754	2.969	2.571	1.133	1.759	1.408
$N \times 10^{-11}$	3.45	7.85	2.62	5.12		2.87	2.26
$-195^{\circ} \mathrm{C} \quad{ }_{\text {C }}$	3.64	. 556	6.36	. 744	3.02	1.64	1.02
	2.274	3.577	2.902	2.552	1.111	1.694	1.425
$N \times 10^{-11}$	3.64	8.65	2.74	5.19	6.10	3.18	2.20

TABLE 206.-RATIO, $\rho$, OF TRANSVERSE CONTRACTION TO LONGITUDINAL EXTENSION UNDER TENSILE STRESS
(Poisson's Ratio)

Metal	Pb	Au	Pd	Pt	Ag	Cu	At	Bi	Sn	Ni	Cd	Fe
$\rho$	.45	.42	.39	.39	.38	.35	.34	.33	.33	.31	.30	.28

$\rho$ for: marbles, . 27 ; granites, . 24 ; basic-intrusives, . 26 ; glass, . 23 .

TABLE 207.-A SCALE OF HARDNESS BASED UPON THE RELATIVE HARDNESS OF SELECTED MATERIALS

Each material will scratch the one following it in the table.

10 Diamond	8 Topaz	6 Feldspar	4 Fluorite	2 Rock salt
9 Corundum	7 Quartz	5 Apatite	3 Calcite	1 Talc


Agate . . . . . . 7.	Barite .......3.3	Fluorite ...... 4.	Marble . . . 3-4.	Ross' metal.2.5-3.0
Alabaster ....1.7	J3ell-metal ....4.	Galena . . . . . . 2.5	Meerschaum 2-3.	Serpentine .3-4.
Alum . . . . .2-2.5	Beryl ....... 7.8	Garnet . . . . . 7.	Mica ........2.8	Silver ....2.5-3.
Aluminum ...2.9	13ismuth . . 3.2 .5	Glass ....4.5-6.5	Opal . . . . . .4-6.	Silver
Amber . . . . $2-2.5$	13oric acid .... 3 .	Gold . . . . 2.5-3.	Orthoclase ....6.	chloride ....1.3
. Indalusite ...7.5	13rass ......3-4.	Graphite . . . 5 -1.	Palladium ....4.8	Steel ......5-8.5
Anthracite ...2.2	Calamine .... 5.	Gypsum ..1.6-2.	Phosphor-	Stibnite . . . . 2 2.
Antimony ....3.3	Calcite . . . . . 3.	Hematite . . . . 6.	bronze ..... 4.	Sulfur ...1.5-2.5
Apatite . . . . 5.	Copper ...2.5-3.	Hornblende ...5.5	Platin.	Talc . . . . . . . 1.
Aragonite ....3.5	Corundum ...9.	Iridium . . . . . 6.5	iridium ....6.5	Tin ........1.5
Arsenic .....3.5	Diamond . ... 10.	Iridosmium ... 7.	Platinum .....4.3	Topaz ..... 8.
Asliestos ..... 5.	Dolomite . .3.5-4.	Iron . . . . . 4-5.	Pyrite ......6.3	Tourmaline ...7.3
Asphalt . ...1-2.	Feldspar . . . . . 6.	Kaolin ...... 1.	Quartz ....... 7.	Wax ( $0^{\circ}$ ) ..... 2
Augite ...... 6.	Flint ....... 7.	Loess ( $0^{\circ}$ ) ..... 3	Rock-salt ....2.	Wood's metal. . 3 .

TABLE 209.-RELATIVE HARDNESS OF THE ELEMENTS (MEANS)

* $\mathrm{C} . . . .10$.	Ir ..... 6.5	Zr	4.5	A1	2.9	Mg	2.0	In	1.2
B ..... 9.5	Ge ..... 6.2	Pt	4.3	Ag	2.7	Se	2.0	T1	1.2
$\mathrm{Cr} . . .{ }^{9} 9$.	Rh..... 6.	Ti	4.0	Zn	2.5	Cd	2.0	Li	
Ta .... 7.	Mo .... 6?	Fe	4.	Au	2.5	Sr	1.8	K	
Os .... 7.	Mn .... 5.	As	3.5	Ce	2.5	Sn	1.8	Na	
W .... 7.	Co ..... 5.	Sb	3.	Bi	2.5	Pb	1.5	Rb	
Si .... 7.	$\mathrm{Ni} . . . . .5$.	Be	3.	Te	2.3	Ga	1.5	Cs	
Ru .... 6.5	Pd ..... 4.8	Cu	3.0	S	2.0	Hg	1.5		

* Diamond.

TABLES 210-217.--CHARACTERISTICS OF SOME BUILDING MATERIALS


230
TABLE 212.-EFFECT OF QUANTITY OF MIXING WATER ON STRENGTH OF CONCRETE ${ }^{\circ}$

W/C ratio, U. S. gal. per sack of cement (94\#).	5.0	5.5	6.0	6.5	7.0	7.5
Compressive days-lb/in. ${ }^{2}$ strength at 28	5000.0	4500.0	4100.0	3600.0	3300.0	2900.0

${ }^{\infty}$ Portland Cement Association, Design and control of concrete mixtures, 9th ed., p. 7.

TABLE 213.-COMPARISON OF STRENGTH AND ELASTIC PROPERTIES OF CONCRETE ${ }^{\text {b1 }}$
Modulus of elasticity psi $\times 10^{-6}$

Compressive   strength psi	Modulus of   rupture psi	Compressive   (secant)	Flexural   (secant)	Dynamic   (sonic)
2000	400	2.5	3.5	4.5
4000	600	4.	5.	5.5
6000	750	5.5	6.5	
8000	850	6.5	6.5	7.

Values given are approximations only since the ratios between the different properties depend on age, aggregates, cement, and other factors.
${ }^{61}$ Stanton, T. E., Amer. Soc. Test. Mat. Bull. No. 131, p. 17, 1944; Witte and Price, ibid., p. 20; Schuman and Tucker, Nat. Bur. Standards Journ. Res., vol. 31, p. 107, 1943; Gonnerman and Shuman, Proc. Amer. Soc. Test. Mat., vol. 28, p. 527, 1928.

* As determined on specimens with length to diameter ratio of 2 .


## TABLE 214.-EFFECT OF ENTRAINED AIR ON COMPRESSIVE STRENGTH OF CONCRETE ${ }^{62}$

| Cement <br> Sacks per $\mathrm{dd}^{3}$ | Percent change in strength due to 5 percent |
| :---: | :---: | :---: |
| 4.5 |  |
| added air * |  |

[^97]TABLE 215.-WEIGHTED AVERAGE STRENGTH AND WATER ABSORPTION FOR HARD AND SALMON BRICKS MADE IN U. S. A. ${ }^{83}$


[^98]| Brick strength 1b/in. ${ }^{2}$ | Cement mortar LC:1/4. | $\begin{gathered} \text { Cement. } \\ \text { lime } \\ \text { mortar } \\ 1 \mathrm{C}: 1 \mathrm{~L} ; 6 \mathrm{~S} \end{gathered}$ | $\begin{aligned} & \text { Lime } \\ & \text { mortar } \\ & 1 \mathrm{~L}: 3 \mathrm{~S} \end{aligned}$ | Brick strength lb/in. ${ }^{2}$ | Cement mortar 1C:1/4. $\mathrm{L}: 3 \mathrm{~S}$ * | $\begin{gathered} \text { Cement- } \\ \text { lime } \\ \text { mortar } \\ 1 \mathrm{C}: 1 \mathrm{~L} ; 6 \mathrm{~S} \end{gathered}$ | $\begin{gathered} \text { Lime } \\ \text { mortar } \\ 1 \mathrm{~L}: 3 \mathrm{~S} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $8000+$ | 2000 | 1200 | 800 | 2500-4500 | 700 | 560 | 275 |
| 4500-8000 | 1000 | 800 | 400 | 1500-2500 | 500 | 400 | 150 |

of Nat. Bur. Standards Res. Pap. RP 108.

* C-portland cement; L-Lime; S-sand, proportions by volume. See American Standard Associations Building Code Requirements for Masonry (A41.1-1944).

TABLE 217.-STRENGTH AND STIFFNESS OF AMERICAN BUILDING STONE*
(All values in pounds per square inch.)

Stone	Density $\mathrm{lb} / \mathrm{ft}^{3}$	Compressive strength (dry) psi	Flexure strength psi	Shear psi	Flexural modulus of elasticity psi	Compressive modulus of elasticity psi
Granite	.. 165	$\begin{aligned} & \text { (116 samples) } \\ & 24500(7700-53,000) \dagger \end{aligned}$	$\begin{aligned} & 2810(1430-5190) \\ & (5 \text { samples }) \end{aligned}$	$\begin{gathered} 4350 \text { ( } 3900-4600 \text { ) } \\ \text { (4 samples) } \end{gathered}$	$\begin{array}{r} 2,526,000- \\ 12,950,000 \end{array}$	4,545,000.8,333,000
Limestone	148	2600-28,400	$\begin{aligned} & 640-2000 \ddagger \\ & 470-19008 \end{aligned}$	$\begin{aligned} & 830.3840 \dagger \\ & 800 \cdot 31008 \end{aligned}$	$\begin{array}{r} 700,000 \\ 10,400,000 \ddagger \end{array}$	1,600,000-11,200,000
Marble	. . 170	7850-29,530	900-4270		$\begin{array}{r} 1,840,000- \\ 11,780,000 \end{array}$	
Sandstone	. 135	4470-34,900+	$260.6570+$			
Slate ....	.. 170		500.14,100		$\begin{array}{r} 9,800,000- \\ 18,000,000 \end{array}$	

*Furnished by Herbert Insley, National Bureau of Standards. † Wet samples 12 percent less. $\ddagger$ Perpendicular to bed. \& Parallel to bed.

## TABLES 218-223.-PHYSICAL PROPERTIES OF LEATHER *

Most physical properties of leathers not only depend on the kind of skin and method of tannage but also vary widely from one hide to another of the same kind, from one location to another within the same hide, and in local random fashion. For example, the tensile strength of vegetable-tanned cattle hides shows coefficients of variation of 6 percent among bends (from different hides), 9 percent among locations (within a hide), and 11 percent for local random fluctuations. ${ }^{63}$ The Federal Specifications Board in the United States requires that at least 7 pieces of leather be sampled for most physical tests. ${ }^{\text {.6 }}$ In any use of a physical property of leather, such as designing an experiment or acceptance testing for commercial purchase, these variations and the consequent statistical precautions must be observed. The figures below, then, are illustrative, not precise values for any given type of leather.

[^99]TABLE 218.-TENSILE STRENGTH AND ELONGATION OF LEATHER ${ }^{67}$


[^100]
## TABLE 219.-DIFFUSION CONSTANTS OF WATER VAPOR THROUGH LEATHER, AS FRACTIONS OF THE DIFFUSION CONSTANT THROUGH AIR $\left(20^{\circ} \mathrm{C}\right)^{\text {as }}$

Heavy   chrome upper	Box calf	Glove   capeskin	Patent   leather	Vegetable-tanned   insole
$.1-.2$	$.21-.26$	$.17-.26$	.004	.09

[^101]TABLE 220.-REAL AND APPARENT DENSITIES OF LEATHER ( $70^{\circ} \mathrm{F}$ AND 65 PERCENT, RELATIVE HUMIDITY) ${ }^{\circ 0}$

Kind of leather	Apparent density	Real density
Raw bated skin	. 41 - . 45	1.43
Formaldehyde tanned buckskin	. 56	1.52
Chrome-tanned shoe upper.	. 88	1.34
Vegetable-tanned sole	1.03-1.15	1.46-1.49
Chrome-tanned sole	1.17	1.46
Formaldehyde-tanned suede	. $50-.58$	1.55-1.62
Vegetable-tanned goatskin	. 65	1.52

[^102]TABLE 221.-COEFFICIENT OF CUBICAL EXPANSION OF LEATHER
(Measured in water between $25^{\circ}$ and $75^{\circ} \mathrm{C}$ ) ${ }^{70}$

Chrome	Chrome-vegetable	Vegetable	Alum-vegetable
$496-565 \times 10^{-0}$	$339-298 \times 10^{-6}$	$502-543 \times 10^{-0}$	$590-599 \times 10^{-6}$
Iron	Formaldehyde	Tendon collagen	
$592 \times 10^{-6}$	$532 \times 10^{-6}$	$538 \times 10^{-6}$	

Compressibility. ${ }^{71}$ - The lower limit of the coefficient of compressibility of vegetabletanned sole leather has been estimated at $33 \times 10^{-9}$ bar $^{-1}$. Commercial sole leathers subjected to $3000 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}$ pressure for 3 minutes were compressed from 4 to 17 percent.
70 Weir, C. E., Journ. Amer. Leather Chem. Assoc., vol. 44, P. 79, 1949.
71 Weir, C. E., Journ. Amer. Leather Chem. Assoc., vol. 40, p. 404, 1945.

TABLE 222.-EFFECT OF RELATIVE HUMIDITY OF ATMOSPHERE AT $21^{\circ} \mathrm{C}$ ON PROPERTIES OF LEATHER ${ }^{72}$

Percent   relative   humidity	Tensile   strength   1b/in.	Stretch at   2000 lh/in.   percent	Increase   in thickness   percent	Increase   in area   nercent
0	4630	Vegetable-tanned calfskin		
33	5210	16	.0	.0
52	5220	19	2.3	5.2
76	5280	19	4.9	5.7
97	-	21	9.6	6.4
		21		7.3
0	3170	Chrome-tanned calfskin		
33	4550	19	.0	.0
52	4840	25	1.6	7.9
76	5080	23	4.2	8.9
97	5420	24	14.0	10.2

${ }^{72}$ Evans, W. D., and Critchfield, C. L., Nat. Bur. Standards Journ. Res., vol. 11, p. 147, 1933.

TABLE 223.-THERMAL CONDUCTIVITY OF LEATHER*
cal $\mathrm{cm}^{-1} \mathrm{sec}^{-1}{ }^{\circ} \mathrm{C}^{-1}$

Vegetahle sole leather	Calf skin upper	Kid suede	Hide bellies
$4.2 \times 10^{-4}$	$2.0 \times 10^{-4}$	$1.5 \times 10^{-4}$	$2.3 \times 10^{-4}$

[^103]TABLES 224-229.-VALUES OF PHYSICAL CONSTANTS OF DIFFERENT RUBBERS*

Where a range is given, there are available several observations that differ. In most cases the differences are thought to be real, arising from differences in the rubber rather than from errors of observation. Where a single value is given, it is either because no other observations are available or because there seems to be no significant disagreement among values within the errors of observation. The latter values are marked with an asterisk (*). Where no values are given, no data have been found. Where dashes are shown, either the physical measurement is impossible or the values obtained are not significant. Values at $25^{\circ} \mathrm{C}$ and 1 atmosphere pressure.

Since these data were compiled from a number of sources, no specific references are given. A list of references follows:

Ball, J. M., and Maasen, G. C., American Society for Testing Materials Symposium on the Applications of Synthetic Rubbers, March 2, 1944. Bekkedahl, Norman, Natural rubbers-a general summary of their composition, properties, and uses, India Rubber World, vol. 116, p. 57, 1947 ; also in Compounding ingredients for rubber, published by India Rubber World, New York, 1947. Bekkedahl, N., and Roth, F. L., Unpublished observations of density and expansivity, 1948 . Boonstra, B. B. S. T., Properties of elastomers, chap. 4 of vol. 3 of Elastomers and plastomers, their chemistry, physics, and technology, edited by R. Houwink, Elsevier Publishing Co., New York, 1948. Dawson, T. R., and Porritt, B. D., Rubber physical and chemical properties, Research Association of British Rubber Manufacturers, Croydon, England, 1935. Dillon, J. H., Prettyman, I. B., and Hall, G. L., Hysteretic and elastic properties of rubberlike materials under dynamic shear stresses, Journ. Appl. Phys., vol. 15, p. 309, 1944 ; Rubber Chem. Techn., vol. 17, p. 597, 1944. Hamill, W. H., Mrowca, B. A., and Anthony, R. L., Specific heats of hevea, GR-S, and GR-I stocks, Ind. Eng. Chem., vol. 38, p. 106, 1946; Rubber Chem. Techn., vol. 19, p. 622, 1946. Kemp, A. R., and Malm, F. S., Hard rubber (ebonite), chap. 18 in Chemistry and technology of rubber, edited by C. C. Davis and J. T. Blake, Reinhold Publishing Corporation, New York, 1937. Prettyman, I. B., Physical properties of natural and synthetic rubber stocks, Handbook of Chemistry and Physics, 30th ed., p. 1301, Chemical Rubber Publishing Co., Cleveland, Ohio, 1947. Rands, Robert D., Jr., Ferguson, W. Julian, and Prather, John L., Specific heat and increases of entropy and enthalpy of the synthetic rubber GR-S from $0^{\circ}$ to $330^{\circ} \mathrm{K}$, Nat. Bur. Standards Journ. Res., vol. 33, p. 63, 1944 (RP1595). Selker, Alan H., Scott, Arnold H., and McPherson, Archibald T., Electrical and mechanical properties of the system Buna S-Gilsonite, Nat. Bur. Standards Journ. Res., vol. 31, p. 141, 1943 (RP1554). Wildschut, A. J., Technological and physical investigations on natural and synthetic rubbers. Elsevier Publishing Co., New York, 1946. Wood, Lawrence A., Bekkedahl, Norman, and Roth, Frank L., The measurement of densities of synthetic rubbers, Nat. Bur. Standards Journ. Res., vol. 29, p. 391, 1942 (RP1507) ; Ind. Eng. Chem., vol. 34, p. 1291, 1942; Rubber Chem. Techn., vol. 16, p. 244, 1943. Wood, L. A., and Tilton, L. W., Refractive index of natural rubber at different wavelengths, Proc. Second Rubber Techn. Conf., p. 142 (Institution of the Rubber Industry, London), 1948; Nat. Bur. Standards Journ. Res., vol. 43. p. 57, 1949 (RP2004). Wood, Lawrence A., Synthetic rubbers: a review of their compositions, properties, and uses, Nat. Bur. Standards Circ. C427, 1940; Rubber Chem. Techn., vol. 13, p. 861, 1940 ; India Rubber World, vol. 102, p. 33, 1940. Wood, Lawrence A., Values of the physical constants of rubber, Proc. Rubber Techn. Conf., p. 933 (Institution of the Rubber Industry, London), 1938; Rubber Chem. Techn., vol. 12, p. 130, 1939.

[^104]| Unit | Unvulcanized | Pure-gum vulcanizate | Vulcanizate containing about $33 \%$ carbon black | $\underset{\substack{\text { Ebonite } \\ \text { (hard rubber) }}}{\text { ( }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Density $\ldots . . . . . . . . . . . . \mathrm{g} \mathrm{cm}^{-3}$ | .906-.916 | .92-1.0 | 1.12-1.15 | 1.13-1.18 |
| Expansivity $(1 / V)(\mathrm{dV} / \mathrm{dT}) \quad \ldots \ldots . .(\operatorname{deg} C)^{-1}$ | $67 \times 10^{-5}$ | $66 \times 10^{-5}$ | $53 \times 10^{-5}$ | $19 \times 10^{-5}$ |
| Thermal |  |  |  |  |
| Thermal conductivity $\ldots . . \begin{gathered}\text { cal sec } \\ \left(\operatorname{deg} \mathrm{cm}^{-1}\right.\end{gathered}$ | $32 \times 10^{-5}$ | $34 \times 10^{-5}$ | $39-45 \times 10^{-5}$ | $39-42 \times 10^{-6}$ |
| Specific heat $\qquad$ cal $\mathrm{g}^{-1}$ $(\operatorname{deg} \mathrm{C})^{-1}$ | . 45 | .44-. 51 | . 36 | . 34 |
| Heat of combustion...... cal $\mathrm{g}^{-1}$ | $10.82 \times 10^{3}$ | $10.63 \times 10^{3}$ | $9.61 \times 10^{3}$ | $7.92 \times 10^{3}$ |
| Second-order transition temperature ............ deg C | $-69 \text { to }-74$ | -72 |  | +80 |
| Optical |  |  |  |  |
| $\begin{aligned} & \text { Refractive index, } n_{D} \ldots \ldots . . \\ & d n_{D} / d T \ldots \ldots \ldots \ldots \ldots . .(\operatorname{deg} C)^{-1} \end{aligned}$ | $\stackrel{1.5191}{-37 \times 10^{-5}}$ | $\begin{aligned} & 1.5264 \\ & -37 \times 10^{-5} \end{aligned}$ | 二二 | 1.6 |
| Electrical |  |  |  |  |
| Dielectric constant (1000 cps) | 2.37-2.45 | 2.7 |  | 2.8-2.9 |
| Loss factor, $\tan \left(90^{\circ}-\theta\right)$ (1000 cps) |  | . 002 |  | . 005 |
| Conductivity ( 1 min ) $\ldots .$. mho $\mathrm{cm}^{-1}$ | $2.40 \times 10^{-17}$ | $10^{-17}$ |  | $10^{-17}$ |
| Mechanical |  |  |  |  |
| Compressibility <br> ( $1 / \mathrm{V}$ ) ( $\mathrm{dV} / \mathrm{dP}$ ) $\ldots . . .$. bar $^{-1}$ | $54 \times 10^{-6}$ | $51 \times 10^{-6}$ | $37 \times 10^{-8}$ | $24 \times 10^{-6}$ |
| Shear modulus $\ldots \ldots \ldots$. dynes $\mathrm{cm}^{-2}$ |  | $4 \times 10^{8}$ | $20 \times 10^{6}$ |  |
| Initial slope of stress-strain curve dynes $\mathrm{cm}^{-2}$ | -- | $10-20 \times 10^{8}$ | $30-60 \times 10^{6}$ | $55 \times 10^{0}$ |
| Ultimate elongation ...... percent | -- | $750-850$ | 550-650 |  |
| Tensile strength $\ldots \ldots . . . \mathrm{kg} \mathrm{cm}^{-2}$ |  | 170-250 | 250-350 | 600-800 |
| Complex dynamic shear mod-$\text { ulus }(60 \mathrm{cps}), \frac{\sigma^{\prime}+\mathrm{i} \sigma^{\prime \prime}}{\epsilon} \ldots$ |  |  |  |  |
| Real part $\mathrm{G}^{\prime}, \frac{\sigma^{\prime}}{\epsilon} \ldots \ldots .$. dynes $\mathrm{cm}^{-2}$ |  | $3-10 \times 10^{6}$ | $25 \times 10^{6}$ |  |
| Imaginary part $\mathrm{G}^{\prime \prime}, \frac{\sigma^{\prime \prime}}{6} \ldots$ dynes $\mathrm{cm}^{-2}$ |  | . $3-.6 \times 10^{6}$ | $3 \times 10^{6}$ |  |
| Resilience (ball rebound).. percent | 75 | 75 | 45-55 |  |

TABLE 225.-PROPERTIES OF GR-S (HYDROCARBON OF ABOUT 23.5 PERCENT BOUND STYRENE CONTENT)

	${ }_{\text {Unit }}$	Unvulcanized	Pure-gum   vulcanizate	Vulcanizate containing carbon black $\square$
Density   Expansivity (1/V)(dV/dT)	$\begin{aligned} & \mathrm{g} \mathrm{~cm}^{-8} \\ & (\operatorname{deg~C})^{-1} \end{aligned}$	$\begin{aligned} & .9325-.9335 \\ & 66 \times 10^{-5} \end{aligned}$	$\begin{aligned} & .961 \\ & 66 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 1.15 \\ & 53 \times 10^{-5} \end{aligned}$
Thermal				
Specific heat Second-order transition temperature.	$\begin{aligned} & \operatorname{cal~g}^{-1}(\operatorname{deg} C)^{-1} \\ & \operatorname{deg} C \end{aligned}$	$.45$	. 43	. 36
Optical				
Refractive index, $n_{D}$ $\mathrm{dn}_{\mathrm{D}} / \mathrm{dT}$	$(\operatorname{deg} C)^{-1}$	$\begin{aligned} & 1.534-1.535 \\ & -37 \times 10^{-5} \end{aligned}$		--
Electrical				
Dielectric constant ( 1000 cps )........			2.85	
Loss factor, $\tan \left(90^{\circ}-\theta\right)(1000 \mathrm{cps}) .$.			. 003	
Mechanical				
Shear modulus ...	dynes $\mathrm{cm}^{-2}$	--		$25 \times 10^{\text {a }}$
Initial slope of stress-strain curve....	dynes $\mathrm{cm}^{-2}$	--	$10-20 \times 10^{6}$	$30-60 \times 10^{6}$
Ultimate elongation ................	percent	--	400-600	$400-600$
Tensile strength	$\mathrm{kg} \mathrm{cm}^{-2}$	-	14-28	170-280
Complex dynamic shear modulus$(60 \mathrm{cps}), \frac{\sigma^{\prime}+\mathrm{i} \sigma^{\prime \prime}}{\epsilon}$				
Real part $\mathrm{G}^{\prime}, \frac{\sigma^{\prime}}{\epsilon} \ldots \ldots \ldots \ldots \ldots .$.	dynes $\mathrm{cm}^{-2}$		$5 \times 10^{6}$	$55 \times 10^{6}$
Imaginary part $G^{\prime \prime}, \frac{\sigma^{\prime \prime}}{\epsilon} \ldots . . . . . . .$.	dynes $\mathrm{cm}^{-2}$		$1-2 \times 10^{6}$	$9 \times 10^{6}$
Resilience (ball rebound)............	percent		65	40-50

TABLE 226.-PROPERTIES OF NEOPRENE (CHLOROBUTADIENE POLYMER)

	Unit	Unvulcanized	Pure-gum vulcanizate	Vulcanizate containing about $33 \%$ carbon black carbon black
Density   Expansivity (1/V)(dV/dT)	$\xrightarrow[(\mathrm{deg} \mathrm{C})^{-1}]{\mathrm{cm}^{-3}}$	1.23	$\begin{aligned} & 1.30 \\ & 61 \times 10^{-5} \end{aligned}$	
Thermal				
Second-order transition temperature.	deg C	-38 to -41		
Optical				
Refractive Index no. $\mathrm{dn}_{\mathrm{D}} / \mathrm{dT}$	$(\operatorname{deg} \mathrm{C})^{-1}$	$\frac{1.558}{-36 \times 10^{-5}}$		二二
Mechanical				
Shear modulus ................	dynes $\mathrm{cm}^{-2}$	-		$14 \times 10^{6}$
Initial slope of stress-strain curve.	dynes $\mathrm{cm}^{-2}$	--	$15-30 \times 10^{6}$	
Ultimate elongation	percent	--	$800-1000$	
Tensile strength	$\mathrm{kg} \mathrm{cm}^{-2}$	--	250-375	
Complex dynamic shear modulus ( 60 cps ),$\sigma^{\prime}+\mathrm{i} \sigma^{\prime \prime}$				
$\epsilon$				
Real part $\mathrm{G}^{\prime}, \frac{\sigma^{\prime}}{\epsilon}$	dynes $\mathrm{cm}^{-2}$		$6 \times 10^{8}$	$30-36 \times 10^{6}$
Imaginary part $\mathrm{G}^{\prime \prime}, \frac{\sigma^{\prime \prime}}{\epsilon} \ldots \ldots$.	dynes $\mathrm{cm}^{-2}$		$1 \times 10^{6}$	$6 \times 10^{6}$
Resilience (ball rebound)............	percent		65	40-50

TABLE 227.-PROPERTIES OF GR-1 (BUTYL RUBBER, ISOBUTENE-ISOPRENE COPOLYMER)

Unit	Unvulcanized	Pure-gum vulcanizate	Vulcanizate containing carbout black
Density $\ldots \ldots \ldots \ldots .$.	. 92	$.93$	$\begin{aligned} & 1.13 \\ & 46 \times 10^{-5} \end{aligned}$
Thermal			
Second-order transition temperature....... deg C	-67 to -73		
Optical			
Refractive Index no.	1.5091		--
Elcctrical			
Dielectric constant		2.1-2.6	
Mechanical			
Shear modulus	--		$18 \times 10^{6}$
Initial slope of stress-strain curve....... dynes $\mathrm{cm}^{-2}$	--	$7-15 \times 10^{6}$	$30-40 \times 10^{6}$
Ultimate elongation................. . percent	--	750-950	$650-850$
Tensile strength ..................... $\mathrm{kg} \mathrm{cm}^{-2}$	--	180-210	180-210
Complex$\sigma^{\prime}+\mathrm{i} \sigma^{\prime \prime}$ dynamic shear modulus ( 60 cps ),			
$\epsilon$,			
Real part $\mathrm{G}^{\prime}, \frac{\sigma^{\prime}}{\epsilon} \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. dynes $\mathrm{cm}^{-2}$		$4-10 \times 10^{\text {a }}$	$36 \times 10^{6}$
Imaginary part $\mathrm{G}^{\prime \prime}, \frac{\sigma^{\prime \prime}}{\epsilon} \ldots \ldots \ldots . \ldots . . .$. dynes $\mathrm{cm}^{-2}$		$2-3 \times 10^{6}$	$16 \times 10^{6}$
Resilience (ball rebound)............... percent		8	7

TABLE 228.-COMPRESSION OF RUBBER ${ }^{73}$
Commercial soft-packing, black, density about $1.9 \mathrm{~g} / \mathrm{cm}^{3}$ and $V_{0}=1 \mathrm{~cm}^{3}$
$\Delta V$

Pressure   $\mathrm{kg} / \mathrm{cm}^{2}$	$20^{\circ} \mathrm{C}$	$-78.8^{\circ} \mathrm{C}$	Pressure   $\mathrm{kg} / \mathrm{cm}^{2}$	$20^{\circ} \mathrm{C}$	$-78.8^{\circ} \mathrm{C}$	Pressure   $\mathrm{kg} / \mathrm{cm}^{2}$	$20^{\circ} \mathrm{C}$	$-78.8^{\circ} \mathrm{C}$
5,000	.1300	.0794	20,000	.2345	.1772	35,000	.2845	.2254
10,000	.1800	.1235	25,000	.2535	.1958	40,000	.2960	.2364
15,000	.2146	.1538	30,000	.2700	.2119	45,000	.3050	.2460

[^105]TABLE 229.-COMPRESSION OF SYNTHETIC AND NATURAL RUBBERS *4

$\underset{\substack{\text { Pressure } \\ \mathrm{kg} / \mathrm{cm}^{2}}}{\text { density }}$	Duprene	Koroseal No. 89023	$\begin{aligned} & \text { Neoprene } \\ & \text { No. } 8322 \end{aligned}$	Buna S   No. 8774	$\begin{gathered} \text { Ameripol } \\ \mathrm{D}-7700 \end{gathered}$	$\begin{aligned} & \text { Hood } \\ & 844 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Goodrich } \\ & \text { D. } 402 \end{aligned}$	$\begin{aligned} & \text { Goodrich } \\ & \text { D. } 420 \end{aligned}$	$\underset{\text { D.453 }}{\substack{\text { Goodrich }}}$	$\underset{\text { D.453 }}{\substack{\text { Goodrich }}}$	$\underset{\text { gum }}{\substack{\text { Butyl }}}$	Butyl tread	$\begin{aligned} & \text { Hevea } \\ & \text { gum } \end{aligned}$	Hevea tread
	1.589	1.250	1.357	1.376	1.370	1.176	1.193	1.350	1.514	1.309	. 967	1.125	. 950	1.122
2000	. 0302	. 0511	. 0460	. 0465	. 0367	. 0407	. 0422	. 0385	. 0329	. 0432	. 0519	. 0423	. 0535	. 0462
5000	. 0615	. 0967	. 0956	. 0872	. 0715	. 0792	. 0837	. 0745	. 0636	. 0842	. 0945	. 0807	. 1017	. 0870
10,000	. 0898	. 1403	. 1294	. 1238	. 1052	. 1163	. 1194	. 1128	. 0938	. 1208	. 1303	. 1129	. 1422	. 1250
15,000	. 1198	. 1679	. 1567	. 1493	. 1304	. 1445	. 1454	. 1378	. 1162	. 1480	. 1543	. 1334	. 1697	. 1490
20,000	. 1301	. 1891	. 1793	. 1715	. 1507	. 1663	. 1670	. 1587	. 1347	. 1692	. 1744	. 1510	. 1929	. 1707
25,000	. 1462	. 2060	. 1990	. 1903	. 1686	. 1840	. 1847	. 1769	. 1513	. 1862	. 1920	. 1667	. 2116	. 1900
Pressure of discontinuity	3,500		4,800	6,300	4,900		4,800				6,200			6,500
Amount of discontinuity	$2.0 \times 10^{-8}$		$5.3 \times 10^{-6}$	$3.4 \times 10^{-6}$	$1.5 \times 10^{-6}$		$3 \times 10^{-6}$				$5 \times 10^{-6}$			$2 \times 10^{-8}$
$\Delta \mathrm{V} / \mathrm{V}_{0}$ at discontinuity	. 0516		. 0939	. 1012	. 0707		. 0851				. 1083			. 1026
Ratio of width of hysteresis loop to maximum displacement	- $\begin{aligned} & \\ & \\ & .083\end{aligned}$	. 059	. 082	. 087	. 064	. 067	. 072	. 080	. 103	. 077	. 083	. 090	. 074	. 073

[^106]TABLE 230．－CHARACTERISTICS OF A NUMBER OF PLASTICS ${ }^{75}$

Material							育会会					
Acrylic plastic	1．18－1．19	． 91	1．485－1．500	9	4－6	． 35	$>10^{15}$	450－500	3．5－4．5	11000－14000	3．3－4．5	M88－M92
Nylon	1．14－1．09	$\ldots$	1.53	10	5.8	． 4	$4.5 \times 10^{13}$	385	4.1	13000	4	R－118
Polyvinyl formal	1．2－1．3	．85－． 91	1.5	7.7	3.7			300－600	3．6－3．7	9000－17000	26	M80－M90
Allyl and polyester	1．10－1．46	$\ldots$	1．53－1．56	8．0－10．	4．8－5．0	．26－． 55	$>4 \times 10^{14}$	380	3．4－5．	21000－23000†	3－8．2	M85－M119
Cellulose nitrate	1．35－1．40	．89－． 92	1．49－1．51	8．－12．	5.5	．3－．4	$10-15 \times 10^{10}$	300－600	7．－7．5	6000－11000	1．9－2．2	R95－R115
Polysterene	1．05－1．06	$\ldots$	1．59－1．60	$6 .-8$.	2．4－3．3	． 32	$10^{17}-10^{18}$	500－700	2．4－2．6	11000－16000	4．－5．	M85－M95
Phenolic molding	1．3－1．5	$\ldots$	$\ldots$	3．－4．5	4.7	． $35-40$	$1-100 \times 10^{11}$	$\ldots$	5．－9．	$\ldots$	8．－12．	M110－M120
Ethyl cellulose	1．12－1．14		1.47	10－20	3．8－7	．3－．75	$10^{12}-10^{24}$	350－500	$\ldots$	11000－13000 ${ }^{\dagger}$	1．3－3．5	R100－R110

[^107]| Name | Polymer |  | $\underset{\substack{\text { Monomer } \\ N_{\mathrm{D}}{ }^{20}}}{ }$ | $\underset{\substack{\text { Boiling } \\{ }^{\circ} \mathrm{C} \\ \nu}}{\text { point }}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{N}_{\mathrm{n}}{ }^{20}$ | $\nu$ * |  |  |
| Allyl methacrylate | 1.5196 | 49.0 | $\begin{aligned} & 1.4340 \\ & \text { at } 23^{\circ} \end{aligned}$ | $55 / 30 \mathrm{~mm}$ |
| Benzyl mellacrylate | 1.5680 | 36.5 | 1.514 | 233 |
| 4-cyctolaxyl-cyclohexyl metharcylate | 1.5250 | 53. | 1.4913 | $111 / 1 \mathrm{~mm}$ |
| Menthyl metharcylate | 1.5064 | 54.5 |  |  |
| Ethylene dimethacrylate | 1.5063 | 53.4 | 1.4547 | $92 / 3 \mathrm{~mm}$ |
| Methyl methacrylate | 1.490 | 56.25 | 1.417 |  |
| Styrene | 1.5916 | 31.0 | 1.5434 |  |
| O-chlorostyrene | 1.6098 | 31.0 | 1.567 | $47 / 37 \mathrm{~mm}$ |
| Pentachlorophenol methacrylate | 1.608 | 22.5 | ... | (MP $88.5^{\circ} \mathrm{C}$ ) |
| Vinyl naphthalene | 1.6818 | 20.9 | ... | 92-95/mm |

[^108]TABLE 232.-GENERAL PROPERTIES OF OPTICAL PLASTICS

Index $\mathrm{N}_{\mathrm{D}} 20^{\circ} \mathrm{C}$.. Index tolerance .	Cyclo-   hexyl.   crylate	Sterene		$\begin{aligned} & \text { Cyclo- } \\ & \text { hexyl- } \\ & \text { metha. } \\ & \text { crylate } \end{aligned}$	Sterene
	1.50645	1.59165	Thermal exp. coeff....	$9.0 \times 10^{-5} /{ }^{\circ} \mathrm{C}$	$8.0 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
	+. 0015	+. 0015	Thermal conductivity.	$2.31 \times 10^{-4}$	$2.21 \times 10^{-4}$
$\nu$ values .......		31.0	Index charge per ${ }^{\circ} \mathrm{C}$.	$(\mathrm{cgs})$ -.000131	$\begin{aligned} & \mathrm{cal} \mathrm{sec}^{-1} \mathrm{~cm}^{-10} \mathrm{C} \\ & -.000136 \end{aligned}$
" " tolerance.		+ +	Max. operating temp..	$150^{\circ} \mathrm{F}$	$150^{\circ} \mathrm{F}$
Partial dispersion					
$\mathrm{N}_{\mathrm{F}}-\mathrm{Nc}$.	. 00895	. 01920	Density	$1.095 \mathrm{~g} / \mathrm{cm}^{3}$	$1.049 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{N}_{\mathrm{n}}-\mathrm{Nc}$	. 00258	. 00536	Moles hardness ......	2-3	
$\mathrm{N}_{\mathrm{F}}-\mathrm{N}_{\mathrm{D}}$	. 00638	. 01384	Over-all visual trans-		
			mittance through sample $\frac{3}{8}$ in. thick	99.1\%	99.9\%

The values of the properties of natural fibers are influenced by their source, extent of processing or purification, age, temperature and moisture content when tested, and method of test. Those of man-made fibers not only reflect these influences but they can be and commonly are varied to meet the requirements of use by suitable modifications in composition and manipulation of the fibers during production. These facts and the lack of strictly comparable data for all the principal fibers led to the decision to show in the tables the range in values of the properties reported in recent literature rather than selected values. The azlons, made from different proteins, are lumped together and so are the ordinary, medium, and high-tenacity rayons and the several varieties of resin fibers of each kind. References to literature giving more information and more detailed information are as follows:
Textile World's synthetic fiber table, 1949 rev., compiled by C. W. Bendigo, editor, Textile World, September 1949. Chemical engineering materials of construction, Ind. and Eng. Chem., 2d ed., vol. 40, p. 1773, 1948; 3d ed., vol. 41, p. 2091, 1949. Fiber properties chart-1948, Plastics Catalogue Corporation, New York. Smith, H. DeWitt, Textile fibers-an engineering approach to an understanding of their properties and utilization, Proc. Amer. Soc. Test. Mat., vol. 44, p. 543, 1944. A. S. T. M. standards on textile materials. Amer. Soc. Test. Mat., October 1949. Die Unterscheidung der Textilfasern, 2d ed., Verlag Leeman, Zurich, 1949. Morehead, F. F., Some comparative data on the cross-sectional swelling of textile fibers, Textile Res. Journ., vol. 17, p. 96, 1947. Preston, J. M., The temperature of contraction of fibers as an aid to identification, Journ. Textile Inst., vol. 40, p. T767, 1949. Abbott, N. J., and Goodings, A. C., Moisture absorption, density, and swelling properties of nylon filaments, Journ. Textile Inst., vol. 40, p. T232, 1949. Hutton, E. A., and Gartside, Joan, The moisture regain of silk, Journ. Textile Inst., vol. 40, p. T161, 1949. Hutton, E. A., and Gartside, Joan, The adsorption and desorption of water by nylon at $25^{\circ} \mathrm{C}$, Journ. Textile Inst., vol. 40, p. T170, 1949. MacMilian, W. G., Mukherjee, R. R., and Sen, M. K., The moisture relationships of jute, Journ. Textile Inst., vol. 37, p. T13, 1946. Albright, J. G., "Spider Silk," Science Teacher, October 1944.

* Prepared by W. D. Appel, of the National Bureau of Standards.
TABLE 233.-PHYSICAL PROPERTIES OF NATURAL FIBERS

	Cotton	Flax	Hemp	Jute	Ramie	Silk 8	Wool
Density ( $\mathrm{g} / \mathrm{cm}^{3}$ )	1.50-1.55	1.50	1.48	1.48	1.51	1.25-1.35	1.28-1.33
Refractive index: ep	1.573-1.581	1.594-1.596	1.585-1.591	1.577	1.595-1.599	1.591-1.595	1.553-1.556
	1.529-1.534	1.528-1.532	1.526-1.530	1.536	1.527-1.540	1.538-1.543	1.542-1.547
Tensile strength ( $1000 \mathrm{lb} / \mathrm{in} .^{2}$ ) . . . . . . . . . . . . . . .	42-125	$\ldots$	...	...	...	45-83	15-28
$\begin{aligned} & \text { Tenacity: dry }\left(\mathrm{g} / \text { denier }{ }^{*}\right) \\ & \text { wet (\% of dry) } \end{aligned}$	2.1-6.3	$\ldots$	...	...	...	2.9-5.2	1.0-1.7
	110-130	...	...	. $\cdot$	. $\cdot$.	75-95	76-97
Elongation to break (\%)...................... .	3-10	$\ldots$	. $\cdot$	$\ldots$	$\ldots$	13-31	20-50
Recovery from strain							
Elongation (\%)....................... . . . . . . .	2	$\ldots$	$\ldots$	$\ldots$	$\ldots$	2	2
Recovery " . . . . . . . . . . . . . . . . . . . . . . . . .		. . .	...	...	. .	92	99
Elongation "، ........................ . . . . . .		. . .	...	. .		20	20
Recovery " . . . . . . . . . . . . . . . . . . . . . . . . .		$\ldots$	$\ldots$	...		33	63
Average stiffness ${ }^{\dagger}$	57	270	200	185	167	15	4
Toughness index $\ddagger$		6	4	2	8	40	20
Moisture regain at $65 \%$ R. H. and $70^{\circ} \mathrm{F}$ (\% of bone-dry weight)	$6.0-8.5$	7.0-8.5	8.0	10.6-13.6	6.0	8.1-15.5	13.0-16.2
Swelling in water, cross-section swelling (\%)...	(8.-11. mer 21	ized)	...	. . .	37	19	26
Heat stability; temperature ${ }^{\circ} \mathrm{C}$ at or above which							
fiber contracts						Does not contract	240
loses strength							240
softens			...	. .			
melts . . . decomposes							
decomposes						chars	chars
* "Denier" is the weight in grams of 9,000 meters of the fiber. †The value for stiffness is a measure of the $\ddagger$ The toughness index is a measure of the ability of the fiber substance to absorb work. \& Spider silk has a de golden garden spider).							

TABLE 234.-PHYSICAL PROPERTIES OF RESIN AND RAYON FIBERS



[^109]

[^110]TABLE 237.-MECHANICAL PROPERTIES OF HARDWOODS GROWN IN UNITED STATES ${ }^{77}$

 ィе！nэ！puədiad uo！sua」




		$\bigcirc$	$\stackrel{\square}{\square}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{N}$	$\begin{aligned} & \infty \\ & \underset{\sim}{i} \end{aligned}$	$\stackrel{m}{i}$	N	$\underset{\sim}{ \pm}$	$\stackrel{W}{\mathrm{~N}}$	$\begin{aligned} & \text { an } \\ & \end{aligned}$	$\stackrel{8}{\gtrless}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{-1}$
$\begin{aligned} & \text { 気 } \\ & \text { 号 } \end{aligned}$		8,	$\begin{aligned} & \text { 옥 } \\ & =- \end{aligned}$	악	$\frac{8}{i}$	$\begin{aligned} & 0 \\ & \hline- \\ & \text { N } \end{aligned}$	8	$\xrightarrow{8}$	B	욱	$\stackrel{8}{\square}$	$\stackrel{\infty}{\sim}$	앙	은
$\stackrel{\sim}{3}$		$\begin{aligned} & 8 \\ & 0 \\ & n \\ & n \end{aligned}$	$\begin{aligned} & 8.8 \\ & 0 \\ & \text { on } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { Ni } \\ & \text { Nin } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{0} \\ & \underline{0} \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{0}{8} \\ & 6 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & n \\ & n \end{aligned}$	$\stackrel{\circ}{\infty}$	$\begin{aligned} & 8 \\ & \AA \\ & \pm \end{aligned}$	$\frac{8}{\infty}$	$\begin{aligned} & 8 \\ & \text { N } \\ & \text { O} \\ & 0 \end{aligned}$	$\delta_{\infty}^{8}$	প্ণী







Eit		oi	N	$8$	Oㅇㅇ	$\underset{7}{8}$	$\stackrel{8}{\mathrm{M}}$	$\underset{i}{O}$	$\begin{aligned} & \text { O} \\ & \text { O} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { Ǹ } \end{aligned}$	$\stackrel{8}{\circ}$	앙	$\stackrel{\sim}{7}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	
\|		in	ì	$\underset{\sim}{\infty}$	$\frac{8}{7}$	$\underset{\sim}{\stackrel{~}{j}}$	$\mathrm{N}_{\mathrm{N}}$	$\stackrel{\infty}{\infty}$		$\mathrm{m}_{2}$	$\stackrel{6}{\nabla}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{0}$	$8$	$\begin{aligned} & \stackrel{8}{0} \\ & \underset{7}{2} \end{aligned}$	$\frac{8}{\infty}$



		$\begin{aligned} & F \\ & \dot{m} \end{aligned}$	$\stackrel{\sim}{\square}$	$\stackrel{\infty}{\sim}$	$\stackrel{\rightharpoonup}{\text { ¢ }}$	9	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\circ}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\xrightarrow{\text { O}}$	$\xrightarrow{\text { N}}$	¢	$\underset{\sim}{7}$		$\stackrel{\sim}{n}$	
:		$\begin{aligned} & \text { 8 } \\ & \underset{\sim}{2} \end{aligned}$	읅	$\begin{aligned} & \text { Ǹ } \\ & \underset{-}{2} \end{aligned}$	$\stackrel{8}{\underset{\sim}{4}}$	$\underset{\sim}{\mathrm{M}}$	$\begin{aligned} & 8 \\ & \text { Ny } \end{aligned}$	$\stackrel{\circ}{0}$	in	$\xrightarrow{8}$	$\xrightarrow{8}$	-		$\stackrel{8}{4}$	$\underset{\sim}{8}$	





$\therefore$
Place of growth of
material tested

Common and botanical name Cherry, black (Prunus serotina) ............. Pa.
Cherry, pin
(Prunus pennsylvanica) ....... Tenn. Chestnut, American (Castanea dentata) (Castanopsis chro Dogwood, flowering
Dogwood, Pacific (Cornus nuttallii) Doveplum* Elder, blueberry* (Sambucus glauca)
Elm, American (Ulmus thomasi) Eucalyptus, bluegum
Calif.


Myinniulu







荡
Eugenia, redberry *
(Carya cordiformis)
Hickory, mockernut
Hickory, nutmeg
Hickory, nutmeg
(Carya myristic
Hickory, pignut
(Carya glabra)
Hickory, shagbark
(Carya ovata)
Hickory, shellbark
(Carya laciniosa)
Hickory, water ${ }^{*}$
(Carya aquatica)
Holly, American
(Ilex opaca)
Honeylocust



$z^{*}$ ! $/ \mathrm{qI}$        	$\begin{aligned} & \text { on } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{7} \\ & n \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{N}{2} \end{aligned}$	$\underset{\sim}{0}$	$\begin{aligned} & 8 \\ & \stackrel{3}{7} \end{aligned}$	$\begin{gathered} 8 \\ \text { in } \\ \end{gathered}$	$\begin{aligned} & 8 \\ & \infty \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { - } \\ & \end{aligned}$	$\begin{aligned} & 8 \\ & \text { B } \\ & 0 \\ & \sim \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { or } \\ & \text { ñ } \end{aligned}$


$\stackrel{5}{\omega}$	$z^{\prime 4} / \mathrm{ql}$   7!u!l- 'u!e.y   07 лe[nว!puadıad	$8$	$\begin{aligned} & 8 \\ & 8 \\ & \text { N } \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & \cdots \\ & N \end{aligned}$	$\begin{gathered} \underset{\sim}{6} \\ \underset{\sim}{n} \end{gathered}$	\%	$8$	$\begin{aligned} & \text { ® } \\ & \text { M } \end{aligned}$	প্লু	$\begin{aligned} & 8 \\ & \stackrel{4}{4} \\ & \end{aligned}$	$\stackrel{8}{\underset{N}{N}}$	$\frac{0}{2}$	$8$	$\underset{\substack{0 \\ \hline \\ \hline \\ \hline \\ \hline}}{ }$
E	$z^{*}$ U! / $q$ I ' 7 !u! $l^{-d}$ *u!es8 of [plened	$\begin{aligned} & \infty \\ & \substack{1 \\ 10} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { M } \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{\sim}{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & 0 \\ & 0^{0} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	-	$\begin{aligned} & \underset{\sim}{\mathrm{M}} \\ & \text { M } \end{aligned}$	$8$	\&	$$	8 8 +8	8 $\sim$ $\sim$		$\begin{aligned} & R \\ & \text { R } \\ & \text { in } \end{aligned}$








z. 4 /qI

unulxeus : Lieds of ュе!nכ!puəd.ad uo!sual	ถু		8	$\stackrel{\gtrless}{\wedge}$				8	-	8	$\underset{\infty}{\infty}$	앙	$\stackrel{\sim}{8}$	$\stackrel{\circ}{\infty}$	is
unuixem :ules  	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\underset{\sim}{0}$	-	$\stackrel{8}{\square}$	c N	$\xrightarrow{8}$		-	$\begin{aligned} & 8 \\ & 8 \\ & i \end{aligned}$	$\stackrel{8}{1}$	$\begin{aligned} & \text { O} \\ & \text { Ni } \end{aligned}$	N	$\stackrel{?}{\infty}$	8 0 -1	\%
	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~N} \\ & \end{aligned}$	$\begin{aligned} & 9 \\ & \underset{7}{7} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{\mathcal{F}}$	$\begin{aligned} & 8 \\ & \text { N } \\ & \text { N } \end{aligned}$	$\underset{i}{\text { G }}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{0}{2}$	$\frac{0}{n}$	$\xrightarrow{\text { ¢ }}$	$\begin{aligned} & 0 \\ & \cdots \end{aligned}$	8  	\%	$\stackrel{8}{\sim}$	-
	$\begin{aligned} & \text { ion } \\ & \text { m} \end{aligned}$	$\begin{aligned} & \text { 융 } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{0}{n} \\ & \end{aligned}$	$\begin{aligned} & \text { ®} \\ & \text { m } \end{aligned}$	$\frac{0}{6}$	$\begin{aligned} & \stackrel{\sim}{\mathrm{Y}} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { } \\ & \text { f } \end{aligned}$	-	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{2} \\ & \hline \end{aligned}$	¢	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { n } \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { No } \end{aligned}$


	z $4!/ q 1$ '\}!u!! ${ }^{\text {d }}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { g } \\ & \text { 寸 } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8_{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{\sim}{8} \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{\sim}{8} \\ & \text { - } \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{N}{7} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & = \end{aligned}$	$\begin{aligned} & 8 \\ & \text { N } \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & 6 \end{aligned}$	8









TABLE 237.-MECHANICAL PROPERTIES OF HARDWOODS GROWN IN UNITED STATES (continued)

z＂ul／ql 478uails ว1รธนว unuixew ：u！eis of se［nว！puədsad uo！suว
$z^{\prime} u!/ q!$
u！とว
प78นวมาร ภนโน่วบร แnu！xew ！u！e」8 of［ว！ाesed jeวyS

$\underset{4}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$				











Place of growth of
material tested


$$
\stackrel{F}{\square}: ~: ~
$$

                    Ind., Tenn
                                    Tenn.
    La., Mo. Ky．
Ariz．
Mo．，Wis．
Oreg．
Tenn．
Ky．，Tenn．
TABLE 238.-MECHANICAL PROPERTIES OF SOFT WOODS GROWN IN UNITED STATES**


qixemits :ullis os


TABLE 238.-MECHANICAL PROPERTIES OF SOFT WOODS GROWN IN UNITED STATES (continued)

.	$z^{\cdot 41 / q 1}$ ) ів	O	OB	$\underset{\sim}{2}$	$8$	$\stackrel{\circ}{\circ}$	in	$8$	$8$	$\stackrel{\stackrel{N}{N}}{ }$	$\underset{\sim}{\infty}$	$\stackrel{i}{n}$	$\stackrel{8}{\square}$
${ }_{0}^{E}$		$\begin{aligned} & \mathbb{O} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\rightharpoonup}{3}$	$\stackrel{\substack{\mathrm{N}}}{\underset{\sim}{1}}$		$\begin{aligned} & \underset{O}{0} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{Q}{6} \\ & \text { n } \end{aligned}$	$\begin{aligned} & \underset{\infty}{2} \\ & \underset{N}{2} \end{aligned}$			$\begin{gathered} \circ \\ \substack{\infty \\ +} \end{gathered}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\underset{\sim}{2}}$	$\frac{8}{6}$




*イ!

(continued)

Meager data, may not be fully representative of species. Common and botanical name
Hemlock, mountain
(Tsuga mertensiana) ..
Hemlock, western Incense-cedar, California (Libocedrus decurrens)
Juniper
Larch, western
Pine, eastern white
(Pinus strobus)
Pine, jack
(Pinus bon
Pine, Jeff rey
Pine, limber *
(Pinus flexilis)
Pine, loblolly
(Pimus taeda)
Pine, lodgepole
Pine, longleaf
(Pimus palustris)
Pine, pitch
(Pinus rigida)

418uə.1ร ว!!ธนว


$\infty \lll \lll<$
苞莫




 $\begin{aligned} & \text { Place of growth of } \\ & \text { material tested }\end{aligned}$
Mont., Alaska, Wash.
Calif.
Calif.
Calif.
N. H.
Mont., Idaho, Colo.
Tenn., N. H.
Wash., Alaska, Oreg.
N. H., Alaska, Wis.
Wis.
N. H., N. C.
Wis.
Wash.

TABLE 239.-DENSITY IN g/cm ${ }^{3}$ AND IN Ib/ft ${ }^{3}$ OF DIFFERENT KINDS OF WOOD

Wood is to be seasoned and of average dryness. Sec also Tables 237 and 238.

Wood	$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{lb} / \mathrm{ft}^{3}$	Wood	$\mathrm{g} / \mathrm{cm}^{3}$	1b $/ \mathrm{ft}^{3}$
Alder	. $42-.68$	26-42	Lancewood	.68-1.00	42-62
Apple	.66-. 84	41-52	Lignum vitae	1.17-1.33	73-83
Ash	.65-. 85	40-53	Linden or lime-tree.	. $32-.59$	20-37
Balsa	<Cork		Locust	.67-. 71	42-44
Bamboo	. $31-.40$	19-25	Log wood	. 91	57
Basswood			Mahogany, Honduras.	. 65	41
(See Linden)			Mahogany, Spanish	. 85	53
Bcech	. $70-.90$	43-56	Maple	.62-. 75	39-47
Birch	. $51-.77$	32-48	Oak .	.60-. 90	37-56
Plue gum	1.00	62	Pear-tree	. $61-.73$	38-45
Box .	.95-1.16	59-72	Pine, eastern white	. $35-.50$	22-31
Bullet-tree	1.05	65	Pine, larch . ......	. $50-.56$	31-35
Butternut	. 38	24	Pine, pitch	. $83-.85$	52-53
Cedar	. $49-.57$	30-35	Pine, red.	. $48-.70$	30-44
Cherry	. $70-.90$	43-56	Pinc, Scotch	.43-. 53	27-33
Cork	.22-. 26	14-16	Pine, spruce	. 48 - . 70	30-44
Dogwood	. 76	47	Pine, yellow	. $37-.60$	23-37
Ehony	1.11-1.33	69-83	Plum-tree .	. $66-.78$	41-49
Elin .	. $54-.60$	34-37	Poplar .	. $35-.5$	22-31
Greenheart	.93-1.04	58-65	Satinwood	. 95	59
Hazel	. $60-.80$	37-49	Sycamore	. $40-.60$	24-37
Hickory	. $60-.93$	37-58	Teak, African	. 98	61
Holly	. 76	47	Teak, Indian	. $66-.88$	41-55
Iron-bark	1.03	64	Walnut ....	. $64-.70$	40-43
Juniper	. 56	35	Water gum		
Laburnum	. 92	57	Willow . . . . . . . . .	. $40-.60$	24-37

## TABLE 240.-DENSITY $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ OF SOME FOREIGN WOODS ON THE AMERICAN MARKET*

Almon	. 464	Olive	. 94
Balsa	. 11	Orangewood	. 70
Boxwood, West Indian	.83-. 88	Padouk . . .	.89-1.29
Bullet-wood, Guiana	1.03-1.23	Prima vera	. 58
Carreto	. 84	Purple-heart	.72-. 97
Cedar, Spanish	. 38	Quebracho	1.25
Cocobola	1.20	Rosewood, Brazil	.77-. 84
Cocus	1.25	Rosewood, Honduras	1.09-1.23
Fustic	. 68	Sabicu	.90-. 96
Koa	. 83	Snakewood	1.05-1.33
Lauaan, red	. 41	Tamarind	1.32
Mahogany, African	. 55	Tanguile	. $47-.51$
Mahogany, E. Indian.	. 38	Wallaba	.93-. 94
Mora	1.07-1.09	Zebrawood	1.03
Oak, English	.60-. 78		

[^111]
## TABLES 241-253.-TEMPERATURE, PRESSURE, VOLUME, AND WEIGHT RELATIONS OF GASES AN゚D VAIORS

## TABLE 241.-SIMPLE GAS LAWS

Any amount of gas completely fills the space in which it is confined. The pressure it exerts upon the confining walls depends upon the temperature. A quantity of gas can not be specified by volume only; all three factors-volume, temperature, and pressuremust be stated. The relations between these three factors are expressed by means of the following equation,

$$
\begin{equation*}
p v=K T \tag{1}
\end{equation*}
$$

in which $p, v$, and $T$ represent simultaneous values of the pressure, volume, and absolute temperature of any definite quantity of gas, while $K$ is a constant, the numerical value of which depends upon the quantity of gas considered and the units in which pressure, volume, and temperature are measured.

While the behavior of gases at atmospheric pressure closely approximates the equation (1), the relation is not exact. The expansion of air is nearer one-272d of its volume at $273.16^{\circ} \mathrm{K}$ per degree. For most practical purposes such errors may be neglected.

If we take weights of gases proportional to their molecular weights, a new relation of the greatest importance develops: The zalue of the constant in equation (1) is the same for cach gas. It is customary to use as the unit of quantity, the mol, the number of grams of gas equal to the molecular weight. When 1 mol is the quantity considered, the resulting value of $K$ is designated $R$.

Values of $R$ in $P V=R T$ for one mol of ideal gas. -1 bar $=10^{6}$ dyne $/ \mathrm{cm}^{2}=0.987$ atm. $1 \mathrm{~kg} / \mathrm{cm}^{2}=0.968 \mathrm{~atm}$. Gram molar volume of ideal gas at $0^{\circ} \mathrm{C}=22,414.1 \mathrm{~cm}^{3}$. Pound molar volume of ideal gas at $32^{\circ} \mathrm{F}=359.05 \mathrm{ft}^{3}$. Ice point, $0^{\circ} \mathrm{C}=273.16^{\circ} \mathrm{K}$; $32^{\circ} \mathrm{F}=491.7^{\circ} \mathrm{R} . \quad 1$ liter $=1000.027 \mathrm{~cm}^{3}$.


With the mol the unit of quantity, $N$ the number of mol of gas, equation (1) becomes

$$
\begin{equation*}
p z^{\prime}=N R T \tag{2}
\end{equation*}
$$

By the use of equation (2), the above table, and a table of molecular weights, the solution of any problem involving volumes, tempcratures, pressures, and weights of gases is very simple.

Mixtures of gases.-Any quantity of gas fills the space in which it is confined and exerts a pressure upon the confining walls. If an additional quantity is added, the pressure is increased in direct proportion to the quantity added. One can regard the pressure exerted by each portion of the total quantity of gas as independent of the presence of the rest. This is true if the second portion of gas is different chemically from the first (Dalton's law), provided the gases do not react chemically.
(continued)

Vapor pressure and the effect of vapor pressure upon the measurement of gas.If a volatile liquid is introduced, a portion evaporates and exerts a pressure on the confining walls. The amount evaporated and the pressure exerted are independent of the presence of any other gas. If there is enough so that not all evaporates and if time is allowed for equilibrium, the pressure is independent of the volume of space and of the amount of liquid left unevaporated; but it does depend upon the temperature. For each volatile liquid there is therefore a definite saturation pressure or vapor pressure corresponding to every temperature. See Tables $360-369$.

When any gas is in contact with a volatile substance, the measured pressure is the pressure exerted by the gas plus the vapor pressure of the volatile material. With no change of temperature, this vapor pressure remains constant no matter how we change the total pressure. Hence for the purposes of volume conversion the saturated gas may be considered as a dry gas, the pressure of which is the partial pressure of the gas, or its equivalent, the difference between the total pressure and the saturated vapor pressure of the volatile material.

## TABLE 242.-VOLUME CONVERSIONS, FACTOR Z, FOR HIGH PRESSURES*

In the measurement of gases at high pressures the quantity $P V$ is no longer constant at constant temperature but varies with the pressure by amounts that differ for each gas. Consequently the relation $\frac{P_{1} V_{1}}{R T_{1}}=\frac{P_{2} V_{2}^{\prime}}{R T_{2}}$ no longer holds. As a correction factor, $Z=\frac{P V}{R T}$ is given for different values of some one or more of the variables. The values of $Z$ for different gases as given in the table are for different pressures and temperatures. The values extend to pressures of $100-200 \mathrm{~atm}$ and to temperatures of $200^{\circ} \mathrm{C}$. Values of this factor of hydrogen for temperatures ranging from $16^{\circ} \mathrm{K}$ to $600^{\circ} \mathrm{K}$ and for pressures ranging from a small fraction of an atmosphere (.01) to 100 atm are given in Table 254, Part 2. ${ }^{73}$ The value of this factor can be calculated for a wide range of pressures using the data given in some of the following tables.
This tables gives values of volume correcting factor $\mathrm{Z}(\mathrm{V}=1$ at 1 atm pressure and $0^{\circ} \mathrm{C}$ ).

	$\underbrace{\text { - ir }}$					Argon				$\begin{aligned} & \text { Neon } \\ & 0^{\circ} \mathrm{C} \end{aligned}$	
Atm	$0^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$		
10	. 9952	. 9997	1.0021	1.00		. 9921	. 9973	1.0000	1.0023	1.0045	
25	. 9877	. 9987	1.0044	1.00		. 9784	. 9918	. 9984	1.0044		0119
50	. 9782	. 9996	1.0100	1.01		. 9577	. 9842	. 9971	1.0084		0235
75	. 9722	1.002	1.0191	1.02		. 9403	. 9783	. 9971	1.0138		0358
100	. 9712	1.0077	1.0253	1.03		. 9262	. 9746	. 9990	1.0197		.0492)
	Helium			Hydrogen				Oxygen			
Atm	$0^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	100 C
10	1.0050	1.0042	1.0035	1.0062	1.0056	1.0051	1.0042	. 9908	. 9933	. 9965	. 9993
25	1.0129	1.0108	1.0092	1.0156	1.0141	1.0127	1.0105	. 9771	. 9835	. 9908	. 9980
50	1.0260	1.0218	1.0185	1.0316	1.0285	.1.025.5	1.0209	. 9562	. 9685	. 9831	. 9968
75	1.0392	1.0329	1.0279	1.0480	1.0429	1.0384	1.0315	. 9378		. 9771	. 9971
100	1.0524	1.0440	1.0372	1.0646	1.0575	1.0514	1.0419	. 9231	-	. 9733	. 9983
200	-	-	-	1.1333	1.1168	1.1036	1.0839	.	-	-	
		Nitrogen			Meth	hane					
Atm	$0^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$				
10	. 9975	1.0015	1.0035	. 978	. 989	. 993	. 999				
50	. 9835	1.0035	1.0125	. 883	. 941	. 971	. 997				
100	. 9835	1.0145	1.0295	. 781	. 896	. 951	. 998				
150	1.0015	1.0385	1.0546	(.730)	. 873	. 943	1.004				
200	-	1.0686	1.0836		. 873	.950	1.020				

[^112]
## TABLE 243.-RELATIVE GAS VOLUMES AT VARIOUS PRESSURES

(Deduced by Cochrane, from the $p v$ curves of Amagat and other observers.)
Relative volumes when the pressure is reduced from the value given at the head of the column to 1 atmosphere; see also Nat. Bur. Standards Circ. 279.

$\left(\mathrm{Temp} . \underset{=}{\mathrm{Gas}}=16^{\circ} \mathrm{C}\right)$	Relative vo'ume the gas will occupy when the pressure is reduced to atmospheric from					
	1 atm	$\overline{50 \mathrm{~atm}}$	100 atm	120 atm	150 atm	200 atm
"Perfect" gas	1	50	100	120	150	200
Helium .			94.6	112.5	141	
Hydrogen	1	48.5	93.6	111.3	136.3	176.4
Nitrogen	1	50.5	100.6	120.0	147.6	190.8
Air	1	50.9	101.8	121.9	150.3	194.8
Argon			106.3	127.6	161	
Oxygen			105.2			212.6
Oxygen (at $0^{\circ} \mathrm{C}$ ).		52.3	107.9	128.6	161.9	218.8
Carbon dioxide	1	69	477*	485*	498*	515*
* Carbon dioxide is liquid at pressures greater than 90 atmospheres.						

## TABLE 244.-VAN DER WAAL'S CONSTANTS FOR IMPERFECT GASES ${ }^{\circ}$

Van der Waal developed an equation to represent the pressure, temperature, and volume relation of a real gas. One form of this equation is

$$
\begin{aligned}
{\left[P+a\left(\frac{u}{V}\right)^{2}\right](V-n b) } & =n R t \\
n & =\text { number of molecules } \\
(V-n b) & =\text { effective volurre } \\
a & =\text { internal pressure constant }\left[\left(\text { dynes } / \mathrm{cm}^{2}\right) \times\left(\mathrm{cm}^{3} / \mathrm{mol}\right)\right] \\
b & =\text { reduction in effective volume }(V) \mathrm{per} \text { molecule }\left(\mathrm{cm}^{3} / \mathrm{mol}\right)
\end{aligned}
$$

$P$ (dynes $/ \mathrm{cm}^{2}$ ) $, V\left(\mathrm{~cm}^{3} / \mathrm{mol}\right), R$, and $T$ have their usual meanings.
The value of these constants ( $a$ and $b$ ) for various gases are given in the table. If Van der Waal's equation were correct, $V_{c} / 3=b$ ( $V_{c}$ critical volume).

[^113]TABLE 244.-VAN DER WAAL'S CONSTANTS FOR IMPERFECT GASES (concluded)

Gas	Formula	${ }^{\text {a }}$	$b$	l'c/3	Molecular volume of volume or liquid rquid	Electric moments
Neon	Ne	$0.21 \times 10^{12}$	17.1	14.7	16.7	$0 \times 10^{-18}$
Helium	He	. 035	23.6	20.5	27.4	
Hydrogen	$\mathrm{H}_{2}$	0.25	26.5	21.6	26.4	0
Nitric oxide	NO	1.36	27.8	19.1	23.7	
Water ...	$\mathrm{H}_{2} \mathrm{O}$	5.53	30.4	18.9	18.0	1.85
Oxygen		1.40	32.2	24.8	25.7	
Argon		1.36	32.2	26.1	28.1	0
Ammonia	$\mathrm{NH}_{3}$	4.22	36.9	24.2	24.5	1.44
Nitrogen	$\mathrm{N}_{2}$	1.36	38.3	30.0	32.8	
Carbon monoxide	CO	1.50	39.7	30.0	32.7	0.10
Krypton	Kr	2.35	39.7	36.0	38.9	
Hydrogen chloride	HCl	3.72	40.7	29.8	30.8	1.03
Nitrous oxide ....	$\mathrm{N}_{2} \mathrm{O}$	3.61	41.1	32.3	44.0	. 25
Carbon dioxide	$\mathrm{CO}_{2}$	3.64	42.5	32.8	41.7	
Methane	$\mathrm{CH}_{4}$	2.28	42.6	32.9	49.5	0
Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	4.49	42.7		35.4	. 93
Hydrogen bromide	HBr	4.51	44.1		37.5	. 78
Xenon ............		4.15	50.8	38.0	47.5	.
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	4.43	51.3	37.5	50.2	,
Phosphine	$\mathrm{PH}_{3}$	4.69	51.4	37.7	49.2	. 55
Chlorine	$\mathrm{Cl}_{2}$	6.57	56.0	41.0	41.2	
Sulfur dioxide	$\mathrm{SO}_{2}$	6.80	56.1	41.0	43.8	1.61
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	4.46	56.1	42.3	49.3	0
Silicon hydride	$\mathrm{SiH}_{4}$	4.38	57.6		47	0
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	7.23	59.6		44.5	1.31
Fthane ....	$\mathrm{CH}_{3}-\mathrm{CH}_{3}$	5.46	63.5	47.6	54.9	
Methyl alcohol	$\mathrm{CH}_{3} \mathrm{OH}$	9.65	66.8	39.0	40.1	1.73
Methyl chloride	$\mathrm{CH}_{3} \mathrm{Cl}$	7.56	64.5	45.4	49.2	1.97
Methyl ether ....	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	8.17	72.2			1.29
Carbon bisulfide		11.75	76.6	67.5	59.0	
Dimethylamine	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	9.77	79.6		66.2	
Propylene ...	$\mathrm{C}_{3} \mathrm{H}_{6}$	8.49	82.4		69.0	0
Ethyl alcohol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	12.17	83.8	41.0	57.2	1.63
Propane ....	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$	8.77	84.1		75.3	
Chloroform	$\mathrm{CHCl}_{3}$	15.38	102	77.1	80.2	1.05
Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	17.81	106	57.0	56.1	
Trimethylamine	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	13.20	108		89.3	
iso-Butane ....	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}$	13.10	114		96.3	
Benzene.	$\mathrm{C}_{6} \mathrm{H}_{0}$	18.92	120	85.5	86.7	
n-Butane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	14.66	122		96.5	0
Ethyl ether	$\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	17.60	134	94.0	100	1.2
Triethylamine	$\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$	27.5	183		139	
Naphthalene	${ }_{\text {Cin }} \mathrm{H}_{8}$	40.3	193		112	. 69
n-Octane ${ }_{\text {Decane }}$		37.8 49.1	236 289	162	162	
Decane	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{x} \mathrm{CH}_{3}$	49.1	289		195	0

TABLE 245.-CORRECTING FACTORS: SATURATED GAS VOLUME TO VOLUME AT 760 mmHg AND $0^{\circ} \mathrm{C}$ *
Multiply observed volumes of saturated gas by factor to correct to volume of dry gas at .760 mmHg pressure $\left(0^{\circ} \mathrm{C}\right)$

Tem-pera-	Pressure mmHg											
$\left({ }^{\circ} \mathrm{C}\right.$ )	715	720	725	730	735	740	745	750	755	760	765	770
$5^{\circ}$	. 916	. 922	. 928	. 935	. 942	. 948	. 954	. 961	. 967	. 974	. 980	986
6	. 912	. 918	. 924	. 931	. 937	. 944	. 950	. 957	. 963	. 970	. 976	. 982
7	. 908	. 914	. 920	. 927	. 933	. 940	. 946	. 952	. 959	. 965	. 972	. 978
8	. 904	. 910	. 916	. 923	. 929	. 936	. 942	. 948	. 955	. 961	. 967	. 974
9	. 900	. 906	. 912	. 919	. 925	. 932	. 938	. 944	. 951	. 957	. 963	. 970
10	. 896	. 902	. 908	. 915	. 921	. 928	. 934	. 940	. 946	. 953	. 959	. 966
11	. 892	. 898	. 904	. 911	. 917	. 924	. 920	. 936	. 942	. 949	. 955	. 962
12	. 888	. 894	. 900	. 907	. 913	. 919	. 925	. 932	. 939	. 945	. 951	. 957
13	. 884	. 890	. 896	. 903	. 909	. 915	. 921	. 928	. 934	. 940	. 947	. 953
14	. 880	. 886	. 892	. 899	. 905	. 911	. 917	. 924	. 930	. 936	. 942	. 949
15	. 876	. 882	. 888	. 895	. 901	. 907	. 913	. 920	. 925	. 932	. 938	. 944
16	. 872	. 878	. 884	. 890	. 896	. 903	. 939	. 915	. 921	. 928	. 934	. 940
17	. 868	. 874	. 880	. 886	. 892	. 898	. 905	. 911	. 917	.923	. 929	. 936
18	. 864	. 870	. 875	. 882	. 888	. 894	. 900	. 907	. 913	. 919	. 925	. 931
19	. 859	. 865	. 871	. 878	. 884	. 890	. 896	. 902	. 908	.915	. 920	. 927
20	. 855	. 861	. 867	. 874	. 879	. 886	. 892	. 898	. 904	. 910	. 916	. 922
21	. 851	. 857	. 863	. 869	. 875	. 881	. 887	. 893	. 899	. 906	. 912	. 918
22	. 847	. 853	. 858	. 865	. 871	. 877	. 883	. 888	. 894	.901	. 907	. 913
23	. 842	. 848	. 854	. 860	. 866	. 872	. 878	. 884	. 890	. 897	. 903	. 909
24	. 838	. 844	. 849	. 856	. 862	. 868	. 874	. 880	. 886	. 892	. 898	. 904
25	. 833	. 839	. 845	. 851	. 857	. 863	. 869	. 875	. 881	. 888	. 893	. 899
26	. 829	. 835	. 841	. 847	. 853	. 859	. 865	. 871	. 877	. 883	. 889	. 895
27	. 824	. 830	. 836	. 842	. 848	. 854	. 860	. 866	. 872	. 878	. 884	. 890
28	. 820	. 825	. 831	. 837	. 843	. 849	. 855	. 861	. 867	. 873	. 879	. 885
29	. 815	. 821	. 826	. 832	. 838	. 844	. 850	. 856	. 862	. 868	. 874	. 880
30	. 810	. 816	. 822	. 828	. 833	. 840	. 845	. 851	. 857	. 863	. 869	. 875
31	. 805	. 811	. 817	. 823	. 829	. 835	. 840	. 846	. 852	. 858	. 864	. 870
32	. 800	. 806	. 812	. 818	. 823	. 830	. 835	. 841	. 847	. 853	. 859	. 865
33	. 795	. 801	. 807	. 813	. 818	. 824	. 830	. 836	. 842	. 848	. 853	. 860
34	. 790	. 796	. 801	. 807	. 813	. 819	. 825	. 831	. 837	. 842	. 848	. 854
35	. 785	. 790	. 796	. 802	. 808	. 814	. 819	. 825	. 831	. 837	. 843	. 849
36	. 780	. 785	. 791	. 797	. 802	. 808	. 814	. 820	. 826	. 832	. 836	. 843
37	. 774	. 780	. 785	. 791	. 797	. 803	. 809	. 814	. 820	.826	. 832	. 838
38	. 769	. 774	. 780	. 786	. 791	. 796	. 803	. 809	. 814	. 820	. 826	. 832
39	. 763	. 768	. 774	. 780	. 785	. 790	.797	. 803	. 809	. 814	. 820	. 826
40	. 756	. 763	. 768	. 774	. 780	. 786	. 792	. 797	. 803	. 809	. 814	. 820
41	. 751	. 757	. 762	. 768	. 774	. 780	. 786	. 791	. 797	. 803	. 808	. 814
42	. 745	. 751	. 756	. 762	. 768	. 774	. 779	. 785	. 791	. 796	. 802	. 808
43	. 739	. 745	. 750	. 756	. 762	. 767	. 773	. 779	. 784	. 790	. 796	. 802
44	. 733	. 738	. 744	. 750	. 755	. 761	. 766	. 772	. 778	. 784	. 789	795
45	. 726	. 732	. 737	. 743	. 749	. 754	. 760	. 766	. 771	. 777	. 783	788
46	. 720	. 725	. 731	. 737	. 742	. 748	. 754	. 759	. 765	. 770	. 776	. 782
47	. 713	. 719	. 724	. 730	. 735	. 741	. 746	. 752	. 758	. 764	. 769	. 775
48	. 706	. 712	. 717	. 723	. 728	. 734	. 739	. 745	. 751	. 756	. 762	768
49	. 700	. 705	. 710	. 716	. 721	. 727	. 732	. 738	. 744	. 750	. 755	761

[^114]Part 1.-Ordinary temperatures
As a measure of the compressibility, it is customary to use a coefficient, $1+\lambda=p_{1} v_{0} / p_{1} v_{1}, p_{0} v_{0}$ being at $0^{\circ} \mathrm{C}$.

$\mathrm{H}_{2}$	$1+\lambda=$	$.99939 \pm .00001$	CO	$1+\lambda=1.00081$
$\mathrm{~N}_{2}$	1.00044	.00001	$\mathrm{CO}_{2}$	1.00668
$\mathrm{O}_{2}$	1.000094	.000013	$\mathrm{~N}_{2} \mathrm{O}$	1.00747
He	.99948	.000005		
Ne	1.99951	.000025		
A	1.00099	.000026		

Part 2.-Low temperatures
$\mathrm{pv}=1$ for $0^{\circ} \mathrm{C}, 1$ atmosphere

$\underbrace{\text { Helium }}$				Hydrogen			
$t^{\circ} \mathrm{C}$	$\stackrel{p}{\text { atm }}$	$p v$	Density	$t^{\circ} \mathrm{C}$	$\underset{\mathrm{atm}}{\text { p }}$	$p v$	Density
. 00	26.66	1.0146	26.28	. 00	32.313	1.0188	31.715
	38.95	1.0196	38.20		44.119	1.0266	43.284
.	58.58	1.0294	56.91	-103.57	38.41	. 6376	38.41
$-103.63$	24.13	. 6337	38.07	. 58	51.49	. 6433	80.04
	49.96	. 6479	77.08	-204.70	16.75	. 2404	69.68
-269.69	. 232	. 01126	20.63		37.00	. 2316	159.7
	. 353	. 01041	33.92	"	44.63	. 2300	194.0
-270.52	. 0308	. 00911	3381	-257.26	. 06698	. 05783	1.1582
	. 0649	. 00858	7.535		. 13153	. 057104	2.3031


$\underbrace{\text { Neon }}$				$\underbrace{\text { Argon }}$			
$t^{\circ} \mathrm{C}$	$\underset{\text { atm }}{\text { b }}$	$p v$	Density	$t^{\circ} \mathrm{C}$	$\stackrel{p}{\text { atm }}$	$p v$	Density
. 0	23.06	1.0089	21.87	. 0	20.58	. 9856	20.88
"	30.79	1.0147	30.34		31.57	. 9774	32.30
"	84.66	1.0408	81.35	-102.51	14.86	. 5813	25.57
-200.1	61.66	. 2337	763.8		45.09	. 4706	95.80
	79.92	. 2293	348.6	"	62.24	. 3939	158.01
-217.5	49.93	. 1393	358.5	$-130.38$	1277	. 4663	27.39
	64.97	. 1269	511.8	-159.62	11.99	. 4262	28.12
"	79.42	. 1256	632.2	-149.60	11.15	. 3821	29.18
$\underbrace{\text { Oxygen }}$				$\overbrace{}^{\text {Nitrogen }}$			
$t^{\circ} \mathrm{C}$	$\stackrel{p}{\text { atm }}$	$p v$	Density	$t^{\circ} \mathrm{C}$	$\stackrel{p}{\text { atm }}$	$p v$	Density
0	20.92	. 9813	21.32	0	33.14	. 9886	33.52
"	49.79	. 9573	52.01	،	43.08	. 9860	43.70
- 80.03	21.01	. 6550	32.09	" ${ }^{\text {a }}$	58.63	. 9834	59.62
	34.18	. 6213	55.02	- 81.10	30.17	. 6516	46.13
	61.88	. 5464	13.23		45.47	. 6270	72.52
-116.01	22.30	. 4835	46.12	4	56.71	. 6109	92.84
. 1	43.95	. 3541	124.1	-146.32	22.92	. 3340	68.62
"	55.05	. 1667	330.2	.	30.14	. 2656	113.48
				"	36.49	. 1058	344.5

TABLE 247.-RELATIVE VOLUMES FOR O, AIR, N, AND H AT VARIOUS PRESSURES AND TEMPERATURES
(Volume at $0^{\circ} \mathrm{C}$ and 1 atm being taken as $1,000,000$ )

	Oxygen			$\mathrm{Air}^{\text {a }}$			Nitrogen			Hydrogen		
Atm	$0^{\circ}$	$99^{\circ} .5$	$199^{\circ} .5$	$0^{\circ}$	$99^{\circ} .4$	$200{ }^{\circ} .4$	$0^{\circ}$	$99^{\circ} .5$	$199^{\circ} .6$	$0^{\circ}$	$99^{\circ} .3$	$200^{\circ} .5$
100	9265			9730			9910					
200	4570	7000	9095	5050	7360	9430	5195	7445	9532	5690	7567	9420
300	3208	4843	6283	3658	5170	6622	3786	5301	6715	4030	5286	6520
400	2629	3830	4900	3036	4170	5240	3142	4265	5331	3207	4147	5075
500	2312	3244	4100	2680	3565	4422	2780	3655	4515	2713	3462	4210
600	2115	2867	3570	2450	3180	3883	2543	3258	3973	2387	3006	3627
700	1979	2610	3202	2288	2904	3502	2374	2980	3589	2149	2680	3212
800	1879	2417	2929	2168	2699	3219	2240	2775	3300	1972	2444	2900
900	1800	2268	2718	2070	2544	3000	2149	2616	3085	1832	2244	2657
1000	1735	2151	-	1992	2415	2828	2068	--		1720	2093	

TABLE 248.-RELATIVE VALUES OF pV FOR ETHYLENE

	$p v$ at $0^{\circ} \mathrm{C}$ and $1 \mathrm{~atm}=1$									
Atm	$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$30^{\circ}$	$40^{\circ}$	$60^{\circ}$	$80^{\circ}$	$100^{\circ}$	$137^{\circ} .5$	$198^{\circ} .5$
46	$\sim$	. 562	. 684	-	-	-	-	-	-	-
48	-	. 508								
50	. 176	. 420	. 629	. 731	. 814	. 954	1.077	1.192	1.374	1.652
52	-	, 240	. 598	-		-	-	-	-	
54	-	. 229	. 561	$\cdots$	-	-	-	-	-	-
56	-	. 227	. 524	-		-	--			
100	. 310	. 331	. 360	. 403	. 471	. 668	. 847	1.005	1.247	1.580
150	. 441	. 459	. 485	. 515	. 551	. 649	. 776	. 924	1.178	1.540
200	. 565	. 585	. 610	. 638	. 669	. 744	. 838	. 946	1.174	1.537
300	. 806	. 827	. 852	. 878	. 908	. 972	1.048	1.133	1.310	1.628
500	1.256	1.280	1.308	1.337	1.367	1.431	1.500	1.578	1.721	1.985
1000	2.289	2.321	2.354	2.387	2.422	2.493	2.566	2.643	2.798	

TABLE 249.-RELATIVE VALUES OF pV FOR CARBON DIOXIDE

Pressure in meters of mercury	Relative values of fv at-										
	$18.2^{\circ} \mathrm{C}$		35.1	40.2	50.0	60.0	70.0	80.0		90.0	$100.0{ }^{\circ} \mathrm{C}$
30	liquid		2360	2460	2590	2730	2870	2995		3120	3225
50			1725	1900	2145	2330	2525	2685		2845	2980
80	625		750	825	1200	1650	1975	2225		2440	2635
110	825		930	980	1090	1275	1550	1845		2105	2325
140	1020		1120	1175	1250	1360	1525	1715		1950	2160
170	1210		1310	1360	1430	1520	1645	1780		1975	2135
200	1405		1500	1550	1615	1705	1810	1930		2075	2215
230	1590		1690	1730	1800	1890	1990	2090		2210	2340
260	1770		1870	1920	1985	2070	2166	2265		2375	2490
290	1950		2060	2100	2170	2260	2340	2440		2550	2655
320	2135		2240	2280	2360	2440	2525	2620		2725	2830
	Relative values of pv: $\underbrace{p v \text { at } 0^{\circ} \mathrm{C} \text { and } 1 \mathrm{~atm}=1}$										
Atm	$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$30^{\circ}$	$40^{\circ}$	$60^{\circ}$	$80^{\circ}$	$100^{\circ}$	$137^{\circ}$	$198^{\circ}$	$258^{\circ}$
50	. 105	5 . 114	. 680	. 775	. 750	. 984	1.096	1.206	1.380		
100	. 202	2.213	. 229	. 255	. 309	. 661	. 873	1.030	1.259	1.582	1.847
150	. 295	5 . 309	. 326	. 346	. 377	. 485	. 681	. 878	1.159	1.530	1.818
300	. 559	9 . 578	. 599	. 623	. 649	. 710	. 790	. 890	1.108	1.493	1.820
500	. 891	1 . 913	. 938	. 963	. 990	1.054	1.124	1.201	1.362	1.678	
1000	1.656	61.685	1.716	1.748	1.780	1.848	1.921	1.999			

Original volume 100000 under one atmosphere of pressure and the temperature ${ }^{\circ} \mathrm{C}$ of the experiments as indicated at the top of the different columns.

$\begin{aligned} & \text { Pressure } \\ & \text { in ittmo } \end{aligned}$	Corresponding volume for experiments at temperature-			Volume	Pressure in atmospheres for ex. periments at temperature-		
	$58^{\circ} .0$	$99{ }^{\circ} .6$	$183^{\circ} .2$		$5 \mathrm{~K}^{\circ} .0$	$99^{\circ} .6$	$183^{\circ} .2$
10	8560	9440					
12	6,360	7800	-	10000	--	9.60	-
14	4040	6420	-	9000	9.60	10.35	-
16		5310	-	8000	10.40	11.85	
18	-	4405	-	7000	11.55	13.05	-
20	-	4030	-	6000	12.30	14.70	-
24	-	3345	-	5000	13.15	16.70	-
28	-	2780	3180	4000	-14.00	20.15	-
32	-	2305	2640	3500	14.40	23.00	
36	-	1935	2260	3000	-	26.40	29.10
40	-	1450	2040	2500	-	30.15	33.25
50	-	-	1640	2000	-	35.20	40.95
60	-	-	1375	1500	-	39.60	55.20
70	-	-	1130	1000	-	-	76.00
80	-	-	930	500	-	-	117.20
90		-	790				
100	-		680				
120	-	-	545				
140	-	-	430				
160	-	-	325				

## TABLE 251.-COMPRESSIBILITY OF AMMONIA

Original vohume 100000 under one atmosphere of pressure and the temperature ${ }^{\circ} \mathrm{C}$ of the experiments as indicated at the top of the different columns.

$\begin{aligned} & \text { Pressure } \\ & \text { in atmo } \end{aligned}$	Corresponding volume for experiments at temperature一			Volume	Pressure in atmospheres for experiments at temperature -			
	$46^{\circ} .6$	$99^{\circ} .6$	$183^{\circ} .6$		$30^{\circ} .2$	$46^{\circ} .6$	$99^{\circ} .6$	$183^{\circ} .0$
10	9500	-	-	10000	8.85	9.50		-
12.5	7245	7635	-	9000	9.60	10.45		
1.5	5880	6,305	-	8000	10.40	11.50	12.00	-
20	-	4645	4875	7000	11.05	13.00	13.60	-
25	-	3560	3835	6000	11.80	14.75	15.55	-
30	-	2875	3185	5000	12.00	16.60	18.60	19.50
35	-	2440	2680	4000	-	18.35	22.70	24.00
41	-	2080	2345	3500	-	18.30	25.40	27.20
45	-	1795	2035	3000	-	-	29.20	31.50
50	-	1490	1775	2500	-	-	34.25	37.35
55	-	1250	1590	2000	-	-	41.45	45.50
60	-	975	1450	1500	-	-	49.70	58.00
70	-	-	1245	1000	-	-	59.65	93.60
80	-	-	1125					
90	-	-	1035					
100	-	-	950					

Actual volumes rest upon Amagat's doubtful values at $3000 \mathrm{~kg} / \mathrm{cm}^{2}$. Densities at highest pressures indicate that the molecules or atoms are very nearly in contact in the sense of the kinetic theory.


80 Bridgman, P. W., Proc. Amer. Acad. Irts and Sci., vol. 59, p. 173, 1924.
TABLE 253.-GAGE PRESSURE (Ib/in. ${ }^{2}$ ) TO ATMOSPHERES (ABSOLUTE)*

lb/in. ${ }^{2}$	0	10	20	30	40	50	60	70	80	90
0	1.00	1.68	2.36	3.04	3.72	4.40	5.08	5.76	6.44	7.12
100	7.80	8.48	9.17	9.85	10.53	11.21	11.89	12.57	13.25	13.93
200	14.61	15.29	15.97	16.65	17.33	18.01	18.69	19.37	20.05	20.73
300	21.41	22.09	22.77	23.45	24.14	24.82	25.50	26.18	26.86	27.54
400	28.22	28.90	29.58	30.26	30.94	31.62	32.30	32.98	33.66	34.34
500	35.02	35.70	36.38	37.06	37.74	38.42	39.11	39.79	40.47	41.15
600	41.83	42.51	43.19	43.87	44.55	45.23	45.91	46.59	47.27	47.95
700	48.63	49.31	49.99	50.67	51.35	52.03	52.71	53.39	54.08	54.76
800	55.44	56.12	56.80	57.48	58.16	58.84	59.52	60.20	60.88	61.56
900	62.24	62.92	63.60	64.28	64.96	65.64	66.32	67.00	67.68	68.36
1,000	69.04	69.73	79.41	71.09	71.77	72.45	73.13	73.81	74.49	75.17
1,100	75.85	76.53	77.21	77.89	78.57	79.25	79.93	80.61	81.29	81.97
1,200	82.65	83.34	84.01	84.70	85.38	86.06	86.74	87.42	88.10	88.78
1,300	89.46	90.14	90.82	91.50	92.18	92.86	93.54	94.22	94.90	95.58
1,400	96.27	96.95	97.63	98.31	98.98	99.67	100.3	101.0	101.7	102.4
1,500	103.1	103.8	104.4	105.1	105.8	106.5	107.1	107.8	108.5	109.2
1,600	109.9	110.6	111.3	111.9	112.6	113.3	114.0	114.6	115.3	116.0
1,700	116.7	117.4	118.0	118.7	119.4	120.1	120.8	121.4	122.1	122.8
1,800	123.5	124.2	124.8	125.5	126.2	126.9	127.6	128.2	128.9	129.6
1,900	130.3	131.0	131.6	132.3	133.0	133.7	134.4	135.0	135.7	136.4
2,000	137.1	137.8	138.4	139.1	139.8	140.5	141.2	141.9	142.5	143.2
2,100	143.9	144.6	145.2	145.9	146.6	147.3	148.0	148.7	149.3	150.0
2,200	150.7	151.4	152.1	152.7	153.4	154.1	154.8	155.5	156.1	156.8
2,300	157.5	158.2	158.9	159.5	160.2	160.9	161.6	162.3	162.9	163.6
2,400	164.3	165.0	165.7	166.3	167.0	167.7	168.4	169.1	169.8	170.4
2,500	171.1	171.8	172.5	173.2	173.8	174.5	175.2	175.9	176.6	177.2
2,600	177.9	178.6	179.3	180.0	180.6	181.3	182.0	182.7	183.4	184.0
2,700	184.7	185.4	186.1	186.8	187.4	188.1	188.8	189.5	190.2	190.8
2,800	191.5	192.2	192.9	193.6	194.2	194.9	195.6	196.3	197.0	197.7
2,900	198.3	199.0	199.7	200.4	201.1	201.7	202.4	203.1	203.8	204.4

[^115]
## TABLES 254-260.-THERMAL PROPERTIES OF GASES ${ }^{\text {si }}$

The properties given in Tables 254 and $256-258$ are taken from a series of tables of thermal properties of gases being compiled at the National Bureau of Standards at the suggestion of and with the cooperation of the National Advisory Committee for Aeronautics. The functions in these tables have been expressed in dimensionless form in order that they may be converted readily to any system of units. Conversion factors are listed for the most often used units. For more extensive data on various gases reference should be made to these tables. ${ }^{82}$
${ }^{81}$ Adapted from NBS-NACA Tables on thermal properties of gases, July 1949.
${ }^{82}$ Joseph Hilsenrath, Heat and Power Division, National Bureau of Standards.
TABLE 254.-PROPERTIES OF MOLECULAR HYDROGEN
Part 1.-Density, $\rho / \rho_{0}$

$T{ }^{\circ} K / P$	.01 atm	.1 atm	1 atm	10 atm	100 atm	$T^{\circ} R$
20	.13679	1.3792				36
50	.054671	.54710	5.5112	59.510		90
100	.027333	.27333	2.7338	27.379	258.83	180
150	.018222	.18220	1.8211	18.117	168.78	270
200	.013666	.13665	1.3657	13.574	127.01	360
250	.010933	.10932	1.0927	10.863	102.35	450
300	.0091110	.091100	.91055	9.0575	85.896	540
350	.0078094	.078086	.78055	7.7682	74.086	630
400	.0068332	.068332	.68298	6.8006	65.165	720
450	.0060740	.060740	.60715	6.0474	58.185	810
500	.0054666	.054666	.54644	5.4448	52.563	930
550	.0049696	.049696	.49676	4.9518	47.941	990
600	.0045555	.045555	.45541	4.5400	44.070	1080


To convert   tabulated   value of	to	having the   dimensions   indicated   below	multiply   by
$\rho / \rho_{0}$	$\rho$	$\mathrm{g} \mathrm{cm}^{-3}$	$\mathrm{g} \mathrm{liter}^{-1}$
$\mathrm{lb} \mathrm{in.-3}$			
$\mathrm{lb} \mathrm{ft}^{-3}$	$8.98854 \times 10^{-5}$		

Part 2.-Compressibility factor, $\mathbf{Z}=P V / R T$

$T{ }^{\circ} \mathrm{K} / P$	.01 atm	.1 atm	1 atm	10 atm	100 atm	$T^{\circ} \mathrm{R}$
20	.9991	.9909				36
50	.9999	.9992	.9919	.9186		90
100	1.0000	1.0000	.9998	.9983	1.0560	180
150	1.0000	1.0001	1.0006	1.0058	1.0796	270
200	1.0000	1.0001	1.0007	1.0068	1.0760	360
250	1.0000	1.0001	1.0006	1.0065	1.0682	450
300	1.0000	1.0001	1.0006	1.0059	1.0607	540
350	1.0000	1.0001	1.0005	1.0053	1.0541	630
400	1.0000	1.0000	1.0005	1.0048	1.0486	720
450	1.0000	1.0000	1.0004	1.0044	1.0439	810
500	1.0000	1.0000	1.0004	1.0040	1.0400	900
550	1.0000	1.0000	1.0004	1.0036	1.0366	990
600	1.0000	1.0000	1.0003	1.0034	1.0377	1080

(continued)

TABLE 254.-PROPERTIES OF MOLECULAR HYDROGEN (concluded)
Part 3.-Values of $R$ for hydrogen for temperatures in ${ }^{\circ} K$

Pressure				
Density	atm	$\mathrm{kg} / \mathrm{cm}^{2}$	mmHg	$\mathrm{bb} / \mathrm{in.}^{2}$
$\mathrm{~g} / \mathrm{cm}^{3}$	40.7027	42.0551	30934.0	598.167
$\mathrm{~mole} / \mathrm{cm}^{3}$	82.0567	84.7832	62363.1	1205.91
mole $/ \mathrm{liter}^{\mathrm{lb} / \mathrm{ft}^{3}}$	.0820544	.0847809	62.3613	1.20587
$\mathrm{~mole} / \mathrm{ft}^{3}$	.651994	.673658	495.515	9.58171

## TABLE 255.-DENSITY OF GASES AND VAPORS **

The following table gives the density as the weight in grams of a liter (normal liter) of the gas at $0_{3}{ }^{\circ} \mathrm{C}, 76 \mathrm{cmHg}$ pressure, also the weight in $1 \mathrm{~b} / \mathrm{ft}^{3}$, and standard gravity $930.655 \mathrm{~cm} / \mathrm{sec}^{2}$ (sea level, $45^{\circ}$ latitude), the specific gravity referred to dry, carbon-dioxide-free air, and to pure oxygen. Dry, carbon-dioxide-free air is of remarkably uniform density; Guye, Kovacs, and Wourtzel found maximum variations in the density of only 7 to 8 parts in 10,000 . For highest accuracy pure oxygen should be used as the standard gas for specific gravities. Observed densities are closely proportional to the molecular weights.

Gas	Formula	Molecular weight	Weight of normal		Specific gravity	
			grams	pounds	Air $=1$	$0_{2}=1$
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	26.036	1.173	. 07323	. 912	. 825
Air			1.2920	. 0805	1.000	. 9047
Ammonia	$\mathrm{NH}_{3}$	17.032	. 7598	. 04742	. 5963	. 5395
Argon		39.944	1.782	. 1112	1.3787	1.2482
Arsene	$\mathrm{AsH}_{3}$	77.93	3.48	. 217	2.69	2.434
Butane-iso	$\mathrm{C}_{4} \mathrm{H}_{10}$	58.12	2.673	. 1669	2.067	1.870
Butane-n	C. $\mathrm{H}_{20}$	58.12	2.519*	.15725*	2.085*	1.8868*
Carbon dioxide	$\mathrm{CO}_{3}$	44.01	1.9630	. 1225	1.5290	1.3834
Carbon monoxide	CO	28.010	1.2492	. 0779	. 9671	. 8750
Carbon oxysulfide	COS	60.076	2.72	. 170	2.10	1.90
Chlorine	$\mathrm{Cl}_{2}$	70.914	3.1638	. 1974	2.486	2.249
Chlorine monoxide	$\mathrm{Cl}_{2} \mathrm{O}$	86914	3.89	. 243	3.01	2.721
Ethane	$\mathrm{C}_{2} \mathrm{H}_{8}$	30.068	1.3566	. 08469	1.0493	. 9493
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	28.052	1.2604	. 07860	. 9749	. 8820
Fluorine		38.00	1.6954	. 1058	1.311	1.187
Helium		4.003	. 1785	. 01114	. 1381	. 1249
Hydrogen	$\mathrm{H}_{2}$	2.016	. 08988	. 005611	. 06952	. 06290
Hydrogen bromide	HBr	80.924	36104	. 2252	2.8189	2.5503
Hydrogen chloride	HCl	36.465	1.6269	. 1016	1.2678	1.1471
Hydrogen iodide . .	HI	127.93	5.7075	. 3562	4.480	4.052
Hydrogen selenide	$\mathrm{H}_{2} \mathrm{Se}$	80.976	3.670	. 229	2.839	2.568
Hydrogen sulfide .	$\mathrm{H}_{2} \mathrm{~S}$	34.082	1.5203	. 0949	1.190	1.077
Krypton . . . .		83.7	3.7365	. 2332	2868	2.595
Methane	$\mathrm{CH}_{4}$	16.042	. 7152	. 04462	. 5544	. 5016
Methyl chloride	$\mathrm{CH}_{3} \mathrm{Cl}$	50.491	2.3076	. 1440	1.7825	1.6125
Methyl ether	$\left(\mathrm{CH}_{3} 3\right)_{2} \mathrm{O}$	46.068	2.1098	. 13171	1.6318	1.4764
Methyl fluoride	$\mathrm{CH}_{3} \mathrm{~F}$	34.034	1.5452	. 09646	1.1951	1.0813
Mono methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	31.058	1.396	. 08715	1.080	. 9769
Neon . ...........		20.183	. 9005	. 05621	. 6963	. 63004
Nitric oxide	NO	30.008	1.3388	. 0836	1.0366	. 9378
Nitrogen (chem.)	$\mathrm{N}_{3}$	28.016	1.2499	. 07803	. 9672	. 8751
Nitrogen ( atm ) .		-	1.2568	. 07846	. 9722	. 8795
Nitrosyl chloride	NOCl	65.465	2.992	. 1868	2.314	2.094
Nitrous oxide . .	$\mathrm{N}_{2} \mathrm{O}$	44.016	1.9638	. 123255	1.5297	1.3840
Oxygen		32.000	14277	. 08915	1.10527	1.0000
Phosphine	$\mathrm{PH}_{3}$	34.004	1.5294	. 09548	1.1829	1.0702
Propane .	$\mathrm{C}_{3} \mathrm{H}_{8}$	44.094	2.020	. 1261	1.562	1.414
Silicon tetrafluoride	$\mathrm{SiF}_{4}$	104.06	4.684	. 2924	3.623	3.278
Sulfur dioxide	$\mathrm{SO}_{2}$	64.066	2.858	. 1784	2.2638	2.0482
Xenon . . . . . . . . .	Xe	131.3	5.8579	. 3657	4.525	4.094

[^116]TABLE 256.-THERMAL PROPERTIES OF DRY AIR (IDEAL GAS STATE)

	Specific heat	Enthalpy$\left(\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}\right)$	Entropy		Specific heat	Enthalpy	Entropy
	$\mathrm{C}_{\mathrm{p}}{ }^{\text {o }}$		$S^{\circ}$		$\mathrm{C}_{\mathrm{p}}{ }^{\text {o }}$	$\left(\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}\right)$	$\underline{S}^{\circ}$
${ }^{\circ} \mathrm{K}$	$\frac{\mathrm{p}}{\mathrm{R}}$	$\mathrm{RT}{ }_{0}$	R	${ }^{\circ} \mathrm{K}$	R	RT0	R
				400	3.5305	5.1182	24.9301
10	3.5009	. 1238	12.0382	410	3.5349	5.2476	25.0173
20	3.4941	. 2518	14.4622	420	3.5397	5.3771	25.1026
30	3.4926	. 3796	15.8748	430	3.5447	5.5067	25.1859
40	3.4918	. 5075	16.8832	440	3.5499	5.6366	25.2675
50	3.4915	. 6353	17.6633	450	3.5555	5.7667	25.3473
60	3.4914	. 7631	18.2990	460	3.5613	5.8969	25.4255
70	3.4914	. 8909	18.8367	470	3.5673	6.0274	25.5022
80	3.4913	1.0188	19.3034	480	3.5735	6.1581	25.5773
90	3.4913	1.1466	19.7145	490	3.5799	6.2891	25.6511
100	3.4913	1.2744	20.0824	500	3.5865	6.4202	25.7235
110	3.4914	1.4022	20.4152	510	3.5933	6.5517	25.7946
120	3.4914	1.5300	20.7190	520	3.6003	6.6833	25.8644
130	3.4914	1.6578	20.9984	530	3.6075	6.8153	25.9330
140	3.4914	1.7856	21.2572	540	3.6149	6.9475	26.0005
150	3.4915	1.9134	21.4980	550	3.6224	7.0799	26.0669
160	3.4916	2.0413	21.7234	560	3.6300	7.2127	26.1323
170	3.4916	2.1691	21.9351	570	3.6377	7.3456	26.1966
180	3.4917	2.2969	22.1346	580	3.6456	7.4790	26.2599
190	3.4919	2.4247	22.3234	590	3.6535	7.6126	26.3223
200	3.4922	2.5526	22.5026	600	3.6615	7.7465	26.3838
210	3.4924	2.6804	22.6729	610	3.6696	7.8807	26.4444
220	3.4927	2.8083	22.8354	620	3.6778	8.0152	26.5041
230	3.4932	2.9362	22.9907	630	3.6860	8.1500	26.5630
240	3.4937	3.0641	23.1394	640	3.6943	8.2851	26.6211
250	3.4945	3.1920	23.2820	650	3.7027	8.4205	26.6785
260	3.4953	3.3199	23.4191	660	3.7111	8.5562	26.7351
270	3.4963	3.4479	23.5510	670	3.7195	8.6922	26.7910
280	3.4975	3.5759	23.6782	680	3.7279	8.8285	26.8461
290	3.4989	3.7040	23.8009	690	3.7363	8.9651	26.9006
300	3.5005	3.8321	23.9196	700	3.7447	9.1021	26.9544
310	3.5024	3.9603	24.0344	710	3.7531	9.2393	27.0076
320	3.5044	4.0885	24.1456	720	3.7614	9.3768	27.0601
330	3.5068	4.2169	24.2535	730	3.7698	9.5147	27.1121
340	3.5093	4.3453	24.3582	740	3.7782	9.6528	27.1634
350	3.5122	4.4738	24.4600	750	3.7865	9.7913	27.2142
360	3.5153	4.6024	24.5590	760	3.7947	9.9301	27.2644
370	3.5186	4.7312	24.6553	770	3.8030	10.0692	27.3141
380	3.5224	4.8601	24.7492	780	3.8112	10.2085	27.3632
390	3.5263	4.9891	24.8408	790	3.8194	10.3482	27.4118
400	3.5305	5.1182	24.9301	800	3.8275	10.4882	27.4599

Conversion factors

To convert tahulated value of	to	having the dimensions indicated below	$\underset{\text { by }}{\substack{\text { multiply }}}$
$\mathrm{C}_{\rho}{ }^{\circ} / \mathrm{R}, \mathrm{S}^{\circ} / \mathrm{R}$	$\mathrm{C}_{\rho}{ }^{\circ} . \mathrm{S}^{\circ}$	cal $\mathrm{mol}^{-1}{ }^{\circ} \mathrm{K}^{-1}$ ( or ${ }^{\circ} \mathrm{C}^{-1}$ )	1.98719
		cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}$ ( or ${ }^{\circ} \mathrm{C}^{-1}$ )	. 0686042
		joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\mathrm{or}^{\circ} \mathrm{C}^{-1}\right)$	. 287040
		Btu ( lbmol$)^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\mathrm{or}^{\circ} \mathrm{F}^{-1}\right.$ )	1.98588
		Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}$ ( or $^{\circ} \mathrm{F}^{-1}$ )	. 0685590

(continued)

TABLE 256.-THERMAL PROPERTIES OF DRY AIR (IDEAL GAS STATE) (concluded)

	Specific		Entropy		Specific		
	$\mathrm{C}_{\mathrm{p}}{ }^{\circ}$	$\begin{aligned} & \text { Enthapy } \\ & \left(\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}\right) \end{aligned}$	Entropy S		$\begin{aligned} & \text { heat } \\ & C_{p}{ }^{\circ} \end{aligned}$	$\begin{aligned} & \text { Enthalpy } \\ & \left(\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}\right) \end{aligned}$	Entropy S ¢
${ }^{\circ} \mathrm{K}$	$\frac{\mathrm{p}}{\mathrm{R}}$	RT。	-	${ }^{\circ} \mathrm{K}$	$\frac{\mathrm{c}^{\text {p }}}{\mathrm{R}}$	$\mathrm{RT}_{0}$	$\frac{\mathrm{S}^{\text {a }}}{}$
800	3.8275	10.4882	27.4599	1900	4.3337	27.1375	31.0047
850	3.8670	11.1924	27.6931	1950	4.3452	27.9318	31.1175
900	3.9049	11.9037	27.9152	2000	4.3561	28.7281	31.2276
950	3.9409	12.6218	28.1273	2050	4.3666	29.5264	31.3353
1000	3.9750	13.3463	28.3303	2100	4.3767	30.3267	31.4407
1050	4.0070	14.0769	28.5250	2150	4.3864	31.1287	31.5438
1100	4.0371	14.8131	28.7121	2200	4.3958	31.9324	31.6447
1150	4.0653	15.5547	28.8922	2250	4.4048	32.7379	31.7436
1200	4.0917	16.3013	29.0658	2300	4.4135	33.5449	31.8405
1250	4.1166	17.0525	29.2333	2350	4.4219	34.3536	31.9355
1300	4.1398	17.8082	29.3953	2400	4.4301	35.1637	32.0287
1350	4.1615	18.5679	29.5519	2450	4.4380	35.9754	32.1201
1400	4.1820	19.3315	29.7036	2500	4.4456	36.7884	32.2099
1450	4.2012	20.0988	29.8507	2550	4.4530	37.6028	32.2980
1500	4.2193	20.8695	29.9935	2600	4.4602	38.4186	32.2845
1550	4.2364	21.6434	30.1321	2650	4.4672	39.2357	32.4695
1600	4.2525	22.4203	30.2669	2700	4.4740	40.0540	32.5531
1650	4.2678	23.2001	30.3979	2750	4.4807	40.8735	32.6353
1700	4.2823	23.9826	30.5255	2800	4.4871	41.6943	32.7160
1750	4.2962	24.7678	30.6499	2850	4.4933	42.5162	32.7955
1800	4.3093	25.5553	30.7711	2900	4.4994	43.3392	32.8737
1850	4.3218	26.3453	30.8893	2950	4.5053	44.1633	32.9507
1900	4.3337	27.1375	31.0047	3000	4.5109	44.9884	33.0264

## Conversion factors

To convert tabulated	
value of	
$\left(\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}\right) / \mathrm{RT}_{0}$	to
	$\left(\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}\right)$


having the dimensions   indicated below	multiply
cy	542.821
cal mol ${ }^{-1}$	18.7399
cal g	
joules g g	
Btu $\left(\mathrm{lb} \mathrm{mol}^{-1} \mathrm{~m}^{-1}\right.$	78.4079
Btu $\mathrm{lb}^{-1}$	976.437
	33.7098



To convert tabulated $C_{p}{ }^{\circ} / R, S^{\circ} / R$

## Conversion factors

$\underset{\substack{\text { multiply } \\ \text { by }}}{ }$
1.98719
. 0709305
.296774
1.98588
. 0708837
(continued)
(IDEAL GAS STATE) (concluded)

	Specific heat $\mathrm{C}_{\mathrm{p}}{ }^{\circ}$	$\begin{aligned} & \text { Enthalpy } \\ & \left(\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}\right) \end{aligned}$	Entropy $S^{\circ}$		Specific heat $\mathrm{C}_{\mathrm{p}}{ }^{\text {b }}$	Enthalpy $\left(\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}\right)$	Entropy $S^{\circ}$
${ }^{\circ} \mathrm{K}$	R	RT ${ }_{0}$	R	${ }^{\circ} \mathrm{K}$	R	$\mathrm{RT}_{0}$	R
800	3.7806	10.4423	26.5658	2900	4.4460	43.0145	31.9327
850	3.8207	11.1380	26.7962	2950	4.4503	43.8287	32.0088
900	3.8596	11.8409	27.0156	3000	4.4545	44.6437	32.0836
950	3.8970	12.5508	27.2253	3050	4.4585	45.4595	32.1573
1000	3.9326	13.2674	27.4261	3100	4.4624	46,2759	32.2298
1050	3.9664	13.9904	27.6188	3150	4.4663	47.0931	32.3013
1100	3.9982	14.7193	27.8040	3200	4.4699	47.9109	32.3716
1150	4.0281	15.4539	27.9824	3250	4.4735	48.7295	32.4409
1200	4.0562	16.1939	28.1544	3300	4.4770	49.5486	32.5093
1250	4.0825	16.9388	28.3206	3350	4.4804	50.3684	32.5766
1300	4.1072	17.6883	28.4812	3400	4.4836	51.1888	32.6430
1350	4.1303	18.4422	28.6366	3450	4.4868	52.0098	32.7085
1400	4.1518	19.2002	28.7872	3500	4.4900	52.8314	32.7731
1450	4.1720	19.9621	28.9333	3550	4.4930	53.6535	32.8368
1500	4.1909	20.7275	29.0751	3600	4.4960	54.4762	32.8996
1550	4.2086	21.4963	29.2128	3650	4.4988	55.2994	32.9617
1600	4.2252	22.2682	29.3467	3700	4.5016	56.1232	33.0229
1650	4.2408	23.0430	29.4769	3750	4.5044	56.9474	33.0834
1700	4.2554	23.8206	29.6037	3800	4.5071	57.7722	33.1431
1750	4.2692	24.6008	29.7273	3850	4.5097	58.5974	33.2020
1800	4.2821	25.3834	29.8477	3900	4.5123	59.4231	33.2602
1850	4.2943	26.1684	29.9652	3950	4.5148	60.2493	33.3177
1900	4.3057	26.9554	30.0799	4000	4.5173	61.0759	33.3745
1950	4.3166	27.7446	30.1919	4050	4.5197	61.9030	33.4306
2000	4.3268	28.5356	30.3013	4100	4.5221	62.7306	33.4861
2050	4.3365	29.3285	30.4083	4150	4.5245	63.5585	33.5409
2100	4.3457	30.1232	30.5129	4200	4.5268	64.3868	33.5951
2150	4.3544	30.9194	30.6152	4250	4.5290	65.2156	33.6487
2200	4.3627	31.7172	30.7154	4300	4.5312	66.0448	33.7017
2250	4.3705	32.5165	30.8135	4350	4.5334	66.8745	33.7541
2300	4.3780	33.3172	30.9097	4400	4.5356	67.7045	33.8059
2350	4.3852	34.1192	31.0039	4450	4.5377	68.5349	33.8572
2400	4.3920	34.9225	31.0963	4500	4.5398	69.3657	33.9079
2450	4.3985	35.7270	31.1869	4550	4.5419	70.1968	33.9581
2500	4.4047	36.5327	31.2759	4600	4.5440	71.0284	34.0077
2550	4.4106	37.3395	31.3631	4650	4.5460	71.8603	34.0569
2600	4.4163	38.1473	31.4488	4700	4.5480	72.6927	34.1055
2650	4.4218	38.9562	31.5330	4750	4.5500	73.5253	34.1536
2700	4.4270	39.7661	31.6157	4800	4.5520	74.3583	34.2013
2750	4.4320	40.5769	31.6970	4850	4.5540	75.1917	34.2484
2800	4.4369	41.3886	31.7769	4900	4.5559	76.0255	34.2952
2850	4.4415	42.2011	31.8554	4950	4.5579	76.8497	34.3415
2900	4.4460	43.0145	31.9327	5000	4.5598	77.6941	34.3873

Conversion factors

To convert tabulated		
value of		multiply
$\left(\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}\right) / \mathrm{RT}_{0}$	to dimensions indicated below	by
	cal mol	
	cal $\mathrm{g}^{-1}$	542.821
	joules $\mathrm{g}^{-1}$	19.3754
	Btu $\left(\mathrm{lb} \mathrm{mol}^{-1}\right.$	81.0699
	Btu $\mathrm{lb}^{-1}$	976.437
		34.8528


(continued)

TABLE 258.-THERMAL PROPERTIES OF MOLECULAR OXYGEN
(IDEAL GAS STATE) (concluded)

	Specific heat C ${ }^{\circ}$	Enthalpy $\left(\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}\right)$	Entropy		Specific heat $\mathrm{C}_{\mathrm{p}}{ }^{\circ}$	$\begin{aligned} & \text { Enthalpy } \\ & \left(H^{\circ}-E_{0}^{\circ}\right) \end{aligned}$	Entropy
${ }^{\circ} \mathrm{K}$	$\mathrm{Cl}_{-}^{\mathrm{p}} \mathrm{R}^{-}$	$\mathrm{RT}_{0}$	$\mathrm{R} \quad{ }^{\circ} \mathrm{K}$		$\frac{\mathrm{c}}{\mathrm{p}}$	- $\mathrm{RT}_{0}$	$\frac{S^{\circ}}{\text { R }}$
800	4.0577	10.7950	28.36622900		4.7824	45.2601	34.0470
850	4.0970	11.5414	28.61342950		4.7944	46.1366	34.1289
900	4.1327	12.2946	28.8486		4.8062	47.0152	34.2096
950	4.1652	13.0541	29.07293050		4.8177	47.8961	34.2891
1000	4.1948	13.8193	29.2874		4.8291	48.7790	34.3675
1050	4.2219	14.5896	$29.4927 \quad 3150$		4.8402	49.6640	34.4449
1100	4.2469	15.3647	29.6897 3200		4.8512	50.5509	34.5212
1150	4.2698	16.1442	29.87903250		4.8619	51.4398	34.5965
1200	4.2912	16.9278	30.06113300		4.8724	52.3307	34.6708
1250	4.3112	17.7151	30.2367 3350		4.8827	53.2236	34.7442
1300	4.3300	18.5059	30.40623400		4.8929	54.1183	34.8166
1350	4.3479	19.3002	30.57003450		4.9028	55.0148	34.8881
1400	4.3651	20.0976	30.7284		4.9125	55.9130	34.9587
1450	4.3815	20.8981	30.8819 3550		4.9220	56.8132	35.0285
1500	4.3975	21.7016	31.03073600		4.9312	57.7150	35.0974
1550	4.4130	22.5080	31.17513650		4.9403	58.6183	35.1654
1600	4.4282	23.3171	31.3155		4.9491	59.5233	35.2327
1650	4.4431	24.1290	31.45193750		4.9578	60.4301	35.2992
1700	4.4578	24.9437			4.9662	61.3384	35.3649
1750	4.4724	25.7609	31.71423850		4.9744	62.2482	35.4299
1800	4.4868	26.5809	31.8404		4.9825	63.1594	35.4941
1850	4.5011	27.4036	31.9636		4.9903	64.0721	35.5576
1900	4.5153	28.2288	32.0838		4.9979	64.9862	35.6204
1950	4.5295	29.0565	32.2013		5.0054	65.9022	35.6826
2000	4.5436	29.8869	32.3161		5.0126	66.8193	35.7441
2050	4.5576	30.7198	32.4285		5.0197	67.7371	35.8049
2100	4.5715	31.5554	32.5385		5.0265	68.6561	35.8650
2150	4.5854	32.3935	32.6462 4250		5.0332	69.5765	35.9245
2200	4.5993	33.2341	32.7518		5.0397	70.4983	35.9835
2250	4.6130	34.0771	32.8553		5.0460	71.4217	36.0418
2300	4.6267	34.9227	32.95684400		5.0521	72.3461	36.0995
2350	4.6404	35.7709	33.05654450		5.0580	73.2715	36.1566
2400	4.6540	36.6217	33.1543 ( 4500		5.0638	74.1976	36.2132
2450	4.6674	37.4747	33.2504		5.0693	75.1246	36.2691
2500	4.6808	38.3302	33.3449		5.0746	76.0528	36.3246
2550	4.6940	39.1882	33.4377 ( 4650		5.0797	76.9827	36.3794
2600	4.7071	40.0487	33.5289		5.0847	77.9135	36.4338
2650	4.7200	40.9114	33.61874750		5.0896	78.8445	36.4876
2700	4.7328	41.7765	33.7071		5.0943	79.7760	36.5410
2750	4.7454	42.6440	33.79404850		5.0987	80.7086	36.5938
$\begin{aligned} & 2800 \\ & 2850 \\ & 2900 \end{aligned}$	4.7579	43.5138	$\begin{aligned} & 33.8796 \\ & 33.9640 \\ & 34.0470 \end{aligned}$	4900	5.1028	81.6423	36.6461
	4.7703	44.3858		4950	5.1068	82.5770	36.6980
	4.7824	45.2601		5000	5.1109	83.5122	36.7493
			Conversion factors				
	To convert tabulated value of		to dimensions indicated below			$\underset{\text { by }}{\text { multiply }}$	
	$\mathrm{H}^{\circ}-\mathrm{E}_{0}{ }^{\circ}$		$\mathrm{cal} \mathrm{mol}{ }^{-1}$			542.821	
	RT 。		$\text { cal } \mathrm{g}^{-1}$			16.9632	
				70.9742			
			Btu ( 1 b mol$)^{-1}$		976.437		
			Btu 1b ${ }^{-1}$		30.5137		

TABLE 259.-CRITICAL TEMPERATURES, PRESSURES, AND DENSITIES OF GASES **

Substance	$\begin{gathered} \text { Critical } \\ \text { temperature } \\ \left(0^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { Critical } \\ & \text { pressure } \\ & \left(\mathrm{kg} / \mathrm{cm}^{2}\right) \end{aligned}$	Critical density ( $\mathrm{g} / \mathrm{cm}^{3}$ )
Acetylene	36	62	. 231
Air ....	-140.7	37.2	.35* . $31 \dagger$
Alcohol ( $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ )	243.1	63.1	. 2755
Alcohol ( $\mathrm{CH}_{4} \mathrm{O}$ )	240.0	78.7	. 272
Allylene	128		
Ammonia	132.4	115.5	. 235
Argon	-122	49.7	. 531
Benzene	288.5	47.7	. 304
Bromine	302	$\cdots$	1.18
iso-Butane	134	37	. . .
n-Butane	153	36	.
Carbon dioxide	31.1	75.5	. 46
Carbon disulfide	273	76	$\cdots$
Carbon monoxide	-139	36.2	. 311
Chlorine	144.0	78.7	. 573
Chloroform	263	$\cdots$	. 516
Cyanogen	128	59	
Ethane	32.1	48.8	. 21 ?
Ether (ethyl)	193.8	35.5	. 2625
Ethyl chloride	187.2	52	. 33
Ethylene	9.7	50.9	. 2159
Helium .	-267.9	2.34	. 0693
Hydrogen	-239.9	13.2	. 0310
Hydrogen bromide	90	84	
Hydrogen chloride	51.4	84.5	. 42
Hydrogen iodide .	151	82	. . .
Hydrogen sulfide	100.4	92	...
Iodine	553		
Krypton	-63?	$56 ?$	. 78 ?
Mercury	$1460 \pm 20$	$1640 \pm 50$	. 5
Methane	-82.5	47.4	. 162
Methyl chloride	143.1	65.8	. 37 ?
Neon . . . . . . . .	-228.7	26.8	. 484
Nitric oxide	-94?	65	. 52 ?
Nitrogen	-147.1	34.7	. 3110
Nitrous oxide	36.5	71.7	. 45 ?
Oxygen	-118.8	51.4	. 430
Phosgene	182	56	. 52
Propane	95.6	43	. . .
Radon	104	64.1	..
Silicon hydride	-3.5	49.7	. . .
Sulfur .........	1040		
Sulfur dioxide	157.2	80.1	. 52 ?
Sulfur trioxide	218.3	86.5	. 630
Water	374.0	224.9	. 4
Xenon	16.6	60.2	1.155

[^117]TABLE 260.-CONVERSION FACTORS FOR VARIOUS PRESSURE UNITS *

	$\underbrace{\text { dyne } / \mathrm{cm}^{2}}$	${ }_{10-6}{ }^{\text {bar }}$	$\underset{0^{\circ} \mathrm{C}}{\mathrm{mmHg}}$	$\begin{gathered} \text { in. } \mathrm{Hg} \\ 0^{\circ} \mathrm{C} \\ \hline 053 \times 10-5 \end{gathered}$	millibars	$\mathrm{lb} / \mathrm{in}^{2}{ }^{2}$	$\begin{gathered} \mathrm{b} / \mathrm{ft}^{2} \\ 2088 \mathrm{t} \times \mathrm{to-3} \end{gathered}$	$\mathrm{g} / \mathrm{cm}^{2}$	cm water $20^{\circ} \mathrm{C}$	in. water $20^{\circ} \mathrm{C}$	$\underset{9 . \operatorname{atm}}{869 \times 10-7}$
$\begin{array}{r} 1 \text { dyne } / \mathrm{cm}^{2} \\ \text { (barye) } \end{array}$	$=1$	$10^{-6}$			$10^{-3}$	$1.4506 \times 10^{-5}$	$2.0883 \times 10^{-3}$	$1.0197 \times 10^{-3}$			$9.869 \times 10^{-7}$
1 bar	$=10^{\circ}$	1	$7.5006 \times 10^{2}$	29.53	$10^{3}$	14.51	$2.0883 \times 10^{3}$	$1.0197 \times 10^{3}$	$1.0216 \times 10^{3}$	$4.022 \times 10^{2}$	. 9869
$1 \underset{\text { (Tor) }}{\mathrm{mmHg}}$	$=1.3332 \times 10^{3}$	$1.3332 \times 10^{-3}$	1	$3.937 \times 10^{-2}$	1.3332	$1.9339 \times 10^{-2}$	2.7847	1.3594	1.3620	. 5363	$1.3157 \times 10^{-8}$
$1 \mathrm{in} . \mathrm{Hg}$	$=3.386 \times 10^{4}$	$3.386 \times 10^{-2}$	25.400	1	33.864	. 4912	70.732	34.530	34.590	13.620	$3.3417 \times 10^{-2}$
1 millibar	$=10^{3}$	$10^{-3}$	. 7501	$2.953 \times 10^{-2}$	1	$1.4506 \times 10^{-2}$	2.0888	1.0197	1.0216	. 4022	$9.869 \times 10^{-4}$
$1 \mathrm{lb} / \mathrm{in}^{2}$	$=6.894 \times 10^{4}$	$6.894 \times 10^{-2}$	51.71	2.0368	68.95	1	$1.44 \times 10^{2}$	70.30	70.43	27.731	$6.804 \times 10^{-2}$
$1 \mathrm{lb} / \mathrm{ft}^{2}$	$=4.788 \times 10^{2}$	$4.788 \times 10^{-4}$	. 3591	$1.414 \times 10^{-2}$	. 4788	$6.945 \times 10^{-8}$	1	. 4882	. 4891	. 1926	$4.725 \times 10^{-4}$
$1 \mathrm{~g} / \mathrm{cm}^{2}$	$=9.807 \times 10^{2}$	$9.807 \times 10^{-4}$	. 7356	$2.8961 \times 10^{-2}$	. 9807	$1.4226 \times 10^{-2}$	2.0484	1	1.0018	. 3945	$9.678 \times 10^{-4}$
1 cm water	$\mathrm{C}=9.789 \times 10^{2}$	$9.789 \times 10^{-4}$	. 7342	$2.891 \times 10^{-2}$	. 9789	$1.4198 \times 10^{-2}$	2.0446	. 9981	1	. 3937	$9.661 \times 10^{-4}$
1 in . water	$\mathrm{C}=2.486 \times 10^{3}$	$2.486 \times 10^{-3}$	1.865	$7.343 \times 10^{-2}$	2.486	$3.607 \times 10^{-2}$	5.193	2.535	2.5400	1	$2.453 \times 10^{-8}$
1 atm	$=1.01325 \times 10^{6}$	1.01325	$7.60 \times 10^{2}$	29.921	$1.0133 \times 10^{3}$	14.70	$2.1164 \times 10^{3}$	$1.0332 \times 10^{3}$	$1.0351 \times 10^{3}$	$4.0758 \times 10^{2}$	1

* The tahle is based primarily upon the following data and assumptions: a, One atm pressure equals 760 mmHg at $0^{\circ} \mathrm{C}$ under standard gravity of $980.665 \mathrm{~cm} / \mathrm{sec}^{2}$.
b, The density of mercury at $0^{\circ} \mathrm{C}$ is $13.5951 \mathrm{~g} / \mathrm{cm}^{3}$. c, The density of water at $20^{\circ} \mathrm{C}$ is .99820 .


## 278

TABLES 261-267.-THE JOULE-THOMSON EFFECT IN FLUIDS*
The Joule-Thomson effect is defined as the ratio of the change in temperature to the drop in pressure of a fluid driven by the drop in pressure through a porous partial blockage in the fluid flow tube. The space between the reading thermometers on each side of the porous obstruction is to be isolated as to exchange of heat energy but not as to work energy. Nor must the fluid gain a significant amount of directed kinetic energy between the thermometers. Under these circumstances the Joule-Thomson effect, $\mu=\left(\frac{d t}{d p}\right)_{n}$, where $\mathrm{h}=\mathrm{u}-\mathrm{pv}=$ enthalpy, and since $\mu$ is a function of both $t$ and $p$, the steps are preferably represented as infinitesimals. Since $\Delta p$ is always negative, $\mu$ is positive when $\Delta t$ is negative. For all the gases yet measured, $\mu$ is zero along a line in the $t p$ plane called the inversion line.

[^118]TABLE 261.-THE JOULE-THOMSON EFFECT ON AIR (WATER AND CARBON DIOXIDE FREE) ${ }^{83}$
$\mu$ as a function of $t$ and $p, t$ in ${ }^{\circ} \mathrm{C}, p$ in $\operatorname{atm}, \mu$ in ${ }^{\circ} \mathrm{C} / \mathrm{atm}$.

${ }^{83}$ Proc. Amer. Acad. Arts and Sci., vol. 60, p. 535, 1025; vol. 64, p. 287, 1930 (both corrected).

TABLE 262.-THE JOULE-THOMSON EFFECT ON HELIUM ${ }^{81}$
$\mu$ as a function to $t$ (and independent of pressure up to 200 atm ), $t$ in ${ }^{\circ} \mathrm{C}, \mu$ in ${ }^{\circ} \mathrm{C} / \mathrm{atm}$.

$t^{\circ} \mathrm{C}$	$-\mu \times 10^{2}$	$t^{\circ} \mathrm{C}$	$-\mu \times 10^{2}$	$t^{\circ} \mathrm{C}$	$-\mu \times 10^{2}$	$t^{\circ} \mathrm{C}$	$-\mu \times 10^{2}$	$t^{\circ} \mathrm{C}$	$-\mu \times 10^{2}$
300	5.97	150	6.45	50	6.31	-50	6.05	-155	5.03
250	6.29	100	6.38	25	6.24	-100	5.84	-180	4.12
200	6.41	75	6.35	0	6.16	-140	5.40	-190	3.80

[^119]$\mu$ as a function of $t$ and $p, t$ in ${ }^{\circ} \mathrm{C}, p$ in atm, $\mu$ in ${ }^{\circ} \mathrm{C} / \mathrm{atm}$.

$t / p$	1 atm	20	60	100	140	180	200
$300^{\circ}$	. 0643	. 0607	. 0530	. 0445	. 0370	. 0370	. 0276
250	. 0980	. 0910	. 0785	. 0665	. 0555	. 0485	. 0468
200	. 1377	. 1280	. 1102	. 0950	. 0823	. 0715	. 0675
150	. 1845	. 1720	. 1485	. 1285	. 1123	. 0998	. 0945
125	. 2105	. 1980	. 1707	. 1480	. 1300	. 1153	. 1100
100	. 2413	. 2277	. 1975	. 1715	. 1490	. 1320	. 1255
75	. 2695	. 2557	. 2285	. 1993	. 1710	. 1505	. 1415
50	. 3220	. 3015	. 2650	. 2297	. 1947	. 1700	. 1580
25	. 3720	. 3490	. 3077	. 2628	. 2213	. 1850	. 1745
0	. 4307	. 4080	. 3600	. 3010	. 2505	. 2050	. 1883
- 25	. 5045	. 4805	. 4210	. 3460	. 2763	. 2140	. 1950
- 50	. 5960	. 5720	. 4963	. 3970	. 2840	. 2037	. 1860
- 75	. 7100	. 6895	. 5910	. 4225	. 2480	. 1537	. 1215
-87.5	. 7780	. 7610	. 6450	. 3910	. 1903	. 1027	. 0773
-100	. 8605	. 8485	. 6900	. 2820	. 1137	. 0560	. 0395
-112.5	. 9680	. 9560	. 6530	. 1240	. 0515	+. 0198	+. 0087
-125	1.112	1.102	. 1250	+. 0415	$+.0090$	-. 0100	-. 0165
-137.5	1.333	1.342	+. 0210	-. 0020	-. 0203	-. 0350	-. 0402
-150	1.812		-. 0025	-. 0277	-. 0403	-. 0595	-. 0640
-160	2.385						
-170	3.017						

85 Phys. Rev., vol. 46, p. 785, 1934 (corrected).

TABLE 264.-THE JOULE-THOMSON EFFECT IN NITROGEN ${ }^{86}$
$\mu$ as a function of $t$ and $p, t$ in ${ }^{\circ} \mathrm{C}, p$ in atm, $\mu$ in ${ }^{\circ} \mathrm{C} /$ atm.

t/b	1 atm	20	33.5	60	100	140	180	200
$300^{\circ} \mathrm{C}$	. 0140	. 0096	. 0050	-. 0013	-. 0075	-. 0129	-. 0160	-. 0171
250	. 0331	. 0256	. 0230	$+.0160$	+. 0071	+.0009	-. 0037	-. 0058
200	. 0558	. 0472	. 0430	. 0372	. 0262	. 0168	$+.0094$	$+.0070$
150	. 0868	. 0776	. 0734	. 0628	. 0482	. 0348	. 0248	. 0228
125	. 1070	. 0973	. 0904	. 0786	. 0621	. 0459	. 0347	. 0326
100	. 1292	. 1173	. 1100	. 0975	. 0768	. 0582	. 0462	. 0419
75	. 1555	. 1421	. 1336	. 1191	. 0941	. 0740	. 0583	. 0543
50	. 1855	. 1709	. 1621	. 1449	. 1164	. 0915	. 0732	. 0666
25	. 2217	. 2060	. 1961	. 1729	. 1400	. 1105	. 0874	. 0779
0	. 2656	. 2494	. 2377	. 2088	. 1679	. 1316	. 1015	. 0891
- 25	. 3224	. 3013	. 2854	. 2528	. 2001	. 1506	. 1101	. 0932
- 50	. 3968	. 3734	. 3467	. 3059	. 2332	. 1676	. 1120	. 0909
- 75	. 5033	. 4671	. 4318	. 3712	. 2682	. 1735	. 1026	. 0800
- 87.5	. 5710	. 5247	. 4854	. 4096	. 2808	. 1619	. 0933	. 0733
-100	. 6490	. 5958	. 5494	. 4506	. 2754	. 1373	. 0765	. 0587
-112.5	. 7430	. 6841	. 6208	. 4923	. 2254	. 0932	. 0488	. 0346
-125	. 8557	. 7948	. 7025	. 4940	. 1314	. 0498	$+.0167$	$+.0032$
-137.5	. 9972	. 9364	. 7964	. 2364	. 0638	+. 0177	-. 0181	-. 0175
-150	1.2659	1.1246	. 1704	. 0601	+. 0202	$-.0056$	-. 0211	-. 0284
-160	1.6328	+. 0724	+. 0311	$+.0068$	-. 0088	-. 0175	-. 0263	-. 0315
-170	2.0048	-. 0108	-. 0382					
-180	2.3923							

[^120]TABLE 265.-THE JOULE-THOMSON EFFECT ON MIXTURES OF HELIUM AND ARGON $\left(\mu \times 10^{2}\right)^{87}$
$\mu$ as a function of $t$ and $p, t$ in ${ }^{\circ} \mathrm{C}, p$ in atm, $\mu$ in ${ }^{\circ} \mathrm{C} / \mathrm{atm}$.

$t^{\circ} \mathrm{C} / \mathrm{p}$	1	$\underset{20}{\text { Mixture }}$	No. 1; $\underset{60}{\mathrm{He}} 75.8$	$\begin{gathered} \text { percent, } A \\ 100 \end{gathered}$	$\begin{gathered} 24.2 \text { percent } \\ 140 \end{gathered}$	180	200
250	$-5.83$	-5.95	-6.15	-6.37	-6.56	-6.77	-6.85
200	5.55	5.66	5.90	6.13	6.34	6.55	6.63
150	5.11	5.24	5.52	5.77	5.99	6.21	6.34
100	4.47	4.61	4.91	5.18	5.45	5.72	5.88
50	3.61	3.76	4.08	4.40	4.68	5.01	5.19
0	2.40	2.57	2.92	3.30	3.65	4.03	4.22
- 50	-. 69	-. 92	-1.32	$-1.75$	2.21	2.66	2.82
$-100$	$+3.37$	+2.82	+1.87	+ . 79	- . 14	-. 65	$-.78$
		Mixture No. 2; He 50.6 percent, A 49.4 percent					
250	$-2.84$	-3.19	-3.65	-4.04	-4.21	-4.33	-4.34
200	1.67	2.07	2.71	3.15	3.40	3.55	3.57
150	$-.13$	-. 67	-1.50	2.01	2.32	2.56	2.62
100	$+1.84$	+1.15	+.11	-. 59	$-1.01$	-1.32	1.48
50	4.50	3.66	2.37	$+1.39$	$+.70$	$+.14$	$-.07$
0	8.19	7.20	5.51	4.12	2.96	1.99	+1.57
$-50$	13.84	12.61	10.27	8.14	6.28	4.53	3.63
$-100$			+17.79	+14.17	+10.36	+6.90	+5.40
Mixture No. 3; He 33.5 percent, A 66.5 percent							
250	$+1.34$	+ . 72	-. 38	-1.03	-1.48	-1.68	-1.68
200	2.94	2.32	$+1.25$	$+.45$	-. 13	-. 38	-. 38
150	5.05	4.41	3.23	2.22	+1.41	+. 92	$+.83$
100	7.80	7.10	5.69	4.55	3.63	2.86	2.54
50	12.12	11.28	9.40	7.73	6.32	5.41	5.01
0	18.40	17.18	14.43	12.05	9.88	7.93	6.88
- 50	27.90	25.82	21.93	17.96	13.83	9.63	7.73
$-100$	43.30	41.15	34.30	27.20	17.55	10.07	7.10
Mixturc No. 4; He 16.6 percent, A 83.4 percent							
250	5.75	5.15	3.85	2.70	1.90	1.20	. 95
200	8.45	7.63	6.05	4.75	3.85	3.00	2.60
150	11.70	10.80	8.95	7.45	6.10	5.20	4.60
100	15.50	14.50	12.60	10.80	9.05	7.70	7.05
50	21.05	20.10	17.75	15.35	13.00	10.65	9.55
0	29.85	28.49	25.00	21.15	17.35	14.50	13.05
- 50	44.15	41.80	36.15	30.10	22.90	17.55	15.60
$-100$	70.80	66.10	51.00	29.95	19.75	11.35	8.00

${ }^{87}$ Journ. Chem. Phys., vol. 8, p. 627, 1940.
TABLE 266.-THE JOULE-THOMSON EFFECT IN CARBON DIOXIDE ${ }^{88}$
$\mu$ as a function of $t$ and $p, t$ in ${ }^{\circ} \mathrm{C}, p$ in atm, $\mu$ in ${ }^{\circ} \mathrm{C} / \mathrm{atm}$.

$t / p$	1 atm	20	60	73	100	140	180	200
300	.2650	.2425	.2080	.2002	.1872	.1700	.1540	.1505
250	.3075	.2885	.2625	.2565	.2420	.2235	.2045	.1975
200	.3770	.3575	.3400	.3325	.3150	.2890	.2600	.2455
150	.4890	.4695	.4430	.4380	.4155	.3760	.3102	.2910
125	.5600	.5450	.5160	.5069	.4750	.4130	.3230	.2915
100	.6490	.6375	.6089	.5920	.5405	.4320	.3000	.2555
90	.6900	.6785	.6507	.6309	.5680	.4290	.2738	.2300
80	.7350	.7240	.6955	.6725	.5973	.4050	.2343	.1960
70	.7855	.7750	.7465	.7175	.6192	.3505	.1875	.1600
60	.8375	.8325	.8060	.7675	.6250	.2625	.1405	.1245
50	.8950	.8950	.8800	.8225	.5570	.1720	.1025	.0930
40	.9575	.9655	.9705	.8769	.2620	.1075	.0723	.0660
30	1.0265	1.0430	1.0835	.2870	.1215	.0678	.0495	.0445
20	1.1050	1.1355	.1435	.1075	.0700	.0420	.0320	.0272
10	1.1910	1.2520	.0720	.0578	.0407	.0235	$.018 ?$	.0142
0	1.2900	1.4020	.0370	.0310	.0215	.0115	.0085	.0045
-25	1.6500	.0000	-.0028	-.0039	-.0050	-.0062	-.0080	-.0115
-50	2.4130	-.0140	-.0150	-.0165	-.0160	-.0183	-.0228	-.0248
-75		-.0200	-.0200	-.0232	-.0228	-.0240	-.0250	-.0290

[^121]TABLE 267.-THE JOULE-THOMSON EFFECT IN MIXTURES OF HELIUM AND NITROGEN $\left(\mu \times 10^{2}\right)^{80}$
$\mu$ as a function of $t$ and $p, t$ in ${ }^{\circ} \mathrm{C}, p$ in atm, $\mu$ in ${ }^{\circ} \mathrm{C} / \mathrm{atm}$.


[^122]TABLE 268.—COMPRESSIBILITY OF LIQUIDS ${ }^{\text {º }}$
Part 1.—Relative volumes

	Ethyl alcohol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$		Isobutyl alcohol $\mathrm{C}_{4} \mathrm{H}_{0} \mathrm{OH}$		Ether $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$		n-Proply alcohol $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$		Amyl alcohol $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$		Ethyl iodide $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	
atm	20	$80^{\circ} \mathrm{C}$	20	$80^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$						
1	1.0212	1.0934	1.0195	1.0880	$1.0315^{\circ}$		1.0173	1.0865	1.0181	. 0814	1.0214	. 0935
500	. 9782	1.0319	. 9740	1.0262	. 9668.	. 0369	. 9770	1.0305	. 9788	1.0288	. 9774	1.0351
1000	. 9479	. 9922	. 9470	. 9883	. 9337	. 9874	. 9483	. 9913	. 9511	. 9915	. 9475	. 9946
2000	. 9059	. 9380	. 9078	. 9385	. 8850	. 9189	. 9124	. 9424	. 9138	. 9427	. 9070	. 9397
3000	. 8760	. 9025	. 8798	. 9052	. 8503	. 8776	. 8876	. 9120	. 8869	. 9110	. 8777	. 9034
4000	. 8517	. 8756	. 8575	. 8802	. 8246	. 8481	. 8677	. 8893	. 8658	. 8877	. 8555	. 8760
6000	. 8149	. 8354	. 8242	. 8433	. 7883	. 8070	. 8365	. 8548	. 8348	. 8531	. 8207	. 8381
8000	. 7888	. 8061	. 8001	. 8181	. 7613	. 7779	. 8138	. 8301	. 8116	. 827.3	. 7937	. 8099
10,000	. 7671	. 7830	. 7802	. 7976	. 7380	. 7535	. 7958	. 8114	. 7918	. 8060	. 7725	. 7877
12,000	. 7485	. 7648	$.7631^{\circ}$	. 7799	. 7178	. 7326	.7814	. 7952	.7754	. 7902	.7554	. 7706
	$\begin{aligned} & \text { Phosp } \\ & \text { chlor } \end{aligned}$	$\mathrm{PCl}_{3}$	C	OH	$\mathrm{C}$				C			
m	$20^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$						
1	1.0234	1.103 )	1.0238	1.1005			1.0235	1.1092	1.0275		1.0279	
500	. 9852	1.0443	. 9811	1.0400	. 9696	1.0358	. 9854	1.0458	. 9776		. 9818	
1000	. 9577	1.0040	. 9494	. 9993	. 9253	. 9797	. 9567	1.0061	. 9460	. 9988	. 9526	1.0082
2000	. 9184	. 9531	. 9064	. 9429	. 8749	. 9128	. 9151	. 9525	. 9022	. 9381	. 9076	. 9467
3000	. 8902	. 9192	. 8763	. 9065	. 8415	. 8715	. 8852	. 9154	. 8714	. 9020	. 8748	. 9073
4000	. 8679	. 8933	. 8523	. 8782	. 8167	. 8422	. 8620	. 8870	. 8479	. 8742	. 8504	. 8786
6000	. 8348	. 8561	. 8163	. 8381	. 7796	. 8008	. 8265	. 8468	. 8131	. 8339	. 8143	. 8370
8000	. 8105	. 8292	. 7907	. 8102	. 7533	. 7728	. 7990	. 8188	. 7868	. 8056	. 7866	. 8066
10,000	. 7902	. 8077	. 7696	. 7875	. 7320	. 7501	. 7774	. 7962	. 7656	. 7825	freezes	. 7821
12,000	. 7741	. 7898	. 7527	. 7709	. 7148	. 7301	. 7609	. 7758	. 7495	.7648	"	. 7617

Part 2.- $\beta=\left(1 / V_{0}\right)(d V / d P)$

Substance	Temp ${ }^{\circ} \mathrm{C}$	Pressure megabaryes	Compressibility per mega. baryes $\beta \times 10^{9}$	Substance	Pressure   mega-   Temp ${ }^{\circ} \mathrm{C}$ baryes	Compressibility per megabaryes $\beta \times 10^{6}$
Benzene	. 17	5	89	Mercury	221,000	3.91
	20	200	77		22 12,000	2.37
	20	400	67	Oils: almond	. 155	53
Chloroform	. 20	200	83	castor	.. 15	46
	20	400	70	linseed	.. 15	51
Glycerine	. 15	5	22	olive	.. 15	55
Kerosene	. 20	500	55	rapeseed	. 20	59
	20	1,000	45	Toluene . . .	. 20200	74
	20	12,000	8		$20 \quad 400$	64
Mercury	. 20	300	3.95	Turpentine	. 20	74
	22	500	3.97			

[^123] 49, p. 3, 1913.

TABLE 269.-RELATIVE VOLUMES OF WATER FOR DIFFERENT PRESSURES ${ }^{\text {®1 }}$

Pressure   $\mathrm{kg} / \mathrm{cm}^{2}$   0	$\overbrace{0}$$0^{\circ} \mathrm{C}$   1.0000	$50^{\circ} \mathrm{C}$	$95^{\circ} \mathrm{C}$
500	.9771		
1,000	.9567	.9741	.9984
1,500	.9396	.9582	.9812
2,000	.9248	.9439	.9661
3,000	.8996	.9201	.9409
4,000	.8795	.8997	.9194
5,000	.8626	.8824	.9009
6,000		.8668	.8849
7,000		.8530	.8705
8,000		.8407	.8577
9,000	.8296	.8461	
10,000		.8192	.8352
11,000			.8256

TABLE 270.-RELATIVE VOL. UMES OF ETHER FOR DIF. FERENT PRESSURES ${ }^{\text {M }}$

$\underset{\mathrm{kg}^{2} / \mathrm{cm}^{2}}{ }$	Temperatures	
	$30^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
0	1.0495	
500	. 9761	
1,000	. 9364	
1,500	. 9085	
2,000	. 8858	
2,500	. 8671	. 8909
3,000	. 8511	. 8726
4,000	. 8255	. 8446
5,000	. 8055	. 8225
6,000	. 7888	. 8038
7,000	. 7742	. 7884
8,000	. 7616	. 7747
9,000	. 7504	. 7629
10,000	. 7399	. 7519
11,000	. 7305	. 7418
12,000	. 7225	. 7329

${ }^{91}$ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 66, p. 219, 1931.

## TABLE 271.-COMPRESSIBILITY OF SOLIDS

If $V$ is the volume of the material under a pressure $P$ megabaryes and $V_{0}$ is the volume at atmospheric pressure, then the compressibility $\beta=-\left(1 / V_{0}\right)(d V / d P)$. Its unit is $\mathrm{cm}^{2} /$ megadynes (reciprocal megabaryes). $10^{6} / \beta$ is the bulk modulus in absolute units (dynes $/ \mathrm{cm}^{2}$ ). The following values of $\beta$, arranged in order of increasing compressibility, are for $P=0$ and room temperature. 1 megabarye $=10^{6}$ dynes $/ \mathrm{cm}^{2}=1.020 \mathrm{~kg} / \mathrm{cm}^{2}=$ 0.987 atm .

Substance	$\begin{gathered} \text { Compression } \\ \text { per unit } \\ \text { vol. per } \\ \text { megabarye } \\ \times 10^{6} \end{gathered}$	Bulk modulus, dynes/ $\mathrm{cm}^{2} \times 10^{12}$	Substance	$\begin{gathered} \text { Compression } \\ \text { per unit } \\ \text { vol. per } \\ \text { megabarye } \\ \times 10^{8} \end{gathered}$	Bulk modulus, dynes/ $\mathrm{cm}^{2} \times 10^{12}$
Tungsten	. 27	3.7	Gallium	2.09	. 48
Boron	. 3	3.0	Cadmium	2.17	. 46
Silicon	. 32	3.1	Plate glass	2.23	. 45
Platinum	. 38	2.6	Lead . .	2.27	. 44
Nickel	. 43	23	Thallium	2.3	. 43
Molybdenum	. 46	2.2	Antimony	2.4	. 42
Tantalum ..	. 53	1.9	Quartz .	2.7	. 37
Palladium	. 54	1.9	Magnesium	2.9	. 34
Cobalt	. 55	1.82	Bismuth . .	- 30	. 33
Nichrome	. 56	1.79	Graphite	3.0	. 33
Iron	. 60	1.67	Silica glass	3.1	. 32
Gold	. 60	1.67	Arsenic . .	4.5	. 22
Pyrite	. 7	1.4	Calcium	. 5.7	. 175
Copper	. 75	1.33	Strontium	. 8.4	. 120
Manganese	. 84	1.19	Phosphorus (red)	- 9.2	. 109
Brass	. 89	1.12	Selenium .......	. 12.0	. 083
Chromium	. 9	1.12	Ice . . . . . . . . . . .	. 120	. 083
Silver	. 99	1.01	Sulfur ..........	. . 12.9	. 078
Mg. silicate,	1.03	. 91	Iodine . . . . . . . .	. 13.0	. 077
Mg . silicate	1.21	. 82	Sodium	. 15.6	. 064
Aluminum	1.33	. 75	Hard rubber . . . . .	. 19.4	
Calcite	1.39	. 72	Phosphorus (white)	) 20.5	. 049
Tin	. 1.89	. 53			

It was found that the compressibility and thermal expansion of two samples of the same specific gravity, but from different sources, differed more than 30 percent at the higher temperatures, whereas oils of the same specific gravity and the same viscosity had the same compressibility and thermal expansion within rather narrow limits. In other words, with a knowledge of the specific gravity and viscosity of the oils, it was possible to represent all the measured volumes within less than .5 percent over the entire range of temperature and pressure covered by the measurements.

Kinematic viscosity $100^{\circ} \mathrm{F}$, cgs	$\begin{gathered} \text { Specific } \\ \text { gravity } \\ 60^{\circ} / 60^{\circ} \mathrm{F} \end{gathered}$	Pressure $\mathrm{kg} / \mathrm{cm}^{2}$	Relative volumes						
			$0^{\circ} \mathrm{C}$	$20^{\circ}$	$50^{\circ}$	$100^{\circ}$	$200^{\circ}$	$300^{\circ}$	$400^{\circ}$
. 020	. 80	0	1.000	1.018	1.045	1.096	1.222	1.422	
"		50	. 996	1.014	1.041	1.089	1.205	1.370	(1.63)
"	. 85	0	1.000	1.017	1044	1.093	1.213	1.396	(1.71)
"		50	. 997	1.014	1.040	1.086	1.197	1.352	(1.58)
"	. 90	0	1.000	1.017	1.043	1.090	1.204	1.375	(1.67)
"	.	50	. 997	1.013	1.038	1.084	1.191	1.337	(1.55)
. 050	. 80	0	1.000	1.017	1.043	1.089	1.202	1.369	(1.71)
"	"	50	. 997	1.013	1.038	1.083	1.189	1.333	(1.56)
"	. 85	0	1.000	1.016	1.041	1.087	1.194	1.349	(1.63)
"	4	50	. 997	1.013	1.037	1.081	1.182	1.318	(1.51)
"	. 90	0	1.000	1.016	1.040	1.084	1.188	1.331	(1.56)
"		50	. 997	1.012	1.036	1.078	1.176	1.304	(1.48)
. 100	. 85	0	1.000	1.016	1.040	1.083	1.185	1.325	(1.54)
"		50	. 997	1.012	1.036	1.078	1.174	1.299	(1.47)
"	. 95	0	1.000	1.015	1.038	1.079	1.174	1.297	(1.47)
"		50	. 997	1.012	1.034	1.074	1.164	1.276	(1.43)
. 500	. 85	0	1.000	1.015	1.038	1.078	1.170	1.289	(1.45)
"		50	. 997	1.012	1.034	1.073	1.161	1.269	(1.41)
"	. 95	0	1.000	1.014	1.036	1.074	1.161	1.269	(1.40)
"		50	. 998	1.012	1.033	1.070	1.152	1.252	(1.37)
1.000	. 85	0	1.000	1.015	1.037	1.076	1.165	1.279	(1.43)
		50	. 997	1.012	1.034	1.071	1.157	1.260	(1.39)
"	. 95	0	1.000	1.014	1.035	1.073	1.157	1.261	(1.39)
"	"	50	. 998	1.011	1.032	1.068	1.149	1.244	(1.36)
2.000	. 85	0	1.000	1.014	1.036	1.075	1.162	1.270	(1.41)
		50	. 998	1.011	1.033	1.070	1.153	1.253	(1.37)
"	. 95	0	1.000	1.014	1.035	1.071	1.153	1.254	(1.37)
"		50	. 998	1.011	1.032	1.067	1.145	1.239	(1.35)
5.000	. 85	0	1.000	1.014	1.035	1.073	1.157	1.261	(1.39)
"	"	50	. 998	1.011	1.032	1.068	1.149	1.245	(1.36)
"	. 95	0	1.000	1.013	1.034	1.069	1.148	1.244	(1.36)
"	"	50	. 998	1.011	1.031	1.065	1.141	1.229	(1.33)
$210^{\circ} \mathrm{F}$, cgs	$60^{\circ} / 60^{\circ} \mathrm{F}$	$\mathrm{kg} / \mathrm{cm}^{2}$	$0^{\circ} \mathrm{C}$	$20^{\circ}$	$50^{\circ}$	$100^{\circ}$	$200^{\circ}$	$300^{\circ}$	$400^{\circ}$
. 100	. 90	0	1.000	1.014	1.036	1.074	1.161	1.269	(1.41)
"		50	. 998	1.011	1.032	1.070	1.152	1.252	(1.37)
"	. 95	0	1.000	1.014	1.035	1.071	1.154	1.256	(1.38)
"	"	50	. 998	1.011	1.032	1.067	1.147	1.241	(1.35)
"	1.00	0	1.000	1.014	1.034	1.070	1.149	1.247	(1.37)
"	"	50	. 998	1.011	1.031	1.066	1.142	1.232	(1.34)
. 200	. 90	0	1.000	1.014	1.035	1.072	1.155	1.258	(1.39)
"	,	50	. 998	1.011	1.031	1.067	1.147	1.241	(1.35)
"	1.00	0	1.000	1.013	1.033	1.067	1.144	1.237	(1.35)
"		50	. 998	1.011	1.030	1.064	1.137	1.223	(1.32)
. 440	. 90	0	1.000	1.013	1.034	1.070	1.151	1.248	(1.36)
"	"	50	. 998	1.011	1.031	1.066	1.143	1.234	(1.34)
"	1.00	0	1.000	1.012	1.032	1.066	1.140	1.228	(1.33)
"	"	50	. 998	1.010	1.029	1.063	1.134	1.214	(1.31)
1.100	. 90	0	1.000	1.013	1.033	1.068	1.146	1.241	(1.35)
"	"	50	. 998	1.010	1.030	1.065	1.139	1.225	(1.33)
"	1.00	0	1.000	1.012	1.031	1.063	1.134	1.218	(1.32)
"	"	50	. 998	1.010	1.028	1.060	1.128	1.205	(1.29)

${ }^{92}$ Jessup, R. S., Nat. Bur. Standards Journ. Res., vol. 5, p. 985, 1930.
$-\Delta V^{Y} / V_{0}=a P-b P^{2}$, where $P$ is in bars $\left(10^{8}\right.$ dyne $\left./ \mathrm{cm}^{2}\right)$ and $V_{0}$ is the volume at 1 atm and $30^{\circ} \mathrm{C}$ (or room temp.). Pressure range, $1-12,000$ bars urless otherwise noted. $a=\beta_{0}=$ initial compressibility. Sce also Table 271.


[^124] WITH PRESSURE ${ }^{\text {®s }}$

	$\begin{aligned} & E \\ & \underset{y}{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \underline{3} \\ & \dot{B} \\ & \text { n } \end{aligned}$	$\begin{aligned} & E \\ & \cdot \vec{H} \\ & \text { N } \\ & \text { N } \\ & 0 \end{aligned}$		$\begin{aligned} & E \\ & \stackrel{y}{n} \\ & U \end{aligned}$	忽	$\begin{aligned} & E \\ & \text { E } \\ & \text { E } \\ & \text { ت } \\ & \text { N } \end{aligned}$	$\underset{\sim}{\underset{\sim}{E}}$		$\begin{aligned} & E \\ & \overrightarrow{3} \\ & \text { 은 } \\ & \text { N } \end{aligned}$	E E تِ ت ت	E			$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { 표 } \\ & \text { D } \end{aligned}$
2,500	. 0204	. 0334	. 0677	. 0696	. 0999	. 0024	. 0027	. 0040	. 0040	. 0026	. 0100	. 0109	. 0090	. 0078	. 0024
5,000	. 0389	. 0624	. 1152	. 1224	. 1585	. 0047	. 0052	. 0079	. 0078	. 0054	. 0194	. 0234	. 0174	. 0152	. 0048
10,000	. 0715	. 1115	. 1862	. 1982	. 2392	. 0094	. 0099	. 0154	. 0152	. 0111	. 0370	. 0549	. 0329	. 0289	. 0095
15,000	. 1005	. 1511	. 2374	. 2506	. 2981	. 0139	. 0143	. 0225	. 0213	. 0168	. 0526	. $1655 \ddagger$	. 0471	. 0416	. 0139
20,000	. 1261	. 1836	. 2772	. 2920	. 3442	. 0181	. 0185	. 0293	. 0268	. 0220	. 0665	. 1864	. 0604	. 0536	. 0181
25,000	. 1485	. 2111	. 3093	. 3254	. $3908 *$	. 0219	. 0224	. 0358	. 0323	. 0267	. $0827 \dagger$	. 2027	. 0729	. 0650	. 0219
30,000	. 1689	. 2350	. 3360	. 3530	. 4261	. 0256	. 0261	. 0420	. 0375	. 0312	. 0952	. 2154	. 0848	. 0757	. 0255
35,000	. 1872	. 2559	. 3584	. 3760	. 4559	. 0294	. 0297	. 0480	. 0426	. 0356	. 1072	. 2257	. 0961	. 0858	. 0290
40,000	. 2040	. 2740	. 3774	. 3954	. 4816	. 0329	. 0332	. 0537	. 0476	. 0399	. 1189	. 2342	. 1069	. 0955	. 0324

[^125]| Pres. sure |  | $\begin{gathered} \begin{array}{c} \mathrm{NH}_{4} \mathrm{Br} \\ \mathrm{~cm}^{3} / 2.548 \mathrm{~g} \end{array} \\ \hline \end{gathered}$ | $\begin{gathered} \begin{array}{c} \mathrm{NH}_{1} \mathrm{I} \\ \mathrm{~cm}^{3} / 2.887 \mathrm{~g} \\ \hline \end{array} \\ \hline \end{gathered}$ | $\overbrace{}^{\begin{array}{c} \mathrm{AgCl} \\ \mathrm{~cm}^{3} / 5.589 \mathrm{~g} \end{array}}$ | $\overbrace{}^{\begin{array}{c} \mathrm{AgBr} \\ \mathrm{~cm}^{9} / 6.548 \mathrm{~g} \end{array}}$ | $\begin{gathered} \mathrm{AgI} \\ \mathrm{~cm}^{3} / 5.709 \mathrm{~g} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{kg} / \mathrm{cm}^{2}$ | $20^{\circ} \mathrm{C}-78.8^{\circ} \mathrm{C}$ |
| 5,000 | . 0269 . 0217 | . 0257 . 0244 | . 0316 . 0321 | . 0113 . 0107 | . 0111 . 0103 | .1769* .1753* |
| 10,000 | . 0489.0395 | . 0487.0462 | . 0590.0582 | . 0216 . 0207 | . 0215 . 0202 | . 1896.1868 |
| 15,000 | . 0668 . 0545 | . 0694.0656 | . 0822.0804 | . 0312 . 0301 | . 0313 . 0297 | . 2001.1969 |
| 20,000 | . 0818.0675 | . 0880 . 0829 | . 1019.0989 | . 0401 . 0389 | . 0404.0386 | . 2095.2061 |
| 25,000 | . 0949.0794 | . 1049.0984 | . 1188 . 1144 | . 0484 . 0471 | . 0496.0476 | .2180 .2145 |
| 30,000 | . 1070.0906 | . 1203.1124 | . 1332.1279 | . 0562.0549 | . 0584.0562 | . 2257.2222 |
| 35,000 | . 1176.1010 | . 1340 . 1250 | . 1456.1397 | . 0634 . 0621 | . 0665 . 0641 | . 2326.2291 |
| 40,000 | . 1278.1111 | . 1465.1364 | . 1570.1504 | . 0704.0690 | . 0743 . 0716 | . 2396.2362 |
| 45,000 | . 1372.1207 | . 1576.1466 | . 1676.1608 | . 0772.0755 | . 0818.0789 | . 2462.2428 |
| 50,000 | . 1462.1301 | . 1676.1557 | . 1775.1702 | . 0838.0818 | .0890 . 0858 | . 2525.2490 |



[^126]Part 1.- $\Delta V / V_{0}=a P-b P^{2}$ where $P$ is in bars ( $10^{6} d y n e / \mathrm{cm}^{2}$ ) and $V_{0}$ is the volume at 1 atm and $30^{\circ} \mathrm{C}$ (or room temp.)

Pressure range, 1-12,000 bars

Crystal and formulae	System	$\begin{gathered} 0^{\circ} \mathrm{C} \\ \mathrm{a} \times 10^{7} \end{gathered}$	$30^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$	
			$3 \times 10^{7}$	$\mathrm{b} \times 10^{12}$	$3 \times 10^{7}$	$\mathrm{b} \times 10^{12}$
Andradite						
$3 \mathrm{CaO} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2}$	Cubic	-	6.73	. 86	6.70	. 86
Apatite: $3 \mathrm{Ca}_{3} \mathrm{P}_{2} \mathrm{O}_{3} \cdot \mathrm{CaF}_{2} \ldots$	Hexagonal		10.91	4.1	11.09	3.8
Argentite: $\mathrm{Ag}_{2} \mathrm{~S}$......	Cubic	30			25.1	33.5
Barite: $\mathrm{BaSO}_{4}$	Orthorhombic	17.1-18.1	17.60	11.9	17.92	12.6
Beryl: $3 \mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$.	Hexagonal	5.7	5.403	. 94	5.407	. 94
Calcite: $\mathrm{CaCO}_{3} . . . . . . .$.	Trigonal	13.5	13.67	3.9	13.93	4.2
Cobaltite: CoAs $\cdot \mathrm{S}$	Cubic		7.67	1.88	7.79	1.88
Fluorite: $\mathrm{CaF}_{2}$	Hexagonal	12.6	12.26	6.49	12.59	6.61
Galena: PbS	Cubic	19.5-19.7	18.69	7.43	18.97	8.41
Garnet (pyrope) :						
Halite (Rock Salt) : NaCl .	Cubic	-	42.60	51	44.26	52.6
Hanksite:						
$\mathrm{KCl} \cdot 2 \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 9 \mathrm{Na}_{2} \mathrm{SO}_{4}$	Hexagonal	-	24.57	24.5	25.54	26.7
Jeffersonite	Monoclinic	-	9.088	3.94	9.551	5.56
Lithium fluoride: LiF	Cubic	-	15.20	5.5	15.91	5.7
Lithium iodide : LiI	Cubic	-	60.0	110.		
Magnetite: $\mathrm{Fe}_{3} \mathrm{O}_{4}$	Cubic	5.4-5.7	5.47	. 82	5.45	. 82
Orthoclase: $\mathrm{KAl} \cdot \mathrm{Si}_{3} \mathrm{O}_{8} \ldots$	Monoclinic		21.23	14.5	21.16	13.9
Periclase: MgO	Cubic	7.2	5.98	1	6.06	1
Potassium bromide: KBr	Cubic	-	67.0	105.3	68.8	105.2
Potassium fluoride: KF	Cubic	-	33.0	31.9	33.2	31.9
Potassium iodide: KI ....	Cubic		85.3	155.4	87.7	155.4
Pyrite: $\mathrm{FeS}_{3}$	Cubic	7.1	6.80	. 87	6.82	. 87
Quartz: $\alpha \mathrm{SiO}_{2} \ldots \ldots .$.	Trigonal	-	27.06	24.0	27.54	24.7
Rochelle salt (see end of part 1) 3.8						
Sapphire (synthetic) : $\mathrm{Al}_{2} \mathrm{O}_{3}$		3.8	3.36			
Sphalerite : ZnS ..........	Cubic	12.9-12.2	13.03	1.28	12.79	1.26
Spodumene: $\mathrm{LiAl} \cdot \mathrm{Si}_{2} \mathrm{O}_{6}$	Monoclinic	-	7.033	1.49	7.073	2.28
Sylvite: KCl $\ldots . . .$.	Cubic	-	56.2	75.1	57.5	75.1
Tourmaline (black) ......	Trigonal	-	8.16	1.95	8.62	2.15
Topaz			6.109	1.06	6.075	1.06
Zircon: $\mathrm{ZrO}_{2} \cdot \mathrm{SiO}_{2}$		8.6				
	$\underset{\mathrm{kg} / \mathrm{cm} \mathrm{cm}^{2}}{\text { Presser }}$	$-\Delta \mathrm{V} / \mathrm{V}_{0}$				
Rochelle salt: $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{0} \mathrm{KNa}$ :	2000	. 01080				
	4000	. 02016				
	6000	. 02885				
	8000	. 03716				
	10,000	. 04501				
	12,000	. 05237				

[^127](continued)

## Part 2.-Elastic constants of rocks at ordinary pressure and temperature.

$\mathrm{E}=$ Young's modulus, in dynes $\mathrm{cm}^{-2}$
$\mathrm{G}=$ Modulus, of rigidity, in dynes $\mathrm{cm}^{-2}$
$\sigma=$ Poisson's ratio, dimensionless

The density is given, when known, in parentheses in the first column.


[^128]TABLE 277.-RELATIVE VOLUME OF QUARTZ CRYSTALS AND SIX GLASSES FOR DIFFERENT PRESSURES ${ }^{95}$

Pressure $\mathrm{kg} / \mathrm{cm}^{2}$	Quartz		Glass $A^{*}$	Pyrex glass	Glass $C \dagger$	Glass $D \ddagger$	Borax glass
	crystal	glass					
1	1.000	1.000	1.000	1.000	1.000	1.000	1.000
25,000	. 946	. 923	. 934	. 921	. 945	. 932	. 877
30,000	. 939	. 909	. 923	. 907	. 936	. 924	. 866
40,000	. 926	. 885	. 905	. 885	. 920	. 909	. 845
50,000	. 914	. 864	. 890	. 867	. 905	. 894	. 825
60,000	. 902	. 847	. 875	. 851	. 891	. 880	. 808
70,000	. 892	. 832	. 862	. 838	. 878	. 867	. 792
80,000	. 883	. 819	. 849	. 827	. 866	. 855	. 778
90,000	. 875	. 808	. 838	. 817	. 854	. 844	. 765
100,000	. 868	. 798	. 828	. 809	. 842	. 834	. 753

[^129]$\Delta \mathrm{V} / \mathrm{V}_{0}$

Pressure   $\mathrm{kg} / \mathrm{cm}^{2}$	Quartz   glass	Pyrex	$A *$	$C \dagger$	$D \ddagger$	Borax   5,000
0,000	.0141	.0153	.0159	.0121	.0144	.0345
15,000	.0452	.0308	.0300	.0239	.0281	.0631
20,000	.0610	.0465	.0425	.0352	.0411	.0857
25,000	.0772	.0622	.0535	.0449	.0542	.1054
30,000	.0933	.0786	.0656	.0549	.0678	.1228
35,000	.1068	.0920	.0770	.0654	.0806	.1376
40,000	.1194	.1133	.0866	.0742	.0927	.1518

${ }^{06}$ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 73, p. 74, 1938.

* Glass $A$ is a potash lead silicate of very high lead content. †Glass $C$ is a soda potash lime silicate. $\quad \ddagger$ Glass $D$ is a lead zinc borosilicate.

TABLE 279.-SPECIFIC GRAVITIES CORRESPONDING TO THE BAUMÉ SCALE
The specific gravities are for $15.56^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$ referred to water at the same temperature as unity. For specific gravities less than unity the values are calculated from the formula:

$$
\text { Degrees Baumé }=\frac{140}{\text { specific gravity }}-130 .
$$

For specific gravities greater than unity from:

$$
\text { Degrees Baumé }=145-\frac{145}{\text { specific gravity }}
$$

Specific gravity	Specific gravities less than 1									
	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
	Degrees Baumé									
. 60	103.33	99.51	95.81	92.22	88.75	85.38	82.12	78.95	75.88	72.90
. 70	70.00	67.18	64.44	61.78	59.19	56.67	54.21	51.82	49.49	47.22
. 80	45.00	42.84	40.73	38.68	36.67	34.71	32.79	30.92	29.09	27.30
. 90	25.56	23.85	22.17	20.54	18.94	17.37	15.83	14.33	12.86	11.41
Specific Specific gravities greater than 1										
Specific gravity	. 00	. 01	. 02	. 03	. 04	. 05	. 06	.C7	. 08	. 09
Degrees Baumé										
1.00	. 00	1.44	2.84	4.22	5.58	6.91	8.21	9.49	10.74	11.97
1.10	13.18	14.37	15.54	16.68	17.81	18.91	20.00	21.07	22.12	23.15
1.20	24.17	25.16	26.15	27.11	28.06	29.00	29.92	30.83	31.72	32.60
1.30	33.46	34.31	35.15	35.98	36.79	37.59	38.38	39.16	39.93	40.68
1.40	41.43	42.16	42.89	43.60	44.31	45.00	45.68	46.36	47.03	47.68
1.50	48.33	48.97	49.60	50.23	50.84	51.45	52.05	52.64	53.23	53.80
1.60	54.38	54.94	55.49	56.04	56.58	57.12	57.65	58.17	58.69	59.20
1.70	59.71	60.20	60.70	61.18	61.67	62.14	62.61	63.08	63.54	63.99
1.80	64.44	64.89	65.33	65.76	66.20	66.62				

$$
\left(15-56^{\circ} / 15.56^{\circ} \mathrm{C}\right) \text { for petroleum oils. }
$$

In order to avoid confusion and misunderstanding the American Petroleum Institute, the Bureau of Mines, and the National Bureau of Standards have agreed that a scale based on the modulus 141.5 shall be used in the United States Petroleum Industry and shall be known as the API scale. The United States Baumé scale based on the modulus 140 will continue to be used for other liquids lighter than water.

Calculated from the formula, degrees $\mathrm{API}=\frac{141.5}{\text { sp.gr. } 60^{\circ} / 60^{\circ} \mathrm{F}}-131.5$.

Degrees										
API		.01	.02	.03	.04	.05	.06	.07	.08	.09
$60^{\circ} / 60^{\circ} \mathrm{F}$	.00	.01								
.6	104.33	100.47	96.73	93.10	89.59	86.19	82.89	79.69	79.59	73.57
.7	70.64	67.80	65.03	62.34	59.72	57.17	54.68	52.27	49.91	47.61
.8	45.38	43.19	44.06	38.98	36.95	34.97	33.03	31.14	29.30	27.49
.9	25.72	23.99	22.30	20.65	19.03	17.45	15.90	14.38	12.89	11.43
1.0	10.00									

## TABLE 281.—DENSITY OF THE ELEMENTS, LIQUID OR SOLID

The density may depend considerably on previous treatment. To reduce to $\mathrm{lb} / \mathrm{ft}^{3}$ multiply by 62.4 .


[^130]Note.-The density of a specimen depends considerably on its state and previous treatment; especially is this the case with porous materials.

Material	$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{lb} / \mathrm{ft}^{3}$	Material	$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{lb} / \mathrm{ft}^{3}$
Agate	$2.5-2.7$	156-168	Gum arabic	$1.3-1.4$	80-85
Alabaster			Gypsum	2.31-2.33	144-145
Carbonate	2.69-2.78	168-173	Hematite	$4.9-5.3$	306-330
Sulphate	2.26-2.32	141-145	Hormblende	3.0	187
Albite ...	2.62-2.65	163-165	Ice	. 917	57.2
A mber	1.06-1.11	66-69	Ilmenite	$4.5-5$.	280-310
Amphiboles	2.9-3.2	180-200	I vory	1.83-1.92	114-120
Anorthite	2.74-2.76	171-172	Labradorite	$2.7-2.72$	168-170
Anthracite	1.4-1.8	87-112	Lava, basaltic	2.8-3.0	175-185
Asbestos .	2.0-2.8	125-175	"* trachytic	$2.0-2.7$	125-168
Asphalt	$1.1-1.5$	69-94	Leather, dry	. 86	54
Basalt .	$2.4-3.1$	150-190	" greased	1.02	64
Beeswax	.96-. 97	60-61	Lime, mortar	1.65-1.78	103-111
Beryl	2.69-2.7	168-168	" slaked	$1.3-1.4$	81-87
Piotite	2.7-3.1	170-190	Limestone	2.68-2.76	167-171
Bone	1.7-2.0	106-125	Litharge :		
Brick	1.4-2.2	87-137	Artificial	$9.3-9.4$	580-585
Butter	.86-. 87	53-54	Natural	$7.8-8.0$	490-500
Calamine	$4.1-4.5$	255-280	Magnetite .	$4.9-5.2$	306-324
Camphor	. 99	62	Malachite	$3.7-4.1$	231-256
Caoutchouc	.92-. 99	57-62	Marble	$2.6-2.84$	160-177
Celluloid	1.4	87	Meerschaum	.99-1.28	62-80
Cement, set	2.7-3.0	170-190	Mica	2.6-3.2	165-200
Chalk	$1.9-2.8$	118-175	Muscovite	2.76-3.00	172-225
Charcoal, oak	. 57	35	Ochre	3.5	218
" pine	. $28-.44$	18-28	Oligoclase	2.65-2.67	165-167
Chrome yellow	6.00	374	Olivine . .	3.27-3.37	204-210
Chromite	4.32-4.57	270-285	Opal	2.2	137
Cinnabar	8.12	507	Orthoclase	2.58-2.61	161-163
Clay	1.8-2.6	122-162	Paper	. $7-1.15$	44-72
Coal, soft	1.2-1.5	75-94	Paraffin	. $87-.91$	54-57
Cocoa butter	.89-. 91	56-57	Peat	. 84	52
Coke	1.0-1.7	62-105	Pitch	1.07	67
Copal	1.04-1.14	65-71	Porcelain	$2.3-2.5$	143-156
Cork	.22- . 26	14-16	Porphyry	$2.6-2.9$	162-181
Cork linoleum	. 55	34	Pyrite ..	4.95-5.1	309-318
Corundum	$3.9-4.0$	245-250	Ouartz	2.65	165
Diamond:			Quartzite	2.73	170
Anthracitic	1.66	104	Resin	1.07	67
Carbonado	3.01-3.25	188-203	Rock salt	2.18	136
Diorite	2.52	157	Rubber, hard	1.19	74
Dolomite	2.84	177	" soft	1.1	69
Ebonite	1.15	72	Rutile	4.2	260
Emery	4.0	250	Sandstone	2.14-2.36	134-147
Epidote	3.25-3.5	203-218	Serpentine	2.50-2.65	156-165
Feldspar	2.55-2.75	159-172	Slag, furnace	$2.0-3.9$	125-240
Flint	2.63	164	Slate	$2.6-3.3$	162-205
Fluorite	3.18	198	Soapstone	$2.6-2.8$	162-175
Gamboge	1.2	75	Starch	1.53	95
Garnet .	3.15-4.3	197-268	Sugar	1.61	100
Gas carbon	1.88	117	Talc	$2.7-2.8$	168-174
Gelatine	1.27	180	Tallow	.91-. 97	57-60
Glass, common	$2.4-2.8$	150-175	Tar .	1.02	66
" flint ...	$2.9-5.9$	180-370	Topaz	3.5-3.6	219-22.3
Glue	1.27	80	Tourmaline	$3.0-3.2$	190-200
Granite	2.64-2.76	165-172	Wax, sealing	1.8	112
Graphite	2.30-2.72	144-170	Zircon	4.68-4.70	292-293


Alloy	$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{lb} / \mathrm{ft}^{3}$
Brasses ：yellow， $70 \mathrm{Cu}+30 \mathrm{Zn}$ ，cast	8.44	527
＂＂${ }^{\text {＂}}$ ，rolled	8.56	534
drawn	8.70	542
＂red， $90 \mathrm{Cu}+10 \mathrm{Zn}$	8.60	536
＂white， $50 \mathrm{Cu}+50 \mathrm{Zn}$	8.20	511
Bronzes： $90 \mathrm{Cu}+10 \mathrm{Sn}$	8.78	548
＂ $85 \mathrm{Cu}+15 \mathrm{Sn}$	8.89	555
＂ $80 \mathrm{Cu}+20 \mathrm{Sn}$	8.74	545
＂ $75 \mathrm{Cu}+25 \mathrm{Sn}$	8.83	551
German silver：Chinese， $26.3 \mathrm{Cu}+36.6 \mathrm{Zn}+36.8 \mathrm{Ni}$	8.30	518
＂＂Berlin（1） $52 \mathrm{Cu}+26 \mathrm{Zn}+22 \mathrm{Ni} .$.	8.45	527
＂＂$"$（2） $59 \mathrm{Cu}+30 \mathrm{Zn}+11 \mathrm{Ni}$	8.34	520
＂＂$"$ ．（3） $63 \mathrm{Cu}+30 \mathrm{Zn}+6 \mathrm{Ni}$	8.30	518
＂nickelin ．．．．．．．．．．．．．．．．．．．．．．．	8.77	547
Lead and tin： $87.5 \mathrm{~Pb}+12.5 \mathrm{Sn}$	10.60	661
＂＂＂ $84 \mathrm{~Pb}+16 \mathrm{Sn}$	10.33	644
＂＂＂ $77.8 \mathrm{~Pb}+22.2 \mathrm{Sn}$	10.05	627
＂＂＂ $63.7 \mathrm{~Pb}+36.3 \mathrm{Sn}$	9.43	588
＂＂＂ $46.7 \mathrm{~Pb}+53.3 \mathrm{Sn}$	8.73	545
＂＂＂ $30.5 \mathrm{~Pb}+69.5 \mathrm{Sn}$	8.24	514
Bismuth，lead，and cadmium ： $53 \mathrm{Bi}+40 \mathrm{~Pb}+7 \mathrm{Cd}$	10.56	659
Wood＇s metal ： $50 \mathrm{Bi}+25 \mathrm{~Pb}+12.5 \mathrm{Cd}+12.5 \mathrm{Sn}$	9.70	605
Cadmium and tin： $32 \mathrm{Cd}+68 \mathrm{Sn} \ldots . . . . . . .$.	7.70	480
Gold and copper ： $98 \mathrm{Au}+2 \mathrm{Cu}$	18.84	1176
＂＂$" \quad 96 \mathrm{Au}+4 \mathrm{Cu}$	18.36	1145
＂＂$\quad$＂ $4 \mathrm{Au}+6 \mathrm{Cu}$	17.95	1120
＂＂${ }^{\text {a }}$（ $\mathrm{Au}^{\text {a }} 10 \mathrm{Cu}$	17.16	1071
＂＂$\quad 86 \mathrm{Au}+14 \mathrm{Cu}$	16.47	1027
Aluminum and copper： $10 \mathrm{Al}+90 \mathrm{Cu}$	7.69	480
＂＂ $4.5 \mathrm{Al}+95 \mathrm{Cu}$	8.37	522
＂＂$\quad$＂ $3 \mathrm{Al}+97 \mathrm{Cu}$	8.69	542
Aluminum and zinc： $91 \mathrm{Al}+9 \mathrm{Zn}$	2.80	175
Platinum and iridium ： $90 \mathrm{Pt}+10 \mathrm{Ir}$	21.62	1348
＂＂＂ $85 \mathrm{Pt}+15 \mathrm{Ir}$	21.62	1348
＂${ }^{\text {a }}$ ，66．67Pt +33.33 Ir	21.87	1364
Carboloy	14.3	895
Constantan： $60 \mathrm{Cu}+40 \mathrm{Ni}$	8.88	554
Magnalium： $70 \mathrm{Al}+30 \mathrm{Mg}$	2.0	125
Manganin ： $84 \mathrm{Cu}+12 \mathrm{Mn}+4 \mathrm{Ni}$	8.5	530
Monel metal	8.87	554
Platinoid：German silver＋little tungsten．	9.0	560
Stellite：Co 59．5；Mo 22.5 ；Cr 10.8 ；Fe 3.1 ；Mn 2.0	83	518

TABLE 284．－PHYSICAL PROPERTIES OF SOME LIGHT HYDROCARBONS ${ }^{07}$

Critical constants											
$\begin{aligned} & \text { E } \\ & \frac{0}{2} \\ & \text { U } \\ & 0 \\ & E \\ & E \end{aligned}$		Temperature		Specific heats			$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{y}{U}}$				$\cong$
				$C_{p}$						E	
			$=$							E	邑
			${ }_{4}^{4}$							产	号
			$\Sigma$							¢	
		${ }^{\circ} \mathrm{C}$	atm	cal $\mathrm{g}^{-1}$	${ }^{\circ} \mathrm{C}^{-1}$		$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{m}^{3} / \mathrm{kl}$	atm	${ }^{\circ} \mathrm{C}$	$\mathrm{cal} / \mathrm{m}^{3}$
Methane ．．．．． $\mathrm{CH}_{4}$	16.04	82.1	45.8	． 526	.400	． 555	． 678	－－	－－	1880	9，000
Fthylene ．．．．． $\mathrm{C}_{2} \mathrm{H}_{4}$	28.05	9.72	50.9	． 363	． 296	． 977	1.19	－－	－－	1975	14，350
Ethane ．．．．．． $\mathrm{C}_{2} \mathrm{H}_{0}$	30.07	32.3	48.2	.409	． 347	1.048	1.282	294.2	38.3	1895	15，900
Propylene ．．．． $\mathrm{C}_{3} \mathrm{H}_{6}$	42.08	91.4	45.4	． 363	． 316	1.476	1.805	289	10.3	1935	21，100
Propane ．．．．． $\mathrm{C}_{3} \mathrm{H}_{4}$	44.09	96.8	42.0	． 388	． 343	1.550	1.892	268	8.45	1925	22，800
Butadiene－1，3 ． $\mathrm{C}_{4} \mathrm{H}_{\text {\％}}$	54.09	152.0	42.8	． 349	． 312	1.922	2.35	267	2.45	－－	26，400
Butene－1 ．．．．． $\mathrm{C}_{4} \mathrm{H}_{8}$	56.10	143.9	39.2	． 371	． 334	1.998	2.44	246	2.6		28，200
cis－Butene－2 ．． $\mathrm{C}_{4} \mathrm{H}_{4}$	56.10	160	41.5	． 350	.315	2.004	2.45	255.5	18.5	1930	28，300
trans－Butene－2． $\mathrm{C}_{4} \mathrm{H}_{8}$	56.10	155.0	40.5	． 376	． 342	2.004	2.45	249.0	2.00		28，200
Isobutylene ．．． $\mathrm{C}_{4} \mathrm{H}_{*}$	56.10	144.7	39.5	． 375	． 335	1.998	2.44	245.5	2.57	－－	28，100
Isobutane ．．．． $\mathrm{C}_{4} \mathrm{H}_{10}$	58.12	133.7	36.5	． 387	． 348	2.077	2.54	222	3.06	1900	30,000
11－Butane $\ldots . . \mathrm{C}_{4} \mathrm{H}_{1 n}$	58.12	152.2	37.5	.397	． 361	2.084	2.55	229.5	2.13	1895	30，100



Density or mass in $\mathrm{g} / \mathrm{cm}^{3}$ and in $\mathrm{lb} / \mathrm{ft}^{3}$ of various liquids.

Liquid	$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{lb} / \mathrm{ft}^{8}$	Temp. ${ }^{\circ} \mathrm{C}$
Acetone	. 792	49.4	$20^{\circ}$
Alcohol, ethyl	. 807	50.4	0
" methyl	. 810	50.5	0
Aniline .......	1.035	64.5	0
Benzene	. 899	56.1	0
Bromine	3.187	199.0	0
Carbolic acid (crude)	.950-. 965	59.2-60.2	15
Carbon disulfide ....	1.293	80.6	0
Chloroform ..	1.489	93.0	20
Cocoa butter	. 857	53.5	100
Ether	. 736	45.9	0
Gasoline	. 66 - . 69	41.0-43.0	
Glycerine	1.260	78.6	0
Japan wax	. 875	54.6	100
Mercury	13.595	849	0
Milk ...	1.028-1.035	64.2-64.6	
Naphtha (wood)	.848- . 810	52.9-50.5	0
Naphtha (petroleum ether)	. 665	41.5	15
Oils: Amber ............	. 800	49.9	15
Anise-seed	. 996	62.1	16
Beef-tallow	. 931 - 938	58.	...
Butterfat	. $91-.92$	56.	. . .
Camphor	. 910	56.8	
Castor .	. 969	60.5	15
Clove	$1.04-1.06$	65. -66 .	25
Cocoanut	. 925	57.7	15
Cod-liver	. $92-.93$	58.	
Cottonseed	. 926	57.8	16
Creosote	1.040-1.100	64.9-68.6	15
Kerosene	. 82	51.2	
Lard	. 920	57.4	15
Lavender	. 877	54.7	16
Lemon	. 844	52.7	16
Linseed (boiled)	. 942	58.8	15
Neat's-foot	.913-. 917	57.0-57.2	. . .
Oleomargarine	. $92-.93$		
Olive ........	. 918	57.3	15
Palm	. 905	56.5	15
Pentane	. 650	40.6	0
"	. 623	38.9	25
Peppermint	. $90-.92$	56-57	25
Petroleum ......	. 878	54.8	0
Pine (light)	.795-. 805	49.6-50.2	15
Pine . . . . . . . .	.850-. 860	53.0-54.0	15
Poppy	. 924	57.7	
Rapeseed (crude)	. 915	57.1	15
"، (refined)	. 913	57.0	15
Resin ...........	. 955	59.6	15
Sperm	. 88	55.	25
Soya-bean	. 919	57.3	30
	. 906	56.5	90
Train or whale	.918-. 925	57.3-57.7	15
Turpentine	. 873	54.2	16
Valerian .	. 965	60.2	16
Wintergreen	1.18	74.	25
Pyroligneous acid	. 800	49.9	0
Water ........	1.000 1.025	62.4	4
Sea water	1.025	64.0	

296
TABLE 287.-DENSITY OF PURE WATER FREE FROM AIR, $0^{\circ}$ TO $41^{\circ} \mathrm{C}$
Under standard pressure $(76 \mathrm{cmHg})$ at every tenth part of a degree from $0^{\circ}$ to $41^{\circ} \mathrm{C}$, in $\mathrm{g} / \mathrm{ml}$.*

	Tenths of degrees											Mean
$\begin{gathered} \text { Degrees } \\ \hline \end{gathered}$		0	1	2	3	.$_{4}$	5	6	7	8	9	differences
0	. 999	8681	8747	8812	8875	8936	8996	9053	9109	9163	9216	$+59$
1		9267	9315	9363	9408	9452	9494	9534	9573	9610	9645	+ 41
2		9679	9711	9741	9769	9796	9821	9844	9866	9887	9905	+ 24
3		9922	9937	9951	9962	9973	9981	9988	9994	9998	0000	+ 8
4	1.000	0000	9999	9996	9992	9986	9979	9970	9960	9947	9934	- 8
5	. 999	9919	9902	9884	9864	9842	9819	9795	9769	9742	9713	$-24$
6		9682	9650	9617	9582	9545	9507	9468	9427	9385	9341	- 39
7		9296	9249	9201	9151	9100	9048	8994	8938	8881	8823	- 53
8		8764	8703	8641	8577	8512	8445	8377	8308	8237	8165	$-67$
9		8091	8017	7940	7863	7784	7704	7622	7539	7455	7369	-81
10		7282	7194	7105	7014	6921	6826	6729	6632	6533	6432	$-95$
11		6331	6228	6124	6020	5913	5805	5696	5586	5474	5362	$-108$
12		5248	5132	5016	4898	4780	4660	4538	4415	4291	4166	$-121$
13		4040	3912	3784	3654	3523	3391	3257	3122	2986	2850	$-133$
14		2712	2572	2431	2289	2147	2003	1858	1711	1564	1416	$-145$
15		1266	1114	0962	0809	0655	0499	0343	0185	0026	9865	$-156$
16	. 998	9705	9542	9378	9214	9048	8881	8713	8544	8373	8202	-168
17		8029	7856	7681	7505	7328	7150	6971	6791	6610	6427	-178
18		6244	6058	5873	5686	5498	5309	5119	4927	4735	4541	$-190$
19		4347	4152	3955	3757	3558	3358	3158	2955	2752	2549	$-200$
20		2343	2137	1930	1722	1511	1301	1090	0878	0663	0449	$-211$
21		0233	0016	9799	9580	9359	9139	8917	8694	8470	8245	-221
22	.997	8019	7792	7564	7335	7104	6873	6641	6408	6173	5938	$-232$
23		5702	5466	5227	4988	4747	4506	4264	4021	3777	3531	-242
24		3286	3039	2790	2541	2291	2040	1788	1535	1280	1026	$-252$
25		0770	0513	0255	9997	9736	9476	9214	8951	8688	8423	$-261$
26	.996	8158	7892	7624	7356	7087	6817	6545	6273	6000	5726	-271
27		5451	5176	4898	4620	4342	4062	3782	3500	3218	2935	-280
28		2652	2366	2080	1793	1505	1217	0928	0637	0346	0053	-289
29	. 995	9761	9466	9171	8876	8579	8282	7983	7684	7383	7083	-298
30		6780	6478	6174	5869	5564	5258	4950	4642	4334	4024	$-307$
31		3714	3401	3089	2776	2462	2147	1832	1515	1198	0880	-315
32		0561	0241	9920	9599	9276	8954	8630	8304	7979	7653	-324
33	. 994	7325	6997	6668	6338	6007	5676	5345	5011	4678	4343	-332
34		4007	3671	3335	2997	2659	2318	1978	1638	1296	0953	$-340$
35		0610	0267	9922	9576	9230	8883	8534	8186	7837	7486	-347
36	. 993	7136	6784	6432	6078	5725	5369	5014	4658	4301	3943	-355
37		3585	3226	2866	2505	2144	1782	1419	1055	0691	0326	$-362$
38	. 992	9960	9593	9227	8859	8490	8120	7751	7380	7008	6636	$-370$
39		6263	5890	5516	5140	4765	4389	4011	3634	3255	2876	$-377$
40 41	. 991	$\begin{aligned} & 2497 \\ & 8661 \end{aligned}$	2116	1734	1352	0971	0587	0203	9818	9433	9047	$-384$

[^131]TABLE 288.-VOLUNE IN $\mathrm{cm}^{3}$ AT VARIOUS TEMPERATURES OF A $\mathrm{cm}^{3}$ OF WATER FREE FROM AIR AT THE TEMPERATURE OF MAXIMUM DENSITY, $0^{\circ}$ to $36^{\circ} \mathrm{C}$

${ }^{\text {Temp. }}{ }^{\text {C }}$	. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
0	1.000132	125	118	112	106	100	095	089	084	079
1	073	069	064	059	055	051	047	043	039	035
2	032	029	026	023	020	018	016	013	011	009
3	008	006	005	004	003	002	001	001	000	000
4	000	000	000	001	001	002	003	004	005	007
5	008	010	012	014	016	018	021	023	026	029
6	032	035	039	042	046	050	054	058	062	066
7	070	075	080	085	090	095	101	106	112	118
8	124	130	137	142	149	156	162	169	176	184
9	191	198	206	214	222	230	238	246	254	263
10	272	281	290	299	308	317	327	337	347	357
11	367	377	388	398	409	420	430	441	453	464
12	476	487	499	511	522	534	547	559	571	584
13	596	609	623	636	649	661	675	688	702	715
14	729	743	757	772	786	800	815	830	844	859
15	873	890	905	920	935	951	967	983	998	015
16	1.001031	047	063	080	097	113	130	147	164	182
17	198	216	233	252	269	287	305	323	341	358
18	378	396	415	433	452	471	490	510	529	548
19	568	588	606	626	646	667	687	707	728	748
20	769	790	811	832	853	874	895	916	938	960
21	981	002	024	046	068	091	113	135	158	181
22	1.002203	226	249	271	295	319	342	364	389	412
23	436	459	483	507	532	556	581	605	629	654
24	679	704	729	754	779	804	829	854	879	905
25	932	958	983	010	036	061	088	115	141	168
26	1.003195	221	248	275	302	330	357	384	412	439
27	467	495	523	550	579	607	635	663	692	720
28	749	776	806	836	865	893	922	951	981	011
29	1.004041	069	100	129	160	189	220	250	280	310
30	341	371	403	432	464	494	526	557	588	619
31	651	682	713	744	777	808	840	872	904	936
32	968	001	033	066	098	132	163	197	229	263
33	1.005296	328	361	395	427	461	496	530	562	597
34	631	665	698	732	768	802	836	871	904	940
35	975	009	044	078	115	150	185	219	255	290

TABLE 289.-INFLUENCE OF PRESSURE ON VOLUME OF WATER*

$\mathrm{kg} / \mathrm{cm}^{2}$	${ }^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$\mathrm{kg} / \mathrm{cm}^{2}$	$20^{\circ} \mathrm{C}$
1	1.0000	1.0016	1.0076	7,000	.8404	$40^{\circ} \mathrm{C}$
500	.9771	.9808	.9873	8,000	.82785	.8360
1,000	.9578	.9630	.9700	9,000	.8160	.8249
2,000	.9260	.9327	.9403	10,000	-	.8149
3,000	.9015	.9087	.9164	11,000	-	.8056
5,000	.8632	.8702	.8778	12,000	-	.7966
6,000	.8480	.8545	.8623	12,500	-	.7922

[^132]The mass of $1 \mathrm{~cm}^{3}$ at $4^{\circ} \mathrm{C}$ is taken as unity.

${ }^{\text {Temp. }}$	Density	Volume	${ }^{\text {Temp. }}{ }^{\circ} \mathrm{C} .$	Density	Volume	${ }^{\text {Temp. }}$ ¢ ${ }^{\text {c }}$	Density	Volume
-10	. 99815	1.00186	+20	. 99823	1.00177	+50	. 98807	1.01207
-9	843	157	21	802	198	51	762	254
-8	869	131	22	780	220	52	715	301
- 7	892	108	23	757	244	53	669	349
- 6	912	088	24	733	268	54	621	398
- 5	. 99930	1.00070	25	. 99708	1.00293	55	. 98573	1.01448
-4	945	055	26	682	320	60	324	705
- 3	958	042	27	655	347	65	059	979
- 2	970	031	28	627	375	70	. 97781	1.02270
-1	979	021	29	598	404	75	489	576
+ 0	. 99987	1.00013	30	. 99568	1.00434	80	. 97183	1.02899
1	993	007	31	537	465	85	. 96865	1.03237
2	997	003	32	506	497	90	534	590
3	999	001	33	473	530	95	192	959
4	1.00000	1.00000	34	440	563	100	. 95838	1.04343
5	. 99999	1.00001	35	. 99406	1.00598	110	. 9510	1.0515
6	997	003	36	371	633	120	. 9434	1.0601
7	993	007	37	336	669	130	. 9352	1.0693
8	988	012	38	300	706	140	. 9264	1.0794
9	981	019	39	263	743	150	. 9173	1.0902
10	. 99973	1.00027	40	. 99225	1.00782	160	. 9075	1.1019
11	963	037	41	187	821	170	. 8973	1.1145
12	952	048	42	147	861	180	. 8866	1.1279
13	940	060	43	107	901	190	. 8750	1.1429
14	927	073	44	066	943	200	. 8628	1.1590
15	. 99913	1.00087	45	. 99025	1.00985	210	. 850	1.177
16	897	103	46	. 98982	1.01028	220	. 837	1.195
17	880	120	47	940	072	230	. 823	1.215
18	862	138	48	896	116	240	. 809	1.236
19	843	157	49	852	162	250	. 794	1.259

Density or mass in $\mathrm{g} / \mathrm{cm}^{3}$ and the volume in $\mathrm{cm}^{3}$ of 1 g of mercury.

${ }_{{ }^{\circ} \mathrm{Cemp}}$	$\underset{\mathrm{g} / \mathrm{cm}^{3}}{\substack{\text { Mass }}}$	Volume of 1 g in $\mathrm{cm}^{3}$	$\mathrm{Temp}_{{ }^{\circ} \mathrm{C}}$	$\begin{aligned} & \text { Mass } \\ & \mathrm{g} / \mathrm{cm}^{3} \end{aligned}$	Volume of 1 g in $\mathrm{cm}^{3}$	${ }^{\text {Temp. }}$	$\begin{gathered} \text { Mass } \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$	Volume of 1 g in $\mathrm{cm}^{3}$
-10	13.6198	. 0734225	20	13.5458	. 0738233	140	13.2563	. 0754354
-9	6173	4358	21	5434	8367	150	2326	5708
-8	6148	4492	22	5409	8501	160	2090	7064
- 7	6124	4626	23	5385	8635	170	1853	8422
- 6	6099	4759	24	5360	8768	180	1617	9784
$-5$	13.6074	. 0734893	25	13.5336	. 0738902	190	13.1381	. 0761149
-4	6050	5026	26	5311	9036	200	1145	2516
- 3	6025	5160	27	5287	9170	210	0910	3886
-2	6000	5293	28	5262	9304	220	0677	5260
-1	5976	5427	29	5238	9437	230	0440	6637
- 0	13.5951	. 0735560	30	13.5213	. 0739572	240	13.0206	. 0768017
1	5926	5694	31	5189	9705	250	12.9972	9402
2	5901	5828	32	5164	9839	260	9738	7090
3	5877	5961	33	5140	9973	270	9504	2182
4	5852	6095	34	5116	40107	280	9270	3579
5	13.5827	. 0736228	35	13.5091	. 0740241	290	12.9036	. 0774979
6	5803	6362	36	5066	0374	300	8803	6385
7	5778	6496	37	5042	0508	310	8569	7795
8	5754	6629	38	5018	0642	320	8336	9210
9	5729	6763	39	4994	0776	330	8102	80630
10	13.5704	. 0736893	40	13.4969	. 0740910	340	12.7869	. 0782054
11	5680	7030	50	4725	2250	350	7635	3485
12	5655	7164	60	4482	3592	360	7402	4921
13	5630	7298	70	4240	4936			
14	5606	7431	80	3998	6282			
15	13.5581	. 0737565	90	13.3723	. 0747631			
16	5557	7699	100	3515	8981			
17	5532	7832	110	3279	50305			
18	5507	7966	120	3040	1653			
19	5483	8100	130	2801	3002			

The following table gives the density of solutions of various salts in water. The numbers give the weight in $\mathrm{g} / \mathrm{cm}^{3}$. For brevity the substance is indicated by formula only.

	Weight of the dissolved substance in 100 parts by weight of the solution									,
Substance	5	10	15	20	25	30	40	50	60	-
$\mathrm{K}_{2} \mathrm{O}$	1.047	1.098	1.153	1.214	1.284	1.354	1.503	1.659	1.809	15.
KOH	1.040	1.082	1.127	1.176	1.229	1.286	1.410	1.538	1.666	15.
$\mathrm{Na}_{2} \mathrm{O}$	1.073	1.144	1.218	1.284	1.354	1.421	1.557	1.689	1.829	15.
NaOH	1.058	1.114	1.169	1.224	1.279	1.331	1.436	1.539	1.642	15.
$\mathrm{NH}_{3}$	. 978	. 959	. 940	. 924	. 909	. 896				16.
$\mathrm{NH}_{4} \mathrm{Cl}$	1.015	1.030	1.044	1.058	1.072	$\cdots$	-	-	-	15.
KCl	1.031	1.065	1.099	1.135			-			15.
NaCl	1.035	1.072	1.110	1.150	1.191			-		15.
LiCl	1.029	1.057	1.085	1.116	1.147	1.181	1.255	-		15.
$\mathrm{CaCl}_{2}$	1.041	1.086	1.132	1.181	1.232	1.286	1.402			15.
$\mathrm{CaCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.019	1.040	1.061	1.083	1.105	1.128	1.176	1.225	1.276	18.
$\mathrm{AlCl}_{3}$	1.030	1.072	1.111	1.153	1.196	1.241	1.340	--	-	15.
$\mathrm{MgCl}_{2}$	1.041	1.085	1.130	1.177	1.226	1.278				15.
$\mathrm{MgCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.014	1.032	1.049	1.067	1.085	1.103	1.141	1.183	1.222	24.
$\mathrm{ZnCl}_{2}$	1.043	1.089	1.135	1.184	1.236	1.289	1.417	1.563	1.737	19.5
$\mathrm{CdCl}_{2}$	1.043	1.087	1.138	1.193	1.254	1.319	1.469	1.653	1.887	19.5
$\mathrm{SrCl}_{2}$	1.044	1.092	1.143	1.198	1.257	1.321			-	15.
$\mathrm{SrCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}$	1.027	1.053	1.082	1.111	1.042	1.174	1.242	1.317		15.
$\mathrm{BaCl}_{2}$	1.045	1.094	1.147	1.205	1.269					15.
$\mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1.035	1.075	1.119	1.166	1.217	1.273				21.
$\mathrm{CuCl}_{2}$	1.044	1.091	1.155	1.221	1.291	1.360	1.527	-	-	17.5
$\mathrm{NiCl}_{2}$	1.048	1.098	1.157	1.223	1.299			-	-	17.5
$\mathrm{HgCl}_{2}$	1.041	1.092					-		-	20.
$\mathrm{Fe}_{2} \mathrm{Cl}_{8}$	1.041	1.086	1.130	1.179	1.232	1.290	1.413	1.545	1.668	17.5
$\mathrm{PtCl}_{4}$	1.046	1.097	1.153	1.214	1.285	1.362	1.546	1.785		
$\mathrm{SnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1.032	1.067	1.104	1.143	1.185	1.229	1.329	1.444	1.580	15.
$\mathrm{SnCl}_{4}+5 \mathrm{H}_{2} \mathrm{O}$	1.029	1.058	1.089	1.122	1.157	1.193	1.274	1.365	1.467	15.
LiBr	1.033	1.070	1.111	1.154	1.202	1.252	1.366	1.489		19.5
KBr	1.035	1.073	1.114	1.157	1.205	1.254	1.364			19.5
NaBr	1.038	1.078	1.123	1.172	1.224	1.279	1.408	1.563		19.5
$\mathrm{MgBr}_{2}$	1.041	1.085	1.135	1.189	1.245	1.308	1.449	1.623		19.5
$\mathrm{ZnBr}{ }_{2}$	1.043	1.091	1.144	1.202	1.263	1.328	1.473	1.648	1.873	19.5
$\mathrm{CdBr}_{2}$	1.041	1.088	1.139	1.197	1.258	1.324	1.479	1.678		19.5
$\mathrm{CaBr}_{2}$	1.042	1.087	1.137	1.192	1.250	1.313	1.459	1.639		19.5
$\mathrm{BaBr}_{2}$	1.043	1.690	1.142	1.199	1.260	1.327	1.483	1.683		19.5
$\mathrm{SrBr}_{2}$	1.043	1.089	1.140	1.198	1.260	1.328	1.489	1.693	1.953	19.5
KI	1.036	1.076	1.118	1.164	1.216	1.269	1.394	1.544	1.732	19.5
LiI	1.036	1.077	1.122	1.170	1.222	1.278	1.412	1.573	1.775	19.5
NaI	1.038	1.080	1.126	1.177	1.232	1.292	1.430	1.598	1.808	19.5
$\mathrm{ZnI}_{2}$	1.043	1.089	1.138	1.194	1.253	1.316	1.467	1.648	1.873	19.5
$\mathrm{CdI}_{2}$	1.042	1.086	1.135	1.192	1.251	1.317	1.474	1.678	--	19.5
$\mathrm{MgI}_{2}$	1.041	1.086	1.137	1.192	1.252	1.318	1.472	1.666	1.913	19.5
$\mathrm{CaI}_{2}$	1.042	1.088	1.138	1.196	1.258	1.319	1.475	1.663	1.908	19.5
$\mathrm{SrI}_{2}$	1.043	1.089	1.140	1.198	1.260	1.328	1.489	1.693	1.953	19.5
$\mathrm{BaI}_{2}$	1.043	1.089	1.141	1.199	1.263	1.331	1.493	1.702	1.968	19.5
$\mathrm{NaClO}_{3}$	1.035	1.068	1.106	1.145	1.188	1.233	1.329	-	-	19.5
$\mathrm{NaBrO}_{3}$	1.039	1.081	1.127	1.176	1.229	1.287	-	-	-	19.5
$\mathrm{KNO}_{3}$	1.031	1.064	1.099	1.135				-	-	15.
$\mathrm{NaNO}_{3}$	1.031	1.065	1.101	1.140	1.180	1.222	1.313	1.416		20.2
$\mathrm{AgNO}_{3}$	1.044	1.090	1.140	1.195	1.255	1.322	1.479	1.675	1.918	15.

[^133]TABLE 292.-DENSITY OF AQUEOUS SOLUTIONS (concluded)
Weight of the dissolved substance in 100 parts by weight of

IN g/mi

The densities in this table are numerically the same as specific gravities at the various temperatures in terms of water at $4^{\circ} \mathrm{C}$ as unity. Based upon work done at the National Bureau of Standards.

Percent$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$by weight	Temperatures						
	$10^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
	. 99973	. 99913	. 99823	. 99708	. 99568	. 99406	. 99225
1	785	725	636	520	379	217	034
2	602	542	453	336	194	031	. 98846
3	426	365	275	157	014	. 98849	663
4	258	195	103	. 98984	. 98839	672	485
5	098	032	. 98938	817	670	501	311
6	. 98946	. 98877	780	656	507	335	142
7	801	729	627	500	347	172	. 97975
8	660	584	478	346	189	009	808
9	524	442	331	193	031	. 97846	641
10	393	304	187	043	. 97875	685	475
11	267	171	047	. 97897	723	527	312
12	145	041	. 97910	753	573	371	150
13	026	. 97914	775	611	424	216	. 96989
14	. 97911	790	643	472	278	063	829
15	800	669	514	334	133	. 96911	670
16	692	552	387	199	. 96990	760	512
17	583	433	259	062	844	607	352
18	473	313	129	. 96923	697	452	189
19	363	191	. 96997	782	547	294	023
20	252	068	864	639	395	134	. 95856
21	139	. 96944	729	495	242	. 95973	687
22	024	818	592	348	087	809	516
23	. 96907	689	453	199	. 95929	643	343
24	787	558	312	048	769	476	168
25	665	424	168	. 95895	607	306	. 94991
26	539	287	020	738	442	133	810
27	406	144	. 95867	576	272	. 94955	625
28	268	. 95996	710	410	098	774	438
29	125	844	548	241	. 94922	590	248
30	. 95977	686	382	067	741	403	055
31	823	524	212	. 94890	557	214	. 93860
32	665	357	038	709	370	021	662
33	502	186	. 94860	525	180	. 93825	461
34	334	011	679	337	. 93986	626	257
35	162	. 94832	494	146	790	425	051
36	. 94986	650	306	. 93952	591	221	. 92843
37	805	464	114	756	390	016	634
38	620	273	. 93910	556	186	. 92808	422
39	431	079	720	353	. 92979	597	208
40	238	. 93882	518	148	770	385	. 91992
41	042	682	314	. 92940	558	170	774
42	. 93842	478	107	729	344	. 91952	554
43	639	271	. 92897	516	128	733	332
44	433	062	685	301	. 91910	513	108
45	226	. 92852	472	085	692	291	. 90884
46	017	640	257	. 91868	472	069	660
47	. 92806	426	041	649	250	. 90845	434
48	593	211	. 91823	429	028	621	207
49	379	. 91995	604	208	. 90805	396	. 89979
50	162	776	384	. 90985	580	168	750
			(co	ued)			

TABLE 293.-DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER IN g/mI (concluded)

Percent   $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$   by weight	Temperatures						
	$10^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
50	. 92162	. 91776	. 91384	. 90985	. 90580	. 90168	. 89750
51	. 91943	555	160	760	353	. 89940	519
52	723	333	. 90936	534	125	710	288
53	502	110	711	307	. 89896	479	056
54	279	. 90885	485	079	667	248	. 88823
55	055	659	258	. 89850	437	016	589
56	. 90831	433	031	621	206	. 88784	356
57	607	207	. 89803	392	. 88975	552	122
58	381	. 89980	574	162	744	319	. 87888
59	154	752	344	. 88931	512	085	653
60	. 89927	523	113	699	278	. 87851	417
61	698	293	. 88882	466	044	615	180
62	468	062	650	233	. 87809	379	. 86943
63	237	. 88830	417	. 87998	574	142	705
64	006	597	183	763	337	. 86905	466
65	. 88774	364	. 87948	527	100	667	227
66	541	130	713	291	. 86863	429	. 85987
67	308	. 87895	477	054	625	190	747
68	074	660	241	. 86817	387	. 85950	507
69	. 87839	424	004	579	148	710	266
70	602	187	. 86766	340	. 85908	470	025
71	365	. 86949	527	100	667	228	. 84783
72	127	710	287	. 85859	426	. 84986	540
73	. 86888	470	047	618	184	743	297
74	648	229	. 85806	376	. 84941	500	053
75	408	. 85988	564	134	698	257	. 83809
76	168	747	322	. 84891	455	013	564
77	. 85927	505	079	647	211	. 83768	319
78	685	262	. 84835	403	. 83966	523	074
79	442	018	590	158	720	277	. 82827
80	197	. 84772	344	. 83911	473	029	578
81	. 84950	525	096	664	224	. 82780	329
82	702	277	. 83848	415	. 82974	530	079
83	453	028	599	164	724	279	. 81828
84	203	. 83777	348	. 82913	473	027	576
85	. 83951	525	095	660	220	. 81774	322
86	697	271	. 82840	405	. 81965	519	067
87	441	014	583	148	708	262	. 80811
88	181	. 82754	323	. 81888	448	003	552
89	. 82919	492	062	626	186	. 80742	291
90	654	227	. 81797	362	. 80922	478	028
91	386	. 81959	529	094	655	211	. 79761
92	114	688	257	. 80823	384	. 79941	491
93	. 81839	413	. 80983	549	111	669	220
94	561	134	705	272	. 79835	393	. 78947
95	278	. 80852	424	. 79991	555	114	670
96	. 80991	566	138	706	271	. 78831	388
97	698	274	. 79846	415	. 78981	542	100
98	399	. 79975	547	117	684	247	. 77806
99	094	670	243	. 78814	382	. 77946	507
100	. 79784	360	. 78934	506	075	641	203

TABLE 294.-DENSITY OF AQUEOUS MIXTURES OF METHYL ALCOHOL, CANE SUGAR, OR SULFURIC ACID

$\begin{gathered} \text { Percent } \\ \text { by weight } \\ \text { of } \\ \text { substance } \end{gathered}$	Methyl   D $\frac{15^{\circ}}{4^{\circ}} \mathrm{C}$	$\begin{gathered} \text { Cane } \\ \text { Sugar } \\ \text { sugar } \end{gathered}$	$\begin{aligned} & \text { Sulfuric } \\ & \text { acid } \\ & \text { D } \frac{20^{\circ}}{4^{\circ}} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { Percent } \\ \text { by weight } \\ \text { of } \\ \text { substance } \end{gathered}$	$\begin{aligned} & \text { Methyl } \\ & \text { alacohol } \\ & \text { D } \frac{15^{\circ}}{4^{\circ}} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { Cane } \\ \text { sugar } \\ 20^{\circ} \end{gathered}$	$\begin{aligned} & \text { Sulfuric } \\ & \text { acid } \\ & \text { D } \frac{20^{\circ}}{4^{\circ}} \mathrm{C} \end{aligned}$
0	. 99913	. 998234	. 99823	50	. 91852	1.229567	1.39505
1	. 99727	1.002120	1.00506	51	. 91653	1.235085	1.40487
2	. 99543	1.006015	1.01178	52	. 91451	1.240641	1.41481
3	. 99370	1.009934	1.01839	53	. 91248	1.246234	1.42487
4	. 99198	1.013881	1.02500	54	. 91044	1.251866	1.43503
5	. 99029	1.017854	1.03168	55	. 90839	1.257535	1.44530
6	. 98864	1.021855	1.03843	56	. 90631	1.263243	1.45568
7	. 98701	1.025885	1.04527	57	. 90421	1.268989	1.46615
8	. 98547	1.029942	1.05216	58	. 90210	1.274774	1.47673
9	. 98394	1.034029	1.05909	59	. 89996	1.280595	1.48740
10	. 98241	1.038143	1.06609	60	. 89781	1.286456	1.49818
11	. 98093	1.042288	1.07314	61	. 89563	1.292354	1.50904
12	. 97945	1.046462	1.08026	62	. 89341	1.298291	1.51999
13	. 97802	1.050665	1.08744	63	. 89117	1.304267	1.53102
14	. 97650	1.054900	1.09468	64	. 88890	1.310282	1.54213
15	. 97518	1.059165	1.10199	65	. 88662	1.316334	1.55333
16	. 97377	1.063460	1.10936	66	. 88433	1.322425	1.56460
17	. 97237	1.067789	1.11679	67	. 88203	1.328554	1.57595
18	. 97096	1.072147	1.12428	68	. 87971	1.334722	1.58739
19	. 96955	1.076537	1.13183	69	. 87739	1.340928	1.59890
20	. 96814	1.080959	1.13943	70	. 87507	1.347174	1.61048
21	. 96673	1.085414	1.14709	71	. 87271	1.353456	1.62213
22	. 96533	1.089900	1.15480	72	. 87033	1.359778	1.63384
23	. 96392	1.094420	1.16258	73	. 86792	1.366139	1.64560
24	. 96251	1.098971	1.17041	74	. 86546	1.372536	1.65738
25	. 96108	1.103557	1.17830	75	. 86300	1.378971	1.66917
26	. 95963	1.108175	1.18624	76	. 86051	1.385446	1.68095
27	. 95817	1.112828	1.19423	77	. 85801	1.391956	1.69268
28	. 95668	1.117512	1.20227	78	. 85551	1.398505	1.70433
29	. 95518	1.122231	1.21036	79	. 85300	1.405091	1.71585
30	. 95366	1.126984	1.21850	80	. 85048	1.411715	1.72717
31	. 95213	1.131773	1.22669	81	. 84794	1.418374	1.73827
32	. 95056	1.136596	1.23492	82	. 84536	1.425072	1.74904
33	. 94896	1.141453	1.24320	83	. 84274	1.431807	1.75943
34	. 94734	1.146345	1.25154	84	. 84009	1.438579	1.76932
35	. 94570	1.151275	1.25992	85	. 83742	1.445388	1.77860
36	. 94404	1.156238	1.26836	86	. 83475	1.452232	1.78721
37	. 94237	1.161236	1.27685	87	. 83207	1.459114	1.79509
38	. 94067	1.166269	1.28543	88	. 82937	1.466032	1.80223
39	. 93894	1.171340	1.29407	89	. 82667	1.472986	1.80864
40	. 93720	1.176447	1.30278	90	. 82396	1.479976	1.81438
41	. 93543	1.181592	1.31157	91	. 82124	1.487002	1.81950
42	. 93365	1.186773	1.32043	92	. 81849	1.494063	1.82401
43	. 93185	1.191993	1.32938	93	. 81568	1.501158	1.82790
44	. 93001	1.197247	1.33843	94	. 81285	1.508289	1.83115
45	. 92815	1.202540	1.34759	95	. 80999	1.515455	1.83368
46	. 92627	1.207870	1.35686	96	. 80713	1.522656	1.83548
47	. 92436	1.213238	1.36625	97	. 80428	1.529891	1.83637
48	. 92242	1.218643	1.37574	98	. 80143	1.537161	1.83605
49	. 92048	1.224086	1.38533	99	. 79859	1.544462	
50	. 91852	1.229567	1.39505	100	. 79577	1.551800	

## TABLE 295.-DENSITY, BRIX, AND BAUMÉ DEGREES, OF CANE-SUGAR SOLUTIONS

Degrees Brix, specific gravity, and degrees Baumé of sugar solutions.
Degrees Brix = percent sucrose by weight.
Specific gravities and degrees Baumé corresponding to the degrees Brix are for $\frac{20^{\circ}}{20^{\circ}} \mathrm{C}$.
The relation between the specific gravity and degrees Baumé is given by degrees Baumé $=$ $145-\frac{145}{\text { specific gravity }}$

Degrees Brix or percent by wẹight	$\begin{gathered} \text { Specific } \\ \text { gravity at } \\ 20^{\circ} / 20^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \text { Degrees } \\ & \text { Baume } \\ & \text { (modu } \\ & \text { lus 145) } \end{aligned}$	Degrees Brix or percent by weight	$\begin{gathered} \text { Srecific } \\ \text { gravity at } \\ 20^{\circ} / 20^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \text { Degrees } \\ & \text { Baumé } \\ & \text { (modu. } \\ & \text { lus } 1+5 \text { ) } \end{aligned}$	Degrees Brix or percent by weight	$\begin{gathered} \text { Specific } \\ \text { gravity at } \\ 20^{\circ} / 20^{\circ} \mathrm{C} \end{gathered}$	Degrees Baume (modu.   lus 145
. 0	1.00000	. 00	40.0	1.17853	21.97	80.0	1.41421	42.47
1.0	1.00389	. 56	41.0	1.18368	22.50	81.0	1.42088	42.95
2.0	1.00779	1.12	42.0	1.18887	23.04	82.0	1.42759	43.43
3.0	1.01172	1.68	43.0	1.19410	23.57	83.0	1.43434	43.91
4.0	1.01567	2.24	44.0	1.19936	24.10	84.0	1.44112	44.38
5.0	1.01965	2.79	45.0	1.20467	24.63	85.0	1.44794	44.86
6.0	1.02366	3.35	46.0	1.21001	25.17	86.0	1.45480	45.33
7.0	1.02770	3.91	47.0	1.21538	25.70	87.0	1.46170	45.80
8.0	1.03176	4.46	48.0	1.22080	26.23	88.0	1.46862	46.27
9.0	1.03586	5.02	49.0	1.22625	26.75	89.0	1.47559	46.73
10.0	1.03998	5.57	50.0	1.23174	27.28	90.0	1.48259	47.20
11.0	1.04413	6.13	51.0	1.23727	27.81	91.0	1.48963	47.66
12.0	1.04831	6.68	52.0	1.24284	28.33	92.0	1.49671	48.12
13.0	1.05252	7.24	53.0	1.24844	28.86	93.0	1.50381	48.58
14.0	1.05677	7.79	54.0	1.25408	29.38	94.0	1.51096	49.03
15.0	1.06104	8.34	55.0	1.25976	29.90	95.0	1.51814	49.49
16.0	1.06534	8.89	56.0	1.26548	30.42	96.0	1.52535	49.94
17.0	1.06968	9.45	57.0	1.27123	30.94	97.0	1.53260	50.39
18.0	1.07404	10.00	58.0	1.27703	31.46	98.0	1.53988	50.84
19.0	1.07844	10.55	59.0	1.28286	31.97	99.0	1.54719	51.28
20.0	1.08287	11.10	60.0	1.28873	32.49	100.0	1.55454	51.73
21.0	1.08733	11.65	61.0	1.29464	33.00			
22.0	1.09183	12.20	62.0	1.30059	33.51			
23.0	1.09636	12.74	63.0	1.30657	34.02			
24.0	1.10092	13.29	64.0	1.31260	34.53			
25.0	1.10551	13.84	65.0	1.31866	35.04			
26.0	1.11014	14.39	66.0	1.32476	35.55			
27.0	1.11480	14.93	67.0	1.33090	36.05			
28.0	1.11949	15.48	68.0	1.33708	36.55			
29.0	1.12422	16.02	69.0	1.34330	37.06			
30.0	1.12898	16.57	70.0	1.34956	37.56			
31.0	1.13378	17.11	71.0	1.35585	38.06			
32.0	1.13861	17.65	72.0	1.36218	38.55			
33.0	1.14347	18.19	73.0	1.36856	39.05			
34.0	1.14837	18.73	74.0	1.37496	39.54			
35.0	1.15331	19.28	75.0	1.38141	40.03			
36.0	1.15828	19.81	76.0	1.38790	40.53			
37.0	1.16329	20.35	77.0	1.39442	41.01			
38.0	1.16833	20.89	78.0	1.40098	41.50			
39.0	1.17341	21.43	79.0	1.40758	41.99			

TABLE 296.-VELOCITY OF SOUND IN GASES ${ }^{08}$

Gas	${ }^{\text {Temp. }}$	Velocity $\mathrm{m} / \mathrm{sec}$	Gas	Temp.	Velocity $\mathrm{m} / \mathrm{sec}$
Air, dry, 1 atm.	0	331.7	Hydrogen bromide	0	200
". " 25 ".	0	332.0	Hydrogen chloride	0	296
" " 50 "	0	334.7	Hydrogen iodide .	0	157
" " 100 "	0	350.6	Hydrogen sulfide	0	289
"	100	386	Illuminating gas	0	490.4
" "	500	553	Methane ......	0	430
" " .	1000	700	Neon	0	435
Ammonia	0	415	Nitric oxide	10	324
Argon	0	319	Nitrogen	0	334
Carbon dioxide	0	259	Nitrous oxide	0	263
Carbon monoxide	0	338	Oxygen	0	316
Chlorine	0	206	Silicon tetrafluoride	0	167
Ethane	10	308	Sulfur dioxide	0	213
Ethylene	0	317	Vapors:		
Helium	0	965	alcohol	0	230.6
Hydrogen (heavy)	0	890	ether	0	179.2
Hydrogen (light).	0	1284	water	0 100	$\begin{aligned} & 401 \\ & 404.8 \end{aligned}$

* Tables 296 and 298-300 prepared by Urick and Weissler, Naval Research Laboratory
${ }^{08}$ Bergmann, Ultrasonics, 3d ed., p. 223, Edwards Brothers, Ann Arbor, Mich., 1944.


## TABLE 297.-VELOCITY OF SOUND IN SOLIDS

The velocity of sounds in solids varies as $V \overline{E / \rho}$, where $E$ is Young's modulus of elasticity and $\rho$ the density. These constants for most materials vary through a somewhat wide range. The numbers can be taken only as rough approximations to the velocity in any particular case. When temperatures are not marked, between $10^{\circ}$ and $20^{\circ}$ is to be understood.

Substance	$t^{\circ} \mathrm{C}$	$\mathrm{m} / \mathrm{sec}$	Substance		$t^{\circ} \mathrm{C}$	$\stackrel{\nu}{\mathrm{m} / \mathrm{sec}}$
Ag hard	20	2678	Fe		200	4720
	100	2640			20	4990
" "	200	2480	"		100	4920
Al		5104	"		200	4790
Au hard	20	1743	Mg			4602
" "	100	1720	Ni			4973
Cd		2307	Pb			1322
Co		4724	Pd			3150
Cu	20	3560	Pt		20	2690
	100	3290	"		100	2570
"	200	2950	'		200	2460
Fe	20	5130	Sn			2500
	100	5300	Zn			3700
Ash, along the fiber.		4670	Brick			3652
" across the rings.		1390	Clay rock			3480
" along the rings.		1260	Cork . . .			500
Beech, along the fiber.		3340	Granite			3950
across the rings		1840	Marble			3810
"" along the rings .		1415	Paraffin		15	1304
Elm, along the fiber..		4120	Slate .			4510
" across the rings.		1420	Tallow		16	390
" along the rings.		1013	Tuff			2850
Fir, along the fiber.......		4640	Glass			5000
Mahogany, along the fiber		4135	Glass			6000
Maple, along the fiber. .		4110	Ivory			3013
Oak, along the fiber. .		3850	Vul. rubber	(black)	$\left\{\begin{array}{r}0 \\ 50\end{array}\right.$	54
Pine, along the fiber...		3320	"ul. rubber	(black)	$\{50$	31
Poplar, along the fiber...		4280	" "	(red)	0	69
Sycamore, along the fiber.		4460	" "	"	70	34
			Wax		17	880
			"		28	441


Liquid	Temper. ature ${ }^{\circ} \mathrm{C}$	Sound   velocity   $\mathrm{m} / \mathrm{sec}$	$\underset{\mathrm{g} / \mathrm{ml}}{\substack{\text { Density }}}$	Liquid	Temper${ }_{0}{ }^{\text {at }} \mathrm{C}$	Sound velocity $\mathrm{m} / \mathrm{sec}$	$\underset{\mathrm{g} / \mathrm{ml}}{\substack{\text { Density }}}$
Acetone ${ }^{\text {c }}$	30	1146	. 7788	Silicon tetrachloride ${ }^{\text {a }}$	30	766.2	1.4622
Alcohol, abs. ethyl ${ }^{\text {a }}$	30	1127.4	. 7809	Silicone			
Alcohol methy ${ }^{\text {a }}$	30	1088.9	. 7816	DC 500-. $65 \mathrm{cs}^{\text {a }}$	30	873.2	. 7535
Alcohol, n-dodecyla	30	1388.0	. 8269	DC 500-5.0 $\mathrm{cs}^{\text {a }}$	30	953.8	. 9083
Benzene ${ }^{\text {d }}$. ........	30	1276.4	. 8685	DC 500-50 cs ${ }^{\text {a }}$	30	981.6	. 9540
Carbon disulfide ${ }^{\text {b }}$	23	1149	1.258	Sorbitol, $83 \%$ solut			
Carbon tetrachloride ${ }^{\text {a }}$	30	905.8	1.5746	in water ${ }^{\text {a }}$. ...	30	2040	1.31
Chloroform ${ }^{\text {" }}$	20	1002	1.488	Turpentine ${ }^{\text {b }}$	27	1280	. 893
Ether ${ }^{\text {c }}$	30	949	. 7019	Water (distilled) ${ }^{\text {e }}$	0	1403.5	
Ethylene glycol ${ }^{\text {a }}$	30	1643.5	1.1068		10	1448.0	
Glycerine ${ }^{\text {c }}$	30	1905	1.2553		20	1483.1	
Heptane ${ }^{\text {c }}$	30	1112	. 6751		30	1509.9	
Heptene ${ }^{\text {a }}$	30	1082	. 6910		40	1529.5	
Heptyne ${ }^{\text {a }}$	30	1159.3	. 7243		50	1543.5	
Hexadeca fluoro-					60	1551.5	
heptane ${ }^{\text {d }}$	30	528.8	1.64		70	1555.3	
Mercury ${ }^{\text {b }}$	20	1451	13.595		80	1554.6	
Methylene iodide ${ }^{\text {d }}$	20	973.3	3.325		86	1552.4	
					94	1549.0	

[^134]
## TABLE 299.-VELOCITY OF SOUND IN SEA WATER

(From various tables and formulae)

Deptb   in   meters	${ }^{\circ} \mathrm{C}$	Sal.   ppt	$\overbrace{\text { Heck \& }}^{\text {Service }}$	Wood	Br. Adm.   i927.	Br. Adm.   i	0

308 TABLE 300.-VELOCITY OF SOUND IN SEA WATER-DEPTH $=0$
(From Kuwahara)

	Meters per second				
${ }^{\circ} \mathrm{C}$	$\mathrm{S}^{*}=31 \mathrm{ppt}$	$\mathrm{S}=31 \mathrm{ppt}$	$\mathrm{S}=35 \mathrm{ppt}$	$\mathrm{S}=37 \mathrm{ppt}$	$\mathrm{S}=39 \mathrm{ppt}$
0	1440.3	1442.9	1445.5	1448.1	1450.7
1	44.8	47.4	50.0	52.6	55.2
2	49.4	51.9	54.5	57.1	59.6
3	53.8	56.4	58.9	61.4	64.0
4	58.1	60.6	63.1	65.6	68.1
5	1462.3	1464.8	1467.3	1469.8	1472.3
6	66.5	68.9	71.4	73.9	76.3
7	70.5	73.0	75.4	77.9	80.3
8	74.5	76.9	79.3	81.7	84.2
9	78.3	80.7	83.1	85.5	87.9
10	1482.0	1484.4	1486.8	1489.2	1491.6
11	85.7	88.0	90.4	92.8	95.1
12	89.2	91.6	93.9	96.3	98.6
13	92.7	95.0	97.3	99.6	1502.0
14	96.0	98.3	1500.6	1502.9	05.2
15	1499.3	1501.6	1503.9	1506.2	1508.5
16	1502.5	04.7	07.0	09.3	11.5
17	05.6	07.9	10.1	12.3	14.6
18	08.6	10.8	13.0	15.2	17.5
19	11.5	13.7	15.9	18.1	20.3
20	1514.3	1516.5	1518.7	1520.9	1523.1
21	17.2	19.3	21.5	23.7	25.9
22	19.8	22.0	24.1	26.3	28.4
23	22.4	24.6	26.7	28.8	31.0
24	25.0	27.1	29.2	31.3	33.5
25	1527.5	1529.6	1531.7	1533.8	1535.9
26	29.9	32.0	34.1	36.2	38.3
27	32.3	34.3	36.4	38.5	40.6
28	34.6	36.6	38.7	40.8	42.9
29	36.9	39.0	41.0	43.1	45.1
30	1539.1	1541.2	1543.2	1545.3	1547.3
* Sa	rts per thousa				

TABLE 301.-RELATIVE POWER AND FREQUENCY OF OCCURRENCE OF VOWEL AND CONSONANT SOUNDS ${ }^{100}$

Vowels

Vowel indicated by italics in words	Relative power	Relative frequency of occurrence	Vowel indicated by italics in words	Relative power	Relative frequency of occurrence
see	220	6.4	saw	680	4.2
sit	260	10.3	tone	470	4.7
hate	370	4.8	foot	460	3.0
let	350	6.6	soon	310	6.3
sat	490	6.9	sun	510	4.1
father	600	6.5			

## Initial and final consonants

Consonant	Rela-	Relative frequency of occurrence		Consonant	Relative power	Relative frequency of occurrence	
	tive power	Initial	Final			Initial	Final
p	6	2.5	1.2	S	16	5.5	3.1
b	7	4.6	. 4	z	16	. 3	6.0
k	13	5.6	2.9	zh (azure)	20	. 02	. 01
g	15	4.3	. 4	sh .......	80	1.7	. 3
t	15	7.9	14.3	m	52	5.9	5.5
d	7	6.2	4.4	n	36	5.0	12.5
f	5	5.0	12.5	ng	73		3.6
$v$	12	1.3	. 4.2	1	100	4.3	8.4
th (voiced)	11	6.7	1.3	r	210	2.8	13.1
th (unvoiced)	1	6.7	1.3	ch	42	. 6	. 5
				j ...	23	. 8	. 1

[^135]
## TABLE 302.-SOUND LEVELS OF NOISE IN VARIOUS LOCATIONS

It is customary to compare the pressure of all sounds in air with 0.0002 dynes $/ \mathrm{cm}^{2}$. The sound-pressurc level of waves having a r.m.s. sound pressure of $p$ dynes $/ \mathrm{cm}^{2}$ is defined as $20 \log _{10}(p / 0.0002)$ decibels. ${ }^{\dagger}$

The following table gives some typical values of sound levels of noise in the locations indicated:

Location	$\begin{gathered} \text { Sound } \\ \text { level } \\ \text { in db } \end{gathered}$	Location	$\begin{gathered} \text { Sound } \\ \text { level } \\ \text { indb } \end{gathered}$
Electric power station,		Average office	55
generating room	120	Average residence	5
Boiler factory	110	Average residenc	43
Subway station, train	100	Quiet residence	35
Streetcar		Radio broadcast	30
Factory	75	Reference level, .	

[^136]In a study conducted by Dunn and White, ${ }^{101}$ the "long-time-interval average" power of speech, obtained by averaging data over time intervals of more than a minute of continuous speech, for the average of a group of male speakers was found to be 34 microwatts. The corresponding value for female speakers was 18 microwatts. At least 1 percent of the $\frac{1}{8}$-second intervals had an average power in excess of 230 microwatts for men and 150 microwatts for women, and a peak power in excess of 3600 microwatts for men and 1800 microwatts for women. The figure shows how the total power of average conversational speech is distributed with respect to frequency. These data give the power per cycles versus frequency and also the percentage power lying below a given frequency.


Fig. 1.-Speech power for men (continuous curves) and women (dotted curves) given in percentage power below any frequency. Curves A and B , power per cycle, curves C and $\mathrm{D}, \mathrm{Odb}=1$ microwatt.

[^137]TABLE 303.-PEAK POWER OF MUSICAL INSTRUMENTS ${ }^{102}$

Watts		Watts		Watts
Orchestra,	Cymbals	10	Piccolo	. 08
75 pieces ....... 70	Trombone	6	Flute	. 06
Bass drum, large.. 25	Piano..	. 3	Clarinet	. 05
Pipe organ ....... 13	Trumpet	. 3	French horn	. 05
Snare drum ...... 12	Bass viol	. 2	Triangle ...	. 05

[^138]The "pitch" of one's voice, i.e., his fundamental frequency, fluctuates considerably during conversational speech, and there is a great deal of variation from individual to individual. The average fundamental frequency for the average male voice in conversational English speech is in the neighborhood of 130 cps , while the corresponding value for the female voice is 230 cps .

The vocal cords, housed in the larynx, emit a pressure wave that is essentially "sawtooth" irl character. The numerous harmonics that result from this complex wave form are selectively transmitted to the open air. The throat, mouth, nose, and constrictions formed by the tongue and lips are most important in determining the frequency characteristics of the transmission system. The pressure spectrum of speech has many peaks. Apparently vowel sounds are distinguished by the position of these resonant peaks. The following table gives representative frequencies of the first two principal resonant peaks for different vowel sounds spoken by the average male adult:

Vowel indicated by italics in the words	Frequency of 1 st	Frequency of 2 d		Frequency of 1 st	Frequency of 2 d
	principal	principal	Vowel in-	principal	principal
	resonant peak	resonant peak	dicated by italics in	resonant	resonant peak
	cps	cps	the words	cps	cps
sce	290	2375	$\mathrm{s} a \mathrm{w}$	600	900
sit	440	2050	foot	500	1050
let	585	1875	soon	330	900
sat	725	1675	sun	650	1225
father	780	1125	sir	475	1375

${ }^{103}$ Potter, R. K., and Peterson, G. E., Journ. Acoust. Soc. Amer., vol. 20, p. 528, 1948.

## TABLE 305.-APPROXIMATE RANGE OF FUNDAMENTAL FREQUENCY ON ORCHESTRAL INSTRUMENTS

The values given are for average instruments in tune with A440 cps. The lower frequency limits of some special instruments are indicated in brackets.

Instrument	Frequency range in cps		Instrument	Frequency range in cps	
	Lower limit	Upper limit		Lower limit	Upper limit
Violin	195	2093	Bb tenor saxophone	103	623
Viola	131	1318	Eb baritone saxophone..	69	416
Cello	65	880	Trumpet .............	164	1047
Bass . . . . . . . . . . . . (32)	41	262	French horn	61	699
Piccolo	587	4186	Trombone . ......... (51)	82	524
Flute . . . . . . . . . . . . . . . . .	261	2043	Bass tuba ...............	41	234
Oboe	233	1397	Piano	27	4186
English horn	164	934	Organ .............. (16)	32	4186
Clarinet . . . . . . . . . (138)	146	1568	Harp ...	32	3136
Bass clarinet ....... (65)	73	467	Soprano voice	261	1568
Bassoon	58	623	Tenor voice .............	123	1174
Contra bassoon	30	175	Alto voice ..............	174	933
Eb alto saxophone .....	138	831	Baritone voice .........	98	416
			Bass voice . ............	. 65	294

## MUSICAL SCALES

The following definitions and Tables 307 and 308 are taken from the American Standard Acoustical Terminology Z24.1, 1949.
Just scale.-A just scale is a musical scale such that the frequency intervals are represented by the ratios of small integers.

Equally tempered scale.-An equally tempered scale is a series of notes selected from a division of the octave (usually) into 12 equal intervals.

Equally tempered semitone (half-step).-An equally tempered semitone is the interval between two sounds whose basic frequency ratio is the twelfth root of two.
Note.-The interval, in semitones, between any two frequencies is 12 times the logarithm on the base 2 of the frequency ratio.

Cent.-A cent is the interval between two sounds whose basic frequency ratio is the twelve-hundredth root of two.
Note.-The interval, in cents, between any two frequencies is 1200 times the logarithm on the base 2 of the frequency ratio. Thus, 1200 cents $=12$ semitones $=1$ octave.

## TABLE 306.-FREQUENCY RATIOS AND INTERVALS FOR JUST AND EQUALLY TEMPERED SCALES

	Just temperament		Equal temperament	
Interval from starting point	Frequency ratio from starting point	Cents from starting point	Frequency ratio from point	$\begin{gathered} \text { Cents } \\ \text { from } \\ \text { starting } \\ \text { point } \end{gathered}$
Unison	1:1	0	$1: 1$	0
Minor second or semitone.	16:15	111.731	1.059463:1	100
Minor tone	10:9	182.404		
Major second or whole tone	9:8	203.910	1.122462:1	200
Minor third	6:5	315.641	1.189207:1	300
Major third	5:4	386.314	$1.259921: 1$	400
Perfect fourth	4:3	398.045	1.334840 :1	500
Augmented fourth	45:32	590.224	1.414214:1	600
Diminished fifth	64:45	609.777	1.414214:1	600
Perfect fifth	3:2	701.955	1.498397:1	700
Minor sixth	8:5	813.687	1.587401:1	800
Major sixth	5:3	884.359	1.681793:1	900
Harmonic minor seventh.	7:4	958.826		
Grave minor seventh.	16:9	996.091		
Minor seventh	9:5	1017.597	1.781797:1	1000
Major seventh	15:8	1088.269	1.887749:1	1100
Octave	2:1	1200.000	2:1	1200

TABLE 307.-FREQUENCIES OF THE TONES OF THE USUAL EQUALLY TEMPERED SCALE, ARRANGED BY CORRESPONDING PIANO KEY NUMBERS, AND CALCULATED ACCORDING TO AMERICAN STANDARD PITCH

Note	$\begin{gathered} \text { Key } \\ \text { No. } \end{gathered}$	Freq.   cps	Key No. din	$\begin{aligned} & \text { Freq. } \\ & \text { cps } \end{aligned}$	$\begin{aligned} & \text { Key } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Freq. } \\ \text { cess } \end{gathered}$	Key No.	Freq. cps	$\begin{gathered} \text { Key } \\ \text { No. } \end{gathered}$	Freq. cps	$\begin{gathered} \text { Key } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Freq. } \\ & \text { cps. } \end{aligned}$	$\begin{gathered} \text { Key } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Freq. } \\ \text { cps } \end{gathered}$	$\begin{gathered} \text { Key } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Freq. } \\ \text { cps. } \end{gathered}$	$\begin{aligned} & \text { Note } \\ & \text { name } \end{aligned}$
A	1	27.500	13	55.000	25	110.000	37	220.000	49	440.000	61	880.000	73	1760.000	85	3520.000	name
A\#-Bb	2	29.135	14	58.270	26	116.541	38	233.082	50	466.164	62	932.328	74	1864.655	86	3729.310	$\mathrm{A} \#-\mathrm{Bb}$
B	3	30.868	15	61.735	27	123.471	39	246.942	51	493.883	63	987.767	75	1975.533	87	3951.066	B
C		32.703	16	65.406	28	130.813	40	261.626	52	523.251	64	1046.502	76	2093.005	88	4186.009	C
C\#-Db	5	34.648	17	69.296	29	138.591	41	277.183	53	554.365	65	1108.731	77	2217.461			C\#-Db
D	6	36.708	18	73.416	30	146.832	42	293.665	54	587.330	66	1174.659	78	2349.318			D
D\#-Eb	7	38.891	19	77.782	31	155.563	43	311.127	55	622.254	67	1244.508	79	2489.016			D\#-Eb
E	8	41.203	20	82.407	32	164.814	44	329.628	56	659.255	68	1318.510	80	2637.021			E
F	9	43.654	21	87.307	33	174.614	45	349.228	57	698.456	69	1396.913	81	2793.826			F
F\#-Gb	10	46.249	22	92.499	34	184.997	46	369.994	58	739.989	70	1479.978	82	2959.955			F\#-G
	11	48.999	23	97.999	35	195.998	47	391.995	59	783.991	71	1567.982	83	3135.964			
G\#-Ab	12	51.913	24	103.826	36	207.652	48	415.305	60	830.609	72	1661.219	84	3322.438			$\mathrm{G}-\mathrm{Ab}$

The following data describe the pressure field around the head of a speaker at a radius of 30 cm from the speaker's lips. The sound-pressure level is O). These data give the pressure distribution in the horizontal plane $\phi=0$, and the relative pressures overhead. ).



The minimum effective sound pressure of a specified signal that is capable of evoking an auditory sensation is called the threshold of audibility for that signal. The characteristics of the signal, the manner in which it is presented to the listener, and the point at which the sound pressure is measured must be specified. Two classes of ear-sensitivity determinations are shown in figure 2. M.A.P. is just-audible sound pressure measured at the observer's ear drum. M.A.F. is the sound pressure level that is just audible to an observer in an acoustical field free of reflecting surfaces (the sound-pressure level is measured after the observer's head is withdrawn from the field) ; the observer faces the source of sound and listens binaurally. These curves were derived by Sivian and White from measurements on young adult observers all having very good hearing. ${ }^{105}$ The average person cannot detect pressures as low as those given. He will have a threshold curve displaced upward on the chart. (See Table 309A for data on hearing losses.)


Fig. 2.-The variation of two classes of ear sensitivity. Curve 1, Monaural M.A.P. The ordinate for curve 1 is $20 \log _{10} p / p_{0}$ where $p=$ M.A.P. at ear drum $\left(\mathrm{dyne} / \mathrm{cm}^{2}\right)$ and $p_{0}=$ $2 \times 10^{-4}$ (dyne/ $\mathrm{cm}^{2}$ ). Curve 2, Binaural M.A.F. Observer facing source. ( $0 \mathrm{db}=10^{-16}$ watts $/ \mathrm{cm}^{2}$ ).

The term "differential sensitivity of frequency and intensity" refers to the smallest changes in frequency and intensity, respectively, that can be perceived by an observer with normal hearing. The values depend to some extent on the method of presentation of the test stimuli. For pure tones above 500 cps having levels greater than 40 db above threshold, the measurements of Shower and Biddulph indicate that the smallest perceptible difference in frequency has the approximate constant value of 0.3 percent. For levels greater than 40 db above threshold and for frequencies between 200 and 7000 cps , the measurements of Riesz and others indicate that the smallest perceptible difference in intensity varies from one-quarter to three-quarters of a decibel.

The range of frequency perceived by the average ear varies considerably; however, the figures of $20-20,000$ cycles are frequently quoted as covering the range heard by the average of a group of young adults having no hearing impairments

[^139]
## TABLE 309A.-DISTRIBUTION OF LOSS OF HEARING ACUITY ${ }^{100}$

The following data are part of the results of the hearing tests conducted by the Bell System at the New York and San Francisco World's Fairs in 1939. The first four columns indicate the percentages of the population having hearing losses of 25 db or more at various frequencies. A person having a loss of 25 db at all frequencies below 2000 cps may experience difficulty in understanding unamplified speech, as in an auditorium or church. The second four columns indicate the corresponding percentages for losses of 45 db or more. A person having such a loss experiences difficulty in understanding ordinary conversational speech at distances greater than 2 or 3 feet.

Age group	25.db loss Frequency in cps				45-db loss Frequency in cps		
	440;880	1760	3520	7040	440;880	1760	3520
10-19 men	1.7	1.6	4.5	8.0	. 6	. 6	1.8
women	1.8	1.2	1.2	2.5	. 6	. 4	. 3
20-29 men	1.1	1.2	7.0	9.5	. 1	. 3	2.7
women	1.8	1.6	2.2	3.5	. 4	. 3	. 7
30-39 men	1.8	3.5	15.	19.	. 3	. 6	6.0
women	3.5	3.5	5.5	10.	1.2	. 8	1.6
40-49 men	5.5	9.5	32.	39.	1.4	2.6	16.
women	7.0	7.0	11.	24.	2.1	1.5	3.
50-59 men		17.	48.	58.	2.6	6.0	27.
women	13.	14.	22.	43.	4.0	3.0	7.

${ }^{100}$ Steinberg, Montgomery, and Gardner, Journ. Acoust. Soc. Amer., vol. 12, p. 291, 1940.

## TABLE 310.-ARCHITECTURAL ACOUSTICS ${ }^{107}$

Planning for good acoustics in a building requires careful consideration of noise control. This includes consideration of the selection of a site, the arrangement of the rooms within the building, the selection of the proper sound-insulation constructions, and the control of noise sources within the building. The design of a room where people gather to listen to speech or music should be such that its shape and size will ensure the most advantageous flow of properly diffused sound to all auditors. Absorptive and reflective materials and constructions should be selected and distributed to provide the optimum conditions for the growth, decay, and steady-state distribution of sound in the room. The reverberation characteristics of the room are controlled by the amount and placement of the absorptive material.

Reverberation time calculations.-Because of the importance of the proper control of reverberation in rooms, a standard of measure called reverberation time has been established. This is the time required for a specified sound to die away to one-thousandth of its initial pressure, which corresponds to a drop in sound-pressure level of 60 db . The reverberation time of a room is given by the following equation :

$$
T=\frac{0.049 V}{-2.30 S \log _{10}(1-\bar{\propto})+4 m V}
$$

where $V$ is the volume of the room, $S$ is the total surface area in square feet, and $\bar{\propto}$ is the average absorption coefficient for the room given by

$$
\bar{\propto}=\frac{\propto_{1} S_{1}+\propto_{2} S_{2}+\propto_{3} S_{3}+\ldots \ldots}{S_{1}+S_{2}+S_{3}+\ldots \ldots}=\frac{a}{S}
$$

where $\propto_{1}$ is the absorption coefficient of the area $S_{1}$, etc.
The second term in the denominator, $4 m V$, represents the effective absorption in the room contributed by the air. The attenuation coefficient $m$ at each frequency depends upon the humidity and temperature of the air. Except in very large rooms the absorption in air can be neglected below about 2000 cps . The values of $m$ for a temperature $68^{\circ} \mathrm{F}$ are given in figure 3 as a function of relative humidity for a number of frequencies.

[^140]

Fig. 3.-Attenuation coefficient $m$ per foot as a function of humidity.

TABLE 310A.-OPTIMUM REVERBERATION TIME (FIGS. 4 AND 5)
The following figures give the recommendations of Knudsen and Harris for optimum reverberation time for different types of rooms as a function of room volume. The optimum times for speech rooms, motion-picture theaters, and school auditoriums are given by a single line ; the optimum time for music by a broad band. The optimum reverberation time is not the same for all kinds of music. For example, slow organ and choral music require more reverberation than does a brilliant allegro composition played on woodwinds, piano, or harpsicord.

The optimum reverberation time vs. frequency characteristic for a room can be obtained from these charts in the following manner: After having specified the volume and purpose of the room, determine the optimum reverberation time at 512 cycles from the upper chart. Then, to obtain optimum reverberation time at any other frequencies multiply the 512 -cycle value by the appropriate ratio $R$ which is given in the lower chart. Note that $R$ is unity for frequencies above 500 cycles, and is given by a band for frequencies below 500 cycles. The ratio $R$ for large rooms may have any value within the indicated band; preferred ratios for small rooms are given by the lower part of the band.
(continued)

TABLE 310A.-OPTIMUM REVERBERATION TIME (FIGS. 4 AND 5) (concluded)


Fig. 4.-Optimum reverberation time as a function of volume of rooms for various types of sound for a frequency of about 512 cycles per second.


Fig. 5.-Ratio of the reverberation time for various frequencies as a function of the reverberation for 512 cycles per second.

## TABLES 311-338.-VISCOSITY OF FLUIDS AND SOLIDS *

The coefficient of viscosity of a substance is the tangential force required to move a unit area of a plane surface with unit speed relative to another parallel plane surface from which it is separated by a layer of the substance a unit thick. Viscosity measures the temporary rigidity it gives to the substance.

Fluidity is the reciprocal of viscosity expressed in poises. Kinematic viscosity is absolute viscosity divided by density. Specific viscosity is viscosity relative to that of some standard substance, generally water at some definite temperature. The dimensions of viscosity are $M L^{-1} T^{-1}$. It is generally expressed in cgs units as dyne-second per $\mathrm{cm}^{2}$ or poises.

The viscosity of fluids is generally measured by one of several methods depending on the magnitude of the viscosity value to be measured. For vapors and gases as well as for liquids of low viscosity, measurements of viscosity are made by the rate of flow of the fluid through a capillary tube whose length is great in comparison with its diameter. The equation generally used is

$$
\eta, \text { the viscosity, }=\frac{\gamma \pi g d^{4} t}{128 Q(l+\lambda)}\left(h-\frac{m v^{2}}{g}\right)
$$

where $\gamma$ is the density $\left(\mathrm{g} / \mathrm{cm}^{3}\right), d$ and $l$ are respectively the diameter and length in cm of the tube, $Q$ the volume in $\mathrm{cm}^{3}$ discharged in $t \mathrm{sec}, \lambda$ the Couette correction to the measured length of the tube, $h$ the average head in cm , $m$ the coefficient of kinetic energy correction, $m v^{2} / g$, necessary for the loss of energy due to turbulent, in distinction from viscous, flow, $g$ being the acceleration of gravity $\left(\mathrm{cm} / \mathrm{sec}^{2}\right), v$ the mean velocity in $\mathrm{cm} / \mathrm{sec}$. (See Herschel, Nat. Bur. Standards Techn. Pap. Nos. 100 and 112, 1917-1918, for discussion of this correction and $\lambda$.)

For liquids of medrum and high values of viscosity measurements are made by Margule's method of observing the torque on the inner of two concentric cylinders while the outer is rotated with constant angular speed with the viscous liquid filling the space between, or by noting the rate of fall of a solid sphere through the liquid.

For the method of concentric cylinders the equation is

$$
\eta \text {, the viscosity, }=\frac{K \theta\left(R_{1}{ }^{2}-R_{2}{ }^{2}\right)}{4 \pi \Omega R_{1}{ }^{2} R_{2}{ }^{2} L},
$$

where $K$ denotes the elastic constant of the torsion member supporting the inner cylinder of radius $R_{2} \mathrm{~cm}$ and length $L \mathrm{~cm}, \theta$ is the angular displacement of the inner cylinder from its position of equilibrium, $\Omega$ the angular speed of the outer rotating cylinder of radius $R_{1} \mathrm{~cm}$ in the corresponding units employed to measure $\theta$. The necessary corrections due to end effects of cylinders of finite length are given in the reference. ${ }^{108}$

For the falling sphere method, the equation is that of Stokes law as modified by R. G. Hunter : ${ }^{109}$

$$
\eta, \text { the viscosity, }=\frac{2}{9} \frac{R^{2}\left(d_{1}-d_{2}\right)}{V} \frac{\left(1-\frac{R}{}^{2 \cdot 2 \cdot 5}\right)}{\left(1+3.3 \frac{R}{h}\right)}
$$

where $\gamma$ denotes the radius in cm of the crucible containing the liquid of density $d_{2}\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$, to a depth of $h \mathrm{~cm}, R$ the radius in cm of the sphere of density $d_{1}$ $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$, and $V$ the velocity ( $\mathrm{cm} / \mathrm{sec}$ ) of the falling sphere.

[^141]For very viscous materials, measurements of viscosity are made by noting the rate of elongation of fibers under load or by observing the aperiodic motion of an elastic system displaced from its position of equilibrium and damped by the viscous material.
The formula for the rate of elongation of fibers as employed by H. R. Lillie ${ }^{110}$ is

$$
\eta, \text { the viscosity, }=\frac{L \times g \times k}{3 \pi R^{2} E},
$$

where $R$ is the radius in cm of the fiber of effective length, $L$ ( cm ), $g$ the mass in grams of the attached load, $k$ the acceleration of gravity $\left(\mathrm{cm} / \mathrm{sec}^{2}\right)$, and $E$ the rate of elongation in $\mathrm{cm} / \mathrm{sec}$.

For the aperiodic motion of the system consisting of the suspended inner cylinder of Margule's apparatus described above, the formula is

$$
\eta \text {, the viscosity, }=\frac{K\left(t_{2}-t_{1}\right) \log e}{4 \pi L \log _{10} \frac{\theta_{1}}{\theta_{2}}}\left(\frac{R_{2}{ }^{2}-R_{1}{ }^{2}}{R_{1}{ }^{2} R_{2}{ }^{2}}\right),
$$

where $t_{2}$ and $t_{1}$ denote the times in seconds of angular positions $\theta_{2}$ and $\theta_{1}$ of the suspended system from its position of equilibrium. The other characters have the same significance as in the formula above for the rotating cylinder method of measuring viscosity. (For reference, see footnote 108.)

The viscosity of solids may be measured in relative terms by the damping of the oscillations of suspended wires (see Table 323). Ladenburg (1906) gives the viscosity of Venice turpentine at $18.3^{\circ}$ as 1300 poises ; Trouton and Andrews (1904) of pitch at $0^{\circ}, 51 \times 10^{10}$, at $15^{\circ}, 1.3 \times 10^{10}$; of shoemaker's wax at $8^{\circ}, 4.7 \times 10^{6}$; of soda glass at $575^{\circ}, 11 \times 10^{12}$; Deeley (1908) of glacier ice as $12 \times 10^{13}$.
${ }^{110}$ Lillie, H. R., Journ. Amer. Cer. Soc., vol. 14, p. 502, 1931.

TABLE 311.—VISCOSITY OF WATER IN CENTIPOISES
(Temperature variation)
Part 1.-Low temperature

${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Vis. } \\ & \text { Cosity } \\ & \text { cp } \end{aligned}$	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Vis- } \\ & \text { Cosity } \end{aligned}$	${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Vis. } \\ \text { Cis. } \\ \text { cp } \\ \text { cp } \end{gathered}$	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Vis- } \\ & \text { Visity } \\ & \text { cp } \end{aligned}$	${ }^{\circ} \mathrm{C}$	$\underset{\substack{\text { Vis. } \\ \text { cosity } \\ \text { cp }}}{\text { Sic }}$	${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Vis. } \\ \text { Vosity } \\ c p \end{gathered}$	${ }^{\circ} \mathrm{C}$	$\underset{\substack{\text { Vis- } \\ \text { cosity } \\ \text { cp }}}{ }$
0	1.7921	10	1.3077	20	1.0050	30	. 8007	40	. 6560	50	. 5494	60	. 4688
1	1.7313	11	1.2713	21	. 9810	31	. 7840	41	. 6439	51	. 5404	65	. 4355
2	1.6728	12	1.2363	22	. 9579	32	. 7679	42	. 6321	52	. 5315	70	. 4061
3	1.6191	13	1.2028	23	. 9358	33	. 7523	43	. 6207	53	. 5229	75	. 3799
4	1.5674	14	1.1709	24	. 9142	34	. 7371	44	. 6097	54	. 5146	80	. 3565
5	1.5188	15	1.1404	25	. 8937	35	. 7225	45	. 5988	55	. 5064	85	. 3355
6	1.4728	16	1.1111	26	. 8737	36	. 7085	46	. 5883	56	. 4985	90	. 3165
7	1.4284	17	1.0828	27	. 8545	37	. 6947	47	. 5782	57	. 4907	95	. 2994
8	1.3860	18	1.0559	28	. 8360	38	. 6814	48	. 5683	58	. 4832	100	. 2838
9	1.3462	19	1.0299	29	. 8180	39	. 6685	49	. 5588	59	. 4759	153	. 181

(continued)

TABLE 311.-VISCOSITY OF WATER IN CENTIPOISES (concluded)
Part 2.-High temperature ${ }^{111}$

${ }^{\circ} \mathrm{C}$	Viscosity	${ }^{\circ} \mathrm{C}$	Vis. cosity	${ }^{\circ} \mathrm{C}$	Viscosity	${ }^{\circ} \mathrm{C}$	Viscosity
130	...	155	. 184	180	. 155	205	136
135		160	. 178	185	. 151	210	. 134
140		165	. 173	190	. 146	215	. 131
145	. 199	170	. 166	195	. 143	220	. 129
150	. 191	175	. 160	200	. 139	225	. 128

${ }^{111}$ Based on measurements by Shugayev, V., Journ. Exp. and Theoret. Phys. (U.S.S.R.), vol. 4, p. 760, 1934.

Part 3.-Viscosity of heavy water in centipoises ${ }^{112}$ $99.65 \% \mathrm{D}_{2} \mathrm{O} ; \mathrm{d}_{4}{ }^{20}=1.10495$

	Vis.   cosity	${ }^{\circ} \mathrm{C}$	Vis.   cosity		Vis.   cosity		Vis.   cosity
${ }^{\circ} \mathrm{C}$	co	cp	${ }^{\text {cp }} \mathrm{C}$	cp			
4	2.25	8	1.81	12	1.56	16	1.37
5	2.10	9	1.73	13	1.51	17	1.33
6	1.99	10	1.67	14	1.46	18	1.29
7	1.90	11	1.61	15	1.41	19	1.25

${ }^{112}$ Data by Lemond, Henri, Compt. Rend., vol. 212, p. 81, 1941.

TABLE 312.-VISCOSITY OF ALCOHOL-WATER MIXTURES IN CENTIPOISES
(Temperature variation)

	Percentage by weight of ethyl alcohol												
${ }^{\circ} \mathrm{C}$	0	10	20	30	35	40	45	50	60	70	80	90	100
0	1.792	3.311	5.319	6.94	7.25	7.14	6.94	6.58	5.75	4.762	3.690	2.732	1.773
5	1.519	2.577	4.065	5.29	5.62	5.59	5.50	5.26	4.63	3.906	3.125	2.309	1.623
10	1.308	2.179	3.165	4.05	4.39	4.39	4.35	4.18	3.77	3.268	2.710	2.101	1.466
15	1.140	1.792	2.618	3.26	3.52	3.53	3.51	3.44	3.14	2.770	2.309	1.802	1.332
20	1.005	1.538	2.183	2.71	2.88	2.91	2.88	2.87	2.67	2.370	2.008	1.610	1.200
25	. 894	1.323	1.815	2.18	2.35	2.35	2.39	2.40	2.24	2.037	1.748	1.424	1.096
30	. 801	1.160	1.553	1.87	2.00	2.02	2.02	2.02	1.93	1.767	1.531	1.279	1.003
35	. 722	1.006	1.332	1.58	1.71	1.72	1.73	1.72	1.66	1.529	1.355	1.147	. 914
40	. 656	. 907	1.160	1.368	1.473	1.482	1.495	1.499	1.447	1.344	1.203	1.035	. 834
45	. 599	. 812	1.015	1.189	1.284	1.289	1.307	1.294	1.271	1.189	1.081	. 939	. 764
50	. 549	. 734	. 907	1.050	1.124	1.132	1.148	1.155	1.127	1.062	. 968	. 848	. 702
60	. 469	. 609	. 736	. 834	. 885	. 893	. 907	. 913	. 902	. 856	. 789	. 704	. 592
70	. 406	. 514	. 608	. 683	. 725	. 727	. 740	. 740	. 729	. 695	. 650	. 589	. 504
80	. 356	. 430	. 505	. 567	. 598	. 601	. 609	. 612	. 604				

## (Temperature variation) <br> Viscosity values given as $\log _{10} \eta$ (poises)

$\begin{aligned} & \text { Temp. } \\ & { }^{\circ} \mathrm{C} \mathrm{C} \end{aligned}$	$\log _{10} \eta$	${ }^{\text {Temp }} \mathrm{C} .$	$\log _{10} \eta$	$\stackrel{\text { Temp. }}{{ }^{\circ} \mathrm{C}}$	$\log _{10} \eta$
22	13.96	50	7.48	100	2.40
24	13.41	55	6.67	105	2.15
26	12.86	60	5.97	110	1.90
28	12.34	65	5.35	115	1.70
30	11.82	70	4.80	120	1.50
32	11.32	75	4.29	125	1.32
34	10.83	80	3.82	130	1.16
36	10.35	85	3.40	135	1.01
40	9.44	90	3.02	140	. 88
45	8.40	95	2.69	145	. 75

As with other liquids in the temperature interval of high viscosities, measured values for glucose depend on the thermal treatment to which the sample is subjected prior to and during measurement. Prolonged holding at a given temperature followed by rapid cooling to a lower temperature at which viscosity is measured will result in increasing values with time. Decreasing viscosity valucs with time will result from the reverse temperature treatment. At temperatures of high viscosity, constant, or equilibrium, viscosity values will be found only after long holding at the given temperature or after slow and controlled cooling from conditions of low viscosity to the desired temperature.
${ }^{113}$ Barton, Spaght, and Richardson, Journ. Appl. Phys., vol. 5, p. 156, 1934.

TABLE 314.-VISCOSITY AND DENSITY OF GLYCEROL IN AQUEOUS
SOLUTION AT $20^{\circ} \mathrm{C}{ }^{*}$

$\begin{aligned} & \text { \% Gly- } \\ & \text { cerol } \end{aligned}$	Density $\mathrm{g} / \mathrm{cm}^{3}$	Viscosity in centipoises	Kinematic viscosity $\dagger$ in centistokes	$\begin{gathered} \% \text { Gly } \\ \text { cerol } \end{gathered}$	Density $\mathrm{g} / \mathrm{cm}^{3}$	Viscosity in centipoises	Kinematic viscosity $\dagger$ in centistokes
5	1.0098	1.181	1.170	50	1.1258	5.908	5.248
10	1.0217	1.364	1.335	55	1.1393	7.664	6.727
15	1.0337	1.580	1.529	60	1.1528	10.31	8.943
20	1.0461	1.846	1.765	65	1.1662	14.51	12.44
25	1.0590	2.176	2.055	70	1.1797	21.49	18.22
30	1.0720	2.585	2.411	75	1.1932	33.71	28.25
35	1.0855	3.115	2.870	80	1.2066	55.34	45.86
40	1.0989	3.791	3.450	85	1.2201	102.5	84.01
45	1.1124	4.692	4.218	90	1.2335	207.6	168.3

[^142](Temperature variation)

${ }^{\circ} \mathrm{C}$	Density   $\mathrm{g} / \mathrm{cm}^{3}$	Viscosity   in poises	Kinematic viscosity in stokes	${ }^{\circ} \mathrm{C}$	Density $\mathrm{g} / \mathrm{cm}^{3}$	Viscosity in poises	Kinematic viscosity in stokes
5	. 9707	37.6	38.7	23	. 9583	7.67	8.00
6	. 9700	34.5	35.5	24	. 9576	7.06	7.37
7	. 9693	31.6	32.6	25	. 9569	6.51	6.80
8	. 9686	28.9	29.8	26	. 9562	6.04	6.32
9	. 9679	26.4	27.3	27	. 9555	5.61	5.87
10	. 9672	24.2	25.0	28	. 9548	5.21	5.46
11	. 9665	22.1	22.8	29	. 9541	4.85	5.08
12	. 9659	20.1	20.8	30	. 9534	4.51	4.73
13	. 9652	18.2	18.9	31	. 9527	4.21	4.42
14	. 9645	16.61	17.22	32	. 9520	3.94	4.14
15	. 9638	15.14	15.71	33	. 9513	3.65	3.84
16	. 9631	13.80	14.33	34	. 9506	3.40	3.58
17	. 9624	12.65	13.14	35	. 9499	3.16	3.33
18	. 9617	11.62	12.09	36	. 9492	2.94	3.10
19	. 9610	10.71	11.15	37	. 9485	2.74	2.89
20	. 9603	9.86	10.27	38	. 9478	2.58	2.72
21	. 9596	9.06	9.44	39	. 9471	2.44	2.58
22	. 9589	8.34	8.70	40	. 9464	2.31	2.44

TABLE 316. -VISCOSITY OF GLYCERINE-WATER MIXTURES ${ }^{14}$
(Temperature variation)

		Viscosity in centipoises		
Sp. gravity	$\overbrace{20^{\circ} \mathrm{C}}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	
1.00000	0	1.005	.893	.800
1.02370	10	1.311	1.153	1.024
1.04840	20	1.769	1.542	1.360
1.07395	30	2.501	2.157	1.876
1.10040	40	3.750	3.180	2.731
1.12720	50	6.050	5.041	4.247
1.15460	60	10.96	8.823	7.312
1.18210	70	22.94	17.96	14.32
1.20925	80	62.0	45.86	34.92
1.23585	90	234.6	163.6	624.
1.26201	100	1499.	945.	

${ }^{114}$ Landolt and Börnstein, 1935. Data by Sheely, Ind. Eng. Chem., vol. 24, p. 1060, 1932.

TABLE 317.-VISCOSITY OF GASOLINE AND KEROSENE IN CENTIPOISES ${ }^{115}$

Gasoline No.	$\begin{aligned} & \text { Sp. } \mathrm{gr} \text { r. } \\ & \frac{15.6^{\circ}}{15.6^{\circ}} \end{aligned}$	Temperature					
		$5^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
1	. 757	. 690	. 603	. 518	. 472	. 426	. 382
2	. 748	. 769	. 663	. 588	. 516	. 467	. 412
3	. 743	. 775	. 641	. 541	. 493	. 441	
4	. 726	. 495	. 429	. 379	. 341	. 309	. 278
5	. 722	. 529	. 457	. 410	. 360	. 325	. 293
6	. 717	. 568	. 481	. 418	. 361	. 339	
7	. 716	. 508	. 461	. 391	. 346	. 312	294
8	. 708	. 493	. 435	. 389	. 336	. 301	. 278
9	. 702	. 429	. 383	. 338	. 312	. 279	. 250
10	. 701	. 435	. 382	. 349	. 300	. 268	. 251
11	. 699	. 429	. 372	. 327	. 299	. 269	. 236
12	. 694	. 399	. 350	. 317	. 283	. 259	. 234
13	. 680	. 347	. 310	. 274	. 242	. 227	. 211
Kerosene	. 813	2.57	2.13	1.64	1.41	1.19	

[^143](Temperature variation)
Compiled from Landolt and Börnstein, 1923. Based principally on work of Thorpe and Rogers, 1894-1897. Viscosity given in centipoises. One centipoise $=0.01$ dyne-second per $\mathrm{cm}^{2}$.

		Viscosity in centipoises							
Liquid	Formula	$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Acids:									
Formic	$\mathrm{CH}_{2} \mathrm{O}_{2}$	solid	2.247	1.784	1.460	1.219	1.036	. 780	. 549
Acetic	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	solid	solid	1.222	1.040	. 905	. 796	. 631	. 465
Acetic   (anhydrous)	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	1.245	1.053	. 907	. 792	. 699	. 623	. 507	. 387
Propionic . .	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	1.521	1.289	1.102	. 960	. 845	. 752	. 607	. 495
Propionic   (anhydrous)	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	1.610	1.330	1.119	. 961	. 836	. 735	. 584	. 438
Butyric .....	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	2.286	1.751	1.540	1.304	1.121	. 975	. 760	. 551
i-Butyric	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	1.887	1.568	1.318	1.129	. 980	. 862	. 683	. 501
Alcohols :									
Methy]	$\mathrm{CH}_{4} \mathrm{O}$	. 817	. 690	. 596	. 520	.457	. 403		
Ethyl	$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{O}$	1.772	1.451	1.194	. 992	. 831	. 701	. 510	
Propyl	C: $\mathrm{H}_{8} \mathrm{O}$	3.883	2.918	2.256	1.779	1.405	1.131	. 761	
i-Propyl	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	4.565	3.246	2.370	1.757	1.331	1.029	. 646	
Butyl ..	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	5.186	3.873	2.948	2.267	2.782	1.411	. 930	. 540
i-Butyl	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	8.038	5.548	3.907	2.864	2.122	1.611	. 976	. 527
Allyl .	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	2.145	1.705	1.363	1.168	. 914	. 763	. 553	
Aromatics :									
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	. 906	. 763	. 654	. 567	. 498	. 444	. 359	
Toluene	$\mathrm{C}_{-} \mathrm{H}_{8}$	. 772	. 671	. 590	. 525	. 471	. 426	. 354	. 278
Orthoxylene	C $\times \mathrm{H}_{10}$	1.105	. 937	. 810	. 709	. 627	. 560	. 458	. 352
Metaxylene	$\mathrm{C}_{4} \mathrm{H}_{10}$	. 806	. 702	. 620	. 553	. 497	. 451	. 375	. 297
Paraxylene	C. $\mathrm{H}_{10}$	solid	. 739	. 648	. 574	. 513	. 463	. 383	. 300
Ethyl Benzene	C. $\mathrm{H}_{10}$	. 877	. 761	. 671	. 595	. 532	. 481	. 399	. 311
Bromides:									
Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	. 487	. 441	. 402	. 368				
Propyl	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$	,651	. 582	. 524	. 475	. 433	. 397	. 338	
i-Propyl	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$	. 611	. 545	. 489	. 443	. 403	. 368		
i-Butyl	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$	. 828	. 726	. 643	. 575	. 518	. 470	. 390	
Allyl	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Br}$	. 626	. 560	. 504	. 458	. 419	. 384	. 328	
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}$	2.438	2.039	1.721	1.475	1.286	1.131	. 903	. 679
Bromine		1.267	1.120	1.005	. 911	. 831	.761		
Chtorides:									
Propyl	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$	. 442	. 396	. 359	. 326	. 299			
i-Propyl	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$	. 408	. 365	. 329	. 299				
i-Butyl	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$	. 568	. 519	. 462	. 414	. 373	. 339		
Allyl.	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$	. 413	. 372	. 337	. 307	. 283			
Methylene	$\mathrm{CH}_{3} \mathrm{Cl}_{2}$	. 543	. 488	. 444	. 406	. 373			
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$	1.132	. 966	. 839	. 736	. 652	. 584	. 479	
Chloroform	$\mathrm{CHCl}_{3}$	. 706	. 633	. 571	. 519	. 474	. 435		
Carbon-tetra	$\mathrm{CCl}_{4}$	1.351	1.138	. 975	. 848	. 746	. 662	. 534	
Ethers:									
Diethyl	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	. 295	. 268	. 245	. 223				
Methyl-Propyl	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	. 314	. 285	. 260	. 237				
Ethyl-Propyl .	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	. 402	. 360	. 324	. 294	. 268	. 245		
Methyl-iso-Buty	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$	. 387	. 346	. 313	. 284	. 260	. 239		
Dipropyl .....	$\mathrm{C}_{n} \mathrm{H}_{44} \mathrm{O}$	. 544	. 479	. 425	. 381	. 344	. 311	. 260	
Ethyl-iso-Butyl	$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$	. 487	. 430	. 384	. 345	. 311	. 284	. 237	
			ontinue						

(Temperature variation)

Liquid	Formula	Viscosity in centipoises							
		$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Esters:									
Methyl-formate ..	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	. 436	. 391	. 355	. 325				
Ethyl-formate ....	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	. 510	. 454	. 409	. 369	. 336	. 308		
Propyl-formate ...	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	. 672	. 589	. 521	. 465	. 417	. 378	. 314	
Methyl-acetate	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$	. 484	. 431	. 388	. 352	. 320	. 293		
Ethyl-acetate ..	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}$	. 583	. 512	. 455	. 407	. 367	. 333	. 279	
Propyl-acetate ...	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	. 773	. 669	. 585	. 516	. 460	. 414	. 341	. 259
Methyl-propionate.	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	. 587	. 517	. 460	. 414	. 375	. 341	. 286	
Ethyl-propionate	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	. 697	. 608	. 537	. 477	. 428	. 387	. 321	
Methyl-butyrate ..	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	. 763	. 661	. 580	. 513	. 459	. 413	. 341	. 265
$\begin{aligned} & \text { Methyl-iso- } \\ & \text { butyrate } \end{aligned}$	$\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{O}_{2}$	. 676	. 591	. 523	. 466	. 419	. 375	. 315	
Iodides :									
Methyl	$\mathrm{CH}_{3} \mathrm{I}$	. 606	. 548	. 500	. 460	. 424			
Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	. 727	. 654	. 593	. 540	. 495	. 456	. 391	
Propyl	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{I}$	. 944	. 833	. 744	. 669	. 607	. 552	. 466	. 371
i-Propyl	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$	. 884	. 781	. 697	. 627	. 568	. 516	. 435	
i-Butyl	C. $\mathrm{H}_{0} \mathrm{I}$	1.166	1.001	. 875	. 777	. 697	. 629	. 522	. 406
Ally .	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{I}$	. 936	. 826	. 734	. 660	. 597	. 544	. 459	. 365
Paraffins: * ${ }^{119}$									
Pentane				. 274	. 227	vapor			
Octane				. 707	. 542	. 429			
Hexane				. 382	. 308	. 254			
Heptane				. 521	. 411	. 333			
Sulfides:									
Methyl	$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~S}$	. 361	. 329	. 301	. 277				
Ethyl	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$	. 563	. 501	. 450	. 407	. 369	. 338	. 287	
Carbon di .......	$\mathrm{CS}_{2}$	. 438	. 405	. 376	. 352	. 330			
Turpentine .........		2.248	1.783	1.487	1.272	1.071	. 926	. 728	

TABLE 319.-VISCOSITY OF SODIUM SILICATES ${ }^{117}$
(Temperature variation)
$\log _{10} \eta$ (poises) at

$\begin{aligned} & \text { Wt. \% \% } \\ & \mathrm{Na}_{\mathrm{a}} \end{aligned}$	$900^{\circ} \mathrm{C}$	$1000^{\circ} \mathrm{C}$	$1100^{\circ} \mathrm{C}$	$1200^{\circ} \mathrm{C}$	$1300^{\circ} \mathrm{C}$	$1400^{\circ} \mathrm{C}$
18.4				3.15	2.77	2.47
21.91	4.55	3.83	3.28	2.82	2.44	2.11
24.89	4.29	3.62	3.08	2.63	2.26	1.95
25.78	4.22	3.55	3.02	2.58	2.22	1.91
26.57	4.19	3.52	2.98	2.55	2.19	1.88
26.79	4.18	3.49	2.97	2.54	2.18	1.87
28.46	4.07	3.41	2.90	2.48	2.12	1.79
29.79	3.98	3.32	2.81	2.39	2.03	1.72
31.74	3.84	3.21	2.70	2.28	1.93	1.62
32.91	3.76	3.15	2.64	2.23	1.88	1.57
33.24	3.74	3.12	2.62	2.21	1.87	1.55
33.77	3.71	3.08	2.58	2.18	1.83	1.52
34.27	3.70	3.08	2.59	2.16	1.82	1.53
34.92	3.66	3.04	2.54	2.15	1.80	1.50
36.73	3.57	2.94	2.45	2.05	1.70	1.40
39.2	3.46	2.81	2.33	1.93	1.56	
39.74	3.34	2.74	2.25	1.86	1.51	1.20
52.1		1.66	1.21	. 91	. 66	. 47

[^144](Temperature variation)
Based on data by Dow Corning Corporation for DC 200 fluids.

Fluid designation (centistokes at $25^{\circ} \mathrm{C}$	Viscosity in poises						
	$-25^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
1	. 0163	. 0118	. 0083	. 0064	. 0052		
2	. 0472	. 0287	. 0173	. 0129	. 0100	. 0079	. 0056
5	. 145	. 077	. 0452	. 0301	. 0221	. 0173	. 0116
10	. 323	. 159	. 090	. 059	. 043	. 032	. 026
20	. 683	. 328	. 184	. 105	. 082	. 062	. 040
50	2.39	. 820	. 467	. 298	. 208	. 153	. 094
100	3.22	1.61	. 94	. 59	. 398	. 285	. 172
200	6.70	3.40	1.92	1.19	. 798	. 580	. 346
500	15.9	8.15	4.84	2.89	1.94	1.36	. 82
1000	34.4	17.00	9.70	6.04	4.02	2.80	1.57
12500	368.5	183.7	119.3	73.9	53.0	39.7	24.3
30000	1035.	517.	291.5	186.2	126.4	90.2	50.7
200,000	5820.	3265.	1940.	1256.	839.	604.	345.

TABLE 321.-VISCOSITY IN THE SYSTEM ORTHOCLASE-ALBITE
(Temperature variation)
Values given as $\log _{10} \eta$, where $\eta=$ viscosity in poises.

Wt. \% Orthoclase	100	80	60	40	20	0
Wt. \% Albite	0	20	40	60	80	100
$1300^{\circ} \mathrm{C}$						6.04
$1350^{\circ} \mathrm{C}$	7.00	6.23	5.30	6.18	6.00	5.63
$1400^{\circ} \mathrm{C}$	6.00	5.85	5.51	5.81	5.65	5.26
$1450^{\circ} \mathrm{C}$		5.40	5.26			

TABLE 322.-VISCOSITY OF SILICON DIOXIDE ${ }^{118}$
(Temperature variation)
Values given as $\log _{10} \eta ; \eta=$ viscosity in poises.

Temperature	${ }^{\circ} \mathrm{C}$	1250	1300	1350	1400	1450
$\log _{10} \eta$	13.40	12.19	11.46	10.69	10.02	9.42

[^145](Temperature variation)
Values given as $\log _{10} \eta$, where $\eta=$ viscosity in poises.

Material	$1100^{\circ} \mathrm{C}$	$1200^{\circ} \mathrm{C}$	$1300^{\circ} \mathrm{C}$	$1400^{\circ} \mathrm{C}$	$1500^{\circ} \mathrm{C}$	$1600^{\circ} \mathrm{C}$
Silica $\left(\mathrm{SiO}_{2}\right)$	15.57	13.68	12.06	10.66	9.20	...
Wollastonite $\left(\mathrm{CaSiO}_{3}\right)$	$\ldots$	$\ldots$	$\cdots$	$\cdots$	. 486	. 387
$\begin{aligned} & \text { Diopside } \\ & \left(\mathrm{CaMgSi} \mathrm{Si}_{2} \mathrm{O}_{8}\right) \end{aligned}$	$\ldots$	$\ldots$	1.52	1.43	. 267	. 079
Akermanite $\left(\mathrm{Ca}_{2} \mathrm{MgSi}_{2} \mathrm{O}_{7}\right)$	$\ldots$	$\ldots$	1.48	. 656	. 362	. 146
Monticellite ( $\mathrm{CaMgSiO}_{4}$ )	$\ldots$	$\cdots$	$\cdots$	$\cdots$	. 241	. 053
Albite $\left(\mathrm{NaAlSi}_{3} \mathrm{O}_{8}\right)$	...	7.17	$\begin{aligned} & 5.82 \\ & 6.04 \end{aligned}$	$\begin{aligned} & 4.60 \\ & 5.25 \end{aligned}$		$\ldots$
Orthoclase   ( $\mathrm{KAlSi}_{3} \mathrm{O}_{8}$ )		$\ldots$	...	7.0	6.2	
Anorthite $\left(\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right)$	$\ldots$	$\ldots$	$\ldots$	2.32	1.78	1.40
$\begin{aligned} & \text { Gehlenite } \\ & \left(\mathrm{Ca}_{2} \mathrm{AlSiO}_{7}\right) \end{aligned}$		$\ldots$	$\ldots$	$\ldots$	. 911	. 549

119 Birch, Handbook of physical constants, 1942. Measurements by: Volarovich and Leontieva, Trans. Soc. Glass Techn., vol. 20, p. 139, 1936. McCaffery, Trans. Amer. Inst. Min. and Met. Eng., vol. 100 , pp. 64, 86, 122, 125, 1932. Bowen, Trans. Anier. Geophys. V'nion, pt. 1, p. 249, 1934. Kani, Proc. Imp. Acad. (Tokyo), vol. 11, p. 334, 1935. Kani and Kuzu, Proc. Imp. Acad. (Tokyo), vol. 11, p. 383, 1935.

TABLE 324.-VISCOSITY OF BORON TRIOXIDE ${ }^{120}$
(Temperature variation)

${ }^{\circ} \mathrm{C}$ © C .	$\log _{10} \eta$ (poises)					
	*	$\dagger$	$\ddagger$	§	\|	
300	. $\cdot$	9.64	. . .	. . .		
400	. $\cdot$	6.20			6.30	
500	4.59	. . .	4.40	. .	4.47	
600	3.68				3.49	
700	2.93	. .	. . .	2.90	2.89	
800	2.42		. . .	2.53	2.49	
900	2.08	. .	. .	2.27	2.19	
1000	1.87			2.10	1.96	
1100	1.63			1.92	1.78	
1200		. .	. .	. . .	1.62	

120 Dane and Birch, Journ. Appl. Phys., vol. 9, p. 669, 1938, have shown that for pressures not in excess of $2000 \mathrm{~kg} / \mathrm{cm}^{2}$ the viscosity of boron trioxide is given for various pressures by the relation $\eta=\eta_{0} e^{a p}$; and at $359^{\circ} \mathrm{C}, a=15.10^{-4} \mathrm{~cm}^{2} / \mathrm{kg}$, and at $516^{\circ} \mathrm{C}, a=4.6 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{kg}$. Data from Birch, Handbook of physical constants, 1942, and from unpublished measurements by H. R. Lillie.
Observers of data by columns:

* Arndt, Zeit. Elektrotechn., vol. 13, p. 578, 1907.
$\dagger$ Parks and Spaght, Physics, vol. 6, p. 67, 1935.
$\ddagger$ Volarovich and Tolstoi, Trans. Soc. Glass Techn., vol. 18, p. 209, 1934.
§ Volarovich and Fridman, Acta Phys. (U.S.S.R.), vol. 6, p. 393, 1937.
if Lillie, unpublished data.

TABLE 325.-VISCOSITY IN THE SYSTEM DIOPSIDE-ALBITE-ANORTHITE*
(Temperature variation)
Values given as $\log _{10} \eta$, where $\eta=$ viscosity in poises.

Wt. \% diopside	100	80	60	40	20	0
Wt. \% albite	0	20	40	60	80	100
$1200^{\circ} \mathrm{C}$				3.99	5.08	
$1300{ }^{\circ} \mathrm{C}$			2.45	3.20	4.30	6.04
$1400{ }^{\circ} \mathrm{C}$	1.60	1.93	2.04	2.64	3.63	5.26
Wt. \% diopside	20	40	60	80		
Wt. \% anorthite	80	60	40	20		
$1300{ }^{\circ} \mathrm{C}$		3.77	2.18			
$1400{ }^{\circ} \mathrm{C}$		2.00	1.96	1.92		
$1500^{\circ} \mathrm{C}$	2.04					
Wt. \% albite	80	60	40	20		
Wt. \% anorthite	20	40	60	80	100	
$1300{ }^{\circ} \mathrm{C}$	5.51	4.67				
$1400^{\circ} \mathrm{C}$	4.63	3.89	3.40			
$1500^{\circ} \mathrm{C}$			2.66	2.28		
$1555{ }^{\circ} \mathrm{C}$				2.11	2.04	
Wt. \% diopside						
Wt. \% albite	20	40	20	60	40	20 60
Wt. \% anorthite   $1200^{\circ} \mathrm{C}$	20	3.65	40	20 4.83	40	60
$1300{ }^{\circ} \mathrm{C}$	2.23	2.92	2.67	3.88	3.57	
$1400{ }^{\circ} \mathrm{C}$	1.99	2.36	2.11	3.18	2.79	2.56

* For reference, see footnote 45, p. 136.

TABLE 326.-VISCOSITY OF MOLTEN METALS ${ }^{121}$
(Temperature variation)

$\stackrel{\text { Temp. }}{{ }^{\circ} \mathrm{C}}$	Lead	${ }^{\text {Tin }}$		${ }^{\text {Temp. }} \mathrm{C} .$	Antimony
		*	$\dagger$		
300		1.73	1.67	650	1.50
350	2.58	1.58	1.51	700	1.26
400	2.33	1.43	1.38	750	1.16
450	2.07	1.30	1.27	800	1.08
500	1.84	1.20	1.18	850	1.05
550	1.58	1.14	1.11		
600	1.38	1.08	1.05	Temp.	
650			. 99	${ }^{\circ} \mathrm{C}$	Copper
700	...	...	. 94	1100	3.33
750			. 91	1150	3.22
800			. 87	1200	3.12

[^146]Viscosities are given in cgs units, dyne-seconds per $\mathrm{cm}^{2}$, or poises.

Liquid	${ }^{\circ} \mathrm{C}$	Viscosity	Liquid	${ }^{\circ} \mathrm{C}$	Viscosity
Acetaldehyde	0.	. 00275	Oils :		
	10.	. 00252	* Filtered cylinder	37.8	2.406
"	20.	. 00231		100.0	. 187
Air	-192.3	. 00172	* Dark cylinder	37.8	4.224
Aniline	20.	. 04467		100.0	. 240
	60.	. 0156	" ${ }^{\text {a }}$	37.8	7.324
Bismuth	285.	. 0161	" "	100.0	. 341
	365.	. 0146	*"Extra L. L."	37.8	11.156
Black treacle	12.3	. 400		100.0	. 451
Copal lac	22.	4.80	$\ddagger$ Linseed . 925	30.	. 331
Hydrogen, liquid		. 00011	" . 922	50.	. 176
Menthol, solid	14.9	$2 \times 10^{12}$	. 914	90.	. 071
" ${ }^{\text {che }}$ liquid	56.9	. 069	Olive . 9195.	10.	1.38
Mercury	-20.	. 0184		15.	1.075
	0.	. 01661	. 9130	20.	. 840
"	20.	. 01547	" . 9065.	30.	. 540
"	34.	. 01476	" . 9000.	40.	. 363
"	98.	. 01263	. 8935.	50.	. 258
"	193.	. 01079	. 8800	70.	. 124
"	299.	. 00975	$\dagger$ Rape	15.6	1.118
Oils:				37.8	. 422
$\ddagger$ Dogfish-liver . 923 ..	30.	. 414	"، (........	100.0	. 080
" " . 918 ..	50.	. 211	" (another)	15.6	1.176
" . 908	90.	. 080	" (another)	100.0	. 085
Linseed .925.	30.	. 331	$\ddagger$ Soya bean 919	30.0	. 406
" 922.	50.	. 176	"، " 915	50.0	. 206
" 914.	90.	. 071	" . 906	90.0	. 078
* Spindle oil . 885	15.6	. 453	$\dagger$ Sperm	15.6	. 420
	37.8	. 162		37.8	. 185
" " ........	100.0	. 033	"	100.0	. 046
* Light machinery			Phenol	18.3	. 1274
907£ .........	15.6	1.138		90.0	. 0126
* Light machinery	37.8	. 342	Sulfur	170.	320.0
" ""	100.0	. 049		180.	550.0
*"Solar red" engine..	15.6	1.915	"	187.	560.0
	37.8	. 496	"	200.	500.0
" " "	100.0	. 058	"	250.	104.0
*"Bayonne" engine	15.6	2.172	"	300.	24.0
	37.8	. 572	"	340.	6.2
" "	100.0	. 063	"	380.	2.5
*"Queen's red" engine	15.6	2.995	"	420.	1.13
	37.8	. 711	" ${ }^{\text {a }}$.........	448.	. 80
"	100.0	. 070	Sulfuric acid ( $\rho=1$	25.	. 00973
*"Galena" axle	15.6	4.366	$\dagger$ Tallow	66.	. 176
" "	37.8	. 909		100.	. 078
* Heavy machinery	15.6	6.606	Zinc	280.	. 0168
	37.8	1.274		357.	. 0142
			"	389.	. 0131

[^147]TABLE 328.-RATIO OF VISCOSITY AT HIGH TO THAT AT ATMOSPHERIC PRESSURE

Pressure		Bayonne oil (mineral)	FFF cylinder (mineral)	Trotter (animal)	$\underbrace{\text { Rape }}$	Castor	
tons/in ${ }^{2}$	$\mathrm{kg} / \mathrm{cm}^{2}$				(vegetable)		(fish)
1	157.5	1.3	1.4	1.2	1.1	1.2	1.2
2	315.	2.0	2.0	1.6	1.4	1.6	1.5
4	630.	4.0	4.5	2.4	2.3	2.7	2.4
6	945.	7.8	8.9	3.5	3.5	4.2	3.5
8	1260.	16.1	-	5.0	-	5.8	-

TABLE 329.-VISCOSITY OF LIQUEFIED PURE GASES AND VAPORS ${ }^{122}$
Viscosities in millipoises.
(Temperature variation)

$\begin{aligned} & \text { Temp. } \\ & \hline \mathrm{K} \end{aligned}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{6}$	$\mathrm{C}_{8} \mathrm{H}_{8}$	${ }^{\text {Temp. }}$ \%	$\mathrm{N}_{2}$
85	...			118.5	66	2.49
90	$\ldots$		125.5	74.2	68	2.26
95	...		72.5	52.5	70	2.08
100		9.15	45.5	38.3	72	1.93
105	6.60	7.48	31.1	29.0	74	1.80
110	5.60	6.37	22.3	22.3	76	1.67
115	4.86	5.66	17.0	18.2	78	1.56
120	4.24	5.06	13.3	15.2	80	1.47
125	3.73	4.52	11.1	13.2		
130	3.32	4.00	9.4	11.6	Temp.	
135	2.96	3.58	8.2	10.3	${ }^{\circ} \mathrm{K}$.	$\mathrm{CH}_{4}$
140	2.66	3.23	7.2	9.3	95	1.82
145	2.43	2.92	6.2	8.2	100	1.53
150	2.22	2.66	5.6	7.3	105	1.34
155	2.03	2.44	5.0	6.5	110	1.21
160	1.86	2.27	4.5	5.5		
165	1.71	2.12	4.0	5.0		
170	1.58	2.00	3.5	4.5		

122 Gerf, S. F., and Galkov, G. I., Journ. Techn. Phys. (U.S.S.R.), vol. 10, p. 725, 1940.

TABLE 330.-VISCOSITY OF PURE HYDROCARBONS ${ }^{123}$
Viscosities in centipoises; densities referred to water at $4^{\circ} \mathrm{C}$.

${ }^{\text {Temp. }}$.	Propane, $\mathrm{C}_{3} \mathrm{H}_{8}$		$n$ - Butane, $\mathrm{C}_{4} \mathrm{H}_{10}$		iso-Butane, $\mathrm{C}_{4} \mathrm{H}_{10}$	
	Density	Viscosity	Density	Viscosity	Density	Viscosity
-70	. 614	. 287	. 671	. 460	. 657	. 533
-60	. 604	. 253	. 661	. 403	. 647	. 455
-50	. 592	. 227	. 652	. 354	. 637	. 393
-40	. 580	. 205	. 642	. 314	. 626	. 343
-30	. 568	. 184	. 632	. 281	. 615	. 301
-20	. 556	. 168	. 622	. 253	. 605	. 267
-10	. 543	. 152	. 611	. 229	. 593	. 239
0	. 531	. 138	. 601	. 209	. 582	. 215
$+10$	. 517	. 126	. 590	. 191	. 571	. 195
$+20$	. 502	. 116	. 579	. 174	. 559	. 176
$+30$	. 487	. 108	. 567	. 159	. 547	. 160
+40	. 471	. 099	. 555	. 146	. 534	. 146

[^148]Part 1.
$\log _{10} \eta$ (poises) at

Glass	$500^{\circ} \mathrm{C}$	$600^{\circ} \mathrm{C}$	$700^{\circ} \mathrm{C}$	$800^{\circ} \mathrm{C}$	$900^{\circ} \mathrm{C}$	$1000^{\circ} \mathrm{C}$	$1100^{\circ} \mathrm{C}$	$1200^{\circ} \mathrm{C}$	$1300^{\circ} \mathrm{C}$
1	13.76	9.85	7.03	5.42	4.37	3.52	2.93	2.47	2.09
2				5.84	4.79	3.99	3.41	2.93	2.50
3				5.38	4.29	3.52	2.94	2.48	2.08
4				5.74	4.48	3.60	2.96	2.47	2.03
5	15.20	12.35	9.82	7.87	6.48	5.52	4.77	4.16	3.67
6	13.82	10.85	8.55	6.81	5.68	4.88	4.20	3.65	3.22
7		. . .	. .	. .	1.55	1.24	1.00	. 83	. 69
8				. . .	2.17	1.81	1.55	1.33	1.16
9				. . .		4.20	3.54	3.02	. . .
10			...			4.00	3.37	2.85	. . .
11	...		...		4.71	3.85	3.24	2.74	. . .
12	. . .		. . .	. . .	. .	3.89	3.34	2.91	
13						4.06	3.47	3.01	2.67
14	. .			6.02	5.79	3.97	3.35	2.89	2.31
15		9.49	7.30	5.70	4.48	3.70	3.08	2.60	2.40

Part 2.
Composition (weight percentages)

Glass	$\mathrm{SiO}_{2}$	$\mathrm{B}_{2} \mathrm{O}_{3}$	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	MgO	CaO	ZnO	Pbo	$\mathrm{Al}_{2} \mathrm{O}_{3}$
1	69.73		20.96	trace		9.05			.18*
2	72.6	1.43	16.0	. 68	1.7	6.40			1.0 *
3	70.12		21.1	trace		8.77			. 02
4	67.3	2.00	14.0	...		7.0	7.0		2.50
5	81.0	13.00	4.00	...	$\ldots$	...			2.0
6	75.0	15.00	5.0		$\ldots$	$\ldots$	...	5.0	
7	65.0	...	7.5	7.5	...	$\ldots$	...	20.0	
8	60.0	...	5.0	5.0			...	30.0	
9	73.97	...	15.30		3.57	5.69	...	...	.91*
10	74.35	$\ldots$	15.30		. 18	9.03			.85*
11	72.27	...	16.88		. 35	8.79			1.72*
12	62.50		7.50	6.70				22.00	1.30*
13	75.0	10	10						5
$14^{\dagger}$	56	7.5	4	10					2.5
15	73.18		19.38		. 21	6.26			1.19*

## Part 3.-Commercial glass $\ddagger$

$\log _{10} \eta$ (poises) at


[^149]
## Variation of viscosity with pressure and temperature

According to the kinetic theory of gases the coefficient of viscosity $\eta=\frac{1}{3}(\rho \bar{c}), \rho$ being the density, $\bar{c}$ the average velocity of the molecules, $l$ the average path. Since $l$ varies inversely as the number of molecules per unit volume, $\rho l$ is a constant and $\eta$ should be independent of the density and pressure of a gas (Maxwell's law). This has been found true for ordinary pressures; below ${ }^{1 / 80}$ atmosphere it may fail, and for certain gases it has been proved untrue for high pressures, e.g., $\mathrm{CO}_{2}$ at $33^{\circ}$ and above 50 atm . See Jeans, "Dynamical Theory of Gases."
If $B$ is the amount of momentum transferred from a plane moving with velocity $U$ and parallel to a stationary plane distant $d$, and $s$ is a quantity (coefficient of slip) to allow for the slipping of the gas molecules over the plane, then $\eta=(B / U)(d+2 s) ; s$ is of the same magnitude as $l$, probably between .7 (Timiriazeff) and .9 (Knudsen) of it; at low pressures $d$ becomes negligible compared with $2 s$ and the viscosity should vary inversely as the pressure.
$\bar{c}$ depends only on the temperature and the molecular weight. $\bar{c}$ varies as the $\sqrt{T}$, but $\eta$ has been found to increase much more rapidly. Meyer's formula, $\eta_{t}=\eta_{0}(1+a t)$, where $a$ is a constant and $\eta_{0}$ the viscosity at $0^{\circ} \mathrm{C}$, is a convenient approximate relation. Sutherland's formula

$$
\eta_{t}=\eta_{0} \frac{273+C}{T+C}\left(\frac{T}{273}\right)^{\frac{3}{2}}
$$

is the most accurate formula in use, taking into account the effect of molecular forces. It holds for temperatures above the critical and for pressures following approximately Boyle's law. It may be thrown into the form $T=K T^{\frac{1}{2}} / \eta-C$ which is linear of $T$ and $T^{\frac{3}{2}} / \eta$, with a slope equal to $K$ and the ordinate intercept equal to $-C$. Onnes (see Jeans) shows that this formula does not represent helium at low temperatures with anything like the accuracy of the simpler formula $\eta=\eta_{0}(T / 273.1)^{n}=A T^{n}$.

The following table ${ }^{125}$ contains the constant $a$ of Meyers formula, $C$ and $K$ of Sutherland's formula, $n$ and $A$ of the exponential formula, and the temperature range for which the constants of the latter two are applicable.

Gas	Temperature range ${ }^{\circ} \mathrm{C}$	$a \times 10^{3}$	C	$K \times 10^{6}$	$n$	$A \times 10^{6}$
Air	23 to 750	2.90	117.9	14.82	. 754	2.490
Ammonia	- 77 to 441		472	15.42	1.041	. 274
Argon	-183 to 827	1.78	133	19.00	. 766	2.782
Benzene	0 to 313		403	10.33	. 974	. 299
Carbon dioxide	- 98 to 1052	3.48	233	15.52	. 868	1.057
Carbon monoxide		2.69	102	13.5	. 74	
Chloroform			454	15.9	...	
Ethylene		3.50	226	10.6		
Helium	-258 to 817		97.6	15.13	. 653	4.894
Hydrogen	-258 to 825	$\ldots$	70.6	6.48	. 678	1.860
Krypton		$\ldots$	188			
Mercury	-218 to 610	...	996	63.00	1.082	. 573
Methane	18 to 499		155	9.82	. 770	1.360
Neon			252			
Nitrogen	-191 to 825	2.69	102	13.85	. 702	3.213
Nitrous oxide		3.45	313	17.2	. 93	
Oxygen	-191 to 829		110	16.49	. 721	3.355
Water vapor	0 to 407		659	18.31	1.116	. 170
Xenon			252			

[^150]Part 1.-Viscosity of vapors
The values of $\eta$ given in the table are $10^{\circ}$ times the coefficients of viscosity in cgs units.

Substance	${ }^{\text {Temp. }}{ }^{\circ} \mathrm{C} .$	$\eta$	Substance	${ }^{\text {Temp. }}$ ¢ ${ }^{\text {c }}$	$\eta$
Acetone	18.0	78.	Ether	16.1	73.2
Alcohol, Methyl	66.8	135.		36.5	79.3
Alcohol, Ethyl	78.4	142.	Ethyl chloride	0.	93.5
Alcohol, Propyl, norm	97.4	142.	Ethyl iodide	72.3	216.0
Alcohol, Isopropyl ...	82.8	162.	Ethylene	0.0	96.1
Alcohol, Butyl, norm.	116.9	143.	Mercury	270.0	489.
Alcohol, Isobutyl	108.4	144.		300.0	532.
Alcohol, Tert. butyl.	82.9	160.	"	330.0	582.
Ammonia .........	20.0	108.	"	360.0	627.
Benzene	0.	70.	"	390.0	671.
	19.0	79.	Methane	20.0	120.1
" $\quad$.......	100.0	118.	Methyl chloride	0.0	98.8
Carbon bisulfide	16.9	92.4		15.0	105.2
Carbon monoxide	20.0	184.0	" "	302.0	213.9
Chloroform	0.0	95.9	Methyl iodide	44.0	232.
"	17.4	102.9	Water vapor	0.0	90.4
"	61.2	189.0		16.7	96.7
Ether	0.0	68.9	" ${ }^{\text {c }}$	100.0	132.0

Part 2.-Viscosity of gases and vapors ${ }^{120}$
(Temperature variation)

${ }^{\text {Temp. }}{ }^{\text {C }}$	Viscosity in millipoises								
	Air	Argon	Carbon dioxide	$\begin{aligned} & \text { Chlo- } \\ & \text { rine- } \end{aligned}$	Helium	$\underbrace{}_{\substack{\text { Hydro- } \\ \text { gen }}}$	$\underset{\substack{\text { Nitro- } \\ \text { gen }}}{ }$	Oxygen	Xenon
-200	. 053					. 033	...	...	$.222\left(15^{\circ} \mathrm{C}\right)$
-150	. 081				...	. 047	$\ldots$		
-100 -50	. 111		. 087	$\ldots$	$\ldots$	. 0671	$\ldots$		Nitric oxide $179\left(0^{\circ} \mathrm{C}\right)$
-50 0	. 179		. 112			. 083			
50	. 193	. 241	. 159	.147	. 207	. 093	. 189	.217	Nitrous oxide
100	. 216	. 269	. 181	. 167	. 228	. 102	. 207	. 241	$.138\left(0^{\circ} \mathrm{C}\right)$
150	. 237	. 297	. 203	. 189	. 247	. 111	. 226	. 264	
200	. 256	. 321	. 225	. 208	. 267	. 120	. 245	. 287	Krypton
250	. 275	. 346	. 245	. 228	. 285	. 129	. 263	. 309	$.246\left(15^{\circ} \mathrm{C}\right)$
300	. 293	. 367	. 262		. 305	. 137	. 280	. 330	
350	. 310	. 389	. 280	$\ldots$	. 323	. 145	. 296	. 349	Carbon monoxide
400	. 327	. 410	. 299	$\ldots$	. 341	. 153	. 311	. 368	$.163\left(0^{\circ} \mathrm{C}\right)$
500	. 357	. 450	. 331	$\ldots$	. 375	. 167	. 341	. 403	
600	. 384	. 488	. 362		. 408	. 181	. 367	. 435	Ammonia
700	. 411	. 521	. 391		. 438	. 195	. 391	. 466	$.096\left(0^{\circ} \mathrm{C}\right)$
800	. 437	. 554	. 417		. 467	. 208	. 414	. 494	
900	. 463		. 421	...	...				
1000	. 499		. 465						
1100	. 511								

## TABLE 334.-PRESSURE EFFECT ON VISCOSITY OF PURE LIQUIDS ${ }^{17}$

This table gives $\log _{10}$ of the relative viscosity as a function of pressure and density, the viscosity at $30^{\circ} \mathrm{C}$ and atmospheric pressure taken as unity. For each compound first line $\log \eta / \eta_{0}$ at $30^{\circ} \mathrm{C}$, second line at $75^{\circ} \mathrm{C}$, third line $\eta_{30} / \eta_{75}$.

	Pressure $\mathrm{kg} / \mathrm{cm}^{2}$									
Substance	1	500	1000	2000	4000	6000	8000	10000	12000	$\eta_{30}$
Methyl	. 000	. 094	. 167	. 286	. 471	. 616	. 750	. 874	. 998	$.00520$
alcohol	9.769	9.862	9.933	. 043	. 208	. 334	. 448	. 555	. 655	
	1.702	1.706	1.714	1.750	1.832	1.914	2.004	2.084	2.203	
Ethyl alcohol	. 000	. 107	. 200	. 363	. 617	. 829	1.023	1.211	1.390	. 01003
	9.657	9.772	9.873	. 045	. 289	. 473	. 634	. 778	. 919	
	2.203	2.163	2.123	2.080	2.128	2.270	2.449	2.710	2.958	
n-Propyl alcohol	. 000	. 151	. 283	. 494	. 836	1.131	1.402	1.667	1.915	. 01779
	9.598	9.754	9.880	. 074	. 368	. 610	${ }^{.827}$	1.033	1.223	
	2.523	2.495	2.529	2.630	2.938	3.319	3.758	4.305	4.920	
n-Butyl alcohol	. 000	. 175	. 321	. 554	. 934	1.289	1.609	1.912	2.208	. 02237
	9.548	9.724	9.867	. 089	. 312	. 690	. 941	1.172	1.396	
	2.845	2.838	2.858	2.932	3.343	3.991	4.679	5.521	6.518	
n-Amyl alcohol	. 000	. 188	. 341	. 607	1.060	1.448	1.811	2.164	2.495	
	9.540	9.723	9.871	. 105	. 466	. 772	1.049	1.313	1.562	
	2.884	2.917	2.951	3.177	3.926	4.742	5.781	7.096	8.570	
n -Pentane	. 000	. 181	. 315	. 524	. 847	1.112	1.360	1.615	1.846	. 00220
	9.811	. 014	. 163	. 380	. 676	. 908	1.119	1.313	1.493	
	1.545	1.469	1.419	1.393	1.483	1.600	1.742	2.004	2.254	
n -Hexane	. 000	. 184	. 332	. 561	. 914	1.224	1.514	1.803		. 00296
	9.803	. 028	. 171	. 379	. 701	. 961	1.198	1.426	1.646	
Ethyl chloride	1.000	. 134	. 242	. 405	. 649	. 837	1.008	1.172	1.323	
	9.850	. 017	. 131	. 285	. 514	. 683	. 834	. 977	1.111	
	1.413	1.309	1.291	1.318	1.365	1.426	1.493	1.567	1.633	
Ethyl bromide	. 000	. 121	. 222	. 387	. 631	. 854	1.043	1.223	1.400	. 00368
	9.806	9.959	. 072	. 235	. 472	. 653	. 816	. 978	1.123	
	1.567	1.452	1.413	1.419	1.442	1.589	1.687	1.758	1.892	
Ethyl iodide	. 000	. 115	. 218	. 385	. 656	. 888	1.108	1.330	1.549	. 00540
	9.837	9.954	. 057	. 227	. 467	. 672	. 854	1.030	1.200	
	1.455	1.449	1.445	1.439	1.545	1.644	1.795	1.995	2.234	
Acetone	. 000	. 135	. 226	. 373	. 605	. 804	. 987	1.160		. 00285
	9.895 1.274	.017 1.312	.113 1.297	.245 1.343	. 4.445	. 610 1.563	.762 1.679	$\begin{array}{r} .898 \\ 1.828 \end{array}$	1.031	
Glycerine	. 000	. 134	. 260	. 497	. 936	1.346	1.741	2.133		3.8
	8.810	8.920	9.023	9.204	9.529	9.818	. 094	. 369	. 628	
	15.49	16.37	17.26	19.63	25.53	33.73	44.36	58.08		
CClı	. 000	. 190	. 351	$\begin{array}{r} .493 \\ (1500) \end{array}$	kg/cm					. 00845
	9.760	9.949	. 100	. 349	. 542					
	1.738	1.742	1.782							
Chloroform	. 000	. 110	. 211	. 386	. 660	. 884				. 00519
	9.858	9.985	. 094	. 251	. 480	. 691	. 914	1.141		
	1.387	1.334	1.309	1.365	1.514	1.560				
$\mathrm{CS}_{2}$	. 000	. 090	. 160	. 180	. 309	$\begin{array}{r} .674 \\ .527 \end{array}$	$.840$	$\begin{array}{r} 1.010 \\ .808 \end{array}$	$\begin{array}{r} 1.189 \\ .946 \end{array}$	. 00352
	9.875 1.334	9.972 1.312	.051 1.285	.180 1.340	. 1.371	1.403	1.476	1.592	1.750	
Ether	. 000	. 189	. 324	. 514	. 792	1.042	1.261	1.469	1.670	. 00212
	9.878	. 024	. 149	. 344	. 601	. 806	. 986	1.155	1.311	
	1.324	1.462	1.496	1.479	1.552	1.722	1.884	2.061	2.286	
Benzene	. 000	. 173	. 347							. 00566
	9.765	9.938	. 081	. 308	$\left.\begin{array}{r} .498 \\ (3000) \end{array}\right\} \mathrm{kg} / \mathrm{cm}^{2}$					
	1.718	1.718	1.845							
Toluene		. 145	. 274	. 497	. 897	1.285	1.699	2.177	1.832	. 00523
	9.796	9.939	. 065	. 267	. 597	. 896	$1.186$	1.504		
	1.600	1.607	1.618	1.698	1.995	2.449	3.258	4.710		
Eugenol	. 000	. 288	. 541	1.081	2.273	3.007				
		$\begin{aligned} & 9.616 \\ & 4.699 \end{aligned}$	$\begin{aligned} & 9.810 \\ & 5.383 \end{aligned}$	1.65.1438.670	$\begin{aligned} & (3000)(5000) \\ & .805 \\ & 29.38 \end{aligned} 1.520 \quad 2.343 \mathrm{~cm}^{2}$					
	9.429									
				8.670						

[^151]The SAE viscosity numbers constitute a classification of crankcase lubricating oils in terms of viscosity only. Other facts of oil quality or character are not considered.

## Part 1.-Crankcase oil classification

SAE recommended practice


Part 2.-Automotive Manufacturers' viscosity classification
SAE general information

Viscosity   number	$\overbrace{\text { Min. }}^{\text {Viscosity range at }} 0^{\circ} \mathrm{F}$, Saybolt univ., sec	
10W	6,000	12,000
20 W	12,000	48,000

${ }^{128}$ SAE Handbook, 1949 ed., p. 580, Soc. Automot. Eng., New York.

TABLE 336.-EFFECT OF PRESSURE UPON VISCOSITY ${ }^{120}$

Substance	Temper-atureoreor	Absolute viscosity at 1 atmcentipoises centipois	Relative viscosity Pressure in $\mathrm{kg} / \mathrm{cm}^{2}$				
			1	1000	4000	8000	12,000
i-Pentane   Acetone	30	. 198	1.0	2.208	7.834	26.98	88.51
	75		. 662	1.560	5.188	15.10	38.55
	30	. 285	1.0	1.683	4.027	9.705	
	75		. 785	1.297	2.786	5.781	10.74
$\mathrm{CS}_{2}$	30	. 352	1.0	1.445	3.228	6.918	15.45
	75		. 750	1.125	2.355	4.688	8.83
Sulfuric ether	30	. 212	1.0	2.109	6.194	18.24	46.77
	75	-	. 755	1.409	3.990	9.683	20.46
Petroleum ether	30	-	1.0	1.995	8.51	38.9	151.4
Kerosene	80 30	-			3.63	11.5	30.9
	80	-	1.0	2.88	8.13	75.9	631
Water	0	1.792	1.0	. 921	1.111	freezes	-
	10.3	1.297	. 779	. 743	. 842	1.152	
	30	. 801	. 488	. 514	. 658	. 923	1.206
	75	. 380	. 222	. 239	. 302	. 445	--
	100	. 284					
Mercury	30	1.516	1.0	1.023	1.097	1.202	1.324
	75	1.340	. 884	. 883	. 880	. 877	. 876

${ }^{129}$ Bridgman, P. W., The physics of high pressure. Macmillan, New York, 1931.

With very few exceptions present-day lubricants are petroleum products or blends of petroleum products with various compounding or addition agents such as fatty oils, diversified types of soap, and in rare instances solid materials such as graphite. Addition agents are more costly than petroleum derivatives; hence they are used as sparingly as possible. The addition agents are generally employed when conditions of use require greater "oiliness" (higher film strength) than is attainable with unblended petroleum oils. The latter usually deteriorate more slowly in service than blended products, which is an advantage supplementing that of low relative cost. There are a few jobs of lubrication for which fatty oils have never been entirely supplanted, as for example the use of porpoise-jaw oil in fine watches.

## Lubricants for Cutting Tools ${ }^{130}$

Various types of oils have been used as lubricants for cutting tools. These are fatty oils, kerosene, turpentine, mineral oils and various blends of these oils. Sulfur has been combined with some of these oils to increase the film strength. Such mixtures and blends are furnished by the various manufacturers under their trade names such as Pennex, Dortan, Fanox, and Kutwell by the Standard Oil Co. of New Jersey.

Severity	Type of operation	$\begin{aligned} & \text { Ferrous } \\ & \text { (more than } \\ & 70 \% \text { ) } \end{aligned}$ $70 \%)$	$\begin{gathered} \text { Ferrous } \\ (50-65 \%) \end{gathered}$	Ferrous (less than $40 \%$ )	Nonferrous (more than $100 \%$ )	Nonferrous (less than $100 \%$ )
$\frac{1}{3}$ (greatest)	Broaching, internal	Em Sulf	Sulf Em	Sulf Em	MO Em	Sulf ML
3	Tapping, plain	Sulf	Sulf	Sulf	Em Dry	Sulf ML
2	Threading, pipe	Sulf	Sulf ML	Sulf		Sulf
3	Threading, plain	Sulf	Sulf	Sulf	Em Sulf	Sulf
4	Gear shaving	Sulf L	Sulf L	Sulf L		
4	Gear cutting	Sulf ML Em	Sulf	Sulf ML		Sulf ML
5	Drilling, deep	Em ML	Sulf Em	Sulf	MO ML Em	Sulf ML
8	Boring, multiple head	Sulf Em	Sulf Em	Sulf Em	K Dry Em	Sulf Em
8	High-speed, lightfeed, automatic screw machines	Sulf Em ML	Sulf Em ML	Sulf ML Em	Em Dry ML	Sulf
9	Turning; singlepoint tool, form tools	Em Sulf ML	Em Sulf ML	Em Sulf ML	Em Dry ML	Em Sulf

[^152]The required force $F$ necessary to just move an object along a horizontal plane $=f N$ where $N$ is the normal pressure on the plane and $f$ the "coefficient of friction." The angle of repose $\Phi(\tan \Phi=F / N)$ is the angle at which the plane must be tilted before the object will move from its own weight. The following table of coefficients was compiled by Rankine from the results of General Morin and other authorities and is sufficient for ordinary purposes.

Material	$f$	1/f	¢
Wood on wood, dry..	.25-.50	4.00-2.00	14.0-26.5
Metals on oak, dry...	. .20 - 60	$\xrightarrow{5.00} 2$	${ }_{26.5-31.0}^{11.5}$
"، " "،, dry	.24-.26	4.17-3.85	13.5-14.5
soapy	. 20	5.00	
" elm, dry.	.20-. 25	5.00-4.00	11.5-14.0
Hemp on oak, dry	. 53	1.89	28.0
" " wet	. 33	3.00	18.5
Leather on oak.	.27-. 38	3.70-2.86	15.0-19.5
"/ metals, dry.	. 56	1.79	29.5
"	. 36	2.78	20.0
" " greasy	. 23	4.35	13.0
" " " oily	15	6.67	8.5
Metals on metals, dry.	.15-. 20	6.67-5.00	8.5-11.5
"* " ${ }^{\text {" }}$ wet..............		3.33	16.5
Smooth surfaces, occasionally greased	. $07-.08$	14.3-12.50	4.0-4.5
". continually greased.	. 05	20.00	3.0
" best results.	.03-.036	33.3-27.6	1.75-2.0
Steel on agate, dry	. 20	5.00	11.5
" " ${ }^{\text {c }}$ oiled.	. 107	9.35	6.1
Iron on stone.	. $30-.70$	3.33-1.43	16.7-35.0
Wood on stone.	About 40	2.50	22.0
Masonry on brick work, dry	.60-. 70	1.67-1.43	33.0-35.0
"" " " damp mortar	. 74	1.35	36.5
" dry clay	. 51	1.96	27.0
" moist clay	. 33	3.00	18.25
Earth on earth.	.25-1.00	4.00-1.00	14.0-45.0
" " dry sand, clay, and mixed earth.	. $38-.75$	2.63-1.33	21.0-37.0
" " damp clay	1.00	1.00	45.0
" " wet clay.	. 31	3.23	17.0
" " " shingle and gravel	.81-1.11	1.23-. 9	39.0-48.0

## TABLE 339.-DYNAMIC PRESSURE AT DIFFERENT AIR SPEEDS

The force on a body moving through a fluid may be expressed in the form

$$
F=C_{F} q A
$$

where $F$ is the force, $C_{F}$ a nondimensionai force coefficient, $q$ the dynamic pressure ( $q=$ $\frac{1}{2} \rho V^{2}$, definition), and $A$ an area. In general, the value of the coefficient $C_{F}$ is dependent on several nondimensional parameters. When the medium is air, $C_{F}$ depends on the Reynolds number $\frac{V l p}{\eta}$, the Mach number $\frac{V}{a}$, the body shape and attitude to the relative wind, the relative surface roughness, and the degree of turbulence of the air stream. The quantity $\rho$ denotes the fluid density, $V$ the velocity of the body relative to the fluid, $\eta$ the coefficient of fluid viscosity, $l$ a linear dimension of the body fixing the scale, and $a$ the speed of sound in the ambient fluid.

The table gives values of dynamic pressure $q$ for a wide range of speeds. In conjunction with the values of the force coefficient in subsequent tables, this table can be used for computation of lift, drag, and moment under specified conditions. The values in the table are computed for standard air density: dry air, normal $\mathrm{CO}_{2}$ content, $15^{\circ} \mathrm{C}$, one atmosphere. Standard air density is $0.12497 \frac{\text { metric slugs }}{\mathrm{m}^{8}}$ or $0.002378 \frac{\mathrm{slugs}}{\mathrm{ft}^{3}}$. For standard gravity, the weight of one metric slug (MKS) is 9.807 kilograms and the weight of one slug is 32.174 pounds. For other densities the values must be multiplied by the ratio of the actual density to the standard density.

[^153]
## (continued)

TABLE 339.-DYNAMIC PRESSURE AT DIFFERENT AIR SPEEDS (concluded)

Air speed $\mathrm{m} / \mathrm{sec}$	Dynamic pressure, $q$ $\mathrm{kg} / \mathrm{m}^{2}$	Air speed $\mathrm{m} / \mathrm{sec}$	Dynamic pressure, $q$ $\mathrm{kg} / \mathrm{m}^{2}$	Air speed $\mathrm{m} / \mathrm{sec}$	Dynamic pressure, $q$ $\mathrm{kg} / \mathrm{m}^{2}$	Air speed $\mathrm{m} / \mathrm{sec}$	Dynamic pressure, $q$ $\mathrm{kg} / \mathrm{m}^{2}$	Air speed $\mathrm{m} / \mathrm{sec}$	Dynamic pressure, $q$ $\mathrm{kg} / \mathrm{m}^{2}$
1	. 0625	12	8.998	35	76.54	85	451.4	170	1806
2	. 2499	14	12.25	4 C	99.98	90	506.1	180	2024
3	. 5624	16	16.00	45	126.5	95	563.9	190	2256
4	. 9998	18	20.24	50	156.2	100	624.8	200	2499
5	1.562	20	24.99	55	189.0	110	756.1	250	3905
6	2.249	22	30.24	60	224.9	120	899.8	300	5624
7	3.062	24	35.99	65	264.0	130	1056.0	350	7654
8	3.999	26	42.24	70	306.2	140	1225	400	9998
9	5.061	28	48.99	75	351.5	150	1406	450	12653
10	6.248	30	56.24	80	399.9	160	1600	500	15621
Air speed $\mathrm{ft} / \mathrm{sec}$	Dynamic pressure, $q$ $\mathrm{lb} / \mathrm{ft}^{2}$	Air speed $\mathrm{ft} / \mathrm{sec}$	Dynamic pressure, $q$ $\mathrm{lb} / \mathrm{ft}^{2}$	$\begin{gathered} \text { Air } \\ \text { speed } \\ \mathrm{ft} / \mathrm{sec} \end{gathered}$	Dvnamic pressure, $q$ $\mathrm{lb} / \mathrm{ft}^{2}$	Air speed $\mathrm{ft} / \mathrm{sec}$	Dynamic pressure, $q$ $\mathrm{lb} / \mathrm{ft}^{2}$	Air speed $\mathrm{ft} / \mathrm{sec}$	Dynamic pressure, $q$ $\mathrm{lb} / \mathrm{ft}^{2}$
1	. 0012	20	. 4756	120	17.12	220	57.55	600	428.0
2	. 0048	30	1.0701	130	20.09	230	62.90	650	502.4
3	. 0107	40	1.902	140	23.30	240	68.49	700	582.6
4	. 0190	50	2.972	150	26.75	250	74.31	750	668.8
5	. 0297	60	4.280	160	30.44	300	107.01	800	761.0
6	. 0428	70	5.826	170	34.36	350	145.6	850	859.0
7	. 0583	80	7.610	180	38.52	400	190.2	900	963.1
8	. 0761	90	9.631	190	42.92	450	240.8	950	1073
8	. 0963	100	11.890	200	47.56	500	297.2	1000	1189
10	. 1189	110	14.39	210	52.43	550	359.7	1500	2675

TABLE 340.-FORCES ON THIN FLAT PLATES AT ANGLES TO THE WIND (FIG. 6)

For plates at angles to the wind (angle of attack, a) the force is usually resolved into components at right angles and parallel to the direction of the relative wind. The components, termed the lift and drag, respectively, are expressed in the form of coefficients, the forces being divided by the product of the dynamic pressure and the area of the plate (not the projected area on a plane normal to the wind). The ratio of the distance between the leading edge and the center of pressure to the chord length is called the center of pressure coefficient, $C P$. The center of pressure is defined as the intersection of the line of action of the resultant force, $F$, with the plate. The forces on a plate vary with "aspect ratio," a term defined for a rectangular plate as the ratio of the span to the chord length.

The lift ( $C_{L}$ ), drag ( $C_{D}$ ), and center of pressure coefficients ( $C P$ ) are given as functions of angle of attack a for thin plates of aspect ratio 1,3 , and 6.


Fig. 6.-The lift coefficient $\left(C_{L}\right)$, the drag coefficient $\left(C_{D}\right)$, and the center of pressure $(C P)$ for thin plates for aspect ratios 1,3 , and 6 , as a function of the angle $a$ with the wind. (See small figure in upper center.) $D=C_{D} A q, L=C_{L} A q, X=C P \times c$.
(continued) (FIG. 6) (concluded)

Authority ${ }^{131}$	Conditions of experiments											
	Aspect ratio 1				Aspect ratio 3				Aspect ratio 6			
	1	2	3	4	1	3	5	1	3	6	6 a	7
Span, cm	25	30.5	12	12	45	7.6	36	90	. 72	30.5	30.5	45.7 to 91.4
Chord, cm	25	30.5	12	12	15	2.5	12	15	12	5.08	5.08	7.6 to 15.2
Thickness, cm	. 3	. 32	. 17		. 3	. 025	. 17	. 3	. 17	. 117	. 129	
Tunnel diam., cm	150	$\sim$	200	120	150	60	200	150	200	137	137	152.4
Reynolds No. $\times 10^{-3}$	210	382	55	42	126	10	55	126	55	64	64	153

[^154]
## TABLE 340A.-VALUES OF DRAG COEFFICIENT $C_{D}$ FOR FLAT PLATES OF DIFFERENT ASPECT RATIO NORMAL TO THE WIND ( $\alpha=90^{\circ}$ )

Values of $C_{D}$ for circular disks are practically the same as for a square plate.

Ispect ratio	1	2	3	4	5	6	7	8	$\infty$
$C_{D}$	1.12	1.18	1.22	1.24	1.26	1.28	1.30	1.32	2.00

## TABLE 340B.-FORCES ON NONROTATING CIRCULAR CYLINDERS (FIG. 7) ${ }^{132}$

The drag coefficient $C_{D}$ for cylinders whose axes are perpendicular to the relative wind, the area $A$ being taken as the product of the length $L$ and diameter $d$, depends to a marked degree on the aspect ratio $\frac{L}{d}$, the Reynolds number $R$, and the Mach number $M$. The figure shows the variation of the drag coefficient $C_{D}$ with $R$ for cylinders of infinite aspect ratio at very low Mach numbers. The drag coefficient $C_{D}$ varies with Mach number in a manner quite similar to that of the sphere on Table 340C (figures 8 and 10).


Fig. 7.-The drag coefficient $C_{D}$ as a function of the Reynolds number $R$ at low Mach numbers for cylinders of infinite aspect ratios with axes perpendicular to the wind.

Drag $=C_{D} A q$, Reynolds number, $R=\frac{V d \rho}{\eta}$, Mach number, $M=\frac{V}{a}$. For $q$ see Table 339, $V=$ air speed, $\rho=$ air density, $\eta=$ coefficient of air viscosity.

[^155]The variation of $C_{n}$ with aspect ratio for Reynolds number of 80,000 is as follows.

Aspect ratio $\frac{L}{d}$	1	2	3	5	10	20	40	$\infty$	
$C_{D}$		.63	.69	.75	.75	.83	.92	1.00	1.20

If the axis of the cylinder is inclined to the wind direction, the force remains approximately at right angles to the axis of the cylinder, its magnitude falling off approximately as the square of the sine of the angle of the axis to the wind.

## TABLE 340C.-FORCES ON SPHERES (FIGS. 8-10) ${ }^{133}$

For spheres, the linear dimension $l$ is taken as the diameter of the sphere $d$ and the area $A$ as $\frac{\pi d^{2}}{4}$. For values of Reynolds number between 80,000 and 400,000 at low values of Mach number the value of the drag coefficient $C_{D}$, depends in large measure on the turbulence of the air stream. As the Reynolds number is increased in this range the drag coefficient of the sphere and the pressure coefficient at the rear of the sphere decreaserapidly. The pressure coefficient is equal to the ratio of the difference between frce stream stagnation pressure and local static pressure to the dynamic pressure $q$. The Reynolds number at which the pressure coefficient at the rear of the sphere is 1.22 is defined as the critical Reynolds number, $R_{c r}$. This value of pressure coefficient corresponds very nearly to $C_{D}=3$. The value of $R_{c r}$ represented by point $d$ in the figure is considered to be typical of turbulence-free air.


Fig. 8.-The drag coefficient $C_{D}$ on spheres as a function of the Reynolds number.

$$
\text { Drag, } D=C_{D} A q R=\frac{V d \rho}{\eta}
$$

Sphere tests in wind tunnels indicate different values of $R_{\text {cr }}$ for different sphere sizes. Correlation of the data may be obtained if values of $\frac{\sqrt{u^{2}}}{V}\left(\frac{d}{L}\right)^{t}=\left(K^{\circ}\right)$ are plotted as a function of $R_{c r}$. The value $\sqrt{u^{2}}$ is the root-mean-square of the fluctuation velocity in the direction of the relative wind, $l$ the velocity of the relative wind, $d$ the sphere diameter, and $L$ is the scale of the turbulence as defined in the reference. The figure shows a correlation $(K)$ obtained with two sizes of spheres and several values of $L$.

[^156]TABLE 340C.-FORCES ON SPHERES (FIGS. 8-10) (concluded)


Fig. 9.-The value of $\frac{\sqrt{\overline{u^{2}}}}{V}\left(\frac{d}{L}\right)^{\frac{1}{3}}=K$ plotted as a function of the critical Reynolds number, $R_{\text {cr }}$.

At Mach numbers greater than about 0.3 the drag coefficient $C_{D}$ depends on the values of both Reynolds number and Mach number.


Fig. 10.-The drag coefficient for a sphere as a function of the Reynolds number for several Mach numbers.

The values of the drag coefficients in this table are based on the area of the projection of the body on a plane normal to the wind direction. Where this projection is a circle, the diameter is used as the linear dimension $l$ in the Reynolds number. Where the projection is rectangular, the shortest side of the rectangle is taken as $l$.

Body	$C_{D}$	Reynolds number
Streamline bodies of revolution	.05-. 06	3,000,000
Rectangular prism $1 \times 1 \times 5$ normal to $1 \times 5$ face	1.56	180,000
Rectangular prism $1 \times 1 \times 5$, long axis perpendicular to the relative wind and $1 \times 5$ face at $45^{\circ}$	. 92	254,000
Automobile	. 78	$\left[\begin{array}{c} \text { about } \\ 300,000 \end{array}\right]$
Cone, angle $60^{\circ}$, point to wind, solid.	. 51	$\left[\begin{array}{l} \text { about } \\ 270,000 \end{array}\right]$
Cone, angle $30^{\circ}$, point to wind, solid.	. 34	270,000
Hemispherical cup, open back.......	. 41	100,000
Hemispherical cup, open front	1.40	100,000
Sphero-conic body, cone $20^{\circ}$ point forward	. 16	135,000
Sphero-conic body, cone $20^{\circ}$ point to rear.	. 09	135,000
Cylinder 120 cm long, spherical ends with axis parallel to the relative wind.	. 19	100,000

## TABLE 341A.-SKIN FRICTION ON FLAT PLATES (FIGS. 11, 12) ${ }^{134}$

If the flat plate is in a uniform stream of fluid and the flow is parallel to the plate the skin friction coefficient, $C_{f}$, is dependent mainly on the Reynolds number, $R=\frac{V L \rho}{\eta}$. The skin friction coefficient $C_{t}=\frac{D_{t}}{q L}$ where $D_{t}$ is the friction drag per unit width of one side of the plate, $q$ the dynamic pressure (see Table 339), and $L$ the length from the leading edge of the plate.
For laminar flow

$$
\begin{equation*}
C_{t}=\frac{1.328}{\sqrt{R}} \tag{Blasius}
\end{equation*}
$$

For turbulent flow

$$
\begin{equation*}
C_{t}=\frac{0.455}{\left(\log _{10} R\right)^{2.58}} \tag{Schlichting}
\end{equation*}
$$

The Reynolds number for transition from laminar to turbulent flow depends on the roughness of the plate and the turbulence of the airstream.

The figure shows the variation of the skin friction $\left(C_{f}\right)$ with $R$ for laminar and turbulent flow.

[^157](continued)

TABLE 341A.-SKIN FRICTION ON FLAT PLATES (FIGS. 11, 12) (continued)


Fig. 11.-A $\log -\log$ plot of the skin-friction coefficient $C_{f}$ on a flat plate as a function of the Reynolds number for laminar and turbulent flow.

The local skin-friction coefficient $\frac{\tau_{0}}{2 q}$ may be approximated by a power function of the Reynolds number based on the momentum thickness, $R_{\ominus}=\frac{V \Theta \rho}{\eta}$. When the boundary layer is laminar

$$
\frac{\tau_{0}}{2 q}=\frac{0.2205}{R_{\ominus}}
$$

When the boundary layer is turbulent

$$
\frac{\tau_{0}}{2 q}=\frac{1}{\left[2.5 \log _{e} \frac{R_{\theta}}{2.5\left(1-5 \sqrt{\left.\tau_{0} / 2 q\right)}\right.}+5.5\right]^{2}},
$$

The momentum thickness

$$
\theta=\int_{0}^{\delta} \frac{u}{V}\left(1-\frac{u}{V}\right) \mathrm{dy}
$$

where $u$ is the local velocity inside the boundary layer, $V$ the local velocity outside the boundary layer, and $\delta$ the boundary-layer thickness. The local skin-friction coefficient is plotted against Reynolds number for the case of a turbulent boundary layer.

> (continued)

TABLE 341A.-SKIN FRICTION ON FLAT PLATES (FIGS. 11, 12) (concluded)


Fig. 12.-The local skin-friction coefficient on a flat plate plotted against the Reynolds number for a turbulent boundary layer.

## TABLE 342.-STANDARD ATMOSPHERE ${ }^{135}$

Standard atmospheric values are given up to altitudes of 65,000 feet, and quantities that have been found to be of use in the interpretation of airspeed and related factors are included (Table 343). These quantities are the pressure $p$ in pounds per square foot, the pressure $p$ in inches of water, the speed of sound $a$, the coefficient of viscosity $\eta$, and the kinematic viscosity $\nu$. The values for the coefficient of viscosity $\eta$ and the kinematic viscosity $\nu$ are not standard values since a standardization of air viscosity has not been agreed upon as yet. The values listed for $\eta$ and $\nu$ are believed to be sufficiently accurate, however, to be useful in calculations requiring viscosity of air. The coefficient of viscosity $\eta$ was computed from the formula

$$
\eta=\frac{2.318}{10^{8}} \frac{T^{3 / 2}}{T+216} .
$$

The kinematic viscosity of air $\nu$ was obtained from the definition $\nu=\frac{\eta}{\rho}$. The quantity $1 / \sqrt{\sigma}$ is given to facilitate the computation of the true airspeed $V$ from the equivalent airspeed $V_{0}$.

$$
V=\frac{1}{V_{\sigma}} V_{0}
$$

The speed of sound in miles per hour is computed from $a=33.42 \sqrt{T}$ where $T$ is the temperature in degrees Fahrenheit absolute. A value of $\gamma=1.4$ was assumed to hold throughout the temperature range.

The values of the standard atmosphere are based upon the following values:

$$
\text { Sea-level pressure } \begin{aligned}
\rho_{0} & =29.921 \mathrm{inHg} \\
& =407.1 \mathrm{inH}_{2} \mathrm{O} \\
& =2116.2 \mathrm{lb}^{\prime} / \mathrm{ft}^{2}
\end{aligned}
$$

Sea-level temperature $t_{0}=59^{\circ} \mathrm{F}$
Sea-level absolute temperature $T_{0}=518.4^{\circ} \mathrm{F}$ abs
Sea-level density $\rho_{0}=0.002378$ slug $/ \mathrm{ft}^{3}$
Gravity $g=32.1740 \mathrm{ft} / \mathrm{sec}^{2}$
Temperature gradient $\frac{d T}{d h}=0.00356617^{\circ} \mathrm{F} / \mathrm{ft}$
The altitude of the lower limit of the isothermal atmosphere $=35,332$ it Specific weight of mercury at $32^{\circ} \mathrm{F}=848.7149 \mathrm{lb} / \mathrm{ft}^{\mathrm{a}}$
Specific weight of water at $59^{\circ} \mathrm{F}=62.3724 \mathrm{lb} / \mathrm{ft}^{3}$

[^158]Up to the lower limit of the isothermal atmosphere ( $-67^{\circ} \mathrm{F}$ corresponding to $35,332 \mathrm{ft}$ ) the temperature is assumed to decrease linearly according to the equation

$$
T=T_{0}-\frac{d T}{d h} \mathrm{~h}
$$

Further, the atmosphere is assumed to be a dry perfect gas that obeys the laws of Charles and Boyle, so that the mass density corresponding to the pressure and temperature is

$$
\rho=\rho_{0} \frac{p}{p_{0}} \frac{T_{0}}{T}
$$

The pressure and altitude are related by

$$
\mathrm{h}=\frac{p_{0}}{\rho_{0} g} \frac{T_{m}}{T_{0}} \log e \frac{p_{0}}{p} .
$$

The harmonic mean temperature $T_{m}$ is given by

$$
T_{\mathrm{m}}=\frac{\Sigma \Delta h}{\sum \frac{\Delta h}{T_{a v}}}=\frac{\Delta h_{1}+\Delta h_{2}+\cdots}{\frac{\Delta h_{1}}{T_{a v 1}}+\frac{\Delta h_{2}}{T_{a v 2}}+\cdots}
$$

where $T_{a v 1}, T_{a v 2}, \ldots$ are the average temperatures for the altitude increments $\Delta h_{1}, \Delta h_{2}, \ldots$
The NACA Special Subcommittee on the Upper Atmosphere, at a meeting on June 24, 1946, resolved that a tentative extension of the standard atmosphere from 65,000 to 100,000 feet be based upon a constant composition of the atmosphere and an isothermal temperature which are the same as standard conditions at 65,000 feet. This tentative extended isothermal region (Table 344) ends at 32 kilometers (approximately $105,000 \mathrm{ft}$ ). It is possible that as results of higher altitude temperature soundings become available and the standard atmosphere is extended to very high altitudes the present recommendations may be modified.
The Subcommittee also recommended that the values of temperature given in the following table be considered as maximum and minimum values occurring for the given altitudes with the variations between the specified points to be linear:

$\begin{aligned} & \text { Altitude } \\ & (\mathrm{km}) \end{aligned}$	Temperature $\underbrace{\circ} \mathrm{C}$ abs)	
	Minimum	Maximum
20	180	250
25		250
45	200	380

A tentative extension of the standard atmosphere computed from the equations using the recommended isothermal temperature and constant gravity altitudes from 65,000 to 100,000 feet are included in the table. Calculations have been made ${ }^{185}$ by assuming that the acceleration of gravity varies inversely as the square of the distance from the center of the earth. Up to 100,000 feet this assumption does not greatly affect the tabulated values.

Altitude, h ft	Pressure, p			$\begin{gathered} \text { Density } \\ \rho \\ \text { slugs } / \mathrm{ft}^{3} \end{gathered}$	Density ratio $\sigma=\frac{\rho}{\rho_{10}}$	$\frac{1}{\overline{\sqrt{\sigma}}}$	Tem-perature,   ${ }^{\circ} \mathrm{F}$ abs	Speed of sound $\mathrm{mi} / \mathrm{hr}$	Coefficient of viscosity,$\frac{\operatorname{slugs}}{\mathrm{ft}-\mathrm{sec}}$	Kinematic viscosity,$\mathrm{ft}^{2} / \mathrm{sec}$
	$\mathrm{lb} / \mathrm{ft}^{2}$	in $\mathrm{H}_{2} \mathrm{O}$	inHg							
0	2116	407.1	29.92	. 002378	1.0000	1.000	518.4	760.9	$3.725 \times 1$	$0^{-7} 1.566 \times 10^{-4}$
2,000	1968	378.5	27.82	. 002242	. 9428	1.030	511.2	755.7	3.685	1.644
4,000	1828	351.6	25.84	. 002112	. 8881	1.061	504.1	750.4	3.644	1.725
6,000	1696	326.2	23.98	. 001988	. 8358	1.094	497.0	745.1	3.602	1.812
8,000	1572	302.4	22.22	. 001869	. 7859	1.128	489.9	739.7	3.561	1.905
10,000	1455	279.9	20.58	. 001756	. 7384	1.164	482.7	734.3	3.519	2.004
12,000	1346	258.9	19.03	. 001648	. 6931	1.201	475.6	728.8	3.476	2.109
14,000	1243	239.1	17.57	. 001545	. 6499	1.240	468.5	723.4	3.434	2.223
16,000	1146	220.6	16.21	. 001448	. 6088	1.282	461.3	718.7	3.391	2.342
18,000	1056	203.2	14.94	. 001355	. 5698	1.325	454.2	712.2	3.348	2.471
20,000	972.1	187.0	13.75	. 001267	. 5327	1.370	447.1	706.6	3.305	2.608
22,000	893.3	171.9	12.63	. 001183	. 4974	1.418	439.9	701.1	3.261	2.756
24,000	819.8	157.7	11.59	. 001103	. 4640	1.468	432.8	695.3	3.217	2.916
26,000	751.2	144.5	10.62	. 001028	. 4323	1.521	425.7	689.5	3.173	3.086
28,000	687.4	132.2	9.720	. 000957	. 4023	1.577	418.5	683.7	3.128	3.268
30,000	628.0	120.8	8.880	. 000889	. 3740	1.635	411.4	677.9	3.083	3.468
32,000	572.9	110.2	8.101	. 000826	. 3472	1.697	404.3	672.0	3.038	3.678
34,000	521.7	100.4	7.377	. 000765	. 3218	1.763	397.2	666.0	2.992	3.911
35,332	489.8	94.24	6.926	. 000727	. 3058	1.808	392.4	662.0	2.962	4.073
36,000	474.4	91.31	6.711	. 000705	. 2963	1.837	392.4	662.0	2.962	4.204
38,000	431.1	82.97	6.098	.000640	2692	1.927	392.4	662.0	2.962	4.625
40,000	391.9	75.44	5.544	. 000582	. 2448	2.021	392.4	662.0	2.962	5.089
42,000	356.2	68.56	5.038	. 000529	. 2225	2.120	392.4	662.0	2.962	5.599
44,000	323.7	62.29	4.578	. 000480	. 2021	2.224	392.4	662.0	2.962	6.161
46,000	294.2	56.63	4.162	. 000437	. 1838	2.333	392.4	662.0	2.962	6.778
48,000	267.4	51.46	3.782	. 000397	. 1670	2.447	392.4	662.0	2.962	7.459
50,000	243.1	46.78	3.438	. 000361	. 1518	2.567	392.4	662.0	2.962	8.206
52,000	220.9	42.52	3.124	. 000328	. 1379	2.692	392.4	662.0	2.962	9.028
54,000	200.8	38.64	2.840	. 000298	1.1254	2.824	392.4	662.0	2.962	9.933
56,000	182.5	35.12	2.581	. 000271	. 1140	2.962	392.4	662.0	2.962	10.93
58,000	165.9	31.92	2.346	. 000246	. 1036	3.107	392.4	662.0	2.962	12.02
60,000	150.8	29.01	2.132	. 000224	. 09415	3.259	392.4	662.0	2.962	13.23
62,000	137.1	26.37	1.938	. 000203	. 08557	3.419	392.4	662.0	2.962	14.56
64,000	124.6	23.96	1.761	. 000185	. 07777	3.586	392.4	662.0	2.962	16.02
65,000	118.7	22.85	1.679	. 000176	. 07414	3.672	392.4	662.0	2.962	16.80

[^159]TABLE 344.-PROPERTIES OF THE TENTATIVE STANDARD-ATMOSPHERE EXTENSION

$\begin{gathered} \text { Altitude } \\ \mathrm{h} \\ \mathrm{ft} \end{gathered}$	Pressure, p			$\begin{aligned} & \text { Density, } \\ & \rho \\ & \text { slugs } / \mathrm{ft}^{3} \end{aligned}$	Density ratio. $\sigma=\frac{\rho}{\rho_{01}}$	$\frac{1}{\sqrt{\sigma}}$	Tem-perature,   ${ }^{\circ} \mathrm{F}$ abs	Speed of sound, $\mathrm{mi} / \mathrm{hr}$	$\begin{gathered} \text { Coefficient } \\ \text { of } \\ \text { viscosity, } \\ \eta \\ \text { slugs } \\ \mathrm{ft}-\mathrm{sec} \end{gathered}$	Kinematic viscosity, $\mathrm{ft}^{2} / \mathrm{sec}$
	lb/ft ${ }^{2}$	in $\mathrm{H}_{2} \mathrm{O}$	inHg							
65,000	118.7	22.85	1.679	. 000176	. 07414	3.672	392.4	662.0	$2.962 \times 10$	$0^{-7} 16.80 \times 10^{-}$
70,000	93.53	17.99	1.322	. 000139	. 05839	4.138	392.4	662.0	2.962	21.33
75,000	73.66	14.17	1.042	. 000109	. 04599	4.663	392.4	662.0	2.962	27.09
80,000	58.01	11.16	. 8202	. 0000861	. 03621	5.255	392.4	662.0	2.962	34.39
85,000	45.68	8.789	. 6460	. 0000678	. 02852	5.921	392.4	662.0	2.962	43.67
90,000	35.97	6.921	. 5086	. 0000534	. 02246	6.672	392.4	662.0	2.962	55.45
95,000	28.33	5.451	. 4006	. 0000421	. 01769	7.519	392.4	662.0	2.962	70.41
100,000	22.31	4.293	. 3156	. 0000331	. 01394	8.472	392.4	662.0	2.962	89.41

In high speed research, use is frequently made of the theoretical relationships existing between the Mach number and various flow parameters. Two types of flow are tabulated: isentropic flow and normal-shock flöw. Isentropic flow is generally valid for a subsonic or supersonic expanding flow and may be used for subsonic compression flow. Normal-shock How is valid for supersonic compression flow when the deviation of the flow through the shock is zero. Oblique-shock flow may be obtained from the normal-shock flow by superimposing a velocity tangential to the shock.
The assumption that air is a perfect gas with a value of $\gamma$ of 1.400 is valid for the conditions usually encountered in the subsonic and lower supersonic regions for normal stagnation conditions. For Mach numbers greater than about 4.0 or for unusual stagnation conditions, however, the behavior of air will depart appreciably from that of a perfect gas if the liquefaction condition is approached, and caution should be used in applying the results in the table at the higher Mach numbers.
The formulas for isentropic flow are:

$$
\begin{aligned}
\frac{p_{1}}{p_{0}} & =\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)^{\frac{\gamma}{1-\gamma}} \\
\frac{\rho_{1}}{\rho_{0}} & =\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)^{\frac{1}{1-\gamma}} \\
\frac{T_{1}}{T_{0}} & =\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)^{-1} \\
\frac{A_{c r}}{A_{1}} & =M_{1}\left(\frac{1+\frac{\gamma-1}{2}}{1+\frac{\gamma-1}{2} M_{1}^{2}}\right)^{\frac{\gamma+1}{2(\gamma-1)}} \\
\frac{c_{1}}{a_{0}} & =\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)^{-1} \\
V_{1} & =M_{1}\left(\frac{a_{1}}{a_{0}}\right) a_{0} \\
F_{c} & =\frac{2}{\gamma M_{1}^{2}}\left[\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)^{\frac{\gamma-1}{\gamma-1}}-1\right. \\
\phi & =\sin ^{-1}\left(\frac{1}{M_{1}}\right) \\
\nu & =\left(\frac{\gamma+1}{\gamma-1}\right)^{\frac{1}{2}} \cos ^{-1}\left[\frac{\gamma+1}{2\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)}\right]^{\frac{1}{2}}+\phi-90^{\circ},
\end{aligned}
$$

and the formulas for normal-shock flow are:

$$
\begin{aligned}
& \frac{p_{2}}{p_{1}}=\frac{2 \gamma}{\gamma+1} M_{1}^{2}-\frac{\gamma-1}{\gamma+1} \\
& \frac{p_{2}}{p_{0}}=\left(\frac{p_{2}}{p_{1}}\right)\left(\frac{p_{1}}{p_{0}}\right) \\
& \frac{p_{3}}{p_{2}}=\left(\frac{\gamma-1}{2} M_{2}{ }^{2}+1\right)^{\frac{\gamma}{\gamma-1}} \\
& \frac{p_{3}}{p_{0}}=\left(\frac{p_{3}}{p_{2}}\right)\left(\frac{p_{2}}{p_{0}}\right) \\
& M_{2}=\left[( \frac { \gamma + 1 } { 2 \gamma } ) ^ { 2 } \left(\frac{1}{\left.\left.M_{1}{ }^{2}-\frac{\gamma-1}{2 \gamma}\right)+\frac{\gamma-1}{2 \gamma}\right]^{3}} \$=\right.\right.\text {, }
\end{aligned}
$$

[^160]\[

$$
\begin{aligned}
& \frac{\rho_{2}}{\rho_{1}}=\left(\frac{M I_{1}}{M_{2}}\right)^{2}\left(\frac{p_{1}}{p_{2}}\right) \\
& \frac{V_{2}}{V_{1}}=\frac{\rho_{1}}{\rho_{2}}
\end{aligned}
$$
\]

where
$a=$ speed of sound in air.
$A=$ cross-sectional area of the stream tube.
$A_{\text {cr }}=$ cross-sectional area of the stream tube for $\mathrm{M}_{1}=1.0$.
$F_{c}=$ compressibility factor, increase in pressure above the static pressure set up in a tube whose open end is pointed into the relative wind divided by the dynamic pressure.
$M=$ Mach number $\left(\frac{V}{a}\right)$.
$\phi=$ Mach angle, degrees.
$p=$ absolute pressure.
$T=$ temperature, ${ }^{\circ} \mathrm{F}$ absolute.
$V=$ airspeed, feet per second, computed for $T_{0}=520^{\circ} \mathrm{F}$ absolute and $a_{0}=$ 1117.372 feet per second.
$\gamma=$ ratio of specific heats, taken as 1.400 .
$\nu=$ expansion angle required to change Mach number from 1.0 to $M_{1}$, degrees.
$\rho=$ mass density of air.
Subscripts:
$0=$ stagnation conditions before shock.
$1=$ air stream conditions before shock.
$2=$ air stream conditions behind shock.
$3=$ stagnation conditions behind shock.


Fig. 13.-Illustrating three types of flow.

$$
\begin{aligned}
& \text { 4 Goono } \\
& 4
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\circ}{\circ}
\end{aligned}
$$

t| to


a\&

山
 $\stackrel{\circ}{\circ}$


FHo incioniont

ష


 á
 \&\&

 14
0
0
-0
$-1!$
5
 स|t







 ~ดด

告



ज

By suitably proportioning the thickness distribution over the chord of a plate, an airfoil may be derived around which the flow will adhere even when the angle of attack is large. Because the flow remains attached to the airfoil, high lift coefficients may be obtained with low drag coefficients.

The flow around a particular airfoil at a given angle of attack depends on the Reynolds number, $R$, the Mach number, $M$, and the degree of surface roughness. The main effect of increasing the Reynolds number is to change the maximum-lift coefficient and the minimum-drag coefficient. When the surface of the airfoil is made rough, simulating the surface of an actual airplane wing, the flow breaks away from the upper surface of the airfoil at a smaller angle of attack and therefore results in a considerably smaller value of maximum-lift coefficient. A rough surface increases the percentage of the chord over which the flow is turbulent and tends to make the drag coefficient much higher (see figure 11). As the Mach number is increased the variation of the local velocity from the stream velocity is increased.
On figure 14 are shown the force coefficients for two symmetrical NACA airfoils of infinite aspect ratio plotted against angle of attack, a, for a Reynolds number of $6 \times 10^{6}$. Methods exist (see Method for calculating wing characteristics by lifting-line theory using nonlinear section lift data, by James C. Sivells and Robert H. Neely, NACA TN No. 1269 , April 1947) for converting infinite aspect ratio data to finite wing characteristics. The force coefficients of a 21 -percent thick airfoil in the smooth condition and a 12 -percent thick airfoil in both the rough and smooth conditions are given.
Figure 15 shows the variation in the force coefficients with Mach number for a symmetrical 9 -percent thick airfoil at an angle of attack of $2^{\circ}$ and at Reynolds numbers from $.35 \times 10^{\text {a }}$ to $.75 \times 10^{\circ}$.

[^161]
## (continued)

TABLE 346A.-FORCES ON AIRFOILS AT ANGLES TO THE WIND (FIGS. 14, 15) (concluded)


Fig. 14.-Force coefficients for two symmetrical airfoils of infinite aspect ratio plotted against angle of attack, $a$, for Reynolds number $6 \times 10^{6}$.


Fig. 15.-The force coefficients, $C_{L}, C_{D}$, and $C P$, plotted against Mach number for a 9 -percent thick airfoil at an angle of attack of $2^{\circ}$ and Reynolds number from $.35 \times 10^{6}$ to $.75 \times 10^{6}$.

## TABLES 347-369.-DIFFFUSION, SOLUBILITY, SURFACE TENSION, AND VAPOR PRESSURE

## TABLE 347.-DIFFUSION OF AN AQUEOUS SOLUTION INTO PURE WATER

If $k$ is the coefficient of diffusion, $d S$ the amount of the substance which passes in the time $d t$, at the place $x$, through $q \mathrm{~cm}^{2}$ of a diffusion cylinder under the influence of a drop of concentration $d c / d x$, then

$$
d S=-k q \frac{d c}{d x} d t
$$

$k$ depends on the temperature and the concentration. $c$ gives the gram-molecules per liter. The unit of time is a day.

Substance	$c$	$\stackrel{t}{\circ}^{\circ} \mathrm{C}$	$k$		Substance	c	$\stackrel{t}{\circ}^{\circ} \mathrm{C}$	$k$
Bromine	. 1	12.	. 8	Calcium	chloride	. 864	8.5	. 70
Chlorine	"	12.	1.22			1.22	9.	. 72
Copper sulfate		17.	. 39	"	"	. 060	9.	. 64
Glycerine	"	10.14	. 357	"	"	. 047	9.	. 68
Hydrochloric acid	"	19.2	2.21	Copper	sulfate	1.95	17.	. 23
Iodine	"	12.	( .5)			. 95	17.	. 26
Nitric acid	"	19.5	2.07	"	"	. 30	17.	. 33
Potassium chloride	"	17.5	1.38	"	"	. 005	17.	47
" hydroxide	"	13.5	1.72	Glycerin		2/8	10.14	. 354
Silver nitrate		12.	. 985			6/8	10.14	. 345
Sodium chloride	"	15.0	. 94	"		10/8	10.14	. 329
Urea	"	14.8	. 97	"		14/8	10.14	. 30 C
Acetic acid	2	13.5	. 77	Hydroc	hloric acid	4.52	11.5	2.93
Barium chloride	"	8.	. 66			3.16	11.	2.67
Glycerine	"	10.1	3.55		"	. 945	11.	2.12
Sodium acetate	"	12.	. 67	"	"	. 387	11.	2.02
" chloride		15.0	. 94		-"	. 250	11.	1.84
Urea . . ......	"	14.8	. 969	Magnes	ium sulfate	2.18	5.5	. 28
Acetic acid	1.0	12.	. 74			. 541	5.5	. 32
Ammonia	"	15.23	1.54	"	،	3.23	10.	. 27
Formic acid		12.	. 97	"	"	. 402	10.	. 34
Glycerine -	"	10.14	. 339	Potassi	um hydroxi	. 75	12.	1.72
Hydrochloric acid	"	12.	2.09	"	"	. 49	12.	1.70
Magnesium sulfate	"	7.	. 30	"	"	. 375	12.	1.70
Potassium bromide	"	10.	1.13	"	nitrate	3.9	17.6	. 89
hydroxide	"	12.	1.72	"	仡	1.4	17.6	1.10
Sodium chloride ....	"	15.0	. 94	"	"	. 3	17.6	1.26
"	"	14.3	. 964	"	"	. 02	17.6	1.28
hydroxide	"	12.	1.11	"	sulfate	. 95	19.6	. 79
" iodide ...	"	10.	. 80	"	"،	. 28	19.6	. 86
Sugar .....		12.	. 254	"	"	. 05	19.6	. 97
Sulfuric acid	"	12.	1.12	Sil	.	. 02	19.6	1.01
Zinc sulfate	"	14.8	. 236	Silver	nitrate	3.9	12.	. 535
Acetic acid	2.0	12.	. 69	"		. 9	12.	. 88
Calcium chloride		10.	. 68			. 02	12.	1.035
Cadmium sulfate		19.04	. 246	Sodium	chloride	2/8	14.33	1.013
Hydrochloric acid		12.	2.21	,	,	4/8	14.33	. 996
Sodium iodide ...		10.	. 90	"	"	6/8	14.33	. 980
Sulfuric acid	"	12.	1.16	"	"	10/8	14.33	. 948
Zinc acetate		18.05	. 210		"	14/8	14.33	. 917
"، "		. 04	. 120	Sulfuric	c acid	9.85	18.	2.36
Acetic acid	3.0	12.	. 68		"	4.85	18.	1.90
Potassium carbonate		10.	. 60	"	"	2.85	18.	1.60
hydroxide	4	12.	1.89	"	"	. 85	18.	1.34
Acetic acid . . . . . . .	4.0	12.	. 66	"	"	. 35	18.	1.32
Potassium chloride	"	10.	1.27	"	"	. 005	18.	1.30

Coefficients of diffusion of vapors in cgs units. The coefficients are for the temperatures given in the table and a pressure of 76 cmHg .

	Vapor	Temp. ${ }^{\circ} \mathrm{C}$	$k$ for vapor diffusing into hydrogen	$\begin{gathered} k, \text { for vapor } \\ \text { diffusing into } \\ \text { air } \end{gathered}$	$k$ : for vapor diffusing into carbon dioxide
Acids: $\begin{array}{r}\text { F } \\ \text { A } \\ \text { I }\end{array}$	Formic	. 0	. 5131	. 1315	. 0879
		65.4	. 7873	. 2035	. 1343
	"	84.9	. 8830	. 2244	. 1519
	Acetic	. 0	. 4040	. 1061	. 0713
	"	65.5	. 6211	. 1578	. 1048
	" .	98.5	. 7481	. 1965	. 1321
	Isovaleric	. 0	. 2118	. 0555	. 0375
		98.0	. 3934	. 1031	. 0696
Alcohols	: Methyl	. 0	. 5001	. 1325	. 0880
		25.6	. 6015	. 1620	. 1046
	"	49.6	. 6738	. 1809	. 1234
	Ethyl	. 0	. 3806	. 0994	. 0693
		40.4	. 5030	. 1372	. 0898
	" ${ }^{\text {c }}$	66.9	. 5430	. 1475	. 1026
	Propyl	. 9	. 3153	. 0803	. 0577
	"	66.9 83.5	. 48332	. 1237	. 0901
	Butyl	. 0	. 2716	. 0681	. 0476
		99.0	. 5045	. 1265	. 0884
	Amyl	. 0	. 2351	. 0589	. 0422
		99.1	. 4362	. 1094	. 0784
	Hexyl	. 0	. 1998	. 0499	. 0351
		99.0	. 3712	. 0927	. 0651
Benzene "،		. 0	. 2940	. 0751	. 0527
		19.9	. 3409	. 0877	. 0609
		45.0	. 3993	. 1011	. 0715
Carbon "	disulfide				. 0629
		. 19.9	. 4255	. 1015	. 0726
Esters:	Methyl acetate	. 0	. 3277	. 0840	. 0557
		20.3	. 3928	. 1013	. 0679
	Ethyl "	. 0	. 2373	. 0630	. 0450
		46.1	. 3729	. 0970	. 0666
	Methyl butyrate	${ }^{0} 0$	. 2422	. 0640	. 0438
		92.1	. 4308	. 1139	. 0809
	Ethyl		. 2238	. 0573	. 0406
	valerate	96.5	. 4112	.1064 .0505	. 0756
	" ،	97.6	. 3784	. 0932	. 0676
Ether		. 0	. 2960	. 0775	. 0552
		19.9	. 3410	. 0893	. 0636
Water		. 0	. 6870	. 1980	. 1310
		49.5	1.0000	. 2827	. 1811
		92.4	1.1794	. 3451	. 2384

## TABLE 349.-COEFFICIENTS OF DIFFUSION FOR VARIOUS GASES AND VAPORS



## TABLE 350.-DIFFUSION OF METALS INTO METALS

$\frac{d v}{d v}=k \frac{d^{2} v}{d v}$; where $x$ is the distance in direction of diffusion; $v$, the degree of concentration of the diffusing metal; $t$, the time; $k$, the diffusion constant $=$ the quantity of metal in grams diffusing through a $\mathrm{cm}^{2}$ in a day when unit difference of concentration $\left(\mathrm{g} / \mathrm{cm}^{8}\right)$ is maintained between two sides of a layer one cm thick.

Diffusing metal	Dissolving metal	$\begin{aligned} & \text { Temper- } \\ & \text { ature } \end{aligned}{ }^{\circ} \mathrm{C}$	${ }^{k}$	Diffusing metal	$\begin{aligned} & \text { Dis- } \\ & \text { solving } \\ & \text { metal } \end{aligned}$	Temper- ature	k
Gold	Lead	555	3.19	Platinum	Lead	492	1.69
		. 492	3.00	Lead	Tin	555	3.18
" .	"	.. 251	. 03	Rhodium	Lead	550	3.04
" .	"	200	. 008	Tin	Mercury	y. 15	1.22
"	"	165	. 004	Lead		- 15	1.0
"	.	. 100	. 00002	Zinc	"	- 15	1.0
"	Bismut	. 555	4.52	Sodium	"	. 15	. 45
,		. 5555	4.65	Potassium	"	- 15	. 40
Silver		. 555	4.14	Gold	"	. 15	. 72

(Temperature variation)
The numbers give the number of grams of the anhydrous salt soluble in 1000 g of water at the given temperatures.

	Temperature ${ }^{\circ} \mathrm{C}$										
Salt	0	10	20	30	40	50	60	70	80	90	100
$\mathrm{AgNO}_{3}$	1150	1600	2150	2700	3350	4000	4700	5500	6500	7600	9100
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)$	313	335	362	404	457	521	591	662	731	808	891
$\mathrm{Al}_{2} \mathrm{~K}_{2}\left(\mathrm{SO}_{4}\right)_{4}$	30			84			248				1540
$\mathrm{Al}_{2}\left(\mathrm{NH}_{4}\right)_{3}\left(\mathrm{SO}_{4}\right)_{4}$.	26	45	66	91	124	159	211	270	352		
$\mathrm{B}_{2} \mathrm{O}_{3}$	11	15	22		40		62		95		157
$\mathrm{BaCl}_{2}$	316	333	357	382	408	436	464	494	524	556	588
$\mathrm{Ba}(\mathrm{NO}$	50	70	92	116	142	171	203	236	270	306	342
$\mathrm{CaCl}_{3}$	595	650	745	1010	1153		1368	1417	1470	1527	1590
$\mathrm{CoCl}_{2}$	405	450	500	565	650	935	940	950	960		1030
CsCl	1614	1747	1865	1973	2080	2185	2290	2395	2500	2601	2705
$\mathrm{CsNO}_{3}$	93	149	230	339	472	644	838	1070	1340	1630	1970
$\mathrm{Cs}_{2} \mathrm{SO}_{4}$	1671	1731	1787	1841	1899	1949	1999	2050	2103	2149	2203
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	818		1250		1598		1791		2078		
$\mathrm{CuSO}_{4}$	149			255	295	336	390	457	535	627	735
$\mathrm{FeCl}_{2}$			685			820	-		1040	1050	1060
$\mathrm{Fe}_{2} \mathrm{Cl}_{8}$	744	819	918			3151			5258		5357
$\mathrm{FeSO}_{4}$	156	208	264	330	402	486	550	560	506	430	
$\mathrm{HgCl}_{2}$	43	66	74	84	96	113	139	173	243	371	540
KBr	540	-	650		760		860		955		1050
$\mathrm{K}_{2} \mathrm{CO}_{3}$	1050			1140	1170	1210	1270	1330	1400	1470	1560
KCl	285	312	343	373	401	429	455	483	510	538	566
$\mathrm{KClO}_{3}$	33	50	71	101	145	197	260	325	396	475	560
$\mathrm{K}_{2} \mathrm{CrO}_{4}$	589	609	629	650	670	690	710	730	751	771	791
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	50	85	131		292		505		730		1020
$\mathrm{KHCO}_{3}$	225	277	332	390	453	522	600				
KI	1279	1361	1442	1523	1600	1680	1760	1840	1920	2010	2090
$\mathrm{KNO}_{3}$	133	209	316	458	639	855	1099	1380	1690	2040	2460
KOH	970	1030	1120	1260	1360	1400	1460	1510	1590	1680	1780
$\mathrm{K}_{2} \mathrm{PtCl}_{8}$	7	9	11	14	18	22	26	32	38	45	52
$\mathrm{K}_{2} \mathrm{SO}_{4}$	74	92	111	130	148	165	182	198	214	228	241
LiOH	127	127	128	129	130	133	138	144	153		175
$\mathrm{MgCl}_{2}$	528	535	545		575	--	610	- -	660	-	730
MgSO4 .... (7aq)	260	309	356	409	456						
" ${ }^{\text {c }}$....(6aq)	408	422	439	453		504	550	596	642	689	738
NH, Cl	297	333	372	414	458	504	552	602	656	713	773
$\mathrm{NH}_{4} \mathrm{HCO}_{3}$	119 1183	159	210	270							
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	1183			2418	2970	3540?	4300?	5130?	5800	7400	8710
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	706	730	754	780	810	844	880	916	953	992	1033
NaBr	795	845	903		1058	1160	1170		1185		1205
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$		16		39	--	105	200	244	314	408	523
$\mathrm{Na}_{2} \mathrm{CO}_{3} \ldots$ (10aq)	71	126	214	409	--						
" ${ }^{\text {c....(7aq) }}$	204	263	335	435	(1aq)	475	464	458	452	452	452
NaCl	356	357	358	360	363	367	371	375	380	385	391
$\mathrm{NaClO}_{3}$	820	890	990	-	1235		1470		1750		2040
$\mathrm{Na}_{2} \mathrm{CrO}$	317	502	900		960	1050	1150		1240		1260
$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	1630	1700	1800	1970	2200	2480	2830	3230	3860		4330
$\mathrm{NaHCO}_{3}$	69	82	96	111	127	145	164				
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	25	39	93	241	639			949			988
NaI	1590	1690	1790	1900	2050	2280	2570		2950		3020
$\mathrm{NaNO}_{3}$	730	805	880	962	1049	1140	1246	1360	1480	1610	1755
				(con	inued)						

TABLE 351.-SOLUBILITY OF INORGANIC SALTS IN WATER (concluded)
Temperature ${ }^{\circ} \mathrm{C}$


TABLE 352.-SOLUBILITY OF A FEW ORGANIC SALTS IN WATER
(Temperature variation ${ }^{\circ} \mathrm{C}$ )

Salt		0	10	20	30	40	50	60	70	80	90	100
$\mathrm{H}_{2}\left(\mathrm{CO}_{2}\right)_{2}$	$\ldots$	$\ldots$	36	53	102	159	228	321	445	635	978	1200
$\mathrm{H}_{2}\left(\mathrm{CH}_{2} \cdot \mathrm{CO}_{2}\right)_{2}$	$\ldots$	28	45	69	106	162	244	358	511	708	-	1209
Tartaric acid	$\ldots$	1150	1260	1390	1560	1760	1950	2180	2440	2730	3070	3430
Racemic	$\ldots$	92	140	206	291	433	595	783	999	1250	1530	1850
$\mathrm{~K}\left(\mathrm{HCO}_{2}\right)$	$\ldots$	2900	-	3350	-	3810	-	4550	-	5750	-	7900
$\mathrm{KH}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)$	$\ldots$	3	4	6	9	13	18	24	32	45	57	69

## TABLE 353.-SOLUBILITY OF GASES IN WATER

(Temperature variation ${ }^{\circ} \mathrm{C}$ )
The table gives the weight in grams of the gas which will be absorbed in 1000 g of water when the partial pressure of the gas plus the vapor pressure of the liquid at the given temperature equals 760 mmHg .

Gas	0	10	20	30	40	50	60	70	80
$\mathrm{O}_{2}$	.0705	.0551	.0443	.0368	.0311	.0263	.0221	.0181	.0135
$\mathrm{H}_{2}$	.00192	.00174	.00160	.00147	.00138	.00129	.00118	.00102	.00079
$\mathrm{~N}_{2}$	.0293	.0230	.0189	.0161	.0139	.0121	.0105	.0089	.0069
$\mathrm{Br}_{2}$	431.	248.	148.	94.0	62.	40.	28.	18.	11.
$\mathrm{Cl}_{2}$	-	9.97	7.29	5.72	4.59	3.93	3.30	2.79	2.23
$\mathrm{CO}_{2}$	3.35	2.32	1.69	1.26	.97	.76	.58	-	-
$\mathrm{H}_{2} \mathrm{~S}$	7.10	5.30	3.98	-	-	-	-	-	-
$\mathrm{NH}_{3}$	987.	689.	535.	422.	-	-	-	-	-
$\mathrm{SO}_{2}$	228.	162.	113.	78.	54.	-	-	-	-

TABLE 354．－CHANGE OF SOLUBILITY PRODUCED BY UNIFORM PRESSURE

	$\underset{\text { at } 25^{\circ}{ }^{\circ} \mathrm{CH} \mathrm{H}_{2} \mathrm{O}}{ }$		$\underset{\text { ans }}{\substack{\mathrm{ZnS}_{4} 5^{\circ} \\ \hline \mathrm{H}_{2} \mathrm{C}}}$		Mannite at ${ }^{24.05^{\circ} \mathrm{C}}$		$\mathrm{NaCl}_{\text {at }} 24.05^{\circ} \mathrm{C}$	
		Percentage change						
1	76.80	－	57.95	－	20.66	－	35.90	－
500	78.01	＋1．57	57.87	－． 14	21.14	＋2．32	36.55	＋1．81
1000	78.84	＋2．68	57.65	－． 52	21.40	$+3.57$	37.02	$+3.12$
1500	－	－	－	－	21.64	＋4．72	37.36	＋4．07

TABLE 355．－COMMONLY USED ORGANIC SOLVENTS＊
Arranged in the order of their boiling points

Name	$\begin{gathered} \text { Boiling } \\ \text { point } \\ \text { poic } \end{gathered}$	Name	$\begin{gathered} \text { Roiling } \\ \text { point } \\ { }_{\text {ont }} \mathrm{C} \end{gathered}$
Ethyl ether	34.54	Xylene（0）	144
Carbon disulfide	46.25	Amyl acetate	147.6
Acetone	56.08	Ethyl lactate	154
Methyl acetate	57.1	Cellosolve acetate	156
Chloroform	61.2	Cyclohexanone	156.7
Methyl alcohol	64.5	Furfural	158－162
Carbon tetrachloride	76.74	Butyl cellosolve	170.6
Ethyl acetate	77.15	Ethyl acetoacetate	180.0
Ethyl alcohol	78.32	Diethyl oxalate	186.1
Benzol	79.6	Ethylene glycol	197.2
Isopropyl alcohol	82.26	Carbitol	202
Ethylene dichloride	83.5	Benzyl alcohol	205.8
Trichlorethylene	87	Ethyl benzoate	213.2
Ethyl propionate	99.1	Butyl stearate	（25mm）
Toluene ．．．．．．．	110.7	Butyl carbitol	． 230
Butyl alcohol（n）	117.7	Diethylene glycol	245
Ethyl butyrate	121.3	Triplienyl phosphate	（11mm）
Methyl cellosolve	124.5	Triacetin	．． 259
Diethyl carbonate	125.8	Diacetin	261
Butyl acetate	126.5	Dimethyl phthalate	282
Tetrachlorethane	130	Diethyl phthalate	296
Cellosolve	135.1	Dibutyl phthalate	340
Ethyl benzene	136.1	Diamyl phthalate	344
Amyl alcohol（n）	137.9		

[^162]TABLE 356.-ABSORPTION OF GASES AND VAPORS BY LIQUIDS*

	Absorption coefficient, at, for gases in water							
Temperature ${ }^{\circ} \mathrm{C}$	Carbon dioxide $\mathrm{CO}_{2}$	Carbon monoxide CO	$\underset{\mathrm{H}}{\text { Hydrogen }}$	$\underset{\mathrm{N}}{\mathrm{Nitrogen}}$	$\begin{aligned} & \text { Nitric } \\ & \text { oxide } \\ & \text { NO } \end{aligned}$		Nitrous oxide $\mathrm{N}_{2} \mathrm{O}$	$\begin{aligned} & \text { Oxygen } \\ & 0 \end{aligned}$
0	1.797	. 0354	. 02110	. 02399	. 0738		1.048	. 04925
5	1.450	. 0315	. 02022	. 02134	. 0646		. 8778	. 04335
10	1.185	. 0282	. 01944	. 01918	. 0571		. 7377	. 03852
15	1.002	. 0254	. 01875	. 01742	. 0515		. 6294	. 03456
20	. 901	. 0232	. 01809	. 01599	. 0471		. 5443	. 03137
25	. 772	. 0214	. 01745	. 01481	. 0432		.	. 02874
30	-	. 0200	. 01690	. 01370	. 0400		-	. 02646
40	. 506	. 0177	. 01644	. 01195	. 0351		-	. 02316
50	-	. 0161	. 01608	. 01074	. 0315		-	. 02080
100	. 244	. 0141	. 01600	. 01011	. 0263		-	. 01690
Temperature ${ }^{\circ} \mathrm{C}$	Air	$\underset{\mathrm{NH}_{3}}{\underset{\mathrm{Amman}}{2}}$	Chlorine Cl	Ethylene $\mathrm{C}_{2} \mathrm{H}_{4}$	Methane $\mathrm{CH}_{4}$		Hydrogen sulfide $\mathrm{H}_{2} \mathrm{~S}$	Sulfur dioxide $\mathrm{SO}_{2}$
0	. 02471	1174.6	3.036	. 2563	. 05473		4.371	79.79
5	. 02179	971.5	2.808	. 2153	. 04889		3.965	67.48
10	. 01953	840.2	2.585	. 1837	. 04367		3.586	56.65
15	. 01795	756.0	2.388	. 1615	. 03903		3.233	47.28
20	. 01704	683.1	2.156	. 1488	. 03499		2.905	39.37
25	-	610.8	1.950	-	. 02542		2.604	32.79
		Absorption	coefficients,	$a_{t, \text { for gase }}$	s in alcohol	, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$	${ }_{5} \mathrm{OH}$	
Temperature ${ }^{\circ} \mathrm{C}$	Carbon dioxide $\mathrm{CO}_{2}$	Ethylene Methane   $\mathrm{C}_{2} \mathrm{H}_{4} \quad \mathrm{CH}_{4}$	$\begin{gathered} \text { e Hydrogen } \\ \text { H } \end{gathered}$	Nitrogen N	Nitric oxide NO	Nitrous oxide $\mathrm{N}_{2} \mathrm{O}$	s Hydrogen sulfide $\mathrm{H}_{2} \mathrm{~S}$	Sulfur dioxide $\mathrm{SO}_{2}$
0 5	4.329 3.891	$3.595 \quad .5226$	. 0692	.1263	. 3161	4.190 3.838	17.89 14.78	328.6
5	3.891	$\begin{array}{ll}3.323 & .5086 \\ 3.086 & 4953\end{array}$	. 0685	. 1241	. 2998	3.838	14.78	251.7
15	3.514 3.199	$\begin{array}{ll}3.086 \\ 2.882 & .4953\end{array}$	. 0679	. 1228	. 2861	5.525 3.215	11.99 9.54	190.3
20	2.946	2.713 . 4710	. 0667	. 1204	. 2659	3.015	7.41	114.5
25	2.756	2.578 .4598	. 0662	. 1196	. 2595	2.819	5.62	99.8

* This table contains the volumes of different gases, supposed measured at $0^{\circ} \mathrm{C}$ and 76 cmHg pressure. which unit volume of the liquid named will absorb at atmospheric pressure and the temperature stated in the first column. The numbers tabulated are commonly called the absorption coefficient for the gases in water, or in alcohol, at the temperature $t$ and under 1 atm of pressure.

TABLE 357.-VAPOR PRESSURE OF SOME ELEMENTS
(Over liquid unless otherwise noted.)


## TABLE 358.-SURFACE TENSION OF LIQUIDS

Part 1.-Water and alcohol in contact with moist air

Values represent means. See I.C.T. and L. and B. for more elaborate tables. Tension ( $\gamma$ ) in dynes/ cm .

${ }^{\circ} \mathrm{C}$	$\mathrm{H}_{2} \mathrm{O} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	${ }^{\circ} \mathrm{C}$	$\mathrm{H}_{2} \mathrm{O} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	${ }^{\circ} \mathrm{C}$	$\mathrm{H}_{2} \mathrm{O}$	
-5	76.4		35	70.3	21.0	75

Part 2.-Miscellaneous liquids In contact with air

Liquid $\quad{ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Dynes } \\ \text { per cm } \end{gathered}$	Formula
Actone ............ 20	23.7	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
Acetic acid ......... 20	27.6	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
Amyl alcohol ....... 20	24	$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$
Aniline ............ 20	43	$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$
Benzene . . . . . . . . . . 0	$27$	$\mathrm{C}_{6} \mathrm{H}_{6}$
Bromoform ........ 20	41.5	$\mathrm{CHBr}_{3}$
Butyric acid ....... 15	26.7	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{H}$
Carbon disulfide .... 20	32.3	$\mathrm{CS}_{2}$
Carbon tetrachloride. 20	26.8	$\mathrm{CCl}_{4}$
Chloroform ........ 20	27.2	$\mathrm{CHCl}_{3}$
Ether .............. 20	17.01	$\mathrm{C}_{4} \mathrm{H}_{30} \mathrm{O}$
Ethyl chloride ...... 20	16.2	$\mathrm{CH}_{3} \mathrm{Cl}$
Glycerine .......... 18	63	$\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{OH})_{3}$
Methyl alcohol ..... 20	22.6	$\mathrm{CH}_{3} \mathrm{OH}$
Olive oil ........... 18	33.1	
Petroleum ......... 25	26	
Phenol ............. 20	41.0	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$
Propyl alcohol ...... 20	23	$\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{1} \mathrm{OH}$
Silicon tetrachloride . 19	17.0	$\mathrm{SiCl}_{4}$
Toluene ............ 20	28.4	$\mathrm{C}_{7} \mathrm{H}_{8}$
Turpentine ......... 20	27	

TABLE 359.-SURFACE TENSION OF SOLUTIONS OF SALTS IN WATER

$\begin{gathered} \text { Salt } \\ \mathrm{BaCl}_{2} \end{gathered}$	Salt	${ }^{\circ} \mathrm{C}$	Dynes per cm
	0	30	71.1
	24.6	30	75.6
$\mathrm{CaCl}_{2}$	0	30	71.1
	12.3	30	75.7
	31.9	30	86.4
HCl	0	20	73.0
	15	20	72.0
	25	20	70.7
KCl	0	30	71.1
	23.3	30	76.8
	21.1	18	77.7
NaCl	0	18	72.4
	7.6	18	74.8
	13.7	18	76.9
$\mathrm{NH}_{4} \mathrm{Cl}$	0	18	72.5
	11	18	74.9
$\mathrm{K}_{2} \mathrm{CO}_{3}$	0	30	71.1
	39.4	30	89.4
	53.6	30	107.2
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	0	30	71.1
	10.5	30	73.9
	24.4	30	76.5
	63.1	30	80.6
$\mathrm{KNO}_{3}$	0	18	72.6
	15.2	18	74.5
	21.5	18	75.4
$\mathrm{NaNO}_{3}$	0	30	71.1
	35.6	30	78.4
	50.9	30	82.8
CuSO.	0	30	71.1
	25.4	30	74.1
$\mathrm{H}_{2} \mathrm{SO} 4$	0	18	72.8
	12.7	18	73.5
	47.6	18	76.7
	80.3	18	71.2
	90	18	63.6
$\mathrm{K}_{2} \mathrm{SO} 4$	0	18	72.7
	9.1	18	74.6
$\mathrm{HNO}_{3}$	7.2	20	73.1
	50	20	65.4
	70	20	59.4
NaOH	0	20	72.8
	10	20	77.3
	20	20	85.8
	30	20	95.1
KOH	0	18	72.8
	3.8	18	74.1
	7.8	18	75.5


Liquid	Specific gravity	Surface tension in dynes per cm of liquid in contact with-		
		Air	Water	Mercury
Water	1.0	75.0	. 0	(392)
Mercury	13.595	513.0	392.0	0
Bisulfide of carbon.	1.2687	30.5	41.7	(387)
Chloroform	1.498	(31.8)	26.8	(415)
Ethyl alcohol	. 807	(24.1)		364
Olive oil	. 918	34.6	18.6	317
Turpentine	. 873	28.8	11.5	241
Petroleum	. 870	29.7	(28.9)	271
Hydrochloric acid	1.10	(72.9)	-	(392)
Hyposulfite of soda	1.1248	69.9	--	429

TABLE 361.-SURFACE TENSION OF LIQUIDS AT SOLIDIFYING POINT


## TABLE 362.-VAPOR PRESSURE AND RATE OF EVAPORATION

${ }^{\circ} \mathrm{K}$	$\underset{\mathrm{mmHg}}{\mathrm{Mo}_{2}}$	$\underset{\mathrm{mmHg}}{\mathrm{~W}}$	Evaporation rate $\mathrm{g} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$		Platinum		
			Mo	W	${ }^{\circ} \mathrm{K}$	mm	$\mathrm{g} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$
1800	. $0 \times 643$	--	. 010863	--	1000	. 017324	. 018832
2000	.08789	. $0_{11} 645$	. 07100	. 012114	1200	. 012111	. 014260
2200	. 0.396	.09849	. 0.480	. 010144	1400	. 018188	(0.401
2400	. 021027	. 07492	. 0,420	. 08798	1600	.07484	.0096\%
2600	. 0160	. 0.151	. 013179	.07236	1800	. 0.350	. 0,667
2800	. 1679	.04286	. 02181	.08429	2000	. 03107	. 0.195
3000		. 03362	-	. 0.523	4180	760 mm	-
3200	$3890^{\circ}$ \}	. 02333	--	. 0.467			
3500	760 mm \}	. 0572	--	. 03769			

[^163]For the range of pressures for which the corresponding values of $t^{\circ} \mathrm{C}$ are given in the table (Part 2), the pressure as a function of $T(=t+273)$ may be represented to a satisfactory degree of approximation by the relation

$$
\begin{equation*}
\log p=A-B / T \tag{1}
\end{equation*}
$$

Part 1 gives values of $A$ and $B$ used in calculating the values of $t^{\circ} \mathrm{C}$ in Part 2, where $p$ is expressed in microns of mercury. The symbols (s) and ( $l$ ) refer to the solid and liquid states, respectively.

The rate of evaporation is given by the relation

$$
\begin{align*}
\log W & =\overline{5} .7660+0.5 \log M+\log p-0.5 \log T  \tag{2}\\
& =c+\log p-0.5 \log T, \tag{3}
\end{align*}
$$

where $W$ is expressed in $\mathrm{g} \mathrm{cm}^{-2} \sec ^{-1}$, and $p$ in microns.
Explanation of data in Part 2.-The first row for each metal, which is designated $t$. gives the temperatures in ${ }^{\circ} \mathrm{C}$ corresponding to the pressures in microns at the head of each column. These were calculated by means of equation 1. The second row, designated II', gives the rates of evaporation (in a good vacuum) in grams per square centimeter per second $\left(\mathrm{g} \mathrm{cm}^{-2} \sec ^{-1}\right)$, at the values of $t$ immediately above in the same column. These were calculated by means of equation 3.

In addition to the values of $t$ given in the first row, which are to be regarded as, in the writer's opinion, the more reliable, there are also given, in the case of a number of the metals, a series of other values of $t$, which have been observed by some investigators: The fact that for the same value of the vapor pressure in microns two or more values of $t$ are quoted by different authorities indicates the degree of uncertainty that exists for some of the data given in the tables. For metals for which the data are very questionable, it has not heen considered worth while even to calculate values of $W$.

The column headed $t_{m}$ gives the melting point in degrees C , and $p_{m}$ gives the vapor pressure in microns at the melting point. For values of $t$ below $t_{m}$, the metal is obviously in the solid state, and for values of $t$ above $t_{m}$, the metal is in the liquid state.

[^164]Part 1.-Constants in relations for evaporation of metals

Metal	$A$	$10^{-3} \times B$	$c+4$	Metal	A	$10^{-3} \times B$	$c+4$
Li	10.50(1)	7.480	. 1867	Si	13.20(s)	19.72	. 4900
	10.71 (1)	5.480	. 4468		12.55 (1)	18.55	. 4900
	10.36(1)	4.503	. 5621	Ti	11.25(s)	18.64	. 6061
Rb	10.42(1)	4.132	. 7319		11.98 (1)	20.11	
	[10.53(1)	$4.291]$		Zr	12.38(s)	25.87	. 7460
Cs	9.86(1)	3.774	. 8278		13.04(1)	27.43	
	[10.02(1)	3.883]		Th	12.52 (1)	28.44	. 9488
Cu	12.81(s)	18.06	. 6678	Ge	10.94(1)	$13.11$	. 6965
	11.72 (1)	16.58		Sn	9.97 (1)		. 8032
	12.28(s)	14.85	. 7825	Pb .	. . . . . . $10.69(1)$	9.60	. 9242
	11.66 (1)	14.09			13.32	26.62	. 6195
Au	11.65 (1)	18.52	. 9135	Nb	14.37(s)	40.40	. 7500
Be	12.99 (s)	18.22	. 2436	Ta	13.00 (s)	40.21	. 8947
	$11.95(1)$	16.59	. 49590				
Mg	11.82(s)	7.741		$\begin{aligned} & \mathrm{Sb}_{2} \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & 11.42 \\ & 11.14(1) \end{aligned}$	$\begin{aligned} & 9.913 \\ & 9.824 \end{aligned}$	$\begin{aligned} & .9592 \\ & .9260 \end{aligned}$
Ca	11.30(s)	9.055	. 5675	Cr	12.88(s)	17.56	. 6240
Sr	11.13(s)	8.324	. 7373	Mo	11.80 (s)	30.31	. 7570
Ba	10.88	8.908	. 8349	W	12.24(s)	40.26	. 8983
Zn	11.94 (s)	6.744	. 6737			$\begin{aligned} & 25.80 \\ & 14.10 \end{aligned}$	$\begin{array}{r} .9544 \\ .6359 \end{array}$
Cd	11.78(s)	5.798	. 7914	$\begin{aligned} & \mathrm{U} \\ & \mathrm{Mn} \end{aligned}$	$12.88(1)$ $12.25(\mathrm{~s})$		
B	14.13(s)	21.37	. 2831	Fe	12.63(s)	20.00	. 6395
A1	11.99 (1)	15.63	. 4814		13.41 (1)	21.40	
Sc	11.94	18.57	. 5931	Co	12.43	21.96	. 6512
Y	12.43	21.97	. 7405	Ni	13.28(s)	21.84	. 6503
La	11.88(1)	18.00	. 8374		12.55(1)	20.60	
Ce	13.74 (1)	20.10	. 8392	Ru	13.50	33.80	. 7696
Ga	10.79(1)	13.36	. 6877	Rh	13.55	30.40	. 7722
In .	10.93(1)	12.15	. 7959	Pd	11.46	19.23	. 7801
T1.	11.15 (1)	8.92	. 9212	Os	13.59	37.00	. 9056
C.	14.06(s)	38.57	. 3056	Ir	13.06	34.11	. 9089
				Pt	12.633	27.50	. 9112

Part 2.-Temperatures for given values $p$ in microns of mercury and rates of evaporation ( $\mathbf{W}, \mathrm{g} \mathrm{cm}^{-2} \mathbf{~ s e c}^{-1}$ )

$\begin{gathered} t_{m} \\ 179 \end{gathered}$	$9 \times 10_{m}^{p_{m}}$
98	$8.2 \times 10^{-5}$
64	$9.8 \times 10^{-4}$
38.5	$1.5 \times 10^{-3}$
29	$1.5 \times 10^{-3}$
1083	. 31
961	1.78
1063	$6 \times 10^{-3}$
1284	19.5
651	$2.2 \times 10^{3}$
810	$8.75 \times 10^{2}$
771	$1.44 \times 10^{3}$




sN $\quad$ न
1000
858
$2.03 \times 10^{-2}$
861
$\ldots$
$\ldots$
$\cdots$
$\ldots$
$\ldots$
126
$4.14 \times 10^{-2}$
1648
$4.38 \times 10^{-3}$
1279
$7.69 \times 10^{-3}$
1.2765
1804
1804
$8.40 \times 10^{-3}$
2056
$1.14 \times 10^{-2}$
1754
$1.53 \times 10^{-2}$
1599
$1.60 \times 10^{-2}$
1443
$1.18 \times 10^{-2}$
1260
$1.60 \times 10^{-2}$
821
$2.52 \times 10^{-2}$





ョ
1000
3214
$3.42 \times 10^{-3}$
1670
$7.01 \times 10^{-3}$
1965
$8.53 \times 10^{-3}$
2459
$1.07 \times 10^{-2}$
2715
$1.63 \times 10^{-2}$
1635
$1.14 \times 10^{-2}$
1609
$1.47 \times 10^{-2}$
975
$2.38 \times 10^{-2}$
2207
$8.2 \times 10^{-3}$
9
TABLE 363.-EVAPORATION OF METALS (continued)







E N On
0
0

$$
8
$$

$$
\begin{gathered}
2338 \\
1.76 \times 10^{-2} \\
1251 \\
1.11 \times 10^{-2}
\end{gathered}
$$

$$
\begin{gathered}
2 \\
\underset{\infty}{0} \dot{x} \\
-0 \\
0
\end{gathered}
$$

TABLE 363.-EVAPORATION OF METALS (concluded)

 1
2295
$1.12 \times 10^{-5}$
3016
$1.45 \times 10^{-5}$
1730
$2.01 \times 10^{-5}$
878
$1.27 \times 10^{-5}$
1310
$1.10 \times 10^{-5}$
1494
$1.06 \times 10^{-8}$
1371
$1.10 \times 10^{-8}$
2230
$1.18 \times 10^{-5}$
1971
$1.25 \times 10^{-5}$
1405
$1.47 \times 10^{-5}$
2451
$1.54 \times 10^{-5}$
2340
$1.59 \times 10^{-8}$
1904
$1.75 \times 10^{-5}$ Mines Bull. 383, 1935 . b. Ditchhurn, R. W.,
the elements, Report for the Manhattan Project,


and Gilmour

$$
\begin{gathered}
2946 \\
1.04 \times 10^{-2} \\
2607 \\
1.10 \times 10^{-2} \\
2000 \\
1.26 \times 10^{-2} \\
3221 \\
1.36 \times 10^{-2}
\end{gathered}
$$

$$
\begin{gathered}
1.36 \times 10^{-2} \\
3118 \\
1.39 \times 10^{-2}
\end{gathered}
$$

TABLE

$$
\begin{aligned}
& 2582 \\
& 1.52 \times 10^{-2}
\end{aligned}
$$ H. A., Langmuir, I., and Mackay

$$
\begin{aligned}
& \\
& \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
& 1.52 \times 10^{-2} \\
& \text { vol. } 13, \mathrm{p} .3
\end{aligned}
$$


Brewer, The the-
Taylor, J. B., and
$001 \times+0.6$
$0-01 \times+2 \cdot \varepsilon$

10
2533
$1.05 \times 10^{-4}$
3309
$1.43 \times 10^{-4}$
1898
$1.93 \times 10^{-4}$
980
$1.22 \times 10^{-4}$
1447
$1.02 \times 10^{-6}$
1649
$1.02 \times 10^{-4}$
1510
$1.06 \times 10^{-4}$
2431
$1.13 \times 10^{-4}$
2149
$1.20 \times 10^{-6}$
1566
$1.41 \times 10^{-4}$
2667
$1.48 \times 10^{-4}$
2556
$1.52 \times 10^{-4}$
2090
$1.68 \times 10^{-4}$
and Gilmour J. C., Rev. Mod. Phys.,





The vapor pressures on this page are in mmHg over a liquid phase unless distinguished by the subscript s. They are generally means from various determinations.


TABLE 364.-VAPOR PRESSURE OF ORGANIC LIQUIDS (concluded) 369

${ }^{\circ} \mathrm{C}$		Carbon ${ }^{\text {dioxide }}$ $\mathrm{CO}_{2}$	Ethyl $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$ mm	Ethyl acetate mm	$\begin{gathered} \text { Hydrogen } \\ \text { sulfide } \\ \mathrm{H}_{2} \mathrm{~S} \\ \mathrm{~mm} \end{gathered}$	Methyl chloride mm	Nap. $\mathrm{C}_{10} \mathrm{H}_{5}$ mm	$\begin{gathered} \text { Sulfur } \\ \text { dioxide } \\ \mathrm{SO}_{2} \\ \mathrm{~mm} \end{gathered}$	$\underbrace{\substack{0 \\ \hline}}_{\mathbf{C}_{10} \mathrm{H}_{8}}$
									mm
-50	403	6.74			1216			$86-91.9$	. 002
-30	1.180	14.10			2840	579		$286-81.7$	. 005
-25	1.496	16.61				718		379 -77.4	. 007
-20	1.877	19.44		6.5	4100	883		$474-67.5$	. 020
-15	2.332	22.60				1079	$\ldots$	-57.7	. 060
-10	2.870	26.13		12.9	5720	1310		$760-38.0$	. 39
- 5	3.502	30.05				1579		-24.2	1.47
0	4.238	34.38	41.5	24.3	7750	1891		$1155-2.9$	5.72
+ 5	5.090	39.16	53.5			2250	$\cdots$	... 0	6.86
10	6.068	44.41	68.6	42.7	10300	2660		$1714+15.0$	16.8
15	7.188	50.17				3134	$\ldots$	+25.8	28.7
20	8.458	56.50	108.5	72.8	14000	3667	$\ldots$	2460	
25	9.896	63.45				4267			
30	11.512	71.4	167.6	119	17500	4940		3420	
35	13.321					5700			
40	15.339	(I.C.T.	250	186	22000	6650	$\ldots$	4650	
45	17.580	1928)							
50	20.060		362	282	27500	8510	$\ldots$	6210	
60	25.80	.	510	415		10900		8150	
70	32.69			596	40400	14300		10540	
80	40.90		...	833		16800	9.6		
90	50.56			1130		21000	13.0		
100	61.82			1515		25800	19.7	27.8 atm	
	Cragoe			$200^{\circ}$		$\left\{141^{\circ}\right.$	$\left\{200^{\circ}\right.$	$\left\{150^{\circ}\right.$	
	1920			5600		\{53600	$\{490$	\{71.4"	

TABLE 365.-VAPOR PRESSURE AT LOW TEMPERATURES
Many of the following values are extrapolations made by Langmuir by means of plots of $\log p$ against $1 / T .1$ barye $=0.000000987 \mathrm{~atm}=0.000750 \mathrm{mmHg}$.

Gas	${ }^{\circ} \mathrm{C}$	mmHg	Gas	${ }^{\circ} \mathrm{C}$	Baryes
$\mathrm{O}_{2}$	-182.9	760	$\mathrm{CO}_{2}$	-148	100
	-211.2	7.75		-168	
$\mathrm{N}_{2}$	-195.8	760		-182	. 01
CO	-210.5	86		-193	. 0001
	-200	$\begin{aligned} & 863 \\ & 249 \end{aligned}$	Ice	- 60	9.6
CH.	-185.8	79.8		- 89	. 1
	-201.5	50.2		-100	. 01
A	-186.2	760		-110	. 001
	-194.2	300	Hg	+ 30	3.7
$\mathrm{C}_{2} \mathrm{H}_{4}$	-175.7	. 76		+ 20	1.6
	-188	. 076		+ 10	. 65
	-197	. 0076		0	. 25
	-205	. 00076		- 10	. 087
$\mathrm{C}_{2} \mathrm{H}_{6}$	-150	7.6		- 20	. 029
	-180	. 076		- 40	. 0023
	-190	. 0076		- 78	$4.3 \times 10^{-8}$
	-198	. 00076		-180	$2.3 \times 10^{-26}$


$\bigcirc$	0	1	2		4		6	7	8	9
$\bigcirc$				3		5				
E.	Vapor pressure in mmHg at $0^{\circ} \mathrm{C}$									
0	12.24	13.18	14.15	15.16	16.21	17.31	18.46	19.68	20.98	22.34
10	23.78	25.31	27.94	28.67	30.50	32.44	34.49	36.67	38.97	41.40
20	44.00	46.66	49.47	52.44	55.56	58.86	62.33	65.97	69.80	73.83
30	78.06	82.50	87.17	92.07	97.21	102.60	108.24	114.15	120.35	126.86
40	133.70	140.75	148.10	155.80	163.80	172.20	181.00	190.10	199.65	209.60
50	220.00	230.80	242.50	253.80	265.90	278.60	291.85	305.65	319.95	334.85
60	350.30	366.40	383.10	400.40	418.35	437.00	456.45	476.45	497.25	518.85
70	541.20	564.35	588.35	613.20	638.95	665.55	693.10	721.55	751.00	781.45

From the formula $\log p=a+b a^{t}+c \beta^{t}$ Ramsay and Young obtain the following numbers:


TABLE 367.-VAPOR PRESSURE OF METHYL ALCOHOL

0										
E	Vapor pressure in mmHg at $0^{\circ} \mathrm{C}$									
0	29.97	31.6	33.6	35.6	37.8	40.2	42.6	45.2	47.9	50.8
10	53.8	57.0	60.3	63.8	67.5	71.4	75.5	79.8	84.3	89.0
20	94.0	99.2	104.7	110.4	116.5	122.7	129.3	136.2	143.4	151.0
30	158.9	167.1	175.7	184.7	194.1	203.9	214.1	224.7	235.8	247.4
40	259.4	271.9	285.0	298.5	312.6	327.3	342.5	358.3	374.7	391.7
50	409.4	427.7	446.6	466.3	486.6	507.7	529.5	552.0	575.3	599.4
60	624.3	650.0	676.5	703.8	732.0	761.1	791.1	822.0	--	--

## 371

TABLE 368.-VAPOR PRESSURE OF A NUMBER OF LIQUIDS ( mm Hg )
Carbon disulfide, chlorobenzene, bromobenzene, and aniline

Temp.	0	1	2	3	4	5	6	7	8	9
Carbon disulfide										
0	127.90	133.85	140.05	146.45	153.10	160.00	167.15	174.60	182.25	190.20
10	198.45	207.00	215.80	224.95	234.40	244.15	254.25	264.65	275.40	286.55
20	298.05	309.90	322.10	334.70	347.70	361.10	374.95	389.20	403.90	419.00
30	434.60	450.65	467.15	484.15	501.65	519.65	538.15	557.15	576.75	596.85
40	617.50	638.70	660.50	682.90	705.90	729.50	753.75	778.60	804.10	830.25
Chlorobenzene										
20	8.65	9.14	9.66	10.21	10.79	11.40	12.04	12.71	13.42	14.17
30	14.95	15.77	16.63	17.53	18.47	19.45	20.48	21.56	22.69	23.87
40	25.10	26.38	27.72	29.12	30.58	32.10	33.69	35.35	37.08	38.88
50	40.75	42.69	44.72	46.84	49.05	51.35	53.74	56.22	58.79	61.45
60	64.20	67.06	70.03	73.11	76.30	79.60	83.02	86.56	90.22	94.00
70	97.90	101.95	106.10	110.41	114.85	119.45	124.20	129.10	134.15	139.40
80	144.80	150.30	156.05	161.95	168.00	174.25	181.70	187.30	194.10	201.15
90	208.35	215.80	223.45	231.30	239.35	247.70	256.20	265.00	274.00	283.25
100	292.75	302.50	312.50	322.80	333.35	344.15	355.15	366.65	378.30	390.25
110	402.55	415.10	427.95	441.15	454.65	468.50	482.65	497.20	512.05	527.25
120	542.80	558.70	575.05	591.70	608.75	626.15	643.95	662.15	680.75	699.65
130	718.95	738.65	758.80	-_	- -	- -	- -			

Bromobenzene

40						12.40	13.06	13.75	14.47	15.22
50	16.00	16.82	17.68	18.58	19.52	20.50	21.52	22.59	23.71	24.88
60	26.10	27.36	28.68	30.06	31.50	33.00	34.56	36.18	37.86	39.60
70	41.40	43.28	45.24	47.28	49.40	51.60	53.88	56.25	58.71	61.26
80	63.90	66.64	69.48	72.42	75.46	78.60	81.84	85.20	88.68	92.28
90	96.00	99.84	103.80	107.88	112.08	116.40	120.86	125.46	130.20	135.08
100	140.10	145.26	150.57	156.03	161.64	167.40	173.32	179.41	185.67	192.10
110	198.70	205.48	212.44	219.58	226.90	234.40	242.10	250.00	258.10	266.40
120	274.90	283.65	292.60	301.75	311.15	320.80	330.70	340.80	351.15	361.80
130	372.65	383.75	395.10	406.70	418.60	430.75	443.20	455.90	468.90	482.20
140	495.80	509.70	523.90	538.40	553.20	568.35	583.85	599.65	615.75	632.25
150	649.05	666.25	683.80	701.65	719.95	738.55	757.55	776.95	796.70	816.90
					Aniline					
80	18.80	19.78	20.79	21.83	22.90	24.00	25.14	26.32	27.54	28.80
90	30.10	31.44	32.83	34.27	35.76	37.30	38.90	40.56	42.28	44.06
100	45.90	47.80	49.78	51.84	53.98	56.20	58.50	60.88	63.34	65.88
110	68.50	71.22	74.04	76.96	79.98	83.10	86.32	89.66	93.12	96.70
120	100.40	104.22	108.17	112.25	116.46	120.80	125.28	129.91	134.69	139.62
130	144.70	149.94	155.34	160.90	166.62	172.50	178.56	184.80	191.22	197.82
140	204.60	211.58	218.76	226.14	233.72	241.50	249.50	257.72	266.16	274.82
150	283.70	292.80	302.15	311.75	321.60	331.70	342.05	352.65	363.50	374.60
160	386.00	397.65	409.60	421.80	434.30	447.10	460.20	473.60	487.25	501.25
170	515.60	530.20	545.20	560.45	576.10	592.05	608.35	625.05	642.05	659.45
180	677.15	695.30	713.75	732.65	751.90	771.50	_-	- -	-_	

(continued)

## TABLE 368.-VAPOR PRESSURE OF A NUMBER OF LIQUIDS ( mmHg ) (concluded)

Methyl salicylate, bromonaphthalene, and mercury
Methyl salicylate

${ }^{\text {Temp. }}$.	0	1	2	3	4	5	6	7	8	9
70	2.40	2.58	2.77	2.97	3.18	3.40	3.62	3.85	4.09	4.34
80	4.60	4.87	5.15	5.44	5.74	6.05	6.37	6.70	7.05	7.42
90	7.80	8.20	8.62	9.06	9.52	9.95	10.44	10.95	11.48	12.03
100	12.60	13.20	13.82	14.47	15.15	15.85	16.58	17.34	18.13	18.95
110	19.80	20.68	21.60	22.55	23.53	24.55	25.61	26.71	27.85	29.03
120	30.25	31.52	32.84	34.21	35.63	37.10	38.67	40.24	41.84	43.54
130	45.30	47.12	49.01	50.96	52.97	55.05	57.20	59.43	61.73	64.10
140	66.55	69.08	71.69	74.38	77.15	80.00	82.94	85.97	89.09	92.30
150	95.60	99.00	102.50	106.10	109.80	113.60	117.51	121.53	125.66	129.90
160	134.25	138.72	143.31	148.03	152.88	157.85	162.95	168.19	173.56	179.06
170	184.70	190.48	196.41	202.49	208.72	215.10	221.65	228.30	235.15	242.15
180	249.35	256.70	264.20	271.90	279.75	287.80	296.00	304.48	313.05	321.85
190	330.85	340.05	349.45	359.05	368.85	378.90	389.15	399.60	410.30	421.20
200	432.35	443.75	455.35	467.25	479.35	491.70	504.35	517.25	530.40	543.80
210	557.50	571.45	585.70	600.25	61505	630.15	645.55	661.25	677.25	693.60
220	710.10	727.05	744.35	761.90	779.85	798.10				
Bromonaphthalene										
110	3.60	3.74	3.89	4.05	4.22	4.40	4.59	4.79	5.00	5.22
120	5.45	5.70	5.96	6.23	6.51	6.80	7.10	7.42	7.76	8.12
130	8.50	8.89	9.29	9.71	10.15	10.60	11.07	11.56	12.07	12.60
140	13.15	13.72	14.31	14.92	15.55	16.20	16.87	17.56	18.28	19.03
150	19.80	20.59	21.41	22.25	23.11	24.00	24.92	25.86	26.83	27.83
160	28.85	29.90	30.98	32.09	33.23	34.40	35.60	36.83	38.10	39.41
170	40.75	42.12	43.53	44.99	46.50	48.05	49.64	51.28	52.96	54.68
180	56.45	58.27	60.14	62.04	64.06	66.10	68.19	70.34	72.55	74.82
190	77.15	79.54	81.99	84.51	87.10	89.75	92.47	95.26	98.12	101.05
200	104.05	107.12	110.27	113.50	116.81	120.20	123.67	127.22	130.86	134.59
210	138.40	142.30	146.29	150.38	154.57	158.85	163.25	167.70	172.30	176.95
220	181.75	186.65	191.65	196.75	202.00	207.35	212.80	218.40	224.15	230.00
230	235.95	242.05	248.30	254.65	261.20	267.85	274.65	281.60	288.70	295.95
240	303.35	310.90	318.65	326.50	334.55	342.75	351.10	359.65	368.40	377.30
250	386.35	395.60	405.05	414.65	424.45	434.45	444.65	455.00	465.60	476.35
260	487.35	498.55	509.90	521.50	533.35	545.35	557.60	570.05	582.70	595.60
270	608.75	622.10	635.70	649.50	663.55	677.85	692.40	707.15	722.15	737.45
Mercury										
270	123.92	126.97	130.08	133.26	136.50	139.81	143.18	146.61	150.12	153.70
280	157.35	161.07	164.86	168.73	172.67	176.79	180.88	185.05	189.30	193.63
290	198.04	202.53	207.10	211.76	216.50	221.33	226.25	231.25	236.34	241.53
300	246.81	252.18	257.65	263.21	268.87	274.63	280.48	286.43	292.49	298.66
310	304.93	311.30	317.78	324.37	331.08	337.89	344.81	351.85	359.00	366.28
320	373.67	381.18	388.81	396.56	404.43	412.44	420.58	428.83	437.22	445.75
330	454.41	463.20	472.12	481.19	490.40	499.74	509.22	518.85	52863	538.56
340	548.64	558.87	569.25	579.78	590.48	601.33	612.34	623.51	634.85	646.36
350	658.03	669.86	681.86	694.04	706.40	718.94	731.65	744.54	757.61	770.87
360	784.31									

## TABLE 369.-VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER

The first column gives the chemical formula of the salt. The headings of the other columns give the number of gram-molecules of the salt in a liter of water. The numbers in these columns give the lowering of the vapor pressure produced by the salt at the temperature of boiling water under 76 cmHg .

Subitance	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	12.8	36.5							
$\mathrm{AlCl}_{3}$	22.5	61.0	179.0	318.0					
$\mathrm{BaS}_{2} \mathrm{O}_{6}$	6.6	15.4	34.4						
$\mathrm{Ba}(\mathrm{OH})_{2}$	12.3	22.5	39.0						
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	13.5	27.0							
$\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$	15.8	33.3	70.5	108.2					
$\mathrm{BaCl}_{2}$	16.4	36.7	77.6						
$\mathrm{BaBr}_{2}$	16.8	38.8	91.4	150.0	204.7				
$\mathrm{CaS}_{2} \mathrm{O}_{3}$	9.9	23.0	56.0	106.0					
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	16.4	34.8	74.6	139.3	161.7	205.4			
$\mathrm{CaCl}_{2}$	17.0	39.8	95.3	166.6	241.5	319.5			
$\mathrm{CaBr}_{2}$	17.7	44.2	105.8	191.0	283.3	368.5			
$\mathrm{CdSO}_{4}$	4.1	8.9	18.1						
$\mathrm{CdI}_{2}$	7.6	14.8	33.5	52.7					
$\mathrm{CdBr}_{2}$	8.6	17.8	36.7	55.7	80.0				
$\mathrm{CdCl}_{2}$	9.6	18.8	36.7	57.0	77.3	99.0			
$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$	15.9	36.1	78.0						
$\mathrm{Cd}\left(\mathrm{ClO}_{3}\right)_{2}$	17.5								
$\mathrm{CoSO}_{4}$	5.5	10.7	22.9	45.5					
$\mathrm{CoCl}_{2}$	15.0	34.8	83.0	136.0	186.4				
$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$	17.3	39.2	89.0	152.0	218.7	282.0	332.0		
$\mathrm{FeSO}_{4}$	5.8	10.7	24.0	42.4					
$\mathrm{H}_{3} \mathrm{BO}_{3}$	6.0	12.3	25.1	38.0	51.0				
$\mathrm{H}_{3} \mathrm{PO}_{4}$	6.6	14.0	28.6	45.2	62.0	81.5	103.0	146.9	189.5
$\mathrm{H}_{3} \mathrm{AsO}_{4}$	7.3	15.0	30.2	46.4	64.9				
$\mathrm{H}_{2} \mathrm{SO}_{4}$	12.9	26.5	62.8	104.0	148.0	198.4	247.0	343.2	
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	10.2	19.5	33.3	47.8	60.5	73.1	85.2		
$\mathrm{KNO}_{3}$	10.3	21.1	40.1	57.6	74.5	88.2	102.1	126.3	148.0
$\mathrm{KClO}_{3}$	10.6	21.6	42.8	62.1	80.0				
$\mathrm{KBrO}_{3}$	10.9	22.4	45.0						
$\mathrm{KHSO}_{4}$	10.9	21.9	43.3	65.3	85.5	107.8	129.2	170.0	
$\mathrm{KNO}_{2}$	11.1	22.8	44.8	67.0	90.0	110.5	130.7	167.0	198.8
$\mathrm{KClO}_{4}$	11.5	22.3							
KCl	12.2	24.4	48.8	74.1	100.9	128.5	152.2		
$\mathrm{KHCO}_{3}$	11.6	23.6	59.0	77.6	104.2	132.0	160.0	210.0	255.0
	12.5	25.3	52.2	82.6	112.2	141.5	171.8	225.5	278.5.
$\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	13.9	28.3	59.8	94.2	131.0				
$\mathrm{K}_{2} \mathrm{WO}_{4}$	13.9	33.0	75.0	123.8	175.4	226.4			
$\mathrm{K}_{2} \mathrm{CO}_{3}$	14.4	31.0	68.3	105.5	152.0	209.0	258.8	350.0	
KOH	15.0	29.5	64.0	99.2	140.0	181.8	223.0	309.5	387.8
$\mathrm{K}_{2} \mathrm{CrO}_{4}$	16.2	29.5	60.0						
$\mathrm{LiNO}_{3}$	12.2	25.9	55.7	88.9	122.2	155.1	188.0	253.4	309.2
LiCl	12.1	25.5	57.1	95.0	132.5	175.5	219.5	311.5	393.5
LiBr	12.2	26.2	60.0	97.0	140.0	186.3	241.5	341.5	438.0
$\mathrm{Li}_{2} \mathrm{SO} 4$	13.3	28.1	56.8	89.0					
LiHSO4	12.8	27.0	57.0	93.0	130.0	168.0			
LiI	13.6	28.6	64.7	105.2	154.5	206.0	264.0	357.0	445.0
$\mathrm{Li}_{2} \mathrm{SiF}_{8}$	15.4	34.0	70.0	106.0					
LiOH	15.9	37.4	78.1						
$\mathrm{Li}_{2} \mathrm{CrO} 4$	16.4	32.6	74.0	120.0	171.0				
				ntinued)					

TABLE 369.-VAPOR PRESSURE OF SOLUTIONS OF SALTS IN WATER
(concluded)

Substance	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
$\mathrm{MgSO}_{4}$	6.5	12.0	24.5	47.5					
$\mathrm{MgCl}_{2}$	16.8	39.0	100.5	183.3	277.0	377.0			
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	17.6	42.0	101.0	174.8					
$\mathrm{MgBr}_{2}$	17.9	44.0	115.8	205.3	298.5				
$\mathrm{MgH}_{2}\left(\mathrm{SO}_{4}\right)_{2}$	18.3	46.0	116.0						
$\mathrm{MnSO}_{4}$	6.0	10.5	21.0						
$\mathrm{MnCl}_{2}$	15.0	34.0	76.0	122.3	167.0	209.0			
$\mathrm{NaH}_{2} \mathrm{PO} 4$	10.5	20.0	36.5	51.7	66.8	82.0	96.5	126.7	157.1
$\mathrm{NaHSO}_{4}$	10.9	22.1	47.3	75.0	100.2	126.1	148.5	189.7	231.4
$\mathrm{NaNO}_{3}$	10.6	22.5	46.2	68.1	90.3	111.5	131.7	167.8	198.8
$\mathrm{NaClO}_{3}$	10.5	23.0	48.4	73.5	98.5	123.3	147.5	196.5	223.5
$\left(\mathrm{NaPO}_{3}\right)_{8}$	11.6								
NaOH	11.8	22.8	48.2	77.3	107.5	139.1	172.5	243.3	314.0
$\mathrm{NaNO}_{2}$	11.6	24.4	50.0	75.0	98.2	122.5	146.5	189.0	226.2
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	12.1	23.5	43.0	60.0	78.7	99.8	122.1		
$\mathrm{NaHCO}_{3}$	12.9	24.1	48.2	77.6	102.2	127.8	152.0	198.0	239.4
$\mathrm{Na}_{2} \mathrm{SO}$	12.6	25.0	48.9	74.2					
NaCl	12.3	25.2	52.1	80.0	111.0	143.0	176.5		
$\mathrm{NaBrO}_{3}$	12.1	25.0	54.1	81.3	108.8	136.0			
NaBr	12.6	25.9	57.0	89.2	124.2	159.5	197.5	268.0	
NaI	12.1	25.6	60.2	99.5	136.7	177.5	221.0	301.5	370.0
$\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$	13.2	22.0							
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	14.3	27.3	53.5	80.2	111.0				
$\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	14.5	30.0	65.8	105.8	146.0				
$\mathrm{Na}_{2} \mathrm{WO}$,	14.8	33.6	71.6	115.7	162.6				
$\mathrm{Na}_{3} \mathrm{PO}_{4}$	16.5	30.0	52.5						
$\left(\mathrm{NaPO}_{3}\right)_{3}$	17.1	36.5							
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	12.8	22.0	42.1	62.7	82.9	103.8	121.0	152.2	180.0
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiF}_{8}$	11.5	25.0	44.5						
$\mathrm{NH}_{4} \mathrm{Cl}$	12.0	23.7	45.1	69.3	94.2	118.5	138.2	179.0	213.8
$\mathrm{NH}_{4} \mathrm{HSO}_{4}$	11.5	22.0	46.8	71.0	94.5	118.	139.0	181.2	218.0
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	11.0	24.0	46.5	69.5	93.0	117.0	141.8		
$\mathrm{NH}_{4} \mathrm{Br}$	11.9	23.9	48.8	74.1	99.4	121.5	145.5	190.2	228.5
$\mathrm{NH}_{4} \mathrm{I}$	12.9	25.1	49.8	78.5	104.5	132.3	156.0	200.0	243.5
$\mathrm{NiSO}_{4}$	5.0	10.2	21.5						
$\mathrm{NiCl}_{2}$	16.1	37.0	86.7	147.0	212.8				
$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$	16.1	37.3	91.3	156.2	235.0				
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	12.3	23.5	45.0	63.0					
$\mathrm{Sr}\left(\mathrm{SO}_{3}\right)_{2}$	7.2	20.3	47.0						
$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	15.8	31.0	64.0	97.4	131.4				
$\mathrm{SrCl}_{2}$	16.8	38.8	91.4	156.8	223.3	281.5			
$\mathrm{SrBr}_{2}$	17.8	42.0	101.1	179.0	267.0				
ZnSO	4.9	10.4	21.5	42.1	66.2				
$\mathrm{ZnCl}_{2}$	9.2	18.7	46.2	75.0	107.0	153.0	195.0		
$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$	16.6	39.0	93.5	157.5	223.8				

## TABLES 370-406.-VARIOUS ELECTRICAL CHARACTERISTICS ()F MATERIALS

The fundamental electrical and magnetic definitions and the values of the practical units of current, voltage, and other electrical quantities, have been given (Tables 2-5). Some data will now be presented on electrical characteristics of various materials.

## TABLE 370.-THE EFFECT OF ELECTRIC CURRENT ON THE HUMAN BODY ${ }^{188 \mathrm{~s}}$

Some thought must be given to the electrical characteristics of the human body, since careless handling of electric circuits is very dangerous. The regular 120 -volt circuit is dangerous, and any voltage above this increascs the hazard. No bare contacts should be permitted where anyone might come in contact with them.


Since the resistance of the human body for direct current (hand to foot or hand to hand), neglecting the contact resistance, is $5,000-10,000$ ohms, good contact with electric circuits must be avoided. For alternating current the resistance is much lower.

[^165]
## TABLE 371.-TRIBOELECTRICITY

## Part 1.-The tribo-electric series

The following table is so arranged that any material in the list becomes positively electrified when rubbed by one lower in the list. The phenomenom depends upon surface conditions and circumstances may alter the relative positions in the list.

Asbestos (sheet).	13 Silk.	24 Amber.
2 Rabbit's fur, hair ( Hg ).	$14 \mathrm{Al}, \mathrm{Mn}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{felt}$,	25 Slate, chrome-alum.
${ }^{3}$ Glass (combn. tubing).	hand, wash-leather.	26 Shellac, resin, sealing-wax.
Vitreous silica, oppossum's	15 Filter paper.	27 Ebonite.
furs. (fusn)	16 Vulcanized fiber.	
Glass (fusn.).	17 Cotton.	$\mathrm{S}_{\text {b, }} \mathrm{Ag}, \mathrm{Pd}, \mathrm{C}, \mathrm{Te}$,
Mica.	18 Magnalium	Eureka, straw, copper
7 Wool.	19 K -alum, rock-salt, satin	sulfatc, brass.
Glass (pol.), quartz (pol.), glazed porcelain.	spar. 20 Woods, Fe.	29 Para rubber, iron alum. 30 Guttapercha.
9 Glass (broken edge), ivory.	21 Unglazed porcelain, sal-	31 Sulfur.
10 Calcite.	ammoniac.	$32 \mathrm{Pt} \mathrm{Ag},$.Au .
112 Cat 's fur. Pb , fluorspar	22 K -bichromate, paraffin,	33 Celluloid.
$12 \mathrm{Ca}, \mathrm{Mg}, \mathrm{Pb}$, fluorspar, borax.	tinned-Fe.   23 Cork, ebony.	34 Indiarubber.

Part 2.-Triboelectric series in voltage of a number of metals as compared with silica (as $O$ ) ${ }^{139}$


Solids with liquids and liquids with liquids in air
Temperature of substances during experiment about $16^{\circ} \mathrm{C}$

	C	Cu	F e	Pb	Pt	Sn	Zn	$. ._{\mathrm{Zn}} \mathrm{malg} .$	Brass	Distilled water
	. 01	. 269			. 285		$\int-.105$			
$\mathrm{H}_{2} \mathrm{O}$	to to 17	to .100	. 148	. 1712	$\begin{gathered} \text { to } \\ .345 \end{gathered}$		$\left\{\begin{array}{c} \text { to } \\ +.156 \end{array}\right.$	. 100	. 231	
Alum. sat.sol.		-. 127	-. 653	-. 139	. 246	-. 225	-. 536		. 014	
CuSO sol. ${ }^{\text {sun }}$. ${ }^{\text {a }}$										
sp.gr. 1.087		. 103								
Sea salt sol. ${ }^{\text {a }}$.... 070										
$\mathrm{NH}_{4} \mathrm{Cl}$, sat.sol.		-. 396	-. 652	-. 189	. 059	-. 364	-. 637		-. 348	
$\mathrm{ZnSO}_{4}$ sol. $1.125^{\circ}$   at $4^{\circ} \mathrm{C}$ $-.238$										
$\mathrm{ZnSO}_{4}$ sat.sol. ...							-. 430	-. 284		-. 200
One part $\mathrm{H}_{2} \mathrm{O}+$ 3, sat. ZnSO							-. 444			
Strong $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water:										
1 to 20 by wt.							-. 344			
1 to 10 by vol. ....\{ $\left\{\begin{array}{c}\text { about } \\ -.035\end{array}\right.$										
1to 5 by wt. ..... ... ... ... ... ... ... . 429										
5 to 1 by wt.	.01 to 3.0			-. 120		-. 25	...		-. 016	
Con. $\mathrm{H}_{2} \mathrm{SO}_{4}$	.55 to .85	1.113		$\left\{\begin{array}{c} .72 \\ \text { to } \\ 1.252 \end{array}\right.$	$\begin{aligned} & 1.3 \\ & \text { to } \\ & 1.6 \end{aligned}$	$\ldots$	$\ldots$	. 848		1.298
on. $\mathrm{HNO}_{3}$					. 672					

Mercurous sulfate paste, $\mathrm{Hg},+.475$. Sat.CuSO ${ }_{4}$ sol., $\mathrm{H}_{2} \mathrm{O},-.043$; sat. $\mathrm{ZnSO}_{4}$ sol., $+.095 ; 1$ pt. $\mathrm{H}_{2} \mathrm{O}, 3$ pt. $\mathrm{ZnSO}_{4}+.102$.
Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O},+1.298$; sat.alum.sol., $+1.456 ; \mathrm{CnSO}_{4}$ sat. $+1.269 ; \mathrm{ZnSO}_{4}$ sat.sol., +1.699 .

[^166]
## TABLE 373.-THERMAL ELECTROMOTIVE FORCE OF ALUMINUM VERSUS PLATINUM ${ }^{140}$

Temperature versus emf

${ }^{\circ} \mathrm{C}$	mv	${ }^{\circ} \mathrm{C}$	mv	${ }^{\circ} \mathrm{C}$	mv
0	.000	240	1.374	480	3.703
20	+.062	260	1.538	500	3.931
40	.135	280	1.708	520	4.164
60	.218	300	1.884	540	4.403
80	.312	320	2.065	560	4.647
100	.416	340	2.252	580	4.896
120	.529	360	2.444	600	5.150
140	.651	380	2.641	620	5.409
160	.781	400	2.843	640	5.673
180	.919	420	3.050	660	5.942
200	1.064	440	3.262		
220	1.216	460	3.480		

[^167]
## TABLE 374.-COMPOSITION AND ELECTROMOTIVE FORCE OF VOLTAIC CELLS

The electromotive forces given in this table approximately represent what may be expected from a cell in good working order, but, with the exception of the standard cells, all of them are subject to considerable variation.

Part 1.-Double fluid cells

Name   of cell	Negative pole	Solution	Positive	Solution	$\underset{\text { in }}{\text { in volis }}$
Bunsen	Amalg. Z "	1, $\mathrm{H}_{2} \mathrm{SO}_{4} ; 12, \mathrm{H}_{2} \mathrm{O}$	C	Fuming $\mathrm{HNO}_{3}$   $\mathrm{HNO}_{3}$; dens. 1.38	$\begin{aligned} & 1.94 \\ & 1.86 \end{aligned}$
Chromate	" "	$\begin{aligned} & \text { 12. } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} ; 25, \mathrm{H}_{2} \mathrm{SO}_{4} ; \\ & 100, \mathrm{H}_{2} \mathrm{O} \end{aligned}$	"	$1, \mathrm{H}_{2} \mathrm{SO}_{4} ; 12, \mathrm{H}_{2} \mathrm{O}$	2.00
"	" "	$1, \mathrm{H}_{2} \mathrm{SO}_{4} ; 12, \mathrm{H}_{2} \mathrm{O}$	"	$12, \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} ; 100, \mathrm{H}_{2} \mathrm{O}$	2.03
Daniell	" " ${ }^{\text {" }}$	1. $\mathrm{H}_{2} \mathrm{SO}_{4} ; 4, \mathrm{H}_{2} \mathrm{O}$	Cu	Sat.sol. $\mathrm{CuSO}_{4} ; 5, \mathrm{H}_{2} \mathrm{O}$	1.06
		1, $\mathrm{H}_{2} \mathrm{SO}_{4} ; 12, \mathrm{H}_{2} \mathrm{O}$			1.09
"	"، "،	$5 \%$ sol. $\mathrm{ZnSO} ; 6 \mathrm{H}_{2} \mathrm{O}$	" ${ }^{\text {P }}$	"	1.08
Grove	" "	$1 \mathrm{H}_{2} \mathrm{SO}_{4} ; 12 \mathrm{H}_{2} \mathrm{O}$	Pt	Fuming $\mathrm{HNO}_{3}$	1.05 1.93
	" "	Sol. $\mathrm{ZnSO} \mathrm{SO}_{4}$		$\mathrm{HNO}_{3}$ : dens. 1.33	1.66
"	"	$\mathrm{H}_{2} \mathrm{SO}_{4}$ sol. ; dens. 1.136	"	Concent. $\mathrm{HNO}_{3}$	1.93
"	" "	$\mathrm{H}_{2} \mathrm{SO}_{4}$; dens. 1.136	"	$\mathrm{HNO}_{3}$ : dens. 1.33	1.79
"	" "	$\mathrm{H}_{2} \mathrm{SO}_{4}$ sol. ; dens. 1.14	"	$\mathrm{HNO}_{3}$; dens. 1.19	1.66
"	"" "	$\mathrm{H}_{2} \mathrm{SO}_{4}$ sol. ; dens. 1.06	'		1.61
Partz	"، "	$\underset{\mathrm{NaCl}}{\mathrm{Nol} \text { sol. }}$	"	$\mathrm{Sol}^{\prime} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{\text {a }}$	1.88 2.06

Part 2.-Single fluid cells


Part 3.-Secondary cells


Part 4.-Standard cells

Clark	$\mathrm{Zn}+\mathrm{Hg}$	$\mathrm{ZnSO}_{4}$	Paste   $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Hg}$   Weston \\|	$\mathrm{Cd}+\mathrm{Hg}$
	$\mathrm{CdSO}_{4}$	Paste   CdSO4 +Hg	1.434	

|| Very low temperature coefficient.

## TABLE 375.-DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS

The following numbers are given by G. Magnanini for the difference of potential in hundredths of a volt between zinc in a normal solution of sulfuric acid and the metals named at the head of the different columns when placed in the solution named in the first column. The solutions were contained in a U-tube, and the sign of the difference of potential is such that the current will flow from the more positive to the less positive through the external circuit.

Stiength of the solution in gram molecules per liter		Zinc*	Cadmium*	Lead	Tin	Copper	Silver
No. of	Salt	Difference of potential in centivolts					
. 5	$\mathrm{H}_{2} \mathrm{SO}_{4}$	. 0	36.6	51.3	51.3	100.7	121.3
1.0	NaOH	$-32.1$	19.5	31.8	. 2	80.2	95.8
1.0	KOH	-42.5	15.5	32.0	-1.2	77.0	104.0
. 5	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	1.4	35.6	50.8	51.4	101.3	120.9
1.0	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	- 5.9	24.1	45.3	45.7	38.8	64.8
1.0	$\mathrm{KNO}_{3}$	$11.8{ }^{\dagger}$	31.9	42.6	31.1	81.2	105.7
1.0	$\mathrm{NaNO}_{3}$	11.5	32.3	51.0	40.9	95.7	114.8
. 5	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	$23.9 \dagger$	42.8	41.2	40.9	94.6	121.0
. 5	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	72.8	61.1	78.4	68.1	123.6	132.4
. 5	$\mathrm{K}_{2} \mathrm{SO}{ }_{4}$	1.8	34.7	51.0	40.9	95.7	114.8
. 5	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	$-.5$	37.1	53.2	$57.6{ }^{\dagger}$	101.5	125.7
. 25	$\mathrm{K}_{4} \mathrm{FeC}_{6} \mathrm{~N}_{6}$	$-6.1$	33.6	50.7	41.2	- $\dagger$	87.8
. 167	$\mathrm{K}_{4} \mathrm{Fe}_{2}(\mathrm{CN})_{12}$	$41.0 \ddagger$	80.8	81.2	130.9	110.7	124.9
1.0	KCNS	- 1.2	32.5	52.8	52.7	52.5	72.5
1.0	$\mathrm{NaNO}_{3}$	4.5	35.2	50.2	49.0	103.6	$104.6{ }^{8}$
. 5	$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	14.8	38.3	50.6	48.7	103.0	119.3
. 125	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	21.9	39.3	51.7	52.8	109.6	121.5
1.0	$\mathrm{KNO}_{3}$	- ${ }^{\dagger}$	35.6	47.5	49.9	104.8	115.0
$.2$	$\mathrm{KClO}_{3}$	15-10 ${ }^{\dagger}$	39.9	53.8	57.7	105.3	120.9
. 167	$\mathrm{KBrO}_{3}$	13-20 ${ }^{+}$	40.7	51.3	50.9	111.3	120.8
1.0	$\mathrm{NH}_{4} \mathrm{Cl}$	2.9	32.4	51.3	50.9	81.2	101.7
1.0	KF	2.8	22.5	41.1	50.8	61.3	61.5
1.0	NaCl		31.9	51.2	50.3	80.9	101.3
1.0	KBr	2.3	31.7	47.2	52.5	73.6	82.4
1.0	KCl	-	32.1	51.6	52.6	81.6	107.6
. 5	$\mathrm{Na}_{2} \mathrm{SO}_{3}$	$-8.2$	28.7	41.0	31.0	68.7	103.7
-8	NaOBr	18.4	41.6	73.1	$70.6{ }^{+}$	89.9	99.7
1.0	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{8}$	5.5	39.7	61.3	$54.4 \ddagger$	104.6	123.4
. 5	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{8}$	4.1	41.3	61.6	57.6	110.9	125.7
. 5	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{KNaO}_{6}$	- 7.9	31.5	51.5	42-47	100.8	119.7

[^168]The thermoelectric effect of a number of alloys is given in this table, the authority being Ed. Becquerel. They are relative to lead, and for a mean temperature of $50^{\circ} \mathrm{C}$. In reducing the results from copper as a reference metal, the thermoelectric effect of lead to copper was taken as -1.9 .

Substance			Substance			Substance	运	
Antimony	806		Antimony	$2)$		Bismuth		
Cadmium	696		Zinc	1	43	Antimony		
Antimony	4		Tin	$1)$		Bismuth		
Cadmium	2 1 1$\}$	146	Antimony	12		Antimony		
Zinc	8067		Cadmium	10	35	Bismuth		
Cadmium	696	137	Zinc	3		Antimony		
Bismuth	121		Antimony	$\left.\begin{array}{c}10 \\ 1\end{array}\right\}$	10.2	Bismuth		-66.9
Antimony Zinc	$\left.\begin{array}{l}806 \\ 406\end{array}\right\}$	95	Antimony	10		Antimony		66.9
Antimony	8067		Bismuth	$1\}$		Bismuth		
Zinc	406	8.1	Antimony	4)				
Bismuth	121		Iron	$1\}$	2.5	Bismuth		24.5
Antimony	4		Antimony	8 )		Selenium		
Cadmium	2	76	Magnesium	$1\}$		Bismuth		
Lead	11		Antimony	8 )		Zinc		1.1
Antimony	4)		Lead			Bismuth		
Cadmium	2	46	Bismuth		-43.8	Arsenic		46.0
Zinc	1 1		Bismuth	$2)$		Bismuth	$1\}$	
Tin	$1)$		Antimony		-33.4	Bismuth s	$1\}$	68.1

## TABLE 377.-THERMOELECTRIC EFFECT

A measure of the thermoelectric effect of a circuit of two metals is the electromotive force produced by $1^{\circ} \mathrm{C}$ difference of temperature between the junctions. The thermoelectric effect varies with the temperature, thus: thermoclectric effect $=Q=d E / d t=A+B t$, where $A$ is the thermoelectric effect at $0^{\circ} \mathrm{C}, B$ is a constant, and $t$ is the mean temperature of the junctions. The neutral point is the temperature at which $d E / d t=0$, and its value is $-A / B$. When a current is caused to flow in a circuit of two metals originally at a uniform temperature, heat is liberated at one of the junctions and absorbed at the other. The rate of production or liberation of heat at each junction, or Peltier effect. is given in calories per second, by multiplying the current by the coefficient of the Peltier effect. This coefficient in calories per coulomb $=Q T / \mathcal{F}$, in which $Q$ is in volts per degree $C, T$ is the absolute temperature of the junction, and $\mathcal{F}=4.19$. Heat is also liberated or absorbed in each of the metals as the current flows through portions of varying temperature. The rate of production or liberation of heat in each metal, or the Thomson effect, is given in calories per second by multiplying the current by the coefficient of the Thomson effect. This coefficient, in calories per coulomb $=B T \theta / \dot{f}$, in which $B$ is in volts per degree C, $T$ is the mean absolute temperature of the junctions, and $\theta$ is the difference of temperature of the junctions. ( $B T$ ) is Sir W. Thomson's "Specific Heat of Electricity," The algebraic signs are so chosen in the following table that when $A$ is positive, the current flows in the metal considered from the hot junction to the cold. When $B$ is positive, $Q$ increases (algebraically) with the temperature. The values of $A, B$, and thermoelectric effect in the following table are zeith respect to lcad as the other metal of the thermoelectric circuit. The thermoelectric effect of a couple composed of two metals, 1 and 2 , is given by subtracting the value for 2 from that for 1 ; when this difference is positive, the current flows from the hot junction to the cold in 1. In the following table, $A$ is given in microvolts per degree, $B$ in microvolts per degree per degree, and the neutral point in degrees.

The table has been compiled from the resuits of Becquerel, Matthiessen and Tait; in reducing the results, the electromotive force of the Grove and Daniell cells has been taken as 1.95 and 1.07 volts. The value of constantan was reduced from results given in LandoltBörnstein's tables.

[^169]| Substance | $\underset{\text { Microvolts }}{A}$ | $\stackrel{B}{\text { Microvolts }}$ | Thermoelectric effect at mean temp. of junctions (microvolts) |  | $\begin{aligned} & \text { Neutral } \\ & \text { point } \\ & -\frac{A}{B} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $20^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ |  |
| Aluminum | - . 76 | +. 0039 | - . 68 |  | + 195 |
| Antimony, comm'l pressed wire. |  | - | + 6.0 |  |  |
| " axial |  | - | + 22.6 |  |  |
| equatorial |  |  | + 26.4 |  |  |
| Argentan | -11.94 | -. 0506 | - 12.95 | $-14.47$ | - 236 |
| Arsenic |  | - | - 13.56 | -12.7 |  |
| Bismuth, comm'l pressed wire. |  | - | - 97.0 | - |  |
| " pure " " |  |  | - 89.0 |  |  |
| " crystal, axial |  |  | - 65.0 |  |  |
| "" " equatorial | $+2.63$ | -. 0424 | -45.0 $+\quad 3.48$ | + 4.75 |  |
| Cadmium fused |  | -.0424 |  | + |  |
| Calcium |  |  | - | +8.9 |  |
| Cobalt | - | - | - 22 |  |  |
| Constantan |  |  |  | -19.3 |  |
| Copper | + 1.34 | +. 0094 | + 1.52 | +1.81 | $-143$ |
| ". commercial |  |  | + ${ }^{1} 10$ |  |  |
| Gallium galvanoplastic |  |  | + 3.8 |  |  |
| Gold | $+2.80$ | +. 0101 | + 3.0 | $+3.30$ | [-277] |
| Iron | +17.15 | $-.0482$ | + 16.2 | +14.74 | + 356 |
| " pianoforte wire |  |  | + 17.5 |  |  |
| ". commercial | - |  | - | +12.10 |  |
| Lead |  | . 0000 | $+\quad .00$ | + 9.10 +.00 |  |
| Magnesium | $+2.22$ | -. 0094 | + 2.03 | +1.75 | + 236 |
| Molybdenum |  | - | + 5.9 |  |  |
| Mercury |  |  | - . 413 | $-3.30$ |  |
| Nickel |  |  |  | -15.50 |  |
| " $\left(-18^{\circ}\right.$ to $\left.175^{\circ}\right)$ <br> " $\left(250^{\circ}-300^{\circ}\right)$ | $-21.8$ | $\begin{array}{r} -.0506 \\ +.2384 \end{array}$ | - 22.8 | -24.33 | [-431] |
| " (above $340^{\circ}$ ) . | -3.04 | +. 0506 |  |  |  |
| Palladium ... | - 6.18 | -. 0355 | - 6.9 | - 7.96 | - 174 |
| Phosphorus (red) |  | - | + 29.9 |  |  |
| Platinum |  |  | + . 5 |  |  |
| "، (hardened) | $+2.57$ | -. 0074 | $+\quad 2.42$ | + 2.20 | 347 |
| " (malleable) | - . 60 | -. 0109 | - .818 | - 1.15 | 55 |
| " wire |  |  |  | +. 94 |  |
| " another specimen |  | - | - | $-2.14$ |  |
| Platinum-iridium alloys: |  |  |  |  |  |
| $85 \% \mathrm{Pt}+15 \% \mathrm{Ir}$ | 7.90 | +. 0062 | + 8.03 | +8.21 | [-1274] |
| $90 \% \mathrm{Pt}+10 \% \mathrm{Ir}$ | + 5.90 | -. 0133 | + 5.63 | + 5.23 | 444 |
| $95 \% \mathrm{Pt}+5 \% \mathrm{Ir}$ | + 6.15 | +. 0055 | + 6.26 | + 6.42 | [-1118] |
| Selenium |  |  | $+807$. |  |  |
| Silver | + 2.12 | +. 0147 | + 2.41 | + 2.86 | - 144 |
| " (pure hard) |  | - | $+3.00$ |  |  |
| Steel wire | +11.27 | -. 0325 | + 10.62 | + + +9.18 | 347 |
| Tantalum |  | - | - 2.6 |  |  |
| Tellurium * $\beta$ | - | - | +500. | - |  |
| Thallium |  |  |  |  |  |
| Tin (commercial) |  | - |  | $+.33$ |  |
|  |  |  | + ${ }^{1}$ |  |  |
| T | - . 43 | +. 0055 | - . 33 | - . 16 | 78 |
| Tungsten Zinc |  |  | - 2.0 |  |  |
| Zinc .... | + 2.32 | +. 0238 | $+\quad 2.79$ | + 3.51 | 98 |
| pure pr |  |  |  |  |  |

[^170]TABLE 378.-THERMAL ELECTROMOTIVE FORCE OF METALS AND ALLOYS VERSUS PLATINUM
(millivolts)
One junction is supposed to be at $0^{\circ} \mathrm{C} ;+$ indicates that the current flows from the $0^{\circ}$ junction into the platinum. The rhodium and iridium were rolled, the other metals drawn.

Temperature, ${ }^{\circ} \mathrm{C}$	Au	Ag	$\begin{aligned} & 90 \% \mathrm{Pt}+ \\ & 10 \% \mathrm{Pd} \end{aligned}$	$\begin{aligned} & 10 \% \mathrm{Pt}+ \\ & 90 \% \mathrm{Pd} \end{aligned}$	Pd	$\begin{aligned} & 90 \% \mathrm{Pt}+ \\ & 10 \% \mathrm{Rh} \end{aligned}$	$\begin{aligned} & 90 \% \mathrm{Pt}+ \\ & 10 \% \mathrm{Ru} \end{aligned}$	Ir	Rh
-185	-. 15	$-.16$	-. 11	$+.24$	+ . 77	-	-. 53	- . 28	- . 24
-80	$-.31$	-. 30	-. 09	+. 15	+ . 39	-	$-.39$	-. 32	-. 31
+100	+. 74	+. 72	+ . 26	-. 19	-. 56	-	+. 73	+. 65	+. 65
+200	+1.8	+1.7	+. 62	-. 31	-1.20		+1.6	+1.5	+1.5
+300	+3.0	$+3.0$	+1.0	-. 37	$-2.0$	+2.3	+2.6	+2.5	+2.6
$+400$	+4.5	+4.5	+1.5	-. 35	-2.8	+3.2	+3.6	+3.6	+3.7
$+500$	$+6.1$	$+6.2$	+1.9	-. 18	-3.8	+4.1	+4.6	+4.8	+5.1
+600	+7.9	+8.2	+2.4	$+.12$	-4.9	+5.1	$+5.7$	+6.1	+6.5
+700	+9.9	+10.6	+2.9	+. 61	-6.3	+6.2	+6.9	+7.6	+8.1
+800	+12.0	+13.2	+3.4	+1.2	-7.9	+7.2	+8.0	-9.1	+9.9
+900	+14.3	+16.0	+3.8	+2.1	-9.6	+8.3	+9.2	+10.8	+11.7
+1000	+16.8		+4.3	+3.1	-11.5	+9.5	+10.4	+12.6	+13.7
+1100			+4.8	+4.2	-13.5	+10.6	$+11.6$	+14.5	+15.8
+(1300)	-					+13.1	+14.2	+18.6	+20.4
+(1500)	-	-	-		-	+15.6	+16.9	+23.1	+25.6

TABLE 379.-THERMOELECTRIC PROPERTIES AT LOW TEMPERATURES ${ }^{141}$
Thermoelectric emf per ${ }^{\circ} \mathrm{K}$ against silver alloy

${ }^{\circ} \mathrm{C}$	Cu	Ag	Au	Pd	Pt	Fe	Pb
-255	+.07	-.10	-1.20	+.75	+1.54	+.05	-1.06
-240	.45	+.37	.- .05	2.10	3.60	1.40	-1.19
-220	.90	.39	.+ .24	3.40	5.24	4.80	-1.25
-200	.89	.31	. .30	3.48	5.40	8.45	-1.29
-180	.72	.25	.30	2.14	4.36	11.5	-1.33
-160	.61	.22	.33	.54	3.02	14.0	-1.42
-140	.52	.21	.37	-1.06	1.72	15.8	-1.54
-120	.47	.20	.40	-2.52	.50	16.9	-1.67
-100	.44	.20	.44	-3.92	-.70	17.5	-1.79
-80	.45	.20	.47	-5.27	-1.76	17.5	-1.92
-60	.47	.20	.51	-6.52	-2.80	17.3	-2.05
-40	.49	.20	.55	-7.80	-3.80	16.9	-2.17
-20	.51	.20	.58	-9.05	-4.72	16.2	-2.29
0	.53	.21	.62	-10.32	-5.62	15.8	-2.42
+20	.56	.22	.65	-11.6	-6.56	15.3	-2.54

${ }^{141}$ Borelius, Keesom, Johansson, Linde, Com. Phys. Lab. Leiden, No. 206, 1930.

TABLE 380.-PELTIER EFFECT, FE-CONSTANTAN, NI-CU, $0^{\circ}-560^{\circ} \mathrm{C}$

Temperature		$0^{\circ}$	$20^{\circ}$	$130^{\circ}$	$240^{\circ}$	$320^{\circ}$	$560^{\circ} \mathrm{C}$
$\mathrm{Fe}-\mathrm{Constantan}$	$\ldots \ldots \ldots$	3.1	3.6	4.5	6.2	8.2	12.5
NiCu	$\ldots \ldots \ldots \ldots \ldots \ldots$	1.92	2.15	2.45	2.06	1.91	2.38


${ }^{\circ} \mathrm{K}$	Cu	Ag	Au	Pd	Pt	Fe	Ni	Co	Pb
20	+. 59	+1.40	+2.83	+1.9	+3.2	+1.3			.
25	1.04	1.23	2.09	2.6	3.6	2.7			
30	1.22	. 85	1.58	3.1	3.9	4.1	-45	-. 2	. 00
40	1.03	. 24	. 88	3.2	3.8	6.7	-5.4	-. 3	-. 04
50	. 67	-. 02	. 45	2.5	2.7	9.0	-5.0	$-.8$	-. 06
60	. 18	$-.17$	. 19	1.0	1.0	10.8	-4.5	-2.0	-. 09
70	-. 29	-. 24	. 07	-1.5	-1.1	11.9	-4.1	-3.7	-. 12
80	-. 46	-. 25	. 05	-4.6	-3.3	12.6	-4.0	-5.5	-. 15
90	-. 48	-. 17	. 17	-6.6	-5.1	12.9	-4.0	-7.0	-. 18
100	-. 45	-. 03	. 32	-7.8	-6.5	13.0	-4.5	-8.4	-. 20
110	-. 37	+. 12	. 45	-8.7	-7.5	13.0	-5.3	-9.8	-. 23
120	-. 26	. 25	. 56	-9.3	-8.0	12.8	-6.4	-11.1	-. 26
130	-. 13	. 35	. 66	-9.7	-8.2	12.2	-7.4	-12.4	-. 29
140	+. 02	. 44	. 75	-10.1	-8.2	11.0	-8.3	-13.5	-. 32
150	. 17	. 52	. 83	-10.3	-8.3	8.9	-9.0	-14.6	-. 34
160	. 31	. 59	. 91	-10.6	-8.4	6.1	-9.7	-15.7	-. 37
170	. 46	. 66	. 99	-10.9	-8.5	2.6	-10.3	-16.7	-. 40
180	. 59	. 72	1.06	-11.2	-8.7	-. 2	-10.9	-17.6	-. 42
200	. 79	. 84	1.19	-12.1	-9.1	-3.5	-12.1	-19.6	-. 46
220	. 96	. 96	1.31	-13.3	-9.8	-4.5	-13.3	-21.5	-. 49
240	1.10	1.08	1.43	-146	-10.6	-4.8	-14.5	-23.4	-. 52
260	1.24	1.20	1.54	-15.8	-11.4	-5.2	-15.7	-25.4	-. 54
280	1.38	1.32	1.66	-17.0	$-12.3$	-56			-. 55
300	+1.52	+1.44	+1.77	$-18.2$	-13.2	-5.9			-. 57

## TABLE 382.-THERMOELECTRIC EFFECTS; PRESSURE EFFECTS

The following values of the thermoelectric effects under various pressures are taken from Bridgman. A positive emf means that the current at the hot junction flows from the uncompressed to the compressed metal. The cold junction is always at $0^{\circ} \mathrm{C}$. The last two columns give the constants in the equation $E=$ thermoelectric force against lead $\left(0^{\circ}\right.$ to $\left.100^{\circ} \mathrm{C}\right)=\left(A t+B t^{2}\right)$ $\times 10^{-8}$ volts; at atmospheric pressure, a positive emf meaning that the current flows from lead to the metal under consideration at the hot junction.


The following data indicate the magnitude of the effect of pressure on the Peltier and Thomson heats. They refer to the same samples as for the last table. The Peltier heat is considered positive if heat is absorbed by the positive current from the surroundings on flowing from uncompressed to compressed metal. A positive $d^{2} E / d t^{2}$ means a larger Thomson heat in the compressed metal, and the Thomson heat is itself considered positive if heat is absorbed by the positive current in flowing from cold to hot metal. Same reference as footnote 141, and notes as for preceding table.

Metal							$\begin{gathered} 10^{8} \times \mathrm{J} \times \text { coulomb- heat, }{ }^{\text {Thoms }} \mathrm{C}^{-1} \\ \text { Pressure } \mathrm{kg} / \mathrm{cm}^{2} \end{gathered}$					
								6000			12,000	
	Temperature ${ }^{\circ} \mathrm{C}$						Temperature ${ }^{\circ} \mathrm{C}$					
	$0^{\circ}$	$50^{\circ}$	$100^{\circ}$	$0^{\circ}$	$50^{\circ}$	$100^{\circ}$	$0{ }^{\circ}$	$50^{\circ}$	$100^{\circ}$	$0^{\circ}$	$50^{\circ}$	$100^{\circ}$
Bi	$+1070$	+1210		+2580	$+2810$		+1150	+650		-520	$-405$	
Zn	+98	+140	$+190$	$+190$	+278	+412	+41	+48	$+56$	+63	+133	+220
$\stackrel{\mathrm{Tl}}{\mathrm{Cd}}$	+66 +19	+95 +71	+124 +118	+112 +81	+171 +148	+229 +221	+38 +109	+28 +74	+26 +63	+79 +105	+63 +92	+50 +93
Constantan	$+46$	+57	+70 +70	+90	+114	+140 +103	+5	+6	+6	+13	+14	$+17$
Pd	$+35$	+43	+52	+68	+86	+103	+3	$+4$	+4	+9	+9	+8
	+23	+37	+35	+45	+76	+65	+49	-6	-18	+96	+17	+59
W	$+17$	+25	+32	+36	+49	+65	+8	$+7$	+6	+9	+14	+20
Ni	+11	+17	+23	+24	$+37$	+50	+9	+7	+8	+16	+15	+10
Ag				+25	+34	+44	$+4$	$+5$	+6	+7	+8	+10
	$-11$	+18	+15	-38	+38	+36	+79	+58	-121	$-347$	+120	-194
	+7	$+10$	+16	+14	+20	$+30$	+2	+6	+10	$+6$	+8	+20
${ }^{\text {Au }}$	$+6$	+10	+14	+13	+18	+25	+4	+4	+5	$+6$	$+6$	+7
Cu	+4	+6	+8	+8	+11	+16	+4	$+1$	+4	+6	+3 +16	+8 +20
Al	-2	$+2$	+8	-3	$+7$	+17	+6	+9	+11	+21	+16	+20 +2
Mo	+1	+2	+0	+2	+4	+1	+1	$-5$	-1	+2	$-11$	-2
$\mathrm{Sn} \ldots .$.	-1	+1	+1	-5	+2	+2	$+6$	+0	-1	+29	+2	-
Manganin	-2	-2	-2	-4	-4	-4	+1	+1	+0	+2	+1	+1
Mg .....	-16	-18	-21	-35	-42	-48	0	0	0		0	
Co	-23	-33	-44	-46	-67	-90	-14	-11	-10	-20	-24	-28

## TABLE 384.-THERMAL ELECTROMOTIVE FORCE OF CADMIUM VERSUS PLATINUM

Temperature versus emf

${ }^{\circ} \mathrm{C}$	mv	${ }^{\circ} \mathrm{C}$	mv	${ }^{\circ} \mathrm{C}$	mv
0	.000	125	1.211	250	3.255
25	+.171	150	1.559	275	3.740
50	.378	175	1.940	300	4.238
75	.620	200	2.351	315	4.539
100	.898	225	2.790		

## TABLE 385.-PELTIER EFFECT

The coefficient of Peltier effect may be calculated from the constants $A$ and $B$ of Table 377, as there shown. With $Q$ (see Table 377) in microvolts per ${ }^{\circ} \mathrm{C}$ and $T=$ absolute temperature $(K)$, the coefficient of Peltier effect $=\frac{Q T}{42}$ cal per coulomb $=0.00086$ QT cal per ampere-hour $=Q T / 1000$ millivolts ( $=$ millijoules per coulomb). Experimental results, expressed in slightly different units are here given. The figures are for the heat production at a junction of copper and the metal named in calories per ampere-hour. The current flowing from copper to the metal named, a positive sign indicates a warming of the junction.

Calories per ampere-hour										
Sb *	Sb com. mercial $\dagger$	Bi pure $\qquad$	$\begin{gathered} \mathrm{Bi} \dagger \\ - \end{gathered}$	$\begin{array}{r} \mathrm{Cd} \\ -.62 \end{array}$	German silver	$\begin{gathered} \mathrm{Fe} \\ -3.61 \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ 4.36 \end{gathered}$	$\begin{gathered} \mathrm{Pt} \\ .32 \end{gathered}$	$\begin{array}{r} \mathrm{Ag} \\ -.41 \end{array}$	$\begin{gathered} \mathrm{Zn} \\ -.58 \end{gathered}$
13.02	4.8	19.1	25.8	. 46	2.47	2.5	-	-	-	. 39
*Becquerel's antimony is 806 parts $\mathrm{Sb}+406$ parts $\mathrm{Zn}+121$ parts Bi .   $\dagger$ Becquerel's bismuth is 10 parts $\mathrm{Bi}+1$ part Sb .										

The resistivities are the values of $\rho$ in the equation $R=\rho l / s$, where $R$ is the resistance in microhms of a length $l \mathrm{~cm}$ of uniform cross section $s \mathrm{~cm}^{2}$. The temperature coefficient is $a_{s}$ in the formula $R_{t}=R_{s}\left[1+a_{s}\left(t-t_{s}\right)\right]$. The information of column 2 does not necessarily apply to the temperature coefficient.

Substance	Remarks	$\begin{gathered} \text { Tempera- } \\ \text { ture } \\ { }_{0} \mathrm{C} \end{gathered}$	$\underset{\mathrm{cm}}{\text { Microhm. }}$	Temperature coefficient	
				$t$ 。	$a_{0}$
Advance	see constantan	-		-	
Aluminum	--	20	2.828	$18^{\circ}$	+. 0039
"	c. ${ }^{\text {p }}$.	-189	. 64	25	$+.0034$
"	"	-100	1.53	100	$+.0040$
"	"	0	2.62	500	$+.0050$
"	"	$+100$	3.86	-	-
"	"	400	8.0		
Antimony	-	0	39.1	20	+. 0036
		-190	10.5	-	
Arsenic	liquid	+860	120		
Arsenic Beryllium		0	35		
Bismuth	- -	18	119.0	20	$+$.
		100	160.2		
Brass		20	7	20	+. 002
Cadmium	drawn	-160	2.72	20	$+.0038$
"	"	18	7.54	-	-
"	liquid	100	34.1	-	
Calcium	99.57 pure	20	4.59	-	$+.0036$
Calido	see nichrome	--187		-	--
Cesium	-	-187	5.25	-	-
	solid $\}$	0	19		
"		27	22.2	-	-
	liquid $\}$	30	36.6	-	
Chromium		0	13	-	
Climax	99.8 pure	20	87	20	$+.0007$
Constantan		20	9.7	--	
	$60 \% \mathrm{Cu} .40 \% \mathrm{Ni}$	20	49	12	$+.000008$
		-	-	25	$+.000002$
"				200	-.000033
"				500	$+.000027$
Copper	annealed	20	1.724	20 see col. 2	+.00393
	hard-drawn	20	1.77	" " " "	+. 00382
" .	electrolytic	-206	. 144	100	+. 0038
"		+205	2.92	400	+. 0042
" .	pure	400	4.10	1000	+.0062
Eureka	very pure, ann'ld	20	1.692	-	
Excello	see constantan	20	92	20	$+.00016$
Gallium	$18 \% \overline{\mathrm{Ni}}$	0	53	-	-
German silver		20	33	20	$+.0004$
Germanium	-	0	89000.	-	--
Gold		-183	. 68	20	$+.0034$
"	99.9 pure	0	2.22	100 ann'ld	$+.0025$
	pure, drawn	20	2.44	500 "	$+.0035$
" .	99.9 pure	194.5	3.77	1000	+. 0049
Ia Ia	see constantan	-		-	-
Ideal					
	-	0	8.37		
Iridium	-	-186	1.92	-	-
	-	0	6.10		
Iron		$+100$	8.3		
Iron	99.98\% pure	20	10	20	$+.0050$
	pure, soft	-205.3	. 652	0	$+.0062$
"	". "	- 78	5.32	25	+. 0052
		0	8.85	100	+. 0068
		ntinued)			

(continued)

Substance	Remarks	$\underset{\substack{\text { Tempera- } \\ \text { ture } \\ \text { ture }}}{ }$	$\underset{\substack{\text { Microhm- } \\ \text { cm }}}{ }$	Temperature coefficie	
				${ }^{\text {a }}$	$a_{s}$
Iron ......	pure, soft	+ 98.5	17.8	500	+. 0147
" .....	" "				. 0050
	electrolytic	0	10.0	-	
Lead	"	100	14.41		
		20	22	20	$+.0039$
	cold pressed	$-183$	6.02	18	$+.0043$
"	"، "	- 78	14.1	-	
"	" "	0	19.8		
"	" "	+ 90.4	28		
"		196.1	36.9		
Lithium		318			
	solid	187 0	1.35		
"	"	99.3	127		
"	liquid	230	45.2		
Magnesium		20	4.6	20	$+.004$
	free from $\mathrm{Zn}_{\text {n }}$	$-183$	1.00	0	+.0038
"	" "	-78	2.97	25	+.0050
"	". " ."	0	4.35	100	$+.0045$
"	pure	+98.5	5.99	500	$+.0036$
Manganese	pure	400	${ }_{50 \pm}$	600	+.0100
Manganin	$84 \mathrm{Cu}, 12 \mathrm{Mn}, 4 \mathrm{Ni}$	20			$+.000006$
				25	. 000000
"				100	-.000042
"				250	-. 0000052
"				475	-. 000000
"				500	-. 000011
Mercury	solid	${ }^{20}$	95.783	20	+.00089
		$-183.5$	6.97	0	$+.00088$
"	"		15.04		
"		- 30.3	21.5	$R_{t}=R_{0}(1+$	
"	liquid	- 36.1	80.6	. $0000001 t^{2}$ )	
"		,	94.07		
	"	50	98.50		
"	"	100	103.25		
" .		200.	114.27		
Molybdenum		350	135.5		
	very pure	0	5.14	25	$+.0033$
"				1100	${ }^{+}+.0034$
Monel metal	-	20	42	20	$+.0020$
Nichrome		20	100	20	$+.0004$
Nickel		20	7.8	20	+. 006
	${ }_{\text {very }}^{\text {pure }}$ pure	${ }_{-1825}$	7.236		
"،		-182.5 -78.2	${ }_{4}^{1.44}$	25	+.0062 +.0043
"	"	0	6.93	100	$+.0043$
"	" ${ }^{\prime}$	94.9	11.1	500	$+.0030$
		20	9.5		+.0037
Palladium		20	11	20	$+.0033$
	very pure	-183 -78	2.78		+.0035
"	" "	- 88			
"		98.5	13.79		
Platinum	wire		9.83	20	$+.003$
		-203.1	2.44	0	+.0037
"		- 97.5	6.87		
"	"		10.96		
	-	400			
		titued)			


Substance	Remarks	$\begin{gathered} \text { Tempera- } \\ \begin{array}{c} \text { ture } \\ { }^{\circ} \mathrm{C} \end{array} \end{gathered}$	$\underset{\substack{\text { Microhm } \\ \mathrm{cm}}}{ }$.	Temperature coefficient	
				${ }^{\text {t }}$	$a_{a}$
Potassium	_-	- 75	4	0	+. 0057
		0	6.1		
"		55	8.4		
Rhodium	--	$-186$	. 70		-
		- 78.3	3.09		
"		0	5.11	0	$+.0043$
"		100	6.60		
Rubidium	solid	-190	2.5	-	
		0	11.6		
"	"	35	13.4	-	
"	liquid	40	19.6		
Silicium	--	20	$58 \pm$		
Silver	99.98 pure	18	1.629	20	+. 0038
	electrolytic	-183	. 390	25	+. 0030
" .		- 78	1.021	100	$+.0036$
"	"	0	1.468	500	+. 0044
"	"	98.15	2.062	-	-
"	"	192.1	2.608	-	
" . .	"	400	3.77	-.	
Sodium	solid	-180	1.0	-	
		- 75	2.8		
"	"	0	4.3	0	$+.0054$
"	"	55	5.4	-	
Steel	liquid	116	10.2		
Steel	E. B. B.	20	10.4	20 see col. 2	$+.005$
" . ...	B. B.	20	11.9	" " " "	+. 004
" .	Siemens-Martin	20	18	" " " "	$+.003$
"	manganese	20	70	" " " "	$+.001$
"	$35 \% \mathrm{Ni}$, "invar."	20	81		
"،	piano wire	0	11.8	0 see col. 2	+. 0032
" ${ }^{\text {c }}$	temp. glass, hard	0	45.7		$+.0016$
" ${ }^{\text {" }}$	", yellow	0	27		
"	", blue	0	15.9	0 see col. 2	$+.0033$
Strontium	,	20	24.8		
Tantalum	-	20	15.5	20	+. 0031
Tellurium*	-	19.6	200,000	-	
Thallium	pure	-183	4.08	-	-
	"	- 78	11.8	-	-
"	"	0	17.60		
Tin	"	98.5	24.7		
	-	20 -184	11.5 3.40	20	+.0042
"	-	- 78	8.8		
" .	--	0	13		
"		91.45	18.2		
Titanium	-	-	55		
Tungsten	000 ${ }^{\circ} \mathrm{K}$	20	5.51	18	$+.0045$
	$1000^{\circ} \mathrm{K}$	727	25.3	500	$+.0057$
"	$1500^{\circ} \mathrm{K}$	1227	41.4	1000	+. 0089
"	$2000^{\circ} \mathrm{K}$	1727	59.4	--	
"	$3000^{\circ} \mathrm{K}$	2727	98.9	--	
"	$3500^{\circ} \mathrm{K}$	3227	118		
Zinc	trace Fe	-183	1.62	20	$+.0037$
	" "	- 78	3.34		
"	" "	0	5.75		
"	" "	92.45	8		
" .	" "	191.5	10.37		
" .	liquid	440	37.2	-	-

[^171]TABLE 386.-RESISTIVITY OF METALS AND SOME ALLOYS (concluded)
Resistance temperature coefficient for a number of metals and alloys of high purity.


TABLE 387.-SOME ELEMENTS ARRANGED IN ORDER OF INCREASING
RESISTIVITY (Ohm-cm $\times 10^{-6}, 20^{\circ} \mathrm{C}$ )

Ag	1.468	Mn	$5 . \pm$	Pd	10.21	Ga	53
Cu	1.59	Mo	$(5.3)$	Pt	10.96	Os	56
Au	2.22	Zn	5.75	Rb	13	Hg	94.07
Al	2.6	Ir	6.10	Sn	13	Bi	110
Cr	2.6	K	6.1	Ta	14.6	$\mathrm{Graphite} 8 \times 10^{2}$	
Ti	3.2	Ni	6.93	Tl	17.6	Carbon	$3 \times 10^{3}$
Na	4.3	Cd	7.04	Cs	19	$2 \times 10^{5}$	
Ca	4.3	In	8.37	Pb	20.4	Te	$10^{12}$
Mg	4.35	Li	8.55	Sr	$(23.5)$	B	$8 \times 10^{12}$
Rh	4.69	Fe	8.8	As	35	Se	$10^{13}$
W	5	Co	9	Sb	39	S	$10^{17}$

TABLE 388.-THERMAL ELECTROMOTIVE FORCE OF PLATINUM-RHODIUM ALLOYS VERSUS PLATINUM
emf (mv)
Percent rhodium

${ }^{\text {Temp. }}{ }^{\circ}$	. 5	1.0	5.0	10.0	20.0	40.0	80.0	100.0
0	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
100	+. 10	+. 18	$+.54$	+. 64	+. 63	$+.65$	+. 62	$+.70$
200	. 20	. 37	1.16	1.43	1.44	1.52	1.49	1.61
300	. 29	. 57	1.82	2.32	2.40	2.55	2.55	2.68
400	. 39	. 76	2.49	3.25	3.47	3.70	3.77	3.91
500	. 48	. 94	3.17	4.22	4.63	4.97	5.12	5.28
600	. 58	1.12	3.86	5.22	5.87	6.36	6.60	6.77
700	. 67	1.30	4.55	6.26	7.20	7.85	8.20	8.40
800	. 76	1.48	5.25	7.33	8.59	9.45	9.92	10.16
900	. 85	1.66	5.96	8.43	10.06	11.16	11.76	12.04
1000	. 94	1.84	6.68	9.57	11.58	12.98	13.73	14.05
1100	1.03	2.02	7.42	10.74	13.17	14.90	15.81	16.18
1200	1.13	2.20	8.16	11.93	14.84	16.91	17.99	18.42

TABLE 389.-EFFECT OF TENSION ON THE RESISTANCE OF METALS

Recip. Young's   mod. $\times 10^{6}$$\ldots \ldots$	Li	Ca	Sr	Sb	Bi	Manganin	Co
Poisson ratio $\ldots \ldots$	.42	4.75	7.5	1.25	4.2	.72	.5
Tens. coef. spec.   resist. $\times 10^{6} \ldots \ldots+11$	+.30	.36	.30 ?	.37	.33	.30	

TABLE 390.-VARIATION OF THE ELECTRICAL RESISTANCE WITH PRESSURE FOR TWO TEMPERATURES OF A NUMBER OF METALS ${ }^{142}$

	Copper- $\Delta \mathrm{R} / \mathrm{R}_{0}$		Silver- $\Delta \mathrm{R} / \mathrm{R}_{0}$		Gold- $\Delta \mathrm{R} / \mathrm{R}_{6}$		Iron- $\Delta \mathrm{R} / \mathrm{R}_{0}$		Lead-- $\Delta \mathrm{R} / \mathrm{R}_{0}$	
Pressure	$30^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$								
5,000	. 0096	. 0094	. 0174	. 0176	. 0151	. 0154	. 0121	. 0118	. 0686	. 0691
10,000	. 0186	. 0185	. 0338	. 0341	. 0293	. 0299	. 0234	. 0232	. 1266	. 1277
15,000	. 0271	. 0271	. 0492	. 0497	. 0429	. 0437	. 0341	. 0341	. 1770	. 1791
20,000	. 0354	. 0354	. 0637	. 0644	. 0559	. 0570	. 0444	. 0447	. 2214	. 2242
25,000	. 0434	. 0435	. 0774	. 0784	. 0684	. 0698	. 0542	. 0548	. 2611	. 2643
30,000	. 0513	. 0514	. 0904	. 0916	. 0806	. 0824	. 0637	. 0646	. 2959	. 2998

[^172]TABLE 391.-RELATIVE ELECTRICAL RESISTANCE WITH PRESSURE FOR TWO TEMPERATURES OF A NUMBER OF METALS*


[^173]Temperature versus emf

${ }^{\circ} \mathrm{C}$	mv		${ }^{\circ} \mathrm{C}$	${ }^{\mathrm{mv}}$	${ }^{\circ} \mathrm{C}$
0	.000	400	5.450	800	9.350
25	-.350	425	5.580	825	9.675
50	.710	450	5.745	850	10.010
75	1.090	475	5.960	875	10.350
100	1.485	500	6.165	900	10.695
125	1.880	525	6.360	925	11.045
150	2.285	550	6.585	950	11.400
175	2.695	575	6.800	975	11.765
200	3.105	600	7.040	1000	12.130
225	3.505	625	7.290	1025	12.500
250	3.850	650	7.550	1050	12.875
275	4.255	675	7.825	1075	13.250
300	4.590	700	8.105	1100	13.625
325	4.880	725	8.415		
350	5.110	750	8.720		
375	5.290	775	9.030		

${ }^{143}$ Nat. Bur. Standards Journ. Res., vol. 5, p. 1291, 1930.

TABLE 393.-AVERAGE PRESSURE COEFFICIENTS* OF ELECTRICAL RESISTANCE UP TO $7000 \mathrm{~kg} / \mathrm{cm}^{2}$ AS A FUNCTION OF TEMPERATURE ${ }^{144}$

Temperatures

Metal	$-182.0^{\circ} \mathrm{C}$	$-78.4{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
Lead	-12.76	-12.88	-12.99	-9.3	-9.2
Magnesium	-5.89	-4.49	-4.39		
Aluminum	-9.16	-4.71	-4.28		
Silver	-4.09	-3.46	-3.45	$-3.0$	-3.0
Gold	$-3.27 \dagger$	-2.97	-2.94	-2.6	-2.7
Copper	-3.09	-2.14	-1.88	$-1.7$	-1.7
Nickel	-1.88	-2.00	-1.85		
Iron	-2.44	-2.27	-2.34		
Palladium	-2.82	-2.32	-2.13		
Niobium	-. 80	-. 98	-1.18		
Platinum	-234	-1.97	-1.93		
Rhodium	-2.26	-1.86	$-1.64 \ddagger$		
Molybdenum	-1.91	-1.29	-1.30		
Tantalum	-1.17	-1.42	-1.45		
Tungsten	$-1.36$	-1.42	-1.37		

${ }^{*} \times 10^{0}$
144 Bridgman, P. W., Proc. Amer. Icad. Arts and Sci., vol. 67, p. 342, 1932.
$\dagger$ Maximum pressure 4300 .
$\ddagger$ On a less pure sample.

TABLE 394.-RESISTIVITY OF MERCURY AND MANGANIN UNDER PRESSURE

Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$		500	1003	1500	2000	2500	3000	4000	5000	6000	6500
$R\left(p,-75^{\circ}\right) \mathrm{Hg}$.	. 9186	. 9055	. 8930	. 8818	. 8714	. 8582	. 8478	. 8268	. 8076	. 7896	. 7807
$R\left(p, 25^{\circ}\right) \mathrm{Hg}$.	1.0000	. 9836	. 9682	. 9535	. 9394	. 9258	. 9128	. 8882	. 8652	. 8438	. 8335
* Hg	1.0090	. 9854	. 9716	. 9588	. 9462	. 9342	. 9228	. 9010	. 8806	. 8616	. 8527
$R\left(p, 125^{\circ}\right) \mathrm{Hg}$.	1.0970	1.0770	1.0583	1.0400	1.0230	1.0070	. 9908	. 9614	. 9342	. 9086	. 8966

[^174]
## TABLE 395.-THERMAL ELECTROMOTIVE FORCE OF ZINC VERSUS PLATINUM

'Temperature versus emf

${ }^{\circ} \mathrm{C}$	mv	${ }^{\circ} \mathrm{C}$	mv	${ }^{\circ} \mathrm{C}$	mv
0	.000	150	1.276	300	3.417
25	+.153	175	1.572	325	3.853
50	.331	200	1.894	350	4.310
75	.533	225	2.240	475	4.786
100	.758	250	2.610	400	5.290
125	1.005	3.002	415	5.604	

TABLE 396.-CONDUCTIVITY AND RESISTIVITY OF MISCELLANEOUS ALLOYS
Temperature coefficients
Conductivity in mhos or $\frac{1}{\text { ohms-cm }}=\gamma^{t}=\gamma^{0}\left(1-a t+b t^{2}\right)$ and resistivity in microhm -cm $=\rho^{t}=\rho^{0}\left(1+a t-b t^{2}\right)$.


This table shows the conductivity of alloys and the variation of the conductivity with temperature. The conductivity is given as $C_{t}=C_{0}\left(1-a t+b t^{2}\right)$, and the range of tem: perature was from $0^{\circ}$ to $100^{\circ} \mathrm{C}$.
The table is arranged in three groups to show (1) that certain metals when melted together produce a solution which has a conductivity equal to the mean of the conductivities of the components, (2) the behavior of those metals alloyed with others, and (3) the behavior of the metals alloyed together.

Part 1

Alloys	Weight	Volume \%			
	of first named		$\frac{C_{0}}{10^{4}}$	$a \times 10^{6}$	${ }^{6} \times 10$
$\mathrm{Sn}_{0} \mathrm{~Pb}$	77.04	83.96	7.57	3890	
$\mathrm{Sn} \mathrm{c}_{\text {Cd }}$	82.41	83.10	9.18	4080	11870
SnZn	78.06	77.71	10.56	3880	8720
PbSn	64.13	53.41	6.40	3780	8420
ZnCd 2	24.76	26.06	16.16	3780	8000
SnCd4	23.05	23.50	13.67	3850	9410
CdPb ${ }_{8}$	7.37	10.57	5.78	3500	7270

Part 2

Alloys	Volume	Weigh			
	of first named		$C_{0}$	$a \times 10^{8}$	$b \times 10$
Lead-silver ( $\mathrm{Pb}_{20} \mathrm{Ag}$ )	95.05	94.64	5.60	3630	7960
Lead-silver ( PbAg )	48.97	46.90	8.03	1960	3100
Lead-silver ( $\mathrm{PbAg}_{2}$ )	32.44	30.64	13.80	1990	2600
Tin-gold ( $\mathrm{Sn}_{12} \mathrm{Au}$ )	77.94	90.32	5.20	3080	6640
" " (Sn ${ }_{0} \mathrm{Au}$ )	59.54	79.54	3.03	2920	6300
Tin-copper	92.24	93.57	7.59	3680	8130
	80.58	83.60	8.05	3330	6840
" "	12.49	14.91	5.57	547	294
" "	10.30	12.35	6.41	666	1185
" "	9.67	11.61	7.64	691	304
" "	4.96	6.02	12.44	995	705
" "	1.15	1.41	39.41	2670	5070
Tin-silyer	91.30	96.52	7.81	3820	8190
	53.85	75.51	8.65	3770	8550
Zinc-copper	36.70	42.06	13.75	1370	1340
	25.00	29.45	13.70	1270	1240
" "	16.53	23.61	13.44	1880	1800
" "	8.89	10.88	29.61	2040	3030
" " .	4.06	5.03	38.09	2470	4100

Note.-Barus has pointed out that the temperature variation of platinum alloys containing less than $10 \%$ of the other metal can be nearly expressed by an equation $y=\frac{n}{x}-m$, where $y$ is the temperature coefficient and $x$ the specific resistance, $m$ and $n$ being constants. If $a$ be the temperature coefficient at $0^{\circ} \mathrm{C}$ and $s$ the corresponding specific resistance, $s(\alpha+m)=n$

For platinum alloys Barus's experiments gave $m=-.000194$ and $n=.0378$.
For steel $m=-.000303$ and $n=.0620$.
Matthiessen's experiments reduced by Barus gave for
Gold alloys $m=-.000045, n=.00721$.
Silver " $m=-.000112, n=.00538$.
Copper " $\quad m=-.000386, n=.00055$.
(continued)

Part 3

Alloys	Weight \%	Volume\%			
	of first $\underbrace{\text { named }}$		$C_{0}$		
Gold-copper	99.23	98.36	35.42	2650	4650
	90.55	81.66	10.16	749	81
Gold-silver	87.95	79.86	13.46	1090	793
	87.95	79.86	13.61	1140	1160
" "	64.80	52.08	9.48	673	246
" "	64.80	52.08	9.51	721	495
" "	31.33	19.86	13.69	885	531
" "	31.33	19.86	13.73	908	641
Gold-copper	34.83	19.17	12.94	864	570
	1.52	. 71	53.02	3320	7300
Platinum-silver	33.33	19.65	4.22	330	208
	9.81	5.05	11.38	774	656
" "	5.00	2.51	19.96	1240	1150
Palladium-silver	25.00	23.28	5.38	324	154
Copper-silver	98.08	98.35	56.49	3450	7990
	94.40	95.17	51.93	3250	6940
" "	76.74	77.64	44.06	3030	6070
" "	42.75	46.67	47.29	2870	5280
" "	7.14	8.25	50.65	2750	4360
" "	1.31	1.53	50.30	4120	8740
Iron-gold	13.59		1.73	3490	7010
	9.80	21.18	1.26	2970	1220
	4.76	10.96	1.46	487	103
Iron-copper	. 40	. 46	24.51	1550	2090
Phosphorus-copper	2.50	-	4.62	476	145
		-	14.91	1320	1640
Arsenic-copper		-	3.97	516	989
	2.80	-	8.12	736	446
	trace	-	38.52	2640	4830

The electrical resistivity ( $\rho$, ohm- cm ) of good conductors depends greatly on chemical purity, Slight contamination even with metals of lower $\rho$ may greatly increase $\rho$. Solid solutions of good conductors generally have higher $\rho$ than components. Reverse is true of bad conductors. In solid state allotropic and crystalline forms greatly modify $\rho$. For liquid metals this last cause of variability disappears. The + temperature coefficients of pure metals is of the same order as the coefficients of expansion of gases. For temperature resistance ( $t, \rho$ ) plot at low temperatures the graph is convex toward the axis of $t$ and probably approaches tangency to it. However for extremely low temperatures Onnes finds very sudden and great drops in $\rho$, e.g., for mercury, $\rho_{3 . \text { ok }}<4 \times 10^{-10} \rho_{o}$ and for $\mathrm{Sn}, \rho_{3 . \text { sk }}<10^{-7} \rho_{0}$. The $t, \rho$ graph for an alloy may be nearly parallel to the $t$ axis, cf. constantan; for poor conductors $\rho$ may decrease with increasing $t$. At the meltingpoints there are three types of behavior of good conductors; those about doubling $\rho$ and then possessing nearly linear $t, \rho$ graphs ( $\mathrm{Al}, \mathrm{Cu}, \mathrm{Sn}, \mathrm{Au}, \mathrm{Ag}, \mathrm{Pb}$ ) ; those where $\rho$ suddenly increases and then the + temp. coefficient is only approximately constant $(\mathrm{Hg}, \mathrm{Na}, \mathrm{K})$; those about doubling $\rho$ then having a - , slowly changing to a + temp. coef. ( $\mathrm{Zn}, \mathrm{Cd}$ ) ; those where $\rho$ suddenly decreases and thereafter steadily increases ( $\mathrm{Sb}, \mathrm{Bi}$ ). The values from different authorities do not necessarily fit because of different samples of metals. Resistivities are in microhm-cm unless otherwise stated. Italicized figures indicate liquid state.

Gold			Copper			Silver			Zinc		
		$\rho_{t}$			$\rho_{t}$			$\rho_{8}$	$\stackrel{ }{ }$		$\rho_{1}$
${ }^{\circ} \mathrm{C}$	$\rho_{t}$	$\overline{\rho_{0}}$	${ }^{\circ} \mathrm{C}$	$\rho_{1}$	$\rho_{0}$	${ }^{\circ} \mathrm{C}$	$\rho_{1}$	$\rho_{0}$	${ }^{\circ} \mathrm{C}$	$\rho_{t}$	$\rho_{0}$
-252.8	. 018	. 0081	$-258.6$	. 014	. 0091	-258.6	. 009	. 0057	-252.9	. 0511	. 0089
-200.	. 601	. 267	-252.8	. 016	. 0103	-252.8	. 014	. 0090	-200.	1.39	. 242
-192.5	. 520	. 231	-251.1	. 028	. 0178	-189.5	. 334	. 222	-191.1	1.23	. 214
-150.	.997	. 444	-206.6	. 163	. 1035	$-200$.	. 357	. 237	$-150$.	2.00	. 348
$-100$.	1.400	. 623	-192.9	. 249	. 1580	$-150$.	. 638	. 424	$-100$.	2.90	. 504
- 77.6	1.564	. 696	-150.	. 567	. 359	$-100$.	. 916	. 608	- 77.8	3.97	. 691
- 50.	1.813	. 806	$-100$.	. 904	. 573	$-76.8$	1.040	.690	-50 .	4.04	. 703
0.	2.247	1.00	- 50.	1.240	. 786	- 50.	1.212	. 805	0.	5.75	1.00
100.	2.97	1.32	0.	1.578	1.00	0.	1.506	1.00	100.	7.95	1.38
200.	3.83	1.70	100.	2.28	1.44	100.	2.15	1.43	300.	13.25	2.30
500.	6.62	2.94	200.	2.96	1.88	200.	2.80	1.86	415.	17.00	2.96
750.	9.35	4.16	500.	5.08	3.22	400.	3.46	2.30	427.	37.30	6.49
1000.	12.54	5.58	750.	7.03	4.46	750.	6.65	4.42	450.	37.08	6.46
1063.	13.50	6.01	1000.	9.42	5.97	960.	8.4	5.58	500.	36.60	6.36
1063.	30.82	13.7	1083.	10.20	6.47	960.	16.6	11.0	600.	35.90	6.25
1200.	32.8	14.6	1083.	21.30	13.5	1000.	17.01	11.3	700.	35.60	6.19
1400.	35.6	15.8	1200.	22.30	14.1	1200.	19.36	12.9	800.	35.60	6.19
1500.	37.0	16.5	1400.	23.86	15.1	1400.	21.72	14.4	850.	35.74	6.21
			1500.	24.62	15.6	1500.	23.0	15.3			
Mercury			Potassium			Sodium			Iron		
${ }^{\circ} \mathrm{C}$	$\mathrm{P}_{8}$	$\rho_{t}$	${ }^{\circ} \mathrm{C}$	$\rho_{t}$		${ }^{\circ} \mathrm{C}$	$\rho_{t}$		${ }^{\circ} \mathrm{C}$	$\rho_{1}$	$\frac{\rho_{t}}{\rho_{0}}$
		$\rho_{0}$		$\rho_{8}$	$\rho_{0}$		$\rho_{1}$	$\rho_{0}$			
-200.	5.38	. 057	-200.	1.720	. 246	-200.	. 605	. 137	-252.7	. 011	. 0010
$-150$.	10.30	. 109	- 150.	2.654	. 379	$-150$.	1.455	. 330	$-200$.	. 57	. 053
-100.	15.42	. 164	- 100.	3.724	. 532	$-100$.	2.380	. 541	-192.5	. 844	. 079
- 50.	21.4	. 227	$-50$.	5.124	. 732	- 50.	3.365	. 764	$-100$.	5.92	. 554
- 30.	91.7	. 975	0.	7.000	1.00	0.	4.40	1.000	$-75.1$	6.43	. 602
0.	94.1	1.000	20.	7.116	1.016	20.	4.873	1.107	- 50.	8.15	. 763
50.	98.3	1.045	60.	8.790	1.256	93.5	6.290	1.429	- 0.	10.68	1.00
100.	103.1	1.096	65.	13.40	1.914	100.	9.220	2.095	100.	16.61	1.554
200.	114.0	1.212	100.	15.31	2.187	120.	9.724	2.209	200.	24.50	2.293
300.	127.0	1.350	120.	16.70	2.386	140.	10.34	2.349	400.	43.29	4.052
Manganin			German silver			Constantan			90\%	Pt 10\%\%	Rh
		$\rho_{1}$			$\rho_{i}$			$\rho_{t}$			$\rho_{t}$
${ }^{\circ} \mathrm{C}$	$\rho_{1}$	$\rho_{0}$	${ }^{\circ} \mathrm{C}$	$\rho_{8}$	$\rho_{0}$	${ }^{\circ} \mathrm{C}$	$\rho_{t}$	$\rho_{0}$	${ }^{\circ} \mathrm{C}$	$\rho_{1}$	$\rho_{0}$
$-200$.	37.8	. 974	$-200$.	27.9	. 930	-200.	42.4	. 961	-200.	14.49	. 685
$-150$.	38.2	. 985	$-150$.	28.7	. 957	-150.	43.0	. 975	$-150$.	16.29	. 770
$-100$.	38.5	. 992	$-108$.	29.3	. 977	$-100$.	43.5	. 986	$-100$.	18.05	. 854
- 50.	38.7	. 997	-- 50.	29.7	. 990	- 50.	43.9	. 995	- 50.	19.66	. 930
$\theta$.	38.8	1.000	0.	-30.0	1.000	0.	44.1	1.000	0.	21.14	1.000
100.	38.9	1.003	100.	33.1	1.103	100.	44.6	1.012	100.	24.20	1.145
400.	38.3	. 987				400.	44.8	1.016			

TABLE 398.-RESISTIVITIES AT HIGH AND LOW TEMPERATURES (concluded) (Ohm-cm unless stated otherwise.)

Platinum			Lead			Bismuth			Cadmium		
		$\rho_{t}$			$\rho_{i}$			$\rho_{t}$			$\rho_{i}$
${ }^{\circ} \mathrm{C}$	$\rho_{8}$	$\rho_{0}$	${ }^{\circ} \mathrm{C}$	$\rho_{8}$	$\rho_{0}$	${ }^{\circ} \mathrm{C}$	$\rho_{t}$	$\rho_{0}$	${ }^{\circ} \mathrm{C}$	$\rho_{1}$	$\rho_{0}$
-265.	. 10	. 0092	-252.9	. 59	. 0298	-200.	34.8	. 314	-252.9	. 17	. 0218
-25.3.	. 15	. 014	-203.	4.42	. 223	-150 .	55.3	. 499	--200.	1.66	. 214
-233.	. 54	. 049	-192.8	5.22	. 264	$-100$.	75.6	. 683	-190.2	2.00	2.58
-153.	4.18	. 378	$-103$.	11.8	. 598	- 50.	94.3	. 852	-183.1	2.22	. 286
- 73.	7.83	. 708	- 75.8	13.95	. 705	0.	110.7	1.00	-139.2	3.60	. 464
0.	11.05	1.00	$-53$.	15.7	. 792	17.	120.0	1.083	-100 .	4.80	. 619
100.	14.1	1.28	0.	19.8	1.00	100.	156.5	1.413	0.	7.75	1.00
200.	17.9	1.62	100.	27.8	1.403	200.	214.5	1.937	300.	16.50	2.13
400.	25.4	2.30	200.	38.0	1.919	259.	267.0	2.411	325.	33.76	4.35
800.	40.3	3.65	319.	50.0	2.52	263.	127.5	1.150	350.	33.60	4.33
1000.	47.0	4.25	333.	95.9	4.80	300.	128.9	1.164	400.	33.70	4.35
1200.	52.7	4.77	400.	98.3	4.96	500.	139.9	1.263	500.	35.12	4.40
1400.	58.0	5.25	600.	107.2	5.41	700.	150.8	1.361	700.	35.78	4.62
1600.	63.0	5.70	800.	116.2	5.86	750.	153.5	1.386			
Tin			Carbon, graphite *			Fused silica			Alundum cement		
		$\rho_{t}$	${ }^{\circ} \mathrm{C}$	$\rho$ in ohms-cm					${ }^{\circ} \mathrm{C}$		$\rho$ in ohms. cm
${ }^{\circ} \mathrm{C}$	$\rho$ \%	$\rho_{0}$				${ }^{\circ} \mathrm{C} \quad \rho=$ megohms-cm					
$-200$.	2.60	. 199	Carbon Graphite			$\begin{array}{rr}15 . & >200,000,000 . \\ 230 .\end{array}$			20.		$>9 \times 10^{\circ}$
$-100$.	7.57	. 580	0.	. 0035	. 00080				800.		30800.
0.	13.05	1.00	500.	. 0027	. 00083	$\begin{array}{lr}3300 . & 200.000 . \\ 350 . & 30,000 .\end{array}$			900.		13600.
200.	20.30	1.55	1000.	. 0021	. 00087				1000.		7600.
225.	22.00	1.69	1500.	. 0015	. 00090	450.		80.			6500.2300.
235.	47.60	3.65	2000.	. 0011	. 00100	700.		30.	1200.		
750.	61.22	4.69	2500.	. 0009	. 0011	850.		bout 20.	1600.		190.

TABLE 399.-SUPERCONDUCTIVITY OF SOME METALS ${ }^{145}$

Metal	$\mathrm{T}^{\circ} \mathrm{K}$	Metal	$\mathrm{T}^{\circ} \mathrm{K}$	Metal	$\mathrm{T}^{\circ} \mathrm{K}$
Nb	9.22	In	3.38	U	. 75
Pb	7.2	Re	2.57*	Os	. 71
La	5.2	Tl	2.4	Zr	.54*
Ta	4.4	Th	1.32	Cd	. 54
V	4.3	Al	1.15	Ti	. $53{ }^{\dagger}$
Hg	4.15	Ga	1.12	Ru	. 47
Sn	3.71	Zn	. $95^{\dagger}$	Hf	. 35

145 Smith, Thomas S., Ohio State University, private communication.

* Daunt. J. G., and Smith, T. S. †Daunt, J. G., and Heer, C. V., Phys. Rev., vol. 76, pp. 719 and 1324, 1948.

TABLE 400.-SUPERCONDUCTIVITY OF SOME ALLOYS AND COMPOUNDS ${ }^{146}$

NbC	$10.1{ }^{\circ} \mathrm{K}$	$\mathrm{Pb}-\mathrm{As} \mathrm{alloy}$.	$8.4{ }^{\circ} \mathrm{K}$	PbS	$4.1{ }^{\circ} \mathrm{K}$	$\mathrm{W}_{2} \mathrm{C}$	$2.05{ }^{\circ} \mathrm{K}$
TaC	9.2	MoC	7.7	$\mathrm{Hg}_{5} \mathrm{Tl}_{7}$		$\mathrm{Au}_{2} \mathrm{Bi}$	
$\mathrm{Pb}-\mathrm{As}-\mathrm{Bi}$	9.0	$\mathrm{N}_{2} \mathrm{~Pb} 5$	7.2	ZrB	2.82	CuS	1.6
$\mathrm{Pb}-\mathrm{Bi}-\mathrm{Sb}$	8.9	$\mathrm{Bin}_{0} \mathrm{Tl}_{3}$	6.5	WC	2.8	TiN	1.4
$\mathrm{Pb}-\mathrm{Sn}-\mathrm{Bi}$	8.5	$\mathrm{Sb}_{2} \mathrm{Tl}_{7}$	5.5	$\mathrm{Mo}_{2} \mathrm{C}$	2.4	VN	1.3
		TaSi ....	4.2			TiC	1.1

[^175]
## TABLE 401.-VOLUME AND SURFACE RESISTANCE OF SOLID DIELECTRICS

The resistance between two conductors insulated by a solid dielectric depends both upon the surface resistance and the volume resistance of the insulator. The volume resistivity, $\rho$, is the resistance between two opposite faces of a centimeter cube. The surface resistivity, $\sigma$, is the resistance between two opposite edges of a centimeter square of the surface. The surface resistivity usually varies through a wide range with the humidity.

| Material |
| :--- | :--- | :--- |

## TABLE 402.-ELECTRICAL RESISTIVITY OF SOME OXIDES AND miscellaneous minerals *

Material	Resistivity ohm-cm	Material	Resistivity
Graphite, commercial		Sulfur	$10^{14}$
electrodes (density $=1.5$ )	. $001-.0013$	$\mathrm{PbO}_{2}$, synthetic	. 000092
Hematite, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, mineral. .	. $35-.7$	$\mathrm{MnO}_{2}$, synthetic	6
Iron, metalic, meteoric ...	$2.4-3.2 \times 6^{-6}$ ?	$\mathrm{W}_{2} \mathrm{O}_{5}$	. 00045
Rock salt, pure impure	$\begin{aligned} & 10^{9}-10^{7} \\ & 10^{\circ} \end{aligned}$	$\mathrm{WO}_{3}$	$2 \times 10^{5}$

* For reference, see footnote 45, p. 136.

TABLE 403.-ELECTRICAL RESISTIVITY OF ROCKS AND SOILS*

Igneous rocks	Resistivity ohm-cm	Sedimentary rocks	Resistivity
Granite	$10^{7}-10^{\circ}$	Limestone	$10^{4}$
Lava flow (basic)	$10^{8}-10^{7}$	Limestone, Cambrian	$10^{4}-10^{5}$
Lava, fresh	$3 \times 10^{5}-10^{6}$	Sandstone, eastern	$3 \times 10^{3}-10^{4}$
Quartz vein, massive	$>10^{\circ}$	Sandstone	
Metamorphic rocks	$\begin{aligned} & \text { Resistivity } \\ & \text { ohm-cm } \end{aligned}$	Unconsolidated materials	Resistivity
Marble, white	$\begin{aligned} & 10^{10} \\ & 4 \times 10^{5} \end{aligned}$	Clay, blue ..............	$\begin{gathered} \text { ohm-cm } \\ 2 \times 10^{4} \end{gathered}$
Marble ${ }^{\text {Marble, }}$ yellow	${ }_{10}^{4 \times 10^{10}}$	Clay, blue earth	$10^{4}-4 \times 10^{4}$
Schist, mica ..	$10^{7}$	Clay, fire	$2 \times 10^{5}$
Shale, Nonesuch	$10^{4}$	Gravel	
Shale, bed	$10^{5}$	Sand, dry Sand,	$\begin{aligned} & 10^{5}-10^{6} \\ & 10^{5}-10^{6} \end{aligned}$

[^176]TABLE 404.-RESISTIVITY OF SOILS AND SEA WATER MEASURED WITH HIGH-FREQUENCY ALTERNATING CURRENT*

Material	Frequency kilocycles/sec	Resistivity ohm/cm	Material	Frequency kilocycles/sec	Resistivity ohm/cm
Soil, very dry Topsoil, dry	1 to 10,000	$10^{7}$	Clay, dry	37,000	60,000
	37,000	7,000	Chalk   (moisture, 24\%)	100	33,000
				1,200	22,000
				10,000	14,000
Loam, dark (moisture, $60 \%$ )			Sea water	100	21
	100	2,600		1,200	21
	1,200	2,300		10,000	16.5
	10,000	1,500			

* For reference, see footnote 45, p. 136.


## TABLE 405.-ELECTRICAL RESISTIVITY OF NATURAL WATERS*

Material	Resistivity ohm-cm	Material	Resistivity ohm-cm
Very fresh distilled waters	$2 \times 10^{7}$	Potable ground waters	$10^{3}-10^{5}$
Mine waters	500	Surface waters.	$10^{5}$

* For reference, see footnote 45, p. 136.


## TABLE 406.-RESISTIVITY OF SOME GLASSES AT THREE TEMPERATURES ${ }^{147}$

Glass	Principal use	Density	Log 10		
			$\overbrace{\substack{\text { Volume resistivity } \\ \text { (ohm }-\mathrm{cm})}}$		$350{ }^{\circ} \mathrm{C}$
			$25^{\circ} \mathrm{C}$	$250{ }^{\circ} \mathrm{C}$	
Potash soda lead	Lamp tubing	2.85	17.+	8.9	7.0
Soda lime .....	Lamp bulbs	2.47	12.4	6.4	5.1
Potash soda lead	Lamp tubing	3.05	17.+	10.1	8.0
Hard Lime .....	Cooking utensils	2.53	17.+	11.4	9.4
Borosilicate .	Kovar sealing	2.28	17.	9.2	7.4
Borosilicate .	Low loss electrical	2.13	17. +	11.2	9.1
Borosilicate . .	Baking ware	2.24	15.	8.2	6.7
Pyrex .....	General	2.23	15.	8.1	6.6
Vycor	Low expansion ultraviolet transmission	2.18	17.+	11.2	9.2
Fused quartz		2.20			10.48

[^177]
## TABLE 407.-CONDUCTIVITY OF ELECTROLYTIC SOLUTIONS

In these tables $m$ represents the number of gram molecules to the liter of water in the solution for which the conductivities are tabulated. The conductivities were obtained by measuring the resistance of a cell filled with the solution by means of a Wheatstone bridge alternating current and telephone arrangement. The results are for $18^{\circ} \mathrm{C}$, and relative to mercury at $0^{\circ} \mathrm{C}$, the cell having been standardized by filling with mercury and measuring the resistance. They are supposed to be accurate to within one percent of the true value.

The tabular numbers were obtained from the measurements in the following manner:
Let $K_{18}=$ conductivity of the solution at $18^{\circ} \mathrm{C}$ relative to mercury at $0^{\circ} \mathrm{C}$.
$K^{{ }^{*}}{ }_{18}=$ conductivity of the solvent water at $18^{\circ} \mathrm{C}$ relative to mercury at $0^{\circ} \mathrm{C}$.
Then $K_{18}-K^{{ }^{\star}}{ }_{18}=k_{18}=$ conductivity of the electrolyte in the solution measured.
$\frac{k_{18}}{m}=\mu=$ conductivity of the electrolyte in the solution per molecule, or the "specific molecular conductivity."

## Part 1.-Value of $k_{18}$ for a few electrolytes

This short table illustrates the apparent law that the conductivity in very dilute solutions is proportional to the amount of salt dissolved.

$m$	KCl	NaCl	$\mathrm{AgNO}_{3}$	$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{~K}_{2} \mathrm{SO}_{4}$	$\mathrm{MgSO}_{4}$
.00001	1216	1.024	1080	.939	1.275	1.056
.00002	2.434	2.056	2.146	1.886	2.532	2.104
.00006	7.272	6.162	6.462	5.610	7.524	6.216
.0001	12.09	10.29	10.78	9.34	12.49	10.34

Part 2.-Electrochemical equivalents and normal solutions
The following table of the electrochemical equivalent numbers and the densities of approximately normal solutions of the salts quoted in Table 409 may be convenient. They represent g per $\mathrm{cm}^{3}$ of the solution at the temperature given.

Salt dissolved	g per 1	$m$	${ }^{\text {Temp. }}$ C.	Density	Salt disso.'ved	g per 1	m		Density
KCl	74.59	1.0	15.2	1.0457	${ }_{2}^{1} \mathrm{~K}_{2} \mathrm{SO}_{4}$	87.16	1.0	18.9	1.0658
$\mathrm{NH}_{4} \mathrm{Cl}$	53.55	1.0009	18.6	1.0152	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$	71.09	1.0003	18.6	1.0602
NaCl	58.50	1.0	18.4	1.0391	${ }_{2} \mathrm{Li}_{2} \mathrm{SO}_{4}$	55.09	1.0007	186	1.0445
LiCl	42.48	1.0	18.4	1.0227	${ }_{2} \mathrm{MgSO}_{4}$	60.17	1.0023	186	1.0573
$\frac{1}{2} \mathrm{BaCl}_{3}$	104.0	1.0	18.6	1.0888	${ }_{2} \mathrm{ZnSO}_{4}$	80.58	1.0	5.3	1.0794
${ }_{2} \mathrm{ZnCl}_{3}$	68.0	1.012	15.0	1.0592	$\frac{1}{2} \mathrm{CuSO}_{4}$	79.9	1.001	18.2	1.0776
KI	165.9	1.0	18.6	1.1183	${ }_{2}^{1} \mathrm{~K}_{2} \mathrm{CO}_{3}$	69.17	1.0006	18.3	1.0576
$\mathrm{KNO}_{3}$	101.17	1.0	18.6	1.0601	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$	53.04	1.0	17.9	1.0517
$\mathrm{NaNO}_{3}$	85.08	1.0	18.7	1.0542	KOH	56.27	1.0025	18.8	1.0477
$\mathrm{AgNO}_{3}$	169.9	1.0	--	-	HCl	35.51	1.0041	18.6	1.0161
${ }_{2}^{1} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	65.28	. 5			$\mathrm{HNO}_{3}$	6313	1.0014	18.6	1.0318
$\mathrm{KClO}_{3}$	61.29	. 5	18.3	1.0367	$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO} 4$	49.06	1.0006	18.9	1.0300
$\mathrm{KC}_{3} \mathrm{H}_{3} \mathrm{O}_{2}$	98.18	1.0005	18.6	1.0467					

## TABLE 408.-TEMPERATURE COEFFICIENTS OF CONDUCTIVITY

The temperature coefficient in general diminishes with dilution, and for very dilute solutions appears to approach a common value. The following table gives the temperature coefficient for solutions containing 0.01 gram molecule of the salt.


TABLE 409.-SPECIFIC MOLECULAR CONDUCTIVITY OF SOLUTIONS
Mercury $=10^{8} /($ ohm-cm $)$

Salt dissolved	$m=10$	5	3	1	. 5	. 1	. 05	. 03	. 01
$\frac{1}{2} \mathrm{~K}_{2} \mathrm{SO}_{4}$	-	-	-	-	672	736	897	959	1098
KCl	-	-	827	919	958	1047	1083	1107	1147
KI	-	770	900	968	997	1069	1102	1123	1161
$\mathrm{NH}_{4} \mathrm{Cl}$	-	752	825	907	948	1035	1078	1101	1142
$\mathrm{KNO}_{3}$	-	-	572	752	839	983	1037	1067	1122
$\frac{1}{2} \mathrm{BaCl}_{2}$	-	-	487	658	725	861	904	939	1006
$\mathrm{KClO}_{3}$	-	-	-	-	799	927	(976)	1006	1053
$\frac{1}{2} \mathrm{BaN}_{2} \mathrm{O}_{6}$	-	-	-	-	531	755	828	(870)	951
$\frac{1}{2} \mathrm{CuSO}_{4}$	-		150	241	288	424	479	537	675
$\mathrm{AgNO}_{3}$	-	351	448	635	728	886	936	(966)	1017
$\frac{1}{2} \mathrm{ZnSO}_{4}$	-	82	146	249	$30 ?$	431	500	556	685
$\frac{1}{2} \mathrm{MgSO}_{4}$	-	82	151	270	330	474	532	587	715
$\frac{1}{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$	-		-	475	559	734	784	828	906
$\frac{1}{2} \mathrm{ZnCl}_{2}$	60	180	280	514	601	768	817	851	915
NaCl	-	398	528	695	757	865	897	(920)	962
$\mathrm{NaNO}_{3}$	-	-	430	617	694	817	855	877	907
$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	30	240	381	594	671	784	820	841	879
$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$	-	-	254	427	510	682	751	799	899
${ }_{2}^{\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}}$	660	1270	1560	1820	1899	2084	2343	2515	2855
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	. 5	2.6	5.2	12	19	43	62	79	132
HCl	600	1420	2010	2780	3017	3244	3330	3369	3416
$\mathrm{HNO}_{3}$	610	1470	2070	2770	2991	3225	3289	3328	3395
${ }_{\frac{1}{3} \mathrm{H}_{3} \mathrm{PO}_{4}}$	148	160	170	200	250	430	540	620	790
KOH	423	990	1314	1718	1841	1986	2045	2078	2124
$\mathrm{NH}_{3}$	. 5	2.4	3.3	8.4	12	31	43	50	92
Salt dissolved	. 006	. 002	. 001	. 0006	. 0002	. 0001	. 00006	. 00002	. 00001
${ }_{2}^{1} \mathrm{~K}_{2} \mathrm{SO}_{4}$	1130	1181	1207	1220	1241	1249	1254	1266	1275
KCl	1162	1185	1193	1199	1209	1209	1212	1217	1216
KI	1176	1197	1203	1209	1214	1216	1216	1216	1207
$\mathrm{NH}_{4} \mathrm{Cl}$	1157	1180	1190	1197	1204	1209	1215	1209	1205
$\mathrm{KNO}_{3}$	1140	1173	1180	1190	1199	1207	1220	1198	1215
${ }_{2}^{\frac{1}{2}} \mathrm{BaCl}_{2}$	1031	1074	1092	1102	1118	1126	1133	1144	1142
$\mathrm{KClO}_{3}$	1068	1091	1101	1109	1119	1122	1126	1135	1141
$\frac{1}{2} \mathrm{BaN}_{2} \mathrm{O}_{6}$	982	1033	1054	1066	1084	1096	1100	1114	1114
$\frac{1}{2} \mathrm{CuSO}_{4}$	740	873	950	987	1039	1062	1074	1084	1086
$\mathrm{AgNO}_{3}$	1033	1057	1068	1069	1077	1078	1077	1073	1080
$\frac{1}{2} \mathrm{ZnSO}_{4}$	744	861	919	953	1001	1023	1032	1047	1060
$\frac{1}{3} \mathrm{MgSO}_{4}$	773	881	935	967	1015	1034	1036	1052	1056
$\frac{1}{3} \mathrm{Na}_{2} \mathrm{SO}_{4}$	933	980	998	1009	1026	1034	1038	1056	1054
${ }_{3}^{1} \mathrm{ZnCl}_{2}$	939	979	994	1004	1020	1029	1031	1035	1036
NaCl	976	998	1008	1014	1018	1029	1027	1028	1024
$\mathrm{NaNO}_{3}$	921	942	952	956	966	975	970	972	975
$\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	891	913	919	923	933	934	935	943	939
${ }_{\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}}$	956	1010	1037	1046	988	874	790	715	697*
${ }_{2}^{\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}}$	3001	3240	3316	3342	3280	3118	2927	2077	1413*
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	170	283	380	470	796	995	1133	1328	1304*
HCl	3438	3455	3455	3440	3340	3170	2968	2057	1254*
$\mathrm{HNO}_{3}$	3421	3448	3427	3408	3285	3088	2863	1904	1144*
$\frac{1}{3} \mathrm{H}_{3} \mathrm{PO}_{4}$	858	945	968	977	920	837	746	497	402*
KOH	2141	2140	2110	2074	1892	1689	1474	845	747*
$\mathrm{NH}_{3}$	116	190	260	330	500	610	690	700	560*

[^178]
## TABLE 410.-LIMITING VALUES OF $\mu$, THE SPECIFIC MOLECULAR CONDUCTIVITY

This table shows limiting values of $\mu=\frac{k}{m} \cdot 10^{8}$ for infinite dilution for neutral salts, calculated from Table 409.

Salt	${ }^{\mu}$	Salt	${ }^{\mu}$	Salt	${ }^{\mu}$	Salt	${ }^{\mu}$
${ }_{2}^{1} \mathrm{~K}_{2} \mathrm{SO}_{4}$	1280	$\frac{1}{2} \mathrm{BaCl}_{2}$	1150	$\frac{1}{2} \mathrm{MgSO}_{4}$	1080	$\frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4}$	3700
KCl	1220	${ }_{2}^{1} \mathrm{KClO}_{3}$	1150	${ }_{2}^{1} \mathrm{Na}_{2} \mathrm{SO}_{4}$	1060	$\mathrm{HCl}^{\text {a }}$.	3500
KI	1220	${ }_{2}^{1} \mathrm{BaN}_{2} \mathrm{O}_{6}$	1120	$\frac{1}{2} \mathrm{ZnCl}_{2}$	1040	$\mathrm{HNO}_{3}$	3500
$\mathrm{NH}_{4} \mathrm{Cl}$	1210	${ }_{2}^{1} \mathrm{CuSO}_{4}$	1100	NaCl	1030	${ }_{3} \mathrm{H}_{3} \mathrm{PO} \mathrm{S}_{4}$	1100
$\mathrm{KNO}_{3}$	1210	$\mathrm{AgNO}_{3}$	1090	$\mathrm{NaNO}_{3}$	980	KOH	2200
		$\frac{1}{2} \mathrm{ZnSO}_{4}$	1080	$\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	940	$\frac{1}{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$	1400

TABLE 411.-THE EQUIVALENT CONDUCTIVITY OF THE SEPARATE IONS

Ion	$0^{\circ} \mathrm{C}$	$18^{\circ}$	$25^{\circ}$	$50^{\circ}$	$75^{\circ}$	$100^{\circ}$	$128^{\circ}$	$156^{\circ}$
K	40.4	64.6	74.5	115	159	206	263	317
Na	26	43.5	50.9	82	116	155	203	249
$\mathrm{NH}_{4}$	40.2	64.5	74.5	115	159	207	264	319
Ag	32.9	54.3	63.5	101	143	188	245	299
${ }_{2}^{1} \mathrm{Ba}$	33	$55^{2}$	65	104	149	200	262	322
${ }_{2}^{1} \mathrm{Ca}$	30	$51^{2}$	60	98	142	191	252	312
$\frac{1}{5} \mathrm{La}$	35	61	72	119	173	235	312	388
Cl	41.1	65.5	75.5	116	160	207	264	318
$\mathrm{NO}_{3}$	40.4	61.7	70.6	104	140	178	222	263
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	20.3	34.6	40.8	67	96	130	171	211
$\frac{1}{2} \mathrm{SO}_{4}$	41	$68^{2}$	79	125	177	234	303	370
${ }_{\frac{1}{2}}^{1} \mathrm{C}_{2} \mathrm{O}_{4}$	39	$63^{2}$	73	115	163	213	275	336
$\frac{1}{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	36	60	70	113	161	214		
${ }_{4}^{1} \mathrm{Fe}(\mathrm{CN})$ 。	58	95	111	173	244	321		
H	240	314	350	465	565	644	722	777
OH	105	172	192	284	360	439	525	592

TABLE 412.-HYDROLYSIS OF AMMONIUM ACETATE AND IONIZATION OF WATER

Temperature	Percentage hydrolysis	Ioniza. tion constant of water	Hydrogen-ion concentration in pure water Equivalents per liter	Temperature	Percentage hydrolysis	Ionization constant of water	Hydrogen-ion concentration in pure water Equivalents per liter
$t$	$100{ }_{\text {h }}$	$\mathrm{K}_{\mathrm{w}} \times 10^{14}$	$\mathrm{C}_{\mathrm{H}} \times 10^{7}$	$t$	$100{ }_{h}$	$\mathrm{K}_{\mathrm{W}} \times 10^{14}$	$\mathrm{C}_{\mathrm{H}} \times 10^{7}$
$0^{\circ} \mathrm{C}$	-	. 089	. 30	$100^{\circ} \mathrm{C}$	4.8	48.	6.9
18	(.35)	. 45	. 68	156	18.6	223.	14.9
25	)	. 82	. 91	218	52.7	461.	21.5
				306	91.5	168.	13.0

## TABLE 413.-THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS, AND BASES IN AQUEOUS SOLUTIONS

In the following table the equivalent conductance is expressed in reciprocal ohms. The concentration is expressed in milli-equivalents of solute per liter of solution at the temperature to which the conductance refers. (In the cases of potassium hydrogen sulfate and phosphoric acid the concentration is expressed in milli-formula-weights of solute, $\mathrm{KHSO}_{4}$ or $\mathrm{H}_{3} \mathrm{PO}_{4}$, per liter of solution, and the values are correspondingly the modal, or "formal," conductances.) Except in the cases of the strong acids the conductance of the water was substracted, and for sodium acetate, ammonium acetate and ammonium chloride the values have been corrected for the hydrolysis of the salts.

$$
\begin{gathered}
\text { Concentration in } \frac{\mathrm{g} \text { equivalents }}{10001} \text {. } \\
\text { Equivalent conductance in } \frac{\text { reciprocal ohm }-\mathrm{cm}}{\mathrm{~g} \text { equivalents per } \mathrm{cm}^{\mathrm{x}}} \text {. }
\end{gathered}
$$



TABLE 413.-THE EQUIVALENT CONDUCTIVITY OF SALTS, ACIDS, AND BASES IN AQUEOUS SOLUTIONS (concluded)

Substance	Concen tration		$25^{\circ}$	$50^{\circ}$	$75^{\circ}$	$100^{\circ}$	$128^{\circ}$	$156^{\circ}$	$218^{\circ}$	$281^{\circ}$	$300^{\text {a }}$
		$18^{\circ}$									
Potassium sulfate.	0	132.8		-	-	455	-	715	1065	1460	1725
	2	124.8			-	402	-	605	806	893	867
" "	10	115.7			-	365	-	537	672	687	637
" "	40	104.2		-	-	320	-	455	545	519	466
" " ....	80	97.2	-	-	-	294	-	415	482	448	396
" " ....	100	95.0				286					
Hydrochloric	0	379.0				850	-	1085	1265	1380	1424
	2	373.6			-	826		1048	1217	1332	1337
" "	10	368.1		-	-	807	-	1016	1168	1226	1162
" "	80	353.0				762	-	946	1044	1046	862
Nitric acid.	100	350.6				754		929	1006		
	0	377.0	421.0	570	706	826	945	1047	(1230)	-	(1380
	2	371.2	413.7	559	690	806	919	1012	1166	-	1156
"	10	365.0	406.0	548	676	786	893	978			
"	50	353.7	393.3	528	649	750	845	917			
" "	100	346.4	385.0	516	632	728	817	880		-	454*
Sulfuric acid	0	383.0	(429)	(591)	(746)	891	(1041)	1176	1505	-	(2030)
	2	353.9	390.8	501	561	571	551	536	563	-	637
"	10	309.0	337.0	406	435	446	460	481	533		
" "	50	253.5	273.0	323	356	384	417	448	502		
" "....... .	100	233.3	251.2	300	336	369	404	435	483	-	474
Postassium hydrogensulfate ....................	2	455.3	506.0	661.0	754	784	773	754			
	50	295.5	318.3	374.4	403	422	446	477			
	100	263.7	283.1	329.1	354	375	402	435			
Phosphoric acid......	0	338.3	376	510	631	730	839	930			
	2	283.1	311.9	401	464	498	508	489			
"، "، ${ }^{\text {"..... }}$	10	203.0	222.0	273	300	308	298	274			
"، " ${ }^{\text {a }}$.....	50	122.7	132.6	157.8	168.6	168	158	142			
" ${ }^{\text {" }}$	100	96.5	104.0	122.7	129.9	128	120	108			
Acetic acid.	0	(347.0)	-	-	-	(773)	-	(980)	(1165)		(1268)
	10	14.50 8.50	-	-	-	25.1	-	22.2	14.7		
" ${ }^{\text {" }}$	30	8.50			-	14.7		13.0	8.65		
,	80	5.22	-			9.05		8.00	5.34		
Sodium	100	216.5	-	-	-	8.10 594	-	835	4.82 1060	-	1.57
	2	212.1			-	582		814			
"" "،	20	205.8				559	-	771	930		
" "	50	200.6				540		738	873		
Barium hydroxide.	0	222	256	389	(520)	645	(760)	847			
	2	215		359	4	591					
"، " ....	10	207	235	342	449	548	664	722			
"، " $\quad$....	50	191.1	215.1	308	399	478	549	593			
	10	$\begin{gathered} 180.1 \\ (238) \end{gathered}$	$\begin{gathered} 204.2 \\ (271) \end{gathered}$	$\begin{gathered} 291 \\ (404) \end{gathered}$	$\begin{gathered} 373 \\ (526) \end{gathered}$	$\begin{gathered} 443 \\ (647) \end{gathered}$	$\begin{gathered} 503 \\ (764) \end{gathered}$	$\begin{gathered} 531 \\ (908) \end{gathered}$	(1141)		(1406)
Ammonium hydroxide	10	9.66			(526)	23.2	-	22.3	15.6		
	30	5.66		-	6.70	13.6	-	13.0			
	100	3.10	3.62	5.35	6.70	7.47	-	7.17	4.82	-	1.33

[^179]
# TABLE 414.-THE EQUIVALENT CONDUCTIVITY OF SOME ADDITIONAL SALTS IN AQUEOUS SOLUTION 

Substance	Concentration	E'quivalent conductance at the following ${ }^{\circ} \mathrm{C}$ temperature							
		$0^{\circ}$	$18^{\circ}$	$25^{\circ}$	$50^{\circ}$	$75^{\circ}$	$100^{\circ}$	$128^{\circ}$	$156^{\circ}$
Potassium nitrate.	0	80.8	126.3	145.1	219	299	384	485	580
俍.	2	78.6	122.5	140.7	212.7	289.9	370.3	460.7	551
" "	12.5	75.3	117.2	134.9	202.9	276.4	351.5	435.4	520.4
" "	50	70.7	109.7	126.3	189.5	257.4	326.1	402.9	476.1
" "	100	67.2	104.5	120.3	180.2	244.1	308.5	379.5	447.3
Potassium oxalate	0	79.4	127.6	147.5	230	322	419	538	653
Potassium oxala	2	74.9	119.9	139.2	215.9	300.2	389.3	489.1	587
" "	12.5	69.3	111.1	129.2	199,1	275.1	354.1	438.8	524.3
" "	50	63	101	116.5	178.6	244.9	312.2	383.8	449.5
" "	100	59.3	94.6	109.5	167	227.5	288.9	353.2	409.7
" "	200	55.8	88.4	102.3	155	210.9	265.1	321.9	372.1
Calcium nitrate	0	70.4	112.7	130.6	202	282	369	474	575
Calum "	2	66.5	107.1	123.7	191.9	266.7	346.5	438.4	529.8
" "	12.5	61.6	98.6	114.5	176.2	244	314.6	394.5	473.7
" "	50	55.6	88.6	102.6	157.2	216.2	276.8	343	405.1
" "	100	51.9	82.6	95.8	146.1	199.9	255.5	315.1	369.1
" "	200	48.3	76.7	88.8	135.4	184.7	234.4	288	334.7
Potassium ferrocyani	0	98.4	159.6	185.5	288	403	527		
" "	$2^{.5}$	91.6 84.8	137	171.1 158.9	243.8	335.2	427.6		
" "	12.5	71	113.4	131.6	200.3	271	340		
" "	50	58.2	93.7	108.6	163.3	219.5	272.4		
" "	100	53	84.9	98.4	148.1	198.1	245		
" "	200	48.8	77.8	90.1	135.7	180.6	222.3		
" "	400	45.4	72.1	83.3	124.8	165.7	203.1		
Barium ferrocyanide		91	150	176	277	393	521		
	2	46.9	75	86.2	127.5	166.2	202.3		
" "	12.5	30.4	48.8	56.5	83.1	107	129.8		
Calcium ferrocyanide		88	146	171	271	386	512		
Calcium ferrocyanide	2	47.1	75.5	86.2	130				
" "	12.5	31.2	49.9	57.4					
" "	50	24.1	38.5	44.4	64.6	81.9			
" "	100	21.9	35.1	40.2	58.4	73.7	84.3		
" "	200	20.6	32.9	37.8	55	68.7	77.5		
" "	400	20.2	32.2	37.1	54	67.5	76.2		
Potassium citrate		76.4	124.6	144.5	228	320	420		
	0.5		120.1	139.4					
" "	2	71	115.4	134.5	210.1	293.8	381.2		
" "	5	67.6	109.9	128.2	198.7	276.5	357.2		
" "	12.5	62.9	101.8	118.7	183.6	254.2	326		
" "	50	54.4	87.8	102.1	157.5	215.5	273		
" "	100	50.2	80.8	93.9	143.7	196.5	247.5		
" "	300	43.5	69.8	81	123.5	167	209.5		
Lanthanum nitrate	0	75.4	122.7	142.6	223	313	413	534	651
	2	68.9	110.8	128.9	200.5	279.8	363.5	457.5	549
" "	12.5	61.4	98.5	114.4	176.7	243.4	311.2	383.4	447.8
" "	50	54	86.1	99.7	152.5	207.6	261.4	315.8	357.7
" "	100	49.9	79.4	91.8	139.5	189.1	236.7	282.5	316.3
" "	200	46	72.1	83.5	126.4	170.2	210.8	249.6	276.2

Every gram-atom involved in an electrolytic change requires the same number of coulombs, or ampere-hours of electricity, per unit change of valency. This constant is 96487.7 coulomb/g-atom, or 26.801 ampere-hours per g -atom hour, corresponding to an electrochemical equivalent of silver of $0.0011810 \mathrm{~g} \mathrm{sec}^{-1} \mathrm{amp}^{-1}$. It is to be noted that the change of valence of the element from its state before to that after the electrolytic action should be considered. The valence of a free, uncombined element is to be considered as 0 . The same current will electrolyze "chemically equivalent" quantities per unit time. The valence is then included in the "chemically equivalent" quantity.

Element	Change of valency	Mg per coulomb	Coulombs per mg	$\begin{gathered} \text { G per } \\ \text { amp hour } \end{gathered}$
Al	3	. 09317	10.733	. 3354
Cl		. 36749	2.7212	1.3230
	3	. 12250	8.1633	. 4410
"	. 5	. 07350	13.605	. 2646
"	. 7	. 05250	19.048	. 1890
Cu	. 1	. 6585	1.5186	2.3706
	2	. 3293	3.0367	1.1855
Au	. 1	2.044	. 4892	7.358
	. 3	. 6813	1.468	2.453
H	. 1	. 0104472	95.719	. 0376099
Pb	1	2.1476	. 46564	7.7314
"		1.07379	. 93128	3.8656
"	. 4	. 53690	1.8625	1.9328
Hg	. 1	2.0792	. 48095	7.4851
	. 2	1.0396	. 961908	3.7426
Ni	. 1	. 60828	1.6440	2.1898
	. 2	. 3041	3.2884	1.0948
"	. 3	. 20276	4.9319	. 7299
O	. 2	. 082914	12.0607	. 298490
	4	. 041457	24.1214	. 14945
Pt	2	1.01171	. 98843	3.6422
"	4	. 50585	1.97687	1.82107
"		. 33724	2.9652	1.2140
K	... 1	. 4052	2.4679	1.4587
Ag	. 1	1.11810	. 894374	4.02516
Na	. 1	. 23835	4.1955	. 85806
Sn	. 2	. 61512	1.6257	2.2144
"	. 4	. 30756	3.2514	1.1072
Zn	. 2	. 33881	2.9515	1.21972

The electrochemical equivalent for silver is $0.00111810 \mathrm{~g} \mathrm{sec}^{-1} \mathrm{amp}^{-1}$. For other elements the electrochemical equivalent $=$ (atomic weight divided by change of valency) and this divided by 96487.7 coulomb/g-atom.

## TABLE 416.-INTRODUCTION TO WIRE TABLES; MASS AND VOLUME RESISTIVITY OF COPPER AND ALUMINUM

The following wire tables are abridged from those prepared by the Bureau of Standards at the request and with the cooperation of the Standards Committee of the American Institute of Electrical Engineers. The standard of copper resistance used is "The International Annealed Copper Standard" as adopted Scptember 5, 1913, by the International Electrotechnical Commission and represents the average commercial high-conductivity copper for the purpose of electric conductors. This standard corresponds to a conductivity of $58 \times 10^{-5} \mathrm{emu}$, and a density of 8.89 , at $20^{\circ} \mathrm{C}$. In the various units of mass resistivity and volume resistivity this may be stated as

> 0.15328 ohm $(\mathrm{m}, \mathrm{g})$ at $20^{\circ} \mathrm{C}$
> 875.20 ohms $(\mathrm{mil}, \mathrm{bt})$ at $20^{\circ} \mathrm{C}$
> 1.7241 microhm- cm at $20^{\circ} \mathrm{C}$
> 0.6779 microhm-in. at $20^{\circ} \mathrm{C}$
> 10.371 ohms (mil, ft) at $20^{\circ} \mathrm{C}$

The temperature coefficient for this particular resistivity is $\alpha_{29}=0.00393$, or $\alpha_{0}=0.00427$. The temperature coefficient of copper is proportional to the conductivity, so that where the conductivity is known the temperature coefficient may be calculated, and vice versa. Thus the next table shows the temperature coefficients of copper having various percentages of the standard conductivity. A consequence of this relation is that the change of resistivity per degree is constant, independent of the sample of copper and independent of the temperature of reference. This resistivity-temperature constant, for volume resistivity and Centigrade degrees, is 0.00681 microhm-cm, and for mass resistivity is 0.000597 ohm ( $\mathrm{m}, \mathrm{g}$ ).
The density of 8.89 g per $\mathrm{cm}^{3}$ at $20^{\circ} \mathrm{C}$, is equivalent to 0.32117 lb per in. ${ }^{3}$
The values in the following tables are for annealed copper of standard resistivity. The user of the tables must apply the proper correction for copper of other resistivity. Harddrawn copper may be taken as about 2.7 percent higher resistivity than annealed copper.

The following is a fair average of the chemical content of commercial high conductivity copper :

Copper	99.91\%	Sulfur	.002\%
Silver	. 03	Iron	. 002
Oxygen	. 052	Nickel	trace
Arsenic	. 002	Lead	
Antimony	. 002	Zinc	

The following values are consistent with the data above:

R	$62.969 \times$
Resistivity at $0^{\circ} \mathrm{C}$, in microhm-cm	1.5881
Density at $0^{\circ} \mathrm{C}$	8.90
Coefficient of linear expansion per de	. 000017
"Constant mass" temperature coefficient of resistance at $0^{\circ} \mathrm{C}$	. 00427

The aluminum tables are based on a figure for the conductivity published by the National Bureau of Standards, which is the result of many thousands of determinations by the Aluminum Co. of America. A volume resistivity of 2.828 microhm- cm and a density of 2.70 may be considered to be good average values for commercial hard-drawn aluminum. These values give:

$$
\begin{aligned}
& \text { Conductivity at } 0^{\circ} \mathrm{C} \text { in emu.......................... } 38.36 \times 10^{-5} \\
& \text { Mass resistivity, in ohms ( } \mathrm{m}, \mathrm{~g} \text { ) at } 20^{\circ} \mathrm{C} \ldots \ldots . . . \\
& \text { Mass percent conductivity relative to copper......... } 200.7 \%
\end{aligned}
$$

The average chemical content of commercial aluminum wire is

Aluminum	99.57\%
Silicon	
Iron	14


$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	American wire gage mils*	American (B. \& S.) mm *	Steel wire gage $\dagger$ til mils	$\underset{\text { Steel wire }}{\text { gage } \dagger}$ mm	Stubs' steel wire gage $\xrightarrow{\text { gage }}$ mils	(British) standard wire gage mils	Birminggage, (Stubs mils	Gage No. No
7-0			490.0	12.4		500.		7-0
6-0			461.5	11.7		464.		6-0
5-0			430.5	10.9		432.		5-0
4-0	460.	11.7	393.8	10.0		400.	454.	40
3-0	410.	10.4	362.5	9.2		372.	425.	3-0
2-0	365.	9.3	331.0	8.4		348.	380.	2-0
0	325.	8.3	306.5	7.8		324.	340.	0
	289.	7.3	283.0	7.2	227.	300.	300.	1
2	258.	6.5	262.5	6.7	219.	276.	284.	2
3	229.	5.8	243.7	6.2	212.	252.	259.	3
4	204.	5.2	225.3	5.7	207.	232.	238.	4
5	182.	4.6	207.0	5.3	204.	212.	220.	5
6	162.	4.1	192.0	4.9	201.	192.	203.	6
7	144.	3.7	177.0	4.5	199.	176.	180.	7
8	128.	3.3	162.0	4.1	197.	160.	165.	8
9	114.	2.91	148.3	3.77	194.	144.	148.	,
10	102.	2.59	135.0	3.43	191.	128.	134.	10
11	91.	2.30	120.5	3.06	188.	116.	120.	11
12	81.	2.05	105.5	268	185.	104.	109.	12
13	72.	1.83	91.5	2.32	182.	92.	95.	13
14	64.	1.63	80.0	2.03	180.	80.	83.	14
15	57.	1.45	72.0	1.83	178.	72.	72.	15
16	51.	1.29	62.5	1.59	175.	64.	65.	16
17	45.	1.15	54.0	1.37	172.	56.	58.	17
18	40.	1.02	47.5	1.21	168.	48.	49.	18
19	36.	. 91	41.0	1.04	164.	40.	42.	19
20	32.	. 81	34.8	. 88	161.	36.	35.	20
21	28.5	. 72	31.7	. 81	157.	32.	32.	21
22	25.3	. 62	28.6	. 73	155.	28.	28.	22
23	22.6	. 57	25.8	. 66	153.	24.	25.	23
24	20.1	. 51	23.0	. 58	151.	22.	22.	24
25	17.9	. 45	20.4	. 52	148.	20.	20.	25
26	15.9	. 40	18.1	. 46	146.	18.	18.	26
27	14.2	. 36	17.3	. 439	143.	16.4	16.	27
28	12.6	. 32	16.2	. 411	139.	14.8	14.	28
29	11.3	. 29	15.0	. 381	134.	13.6	13.	29
30	10.0	. 25	14.0	. 356	127.	12.4	12.	30
31	8.9	. 227	13.2	. 335	120.	11.6	10.	31
32	8.0	. 202	12.8	. 325	115.	10.8	9.	32
33	7.1	. 180	11.8	. 300	112.	10.0	8.	33
34	6.3	. 160	10.4	. 264	110.	9.2	7.	34
35	5.6	. 143	9.5	. 241	108.	8.4	5.	35
36	5.0	. 127	9.0	. 229	106.	7.6	4.	36
37	4.5	. 113	8.5	. 216	103.	6.8		37
38	4.0	. 101	8.0	. 203	101.	6.0		38

[^180](continued)

TABLE 417.-TABULAR COMPARISON OF WIRE GAGES (concluded)

Gage	American wire gage (B. \& S.) mils *	American wire gage (B. \& S.) mm *	Steel wire gage † mils	Steel wire gage $\dagger$ mm	Stubs' steel wire gage mils	(British) standard wire gage mils	Birming. ham wire gage (Stubs') mils	Gage No.
39	3.5	. 090	7.5	. 191	99.	5.2		39
40	3.1	. 080	7.0	. 178	97.	4.8		40
41			6.6	. 168	95.	4.4		41
42			6.2	. 157	92.	4.0		42
43			6.0	. 152	88.	3.6		43
44			5.8	. 147	85.	3.2		44
45			5.5	. 140	81.	2.8		45
46			5.2	. 132	79.	2.4		46
47			5.0	. 127	77.	2.0		47
48			4.8	. 122	75.	1.6		48
49			4.6	. 117	72.	1.2		49
50			4.4	. 112	69.	1.0		50

## TABLE 418.-TEMPERATURE COEFFICIENTS OF COPPER FOR DIFFERENT INITIAL TEMPERATURES (CENTIGRADE) AND DIFFERENT CONDUCTIVITIES

$\begin{aligned} & \text { Ohms } \\ & \text { (m, }{ }^{(\mathrm{m})} \text { ) } \mathrm{at} 20^{\circ} \mathrm{C} \end{aligned}$	Percent conductivity	$a_{0}$	$a_{15}$	$a_{20}$	$a_{25}$	$a_{30}$	$a_{50}$
. 16134	95\%	. 00403	. 00380	. 00373	. 00367	. 00360	. 00336
. 15966	96\%	. 00408	. 00385	. 00377	. 00370	. 00364	. 00339
. 15802	97\%	. 00413	. 00389	. 00381	. 00374	. 00367	. 00342
. 15753	97.3\%	. 00414	. 00390	. 00382	. 00375	. 00368	. 00343
. 15640	98\%	. 00417	. 00393	. 00385	. 00378	. 00371	. 00345
. 15482	99\%	. 00422	. 00397	. 00389	. 00382	. 00374	. 00348
. 15328	100\%	. 04427	. 00401	. 00393	. 00385	. 00378	. 00352
. 15176	101\%	. 00431	. 00405	. 00397	. 00389	. 00382	. 00355

Note.-The fundamental relation between resistance and temperature is the following:

$$
R_{t}=R_{t_{1}}\left(1+a_{t_{1}}\left[t-t_{1}\right]\right),
$$

where $a_{t_{1}}$ is the "temperature coefficient," and $t_{1}$ is the "initial temperature" or "temperature of reference."

The values of $a$ in the above table exhibit the fact that the temperature coefficient of copper is proportional to the conductivity. The table was calculated by means of the following formula, which holds for any percent conductivity, $n$, within commercial ranges, and for centigrade temperatures. ( $n$ is considered to be expressed decimally: e.g., if percent conductivity $=99$ percent, $n=0.99$.)

$$
\alpha_{t_{1}}=\frac{1}{\frac{1}{n(0.00393)}+\left(t_{1}-20\right)} .
$$

TABLE 419.-REDUCTION OF OBSERVATIONS TO STANDARD TEMPERATURE (Copper)

Temper${ }^{\circ} \mathrm{Cture}$					Factors to reduce resistance to $20^{\circ} \mathrm{C}$			Temper ${ }^{\text {ature, }}$
	Corrections to reduce resistivity to $20^{\circ} \mathrm{C}$				For 96	For 98	For 100	
	Ohm (m, g)	$\underset{\substack{\text { Microhm- }}}{ }$	$\underset{(\mathrm{mi}, \mathrm{lb})}{\mathrm{Ohm}}$	$\begin{gathered} \text { Microhm- } \\ \text { in. } \end{gathered}$	conductivity	conductivity	conductivity	
0	+. 01194	+. 1361	+ 68.20	$+.05358$	1.0816	1.0834	1.0853	0
5	+. 00896	+. 1021	+ 51.15	+. 04018	1.0600	1.0613	1.0626	5
10	+. 00597	+. 0681	+ 34.10	+. 02679	1.0392	1.0401	1.0409	10
11	$+.00537$	+. 0612	+ 30.69	+. 02411	1.0352	1.0359	1.0367	11
12	+. 00478	+. 0544	+ 27.28	+. 02143	1.0311	1.0318	1.0325	12
13	+. 00418	$+.0476$	+ 23.87	+. 01875	1.0271	1.0277	1.0283	13
14	+. 00358	$+.0408$	+ 20.46	$+.01607$	1.0232	1.0237	1.0242	14
15	+. 00299	+. 0340	+ 17.05	+. 01340	1.0192	1.0196	1.0200	15
16	+. 00239	+. 0272	+13.64	+. 01072	1.0153	1.0156	1.0160	16
17	+. 00179	+. 0204	$+10.23$	+. 00804	1.0114	1.0117	1.0119	17
18	+. 00119	+. 0136	+ 6.82	+. 00536	1.0076	1.0078	1.0079	18
19	+. 00060	+. 0068	+ 3.41	+. 00268	1.0038	1.0039	1.0039	19
20	0	,		0	1.0000	1.0000	1.0000	20
21	-. 00060	$-.0068$	- 3.41	-. 00268	. 9962	. 9962	. 9961	21
22	-. 00119	-. 0136	6.82	-. 00536	. 9925	. 9924	. 9922	22
23	-. 00179	-. 0204	- 10.23	-. 00804	. 8888	. 9886	. 9883	23
24	-. 00239	-. 0272	$-13.64$	$-.01072$	. 9851	. 9848	. 9845	24
25	-. 00299	-. 0340	- 17.05	-. 01340	. 9815	. 9811	. 9807	25
26	-. 00358	-. 0408	- 20.46	-. 01607	. 9779	. 9774	. 9770	
27	-. 00418	-. 0476	- 23.87	-. 01875	. 9743	. 9737	. 9732	27
28	-. 00478	-. 0544	- 27.28	-. 02143	,9707	. 9701	. 9695	28
29	-. 00537	-. 0612	- 30.69	-. 02411			. 9658	29
30	-. 00597	-. 0681	- 34.10	-. 02679	. 9636	. 9629	. 9622	30
35	-. 00896	-. 1021	- 51.15	-. 04018	. 9464	. 9454	. 9443	35
40	-. 01194	-. 1361	- 68.20	-. 05358	. 9298	. 9285	. 9271	40
45	-. 01493	-. 1701	-85.25	-. 06698	. 9138	. 9122	. 9105	45
50	-. 01792	-. 2042	-102.30	-. 08037	. 8983	. 8964	. 8945	50
55	-. 02090	-. 2382	-119.35	$-.09376$	. 8833	. 8812	. 8791	55
60	-. 02389	-. 2722	-136.40	-. 10716	. 8689	. 8665	. 8642	60
65	-. 02687	-. 3062	-153.45	-. 12056	. 8549	. 8523	. 8497	65
70	-. 02986	-. 3403	-170.50	-. 13395	. 8413	. 8385	. 8358	70
75	$-.03285$	$-.3743$	$-187.55$	-. 14734	8281	. 8252	. 8223	75

## TABLE 420.-WIRE TABLE, STANDARD ANNEALED COPPER American wire gage (B. \& S.)

					Ohrns	er 1000 ft	
	Diameter	Cross section	$20^{\circ} \mathrm{C}$			$50^{\circ} \mathrm{C}$	
No.	at $20^{\circ} \mathrm{C}$	Circular mils	in. ${ }^{2}$	( $=32^{\circ} \mathrm{F}$ )	$=68^{\circ} \mathrm{F}$ )	$\left(=122^{\circ} \mathrm{F}\right)$	$\left(=167^{\circ} \mathrm{F}\right.$ )
0000	460.0	211600.	. 1662	. 04516	. 04901	. 05479	. 05961
000	409.6	167800.	. 1318	. 05695	. 06180	. 06909	. 07516
00	364.8	133100.	. 1045	. 07181	. 07793	. 08712	. 09478
0	324.9	105500.	. 08289	. 09055	. 09827	. 1099	. 1195
1	289.3	83690.	. 06573	. 1142	. 1239	. 1385	. 1507
2	257.6	66370.	. 05213	. 1440	. 1563	. 1747	. 1900
3	229.4	52640.	. 04134	. 1816	. 1970	. 2203	. 2396
4	204.3	41740.	. 03278	. 2289	. 2485	. 2778	. 3022
5	181.9	33100.	. 02600	. 2887	. 3133	. 3502	. 3810
6	162.0	26250.	. 02062	. 3640	. 3951	. 4416	. 4805
7	144.3	20820.	. 01635	. 4590	. 4982	. 5569	. 6059
8	128.5	16510.	. 01297	. 5788	. 6282	. 7023	. 7640
9	114.4	13090.	. 01028	. 7299	. 7921	. 8855	. 9633
10	101.9	10380.	. 008155	. 9203	. 9989	1.117	1.215
11	90.74	8234.	. 006467	1.161	1.260	1.408	1.532
12	80.81	6530.	. 005129	1.463	1.588	1.775	1.931
13	71.96	5178.	. 004067	1.845	2.003	2.239	2.436
14	64.08	4107.	. 003225	2.327	2.525	2.823	3.071
15	57.07	3257.	. 002558	2.934	3.184	3.560	3.873
16	50.82	2583.	. 002028	3.700	4.016	4.489	4.884
17	45.26	2048.	. 001609	4.666	5.064	5.660	6.158
18	40.30	1624.	. 001276	5.883	6.385	7.138	7.765
19	35.89	1288.	. 001012	7.418	8.051	9.001	9.702
20	31.96	1022.	. 0008023	9.355	10.15	11.35	12.35
21	28.45	810.1	. 0006363	11.80	12.80	14.31	15.57
22	25.35	642.4	. 0005046	14.87	16.14	18.05	19.63
23	22.57	509.5	. 0004002	18.76	20.36	22.76	24.76
24	20.10	404.0	. 0003173	23.65	25.67	28.70	31.22
25	17.90	320.4	. 0002517	29.82	32.37	36.18	39.36
26	15.94	254.1	. 0001996	37.61	40.81	45.63	49.64
27	14.20	201.5	. 0001583	47.42	51.47	57.53	62.59
28	12.64	159.8	. 0001255	59.80	64.90	72.55	78.93
29	11.26	126.7	. 00009953	75.40	81.83	91.48	99.52
30	10.03	100.5	. 00007894	95.08	103.2	115.4	125.5
31	8.928	79.70	. 00006260	119.9	130.1	145.5	158.2
32	7.950	63.21	. 00004964	151.2	164.1	183.4	199.5
33	7.080	50.13	. 00003937	190.6	206.9	231.3	251.6
34	6.305	39.75	. 00003122	240.4	260.9	291.7	317.3
35	5.615	31.52	. 00002476	303.1	329.0	367.8	400.1
36	5.000	25.00	. 00001964	382.2	414.8	463.7	504.5
37	4.453	19.83	. 00001557	482.0	523.1	584.8	636.2
38	3.965	15.72	. 00001235	607.8	659.6	737.4	802.2
39	3.531	12.47	. 000009793	766.4	831.8	929.8	1012.
40	3.145	9.888	. 000007766	966.5	1049.	1173.	1276.

(continued)

TABLE 420.-WIRE TABLE, STANDARD ANNEALED COPPER (continued) American wire gage (B. \& S.)

	Diameter in mils. at $20^{\circ} \mathrm{C}$	lb/(1000 ft)	ft/lb	$\underbrace{\text { ft/ohm }}$			
Gage No.				${ }_{\left(=32^{\circ} \mathrm{C} \mathrm{~F}\right)}^{(=3}$	$\left(\begin{array}{c} 20^{\circ} \mathrm{C} \\ \left.=68^{\circ} \mathrm{F}\right) \end{array}\right.$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ \left(=122^{\circ} \mathrm{F}\right) \end{gathered}$	$\underset{\left(=167^{\circ} \mathrm{F}\right)}{\substack{7 \\\left({ }^{\circ}\right)}}$
0000	460.0	640.5	1.561	22140.	20400.	18250.	16780.
000	409.6	507.9	1.968	17560.	16180.	14470.	13300.
00	364.8	402.8	2.482	13930.	12830.	11480.	10550.
0	324.9	319.5	3.130	11040.	10180.	9103.	8367.
1	289.3	253.3	3.947	8758.	8070.	7219.	6636.
2	257.6	200.9	4.977	6946.	6400.	5725.	5262.
3	229.4	159.3	6.276	5508.	5075.	4540.	4173.
4	204.3	126.4	7.914	4368.	4025.	3600.	3309.
5	181.9	100.2	9.980	3464.	3192.	2855.	2625.
6	162.0	79.46	12.58	2747.	2531.	2264.	2081.
7	144.3	63.02	15.87	2179.	2007.	1796.	1651.
8	128.5	49.98	20.01	1728.	1592.	1424.	1309.
9	114.4	39.63	25.23	1370.	1262.	1129.	1038.
10	101.9	31.43	31.82	1087.	1001.	895.6	823.2
11	90.74	24.92	40.12	861.7	794.0	710.2	652.8
12	80.81	19.77	50.59	683.3	629.6	563.2	517.7
13	71.96	15.68	63.80	541.9	499.3	446.7	410.6
14	64.08	12.43	80.44	429.8	396.0	354.2	325.6
15	57.07	9.858	101.4	340.8	314.0	280.9	258.2
16	50.82	7.818	127.9	270.3	249.0	222.8	204.8
17	45.26	6.200	161.3	214.3	197.5	176.7	162.4
18	40.30	4.917	203.4	170.0	156.6	140.1	128.8
19	35.89	3.899	256.5	134.8	124.2	111.1	102.1
20	31.96	3.092	323.4	106.9	98.50	88.11	80.99
21	28.46	2.452	407.8	84.78	78.11	69.87	64.23
22	25.35	1.945	514.2	67.23	61.95	55.41	50.94
23	22.57	1.542	648.4	53.32	49.13	43.94	40.39
24	20.10	1.223	817.7	42.28	38.96	34.85	32.03
25	17.90	. 9699	1031.	33.53	30.90	27.64	25.40
26	15.94	. 7692	1300.	26.59	24.50	21.92	20.15
27	14.20	. 6100	1639.	21.09	19.43	17.38	15.98
28	12.64	. 4837	2067.	16.72	15.41	13.78	12.67
29	11.26	. 3836	2607.	13.26	12.22	10.93	10.05
30	10.03	. 3042	3287.	10.52	9.691	8.669	7.968
31	8.928	. 2413	4145.	8.341	7.685	6.875	6.319
32	7.950	. 1913	5227.	6.614	6.095	5.452	5.011
33	7.080	. 1517	6591.	5.245	4.833	4.323	3.974
34	6.305	. 1203	8310	4.160	3.833	3.429	3.152
35	5.615	. 09542	10480.	3.299	3.040	2.719	2.499
36	5.000	. 07568	13210.	2.616	2.411	2.156	1.982
37	4.453	. 06001	16660.	2.075	1.912	1.710	1.572
38	3.965	. 04759	21010.	1.645	1.516	1.356	1.247
39	3.531	. 03774	26500.	1.305	1.202	1.075	. 9886
40	3.145	. 02993	33410.	1.035	. 9534	. 8529	. 7840

(continued)

TABLE 420.-WIRE TABLE, STANDARD ANNEALED COPPER (concluded)

		ohm/lb			lb/ohm
Gage No.	Diameter in mils. at $20^{\circ} \mathrm{C}$	$\left(=32^{\circ} \mathrm{C}\right. \text { F }$	$(\overbrace{\left(=60^{\circ} \mathrm{F}\right)}^{2}$	$\begin{gathered} 50^{\circ} \mathrm{C} \\ \left(=122^{\circ} \mathrm{F}\right) \end{gathered}$	${ }_{\left(=68^{\circ} \mathrm{F}\right)}^{20^{\circ} \mathrm{C}}$
0000	460.0	. 00007051	. 00007652	. 00008554	13070.
000	409.6	. 0001121	. 0001217	. 0001360	8219.
00	364.8	. 0001783	. 0001935	. 0002163	5169.
0	324.9	. 0002835	. 0003076	. 0003439	3251.
1	289.3	. 0004507	. 0004891	. 0005468	2044.
2	257.6	. 0007166	. 0007778	. 0008695	1286.
3	229.4	. 001140	. 001237	. 001383	808.6
4	204.3	. 001812	. 001966	. 002198	508.5
5	181.9	. 002881	. 003127	. 003495	319.8
6	162.0	. 004581	. 004972	. 005558	201.1
7	144.3	. 007284	. 007905	. 008838	126.5
8	128.5	. 01158	. 01257	. 01405	79.55
9	114.4	. 01842	. 01999	. 02234	50.03
10	101.9	. 02928	. 03178	. 03553	31.47
11	90.74	. 04656	. 05053	. 05649	19.79
12	80.81	. 07404	. 08035	. 08983	12.45
13	71.96	. 1177	. 1278	. 1428	7.827
14	64.08	. 1872	. 2032	.2271	4.922
15	57.07	. 2976	. 3230	. 3611	3.096
16	50.82	. 4733	. 5136	. 5742	1.947
17	45.26	7525	. 8167	. 9130	1.224
18	40.30	1.197	1.299	1.452	. 7700
19	35.89	1.903	2.065	2.308	. 4843
20	31.96	3.025	3.283	3.670	. 3046
21	28.46	4.810	5.221	5.836	. 1915
22	25.35	7.649	8.301	9.280	. 1205
23	22.57	12.16	13.20	14.76	. 07576
24	20.10	19.34	20.99	23.46	. 04765
25	17.90	30.75	33.37	37.31	. 02997
26	15.94	48.89	53.06	59.32	. 01885
27	14.20	77.74	84.37	94.32	.01185
28	12.64	123.6	134.2	150.0	. 007454
29	11.26	196.6	213.3	238.5	. 004688
30	10.03	312.5	339.2	379.2	. 002948
31	8.928	497.0	539.3	602.9	. 001854
32	7.950	790.2	857.6	958.7	. 001166
33	7.080	1256.	1364.	1524.	. 0007333
34	6.305	1998.	2168.	2424.	. 0004612
35	5.615	3177.	3448.	3854.	. 0002901
36	5.000	5051.	5482.	6128.	. 0001824
37	4.453	8032.	8717.	9744.	. 0001147
38	3.965	12770.	13860.	15490.	. 00007215
39	3.531	20310.	22040.	24640.	. 00004538
40	3.145	32290.	35040.	39170.	. 00002854

American wire gage (B. \& S.). Metric units

	Diameter	Cross section	${ }^{\text {ohm } / \mathrm{km}}$			
No.	at $20^{\circ} \mathrm{C}$	at $20^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
0000	11.68	107.2	. 1482	. 1608	. 1798	. 1956
000	10.40	85.03	. 1868	. 2028	. 2267	. 2466
00	9.266	67.43	. 2356	. 2557	. 2858	. 3110
0	8.252	53.48	. 2971	. 3224	. 3604	. 3921
1	7.348	42.41	. 3746	. 4066	. 4545	. 4944
2	6.544	33.63	. 4724	. 5127	. 5731	. 6235
3	5.827	26.67	. 5956	. 6465	. 7227	. 7862
4	5.189	21.15	. 7511	. 8152	. 9113	. 9914
5	4.621	16.77	. 9471	1.028	1.149	1.250
6	4.115	13.30	1.194	1.296	1.449	1.576
7	3.665	10.55	1.506	1.634	1.827	1.988
8	3.264	8.366	1.899	2.061	2.304	2.506
9	2.906	6.634	2.395	2.599	2.905	3.161
10	2.588	5.261	3.020	3.277	3.663	3.985
11	2.305	4.172	3.807	4.132	4.619	5.025
12	2.053	3.309	4.801	5.211	5.825	6.337
13	1.828	2.624	6.054	6.571	7.345	7.991
14	1.628	2.081	7.634	8.285	9.262	10.08
15	1.450	1.650	9.627	10.45	11.68	12.71
16	1.291	1.309	12.14	13.17	14.73	16.02
17	1.150	1.038	15.31	16.61	18.57	20.20
18	1.024	. 8231	19.30	20.95	23.42	25.48
19	. 9116	. 6527	24.34	26.42	29.53	32.12
20	. 8118.	. 5176	30.69	33.31	37.24	40.51
21	. 7230	. 4105	38.70	42.00	46.95	51.08
22	. 6438	. 3255	48.80	52.96	59.21	64.41
23	. 5733	. 2582	61.54	66.79	74.66	81.22
24	. 5106	. 2047	77.60	84.21	94.14	102.4
25	. 4547	. 1624	97.85	106.2	118.7	129.1
26	. 4049	. 1288	123.4	133.9	149.7	162.9
27	. 3606	. 1021	155.6	168.9	188.8	205.4
28	. 3211	. 08098	196.2	212.9	238.0	258.9
29	. 2859	. 06422	247.4	268.5	300.1	326.5
30	. 2546	. 05093	311.9	338.6	378.5	411.7
31	. 2268	. 04039	393.4	426.9	477.2	519.2
32	. 2019	. 03203	496.0	538.3	601.8	654.7
33	. 1798	. 02540	625.5	678.8	758.8	825.5
34	. 1601	. 02014	788.7	856.0	956.9	1041.
35	. 1426	. 01597	994.5	1079.	1207.	1313.
36	. 1270	.01267	1254.	1361.	1522.	1655.
37	. 1131	. 01005	1581.	1716.	1919.	2087.
38	. 1007	. 007967	1994.	2164.	2419.	2632.
39	. 08969	. 006318	2514.	2729.	3051.	3319.
40	. 07987	. 005010	3171.	3441.	3847.	4185.
			(continued)			

TABLE 421.-WIRE TABLE, STANDARD ANNEALED COPPER (continued)
American wire gage (B. \& S.). Metric units

$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Diameter in mm at $20^{\circ} \mathrm{C}$	$\mathrm{kg} / \mathrm{km}$	$\mathrm{m} / \mathrm{g}$	$\mathrm{m} / \mathrm{ohm}$			
				$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
0000	11.68	953.2	. 001049	6749.	6219.	5563.	5113.
000	10.40	755.9	. 001323	5352.	4932.	4412.	4055.
00	9.266	599.5	. 001668	4245.	3911.	3499.	3216.
0	8.252	475.4	. 002103	3366.	3102.	2774.	2550.
	7.348	377.0	. 002652	20669.	2460.	2200.	2022.
2	6.544	299.0	. 003345	2117.	1951.	1745.	1604.
3	5.827	237.1	. 004217	1679.	1547.	1384.	1272.
	5.189	188.0	. 005318	1331.	1227.	1097.	1009.
5	4.621	149.1	. 006706	1056.	972.9	870.2	799.9
6	4.114	118.2	. 008457	837.3	771.5	690.1	634.4
7	3.665	93.78	. 01066	664.0	611.8	547.3	503.1
8	3.264	74.37	. 01345	526.6	485.2	434.0	399.0
9	2.906	58.98	. 01696	417.6	384.8	344.2	316.4
10	2.588	46.77	. 02138	331.2	305.1	273.0	250.9
11	2.305	37.09	. 02696	262.6	242.0	216.5	199.0
12	2.053	29.42	. 03400	208.3	191.9	171.7	157.8
13	1.828	23.33	. 04287	165.2	152.2	136.1	125.1
14	1.628	18.50	. 05406	131.0	120.7	108.0	99.24
15	1.450	14.67	. 06816	103.9	95.71	85.62	78.70
16	1.291	11.63	. 08595	82.38	75.90	67.90	62.41
17	1.150	9.226	. 1084	65.33	60.20	53.85	49.50
18	1.024	7.317	. 1367	51.81	47.74	42.70	39.25
19	. 9116	5.803	. 1723	41.09	37.86	33.86	31.13
20	. 8118	4.602	. 2173	32.58	30.02	26.86	24.69
21	. 7230	3.649	. 2740	25.84	23.81	21.30	19.58
22	. 6438	2.894	. 3455	20.49	18.88	16.89	15.53
23	. 5733	2.295	. 4357	16.25	14.97	13.39	12.31
24	. 5106	1.820	. 5494	12.89	11.87	10.62	9.764
25	. 4547	1.443	. 6928	10.22	9.417	8.424	7.743
26	. 4049	1.145	. 8736	8.105	7.468	6.680	6.141
27	. 3606	. 9078	1.102	6.428	5.922	5.298	4.870
28	. 3211	. 7199	1.389	5.097	4.697	4.201	3.862
29	. 2859	. 5709	1.752	4.042	3.725	3.332	3.063
30	. 2546	. 4527	2.209	3.206	2.954	2.642	2.429
31	. 2268	. 3590	2.785	2.542	2.342	2.095	1.926
32	. 2019	. 2847	3.512	2.016	1.858	1.662	1.527
33	. 1798	. 2258	4.429	1.599	1.473	1.318	1.211
34	. 1601	. 1791	5.584	1.268	1.168	1.045	. 9606
35	. 1426	. 1420	7.042	1.006	. 9265	. 8288	. 7618
36	. 1270	. 1126	8.879	. 7974	. 7347	. 6572	. 6041
37	. 1131	. 08931	11.20	. 6324	. 5827	. 5212	. 4791
38	. 1007	. 07083	14.12	. 5015	. 4621	. 4133	. 3799
39	. 08969	. 05617	17.80	. 3977	. 3654	. 3278	. 3013
40	. 07987	. 04454	22.45	. 3154	. 2906	. 2600	. 2390
				Hed)			

TABLE 421.-WIRE TABLE, STANDARD ANNEALED COPPER (concluded)
American wire gage (B. \& S.). Metric units

Gage No.	Diameter in mm at $20^{\circ} \mathrm{C}$	$\overbrace{}^{\text {ohm } / \mathrm{kg}}$			g/ohm$20^{\circ} \mathrm{C}$
		$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	
0000	11.68	. 0001554	. 0001687	. 0001886	5928000.
000	10.40	. 0002472	. 0002682	. 0002999	3728000.
00	9.266	. 0003930	. 0004265	. 0004768	2344000.
0	8.252	. 0006249	. 0006782	. 0007582	1474000.
1	7.348	. 0009936	. 001078	. 001206	927300.
2	6.544	. 001580	. 001715	. 001917	583200.
3	5.827	. 002512	. 002726	. 003048	366800.
4	5.189	.003 995	. 004335	. 004846	230700.
5	4.621	. 006352	. 006893	. 007706	145100.
6	4.115	. 01010	. 01096	. 01225	91230.
7	3.665	. 01606	. 01743	. 01948	57380.
8	3.264	. 02553	. 02771	. 03098	36080.
9	2.906	. 04060	. 04406	. 04926	22690.
10	2.588	. 06456	. 07007	. 07833	14270.
11	2.305	. 1026	. 1114	. 1245	8976.
12	2.053	. 1632	.1771	. 1980	5645.
13	1.828	. 2595	. 2817	. 3149	3550.
14	1.628	. 4127	. 4479	. 5007	2233.
15	1.450	. 6562	. 7122	. 7961	1404.
16	1.291	1.043	1.132	1.266	883.1
17	1.150	1.659	1.801	2.013	555.4
18	1.024	2.638	2.863	3.201	349.3
19	. 9116	4.194	4.552	5.089	219.7
20	. 8118	6.670	7.238	8.092	138.2
21	. 7230	10.60	11.51	12.87	86.88
22	. 6438	16.86	18.30	20.46	54.64
23	. 5733	26.81	29.10	32.53	34.36
24	. 5106	42.63	46.27	51.73	21.61
25	. 4547	67.79	73.57	82.25	13.59
26	. 4049	107.8	117.0	130.8	8.548
27	. 3606	171.4	186.0	207.9	5.376
28	. 3211	272.5	295.8	330.6	3.381
29	. 2859	433.3	470.3	525.7	2.126
30	. 2546	689.0	747.8	836.0	1.337
31	. 2268	1096.	1189.	1329.	. 8410
32	. 2019	1742.	1891.	2114.	. 5289
33	. 1798	2770.	3006.	3361.	. 3326
34	. 1601	4404.	4780.	5344.	. 2092
35	. 1426	7003.	7601.	8497.	. 1316
36	.1270	11140.	12090.	13510.	. 08274
37	. 1131	17710.	19320.	21480.	. 05204
38	. 1007	28150.	30560.	34160.	. 03273
39	. 08969	44770.	48590.	54310.	. 02058
40	. 07987	71180.	77260.	86360.	. 01294

TABLE 422.-WIRE TABLE, ALUMINUM
Hard-drawn aluminum wire at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
American wire gage (B. \& S.). Engiish units

$\begin{aligned} & \text { Gage } \\ & \text { No. } \end{aligned}$	Diameter in mils	Cross section		$\frac{\text { ohm }}{1000 \mathrm{ft}}$	1 b	lb/ohm	$\mathrm{ft} / \mathrm{ohm}$
		$\overbrace{\text { Circular mils }}$	. ${ }^{2}$		$\overline{1000 \mathrm{ft}}$		
0000	460.	212000.	. 166	. 0804	195.	2420.	12400.
000	410.	168000.	. 132	. 101	154.	1520.	9860.
00	365.	133000.	. 105	. 128	122.	957.	7820.
0	325.	106000.	. 0829	. 161	97.0	602.	6200.
1	289.	83700.	. 0657	. 203	76.9	379.	4920.
2	258.	66400.	. 0521	. 256	61.0	238.	3900.
3	229.	52600.	. 0413	. 323	48.4	150.	3090.
4	204.	41700.	. 0328	. 408	38.4	94.2	2450.
5	182.	33100.	. 0260	. 514	30.4	59.2	1950.
6	162.	26300.	. 0206	. 648	24.1	37.2	1540.
7	144.	20800.	. 0164	. 817	19.1	23.4	1220.
8	128.	16500.	. 0130	1.03	15.2	14.7	970.
9	114.	13100.	. 0103	1.30	12.0	9.26	770.
10	102.	10400.	. 00815	1.64	9.55	5.83	610.
11	91.	8230.	. 00647	2.07	7.57	3.66	484.
12	81.	6530.	. 00513	2.61	6.00	2.30	384.
13	72.	5180.	. 00407	3.29	4.76	1.45	304.
14	64.	4110.	. 00323	4.14	3.78	. 911	241.
15	57.	3260.	. 00256	5.22	2.99	. 573	191.
16	51.	2580.	. 00203	6.59	2.37	. 360	152.
17	45.	2050.	. 00161	8.31	1.88	. 227	120.
18	40.	1620.	. 00128	10.5	1.49	. 143	95.5
19	36.	1290.	. 00101	13.2	1.18	. 0897	75.7
20	32.	1020.	. 000802	16.7	. 939	. 0564	60.0
21	28.5	810.	. 000636	21.0	. 745	. 0355	47.6
22	25.3	642.	. 000505	26.5	. 591	. 0223	37.8
23	22.6	509.	. 000400	33.4	. 468	. 0140	29.9
24	20.1	404.	. 000317	42.1	. 371	. 00882	23.7
25	17.9	320.	. 000252	53.1	. 295	. 00555	18.8
26	15.9	254.	. 000200	67.0	. 234	. 00349	14.9
27	14.2	202.	. 000158	84.4	. 185	. 00219	11.8
28	12.6	160.	. 000126	106.	. 147	. 00138	9.39
29	11.3	127.	. 0000995	134.	. 117	. 000868	7.45
30	10.0	101.	. 0000789	169.	. 0924	. 000546	5.91
31	8.9	79.7	. 0000626	213.	. 0733	. 000343	4.68
32	8.0	63.2	. 0000496	269.	. 0581	. 000216	3.72
33	7.1	50.1	. 0000394	339.	. 0461	. 000136	2.95
34	6.3	39.8	. 0000312	428.	. 0365	. 0000854	2.34
35	5.6	31.5	. 0000248	540.	. 0290	. 0000537	1.85
36	5.0	25.0	. 0000196	681.	. 0230	. 0000338	1.47
37	4.5	19.8	. 0000156	858.	. 0182	. 0000212	1.17
38	4.0	15.7	. 0000123	1080.	. 0145	. 0000134	. 924
39	3.5	12.5	. 00000979	1360.	. 0115	. 00000840	. 733
40	3.1	9.9	. 00000777	1720.	. 0091	. 00000528	. 581

TABLE 423.-WIRE TABLE, ALUMINUM
Hard-drawn aluminum wire at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
American wire gage (B. \& S.). Metric units

$\begin{gathered} \text { Gage } \\ \text { No. } \end{gathered}$	Diameter in mm	Cross section in $\mathrm{mm}^{2}$	ohm/km	kg/km	g/ohm	$\mathrm{m} / \mathrm{ohm}$
0000	11.7	107.	. 264	289.	1100000.	3790.
000	10.4	85.0	. 333	230.	69000.	3010.
00	9.3	67.4	. 419	182.	434000.	2380.
0	8.3	53.5	. 529	144.	273000.	1890.
1	7.3	42.4	. 667	114.	172000.	1500.
2	6.5	33.6	. 841	90.8	108000.	1190.
3	5.8	26.7	1.06	72.0	67900.	943.
	5.2	21.2	1.34	57.1	42700.	748.
5	4.6	16.8	1.69	45.3	26900.	593.
6	4.1	13.3	2.13	35.9	16900.	470.
7	3.7	10.5	2.68	28.5	10600.	373.
8	3.3	8.37	3.38	22.6	6680.	296.
	2.91	6.63	4.26	17.9	4200.	235.
10	2.59	5.26	5.38	14.2	2640.	186.
11	2.30	4.17	6.78	11.3	1660.	148.
12	2.05	3.31	8.55	8.93	1050.	117.
13	1.83	2.62	10.8	7.08	657.	92.8
14	1.63	2.08	13.6	5.62	413.	73.6
15	1.45	1.65	17.1	4.46	260.	58.4
16	1.29	1.31	21.6	3.53	164.	46.3
17	1.15	1.04	27.3	2.80	103.	36.7
18	1.02	. 823	34.4	2.22	64.7	29.1
19	. 91	. 653	43.3	1.76	40.7	23.1
20	. 81	. 518	54.6	1.40	25.6	18.3
21	. 72	. 411	68.9	1.11	16.1	14.5
22	. 64	. 326	86.9	. 879	10.1	11.5
23	. 57	. 258	110.	. 697	6.36	9.13
24	. 51	. 205	138.	. 553	4.00	7.24
25	. 45	. 162	174.	. 438	2.52	5.74
26	. 40	. 129	220.	. 348	1.58	4.55
27	. 36	. 102	277.	. 276	. 995	3.61
28	. 32	. 0810	349.	. 219	. 626	2.86
29	. 29	. 0642	440.	. 173	. 394	2.27
30	. 25	. 0509	555.	. 138	. 248	1.80
31	. 227	. 0404	700.	. 109	. 156	1.43
32	. 202	. 0320	883.	. 0865	. 0979	1.13
33	. 180	. 0254	1110.	. 0686	. 0616	. 899
34	. 160	. 0201	1400.	. 0544	. 0387	. 712
35	. 143	. 0160	1770.	. 0431	. 0244	. 565
36	. 127	. 0127	2230.		. 0153	. 448
37	. 113	. 0100	2820.	. 0271	. 00963	. 355
38	. 101	. 0080	3550.	. 0215	. 00606	. 282
39	. 090	. 0063	4480.	. 0171	. 00381	. 223
40	. 080	. 0050	5640.	. 0135	. 00240	. 177

TABLE 424.-AUXILIARY TABLE FOR COMPUTING WIRE RESISTANCES
For computing resistances in ohms per meter from resistivity, $\rho$, in microhm-cm (see Table 386, etc.). e.g., to compute for No. 23 copper wire when $\rho=1.724$ : $1 \mathrm{~m}=0.0387+.0271+$ $.0008+.0002=0.0668$ ohms ; for No. 11 lead wire when $\rho=20.4: 1 \mathrm{~m}=0.0479+.0010=$ 0.0489 ohms. The following relation allows computation for wires of other gage numbers: resistance in ohms per m of No. $n$ wire $=2 \times$ resistance of wire No. $(n-3)$ within 1 percent: e.g., resistance of $m$ of No. $18=2 \times$ No. 15 .

Gage No.	Diam. in mm	Section$\mathrm{mm}^{2}$	$\rho$ in microhm-cm									
			1	2	3	4	5	6	7	8	9	10
			Resistance of wire 1 m , long in ohms									
0000	11.7	107.2	.04933	.$_{0} 187$	. 02280	. 03373	.03466	. 03560	.03653	. 03746	. 03840	.03933
00	9.27	67.43	. 03148	.03297	. 03445	. 03593	. 03742	. 03890	. 02104	.02119	. $0_{2} 133$	. 02148
1	7.35	42.41	. 03236	. 03472	. 03707	. 03943	. 02118	. 02141	. 02165	. $\mathrm{O}_{2} 189$	. $0_{2} 212$	. 02236
3	5.83	26.67	. 03375	. 03750	. 02112	. 02150	. 02187	. 02225	. 02262	. 02300	. 02337	. 02375
5	4.62	16.77	. 03596	. 02119	. 02179	. 02239	. 02298	. 02358	. 02417	. 02477	. 02537	. 02596
7	3.66	10.55	. 03948	. 02190	. 02284	. 02379	. 02474	. 02569	. 02664	. 02758	. 02853	. 02948
9	2.91	6.634	. 0.151	. 02301	. 02452	. 02603	. 02754	. 02904	. 0106	. 0121	. 0136	. 0151
11	2.30	4.172	. 02240	. 02479	. 02719	. 02959	. 0120	. 0144	. 0168	. 0192	. 0216	. 0240
13	1.83	2.624	. 02381	. 02762	. 0114	. 0152	. 0191	. 0229	. 0267	. 0305	. 0343	. 0381
15	1.45	1.650	. 02606	. 0121	. 0182	. 0242	. 0303	. 0364	. 0424	. 0485	. 0545	. 0606
17	1.15	1.038	. 02963	. 0193	. 0289	. 0385	. 0482	. 0578	. 0674	. 0771	. 0867	. 0963
19	. 912	. 6527	. 0153	. 0306	. 0460	. 0613	. 0766	. 0919	. 1072	. 1226	. 1379	. 1532
21	. 723	. 4105	. 0244	. 0487	. 0731	. 0974	. 1218	. 1462	. 1705	. 1949	. 2192	. 2436
23	. 573	. 2582	. 0387	. 0775	. 1162	. 1549	. 1936	. 2324	. 2711	. 3098	. 3486	. 3873
25	. 455	. 1624	. 0616	. 1232	. 1847	. 2463	. 3079	. 3695	. 4310	. 4926	. 5542	. 6158
27	. 361	. 1021	. 0979	. 1959	. 2938	. 3918	. 4897	. 5877	. 6856	. 7835	. 8815	. 9794
29	. 286	. 0642	. 1557	. 3114	. 4671	. 6228	. 7786	. 9343	1.090	1.246	1.401	1.557
31	. 227	. 0404	. 2476	. 4952	. 7428	. 9904	1.238	1.486	1.733	1.981	2.228	2.476
33	. 180	. 0254	. 3937	. 7874	1.181	1.575	1.968	2.362	2.756	3.150	3.543	3.937
35	. 143	. 0160	. 6262	1.252	1.879	2.505	3.131	3.757	4.383	5.009	5.636	6.262
37	. 113	. 0100	. 9950	1.990	2.985	3.980	4.975	5.970	6.965	7.960	8.955	9.950
39	. 090	. 0063	1.583	3.166	4.748	6.331	7.914	9.497	11.08	12.66	14.25	15.83
40	. 080	. 0050	1.996	3.992	5.988	7.984	9.980	11.98	13.97	15.97	17.96	19.96

TABLE 425.-SAFE CURRENT-CARRYING CAPACITY OF COPPER WIRE, FOR DIFFERENT CONDITIONS, IN AMPERES PER CONDUCTOR*

$\begin{aligned} & \text { Wire } \\ & \text { size } \\ & \text { AWG } \end{aligned}$	$\overbrace{}^{\text {Varnish cambric insuiators }}$				$\overbrace{}^{\text {Impregnated }}$ paper insulation	
		Not more than three conductors in raceway or cable	Rubber insulators   in enclosed and exposed conduit			
	Single wire in free air					Three con-
			Single	Three	conductor	in under-
			conductor	conductor.	cable in air	ground duct
14	30	23	23	19		
10	54	38	40	33		
6	99	68	71	57	98	78
3	155	104				
2	179	118	127	101	173	134
0	245	157	167	133	234	177
0000	383	237	256	203	352	264

[^181]TABLE 426.-THE CALCULATION OF THE HIGH-FREQUENCY RESISTANCE OF CONDUCTORS*

The resistance of a conductor to high-frequency alternating currents is not the same as it offers to direct or low-frequency currents. The linkages of flux with the inner portions of the conductor are more numerous than with the outer portions. That is, the reactances of the inner filaments are greater than those of the outer filaments. Consequently, the current density decreases from the outside toward the center of the conductor.

This tendency of the current to crowd toward the outer portions of the cross section becomes more pronounced the higher the frequency, and at very high frequencies the current density is sensibly zero everywhere except in the surface layer of the conductor. This phenomenon is called the "skin effect." It causes an increase in the effective resistance of the conductor over its resistance to a direct current.

What is of interest in the calculation of the high-frequency resistance is the resistance ratio, the quotient of the resistance at the given frequency by the direct-current resistance. The resistance ratio depends upon the distribution of current density in the cross section, and this is a function of the frequency and the shape of the cross section. In general, however, the resistance ratio is a function of the parameter $\sqrt{\frac{f}{R_{0}}}$, in which $f$ is the frequency, and $R_{0}$ is the direct-current resistance per unit length. In what follows $R_{0}$ will be taken as the direct-current resistance per 1000 ft of conductor.

The distribution of current in the cross section is affected by a neighboring conductor carrying high-frequency currents. This proximity effect finds an explanation in that the value of the mutual inductance of any filament $A$ of one conductor on a filament $B$ of the other conductor depends upon the positions of $A$ and $B$ in their respective cross sections. The proximity effect may be very appreciable for conductors nearly in contact; falling off rapidly as their distance increased, it is negligible for moderate ratios of distance apart to cross sectional dimensions. In such cases the resistance is sensibly the same as for an isolated conductor.
Besides the spacing factor of the conductors, the proximity effect depends upon the frequency, and in lesser degree upon the shape of the cross sections. Quantitatively, the proximity effect may be expressed by the proximity factor, which is the quotient of actual resistance of the conductor by the resistance which it would have if removed to a great distance from the disturbing conductor, both values of resistance being referred to the same frequency.

That is, if
$R_{0}=$ the direct current resistance
$R_{1}=$ the resistance of the conductor when isolated, frequency $f$
$R_{2}=$ the resistance in the presence of the disturbing conductor at frequency $f$
then the proximity factor is $P=\frac{R_{2}}{R_{1}}$, and the resistance ratio $\frac{R_{2}}{R_{0}}$, in the presence of the disturbing conductor, is obtained from the resistance ratio $\frac{R_{1}}{R_{0}}$ when isolated by the relation $\frac{R_{2}}{R_{0}}=P \frac{R_{1}}{R_{0}}$. Resistance ratio may be obtained in any case if the resistance ratio when isolated is known, together with the value of the proximity factor.

Formulas for the high-frequency resistance ratio have been developed in only a few simple (but important) cases, and even then very complicated formulas result. For practical work, tables are necessary for simplifying the calculations. The following tables cover the most important cases.

Formulas have been derived for the high-frequency resistance ratio of single-layer coils wound with round wire. Generally, these differ from one another and from measured values, because simplifying assumptions are made which are not sufficiently realized in practice. No tables of values for coils such as are met in practical radio work are available As a rough guide, the high-frequency resistance ratio for a single-layer coil is often from two to five times as great as the resistance ratio of the same wire stretched out straight and carrying current of the given frequency. The experimental work available indicates that this factor is due to the coiling of the wire, that is, the total proximity effect of the turns of the coil is largely dependent upon the frequency and the ratio of wire diameter to pitch of winding, and in lesser degree to the ratio of length to diameter.

[^182](continued)

TABLE 426.-THE CALCULATION OF THE HIGH-FREQUENCY RESISTANCE OF CONDUCTORS (continued)

## Part 1.-Resistance ratio "F" for isolated round wires

Resistance ratio $F$ of isolated round wire, as a function of the square root of the frequency divided by the direct current resistance per 1000 ft of conductor.

$v \overline{f / R_{0}}$	0	10	20	30	40	50	60	70	80	90	100
$F$	1.000	1.000	1.0005	1.0025	1.008	1.019	1.038	1.069	1.114	1.173	1.247
$V \overline{f / R_{0}}$	100	120	140	160	180	200	250	300	350	400	500
$F$	1.247	1.427	1.631	1.836	2.036	2.231	2.715	3.201	3.688	4.176	5.152

Part 2.-Values of resistance ratio for isolated tubular conductors
$t$, thickness of wall of tube; $d$, outer diameter of tube

$\sqrt{\frac{f}{R_{0}}}$	$\frac{t}{d}=0.01$	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
50	1.000	1.000	1.000	1.001	1.001	1.001	1.001	1.001	1.001	1.001
100	1.001	1.001	1.002	1.002	1.004	1.008	1.007	1.009		1.014
150	1.001	1.003	1.006	1.011	1.017	1.024	1.033	1.044	1.056	1.070
200	1.002	1.008	1.019	1.034	1.053	1.076	1.104	1.134	1.167	1.204
250	1.005	1.020	1.046	1.081	1.125	1.176	1.233	1.296	1.365	1.440
300	1.011	1.042	1.095	1.163	1.25	1.34	1.44	1.55	1.65	1.75
350	1.020	1.076	1.167	1.285	1.42	1.56	1.70	1.83	1.97	2.09
400	1.032	1.127	1.27	1.44	1.66	1.81	1.99	2.13	2.28	2.42
450	1.051	1.198	1.41	1.63	1.87	2.08	2.28	2.44	2.60	2.74
500	1.079	1.30	1.57	1.86	2.14	2.34	2.56	2.73	2.88	3.03
$\sqrt{\frac{f}{R_{0}}}$	$\frac{t}{d}=0.10$	0.12	0.15	0.20	0.25	0.30	0.35	0.40	0.45	${ }_{\text {Solid }}$
0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
50	1.001	1.001	1.002	1.004	1.006	1.008	1.012	1.015	1.017	1.019
100	1.014	1.021	1.032	1.063	1.094	1.132	1.175	1.202	1.224	1.247
150	1.070	1.102	1.155	1.266	1.39	1.51	1.60	1.68	1.71	1.733
200	1.204	1.294	1.42	1.65	1.845	1.995	2.095	2.15	2.20	2.231
250	1.44	1.585	1.79	2.11	2.32	2.45	2.536	2.64	2.68	2.715
300	1.75	1.94	2.19	2.51	2.735	2.90	3.03	3.12	3.17	3.201
350	2.09	2.33	2.57	2.90	3.15	3.35	3.495	3.59	3.66	3.688
400	2.42	2.66	2.92	3.27	3.58	3.80	3.96	4.07	4.14	4.176
450	2.74	3.00	3.27	3.66	4.00	4.25	4.43	4.55	4.63	4.664
500	3.03	3.33	3.62	4.07	4.42	4.69	4.90	5.03	5.12	5.152
(continued)										

# TABLE 426.-THE CALCULATION OF THE HIGH-FREQUENCY RESISTANCE OF CONDUCTORS (concluded) 

## Part 3.-Coefficients in formula for proximity factor of equal parallel round wires

The proximity factor of two equal parallel conductors may be calculated by the formula

$$
P=1+\left[G \cdot d^{2} / s^{2}\right] /\left[F\left(1-H d^{2} / s^{2}\right)\right]
$$

in which the coefficient $F$ is to be obtained from Part 1 for the given value of $\sqrt{f / R_{0}}$ and the coefficients $G$ and $H$ are to be taken from the table below for the given value of $\sqrt{f / R_{0}}$. In the table below the values of $H$ apply to currents in the same direction; in the case of currents in opposite directions $H^{\prime}$ is to be used. In the above formula $d$ is the diameter of the wires and $s$ their axial spacing. The proximity factor for two equal parallel tubular conductors does not differ much from the value for two solid wires with the same axial spacing and a value of $\overline{f / R_{0}}$ one-half the value for two solid wires of the same diameter, except for conductors very close together.

$\sqrt{f / R_{0}}$	$G$	$H$	$H^{\prime}$	$\sqrt{f / R_{0}}$	$G$	$H$	$H^{\prime}$
0	0	+.0417	+.0417	200	.8491	-.1904	.5530
25	.0036	.0395	.0443	250	1.0959	-.2017	.5932
50	.0519	+.0109	.0798	300	1.340	-.2093	.6200
75	.1903	-.0659	.1838	350	1.585	-.2149	.6389
100	.3562	-.1379	.3112	400	1.830	-.2191	.6530
125	.4914	-.1685	.4114	450	2.073	-.2224	.6639
150	.6096	-.1776	.4787	500	2.319	-.2231	.6722
175	.7277	-.1839	.5228				

## TABLE 427.-RATIO OF ALTERNATING TO DIRECT CURRENT RESISTANCES FOR COPPER WIRES

This table gives the ratio of the resistance of straight copper wires with alternating currents of different frequencies to the value of the resistance with direct currents.

Diameter of wire in mm	Frequency $f=$					
	60	100	1000	10,000	100,000	1,000,000
. 05	_	--	-	-_	--	*1.001
. 1	--	--	-	-	*1.001	1.008
. 25	--	--	-	--	1.003	1.247
. 5	-	-	--	*1.001	1.047	2.240
1.0	--	--	-	1.008	1.503	4.19
2.0	--	--	1.001	1.120	2.756	8.10
3.	--	--	1.006	1.437	4.00	12.0
4.	--	--	1.021	1.842	5.24	17.4
5.	--	*1.001	1.047	2.240	6.49	19.7
7.5	1.001	1.002	1.210	3.22	7.50	29.7
10.	1.003	1.008	1.503	4.19	12.7	39.1
15.	1.016	1.038	2.136	6.14	18.8	-
20.	1.044	1.120	2.756	8.10	25.2	-
25.	1.105	1.247	3.38	10.1	28.3	-
40.	1.474	1.842	5.24	17.4	-	-
100.	3.31	4.19	13.7	39.1	-	-

Values between 1.000 and 1.001 are indicated by $* 1.001$.
The values are for wires having an assumed conductivity of 1.60 microhm- cm ; for copper wires at room temperatures the values are slightly less than as given in table.
The change of resistance of wire other than copper (iron wires excepted) may be calculated from the above table by taking it as proportional to $d \sqrt{f / \rho}$ where $d=$ diameter, $f$ the frequency (cycles $/ \mathrm{sec}$ ) and $\rho$ the resistivity.

If a given wire be wound into a solenoid, its resistance, at a given frequency, will be greater than the values in the table, which apply to straight wires only. The resistance in this case is a complicated function of the pitch and radius of the winding, the frequency, and the diameter of the wire, and is found by experiment to be sometimes as much as twice the value for a straight wire.

420
TABLE 428.-MAXIMUM DIAMETER OF WIRES FOR HIGH-FREQUENCY RESISTANCE RATIO OF 1.01

Frequency $\div 10^{00}$	0.1	0.2	0.4	0.6	0.8	1.0	1.2	1.5	2.0	3.0
Wavelength, m	3003	1500	750	500	375	300	250	200	150	100
	Diameter in cm									
Copper .	. 0356	. 0251	. 0177	. 0145	. 0125	. 0112	. 0102	. 0092	. 0079	. 0065
Silver	. 0345	. 0244	. 0172	. 0141	. 0122	. 0109	. 0099	. 0089	. 0077	. 0063
Gold	. 0420	. 0297	. 0210	. 0172	. 0149	. 0133	. 0121	. 0108	. 0094	. 0077
Platinum	. 1120	. 0793	. 0560	. 0457	. 0396	. 0354	. 0323	. 0290	. 0250	. 0205
Mercury	. 264	. 187	. 132	. 1080	. 0936	. 0836	. 0763	. 0683	. 0591	. 0483
Manganin	. 1784	. 1261	. 0892	. 0729	. 0631	. 0564	. 0515	. 0461	. 0399	. 0325
Constantan	. 1892	. 1337	. 0946	. 0772	. 0664	. 0598	. 0546	. 0488	. 0423	. 0345
German silver	. 1942	. 1372	. 0970	. 0792	. 0692	. 0614	. 0560	. 0500	. 0434	. 0354
Graphite . . .	. 765	. 541	. 383	. 312	. 271	. 242	. 221	. 197	. 171	. 140
Carbon	1.60	1.13	. 801	. 654	. 566	. 506	. 462	. 414	. 358	. 292
Iron $\mu=1000$.	. 00263	. 00186	. 00131	. 00108	. 00094	. 00083	. 00076	. 00068	. 00059	. 00048
$\mu=500$.	. 00373	. 00264	. 00187	. 00152	. 00132	. 00118	. 00108	. 00096	. 00084	. 00068
$\mu=100$.	. 00838	. 00590	. 00418	. 00340	. 00295	. 00264	. 00241	. 00215	. 00186	. 00152

TABLES 429-452.--SOME CHARACTERISTICS OF DIELECTRICS

TABLE 429.-STEADY POTENTIAL DIFFERENCE IN VOLTS REQUIRED TO PRODUCE A SPARK IN AIR WITH BALL ELECTRODES (RADIUS R)

Spark   length,   cm	$R=0$   Points	$R=0.25$   cm	$R=0.5$   cm	$R=1 \mathrm{~cm}$	$R=2 \mathrm{~cm}$	$R=3 \mathrm{~cm}$	$R=\infty$   Plates
.02	-	-	1560	1530			
.04	-	-	2460	2430	2340		
.06	-	-	3300	3240	3060		
.08	3720	5010	4050	3990	3810		
.1	47680	8610	8490	4560	4560	4500	4350
.2	43490	8370	7770	7590			
.3	5310	11140	11460	11340	11190	10560	10650
.4	5970	14040	14310	14340	14250	13140	13560
.5	6300	15990	16950	17220	16650	16470	16320
.6	6840	17130	19740	20070	20070	19380	19110
.8	8070	18960	23790	24780	25830	26220	24960
1.0	8670	20670	26190	27810	29850	32760	30840
1.5	9960	22770	29970	33260			
2.0	10140	24570	33060	45480			
3.0	11250	28380					
4.0	12210	29580					
5.0	13050						

TABLE 430.-ALTERNATING-CURRENT POTENTIAL REQUIRED TO PRO. DUCE A SPARK IN AIR WITH VARIOUS BALL ELECTRODES

The potentials given are the maxima of the alternating waves used. Frequency, 33 cycles per second.

Spark length   cm	$R=1 \mathrm{~cm}$	$R=1.92$	$R=5$	$R=7.5$	$R=10$	$R=15$
.08	3770					
.10	4400	4380	4330	4290	4245	4230
.15	5990	5940	5830	5790	5800	5780
.20	7510	7440	7340	7250	7320	7330
.25	9045	8970	8850	8710	8760	8760
.30	10480	10400	10270	10130	10180	10150
.35	11980	11890	11670	11570	11610	11590
.40	13360	13300	13100	12930	12980	12970
.45	14770	14700	14400	14290	14330	14320
.50	16140	16070	15890	15640	15690	15690
.6	18700	18730	18550	18300	18350	18400
.7	21350	21380	21140	20980	20990	21000
.8	23820	24070	23740	23490	23540	23550
.9	26190	26640	26400	26130	26110	26090
1.0	28380	29170	28950	28770	28680	28610
1.2	32400	34100	33790	33660	33640	33620
1.4	35850	38850	38850	38580	38620	38580
1.6	38750	43400	43570	43250	43520	
1.8	40900	-	48300	47900		
2.0	42950	-	-	52400		

TABLE 431.-POTENTIAL NECESSARY TO PRODUCE A SPARK IN AIR BETWEEN MORE WIDELY SEPARATED ELECTRODES

		Steady $\underbrace{\text { potentials }}$						Steady potentials   Ball electrodes	
		Ball electrodes		Cup electrodes Projection					
		$\begin{aligned} & R= \\ & 1 \mathrm{~cm} \end{aligned}$	$\begin{gathered} R=\bar{c}= \\ 2.5 \mathrm{~cm} \end{gathered}$	4.5 mm	1.5 mm			$R=$	$R=$
								1 cm	2.5 cm
. 3	-	-	-	-	11280	6.0	61000	-	86830
. 5	-	17610	17620	-	17420	7.0	-	52000	-
. 7	-	-	23050	-	22950	8.0	67000	52400	90200
1.0	12000	30240	31390	31400	31260	10.0	73000	74300	91930
1.2	-	33800	36810	-	36700	12.0	82600	-	93300
1.5	-	37930	44310	-	44510	14.0	92000	-	94400
2.0	29200	42320	56000	56500	56530	15.0		-	94700
2.5		45000	65180	-	68720	16.0	101000	-	101000
3.0	40000	46710	71200	80400	81140	20.0	119000		
3.5	-	-	75300	-	92400	25.0	140600		
4.0	48500	49100	78600	101700	103800	30.0	165700		
4.5	-	-	81540	-	114600	35.0	190900		
5.0	56500	50310	83800	-	126500				
5.5	-	-	-	-	135700				



The specially constructed electrodes for the columns headed "cup electrodes" had the form of a projecting knob 3 cm in diameter and having a height of 4.5 mm and 1.5 mm respectively, attached to the plane face of the electrodes. These electrodes give a very satisfactory linear relation between the spark lengths and the voltage throughout the range studied.

TABLE 432.-EFFECT OF THE PRESSURE OF THE AIR ON THE DIELECTRIC STRENGTH

Voltages are given for different spark lengths $l$.

Pressure,   cmHg	$l=0.04$	$l=0.06$	$l=0.08$	$i=0.10$	$l=0.20$	$l=0.30$	$i=0.40$	$l=0.50$
2	-	-	$\overline{-}$	-	744	939	1110	1266
4	-	483	567	648	1015	1350	1645	1915
6	-	582	690	795	1290	1740	2140	2505
10	-	771	933	1090	1840	2450	3015	3580
15	-	1060	1280	1490	2460	3300	4080	4850
25	1110	1420	1725	2040	3500	4800	6000	7120
35	1375	1820	2220	2615	4505	6270	7870	9340
45	1640	2150	2660	3120	5475	7650	9620	11420
55	1820	2420	3025	3610	6375	8950	11290	13455
65	2040	2720	3400	4060	7245	10210	12950	15470
75	2255	3035	3805	4565	8200	11570	14650	17450

TABLE 433.-POTENTIALS IN VOLTS TO PRODUCE A SPARK IN KEROSENE

Spark   length cm	Electrodes balls of diam. $d$				Spark length cm	Electrodes balls of diam. $d$			
	0.5 cm	1 cm	2 cm	3 cm		0.5 cm	1 cm	2 cm	3 cm
. 1	3800	3400	2750	2200	. 5	13050	12400	11000	6900
. 2	7503	6450	4800	3500	. 6	14000	13550	12250	8250
. 3	10250	9450	7450	4600	. 8	15500	15100	13850	10450
. 4	11750	10750	9100	5600	1.0	16750	16400	15250	12350

## TABLE 434.-DIELECTRIC STRENGTH OF MATERIALS

Potential necessary for puncture expressed in kilovolts per centimeter thickness of the dielectric

Substance	Kilovolts per cm	Substance		ilovolts	Substance	Kilovolts per cm
Ebonite	300-1100	Oils :	Thickness		Papers :	
Empire cloth	80-300	Castor	. 2 mm	190	Beeswaxed	770
"" paper	450			130	Blotting	150
	20	Cottonseed		70	Manilla	25
Fuller board	200-300	Lard	. 2 "	140	Paraffined	500
Glass	300-1500		1.0 "	40	Varnished	100-250
Granite (fused)...	90	Linseed, raw	. 2 "	185	Paraffin:	
Guttapercha .....	80-200		1.0	90	Melted	75
Impregnated jute	${ }_{30} 20$	boiled	. 2 "	190 80	Solid ${ }^{\text {Melt. }} 43{ }^{\text {point }}$	
Leatheroid .......	$30-60$ $100-200$	Lubricating		80 50		400
Linen, varnished..	$100-200$ $40-90$	Lubricating Neatsfoot		200	$\begin{array}{ll}  & 47^{\circ} \\ & 52^{\circ} \end{array}$	230
Liquid air .......	40-90	Neatsfoot	$\begin{aligned} .2 \\ 1.0 \end{aligned}$	200	" $70^{\circ}$	450
Mica: ${ }_{\text {Madras }} \begin{aligned} & \text { Thickness } \\ & \\ & 1.1 \mathrm{~mm}\end{aligned}$	1600	Olive	. 2	170	Presspaper	45-75
" 1.0 "	300		1.0	75	Rubber	160-500
Bengal . 1 "	2200	Paraffin		215	Vaseline	90-130
" 1.0 "	700		1.0 "	160	Xylene $\begin{gathered}\text { Thickness } \\ 2 \mathrm{~mm}\end{gathered}$	
Canada . 1 "	1500	Sperm, mineral	. 2 "	180		80
" 1.0 "	500		1.0 "	85		
South America.	1500	natural	. 2 "	195		
Micanite	400	" "	1.0 "	90		
		Turpentine	. 2 "	160		

TABLE 435.-DIELECTRIC CONSTANT (SPECIFIC INDUCTIVE CAPACITY) OF GASES

Atmospheric pressure
Wavelengths of the measuring current greater than 10000 cm

Gas		Dielectric constant		Gas	${ }^{\circ} \mathrm{C}$	Dielectric constant	
	${ }^{\circ} \mathrm{C}$	Vacuum = 1	Air $=1$			${ }_{\text {Vacuum }}=1$	Air $=1$
Air	0	1.000588	1.000000	HCl	100	1.00258	1.00199
$\mathrm{NH}_{3}$	20	1.00718	1.00659	$\mathrm{H}_{2}$	0	1.000264	. 999676
$\mathrm{CS}_{2}$	0	1.00290	1.00231	CH 4	0	1.000948	1.000360
	100	1.00239	1.00180	$\mathrm{N}_{2} \mathrm{O}$	0	1.00108	1.00050
$\mathrm{CO}_{2}$	0	1.000966	1.000377	$\mathrm{SO}_{2}$	0	1.00993	1.00934
CO	0	1.000692	1.000104	$\mathrm{H}_{2} \mathrm{O}, 4 \mathrm{~atm}$	145	1.00705	1.00646
$\mathrm{C}_{2} \mathrm{H}_{4}$	0	1.00138	1.00079				

## TABLE 436.-VARIATION OF THE DIELECTRIC CONSTANT WITH THE TEMPERATURE

If $\mathrm{K}_{0}=$ the dielectric constant at the temperature $\theta^{\circ} \mathrm{C}$ of the above table, $\mathrm{K}_{1}$ at the temperature $t^{\circ} \mathrm{C}$, and $\alpha$ and $\beta$ are quantities in the following table, then $\mathrm{K}_{t}=\mathrm{K}_{\theta}-a(t-\theta)$ $+\beta(t-\theta)^{2}$.

Ammonia $\ldots \ldots \ldots \ldots \ldots . \ldots$	$a=5.45 \times 10^{-8}$	$\beta=2.59 \times 10^{-7}$	Range, $15-110^{\circ} \mathrm{C}$
Sulfur dioxide $\ldots \ldots \ldots \ldots \ldots$	$6.19 \times 10^{-5}$	$1.86 \times 10^{-7}$	$0-110$
Water vapor $\ldots \ldots \ldots \ldots \ldots$	$1.4 \times 10^{-6}$	$\cdots$	145

The dielectric constant of air at 76 cmHg and varying temperature may be calculated since $K-1$ is approximately proportional to the density. See Table 437.

TABLE 437.-VARIATION OF THE DIELECTRIC CONSTANT OF GASES WITH THE PRESSURE

	${ }^{\circ} \mathrm{C}$	Pressure atm			${ }^{\circ} \mathrm{C}$	Pressure atm	
Air	19	20	1.0108	Air	11	120	1.0579
"	,	40	1.0218		"	140	1.0674
"	"	60	1.0330	"	"	160	1.0760
"	"	80	1.0439	"		180	1.0845
"	"	100	1.0548	$\mathrm{CO}_{2}$	15	10	1.008
"	11	20	1.0101	"	"	20	1.020
"	"	40	1.0196	"		40	1.060
"	"	60	1.0294	$\mathrm{N}_{2} \mathrm{O}$	15	10	1.010
"	"	80	1.0387	"	碞	20	1.025
"	"	100	1.0482	"	"	40	1.070

TABLE 438.-DIELECTRIC CONSTANT OF LIQUIDS (K). PRESSURE EFFECT ${ }^{148}$


[^183]A wavelength greater than 10000 cm is designated by $\infty$.

Substance	${ }^{\text {Temp. }} \mathrm{C}$.	Wave. length, cm	Dielectric constant	Substance	${ }^{\text {Temp }}{ }_{\text {c }}{ }^{\text {cos }}$	Wave. lengtb, cm	Dielectric constant
Alcohol:				Ethyl ether	100	"	3.12
Amyl .	frozen	$\infty$	2.4		140	"	2.66
	-100	"	30.1	" "	180	"	2.12
"	-50	"	23.0				
"	0	"	17.4		${ }_{\text {crite }}^{\text {Crit. }}$		
"	+20	"	16.0	" "	192	"	1.53
"	18	200	10.8	" ${ }^{\text {c }}$	18	83	4.35
"	18	73	4.7	Formic acid	+2	73	19.0
Ethyl	frozen	$\infty$	2.7		(frozen)		
	-120	"	54.6	" "	15	1200	62.0
"	-80	"	44.3	" "	16	73	58.5
"	-40	"	35.3	Glycerine	15	1200	56.2
"	0	"	28.4		15	200	39.1
"	+20	"	25.8	"	15	75	25.4
"	17	200	24.4		-	8.5	4.4
"		75	23.0	"		. 4	2.6
"	"	53	20.6	Hexane	17	$\infty$	1.880
"	"	4	8.8	Hydrogen p	18	75	84.7
Methyi	frozen	$\infty$	3.07	Kerosene		$\bar{\infty}$	. 2
	-100	"	58.0	Meta-xylene	18	$\infty$	237
"	-50	$\cdots$	45.3		17	73	2.37
"	0	"	35.0		(rozen)		
"	$+20$	"	31.2	Nitrobenzol	-10	¢	9.9
"	17	75	33.2		-5		42.0
Propyl	-120	\%	46.2	"	15		41.0
	-60	"	33.7	"	+15	"	37.8
"	0	"	24.8	"	30	"	35.1
" ${ }^{\prime}$	$+20$	7	22.2	"	18		36.45
Aceton	15	75	12.3	"	17	73	34.0
Acetone	-80	$\infty$	33.8	Octane	17	$\infty$	1.949
	0	"	26.6	Oils:			
"	15	1200	21.85	Almond	20	$\infty$	2.83
Actic acid	17	73	20.7	Castor	11	"	4.67
Acetic acid	18	$\infty$	9.7	Colza	20	"	3.11
	15	1200	10.3	Cottonseed	14	"	3.10
"" "	17	200	7.07	Lemon	21	"	2.25
" " .	19	75	6.29	Linseed	13	"	3.35
Amyl acetate	19	$\infty$	4.81	Neatsfoot		"	3.02
Amylene ...	16	"	2.20	Olive	20	"	3.11
Aniline	18	$\infty$	7.316	Peanut	11.4	"	3.03
Benzol (benzene)	18	"	2.288	Petroleum	-	2000	2.13
	19	73	2.26	Petroleum	20	$\infty$	1.92
Bromine	23	84	3.18	Rape seed	16	"	2.85
Carbon bisulfide	20	-	2.626	Sesame	13.4	"	3.02
" "	17	73	2.64	Sperm	20	"	3.17
Chloroform	18	$\infty$	5.2	Turpentine	20	"	2.23
Decane	17	73	4.95	Vaseline			2.17
Decylene	14	-	2.24	Phenol	-83	$\infty$	2.68
Ethyl ether	-80	$\infty$	7.05	"	+16	"	2.33
" ${ }^{\text {c }}$	-40	"	5.67	"	19	73	2.31
" "	0	"	4.68	Water	18	$\infty$	81.07
" "	18	"	4.368	(for temp.	17	200	80.6
" "	20	"	4.30	see Table	17	74	81.7
" " .	60	"	3.65		17	38	83.6

Temperature coefficients of the formula ： $\mathrm{K}_{\theta}=\mathrm{K}_{t}\left[1-a(t-\theta)+\beta(t-\theta)^{2}\right]$

Substance	a	$\beta$	$\begin{aligned} & \text { Temp. } \\ & \text { range, }{ }^{\circ} \mathrm{C} \end{aligned}$
Amyl acetate	． 0024	－	－
Aniline ．．．．．	． 00351		
Benzene	． 00106	． 0000087	10－40
Carbon bisulfide	． 0000966	． 00000060	20－181
Chloroform	． 00410	． 000015	22－181
Ethyl ether	． 00459	－	
Methyl alcohol	． 0057		
Oils：Almond	． 00163	． 000026	
Castor	． 01067	－	－
Olive．．．	． 00364		－
Paraffin	． 000738	． 0000072	
Toluene	． 000921		$\begin{gathered} 0-13 \\ 20-181 \end{gathered}$
Water	． 004474		5－20
＂	． 004583	． 0000117	0－76
＂Meta－xylene	． 004366	－－	$4-25$ $20-181$

TABLE 441．－DIELECTRIC CONSTANT OF LIQUEFIED GASES
A wavelength greater than 10000 cm is designated by $\infty$ ．

		5					$E$	
Substance	${ }^{\text {Temp．}}{ }^{\text {C }}$ ．		Dielectric constant	Substance		${ }^{\text {Temp．}}{ }^{\text {c }}$		Dielectric constant
Air	－191	$\begin{aligned} & \infty \\ & 75 \end{aligned}$	$\begin{gathered} 1.43_{2} \\ 1.47-1.50 \end{gathered}$	Nitrous oxide				
Ammonia	－34	75	21－23		$\mathrm{N}_{2} \mathrm{O}$	－88	$\infty$	$1.93{ }^{3}$
	14	130	16.2	＂＂		－5	＂	1.63.
Carbon dioxide	－5	$\infty$	1.608	＂		＋5	＂	$1.57{ }^{3}$
	0	＂	1.58	－＂		＋15	＂	1.520
＂	+10 +15	＂	$1.54{ }^{\circ}$	Oxygen		－182	＂	$1.49{ }_{1}$ $1.46{ }^{\text {a }}$
Chlorine	＋60	＂	2.15 。	Sulfur dioxide		14.5	120	13.75
	－20	＂＂	2.03 。			20	$\stackrel{\infty}{ }$	14.0
＂	0	＂	1.97 。	＂＂		40	＂	12.5
＂	＋10	＂	$1.94{ }^{\circ}$	＂＂＂		60	＂	10.8
＂	0	＂	2.08	＂＂		80	＂	9.2
＂．	＋14	100	1.88	＂＂		100	＂	7.8
Cyanogen	23	84	2.52	＂＂		120	＂	6.4
Hydrocyanic acid	21	＂	about 95	＂＂		140	＂	4.8
Hydrogen sulfide	10	$\cdots$	5.93	Critical		154.2	＂	2.1
＂＂	50	＂،	4.92					
	90	＂	3.76					

TABLE 442．－DIELECTRIC CONSTANT OF ROCKS＊

Material	Wave length， m	Dielectric constant， range	Material		Wave． length， cm	Dielectric constant， range
Chalk， middle Devonian			Limestone			8．0－12．0
		8．0－9．0	Marmorized	limestone	$3 \times 10$	15.2
Coral dolomite		8．0－9．0	Mica schist			16．0－17．0
Granite		7．0－9．0	Sandstone，	variegated		$9.0-11.0$

[^184]

## TABLE 444.-ELECTROSTRICTION*

Electrostriction is a change in the dimensions of a dielectric proportional to the square of an applied electric field. The effect is very small except for bodies of very high dielectric constant or high mechanical compliance.n,

> Typical values for-

Glasses	Rubber	Barium titanate   polycrystalline
0.1 to $0.7 \times 10^{-12}$	$7 \times 10^{-0}$	$100 \times 10^{-9} \mathrm{~cm}^{2} /$ statvolt
transverse	longitudinal	longitudinal

[^185]TABLE 445.-STANDARD SOLUTIONS FOR THE CALIBRATION OF APPARATUS FOR THE MEASURING OF DIELECTRIC CONSTANT


TABLE 446.-DIELECTRIC CONSTANT OF MINERALS *

Material	Wavelength, cm	Range	Dielectric constant		
			- axis	\|	axis
Asphalt		2.7			
Beryl	$\infty$		7.85	6.05	
Coal, anthracite	.	5.6-6.3	...	...	
Fluorite . ...		6.8	. .	$\ldots$	
Glass, flint ex. heavy		9.9	...		
Glass, hard crown .		7.0	...	...	
Glass, Jena barium		7.8-8.5	...	...	
Glass, lead (Powell)		5.4-8.0	. . .	...	
Gypsum ${ }^{\circ}$.		6.3	. .	...	
Ice $\left(-2^{\circ} \mathrm{C}\right)$		93.9			
Iceland spar ....	. 75		8.50	8.00	
Quartz, fused ...		3.5-3.6	. . .	. . .	
Sulfur, amorphous	. . . . .	3.9			

*For reference, see footnote 45, p. 136.

## TABLE 447.-THE DIELECTRIC PROPERTIES OF NONCONDUCTORS

Results of tests at unit area and unit thickness of dielectric

At 1000 cycles	Mica	Paper	Celluloid	Ice
Max. breakdown volts per cm.	$1.06 \times 10^{6}$	$.71 \times 10^{6}$	$1.05 \times 10^{8}$	. $001 \times 10^{3}$
Specific induc. capacity.	4.00	4.90	13.26	86.40
Max. absorbable energy, watts-sec/ $\mathrm{cm}^{8}$.	. 198	. 108	. 640	. 00040
$90^{\circ}$-angle of lead. . . . . . . .	$0^{\circ} 57^{\prime}$	$2^{\circ} 10^{\prime}$	$3^{\circ} 40^{\prime}$	$13^{\circ} 39^{\prime}$
Equiv. resistance (ohm-cm) $\times 10^{11}$	3.91	9.84	48.3	1400
Conductivity, $1 /(\mathrm{ohm}-\mathrm{cm}) \times 10^{-10}$	2.56	1.02	. 207	. 00722
Percent change in cap. per cycle $\times 10^{4}$.	2.18	14.31	30.7	70.0
Percent change in resistance per cycle..	. 258	. 146	. 106	. 127
At 15 cycles				
Specific inductive capacity	4.09	5.77	18.60	429.0
Max. absorbable energy, watt-sec/ $\mathrm{cm}^{8}$. .	. 203	. 126	. 90	. 002
Percent change in capacity per cycle...	. 00	. 306	1.74	1.59
On direct current Conductivity, $1 /($ ohm -cm$)$	$2.42 \times 10^{-17}$	$2.27 \times 10^{-14}$	$71.5 \times 10^{-14}$	$163.10^{-11}$

TABLE 448.-VALUES OF DIELECTRIC CONSTANT FOR SEVERAL ELECTRIC INSULATING MATERIALS AT RADIO FREQUENCIES

Material	$\begin{gathered} \text { Frequency } \\ \mathrm{kc} \end{gathered}$	Dielectric constant	Material	$\begin{aligned} & \text { Frequency } \\ & \text { kc } \end{aligned}$	Dielectric constant
Glass	30	5.1-7.9	Phenolic insulation:		
cobalt	500	7.3	laminated .....	190	5.0-7.4
crown	230	6.3		1000	4.7-7.0
	800	6.2	molded	190	4.3-7.6
flint	500	7.0		1000	4.9-7.0
	890	7.0	Rubber, hard ......	135	3.7
photographic	100	7.5		210	
	1700	7.4		1126	3.0-3.7
plate	500	6.8-7.6	Wood:		
Pyrex	30	4.8	bay	870	3.8
	500	4.9-5.8	birch .........	500	5.2
Marble	44	8.4	maple ........	500	4.4
	80-650	9.2-11.7*	oak .	300	3.1 t-6.7
	1400	7.3		425	
Mica	100-1000	5.8-8.7		635	$3.0{ }^{\dagger}-6.5$
				1060	3.3

* Range of 10 samples of various kinds of marble.
$\dagger$ After drying sample for 48 hours at $80^{\circ} \mathrm{C}$.


## TABLE 449.-COMPARISON OF ELECTRICAL PROPERTIES OF INSULATING MATERIALS AT ROOM TEMPERATURE **

Material	Intrinsic dielectric strength			
	$\begin{gathered} \text { Thickness } \\ (\mathrm{mm}) \end{gathered}$	( $\mathrm{Kv} / \mathrm{cm}$ )	Dielectric constant	resistivity   (ohm-cm)
Cellulose acetate	.025-. 12	$2300 \dagger$	5.5	$10^{18}$
Glass :				
borosilicate No. 7740 (Pyrex)	. 10	4800*	4.8	$10^{18}$
soda lead ............	. 10	3100**	8.2	$10^{14}$
soda lime		4500*	7.0	$10^{18}$
Mica, muscovite clear ruby	.020-. 10	3000-8200†	7.3	$10^{17}$
Phenolic resin	.012-. 04	2600-3300 $\dagger$	7.5	$10^{11}$
Porcelain, electrical	-	$380 \dagger$	4.4-6.8	$10^{24}$
Porcelain, steatite-low loss		$500 \dagger$	6.0-6.5	$10^{15}$
Silica, fused		5000*	3.5	$10^{18}$
Rubber, hard	. $10-.30$	$2150 \dagger$	2.8	$10^{18}$

[^186]Intrinsic dielectric strength can be realized only under test conditions and is very much higher than the working dielectric strength attainable in ordinary service. These data are listed for purposes of comparison.

```
cgs system, \(K_{\text {vacuum }}=1\)
```

The dielectric constants, $\dagger K$, given here have usually been determined at low field strength (order of $1 \mathrm{volt} / \mathrm{cm}$ ). Unless specifically noted, the frequency is between 60 cycles $/ \mathrm{sec}$ and 5 megacycles/sec. Homogeneous crystals show little dispersion in this frequency range unless they are strongly piezoelectric or have very high dielectric constant. For some strongly piezoelectric crystals, the notation "free" appears in the frequency column. Dielectric constants so noted hold for the mechanically unconstrained condition which is usually fulfilled for frequencies below the principal mechanical resonances of the test body. The dielectric constants for the "clamped" crystal are smaller than for the "free" crystal. The difference does not exceed 10 percent except for $K_{a}$ of Rochelle salt (see fig. 16) and $K \|$ of barium titanate.
$K_{a}, K_{b}$, and $K_{0}$ for orthorhombic crystals refer to electric field parallel to the crystallographic $a, b$, and $c$ axes.

For monoclinic crystals, $K_{b}$ refers to electric field parallel to the $b$ axis which is the symmetry axis; $K_{c}$ to field parallel to the $c$ axis accepted by crystallographic convention; and $K_{z}$ to an electric field perpendicular to the $b$ and $c$ axes.

[^187]
## Cubic crystals

Name	Composition	K	Author. ity ${ }^{148}$	Name	Composition	K	Author ity
Silver chloride	AgCl	12.3	g	Sphalerite	ZnS	8.8	e
Silver bromide	AgBr	13.1	g	Sodium chlorate	$\mathrm{NaClO}_{3}$	5.7	h
Lithium fluoride ..	LiF	9.00	f	Sodium bromate	$\mathrm{NaBrO}_{3}$	5.7	h
Sodium chloride ..	NaCl	5.90		Magnesium oxide	MgO	9.65	f
Potassium chloride	KCl	4.68	g	Potassium bromide	KBr	4.90	f
Barium oxide ....	BaO	34.	0	Thallium chloride.	TlCl	31.1	$g$

Uniaxial crystals

Name	Composition	$K \perp$	K \\|	Frequency	Authority
Quartz	. $\mathrm{SiO}_{2}$	4.5	4.6		b
Calcite	$\mathrm{CaCO}_{3}$	8.78	8.29		g
Sapphire	.. $\mathrm{Al}_{2} \mathrm{O}_{3} \ddagger$	8.6	10.5	$10^{2}-10^{7}$	f
Rutile	. $\mathrm{TiO}_{2} \ddagger$	86	170	$10^{5}-10^{\text {a }}$	f
Barium titanate	. $\mathrm{BaTiO}_{3}$	4400	200	? $-10^{7}$	i
Tourmaline		8.2	7.5		h
Magnesite	. $\mathrm{MgCO}_{3}$	6.91	8.1		g
Dihydrogen phosphates and arsenates:					
"ADP" ...	$\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{P}$	56	15.4	free	
"KDP"	. $\mathrm{KH}_{2} \mathrm{PO}_{4}$	46	22	free	h
"ADA"	. $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{~A}$	75	14	free	d
"KDA"	$\mathrm{KH}_{2} \mathrm{AsO}$	52	22	free	d

Orthorhombic crystals


[^188](continued)

TABLE 450.-DIELECTRIC CONSTANT OF CRYSTALS (concluded)

Name	Composition $\mathrm{Ka}_{\mathrm{a}}$	Kı	$K_{\text {c }}$	Frequency	Authority
Tartrates:					
Rochelle salt	$\mathrm{NaKC} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad 8.0$			$2.5 \times 10^{10}$	h
" " $30^{\circ} \mathrm{C}{ }^{8}$.	300	9.4	9.6	free	c, j
	$\mathrm{NaNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O} 9.0$	8.9	10.0	free	h
	$\mathrm{LiKC}_{4} \mathrm{H}_{4} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O} \quad 5.84$	7.32	7.4	free	h
	$\mathrm{LiNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O} \quad 7.2$	8.0	6.9	free	h

Monoclinic crystals

Lithium sulfate	$\mathrm{Li}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	5.6	10.3	6.5	free	h
Tartaric acid	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{8}$	4.3	4.3	4.5	free	
Potassium tartrate	$\mathrm{K}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	6.44	5.80	6.49	free	
Ammonium tartrate	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$	6.45	8.2	6.0	free	h
Ethylene diamine tartrate (EDT)	$\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{8} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{8}$	5.0	8.22	6.0	free	h

References: a, Bechmann, K., and Lynch, A. C., Nature, vol. 163, p. 915, 1949. b, Cady, W. G., Piezoelectricity, McGraw-Hill, New York, 1946. c, Hablüzel, J., Helvet. Phys. Acta, vol. 12, p. 489, 1939. d, Jaffe, H., The Brush Development Co. Report to U.S. Signal Corps on synthetic watersoluble piezoelectric crystals, April 1, 1948 . e, Jaffe, H., personal communication. f, Laboratory for Insulation Research, Massachusetts Inst. Techn. Tables of Dielectric Materials III, 1948; and personal communication. g, Landolt Börnstein Tables, 5th ed. h, Mason, W. P., Piezoelectric crýstals and their application to ultrasonics, Van Nostrand Co., New York, 1950 . i, Merz, W. J., Phys. Rev., vol. 75, p. 687, $1949 .{ }^{2}$, Mueller, H., Phys. Rev., vol. 47, p. 175, 1935 ; vol. 58, p. $5655^{\prime}, 1940$. k, Naval Research Laboratory, Crystal Section. 1,' Spitzer,' F., Dissertation, Göttingen, 1938. m, Standards on piezoelectric crystals, Proc. Inst. Radio Eng., vol. 37, p. 1378, 1949. n, International Critical Tables, vol. $6 . \quad$ o, Bever and Sproul, Phys. Rev., vol. 53, p. 801, 1951.


Fig. 16.-Dielectric constant $K_{a}$ of Rochelle salt. Curve A: free condition (audio frequency); curve B: clamped condition (radio frequency).

In this table are listed piczoelectric strain coefficients $* d_{n m}$ which are ratios of piezoelectric polarization components to components of applied stress at constant electric field (direct piezoelectric effect) and also ratios between piezoelectric strain components to applied electric field components at constant mechanical stress (converse effect). The subscripts $\mathrm{n}=1$ to 3 indicate electric field components, $\mathrm{m}=1$ to 6 mechanical stress or strain components. These components are referred to orthogonal coordinate axes. For correlation of these to crystallographic axes, we follow Standards on Piezoelectric Crystals. ${ }^{\text {m }}$
In the monoclinic system, indices 2 and 5 refer to the symmetry (b) axis, in distinction from the older convention ${ }^{\circ}$ relating indices 3 and 6 to the symmetry axis. Crystal classes are designated by international (Hermanr-Mauguin) symbols. A dot in place of a coefficient indicates that it is equal by symmetry from another listed coefficient; a blank space indicates that the coefficient is zero by symmetry. If the sign of a coefficient is not given it is unknown, not necessarily positive.

$$
\begin{aligned}
\text { Unit for } \begin{aligned}
d_{n m} & =10^{-8} \text { statcoulomb } / \text { dyne }=\frac{1}{3} \times 10^{-12} \text { coulomb } / \text { newton } \\
& =10^{-8} \mathrm{~cm} / \text { statvolt }=\frac{1}{3} \times 10^{-12} \text { meter } / \mathrm{volt}
\end{aligned}
\end{aligned}
$$

[^189]
## Cubic and tetragonal crystals

Name	Composition	Class	$d_{14}$	$d_{38}$	Authority ${ }^{149}$
Sphalerite	ZnS	43 m	9.7	.	b
Sodium chlorate	$\mathrm{NaClO}_{3}$	23	5.2	-	1
Sodium bromate	$\mathrm{NaBrO}_{3}$	23	7.3	-	1
"ADP"	$\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}$	42m	$-1.5$	$+48.0$	d
"KDP"	$\mathrm{K} \mathrm{H}_{2} \mathrm{PO}_{4}$	42 m	$+1.3$	$+21$	e
"ADA"	$\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{4}$	$\overline{42} \mathrm{~m}$	+41	$+31$	d
"KDA" .	$\mathrm{K} \mathrm{H}_{2} \mathrm{AsO}_{4}$	$\overline{42} \mathrm{~m}$	$+23.5$	$+22$	d

Trigonal crystals

Name	Class	$d_{11}$	$d_{14}$	$d_{15}$	$d_{22}$	$d_{31}$	$d_{33}$	Authority
Quartz	32	+6.9	-2.0					b
Tourmaline	3 m			+11.0	-. 94	+. 96	+5.4	b

Orthorhombic crystals


Monoclinic crystals (Class 2)


Polarized polycrystalline substance


## TABLE 452.-VALUES FOR POWER FACTOR IN PERCENT FOR SEVERAL ELECTRICAL INSULATING MATERIALS AT RADIO FREQUENCIES

From the range of values given, an approximate figure can be taken for a particular material and its relative position with respect to other materials seen. Data of this kind are much affected by the condition and past treatment of the samples and by the conditions of the tests. The power factor and dielectric constant of dry air may be taken as 0 and 1.00 . Fused quartz has the lowest power factor among the solid insulating materials, and is used for supporting the insulated plates of standard air condensers.

Material	Frequency	Power factor	Material	Frequency	Power factor	
Amber	187.5	. 459	Paraffin	14	. 042	
	300	. 476		100	.017- . 031	
	600	. 495		500	. 026	
	1000	. 514		1070	. 034	
Glass ....	30	. $35-2.98 *$	Phenolic			
	600	. $040-.653^{\dagger}$	insulation :			
	500	. 70	laminated $\\|$.	190	$2.62-8.0$	
	500	. 42		1000	$3.85-6.65$	
	890	. 40	molded II	190	$1.64-10.9$	
photographic	100	. 95		1000	1.56-8.4	
	235	. 86	Rubber, hard	135	. 68	
	1700	. 77		315	. 70	
plate	14	. 97		600	. 62	
	100	. $77-.93$		625	. 70	
	500	. $66-.70$		710	. 88	
	635	. 82		1000	. 68	
	1000	. 62		1085	. 74	
Pyrex	14	. 88		1126	1.05	
	30	. $26-.56$	Wood:			
	100	. $58-.74$	bay .......	870	3.76	
	420	. 50	birch	500	6.48	
	500	. 42 - . 67	maple	500	$3.33-3.63$	
	750	. 68	oak	300	2.94โ-13.8	
Marble	80-650	. $35-4.72 \ddagger$		635	3.241-10.1	
Mica ..........	600	.007-. 938		1060	4.20	

[^190]Antenna arrays (figs. 17-19).-The basis for all directivity control in antenna arrays is wave interference. By providing a large number of sources of radiation, it is possible with a fixed amount of power greatly to reinforce radiation in a desired direction by suppressing the radiation in undesired directions. The individual sources may be any type of antenna.

The radiation patterns of several common types of individual elements are shown in figure 17. The expressions hold for linear radiators, rhombics, vees, horn radiators, or other complex antennas when combined into arrays, provided a suitable expression is used for $A$, the radiation pattern of the individual

type of rodialor	current distribution	$\qquad$   horizontd $F(\theta)$	verical
Hall-wave dipole		$\begin{aligned} & F(\theta)= \\ & K \frac{\cos \left(\frac{\pi}{2} \sin 0\right)}{\cos \theta} \\ & \cong K \cos \theta \end{aligned}$	$F(\beta)=K(1)$
Shortened dipole		$F(\theta) \cong K \cos \theta$	$F(\beta)=K(1)$
Lengthened dipole		$\begin{aligned} & F(\theta)= \\ & K\left[\frac{\cos \left(\frac{\pi i}{\lambda} \sin \theta\right)-\cos \frac{\pi}{\lambda}}{\cos \theta}\right] \end{aligned}$	$F(\beta)=K(1)$
Horizontal loop		$F(\theta) \cong K(1)$	$F(\beta)=K \cos \beta$
Horizontal turnstile	$i_{1}$ and $i_{2}$ phosed $90^{\circ}$	$F(\theta) \cong K^{\prime}(1)$	$F(\beta) \cong K^{\prime}(1)$
$\theta=$ horizontol angle measured from perpendicular bisecting plone			
$\beta=$ vertical ongle measured from horizon			
$K$ and $K^{\prime}$ ore constonts and $K^{\prime} \cong 0.7 K$			

Fig. 17.-Radiation patterns of several common types of antennas.
antenna. The array expressions are multiplying factors. Starting with an individual antenna having a radiation pattern given by $A$, the result of combining it with similar antennas is obtained by multiplying $A$ by a suitable array factor, thus obtaining an $A^{\prime}$ for the group. The group may then be treated as a single source of radiation. The result of combining the group with similar groups, or, for instance, of placing the group above ground, is obtained by multiplying $A^{\prime}$ by another of the array factors given.

The expressions given here assume negligible mutual coupling between individual antennas. When coupling is not negligible, the expressions apply only if the feeding is adjusted to overcome the coupling and thus produce resultant currents that are of the amplitude and relative phases indicated.

[^191]One of the most important arrays is the linear multielement array where a large number of equally spaced antenna elements are fed equal currents in phase to obtain maximum directivity in the forward direction. Figure 18 gives expressions for the radiation pattern of several particular cases and the general case of any number of broadside elements.

In this type of array a great deal of directivity may be obtained. A large number of minor lobes, however, are apt to be present, and they may be undesirable under some conditions, in which case a type called the binomial array may be used. Here again all the radiators are fed in phase but the current is not distributed equally among the array elements, the center radiators in the array


Fig. 18.-Linear multielement array broadside directivity.
being fed more current than the outer ones. Figure 19 shows the configuration and general expression for such an array. In this case the configuration is made for a vertical stack of loop antennas in order to obtain single-lobe directivity in the vertical plane. If such an array were desired in the horizontal plane, say $n$ dipoles end to end, with the specified current distribution the expression would be

$$
\mathrm{F}(\theta)=2^{\mathrm{n}-1}\left[\frac{\cos \pi / 2 \sin \theta}{\cos \theta}\right] \cos ^{\mathrm{n}-1}\left(1 / 2 \mathrm{~S}^{\circ} \sin \theta\right)
$$

The term binomial results from the fact that the current intensity in the successive array elements is in accordance with the binomial expansion $(1+1)^{\mathrm{n}-1}$, where $n$ is the number of elements.
cos $\beta[1]$

Fig. 19.-Development of binomial array.

TABLE 453.-DIELECTRIC CONSTANT OF NONPOLAR GASES ${ }^{150}$
at $0^{\circ} \mathrm{C}$ and 76 cmHg

Gas	$(\mathrm{K}-1) \times 10^{8}$	Gas	$(\mathrm{K}-1) \times 10^{6}$	Gas $\quad(\mathrm{K}-1) \times 10^{0}$
Helium	69.2	Hydrogen	272	Carbon dioxide. . 988
Neon	134.1	Oxygen	532.5	Air ( $\mathrm{CO}_{2}$ free). . 570
Argon	554.2	Nitrogen	. 580	

[^192]TABLE 454.-DIELECTRIC CONSTANT AND LOSS TANGENT OF DIELECTRIC MATERIALS ${ }^{131}$
The following table presents values of dielectric constant, ${ }^{2} \epsilon^{\prime}$ (relative to that vacuum $\epsilon_{0}$ ) and loss tangent, $\tan \delta$, for various substances at the frequencies and temperatures indicated. The loss tangent, $\tan \delta$, is identical with the power factor, $\cos \theta$ (or $\sin \delta$ ), for low loss substances. The table shows it multiplied by $10^{4}$.

Part 1.—Solids

Materials   A. Inorganic	${ }^{\text {Temp }}$ C	Frequency, cycles per second						
		$1 \times 10^{2}$		$1 \times 10^{3}$	$1 \times 10^{0}$	$1 \times 10^{8}$	$1 \times 10^{10}$	
1. Crystals $-12 \epsilon^{\prime} / \epsilon_{0}{ }^{\text {IT* }}$								
	-12	$\begin{gathered} \epsilon^{\prime} / \epsilon_{0} \\ \tan \delta \end{gathered}$				$\begin{aligned} & 4.15 \\ & 1200 \end{aligned}$		$\begin{array}{r} 3.17 \\ 7 \end{array}$
Sodium chloride ${ }^{2}$	25	$\epsilon^{\prime} / \epsilon_{0}$	5.90	5.90	5.90		5.90	
		$\tan \delta$	<1	<1	<2		5	
2. Ceramics								
a. Steatite bodies AlSiMag $211^{3}$	25	$\epsilon^{\prime} / \epsilon_{0}$	6.00	5.98	5.97	5.96	5.90	
		$\tan \delta$	92	34	5	4	14	
b. Miscellaneous Ruby mica ${ }^{4}$	26	$\begin{aligned} & \epsilon^{\prime} / \epsilon_{0} \\ & \tan \delta \end{aligned}$	$\begin{aligned} & 5.4 \\ & 25 \end{aligned}$	$5.4$	$5.4$	5.4		
Mycalex K $10{ }^{5}$	24	$\epsilon^{\prime} / \epsilon_{0}$	9.5	9.3	9.0		11.3**	
		$\tan \delta$	170	125	26		40	
Porcelain, dry process ${ }^{6}$	25	$\epsilon^{\prime} / \epsilon_{0}$	5.50	5.36	5.08	5.04	4.74	
		$\tan \delta$	220	140	75	78	156	
3. Glasses								
		$\tan \delta$	6	6	6		9.4	
Corning No. $1990{ }^{8}$	24	$\epsilon^{\prime} / \epsilon_{0}$	8.40	8.38	8.30	8.20	7.94	
		$\tan \delta$	00	82.5	5	9	42	
Foamglas ${ }^{\circ}$	23	$\epsilon^{\prime} / \epsilon_{0}$	90.0	82.5	17.5		5.49	
Fused quartz ${ }^{10}$	25	${ }_{\text {tan }} \tan _{\epsilon^{\prime} / \epsilon_{0}}$	1500 3.78	1600 3.78	3180 3.78	3.78	455	
Fused quartz		$\tan \delta$	8.5	7.5	2		1	

B. Organic, with or without inorganic components

1. Crystals

2. Plastics
a. Phenol-formaldehyde Bakelite BM-16981 ${ }^{12}$

25

Formica $\mathrm{XX}^{13}$ (field $\perp$ to laminate)	26

(field $\frac{1}{}$ to laminate) ...
b. Phenol-aniline-formaldehyde

Resinox $7013^{14}$
25 (preformed and preheated)

$\epsilon^{\prime} / \epsilon_{0}$	5.05	4.87	4.72	4.62	4.52
$\tan \delta$	190	160	72	56	82
$\epsilon^{\prime} / \epsilon_{0}$	5.23	5.15	4.60	4.04	$3.55 \dagger$
$\tan \delta$	230	165	340	570	$700^{\dagger}$
$\epsilon^{\prime} / \epsilon_{0}$	4.64	4.55	4.37	4.30	4.25
$\tan \delta$	160	137	62	77	124

c. Melamine-formaldehyde

Formica grade FF-41 ${ }^{15}$ (sheet stock) ..............
Melmac resin 592 ${ }^{18} \ldots . .$.
d. Urea-formaldehyde
$\begin{array}{lllllllll}\text { Plaskon urea, natura }{ }^{17} \ldots \ldots & 24 & \epsilon^{\prime} / \epsilon_{0} & 7.1 & 6.7 & 6.0 & 5.2 & 4.65\end{array}$
e. Hexamethylene-adipamide

Nylon $610^{18}$.	25	$\epsilon^{\prime} / \epsilon_{0}$	3.60	3.50	3.14	3.0
		$\tan \delta$	155	186	218	200
Nylon $610^{18}$	25	$\epsilon^{\prime} / \epsilon_{0}$	4.5	4.2	3.2	3.0
90\% humidit		$\tan \delta$	650	640	380	220

[^193]
## TABLE 454.-DIELECTRIC CONSTANT AND LOSS TANGENT OF DIELECTRIC MATERIALS (continued)

	${ }^{\text {Temp. }}{ }^{\text {c }}$.	Frequency, cycles per second					
f. Cellulose derivatives		$1 \times 10^{2}$		$1 \times 10^{3}$	$1 \times 10^{6}$	$1 \times 10^{8}$	$1 \times 10^{10}$
(1) Acetates							
Tenite II 205A $\mathrm{H}^{18}$ (cellulose acetate) (butyrate)	26	$\begin{gathered} \epsilon^{\prime} / \epsilon_{0} \\ \tan \delta \end{gathered}$	$\begin{array}{r} 354 \\ 78 \end{array}$	$\begin{array}{r} 3.50 \\ 107 \end{array}$	$\begin{array}{r} 3.28 \\ 178 \end{array}$	$\begin{array}{r} 3.05 \\ 190 \end{array}$	
(2) Nitrate Pyralin ${ }^{20}$	27	$\begin{aligned} & \epsilon^{\prime} / \epsilon_{n} \\ & \tan \delta \end{aligned}$	$\begin{aligned} & 10.8 \\ & 6400 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 1000 \end{aligned}$	$\begin{gathered} 6.6 \\ 640 \end{gathered}$	$5.2$	$\begin{array}{r} 332 \\ 1310 \end{array}$
(3) Ethyl cellulose Ethocel No. 2	25	$\begin{gathered} \epsilon^{\prime} / \epsilon_{0} \\ \tan \delta \end{gathered}$	$\begin{array}{r} 3.90 \\ 75 \end{array}$	$\begin{array}{r} 3.80 \\ 210 \end{array}$	$\begin{aligned} & 3.40 \\ & 275 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 240 \end{aligned}$	
g. Silicone resins DC $2101^{22}$	25	$\begin{gathered} \epsilon^{\prime} / \epsilon_{0} \\ \tan \delta \end{gathered}$	2.970	2.9	2.9	2.9	
h. Polyvinyl resins   Polyethylene DE-3401 ${ }^{23}$	25	$\epsilon^{\prime} / \epsilon_{0}$ $\tan \delta$	$\stackrel{2.26}{<2}$	$\stackrel{2.26}{<2}$	$\stackrel{2.26}{ }$		${ }_{3.6} 2.26$
Vinylite QYNA ${ }^{24}$	20	$\epsilon^{\prime} / \epsilon_{0}$	3.18	3.10	2.88	2.85	
		$\tan \delta$	130	185	160	81	
Saran B-115 ${ }^{25}$	23	$\epsilon^{\prime} / \epsilon_{0}$	4.88	4.65	3.18	2.82	2.70
Lucite HM-119 ${ }^{28}$		$\tan \delta$	800	630 284	570	180	21
	23	$\begin{aligned} & \epsilon^{\prime} / \epsilon_{0} \\ & \tan \delta \end{aligned}$	3.20 620	2.84 440	2.63 145	2.58	2.57 49
Polystyrene ${ }^{27}$ (commercially molded)   Sheet stock	25	$\epsilon^{\prime} / \epsilon_{0}$	2.56	2.56	2.56	2.55	2.54
		$\tan \delta$	<. 5	<. 5	. 7	<1	4.3
3. Elastomers							
Hevea rubber ${ }^{28}$	25	$\epsilon^{\prime} / \epsilon_{0}$	$2.4$	$2.4$	$2.4$	$2.4$	
Gutta-percha ${ }^{\text {ap }}$	25	$\epsilon^{\prime} / \epsilon_{0}$	2.61	2.60	2.53	2.47	2.38
		$\tan \delta$	5	4	42	120	50
GR-S (Buna S) ${ }^{30}$	26	$\epsilon^{\prime} / \epsilon_{0}$	2.66	2.66	2.56	2.52	2.44
compound ${ }_{\text {c }}$		$\tan \delta$	7	9	120	95	50
GR-I (Butyl rubber) ${ }^{31}$	25	$\epsilon^{\prime} / \varepsilon_{0}$	2.39	2.38	2.35	2.35	2.35
		$\tan \delta$	34	35	10	10	8
Neoprene GR-M ${ }^{32}$	26	$\begin{gathered} \epsilon^{\prime} / \epsilon_{0} \\ \tan \delta \end{gathered}$	$\begin{gathered} 7.5 \\ 800 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 860 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 950 \end{aligned}$	$\begin{gathered} 3.4 \\ 1600 \end{gathered}$	
4. Natural resins							
Amber ${ }^{33}$	25	$\epsilon^{\prime} / \epsilon_{0}$	2.7	2.7	2.65		
		$\tan \delta$	12.5	18	56		
Shellac, natural $\mathrm{XL}^{34}$	28	$\epsilon^{\prime} / \epsilon_{0}$	3.86	3.81	3.47	3.10	
		$\tan \delta$	65	74	310	300	
5. Asphalts and Cement   Plicene cement ${ }^{35}$.	25	$\epsilon^{\prime} / \epsilon_{0}$	2.48	2.48	2.48	2.47	2.35
		$\tan \delta$	43.9	35.5	25.5	15	6.8
6. Waxes							
		$\tan \delta$	186	120	25		
Beeswax, white ${ }^{37}$	23	$\epsilon^{\prime} / \epsilon_{0}$	2.65	2.63	2.43	2.39	2.35
		$\tan \delta$	140	118	84	60	48
Ceresin, white ${ }^{\text {88 }}$	25	$\epsilon^{\prime} / \epsilon_{0}$	2.3	2.3	2.3	2.3	2.24
		$\tan \delta$	8	6	4	4	6.5
Paraffin wax ${ }^{39}$	25	$\epsilon^{\prime} / \epsilon_{0}$	2.25	2.25	2.25	2.25	2.24
$132^{\circ}$ ASTM		$\tan \delta$	<2	<2	<2	<2	2.1
Sealing wax ${ }^{10}$	25	$\epsilon^{\prime} / \epsilon_{0}$	3.68	3.52	3.29	3.2	
Red express		$\tan \delta$	249	150	80	120	
7. Woods							
Balsa	26	$\epsilon^{\prime} / \epsilon_{0}$	1.4	1.4	1.37	1.30	1.20
		$\tan \delta$	50	40	120	135	83
Fir, Douglas, plywood $\ddagger$	25	$\epsilon^{\prime} / \epsilon_{0}$	2.1	2.1	1.90		
Mahogany $\ddagger$	25	$\tan _{\epsilon^{\prime} / \epsilon_{0}}$	115	105	230	207	
		$\boldsymbol{\epsilon} / \epsilon_{\delta}$ $\tan \delta$	8.86	+ 120	250	320	210

TABLE 454.-DIELECTRIC CONSTANT AND LOSS TANGENT OF DIELECTRIC MATERIALS (continued)

Part 2.-Liquids

A. $\begin{gathered}\text { Materials } \\ \text { Inorganic } \\ \text { Water, conductivity }{ }^{\text {a/ }}\end{gathered}$	${ }^{\text {Temp. }}$ ¢ ${ }^{\text {c }}$	Frequency, cycles per second					
			$1 \times 10^{5}$	$1 \times 10^{6}$	$3 \times 10^{8}$	$3 \times 10^{6}$	$1 \times 10^{10}$
	1.5	$\epsilon^{\prime} / \varepsilon_{0}$	87.0	87.0	86.5	80.5	38
		$\boldsymbol{\operatorname { t a n }} \delta$	1,900	190	320	3,100	10,300
	25	$\epsilon^{\prime} / \varepsilon_{0}$	78.2	78.2	77.5	76.7	55
		$\tan \delta$	4,000	400	160	1,570	5,400
	45	$\epsilon^{\prime} / \epsilon_{0}$		71.5	71.0	70.7	59
		$\tan \delta$		590	105	1,060	4,000
	65	$\epsilon^{\prime \prime} / \epsilon_{0}$		64.8	64.5	64.0	59
		$\boldsymbol{\operatorname { t a n }} \delta$		865	84	765	3,200
	85	$\epsilon^{\prime} / \epsilon_{0}$		58	57	56.5	, 54
		$\boldsymbol{\operatorname { t a n }} \delta$	12,400	1.240	73	547	2,600
B. Organic							
1. Aliphatic Methyl alcohol ${ }^{42}$	25	$\epsilon^{\prime} / \epsilon_{0}$	$1 \times 10^{2}$	$1 \times 10^{3}$	$\begin{array}{r} 1 \times 10^{8} \\ 31 \end{array}$	$1 \times 10^{8}$ 31	8.9
		$\boldsymbol{\operatorname { t a n }} \delta$			2,000	380	8,100
Ethyl alcohol ${ }^{48}$	25	$\epsilon^{\prime} / \epsilon_{0}$			24.5	23.7	1.7
		$\tan \delta$			900	620	680
n-Propyl alcohol ${ }^{\text {4/ }}$	25	$\epsilon^{\prime} / \epsilon_{0}$			20.1	19.0	2.3
		$\tan \delta$			180	2000	900
Carbon tetrachloride ${ }^{45}$	25	$\epsilon^{\prime} / \epsilon_{0}$	2.17	2.17	2.17	2.17	2.17
2. Aromatic				8	<. 4	<2	16
		$\tan \delta$			80		
Styrene N-100 ${ }^{18}$	22	$\epsilon^{\prime} / \epsilon_{0}$	2.40	2.40	2.40		2.36
		$\tan \delta$	38	5	<3		58
3. Insulating oils							
		$\tan \delta$	12.6	2			18
Fractol ${ }^{48}$	26	$\epsilon^{\prime} / \epsilon_{0}$	2.17	2.17			2.16
		$\tan \delta$	$<1$	<1			11.3
Marcol ${ }^{48}$	24	$\epsilon^{\prime} / \epsilon_{0}$	2.14	2.14	2.14		2.14
Primol-D ${ }^{50}$	24	$\tan _{\epsilon^{\prime} / \epsilon_{0}}$	2.17	${ }_{2} 2.17$	${ }_{2}<^{17}$		11.2 2.16
Cable oil $5314^{51}$		$\boldsymbol{\operatorname { t a n }} \delta$	$<1$	$<1$	<2		10.6
	25	$\epsilon^{\prime} / \epsilon_{0}$	2.25	2.25			2.22
		$\tan \delta$	3	<. 4			22
	80	$\epsilon^{\prime} / \epsilon_{0}$	2.18	2.18			
		$\tan \delta$	38	4			
Pyranol $1467{ }^{62}$	25	$\epsilon^{\prime} / \epsilon_{0}$	4.40 36	4.40 3	$\begin{array}{r} 4.40 \\ 190 \end{array}$	$\begin{aligned} & 4.04 \\ & 1300 \end{aligned}$	2.65 750
Halowax oil $1000^{53}$	25	$\epsilon^{\prime} / \epsilon_{0}$	4.80	4.77	4.77		2.99
		$\tan \delta$	490	50	<2		1850
4. Lubricants							
		$\tan \delta$	3	2	<1	<4	10
Silicone fluid No. 500, ${ }^{\text {s4 }}$	22	$\epsilon^{\prime} / \epsilon_{0}$	2.76	2.76			2.72
100 cs . at $25^{\circ} \mathrm{C} \ldots$		$\tan \delta$	. 4	<. 4			240
Silicone fluid No. $200,{ }^{\text {s4 }}$ 100 cs . at $25^{\circ} \mathrm{C} \ldots \ldots$.	23	$\epsilon^{\prime} / \epsilon_{0}$	2.76	2.76			2.70
100 cs . at $25^{\circ} \mathrm{C} \ldots$.		$\tan \delta$	. 8	. 4			320

[^194]
## (continued)

## TABLE 454.-DIELECTRIC CONSTANT AND LOSS TANGENT OF DIELECTRIC MATERIALS (concluded)

$1 \%$ antioxidant (Bakelite) 24, $100 \%$ polyvinyl chloride (Bakelite). 25 , Polyvinylidene and vinyl chlorides (Dow). 26, Polymethyl methacrylate (DuPont). 27, For sheet stock, various samples used for different frequencies; for rod stock, $\epsilon^{\prime} / \epsilon_{0}$ is the same as for sheet stock. (Plax). 28, Pale crepe (Rubber Research Corp.). 29, Palaquium Oblongifolium (Hermann Weber). 30, 100 pts GR-S, 1 pt stearic acid, 5 pts Kadox, 5 pts Captax, 3 pts sulfur (Rubber Research Corp). 31, Copolymer of $98.99 \%$ isobutylene, $1-2 \%$ isoprene (Rubbe: Research Corp.). 32, Poly-2-chlorobutadiene-1, 3 stabilized with Methyl Tuads (DuPont). 33, Fossil resin (Amber Mines). 34, Contains ca. $3.5 \%$ wax (Zinsser). 35, Central Scientific. 36, Shell Oil. 37, Bromund. 38, Vegetable and mineral waxes (Kuhne-Libby). 39, Mainly $\mathrm{C}_{22}$ to $\mathrm{C}_{29}$ aliphatic, saturated hydrocarbons (Standard Oil New Jerscy). 40, Dennison. 41, Research Laboratory of Physical Chemistry, Massachusetts Inst. Techn. 42, Absolute, Analytical Grade (Mallinckrodt). 43, Absolute (U. S. Industrial Chemicals). 44, Eastman Kodak. Dried and refractionated, Lab. Ins. Res. 45, Purified Lab. Ins. Res. 46, Dow. 47, $72.0 \%$ paraffins, $28.0 \%$ naphthenes (Stanco). $48,57.4 \%$ paraffins, $42.6 \%$ naphthenes (Stanco). 49, $72.4 \%$ paraffins, $27.6 \%$ naphthenes (Stanco). $50,49.4 \%$ paraffins, $50.6 \%$ naphthenes (Stanco). 51, Aliphatic and aromatic hydrocarbons (General Electric). 52, Chlorinated benzenes and diphenyls (General Electric). $53,60 \%$ mono-, $40 \%$ di- and trichloronaphthalenes (Bakelite). 54, Methyl or ethyl siloxane polymer (Dow Corning).
cs., centistoke.

TABLE 455.-DIELECTRIC CONSTANT AND CONDUCTIVITY OF SOILS ${ }^{152}$
Measurements of samples of soil taken from different depths at various sites in England

Geological classification	$\underset{\mathrm{ft}}{\text { Depth }}$	Description of sample		uctivity (i	n esu) a	20 ${ }^{\circ} \mathrm{C}$	Dielectric constant	
			$\%_{1 \mathrm{kc}}$	100 kc	1.2 Mc	10 Mc	$\begin{aligned} & 1.2 \\ & \mathrm{Mc} \end{aligned}$	${ }_{10}^{10}$
Lower lias								
	Surface	Dark fibrous loam... 60	$3.0 \times 10^{8}$	$3.4 \times 10^{8}$	$3.9 \times 10$	$0^{8} 6.0 \times 1$	100	55
	1	Loam and clay...... 33	6.5	7.0	7.0	9.0	95	43
	2	Clay and sand...... 26	7.5	8.0	8.0	12.0	105	48
	3	Blue clay ......... 25	8.0	9.0	9.5	11.0	95	46
Chalk. ....	Surface	Fibrous loam . ...... 21	. 85	. 90	. 95	1.4	39	23
	1	Chalky loam ....... 21	. 55	. 55	. 85	. 95	41	25
	2	Chalk ............. 24	. 28	. 26	. 38	. 61	28	21
Upper greensand								
	Surface	Fibrous loam ...... 37	2.7	3.4	4.0	5.0	80	49
	1	Brown, sandy clay.. 19	2.2	2.4	2.4	3.8	39	19
	2	Brown sand ........ 15	1.8	2.0	2.1	3.3	33	19
Upper lias								
	Surface	Fibrous loam ...... 28	. 85	. 95	1.1	1.6	48	30
	1	Sandy loam ........ 16	. 34	. 34	. 40	. 61	20	17
	2	Brown sand ........ 14	. 29	. 29	. 33	. 46	20	14
	5	Sand and sandstone.. 8.5	. 075	. 090	. 12	. 22	14	9
Red marls.	Surface	Reddish-brown loam. 23	1.5	1.7	1.8	2.3	46	32
	1	Reddish-brown clay. 20	1.5	1.7	1.8	2.5	50	33
	2	Reddish-brown clay. 18	2.6	2.8	3.1	3.6	80	45
Devonian	Surface	Black fibrous loam. . 21	1.3	1.5	1.8	2.5	90	65
	1	Loam and slate..... 9.0	. 026	. 030	. 040	. 060	12	10
	10	Slate ............ -	. 00026	. 0025	. 0092	. 046	9.5	8.0
Granite	$1$	Gritty loam ........ 18	. 12	. 12	. 16	. 18	22	15
	$3 \text { to } 10$	Granite . . . . . . . . . . -	. 00090	. 0070	. 028	. 11	12	8.5
	3 to 10	Granite	. 00070	. 0050	. 019	. 095	10.0	7.5
Boulder clay	$\begin{gathered} \text { Surface } \\ 2 \\ 3 \end{gathered}$	Fibrous loam ....... 38   Clay and loam ..... 19   Dark grit and clay.. 18	$\begin{gathered} .55 \\ 1.1 \\ .60 \end{gathered}$	$\begin{gathered} .65 \\ 1.1 \\ .70 \end{gathered}$	$\begin{gathered} .75 \\ 1.2 \\ .80 \end{gathered}$	$\begin{aligned} & 1.1 \\ & 1.7 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 19 \end{aligned}$

[^195]The dipole moments are given in Debye units (1 Debye unit $=1 \times 10^{-18}$ esu). The moments listed were obtained from gaseous measurements. The data are taken from Tables of Electric Dipole Moments, April 1947, compiled by L. G. Wesson, Laboratory for Insulation Research, Massachusetts Inst. Techn., Cambridge, Mass. Where several sources were given, a study was made to select the best value. Reference to original sources can be made from the above tables.

Part 1.-Inorganic substances

Substance	$\begin{gathered} \text { Electric } \\ \text { dipole } \\ \text { moment } \\ 1 \times 10^{-18} \\ \text { esu } \end{gathered}$	Substance	$\begin{gathered} \text { Electric } \\ \text { dipole } \\ \text { moment } \\ \text { momplo } \\ \text { esu } \end{gathered}$
Ammonia	1.46	Nitric oxide	. 1
Argon	. 0	Nitrogen	. 0
Arsine	. 16	Nitrogen dioxide	3
Boron fluoride	. 0	Oxygen	0
Deuterium chloride	1.089	Phosphine	. 55
Helium	. 0	Potassium chloride	6.3
Hydrogen	. 0	Silane, $\mathrm{SiH}_{4}$	.
Hydrogen fluoride	1.91	Sodium iodide	4.9
Hydrogen iodide	. 38	Sulfur dioxide	1.7
Krypton . ...		Water	1.84
Neon	. 0	Xenon	. 0

Part 2.-Organic substances

Substance	$\begin{aligned} & \text { Electric } \\ & \text { dipole } \\ & \text { moment } \\ & 1 \times 10^{-1 s} \\ & \text { esu } \end{aligned}$	Substance	$\begin{aligned} & \text { Electric } \\ & \text { dipole } \\ & \text { moment } \\ & 1 \times 10^{-1.15} \\ & \text { esu } \end{aligned}$
Phosgene $\mathrm{CCl}_{2} \mathrm{O}$		Ethyl chloride $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	2.00
(carbonyl chloride)	1.18	Ethyl fluoride $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}$	1.92
Thiophosgene $\mathrm{CCl}_{2} \mathrm{~S}$	. 28	Ethyl iodide $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	1.87
Carbon tetrachloride $\mathrm{CCl}^{\text {c }}$	. 0	Nitroethane $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}_{2}$	3.70
Chloroform $\mathrm{CHCl}_{3}$	1.02	Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$	. 0
Hydrogen cyanide CHN	2.94	Ethyl alcohol $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	1.68
Formaldehyde $\mathrm{CH}_{2} \mathrm{O}$	2.27	Methyl sulfone $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~S}$	4.41
Formic acid $\mathrm{CH}_{2} \mathrm{O}_{2}$	1.51	Dimethylamine $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$	. 99
Methyl bromide $\mathrm{CH}_{3} \mathrm{Br}$	1.79	Cyanogen $\mathrm{C}_{2} \mathrm{~N}_{3}$	. 0
Methyl chloride $\mathrm{CH}_{3} \mathrm{Cl}$	1.86	Propene (propylene) $\mathrm{C}_{3} \mathrm{H}_{6}$	. 35
Methyl iodide $\mathrm{CH}_{3} \mathrm{I}$	1.64	Acetone $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \ldots \ldots .$.	2.85
Formamide $\mathrm{CH}_{3} \mathrm{NO}$	3.22	Methyl acetate $\mathrm{C}_{3} \mathrm{H}_{0} \mathrm{O}_{2}$	1.67
Nitromethane $\mathrm{CH}_{3} \mathrm{NO}_{2}$	3.49	Ethyl ether $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	1.14
Methane $\mathrm{CH}_{4}$		Ethyl sulfide $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~S}$	1.51
Methyl alcohol $\mathrm{CH}_{4} \mathrm{O}$	1.69	Diethyl carbonate $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}$	1.06
Carbon monoxide CO		Bromobenzene $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$	1.74
Carbon dioxide $\mathrm{CO}_{2}$	. 0	Chlorobenzene $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	1.69
Carbon disulfide $\mathrm{CS}_{2}$	. 0	Fluorobenzene $\mathrm{C}_{0} \mathrm{H}_{5} \mathrm{~F}$	1.57
Acetylene $\mathrm{C}_{2} \mathrm{H}_{2}$	. 0	Nitrobenzene $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$	4.23
Ethylene $\mathrm{C}_{2} \mathrm{H}_{4}$	. 0	Benzene $\mathrm{C}_{8} \mathrm{H}_{8}$	. 0
Acetaldehyde $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	2.71	Phenol $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}$	1.40
Acetic acid $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$.	1.73	Aniline $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$	1.48
Ethyl bromide $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Br}$	1.96	Toluene $\mathrm{C}_{7} \mathrm{H}_{3}$	. 37

For very low frequencies ( 100 kc and under), an empirical transmission formula of the form

$$
F=\frac{377 h I}{\lambda d} \sqrt{\frac{\theta}{\sin \theta}} \times e^{\frac{-a d}{\lambda^{x}}}
$$

has been found useful (Austin-Cohen; Austin; Espenschied, Anderson, and Bailey), where
$F=$ received field intensity, in $\mu \nu / m$
$h=$ effective height of transmitting antenna, in km
$I=$ transmitting antenna current, in amp
$\theta=$ transmission distance, in radians
$d=$ transmission distance, in km
$\lambda=$ wavelength, in km
Values of $a$ and $x$ were found to vary somewhat.
Since theoretical justification for the Austin-Cohen value of $x=\frac{1}{2}$ has been given by Watson (Proc. Roy. Soc. London, A, vol. 95, p. 546, 1919), data furnished by the above observers have been reevaluated, assuming validity of the relationship

$$
F=\frac{377 h I}{\lambda d} \sqrt{\frac{\theta}{\sin \theta}} \times e^{\frac{-a d}{\sqrt{\lambda}}}
$$

and the resulting values of $\alpha$ presented in the accompanying table, together with their relative weights estimated from the number of observations used in their determination.
a yaries notably with frequency, time of day, and the type of ground along the transmission path, and less definitely with season, solar activity, and the location of the transmission path. The values presented here are for conditions where the entire transmission path, at the height of the ionospheric reflecting layer, lies in daylight or in darkness. For conditions of sunrise or sunset on the transmission path, a has generally been found to lie between day and night values, but under certain circumstances, to far exceed these values.

$\begin{array}{r} \mathrm{f}, \mathrm{kc} \\ 12.8 \end{array}$	a .59	Day weight $10^{-3} 97$	$a$	Night weight	Transmission path			Observations by
					Ground	Transmitter location	Receiver location	
					Sea water	Bordeaux, France	Washington, D. C.	Austin
17.13	. 66	112	. $32 \times$	$10^{-8} 48$	"	Rocky Point, N. Y.	New Southport, England	Espenchied, Anderson, Bailey
22.9	1.49	59			Land	San Diego, Calif.	Washington, D. C.	Austin
23.4	1.01	97			Sea water	Nauen, Germany	Washington, D. C.	Austin
24.05	. 61	93	. 25	7	"	Leafield, England	Belfast, Maine	Espenchied, Anderson, Bailey
24.05	. 80	42	. 46	2	"	"	Riverhead, L. I., N. Y.	،
24.05	. 81	52	. 44	1	"	"	Greenharbor, Mass.	"
25.7	. 76	104	. 29	42	"	Marion, Mass.	New Southgate, England	"
52	1.45	29	. 60	15	"	Northolt, England	Riverhead, L. I., N. Y.	"
52	1.40	75	. 84	21	"	"	Belfast, Maine	"
54.5	1.49	45	. 89	30	"	"	Green Harbor, Mass.	"
57	1.48	112	. 55	48	"	Rocky Point, N. Y.	Nrw Southgate, England	"

At high frequencies and distances where the radiation is chiefly received by means of sky-wave transmission, reference is given to the methods for calculation of received field intensities presented in Chapter 7, National Bureau of Standards Circular 462, "Ionospheric Radio Propagation."

For long transmission paths (over 4000 km ),
where

$$
F=F_{0}+\frac{1}{2} \log P-S_{0} J Q \bar{K} d
$$

$F=\log$ of the received field intensity, in $\frac{\mu v}{m}$
$F_{0}=\log$ of the ionospherically unabsorbed field intensity, in $\frac{\mu v}{m}$, for 1 kw effective radiated power
$=1.6-1.44[\log d-3.60]$
$d=$ transmission distance, in units of 1000 km
$P=$ effective radiated power, in kw
$\log S_{0}=0.502-1.916(\log f-0.477)$
$f=$ frequency, in Mc
$Q=1+0.005 R$
$R=$ sunspot number
$\bar{K}=$ average $K$ for the transmission path
$K=0.142+0.858 \cos \psi$
$\psi=$ solar zenith angle
$\bar{K} d=0.142 D^{\prime}+\left(K_{1}+K_{2}-0.284\right) \tan \frac{D^{\prime}}{2 R}$
where $\quad D^{\prime}=$ the length of the path in the region where $K$ is not equal to zero, in units of 1000 km
$K_{1}$ and $K_{2}=$ values of $K$ at transmitting and receiving stations
$R=$ radius of the earth in units of 1000 km
$J=$ seasonal variation factor. $J$ has the values $1.0,1.3,1.15$, respectively, if both terminals of the transmission path lie in summer, winter, or equinoctial regions. If one terminal lies in a summer region, the other in winter, $J=1.15$.

## TABLE 458.-E-LAYER MAXIMUM USABLE FREQUENCIES IN Mc FOR 2,000 $\cdot \mathrm{km}$ TRANSMISSION DISTANCE

June *						Equinox				
of day:	$00 \quad 04$	08	12	16	20		08	12	16	20
	Sunspot number $=0$					Sunspot number $=0$				
Latitude   N. $80^{\circ}$	$\begin{array}{ll}7.5 & 9.7\end{array}$	11.3	11.8	11.3	9.7		$\begin{array}{llll}8.2 & 10.0 & 8.6\end{array}$			
40		13.6	16.2	13.6			11.7	14.4	12.2	
0		12.3	15.6	12.3			13.2	16.8	13.0	
40		8.3	12.0	8.3			11.4	14.2	11.9	
S. 80							7.3	8.7	7.5	
	Sunspot number $=125$					Sunspot number $=125$				
N. $80^{\circ}$	9.811 .2	13.4	14.0	13.4	11.2		8.9	10.3	8.7	
40		17.4	20.2	17.4			15.1	18.6	14.7	
0		16.3	20.8	16.3			17.0	21.3	16.4	
40		10.7	15.4	10.7			13.5	16.8	13.3	
S. 80							8.3	9.6	8.1	

* For December, use reversed latitudes.

Norton calculated from Van der Pol's and Bremmer's theory and checked at broadcast frequencies the following results for vertically polarized ground-wave propagation. In many cases ionospheric waves will be much stronger than is indicated for ground-wave propagation in these tables. Some indication of when ionospheric waves may be expected is given.

Factor A for transmission over sea water
$\epsilon=80,(\sigma=5 \times \mathrm{mhos} / \mathrm{m})$

Freq.			
Mc			
.5	50 km	100 km	150 km
2	1.0	.96	.90
10	1.0	.77	.72
50	.71	.0050	.33
200	.025	-	.0016

Factor A for transmission over good ground

$$
\epsilon=15, \sigma=10^{-2} \mathrm{mhos} / \mathrm{m}
$$

$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$	5 km	10 km	15 km	25 km	50 km	100 km	150 km
. 1	1.00	1.00	1.0	1.0	1.0	. 90	. 87
. 5	. 98	. 93	. 90	. 73	. 68	. 48	. 35
2.0	. 50	. 30	. 21	. 095	. 049	. 018	. 0092
10	. 026	. 011	. 0072	. 0036	. 0018	. 00054	. 00020
50	. 0030	. 0015	. 0096	. 00040	. 00017		
300	. 00046	. 00021	. 00013				

Factor A for transmission over poor ground $\epsilon=5, \sigma=10^{-3} \mathrm{mhos} / \mathrm{m}$

$\begin{aligned} & \text { Freq. } \\ & \text { Mc. } \end{aligned}$	5 km	10 km	15 km	25 km	50 km	100 km	150 km
. 1	1.0	. 99	. 95	. 92	. 85	. 73	. 64
. 5	. 64	. 45	. 35	. 22	. 096	. 038	. 022
2.0	. 056	. 027	. 018	. 010	. 0050	. 0018	. 00093
10	. 0059	. 0030	. 0019	. 0011	. 00048	. 00013	
50	. 0012	. 00055	. 00036	. 00022	-_-		
100	. 00080	. 00026	. 00016		--	--	-

## CRITICAL FREQUENCIES AND MAXIMUM USABLE FREQUENCIES FOR RADIO TRANSMISSION BY REFLECTION FROM THE E AND F 2 LAYERS OF THE IONOSPHERE

Values of ionospheric critical frequencies and virtual reflection heights for all ionospheric layers ( $E, F_{1}, F_{2}, E_{s}$ ) observed at a large number of stations are regularly distributed by the Central Radio Propagation Laboratory of the National Bureau of Standards to laboratories cooperating in ionospheric research. The values presented in Tables 458 and 461 are synthesized from the trends of these data. Values are not given here for the $F_{1}$ and $E_{s}$ layers since their trends are much less accurately established than those of the $E$ and $F_{2}$ layers.
Table 458 presents $E$-layer maximum usable frequencies for a transmission distance of $2,000 \mathrm{~km}$, the maximum practical distance for 1 -hop transmission by means of $E$-layer reflection.
Table 461 presents $F_{2}$-layer ordinary-wave critical frequencies, and maximum usable frequencies for a transmission distance of 4.000 km , the maximum practical distance for 1-hop transmission by means of $F_{2}$-layer reflection.

[^196](continued)

Latitudes and local times are those of the ionospheric reflection points. The $F_{2}$-layer zones ( $W, I$, and $E$ ) are those chosen for practical description of longitude effect by the International Radio Conference of April-May 1944. The IV 'and $E$ zones are centered on $70^{\circ} \mathrm{W}$. and $110^{\circ} \mathrm{E}$. longitude, respectively; the two $I$ zones are intermediate between these.
Values are presented for sunspot numbers of 0 and 125. Since both critical frequencies and maximum usable frequencics show approximately linear variation with sunspot number, values for any other sunspot number, $X$, may be obtained by interpolation.
[World-wide charts of predicted $M U F$, three months in advance, for both $E$ and $F_{2}$ layers, are regularly published in Central Radio Propagation Laboratory Series D reports, "Basic Radio Propagation Prediction."]
$E$-Layer ordinary-wave critical frequencies.-These may be obtained by dividing the E-layer $2,000 \mathrm{~km}$ MUF by 4.78 , since the minimum virtual height of reflection is nearly constant for this layer.

Extraordinary-wave critical frequencies, $f^{x}$ (or zero-distance $M U F$ ). -The or-dinary-wave critical frequency $f^{\circ}$, the extraordinary-wave critical frequency $f^{x}$, and the gyrofrequency $f_{n}$ are related by the equation

$$
\left(f^{0}\right)^{2}=\left(f^{x} \pm f_{n}\right) f^{x}
$$

The gyrofrequency, $f_{n}$, varies with the intensity of the earth's magnetic field, $H$, and is given by

$$
f_{n}=\frac{e H}{2 \pi m c},
$$

where $c$ and $m$ are, respectively, the electronic (or ionic) charge and mass, $c$ the velocity of light in free space, and $H$ is given in gauss.

Ion density.-The number of ions per $\mathrm{cm}^{3}$ at the reflection point may be obtained from the value of the ordinary-wave critical frequency, $f^{\circ}$, by the equation

$$
N=\frac{\pi m}{e^{2}\left(f^{\circ}\right)^{2}},
$$

where $m$ and $c$ are, respectively, the ionic mass and charge.
Minimum virtual heights of reflection.-The maximum usable frequency at any transmission (except for those nearly equal to zero) is equal to

$$
M U F=f^{\circ} \sec \phi
$$

where $\phi$ is the angle of incidcnce of the wave upon the ionospheric reflecting layer.
$\phi$ is approximately given by

$$
\phi=\tan ^{-1} \frac{\sin \frac{1}{2} \theta}{1+(h / R)-\cos \frac{1}{2} \theta},
$$

where $\theta$ is the angular distance of the transmission path, $h$ the virtual height of reflection, and $R$ the radius of the earth. (Cf. Smith, N., Proc. Inst. Radio Eng., May 1939, p. 232.)
Maximum usable frequencies for other transmission distances.-These may be obtained from the MUF of Table 461 by using the factors and procedure presented in Table 462.

Skip distances.-The MUF for a given distance is the frequency for which that distance is the skip distance.

TABLE 460.-ATTENUATION OF MICROWAVES BY WATER VAPOR IN THE ATMOSPHERE (in $\mathrm{db} / \mathrm{km}$ ) ${ }^{154}$
Measured at $45^{\circ} \mathrm{C}$ at atmospheric pressure

Wavelength (cm)	.75 cm	.96	1.16	1.28	1.37	1.69
Frequency (kmc)	40.2	31.2	25.8	23.5	21.9	17.8
Water vapor density						
$\left(\mathrm{g} / \mathrm{m}^{8}\right)$	$.103 \mathrm{db} / \mathrm{km}$	.081	.149	.230	.224	.049
10	.408	.321	.495	.69	.672	.18
30	.84	.665	.90	1.15	1.12	.355
50						

[^197]
# TABLE 461.- $\mathrm{F}_{2}$-LAYER CRITICAL FREQUENCIES AND MAXIMUM USABLE FREQUENCIES FOR $4,000-\mathrm{km}$ TRANSMISSION DISTANCE IN Mc 

E zone

	June		Sept.		Dec.		June		Sept.		Dec.	
Lati- tude	$f^{\circ} F_{2}$	$\begin{aligned} & 2-4000 \\ & M U F \end{aligned}$	$f^{\circ} F_{2}$	$F_{F_{2: 4}^{2-400}}^{M U F}$	$f^{\circ} F_{2}$	$\begin{aligned} & F_{2}-4000 \\ & M U F \end{aligned}$	$f^{\circ} \mathrm{F}_{2}$	${ }_{2}^{24000}$	$f^{\circ} F_{2}$	$\begin{aligned} & F_{M}-4000 \\ & M U F \end{aligned}$		$\begin{aligned} & 2-4000 \\ & M U F \end{aligned}$
Local time of day : 00				Sunspot number $=0$			Time: 12		Sunspot number $=0$			
N. $80^{\circ}$	4.1	14.2	3.9	13.9	3.4	12.6	4.2	13.9	4.4	15.4	3.7	13.4
40	4.18	13.9	3.8	12.9	2.9	9.6	5.8	19.0	6.1	21.4	6.8	24.7
0	3.5	11.4	4.0	14.7	4.9	16.5	9.0	25.6	8.6	24.7	8.2	24.5
40	2.7	9.2	3.0	10.3	4.3	14.7	5.0	18.8	5.6	19.5	5.9	19.4
S. 80	2.4	8.8	2.8	9.9	3.9	13.5	3.3	11.9	3.6	12.9	4.5	14.9


		Sunspot						number $=125$
N. $80^{\circ}$	5.2	16.3	6.1	18.8	5.6	17.8		
40	8.6	24.9	7.0	21.3	3.5	10.8		
0	8.8	27.0	10.9	38.8	8.2	25.9		
40	4.1	12.8	5.9	18.2	8.2	24.7		
S. 80	4.4	13.8	5.4	17.5	5.4	16.5		

Local time of day : $04 \quad$ Sunspot number $=0$

$\mathrm{N} .80^{\circ}$	3.9	13.0	3.6	12.9	3.0	10.8
40	3.7	11.8	3.7	12.3	2.9	9.9
0	2.3	8.1	2.3	8.5	3.0	9.9
40	2.9	10.1	2.0	6.9	2.6	8.9
S .80	2.4	8.5	2.5	8.7	3.8	13.3

Sunspot number $=125$

N. $80^{\circ}$	5.2	15.4	5.5	17.5	4.4	14.0
40	8.0	23.3	6.3	18.8	3.6	10.9
0	4.9	15.3	7.2	23.5	6.2	20.0
40	4.1	12.8	4.6	14.1	6.0	17.8
S. 80	4.1	12.9	5.2	16.5	5.6	16.5


Local time of day: 08								Sunspot number $=0$				
N. $80^{\circ}$	4.0	13.0	4.0	14.3	3.4	12.5						
40	5.8	19.4	5.7	20.9	5.2	19.4						
0	7.4	22.5	7.8	25.3	6.7	20.6						
40	3.9	14.1	4.3	15.9	5.0	17.4						
S. 80	2.4	8.8	3.4	11.8	4.3	14.7						


5.4	16.0
9.0	25.6
14.0	32.7
10.8	36.4
6.0	19.8


6.7	21.2	5.4	17.6
11.4	35.3	11.1	36.4
15.5	38.8	12.7	30.2
10.5	34.1	8.3	22.7
6.2	19.8	6.2	17.6

Time: 16
$4.5 \quad 14.8$
$\begin{array}{ll}5.6 & 18.2 \\ 8.4 & 24.2\end{array}$
$5.0 \quad 18.2$
$3.0 \quad 10.9$

5.6	16.3
9.0	26.5
14.0	34.0
10.4	35.3
5.4	17.4

Time: 20
$4.2 \quad 14.3$
$5.5 \quad 18.8$
$4.5 \quad 14.7$
$2.7 \quad 9.6$
$2.5 \quad 9.3$

Sunspot number $=0$

4.5	15.9	3.9	14.2


5.6	20.0	5.0	18.3
9.0	27.0	8.6	28.1


5.1	18.3	5.9	19.9

$\begin{array}{llll}3.7 & 12.7 & 4.3 & 14.3\end{array}$
Sunspot number $=125$

6.5	20.0	5.4	17.3
10.9	33.2	8.8	28.8
16.2	41.2	12.2	29.6
9.8	32.3	8.2	25.9
6.7	21.9	6.0	17.3

Sunspot number $=0$ $\begin{array}{llll}4.4 & 15.8 & 3.7 & 13.3\end{array}$

5.1	18.2	2.7	9.6
8.2	25.9	7.2	23.5
4.0	13.9	5.4	19.4

$\begin{array}{llll}3.3 & 11.4 & 4.4 & 14.9\end{array}$
Sunspot number $=125$

N. $80^{\circ}$	5.3	15.4	6.7	21.2	5.0	15.8
40	9.4	28.2	10.0	33.2	8.2	29.4
0	12.7	35.5	13.5	38.2	12.0	34.7
40	7.5	26.0	8.1	28.1	7.4	21.4
S. 80	4.3	13.6	5.9	19.3	6.2	17.6


5.5	16.7
8.6	26.0
11.0	28.2
5.5	17.6
4.4	13.9

Sunspot number $=125$

I zone

Local time of day : 00				Sunspot number $=0$			Time : 12		Sunspot number $=0$			
N. $80^{\circ}$	3.9	13.6	3.6	12.9	2.7	9.8	4.0	13.5	3.7	13.2	3.4	12.5
40	3.8	12.9	3.0	10.1	3.0	9.8	5.2	17.2	5.5	19.4	6.8	25.9
0	5.2	16.9	6.3	23.3	5.0	16.5	6.2	17.6	6.5	18.8	7.8	22.9
40	2.9	9.8	2.6	8.9	5.4	17.9	4.7	17.9	5.2	18.3	6.6	21.9
S. 80	2.4	8.8	2.8	9.9	3.9	13.5	3.3	11.9	3.6	12.9	4.5	14.9
Sunspot number $=125 \quad$ Sunspot number $=125$												
N. $80^{\circ}$	5.2	16.9	5.8	18.2	4.8	15.3	5.3	15.6	5.9	18.7	5.4	17.3
40	6.4	18.6	5.0	15.3	3.3	10.3	7.9	21.9	10.2	31.9	11.0	37.7
0	9.0	28.2	10.0	32.8	10.0	31.8	10.4	24.8	11.0	28.6	10.9	25.6
40	4.1	12.7	5.8	18.2	8.4	24.7	11.5	38.7	10.8	34.7	9.4	26.5
S. 80	4.4	13.8	5.4	17.5	5.4	16.5	6.0	19.8	6.2	19.8	6.2	17.6

TABLE 461.- $F_{2}$-LAYER CRITICAL FREQUENCIES AND MAXIMUM USABLE
FREQUENCIES FOR $4,000-\mathrm{km}$ TRANSMISSION DISTANCE IN Mc (continued)

	June		$\underbrace{\text { Sept. }}$				June		Sept.		Dec.	
$\begin{aligned} & \text { Lati- } \\ & \text { tude } \end{aligned}$		${ }_{\text {rex }}^{4000}$	$f^{\circ} F_{2}$	$\underbrace{M U F}_{F_{2}+4000}$		$\begin{aligned} & F_{2}-4000 \\ & M U F \end{aligned}$		$\underbrace{4000}$	$f^{\circ} F_{2}$	$\underbrace{M U F}_{F_{2}-4000}$		$\begin{aligned} & 2-4000 \\ & M U F \end{aligned}$
Local time of day : 04				Sunspot number $=0$			Time: 16		Sunspot		number $=0$	
N. $80^{\circ}$	3.7	12.8	3.4	12.2	2.7	9.9	4.0	13.2	3.6	12.6	3.4	12.1
40	3.1	10.7	2.9	9.9	2.9	10.0	5.2	17.0	5.5	19.8	5.6	20.6
0	3.2	11.0	3.0	11.6	3.3	10.3	6.8	19.8	8.2	24.6	9.4	30.0
40	2.8	9.6	2.2	7.5	3.5	11.9	4.6	17.2	4.8	17.0	6.4	21.8
S. 80	2.4	8.5	2.5	8.7	3.8	13.3	3.0	10.9	3.7	12.7	4.3	14.3
			Sunspot number $=125$						Sunspot number $=125$			
N. $80^{\circ}$	4.8	15.4	5.7	17.4	3.9	12.2	5.2	15.6	5.9	18.8	5.2	16.6
40	5.3	15.3	4.6	14.2	3.4	10.6	7.8	22.6	9.7	30.6	9.8	33.9
0	6.9	21.8	5.4	17.6	7.2	22.9	10.8	26.8	12.5	31.8	12.4	35.0
40	4.0	12.5	4.2	12.6	6.2	18.5	10.0	33.5	10.4	33.5	9.2	27.3
S. 80	4.1	12.9	5.2	16.5	5.6	16.5	5.4	17.4	6.7	21.9	6.0	17.3
Local time of day : 08				Sunspot number $=0$			Time : 20		Sunspot number $=0$			
N. $80^{\circ}$	3.9	12.8	3.6	13.2	3.0	10.9	3.8	13.2	3.6	12.8	3.1	11.5
40	4.8	16.5	5.0	18.8	5.0	18.8	5.2	17.9	3.6	12.9	2.7	8.8
0	6.2	18.6	5.6	17.9	7.4	22.9	6.0	20.8	7.0	21.6	7.6	24.9
40	3.5	12.9	4.3	15.9	5.6	19.4	2.7	9.5	3.4	11.8	6.7	22.2
S. 80	2.4	8.8	3.4	11.8	4.3	14.7	2.5	9.3	3.3	11.4	4.4	14.9
			Sunspot number $=125$						Sunspot number $=125$			
N. $80^{\circ}$	5.1	15.0	5.9	18.8	4.3	13.5	5.1	16.0	5.8	18.3	4.9	15.5
40	7.6	21.2	8.6	28.8	7.8	29.4	7.5	21.4	6.7	21.6	3.7	12.7
0	8.9	24.9	11.6	33.0	10.3	29.3	9.4	23.4	10.2	25.9	10.5	27.0
40	7.7	26.5	8.6	29.4	8.8	25.6	5.4	17.6	7.4	24.3	9.2	26.8
S. 80	4.3	13.6	5.9	19.3	6.2	17.6	4.4	13.9	6.3	20.6	6.0	17.6

W zone

Local time of day: 00						Sunspot number $=0$			
N. $80^{\circ}$	3.9	13.6	3.6	12.9	2.7	9.8			
40	3.0	10.5	2.0	6.8	2.3	7.8			
0	4.4	14.6	5.5	20.6	3.6	12.0			
40	2.3	7.9	3.4	11.8	5.0	16.5			
S. 80	3.0	10.8	3.2	11.3	4.2	14.8			


Time : 12	Sunspot number $=0$				
4.0	13.5	3.7	13.2	3.4	12.5
5.2	16.8	5.2	18.6	6.5	24.5
7.6	21.8	10.6	30.3	8.6	26.5
5.0	18.9	6.7	24.1	8.4	28.1
3.4	12.5	3.6	12.8	4.6	15.0


			Sunspot number $=125$				
N. $80^{\circ}$	5.2	16.9	5.8	18.2	4.8	15.3	
40	6.6	20.6	5.6	17.0	4.6	14.5	
0	10.5	31.8	12.2	39.2	9.0	28.3	
40	3.4	10.6	7.2	22.6	9.9	29.3	
S. 80	5.1	16.3	6.2	20.0	5.9	17.5	


Local time of day : 04				Sunspot number $=0$		
N. $80^{\circ}$	3.7	12.8	3.4	12.2	2.7	9.9
40	2.1	6.8	1.7	5.8	2.6	8.9
0	3.2	11.0	3.5	12.8	2.3	7.8
40	2.0	6.8	2.9	10.0	4.7	15.
S. 80	2.9	10.5	2.5	8.9	4.2	14.

1.6
8.8
3.6
8.3

Sunspot number $=125$

5.3	15.6	5.9	18.7	5.4	17.3
7.1	20.8	9.3	29.3	12.3	40.3
11.7	28.2	14.9	37.0	14.1	33.3
11.0	37.6	13.9	44.7	12.1	33.9
5.7	18.3	7.6	24.7	7.0	19.8

Sunspot number $=125$

N. $80^{\circ}$	4.8	15.4	5.7	17.4	3.9	12.2
40	4.9	15.6	4.1	12.5	4.4	13.6
0	7.0	22.1	6.2	21.5	4.9	14.5
40	3.2	9.9	5.8	17.6	9.4	27.6
S .80	4.6	14.7	5.2	16.7	5.6	16.7

Time: 16
$4.0 \quad 13.2$
$\begin{array}{ll}5.2 & 17.2 \\ 9.2 & 26.9 \\ 4.4 & 16.5\end{array}$
$\begin{array}{ll}3.2 & 11.8\end{array}$
Sunspot number $=0$

3.6	12.6	3.4	12.1
5.3	19.0	5.7	21.0
10.2	31.5	8.6	27.3
5.0	18.5	7.2	24.5
3.8	13.3	4.5	14.9

Sunspot number $=125$

5.2	15.6	5.9	18.8	5.2	16.6
7.4	21.8	9.3	28.8	11.2	36.3
11.8	29.4	14.0	37.5	13.8	34.3
8.5	30.0	11.4	37.4	11.0	32.9
5.2	16.6	6.9	22.2	6.5	18.7

TABLE 461.- F $_{2}$-LAYER CRITICAL FREQUENCIES AND MAXIMUM USABLE
FREQUENCIES FOR $4,000 \cdot \mathrm{~km}$ TRANSMISSION DISTANCE IN Mc (concluded)


## TABLE 462.-FACTORS FOR OBTAINING F ${ }_{2}$-LAYER MUF, AND COMBINED E, $F_{1}$-LAYER MUF AT OTHER DISTANCES, FROM $F_{2}-4,000 \mathrm{~km}$ MUF AND E-2,000 km MUF

The accompanying table presents (a) factors, $F_{2000} E-E, F_{1}$, by which the 2,000 $E$-layer maximum usable frequencies may be multiplied in order to obtain values of maximum usable frequencies by combined $E$ - and $F_{1}$-layer transmission for other distances, and (b) factors, $F_{4000 F_{2-F}}$, by which $4,000-\mathrm{km} F_{2}$-layer maximum usable frequencies may be multiplied in order to obtain values of $F_{2}$-layer maximum usable frequencies at other transmission distances. These factors become less accurate with decreasing transmission distance.

For obtaining the maximum usable frequency for practical radio transmission, the following procedures may be used:

1. One-hop transmission:-Obtain both the combined $E$-, $F_{1}$-layer, and $F_{2}$-layer maximum usable frequencies pertinent to the midpoint of the transmission path. The higher of the two will be the $M U F$ for the path, neglecting possible transmission by sporadic- $E$ ionization.
2. Long-path transmission:-For transmission paths exceeding $4,000 \mathrm{~km}$, the following procedure generally affords a sufficiently good value for practical use:
(a) Determine the $2,000-\mathrm{km} E$-layer $M U F$ for a point $1,000 \mathrm{~km}$ along the transmission path from the transmitting station. Determine the $4,000-\mathrm{km} F_{2}$-layer $M U F$ for a point $2,000 \mathrm{~km}$ along the transmission path from the transmitting station. Select the higher of two values, for comparison with a value to be later obtained in procedure (b).
(b) Determine the $2,000-\mathrm{km} E$-layer $M U F$ for a point $1,000 \mathrm{~km}$ along the transmission path from the receiving station. Determine the $4,000-\mathrm{km} F_{2}$-layer $M U F$ for a point 2,000 km along the transmission path from the receiving station. Select the higher of these two values, for comparison with the value obtained in procedure (a).
(c) Compare the values obtained in procedures (a) and (b) above. The lower of the two will be the MUF for the transmission path, neglecting possible transmission by sporadic- $E$ ionization.
For more detailed and accurate procedures, and for inclusion of sporadic- $E$ layer effects, reference is given to National Bureau of Standards Circular 462, "Ionospheric Radio Propagation," and to reports of the Central Radio Propagation Laboratory, Series D, "Basic Radio Propagation Prediction."

$\begin{gathered} \text { Distance } \\ \mathrm{km} \end{gathered}$		$F_{4000} F_{5}-F_{2}$	$\begin{gathered} \text { Distance } \\ \mathrm{km} \end{gathered}$	$F_{2000 \mathrm{E}-\mathrm{E}, \mathrm{F}_{1}}$	$F_{40000} \mathrm{~F}_{2}-\mathrm{F}_{2}$
200	. 25	. 35	2200		. 79
400	. 36	. 36	2400		. 83
600	. 48	. 38	2600	...	. 86
800	. 62	. 41	2800	$\ldots$	. 90
1000	. 72	. 46	3000	$\ldots$	. 92
1200	. 82	. 51	3200	$\ldots$	. 95
1400	. 88	. 57	3400	$\ldots$	. 97
1600	. 95	. 63	3600		. 98
1800	. 98	. 69	3800		. 99
2000	1.00	. 74	4000		1.00

TABLE 463.-CALCULATED ATTENUATION OF MICROWAVES BY RAIN
(db/km) ${ }^{1205}$

Rate of rainfall ( $\mathrm{mm} / \mathrm{hr}$ )	Wavelength (cm)			
	1.25	3	5	10
2.46	. $193 \mathrm{db} / \mathrm{km}$	. 049	. 004	. 0007
6.0 (moderate)	. 615	. 192	. 012	. 0017
22.6 (heavy) ..	2.40	. 728	. 053	. 0070
43.1 (cloudburst)	6.17	1.64	. 165	. 016

${ }^{155}$ Adapted from article by L. Goldstein in Summary Technical Report of the National Defense Research Committee, Committee on Propagation, vol. 2, p. 164, published by Academic Press.

## TABLE 464.-ATTENUATION OF MILLIMETER WAVES BY ATMOSPHERIC OXYGEN ( $\mathrm{db} / \mathrm{km}$ ) ${ }^{158}$

Wave length ( mm )	Attentration coeff. cient ( $\mathrm{db} / \mathrm{km}$ )	Wave length (mm)	Attenuation coefficient ( $\mathrm{db} / \mathrm{km}$ )	Wave length (mm)	Attenua- tion coeff- cient $(\mathrm{db} / \mathrm{km})$	Wavelength (mm)	Attenua tion coeff. cient   ( $\mathrm{db} / \mathrm{km}$ )	Wavelength (mm)	Attenua- tion coefficient   ( $\mathrm{db} / \mathrm{km}$ )
6.34	. 05	5.60	1.8	5.19	12.7	5.10	13.9	4.96	14.7
5.76	1.0	5.28	10.2	5.13	15.7	5.04	14.5	4.48	. 4

${ }^{156}$ Lamont, H. R., Proc. Phys. Soc. London, vol. 61, p. 562, 1948.

# TABLE 465.-EXTRATERRESTRIAL RADIO FREQUENCY RADIATION* <br> Part 1.-Discrete sources 

Source	- ${ }^{\text {a }}$	$\delta$	Reported by ${ }^{157}$	Remarks
Cygnus	$20^{\text {h }} 00^{\text {m }}$	$+43^{\circ}$	Hey, Parsons, Phillips ${ }^{\text {c }}$	Approx. position; $\lambda \approx 5 \mathrm{~m}$.
Cygnus A	1959	+41 ${ }^{\circ} 41^{\prime}$	Bolton ${ }^{\text {a }}$	Uncertainty of position about $1^{\circ}$. Observed on $100 \mathrm{Mc} / \mathrm{s}$.
Cygnus	$19^{\mathrm{h}} 58^{\mathrm{m}} 47^{\mathrm{g}} \pm 10^{\text {s }}$	$+41^{\circ} 41^{\prime} \pm 7^{\prime}$	Bolton and Stanley ${ }^{\text {P }}$	Observed on $100,60,85,200$ $\mathrm{Mc} / \mathrm{s}$.
Cygnus	$19^{\mathrm{h}} 56^{\mathrm{m}} .5$	$+39^{\circ} 50^{\prime}$	Ryle and Smith ${ }^{\text {d }}$	Observed on $80 \mathrm{Mc} / \mathrm{s}$.
Cygnus .........	2030	$+38^{\circ}$	Hey, Parsons, Phillips ${ }^{\text {g }}$	Observed on $64 \mathrm{Mc} / \mathrm{s}$; position very uncertain.
Ursa Major	1218.2	$+58^{\circ} 00$	Ryle and Smith ${ }^{\text {d }}$	Observed on $80 \mathrm{Mc} / \mathrm{s}$.
Taurus A .......	513	$+28^{\circ}$	Bolton ${ }^{\text {a }}$	Angular width $<30^{\circ}$; uncertainty of position about $1^{\circ}$. Observed on $100 \mathrm{Mc} / \mathrm{s}$.
Taurus A	$5^{\prime \prime} 31^{\prime \prime \prime} 00^{s} \pm 30^{\text {s }}$	$+22^{\circ} 01^{\prime}$	Bolton, Stanley, Slee ${ }^{\text {b }}$	Intensity measured at $100 \mathrm{Mc} / \mathrm{s}$.
Taurus A	$53120 \pm 30$	$+22^{\circ} 02^{\prime} \pm 8^{\prime}$	Bolton, Stanley ${ }^{\text {h }}$	Observed on $100 \mathrm{Mc} / \mathrm{s}$.
Cassiopeia .......	$23^{\mathrm{h}} 17^{\mathrm{m}} .5$	$+58^{\circ} 10^{\prime}$	Ryle and Smith ${ }^{\text {d }}$	Observed on $80 \mathrm{Mc} / \mathrm{s}$.
Possible sources ..		$\begin{aligned} & +46^{\circ} 11^{\prime} \\ & +5714 \\ & +48 \\ & +24 \\ & +2 \end{aligned}$	$\left.\begin{array}{l} \text { Ryle } \\ \text { Ryle } \end{array}\right\}$	Obsered on $80 \mathrm{Mc} / \mathrm{s}$.
Coma Berenices A.	1204	$+20^{\circ} 30^{\prime}$	Bolton ${ }^{\text {a }}$	Angular width $<15^{\prime}$; uncertainty of position about $1^{\circ}$. Observed on $100 \mathrm{Mc} / \mathrm{s}$.
Hercules A	1621	+15	Bolton ${ }^{\text {a }}$	Angular width $<1^{\circ}$; uncertainty of position about $1^{\circ}$. Observed on $100 \mathrm{Mc} / \mathrm{s}$.
Virgo A	$12^{\text {h }} 28^{1 / 10} 06^{\text {a }} \pm 37^{\text {s }}$	$+12^{\circ}+11^{\prime} \pm 10^{\prime}$	Bolton, Stanley, Slee ${ }^{\text {b }}$	Intensity measured at $100 \mathrm{Mc} / \mathrm{s}$.
Centaurus A .....	$132220 \pm 60$	$-42^{\circ} 37^{\prime} \pm 8^{\prime}$	Bolton, Stanley, Slee ${ }^{\text {b }}$	Intensity measured at $100 \mathrm{Mc} / \mathrm{s}$.

[^198]Part 2.-Galactic noise from direction of Sagittarius '

L 己 0 0 0		$\begin{aligned} & \text { 淢 } \\ & \text { E } \\ & \text { U } \\ & \text { IE } \\ & \text { IE } \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\Delta} \\ & \text { 2 } \\ & 0.0 \\ & 0 . \end{aligned}$			
Moxon	40	750.0	30,000	$35 \times 70$	Reber	480	62.5	$2302 \times 3$
Hey, Parsons, and Phillips	65	462.5	10,500	$12 \times 30$	Reber	900	33.3	
Moxon	90	333.3	3,000	$35 \times 35$	Southworth	3000	10.0	Negative results but due to low
Reber	160	187.5	5,300	$6 \times 8$	Reber	3300	9.1	sensitivity can only say
Moxon	200	150.0	300		Southworth	30,000	1.0	$T_{\nu} \ll 20,000$

Part 3.-Constant component of solar noise '

Piddington and Minnett ...	24,000	1.25	$1.0 \times 10^{4} \pm 10 \%$	Lehany and Yabsley.. 600		$.5 \times 10^{6} \pm 20 \%$
Dicke and Beringer	24,000	1.25	$1.0 \times 10^{4}$	Reber .............. 480	62.5	$1.0 \times 10^{6}$
Southworth ......	10,000	3	$1.8 \times 10^{4}$	McCready, Pawsey and Payne-Scott ........ 200	150.	$1.2 \times 10^{6}$
Sander	9,375	3.2	$2.2 \times 10^{4}$	Pawsey and Yabsley.. 200	150.	. $7 \times 10^{6}$
Southworth	3,000	10	$1.8 \times 10^{4}$	Lehany and Yabsley.. 200	150.	$1.0 \times 10^{6}$
Covington	2,804	10.7	$5.6 \times 10^{4}$	Ryle and Vonberg.... 175.4	171.	. $6 \times 10^{8}$
Covington	2,804	10.7	$6.5 \times 10^{4}$	Reber ............. 160	187.	$1.8 \times 10^{6}$
Lehany and Yabsley.	1,200	25	$1.0 \times 10^{5} \pm 20 \%$	Ryle and Vonberg.... 80	375.	$1.3 \times 10^{6}$

[^199]TABLES 466-494.-MAGNETIC PROPERTIES OF MATERIALS

## TABLE 466.-DEFINITIONS*, BASIC EQUATIONS, AND GENERAL DISCUSSION

$B$, flux density (magnetic) induction, $=\phi / A=4 \pi I+H$; unit the gauss, maxwell per cm .
Diamagnetic substances, $\mu<1$, $\kappa$ negative. Most diamagnetic substance known is $\mathrm{Bi}, \mu=$ $.9998 \kappa=-14 \times 10^{-6}$.
Ferromagnetic substances, $\mu$ very large, $\kappa$ very large: $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Co}$, Heusler's alloy (see Table 476), magnetite and a few alloys of Mn. $\mu$ for Heusler's alloy, 90 to 100 for $B=$ 2,200; for Si sheet steel 350 to 5,300 .
$H$, field strength, $=$ No. of lines of force crossing unit area in normal direction; unit $=$ gauss $=$ one line per unit area.
Hall effect (galvanomagnetic difference of potential), Ettinghausen effect (galvanomagnetic difference of temperature), Nernst effect (thermomagnetic difference of potential) and the Leduc effect (thermomagnetic difference of temperature), see Tables 519 and 521.
Hysteresis is work done in taking a $\mathrm{cm}^{3}$ of the magnetic material through a magnetic cycle $=\int H d I=(1 / 4 \pi) \int H d B$. Steinmetz's empirical formula gives a close approximation to the hysteresis loss; it is $a B^{1.6}$ where $B$ is the max. induction and $a$ is a constant (see Table 482). The retentivity ( $B_{r}$ ) is the value of $B$ when the magnetizing force is reduced to zero. The reversed field necessary to reduce the magnetism to zero is called the coercive force ( $H_{e}$ ).
$I$, intensity of magnetization or pole strength per unit area, $=\mathbf{M} / V=m / A$ where $A$ is cross section of uniformly magnetized pole face, and $V$ is the volume of the magnet. $4 \pi m / A=4 \pi I=$ No. of lines of force leaving unit area of pole.
$J$, specific intensity of magnetism, $=I / \rho$ where $\rho=$ density, $\mathrm{g} / \mathrm{cm}^{3}$.
$J_{A}, J_{M}$, similarly atomic and molecular intensity of magnetization.
$\kappa$, susceptibility; permeability relates to effect of iron core on magnetic field strength of coil; if effect be considered on iron core, which becomes a magnet of pole strength $m$ and intensity of magnetism $I$, then the ratio $I / H=(\mu-1) ; 4 \pi$ is the magnetic susceptibility per unit volume and is a measure of the magnetizing effect of a magnetic field on the material placed in the field. $\mu=4 \pi \kappa+1$.
$\mathbf{M}$, magnetic moment $=m l$, where $l$ is length between poles of magnet.
Magneto-strictive phenomena:
Joule effect: Mechanical change in length when specimen is subjected to a magnetic field. With increasing field strength, iron and some iron alloys show first a small increment $\Delta l / l=(7$ to 35$) \times 10^{-7}$, then a decrement, and for $H=1600$. $\Delta l / l$ may amount to $-(6$ to 8$) \times 10^{-6}$. Cast cobalt with increasing field first decreases, $\Delta l / l=-8 \times 10^{-6}, H=$ 150 , then increases in length, $\Delta l / l=+5 \times 10^{-6}, H=2,000$; annealed cobalt steadily contracts, $\Delta l / l=-25 \times 10^{-6}, H=2000$. Ni rapidly then slowly contracts, $\Delta l / l=-30 \times$ $10^{-6}, H=100 ;-35 \times 10^{-6}, H=300 ;-36 \times 10^{-6}, H=2,000$. A transverse field generally gives a reciprocal effect.

Villari effect; really a reciprocal Joule effect. The susceptibility of an iron wire is increased by stretching when the magnetism is below a certain value, but diminished when above that value.

Wiedemann effect: The lower end of a vertical wire, magnetized longitudinally, when a current is passed through it, if free, twists in a certain direction, depending upon circumstances. A reciprocal effect is observed in that when a rod of soft iron, exposed to longitudinal magnetizing force, is twisted, its magnetism is reduced.
$\mu$, magnetic permeability, $=B / H$. Strength of field in air-filled solenoid $=H=(4 \pi / 10)$ $n i$ in gausses, $i$ in amperes, $n$, number of turns per cm length. If iron filled, induction increased, i.e., No. of lines of force per unit area, $B$, passing through coil is greater than $H ; \mu=B / H$.

Paramagnetic substances, $\mu>1$, very small but positive, $\kappa=10^{-3}$ to $10^{-6}$ : oxygen, especially at low temperatures, salts of $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Mn}$, many metallic elements. (See Table 486.)

Paramagnetic substances show no retentivity or hysteresis effect. Susceptibility independent of field strength. The specific susceptibility for both para- and diamagnetic substances is independent of field strength.
$\phi$, magnetic flux, $=4 \pi m+H A$ for magnet placed in field of strength $H$ (axis parallel to field). Unit, the maxwell.

Unit pole is of such strength that it will repel another unit pole with a force of one dyne; at unit distance in free space, $4 \pi$ lines of force radiate from it. $m$, pole strength; $4 \pi m$ lines of force radiate from pole of strength $m$.

$$
\chi \text {, specific susceptibility (per unit mass) }=\kappa / \rho=J / H .
$$

$\chi_{A}$, atomic susceptibility, $=\chi \times$ (atomic weight) ; $\chi_{M}=$ molecular susceptibility.

[^200]
## TABLE 467.-MAGNETIC PROPERTIES OF VARIOUS TYPES OF IRON AND STEEL

From tests made at the National Bureau of Standards. $B$ and $H$ are measured in cgs units.

lues of	2000	4000	6000	- 8000	10,00			16,000	8,000	20,000
Annealed Norway iron..H	. 81	1.15	1.60	2.18	3.06	4.45	7.25	23.5	116.	
	2470	3480	3750	3670	3270	2700	1930	680		
Cast semi-steel		2.90	4.3	6.46		15.1	. 9	. 5		325.
	000	1380			102	795	563	317		62.
Machinery steel	5.0	8.8	13.1	18.6	25.8	35.8	50.5	76.0	142.	
	400	455	460	430	390	340	280	210		
	3.30	4.48	6.35	9.10	13.0	18.9	28.8	47.0	103.	240.
	606	893	945	880	770	635	486	340		83
$\left.\begin{array}{l}\text { Annealed in vacuo } \\ \text { from } 900^{\circ} \mathrm{C}\end{array}\right\}$	. 46	. 60	. 80	1.02	1.38	2.00	3.20	11.3	72.0	194.
	4350	6670	7500	7840	7250	6000	4380	1420	250	103
As received................. $H_{\text {max }}$ After annealing............. $H_{\max }$										- 2.8
		150		$B_{\text {max }}$	19,500,		。	.53		

## TABLE 468.-MAGNETIC PROPERTIES OF ELECTRICAL SHEETS

From tests made at the National Bureau of Standards. $B$ and $H$ are measured in cgs units.

Values of $B$		2000	4000	6000	8000	10,000	12,00	14,0	16,00	18,000	20,000
Dynamo steel	H	1.00	1.10	1.43	2.00	3.10	4.95	9.20	34.0	114.	
	$\mu$	2000	3640	4200	4000	3220	2420	1520	470	158	
$\left.\begin{array}{l} \text { Ordinary trans- } \\ \text { former steel } \end{array}\right\}$	H	. 60	. 87	1.10	1.48	2.28	3.85	10.9	43.0	149.	-
	$\mu$	3340	4600	5450	5400	4380	3120	1280	372	121	-
$\left.\begin{array}{l} \text { High silicon trans- } \\ \text { former steel } \end{array}\right\}$	H	. 50	. 70	. 90	1.28	1.99	3.60	9.80	47.4	165.	-
	$\mu$	4000	5720	6670	6250	5020	3340	1430	338	109	

## TABLE 469.-MAGNETIC PROPERTIES OF IRON IN VERY WEAK FIELDS

The effect of very small magnetizing forces has been studied by C. Baur and by Lord Rayleigh. The following short table is taken from Baur's paper, and is taken by him to indicate that the susceptibility is finite for zero values of $H$ and for a finite range increases in simple proportion to $H$. He gives the formula $k=15+100 \mathrm{H}$, or $I=15 \mathrm{H}+$ $100 \mathrm{H}^{2}$. The experiments were made on an annealed ring of round bar 1.013 cm radius, the ring having a radius of 9.432 cm . Lord Rayleigh's results for an iron wire not annealed give $k=6.4+5.1 H$, or $I=6.4 H+5.1 H^{2}$. The forces were reduced as low as 0.00004 cgs, the relation of $k$ to $H$ remaining constant.

First experiment			Second experiment	
H	$k$	I	H	$k$
. 01580	16.46	2.63	. 0130	15.50
. 03081	17.65	5.47	. 0847	18.38
. 07083	23.00	16.33	. 0946	20.49
. 13188	28.90	38.15	. 1864	25.07
. 23011	39.81	91.56	. 2903	32.40
. 38422	58.56	224.87	. 3397	35.20

TABLE 470.-TYPICAL DATA FOR MAGNETIC MATERIALS ${ }^{157 \pi}$
Part 1.-High-permeability materials


[^201]TABLE 470.-TYPICAL DATA FOR MAGNETIC MATERIALS (concluded)

Material	Percent composition (remainder Fe )	Heat treatment * (temperature, ${ }^{\circ} \mathrm{C}$ )	Magnetizing force Hmax. oersteds	Coercive force $H_{e}$ oersteds	Residual induction $B_{r}$ gatusses	Energy product BHmax. $\times 10^{-8}$	Method of fabrication $\dagger$	Mechanical Properties $\ddagger$	Weight lb/in. ${ }^{3}$
Carbon steel	$1 \mathrm{Mn}, 0.9 \mathrm{C}$	Q 800	300	50	10,000	. 20	HR, M, P	H, S	. 280
Tungsten steel	$5 \mathrm{~W}, 0.3 \mathrm{Mn}, 0.7 \mathrm{C}$	Q 850	300	70	10,300	. 32	HR, M, P	H, S	. 292
Chromium steel	$3.5 \mathrm{Cr}, 0.9 \mathrm{C}, 0.3 \mathrm{Mn}$	Q 830	300	65	9,700	. 30	HR, M, P	H, S	. 280
17\% Cobalt steel	$17 \mathrm{Co}, 0.75 \mathrm{C}, 2.5 \mathrm{Cr}, 8 \mathrm{~W}$	Q	1,000	150	9,500	. 65	HR, M, P	H, S	-
$36 \%$ Cobalt steel	$36 \mathrm{Co}, 0.7 \mathrm{C}, 4 \mathrm{Cr}, 5 \mathrm{~W}$	Q 950	1,000	240	9,500	. 97	HR, M, P	H, S	. 296
Remalloy or Comol	$17 \mathrm{Mo}, 12 \mathrm{Co}$	Q 1200, В 700	1,000	250	10,500	1.1	HR, M, P	H	. 295
Indalloy (sintered)	- Mo, - Co		1,000	240	9,000	. 9	HR, M, P	H	. 290
Alnico I .......	$12 \mathrm{Al}, 20 \mathrm{Ni}, 5 \mathrm{Co}$	A 1200, B 700	2,000	440	7,200	1.4	C, G	H, B	. 249
Alnico II	$10 \mathrm{Al}, 17 \mathrm{Ni}, 2.5 \mathrm{Co}, 6 \mathrm{Cu}$	A 1200, В 600	2,000	550	7,200	1.6	C, G	H, B	.256
Alnico II (sintered)	$10 \mathrm{Al}, 17 \mathrm{Ni}, 2.5 \mathrm{Co}, 6 \mathrm{Cu}$	A 1300	2,000	520	6,900	1.4	Sn, G	H	. 249
Alnico IV ........	$12 \mathrm{Al}, 28 \mathrm{Ni}, 5 \mathrm{Co}$	Q 1200, B 650	3,000	700	5,500	1.3	Sn, C, G	H	. 253
Alnico V	$8 \mathrm{Al}, 14 \mathrm{Ni}, 24 \mathrm{Co}, 3 \mathrm{Cu}$	AF 1300, B 600	2,000	550	12,500	4.5	C, G	H, B	. 264
Alnico VI	$8 \mathrm{Al}, 15 \mathrm{Ni}, 24 \mathrm{Co}, 3 \mathrm{Cu}, 1 \mathrm{Ti}$	AF 1300, B600	3,000	750	10,000	3.5	C, G	H, B	.268
Alnico XII	$6 \mathrm{Al}, 18 \mathrm{Ni}, 35 \mathrm{Co}, 8 \mathrm{Ti}$	- -	3,000	950	5,800	1.5	C, G	H, B	. 26
Vicalloy I	$52 \mathrm{Co}, 10 \mathrm{~V}$	B 600	1,000	300	8,800	1.0	C, CR, M, P	D	. 295
Vicalloy II (wire)	$52 \mathrm{Co}, 14 \mathrm{~V}$	CW + B 600	2,000	510	10,000	3.5	C, CR, M, P	D	. 292
Cunife (wire) ...	$60 \mathrm{Cu}, 20 \mathrm{Ni}$	$C W+B 600$	2,400	550	5,400	1.5	C, CR, M, P	D, M	. 311
Cunico . . . . . .	$50 \mathrm{Cu}, 21 \mathrm{Ni}, 29 \mathrm{Co}$	CW + B600	3,200	660	3,400	. 80	C, CR, M, P	D, M	. 300
Vectolite	$30 \mathrm{Fe}_{2} \mathrm{O}_{3}, 44 \mathrm{Fe}_{3} \mathrm{O}_{4}, 26 \mathrm{C}_{2} \mathrm{O}_{3}$	- -	3,000	1,000	1,600	. 60	Sn, G	W	. 113
Silmanal	86.8 Ag, 8.8 Mn, 4.4 Al		20,000	6,000 ${ }^{2}$	550	. 075	C, CR, M, P	D, M	. 325
Platinum-cobalt	$77 \mathrm{Pt}, 23 \mathrm{Co}$	Q 1200, B 650	15,000	3,600	5,900	6.5	C, CR, M	D	-
Hyflux . . . . . . .	Fine powder	- -	2,000	390	6,600	. 97	-	-	176

[^202]| Induction data |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Values of B 2 | 2000 | 4000 | 6000 | 8000 | 10000 | 12000 | 14000 | 16000 | 18000 |
| Carbon steel $\ldots$...........H | 33 | 50 | 61 | 72 | 93 | 155 | 290 | 600 | - |
| . $9 \mathrm{C}, .5 \mathrm{Mn}, .2 \mathrm{Si}, \mathrm{Bal} \mathrm{Fe} . . \mu$ | 60 | 80 | 98 | 111 | 108 | 77 | 48 | 27 |  |
| Chrome ..................H | 32 | 48 | 61 | 75 | 100 | 175 | - | - | - |
| Bar, 3.5 Cr, 0.9 C.......... $\mu$ | 63 | 83 | 98 | 107 | 100 | 69 | - | - | - |
| Chrome ................. H | 30 | 44 | 52.5 | 62 | 75 | 155 | 235 | - | - |
| Sheet, 5.75 Cr, 1.25 C...... $\mu$ | 67 | 91 | 114 | 129 | 133 | 104 | 60 | - | - |
| Chrome $\ldots$................ H | 36 | 47.5 | 64 | 80 | 122 | - | - | - |  |
| Sheet, 5.75 Cr, $10 \mathrm{C} . . . . . . . . \mu$ | 56 | 84 | 94 | 100 | 82 | - | - | - | - |
| Tungsten steel $\ldots \ldots \ldots . . . \mathrm{H}$ | 35 | 52.5 | 63 | 70 | 81.5 | 115 | 195 | 195 | 500 |
| 0.6 C, $5 \mathrm{~W}, 0.5 \mathrm{Mn}, 0.2 \mathrm{Si} . . \mu$ | 57 | 76 | 95 | 114 | 123 | 104 | 72 | 72 | 32 |
| Cobalt .................... H | 140 | 203 | 240 | 269 | 313 | 413 | 649 | - | - |
| Bar, $36 \mathrm{Co}, 3.5 \mathrm{Cr}, 3.0 \mathrm{~W} . . . \mu$ | 14 | 20 | 25 | 30 | 32 | 29 | 22 | - | - |
|  | 134 | 201 19.9 | $\stackrel{237}{25.3}$ | 258 31 | 290 34.5 | 369 32.5 | $\stackrel{651}{21.5}$ | 1355 11.8 | 2571 |
| $12 \mathrm{Co}, 17 \mathrm{Mo}$, Bal Fe...... ${ }^{\mu}$ | 14.9 | 19.9 | 25.3 | 31 | 34.5 | 32.5 | 21.5 | 11.8 | 7 |
| Alnico $1 \ldots \ldots . . . . . . . . . . . \mathrm{H}$ | 280 | 400 | 478 | 582 | 910 | 1820 | - | - | - |
| $12 \mathrm{Al}, 20 \mathrm{Ni}, 5 \mathrm{Co}$, Bal Fe.. $\mu$ | 7.1 | 10.0 | 12.6 | 13.8 | 11.0 | 6.6 | - | - | - |
|  | 360 | 560 | 668 | 785 | 1020 | 1680 | - | - | - |
| Cast, $10 \mathrm{Al}, 17 \mathrm{Ni}, 12.5 \mathrm{Co.}. \mu$ | 5.6 | 7.1 | 9.0 | 10.2 | 9.8 | 7.1 | - | - |  |
| Alnico $2 \ldots . . . . . . . . . . . . . . H$ | 340 | 515 | 605 | 760 | 1200 | 1800 | - | - |  |
| Sintered, $10 \mathrm{Al}, 17 \mathrm{Ni} . . . . . . \mu$ | 5.9 | 7.8 | 9.9 | 10.5 | 8.3 | 6.7 | - | - |  |
| Alnico $3 \ldots \ldots \ldots . . . . . .$. H | 305 | 473 | 565 | 698 | 1035 | 2000 | - | - | - |
| $12 \mathrm{Al}, 2.5 \mathrm{Ni}$, Bal Fe....... $\mu$ Up to $5 / 8 \times 5 / 8^{\prime \prime}$ cross section | 6.6 | 8.5 | 10.6 | 11.5 | 9.7 | 6.0 | - | - | - |
|  | 279 | 395 | 478 | 575 | 940 | 1910 |  |  |  |
| Cast, $12 \mathrm{Al}, 25 \mathrm{Ni}$, Bal Fe. . $\mu$ $5 / 8 \times 5 / 8^{\prime \prime}$ cross section and over | 7.2 | 10.1 | 12.5 | 13.9 | 10.6 | 6.3 | - | - | - |
| Alnico 4 .................. H | 500 | 850 | 1075 | 1350 | 1890 | - | - | - |  |
| Cast, and sintered .......... $\mu$ $12 \mathrm{Al}, 28 \mathrm{Ni}, 5 \mathrm{Co}$, Bal Fe | 4.0 | 4.7 | 5.6 | 5.9 | 5.3 | - | - | - | - |
| Alnico 5 ................. H | 468 | 560 | 580 | 580 | 598 | 640 | 945 | - | - |
| Cast, $8 \mathrm{Al}, 14 \mathrm{Ni}, 24 \mathrm{Co}$, $3 \mathrm{Cu}, \mathrm{Bal} \mathrm{Fe}$. | 4.3 | 7.1 | 10.3 | 13.8 | 16.7 | 18.8 | 148 | - | - |
| Alnico 6 .................. H | 430 | 675 | 770 | 845 | 940 | 1110 | 1700 | - | - |
| Cast, $8 \mathrm{Al}, 15 \mathrm{Ni}, 24 \mathrm{Co}$, $3 \mathrm{Cu}, 1.25 \mathrm{Ti}$, Bal Fe .. | 4.7 | 5.9 | 7.8 | 9.5 | 10.6 | 10.8 | 8.2 | - | - |
| Alnico $12 \ldots . . . . . . . . . . . . . H$ | 610 | 1000 | 1300 | 1600 | 2000 | 3000 | - | - | - |
| Cast, $6 \mathrm{Al}, 18 \mathrm{Ni}, 35 \mathrm{Co}$, $8 \mathrm{Ti}, \mathrm{Bal} \mathrm{Fe}$. | 3.3 | 4.0 | 4.6 | 5.0 | 5.0 | 4.8 | - | - | - |
| Cunife ................... ${ }^{\text {H }}$ | 530 | 645 | 845 | - | - | - | - | - | - |
| Under $.155^{\prime \prime}$ dia. 60 Cu , 20 Ni, Bal Fe.......... $\mu$ | 3.8 | 6.2 | 7.1 | - | - | - | - | - | - |
| Cunico .................. H | 590 | 1000 | 1630 | 3200 | - | - |  |  |  |
| $50 \mathrm{Cu}, 21 \mathrm{Ni}, 29 \mathrm{Co} . . . . . . . . \mu$ | 3.4 | 4.0 | 3.7 | 2.5 | - | - |  | - | - |
| Vectolite ................H | 1110 | 2050 | 3700 | - | - | - | - | - | - |
| $\begin{aligned} & 30 \mathrm{Fe}_{2} \mathrm{O}_{3}, 44 \mathrm{Fe}_{3} \mathrm{O}_{4} \\ & 26 \mathrm{Co}_{2} \mathrm{O}_{3} \ldots \ldots \ldots \ldots \ldots \ldots . . \end{aligned}$ | 1.8 | 2.0 | 1.7 | _ | - | - | - | - | - |
| Silmanal |  |  |  | Max | mum $\mu$ | 1.111 |  |  |  |

[^203]

TABLE 473.-MAXIMUM CORE LOSSES IN ELECTRICAL STEEL SHEETS

Designation Thickness, in.:	Watts per lb for 60 cycles							
	. 0140	. 0155	. 0170	. 0185	. 0220	. 0250	. 0280	. 0310
	At 10,000 gausses							
Armature AISI M-43.	1.30	1.38	1.46	1.55	1.75	1.98	2.23	2.50
Electrical AISI M-36	1.17	1.23	1.29	1.35	1.50	1.70	1.94	2.17
Motor AISI M-27.	1.01	1.05	1.09	1.14	1.22	1.30	1.44	1.60
Dynamo AISI M-22	. 82	. 86	. 90	. 94	1.02	1.10		
Transformer 72 AISI M-19..	. 72	. 76	. 80	. 83	. 90	. 97		
Transformer 65 AISI M-17..	. 65	. 68	. 72	. 75				
Transformer 58 AISI M-15..	. 58	. 61	. 65	. 68				
Transformer 52 AISI M-14..	. 52							
Transformer 100 AISI M-10..								
Transformer 90 A IS $\mathrm{M}-9 .$.								
At 15,000 gausses								
Armature AISI M-43.	4.30	4.37	4.44	4.50	4.80	5.30	5.85	6.50
Electrical AISI M-36.	3.60	3.67	3.74	3.80	4.10	4.40	4.95	5.50
Motor AISI M-27.	2.65	2.75	2.85	2.95	3.20	3.40	3.70	4.10
Dynamo AISI M-22.	1.85	2.23	2.31	2.40	2.60	2.80		
Transformer 72 AISI M-19..	1.65	1.93	2.02	2.10	2.25	2.40		
Transformer 65 AISI M-17..	1.50	1.72	1.80	1.88				
Transformer 58 AISI M-15..	1.40	1.57	1.65	1.73				
Transformer 52 AISI M-14..								
Transformer 100 AISI M-10..								
Transformer 90 AISI M-9...								


Nickel at $0^{\circ}$ and $100^{\circ} \mathrm{C}$					Cobalt at $0^{\circ}$ and $100^{\circ} \mathrm{C}$					Magnetite *			
H	$s$	$I$	$B$	$\mu$		$S$	I	B	$\mu$		I	B	${ }^{\mu}$
100	35.0	309	3980	39.8	200	106	848	10850	54.2	500	325	4580	9.16
200	43.0	380	4966	24.8	300	116	928	11960	39.9	1000	345	5340	5.34
300	46.0	406	5399	18.0	500	127	1016	13260	26.5	2000	350	6400	3.20
500	50.0	441	6043	12.1	700	131	1048	13870	19.8	12000	350	16400	1.37
700	51.5	454	6409	9.1	1000	134	1076	14520	14.5				
1000	53.0	468	6875	6.9	1500	138	1104	15380	10.3				
1500	56.0	494	7707	5.1	2500	143	1144	16870	6.7				
2500	58.4	515	8973	3.6	4000	145	1164	18630	4.7				
4000	59.0	520	10540	2.6	6000	147	1176	20780	3.5				
6000	59.2	522	12561	2.1	9000	149	1192	23980	2.6				
9000	59.4	524	15585	1.7	At $0^{\circ} \mathrm{C}$ this specimen gave the following results:								
12000	59.6	526	18606	1.5									
At $0^{\circ}$	C this	s spe	cimen	gave	7900	154	1232	23380	3.0				

the following results: $\begin{array}{llllllll}12300 & 67.5 & 595 & 19782 & 1.6\end{array}$
*These results are given by Du Bois for a specimen of magnetite.
$S=$ Magnetic moment per gram. $I=$ Magnetic moment per $\mathrm{cm}^{3}$.

Professor Ewing has investigated the effects of very intense fields on the induction in iron and others metals. The results show that the intensity of magnetization does not increase much in iron after the field has reached an intensity of 1000 cgs units, the increase of induction above this being almost the same as if the iron were not there, that is to say, $d B / d H$ is practically unity. For hard steels, and particularly mangapese steels, much higher forces are required to produce saturation. Hadfield's manganese steel seems to have nearly constant susceptibility up to a magnetizing force of 10,000 . The following tables, taken from Ewing's papers, illustrate the effects of strong fields on iron and steel. The results for nickel and cobalt do not differ greatly from those given above.

Lowmoor wrought iron				Vicker's tool steei				Hadfield's manganese steel			
H	I	$B$	$\mu$	H	I	B	$\mu$	H	I	$B$	${ }^{\mu}$
3080	1680	24130	7.83	6210	1530	25480	4.10	1930	55	2620	1.36
6450	1740	28300	4.39	9970	1570	29650	2.97	2380	84	3430	1.44
10450	1730	32250	3.09	12120	1550	31620	2.60	3350	84	4400	1.31
13600	1720	35200	2.59	14660	1580	34550	2.36	5920	111	7310	1.24
16390	1630	36810	2.25	15530	1610	35820	2.31	6620	187	8970	1.35
18760	1680	39900	2.13					7890	191	10290	1.30
18980	1730	40730	2.15					8390	263	11690	1.39
								9810	396	14790	1.51

## TABLE 475.-EFFECT OF TEMPERATURE ON PERMEABILITY OF NICKEL-IRON ALLOY (47-50 Ni) ${ }^{158}$

$\stackrel{\text { Test }}{\text { Temp. }}{ }^{\circ} \mathrm{F}$	$B$ (gausses) at $30 H$ (oersteds)	$\begin{gathered} \text { Maximum } \\ \text { permeability } \\ (B / H) \end{gathered}$	$B \underset{\substack{\text { maximum } \\ \text { permeability } \\(B / H)}}{\text { (gauses) }}$	Permeability ( $B / H$ ) at 100 gausses
390	11500	79000	4600	8000
190	11850	59000	4400	7000
80	12000	49000	4700	6100
32	12000	44000	5200	5600
- 42	12200	34000	6000	4500
-100	12300	30000	7000	4200

[^204]Several alloys have been experimented with that, although all the constitutents are nonmagnetic or very weakly magnetic materials, have quite definite magnetic properties. Among these are Nos. 1-3 below, Heusler magnetic alloys. Some alloys made up for the most part of magnetic elements are nonmagnetic or very weakly magnetic, i.e., No. 4 below.

1. $61 \mathrm{Cu}, 25 \mathrm{Mg}, 14 \mathrm{Al}$
magnetic with a permeability $\mu$ of 33.
2. $75.6 \mathrm{Cu}, \mathrm{Mn} 14.3, \mathrm{Al} 10.1, \mathrm{~Pb}$
magnetic $B_{r}=480, \quad H_{0}=3.8, \mu$ $\max =80$.
3. $\mathrm{Cu} 61.5, \mathrm{Mn} 23.5, \mathrm{Al} 15$
$B_{r}=2550, \quad H_{c}=7.3, \mu \max =$ 236.
4. $\mathrm{Cu} 78, \mathrm{Fe} 12, \mathrm{Mg}$ nonmagnetic.

TABLE 477.-PERMEABILITY OF SOME SPECIMENS OF IRON AND STEEL
This table gives the induction and the permeability for different values of the magnetizing force of some of the specimens in Table 493. The specimen numbers refer to the same table. The numbers have been taken from the curves given by Hopkinson and may therefore be slightly in error; they are the mean values for rising and falling magnetizations.

Magnetizing force	Specimen 1 (iron)		Specimen 8 (annealed steel)		Specimen 9 (same as 8 tempered)		$\begin{gathered} \text { Specimen } \\ \text { (cast iron) } \end{gathered}$	
	$B$	${ }_{\mu}$	$B$	$\mu$	B	$\stackrel{\mu}{\mu}$	B	$\stackrel{4}{4}$
1		-	-	-	-		265	265
2	200	100	-	-	-	-	700	350
3							1625	542
5	10050	2010	1525	300	750	150	3000	600
10	12550	1255	9000	900	1650	165	5000	500
20	14550	727	11500	575	5875	294	6000	300
30	15200	507	12650	422	9875	329	6500	217
40	15800	395	13300	332	11600	290	7100	177
50	16000	320	13800	276	12000	240	7350	149
70	16360	234	14350	205	13400	191	7900	113
100	16800	168	14900	149	14500	145	8500	85
150	17400	116	15700	105	15800	105	9500	63
200	17950	90	16100	80	16100	80	10190	51
Magnetiz-   ing force	$\underset{(\mathrm{a}}{\mathrm{ASTM}}$	$\begin{aligned} & 20 \text { medium } \\ & \mathrm{s} \text { cast) } \end{aligned}$		ASTM	$\begin{aligned} & 0 \text { medium } \\ & \text { cast) } \end{aligned}$		ASTM 40 furnace	$\begin{aligned} & \text { lectric } \\ & \text { cast) } \end{aligned}$
H	B	${ }_{\mu}$		B	$\mu$		B	$\mu$
5	1300	260		600	120		1750	350
10	3400	340		2550	255		4100	410
20	5250	262		4450	222		5950	297
30	6200	206		5450	181		6950	231
40	6950	173		6100	152		7600	190
50	7500	150		6700	134		8250	165
70	8300	118		7600	108		9100	130
100	9100	91		8600	86		10050	100
150	10150	67		9800	65		11100	74
200	11050	55		10650	53		11900	59

TABLE 478.-MAGNETIC PROPERTIES OF SOFT IRON AT $0^{\circ}$ and $100^{\circ} \mathrm{C}$

Soft iron at $0^{\circ} \mathrm{C}$					Soft iron at $100^{\circ} \mathrm{C}$				
H	s*	${ }_{\text {I }}+$	B	${ }^{\mu}$	H	$s$	1	B	$\mu$
100	180.0	1408	17790	177.9	100	180.0	1402	17720	177.2
200	194.5	1521	19310	96.5	200	194.0	1511	19190	96.0
400	208.0	1627	20830	52.1	400	207.0	1613	20660	51.6
700	215.5	1685	21870	31.2	700	213.4	1663	21590	29.8
1000	218.0	1705	22420	22.4	1000	215.0	1674	22040	21.0
1200	218.5	1709	22670	18.9	1200	215.5	1679	22300	18.6

TABLE 479.-MAGNETIC PROPERTIES OF STEEL AT $0^{\circ}$ and $100^{\circ} \mathrm{C}$

Steel at $0^{\circ} \mathrm{C}$					Steel at $100^{\circ} \mathrm{C}$				
H	$S \dagger$	I	B	$\mu$	H	$S$	I	B	$\mu$
100	165.0	1283	16240	162.4	100	165.0	1278	16170	161.7
200	181.0	1408	17900	89.5	200	180.0	1395	17730	88.6
400	193.0	1500	19250	48.1	400	191.0	1480	19000	47.5
700	199.5	1552	20210	28.9	700	197.0	1527	19890	28.4
1000	203.5	1583	20900	20.9	1000	199.0	1543	20380	20.4
1200	205.0	1595	21240	17.7	1500	203.0	1573	21270	14.2
3750*	212.0	1650	24470	6.5	3000	205.0	1593	23020	7.7
					5000	208.0	1612	25260	5.1

* The results in this and other tables for forces above 1200 were obtained from a small piece of the metal provided with a polished mirror surface and placed, with its polished face normal to the lines of force, between the poles of a powerful electromagnet. The induction was then inferred from the rotation of the plane of a polarized ray of red light reflected normally from the surface. (See Kerr's Constants, Tables 516, 517, 520.)
$\dagger$ Magnetic moment per grain. $\$$ Magnetic moment per $\mathrm{cm}^{2}$.

TABLE 480.-ENERGY LOSSES IN TRANSFORMER STEELS
D. C. Hysteresis data

From $B_{\max }=10,000$ gausses

Grade	Thickness in.	$\underset{\text { oersteds }}{H_{c}}$	$\begin{gathered} B_{r} \\ \text { gausses } \end{gathered}$	$H_{\max }$ oersteds	$H_{c} \times{ }^{\text {r }}$ r
Transformer 52	. 0140	-. 20	4800	2.03	960
Transformer 58	. 0140	-. 24	5050	1.94	1210
Transformer 65	. 0140	-. 31	5200	2.16	1610
Transformer 72	. . 0140	-. 42	6200	2.19	2610
Transformer 72	. 0185	-. 43	5050	2.58	2170
Transformer 72	. . 0250	-. 50	5300	2.72	2650
Dynamo	. 0140	-. 51	6650	2.30	3400
Dynamo	. . 0185	-. 53	5500	2.85	2920
Dynamo	. . 0250	$-.59$	5750	2.87	3400
Motor	. . 0140	-. 55	6350	3.33	3500
Motor	. . 0185	-. 58	6700	2.80	3890
Motor	. . 0250	-. 63	6900	2.99	4350
Electrical	. . 0140	-. 62	7700	2.52	4770
Electrical	. . 0285	-. 61	8100	2.16	4950
Electrical	. . 0250	-. 68	8250	2.26	5610
Armature	. . 0140	-. 64	8350	2.30	5350
Armature	. . 0185	-. 68	8300	2.20	5650
Armature	. . 0250	$-.72$	8230	2.26	5940

## TABLE 481.-ENERGY LOSSES IN TRANSFORMER STEELS

a c core losses
Watts/lb for 60 cycle at 10,000 gausses

Designation	Thickness in.	Gage	Eddy current loss	Hysteresis	Total
Transformer 52	. 0134	29	. 149	. 345	494
Transformer 58	. 0137	29	. 163	. 385	. 548
Transformer 65	. 0136	29	. 193	. 426	. 619
Transformer 72	. . 0136	29	. 205	. 450	. 675
Dynamo	. 0137	29	. 218	. 572	. 790
Motor	. . 0140	29	. 245	. 709	. 954
Electrical	. . 0137	29	. 262	. 852	1.114
Armature	. . 0139	29	. 486	. 741	1.227
Oriented C. R. st	. 0140	29	. 164	. 236	. 40

C. P. Steinmetz concludes from his experiments that the dissipation of energy due to hysteresis in magnetic metals can be expressed by the formula $c=a B^{1.6}$, where $e$ is the energy dissipated and $a$ a constant. He also concludes that the dissipation is the same for the same range of induction, no matter what the absolute value of the terminal inductions may be. His experiments show this to be nearly true when the induction does not exceed $\pm 15000 \mathrm{cgs}$ units per $\mathrm{cm}^{2}$. It is possible that, if metallic induction only be taken, this may be true up to saturation; but it is not likely to be found to hold for total inductions much above the saturation value of the metal. The law of variation of dissipation with induction range in the cycle, stated in the above formula, is also subject to verification.
The following table gives the values of the constant $a$ as found by Steinmetz for a number of different specimens. The data are taken from his second paper.

Kind of material	Description of specimen	$\underset{a}{\text { Value of }}$
Iron	Norway iron	. 00227
	Wrought bar	. 00326
" .	Commercial ferrotype plate	. 00548
"	Annealed	. 00458
"	Thin tin plate	. 00286
"	Medium-thickness tin plate	. 00425
Steel	Soft galvanized wire	. 00349
	Annealed cast steel	. 00848
"	Soft annealed cast steel	. 00457
"	Very soft annealed cast steel	. 00318
"	Same as 8 tempered in cold water	. 02792
"	Tool steel glass hard-tempered in water	. 07476
"	". ". tempered in oil	. 02670
"	" " annealed $14 . \ldots$......................	. 01899
"	$\left\{\begin{array}{l}\text { Same as 12, 13, and 14, after having been subjected } \\ \text { to an alternating } \mathrm{m} . \mathrm{m} . \text { f. of from } 4000 \text { to } 6000\end{array}\right\}$	$\left\{\begin{array}{l}.06130 \\ .02700\end{array}\right.$
" $\quad$...		. 01445
Cast iron	Gray cast iron ................	. 01300
	"" " " containing $\frac{1}{8} \%$ aluminum	. 01365
	" " " " $\frac{1}{2} \%$	. 01459
Magnetite	A square rod $6 \mathrm{~cm}^{2}$ section and 6.5 cm long, from \{the Tilly Foster mines, Brewsters, Putnam County,	. 02348
Nickel	New York, stated to be a very pure sample. Soft wire	
	\{Annealed wire, calculated by Steinmetz from	. 0156
"	Ewing's experiments   Hardened, also from Ewing's experiments .......	. 0385
Cobalt ....	\{Rod containing about $2 \%$ of iron, also calculated $\}$	. 0120
	\{from Ewing's experiments by Steinmetz ..........\} Consisted of thin needle-like chips obtained by milling grooves about 8 mm wide across a pile of	
	thin sheets clamped together. About $30 \%$ by volume of the specimen was iron.	
Iron filings	1 st experiment, continuous cyclic variation of $\mathrm{m} . \mathrm{m}$.\}   f. 180 cycles per second	. 0457
	2d experiment, 114 cycles per second	. 0396
	3d "1 79-91 cycles per second	. 0373
Nickel alloy	Permalloy	. 00001
Electrical sheet	Hipernik	. 000015
	Silicon steel $4.5 \%$ Si   Silicon steel $4.5 \% \mathrm{Si}$	. 000045
	Silicon steel 4.4\% Si	. 00056
	Silicon steel $3.5 \%$ Si	. 00065
	Silicon steel $2.5 \% \mathrm{Si}$	. 00081
	Silicon steel $1.0 \%$ Si	. 00088
	Silicon steel $0.5 \%$ Si	. 001
	Low carbon sheet	. 003
	Cast steel annealed	. 005
	Cast iron annealed	. 012

The relation deduced by Curie that $\chi=C / T$, where $C$ is a constant and $T$ the absolute temperature, holds for some paramagnetic substances over the ranges given in the following table. Many paramagnetic substances do not obey the law. See the following table.

Substance	$\times 10^{\circ}$	nge ${ }^{\circ} \mathrm{C}$	Substance	$C \times 10^{8}$	Range ${ }^{\circ} \mathrm{C}$
Oxygen	33,700	$20^{\circ}$ to $450^{\circ} \mathrm{C}$	Gadolinium sulfate.	21,000	$-259^{\circ}$ to 17
Air	7,830	- - -	Ferrous sulfate	11,000	-259 " 17
Palladium	1,520	20 to 1370	Ferric sulfate	17,000	-208"17
Magnetite	28,000	850 " 1360	Manganese chloride.	30,000	-258 " 17
Cast iron	38,500	850 " 1267			

## TABLE 484.-TEMPERATURE EFFECT ( ${ }^{\circ} \mathrm{C}$ ) ON SUSCEPTIBILITY OF DIAMAGNETIC ELEMENTS *

## No effect:

B Cryst. 400 to $1200^{\circ}$
P white
S Crvst. ; ppt.
$\mathrm{Zn}-170$ to $300^{\circ}$
As
C Diamond, +170 to $200^{\circ}$
C "Sugar" carbon
Si Cryst.
-
$\mathrm{Se} \quad-$
Br
Zr
Zr
$\mathrm{Cryst}-$.170
Cd
Cd
-170 to $300^{\circ}$
$\mathrm{Sb}-170$ to $50^{\circ}$
Cd -170 to $300^{\circ}$
Cs and Au
ncrease with rise in temperature:
Be $\quad$ C Diamond, 200 to $1200^{\circ}$
B Cryst. +170 to $400^{\circ}$
Ag
I -170 to $114^{\circ}$
Decrease with rise in temperature:

C Amorphous	Gd -179 to $30^{\circ}$	In -170 to $150^{\circ}$	T1
C Ceylon graphite	$\mathrm{Ge}-170$ to $900^{\circ}$	$\mathrm{Sb}+50$ to $+631^{\circ}$	$\mathrm{Pb}-170$ to $327^{\circ}$
Cu	Zr 500 to $1200^{\circ}$	Te -	Bi - 170 to $268^{\circ}$
$\mathrm{Zn}+300$ to $700^{\circ}$	Cd 300 to $700^{\circ}$	I +114 to $+200^{\circ}$	

*Tables 484 and 485 are from Honda and Owen.

## TABLE 485.-TEMPERATURE EFFECT ( ${ }^{\circ} \mathrm{C}$ ) ON SUSCEPTIBILITY OF PARAMAGNETIC ELEMENTS

## No effect:

Li	-	$\mathrm{K}-170$ to $150^{\circ}$	$\mathrm{Cr}-170$ to $500^{\circ}$	W
$\mathrm{Na}-170$ to $97^{\circ}$	$\mathrm{Ca}-170$ to $18^{\circ}$	$\mathrm{Mn}-170$ to $250^{\circ}$	Os	-
Al 657 to $1100^{\circ}$	$\mathrm{V}-170$ to $500^{\circ}$	Rb	-	

## Increase with rise in temperature:

$\mathrm{Ti}-40$ to $1100^{\circ}$	$\mathrm{Cr} \mathrm{500} \mathrm{to} 1100^{\circ}$	$\mathrm{Ru}+550$ to $1200^{\circ}$	$\mathrm{Ba}-170$ to $18^{\circ}$
V 500 to $1100^{\circ}$	$\mathrm{Mo}-170$ to $1200^{\circ}$	Rh	-

Decrease with rise in temperature:

(O)	-	$\mathrm{Ti}-180$ to $-40^{\circ}$	Ni 350 to $800^{\circ}$	Pd and Ta
$\mathrm{As}-170$ to $657^{\circ}$	Mn	250 to $1015^{\circ}$	Co above $1150^{\circ}$	Pt and U
Mg	-	$(\mathrm{Fe})$	-	$\mathrm{Nb}-170$ to $400^{\circ}$

If $I$ is the intensity of magnetization produced in a substance by a field strength $H$ then the magnetic susceptibility $\kappa=I / H$. This is generally referred to the unit mass; italicized figures refer to the unit volume. The susceptibility depends greatly upon the purity of the substance, especially its freedom from iron. The mass susceptibility of a solution containing $p$ percent by weight of a water-free substance (susceptibility $\kappa$ ) is $\kappa_{x}=(p / 100) \kappa+(1-p / 100) \kappa_{0}$. ( $\kappa_{0}=$ susceptibility of water.)


TABLE 487.-TEMPERATURE VARIATION OF RESISTANCE OF BISMUTH IN TRANSVERSE MAGNETIC FIELD ( ${ }^{\circ} \mathrm{C}$ )

Proportional values of resistance

$H$	$-192^{\circ}$	$-135^{\circ}$	$-100^{\circ}$	$-37^{\circ}$	$0^{\circ}$	$+18^{\circ}$	$+60^{\circ}$	$+100^{\circ}$	$+183^{\circ}$
0	.40	.60	.70	.88	1.00	1.08	1.25	1.42	1.79
2000	1.16	.87	.86	.96	1.08	1.11	1.26	1.43	1.80
4000	2.32	1.35	1.20	1.10	1.18	1.21	1.31	1.46	1.82
6000	4.00	2.06	1.60	1.29	1.30	1.32	1.39	1.51	1.85
8000	5.90	2.88	2.00	1.50	1.43	1.42	1.46	1.57	1.87
10000	8.60	3.80	2.43	1.72	1.57	1.54	1.54	1.62	1.89
12000	10.8	4.76	2.93	1.94	1.71	1.67	1.62	1.67	1.92
14000	12.9	5.82	3.50	2.16	1.87	1.80	1.70	1.73	1.94
16000	15.2	6.95	4.11	2.38	2.02	1.93	1.79	1.80	1.96
18000	17.5	8.15	4.76	2.60	2.18	2.06	1.88	1.87	1.99
20000	19.8	9.50	5.40	2.81	2.33	2.20	1.97	1.95	2.03
25000	25.5	13.3	7.30	3.50	2.73	2.52	2.22	2.10	2.09
30000	30.7	18.2	9.8	4.20	3.17	2.86	2.46	2.28	2.17
35000	35.5	20.35	12.2	4.95	3.62	3.25	2.69	2.45	2.25

TABLE 488.-INCREASE OF RESISTANCE OF NICKEL DUE TO A TRANSVERSE MAGNETIC FIELD, EXPRESSED AS \% OF RESISTANCE AT $0^{\circ} \mathrm{C}$ AND $H=0$

$H_{0}$	$-190^{\circ}$	$-75^{\circ}$		$0^{\circ}$	$+18^{\circ}$	$+100^{\circ}$
0	+0	0	0	0	$+182^{\circ}$	
1000	+.20	+.23	+.07	+.07	+.96	+.04
2000	+.17	+.16	$\pm .03$	$\pm .03$	+.72	-.07
3000	.00	-.05	-.34	-.36	-.14	-.60
4000	-.17	-.15	-.60	-.72	-.70	-1.15
6000	-.19	-.20	-.70	-.83	-1.02	-1.53
8000	-.19	-.23	-.76	-.90	-1.15	-1.66
10000	-.18	-.27	-.82	-.95	-1.23	-1.76
12000	-.18	-.30	-.87	-1.00	-1.30	-1.85
14000	-.18	-.32	-.91	-1.04	-1.37	-1.95
16000	-.17	-.35	-.94	-1.09	-1.44	-2.05
18000	-.17	-.38	-.98	-1.13	-1.51	-2.15
20000	-.16	-.41	-1.03	-1.17	-1.59	-2.25
25000	-.14	-.49	-.12	-1.29	-1.76	-2.50
30000	-.12	-.56	-1.22	-1.40	-1.95	-2.73
35000	-.10	-.63	-1.32	-1.50	-2.13	-2.98

TABLE 489.-CHANGE OF RESISTANCE OF VARIOUS METALS IN A
TRANSVERSE MAGNETIC FIELD
(Room temperature)



Brackets indicate annealing at $800^{\circ} \mathrm{C}$ in vacuum.
Parentheses indicate hardening by quenching from cherry-red.

TABLE 491.-CAST IRON IN INTENSE FIELDS

Soft cast iron				Hard cast iron			
H	$B$	I	$\mu$	II	B	$I$	$\mu$
114	9950	782	87.3	142	7860	614	55.4
172	10800	846	62.8	254	9700	752	38.2
433	13900	1070	32.1	339	10850	836	30.6
744	15750	1200	21.2	684	13050	983	19.1
1234	17300	1280	14.0	915	14050	1044	15.4
1820	18170	1300	10.0	1570	15900	1138	10.1
12700	31100	1465	2.5	2020	16800	1176	8.3
13550	32100	1475	2.4	10900	26540	1245	2.4
13800	32500	1488	2.4	13200	28600	1226	2.2
15100	33650	1472	2.2	14800	30200	1226	2.0

## TABLE 492.-CORRECTIONS FOR RING SPECIMENS

In the case of ring specimens, the average magnetizing force is not the value at the mean radius, the ratio of the two being given in the table. The flux density consequently is not uniform, and the measured hysteresis is less than it would be for a uniform distribution. This ratio is also given for the case of constant permeability, the values being applicable for magnetizations in the neighborhood of the maximum permeability. For higher magnetizations the flux density is more uniform, for lower it is less, and the correction greater.

Ratio of radial width to diameter of rings	Ratio of average $H$ to $H$ at mean radius		Ratio of hysteresis for uniform distribution to actual hysteresis	
	Rectangular cross section	Circular cross section	Rectangular cross section	Circular cross section
1/2	1.0986	1.0718	1.112	1.084
1/3	1.0397	1.0294	1.045	1.033
1/4	1.0216	1.0162	1.024	1.018
1/5	1.0137	1.0102	1.015	1.011
1/6	1.0094	1.0070	1.010	1.008
1/7	1.0069	1.0052	1.008	1.006
1/8	1.0052	1.0040	1.006	1.004
1/10	1.0033	1.0025	1.003	1.002
1/19	1.0009	1.0007	1.001	1.001

## TABLE 493.-COMPOSITION AND MAGNETIC PROPERTIES OF IRON AND STEEL

This table and Table 477 are from a paper by Dr. Hopkinson on the magnetic propertics of iron and steel. The numbers in the columns headed "magnetic properties" give results for the highest magnetizing force used, which is stated in the paper to have been 240. The maximum magnetization is not tabulated; but as stated by Hopkinson it may be obtained by subtracting the magnetizing force (240) from "the maximum induction and then dividing by $4 \pi$. "Coercive force" is the magnetizing force required to reduce the magnetization to zero. The "demagnetizing irct is the "maximum induction" stated in the table. The "energy dissipated" was calculated from the formula: Energy dissipated $=$ coercive force $\times$ maximum induction divided by $\pi$, which however, was only found to agree roughly with the the results of the experiment.

TABLE 493.-COMPOSITION AND MAGNETIC PROPERTIES OF IRON AND STEEL

$H=$ true intensity of magnetizing field, $H^{\prime}=$ intensity of applied field, $I=$ intensity of magnetization, $H=H^{\prime}-N I$.

Shuddemagen says: The demagnetizing factor is not a constant, falling for highest values of $I$ to about $1 / 7$ the value when unsaturated; for values of $B(=H+4 \pi I)$ less than $1000, N$ is approximately constant; using a solenoid wound on an insulating tube, or a tube of split brass, the reversal method gives values for $N$ which are considerably lower than those given by the step-by-step method; if the solenoid is wound on a thick brass tube, the two methods practically agree.

Values of $K \times 10^{4}$ are given where $B$ is determined by the step method and $H=H^{\prime}-K B$.

Values of $N \times 10^{4}$								Values of $K \times 10^{4}$	
$\begin{gathered} \text { Ratio } \\ \text { of } \\ \text { length } \\ \text { to } \\ \text { diameter } \end{gathered}$	Ellipsoid	Cylinder							
		Uniform Magneto-   metric   magneti-   zation   method    (Mann)		Ballistic step method					
				Shuddemagen for range of   Dubois practical constancy					
				Diameter				Diameter 0.3175 cm	Diameter 1.1 to 2.0 cm
5	7015	2	6800	0.158 cm	cm	1	,		
10	2549	630	2550	2160	-	-	1960		
15	1350	280	1400	1206	-	-	1075	-	85.2
20	848	160	898	775	-	-	671	-	53.3
30	432	70	460	393	388	350	343	30.9	27.3
40	266	39	274	238	234	212	209	18.6	16.6
50	181	25	182	162	160	145	149	12.7	11.6
60	132	18	131	118	116	106	106	9.25	8.45
70	101	13	99	89	88			-	-
80	80	9.8	78	69	69	66	63	5.5	5.05
90	65	7.8	63	55	56			-	-
100	54	6.3	51.8	45	46	41	41	3.66	3.26
150	26	2.8	25.1	20	23	21	21	1.83	1.67
200	16	1.57	15.2	11	12.5	11	11		
300	7.5	. 70	7.5	5.0					
400	4.5	. 39	-	2.8					

TABLE 495.-ELEMENTS OF THE EARTH'S MAGNETIC FIELD
The elements commonly used to describe the natural geomagnetic field are:

Symbol   $D$	Name         $I$
$H$	Magnetic declination
$X$	Magnetic dip or inclination
$Y$	North intensity
$Z$	East intensity
$F$	Vertical intensity
Total intensity	

## Remarks

Bearing of magnetic north with respect to geographic north, counted positive from north around by east
Positive when $Z$ has downward direction Positive regardless of direction
Referred to geographic north
Referred to geographic east
Positive when downward
Positive regardless of direction

For a given time and place, the field is completely described by specifying the values of three magnetic elements, provided they include one from the group $D, X, Y$, and one from the group, $I, Z, F$. The ways in which the magnetic elements are interrelated may be seen from figure 20 and the formulas below. The formulas in the right-hand group are


Fig. 20.-Interrelation of the magnetic elements.
obtained from the others by differentiation ; they are useful when dealing with small increments, such as those which describe annual and daily changes and minor local anomalies of the geomagnetic field. The formulas pertaining to values of $\Delta D$ and $\Delta I$ are expressed in minutes of arc.

$$
\begin{array}{ll}
X=H \cos D & \Delta X=\cos D \Delta H-H \sin D \sin 1^{\prime} \Delta D \\
Y=H \sin D & \Delta Y=\sin D \Delta H+H \cos D \sin 1^{\prime} \Delta D \\
Y=X \tan D & \Delta F=\cos I \Delta H+\sin I \Delta Z \\
H & =\sqrt{X^{2}+Y^{2}} \\
H & =F \cos I
\end{array}
$$

[^205]TABLE 495.-ELEMENTS OF THE EARTH'S MAGNETIC FIELD (concluded)
For purposes of mathematical analysis, it is convenient to recognize that the magnetic intensity or field strength (like other vector fields) is derivable from a scalar function or potential. If $V$ be the potential corresponding to the geomagnetic field, we may write

$$
F=-\operatorname{grad} V,
$$

whence any of the magnetic elements may be expressed as functions of the potential.
In polar coordinates ( $r, \theta, \lambda$ ) with origin at the earth's center, we have

$$
V=a \sum_{n=1}^{\infty}\left\{(r / a)^{\mathrm{n}} T_{\mathrm{n}}{ }^{\mathrm{e}}+(a / r)^{\mathrm{n}+1} T_{\mathrm{n}}{ }^{1}\right\}=V^{\mathrm{e}}+V^{\mathrm{L}},
$$

where $a$ denotes the earth's mean radius ( $6.37 \times 10^{8} \mathrm{~cm}$ ) (see Table 827).

$$
T_{\mathrm{n}} \equiv \sum_{m=0}^{m}\left(g_{\mathrm{n}}^{\mathrm{nm}} \cos m \lambda+h_{\mathrm{n}}^{\mathrm{m}} \sin m \lambda\right) p_{\mathrm{n}}^{\mathrm{m}}(\theta)
$$

Here $\theta$ is the colatitude and $\lambda$ the east longitude, and the affixes $e$ and $i$ refer to portions respectively of external and internal origin. The function

$$
\begin{aligned}
P_{\mathrm{n}}^{\mathrm{m}}(\theta) & =\left\{2 \frac{(n-m)!}{(n+m)!}\right\}^{3} P_{\mathrm{n}, \mathrm{~m}}(\theta) \text { when } m>0 \\
& =P_{\mathrm{n}, \mathrm{~m}}(\theta) \text { when } m=0,
\end{aligned}
$$

where

$$
\begin{aligned}
P_{\mathrm{n}, \mathrm{~m}}(\theta) & =\frac{(2 n)!}{2^{\mathrm{n}} n!(n-m)!} \sin ^{\mathrm{m}} \theta\left\{\cos ^{\mathrm{n}-\mathrm{m}} \theta\right. \\
& \left.-\frac{(n-m)(n-m-1)}{2(2 n-1)} \cos ^{\mathrm{n}-\mathrm{m}-2} \theta+\ldots\right\}
\end{aligned}
$$

Magnetic surveys of portions of the earth have been made by means of observations at many thousands of stations, the elements usually observed being $D, H$, and $I$. Such surveys are repeated in part every few years in populated areas, and at intervals of one or more decades in most areas, because of a substantial and usually unpredictable change in the earth's field known as geomagnetic secular change. These changes are most accurately measured at fixed magnetic observatories to the number of about one hundred. The U. S. Coast and Geodetic Survey operates magnetic observatories at Cheltenham, Md.; Tucson, Ariz.; Sitka, Alaska; Honolulu, T. H.; and San Juan, P. R. Other nations conduct similar measurements.
Magnetic surveys by airplane will no doubt be commonplace in future years.
The part of the earth's field having external origin does not exceed a few percent, and its existence has never been indiciated with much certainty hy the spherical harmonic analyses. If the distinction between contributions of external and internal origin in the first formula is disregarded, the accompanying tables give the values of the principal harmonic terms at various epochs.
The magnetic moment of the earth as given by the centered dipole approximation for 1922 was $8.04 \times 10^{25} \mathrm{cgs}$. The axis of this dipole intersects the earth's surface at points called the geomagnetic (axis) poles, located in 1922 at latitude $78: 5 \mathrm{~N}$., and longitude 270.0 E .; and at latitude 78.5 S ., and longitude $111^{\circ} \mathrm{E}$. In comparison with these currently adopted values, the analysis of Vestine and Lange for 1945 shows only slight change that may have taken place since 1922.
The dipole part of the earth's field diminishes with height $h$ approximately as $(1-3 h / a)$. Values for 1945 have been estimated in tabulation to heights as great as $h=5000 \mathrm{~km}$ for spherical harmonic terms up to degree six. ${ }^{\dagger}$

The magnetic north and south poles of popular interest are those defined by $H=0$, or by $I= \pm 90^{\circ}$. As $H$ changes with time, owing to secular change, these poles must move with time, except in the unlikely event that the lines of zero change of $X$ and $Y$ both happen to pass through the poles. There are a principal north magnetic pole and a principal south magnetic pole, which undergo substantial change in position with time. In addition there are undoubtedly local (secondary) magnetic poles near each principal pole. These secondary poles occur only in pairs. Of each pair, one pole has the character of a potential focus (like the corresponding principal pole), while the other is a "false pole" or node of the equipotential lines. The secondary poles do not individually undergo large-scale migration, since they are associated with localized magnetic materials in the earth's crust. These occur when such materials succeed in reducing the changing value of $H$ to zero, as the principal migrates.

The principal north and south magnetic poles are not diametrically opposite, each being about $2,300 \mathrm{~km}$ from the antipodes of the other.

470
TABLE 496.-THE FIRST EIGHT GAUSS COEFFICIENTS OF THE EARTH'S MAGNETIC POTENTIAL (V) EXPRESSED IN UNITS OF $10^{-4}$ cgs

Sour	poch		1	$h_{1}$	,		$h_{2}{ }^{1}$	$g_{2}{ }^{2}$	
Gauss	1835	$-3235$	-311	+625	+ 51	+292	+ 12	- 2	+157
Erman-Pe	1829	-3201	-284	+601	- 8	+257	- 4	- 14	+146
Adams	1845	-3219	-278	+578	+ 9	+284	$-10$	+ 4	+135
Adams	1880	-3168	-243	+603	- 49	+297	-75	+ 61	+149
Fritsche	1885	-3164	-241	+591	- 35	+286	-75	+68	+142
Schmidt	1885	-3168	-222	$+595$	- 50	+278	-71	+ 65	+149
Dyson and Fu	1922	-3095	-226	+592	-89	+299	-124	+144	+ 84
Afanasieva		$-3032$	-229	+590	-125	+288	-146	+150	+ 48
Vestine and	1945	-3057	-211	+581	-127	+296	-166	+164	+ 54

TABLE 497.-SPHERICAL HARMONIC COEFFICIENTS OF THE AVERAGE ANNUAL SECULAR VARIATION EXPRESSED IN UNITS OF $10^{-5}$ cgs

Source	Epoch	$g_{1}{ }^{0}$	$g_{1}{ }^{1}$	$h_{1}{ }^{1}$	$g_{2}{ }^{0}$	$g_{2}{ }^{1}$	$h_{2}{ }^{1}$	$g_{2}{ }^{2}$	$h_{2}{ }^{2}$
Dyson-Schmidt	1922-1885	$+20$	-	-1	-10	+6	-14	+21	-18
Bartels	1920-1902	+42	-9	$+12$	- 7	+8	-25	+13	-8
Carlheim-Gyllensköld	1920-1902	0	$+13$	+ 4	0	-4	-12	$+13$	-17
Vestine and Lange.	( 1912.5	$+25$	$+1$	-7	$-7$	-1	-9	+24	-17
	1922.5	+28	+ 4	$-7$	-10	$+1$	-14	$+17$	-17
	1932.5	$+23$		$-5$	-14	+1	-18	$+10$	-14
	1942.5	$+9$	$+2$	$+1$	-18	0	-20	$+2$	-14

The magnetic moment of the earth (epoch 1922) $=8.06 \times 10^{25} \mathrm{cgs}$.

	S Latitude 78.6 N.
Geomagnetic north pole..........	\{ Longitude 289.9 E.
omagnetic south	S Latitude 78.6 S.

$\{$ Longitude 109.9 E.

TABLE 498.-COORDINATES OF NORTH MAGNETIC POLE


| Date or <br> epoch | South <br> lati- <br> tude, <br> $\circ$ | East <br> longi- <br> tude <br> $\circ$ | Observer |
| :---: | :---: | :---: | :--- | :--- |$\quad$ Authority *

* For authorities, see bibliography, p. 501.
$\dagger$ Based on the above position for 1912.5 with reduction for secular change.


## TABLE 500.-DIP OR INCLINATION, UNITED STATES

This table gives for the epoch January 1, 1950, smoothed values of the magnetic dip, I, corresponding to the longitudes, $\lambda$, west of Greenwich in the heading and the north latitudes, $\boldsymbol{\Phi}$, in the first column. The remarks about smoothing, in Table 502, apply to this table as well.

$\left.{ }_{\Phi}\right\|^{\lambda}$	$65^{\circ}$	$70^{\circ}$	$75^{\circ}$	$80^{\circ}$	$85^{\circ}$	$90^{\circ}$	$95^{\circ}$	$100^{\circ}$	$105^{\circ}$	$110^{\circ}$	$115^{\circ}$	$120^{\circ}$	$125^{\circ}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0
21			54.7										
23			57.0	56.3	55.0	54.1	52.7	51.4	50.1				
25			59.2	58.5	57.6	56.6	55.2	53.9	52.6	51.4	50.3		
27			61.1	60.8	59.9	58.8	57.6	56.3	55.0	53.7	52.6	51.6	
29		62.9	63.0	62.8	62.0	61.0	59.8	58.5	57.2	56.0	54.8	53.8	
31		64.5	64.8	64.7	63.9	63.0	61.8	60.6	59.4	58.2	57.0	55.9	
33		66.2	66.5	66.5	65.9	64.9	63.8	62.6	61.5	60.4	59.0	58.0	
35		67.8	68.2	68.2	67.7	66.8	65.8	64.7	63.6	62.4	61.1	60.0	
37		69.4	69.9	69.9	69.5	68.6	67.6	66.6	65.5	64.4	63.0	61.8	
39	..	70.7	71.3	71.4	71.1	70.4	69.4	68.5	67.4	66.2	64.9	63.6	62.7
41		72.0	72.6	72.8	72.6	72.0	71.2	70.2	69.2	68.0	66.7	65.4	64.3
43	72.3	73.2	73.9	74.2	74.0	73.6	72.5	71.9	70.9	69.6	68.4	67.1	65.9
45	73.4	74.4	75.2	75.6	75.5	75.0	74.4	73.6	72.6	71.3	70.0	68.8	67.5
47	74.4	75.6	76.3	76.8	76.9	76.6	75.9	75.1	74.1	72.8	71.6	70.4	69.2
49	75.5	76.6	77.4	78.0	78.4	78.1	77.3	76.5	75.5	74.4	73.0	71.9	70.7

## TABLE 501.-SECULAR CHANGE OF DIP, UNITED STATES

Smoothed values of the magnetic dip for the indicated places for January 1 of the years stated. The degrees are given in the third column and in the succeeding column. The remarks about smoothing, in Table 502, apply to this table as well.

Lat.	Long.		1930	1935	1940	1945	1950	Lat.	Lon		1930	1935	1940	1945	1950
$25^{\circ}$	$80^{\circ}$	55'	179'	202'	214'	213'	210	$43^{\circ}$	$70^{\circ}$	$73^{\prime}$	17'	19'	$24^{\prime}$	$19^{\prime}$	12
25	90	53	188	210	218	216	215	43	80	73	76	80	85	80	74
25	100	51	162	176	178	176	173	43	90	73	39	43	46	40	33
31	80	62	137	154	166	164	161	43	100	71	67	69	70	63	56
31	90	60	163	178	185	181	178	43	110	69	50	50	51	45	39
31	100	58	153	162	165	161	157	43	120	67	20	16	18	14	7
31	110	57	72	77	77	75	71	47	70	75	49	46	49	44	36
37	80	68	102	113	122	118	114	47	80	76	61	60	62	57	50
37	90	67	92	101	108	102	97	49	90	78	23	22	21	15	7
37	100	65	98	104	107	101	96	49	100	76	46	45	43	37	31
37	110	63	89	91	93	88	82	49	110	74	35	32	31	26	21
37	120	61	61	59	62	57	51	49	120	71	68	62	62	58	53




Fig. 23.-World isodynamic lines, epoch 1945 (lines of equal horizontal intensity, H, in cgs).



FIG. 25.-World isodynamic lines, epoch 1945 (lines of equal total intensity, F , in cgs).

# TABLE 502.-SECULAR CHANGE OF MAGNETIC DECLINATION IN THE UNITED STATES 

Smoothed values of the magnetic declination for the indicated places for January 1 of the years stated. The degrees are given in the fourth column, together with the indication E (east) or W (west) ; the minutes are given in the succeeding columns. The pattern depicted by this table for any date is highly smoothed and corresponds with that shown on "datum charts" discussed in current publications of the U. S. Coast and Geodetic Survey, such as those cited.** The latter contain more detailed secular-change tables, as well as current magnetic charts which may be consulted for values reflecting a greater amount of local information than it is possible to show in tabular form.
** See bibliography, references d, e, p. 501.

Locality	Lat.	Long.		1920				Locality   Mexico	$\begin{aligned} & \text { Lat. } \\ & 28^{\circ} \end{aligned}$	Long.			1920		1940	1950
At sea	$44^{\circ}$	$68^{\circ}$	$13^{\circ} \mathrm{W}$	319'	357'	$377{ }^{\prime}$				$100^{\circ}$	8	E	112 '	127'	142'	135'
Maine	46	68	16 W	269	299	312	307	Tex.	30	100	9	E	75	85	98	92
Canada	48	68	19 W	241	263	269	258	Tex.	32	100	9	E	98	103	114	108
At sea	40	72	6 W	311	356	382	387									
Conn.	42	72	7 W	355	400	425	426	Tex.	34	100	10	E	63	63	69	63
N. H.	44	72	9 W	349	392	413	410	Okla.	36	100	10	E	89	82	83	76
								Kans.	38	100	11	E	52	38	35	25
Canada	46	72	11 W	357	393	409	401	Kans.	40	100	11	E	74	52	47	34
At sea	34	76		260	283	298	306	Nehr.	42	100	11	E	99	71	62	46
N. C.	36	76	0 W	324	351	366	372	S. Dak.	44	100	11	E	129	94	79	59
Md.	38	76	1 W	333	367	382	385									
Pa .	40	76	2 W	350	389	403	404	N. Dak.	46	100	12	E	105	63	40	16
Pa.	42	76	3 W	376	420	434	432	N. Dak.	48	100	12	E	143	94	64	34
								Tex.	30	104	10	E	91	100	110	100
N. Y.	44	76	5 W	357	402	415	409	Tex.	32	104	11	E	65	69	76	66
At sea	26	80	0 E	72	77	75	59	N. Mex.	34	104	11	E	98	97	100	90
At sea	28	80	0 E	39	40	37	25	N. Mex.	36	104	12	E	72	66	65	52
At sea	30	80	$0 \dagger$	4*	0	3	11									
At sea	32	80	$0 \dagger$	33	43	46	51	Colo.	38	104	13	E	45	33	26	12
S. C.	34	80	$0 \dagger$	81	96	98	101	Colo.	40	104	13	E	78 118	60	49	31
								Nebr.	42	104	13	E	118	94	79	58
N. C.	36	80	$0 \dagger$	132	153	157	157	S. Dak.	44	104	14	E	107	76	57	31
Va .	38	80	$0 \dagger$	191	218	221	219	N. Dak.	46	104	15	E	98	61	37	6
Pa.	40	80	${ }^{0} \dagger$	255	289	293	288	N. Dak.	48	104	15	E	154	110	79	44
Pa .	42	80	0 W	326	365	371	365									
Canada	44	80	1 W	352	396	403	394	Mexico	30	108	11	E	95	100	108	95
Fla.	30	84	2 E	28	31	39	35	N. Mex.	32	108	12	E	74	75	79	65
								N. Mex.	34	108	12	E	111	109	109	95
Ga.	32	84	1 E	62	59	66	66	N. Mex.	36	108	13	E	90	84	80	63
Ga.	34	84	1 E	32	23	30	32	Colo.	38	108	14	$\underset{\text { E }}{\text { E }}$	69	59	51	32
Tenn.	36	84	${ }_{0} \mathrm{E}$	59	44	50	54	Colo.	40	108	15	E	56	40	26	5
Ky.	38	84	$0 \dagger$	18*	5	0	6*									
Ohio	40	84	${ }^{0+}$	24	55	52	44	Wyo.	42	108	15	E	111	90	73	47
Mich.	42	84	$0 \dagger$	77	114	113	105	Wyo.	44	108	16	E	113	86	66	35
								Mont.	46	108	17	E	114	81	56	21
Mich.	44	84	$0 \dagger$	141	183	187	178	Mont.	48	108	18	E	117	78	47	8
Mich.	46	84	$0 \dagger$	212	260	270	263	Ariz.	32	112	12	E	125	125	126	112
Ala.	30	88	4 E	42	50	64	64	Ariz.	34	112	13	E	107	104	103	86
Ala.	32	88	4 E	28	30	42	44									
Ala.	34	88	4 E	12	7	18	22	Ariz.	36	112	14	E	91	84	78	60
Tenn.	36	88	3 E	54	42	53	58	Utah	38	112	15	E	80	70	60	39
								Utah	40	112	16	E	76	62	49	25
Ind.	38	88		34	14	23	29	Utah	42	112	17	E	79	61	44	16
II1.	40	88	$2{ }_{2} \mathrm{E}$	70	41	47	52	Idaho	44	112	18	E	84	61	41	9
111.	42	88		41	6	8	12	Mont.	46	112	19	E	96	67	41	5
Wis.	44	88	${ }^{1} \mathrm{E}$	70	28	25	27									
Mich.	46 48	88 88	${ }_{0}{ }^{+} \mathrm{E}$	37**	37 20	28	42	Mont.	48 32	112		$\underset{\text { E }}{ }$	163	129	99 163	59 148
Mich.	48	88	$0 \dagger$	35*	20	35	42	Mexico	32	116	12	E	164	162	163	148
La.	30	92		47	57	74	74	Calif. Calif.	34 36	116 116	13	$\stackrel{\text { E }}{\text { E }}$	151	146	144	128
La.	32	92	6 E	44	49	64	66	Nev.	38	116	15	E	137	127	118	97
Ark.	34	92	6 E	39	37	51	55	Nev.	40	116	16	E	138	126	113	89
Ark.	36	92	6 E	40	29	38	42									
Mo.	38	92	6 E	39	20	27	29	Nev.	42	116	17	E	140	124	109	81
Mo.	40	92	6 E	34	8	12	12	Idaho	44	116	18	E	152	133	114	83
								Idaho	46	116	19	E	168	143	120	85
Iowa	42	92	E	87	52	50	49	Mont.	48	116	21	E	119	90	61	23
Minn.	44	92	5 E	76	34	28	22	At sea	34	120	13	E	189	184	180	163
Minn.	46	92		128	79	64	53	Calif.	36	120	14	E	184	177	171	152
Mlinn.	48	92	4 E	116	60	37	21									
At sea	28	96	7 E	85	101	119	115	Calif.	38	120	15	E	182	1/2	163	143
Tex.	30	96	7 E	96	107	123	121	Calif.	40		$16$	$\underset{\mathrm{F}}{\mathrm{E}}$			156	
								Calif.	42	120	17	E	184	169	154	129
Tex. Okla. dex.	32 34 3	96 96	8 8 8 E	48 61	54 61	67	66 69	Oreg.	44 46	120	18	$\stackrel{\text { E }}{\text { E }}$	200	181	163	135
Okla.	36	96	8 E	75	66	71	69	Wash.	48	120	21	E	168	142	116	80
Kans.	38	96		27	10	12	9									
Kans.	40	96	9 E	38	13	12	6	At sea	38	124	15	E	212	202	194	175
lowa	42	96	9 E	48	16	11	2	Calif.	40	124	16	E	211	199	187	167
								Calif.	42	124	17	E	215	201	187	164
Minn.	44	96	8 E	120	81	70	57	Oreg.	44	124	18	E*	239	212	194	170
Minn.	46	96	8 E	134	88	69	50	Oreg.	46	124	19	F	241	222	203	175
Minn.	48	96	8 E	154	100	71	48	Wash.	48	124	20	E	256	234	210	179

[^206]The daily variation is not predictable in detail since it fluctuates in form and amplitude from day to day. However, the variations shown in this table appear with considerable regularity when the data are averaged over several months or years. Values are based on the 10 leastdisturbed days of each month of the interval 1918-1928, using photographic registrations obtained at three of the magnetic observatories listed in Table 510. A plus sign signifies that east declination is greater, or west declination less, than the mean for the day.

Hour, local mean time	January, February, November, December			March, April, September, October			$\begin{gathered} \text { May, June, } \\ \text { July, August } \end{gathered}$		
	Sitka, Alaska	Cheltenham, Md.	Tucson, Ariz.	Sitka, Alaska	Cheltenham, Md.	Tucson, Ariz.	Sitka, Alaska	Cheltenbam, Md.	Tucson, Ariz.
2 a.m.	. 0	- . 2	-. 3	. 0	$+.4$	$+.1$	- . 9	$+.3$	$+.1$
$4 \mathrm{a} . \mathrm{m}$.	$+.2$	$+.2$	-. 2	$+.5$	$+1.0$	+.3	$+.6$	+1.0	$+.6$
6 a. m.	$+.7$	+.8	+. 2	+2.4	+2.3	+1.5	+4.9	+4.1	+2.6
8 a.m.	+1.8	+2.5	+1.9	+4.8	+4.7	+4.0	+7.7	$+5.9$	+4.7
$10 \mathrm{a} . \mathrm{m}$.	+1.7	+2.5	+2.3	+3.6	+2.2	+1.4	+4.8	+1.3	$+.4$
Noon	$-.2$	-2.0	-1.1	-. 6	-3.7	-2.3	-1.8	-4.7	-3.2
$2 \mathrm{p} . \mathrm{m}$.	-1.5	-3.2	-2.2	-2.9	-4.7	-2.8	-5.2	-5.4	-3.2
4 p.m.	-1.6	-1.5	-1.0	-3.2	-2.2	-1.4	-5.1	-2.5	-1.4
6 p.m.	-. 9	-. 2	. 0	-2.3	-. 6	-. 6	-2.5	-. 2	-. 3
8 p.m.	$-.3$	$+.5$	$+.3$	-1.3	. 0	-. 2	-1.0	-. 4	-. 4
$10 \mathrm{p} . \mathrm{m}$.	. 0	+. 6	$+.2$	-. 8	$+.3$	$-.1$	$-1.0$	. 0	-. 2
Midnight	$-.1$	$+.2$	-. 1	$-.3$	$+.4$	. 0	$-1.1$	$+.2$	-. 1

* Expressed in minutes.


## TABLE 504.-HORIZONTAL MAGNETIC INTENSITY, UNITED STATES

This table gives for the epoch January 1, 1950, the smoothed horizontal intensity, $H$, expressed in cgs units, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column. The remarks about smoothing, in Table 502, apply to this table as well.

${ }^{1}{ }^{\lambda}$	$65^{\circ}$	$70^{\circ}$	$75^{\circ}$	$80^{\circ}$	$85^{\circ}$	$90^{\circ}$	95	$100^{\circ}$	105	$110^{\circ}$	$115^{\circ}$	120	125
$21^{\circ}$			. 267										
23			. 262	. 267	. 274	. 282	. 288	. 293	. 296				
25			. 254	. 259	. 266	. 273	. 278	. 284	. 288	. 290	. 290		
27			. 246	. 251	. 257	. 264	. 270	. 276	. 280	. 282	. 282	282	
29		. 232	. 236	. 241	. 247	. 254	. 260	. 266	. 271	. 273	. 274	. 276	
31		. 222	. 226	. 231	. 237	. 244	. 250	. 257	. 262	. 265	. 267	. 269	
33		. 212	. 215	. 220	. 225	. 232	. 239	. 246	. 252	. 256	. 259	. 261	
35		. 202	. 204	. 208	. 213	. 220	. 227	. 234	. 241	. 246	. 250	. 253	
37		. 192	. 193	. 196	. 201	.207	. 214	. 222	. 229	. 236	. 240	. 244	
39		. 181	. 181	. 184	. 188	. 194	. 201	. 210	. 217	. 224	. 230	. 234	238
41		. 171	. 170	. 171	. 176	. 181	. 188	. 196	. 204	. 212	. 219	. 224	230
43	. 165	. 161	. 160	. 160	. 162	. 167	. 174	. 182	. 191	. 200	. 207	. 214	219
45	. 156	. 151	. 148	. 148	. 149	. 153	. 160	. 168	. 177	. 186	. 195	. 202	208
47	. 145	. 140	. 137	. 135	. 135	. 140	. 146	. 154	. 164	. 174	. 182	. 190	197
49	. 134	. 129	. 126	. 123	. 122	. 126	. 133	. 140	. 150	. 160	. 170	. 178	185

TABLE 505.-SECULAR CHANGE OF HORIZONTAL INTENSITY, UNITED STATES
Smoothed values of horizontal intensity in cgs units at the indicated places for January 1 of the years stated. The remarks about smoothing, in Table 502, apply to this table as well.

Lat.	Long.	1930	1935	1940	1945	1950	Lat.	Long.	1930	1935	1940	1945	1950
$25^{\circ}$	$80^{\circ}$	.2653	.2612	.2589	.2586	.2587	$43^{\circ}$	$70^{\circ}$	.1627	.1613	.1601	.1608	.1613
25	90	.2801	.2761	.2741	.2735	.2731	43	80	.1621	.1604	.1589	.1595	.1598
25	100	.2908	.2878	.2861	.2851	.2843	43	90	.1693	.1675	.1664	.1671	.1671
31	80	.2361	.2325	.2303	.2304	.2306	43	100	.1838	.1822	.1814	.1820	.1820
31	90	.2464	.2461	.2442	.241	.2438	43	110	.2015	.2002	.1994	.1997	.1996
31	100	.2622	.2595	2578	.2573	.2567	43	120	.2154	.2143	.2135	.2136	.2136
31	110	.2698	.2677	.2662	.2656	.2648	47	70	.1405	.1398	.1389	.1398	.1403
37	80	.2003	.1974	.1954	.1958	.1960	47	80	.1362	.1352	.1342	.1350	.1353
37	90	.211	.2084	.2068	.2071	.2070	49	90	.1256	.1249	.1243	.1253	.1255
37	100	.2262	.2239	.2226	.2227	.2223	49	100	.1406	.1398	.1394	.1103	.1405
37	110	.2389	.2372	.2361	.2359	.2355	49	110	.1601	.1592	1587	.1594	.1597
37	120	.2473	.2460	.2449	.2446	.2442	49	120	.1783	.1775	.1771	.1775	.1777

## TABLE 506.-VERTICAL MAGNETIC INTENSITY, UNITED STATES

This table gives for the epoch January 1, 1950, the smoothed vertical intensity, $Z$, expressed in cgs units, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column. The remarks about smoothing, in Table 502, apply to this table as well.

${ }^{1}{ }^{\lambda}$	$65^{\circ}$	$70^{\circ}$	$75^{\circ}$	$80^{\circ}$	$85^{\circ}$	$90^{\circ}$	$95^{\circ}$	$100^{\circ}$	10	110	$115^{\circ}$	$120^{\circ}$	125
$21^{\circ}$			. 378										
23			. 402	. 399	. 391	. 389	. 378	. 367	. 354				
25			. 425	. 422	. 419	. 414	. 401	. 390	. 376	. 362	. 348		
27			. 445	. 448	. 442	. 435	. 426	. 413	. 399	. 383	. 368	. 356	
29		454	. 463	. 468	. 465	. 458	. 447	. 434	. 421	. 404	. 389	. 376	
31		. 465	. 480	. 488	. 484	. 478	. 467	. 456	. 442	. 427	. 411	. 398	
33		. 480	. 494	. 505	. 503	. 495	. 487	. 477	. 464	. 449	. 432	. 418	
35		. 493	. 511	. 552	. 520	. 513	. 505	. 505	. 485	. 471	. 453	. 437	
37		. 509	. 526	. 536	. 536	. 529	. 521	. 514	. 502	. 491	. 473	. 456	
39		. 518	. 536	. 545	. 548	. 545	. 536	. 531	. 521	. 509	. 491	. 473	461
41		. 527	. 544	. 557	. 559	. 558	. 551	. 546	. 536	. 524	. 509	. 490	476
43	. 517	. 534	. 554	. 566	. 569	. 566	. 563	. 558	. 551	. 538	. 523	. 506	490
45	. 521	. 541	. 561	. 573	. 575	. 576	. 572	. 571	. 564	. 550	. 536	. 521	503
47	. 521	. 546	. 563	. 578	. 583	. 585	. 583	. 581	. 576	. 559	. 548	. 533	518
49	. 518	. 542	. 565	. 581	. 595	. 596	. 591	. 586	. 581	. 570	. 556	. 543	527

## TABLE 507.-SECULAR CHANGE OF VERTICAL INTENSITY, UNITED STATES

Smoothed values of vertical intensity in cgs units at the indicated places for January 1 of the years stated. The remarks about smoothing, in Table 502, apply to this table as well.

Lat.	Long.	30	1935	1940	1945	1950	Lat.	Long.	930	1935	1940	1945	1950
$25^{\circ}$	$80^{\circ}$	. 4243	. 4240	. 4236	. 4228	. 4222	$43^{\circ}$	$70^{\circ}$	. 5417	. 5382	. 5370	. 5365	. 5343
25	90	. 4174	. 4171	. 4162	. 4148	. 4139	43	80	. 5754	. 5719	. 5698	. 5687	. 5660
25	100	. 3959	. 3952	. 3933	. 3914	. 3896	43	90	. 5771	. 5734	. 5715	. 5702	. 5659
31	80	. 4902	. 4889	. 4887	. 4881	. 4875	43	100	. 5696	. 5658	. 5639	. 5618	. 5579
31	90	. 4835	. 4823	. 4810	. 4794	. 4778	43	110	. 5486	. 5451	. 5434	. 5413	. 5381
31	100	. 4644	. 4624	. 4603	. 4582	. 4559	43	120	. 5158	. 5115	. 5104	. 5085	. 506
31	110	. 4351	. 4332	. 4307	. 4292	. 4268	47	70	. 5559	. 5511	. 5496	. 5498	. 546
37	80	. 5415	. 5389	. 5378	. 5370	. 5356	47	80	. 5907	. 5856	. 5828	. 5824	. 578
37	90	. 5368	. 5341	. 5332	. 5312	. 5287	49	90	. 6110	. 6067	. 6029	. 6024	. 596
37	100	. 5236	. 5207	. 5189	. 5167	. 5137	49	100	. 5979	. 5937	. 5905	. 5897	. 5860
37	110	. 5005	. 4977	. 4961	. 4938	. 4908	49	110	. 5806	. 5754	. 5729	. 5722	. 570
37	120	. 4654	. 4623	. 4612	. 4591	. 4564	49	120	. 5531	. 5474	. 5461	. 5452	. 543

## TABLE 508.-TOTAL MAGNETIC INTENSITY, UNITED STATES

This table gives for the epoch January 1, 1950, the smoothed total intensity, $F$, expressed in cgs units, corresponding to the longitudes west of Greenwich in the heading and the north latitudes in the first column. The remarks about smoothing, in Table 502, apply to this table as well.

${ }^{1}{ }^{\lambda}$	$65^{\circ}$	$70^{\circ}$	$75^{\circ}$	$80^{\circ}$	$85^{\circ}$	$90^{\circ}$	$95^{\circ}$	$100^{\circ}$	$105^{\circ}$	$110^{\circ}$	$115^{\circ}$	$120^{\circ}$	$125^{\circ}$
$21^{\circ}$			. 463										
23			. 480	. 480	. 477	. 481	. 475	. 469	. 461				
25			. 495	. 495	. 496	. 496	. 489	. 482	. 473	. 464	. 453		
27			. 508	. 514	. 512	. 509	. 504	. 497	. 487	. 476	. 464	. 454	
29		. 510	. 520	. 526	. 526	. 524	. 518	. 509	. 501	. 488	. 476	. 466	
31	$\ldots$	. 515	. 530	. 539	. 539	. 536	. 530	. 523	. 514	. 502	. 490	. 480	
33		. 525	. 539	. 550	. 552	. 547	. 543	. 536	. 528	. 517	. 503	. 493	
35		. 533	. 550	. 562	. 562	. 558	. 535	. 549	. 541	. 531	. 518	. 505	
37		. 544	. 561	. 570	. 572	. 568	. 564	. 560	. 552	. 544	. 530	. 518	
39		. 549	. 566	. 575	. 579	. 578	. 572	. 571	. 564	. 556	. 542	. 528	. 519
41		. 554	. 570	. 582	. 586	. 586	. 582	. 580	. 574	. 566	. 554	. 539	. 529
43	. 543	. 558	. 576	. 588	. 591	. 590	. 589	. 587	. 583	. 574	. 563	. 549	. 537
45	. 543	. 562	. 581	. 592	. 594	. 596	. 594	. 595	. 591	. 581	. 571	. 559	. 545
47	. 541	. 564	. 580	. 594	. 599	. 601	. 601	. 602	. 599	. 585	. 577	. 565	. 554
49	. 535	. 557	. 579	. 594	. 607	. 609	. 606	. 603	. 600	. 592	. 581	. 572	. 559

## TABLE 509.-_SECULAR CHANGE OF TOTAL INTENSITY, UNITED STATES

Smoothed values of total intensity in cgs units at the indicated places for January 1 of the years stated. The remarks about smoothing, in Table 502, apply to this table as well.

Lat.	Long.	1930	1935	1940	1945	195	Lat.	Long.	1930	1935	1940	45	0
$25^{\circ}$	$80^{\circ}$	. 5004	. 4980	. 4964	. 4956	. 4951	$43^{\circ}$	$70^{\circ}$	. 5656	. 5619	. 5604	. 5601	. 5581
25	90	. 5026	. 5002	. 4984	. 4968	. 4959	43	80	. 5978	. 5940	. 5915	. 5907	. 5881
25	100	. 4912	. 4889	. 4864	. 4843	. 4823	43	90	. 6014	. 5974	. 5952	. 5942	. 5901
31	80	. 5441	. 5414	. 5402	. 5398	. 5393	43	100	. 5985	. 5944	. 5923	. 5906	. 5869
31	90	. 5441	. 5415	. 5394	. 5380	. 5364	43	110	. 5845	. 5807	. 5788	. 5770	. 5740
31	100	. 5332	. 5303	. 5276	. 5255	. 5232	43	120	. 5589	. 5545	. 5532	. 5516	. 5493
31	110	. 5120	. 5092	. 5064	. 5047	. 5023	47	70	. 5734	. 5686	. 5669	. 5673	. 5642
37	80	. 5773	. 5739	. 5722	. 5716	. 5703	47	80	. 6062	. 6010	. 5981	. 5979	. 5940
37	90	. 5768	. 5733	. 5719	. 5701	. 5677	49	90	. 6237	. 6194	. 6156	. 6153	. 6095
37	100	. 5703	. 5668	. 5647	. 5626	. 5597	49	100	. 6142	. 6099	. 6067	. 6061	. 6026
37	110	. 5546	. 5513	. 5494	. 5473	. 5444	49	110	. 6022	. 5970	. 5945	. 5940	. 5920
37	120	. 5271	. 5237	. 5222	. 5202	. 5176	49	120	. 5812	. 5754	. 5741	. 5734	. 5715

The usual conventions are followed as explained in connection with Table 502.
In addition to permanent geomagnetic observatories, there are given the numerous series of magnetic records obtained for the better part of a
year by special expeditions, as, for example, those obtained during the two International Polar Years of $1882-83$ and $1932-33$; all are listed in decreas-
ing order of north latitude.
Generally, values are from continuous magnetograph records for all days, and are for mean of year.
The many special notes applying to individual observatories have been omitted in the tabulation; these may be obtained from the references cited
below if desired. However, the following general types of notes should be taken cognizance of:

\[

=\)|  Observatory so marked is in a region of local magnetic disturbance.  |
| :--- |

\]

\[\)|  a break occurred between the preceding and following years due to change in procedure, method, standard, or site.  |
| :--- |

\]

\[\)|  Means quoted here are for all days, and may differ slightly from previously published means for  10  quiet days, given in offi-  |
| :--- |
|  cial publication of U.S. Coast and Geodetic Survey.  |

\]





$* *$ For references, see bibliography, p. 501.
$\dagger \gamma=10^{-5} \mathrm{cgs}$.
Observatory
Teplitz Bay (Ca Teplitz Bay (Camp Abruzzi).
Alger Island ................... Bay Tikhaya (Calm Bay) . Refuge Harbor (Greenland) Cape Thordsen (Spitsbergen) Sveagruvan (Spitsbergen) Chelyuskin

Jekman Island.
Point Barrow

$\underset{D}{\text { Declination }}$	$\underset{I}{\text { Inclination }}$	$\begin{gathered} \text { Horizontal } \\ H \\ \gamma \end{gathered}$	North X $\gamma$	$\underset{Y}{\text { East }}$   $\gamma$	$\begin{gathered} \text { Vertical } \\ Z \\ \gamma \end{gathered}$	$\begin{gathered} \text { Total } \\ F \\ \gamma \end{gathered}$
$-21^{\circ} 43^{\prime} 8$	$+76{ }^{\circ} 53.5$	11726	10890	-4340	$+50352$	51699
$-3433.2$	+78 17.9	10576	8710	-5998	$+51063$	52147
- 407.7		11567	11537	- 833		
- 210.6	+77 25.8	11244	11236	-427	$+50424$	51662
$-154.3$	+7728.4	11213	11207	- 373	$+50647$	51698
+ 546.2	+7725.5	11341	11284	$+1140$	$+50838$	52088
- 542	+7608	12233	12172	-1215	+49555	51042
-57 41.1	+8134.7	8227	4398	-6953	$+55564$	56170
-55 28.0	+8134.5	8174	4634	-6734	$+55193$	55795
+4225	+8151.6	8448	6237	+5698	$+59061$	59662
- 606	+89 17.3	750	746	- 80	+60434	60439
+ 236.5	+7604.0	12207	12194	+556	+49202	50693
+ 425.1	+76 32.2	11882	11847	$+915$	$+49630$	51033
+ 644.0	+76 11.7	12318	12233	$+1444$	$+50118$	51609
+15 41.2	+75 37.2	13707	13196	$+3706$	$+53460$	55189
$(+1537.5$	+75 36.7	13720	13213	+3695	+53478	55210)
-39 52.9	+78 18.1	10705	8215	-6864	$+51699$	52796
$(+2952.4$	+7711.2	12582	10910	$+6267$	$+55323$	56736)
( +29 46.1	+7711.9	12587	10926	+6249	+55395	56807)
-52 12.1	+85 29.2	4722	2894	-3731	+59824	60010
-12 36.1	+86 23.4	3834	3742	-836	+60762	60883
+3730.7	+8239.0	7734	6135	+4709	+59956	60453
- 904.1	+7324.1	16147	15945	-2545	+54169	56524
$(-914.8$	+7309.9	16393	16180	-2634	+54179	56605)
(-708	+73 36.4	13900	13792	-1726	$+47250$	49252)
(-6 16	+73 44.6	13837	13754	-1510	$+47450$	49426)
-17 08.0		14500	13857	-4272		
(-17 36.4		14524	13844	-4393		
-43 20.8	+7738.1	11616.	8447	-7973	$+52989$	54247
(continued)						



		$\begin{aligned} & \text { No } \\ & \text { NO } \\ & \text { NON } \end{aligned}$	$\begin{array}{ll} \sim & 0 \\ \sim & \\ \sim & 8 \end{array}$	$\begin{aligned} & \text { NO } \\ & \text { NN } \\ & \text { NN } \end{aligned}$	$\infty$ O N N	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{0}{\mathrm{o}} \end{aligned}$	$\stackrel{\circ}{\circ}$ 국	$\bigcirc$	3 - -
	NoJ	ऽलN	옹 윽	ल⿵冂	N	아	$\bigcirc$	2	5
	$\begin{aligned} & \text { gag } \\ & ++1 \end{aligned}$	잉 $+t+$	¢ + +	20 +	+	3 + +	O O +	O + +	O +


TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

Observatory	$\begin{aligned} & \text { Latitude } \\ & ( \pm 三 N, \\ & (=S) \end{aligned}$	Longitude east	Year	$\underset{D}{\text { Declination }}$	$\underset{I}{\text { Inclination }}$	Components of intensity				
						Horizontal H	$\begin{gathered} \text { North } \\ X \end{gathered}$	${ }_{Y} \text { East }$	$\underset{Z}{\text { Vertical }}$	Total F
						$\stackrel{\gamma}{\gamma}$	${ }^{\gamma}$	$\gamma$ 3561	$\gamma$ +46624	$\gamma$ 48835
	$+60^{\circ} 08^{\prime}$	$358^{\circ} 49^{\prime}$	1930	$-14^{\circ} 11.2$	+72 ${ }^{\circ} 41.6$	14527	14084	-3561	$\underline{+46624}$	$\underline{48835}$
Lerwick			1944	-1139.3	+7258.0	14381	14084	-2905	$+46937$	49091
			1946	-11 21.3	+7300.2	14364	14083	-2828	+46990	49136
Oslo (Christiania)	+59 55	1043	1929	- 807.0		15934	15774	-2250		
			1930	- 758.9		15929	15775	-2212		
Slutsk (Pavlovsk, succeed Leningrad)	$+5941$	3029	1939	+ 504.9	+72 14.1	15260	15200	+1352	$+47631$	50016
			1941	+ 516.8	+72 18.2	15228	15163	+1401	$+47725$	50096
Lovö	+5921	1750	1940	- 128.1	+7152.6	15317	15312	- 393	$+46979$	49241
			1946	- 042.4	+72 03.2	15231	15230	- 188	+47024	49429
Sitka ${ }^{\text {a }}$	+5703	22440	1920	+30 28.5	+7422.3	15568	13417	+7896	+55655	57791
			1930	+30 15.6	+74 22.8	15449	13344	+7785	+55256	57375
			1945	+29 30.2	+74 15.4	15513	13501	$+7640$	+55029	57174
			1947	$(+2922.6$	+7415.8	15503	13510	$+7605$	+55016	57159)
Sverdlovsk (Katharinenburg)	$+5650$	6038	1899	+ 959.6	+7042.0   +7220.3	17795	17525	+3088	$\underline{+50815}$	53840
			1929	+10 57.2	+72 20.3	16285	15988	+3094	$+51145$	53676
			1931	+1054.6	+7226.9	16200	15907	+3066	+51220	53721
Vyssokaya Dubrava (succeeding Sverd										
	+56 44	6104	1940	+1257.2 +1303.0	+7231.9 +7240.0	16085	15676	+3606 +3620	+51116 +51360	53587 52803
Rude Skov (succeeding Copenhagen)	$+5551$	1227	1934	+1203.0 +600.4	+721.9 +6919.0	16893	16800	+3620 -1768	+51360 +44747	52803 47829
			1944	- 351.0	+69 45.6	16710	16672	-1122	+45318	48301
			1946	- 334.8	+69 49.3	16680	16647	-1041	+45386	48354
Zaimishche (new site of Kasan).....	+55 50	4851	1940	+927.5	+7110.5	16651	16425	$+2736$	+48441	51601
			1945	$\left(\begin{array}{l}+940.9\end{array}\right.$	+7121.7	16560	16324	+2785	$+49096$	51814)
Kasan	+5547	4908	1909	+ 805.1	+69 09.1	18118	17938	$+2548$	$+47575$	50908
			1913	+ 810.9	+69 18.2	17959	17776	$+2556$	$+47535$	50815
Kutchino	+55 46	3758	1927	+ 636.1	+68 59.5	17875	17756	+2055	$+46545$	59859
Copenhagen	+55 41 +5519	1234 35648	1900	-10 12.2	+6839.0 +69432	17513	17236 16036	-3102	+44803 +44881	48104
Eskdalemuir	+5519	35648	1930	-1447.1 -1205.9	+6839.2 +6954.0	16585	16036	-4232	+44881 +45134	47847 48061
Gross Raum	+5450	2030	1925	- 218.3	+68 01.9	17771	17757	-715	$+44055$	47504
			1935	- 043.1	+68 33.5	17530	17529	- 221	+44636	47955
Flensburg	$+5447$	926	1903	-11 28.0	....	. . .	....	....	. . .	....
				(continued)						

TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

$\begin{aligned} & \text { Latitude } \\ & ( \pm 三 N) \\ & (=S) \end{aligned}$	Longitudeeast	Year	$\underset{D}{\text { Declination }}$	$\underset{I}{\text { Inclination }}$	Components of intensity				
					Horizontal H	North $X$	$\underset{Y}{\text { East }}$	${ }_{Z}^{\text {Vertical }}$	Total $F$
					$\gamma$	$\gamma$	$\gamma$	${ }^{\gamma}$	$\gamma$
$54^{\circ} 37^{\prime}$	$246^{\circ} 40^{\prime}$	1920	$+27^{\circ} 38.6$	$+77^{\circ} 53.6$	12923	11445	+5996	$+60246$	61617
		1942	+25 33.6	+7751.8	12729	11482	+5492	$+59188$	60541
+54 36	1848	1934	- 235.5	+68 25.2	17553	17535	- 794	+44384	47729
+54 25	1839	1903	- 713						
+5422	1245	1903	- 952.9	+67 37.6	18261	17990	-3134	$+44363$	47974
+ 5421	1224	1903	-1008			. . . .	....		
+5406	1208	1903	-10 08						
+5351	35732	1920	-15 52.9	$+6843.5$	17303	16640	-4734	+44429	47679
		1943	-11 30.5	+68 54.5	17166	16820	-3425	+44504	47699
+53 45	904	1939	- 559.1	+68 12.0	17636	17540	-1839	+44092	47488
		1946	- 459.7	+68 21.2	17601	17534	-1532	+44347	47712
+53 27	1434	1901	-843						
+52 49	640	1940	- 709.2	$+6739.2$	17959	17820	-2236	$+43686$	47233
		1946	-614.7	+67 45.0	17946	17840	-1952	$+43867$	47396
+5228	10402	1899	+208.8	+70 27.8	19948	19934	P +747	+56220	59654
		1930	$(+017.7$	$+7121.5$	19019	19019	+ 98	$+56380$	59500)
		1945	(-0 47.7	+71 34.4	19028	19026	- 264	+57109	$60196)$
+52 23	1304	1899	$-1000.7$	+66 25.7	18818	18531	-3271	$+43133$	47060
		1920	- 729.4	+66 33.5	18606	18447	-2425	+42912	46772
		1927	- 609.1	+66 44.0	18489	18383	-1981	+43002	46809


ectriemegk.


O
N
+
+

 (continued)

$\begin{array}{ll}+42899 & 46776 \\ +43106 & 46888 \\ +56293 & 59682 \\ +56081 & 59360 \\ +43565 & 47310 \\ +43084 & 46801 \\ +43263 & 46945 \\ +43431 & 47182\end{array}$




寸

1240
TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)





TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

$\underset{H}{\text { Horizontal }}$	$\begin{gathered} \text { North } \\ X \end{gathered}$	${ }_{Y}^{\text {East }}$	$\underset{Z}{\text { Vertical }}$	Total F
$\gamma$	$\gamma$	$\gamma$	$\gamma$	$\boldsymbol{\gamma}$
20314	20168	-2432	$+40813$	45593
20299	20188	-2118	$+41005$	45754
20314	20259	-1497	+41578	46275
20638	20353	-3415	$+40750$	45678
20730	20475	-3257	$+40752$	45721
20011	19737	-3296	+41374	45959
20085	19889	-2801	+41658	46247
21076	20937	-2413	+40521	45674
20917	20826	-1951		
20299	19963	-3677	$+41058$	45802
20383	20108	-3337	$+41250$	46011
25067	24737	-4052	$+44643$	51199
25191	24846	-4154	+44764	51365
21413	21412	+ 220	+41875	47032
21267	21256	- 6988	+42099	47105
21213	21205	- 595	+42206	47237
22120	21815	-3662	+38899	44748
22049	21911	-2466	+38690	44532
22137	22011	-2360	+38818	44686
22196	22086	-2212		
15290	15158	-2006	$+56503$	5853
15303	15171	-2004	$+56460$	58497
22390	21895	-4681	+39087	45046
21913	21235	-5411	+39408	45091
22013	21360	-5324	+39498	45218
26826	26519	-4049	+44579	52028
16913	26601	-4086	+44662	52144
22418	21779	$-5313$	+38829	44836






	응	3	5	in	N-	cinfovis	N				
$10 \infty$	$\stackrel{\infty}{+\infty}+$	$\stackrel{\infty}{+}$	$\stackrel{\infty}{+}$	$\stackrel{+}{+}$	$\begin{aligned} & \text { + } \\ & +\underset{+}{+} \end{aligned}$	눈안안   $+++++$					





$\begin{aligned} & \text { Latitude } \\ & (+\equiv N \end{aligned}$	Longitude east
$+42^{\circ} 05^{\prime}$	$44^{\circ} 42^{\prime}$
+4150	4442
+4143	4448
+4125	6912
$+4120$	6918
+4052	1415
+40 49	030
$+4012$	35135
$+3847$	26450
+38 44	28310
+38 43	35051
+3759	2342
+3746	33421
+3730	12638
+36 28	35348
+3614	14011


気

Observatory	$\begin{aligned} & \text { Latitude } \\ & ( \pm \equiv N) \\ & \stackrel{=}{=}) \end{aligned}$	Longitude east
Tsingtao	$+36^{\circ} 04^{\prime}$	$120^{\circ} 19^{\prime}$
Tokyo	+35 41	13945
Ksara	+33 49	3553
Tuscon ${ }^{\text {a }}$	+32 15	24910
Lukiapang (succeeding Zikawei).	+31 19	12102
Zikawei	+31 12	12126
Zô-sè	+3106	12111
Dehra Dun	+30 19	7803
Helwan	+29 52	3120
Taihoku	+2502	12131
Minamitori Shima	+24 17	15358
Tamarasset	+22 48	532
Barrackpore	+22 46	822
Au Tau (succeeding Hongkong).	+22 27	11403
Hongkong (superseded by Au Tau	+22 18	11410



Horizontal H	$\begin{gathered} \text { North } \\ X \end{gathered}$	$\underset{Y}{\text { East }}$	$\stackrel{\text { Vertical }}{Z}$	$\underset{F}{\text { Total }}$
$\gamma$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\gamma$	$\gamma$
29254	28868	$+4737$	+24758	38324
28838	28410	+4951	$+23712$	37335
28459	27995	$+5117$	+23158	$36691)$
28346	27874	$+5151$	$+23146$	$36596)$
28659	28075	$+5757$	$+22935$	$36706)$
32160	31749	$+5122$	+33903	46730
30825	30385	+5192	+33235	45329
30622	. 30192	$+5116$	+32884	44934
38675	38671	$+544$	+16394	42006
39207	39205	- 364	+16725	42625
37441	37440	$+290$	+14558	40172
37393	37393	$+144$	+15150	40345
36861	36853	+ 744	+15578	40018
37253	37253	- 87	+17777	41277
37652	37651	- 239	+17906	41693
(27494	27398	-2321)	+35872	45197
27397	27238	-2948	$+35827$	45102
27430	27264	-3012	+35704	45024
28828	28804	$-1177$	+34203	44731
27566	27490	-2043	+34908	44480
38253	38252	+ 298	$+10813$	39752
38356	38354	+ 404	+10844	39859
38029	38025	+ 576	$+11095$	39614
38215	38211	+ 571	+10960	39756
37485	37480	- 600	+ 2459	37566
37950	37927	-1332	+ 3112	38077
	...	.		
33142	33138	- 538	- 9904	34590




(continued)
TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

Observatory   Honolulu ${ }^{\text {a }}$	Latitude $\begin{gathered} (+\equiv N \\ \pm=S) \\ +21^{\circ} 19^{\prime} \end{gathered}$	$\begin{gathered} \text { Longitude } \\ \text { east } \\ 201^{\circ} 56^{\prime} \end{gathered}$
Honolulu (new site)	+21 18	20154
Teoloyucan .......	+1945	26049
Toungoo	+1856	9627
Colaba (superseded Alibag)	+1854	7249
Alibag (succeeding Colaba)	$+1838$	7252
San Juan ${ }^{\text {a }}$ (superseding Vieques).	+1823	29353
Vieques ${ }^{\text {" }}$ (succeeded San Juan).	+1809	29433
Antipolo (superseding Manila)	+1436	12110
Manila (succeeded by Antipolo)....	+1435	12058
Kodakanai	$+1014$	7728
Palau (Parao)	$+720$	13429
Yaluit	+ 555	16939
Mogadiscio .........................	$+202$	4521

TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

	$\begin{aligned} & \text { Latitude } \\ & ( \pm \pm N) \end{aligned}$	Longitude east	Year	$\underset{D}{\text { Declination }}$	Inclination	Components of intensity				
						$\begin{gathered} \text { Horizontal } \\ H \\ \gamma \end{gathered}$	$\begin{gathered} \text { North } \\ X \\ \gamma \end{gathered}$	$\begin{gathered} \text { East } \\ \underset{\gamma}{\gamma} \end{gathered}$	$\begin{gathered} \text { Vertical } \\ \underset{\gamma}{\gamma} \end{gathered}$	$\begin{gathered} \text { Total } \\ F \\ \gamma \end{gathered}$
Batavia-Buitenzorg	From magnetograph records at Batavia discontinued April			t Buitenzorg   1,1899 , becau	(Latitude se of electri	longitude $106^{\circ} 47^{\prime}$ ) disturbances.		reduced to Batavia; recording		
	$-6^{\circ} 11^{\prime}$	$106^{\circ} 49^{\prime}$	$\begin{aligned} & 1902 \\ & 1926 \end{aligned}$	$\begin{aligned} & +1^{\circ} 02.4 \\ & +051.6 \end{aligned}$	$\begin{aligned} & -30^{\circ} 20^{\prime} 2 \\ & -3209.6 \end{aligned}$	$\begin{aligned} & 36717 \\ & 36826 \end{aligned}$	$\begin{aligned} & 36711 \\ & 36822 \end{aligned}$	$\begin{aligned} & +666 \\ & +553 \end{aligned}$	$\begin{aligned} & -21487 \\ & -23154 \end{aligned}$	$\begin{aligned} & 42542 \\ & 43500 \end{aligned}$
Batavia-Kuyper	From magnetograph records at Kuyper (Latitude $-6^{\circ} 02^{\prime}$, longitude $106^{\circ} 44^{\prime}$ ) reduced to Batavia; in dated November 15, 1941, the Director of the Observatory stated that the published values of 1928 Preface of "Report on magnetic observations in Batavia," 58B, 1935) are subject to correction becaus vious errors in the scale-values and that revised values will be supplied later.									
	$-611$	10649	$\begin{aligned} & 1940 \\ & 1944 \end{aligned}$	$\begin{array}{r} + \\ + \\ + \\ + \\ \hline \end{array}$	$\begin{aligned} & -3232.0 \\ & -3231.6 \end{aligned}$	$\begin{aligned} & 37035 \\ & 37145 \end{aligned}$	$\begin{aligned} & 37025 \\ & 37133 \end{aligned}$	$\begin{array}{r} +865 \\ +984 \end{array}$	$\begin{aligned} & -23624 \\ & -23689 \end{aligned}$	$\begin{aligned} & 43928 \\ & 44055) \end{aligned}$
Dar-es-Salaam	-6 49	3918	1898	$-818.1$	-36 56.8	28966	28662	-4182	-21875	36244
St. Paul de Loanda	- 849	1313	1910	-16 12.3	-35 32.2	20125	19325	-5616	-14374	24732
			1918	-15 03.5	-36 04.2	19917				
Elisabethville	-1140	2728	1933	- 932.1	-46 01.3	23801	23472	-3943	-24665	34276
			1945	- 855.4	-46 53.9	23286	23004	$-3612$	-24883	34079
Huancayo	$-1203$	28440	1922	+ 807.6	+ 037.5	29735	29436	+4203	+ 324	29737
			1944	+ 634.8	+ 210.3	29367	29174	$+3365$	+ 1114	29388
			1946	+ 626.7	+ 206.6	29259	29074	+3284	+ 1078	29279
Samoa, Apia	-13 48	18814	1930	+10 34.2	-30 07.9	35195	34598	+6456	-20428	40694
			1940	+10 54.5	$-3038.1$	34868	34238	$+6598$	-20650	40524
			1946	+1114.0	$-3038.5$	34839	34172	$+6787$	-20683	40493
Tanarive	$-1855$	4732	1910	- 901.3	-53 58.9	22585	22306	-3542	-31065	38407
			1941	- 938.5	-53 54.3	21082	20784	-3531	-28916	35785
Mauritius*	-20 06	5733	1899	- 932.9	-54 16.8	23854	23524	-3957	-33171	40857
			1930	-12 05.5	-52 39.6.	22697	22193	-4753	-29750	37420
			1940	-13 58.9	-53 06.9	22419	21755	$-5417$	-29876	37352
			1945	-14 51.5	-53 23.1	22389	21640	$-5741$	-30131	37539
La Quiaca	-23 07	29425	1920	+ 603.3	-12 39.6	26621	26472	+2808	- 5979	27284
			1933	+ 416.7	-12 21.2	26223	26150	+1956	- 5743	26845
Vassouras (succeeding Rio de Janeiro)	-22 24	31621	1915	-10 28.1	-14 44.1	24700	24289	-4488	- 6496	25540
			1942	$-1358.8$	$-1857.8$	$23683$	$22982$	-5721	$-8138$	$25042$
			1944	-14 12.7	-19 22.2	23563	22842	-5785	- 8284	24977

TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (continued)

$\underset{D}{\text { Declination }}$	Inclination	$\begin{gathered} \text { Horizontal } \\ H \\ \gamma \end{gathered}$	North X $\gamma$	$\begin{gathered} \text { East } \\ Y \\ \gamma \end{gathered}$	$\begin{gathered} \text { Vertical } \\ Z \\ \gamma \end{gathered}$	Total F $\gamma$
$-7^{\circ} 55.7$	$-13^{\circ} 17.1$	25040	24801	-3454	- 5912	25729
- 855.3	-13 57.2	24772	24472	-3842	- 6169	25529
- 422.8	-63 51.4	24925	24852	-1904	-50780	56567
- 408.0	-64 17.7	24623	24559	-1775	-51151	56769
- 257.9	-64 25.4	24767	24734	-1281	-51746	57368
+ 951.7	-26 03.0	25894	25511	+4435	-12657	28822
+ 524.9	-26 30.0	24137	24029	+2278	-12034	26971
+ 459.3	-26 48.1	23884	23794	+2077	-12066	26759
+14 59.5						
+1357.9	$-2957.2$					
-24 39.9	-63 09.2	15050	13677	-6281	-29733	33325
-24 13.1	-63 42.6	14357	13094	-5889	-29061	32413
-23 54.5	-63 59.0	14328	13098	-5807	-29352	32663
-23 46.4	-64 17.5	13875	12697	-5594	-28819	31985
+ 812.7	-67 36.0	23071	22834	+3295	-55974	60542
+ 820.8	-67 51.5	22872	22630	$+3320$	-56208	60683
+ 907.4	$-6751.0$	22884	22594	$+3628$	-56215	60694
+ 825.1	-67 23.1	23323	23072	$+3414$	-55989	60653
+ 800.8	$-6755.1$	22874	22651	+3189	-56384	60847
+1745.0	-67 57.8	22365	21301	+6819	-55252	59607
+1830.2	-68 03.4	22248	21098	$+7060$	$-55220$	59533
$(+1901.7$	-68 04.8	22215	21001	$+7243$	-55203	59506)
$+1615.1$	-67 40.8	22694	21787	$+6351$	-55277	59754
+1748.3	-68 18.3	22108	21049	$+6760$	-55570	59806
-36 58.0	$-7025.3$	16243	12978	-9768	-45672	48474
+15 57.3	-50 13.8	27306	26254	$+7505$	-32808	43685
+15 10.3	-49 43.4	26878	25941	+7034	-31719	41575
+1502.4	-49 39.4	26771	25854	$+6947$	-31520	41355
+ 516.6	$-5431.0$	25667	25558	$+2360$		
+ 307.8		23928	23892	+1307		


$\begin{array}{ll} & \text { Latitude } \\ \text { Observatory } \\ ( \pm \text { ( } \\ \text { O }\end{array}$	$\underset{\text { east }}{\text { Longitude }}$	Year	$\underset{D}{\text { Declination }}$	I   Inclination
Rio de Janeiro				
(superseded by Vassouras)....... $-22^{\circ} 55^{\prime}$	$316^{\circ} 49^{\prime}$	1900	- $7^{\circ} 55.7$	$-13^{\circ} 17.1$
Watheroo		1906	- 855.3	-13 57.2
Watheroo	1552	1919	- 422.8	-6351.4 -6417.7
		1945	-257.9	-64 25.4
Pilar	29607	1905	+ 951.7	-26 03.0
		1940	+ 524.9	-26 30.0
		1944	+ 459.3	-26 48.1
Santiago (new station) ............ -33 27	28918	1899	+1459.5	
		1909	+13 57.9	-29 57.2
Cape Town				
		1941	-24 13.1	-63 42.6
Hermanus (succeeding Cape Town). -34 25	1914	1940	-23 54.5	-63 59.0
		1946	-23 46.4	-64 17.5
Toolangi (succeeding Melbourne)... -37 32	14528	1919	+ 812.7	-67 36.0
		1930	+ 820.8	-67 51.5
		1944	+907.4	-67 51.0
Melbourne (superseded by Toolangi). -37 50	14458	1899	+ 825.1	-67 23.1
		1920	+ 800.8	-67 55.1
Amberley (succeeding Christchurch) -43 10	17244	1929	+1745.0	-67 57.8
		1940	+18 30.2	-68 03.4
		1945	$(+1901.7$	-68 04.8
Christchurch				
		1930	+1748.3	-68 18.3
Kerguelen , ....................... -49 25	6953	1902	$-3658.0$	-70 25.3
New Year's Island (Staten Island).. -54 39	29551	1902	+15 57.3	-50 13.8
		1914	$+1510.3$	-49 43.4
		1916	+1502.4	-49 39.4
Laurie Island . . . . . . . . . . . . . . . . . -60 43	31513	1905	+ 516.6	$-5431.0$

(continued)
స్ભ

3
$\cdots$
$m$

7
8
8
Components of intensit
TABLE 510.-MEAN ANNUAL VALUES OF MAGNETIC ELEMENTS AT OBSERVATORIES (concluded)

Components of intensity				
$\begin{gathered} \text { Horizontal } \\ H \end{gathered}$	$\begin{gathered} \text { North } \\ X \end{gathered}$	${ }_{Y}{ }_{Y}$	$\begin{gathered} \text { Vertical } \\ Z \end{gathered}$	$\underset{F}{\text { Total }}$
$\boldsymbol{\gamma}$	$\gamma$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$	$\boldsymbol{\gamma}$
13309	6171	-11792	-58206	59708
3112	3091	- 358	-67349	67421
4227	-1802	+3824	-68146	68277
10038	-2581	+9700	-66166	66923
9445	-2695	$+9053$	-66296	66966
8983	-2599	$+8599$	-66541	67145


Longitude east	Year	Declination	$\underset{I}{\text { Inclination }}$
$89^{\circ} 38^{\prime}$	1902	$-62^{\circ} 22^{\prime} 6$	$-77^{\circ} 07.2$
14240	1912	636.8	-87 21.3
16624	1911 \}	+154 46.4	-86 27.0
19609	$1912\}$	+104 54.0	
19609	$1941\}$	+10454.0	-81 22.4
19604	$\left.\begin{array}{l} 1934 \\ 1935 \end{array}\right\}$	+106 34.7	-81 53.5
19612	$1929\}$	+106 49.1	-82 18.7
	1930 \}	+106 49.1	-82 18.7


Observatory	Latitude $( \pm 三 N)$
Winter Station, Gauss.	$-66^{\circ} 02^{\prime}$
Cape Denison	6700
Cape Evans .	-77 38
Little America (III)	$-7829$
Little America (II)	-78 34
Little America (I)	-78 35

















 $\underset{\substack{\text { Geo- } \\ \text { graphic } \\ \text { latitude }}}{\text {. }}$ $\stackrel{\circ}{\infty}$ 똥ํㅅ
엉응N

山		$\left\lvert\, \begin{gathered} \text { B ANONA } \\ \hline \text { \| } \end{gathered}\right.$	$\begin{aligned} & 0 \infty 0 \approx \pm \\ & 11111 \end{aligned}$	№刃NNT	  11111	今～inco	우ำnio	a
$\frac{0}{x}$				제NN   ｜｜｜｜	స్లిల్సべけ	gnipioti	oorinina	
$\stackrel{0}{6}$		$\begin{gathered} 8 \text { ONO } O \infty \\ 11 \mid 1 \end{gathered}$	のニッツッ	のシ̃̃̃̃		ーinco ㄲㅇㅇ   ｜11｜｜		
$\sum_{0}^{2}$		$\stackrel{\circ}{\circ}-\operatorname{mon} a$	Mnへの	స̃నNAN		～요か	Ninoom	－
$\begin{aligned} & \text { 山 O } \\ & \text { U } \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { ON }+\infty \infty 0 \\ & =1\|1\| l \mid \end{aligned}$	$\because \approx 0 \infty \pi$	NતNowo   11।1।	Nopion	Nㅡㅇㄴㅇㅇ	Aicios	$\infty \times$
ㅇ		$\begin{gathered} \text { minna = } \\ =1111 \mid \end{gathered}$		iస		$3$		\＃
		$\begin{aligned} & \text { minnag } \\ & =11111 \end{aligned}$	Mッへのデ	సָ৷		$8$	${\underset{i l}{\infty}}_{\infty}^{\infty}$	
$\underset{\sim}{x}$	范	$\begin{aligned} & -m \operatorname{mon}= \\ & 1111 \end{aligned}$	$\underset{1}{m \rightarrow n}$	ふNતN			\|il	
	들					nion	か®®	\＃®
	$\stackrel{\text { E．}}{\substack{\text { ¢ }}}$	$\left\{\begin{array}{c} \text { gmina }= \\ 1\|1\| 1 \end{array}\right.$				80	¢1｜	¢
${ }^{2} 0$	\|	$\begin{gathered} \infty N+\infty \infty \\ 1\|1\| \mid \end{gathered}$	궈ำ®	NTNo№ ｜｜｜｜｜	$1$		$\infty \infty$	
$\frac{\bar{E}}{\infty} \stackrel{\bar{x}}{5}$	－	$\begin{gathered} \text { R-minna } \\ \|\|\|\|\mid \end{gathered}$	$11$	NiN	$\pm \underset{f}{\infty}$	$0$	！	
$0 \geq$		$\begin{array}{r} 8-\operatorname{ran} n \\ \|\|\|\mid \end{array}$	$1111$	－ิกึึN   ｜｜｜｜｜	$1$	$1$	$i i$	
			$111$			$11$	Nir	
		$\begin{array}{r} \text { tanont } \\ 11 \end{array}$	$6 \infty$   1111	ショ9テ̃	\|cur	운	BNin	
$0$		$\begin{array}{r} \text { OATON } \\ 1 \end{array}$	$\begin{aligned} & +0 \infty 007 \\ & 1\|1\| 1 \end{aligned}$	キ゚へべデ	Nme	ج	요윤	
$\mathrm{Z}_{\mathbf{U}}^{\infty}$		かのでNo	$\begin{gathered} N+6 \infty 0 \\ 1\|\|\|\mid \end{gathered}$		imen	品芯	Coinin	
		$\bigcirc 000 \mathrm{mon}$	$\begin{aligned} & N+\infty \infty \\ & \|\|\|\|\mid \end{aligned}$	워サーニ	సimp	\|io	介in	
$\stackrel{\ddot{-}}{\stackrel{1}{n}}$		$0 \simeq 0 \infty 0 \mathrm{o}$	$\begin{gathered} \text { NONJO } \\ 1\|\mid \end{gathered}$	かoำた	ふNિMల	｜1 1｜	NㅓㅇㅇㅇN 11111	へャ
$\begin{aligned} & \stackrel{\rightharpoonup}{山} \\ & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{1}{2} \end{aligned}$		O．ODONO  	$\begin{gathered} N+\infty \infty \\ 1\|1\| l \end{gathered}$		ㅍNN్లి	寸NNㅇㅇㅇ ｜111｜	प్ర NN요   ｜11｜	\＄0


Geographic	Geographic east longitude in degrees																	
latitude *	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360
$+88^{\circ}$	78	78	79	79	79	80	80	80	80	80	80	80	80	80	80	80	79	79
+84	76	77	78	79	80	81	82	83	84	84	84	84	84	83	82	81	80	79
+80	73	75	76	77	79	81	82	84	86	87	88	88	86	85	83	81	79	78
+76	70	72	73	75	77	79	81	83	85	86	87	87	85	83	81	79	77	75
$+72$	67	69	70	72	74	76	79	80	82	83	83	83	82	80	78	76	75	73
+68	63	65	67	69	71	73	75	77	78	79	79	79	78	77	75	73	71	69
+64	60	62	63	65	67	69	71	73	74	75	75	75	74	73	72	70	68	66
+60	56	58	60	62	64	66	67	69	70	71	71	71	71	69	68	66	64	62
$+56$	52	54	56	58	60	62	64	65	66	67	67	67	67	65	64	62	60	58
$+52$	48	50	52	54	56	58	60	61	62	63	63	63	63	62	60	58	57	55
$+48$	45	47	49	50	52	54	56	57	58	59	59	59	59	58	56	55	53	51
+46	43	45	47	49	51	52	54	55	57	57	57	57	57	56	54	53	51	49
+44	41	43	45	47	49	50	52	53	55	55	55	55	55	54	52	51	49	47
$+42$	39	41	43	45	47	48	50	51	53	53	53	53	53	52	50	49	47	45
$+40$	37	39	41	43	45	47	48	50	51	51	51	51	51	50	48	47	45	43
$+38$	35	37	39	41	43	45	46	48	49	49	49	49	49	48	46	45	43	41
+36	33	35	37	39	41	43	44	46	47	47	47	47	47	46	45	43	41	39
+34	31	33	35	37	39	41	42	44	45	45	45	45	45	44	43	41	39	37
+32	29	31	33	35	37	39	40	42	43	43	43	43	43	42	41	39	37	35
$+30$	27	29	31	33	35	37	38	40	41	41	41	41	41	40	39	37	35	33
$+28$	25	27	29	31	33	35	36	38	39	39	39	39	39	38	37	35	33	32
$+26$	23	25	27	29	31	33	34	36	37	37	37	37	37	36	35	33	31	30
+24	21	23	25	27	29	31	32	34	35	35	35	35	35	34	33	31	29	28
$+22$	19	21	23	25	27	29	30	32	33	33	33	33	33	32	31	29	28	26
+20	17	19	21	23	25	27	28	30	31	31	31	31	31	30	29	27	26	24
+18	15	17	19	21	23	25	26	28	29	29	29	29	29	28	27	25	24	22
+16	14	15	17	19	21	23	24	26	27	27	27	27	27	26	25	23	22	20
$+14$	12	14	16	17	19	21	23	24	25	25	25	25	25	24	23	21	20	18
+12	10	12	14	15	17	19	21	22	23	23	23	23	23	22	21	19	18	16
+10	8	10	12	14	15	17	19	20	21	21	21	21	21	20	19	17	16	14











TABLE 511．－GEOMAGNETIC COORDINATES OF POSITION ON THE EARTH REFERRED TO THE GEOMAGNETIC AXIS POLE OF 1922，FOR POINTS IN VARIOUS GEOGRAPHICAL LOCATIONS（continued）

| : |  | añ\|l| |  | $\begin{gathered} \text { Nong } \\ \text { inion } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\text { 육 } \forall \mathrm{NO}_{\infty}$ | $\begin{array}{r} \text { TNONA } 0 \infty \text { ONT } \\ 1 \mid 1111 \end{array}$ | NNતNTM |  | $\begin{aligned} & \text { ngon } \\ & \text { ilitin } \end{aligned}$ |
|  | $\begin{array}{r} \text { OANON } F O \infty O N \\ 111111 \end{array}$ | NNNNN |  | $\begin{aligned} & \text { na } 2000 \\ & 11111 \end{aligned}$ |
| $\underset{m}{0} \pm \underset{\sim}{2}=a$ | $\begin{array}{r} \text { Nom- monä } \\ \|1\|\|\mid \end{array}$ |  |  | $\begin{gathered} \text { Wo Nosion } \\ 11111 \end{gathered}$ |
| $\stackrel{\sim}{\sim} \infty$ |  | TMNN |  | 5incio |
| 응ํํックニ | $\begin{array}{r} \text { anmmerna } \\ \|\|\|\|\mid \end{array}$ | MANNI |  | $\begin{aligned} & \text { mencou } \\ & 11111 \end{aligned}$ |
|  | $\begin{array}{r} \text { anmm-muna } \\ \|\|\|\|\mid \end{array}$ | TANN |  | mingion |
| 이으コニ | $\begin{array}{r} \text { anmemana } \\ \|\|\|\|\mid \end{array}$ | MANNI |  | minciog |
| かのさッツこ | $\begin{array}{r} \text { ancom-mina } \\ \|\|\|\|\mid \end{array}$ | TANM Ni |  |  |
| ㅇำヘッコニ | $\begin{array}{r} \text { anconfrina } \\ \|1\|\|\mid \end{array}$ | TNTMN |  |  |
|  | $\begin{array}{r} \infty \in \operatorname{NONO} N+\infty \\ \|\|\|\mid 1 \end{array}$ | $\pm \infty$ NoN <br> ｜｜｜｜ | MNomio | 出以 1｜111 |
| 육ヘッニの | $\begin{array}{r} \text { Nom- minal } \\ \|1\|\|\mid \end{array}$ | ルamN゙M | Manjo | RO응ㅇㅇㅛ |
| 욱 ッグニのヘ |  | খNતNNN |  | $\begin{aligned} & 0.30 \\ & 11111 \end{aligned}$ |
| $\stackrel{\sim}{\sim}=0 \infty$ | $\begin{gathered} \text { FNONT NoONZ } \\ 1\|1\| 1 \mid 1 \end{gathered}$ |  | poung nip | nôgorin |
| 제 Noolot |  |  | iomjîin | 넝ㅇํㅇํ <br> ｜1｜｜ |
| $\stackrel{O}{\mathrm{~N}} \mathrm{O}_{\infty}$ |  |  ｜｜｜｜ |  | BnOAN |
| $8 \infty$ |  |  ｜｜11｜ |  <br> ｜｜｜｜ | Nôoninn |
| QOTNON |  | NompN゙戸 |  | 붕NNN |
| © O NO品苞 ++++ |  | NiNNop？ <br> ｜｜｜｜ | $\begin{aligned} & \neq \infty \times 8 \\ & \|1\| 1 \end{aligned}$ | UONOB |




























\％	¢్ల్ల్ల్ల్ల్ల్ల్లి	$\bigcirc$	안안	9，${ }^{\text {a }}$	¢్లిల్ల్ల్ల్ల్లు
	¢				
	－్ల్ల్ల్ల్ల్ల్ల	ল్ల్ల్ల్ల్ల్ల		బ్ల్ల్ల్ల్ల్ల్ల	ल్ల్ల్ల్ల్ల్ల్ల
－\％®incint		¢్లె్లస్ల్లన్ల	స్లె్ల్ల్ల్ల్లు		m
－monco			N゙ল゙লল্ল゙	ササツলnল্র	
			－్లెల్ల్ల్ల్ల్ల్ల		ి్లిల్లిం్ల


－	N－N®o				Noincou		


N					
			NoNか		


NNTM NMNTM NTNAT NNTAN NT						








 ＊
Geographic east longitude in degrees








- ¢ ¢ ¢ ¢ ¢ ¢ ¢				
- Wipmen్ల్ల్ల్ల్ల	-్లిల్లిల్ల్ల్ల్ల	-		
	-్లిల్లిన్లిన్లిల్ల	-్ల్ల్ల్ల్ల్ల్ల్ల	戸్ల్ల్ల్ల్ల్ల	స్ల్ల్ల్ల్ల్ల్ల
		-్లిల్లె్లస్ల్ల	N్ల్ల్ల్ల్ల్ల్ల	い్ల్ల్ల్ల్ల్ల్ల్ర









TABLE 511．－GEOMAGNETIC COORDINATES OF POSITION ON THE EARTH REFERRED TO THE GEOMAGNETIC AXIS POLE OF 1922，FOR POINTS IN VARIOUS GEOGRAPHICAL LOCATIONS（concluded）

are given
alues，see
b，Fleming，J．A．，ed．，Terrestrial magnetism and electricity，Physics ．Serial 664， $1946 . \quad e$, Deel，Samuel A．，and Herbert Howe，H． H．，Laporte，L．Lange，İ，Cooper，C．，and Hendrix，W．C．，Descrip No． 580,1947 h，Macht，H．G．，Das erdmagnetisch Feld der
60, p． 876,$1941 ;$ vol． 69, p． 106,$1946 ;$ vol． 70, p． 202 ， 1946 1949．k，Blackett，P．M．S．，Nature，vol．159，p．658，1947．（Gives no．Wasserfall，Terr．Mag．，vol．44，p．263，1939．${ }^{\text {o．}}$ ．Aus－
vol．4，p．1，Adelaide，1944． p ，Terr．Mag．，vol．48，pp． $97-108$ ， States and possessions，by U．S．Coast and Geodetic Survey．
$\begin{array}{lllll}250 & 260 & 270 & 280 & 290\end{array}$

－

NㅔㅅNN․․․․

ํ．゙ッニの Nm 8000にのが


$\begin{array}{llll}332 & 339 & 346 & 353 \\ 334 & 340 & 347 & 353\end{array}$
மo $\stackrel{\infty}{n}$ Chapman，S．i．and Bartels，J．，Geomagnetism，vols． 1 and 2，Oxford， 1940,
8，McGraw－Hill，New York， 1939 c，Ludy，Albert K．，and Herbert How

 Geo－
graphic
latitude




	Nై
	ল্ల丶
$\begin{aligned} & \circ \text { Nơo心 } \\ & \cdots \text { NNNM } \end{aligned}$	¢్లे¢
	$\underset{\mid}{\infty}$

 M

 States 1945，
f，Vestine， E
Washington P P
Washington $P$ iqnd uotsuifse $M$ Phys．Rev．3 vol
ol． 197, p． 433,1
56, p． 283,195
 5，idem，Serial Carnegie Inst． ge analysis，Carnegie W．M．，
i，Elsasser，W． Bıbliography：a，C，McGraw－Ḧ ill，New York， 1939. 663，Washington，1945．tables and magnetic charts for 1945 tion of the earth＇s main magnetic field and its secular chan Scott，W．E．，The geomagnetic field，its description a
Polargebiete．Zeitschr．Meteorol．，vol．1．pp．289－297， j ，Bullard，E．C．，The nagnetic，field within the earth， recent review，theories of earth＇s field．）1，Journal of Geophysical Research，vol．
Bericht über die Tätigkeit des Preuss．Met．Inst．im Jahre 1929：Veroffentlichungen Bericht uber dic Tatigkeit des Preus．Met．Inst．im Jahre 1929：Veröoffentlichungen
tralian Antartic Research（B．A．N．Z．A．R．）Expedition 1929－3i（D．Mawson，ed．）， 1.182 ，and 23 ． in Hee．Fohnston，W．W．Scott，and Ella Balsam，Internat．Union Geod．and Geophys．， n H．F．Johnston，W．E．Scott，and Ella Balsam，Internat．Union Geod．and Geophys．
（1），Forecasts of geomagnetic activity，National Bureau of Standards．
World isomagnetic charts are issued by U．S．Hydrographic Office；for the United

## 502

TABLE 512.-MAGNETIC AND ELECTRIC DATA FOR SUN AND EARTH
(Chapman, Cosmical magnetic phenomena, Nature, vol. 124, p. 19, 1929.)
Sun's magnetic field too small to be measured by direct effects on earth; measured by Zeeman effect on spectrum lines.
Earth's magnetic axis inclined $12^{\circ}$ to rotation axis.
Earth's field rotates at same speed as nearly rigid earth.
Earth: Polar intensity of field $\frac{3}{3}$ gauss.
Sun: Intense local fields frequent, 3000 gauss. The magnetic field of spots reverses each cycle (Proc. Astron. Soc. Pacific, vol. 41, p. 136, 1929). The polarity of leading spot in a bipolar group in the Northern Hemisphere is opposite that in the Southern Hemisphererelationship reverses each new sunspot cycle $\therefore$ complete magnetic cycle is double sunspot cycle.


Further characteristics of spots: (Milne, Monthly Notices, Roy. Astron. Soc., vol. 90, p. 487,1930 .) Umbra (dark center), 800 (very small) to $80,000 \mathrm{~km}$ across: penumbra may reach $240,000 \mathrm{~km}$. Generally short-lived. A few last several (3) rotations, very rarely 6; one in 1840, 18 months. Most occur in 2 belts $5^{\circ}$ to $40^{\circ} \mathrm{N}$. and S. latitudes, often occur in pairs (see above). Umbra temperature $4000^{\circ} \mathrm{K}$. Evershed gives velocity of outburst from spot $2 \mathrm{~km} / \mathrm{sec}$.

Faraday discovered that, when a piece of heavy glass is placed in magnetic field and a beam of plane polarized light passed through it in a direction parallel to the lines of magnetic force, the plane of polarization of the beam is rotated. This was subsequently found to be the case with a large number of substances, but the amount of the rotation was found to depend on the kind of matter and its physical condition, and on the strength of the magnetic field and the wavelength of the polarized light. Verdet's experiments agree fairly well with the formula

$$
\theta=c l H\left(r-\lambda \frac{d r}{d \lambda}\right) \frac{r^{2}}{\lambda^{2}}
$$

where $c$ is a constant depending on the substance used, $l$ the length of the path through the substance, $H$ the intensity of the component of the magnetic field in the direction of the path of the beam, $r$ the index of refraction, and $\lambda$ the wavelength of the light in air. If $H$ be different, at different parts of the path, $l H$ is to be taken as the integral of the variation of magnetic potential between the two ends of the medium. Calling this difference of potential $v$, we may write $\theta=A v$, where $A$ is constant for the same substance, kept under the same physical conditions, when the one kind of light is used. The constant $A$ has been called "Verdet's constant," and a number of values of it are given in Tables 514-517. For variation with temperature the following formula is given by Bichat:

$$
R=R_{0}\left(1-0.00104 t-0.000014 t^{2}\right)
$$

which has been used to reduce some of the results given in the table to the temperature corresponding to a given measured density. For change of wavelength the following approximate formula, given by Verdet and Becquerel, may be used :

$$
\frac{\theta_{1}}{\theta_{2}}=\frac{\mu_{1}^{2}\left(\mu_{1}^{2}-1\right) \lambda_{2}^{2}}{\mu_{2}^{2}\left(\mu_{2}^{2}-1\right) \lambda_{1}^{2}}
$$

where $\mu$ is index of refraction and $\lambda$ wavelength of light.
A large number of measurements of what has been called molecular rotation have been made, particularly for organic substances. These numbers are not given in the table, but numbers proportional to molecular rotation may be derived from Verdet's constant by multiplying in the ratio of the molecular weight to the density. The densities and chemical formulas are given in the table. In the case of solutions, it has been usual to assume that the total rotation is simply the algebraic sum of the rotations which would be given by the solvent and dissolved substance, or substances, separately; and hence that determinations of the rotary power of the solvent medium and of the solution enable the rotary power of the dissolved substance to be calculated. Experiments by Quincke and others do not support this view, as very different results are obtained from different degrees of saturation and from different solvent media. No results thus calculated have been given in the table, but the qualitative result, as to the sign of the rotation produced by a salt, may be inferred from the table. For example, if a solution of a salt in water gives Verdet's constant less than 0.0130 at $20^{\circ} \mathrm{C}$, Verdet's constant for the salt is negative.

As a basis for calculation, Verdet's constant for carbon disulfide and the sodium line $D$ has been taken as 0.0130 at $20^{\circ} \mathrm{C}$.

Wavelength	$.5 \mu$	$1.0 \mu$	$1.5 \mu$	$2.0 \mu$	$2.5 \mu$
Steel $\ldots \ldots \ldots \ldots \ldots$	$-11^{\prime}$	$-16^{\prime}$	$-14^{\prime}$	$-11^{\prime}$.	-9.0
Cobalt $\ldots \ldots \ldots \ldots \ldots$	-9.5	-11.5	-9.5	-11.	-6.5
Nickel $\ldots \ldots \ldots \ldots \ldots$	-5.5	-4.0	0	+1.75	+3.0

Field intensity $=10,000$ cgs units. (Intensity of magnetization $=$ about 800 in steel, 700 to 800 in cobalt, about 400 in nickel.)

## TABLE 514.—VERDET'S CONSTANT

Part 1.-Solids

Substance	Formula	Wavelength	Verdet's constan in min
		$\stackrel{\mu}{58}$	
Amber	ZnS	. ${ }^{\prime \prime}$	. 22334
Diamond	C	"	. 0127
Lead borate	$\mathrm{PbBr}_{2} \mathrm{O}_{4}$	"	. 0600
Selenium	Se	. 687	. 4625
Sodium borate	$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$	. 589	. 0170
Ziqueline (Cuprite)	$\mathrm{Cu}_{2} \mathrm{O}$	. 687	. 5908
Fluorite ..	$\mathrm{CaF}_{2}$	. 2534	. 05989
		. 3655	. 02526
		. 4358	. 01717
		. 4916	. 01329
		. 589	. 00897
		1.00	. 00300
		2.50	. 00049
		3.00	. 00030
Glass :			
		. 589	. 0161
			. 0220
		"	. 0317
		"	. 0608
		"	. 0888
Zeiss, ultraviolet		.313 .405	. 06364
" $\ldots . . . . . . . . . . . . . . . . .$.		. 436	. 0311
Quartz, along axis, i.e., plate cut $\perp$ to axis	$\dddot{S i O}_{2}$	. 2194	. 1587
		. 2573	. 1079
		. 3609	. 04617
		. 4800	. 02574
		. 5892	. 01664
		. 6439	. 01368
Rock salt	NaCl	. 2599	. 2708
		. 3100	. 1561
		. 4046	. 0775
		. 4916	. 0483
		. 6708	. 0245
		1.00	. 01050
		2.00	. 00262
		4.00	. 00069
Sugar, cane: along axis IIA.	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	. 451	. 0122
		. 540	. 0076
		. 626	. 0066
axis IIA ${ }^{1}$	-	. 540	. 0084
	KCl	. 626	. 0075
Sylvite		. 4358	. 0534
		. 5461	. 0316
		. 6708	. 02012
		. 90	. 01051
		1.20	. 00608
		2.00	. 00207
		4.00	. 00054

Part 2.-Liquids (for $\lambda=0.589 \mu$ )

Substance	Chemical formula	$\begin{aligned} & \text { Density } \\ & \text { in } g \text { per } \\ & \mathrm{cm}^{3} \end{aligned}$	Verdet's constant in min	${ }^{\text {Temp. }}{ }^{\circ} \mathrm{C}$
Acetone	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	. 7947	. 0113	$20^{\circ}$
Acids: Formic	$\mathrm{CH}_{2} \mathrm{O}_{2}$	1.2273	. 0105	15
Acetic	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	1.0561	. 0105	21
Hydrochloric	HCl	1.2072	. 0224	15
Hydrobromic	HBr	1.7859	. 0343	
Hydroiodic .	HI	1.9473	. 0515	"
Nitric ....	$\mathrm{HNO}_{3}$	1.5190	. 0070	13
Alcohols: Methyl	$\mathrm{CH}_{3} \mathrm{OH}$	. 7920	. 0093	20
Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	. 7900	. 0112	
Benzene .......	$\mathrm{C}_{8} \mathrm{H}_{8}$	. 8786	. 0297	"
Bromides : Methyl	$\mathrm{CH}_{3} \mathrm{Br}$	1.7331	. 0205	0
Ethyl	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$	1.4486	. 0183	15
Carbon bisulfide	$\mathrm{CS}_{2}$	1.26	. 0420	18
Chlorides: Carbon	$\mathrm{CCl}_{4}$	1.60	. 0321	15
Chloroform	$\mathrm{CHCl}_{3}$	1.4823	. 0164	20
Ethyl ..	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$	. 9169	. 0138	6
Iodides: Methyl .	$\mathrm{CH}_{3} \mathrm{I}$	2.2832	. 0336	15
Ethyl.	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$	1.9417	. 0296	
Nitrates: Methyl	$\mathrm{CH}_{3} \mathrm{O} \cdot \mathrm{NO}_{2}$	1.2157	. 0078	
Ethyl .	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \cdot \mathrm{NO}_{2}$	1.1149	. 0091	"
Paraffins: Pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	. 6332	. 0118	"
Hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	. 6743	. 0125	
Toluene .........	$\mathrm{C}_{7} \mathrm{H}_{8}$	8581	. 0269	28
Water $=.2496 \mu$	$\mathrm{H}_{2} \mathrm{O}$ 。	....	. 1042	.
. 275		....	. 0776	
. 4046		...	. 0293	$\cdots$
. 589			. 0131	
1.000		$\ldots$	. 00410	
1.300			. 00264	
Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	. 8746	. 0263	27

TABLE 515.-VERDET'S CONSTANT FOR SOLUTIONS OF ACIDS AND SALTS IN WATER $(\lambda=0.589 \mu)$

Chemical formula	Density g per $\mathrm{cm}^{3}$	Verdet's constant in min	$\underset{{ }^{\mathrm{T}} \mathrm{C} \mathrm{C} \text {. }}{ }$	Chemical formula	$\begin{aligned} & \text { Density } \\ & \mathrm{g} \text { per } \\ & \mathrm{cm}^{3} \end{aligned}$	Verdet's constant in min	$\underset{{ }^{\circ} \mathrm{C}}{\text { Temp. }}$
HBr	1.3775	. 0244	$20^{\circ}$	$\mathrm{Fe}_{2} \mathrm{Cl}_{\text {e }}$	1.6933	-. 2026	$15^{\circ}$
HCl	1.1573	. 0204	،		1.5315	-. 1140	
*	1.0762	. 0168	"	"	1.1681	-. 0015	"
HI	1.9057	. 0499	"	"	1.0864	. 0081	"
[	1.1760	. 0205	"	"	1.0232	. 0122	"
$\mathrm{HNO}_{3}$	1.3560	. 0105	"	$\mathrm{HgCl}_{2}$	1.0381	. 0137	16
$\mathrm{NH}_{3}$	. 8918	. 0153	15	$\mathrm{NiCl}_{2}$	1.4685	. 0270	15
$\mathrm{NH}_{4} \mathrm{Br}$	1.2805	. 0226	"	"	1.2432	. 0196	"
$\mathrm{BaBr}_{2}$	1.5399	. 0215	20	KCl	1.6000	. 0163	"
$\mathrm{CdBr}_{2}$	1.3291	. 0192	"	NaCl	1.0418	. 0144	"
$\mathrm{CaBr}_{2}$	1.2491	. 0189	"	$\mathrm{SrCl}_{2}$	1.1921	. 0162	"
KBr	1.1424	. 0163	"	$\mathrm{SnCl}_{2}$	1.3280	. 0265	"
"	1.0876	. 0151	"	$\mathrm{ZnCl}_{2}$	1.2851	. 0196	"
NaBr	1.1351	. 0165	"	$\mathrm{NH}_{4} \mathrm{I}$	1.5948	. 0396	"
	1.0824	. 0152	"	"	1.2341	. 0235	"
$\mathrm{K}_{2} \mathrm{CO}_{3}$	1.1906	. 0140	"	KI	1.6743	. 0338	"
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	1.1006	. 0140	*	" .	1.1705	. 0182	"
$\mathrm{NH}_{4} \mathrm{Cl}$	1.0718	. 0178	15	$\mathrm{KNO}_{3}$	1.0634	. 0130	20
$\mathrm{BaCl}_{2}$	1.2897	. 0168	20	$\mathrm{NaNO}_{3}$	1.1112	. 0131	"
$\mathrm{CdCl}_{2}$	1.3179	. 0185	"	$\mathrm{U}_{2} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}$	2.0267	. 0053	"
	1.1732	. 0160	"		1.1963	. 0115	"
$\mathrm{CaCl}_{2}$	1.1504	. 0165	"	$\mathrm{BaSo}_{4}$	1.1788	. 0134	"
"	1.0832	. 0152	"	$\mathrm{K}_{2} \mathrm{SO}_{4}$	1.0475	. 0133	"
$\mathrm{FeCl}_{2}$	1.4331	. 0025	15	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	1.0661	. 0135	"
"	1.1093	. 0118	"				

Du Bois shows that in the case of substances like iron, nickel, and cobalt which have a variable magnetic susceptibility the expression in Verdet's equation, which is constant for substances of constant susceptibility, requires to be divided by the susceptibility to obtain a constant. For this expression he proposes the name "Kundt's constant." These experiments of Kundt and $\mathrm{Du}_{\mathrm{u}}$ Bois show that it is not the difference of magnetic potential between the two ends of the medium, but the product of the length of the medium and the induction per unit arca, which controls the amount of rotation of the beam.
Some data on the Verdet constant of gases by Ingersol (*) and by de Mallemann ( ${ }^{\dagger}$ ) for wavelength 5780 A , pressure 760 mmHg , and at temperature $0^{\circ} \mathrm{C}$ :

Substance	Verdet constant in min	Substance	Verdet constant in min	Substance	Verdet constant in $\min$
Hydrogen ${ }^{\dagger}$	$6.29 \times 10^{-8}$	Helium*	. $51 \times 10^{-9}$	Methane ${ }^{\dagger}$	$17.4 \times 10^{-6}$
Hydrogen *	6.26	Oxygen*	5.55	Ethylene $\dagger$	34.4
Deuterium *	6.21	Oxygen ${ }^{\dagger}$	5.69	Ethylene*	34.6
Nitrogen*	6.30	Argon $\dagger$	9.36	Carbon dioxide *	9.25

The de Mallemann values are from numerous papers in Comptes Rendus, 1929 to date (See in particular R. de Mallemann, F. Suhner, and J. Grange, C. R., vol. 232, p. 1094, 1915. See also P. Gabiano Ann. d. Physique, vol. 10, p. 68, 1933.). The Ingersoll values are from an ONR preliminary report (October 1952). The probable error of the de Mallemann and the Ingersoll values is of the order of 1 percent. The dispersion of the rotation for most gases, except oxygen, is roughly as the inverse square of the wavelength.

Substance	Pressure	Temp.	Verdet's constant in min	
Atmospheric air	Atmospheric	Ordinary	$6.83 \times$	
Carbon dioxide .			13.00	
Carbon disulfide	74 cmHg	$70^{\circ} \mathrm{C}$	23.49	"
Ethylene	Atmospheric	Ordinary	34.48	"
Nitrogen			6.92	"
Nitrous oxide	"	"	16.90	"
Oxygen		"	6.28	"
Sulfur dioxide		$20^{\circ}$	31.39	"
	246 cmHg	$20^{\circ} \mathrm{C}$	38.40	

TABLE 517.-VERDET'S AND KUNDT'S CONSTANTS FOR SOME MATERIALS
The following short table is quoted from Du Bois's paper. The quantities are stated in cgs measure. circular measure (radians) being used in the expression of "Verdet's constant" and "Kundt's constant."

Name of substance	Magnetic susceptibility	$\overbrace{\text { Number }}^{\text {Verdet's constant }}$	Wavelength of light in cm		Knudt's constant
Cobalt	-	-	6.44		3.99
Nickel	-	-			3.15
Iron		-	6.56	"	2.63
Oxygen: 1 atm .	$+.0126 \times 10^{-5}$	. $000179 \times 10^{-5}$	5.89	"	. 014
Sulfur dioxide	-. 0751	. 302			$-4.00$
Water	-. 0694	. 377		"	- 5.4
Nitric acid	-. 0633	. 356		"	- 5.6
Alcohol	-. 0566	. 330		"	- 5.8
Ether	-. 0541	. 315		"	- 5.8
Arsenic chloride	-. 0876	1.222		"	-14.9
Carbon disulfide	-. 0716	1.222		"	-17.1
Faraday's glass	-. 0982	1.738		"	-17.7

Du Bois has shown that the rotation of the major axis of vibration of radiations normally reflected from a magnet is algebraically equal to the normal component of magnetization multiplied into a constant $K$. He calls this constant $K$, Kerr's constant for the magnetized substance forming the magnet.

Color of light	Spectrum line	Wavelength	Kerr's constant in minutes per cgs unit of magnetization			
			Cobalt	Nickel	Iron	Magnetite
Red	$\mathrm{Li} a$	. $677 \mu$	-. 0208	-. 0173	-. 0154	+. 0096
Red	-	. 620	-. 0198	-. 0160	-. 0138	$+.0120$
Yellow	D	. 589	-. 0193	-. 0154	-. 0130	+. 0133
Green	$b$	. 517	-. 0179	-. 0159	-. 0111	+. 0072
Blue	F	. 486	-. 0180	-. 0163	-. 0101	$+.0026$
Violet	G	. 431	$-.0182$	-. 0175	-. 0089	-

## TABLE 519.-TRANSVERSE GALVANOMAGNETIC AND THERMOMAGNETIC EFFECTS

Effects are considered positive when, the magnetic field being directed away from the observer, and the primary current of heat or electricity directed from left to right, the upper edge of the specimen has the higher potential or higher temperature.
$E=$ difference of potential produced $; T=$ difference of temperature produced $; I=$ primary current ; $\frac{d t}{d x}=$ primary temperature gradient ; $B=$ breadth, and $D=$ thickness, of specimen; $H=$ intensity of field, cgs units.

Hall effect (galvanomagnetic difference of potential), $E=R \frac{H I}{D}$
Ettingshausen effect ("
Nernst effect (thermomagnetic " "
Leduc effect ( " " potential), $E=Q H B \frac{d t}{d x}$

Substance	Values of $R$	$P \times 10^{6}$	$Q \times 10^{8}$	$5 \times 10^{8}$
Tellurium	+ 400 to 800	+200	+360000	+400
Antimony	+. 9 " ". 22	+2	+9000 to 18000	+200
Steel	+.012".033	-. 07	-700 " 1700	+69
Heusler alloy	+. 010 ". 026	-	+1600" 7000	
Iron	+. 0007 ". 011	-. 06	-1000" 1500	+39
Cobalt	+.0016".0046	+. 01	+1800" 2240	+13
Zinc	-	-	-54 " 240	+13
Cadmium	$+.00055$			
Iridium	$+.00040$	-	up to - 50	+ 5
Lead	+. 00009	-	-5.0 (?)	
Tin	-. 00003	-	-4.0 (?)	
Platinum	-. 0002	-		-2
Copper	-. 00052	-	-90 to 270	-18
German silver	-. 00054			
Gold	-. 00057 to . 00071			
Constantin	-. 0009			
Manganese	-. 00093			
Palladium	-. 0007 to .0012	-	- 50 to 130	- 3
Silver	-. 0008 ". 0015	-	-46" 430	-41
Sodium	-. 0023			
Magnesium	一. 00094 to . 0035			
Aluminum	-. 00036 " . 0037			
Nickel	-. 0045 " . 024	+.04 to 19	+2000" 9000	-45
Carbon	-. 017		+100	
Bismuth	- up to 16.	+3 to 40	+ up to 132000	-200


Mirror	$\underset{\substack{\text { Field } \\ \text { cgs }}}{ }$	. $41 \mu$	. $44 \mu$	$48 \mu$	. $52 \mu$	.56ر	. $60 \mu$	. $64 \mu$	. $66 \mu$
Iron	21,500	-. 25	-. 26	-. 28	-. 31	-. 36	-. 42	-. 44	-. 45
Cobalt	20,000	-. 36	-. 35	-. 34	-. 35	-. 35	-. 35	-. 35	-. 36
Nickel	19,000	-. 16	-. 15	-. 13	-. 13	-. 14	-. 14	-. 14	-. 14
Steel	19,200	-. 27	-. 28	-. 31	-. 35	-. 38	$-.40$	-. 44	-. 45
Invar	19,800	-. 22	-. 23	-. 24	-. 23	$-.23$	-. 22	-. 23	-. 23
Magnetite	16,400	-. 07	-. 02	$+.04$	+. 06	+. 08	+. 06	$+.04$	+. 03

table 521.-VARIATION OF HALL CONSTANT WITH THE TEMPERATURE

Bismuth						Antimony				
H	$-182^{\circ} \mathrm{C}$	$-90^{\circ}$	-23 ${ }^{\circ}$	+11.5 ${ }^{\circ}$	$+100^{\circ}$	H	$-186^{\circ} \mathrm{C}$	-79 ${ }^{\circ}$	$+21.5^{\circ}$	$+58^{\circ}$
1000	62.2	28.0	17.0	13.3	7.28	1750	. 263	. 249	. 217	
2000	55.0	25.0	16.0	12.7	7.17	3960	. 252	. 243	. 211	
3000	49.7	22.9	15.1	12.1	7.06	6160	. 245	235	. 209	. 203
4000	45.8	21.5	14.3	11.5	6.95					
5000	42.6	20.2	13.6	11.0	6.84					
6000	40.1	18.9	12.9	10.6	6.72					


$\overbrace{H}$	$+14.5^{\circ} \mathrm{C}$	$+104^{\circ}$	$125^{\circ}$	$189^{\circ}$	$212^{\circ}$	$239^{\circ}$	$259^{\circ}$	$269^{\circ}$	$270^{\circ}$	
890	5.28	2.57	2.12	1.42	1.24	1.11	.97	.83	$.77^{*}$	

[^207]
## TABLES 522-555.-OPTICAL GLASS AND OPTICAL CRYSTALS

Optical glass and optical crystals are in general described by giving their indices of refraction for standard wavelengths, such as the $D, A, C, F$, etc., lines and their $v$ values $=\left(n_{D}-1\right) /\left(n_{F}-n_{C}\right)$. Also, the spectral transmission and some other physical constants may be given. In addition, many crystals have different optical properties in different directions which require some consideration of their optical axes. For glasses used as filters the spectral transmission is an important item. A table of wavelength units and some data on various types of optical glass and crystals follow.

TABLE 522.-RADIATION WAVELENGTH UNITS
Radio

meter $\quad$\begin{tabular}{c}
Radiation <br>
micron

$\quad$

Colorimetry <br>
millimicron

$\quad$

Spectroscopy <br>
angstrom

$\quad$

X-rays <br>
X-ray units

$\quad$

$\gamma$ rays <br>
microangstrom
\end{tabular}

$\underbrace{\text { Units }}$		Powers-of-10 equivalent of units listed in column 1							
							cgs		
Name	Symbol	$\mu$	$m \mu$	A	$X U$	$\mu$ A	${ }_{\text {cmit }}$	mm	$m$
Micron	$\mu$	1	$10^{3}$	$10^{4}$	$10^{7}$	$10^{10}$	$10^{-4}$	$10^{-3}$	$10^{-8}$
Millimicron	$m \mu$	$10^{-3}$	1	10	$10^{4}$	$10^{7}$	$10^{-7}$	$10^{-6}$	$10^{-9}$
Angstrom	A	$10^{-4}$	$10^{-1}$	1	$10^{3}$	$10^{6}$	$10^{-8}$	$10^{-7}$	$10^{-10}$
X-ray unit	$X \mu$	$10^{-7}$	$10^{-4}$	$10^{-3}$	1	$10^{3}$	$10^{-11}$	$10^{-10}$	$10^{-13}$
Microangstrom	$\mu A$	$10^{-10}$	$10^{-7}$	$10^{-8}$	$10^{-3}$	1	$10^{-14}$	$10^{-13}$	$10^{-16}$

The X-ray unit as originally used referred to the measurement of $x$-wavelengths using a calcite crystal. Such results are in error by a factor of 1.00203 .

OPTICAL GLASS
TABLE 523.-CHARACTERISTICS OF AMERICAN-MADE OPTICAL GLASSES ${ }^{180}$

Crown glasses-crown (CO), light barium crown (LBC), dense barium crown (DBC). extra dense barium crown (EDBC)

Name	$C-B L$		$D B C-C G$	$D B C-C G$	DBC - CG	DBC
Type	$518 / 596$	573/568	612/595	620/603	${ }^{638 / 555}$	$617 / 5$
$n_{D}$	1.51780	1.57250	1.61160	1.62030	1.63840	1.61700
$n_{G}{ }^{\prime}$	1.52886	1.58538	1.6246	1.6332	1.6532	1.63171
$n_{F}$	1.52393	1.57962	1.61880	1.62750	1.64650	1.62511
$n c$	1.51524	1.56954	1.60852	1.61722	1.63500	1.61367
		56.8	59.5	60.3	55.5	

Flint glasses-crown flint (CF), light flint (LF), short flint (SF), extra light flint (ELF), light barium flint (LBF), barium flint (BF), dense barium flint (DBF), dense flint (DF), extra dense flint (EDF)

Name	$C F-B L$	LBF-BL	$B F-B L$	DBF-BL	DBF-CG	ELF -bL
Type	526/546	548/537	570/481	617/385	670/472	541/475
$n_{D}$	1.52560	1.54770	1.57040	1.61700	1.66990	1.54140
$n{ }^{\prime}{ }^{\prime}$	1.53793	1.56081	1.58575	1.63811	1.6882	1.55618
$n_{F}$	1.53239	1.55491	1.57880	1.62843	1.67990	1.54949
$n_{C}$	1.52277	1.54471	1.56695	1.61242	1.66572	1.53809
$\nu$	54.6	53.7	48.1	38.5	47.2	47.5
Name	ELF-BL	SF-CG	$L F-B L$	DF - ${ }^{\text {BL }}$	EDF - BL $^{\text {c }}$	
Type	559/455	613/442	575/429	596/397	751/277	
$n_{D}$	1.55850	1.61300	1.57510	1.59560	1.75060	
$n{ }^{\prime}$	1.57447	1.6308	1.59263	1.61538	1.78716	
$n_{F}$	1.56722	1.62280	1.58464	1.60632	1.77009	
$n c$	1.55495	1.60893	1.57122	1.59130	1.74302	
$\nu$	45.5	44.2	42.9	39.7	27.7	

[^208]
(concluded)
TABLE 524.-CHARACTERISTICS OF SOME OPTICAL GLASSES MADE AT THE NATIONAL BUREAU OF STANDARDS

Name	$\underset{572 / 425}{F}$	$\underset{5795 / 410}{F}$	$\stackrel{F}{605 / 381}$	$\underset{617 / 366}{F}$	$\underset{620 / 362}{F}$	$\stackrel{F}{F} \underset{649 / 338}{ }$	$\underset{666 / 324}{F}$	$\begin{gathered} F \\ 672 / 322 \end{gathered}$	$\begin{gathered} F \\ 689 / 309 \end{gathered}$	$\begin{gathered} F \\ 720 / 295 \end{gathered}$	$\begin{gathered} F \\ 754 / 277 \end{gathered}$	$\begin{gathered} B F \\ 584 / 460 \end{gathered}$	$\begin{gathered} B F \\ 588 / 534 \end{gathered}$	$\begin{gathered} B F \\ 604 / 435 \end{gathered}$
Nominal														
$n^{n}$	${ }_{42.5}^{1.5725}$	$\begin{aligned} & 1.5795 \\ & 41.0 \end{aligned}$	$\begin{aligned} & 1.605 \\ & 38.1 \end{aligned}$	$\begin{aligned} & 1.617 \\ & 36.6 \end{aligned}$	$\begin{aligned} & 1.620 \\ & 36.2 \end{aligned}$	$\begin{gathered} 1.649 \\ 33.8 \end{gathered}$	$\begin{aligned} & 1.666 \\ & 32.4 \end{aligned}$	${ }_{32.2}^{1.6725}$	$\begin{gathered} 1.689 \\ 30.9 \end{gathered}$	$\begin{gathered} 1.720 \\ 29.5 \end{gathered}$	$\begin{gathered} 1.754 \\ 27.7 \end{gathered}$	$\begin{gathered} 1.584 \\ 46.0 \end{gathered}$	${ }_{53.4}^{1.588}$	$\begin{aligned} & 1.604 \\ & 43.5 \end{aligned}$
Typical glass														
$n{ }^{\prime}{ }^{\prime}$	1.58950	1.59800	1.62590	1.63936	1.64311	1.67470	1.69335	1.70003	31.71851	1.75349	1.79106	1.60030	1.60249	1.62240
$n_{P}$	1.58146	1.58951	1.61630	1.62907	1.63268	1.66285	1.68069	1.68710	1.70475	1.73808	1.77380	1.59283	31.59614	1.61410
$n_{0}$.	1.56796	1.56536	1.60030	1.61217	1.61556	1.64356	1.66021	1.66619	1.68259	1.71345	1.74644	1.58019	1.58513	1.60020
${ }_{\nu}$.	42.4	40.9	37.9	36.5	36.2	33.7	32.5	32.1	31.1	29.2	27.5	46.2	53.4	43.4
Composition (batch)	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent
$\mathrm{SiO}_{2}$	55.1	53.1	47.6	45.6	45.6	41.2	39.3	38.8	37.0	34.1	31.2	49.8	45.8	45.7
PbO	31.7	35.5	40.9	43.2	45.2	51.1	54.4	55.4	58.1	62.4	66.2	18.8	10.0	23.3
BaO	1.0	. 6										13.4	25.9	14.3
$\mathrm{B}_{2} \mathrm{O}_{3}$													8.8	
$\mathrm{Na}_{2} \mathrm{O}$	5.0	. 4	2.2	4.6	3.0	. 7						1.5	. 8	
$\mathrm{K}_{2} \mathrm{O}$	6.9	9.6	8.8	6.1	5.7	6.5	6.0	5.5	4.6	3.2	2.3	8.2	6.7	8.2
$\mathrm{As}_{2} \mathrm{O}_{3}$	. 3	. 3	. 5	. 5	. 5	. 5	. 3	. 3	. 3	. 3	. 3	. 5	. 5	. 4
$\mathrm{Sb}_{2} \mathrm{O}_{3}$		. 5										7.8		8.1
ZnO BeO														
SrO														
$\xrightarrow{\mathrm{Li}_{2} \mathrm{O}}$														
$\mathrm{Cl}_{\mathrm{CaO}}$														
$\mathrm{SO}_{2} \ldots \ldots \ldots \ldots \ldots$. 1.5														
$\mathrm{Al}_{2} \mathrm{O}_{3}$$\begin{array}{lll} \mathrm{ArO}_{2} \mathrm{H}_{2} & \ldots & \ldots \end{array}$														

TABLE 525.-INDEX OF REFRACTION OF EASTMAN KODAK CO. NONSILICA GLASSES (1949)

Part 1

Type	$\begin{aligned} & E K-110 \\ & (E K-110 \\ & -5328) \end{aligned}$	EK-210	EK-310	$\begin{aligned} & E K-325 \\ & (E K-32 \\ & -2641) \end{aligned}$	$\begin{aligned} & E K-330 \\ & (E K-33 \\ & -2734 s) \end{aligned}$	$\begin{aligned} & E K-450 \\ & (E K-45 \\ & -29) \end{aligned}$
Index						
$n_{n}$	1.71786	1.75861	1.77301	1.77288	1.78280	1.83767
$n n_{0}$	1.71227	1.75201	1.76538	1.76518	1.77532	1.82832
$n_{F}$	1.70554	1.74413	1.75638	1.75607	1.76643	1.81738
$n_{n}$	1.69680	1.73400	1.74500	1.74450	1.75510	1.80370
	(1.6973)			(1.7442)	(1.7555)	(1.8016)
$n \mathrm{C}$	1.69313	1.72979	1.74033	1.73973	1.75043	1.79814
$n A^{\prime}$	1.68877	1.72484	1.73491	1.73417	1.74499	1.79180

Type numbers and $n_{D}$ values in parentheses are 1947 descriptions of $E K$ glasses for which expansion data appear in Table 550.

Part 2.-Dispersion of glasses

Index						
$n_{D}$	1.69680	1.73400	1.74500	1.74450	1.75510	1.80370
	(1.6973)			(1.7442)	(1.7555)	(1.8016)
$\nu=\frac{n_{D}-1}{n_{F}-n_{C}}$	56.15	51.18	46.42	45.56	47.19	41.8
	(56.0)			(45.8)	(47.2)	(40.9)
$n_{F}-n_{C} \ldots$.	. 01241	. 01434	. 01605	. 01634	. 01600	. 01924
	(.01246)			(.01624)	(.01602)	(.01959)
$n_{F}-n_{D}$	. 00874	. 01013	. 01138	. 01157	. 01133	. 01368
	(.00877)			(.01153)	(.01133)	(.01394)
$n_{g}-n_{F}$	. 00673	. 00788	. 00900	. 00911	. 00889	. 01094
	(.00677)			(.00913)	(.00890)	(.01118)
$n_{h}-n_{0}$	. 00559	. 00660	. 00763	. 00770	. 00748	. 00935
	(.00562)			(.00776)	(.00750)	(.00959)
$n_{D}-n_{A}{ }^{\prime}$	. 00803	. 00916	. 01009	. 01033	. 01011	. 01190
	(.00806)			(.01018)	(.01014)	(.0-)

TABLE 526.-TRANSMISSION OF OPTICAL GLASS
Thickness 10 mm , reflection deducted *

	$\begin{gathered} B S C \\ -1 \end{gathered}$	$\begin{gathered} B S C \\ -2 \end{gathered}$	${ }_{-1}^{C}$	$\begin{gathered} L B C \\ -2 \end{gathered}$	$\begin{gathered} D B C \\ -1 \end{gathered}$	$\begin{gathered} D B C \\ -3 \end{gathered}$	$\begin{gathered} C F \\ -1 \end{gathered}$	BF	DF	${ }_{-3}{ }_{-}$
Cut-off in $m \mu$	300	296	301	306	328	320	310	316	326	350
$T$ at 360 m $\mu$	900	76.0	84.0	47.5	22.0	82.5	97.0	94.0	72.5	6.5
$380 \mathrm{~m} \mathrm{\mu}$.	98.0	95.0	97.2	92.5	96.8	98.5	99.0	98.0	84.5	47.0
400 m $\mu$.	99.5	99.5	99.3	99.5	99.5	99.4	99.5	99.5	90.5	70.0
$460 \mathrm{~m} \mathrm{\mu}$.	99.5	99.5	99.3	99.5	99.5	99.4	99.5	99.5	97.0	96.2
$500 \mathrm{~m} \mathrm{\mu}$	99.5	99.5	99.3	99.5	99.5	99.4	99.5	99.5	98.9	99.3
$800 m \mu$.	99.5	98.5	99.3	99.2	99.4	99.4	99.5	99.5	99.5	99.5
1000 m $\mu$.	99.5	94.5	99.3	97.2	96.6	99.4	99.5	99.5	99.5	99.5
2000 m	88.8	85.0	95.0	90.5	65.0	80.5	70.0	88.5	99.5	99.5
3000 m $\mu$.	. 5	. 0	17.5	. 6	. 0	. 0	. 9	. 9	6.0	3.0
Cut-off in $m \mu$.	3200	3000	4000	3200	2900	2850	3350	3250	3500	4100

[^209]TABLE 527.-CHANGES WITH TEMPERATURE IN ABSOLUTE INDEX OF REFRACTION (n) AT $20^{\circ} \mathrm{C}$ FOR A NUMBER OF GLASSES * $\dagger$

$n{ }^{\text {d }}$	Boro- silicate crown   BSC- 1	$\stackrel{\text { Crown }}{C-1}$	Light $\stackrel{\text { crown }}{ }$	Dense crown DBC- 3	$\begin{gathered} \text { Crown } \\ \text { fint } \\ \text { fint } \end{gathered}$	$\begin{gathered} \text { Barium } \\ \text { fint } \\ B F-1 \end{gathered}$	$\begin{gathered} \text { Dense } \\ \text { finint } \\ D F-2 \end{gathered}$
	$\Delta n /{ }^{\circ} \mathrm{C}$						
4360A	101	199	085	305	261	246	. 586
5087 A .	. 087	. 171	. 087	. 276	. 244	. 218	. 450
5462A.		. 159					. 405
5894A.	. 059	. 150	. 036	. 256	. 205	. 162	. 370
6440A.	. 050	. 131	. 025	. 237	. 184	. 140	. 334

* For references, see footnote 160 , p. 509.
$\dagger$ In units of the fifth decimal place.

TABLE 528.-INDEX OF REFRACTION OF GLASSES MADE BY SCHOTT AND GENOESSEN, JENA

The following constants are for glasses made by Schott and Genoessen, Jena: $n_{A}, n_{c}, n_{D}, n_{F}, n_{G}$, are the indices of refraction in air for $A=0.7682 \mu, C=0.6563 \mu, D=0.5893, F=0.4861, G^{\prime}=$ $0.4341, \nu=\left(n_{D}-1\right) /\left(n_{F}-n_{C}\right)$.

Catalogue type $=$ Designation $=$			$\begin{aligned} & \text { O } 546 \\ & \text { Zinc. } \end{aligned}$	O 381   Higher dis-	$\begin{aligned} & \text { O. } 184 \\ & \text { Light } \end{aligned}$	$\begin{aligned} & \mathrm{O} 102 \\ & \text { Heavy } \end{aligned}$	$\begin{gathered} \text { O } 165 \\ \text { Heavy } \end{gathered}$	$\underset{\text { Heaviest }}{\text { S } 57}$
			${ }_{\substack{\text { crown } \\ 1092}}$	persion crown	silicate fint	silicate fint	silicate fint	silicate fint
Melting		${ }_{\nu}^{\text {number }}$ 三	1092 60.7	1151 51.8	${ }_{41.1}^{451}$	${ }_{33.7}^{469}$	500 27.6	${ }_{22.2}^{163}$
5	Cd	. $2763 \mu$	1.56759	-	-	-	-	
	Cd	. 2837	1.56372				-	
	Cd	. 2980	1.55723	1.57093	1.65397	-	-	-
	Cd	. 3403	1.54369	1.55262	1.63320	1.71968	1.85487	-
	Cd	. 3610	1.53897	1.54664	1.61388	1.70536	1.83263	-
	H	. $4340 \mu$	1.52788	1.53312	1.59355	1.67561	1.78800	1.94493
$\square$	H	. 4861	1.52299	1.52715	1.58515	1.66367	1.77091	1.91890
	Na	. 5893	1.51698	1.52002	1.57524	1.64985	1.75130	1.88995
	H	. 6563	1.51446	1.51712	1.57119	1.64440	1.74368	1.87893
-	K	. 7682	1.51143	1.51368	1.56669	1.63820	1.73530	1.86702
$\begin{aligned} & \text { U } \\ & \vec{B} \\ & \vec{y} \end{aligned}$		. $800 \mu$	1.5103	1.5131	1.5659	1.6373	1.7338	1.8650
		1.200	1.5048	1.5069	1.5585	1.6277	1.7215	1.8481
		1.600	1.5008	1.5024	1.5535	1.6217	1.7151	1.8396
		2.000	1.4967	1.4973	1.5487	1.6171	1.7104	1.8316
		2.400	-	-	1.5440	1.6131	-	1.8286

Percentage composition of the above glasses:
$\mathrm{O} 546, \mathrm{SiO}_{2}, 65.4 ; \mathrm{K} 2 \mathrm{O}, 15.0 ; \mathrm{Na}_{2} \mathrm{O}, 5.0 ; \mathrm{BaO}, 9.6 ; \mathrm{ZnO}, 2.0 ; \mathrm{Mn}_{2} \mathrm{O}_{3}, 0.1 ; \mathrm{As}_{2} \mathrm{O}_{3}, 0.4 ; \mathrm{B}_{2} \mathrm{O}_{3}, 2.5$.
O 381, $\mathrm{SiO}_{2}, 68.7 ; \mathrm{PbO}, 13.3 ; \mathrm{Na}_{2} \mathrm{O}, 15.7 ; \mathrm{ZnO}, 2.0 ; \mathrm{MnO}_{2}, 0.1 ; \mathrm{As}_{2} \mathrm{O}_{5}, 0.2$.
O 184, $\mathrm{SiO}_{2}, 53.7 ; \mathrm{PbO}, 36.0 ; \mathrm{K}_{2} \mathrm{O}, 8.3 ; \mathrm{Na}_{2} \mathrm{O}, 1.0 ; \mathrm{Mn}_{2} \mathrm{O}_{3}, 0.06 ; \mathrm{As}_{2} \mathrm{O}_{2}, 0.3$.
O 102, $\mathrm{SiO}_{2}, 40.0 ; \mathrm{PbO}, 52.6 ; \mathrm{K} 2 \mathrm{O}, 6.5 ; \mathrm{Na}_{2} \mathrm{O}, 0.5 ; \mathrm{Mn}_{2} \mathrm{O}_{3}, 0.09 ; \mathrm{As}_{2} \mathrm{O}_{5}, 0.3$.
$\mathrm{O} 165, \mathrm{SiO}_{2}, 29.26 ; \mathrm{PbO}, 67.5 ; \mathrm{K}_{2} \mathrm{O}, 3.0 ; \mathrm{Mn}_{2} \mathrm{O}_{3}, 0.04 ; \mathrm{As}_{2} \mathrm{O}_{3}, 0.2$.
S $57, \mathrm{SiO}_{2}, 21.9 ; \mathrm{PbO}, 78.0 ; \mathrm{As}_{2} \mathrm{O}_{5}, 0.1$.

TABLE 529.-CHANGE OF INDICES OF REFRACTION FOR $1^{\circ} \mathrm{C}$ IN UNITS OF THE FIFTH DECIMAL PLACE


Coefficients, $a$, in the formula $I_{t}=I_{0} a^{t}$, where $I_{0}$ is the intensity before, and $I_{t}$ after, transmission through the thickness $t$.

Unit $t=1 \mathrm{dm}$	Coefficient of transmission, a										
	. $375 \mu$	390ر	.400	. 434		. $436 \mu$	. $455 \mu$. $477 \mu .503 \mu \quad .580 \mu .677 \mu$				
O 340, Ordinary light flint	. 388	. 456	. 614	. 569		. 680	. 834	. 880	. 880	. 878	. 939
O 102, Heavy silicate flint	-	. 025	. 463	. 502		. 566	. 683	. 700	. 782	. 828	. 794
O 93, Ordinary "							. 807	. 899	. 871	. 903	. 943
O 203, " " crow	. 583	. 583	. 695	. 667			. 822	. 860	. 872	. 872	. 903
O 598, (Crown)								. 771	. 776	. 818	. 860
Unit $t=1 \mathrm{~cm}$	0.7 ${ }^{\text {m }}$	0.95 $\mu$	$1.1 \mu$	1.4 $\mu$	$1.7 \mu$	2.0	0ر $2.3 \mu$	$2.5 \mu$	$2.7 \mu$	$2.9 \mu$	$3.1 \mu$
S 204, Borate crown	1.00	. 99	. 94	. 90	. 85		. 81.69	. 43	. 29	. 18	-
S 179, Medium phosphate crown.		. 98	. 95		. 84		. 67.49	. 87	. 18		
O 1143, Dense borosilicate crown..	. 98		. 97		. 95		93.90	. 84	. 71	. 47	. 27
O 1092, Crown	. 99	. 96	. 95	. 99	. 99	. 9	91.82	. 71	. 60	. 48	. 29
O 1151, "	. 98		. 99		. 98		94.90	. 79	. 75	. 45	. 32
O 451, Light flint	1.00	-	. 99		. 98		95.92	. 84	. 78	. 54	. 34
O 469, Heavy "	1.00	-	. 98		. 99		98.98	. 97	. 90	. 66	. 50
O 500,	1.00	-	1.00	-	1.00		- 1.00	. 99	. 92	. 74	. 53
S 163, "	1.00	-	. 98	-	. 99		9	--	. 94	. 78	. 60

## Part 2

$R$ is reflection factor yellow light for two surfaces. Values of transmission are for 1 mm thickness. Ordinary figures refer to wavelengths in $\mu, .281$ to .775 , black-faced infrared.

Glass durability	$\underset{R}{\text { Density }}$	. 2851	. 302	.334 1.15	366 1.30		.480 2.00	.546 $\mathbf{2 . 2 0}$	.578 2.40	.644 $\mathbf{2 . 6 0}$	.700 2.80	.775 3.00
U G 1	2.77	. 00	. 17	. 69	. 85	. 00	. 00	. 00	. 00	. 00	. 01	. 34
2/3	. 911	. 22	. 11	. 05	. 04	. 03	. 04	. 06	. 11	. 15	. 19	. 17
B G 1	2.50	. 04	. 40	. 93	. 97	. 86	. 44	. 04	. 05	. 01	. 51	. 94
	. 915	. 97	. 93	. 76	. 58	. 40	. 50	. 59	. 69	. 74	. 75	. 55
B G 4	2.41	. 00	. 00	. 04	. 74	. 87	. 53	. 01	. 01	. 00	. 07	. 13
5	. 921	. 12	. 11	. 13	. 12	. 14	. 21	. 45	. 59	. 63	. 45	. 40
B G 10	2.60	. 00	. 00	. 14	. 64	. 93	. 95	. 94	. 88	. 75	. 62	. 42
	. 916	. 31	. 25	. 26	. 31	. 47	. 55	. 56	. 58	. 55	. 47	. 46
V G 1	2.93	. 00	. 00	. 00	. 00	. 02	. 47	. 77	. 56	. 12	. 06	. 04
2	. 905	. 05	. 09	. 18	. 27	. 47	. 65	. 71	. 76	. 77	. 69	. 55
G G 2	2.58	. 00	. 00	. 00	. 64	. 99	1.00	1.00	1.00	1.00	1.00	1.00
	. 916	1.00	1.00	1.00	1.00	1.00	. 99	. 99	. 98	. 94	. 84	. 70
G G 4	2.73	. 00	. 00	. 03	. 01	. 67	. 92	. 97	. 96	. 94	. 96	. 99
2	. 913	. 99	. 99	. 99	. 99	. 99	.99	. 99	. 98	. 94	. 85	. 64
G G 11	2.54	. 00	. 00	. 00	. 00	. 01	. 24	. 99	. 99	. 99	. 99	. 98
${ }^{2}$	. 913	. 97	. 96	. 96	. 99	. 96	. 97	. 97	. 95	. 91	. 82	. 68
R G 2	2.74	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 92	. 98	. 98
2	. 913	. 98	. 98	. 98	. 98	. 98	. 98	. 97	. 95	. 92	. 81	. 65
R G 5	2.74	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 02	. 96	. 98
2	. 913	. 98	. 98	. 99	. 99	. 99	. 99	. 98	. 97	. 92	. 79	. 58
N G 5	2.42	. 00	. 00	. 00	. 29	. 59	. 63	. 66	. 68	. 70	. 70	. 65
1	. 919	. 61	. 59	. 61	. 65	. 73	. 78	. 78	. 76	. 69	. 58	. 40

U G 1 dark purple (uv., extreme red). B G 1 blue (uv.. extreme red). B G 4 blue (ir.). B G 10, light blue green, ir. absorption. V G 1 yellow.green. G G 2 colorless, uv. absorption. G G 4 almost colorless, strong uv. absorption, G G 11 dark yellow for contract filters. R G 2 pure red. R G 5 dark red. N G 5 light neutral.

## OPTICAL CRYSTALS

Not so many years ago physicists had to depend upon natural crystals for their various optical instruments. Now, owing to a great deal of work in this field, it has been found possible to grow artificial crystals of various materials for this purpose. Data on some of these artificial crystals are given in the following tables and the spectral transmission of some of them is shown in figure 26.
TABLE 531.-SOME ARTIFICIAL OPTICAL CRYSTALS*
Part 1

	Size grown			Transmission range	Uses	ence ${ }^{16}$   Refer-	
	Diameter	Length	Weight				
	190 mm	125 mm	13 kg	$\begin{aligned} & .2 \text { to } 15 \mu, \text { practical, } \\ & 8.5 \text { to } 15 \mu \end{aligned}$	Ultraviolet, visible, and infrared spectroscopy, as lens elements for uv. and ir.	a, b	
Potassium chloride ( KCl ) $\ddagger \ldots$. cubic	190	125	16	. 38 to $21 \mu$	About the same as NaCl	c, d	
Silver chloride ( AgCl )......... cubic (optical)s	95	125	4.5	Infrared to $30 \mu$	Windows and prisms for uv. and ir. spectroscopy	e	
Calcium fluoride ( $\mathrm{CaF}_{2}$ ) $\\|$... .. cubic	125	100	5.0	. 125 to $9.0 \mu$	Windows and prisms uv., v., and ir. Lens parts	c, f	
Potassium bromide ( KBr ) $\mathrm{T}_{\text {\% }} \ldots$. . cubic	190	125	16	Practical, 15 to $25 \mu$	Prisms and lenses for far infrared	b, c, e	
Potassium iodide (KI) $1 . . . .$. . cubic	190	125	16	Long wavelength infrared, trans. 2 cm thickness, $50 \%$ at $32.8 \mu$	Prisms and windows for far infrared	d, h	
Lithium fluoride (LiF) ${ }^{\text {r }}$....... cubic	150	120	6	Practical, 1 to $5.0 \mu$	Windows and prisms for uv. and ir., and as lens components	b, g	
Thallium bromide-iodide ...... cubic (KRS-5) ${ }^{4}$	125	87.5	6.8	20 to $37 \mu$	Prisms and windows, ir., lens parts	e, i	
Barium fluoride ( $\mathrm{BaF}_{3}$ ) ...... cubic	125	100	${ }_{35}^{6.0}$	up to $12 \mu$	Infrared windows, prisms	j	
Cesium bromide ( CsBr ) . ...... cubic	190	125 126	35 16	to $42 \mu$	Windows, prisms Scintillation	j	
Potassium iodide (KI)......... cubic (thallium activated)	190	126	16		Scintillation counters	j	
Sodium iodide (Na I).......... cubic (thallium activated)	190	125	16		Scintillation counters	j	

 tion 181 References: a, Gore, R. C., et al., Journ. Opt. Soc. Amer., vol. 37, p. 23, 1947. b, Kremers, H. C., Journ. Ind. Eng. Chem., vol. 32, p. 1478, 1940, and Journ. Opt.



TABLE 531.-SOME ARTIFICIAL OPTICAL CRYSTALS (concluded)

## Part 2



TABLE 532.-nd, DISPERSION AND DENSITY OF JENA GLASSES

No. and type of Jena glass	$n_{\text {d }}$ for $D$	$n_{F}-n_{C}{ }^{\nu}$		$n_{D}-n_{A}$	$n_{F}-n_{D}$	$n_{G}{ }^{\prime}-n_{F}$	Specifi gravity
O 225 Light phosphate crown.	1.5159	. 00737	70.0	. 00485	. 00515	. 00407	2.58
O 802 Borosilicate crown	1.4967	0765	64.9	0504	0534	0423	2.38
UV 3109 Ultraviolet crown	1.5035	0781	64.4	0514	0546	0432	2.41
O 227 Barium-silicate crown	1.5399	0909	59.4	0582	0639	0514	2.73
O 114 Soft silicate crown...	1.5151	0910	56.6	0577	0642	0521	2.55
O 608 High-dispersion crown	1.5149	0943	54.6	0595	0666	0543	2.60
UV 3248 Ultraviolet flint	1.5332	0964	55.4	0611	0680	0553	2.75
O 381 High-dispersion crown	1.5262	1026	51.3	0644	0727	0596	2.70
O 602 Baryt light flint.	1.5676	1072	53.0	0675	0759	0618	3.12
S 389 Borate flint	1.5686	1102	51.6	0712	0775	0629	2.83
O 726 Extra light flint	1.5398	1142	47.3	0711	0810	0669	2.87
O 154 Ordinary light flint	1.5710	1327	43.0	0819	0943	0791	3.16
O 184 " " "	1.5900	1438	41.1	0882	1022	0861	3.28
O 748 Baryt flint	1.6235	1599	39.1	0965	1142	0965	3.67
O 102 Heavy flint	1.6489	1919	33.8	1152	1372	1180	3.87
O 41 " "	1.7174	2434	29.5	1439	1749	1521	4.49
O 165 " "	1.7541	2743	27.5	1607	1974	1730	4.78
S 386 Heavy flint	1.9170	4289	21.4	2451	3109	2808	6.01
S 57 Heaviest flint	1.9626	4882	19.7	2767	3547	3252	6.33



[^210]TABLE 533.-INDEX OF REFRACTION OF QUARTZ $\left(\mathrm{SiO}_{2}\right), 15^{\circ} \mathrm{C}{ }^{1014}$

Wavelength $m \mu$	Quartz	Quartz	Vitreous	Wavelength in air at $m$	Quartz ${ }_{\text {nor }}$	Quartz	Vitreous
185.467	1.67578	1.68997	1.57436	533.85	1.546799	1.555996	1.46067
193.583	1.65999	1.67343	1.55999	579.066	1.544667	1.553791	
202.55	1.64557	1.65842	1.54727	589.29	1.544246	1.553355	1.45845
214.439	1.63039	1.64262	1.53386	643.847	1.542288	1.551332	1.45674
226.503	1.61818	1.62992	1.52308	667.815	1.541553	1.550573	
250.329	1.60032	1.61139	1.50745	706.520	1.540488	1.549472	1.45517
274.867	1.58752	1.59813	1.49617	794.763	1.538478	1.547392	1.45340
303.412	1.576955	1.58720	1.48594	1000.00	1.53503	1.54381	$\ldots$
340.365	1.56747	1.577385	1.47867	1200.00	1.53232	1.54098	
396.848	1.55813	1.56772	1.47061	1400.00	1.52972	1.53826	$\ldots$
434.047	1.553963	1.563405	1.46690	1600.00	1.52703	1.53545	$\ldots$
467.815	1.551027	1.560368	1.46435	2058.20	1.51998	1.52814	$\ldots$
508.582	1.548229	1.557475	1.46191	2500.00	1.51156	1.5195	
				3000.00	1.49962	1.5070	

101a Sosman, Robt. B., The properties of silica, p. 591, Chemical Catalog Co., NewYork, 1927.

TABLE 534.-INDEX OF REFRACTION OF ROCK SALT IN AIR


[^211]| $\lambda(\mu)$ | $n$ | $\lambda(\mu)$ | n | $\lambda(\mu)$ | ${ }^{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . 185409 | 1.82710 | 1.1786 | 1.478311 | 8.2505 | 1.462726 |
| . 200090 | 1.71870 |  | 1.47824 |  | 1.46276 |
| . 21946 | 1.64745 | 1.7680 | 1.475890 | 8.8398 | 1.460858 |
| . 257317 | 1.58125 |  | 1.47589 |  | 1.46092 |
| . 281640 | 1.55836 | 2.35728 | 1.474751 | 10.0184 | 1.45672 |
| . 308227 | 1.54136 | 2.9466 | 1.473834 |  | 1.45673 |
| . 358702 | 1.52115 |  | 1.47394 | 11.786 | 1.44919 |
| . 394415 | 1.51219 | 3.5359 | 1.473049 |  | 1.44941 |
| . 467832 | 1.50044 |  | 1.47304 | 12.965 | 1.44346 |
| . 508606 | 1.49620 | 4.7146 | 1.471122 |  | 1.44385 |
| . 58933 | 1.49044 |  | 1.47129 | 14.144 | 1.43722 |
| . 67082 | 1.48669 | 5.3039 | 1.470013 | 15.912 | 1.42617 |
| . 78576 | 1.483282 | 5.303 | 1.47001 | 17.680 | 1.41403 |
| . 88398 | 1.481422 | 5.8932 | 1.468804 | 20.60 | 1.3882 |
| . 98220 | 1.480084 |  | 1.46880 | 22.5 | 1.369 |
| At $18^{\circ} \mathrm{C}^{162}$ |  |  |  |  |  |
| $\lambda(\mu)$ | $n$ | $\lambda(\mu)$ | ${ }^{n}$ | $\lambda(\mu)$ | $\stackrel{n}{ }$ |
| 18.2 | 1.409 | 22.2 | . 1.374 | 26.7 | 1.300 |
| 18.8 | 1.401 | 23.1 . | . 1.363 | 27.2 | 1.275 |
| 19.7 ... | . 1.398 | 24.1 . | . 1.352 | 28.2 | 1.254 |
| 20.4 | . 1.389 | 24.9 . | 1.336 | 28.8 | 1.226 |
| 21.1 . | 1.379 | 25.7 | 1.317 |  |  |
| $n^{2}=a^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{M_{2}}{\lambda^{2}-\lambda_{2}{ }^{2}}-k \lambda^{2}-h \lambda^{4}$ or $=b^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{M_{2}}{\lambda^{2}-\lambda_{2}{ }^{2}}+\frac{M_{3}}{\lambda_{2}{ }^{2}-\lambda^{2}}$ |  |  |  |  |  |
| $\begin{aligned} a^{2} & =2.174967 \\ M_{1} & =.008344206 \\ \lambda_{1}{ }^{2} & =.0119082 \\ M_{2} & =.00698382 \end{aligned}$ |  | $\begin{aligned} \lambda_{2}{ }^{2} & =.0255550 \\ k & =.000513495 \\ h & =.000000167587 \end{aligned}$ |  | $\begin{aligned} b^{2} & =3.866619 \\ M_{3} & =5569.715 \\ \lambda_{3}^{2} & =3292.47 \end{aligned}$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

TABLE 536.-INDEX OF REFRACTION OF POTASSIUM BROMIDE* ( $22^{\circ} \mathrm{C}$ )

Wavelength	Index	Wavelength	Index	Wavelength	Index
. 4047	1.589752	1.7011	1.53901	14.29	1.51505
. 4358	1.581479	2.440	1.53733	14.98	1.51280
. 4861	1.571789	2.730	1.53693	17.40	1.50390
. 5086	1.568475	3.419	1.53614	18.16	1.50076
. 5461	1.563928	4.258	1.53523	19.01	1.49705
. 5876	1.559965	6.238	1.53288	19.91	1.49288
. 6438	1.555858	6.692	1.53225	21.18	1.48655
. 7065	1.552447	8.662	1.52903	21.83	1.48311
1.2140	1.54408	9.724	1.52695	23.86	1.47140
1.1287	1.54258	11.035	1.52404	25.14	1.46324
1.3621	1.54061	11.862	1.52200		

* Prepared by Stephens, Plyler, Rodney, and Spindler, National Bureau of Standards, March 1952.

TABLE 537.-INDEX OF REFRACTION OF NITROSO-DIMETHYL-ANILINE (WOOD)

$\lambda$	$n$	$\lambda$	$n$	$\lambda$	$n$	$\lambda$	$n$	$\lambda$	$n$
.497	2.140	.525	1.945	.584	1.815	.636	1.647	.713	1.718
.500	2.114	.536	1.909	.602	1.796	.647	1.758	.730	1.713
.506	2.074	.546	1.879	.611	1.783	.659	1.750	.749	1.709
.508	2.025	.557	1.857	.620	1.778	.669	1.743	.763	1.697
.516	1.985	.569	1.834	.627	1.769	.696	1.723		

Nitroso-dimethyl-aniline has enormous dispersion in yellow and green, metallic absorption in violet.

TABLE 538.-REFRACTIVE INDEX OF SILVER CHLORIDE (AgCI) AT $23.9^{\circ} \mathrm{C}$ *
Tenths of microns


* Prepared by Leroy W. Tilton, Earle K. Plyler, and Robert E. Stephens, National Bureau of Standards.

TABLE 539.-INDEX OF REFRACTION OF FLUORITE (CaF $\mathbf{2}^{2}$ ) IN AIR
Part 1

$\lambda(\mu)$	$n$	$\lambda(\mu)$	$n$	$\lambda(\mu)$	$n$	$\lambda(\mu)$	$n$
.1856	1.50940	.76040	1.43101	2.2100	1.42288	5.0092	1.39898
.19881	1.49629	.8840	1.42982	2.3573	1.42199	5.3036	1.39529
.21441	1.48462	1.1786	1.42787	2.5537	1.42088	5.5985	1.39142
.22645	1.47762	1.3756	1.42690	2.6519	1.42016	5.8932	1.38719
.25713	1.46476	1.4733	1.42641	2.7502	1.41971	6.4825	1.37819
.32525	1.44987	1.5715	1.42596	2.9466	1.41826	7.0718	1.36805
.34555	1.44697	1.6206	1.42582	3.1430	1.41707	7.6612	1.35680
.39681	1.44214	1.7680	1.42507	3.2413	1.41612	8.2505	1.34444
.48607	1.43713	1.9153	1.42437	3.5359	1.41379	8.8398	1.33079
.58930	1.43393	1.9644	1.42413	3.8306	1.41120	9.4291	1.31612
.65618	1.43257	2.0626	1.42359	4.1252	1.40855	51.2	3.47
.68671	1.43200	2.1608	1.42308	4.4199	1.40559	61.1	2.66
.71836	1.43157			4.7146	1.40238	$\infty$	2.63

Part $2^{163}$

$\lambda(\mu)$	n	$\lambda(\mu)$	$n$	$\lambda(\mu)$	$n$	$\lambda(\mu)$	$n$
. 404658	1.4415099	. 508585	1.4361735	. 770688	1.4308799	1.734047	1.4252000
. 407785	1.4412890	. 546077	1.4359584	. 819115	1.4303704	1.767893	1.4250359
. 435836	1.4394944	. 579016	1.4341020	. 961049	1.4291954	2.034339	1.4237262
. 447150	1.4388656	. 589298	1.4338304	1.092154	1.4283523	2.184308	1.4229318
. 472219	1.4376377	. 636238	1.4328439	1.156031	1.4279924	2.312063	1.4222226
. 480525	1.4372742	. 643850	1.4327050	1.178596	1.4278658	2.357191	1.4219705
. 486138	1.4370381	. 656286	1.4324825	1.441574	1.4265842	2.544951	1.4208398
. 501570	1.4364325	. 706523	1.4316947	1.638231	1.4256500	2.575402	1.4206797
$n^{2}=a^{2}+\frac{M_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}-e \lambda^{2}-f \lambda^{4} \text { or }=b^{2}+\frac{M_{2}}{\lambda^{2}-\lambda_{v}{ }^{2}}+\frac{M_{3}}{\lambda^{2}-\lambda_{r}{ }^{2}}$							
$M_{1}=.0062183 \quad b^{2}=6.09651$							
$\begin{aligned} \lambda_{1}{ }^{2} & =.007706 \\ e & =.0031999 \end{aligned}$			$M_{2}=.0061386$			. $0940 \mu$	
			$\lambda_{v}{ }^{2}=.00884-\lambda_{r}=35.5 \mu$				

Change of index of refraction of fluorite for $1^{\circ} \mathrm{C}$ in units of the 5 th decimal place C line, $-1.220 ; \mathrm{D},-1.206 ; \mathrm{F},-1.170 ; \mathrm{G},-1.142$.

[^212]TABLE 540.—REFRACTIVE INDICES OF LITHIUM FLUORIDE AT $23.6^{\circ} \mathrm{C}$ *
Tenths of microns

Wave length $\mu$	0	1	2	3	4	5	6	7	8	9
0.						1.39430	1.39181	1.39017	1.38896	1.38797
	1.38711	1.38631	1.38554	1.38477	1.38400	1.38320	1.38238	1.38153	1.38064	1.37971
2.	1.37875	1.37774	1.37669	1.37560	1.37446	1.37327	1.37203	1.37075	1.36942	1.36804
3.	1.36660	1.36512	1.36359	1.36201	1.36037	1.35868	1.35693	1.35514	1.35329	1.35138
4. .	1.34942	1.34740	1.34533	1.34319	1.34100	1.33875	1.33645	1.33408	1.33165	1.32916
5..	1.32661	1.32399	1.32131	1.31856	1.31575	1.31287	1.30993	1.30692	1.30384	1.30068
6.	1.29745									

* Prepared by Leroy W. Tilton and Earle K. Plyler, National Bureau of Standards.

TABLE 541.-INDEX OF REFRACTION OF ICELAND SPAR $\left(\mathrm{CaCO}_{3}\right)$ IN AIR

$\lambda(\mu)$	no	ne	$\lambda(\mu)$	nn	$n$.	$\lambda(\mu)$	no	$n$.
. 198	-	1.5780	. 508	1.6653	1.4896	. 991	1.6438	1.4802
. 200	1.9028	1.5765	. 533	1.6628	1.4884	1.229	1.6393	1.4787
. 208	1.8673	1.5664	. 589	1.6584	1.4864	1.307	1.6379	1.4783
. 226	1.8130	1.5492	. 643	1.6550	1.4849	1.497	1.6346	1.4774
. 298	1.7230	1.5151	. 656	1.6544	1.4846	1.682	1.6313	-
. 340	1.7008	1.5056	. 670	1.6537	1.4843	1.749	-	1.4764
. 361	1.6932	1.5022	. 760	1.6500	1.4826	1.849	1.6280	
. 410	1.6802	1.4964	. 768	1.6497	1.4826	1.908	-	1.4757
. 434	1.6755	1.4943	. 801	1.6487	1.4822	2.172	1.6210	
. 486	1.6678	1.4907	. 905	1.6458	1.4810	2.324	-	1.4739

TABLE 542.-INDEX OF REFRACTION FOR VARIOUS ALUMS

$R$	$\begin{aligned} & \stackrel{\vdots}{\hat{W}} \\ & \stackrel{5}{5} \end{aligned}$	$\begin{aligned} & \text { ㅂ } \\ & \stackrel{0}{E} \\ & H \end{aligned}$	Index of refraction for the Fraunhofer lines							
			a	B	c	D	E	b	F	G
			Aluminum alums $\mathrm{RAl}\left(\mathrm{SO}_{4}\right)_{2}+12 \mathrm{H}_{2} \mathrm{O}$ *							
Na	1.667	17-28	1.43492	1.43563	1.43653	1.43884	1.44185	1.44231	1.44412	1.44804
$\mathrm{NH}_{3}\left(\mathrm{CH}_{3}\right)$	1.568	7-17	. 45013	. 45062	. 45177	. 45410	. 45691	. 45749	. 45941	. 46363
K	1.735	14-15	. 45226	. 45303	. 45398	. 45645	. 45934	. 45996	. 46181	. 46609
Rb	1.852	7-21	. 45232	. 45328	. 45417	. 45660	. 45955	.45999	. 46192	. 46618
Cs	1.961	15-25	. 45437	. 45517	. 45618	. 45856	. 46141	. 46203	. 46386	. 46821
$\mathrm{NH}_{4}$	1.631	15-20	. 45509	. 45599	. 45693	. 45939	. 46234	. 46288	. 46481	. 46923
Tl	2.329	10-23	. 49226	. 49317	. 49443	. 49748	. 50128	. 50209	. 50463	. 51076
Chrome alums $\mathrm{RCr}\left(\mathrm{SO}_{4}\right)_{2}+12 \mathrm{H}_{2} \mathrm{O}$ *										
Cs	2.043	6-12	1.47627	1.47732	1.47836	1.48100	1.48434	1.48491	1.48723	1.49280
K	1.817	6-17	. 47642	. 47738	. 47865	. 48137	. 48459	. 48513	. 48753	. 49309
Rb	1.946	12-17	. 47660	. 47756	. 47868	. 48151	. 48486	. 48522	. 48775	. 49323
$\mathrm{NH}_{4}$	1.719	7-18	. 47911	. 48014	. 48125	. 48418	. 48744	. 48794	. 49040	. 49594
T1	2.386	9-25	. 51692	. 51798	. 51923	. 52280	. 52704	. 52787	. 53082	. 53808
Iron alums $R \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}+12 \mathrm{H}_{2} \mathrm{O}$ *										
K	1.806	7-11	1.47639	1.47706	1.47837	1.48169	1.48580	1.48670	1.48939	1.49605
Rb	1.916	7-20	. 47700	. 47770	. 47894	. 48234	. 48654	. 48712	. 49003	. 49700
Cs	2.061	20-24	. 47825	. 47921	. 48042	. 48378	. 48797	. 48867	. 49136	. 49838
$\mathrm{NH}_{4}$	1.713	7-20	. 47927	. 48029	. 48150	. 48482	. 48921	. 48993	. 49286	. 49980
Tl	2.385	15-17	. 51674	. 51790	. 51943	. 52365	. 52859	. 52946	. 53284	. 54112

The values are for the sodium $D$ line unless otherwise stated and are arranged in the order of increasing indices. Selected by Edgar T. Wherry from a private compilation of E. S. Larsen, of the U. S. Geological Survey.

	Mineral	Formula	Index of refraction $\lambda \stackrel{\text { refraction }}{=}$
Villiaumite		NaF	1.328
Cryolithionite		$3 \mathrm{NaF} \cdot 3 \mathrm{LiF} \cdot 2 \mathrm{AlF}_{3}$	1.339
Opal ......		$\mathrm{SiO}_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$	1.406
Fluorite		$\mathrm{CaF}_{2}$	1.434
Alum		$\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SO}_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$	1.456
Sodalite		$3 \mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 2 \mathrm{NaCl}$	1.483
Cristobalite		$\mathrm{SiO}_{2}$	1.486
Analcite		$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1.487
Sylvite		KCl	1.490
Noselite		$5 \mathrm{Na} 2 \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 2 \mathrm{SO}_{3}$	1.495
Hauynite		Like preceding +CaO	1.496
Lazurite		$4 \mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{Na}_{2} \mathrm{~S}_{6}$	$1.500 \pm$
Leucite		$\mathrm{K} 2 \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{3}$	1.509
Pollucite		$2 \mathrm{Cs} 2 \mathrm{O} \cdot 2 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 9 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.525
Halite		NaCl	1.544
Bauxite		$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$	$1.570 \pm$
Pharmacosider		$3 \mathrm{Fe}_{3} \mathrm{O}_{3} \cdot 2 \mathrm{As}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{~K}_{2} \mathrm{O} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	1.676
Spinel		$\mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$	$1.720 \pm$
Berzeliite		$3(\mathrm{Ca}, \mathrm{Mg}, \mathrm{Mn}) \mathrm{O} \cdot \mathrm{As}_{2} \mathrm{O}_{0}$	1.727
Periclasite		MgO	1.736
Grossularite		$3 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2}$	1.736
Helvite		$3(\mathrm{Mn}, \mathrm{Fe}) \mathrm{O} \cdot 3 \mathrm{BeO} \cdot 3 \mathrm{SiO}_{2} \cdot \mathrm{MnS}$	1.739
Pyrope		$3 \mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2}$	1.745
Arsenolite		$\mathrm{As}_{2} \mathrm{O}_{3}$	1.754
Hessonite		$3 \mathrm{CaO} \cdot(\mathrm{Al}, \mathrm{Fe})_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2}$	1.763
Pleonaste		$(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot \mathrm{Al}_{3} \mathrm{O}_{3}$	$1.770 \pm$
Almandite		$3 \mathrm{FeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2}$	1.778
Hercynite		$\mathrm{FeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$	$1.800 \pm$
Gahnite		$\mathrm{ZnO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$	$1.805 \pm$
Spessartite		$3 \mathrm{MnO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2}$	1.811
Lime		CaO	1.838
Uvarovite		$3 \mathrm{CaO} \cdot \mathrm{Cr}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2}$	1.838
Andradite		$3 \mathrm{CaO} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2}$	1857
Microlite		$6 \mathrm{CaO} \cdot 3 \mathrm{Ta}_{2} \mathrm{O}_{0} \cdot \mathrm{NbOF}_{3}$	1.925
Nantokite		CuCl	1.930
Pyrochlore		Contains $\mathrm{CaO}, \mathrm{Ce}_{2} \mathrm{O}_{2}, \mathrm{TiO}_{2}$, etc.	1.960
Schorlomite		$3 \mathrm{CaO} \cdot(\mathrm{Fe}, \mathrm{Ti})_{2} \mathrm{O}_{3} \cdot 3(\mathrm{Si}, \mathrm{Ti}) \mathrm{O}_{2}$	1.980 -
Percylite		$\mathrm{PbO} \cdot \mathrm{CuCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	2.050
Picotite		$(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot(\mathrm{Al}, \mathrm{Cr})_{2} \mathrm{O}_{3}$	$2.050 \pm$
Eulytite		$2 \mathrm{Bi}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2}$	2.050
Cerargyrite		AgCl	2.061
Mosesite		Contains $\mathrm{Hg}, \mathrm{NH}_{4}, \mathrm{Cl}$, etc.	2.065
Chromite		$\mathrm{FeO} \cdot \mathrm{Cr}_{2} \mathrm{O}_{3}$	2.070
Senarmontite		$\mathrm{Sb}_{2} \mathrm{O}_{3}$	2.087
Embolite		$\mathrm{Ag}(\mathrm{Br}, \mathrm{Cl})$	$2.150 \pm$
Manganosite		MnO	2.160
Bunsenite		NiO	2.18 *
Lewisite		$5 \mathrm{CaO} \cdot 2 \mathrm{TiO}_{2} \cdot 3 \mathrm{Sb}_{2} \mathrm{O}_{5}$	2.200
Miersite		$\mathrm{CuI} \cdot 4 \mathrm{AgI}$	2.200
Bromyrite		AgBr	2.253
Dysanalite		Contains $\mathrm{CaO}, \mathrm{FeO}, \mathrm{TiO}_{2}$, etc.	2.330
Marshite		CuI	2.346
Franklinite		$(\mathrm{Zn}, \mathrm{Fe}, \mathrm{Mn}) \mathrm{O} \cdot(\mathrm{Fe}, \mathrm{Mn})_{2} \mathrm{O}_{3}$	2.360*
Sphalerite		$(\mathrm{Zn}, \mathrm{Fe}) \mathrm{S}$	2.370
Perovskite		$\mathrm{CaO} \cdot \mathrm{TiO}$,	2.380
Diamond		C	2.419

(continued)

# TABLE 543.-INDEX OF REFRACTION OF SELECTED MONOREFRINGENT OR ISOTROPIC MINERALS (concluded) 

Mineral	Formula	Index of refraction $\lambda=0.589 \mu$
	$\mathrm{HgO} \cdot 2 \mathrm{HgCl}$	2.490*
	$\mathrm{MnS}_{2}$	2.690*
	MnS	2.700*
	$\mathrm{Cu}_{2} \mathrm{O}$	2.849

- Li line.

TABLE 544.—INDEX OF REFRACTION OF MISCELLANEOUS MONOREFRINGENT OR ISOTROPIC SOLIDS

Substance	Spectrum line	Index of refraction	Substance	Spectrum line	Index of refraction
Albite glass	D	1.4890	Gelatin, Nelson no. 1	D	1.530
Amber . . . .	D	1.546	" various ....	D	1.516-1.534
Ammonium chloride	D	1.6422	Gum Arabic	. red	1.480
Anorthite glass ....	D	1.5755	" "	. red	1.514
Asphalt ......	- D	1.635	Obsidian .....	. D	1.482-1.496
"،	. $670 \mu$	1.621	Phosphorus	- D	2.1442
Bell metal	D	1.0052	Pitch ....	. red	1.531
Boric acid, melted.	C	1.4623	Potassium bromide	. D	1.5593
" " "	D	1.4637	" chlorstanna	e. D	1.6574
" "	F	1.4694	" iodide	. D	1.6666
Borax, melted	C	1.4624	Resins: Aloes ...	. red	1.619
" ${ }^{\text {c }}$	. D	1.4630	Canada balsam	. red	1.528
"	F	1.4702	Colophony .	. red	1.548
Camphor	. D	1.532	Copal ...	. red	1.528
"	D	1.5462	Mastic	. red	1.535
Canada balsam	. D	1.530	Peru balsam	. . D	1.593
Ebonite	. red	1.66	Selenium	- A	2.61
Fuchsin		2.03	"	. B	2.68
"	- B	2.19	"	- C	2.73
"	. C	2.33	" ..........	. D	2.93
"	. G	1.97	Sodium chlorate	. D	1.5150
"	H	1.32	Strontium nitrate ...	. D	1.5667

TABLE 545.-INDEX OF REFRACTION OF MISCELLANEOUS UNIAXIAL CRYSTALS

		Index of refraction	
Crystal	Spectrum line	Ordinary ray	Extraordinary ray
Ammonium arseniate $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{4}$	D	1.5766	1.5217
Benzil ( $\left.\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{CO}\right)_{2}$	D	1.6588	1.6784
Corundum, $\mathrm{Al}_{2} \mathrm{O}_{3}$, sapphire, ruby	D	1.769	1.760
Ice at $-8^{\circ} \mathrm{C}$.	D	1.308	1.313
" "	Li	1.297	1.304
Ivory	D	1.539	1.541
Potassium arseniate $\mathrm{KH}_{2} \mathrm{AsO}_{4}$	F	1.5762	1.5252
" "	D	1.5674	1.5179
" " ${ }^{\text {".. }}$	C	1.5632	1.5146
Sodium arseniate $\mathrm{Na}_{3} \mathrm{AsO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	D	1.457	1.466
" nitrate $\mathrm{NaNO}_{3} \ldots \ldots$.	D	1.586	1.336
" phosphate $\mathrm{Na}_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	D	1.447	1.453
Nickel sulfate $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O} \ldots$	F	1.5173	1.4930
	D	1.5109	1.4873
" " ${ }^{\text {" }}$	C	1.5078	1.4844
Strychnine sulfate	D	1.614	1.599

## TABLE 546.-INDEX OF REFRACTION OF SELECTED UNIAXIAL MINERALS

The values are arranged in the order of increasing indices for the ordinary ray and are for the sodium $D$ line unless otherwise indicated. Selected by Edgar T. Wherry from a private compilation of Esper S. Larsen, of the U. S. Geological Survey.

Ice Mineral	Uniaxial positive mineralsFormula	Index of $\underbrace{\text { refraction }}$	
		$\overbrace{\substack{\text { Ordinary } \\ \text { ray }}}$	$\underbrace{}_{\substack{\text { Extraordinary } \\ \text { ray }}}$
	$\mathrm{H}_{2} \mathrm{O}$	1.309	1.313
Sellaite	$\mathrm{MgF}_{2}$	1.378	1.390
Chrysocolla	$\mathrm{CuO} \cdot \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$1.460 \pm$	$1.570 \pm$
Laubanite .	$2 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{SiO}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	1.475	1.486
Chabazite	$\left(\mathrm{Ca}, \mathrm{Na}_{2}\right) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$1.480 \pm$	$1.482 \pm$
Douglasite	$2 \mathrm{KCl} \cdot \mathrm{FeCl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1.488	1.500
Hydronephelite	$2 \mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	$1.490{ }^{\text {1 }}$	${ }_{1.502}^{1.537}$
Apophyllite	$\mathrm{K}_{2} \mathrm{O} \cdot 8 \mathrm{CaO} \cdot 16 \mathrm{SiO}_{2} \cdot 16 \mathrm{H}_{2} \mathrm{O}$	$1.535 \pm$	$1.537 \pm$
Quartz	$\mathrm{SiO}_{2} \mathrm{H}^{\text {cen }}$	1.544	1.553
Coquimbite	$\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SO}_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	1.550	1.556
Brucite Alunite .	$\mathrm{MgO} \cdot \mathrm{H}_{2} \mathrm{O}$ K 2 O $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	1.559 1.572	1.580 1.592
Penninite	$5(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	1.576	1.579
Cacoxenite	$2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	1.582	1.645
Eudialite	$6 \mathrm{Na}_{2} \mathrm{O} \cdot 6(\mathrm{Ca}, \mathrm{Fe}) \mathrm{O} \cdot 20(\mathrm{Si}, \mathrm{Zr}) \mathrm{O}_{2} \cdot \mathrm{NaCl}$	1.606	1.611
Dioptase	$\mathrm{CuO} \cdot \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.654	1.707
Phenacite	$2 \mathrm{BeO} \cdot \mathrm{SiO}_{2}$	1.654	1.670
Parisite	$2 \mathrm{CeOF} \cdot \mathrm{CaO} \cdot 3 \mathrm{CO}_{2}$	$1.676 \pm$	1.757
Willemite	$2 \mathrm{ZnO} \cdot \mathrm{SiO}_{2}$	1.691	1.719
Vesuvianite	$2(\mathrm{Ca}, \mathrm{Mn}, \mathrm{Fe}) \mathrm{O} \cdot(\mathrm{Al}, \mathrm{Fe})(\mathrm{OH}, \mathrm{F}) \mathrm{O} \cdot 2 \mathrm{SiO}_{2}$	$1.716 \pm$	1.721
Xenotime	$\mathrm{Y}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$	. 721	1.816
Connellite	$20 \mathrm{CuO} \cdot \mathrm{SO}_{3} \cdot 2 \mathrm{CuCl}_{2} \cdot 20 \mathrm{H}_{2} \mathrm{O}$	1.724	1.746
Benitoite	$\mathrm{BaO} \cdot \mathrm{TiO}_{2} \cdot 3 \mathrm{SiO}_{2}$	1.757	1.804
Ganomalite	$6 \mathrm{PbO} \cdot 4(\mathrm{Ca}, \mathrm{Mn}) \mathrm{O} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.910	1.945
Scheelite	$\mathrm{CaO} \cdot \mathrm{WO}_{3}$	1.918	1.934
Zircon	$\mathrm{ZrO} \cdot \mathrm{SiO}_{2}$	$1.923 \pm$	$1.968 \pm$
Powellite	$\mathrm{CaO} \cdot \mathrm{MoO}_{3}$	1.974	1.978
Calomel	HgCl	1.973	2.650
Cassiterite	$\mathrm{SnO}_{2}$	1.997	2.093
Zincite	ZnO	2.013	2.029
Phosgenite	$\mathrm{PbO} \cdot \mathrm{PbCl}_{2} \cdot \mathrm{CO}_{2}$	2.114	2.140
Penfieldite	$\mathrm{PbO} \cdot \mathrm{PbCl}_{2}$	2.130	2.210
Iodyrite	AgI	2.210	2.220
Tapiolite	$\mathrm{FeO} \cdot(\mathrm{Ta}, \mathrm{Nb})_{2} \mathrm{O}_{5}$	2.270	2.420 (Li line)
Wurtzite	ZnS	2.356	2.378
Derbylite	$6 \mathrm{FeO} \cdot \mathrm{Sb}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{TiO}_{2}$	2.450	2.510 (Li line)
Greenockite	CdS	2.506	2.529
Rutile	$\mathrm{TiO}_{2}$	2.616	2.903
Moissanite	CSi	2.654	2.697
Cinnabar	HgS	2.854	3.201

Uniaxial negative minerals

Chiolite	$2 \mathrm{NaF} \cdot \mathrm{AlF}_{3}$	1.349	1.342
Hanksite	$11 \mathrm{Na}_{2} \mathrm{O} \cdot 9 \mathrm{SO}_{3} \cdot 2 \mathrm{CO}_{2} \cdot \mathrm{KCl}$	1.481	1.461
Thaumasite	$3 \mathrm{CaO} \cdot \mathrm{CO}_{2} \cdot \mathrm{SiO}_{2} \cdot \mathrm{SO}_{3} \cdot 15 \mathrm{H}_{2} \mathrm{O}$	1.507	1.468
Hydrotalcite	$6 \mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{CO}_{2} \cdot 15 \mathrm{H}_{2} \mathrm{O}$	1.512	1.498
Cancrinite	$4 \mathrm{Na} 2 \mathrm{O} \cdot \mathrm{CaO} \cdot 4 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{CO}_{2} \cdot 9 \mathrm{SiO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	1.524	1.496
Milarite	$\mathrm{K}_{2} \mathrm{O} \cdot 4 \mathrm{CaO} \cdot 2 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 24 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.532	1.529
Kaliophilite	$\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$	1.537	1.533
Mellite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{C}_{12} \mathrm{O}_{8} \cdot 18 \mathrm{H}_{2} \mathrm{O}$	1.539	1.511
Marialite	"Ma" $=3 \mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 18 \mathrm{SiO}_{2} \cdot 2 \mathrm{NaCl}$	1.539	1.537
Nephelite	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$	1.542	1.538
Wernerite	$\mathrm{Me}_{1} \mathrm{Ma}_{1} \pm$	1.578	1.551
Beryl	$3 \mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$	$1.581 \pm$	$1.575 \pm$
Torbernite	$\mathrm{CuO} \cdot 2 \mathrm{UO}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 8 \mathrm{H}_{2} \mathrm{O}$	1.592	1.582
Meionite	$" \mathrm{Me} "=4 \mathrm{CaO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$	1.597	1.560
Melilite	Contains $\mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$, etc.	1.634	1.629

## TABLE 546.-INDEX OF REFRACTION OF SELECTED UNIAXIAL MINERALS (concluded)

Uniaxial negative minerals (continued)

Mineral	Uniaxial ngative minal (contined)	Index of refraction	
	Formula	$\overbrace{\substack{\text { Ordinary } \\ \text { ray }}}$	$\underbrace{}_{\substack{\text { Extraordinary } \\ \text { ray }}}$
Apatite	$9 \mathrm{CaO} \cdot 3 \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{Ca}(\mathrm{F}, \mathrm{Cl})_{2}$	1.634	1.631
Calcite	$\mathrm{CaO} \cdot \mathrm{CO}_{2}$	1.658	1.486
Gehlenite	$2 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$	1.669	1.658
Tourmaline	Contains $\mathrm{Na}_{2} \mathrm{O}, \mathrm{FeO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$, etc.	$1.669 \pm$	$1.638 \pm$
Dolomite	$\mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \mathrm{CO}_{2}$	1.681	1.500
Magnesite	$\mathrm{MgO} \cdot \mathrm{CO}_{2}$	1.700	1.509
Pyrochroite	$\mathrm{MnO} \cdot \mathrm{H}_{2} \mathrm{O}$	1.723	1.681
Corundum	$\mathrm{Al}_{2} \mathrm{O}_{3}$	1.768	1.760
Smithsonite	$\mathrm{ZnO} \cdot \mathrm{CO}_{2}$	1.818	1.618
Rhodochrosite	$\mathrm{MnO} \cdot \mathrm{CO}_{2}$	1.818	1.595
Jarosite	$\mathrm{K}_{2} \mathrm{O} \cdot 3 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	1.820	1.715
Siderite	$\mathrm{FeO} \cdot \mathrm{CO}_{2}$	1.875	1.635
Pyromorphite	$9 \mathrm{PbO} \cdot 3 \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{PbCl}_{2}$	2.050	2.042
Barysilite ....	$3 \mathrm{PbO} \cdot 2 \mathrm{SiO}_{2}$	2.070	2.050
Mimetite	$9 \mathrm{PbO} \cdot 3 \mathrm{As}_{2} \mathrm{O}_{5} \cdot \mathrm{PbCl}_{2}$	2.135	2.118
Matlockite	$\mathrm{PbO} \cdot \mathrm{PbCl}_{2}$	2.150	2.040
Stolzite	$\mathrm{PbO} \cdot \mathrm{WO}_{3}$	2.269	2.182
Geikielite	$(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot \mathrm{TiO}_{2}$	2.310	1.950
Vanadinite	$9 \mathrm{PbO} \cdot 3 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot \mathrm{PbCl}_{2}$	2.354	2.299
Wulfenite	$\mathrm{PbO} \cdot \mathrm{MoO}_{3}$	2.402	2.304 (Li line)
Octahedrite	$\mathrm{TiO}_{2}$	2.554	2.493
Massicotite	PbO	2.665	2.535 (Li line)
Proustite	$3 \mathrm{Ag}_{2} \mathrm{~S} \cdot \mathrm{As}_{2} \mathrm{~S}_{3}$	2.979	2.711 " "
Pryargyrite	$3 \mathrm{Ag}_{2} \mathrm{~S} \cdot \mathrm{Sb}_{2} \mathrm{~S}_{3}$	3.084	2.881 "
Hematite .	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	3.220	2.940 "

TABLE 547.-INDEX OF REFRACTION OF MISCELLANEOUS LIQUIDS
(see also Table 551), LIQUEFIED GASES, OILS, FATS, AND WAXES

Substance	${ }_{\text {Temp }}^{\text {e }}$	$\begin{aligned} & \text { Index for } D \\ & 0.589 \mu \end{aligned}$	Substance	${ }_{\text {Temp }}{ }^{\text {C }}$	$\begin{aligned} & \text { Index for } D \\ & 0.589 \mu \end{aligned}$
Liquefied gases:			Oils:		
$\mathrm{Br}_{2}$	15	1.659	Lavender	20	$1.464-1.466$
$\mathrm{Cl}_{2}$	14	1.367	Linseed	15	1.4820-1.4852
$\mathrm{CO}_{2}$	15	1.195	Maize	15.5	1.4757-1.4768
$\mathrm{C}_{2} \mathrm{~N}_{2}$	18	1.325	Mustard seed	15.5	1.4750-1.4762
$\mathrm{C}_{2} \mathrm{H}_{4}$	6	1.180	Neat's foot	15	1.4695-1.4708
$\mathrm{H}_{2} \mathrm{~S}$	18.5	1.384	Olive	15.5	1.4703-1.4718
$\mathrm{N}_{2}$	-190	1.205	Palm	60	1.4510
$\mathrm{NH}_{3}$	16.5	1.325	Peanut	15.5	1.4723-1.4731
NO	90	1.330	Peppermint	20	1.464-1.468
$\mathrm{N}_{2} \mathrm{O}$	15	1.194	Poppy	15.5	1.4770
$\mathrm{O}_{2}$	-181	1.221	Porpoise	25	1.4677
$\mathrm{SO}_{2}$	15	1.350	Rape (Colza)	15.5	1.4748-1.4752
HCl	16.5	1.252	Seal	25	1.4741
HBr	10	1.325	Sesame	15.5	1.4742
HI	16.5	1.466	Soya bean	15.5	1.4760-1.4775
Oils:			Sperm	15.5	1.4665-1.4672
Almond	15.5	1.4728-1.4753	Sunflower	15.5	1.4739
Castor	15	1.4799-1.4803	Tung	19	1.503
Citronella	20	$1.47-1.48$	Whale	40	1.4649
Clove	20	1.5301-1.5360	Fats and Waxes:		
Cocoanut	15.5	1.4587	Beef tallow ....	40	1.4552-1.4587
Cod liver	15	1.4790-1.4833	Beeswax	75	1.4398-1.4451
Cotton seed	15.5	1.4737-1.4757	Carnauba wax.	84	1.4520-1.4541
Croton	27	1.4757-1.4768	Cocoa butter	40	1.4560-1.4518
Eucalyptus	20	$1.460-1.467$	Lard	40	1.4584-1.4601
Lard	15.5	1.4702-1.4720	Mutton tallow..	60	1.4510

## TABLE 548.-INDEX OF REFRACTION OF SELECTED BIAXIAL MINERALS

The values are arranged in the order of increasing $\beta$ index of refraction and are for the sodium $D$ line except where noted. Selected by Edgar T. Wherry from private compilation of Esper S. Larsen, of the U. S. Geological Survey.

Mineral	Biaxial positive minerals	Index of $\underbrace{\text { refraction }}$		
	Formula	$n_{a}$	$n \beta$	m
Stercorite	$\mathrm{Na}_{2} \mathrm{O} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O} \cdot \mathrm{P}_{2} \mathrm{O}_{6} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	1.439	1.441	1.469
Aluminite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SO}_{2} \cdot 9 \mathrm{H}_{3} \mathrm{O}$	1.459	1.464	1.470
Tridymite	$\mathrm{SiO}_{2}$	1.469	1.470	1.473
Thenardite	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{SO}_{3}$	1.464	1.474	1.485
Carnallite	$\mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	1.466	1.475	1.494
Alunogen	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SO}_{3} \cdot 16 \mathrm{H}_{2} \mathrm{O}$	1.474	1.476	1.483
Melanterite	$\mathrm{FeO} \cdot \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	1.471	1.478	1.486
Natrolite	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1.480	1.482	1.493
Arcanite	$\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{SO}_{3}$	1.494	1.495	1.497
Struvite	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O} \cdot 2 \mathrm{MgO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	1.495	1.496	1.500
Heulandite	$\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	1.498	1.499	1.505
Thomsonite	$\left(\mathrm{Na}_{2}, \mathrm{Ca}\right) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	1.497	1.503	1.525
Harmotome	$(\mathrm{K} 2, \mathrm{Ba}) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{8} \cdot 5 \mathrm{SiO}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	1.503	1.505	1.508
Petalite	$\mathrm{Li}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 8 \mathrm{SiO}_{2}$	1.504	1.510	1.516
Monetite	$2 \mathrm{CaO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$	1.515	1.518	1.525
Newberyite	$2 \mathrm{MgO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	1.514	1.519	1.533
Gypsum	$\mathrm{CaO} \cdot \mathrm{SO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1.520	1.523	1.530
Mascagnite	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O} \cdot \mathrm{SO}_{3}$	1.521	1.523	1.533
Albite ....	" $\mathrm{Ab}^{\prime \prime}=\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{3}$	1.525	1.529	1.536
Hydromagnesit	$4 \mathrm{MgO} \cdot 3 \mathrm{CO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	1.527	1.530	1.540
Wavellite	$3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{P}_{2} \mathrm{O}_{5} \cdot 12\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{HF}\right)$	1.525	1.534	1.552
Kieserite	$\mathrm{MgO} \cdot \mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	1.523	1.535	1.586
Copiapite	$2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{SO}_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$	1.530	1.550	1.592
Whewellite	$\mathrm{CaO} \cdot \mathrm{C}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.491	1.555	1.650
Variscite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	1.551	1.558	1.582
Labradorite	$\mathrm{Ab}_{2} \mathrm{An}_{3}$	1.559	1.563	1.568
Gibbsite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	1.566	1.566	1.587
Wagnerite	$3 \mathrm{MgO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{MgF}_{2}$	1.569	1.570	1.582
Anhydrite	$\mathrm{CaO} \cdot \mathrm{SO}_{3}$	1.571	1.576	1.614
Colemanite	$2 \mathrm{CaO} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	1.586	1.592	1.614
Fremontite	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{8} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{HF}\right)$	1.594	1.603	1.615
Vivianite	$3 \mathrm{FeO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 8 \mathrm{H}_{2} \mathrm{O}$	1.579	1.603	1.633
Pectolite	$\mathrm{Na} 2 \mathrm{O} \cdot 4 \mathrm{CaO} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.595	1.604	1.633
Calamine	$2 \mathrm{ZnO} \cdot \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.614	1.617	1.636
Chondrodite	$4 \mathrm{MgO} \cdot \mathrm{SiO}_{2} \cdot \mathrm{Mg}(\mathrm{F}, \mathrm{OH})_{2}$	1.604	1.617	1.636
Turquoise	$\mathrm{CuO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{P}_{2} \mathrm{O}_{6} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	1.610	1.620	1.650
Topaz	$2 \mathrm{AlOF} \cdot \mathrm{SiO}_{2}$	1.619	1.620	1.627
Celestite	$\mathrm{SrO} \cdot \mathrm{SO}_{3}$	1.622	1.624	1.631
Prehnite	$2 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.616	1.626	1.649
Barite	$\mathrm{BaO} \cdot \mathrm{SO}_{3}$	1.636	1.637	1.648
Anthophyllite	$\mathrm{MgO} \cdot \mathrm{SiO}_{2}$	1.633	1.642	1.657
Sillimanite .	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$	1.638	1.642	1.653
Forsterite	$2 \mathrm{MgO} \cdot \mathrm{SiO}_{2}$	1.635	1.651	1.669
Enstatite	$\mathrm{MgO} \cdot \mathrm{SiO}_{2}$	1.650	1.653	1.658
Euclase	$2 \mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.653	1.656	1.673
Triplite	$3 \mathrm{MnO} \cdot \mathrm{P}_{2} \mathrm{O}_{8} \cdot \mathrm{MnF}_{2}$	1.650	1.660	1.672
Spodumene	$\mathrm{Li}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2}$	1.660	1.666	1.676
Diopside	$\mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \mathrm{SiO}_{2}$	1.664	1.671	1.694
Olivine	$2(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot \mathrm{SiO}_{2}$	1.662	1.680	1.699
Triphylite	$\mathrm{Li}_{2} \mathrm{O} \cdot 2(\mathrm{Fe}, \mathrm{Mn}) \mathrm{O} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$	1.688	1.688	1.692
Zoisite.	$4 \mathrm{CaO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.700	1.702	1.706
Strengite	$\mathrm{Fe}_{2} \mathrm{O}^{2} \cdot \mathrm{P}_{2} \mathrm{O}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	1.708	1.708	1.745
Diaspore	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	1.702	1.722	1.750
Staurolite	$2 \mathrm{FeO} \cdot 5 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.736	1.741	1.746
Chrysoberyl	$\mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$	1.747	1.748	1.757
Azurite	$3 \mathrm{CuO} \cdot 2 \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.730	1.758	1.838
Scorodite	$\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{As}_{2} \mathrm{O}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	1.765	1.774	1.797

(continued)

TABLE 548.-INDEX OF REFRACTION OF SELECTED BIAXIAL MINERALS (continued)

Biaxial positive minerals (continued)

Mineral	Formula	Index of $\underbrace{\text { refraction }}$		
		na	${ }^{n} \beta$	${ }^{7}$
Olivenite	$4 \mathrm{CuO} \cdot \mathrm{As}_{2} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	1.772	1.810	1.863
Anglesite	$\mathrm{PbO} \cdot \mathrm{SO}_{3}$	1.877	1.882	1.894
Titanite	$\mathrm{CaO} \cdot \mathrm{TiO}_{2} \cdot \mathrm{SiO}_{2}$	1.900	1.907	2.034
Claudetite	$\mathrm{As}_{2} \mathrm{O}{ }_{3}$	1.871	1.920	2.010
Sulfur	S	1.950	2.043	2.240
Cotunnite	$\mathrm{PbCl}_{2}$	2.200	2.217	2.260
Huebnerite	$\mathrm{MnO} \cdot \mathrm{WO}_{3}$	2.170	2.220	2.320
Manganite	$\mathrm{Mn}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	2.240	2.240	2.530 (Li)
Raspite	$\mathrm{PbO} \cdot \mathrm{WO}_{3}$	2.270	2.270	2.300
Mendipite	$2 \mathrm{PbO} \cdot \mathrm{PbCl} 2_{2}$	2.240	2.270	2.310
Tantalite	$(\mathrm{Fe}, \mathrm{Mn}) \mathrm{O} \cdot \mathrm{Ta}_{2} \mathrm{O}_{3}$	2.260	2.320	2.430 (Li)
Wolframite	$(\mathrm{Fe}, \mathrm{Mn}) \mathrm{O} \cdot \mathrm{WO}_{3}$	2.310	2.360	2.460 (Li)
Crocoite	$\mathrm{PbO} \cdot \mathrm{CrO}_{3}$	2.310	2.370	2.660 (Li)
Pseudobrookite	$2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{TiO}_{2}$	2.380	2.390	2.420 (Li)
Stibiotantalite	$\mathrm{Sb}_{2} \mathrm{O}_{3} \cdot \mathrm{Ta}_{2} \mathrm{O}_{3}$	2.374	2.404	2.457
Montroydite	HgO	2.370	2.500	2.650 (Li)
Brookite ...	$\mathrm{TiO}_{2}$	2.583	2.586	2.741
Massicot	PbO	2.510	2.610	2.710

Biaxial negative minerals

Mirabilite	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{SO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$	1.394	1.396	1.398
Thomsenolite	$\mathrm{NaF} \cdot \mathrm{CaF}_{2} \cdot \mathrm{AlF}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	1.407	1.414	1.415
Natron	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{CO}_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$	1.405	1.425	1.440
Kalinite	$\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SO}_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$	1.430	1.452	1.458
Epsomite	$\mathrm{MgO} \cdot \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	1.433	1.455	1.461
Sassolite	$\mathrm{B}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	1.340	1.456	1.459
Borax	$\mathrm{Na}_{2} \mathrm{O} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$	1.447	1.470	1.472
Goslarite	$\mathrm{ZnO} \cdot \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	1.457	1.480	1.484
Pickeringite	$\mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SO}_{3} \cdot 22 \mathrm{H}_{2} \mathrm{O}$	1.476	1.480	1.483
Bloedite	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{MgO} \cdot 2 \mathrm{SO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	1.483	1.487	1.486
Trona	$3 \mathrm{Na}_{2} \mathrm{O} \cdot 4 \mathrm{CO}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	1.410	1.492	1.542
Thermonatrite	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.420	1.495	1.518
Stilbite	$\left(\mathrm{Ca}, \mathrm{Na}_{2}\right) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	1.494	1.498	1.500
Niter	$\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{N}_{2} \mathrm{O}_{3}$	1.334	1.505	1.506
Kainite	$\mathrm{MgO} \cdot \mathrm{SO}_{3} \cdot \mathrm{KCl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	1.494	1.505	1.516
Gaylussite	$\mathrm{Na} 2 \mathrm{O} \cdot \mathrm{CaO} \cdot 2 \mathrm{CO}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	1.444	1.516	1.523
Scolecite	$\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	1.512	1.519	1.519
Laumontite	$\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{3} \mathrm{O}$	1.513	1.524	1.525
Orthoclase	$\mathrm{K} 2 \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$	1.518	1.524	1.526
Microcline	Same as preceding	1.522	1.526	1.530
Anorthoclase	( $\mathrm{Na}, \mathrm{K})_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$	1.523	1.529	1.531
Glauberite	$\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{CaO} \cdot 2 \mathrm{SO}_{3}$	1.515	1.532	1.536
Cordierite	$4(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot 4 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 10 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.534	1.538	1.540
Chalcanthite	$\mathrm{CuO} \cdot \mathrm{SO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	1.516	1.539	1.546
Oligoclase	$\mathrm{Ab}_{4} \mathrm{An}$	1.539	1.543	1.547
Beryllonite	$\mathrm{Na}_{2} \mathrm{O} \cdot 2 \mathrm{BeO} \cdot \mathrm{P}_{2} \mathrm{O}_{3}$	1.552	1.558	1.561
Kaolinite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1.561	1.563	1.565
Biotite..	$\mathrm{K}_{2} \mathrm{O} \cdot 4(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot 2 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.541	1.574	1.574
Autunite	$\mathrm{CaO} \cdot 2 \mathrm{UO}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 8 \mathrm{H}_{2} \mathrm{O}$	1.553	1.575	1.577
Anorthite	$" \mathrm{An} "=\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$	1.576	1.584	1.588
Lanthanite	$\mathrm{La}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{CO}_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	1.520	1.587	1.613
Pyrophyllite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.552	1.588	1.600
Talc	$3 \mathrm{MgO} \cdot 4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.539	1.589	1.589
Hopeite	$3 \mathrm{ZnO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	1.572	1.590	1.590
Muscovite	$\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1.561	1.590	1.594
Amblygonite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{LiF}$	1.579	1.593	1.597
Lepidolite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2} \cdot 2(\mathrm{~K}, \mathrm{Li}) \mathrm{F}$	1.560	1.598	1.605
Phlogopite	$\mathrm{K} 2 \mathrm{O} \cdot 6 \mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	1.562	1.606	1.606
Tremolite	$\mathrm{CaO} \cdot 3 \mathrm{MgO} \cdot 4 \mathrm{SiO}_{2}$	1.600	1.616	1.627

Biaxial negative minerals (continued)

		Index of ${ }^{\text {refraction }}$		
Mineral	Formula	na	n $\beta$	ny
Actinolite	$\mathrm{CaO} \cdot 3(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot 4 \mathrm{SiO}_{2}$	1.614	1.630	1.641
Wollastonite	$\mathrm{CaO} \cdot \mathrm{SiO}_{2}$	1.620	1.632	1.634
Lazulite	( $\mathrm{Fe}, \mathrm{Mg}$ ) $\mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$	1.612	1.634	1.643
Danburite	$\mathrm{CaO} \cdot \mathrm{B}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$	1.632	1.634	1.636
Glaucophane	$\mathrm{Na}_{2} \mathrm{O} \cdot 2 \mathrm{FeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$	1.621	1.638	1.638
Andalusite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$	1.632	1.638	1.643
Hornblende	Contains $\mathrm{Na}_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{FeO}, \mathrm{SiO}_{2}$, etc.	1.634	1.647	1.652
Datolite	$2 \mathrm{CaO} \cdot 2 \mathrm{SiO}_{2} \cdot \mathrm{~B}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	1.625	1.653	1.669
Erythrite	$3 \mathrm{CoO} \cdot \mathrm{As}_{2} \mathrm{O}_{5} \cdot 8 \mathrm{H}_{2} \mathrm{O}$	1.626	1.661	1.699
Monticellite	$\mathrm{CaO} \cdot \mathrm{MgO} \cdot \mathrm{SiO}_{2}$	1.651	1.662	1.668
Strontianite	$\mathrm{SrO} \cdot \mathrm{CO}_{2}$	1.520	1.667	1.667
Witherite	$\mathrm{BaO} \cdot \mathrm{CO}_{2}$	1.529	1.676	1.677
Aragonite	$\mathrm{CaO} \cdot \mathrm{CO}_{2}$	1.531	1.682	1.686
Axinite .	$6(\mathrm{Ca}, \mathrm{Mn}) \mathrm{O} \cdot 2 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{~B}_{2} \mathrm{O}_{3} \cdot 8 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.678	1.685	1.688
Dumortierite	$8 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{~B}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.678	1.686	1.689
Cyanite	$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$	1.712	1.720	1.728
Epidote	$4 \mathrm{CaO} \cdot 3(\mathrm{Al}, \mathrm{Fe})_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.729	1.763	1.780
Atacamite	$3 \mathrm{CuO} \cdot \mathrm{CuCl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	1.831	1.861	1.880
Fayalite	$2 \mathrm{FeO} \cdot \mathrm{SiO}_{2}$	1.824	1.864	1.874
Caledonite	$2(\mathrm{~Pb}, \mathrm{Cu}) \mathrm{O} \cdot \mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	1.818	1.866	1.909
Malachite	$2 \mathrm{CuO} \cdot \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.655	1.875	1.909
Lanarkite	$2 \mathrm{PbO} \cdot \mathrm{SO}_{3}$	1.930	1.990	2.020
Leadhillite	$4 \mathrm{PbO} \cdot \mathrm{SO}_{3} \cdot 2 \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.870	2.000	2.010
Cerusite	$\mathrm{PbO} \cdot \mathrm{CO}_{2}$	1.804	2.076	2.078
Laurionite	$\mathrm{PbCl}_{2} \cdot \mathrm{PbO} \cdot \mathrm{H}_{2} \mathrm{O}$	2.077	2.116	2.158
Matlockite	$\mathrm{PbO} \cdot \mathrm{PbCl}_{2}$	2.040	2.150	2.150
Baddeleyite	$\mathrm{ZrO}_{2}$	2.130	2.190	2.200
Lepidocrocite	$\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	1.930	2.210	2.510
Limonite ...	$2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in part	2.170	2.290	2.310
Goethite	$\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	2.210	2.350	$2.350(\mathrm{Li})$
Valentinite	$\mathrm{Sb}_{2} \mathrm{O}_{3}$	2.180	2.350	2.350
Turgite	$2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ in part	2.450	2.550	$2.550(\mathrm{Li})$
Realgar	AsS	2.460	2.590	2.610 (Li)
Terlinguaite	$\mathrm{Hg}_{2} \mathrm{OCl}$	2.350	2.640	2.660 (Li)
Hutchinsonite	$(\mathrm{Tl}, \mathrm{Ag})_{2} \mathrm{~S} \cdot \mathrm{PbS} \cdot 2 \mathrm{As}_{2} \mathrm{~S}_{3}$	3.078	3.176	3.188
Stibnite	$\mathrm{Sb}_{2} \mathrm{~S}_{3}$	3.194	4.303	4.460


Crystal	Spectrum line	Index of refraction		
		$n^{2}$	$n \beta$	${ }^{n} \gamma$
Ammonium oxalate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$.	D	1.4381	1.5475	1.5950
Ammonium acid tartrate, $\left(\mathrm{NH}_{4}\right) \mathrm{H}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)$	D	1.5188	1.5614	1.5910
Ammonium tartrate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$	D	-	1.581	-
Antipyrin, $\mathrm{CuH}_{12} \mathrm{NO}_{2}$	D	1.5697	1.6935	1.7324
Citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \cdot \mathrm{H}_{2} \mathrm{O}$	D	1.4932	1.4977	1.5089
Codein, $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	D	1.5390	1.5435	-
Magnesium carbonate, $\mathrm{MgCO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.	D	1.495	1.501	1.526
" sulfate, $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \ldots$	D	1.432	1.455	1.461
"، "	Cd, . $226 \mu$	1.4990	1.5266	1.5326
" " ...........	H, . $656 \mu$	1.4307	1.4532	1.4584
Potassium bichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	D	1.7202	1.7380	1.8197
" chromate, $\mathrm{K}_{2} \mathrm{CrO}_{4}$	D	1.683	1.7254	-
" "	red	1.6873	1.722	1.7305
" nitrate, $\mathrm{KNO}_{3}$	D	1.3346	1.5056	1.5064
" sulfate, $\mathrm{K}_{2} \mathrm{SO}_{4}$	F	1.4976	1.4992	1.5029
" ${ }^{\text {de, }}$	D	1.4932	1.4946	1.4980
" " $\ldots$......	C	1.4911	1.4928	1.4959
Racemic acid, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	yellow	-	1.526	-
Resorcin, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$	D	661	1.555	-
Sodium bichromate, $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}$..	D	1.6610	1.6994	1.7510
" acid tartrate, $\mathrm{NaH}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \cdot 2 \mathrm{H}$	red	1.5122	1.5332	-
Sugar (cane), $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$.	T1	1.5422	1.5685	1.5734
	D	1.5397	1.5667	1.5716
-	Li	1.5379	1.5639	1.5693
Tartaric acid, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ (right-)	D	1.4953	1.5353	1.6046
Zinc sulfate, $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.	F	1.4620	1.4860	1.4897
" "	D	1.4568	1.4801	1.4836
"	C	1.4544	1.4776	1.4812

TABLE 550.-SPECIFIC GRAVITY, COEFFICIENT OF EXPANSION, AND STAIN CLASS OF OPTICAL GLASS *

Glass type	Specific gravity		Cofficient of expansion mean values $\times 10^{7}$				Stain class for $B L$
	$B L$	$C G$	$-40^{\circ}$ to $0^{\circ}$	$0^{\circ}$ to $40^{\circ}$	$0^{\circ}$ to $100^{\circ}$	$0^{\circ}$ to $300^{\circ}$	
			BL	$B L$	BL	$C G$	
511635	2.48		73.0	77.0	79.6		1
517645	2.53	2.53	62.0	65.2	67.5	80	1
523586	2.53	...	75.8	80.2	83.0	. .	1
529516	2.73	. .	70.2	73.0	74.5	.	1
573574	3.21		74.2	78.0	80.0		3
580410	3.27	3.21				99	1
584460	3.31		76.2	80.0	81.9		1
605381	3.49	3.47				86	1
611572	3.57	3.56	57.8	61.2	64.1	70	5
611588	3.58	3.40	60.8	64.0	66.9	71	5
617366	3.64	3.58	70.8	73.0	74.2	89	1
617550	3.66	3.50	...	.	. . .	72	5
620362	3.67	3.61	...	. .	. .	87	1
649338	3.91	3.89				85	2
720293	4.51		73.5	75.2	77.3		3
Melt No.							
EK-110-5328		4.1	58.0	61.2	63.5		
EK-32-2641		4.5	57.8	61.2	63.9	$\ldots$	
EK-33-2734s		4.7	53.5	57.0	59.4	. .	
EK-45-29		4.6	57.0	60.5	63.4	. .	

$B L$, Bausch \& Lomb Optical glass. EK, Eastman Kodak glass. $C G$ Corning glass.
The first 15 glass types in column I are described in Table 524 of NBS glasses.

[^213]SMITHSONIAN PHYSICAL TABLES

TABLE 551.-INDEX OF REFRACTION OF SOME LIQUIDS RELATIVE TO AIR

Substance	Density	${ }^{\text {Temp }} \mathrm{C}$	Indices of refraction				
			${ }_{H}^{0.397 \mu}$	$\stackrel{0.434 \mu}{G^{\prime}}$	$\underset{F}{0.486 \mu}$	$0.589 \mu$	${ }^{0.656 \mu}$
Acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO}$	. 780	20	-	1.3394	1.3359	1.3316	1.3298
Acetone, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$	. 791	20	-	1.3678	1.3639	1.3593	1.3573
Aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH}_{2}$	1.022	20		1.6204	1.6041	1.5863	1.5793
Alcohol, methyl, $\mathrm{CH}_{3} \cdot \mathrm{OH}$	. 794	20	1.3399	1.3362	1.3331	1.3290	1.3277
". ethyl, $\mathrm{C}_{2} \mathrm{H}_{6} \cdot \mathrm{OH}$	. 808	0		1.3773	1.3739	1.3695	1.3677
	. 800	20		1.3700	1.3666	1.3618	1.3605
" $d n / d t$		20	-	-. 0004	-. 0004	-. 0004	-. 0004
" n-propyl $\mathrm{C}_{3} \mathrm{H}_{7} \cdot \mathrm{OH}$	. 804	20	-	1.3938	1.3901	1.3854	1.3834
Benzene, $\mathrm{C}_{0} \mathrm{H}_{0}$	. 880	20		1.5236	1.5132	1.5012	1.4965
" $\mathrm{C}_{6} \mathrm{H}_{6} d n / d t$		20		-. 0007	-. 00006	-. 0006	-. 0006
Bromnaphthalene, $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}$	1.487	20	1.7289	1.7041	1.6819	1.6582	1.6495
Carbon disulfide, $\mathrm{CS}_{2}$	1.293	0	1.7175	1.6920	1.6688	1.6433	1.6336
" " $\quad$........	1.263	20	1.6994	1.6748	1.6523	1.6276	1.6182
" tetrachloride, CC	1.591	20		1.4729	1.4676	1.4607	1.4579
Chinolin, $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$	1.090	20	-	1.6679	1.6470	1.6245	1.6161
Chloral, $\mathrm{CCl}_{3} \cdot \mathrm{CHO}$	1.512	20	-	1.4679	1.4624	1.4557	1.4530
Chloroform, $\mathrm{CHCl}_{3}$	1.489	20	1.463	1.458	1.4530	1.4467	1.4443
Decane, $\mathrm{C}_{10} \mathrm{H}_{22}$	. 728	14.9	-	1.4200	1.4160	1.4108	1.4088
Ether, ethyl, $\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{O}$	. 715	20	-	1.3607	1.3576	1.3538	1.3515
" " ${ }^{\text {c }} d n / d t$		20		-. 0006	-. 0000	-. 0006	-. 0006
Ethyl nitrate, $\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{O} \cdot \mathrm{NO}_{3}$	1.109	20	-	1.395	1.392	1.3853	1.3830
Formic acid, $\mathrm{H} \cdot \mathrm{CO}_{2} \mathrm{H}$	1.219	20	-	1.3804	1.3764	1.3714	1.3693
Glycerine, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$	1.260	20	-	1.4828	1.4784	1.4730	1.4706
Hexane, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) 4 \mathrm{CH}$	. 660	20	-	1.3836	1.3799	1.3754	1.3734
Hexylene, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH} \cdot \mathrm{C}$	. 679	23.3		1.4059	1.4007	1.3945	1.3920
Methylene iodide $\mathrm{CH}_{2} \mathrm{I}_{2}$.	3.318	20	1.8027		1.7692	1.7417	1.7320
" " dn/dt		20			$-.0007$	-. 0007	-. 0006
Naphthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$	. 962	98.4	-	-	1.6031	1.5823	1.5746
Nicotine, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$	1.012	22.4	-	1.5439		1.5239	1.5198
Octane, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$	. 707	15.1	-	1.4097	1.4046	1.4007	1.3987
Oil, almond	. 92	0		-	1.4847	1.4782	1.4755
anise seed	. 99	15.1	1.6084	-	1.5743	1.5572	1.5508
	. 99	21.4			1.5647	1.5475	1.5410
bitter almond	1.05	20	-	1.5775	1.5623	-	1.5391
cassia		10	1.7039	-	1.6389	1.6104	1.6007
		22.5	1.6985	-	1.6314	1.6026	1.5930
cinnamon	1.05	23.5	-	-	1.6508	1.6188	1.6077
olive	. 92	0			1.4825	1.4763	1.4738
rock		0		-	1.4644	1.4573	1.4545
turpentine	. 87	10.6	1.4939	-	1.4817	1.4744	1.4715
	. 87	20.7	1.4913		1.4793	1.4721	1.4692
Pentane, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	. 625	15.7	-	1.3645	1.3610	1.3581	1.3570
Phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	1.060	40.6	-	1.5684	1.5558	1.5425	1.5369
	1.021	82.7			1.5356	5	1.5174
Styrene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH} \cdot \mathrm{CH}_{2}$	. 982	16.6		1.5816	1.5659	1.5485	1.5419
$\stackrel{\text { Thymol, } \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}}{\text { Toluene, } \mathrm{CH}_{3}{ }^{\text {C }} \mathrm{C}_{6} \mathrm{H}_{6}}$	. 88				1.5386		1.5228
Toluene, $\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$	. 86	20		1.5170	1.5070	1.4955	1.4911
Water, $\mathrm{H}_{2} \mathrm{O}$	-	20	1.3435	1.3404	1.3372	1.3330	1.3312
	-	0	1.3444	1.3413	1.3380	1.3338	1.3319
"		40	1.3411	1.3380	1.3349	1.3307	1.3290
"	-	80	1.3332	1.3302	1.3270	1.3230	1.3213

TABLE 552.-INDICES OF REFRACTION FOR SOLUTIONS OF SALTS AND ACIDS RELATIVE TO AIR

Substance	Density	${ }^{\text {Temp }}{ }^{\circ} \mathrm{C}$	Indices of refraction for spectrum lines				
			C	D	F	$\mathbf{H}_{\gamma}$	H
Solutions in water							
Ammonium chloride	1.067	27.05	1.37703	1.37936	1.38473	-	1.39336
	. 025	29.75	. 34850	. 35050	. 35515	-	. 36243
Calcium chloride	. 398	25.65	. 44000	. 44279	. 44938	-	. 46001
" ${ }^{\text {" }}$	. 215	22.9	. 39411	. 39652	. 40206	-	. 41078
"	. 143	25.8	. 37152	. 37369	. 37876	-	. 38666
Hydrochloric acid	1.166	20.75	1.40817	1.41109	1.41774	-	1.42816
Nitric acid	. 359	18.75	. 39893	. 40181	. 40857	-	. 41961
Potash (caustic)	. 416	11.0	. 40052	. 40281	. 40808	-	. 41637
Potassium chloride	normal	lution	. 34087	. 34278	. 34719	1.35049	-
" ${ }^{\text {c }}$	double	ormal	. 34982	. 35179	. 35645	. 35994	-
"	triple	rmal	. 35831	. 36029	. 36512	. 36890	-
Soda (caustic)	1.376	21.6	1.41071	1.41334	1.41936	-	1.42872
Sodium chloride	. 189	18.07	. 37562	. 37789	. 38322	1.38746	-
" ${ }^{\text {a }}$	. 109	18.07	. 35751	. 35959	. 36442	. 36823	-
" "	. 035	18.07	. 34000	. 34191	. 34628	. 34969	-
Sodium nitrate	1.358	22.8	1.38283	1.38535	1.39134	-	1.40121
Sulfuric acid	. 811	18.3	. 43444	. 43669	. 44168	-	. 44883
" ${ }^{\text {" }}$	. 632	18.3	. 42227	. 42466	. 42967	-	. 43694
" "	. 221	18.3	. 36793	. 37009	. 37468	-	. 38158
" "	. 028	18.3	. 33663	. 33862	. 34285	-	. 34938
Zinc chloride	1.359	26.6	1.39977	1.40222	1.40797	-	1.41738
" ${ }^{\text {a }}$	. 209	26.4	. 37292	. 37515	. 38026	-	. 38845
Solutions in ethyl alcohol							
Ethyl alcohol	. 789	25.5	1.35971	1.35971	1.36395	-	1.37094
	. 932	27.6	. 35372	. 35556	. 35986	-	. 36662
Fuchsin (nearly satur	-	16.0	. 3918	. 398	. 361	-	. 3759
Cyanin (saturated) .	-	16.0	. 3831	-	. 3705	-	. 3821

Note.-Cyanin in chloroform also acts anomalously; for example, Sieben gives for a 4.5 percent solution $\mu_{A}=1.4593, \mu_{B}=1.4695, \mu_{F}$ (green) $=1.4514, \mu_{G}$ (blue) $=1.4554$. For a 9.9 percent solution he gives $\mu_{A}=1.4902, \mu_{F}$ (green) $=1.4497, \mu_{G}($ blue $)=1.4597$.

Solutions of potassium permanganate in water

$\begin{aligned} & \stackrel{5}{5} \\ & \stackrel{0}{0} 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \stackrel{y}{5} \\ & \text { E } \\ & \stackrel{1}{0} \\ & \stackrel{y}{0} \\ & 3 \end{aligned}$					
. $687 \mu$	B	1.3328	1.3342	-	1.3382	. $516 \mu$	-	1.3368	1.3385	-	-
. 656	C	. 3335	. 3348	1.3365	. 3391	. 500	-	. 3374	. 3383	1.3386	1.3404
. 617	-	. 3343	. 3365	. 3381	. 3410	. 486	F	. 3377	-	-	. 3408
. 594	-	. 3354	. 3373	. 3393	. 3426	. 480	-	. 3381	. 3395	. 3398	. 3413
. 589	D	. 3353	. 3372	-	. 3426	. 464	-	. 3397	. 3402	. 3414	. 3423
. 568	-	. 3362	. 3387	. 3412	. 3445	. 447	-	. 3407	. 3421	. 3426	. 3439
. 553	-	. 3366	. 3395	. 3417	. 3438	. 434	-	. 3417	-	-	. 3452
. 527	E	. 3363	-	-	-	. 423	-	. 3431	. 3442	. 3457	. 3468
. 522	-	. 3362	. 3377	. 3388		-	-	-	-	-	$\rightarrow$

## 532

 TABLE 553.-INDEX OF REFRACTION OF AIR $\left(15^{\circ} \mathrm{C}, 76 \mathrm{cmHg}\right)$Corrections for reducing wavelengths and frequencies in air ( $15^{\circ} \mathrm{C}, 76 \mathrm{cmHg}$ ) to vacuo
The indices were computed from the Cauchy formula $(n-1) 10^{7}=2726.43+12.288 /\left(\lambda^{2} \times\right.$ $\left.10^{-8}\right)+0.3555 /\left(\lambda^{4} \times 10^{-16}\right)$. For $0^{\circ} \mathrm{C}$ and 76 cmHg the constants of the equation become 2875.66, 13.412 and 0.3777 respectively, and for $30^{\circ} \mathrm{C}$ and $76 \mathrm{cmHg} 2589.72,12.259$ and 0.2576 . Sellmeier's formula for but one absorption band closely fits the observations: $n^{2}=1+0.00057378 \lambda^{2} /\left(\lambda^{2}-\right.$ 595260). If $n-1$ were strictly proportional to the density, then $(n-1)_{0} /(n-1) t$ would equal $1+$ at where a should be 0.00367 . The following values of $a$ were found to hold:

$$
\begin{array}{llllllll}
\lambda & 0.85 \mu & 0.75 \mu & 0.65 \mu & 0.55 \mu & 0.45 \mu & 0.35 \mu & 0.25 \mu \\
\alpha & 0.003672 & 0.003674 & 0.003678 & 0.003685 & 0.003700 & 0.003738 & 0.003872
\end{array}
$$

The indices are for dry air $\left(0.05 \pm \% \mathrm{CO}_{2}\right)$. Corrections to reduce to dry air the indices for moist air may be made for any wavelength by Lorenz's formula, $+0.000041(m / 760)$, where $m$ is the vapor pressure in mm. The corresponding frequencies in waves per cm and the corrections to reduce wavelengths and frequencies in air at $15^{\circ} \mathrm{C}$ and 76 cmHg pressure to vacuo are given. E.g., a light wave of 5000 angstroms in dry air at $15^{\circ} \mathrm{C}, 76 \mathrm{cmHg}$ becomes 5001.391 A in vacuo ; a frequency of 20,000 waves per cm correspondingly becomes 19994.44.

$\begin{gathered} \text { Wave- } \\ \text { length, } \\ \text { ang- } \\ \text { antroms } \end{gathered}$	$\begin{aligned} & \text { Dry air } \\ & (n-1) \\ & \left(x-10^{7}\right. \\ & 15^{\circ} \mathrm{C} \\ & 76^{\mathrm{cmHg}} \end{aligned}$	$\begin{gathered} \text { Vacuo } \\ \text { correction } \\ \text { for in air } \\ (n \lambda-\lambda) \\ \text { add } \end{gathered}$	$\begin{gathered} \text { Fre- } \\ \text { quency } \\ \text { waves per } \\ \text { cm } \\ \frac{1}{\lambda} \\ \text { in air } \end{gathered}$	Vacuo correction for $\frac{1}{\lambda}$ in air $\left(\frac{1}{n \lambda}-\frac{1}{\lambda}\right)$	Wave- length, ang.	$\begin{gathered} \text { Dry air } \\ (n-1) \\ \times 10^{7} \\ \times 15^{\circ} \mathrm{C} \\ 76 \mathrm{cmHg} \end{gathered}$	$\begin{gathered} \text { Vacuo } \\ \text { correction } \\ \text { for } \lambda \text { in a arir } \\ (n \lambda-\lambda) \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Fre- } \\ \text { quency } \\ \text { waves per } \\ \text { cm } \end{array} \\ \frac{1}{\lambda} \\ \text { in air } \end{gathered}$	Vacuo correction for $\frac{1}{\lambda}$ in air $\left(\frac{1}{n \lambda}-\frac{1}{\lambda}\right)$
2000	3256	. 651	50,000	16.27	5500	2771	1.524	18,181	5.04
2100	3188	. 670	47,619	15.18	5600	2769	1.551	17,857	4.94
2200	3132	. 689	45,454	14.23	5700	2768	1.578	17,543	4.85
2300	3086	. 710	43,478	13.41	5800	2766	1.604	17,241	4.77
2400	3047	. 731	41,666	12.69	5900	2765	1.631	16,949	4.68
2500	3014	. 754	40,000	12.05	6000	2763	1.658	16,666	4.60
2600	2986	. 776	38,461	11.48	6100	2762	1.685	16,393	4.53
2700	2962	. 800	37,037	10.97	6200	2761	1.712	16,129	4.45
2800	2941	. 824	35,714	10.50	6300	2760	1.739	15,873	4.38
2900	2923	. 848	34,482	10.08	6400	2759	1.766	15,625	4.31
3000	2907	. 872	33,333	9.69	6500	2758	1.792	15,384	4.24
3100	2893	. 897	32,258	9.33	6600	2757	1.819	15,151	4.18
3200	2880	. 922	31,250	9.00	6700	2756	1.846	14,925	4.11
3300	2869	. 947	30,303	8.69	6800	2755	1.873	14,705	4.05
3400	2859	. 972	29,411	8.41	6900	2754	1.900	14,492	3.99
3500	2850	998	28,571	8.14	7000	2753	1.927	14,285	3.93
3600	2842	1.023	27,777	7.89	7100	2752	1.954	14,084	3.88
3700	2835	1.049	27,027	7.66	7200	2751	1.981	13,888	3.82
3800	2829	1.075	26,315	7.44	7300	2751	2.008	13,698	3.77
3900	2823	1.101	25,641	7.24	7400	2750	2.035	13,513	3.72
4000	2817	1.127	25,000	7.04	7500	2749	2.062	13,333	3.66
4100	2812	1.153	24,390	6.86	7600	2749	2.089	13,157	3.62
4200	2808	1.179	23,809	6.68	7700	2748	2.116	12,987	3.57
4300	2803	1.205	23,255	6.52	7800	2748	2.143	12,820	3.52
4400	2799	1.232	22,727	6.36	7900	2747	2.170	12,658	3.48
4500	2796	1.258	22,222	6.21	8000	2746	2.197	12,500	3.43
4600	2792	1.284	21,739	6.07	8100	2746	2.224	12,345	3.39
4700	2789	1.311	21,276	5.93	8250	2745	2.265	12,121	3.33
4800	2786	1.338	20,833	5.80	8500	2744	2.332	11,764	3.23
4900	2784	1.364	20,406	5.68	8750	2743	2.400	11,428	3.13
5000	2781	1.391	20,000	5.56	9000	2742	2.468	11,111	3.05
5100	2779	1.417	19,607	5.45	9250	2741	2.536	10,810	2.96
5200	2777	1.444	19,230	5.34	9500	2740	2.604	10,526	2.88
5300	2775	1.471	18,867	5.23	9750	2740	2.671	10,256	2.81
5400	2773	1.497	18,518	5.13	10000	2739	2.739	10,000	2.74

A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_{t}-1=\frac{n_{0}-1}{1+a t} \cdot \frac{p}{760}$, where $n_{t}$ is the index of refraction for temperature $t, n_{0}$ for temperature zero, a the coefficient of expansion of the gas with temperature, and $p$ the pressure of the gas in millimeters of mercury. For air see Table 553.

Indices of refraction

Wave-length	$(n-1)^{10^{3}}$				Wave-length $\mu$	$(n-1)^{10^{3}}$			
	Air	0	$N$	H		Air	0	$N$	H
$\mu$									
. 4861	. 2951	. 2734	. 3012	. 1406	. 4360	. 2971	. 2743	$\mathrm{CO}_{2}$	. 1418
. 5461	. 2936	. 2717	. 2998	. 1397	. 5462	. 2937	. 2704	.4506	. 1397
. 5790	. 2930	. 2710		. 1393	. 6709	. 2918	. 2683	. 4471	. 1385
. 6563	. 2919	. 2698	. 2982	. 1387	6.709	. 2881	. 2643	. 4804	. 1361
					8.678	. 2888	. 2650	. 4579	. 1361

The values are for $0^{\circ} \mathrm{C}$ and 760 mmHg

Substance $\underset{\substack{\text { Kind of } \\ \text { light }}}{\text { d }}$	Indices of refraction	Substance	Kind of light	Indices of refraction
Acetone ......... D	1.001079-1.001100	Hydrogen	white	1.000138-1.000143
Ammonia ........ white	$1.000381-1.000385$		D	1.000132
D	1.000373-1.000379	en	D	1.000644
Argon ........... D	1.000281	gen	D	1.000623
Benzene ......... D	1.001700-1.001823	Methane	white	1.000443
Bromine . ....... D	1.001132		D	1.000444
Carbon dioxide ... white	1.000449-1.000450	Methyl alcohol	D	$1.000549-1.000623$
D	1.000448-1.000454	Methyl ether	D	1.000891
Carbon disulfide. $\left\{\begin{array}{c}\text { white } \\ D\end{array}\right.$	$\begin{aligned} & 1.001500 \\ & 1.001478-1.001485 \end{aligned}$	Nitric oxide	white	$\begin{aligned} & 1.000303 \\ & 1.000297 \end{aligned}$
Carbon monoxide $\left\{\begin{array}{l}\text { white } \\ \text { white }\end{array}\right.$	1.000340	Nitrogen	white	1.000295-1.000300
Chlorine ......... white	1.000772	Nitrous	white	1.000296-1.000298
"	1.000773		D	1.000516
Chloroform ...... D	1.001436-1.001464	Oxygen	white	1.000272-1.000280
Cyanogen ........ white	1.000834	" .	D	1.000271-1.000272
D	1.000784-1.000825	Pentane	D	1.001711
Ethyl alcohol .... D	1.000871-1.000885	Sulfur dioxide	white	1.000665
Ethyl ether ...... D	1.001521-1.001544		D	1.000686
Helium .......... D	1.000036	Water	white	1.000261
$\begin{gathered} \text { Hydrochloric } \\ \text { acid } \ldots \ldots \ldots . \end{gathered}\left\{\begin{array}{c} \text { white } \\ \mathrm{D} \end{array}\right.$	$\begin{aligned} & 1.000449 \\ & 1.000447 \end{aligned}$	"	D	1.000249-1.000259

TABLE 555.-PHYSICAL PROPERTIES OF SOME SPECIAL GLASSES

Glass	Composition *	$\begin{aligned} & \text { Density } \\ & \mathrm{g} / \mathrm{cm}^{8} \end{aligned}$	Young's modulus $\mathrm{kg} / \mathrm{mm}^{2}$	Coefficient of thermal expansion cgs		Specific heat	$\begin{gathered} \text { Softening } \\ \text { points } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Electric resistance $\dagger$	Dielectric constant
Fused quartz	$\mathrm{SiO}_{2}$	2.20	7100	$5.5 \times 10^{-7}$	. 0033	. 18	1660	10.48	4.1
Pyrex (7740)	$\begin{aligned} & \mathrm{SiO}_{2}, 80: \mathrm{B}_{2} \mathrm{O}_{3}, 14 \\ & \mathrm{Na}_{2} \mathrm{O}, 4: \mathrm{Al}_{2} \mathrm{O}_{3}, 2 \end{aligned}$	2.35	6900	$32 \times 10^{-7}$	. 0027	. 25	775	6.6	4.5
Vycor (7900)	$\mathrm{SiO}_{2}, 96: \mathrm{B}_{2} \mathrm{O}_{3}, 3:$ other oxides	2.18	6800	$8 \times 10^{-7}$	. 0022	$\ldots$	1500	8.1	3.8
Lead glass	$\begin{aligned} & \mathrm{SiO}_{2}, 68: \mathrm{PbO}, 15: \\ & \mathrm{Na}_{2} \mathrm{O}_{3}, 10: \mathrm{K}_{2} \mathrm{O}, 6: \\ & \mathrm{CaO}, 1 \end{aligned}$	4.26	5400	$91 \times 10^{-7}$	$\ldots$	$\ldots$	580	9.7	9.5
Soda lime glass.	$\begin{aligned} & \mathrm{SiO}_{2}, 72: \mathrm{Na}_{2} \mathrm{O}, 15: \\ & \mathrm{CaO}, 9: \mathrm{MgO}, 3: \\ & \mathrm{Al}_{2} \mathrm{O}_{3}, 1 \end{aligned}$	2.47	6900	$92 \times 10^{-7}$	$\cdots$	$\ldots$	695	5.1	7.2
	$\underset{\mu}{\text { Diameter }}$	Breaking strength		Young's modulus		Torsion coefficient			$\Delta l / l$   for failure
Quartz fibers $\ddagger$	1.5	$.90 \times 10^{11}$		$11.1 \times 10^{11}$					
	3.0	. 65				$6.6 \times 10^{11}$			. 059
	5.0	. 48		9.8		5.8			. 049
	10.0	. 30		8.5		4.8			. 035
	30.0	. 145		7.1		3.5			. 020

## TABLE 556.-COLOR SCREENS

Although only the potassium salt does not keep well, it is perhaps safer to use freshly prepared solutions.


The following list is condensed from Wood's Physical Optics:
Methyl violet, $4 R \cdot$ (Berlin Anilin Fabrik) very dilute, and nitroso-dimethyl-aniline transmits $0.365 \mu$. Methyl violet + chinin-sulfate (separate solutions), the violet solution made strong enough to blot out $0.4359 \mu$, transinits 0.4047 and 0.4048 , also faintly 0.3984 .

Cobalt glass + aesculin solution transmits $0.4359 \mu$.
Guinea green B extra (Berlin) + chinin sulfate transmits $0.4916 \mu$.
Neptune green (Bayer, Elberfeld) + chrysoidine. Dilute the latter enough to just transmit 0.5790 and 0.5461 ; then add the Neptune green until the yellow lines disappear.

Chrysoidine + eosine transmits $0.5790 \mu$. The former should be dilute and the eosine added until the green line disappears.

Silver chemically deposited on a quartz plate is practically opaque except to the ultraviolet region $0.3160-0.3260$ where 90 percent of the energy passes through. The film should be of such thickness that a window backed by a brilliantly lighted sky is barely visible.
In the following those marked with a * are transparent to a more or less degree to the ultraviolet.

* Cobalt chloride: solution in water, absorbs $0.50-.53 \mu$; addition of $\mathrm{CaCl}_{2}$ widens the band to $0.47-.50$. It is exceedingly transparent to the ultraviolet down to 0.20 . If dissolved in methyl alcohol + water, absorbs $0.50-.53$ and everything below 0.35 . In methyl alcohol alone $0.485-0.555$ and below $0.40 \mu$.

Copper chloride : in ethyl alcohol absorbs above 0.585 and below 0.535 ; in alcohol +50 percent water, above 0.595 and below $0.37 \mu$.

Neodymium salts are useful combined with other media, sharpening the edges of the absorption bands. In solution with bichromate of potash, transmits $0.535-.565$ and above $0.60 \mu$, the bands very sharp (a useful screen for photographing with a visually corrected objective).

Praseodymium salts: three strong bands at $0.482, .468, .444$. In strong solutions they fuse into a sharp band at $0.435-.485 \mu$. Absorption below 0.34 .

Picric acid absorbs $0.36-.42 \mu$, depending on the concentration.
Potassium chromate absorbs $0.40-.35,0.30-.24$, transmits $0.23 \mu$.

* Potassium permanganate : absorbs $0.555-.50$, transmits all the ultraviolet.

Chromium chloride: absorbs above 0.57 , between 0.50 and .39 , and below $0.33 \mu$. These limits vary with the concentration.

Aesculin: absorbs below $0.363 \mu$, very useful for removing the ultraviolet.

* Nitroso-dimethyl-aniline: very dilute aqueous solution absorbs $0.49-.37$ and transmits all the ultraviolet.

Very dense cobalt glass + dense ruby glass or a strong potassium bichromate solution cuts off everything below 0.70 and transmits freely the red.

Iodine : saturated solution in $\mathrm{CS}_{2}$ is opaque to the visible and transparent to the infrared.

Filters from the following components: Distilled $\mathrm{H}_{2} \mathrm{O}$; Aq. sol. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$; $\mathrm{NiSO}_{4}$. $7 \mathrm{H}_{2} \mathrm{O}$; Glasses, Corning G 986A, G 586, G 980A ; dyed gelatin, Wratten filters 88A, 25, 61, 49.

Filter and absorbent	${ }^{\text {Solution }}$		Wavelengthslimits	Max	Transmission at max
	Concentration	Thick ness			
88A			.720-1.400		. 80
88A, $\mathrm{H}_{2} \mathrm{O}$		2 cm	.720-1.380	. 800	. 72
88A, G 986A*			.720-1.020	. 770	. 35
$25, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	5\%	2 cm	.590-. 690	. 630	. 26
61, "،	5\%	2 cm	.490-. 690	. 530	. 52
49, "	5\%	2 cm	. $380-.500$	. 460	. 26
G 586,*	10\%	2 cm	. $330-.430$	. 380	. 69
$\mathrm{G} 986 \mathrm{~A}, \mathrm{NiSO} \cdot{ }^{\prime} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	50\%	1 cm	.260-. 360	. 310	. 50

${ }^{184}$ Tones, L. A., Journ. Opt. Soc. Amer., vol. 16, p. 259, 1928.

* Thickness .32 cm .

TABLE 558.-NARROW BAND PASS FILTERS*

Filter	Thickness range	Wavelength limits	Max	Transmission at max
C.S. 5-74	5. -7.5 mm	. $402-.480 \mu$	. $430 \mu$	14.5 percent
5-76	5. -5.8	. $400-.483$	. 430	27.5
5-75	3.2-5.7	. $395-.495$	. 460	12.5
4-104	6. -8.5	. $467-.530$	. 485	5.3
4-117	7. -12 .	.466-. 580	. 495	34.0
4-105	9. -12.5	.483-.570	. 515	11.0
4-102	9. -13.5	.528-.573	. 550	10.6
4-115 $\dagger$	10. -14.	.530-. 575	. 555	35.5
3-110	5. -9.	. $561-.620$	. 580	3.0
3-120	6. -10 .	.565-. 670	. 590	19.5
2-77	$6.5-9.5$	.585-. 705	. 610	11.5
2-78	4. -7.	.612-. 760	. 640	16.0
2-79	8.8-12.	.665-.780	. 715	9.5
7-84	10. -13.	. $710-.900$	. 750	15.0
$7-85 \ddagger$	5. -6.	.800-1.101	. 960	25.0
7-86	7. -8 .	1.200-2.800	2.100	45.0
4-17	5.5-10.	1.700-2.800	2.400	21.0

[^214]
## TABLE 559.-TRANSPARENCY OF WATER ${ }^{165}$

Values of $a$ in $I=I_{0} e^{-a t} ; t$ in $\mathrm{cm} ; I_{0}, I$, intensity before and after transmission through distilled water at $20^{\circ} \mathrm{C}$; wavelength $\lambda$ in $\mu$.

$b$		$c$		${ }^{\text {d }}$		${ }^{d}$		$e$	
$\lambda$	a	$\lambda$	$a$	$\lambda$	$a$	$\lambda$	$a$	$\lambda$	$a$
. 1829	4.7	. 20	. 08	. 40	. 00080	. 54	. 00044	. 70	. 0058
. 1854	1.11	. 24	. 0135	. 42	. 00061	. 58	. 00084	. 75	028
. 1862	. 86	. 28	. 0077	. 44	. 00046	. 60	. 00197	. 80	. 024
. 1878	. 48	. 30	. 0064	. 48	. 00037	. 62	. 00265	. 85	. 027
. 1916	. 20	. 34	. 0028	. 50	. 00038	. 64	. 00292	. 90	. 06
. 1935	. 12	. 38	. 0013	. 52	. 00040	. 68	. 00406	. 95	. 3

[^215]Percent transmission for a number of wavelengths. All values are for a thickness of 3.5 mm unless otherwise noted. The values given include surface reflection losses. All glasses except the sharp cutting reds and yellows will meet the standard value at 3.5 mm within a thickness range of 3.0 to 4.0 mm . The sharp cutting reds and yellows will meet the standard value at 3.5 within a thickness range of 2.0 to 6.0 mm .

Filter	. $40 \mu$	. 45	. 50	. 55	. 60	. 65	. 70	Remarks
N-1	80	64	69	69	68	68	79	
N-2	58	25	33	36	35	38	76	
N-3	36	7	12	13	12	13	52	
$\mathrm{N}-6$ †		. 02	. 15	. 11	. 08	. 16		0 at $.43 \mu ; 9.8$ at $.68 \mu$
R-1	.	. .	.		28	86	87	0 at. $58 \mu$
R-2	.	.	.	1	69	85	84	0 at $.54 \mu ; 35$ at $.59 \mu$
R-5	.	.	.	. .	2	87	89	0 at. $59 \mu$
R-6	.	.	.	.	84	86	83	$54 \%$ at $.58 \mu$
R-7	-	$\ldots$	$\cdots$				81	$44 \%$ at $.67 \mu$
Y-4				68	89	89	89	0 at $.51 \mu$
Y-9	27	56	74	82	84	85	86	
Y-10		1	73	87	90	89	87	0 at . $44 \mu$
G-1		3	7	1				0 at. 41 and $.56 \mu$
G-9		1	23	54	22	6	8	0 at $.43 \mu$
BG-1	36	64	68	41	11	2		0 at $.69 \mu$
B-1	87	82	46	33	14	15	68	
B-2	82	59	7	2	.	. .	39	0 at .58 and $.66 \mu$
B-4	42	11						0 at $.48 \mu$
B-8	91	86	63	53	35	38	81	
B-10	84	84	59	44	23	19	36	

[^216]TABLE 561.-SPECTRAL TRANSMISSION OF SOME RED PYROMETER GLASSES


## TABLE 562.-THE EFFECTIVE WAVELENGTH $\lambda_{e}$ OF CORNING 50-PERCENT RED PYROMETER GLASS* 5 mm THICK FOR SOME TEMPERATURE INTERVALS ${ }^{188}$

$\left.\begin{array}{cccc}\hline \text { Temperature } \\ \text { interval }\end{array} \quad \lambda_{e} \quad \begin{array}{c}\text { Temperature } \\ \text { interval }\end{array}\right]$

[^217]
## 538

TABLE 563.-ULTRAVIOLET TRANSPARENCY OF ATMOSPHERIC COMPONENTS
$I=I_{0} 10^{-a d}, d$ in $\mathrm{cm} 0^{\circ} \mathrm{C}, 760 \mathrm{mmHg}$.

Oxygen		Oxygen		$\underbrace{\text { Ozone }}$		$\underbrace{\text { Ozone }}$			
. 1900 M	$a=.0014$	. $186 \mu$	$a=.0089$	. $2378 \mu$	100.5	. $230 \mu$		. $290 \mu$	16.6
. 1920	. 0007	. 193	. 0015	. 2482	141	. 240	95	. 300	4.6
. 1929	. 0022			. 2537	148.8	. 250	120	. 310	1.23
. 1947	. 0007		$\mathrm{O}_{2}$, air	. 2652	123	. 260	120	. 320	. 35
. 1950	. 0021			. 2804	45.6	. 270	91	. 330	. 093
. 1955	. 00075	Air		. 2967	6.9	. 280	46	. 340	. 024
. 1962	. 0020	.186 $\mu$	$a=.0019$	. 3125	. 96				
. 1970	. 0007	Water		. 3341	. 07	$\begin{aligned} & \text { Nitrogen } \\ & .186=.000478 \end{aligned}$			
. 2000	. 00043								
. 2050	. 0003								
. 2100	. 0002								

Air at sea level (Washington), 400 m practically no absorption $\lambda>.3 \mu ;<.28 \mu$ about that due to molecular scattering. Air transmission reduced by $1 / 100: 22 \mathrm{~km}$ at $.28 \mu$; 5 at $25 \mu$; 0.57 at $.22 \mu ; 20 \mathrm{~km}$ at $.205 \mu$.

## Atmospheric transparency for ultraviolet

Wavelength, $\mu \ldots \ldots$	.29	.30	.31	.32	.33	.34	.35	.37	.39	.41	.43	.45
Percent transmitted ..	0	.9	9.	20.	27.	33.	38.	46.	51.	56.	60.	64.

## TABLE 564.-TRANSMISSION OF DYESTUFF SOLUTIONS OF "ADJUSTED" CONCENTRATIONS *

The table gives the percentage transmittances (column 5) at various wavelengths, of the dye solutions, dissolved or buffered as indicated in the third column. All solutions are adjusted to that concentration which gives unit density ( 10 -percent transmittance) at the wavelength of maximum absorption, except for those solutions (marked * in column 4) that have the maximum absorption in the ultraviolet range. The wavelength of maximum absorption is given in column 2. In column 3 is given the serial number of the dye as listed and described in the Colour Index of the British Society of Dyers and Colorists (1924). Dyes having no Colour Index number are listed by the "prototype number" (abbreviated Pr.) of the 1949 Technical Manual and Year Book of the American Association of Textile Chemists and Colorists, p. 147. The names assigned to the dyes are not the names used by the individual American manufacturers but are older names assigned by the Year Book to each Colour Index number, p. 237; or to the "foreign prototype," p. 261.

In column 4, $A$ stands for acid buffer ( $p H=4.6$ ), $K$ for alkaline buffer ( $p H=9.3$ ). In this column, $E$ stands for ethanol (ethyl alcohol) used as solvent, and $B z$ for benzene. Where $A$ or $K$ are used, the solvent was water. $N$ stands for "no buffer," with water as solvent.
In some cases two or more sets of transmissions correspond to a given Colour Index number and name. For example, C.I. No. 326 corresponds to 62 dyestuffs listed as on the American market in 1939, and these may be classified as of several distinct types of Benzo Fast Scarlets and Benzo Fast Oranges. In less striking cases, the different types result from uncontrollable variations in manufacture. In such cases, the transmissions should be considered as representative rather than as specifications of the dye. No manufacturer would guarantee the transmissions within a narrow range, though all data are accurate measurements on actual representatives of at least one manufacturer's products. Transmissions vary somewhat with the exact $p H$ of the buffer and with the characteristics of the instrument used for measurement, especially with the slit width. The present data obtained with the General Electric recording spectrophotometer, which has a 10 -micron slit width.
From the data of the table, approximate data for stronger solutions, whose transmission at the wavelength of maximum absorption is only 1 percent, may be readily obtained by means of a table of squares. Such solutions are twice as concentrated as those of the table. Their transmissions at any given wavelength are approximately the squares of the tabulated transmissions. These relations depend on the validity of Beer's Law for the solution in question.

[^218]TABLE 564.-TRANSMISSION OF DYESTUFF SOLUTIONS OF "ADJUSTED" CONCENTRATIONS (continued)

Name	$\lambda$ Max.	$\begin{aligned} & \text { C.I. No. } \\ & \text { or or } \\ & \text { Pr. No. } \end{aligned}$		Buffer or solvent	Wavelength (microns)																
				. 40	. 42	. 44	. 46	. 48	. 50	. 52	. 54	. 56	. 58	. 60	. 62	. 64	. 66	. 68	. 70		
				Transmittances (percent)																	
Primuline . . . . .	$343$					0	4	21	49	73	87	92	95	96	97	97	98	98	99	99	99
Celliton Fast Yellow G	356	Pr.	242		E*	3	7	15	36	70	90	96	98	99	99	99	100	100	100	100	100
Milling Yellow O.	373	Pr.	139	A*	2	7	14	29	56	78	91	96	97	98	98	98	99	99	99	99	
Amido Azo Toluol	379		17	$\mathrm{Bz}{ }^{*}$	0	3	18	35	53	72	88	96	99	100	100	100	100	100	100	100	
Milling Orange	380		274	$A^{*}$	2	7	14	24	40	61	80	92	97	98	99	99	99	99	99	99	
Diamine Green G	383		594	K	4	8	12	18	29	40	44	39	29	19	12	10	10	12	29	65	
	$\begin{array}{r} (615 \\ 647) \end{array}$																				
Diamine Catechine G.	389	Pr.	69	K*	6	8	13	20	30	41	51	60	68	76	84	89	93	95	96	97	
Naphthol Yellow S .	391		10	$A^{*}$	11	10	12	30	70	94	99	100	100	100	100	100	100	100	100	100	
	(418)																	10	100	100	
Supramine Yellow 3GL	390	Pr.	474	${ }^{\text {* }}$	3	6	18	49	82	96	99	100	100	100	100	100	100	100	100	100	
Mikado Yellow	392		622	K*	3	6	18	50	82	94	98	98	99	99	99	99	99	100	100	100	
Chrysophenine . $\because \because$	392		365	K*	5	8	12	20	37	62	79	86	89	89	89	89	89	89	89	88	
Fastusol Yellow L5G	394	Pr.	99	K*	1	4	20	57	90	99	100	100	100	100	100	100	100	100	99	99	
Mikado Yellow	397		622	K*	4	6	17	47	78	92	97	98	99	99	99	99	100	100	100	99	
Diamine Fast Orange EG	408	Pr.	72	K	10	11	16	24	36	53	71	86	94	98	99	99	99	99	100	100	
Benzo Chrome Brown G	408	Pr.	365	K	10	11	13	17	24	32	42	53	65	77	87	92	95	97	98	99	
Thioflavine T	410		815	N	11	12	35	82	98	99	100	100	100	100	100	100	100	100	100	100	
Sun Yellow	410		620	N	11	11	20	41	70	89	96	98	99	99	99	99	100	100	100	100	
Sun Yellow	413		620	K	11	10	17	33	57	75	86	93	97	99	99	100	100	100	100	100	
Sulphon Orange G.	414	Pr.	186	A	11	10	13	16	15	17	24	40	74	94	99	100	100	100	100	100	
Fastusol Orange LGGL	415	Pr.	276	K	11	10	13	19	29	46	68	86	95	98	98	99	99	99	99	99	
Azosol Fast Yellow CGG	426	Pr.	215	E	17	10	12	30	69	95	99	99	100	100	100	100	100	100	100	100	
Resorcin Brown . . . . .	428		234	A	13	10	10	14	24	39	59	79	91	96	99	99	100	100	100	100	
Benzo Fast Brown 3GL	430	Pr.	28	K	12	10	10	13	18	26	38	53	68	79	87	92	94	95	96	97	
Auramine .	431		655	A	29	12	12	35	80	97	99	100	100	100	100	100	100	100	100	100	
Euchrysine 2G	434		797	A	30	14	11	28	72	94	98	99	99	99	100	100	100	100	100	100	
Pryazol Orange	443		653	K	15	12	10	12	22	45	73	91	97	99	99	100	100	100	100	100	
Celliton Fast Brown 3R	445	Pr.	230	E	23	13	10	11	16	24	37	55	72	85	93	97	99	99	99	100	
Benzamine Brown 3GO.	447		596	K	10	10	10	10	15	24	39	58	74	84	90	94	96	97	98	98	
Trisulfon Brown B.	450		561	K	12	11	10	10	11	13	17	22	28	32	38	46	56	68	78	86	





$\begin{aligned} & \text { C.I. No. } \\ & \text { Pr. } \begin{array}{l} \text { or } \end{array} . \end{aligned}$	$\begin{gathered} \text { Buffer } \\ \text { or } \\ \text { solvent } \end{gathered}$	Wavelength (microns)															
		. 40	. 42	. 44	. 46	. 48	. 50			. 56		. 60	. 62	. 64	. 66	. 68	. 70
		Transmittances (percent)															
768	A	93	92	88	74	46	27	11	74	99	100	100	100	100	100	100	100
88	A	61	59	53	39	22	13	10	15	26	46	74	92	98	100	100	100
Pr. 393	K	47	44	41	32	20	12	10	15	34	66	86	95	98	99	100	100
Pr. 182	Bz	46	45	39	31	20	13	10	13	28	70	94	98	99	99	100	100
382	K	26	34	43	37	23	13	10	13	25	54	84	96	98	100	100	100
184	A	63	59	52	40	23	13	10	13	25	56	89	98	100	100	100	100
Pr. 188	A	57	59	56	46	29	16	10	14	22	43	72	91	97	99	99	99
773	A	92	90	88	79	57	36	13	28	80	97	99	99	99	99	99	99
Pr. 363	E	58	50	40	33	31	31	16	15	42	70	95	99	100	100	100	100
Pr. 234	E	88	83	71	51	33	20	12	12	15	29	79	96	98	99	99	99
778	N	95	94	93	85	68	42	25	12	67	99	100	100	100	100	100	100
Pr. 394	A	53	48	43	40	30	19	13	10	12	23	69	92	96	96	96	96
677	A	92	83	65	47	34	28	18	10	35	78	94	98	99	99	99	99
698	N	95	97	96	93	82	58	25	10	15	26	35	58	81	95	99	100
Pr. 35	K	69	71	71	62	46	29	17	10	12	21	32	51	72	87	95	98
779	A	93	91	90	84	69	45	28	14	30	93	100	100	100	100	100	100
Pr. 213	E	84	86	87	84	70	47	26	12	18	66	92	97	99	100	100	100
842	N	92	85	75	65	51	33	18	11	11	27	66	91	98	99	99	100
1080	A	79	74	60	45	32	22	15	11	10	14	24	44	68	85	95	98
749	A	92	93	96	95	84	63	40	19	15	75	98	99	99	100	100	100
748	A	92	93	96	94	84	66	40	24	10	41	93	99	100	100	100	100
710	A	82	85	84	77	62	41	23	13	10	11	16	26	38	51	63	72




Benzo Azurine G




宏
TABLE 564.-TRANSMISSION OF DYESTUFF SOLUTIONS OF "ADJUSTED" CONCENTRATIONS (concluded)

	$\begin{gathered} \lambda \text { Max. } \\ 637 \\ (<400 \\ 443) \end{gathered}$	$\begin{gathered} \text { C.I. No. } \\ \text { Pr. No. } \\ 737 \end{gathered}$	Buffer solvent A							W	eng	(m							
				. 40	Transmittances (percent)														
Wool Green S....				85	86	86	88	90	92	89	80	65	47	34	17	11	41	82	96
Xylene Blue VS	$\begin{gathered} 637 \\ (414) \end{gathered}$	672	A	81	82	96	99	99	97	93	86	72	52	38	20	10	38	80	95
Nile Blue A.	$\begin{gathered} 638 \\ (605, \\ 428) \end{gathered}$	913	A	87	86	87	89	91	87	76	57	36	18	10	11	10	18	52	78
Alizarine Cyanine Green.	$\begin{gathered} 641 \\ (610 \\ 413) \end{gathered}$	1078	A	24	23	35	55	69	68	57	41	28	18	11	10	10	13	30	59
Alizarine Astrol B.	$\begin{array}{r} 642 \\ (607 \\ <400) \end{array}$	1075	A	51	56	74	87	86	75	61	42	28	17	11	11	10	17	43	75
Alkali Fast Green 10G.	$\begin{gathered} 662 \\ (437) \end{gathered}$	Pr. 13	A	72	64	60	74	89	93	92	86	76	61	42	26	15	10	15	38
Methylene Blue	$\begin{array}{r} 664 \\ (<400) \end{array}$	922	A	97	98	97	96	93	92	91	86	75	59	36	28	20	11	29	80
Naphthol Green B.	$\begin{array}{r} 723 \\ (<400) \end{array}$	5	A	12	18	25	40	56	64	70	74	71	59	42	28	18	14	11	10

Alum: Ordinary alum (crystal) absorbs the infrared.
Metallic reflection at $9.05 \mu$ and 30 to $40 \mu$.
Rock salt: Rubens and Trowbridge give the following transparencies for a 1 cm thick plate in percent :

$\lambda$	9	10	12	13	14	15	16	17	18	19	20.7	$23.7 \mu$
$\%$	99.5	99.5	99.3	97.6	93.1	84.6	66.1	51.6	27.5	9.6	.6	0.

Pflüger gives the following for the ultraviolet, same thickness : $280 \mu \mu, 95.5$ percent ; 231. 86 percent; 210, 77 percent ; 186, 70 percent.
Metallic reflection at $0.110 \mu, 0.156,51.2$, and $87 \mu$.
Sylvite: Transparency of a 1 cm thick plate:

$\lambda$	9	10	11	12	13	14	15	16	17	18	19	20.7	$23.7 \mu$
$\%$	100.	98.8	99.0	99.5	99.5	97.5	95.4	93.6	92.	86.	76.	58.	15.

Metallic reflection at $0.114 \mu, 0.161,61.1,100$.
Fluorite: Very transparent for the ultraviolet nearly to $0.1 \mu$.
Rubens and Trowbridge give the following for a 1 cm plate:

$$
\begin{array}{lcclcc}
\lambda & 8 \mu & 9 & 10 & 11 & 12 \mu \\
\% & 84.4 & 54.3 & 16.4 & 1.0 & 0
\end{array}
$$

Metallic reflection at $24 \mu, 31.6,40 \mu$.
Iceland spar: Merritt gives the following values of $k$ in the formula $i=i_{o} e^{-k d}(\mathrm{~d}$ in cm$)$ :
For the ordinary ray :

$\lambda$	1.02	1.45	1.72	2.07	2.11	2.30	2.44	2.53	2.60	2.65	$2.74 \mu$
$k$	.0	.0	.03	.13	.74	1.92	3.00	1.92	1.21	1.74	2.36


$\lambda$	2.83	2.90	2.95	3.04	3.30	3.47	3.62	3.80	3.98	4.35	4.52	$4.83 \mu$
$k$	1.32	.70	1.80	4.71	22.7	19.4	9.6	18.6	$\infty$	6.6	14.3	6.1

For the extraordinary ray :

$\lambda$	2.49	2.87	3.00	3.28	3.38	3.59	3.76	3.90	4.02	4.41	$4.67 \mu$
$k$	.14	.08	.43	1.32	.89	1.79	2.04	1.17	.89	1.07	2.40
			$\lambda$	4.91	5.04	5.34	$5.50 \mu$				
			$k$	1.25	2.13	4.41	12.8				

Quartz: Very transparent to the ultraviolet; Pfüger gets the.following transmission values for a plate 1 cm thick: at $0.222 \mu, 94.2$ percent $; 0.214,92 ; 0.203,83.6 ; 0.186,67.2$ percent.
Merritt gives the following values for $k$ (see formula under Iceland spar):
For the ordinary ray:

$\lambda$	2.72	2.83	2.95	3.07	3.17	3.38	3.67	3.82	3.96	4.12	$4.50 \mu$
$k$	.20	.47	.57	.31	.20	.15	1.26	1.61	2.04	3.41	7.30

For the extraordinary ray :

$\lambda$	2.74	2.89	3.00	3.08	3.26	3.43	3.52	3.59	3.64	3.74	3.91	4.19	$4.36 \mu$
$k$	.0	.11	.33	.26	.11	.51	.76	1.88	1.83	1.62	2.22	3.35	8.0

For $\lambda>7 \mu$, becomes opaque, metallic reflection at $8.50 \mu, 9.02,20.75-24.4 \mu$, then transparent again.

TABLE 566.-TRANSPARENCY OF WATER VAPOR (steam)

Wave.   length	Steam	Absorp.   tion	Wave-   length	Steam	Absorp-   tion	Wave-   length	Steam	Absorp.   tion
$.95 \mu$	109 cm	$7 \%$	$6.5 \mu$	32.4 cm	$80 \%$	$20 \mu$	32.4	$80 \%$
1.13	$"$	14	11	104	15	22	$"$	22
1.36	$"$	75	13	104	35	26	$" 6$	30
1.84	$"$	84	15	104	55	30	4	80
2.64	$"$	100	18	32.4	55	34	$"$	80

## 546

## TABLE 567.-TRANSMISSION OF RADIATION THROUGH MOIST AIR (percent)

The values of this table are of use for finding the transmission of energy through air containing a known amount of water vapor. An approximate value for the transmission may be had if the amount of energy from the source between the wavelengths of the first column is multiplied by the corresponding transmission coefficients of the subsequent columns. The values for the wavelengths greater than $18 \mu$ are tentative and doubtful.

*These places require multiplication by the following factors to allow for losses in $\mathrm{CO}_{2}$ gas. Under average sea-level outdoor conditions the $\mathrm{CO}_{2}$ (partial pressure $=0.003 \mathrm{~atm}$ ) amounts to about $0.6 \mathrm{~g} / \mathrm{cm}^{8}$. Paschen gives 3 times as much for indoor conditions.
$2 \mu$ to $3 \mu$, for 2 g in $m^{2}$ path (95); for 140 g in $m^{2}$ path ( 93 );
4 " 5 " "، "، "" (93); " " "، " "" (70); more $\mathrm{CO}_{2}$ no further effect;
13 " 14, slight allowance to be made;
14 "، $15,80 \mathrm{gg}$ in $\mathrm{m}^{2}$ path reduces energy to zero;
$\dagger$ These places require multiplication by 0.90 and 0.70 respectively for one air mass and 0.85 and 0.65 for two air masses to allow for ozone absorption when the radiation comes from a celestial body.

## TABLE 568.-INFRARED TRANSMISSION OF VARIOUS SUBSTANCES (percent) ${ }^{107}$

		$20 \mu$	30	40	50	60	70	80	90	100	110	120	$130 \mu$
Fused quartz	.2 mm	0	0	2	20	35	51	53	52				
"	1.0 "	0	0	0	0	0	0	5	6	18	30	22	27
Crystal	1.0 "	0	1	7	42	57	62	59	72	71	78	70	72
Sulfur, rhombic	. 9 "	30	40	10	6	39	37	52	58	51	56	58	38
Paraffin ......	2.0 "	19	35	42	51	58	64	65	75	85	79	76	70
Mica	$6 \mu$	6	18	50	53	46	57	50	21	27	50	(55)	(55)
Cellophane	$40 \mu$	0	16	22	23	24	24	23	23	29	30	30	42
Celluloid	$1 \mu$	92	93	95	96	96	97	97	98	98	99	99	99
Black paper	. 1 mm				2	5	13	19	22	23	26	28	30
Camphor soot	*	60	76	79	80	81	82	84	85	86	87	89	90
Pfund Bi black.	*	30	40	44	48	50	40	45	58	60	57	60	63
Lampblack, water glass	. 8	0	(1)	(3)	7	12	21	20	26	30	25	30	30

[^219]TABLE 569.-INFRARED TRANSMISSION, IN PERCENT, OF A NUMBER OF MATERIALS ${ }^{188}$

Thick-	Lead chloride	Magneoxide oxid	$\begin{gathered} \text { Potas- } \\ \text { sium } \\ \text { chloride } \end{gathered}$	Silver chloride	Thallium bromide		Thallium chloride	Sapphire	Cesium bromide
$\begin{aligned} & \text { in mess } \\ & \lambda(\mu) \end{aligned}$	6	. 47	6	6	6	8	6	1.17	7
. 40	.	.	.	$\cdots$	.	.	.	.	71.5
. 60	.	.	.	.	.		.	.	77.8
1	.		$\cdots$		$\cdots$	.	.		79.8
2	$\cdots$	88	.	73	.	.	.	86.5	82.0
3	.	87	.	76	.	.	.	89.0	82.0
4	.	89	$\cdots$	77	$\cdots$	.	$\cdots$	89.2	82.0
5	$\cdots$	90	.	79	.	.	.	82.5	82.0
6	$\cdots$	89	$\cdots$	80	$\cdots$	.		50.0	82.0
7	.	84	.	80	.	.	.	4.0	83.0
8	$\ldots$	78	$\cdots$	80	.	.	.	..	83.0
10	.	11	.	80	.	$\cdots$	.	.	83.5
12			.	80	$\cdots$	.	$\cdots$	.	84.0
14	82	.	.	80	$\ldots$	..	..	.	84.5
16	82	.		82	$\cdots$	.	.	.	85.0
18	80	.	87	82	.	.	.	.	85.0
20	77	.	72	78		.		.	85.0
22	69	.	37	62	61	.	57	.	85.0
24	52	.	12	46	61		38	.	84.0
26	19	$\cdots$	.	27	60	66	18	.	84.0
28	.	$\cdots$	$\cdots$	.	57	62	6	.	83.0
30	.	$\cdots$	.	$\cdots$	50	61		.	83.0
32	$\cdots$	.	.	.	39	58	.	.	83.0
34	$\ldots$	.	$\ldots$	$\ldots$	33	54	.	.	82.0
36	.	$\cdots$	$\cdots$	.	26	51	.	.	80.0
38		.	.		.	.	.	.	76.0

${ }^{108}$ Data from E. K. Plyler, Nat. Bur. Standards Journ. Res., vol. 41, p. 125, 1948, and E. K. Plyler, National Bureau of Standards, private communication. Cesium bromide data by E. K. Plyler and F. A. Phelps.

TABLE 570.-INFRARED TRANSMISSION OF GASES (percent) ${ }^{180}$

Length of cell, 4 inches.								
Material	Pressure	$6.7 \mu$	$8.7 \mu$	$20.75 \mu$	$22.9 \mu$	$27.3 \mu$	$29.4 \mu$	$32.8 \mu$
$\mathrm{NH}_{2}$	760 mmHg	24	26	79	93	83	82	62
$\mathrm{C}_{2} \mathrm{H}_{3}$	760	95	92	99	101	101	100	98
$\mathrm{H}_{2} \mathrm{~S}$	760	97	98	98	97	92	90	83
$\mathrm{SO}_{2}$	760	98	5	7	58	100	100	96
$\mathrm{C}_{6} \mathrm{H}_{4}$	96	65	97	102	99	100	98	95
$\mathrm{CCl}_{4}$	114	95	99	97	99	99	99	91
$\mathrm{CS}_{3}$	361	30	98	100	86	98	99	96
$\mathrm{CHCl}_{2}$	200	93	90	99	98	98	97	97
$\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{2} \mathrm{O}$	526	17	6	61	45	69	71	61

100 Strong, Phys. Rev., vol. 37, p. 1565, 1931, Restrahlung.

TABLE 571.-INFRARED TRANSMISSION OF SOLIDS (percent)

Material	Description	$6.7 \mu$	$8.7 \mu$	$20.75 \mu$	22.94	$27.3 \mu$	$29.4 \mu$	$32.8 \mu$
Lacquer film	$\pm .55 \mu$ thickness	96	93	97	98	99	99	100
Mica . . . . .	$10 \mu$ thickness	83	22	19	00	35	42	44
Soot on lacquer	Opaque to visible	25	22	67	53	60	67	60
Quartz, fused.	$10 \mu$ thickness	86	02	01	03	51	55	68
Glass .......	$3 \mu$ thickness	93	07	12	14	48	51	56
Cellophane	$25 \mu$ thickness	33	04	04	01	20	25	26
$\mathrm{MgO} \ldots$	Deposit from burning   Mg ribbon	88	86	04	02	90	93	87
ZnO	Deposit from Zn arc	99	80	15	05	93	79	80


Description of reflector	$22.9 \mu$	$32.8 \mu$
Deposit of MgO from burning Mg ribbon.	0	0
Reflection $\beta$ - MgO	80	33
Mica	32	. .
Paraffin	04	.
Pencil mark on paper	09	
Soot coating	43	48
Silver covered with MgO coating	08	91
Silver covered with ZnO coating	01	52
Uptical black	31	. .
Gold foil blackened with bismuth.	$>19$	.
$\mathrm{KBr}+1.5 \mu \mathrm{CaF}_{2}$ deposited by evaporation	10	
$\mathrm{KI}+1.5 \mu \mathrm{CaF}_{2}$ deposited by evaporation.	13	.

## TABLE 573.-ABSORPTION OF VARIOUS MATERIALS USED FOR BLACKENING RECEIVERS FOR MEASURING RADIATION OF DIFFERENT WAVELENGTHS ${ }^{170}$

Soot from a candle, acetylene, or camphor flame has been used and was found by Pfund to be very good to wavelengths about $1.2 \mu$; beyond this to longer wavelengths the soot becomes transparent until at about $11 \mu$, for a film about as thick as will work satisfactorily, it transmits about 50 percent of the incident radiation.

Very finely powdered metal such as zinc ( 4 parts Zn and 1 part Sb ) and platinum were found to be very good. Even for wavelengths of about $14 \mu$ the Zn powder absorbed over 98 percent of the radiation and out to $51 \mu$ the absorption was about 85 percent.

For longer wavelengths powdered $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{TlCs}$, and some other salts were found to be very good, as shown in the table.

The figures given in the table for radiation absorption are relative, those with the highest values being the blackest. For instance, India ink and tellurium powder are the best absorbers for radiation shorter than $5 \mu$ while for longer wavelengths than $50 \mu$ powdered glasses and CuSO، are probably the more nearly black.

The absorptive power is an integrated effect over the entire far infrared. Litharge, powdered glass, white lead, copper sulfide, celestite, and red phosphorus were the best absorbers beyond $50 \mu$. A very thin coat of the absorbing material in most cases was an inefficient absorber of the extreme infrared waves. A very poor absorbing material in most cases such as copper or platinum will absorb if the surface is sufficiently rough

For radiometers, the absorbing material is better when mixed with turpentine and alcohol and painted on the vanes. For thermocouples, the absorbing material is better if it is mixed with lacquer. Sixty-fold sensitiveness and better steadiness comes from evacuation.

The high absorption of glass in the near infrared suggests its use as a source of radiation. Two Pt wires separated by 4 mm and covered with glass were heated by an electric current; the hot portion of the glass between the wires served as a source of extreme infrared radiation. A convenient method of filtering out the near infrared is to grind the windows with emery so that the pits are about $4 \mu$ deep. The apparatus may be adjusted with visible light by covering the rough surface with turpentine.

Substance	Radiation absorbed for		Substance	Radiation absorbed for$\lambda<5 \mu \quad \lambda>50 \mu$	
	$\lambda<5 \mu$	$\lambda>50 \mu$			
Litharge	10.8	4.3	Silver sulfide	12.8	4.4
Ground glass	11.9	4.7	Copper sulfate crystals		
Powdered glass	11.7	5.0	from solution ......	15.0	4.1
White lead 2 Pb			Wellsbach mantle		
$\mathrm{CO}_{3} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}$	14.9	4.9	material	8.9	31
White lead in lacquer	14.3	4.4	Platinum black	18.2	4.4
Red phosphorus	18.3	5.0	Tartaric acid and		
Red phosphorus from			sugar	16.0	3.9
a match box.....	17.7	5.1	Talc	12.5	3.8
Celestite, powdered			Water glass	12.1	3.7
$\mathrm{SrSO}_{4}$	14.7	4.6	Tellurium, powdered	19.2	3.3
Brucite, powdered			India ink . . . . . . . .	18.8	3.8
$\mathrm{Mg}(\mathrm{OH})_{2} \ldots \ldots$	11.4	4.2	Lacquer	8.6	3.0
Angelsite, powdered			Castor oil	8.8	28
PbSO4, .......		4.2	Glycerine	11.2	3.1
Copper sulfide	17.1	5.2	Turpentine	8.1	. 2
Copper oxide	13.8	4.4	Clean receiver	2.9	. 2

[^220]
## TABLES 574-592.-REFLECTION AND ABSORPTION OF RADIATION

According to Fresnel, the amount of light reflected by the surface of a transparent medium $=\frac{1}{2}(A+B)=\frac{1}{2}\left\{\frac{\sin ^{2}(i-r)}{\sin ^{2}(i+r)}+\frac{\tan ^{2}(i-r)}{\tan ^{2}(i+r)}\right\} ; A$ is the amount polarized in the plane of incidence; $B$ is that polarized perpendicular to this ; $i$ and $r$ are the angles of incidence and refraction.

TABLE 574.-RADIATION REFLECTED WHEN $i=0^{\circ}$ OR INCIDENT LIGHT IS NORMAL TO SURFACE $=(n-1)^{2} /(n+1)^{2}$
(percent)

$n$	$1(A+B)$	$n$	$\frac{1}{2}(A+B)$	$n$	$1(A+B)$	$n$	$\frac{1}{2(A+B)}$
1.00	.00	1.4	2.78	2.0	11.11	5.	44.44
1.02	.01	1.5	4.00	2.25	14.06	5.83	50.00
1.05	.06	1.6	5.33	2.5	18.37	10.	66.67
1.1	.23	1.7	6.72	2.75	22.89	100.	96.08
1.2	.83	1.8	8.16	3.	25.00	$\infty$	100.00
1.3	1.70	1.9	9.63	4.	36.00		

TABLE 575.-RADIATION REFLECTED WHEN $n=1.55$


[^221]
# TABLE 576.-REFLECTING FACTOR OF POWDERS (WHITE LIGHT) (percent) 

Various pure chemicals, very finely powdered and surface formed by pressing down with glass plate. White (noon sunlight) light. Reflection in percent.


[^222]
## TABLE 577.-VARIATION OF REFLECTING FACTOR OF SURFACES WITH ANGLE (RELATIVE VALUES)

Illumination at normal incidence, $1 \frac{1}{4}$-watt tungsten lamp, reflection at angles indicated with normal.

Angle of observation	$0^{\circ}$	$1^{\circ}$	$3^{\circ}$	$5^{\circ}$	$10^{\circ}$	$15^{\circ}$	$30^{\circ}$	$45^{\circ}$	$60^{\circ}$
Magnesium carbonate block.	. 88	-	-	. 88	. 88	. 87	. 83	. 72	. 68
Magnesium oxide	. 80	-	-	. 80	. 80	. 80	. 77	. 75	. 66
Matt photographic paper	. 78	-	-	. 78	. 78	. 78	. 78	. 76	. 72
White blotter ........	. 76	-	-	. 76	. 76	. 76	. 73	. 70	. 67
Pot opal, ground	. 69	. 69	. 69	. 69	. 69	. 69	. 68	. 66	. 64
Flashed opal, not ground	11.3	11.3	11.3	. 31	. 22	. 21	. 20	. 20	. 18
Glass, fine ground......	. 29	. 29	. 29	. 29	. 27	. 20	. 14	. 13	. 12
Glass, coarse ground	. 23	. 22	. 21	. 20	. 19	. 16	. 11	. 11	. 12
Matt varnish on foil	. 83	-	. 78	. 72	. 62	. 49	. 28	. 21	. 16
Mirror with ground face	4.9	-	-	4.55	3.86	3.03	. 78	. 42	. 35

The following figures, taken from Fowle, Smithsonian Misc. Coll., vol. 58, No. 8, indicate the amount of energy scattered on each side of the directly reflected beam from a silvered mirror; the energy at the center of the reflected beam was taken as 100,000 , and the angle of incidence was about $3^{\circ}$.


Wavelength of max. energy of Nernst lamp used as source about $2 \mu$.

TABLE 578.—ULTRAVIOLET REFLECTING FACTOR OF SOME METALS ${ }^{17}$

Aluminum,castrolled	. $250 \mu$	. 300	. 350	. 400	. 450	. 500	. 550	. 600
	. 43	. 45	. 54	. 62	. 68	. 72	. 73	. 74
	. 21	. 28	. 34	. 41	. 46	. 50	. 53	. 56
Rhodium	. 30	. 37	. 44	. 50	. 53	. 57	. 58	. 59
Tin, polished	. 33	. 38	. 45	. 52	. 60	. 67	. 72	. 73
Duralumin	. 24	. 31	. 44	. 46	. 46	. 46	. 46	. 46
tarnished to.	. 20	. 26	. 32					

[^223]TABLE 579．－PERCENTAGE REFLECTION FROM METALS，VIOLET END OF SPECTRUM ${ }^{172}$

Wavelength in	． 10	． 15	． 20	． 25	． 30	． 35	． 40	． 50	． 60
Ni electroplated		．		40	44	51	53	56	（60）
＂vac．fused．				48	42	45	52	62	64
Ag（min． $7 \%, 33 \mu$ ）		．		30	16	71	88	92	（94）
Stellite（ $\mathrm{Co}, \mathrm{Cr}, \mathrm{Mo}$ ）	．	．	．	46	49	55	60	64	（68）
Stainless steel，13\％Cr		．		40	47	52	56	59	（60）
Cobalt ．．．．．．．．			．	43	46	52	58	62	（67）
Speculum				31	41	50	56	60	（62）
Beryllium（98．7\％）	53	67	79	84	87			．．	．．
Chromium on steel．	63	65	71	78	82	86	88		

${ }^{172}$ Coblentz，Stair，Nat．Bur．Standards Journ．Res．，vol．2，p．343， 1929.

## TABLE 580．－PERCENTAGE REFLECTING FACTOR OF DRY POWDERED PIGMENTS

The total reflecting power depends on the distribution of energy in the illuminant and is given in the last three columns for noon sun，blue sky，and for a 7.9 lumens／watt tungsten filament．

Spectrum color	Vio－   let   .44	Blue		Green			Yellow		Orange			Red			$E$50888	$\begin{aligned} & \stackrel{\rightharpoonup}{s} \\ & \stackrel{\infty}{=} \\ & \text { 㐫 } \end{aligned}$	
Wavelength in $\mu$		． 46	． 48	． 50	． 52	． 54	． 56	． 58	． 60	． 62	． 64	． 66	． 68	． 70			
American vermilion	8	6	5	5	6	6	9	11	24	39	53	61	66	65	14	12	12
Venetian red	5	5	5	5	5	6	7	12	19	24	28	30	32	32	11	10	13
Tuscan red	7	7	7	8	8	8	8	12	16	18	20	22	23	24	11	10	12
Indian red	8	7	7	7	7	7	7	11	15	18	20	22	23	24	10	9	11
Burnt sienna	4	4	4	4	5	6	9	14	18	20	21	23	24	25	11	9	13
Raw sienna	12	13	13	13	18	26	35	43	46	46	45	44	45	43	33	30	37
Golden ochre	22	22	23	27	40	53	63	71	75	74	73	73	73	72	58	55	63
Chrome yellow ochre	8	9	7	7	10	19	30	46	60	62	66	82	81	80	33	29	40
Yellow ochre ．．．．．．．	20	20	21	24	32	42	53	63	64	61	60	59	59	59	49	46	53
Chrome yellow medium	5	5	6	8	18	48	66	75	78	79	81	81	81	81	54	50	63
Chrome yellow light．．	13	13	18	30	56	82	88	89	90	89	88	87	85	84	76	70	82
Chrome green light．．．		10	14	23	26	23	20	17	14	11	9	8	7	6	19	19	18
Chrome green medium	7	7	10	21	21	17	13	11	9	7	6	6	6	5	14	14	12
Cobalt blue ．．．．．．．．．．．	59	58	49	35	23	15	11	10	10	10	11	15	20	25	16	18	13
Ultramarine blue	67	54	38	21	10	6	4	3	3	4	5	7	10	17	7	10	6

## TABLE 581．—INFRARED DIFFUSE PERCENTAGE REFLECTING FACTORS OF DRY PIGMENTS

Wavelength in $\mu$	Ois	$\begin{aligned} & 0 \\ & 3 \\ & \hline \end{aligned}$	O. ©	O	$\begin{aligned} & \infty \\ & \mathbb{N}_{4}^{\infty} \\ & \text { in } \end{aligned}$	$\stackrel{N}{\infty}_{\infty}^{\infty}$	$\begin{aligned} & 0 . \\ & \text { O } \\ & \text { L } \end{aligned}$	$\begin{aligned} & 0_{4}^{\infty} \\ & < \end{aligned}$	$\begin{aligned} & \text { O゙ } \\ & \underset{F}{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & \sum_{\infty}^{\infty} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { Ũ } \end{aligned}$	$\begin{aligned} & \text { O゙ } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0_{0}^{\infty} \\ & \sum_{2}^{\infty} \\ & \hline \end{aligned}$		
．60＊	3	－	27	52	26	74	70	84	86	82	86	85	86	88	85	76	68
． 95 ＊	4	24	45	－	41	－	－	88	－	86	－	－	84	93	89	79	72
4.4	14	15	33	51	30	34	41	21	47	8	16	22	23	29	11	－	－
8.8	13	－	5	26	4	11	5	20	7	3	2	4	5	10	4	－	－
24.0	6	4	8	10	9	10	7	6	10	5	9	6	5	7	9	－	－

[^224]Perpendicular incidence and reflection (See also Tables 578, 579, 589)
The numbers give the percents of the incident radiation reflected.

. 251	-	-	67.0	35.8	29.9	37.8	-	32.9	25.9	33.8	38.8	-	34.1
. 288	-	-	70.6	37.1	37.7	42.7	-	35.0	24.3	38.8	34.0		21.2
. 305	-		72.2	37.2	41.7	44.2	-	37.2	25.3	39.8	31.8		9.1
. 316	-												4.2
. 326	-	-	75.5	39.3	-	45.2	-	40.3	24.9	41.4	28.6	-	14.6
. 338	-	-	81.	T3	51	46.5	-	-	-	43.4	-	-	55.5
. 357	-	-	81.2	43.3	51.0	48.8	-	45.0	27.3	43.4	27.9		74.5
. 385	-	-	83.9	44.3	53.1	49.6	-	47.8	28.6	45.4	27.1	-	81.4
. 420	-	-	83.3	47.2	56.4	56.6	-	51.9	32.7	51.8	29.3	-	86.6
. 450	85.7	72.8	83.4	49.2	60.0	59.4	48.8	54.4	37.0	54.7	33.1	-	90.5
. 500	86.6	70.9	83.3	49.3	63.2	60.8	53.3	54.8	43.7	58.4	47.0	-	91.3
. 550	88.2	71.2	82.7	48.3	64.0	62.6	59.5	54.9	47.7	61.1	74.0		92.7
. 600	88.1	69.9	83.0	47.5	64.3	64.9	83.5	55.4	71.8	64.2	84.4		92.6
. 650	89.1	71.5	82.7	51.5	65.4	66.6	89.0	56.4	80.0	66.5	88.9	-	94.7
. 700	89.6	72.8	83.3	54.9	66.8	68.8	90.7	57.6	83.1	69.0	92.3	-	95.4
800	-	-	84.3	63.1		69.6	-	58.0	88.6	70.3	94.9		96.8
1.0	-	-	84.1	69.8	70.5	72.0	-	63.1	90.1	72.9		-	97.0
1.5	-	-	85.1	79.1	75.0	78.6	-	70.8	93.8	77.7	97.3	-	98.2
2.0	-	-	86.7	82.3	80.4	83.5	-	76.7	95.5	80.6	96.8	91.0	97.8
3.0		-	87.4	85.4	86.2	88.7	-	83.0	97.1	88.8		93.7	98.1
4.0	-		88.7	87.1	88.5	91.1	-	87.8	97.3	91.5	96.9	95.7	98.5
5.0	-	-	89.0	87.3	89.1	94.4	-	89.0	97.9	93.5	97.0	95.9	98.1
7.0	-	-	90.0	88.6	90.1	94.3	-	92.9	98.3	95.5	98.3	97.0	98.5
9.0	-	-	90.6	90.3	92.2	95.6	-	92.9	98.4	95.4	98.0	97.8	98.7
11.0			90.7	90.2	92.9	95.9	-	94.0	98.4	95.6	98.3	96.6	98.8
14.0	-	-	92.2	90.3	93.6	97.2	-	96.0	97.9	96.4	97.9		98.3

TABLE 583.-LONG-WAVE ABSORPTION BY GASES
Unless otherwise noted, gases were contained in a $20-\mathrm{cm}$ long tube.


The radiation used to measure the reflecting factors for the wavelengths given was obtained from the sun's radiation transmitted through selected filters. The radiation from a "pointalight" transmitted through a thin gold filter may be used in place of the sun.

Description	(1.78ر)	(.84 $\mu$ )	(.61 $\mu$ )	(.50ر)	Gold film	Com. puted
Magnesium carbonate	. 63	. 99	. 98	. 96	. 96	

Clay tiles

Dutch: light red.	. 68	. 66	. 56	. 21	. 57	. 52
Machine-made : red	. 72	. 42	. 34	. 11	. 38	. 38
red	. 55	. 38	. 31	. 11	. 34	. 33
lighter red	. 52	. 40	. 32	. 13	. 34	. 33
dark purple	. 22	. 22	. 19	. 13	. 19	. 18
Hand-made : red		. 47	. 37	. 12	. 40	. 39
red	55	. 33	. 28	. 13	. 31	31

Concrete tiles

Uncolored	. 37	. 38	. 36	. 27	. 35	33
Brown	. 13	. 17	. 15	. 09	. 15	. 13
Brown: very rough	. 08	. 13	. 13	. 10	. 12	. 11
Black .....	. 06	. 09	. 09	. 09	. 09	. 8

Slates

rk gray: smooth	. 09	. 11	. 11	. 11	. 11	. 10
fairly rough	. 10	. 11	. 10	. 09	. 10	. 10
rough ......	. 09	. 10	. 11	. 11	. 10	. 10
Greenish gray: rough	. 16	. 11	. 12	. 13	. 12	. 13
Mauve .........	. 14	. 16	. 13	. 10	. 14	. 13
Blue gray	. 20	. 16	. 13	. 12	. 13	. 15
Silver gray (Norwegian)	. 22	. 21	. 21	. 19	. 21	. 20

Other roofing materials

Asbestos cement: white	. 35	. 42	. 41	. 36	. 41	. 39
red	. 33	. 33	. 29	. 14	. 31	. 26
Enamelled steel : white	. 35	. 53	. 53	. 57	. 52	. 52
green	. 26	. 34	. 17	. 13	. 24	. 25
red	. 24	. 26	. 18	. 08	. 19	. 19
blue	. 23	. 27	. 17	. 18	. 20	. 23
Galvanized iron : new.	. 58	. 30	. 34	. 34	. 35	. 35
very dirty	. 10	. 09	. 09	. 09	. 09	. 09
whitewashed	. 63	. 79	. 79	. 76	. 78	. 74
Special roofing sheet: brown.	. 20	. 15	. 12	. 07	. 13	. 13
green	. 13	. 20	. 12	. 12	. 14	. 15
Bituminous felt	. 10	. 12	. 11	. 11	. 12	. 11
Aluminized felt	. 67	. 60	. 61	. 57	. 62	. 60
Weathered asphalt	. 12	. 12	. 11	. 09	. 11	. 11
Roofing lead: old. .	. 46	. 20	. 19	. 15	. 21	. 23

## Bricks

Gault : cream	. 74	. 69	. 64	. 43	. 64	. 61
Stock: light fawn	. 56	. 47	. 38	. 19	. 44	. 39
Fletton: light portion	. 67	. 61	. 57	. 35	. 58	. 52
dark portion	. 54	. 46	. 37	. 15	. 41	. 37
Wire cut : red	. 56	. 48	. 41	. 15	. 44	. 39
Sand-lime: red	. 41	. 37	. 30	. 11	. 32	. 30
Mottled purple	. 33	. 26	. 22	. 15	. 23	. 23
Stafford: blue		. 12	. 11	. 08	. 11	. 12
Lime-clay (French)	. 57	. 63	. 52	. 29	. 54	49

554
TABLE 585.-REFLECTION AND TRANSMISSION OF VARIOUS MATERIALS FOR VERY LONG WAVELENGTHS

With quartz, 1.7 cm thick : 60 to $80 \mu$, absorption very great; $63 \mu$, 99 percent ; $82 \mu, 97.5$; $97 \mu, 83$.

Percentage reflection										
Wavelength	Iceland spar Marble	Rock salt	Sylvite	KBr	KI	Fluorite	Glass	Water	Alcohol	
$\lambda=82 \mu$ *	- -	25.8	36.0	82.6	29.6	19.7	-	9.6	-	
$\lambda=108 \mu \dagger$	$47.1 \quad 43.8$	20.3	19.3	31.1	35.5	20.2	19.2	11.6	1.6	
Percentage transparency Uncorrected for reflections										
Solid	Thickness	Transparency						hickness precipitable liquid	Trans. parency	
Paraffin	3.03	57.0		Benzene		1.00		-	56.8	
Mica	. 055	16.6		Ethyl alcohol		. 158		-	7.9	
Hard rubber	. 40	39.0		Ethyl ether		. 158		-	37.1	
Quartz \|	axis...	- 2.00	62.6		Water ...		. 029		-	25.8
Quartz, amorph	- 3.85	0		Water		. 044		-	13.6	
Rock salt . . . . .	- . 21	21.5								
Fluorite	. 59	5.3		Vapors:						
Diamond	1.26	45.3		Alco	ol	. 2.00		. 023	88	
Quartz ${ }_{\text {" }}$ axis	- 2.00	81.3		Ethe	...	. 2.0		. 350	33.5	
" "	4.03	66.4		Benz	ne	. 2.00		. 063	100	
" " "	. 7.26	49.8		Wat	r	. . 4.0		. 21	19.6	
" " " .	. 11.74	35.5		$\mathrm{CO}_{2}$		. 2.00		-	100	
" "	. 14.66	29.0								

[^225]
## TABLE 586.-TRANSPARENCY OF BLACK ABSORBERS (percent)

Method and wavelength		Black silk paper, .025 mm thick	Opaque black paper, .11 mm thick	Black cardboard .4 mm thick	$\begin{gathered} \text { Candle } \\ \text { ampplack, } \\ 10 \mathrm{~cm}^{2}=1.8 \\ \mathrm{mg} \end{gathered}$
Spectrometer		0	0	0	. 5
	4	. 9	0	0	8.6
	6	1.7	0	0	16.0
	12	8.2	1.4	0	37.6
Fluorite "reststrahlen"	26	24.2	32	0	76.7
Rock salt "reststrahlen" .	52	46.0	15.1	0	91.3
Quartz lens isolation.....		61.5	33.5	1.6	91.5

## TABLE 587.-RELATIVE REFLECTIVITY OF SNOW, SAND, AND OTHER MATERIALS ${ }^{173}$

	Maine sand	Florida sand $\dagger$	Crushed quartz	Snow	Plaster of paris	White paper	Sodium $\ddagger$ carbonate	Sodium chloride	White cotton cloth §
. 3 to $.4 \mu$	. 8	15	40	35	40	8	14	38	26
.4 to $.8 \mu$	. 25	40	50	40	53	30	28	49	42
. 8 to $2.6 \mu$	. 33	50	53	15	60	30	35	54	40
2.6 to $7 \mu$	. 31	30	28	18	63	15	18	55	20
$7 \mu \ldots$	. 48	. .	. .	26		.		. .	

[^226] SUBSTANCES

	Lamp-blacks								$\begin{aligned} & \stackrel{y}{x} \\ & \frac{0}{4} \\ & \frac{1}{4} \end{aligned}$		$\begin{aligned} & \stackrel{\bigsqcup}{0} \\ & \text { a } \\ & \stackrel{y}{*} \\ & \stackrel{y y}{3} \end{aligned}$					
Wave- length $\mu$	薜	$\begin{aligned} & \stackrel{g}{\ddot{W}} \\ & \stackrel{\circ}{\circ} \end{aligned}$														
. 60	3.2							52.	84.	82.		89.	15.	1.8	14.	30.
. 95	3.4	1.3	1.1	. 6	1.3	1.1			88.	86.	75.	93.			21.	
4.4	3.2	1.3	. 9	. 8	1.2	1.4		51.	21.	8.	18.	29.		3.7		
8.8	3.8		1.3	1.2	1.6	2.1		26.	2.	3.	5.	11.		2.7		12.
24.0	4.4	3.0	4.0	2.1	5.7	4.2		10.	6.	5.		7.				

## TABLE 589.-INFRARED REFLECTIVITY OF TUNGSTEN (Temperature variation)

Three tungsten mirrors were used-a polished Coolidge X-ray target and two polished flattened wires mounted in evacuated soft-glass bulbs with terminals for heating electrically. Weniger and Pfund, Journ. Franklin Inst.

Wavelength in $\mu$	Absolute reflectivity at room temperature in percent	Percent increase in reflectivity in going from room temperature to			
		$1377^{\circ} \mathrm{K}$	$1628^{\circ} \mathrm{K}$	$1853^{\circ} \mathrm{K}$	$2056^{\circ} \mathrm{K}$
. 67	51	$+6.0$	+7.4	+ 8.7	+ 9.8
. 80	55	-	-	-	+8.2
1.27	70	. 0	. 0	. 0	. 0
1.90	83	-6.6	-8.2	-9.6	-11.0
2.00	85	-7.5	-9.3	-10.9	-12.3
2.90	92	-7.7	-9.4	-11.1	-12.5
4.00	93	-	-	-	$-12.5$

TABLE 590.-RESTRAHLUNG BANDS FROM VARIOUS MATERIALS ${ }^{176}$ (percent)
(p)

Number ofreflections $\quad$Crystal   mirrors	$\begin{gathered} \text { Filter } \\ \text { (3 mm paraffin } \\ \text { in each case) } \end{gathered}$	Wavelength in $\mu$	Frequency in $\sim / \mathrm{cm}$
4 ...... Quartz	1 cm KCl	20.7	483
3 ....... Fluorite	5 mm KCl	23	435
1 ....... Metal.			
2 ....... Fluorite	3 mm KBr	27.3	366
4 ...... Calcite		29.4	340
3 ...... Fluorite	.4 mm quartz	32.8	305
1 ....... Metal	1.2 mm KBr		
3 ...... Aragonite	. 4 mm quartz	41*	244
${ }_{4}^{1} \ldots \ldots . . \begin{gathered}\text { Metal } \\ \end{gathered}$			
$4{ }_{4} \ldots \ldots . \cdot \mathrm{KaCl}^{\text {N }}$	2 mm ، quartz	52	192
$4 \ldots \ldots$ KBr	"	83	120
4 ....... KI	"	94	106
$4 \ldots . . . \mathrm{TlBr}$	"	117	85
4 ...... Tli	"	152	66
Magnesium oxide	"	22.5	444

[^227]556
TABLE 591.-INFRARED REFLECTING FACTOR OF VARIOUS MATERIALS* (percent)

	$\begin{aligned} \lambda & =20 \mu \\ \sim / \mathrm{cm} & =500 \end{aligned}$	25 400	333   300	50 200	668 150 150	100 100	${ }_{669}^{150 \mu}$
Rough brass	67	70	78	83	92	96	100
ough bras	24	33	42	58	68	81	99
" "	12	14	17	21	25	40	82
Galena	. 31	30	21	51	73	76	76
Zincite	. 50	35	18	21	18	20	15
$\beta$ magnesia,	.. 80	60	34	30	30	30	30
Stibnite	.. 21	20	4	39	48	52	39
Sphalerite	10	15	29	20	19	18	17
Corundum	... (30)	41	26	31	29	24	22
Cuprite ..	... 45	47	47	42	41	42	46

*For reference, see footnote 174, p. 555.

TABLE 592.-INFRARED TRANSMISSION OF VARIOUS MATERIALS*

	$\begin{aligned} \lambda & =20 \mu \\ \sim / \mathrm{cm} & =500 \end{aligned}$	25 400	335 300	50 200	663 150	100 100	${ }_{663} 150 \mu$
KBr		61	46	3	..	..	..
K l		83	76	12			
Amorphous $\mathrm{SiO}_{2}$	. 3	27	64	63	62	70	87
CCl , liquid ......	... (57)	63	50	74	74	(72)	.
$\mathrm{KCl} \ldots$	.... 97	97	96	93	80	98	

* For reference, see footnote 174, p. 555.

TABLES 593-597.-ROTATION OF PLANE OF POLARIZED LIGHT

## TABLE 593.-TARTARIC ACID, CAMPHOR, SANTONIN, SANTONIC ACID, CANE SUGAR

A few examples are here given showing the effect of wavelength on the rotation of the plane of polarization. The rotations are for a thickness of one decimeter of the solution. The following symbols are used:

$p=$	number grams of the active substance in	100 g of the solution.
$c=$	solvent	
$q=$	$"$	$"$

Right-handed rotation is marked + , left-handed - .

Line of spectrum	Wavelength	Tartaric acid, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{6}$, dissolved in water. $\begin{aligned} & q=50 \text { to } 95 . \\ & \text { temp }=24^{\circ} \dot{\mathrm{C}} \end{aligned}$	Camphor, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$, dissolved in alcohol.$\begin{gathered} q=50 \text { to } 95 \\ \text { temp }=22.9^{\circ} \mathrm{C} \end{gathered}$		Santonin, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$, dissolved in chloroform $\begin{aligned} & q=75 \text { to } 96.5, \\ & \text { temp }=20^{\circ} \mathrm{C} \end{aligned}$
B	6867 A				$-140: 1+.2085 q$
C	6562	$+2: 748+.09446 q$	38:549	852 q	$-149.3+.1555 q$
D	5892	$+1.950+.13030 q$	51.945	964 q	$-202.7+.3086 q$
E	5269	$+.153+.17514 q$	74.331	343 q	$-285.6+.5820 q$
$\mathrm{b}_{1}$	5183				$-302.38+.6557 q$
$\mathrm{b}_{2}$	5172	$-.832+.19147 q$	79.348	$451 q$	
F	4861	$-3.598+.23977 q$	99.601	912 q	$-365.55+.8284 q$
e	4383	$-9.657+.31437 q$	149.696	$346 q$	$-534.98+1.5240 q$
			Santoni	${ }_{15} \mathrm{H}_{18} \mathrm{O}_{3}$	Santonic acid,
		$\begin{aligned} & \text { Santonin, } \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}, \\ & \text { dissolved in alco. } \\ & c=1.782 \\ & \text { temp }=20^{\circ} \mathrm{C} \end{aligned}$	dissolved in alcohol. $c=4.046$ $\text { temp }=20^{\circ} \mathrm{C}$	dissolved in chloroform. $c=3.1-30.5$ temp $=20^{\circ} \mathrm{C}$	dissolved in chloroform. $c=27.192$ temp $=20^{\circ} \mathrm{C}$
B	6867	$-110.4{ }^{\circ}$	$442^{\circ}$	$484^{\circ}$	- $49^{\circ}$
C	6562	-118.8	504	549	- 57
D	5892	-161.0	693	754	- 74
E	5269	-222.6	991	1088	-105
$\mathrm{b}_{1}$	5183	-237.1	1053	1148	-112
$\mathrm{b}_{2}$	5172	1	-	-	13
F	4861	-261.7	1323	1444	-137
e	4383	-380.0	2011	2201	-197
G	4307	-	-	-	
g	4226	-	2381	2610	-230

Values obtained at the National Bureau of Standards for the rotation of sucrose are given below.

Light source	$\frac{\operatorname{Rot} \lambda}{\operatorname{Rot} \lambda=5461 \mathrm{~A}}$	$[a]^{20}{ }^{*}$	Light source	$\frac{\operatorname{Rot} \lambda}{\operatorname{Rot} \lambda=5461}$	$[\alpha]_{\lambda}^{20}{ }^{\text {* }}$
Li 6708	. 644	50.45	Cd 4678	1.403	109.9
Cd 6438	. 711	55.70	Hg 4358	1.644	128.8
Na 5892.5	. 84922	66.529	Ag 4208	1.786	139.9
Hg 5780	. 8854	69.36	Hg 4047	1.95	152.8
Hg 5461	1.0000	78.342			
Ag 5209	1.108	86.80			
Cd 5086	1.167	91.43			
Cd 4800	1.323	103.65			

[^228]TABLE 594.-SODIUM CHLORATE; QUARTZ

Sodium chlorate				Quartz					
$\begin{aligned} & \text { Spec- } \\ & \text { trum } \\ & \text { line } \end{aligned}$	$\begin{gathered} \text { Wave. } \\ \text { length } \end{gathered}$	${ }^{\text {Temp }}{ }^{\text {C }}$	Rotation per mm	$\begin{aligned} & \text { Spec- } \\ & \text { trum } \\ & \text { Sine } \end{aligned}$	Wave. length	Rotation per mm	$\begin{gathered} \text { Spec- } \\ \text { trum } \\ \text { line } \end{gathered}$	Wave-	Rotation per mm
a	7164 A	15.0	2:068	A	7604	12:668	$\mathrm{Cd}_{9}$	3609	63:628
B	6870	17.4	2.318	a	7164	14.304	N	3582	64.459
C	6563	20.6	2.599	B	6870	15.746	$\mathrm{Cd}_{10}$	3465	69.454
D	5892	18.3	3.104				0	3441	70.587
E	5270	16.0	3.841	C	6563	17.318			
F	4861	11.9	4.587	$\mathrm{D}_{1}$	5896	21.684	$\mathrm{Cd}_{11}$	3401	72.448
$\mathrm{G}^{\prime}$	4340	10.1	5.331	$\mathrm{D}_{2}$	5890	21.727	P	3360	74.571
G	4308	14.5	6.005				Q	3285	78.579
H	4101	13.3	6.754	E	5270	27.543	$\mathrm{Cd}_{12}$	3247	80.459
L	3820	14.0	7.654	F	4862	32.773			
M	3728	10.7	8.100	G	4308	42.604	R	3180	84.972
N	3581	12.9	8.861				$\mathrm{Cd}_{17}$	2747	121.052
P	3361	12.1	9.801	h	4102	47.481	$\mathrm{Cd}_{18}$	2571	143.266
Q	3287	11.9	10.787	H	3969	51.193	$\mathrm{Cd}_{23}$	2312	190.426
R	3180	13.1	11.921	K	3934	52.155			
T	3021	12.8	12.424				$\mathrm{Cd}_{24}$	2264	201.824
$\mathrm{Cd}_{17}$	2747	12.2	13.426	L	3820	55.625	$\mathrm{Cd}_{25}$	2193	220.731
$\mathrm{Cd}_{18}$	2571	11.6	14.965	M	3728	58.894	$\mathrm{Cd}_{28}$	2143	235.972

TABLE 595.-REFLECTING FACTOR OF METALS (See Table 584)

Wavelength	A1	Sb	Cd	Co	Graphite	Ir	Mg	Mo	Pd	Rh	Si	Ta	Te	Sn	W	Va	Zn
$\mu$		Percents															
. 5	-	-	-	-	22	-	72	46	-	76	34	38	-	-	49	57	-
. 6	-	53	-	-	24	-	73	48	-	77	32	45	49	-	51	58	-
. 8	-	54	-	-	25	-	74	52	-	81	29	64	48	-	56	60	-
1.0	71	55	72	67	27	78	74	58	72	84	28	78	50	54	62	61	80
2.0	82	60	87	72	35	87	77	82	81	91	28	90	52	61	85	69	92
4.0	92	68	96	81	48	94	84	90	88	92	28	93	57	72	93	79	97
7.0	96	71	98	93	54	95	91	93	94	94	28	94	68	81	95	88	98
10.0	98	72	98	97	59	96	-	94	97	95	28	-	-	84	96	-	98
12.0	98	-	99	97	-	96	-	95	97	-	-	95	-	85	96	-	99

The surfaces of some of the samples were not perfect so that the corresponding values have less weight. The following more recent values are given for tungsten and stellite, an exceedingly hard and untarnishable alloy of $\mathrm{Co}, \mathrm{Cr}, \mathrm{Mo}, \mathrm{Mn}$, and $\mathrm{Fe}(\mathrm{C}, \mathrm{Si}, \mathrm{S}, \mathrm{P}$ ).

Wa	$\mu$,	. 15	. 20	. 30	. 50	. 75	1.00	2.00	3.00	4.00	5.00	9.00
Tungsten					. 50	. 52	. 576	. 900	. 943	. 948	. 953	-
Stellite,		32	42	50	. 64	. 67	. 689	747	792	. 825	848	880

## TABLE 596.—OPTICAL CONSTANTS OF METALS

Two constants are required to characterize a metal optically, the refractive index, $n$, and the absorption index, $k$, the latter of which has the following significance: the amplitude of a wave after traveling one wavelength, $\lambda^{1}$ measured in the metal, is reduced in the ratio 1: $\exp (-2 \pi k)^{*}$ or for any distance $d 1: \exp \left(-2 \pi d k / \lambda^{1}\right)$, for the same wavelength measured in air this ratio becomes $1: \exp \left(-2 \pi d n k / \lambda^{1}\right), n k$ is sometimes called the extinction coefficient. Plane polarized light reflected from a polished metal surface is in general elliptically polarized because of the relative change in phase between the two rectangular components vibrating in and perpendicular to the plane of incidence. For a certain angle, $\bar{\phi}$ (principal incidence) the change is $90^{\circ}$ and if the plane polarized incident beam has a certain azimuth $\bar{\psi}$ (principal azimuth) circularly polarized light results.

$$
k=\tan 2 \bar{\psi}\left(1-\cot ^{2} \bar{\phi}\right) \text { and } n=\frac{\sin \bar{\phi} \tan \bar{\phi}}{\left(1+k^{2}\right)^{1}}\left(1+\frac{1}{2} \cot ^{2} \bar{\phi}\right) .
$$

(continued)

For rougher approximations the factor in parentheses may be omitted. $R=$ computed percentage reflection.
(The points have been so selected that a smooth curve drawn through them closely indicates the characteristics of the metal.)

Metal	$\lambda$	$\bar{\phi}$	$\bar{\downarrow}$	Computed			
				$n$	$k$	$n k$	$R$
Cobalt	$\stackrel{\mu}{\mu}$	$64^{\circ} 31^{\prime}$	$29^{\circ} 39$	1.10	1.30	1.43	\% 32.
	. 275	7022	2959	1.41	1.52	2.14	46.
	. 500	775	3153	1.93	1.93	3.72	66.
	. 650	790	3125	2.35	1.87	4.40	69.
	1.00	8145	296	3.63	1.58	5.73	73.
	1.50	8321	2618	5.22	1.29	6.73	75.
	2.25	8348	265	5.65	1.27	7.18	76.
Copper	. 231	6557	2614	1.39	1.05	1.45	29.
	. 347	656	2816	1.19	1.23	1.47	32.
	. 500	7044	3346	1.10	2.13	2.34	56.
	. 650	7416	4130	. 44	7.4	3.26	86.
	. 870	7840	4230	. 35	11.0	3.85	91.
	1.75	844	4230	. 83	11.4	9.46	96.
	2.25	8513	4230	1.03	11.4	11.7	97.
	4.00	8720	4230	1.87	11.4	21.3	
	5.50	8800	4150	3.16	9.0	28.4	
Gold	1.00	8145	4400	. 24	28.0	6.7	
	2.00	8530	4356	. 47	26.7	12.5	
	3.00	8705	4350	. 80	24.5	19.6	
	5.00	8815	4325	1.81	18.1	33.	
Iridium	1.00	8210	2920	3.6	1.60	5.8	
	2.00	8440	2810	6.0	1.48	8.9	
	3.00	8540	2640	8.0	1.37	11.0	
	5.00	8720	2400	12.5	1.13	14.1	
Nickel	. 420	7220	3142	1.41	1.79	2.53	54.
	. 789	761	3141	1.79	1.86	3.33	62.
	. 750	7845	326	2.19	1.99	4.36	70.
	1.00	8033	322	2.63	2.00	5.26	74.
	2.25	8421	3330	3.95	2.33	9.20	85.
Platinum	1.00	8200	3030	3.4	1.82	6.2	
	2.00	8445	2940	5.7	1.70	9.7	
	3.00	8600	2850	7.7	1.59	12.3	
	5.00	8715	2700	11.5	1.37	15.7	
Silver	. 226	6241	2216	1.41	. 75	1.11	18.
	. 293	6314	1856	1.57	. 62	. 97	17.
	. 316	5228	1538	1.13	. 38	. 43	4.
	. 332	521	372	. 41	1.61	. 65	32.
	. 395	6636	436	. 16	12.32	1.91	87.
	. 500	7231	4329	. 17	17.1	2.94	93.
	. 759	7535	4347	. 18	20.6	3.64	95.
	. 750	7926	446	. 17	30.7	5.16	97.
		820	442	. 24	29.0	6.96	98.
	1.50	8442	4348	. 45	23.7	10.7	98.
	2.25	8618	4334	. 77	19.9	15.4	99.
	3.00	8710	4240	1.65	12.2	20.1	
	4.50	8820	4110	4.49	7.42	33.3	
Steel	. 226	6651	2817	1.30	1.26	1.64	35.
	. 257	6835	2845	1.38	1.35	1.86	40.
	. 325	6957	309	1.37	1.53	2.09	45.
	. 500	7547	292	2.09	1.50	3.14	57.
	. 650	7748	$27 \quad 9$	2.70	1.33	3.59	59.
	1.50	8148	2851	3.71	1.55	5.75	73.
	2.25	8322	3036	4.14	1.79	7.41	80.

[^229]TABLE 597.-OPTICAL CONSTANTS OF METALS (additional data)

Metal	$\lambda$	$n$	$k$	$R$	Metal	$\lambda$	$n$	$k$	$R$
	$\mu$					$\mu$			
Al *	. 589	1.44	5.32	83	Ni *	. 275	1.09	1.16	24
Sb*	. 589	3.04	4.94	70		. 441	1.16	1.23	25
Bit ${ }^{\text {t }}$	white	2.26	-	-		. 589	1.30	1.97	43
Cd*	. 589	1.13	5.01	85	Rh *	. 579	1.54	4.67	78
Cr*	. 579	2.97	4.85	70	Se $\ddagger$	. 400	2.94	2.31	44
Nb *	. 579	1.80	2.11	41		. 490	3.12	1.49	35
$\mathrm{Au}^{\dagger}$	. 257	. 92	1.14	28		. 589	2.93	. 45	25
	. 441	1.18	1.85	42		. 760	2.60	. 06	20
	. 589	. 47	2.83	82	Si*	. 589	4.18	. 09	38
I crys	. 589	3.34	. 57	30		1.25	3.67	. 08	33
Ir*	. 579	2.13	4.87	75		2.25	3.53	. 08	31
Fe §	. 257	1.01	. 88	16	Na (liq)	. 589	. 004	2.61	99
	. 441	1.28	1.37	28	Ta**	. 579	2.05	2.31	44
	. 589	1.51	1.63	33	Sn*	. 589	1.48	5.25	82
Pb *	. 589	2.01	3.48	62	W *	. 579	2.76	2.71	49
Mg*	. 589	. 37	4.42	93	$\mathrm{V}^{*}$	. 579	3.03	3.51	58
Mn*	. 579	2.49	3.89	64	Zn*	. 257	. 55	. 61	20
Hg (liq)	. 326	. 68	2.26	66		. 441	. 93	3.19	73
	. 441	1.01	3.42	74		. 589	1.93	4.66	74
	. 589	1.62	4.41	75		. 668	2.62	5.08	73
	. 668	1.72	4.70	77					
Pd*	. 579	1.62	3.41	65 37	$\begin{aligned} & \lambda 三 \text { wavel } \\ & k \equiv \text { absor } \end{aligned}$	ion ind	$\begin{aligned} \text { refrac } \\ R= \end{aligned}$	$\begin{aligned} & \text { index } \\ & \text { ction. } \end{aligned}$	cent.
$\mathrm{Pt} \dagger$	. 257	1.17	1.65	37					
	. 441	1.94	3.16	58					
	. 589	2.63	3.54	59					
	. 668	2.91	3.66	59					

* Solid. † Electrolytic. $\ddagger$ Prism. § Deposited as film in vacuo.


## TABLES 598-601.-MEDIA FOR DETERMINATIONS OF REFRACTIVE INDICES WITH THE MICROSCOPE

TABLE 598.-LIQUIDS, $n_{D}(0.589 \mu)=1.74$ to 1.78
In 100 parts of methylene iodide at $20^{\circ} \mathrm{C}$ the number of parts of the various substances indicated in the following table form saturated solutions having the refractive indices specified. When ready for use the liquids can be mixed to give intermediate refractions. Commercial iodoform $\left(\mathrm{CHI}_{3}\right)$ powder is not suitable, but crystals from a solution of the powder in ether may be used, or the crystallized product may be bought. A fragment of tin in the liquids containing the $\mathrm{SnI}_{4}$ will prevent discoloration.

$\mathrm{CHI}_{3}$	$\mathrm{SnI}_{4}$	$\mathrm{AsI}_{3}$	$\mathrm{SbI}_{3}$	$S$	$\eta_{\text {na }}$ at $20^{\circ} \mathrm{C}$
	25		12		1.764
	25		12		1.783
	30			6	1.806
	27	13	7		1.820
40	27	16		1.826	
35	31	14	8	10	1.842
	31	16	8	10	1.853

TABLE 599.-RESINLIKE SUBSTANCES, $n_{D}(0.589 \mu)=1.68$ to 2.10
Piperine, an inexpensive alkaloid, comes in very pure straw-colored crystals. Melted, it dissolves the tri-iodides of Sb and As very freely. The solutions are fluid at slightly above $100^{\circ}$ and when cold, resinlike. Three parts antimony iodide to one part of arsenic iodide with varying proportions of piperine are easier to manipulate than one containing either iodide alone. In preparing, the constituents, in powder of about 1 mm grain, should be weighed out and then fused over, not in, a low flame. Three-inch test tubes are suitable.

Percent iodides	00	10	20	30	40	50	60	70	80
Index of refraction. . . 1.683	1.700	1.725	1.756	1.794	1.840	1.897	1.968	2.050	

## TABLE 600.-PERMANENT STANDARD RESINOUS MEDIA, $n_{\mathrm{D}}(0.589 \mu)=1.546$ to 1.682

Any proportions of piperine rosin form a homogeneous fusion which cools to a transparent resinous mass. On account of the strong dispersion of piperine the refractive indices of minerals apparently matched with those of mixtures rich in this constituent are 0.005 to 0.01 too low. To correct this error a screen made of a thin film of 7 percent antimony iodide and 93 percent piperine should be used over the eyepiece. Any amber-colored rosin in lumps is suitable.

Percent rosin   Index of   refraction$\ldots \ldots$	00	10	20	30	40	50	60	70	80	90	100

TABLE 601.-SUBSTANCES, $n_{\mathrm{p}}=1.39$ to 1.75

	$n$			$n$	$n$
n-Heptane	1.39	Eugenol	1.54	Quinaldine	1.61
Octylene	1.41	Nitrobenzene	1.55	Iodobenzene	1.62
Cyclohexane	1.44	Anethole	1.56	a-Chloronaphthalene	1.63
d-Limonene	1.47	o-Toluidine	1.57	a-Bromonaphthalene	1.66
p-Xylene	1.50	o-Bromophenol	1.58	a-Iodonaphthalene	1.69
Chlorobenzene	1.53	Bromoform	1.59	Methylene iodide	1.75

## TABLE 602.-SENSITOMETRIC CONSTANTS OF TYPE PLATES AND FILMS, DEFINITIONS

Density ( $D$ ).-Density is a measure of the degree of blackening of an exposed film or plate after development. Density is defined in general terms as the logarithm of the ratio of the radiant flux, $P_{0}$, incident on the sample to the radiant flux, $P_{t}$, transmitted by the sample.


Fig. 27.-Typical characteristic curve. Ordinates are diffuse transmission density ( $D$ ) : abscissae, $\log$ s of exposure $(\log E) . A-C=$ toe, $C-E=$ straight line, $E-F=$ shoulder, $B=$ speed point, $B-D=\Delta \log E=1.50$. Tan $a=\gamma$, Tan $b=\beta$, Tan $a=0.3 \beta$.

$$
D=\log \left(\frac{P_{0}}{P_{\mathrm{t}}}\right)
$$

Exposure ( $E$ ). $-E=I t$ (expressed in meter-candle seconds). $I=$ illumination (metercandles, mc ) incident on the photographic material during exposure, $t=$ exposure time in seconds.

Gamma ( $\gamma$ ).-Gamma is defined as the tangent of the angle alpha (a) (fig. 27) which the straight-line part of the characteristic curve makes with the log-exposure axis.

Gamma infinity $\left(\gamma_{\infty}\right) .-\gamma_{\infty}$ is defined as the limiting value to which gamma approaches as development time is increased.

Time of development for the half gamma infinity ( $t_{\gamma}=\gamma_{\infty} / 2$ ). A convenient practical specification of development rate of significance in comparing developers.

Time of development for gamma of unity ( $t_{\gamma}=1.0$ ). - A convenient practical specification of development rate of significance in comparing photographic materials. Comparisons must be confined to materials in the same developer.

Inertia ( $i$ ). $-i=$ the value of exposure where the straight-line portion of the characteristic curve (fig. 27) extended cuts the $\log E$ axis.

Speed $\left(S_{c}\right)-S_{0}=1 / E$, where $E$ is the exposure corresponding to point $B$ on the $D-\log E$ curve in figure 27. This point is located in the following manner: A $\log$ exposure range of 1.50 , represented in the figure by the distance along the log exposure axis between $B$ and $D$, is selected in a region where the slope of the curve at the low end of the range is 0.30 of the average slope over the entire range. When the slope, or tangent of angle $a$, is 0.30 of the tangent of angle $b$, the point $B$, at the low end of the exposure range, represents the exposure value $(E)$ from which the speed of the material is derived.

[^230]In the determination of the values given in Table 604, developing solutions made up according to the following formulas were used (temperature, $20^{\circ} \mathrm{C}$ ):
Developer A:
Monomethyl para-aminophenol sulfate *.............................. 2.0 grams
Sodium sulfite (anhydrous)
Hydroquinone .......................................................... 4.0 "
Sodium carbonate (anhydrous).............................................. 6.0 "
Potassium bromide .............................................................. . 75 "
Air-free distilled water to make........................................ 1.0 liter
Developer B:
Monomethyl para-aminophenol sulfate *.............................. $\quad 2.0$ grams
Sodium sulfite (anhydrous)
80.0 "

Hydroquinone ............................................................. 4.0
Borax.................................................................. 4.0 "
Potassium bromide ....................................................... . . . 5 "
Air-free distilled water to make................................................ 1.0 liter
Developer C:

Monomethyl para-aminophenol sulfate *................................... 2.2 grams
Sodium sulfite (anhydrous).............................................. . . . . . 96.0
Hydroquinone .................................................................. 8.8
Sodium carbonate, monohydrated....................................... 56.0 "
Potassium bromide .................................................... 5.0 " "
Air-free distilled water to make............................................... 1.0 liter

- Sold under such trade names as Metol, Elon, Rhodol, and Pictol.

TABLE 604.-SENSITOMETRIC CONSTANTS OF TYPE PLATES AND FILM


## Sheet films and plates

Fast panchromatic	A	1.45	2.6	5.2	2500	500
Fast orthochromatic	A	1.50	2.0	4.2	1700	400
Medium-speed panchromatic ..	A	1.50	3.6	6.3	840	200
Medium-speed orthochromatic. .	A	1.25	2.7	9.9	850	200
Blue-sensitive	A	1.35	2.7	5.7	430	100
Amateur roll films						
Fast panchromatic	A	1.28	2.9	6.6	2500	400
Fast orthochromatic	A	1.25	2.2	5.7	1300	200
Fine-grain panchromatic	A	2.50	5.5	4.2	400	100
Process films and plates						
Panchromatic	C	6.90	3.3	8	60	$\ldots$
Orthochromatic ..............		5.00	2.00	. 7	60	
Blue-sensitive .................	C	4.00	2.7	1.7	35	$\ldots$

[^231]
## TABLE 605.-COMPARISON OF NUCLEAR AND OPTICAL EMULSIONS

Nuclear track plates differ markedly in physical composition and general characteristics from the ordinary photographic materials (optical type) as shown in the table, where a number of properties of optica! and nuclear emulsions are compared.

Property	Optical type	Nuclear type
AgBr : gelatin ( wt )	. 47 :53	80:20
AgBr : gelatin (vol)	. 15:85	45:55
Grain diameter	. 5 to $3 \mu$.	. 1 to $.4 \mu$
Emulsion thickness	. $10 \mu$	$25-300 \mu$
Emulsion wt mg/ $\mathrm{cm}^{2}$.	.2-4	10-80
Sensitivity to light.	. Very high	Low
Response to $\alpha$-particles	. High	Individual tracks
Response to $\beta$-particles	. Moderate	Individual tracks
Response to $\boldsymbol{\gamma}$-rays.	. Low	Very low

TABLE 606.-RESOLVING POWER AND EDGE GRADIENT VALUES ${ }^{175}$

## Part 1.-Definitions

Resolving power ( $R$ ).-The resolving power of a photographic material is broadly defined as the ability to record fine detail distinguishably. Any quantitative evaluation depends on the type of detail, and for convenience parallel lines separated by spaces whose width is equal to the common width of the lines are almost universally used. ${ }^{179}$ Values are usually given as the number of lines per millimeter that can be resolved visually under adequate magnification.

Resolving power increases with increasing exposure to a maximum and then decreases, It is relatively unaffected by the type of developer, although developers that markedly reduce the grain size improve resolution. As the development time increases from zero, resolving power rises rapidly to a maximum, decreases slightly, and then remains sensibly constant for all practical development times. It increases in a roughly exponential manner as the contrast in the test object increases from zero, becoming substantially constant for contrasts exceeding about $100: 1$. Its dependence on wavelength is less well known, but in general it increases as wavelength decreases because of the increasing opacity of the emulsion. Although resolving power tends to increase as granularity decreases, this is by no means always the case. The values given in Table 608 apply when the ratio of brightness of the light to the dark lines is $1000: 1$ and the test object is photographed with an especially well-corrected $f / 5$ lens in tungsten light with the optimum exposure; the materials were developed for practical times in the developer for which the data are given in Table 604.

As thus specified, resolving power is a threshold phenomenon and is not a criterion of the clearness with which gross details will be reproduced. Furthermore, it is of questionable value when the image is to be scanned with a physical photometer because the effect of granularity depends upon the design of the instrument.

Edge gradient $(G)$.-The appearance of sharpness produced by a photographic image probably depends, among other factors, upon the rate of change of density across the edge of the image with distance measured normal to the boundary. The curve of density vs distance resembles the $H$ and $D$ curve, and its gradient, called edge gradient to distinguish it from the gradient of the $H$ and $D$ curve, passes through a maximum with respect to distance. The values of this maximum for the respective materials in density units per micron are given in Table 608. These values were determined with a test object consisting of an extremely sharp, clear line in an opaque background on a high-resolution plate. This test object was pressed firmly against the sample with a contact liquid between and the combination was exposed to light from an $f / 5$ lens. The resulting image was scanned with a physical microphotometer having a comparatively narrow slit.

The determinants of edge gradient have been less studied than have the determinants of resolving power, but it is known that the maximum gradient has a maximum with respect to exposure. It would be expected that the maximum gradient would increase in gamma, but present knowledge indicates that it increases less rapidly. The dependence on wavelength has not been studied with modern techniques, but older studies indicate that gradient increases with decreasing wavelength. The values in Table 608 are for $\gamma \infty / 2$ and tungsten light at the optimum exposure.

Both resolving power and edge gradient are inherent properties of the emulsion and are relatively inflexible. It is possible to improve them by bathing the material in dye that absorbs the light to which the emulsion is sensitive, but this is rarely practical because of the concomitant reduction in speed.

[^232]
# TABLE 606.-RESOLVING POWER AND EDGE GRADIENT VALUES (concluded) <br> Part 2.-Values 

Material	Resolving power	$\begin{gathered} \text { Edge } \\ \text { gradient } \\ \left(\times 10^{-2}\right) \end{gathered}$
Motion-picture films :		
Fast panchromatic	95	8
Medium-speed panchromatic	100	9
Fine-grain panchromatic	100	10
Positive (regular)	105	18
Positive (fine-grain)	130	22
Professional sheet films:		
Fast panchromatic	85	11
Fast orthochromatic	100	10
Medium-speed panchromatic	75	10
Medium-speed orthochromatic	75	11
Blue-sensitive . ..............	90	10
Amateur roll films :		
Fast panchromatic	95	10
Fast orthochromatic	100	11
Fine-grain panchromatic	105	12
Process films and plates:		
Panchromatic film.	125	22
Orthochromate film	130	23
Blue-sensitive plates	110	18
High resolution plates:.	2,500 *	

[^233]TABLE 607.-RELATIVE PHOTOGRAPHIC EFFICIENCY OF ILLUMINANTS


## TABLE 608.-SPECTRAL SENSITIVITY OF PHOTOGRAPHIC MATERIALS

Spectral sensitivity is normally expressed in terms of the reciprocal of the energy (ergs $/ \mathrm{cm}^{2}$ ) at various wavelengths required to produce a given density under given conditions of development. The curves in figure 28 are shown for a scale of relative sensitivity values, with a value of 10 assigned to the point of maximum sensitivity. The curves should be regarded only as representative of the type of sensitizing for which they were determined and are not suitable for quantitative use. In figure 29 spectral sensitivity data are presented in a different form. Here the wavelengths to which classes of spectroscopic plates are sensitive are shown in a block diagram. No indications are given of the way in which sensitivity varies with wavelength. A solid portion of the block diagram indicates the spectral region for which the class is especially valuable, i.e., where the sensitizing is most effective.


Fig. 28.-Spectral sensitivity curves for typical films: 1, blue sensitive; 2, orthochromatic; 3, panchromatic; 4, infrared sensitive.


Fig. 29.-The range of spectral sensitivity of kodak spectroscopic plates.

## TABLE 609.-NUCLEAR TRACK PLATE SPECIFICATIONS



## TABLES 610-625A.-STANDARD WAVELENGTHS ${ }^{177-102}$ AND SERIES RELATIONS IN ATOMIC SPECTRA*

Primary standard of wavelength.-The red radiation, $6438.4696 A$, emitted by a cadmium lamp of Michelson type was first chosen in 1907 by the International Union for Cooperation in Solar Research ${ }^{177}$ as a primary standard of wavelength and definition of the angstrom as a unit of wavelength measurement. This primary standard was adopted in 1922 by the International Astronomical Union ${ }^{178}$ and in 1927 by the International Committee on Weights and Measures ${ }^{179}$ with the statement that the wavelength of this radiation is $6438.4696 \times 10^{-10}$ meters when the light is propagated in dry air at $15^{\circ} \mathrm{C}$ (hydrogen thermometer) at a pressure of 760 mmHg , gravity being 980.665 $\mathrm{cm} / \mathrm{sec}^{2}$.

Specifications for the standard cadmium lamp were last revised in 1935; ${ }^{180}$ they designate that the lamp must be Michelson H-type with internal electrodes, excited with continuous or alternating current of industrial frequency, maintained at a temperature near $300^{\circ} \mathrm{C}$ (never exceeding $320^{\circ} \mathrm{C}$ ) and contain air under a pressure between 0.7 and 1.0 mmHg at that temperature. The constriction must not be less than 2 mm diameter and the current must not exceed 7 milliamps/ $\mathrm{mm}^{2}$.

A summary of nine directly measured values of the wavelength of the red radiation of cadmium in terms of the meter has been given by H . Barrell ${ }^{181}$ as in Table 612.
${ }^{177-102}$ For footnotes 177-192, see p. 578.

* Data furnished and arranged by W. F. Meggers, National Bureau of Standards.


## TABLE 610.-PRELIMINARY VALUES OF Hg ${ }^{188}$ WAVELENGTHS IN ANGSTROMS

N.B.S. (U.S.A.)	N.P.L. (England)	I.B.W.M. (France)	Mean
5790.6628	5790.6628	5790.6630	5790.6629
5769.5983	5769.5985	5769.5986	5769.5985
5460.7532	5460.7531	5460.7533	5460.7532

International secondary standards of wavelength from neon, krypton, and iron spectra.-Spectroscopic secondary standards of wavelength are derived from the primary standard (Cd 6438.4696 A ) by means of the Fabry-Perot interferometer. The existing international secondary standards represent the mean of three or more independent, concordant values adopted by the International Astronomical Union. All values of secondary standards of wavelength are valid for normal air ( $15^{\circ} \mathrm{C}$ and 760 mmHg ). The most precisely determined secondary standards of wavelength have been obtained from discharge tubes of the Geissler type containing neon or krypton gas at a pressure not exceeding 15 mmHg . In 1935 the International Astronomical Union ${ }^{183}$ adopted 8 -figure values of 20 neon wavelengths with the reservation that they apply only to the conditions under which they were determined, viz, with interferometers of high resolving power but plate separations not exceeding 40 mm .
${ }^{129}$ For reference, see p. 578.

TABLE 611.-NEON SECONDARY STANDARD WAVELENGTHS IN ANGSTROMS

5852.4878	6074.3377	6266.4950	6532.8824
5881.8950	6096.1630	6304.7892	6598.9529
5944.8342	6143.0623	6334.4279	6678.2764
5975.5340	6163.5939	6382.9914	6717.0428
6029.9971	6217.2813	6506.5279	7032.4127

[^234][^235]TABLE 612.-VALUES OF THE WAVELENGTH OF THE CADMIUM RED LINE IN TERMS OF THE INTERNATIONAL METER (Unit $=1 \times 10^{-10} \mathrm{~m}$ )

				Diffe	rences mean
Date of determination	bservers	Original values	$\begin{gathered} \text { and adjusted } \\ \text { values in } \\ \text { normal air } \end{gathered}$	$10^{-10} \mathrm{~m}$	$\begin{aligned} & \text { Parts } \\ & 10^{\circ} \end{aligned}$
1892-93	Michelson and Benoit (B.I.P.M.)	6438.4722	6438.4691	-. 0005	$-.08$
1905-06	Benoit, Fabry and Perot	6438.4696	6438.4703	$+.0007$	+. 11
1927	Watanabe and Imaizumi	6438.4685	6438.4682	-. 0014	-. 22
	(Tokyo) Sears and Barrell				
1933	Sears and Barrell (N.P.L.)	6438.4711	6438.4713	$+.0017$	+. 26
1933	Kösters and Lampe   (P.T.R.)	6438.4672	6438.4689	-. 0007	-. 11
1934-35	Sears and Barrell	6438.4709	6438.4709	+.0013	+. 20
1934-35	Kösters and Lampe	6438.4685	6438.4690	-. 0006	-. 09
	(P.T.R.)				
1937	Kösters and Lampe   (P.T.R.)	6438.4700	6438.4700	$+.0004$	
1940	Romanova, Varlich, Kartashev, and Batarchukova (Leningrad)	6438.4677	6438.4687	-. 0009	-. 14
		Mean	6438.4696	$\pm .0009$	$\pm .14$

The values originally reported (column 3) are corrected (column 4) to take account of subsequent conclusions (a) regarding the values to be attributed to the standards of length employed, and adjusted (b), so far as the available information permits, to uniform standard conditions of dry air at $15^{\circ} \mathrm{C}$ and 760 mmHg pressure, containing 0.03 percent $\mathrm{CO}_{2}$. The statistical mean deviation associated with the average value of $6438.4696 \times 10^{-10} \mathrm{~m}$ derived from these nine determinations amounts to $\pm 0.0010 \times 10^{-10} \mathrm{~m}$.

The recent production of purer monochromatic radiation (than the cadmium red line) suggests that eventually another wavelength from a single heavy isotype of even mass number may be adopted as the primary standard of length. Thus, since 1945 many milligrams of $\mathrm{Hg}^{108}$ have been made by transmutation of gold in chain-reacting uranium piles. Electrodeless lamps containing $\mathrm{Hg}^{188}$ have been made and distributed by the National Bureau of Standards. When excited by ultra-high frequency ( $>100$ megacycles) and water cooled these lamps emit with high intensity ideally sharp mercury lines. Preliminary measurements, relative to Cd 6438.4696 A , of the yellow and green lines of $\mathrm{Hg}^{198}$ have been reported ${ }^{182}$ by the National Bureau of Standards, by the National Physical Laboratory, and by the International Bureau of Weights and Measures, as in Table 610.

[^236]TABLE 613.-RESULTANT S VALUES AND TERM MULTIPLICITIES

Number of   electrons	$s$	Term multiplicities
1	$1 / 2$	Doublets
2	$0,1,3 / 2$	Singlets, triplets
3	$1 / 2,32$	Doublets, quartets
4	$0,1,2$	Singlets, triplets, quintets
5	$1 / 2,3 / 2,5 / 2$	Doublets, quartets, sextets
6	$0,1,2,3,5 / 2,7 / 2$	Singlets, triplets, quintets, septets
7	$1 / 2,3 / 2,5 / 2,7 / 2$	Doublets, quartets, sextets, octets
etc.		


4273.9700	4319.5797	4453.9179	5649.5629
4282.9683	4351.3607	4463.6902	5870.9158
4286.4873	4332.6423	4502.3547	5939.8503
4300.4877	4376.1220	5562.2257	6421.029
4318.5525	4399.9670	5570.2895	6456.291

Neon and krypton secondary standards are used extensively for interference measurements in metrology and spectroscopy, but their spectral range and distribution does not make them generally suitable for wavelength measurements by interpolation in prismatic or in grating spectra. For the latter purpose a system of secondary standards should consist of lines of comparable intensity distributed as uniformly as possible throughout the entire range of wavelengths commonly observed in optical spectra. An approach to such a system is found in the internationally adopted secondary standards derived from the spectrum of the iron arc. The source for iron secondary standards is specified ${ }^{188}$ as the "Pfund arc operated between 110 and 250 volts, with 5 amperes or less, at a length of 12-15 millimeters used over a central zone at right angles to the axis of the arc, not to exceed 1.0-1.5 millimeters in width, and with an iron rod 6-7 millimeters diameter as the upper pole and a bead of oxide of iron as the lower pole. As the secondary standards to the red of 6000 A are all stable lines, and as the exposures with the above-mentioned arc may be rather long, it is recommended that the $6 \mathrm{~mm}, 6$ ampere arc be retained for this region."

The list of iron secondary standards adopted by the International Astronomical Union ${ }^{198}$ consists of 3067 -figure values ranging from 2447.708 to 6677.933 A , thus covering a little more than one octave.

Internal evidence from the combination principle as well as the agreement between independent observers indicates that the average probable error in these standards is $\pm 0.001 \mathrm{~A}$. Preliminary values of long-wave iron lines ( 6750.158 to 10216.351 A) have been suggested. ${ }^{157}$

Additional ultraviolet iron lines ( 2100.794 to 3383.980 A ) have been suggested ${ }^{188}$ and only one or two confirmatory observations arc required to extend the secondary standards over a range of more than two octaves.

185-188 For references, see p. 578.

TABLE 615.-J VALUES FOR LEVELS IN TERMS HAVING ODD AND EVEN
MULTIPLICITIES

	Values of $J$ for -					
Terms	Singlets	Doublets	Triplets	Quartets	Quintets	Sextets
S	0	1/2	1	3/2	2	5/2
$P$	1	1/2, 3/2	012	1/2, 3/2, $5 / 2$	123	3/2,5/2, 7/2
D	2	3/2, 5/2	123	1/2, 3/2, 5/2, 7/2	01234	1/2,3/2,5/2, 7/2, 9/2
F	3	5/2,7/2	234	3/2, 5/2, 7/2, 9/2	12345	1/2,3/2, 5/2, 7/2, 9/2,11/2
G	4	7/2, 9/2	345	5/2, 7/2, 9/2,11/2	23456	3/2, 5/2, 7/2, 9/2, 11/2, 13/2

TABLE 616.-TERMS FROM NONEQUIVALENT ELECTRONS

Electrons	Terms (omitting $J$ values)
sS	${ }^{1} S,{ }^{8} S$
$s p$	${ }^{1} P$, ${ }^{8} P$
sd	${ }^{1} D,{ }^{3} D$
$p p$	${ }^{1} S,{ }^{1} P,{ }^{1} D,{ }^{8} S,{ }^{8} P,{ }^{8} D$
$p d$	${ }^{1} P,{ }^{1} D,{ }^{1} F,{ }^{8} P,{ }^{8} D,{ }^{8} F$
dd	${ }^{1} S,{ }^{1} P,{ }^{1} D,{ }^{1} F,{ }^{1} G,{ }^{8} S,{ }^{8} P,{ }^{8} D,{ }^{9} F,{ }^{8} G$
$d f$	
ff	${ }^{1} S,{ }^{1} P,{ }^{1} D,{ }^{1} \mathrm{~F},{ }^{1} \mathrm{G},{ }^{1} \mathrm{H},{ }^{1} \mathrm{I},{ }^{8} S,{ }^{8} P,{ }^{8} \mathrm{D},{ }^{8} \mathrm{~F},{ }^{8} \mathrm{G},{ }^{8} \mathrm{H},{ }^{8} \mathrm{I}$

TABLE 617.-IRON SECONDARY STANDARDS OF WAVELENGTH IN ANGSTROMS

2447.708	3175.447	3565.381	3767.194	3922.914	42	4647.437	5270.360
2584.536	3178.015	3576.760	3787.883	3927.922	4271.764	4667.459	5307.365
2635.808	3184.896	3581.195	3790.095	3930.299	4282.406	4678.852	5328.534
2679.062	3191.659	3584.663	3795.004	3935.815	4285.44	4691.414	5341.026
2689.212	3196.930	3585.320	3797.517	3940.882	4294.128	4707.281	5371.493
2699.107	3200.475	3586.114	3798.513	3942.443	4298.040	4710.286	5397.131
2723.577	3205.400	3589.107	3799.549	3948.779	4305.455	4733.596	5405.778
2735.475	3215.940	3608.861	3805.345	3956.681	4307.906	4641.533	5429.699
2767.523	3217.380	3617.788	3815.842	3966.066	4315.087	4745.806	5434.527
2778.221	3222.069	3618.769	3824.444	3967.423	4325.765	4772.817	5446.920
2804.521	3225.789	3621.463	3825.884	3969.261	4337.049	4786.810	5455.613
2813.288	3226.223	3631.464	3827.825	4005.246	4352.737	4789.654	5497.519
2823.276	3239.436	3647.844	3834.225	4014.534	4358.505	4859.748	5501.469
2832.436	3244.190	3649.508	3839.259	4045.815	4369.774	4878.218	5506.782
2838.120	3257.594	3651.469	3840.439	4063.597	4375.932	4903.317	5569.625
2851.798	3271.002	3669.523	3841.051	4066.979	4383.547	4918.999	5572.849
2869.308	3284.588	3676.314	3843.259	4067.275	4390.954	4924.776	586.763
2912.158	3286.755	3677.630	3846.803	4071.740	4404.752	4939.690	5615.652
2929.008	3298.133	3679.915	3849.969	4107.492	4408.419	4966.096	5624.549
2941.343	3340.566	3687.458	3850.820	4114.449	4415.125	4994.133	5658.826
2953.940	3347.927	3695.054	3856.373	4118.549	4422.570	5001.871	662.525
2957.365	3370.786	3704.463	3859.913	4121.806	4427.312	5012.071	027.057
2965.255	3396.978	3705.567	3865.526	4127.612	4430.618	5041.759	6075.487
2981.446	3399.336	3719.935	3867.219	4132.060	4442.343	5049.825	6136.620
2987.292	3401.521	3722.564	3872.504	4134.681	4443.197	5051.636	137.696
2999.512	3407.461	3724.380	3873.763	4143.871	4447.722	5083.342	6191.562
3037.388	3413.135	3727.621	3878.021	4147.673	4454.383	5110.414	6230.728
3047.605	3427.121	3732.399	3878.575	4156.803	4459.121	5123.723	6252.561
3057.446	3443.878	3733.319	3886.284	4170.906	4461.65	5127.363	6265.140
3059.086	3445.151	3734.867	3887.051	4175.640	4466.554	5150.843	6318.022
3067.244	3465.863	3737.133	3888.517	4184.895	4489.741	5167.491	6335.335
3075.721	3476.704	3738.308	3895.658	4202.031	4494.568	5168.901	5393.605
3083.742	3485.342	3748.264	3899.709	4203.987	4517.530	5171.599	6421.355
3091.578	3490.575	3749.487	3902.948	4213.650	4528.619	5198.714	430.851
3116.633	3497.843	3758.235	3906.482	4216.186	4531.152	5202.339	6494.985
3134.111	3513.820	3760.052	3907.937	4219.364	4547.851	5216.278	6546.245
3157.040	3521.264	3763.790	3917.185	4250.790	4592.655	5227.192	6592.919
3160.658	3558.518	3765.542	3920.260	4260.479	4602.944	$5242.495$	6663.446

Iron tertiary standards of wavelength. - The iron tertiary standards derived from diffraction-grating interpolation between secondary standards, and formerly adopted, ${ }^{189}$ have all been superseded by interferometer, or grating interpolated, values published in the M.I.T. Wavelength Tables (John Wiley \& Sons, New York, 1939).

Extreme ultraviolet standards of wavelength. - Provisional standards of wavelength in the extreme ultraviolet, measured relative to secondary and tertiary iron standards in overlapping spectral orders, have been published; ${ }^{100}$ they include 57 carbon lines ( 1930.900 to 858.091 A ), 23 nitrogen lines ( 1745.246 to 775.966 A ), 25 oxygen lines ( 1306.038 to 580.974 A ), and 10 argon lines ( 1066.660 to 871.099 A).

Standard solar wavelengths.-The International Astronomical Union ${ }^{101}$ has adopted 7 -figure standards of wavelength in the solar spectrum when two or more accordant values have been reported. These values have resulted mainly from interferometer measurements of solar-absorption wavelengths relative to neon or to iron secondary standards. The standards represent integrated solar light, are corrected for Doppler-Fizeau displacement, and are valid for standard air at $15^{\circ} \mathrm{C}$ and 760 mmHg pressure. In the long-wave region many of the solar spectrum standards originate in the terrestrial atmosphere as absorption by oxvgen or water vapor.
In Table 618 the + sign following the symbol of an element indicates ionization; a symbol like Fe -, solar line too strong to be due to iron alone; $\mathrm{Fe}, \mathrm{Co}$, coincidences of like order; Fe Co , coincidence closer for preceding element; $\mathrm{Fe}-\mathrm{Co}, \mathrm{Fe}$ wavelength smaller, Co larger than solar line; an italicized element indicates a more prominent contribution and boldface a decidedly predominant element.

[^237]TABLE 618.-STANDARD SOLAR WAVELENGTHS MEASURED IN AIR AT $15^{\circ} \mathrm{C}$ AND 1 ATMOSPHERE PRESSURE

$\lambda$ Solar	Origin Intensity	$\lambda$ Solar	Origin	Intensity	$\lambda$ Solar	Origin	Intensity
3592.027	$\mathrm{V}+2$	4348.947	Fe	2	4832.719	$\mathrm{Ni}-\mathrm{Fe}$	仡
3635.469	Ti 4	4365.904	Fe	2	4839.551	Fe	3
3650.538	2	4389.253	Fe	2	4939.694	Fe	3
3672.712	$\mathrm{Fe} \quad 3$	4398.020	Y +	1	4983.260	Fe	3
3695.056	$\mathrm{Fe} \quad 5$	4416.828	$\mathrm{Fe}+$	2	4994.138	Fe	4
3710.292	$\mathrm{Y}+3$	4425.444	Ca	4	5002.798	Fe	2
3725.496	Fe 3	4430.622	Fe	3	5014.951	Fe	3
3741.065	Ti 4	4439.888	Fe	1	5028.133	Fe	2
3752.418	Fe 3	4451.588	Mn	3	5079.745	Fe	4
3760.537	$\mathrm{Fe} \quad 4$	4454.388	Fe	3	5090.782	Fe	5
3769.994	$\mathrm{Fe} \quad 4$	4459.755	$\mathrm{Cr}-\mathrm{V}$	1	5109.657	Fe	2
3781.190	Fe 3	4470485	Ni	2	5150.852	Fe	4
3793.876	CrFe 2	4481.616	Fe	1	5159.065	Fe	2
3804.015	Fe 3	4502.221	Mn	2	5198.718	Fe	3
3821.187	$\mathrm{Fe}{ }^{4}$	4508.289	$\mathrm{Fe}+$	4	5225.534	Fe	2
3836.090	$\mathrm{Ti}+\mathrm{CrV}$ ? 2	4512.741	Ti	3	5242.500	Fe	3
3843.264	$\mathrm{Fe}^{4}$	4517.534	Fe	3	5253.468	Fe	2
3897.458	$\mathrm{Fe}-\quad 4$	4525.146	Fe	5	5273.389	Fe	3
3906.752	$\mathrm{Fe} \quad 3$	4531.631	Fe	2	5288.533	Fe	2
3916.737	$\mathrm{Fe} \quad 4$	4534.785	Ti	4	5300.751	Cr	2
3937.336	Fe 3	4541.523	$\mathrm{Fe}+$	2	5307.369	Fe	3
3949.959	$\mathrm{Fe} \quad 5$	4547.853	Fe Ti	3	5322.049	Fe	3
3953.861	$\mathrm{Fe}-3$	4548.770	Ti	2	5332.908	Fe	4
3960.284	$\mathrm{Fe}-3$	4550.773	Fe	2	5348.326	Cr	4
3963.691	Cr 3	4563.766	$\mathrm{Ti}+$	4	5365.407	Fe	4
3977.747	$\mathrm{Fe}{ }^{6}$	4571.102	Mg	5	5379.581	Fe	3
3991.121	$\mathrm{Cr}-\mathrm{Zr}+3$	4571.982	$\mathrm{Ti}+$	6	5389.486	Fe	3
4003.769	$\mathrm{Fe}-\mathrm{Ti} 3$	4576.339	$\mathrm{Fe}+$	2	5398.287	Fe -	3
4016.423	$\mathrm{Fe} \quad 2$	4578.559	Ca	3	5409.799	Cr	5
4029.642	$\mathrm{Fe}-\mathrm{Zr}+5$	4587.134	Fe	2	5415.210	Fe	5
4030.190	$\mathrm{Fe}^{2}$	4589.953	Ti +	3	5432.955	Fe -	2
4037.121	2	4598.125	Fe	3	5445.053	Fe	4
4053.824	$\mathrm{Ti}+\mathrm{Fe} \quad 2$	4602.008	Fe	3	5462.970	Fe	3
4062.447	$\mathrm{Fe} \quad 5$	4602.949	Fe	6	5473.910	Fe	3
4073.767	Fe 4	4607.654	Fe	4	5487.755	Fe	3
4079.843	Fe 3	4617.276	Ti	3	5501.477	Fe	5
4082.943	Mn 4	4625.052	Fe	5	5512.989	Ca	4
4091.557	Fe 3	4630.128	Fe	4	5525.552	Fe	2
4094.938	Ca 4	4635.853	Fe	2	5534.848	$\mathrm{Fe}+$	2
4107.492	Fe 5	4637.510	Fe	5	5546.514	Fe	2
4120.212	$\mathrm{Fe} \quad 4$	4638017	Fe	4	5590.126	Ca	3
4136.527	$\mathrm{Fe} \quad 3$	4643.470	Fe	4	5601.286	Ca	3
4139.936	Fe 4	4647.442	Fe	4	5624.558	Fe V	4
4154.814	Fe 4	4656.474	Ti	3	5641.448	Fe	2
4163.654	$\mathrm{Ti}+\mathrm{Cr}-\mathrm{Fe} 5$	4664.794	Cr Na	3	5655.500	Fe	2
4168.620	$\mathrm{FeFe}+$ ? 2	4678.172		3 N	5667.524	Fe	2
4178.859	$\mathrm{Fe}+3$	4678.854	Fe	6	5679.032	Fe	3
4184.900	$\mathrm{Fe}, \mathrm{Cr} 4$	4683.567	Fe	3	5690.433	Si	3
4191.683	$\mathrm{Fe}^{3}$	4690.144	Fe	4	5701.557	Fe	4
4198.638	$\mathrm{Fe} \quad 3$	4700.162	Fe	3	5731.772	Fe	4
4208.608	$\mathrm{Fe} \quad 3$	4704.954	Fe	3	5741.856	Fe	2
4220.347	Fe 3	4720.999	Fe	2	5752.042	Fe	4
4233.612	$\mathrm{Fe} \quad 6$	4728.552	Fe	4	5760.841	Ni	2
4241.123	Fe 2	4733.598	Fe	4	5805.226	Ni	4
4246.837	$\mathrm{Sc}+5$	4735.848	Fe	3	5809.224	Fe	4
4257.661	$\mathrm{Mn} \quad 2$	4736.783	Fe	6	5816.380	Fe	5
4266.968	$\mathrm{Fe} \quad 3$	4741.535	Fe	4	5853.688	$\mathrm{Ba}+$	5
4276.680	$\mathrm{FeTi}{ }_{2}$	4745.807	Fe	4	5857.459	Ca	8
4282.412	Fe 5	4772.823	Fe	4	5859.596	Fe	5
4291.472	$\mathrm{Fe} \quad 2$	4788.765	Fe	3	5862.368	Fe	6
4318.659	Ca Ti 4	4789.658	Fe	3	5866.461	Ti	3
4331.651	$\mathrm{Ni} \quad 2$	4802.887	Fe	2	5867.572	Ca	2
4337.925	Ti +4	4824.143	$\mathrm{Cr}+-\mathrm{Fe}$	e 3	5892.883	Ni	4

(continued)

## TABLE 618.-STANDARD SOLAR WAVELENGTHS MEASURED IN AIR AT $15^{\circ} \mathrm{C}$ AND 1 ATMOSPHERE PRESSURE (continued)

$\lambda$ Solar	Origin Intensity	$\lambda$ Solar	Origin	Intensity	$\lambda$ Solar	Origin	Intensity
5898.166	Atm 4	6213.437	Fe	6	6455.605	Ca	2
5905.680	$\mathrm{Fe} \quad 4$	6215.149	Fe	3	6456.391	$\mathrm{Fe}+$	3
5916.257	$\mathrm{Fe}-3$	6216.358	V	1	6471.668	Ca	5
5919.054	Atm 5	6219.287	Fe	6	6475.632	Fe	2
5919.644	Atm 7	6226.740	Fe	1	6482.809	Ni	1
5927.797	Fe 3	6229.232	Fe	1	6493.788	Ca	6
5930.191	Fe 6	6230.736	$\mathrm{Fe}-\mathrm{V}$	8	6494.994	Fe	8
5932.092	Atm 5	6232.648	Fe	4	6498.945	Fe	1
5934.665	Fe 5	6240.653	Fe	3	6499.654	Ca	4
5946.006	Atm 3	6244.476	Si	2	6516.083	$\mathrm{Fe}+$	2
5952.726	$\mathrm{Fe} \quad 4$	6245.620	$\mathrm{Sc}+$	1	6518.373	Fe	2
5956.706	$\mathrm{Fe} \quad 4$	6246.327	Fe	7	6569.224	Fe	4
5975.353	$\mathrm{Fe} \quad 3$	6247.562	$\mathrm{Fe}+$	2	6592.926	Fe	6
5976.787	$\mathrm{Fe} \quad 4$	6252.565	Fe	7	6609.118	Fe	5
5983.688	$\mathrm{Fe} \quad 5$	6254.253	SiFe	5	6643.638	Ni	6
5984.826	Fe 6	6256.367	FeNi	6	6677.997	Fe	8
6003.022	$\mathrm{Fe} \quad 6$	6258.110	Ti	3	6717.687	Ca	6
6008.566	$\mathrm{Fe} \quad 6$	6258.713	Ti	3	6810.267	Fe	2
6013.497	Mn 6	6265.141	Fe	5	6858.155	Fe	4
6016.647	Mn 6	6270.231	Fe	2	6870.946	Atm O	13
6024.068	$\mathrm{Fe} \quad 7$	6279.101	Atm O	3	6879.928	Atm O	10
6027.059	Fe 4	6279.896	Atm O	2	6918.122	Atm O	8
6042.104	Fe 3	6280.393	Atm O	2	6919.002	Atm O	8
6065.494	$\mathrm{Fe} \quad 7$	6280.622	Fe	3	6923.302	Atm O	6
6078.499	$\mathrm{Fe} \quad 5$	6281.178	Atm O	1	6924.172	Atm O	6
6079.016	$\mathrm{Fe} \quad 3$	6281.956	Atm O	2	6928.728	Atm O	5
6082.718	$\mathrm{Fe} \quad 1$	6283.796	Atm O	1	6934.422	Atm O	3
6085.257	$\mathrm{Ti}-\mathrm{Fe} \quad 2$	6289.398	Atm O	1	6959.452	Atm	9
6086.288	$\mathrm{Ni} \quad 2$	6290.221	Atm O	2	6961.260	Atm	11
6089.574	Fe 2	6292.162	Atm O	2	6978.862	Fe	6
6090.216	V 2	6292.958	Atm O	3	6986.579	Atm	8
6093:649	$\mathrm{Fe} \quad 2$	6295.178	Atm O	3	6988.986	Atm	8
6096.671	Fe 3	6295.960	Atm O	3	7022.957	Fe	4
6102.183	$\mathrm{Fe} \quad 6$	6297.799	Fe	5	7023.504	Atm	5
6102.727	Ca 9	6299.228	Atm O	3	7027.478	Atm	5
6111.078	$\mathrm{Ni} \quad 2$	6301.508	Fe	7	7034.910	Si	5
6116.198	Ni 3	6302.499	Fe	5	7122.206	Ni	7
6122.226	Ca 10	6302.764	Atm O	2	7568.906	Fe	5
6127.912	Fe 3	6305.810	Atm O	2	7574.048	Ni	5
6128.984	$\mathrm{Ni} \quad 1$	6306.565	Atm O	2	7586.027	Fe	8
6136.624	Fe 8	6309.886	Atm 0	2	7595.770	Atm $\mathrm{O}_{2}$	12
6137.002	$\mathrm{Fe} \quad 3$	6315.314	Fe	3	7599.462	Atm $\mathrm{O}_{2}$	0
6137.702	Fe 7	6315.814	Fe	2	7602.995	Atm $\mathrm{O}_{2}$	0
6141.727	$B a+-\mathrm{Fe} 7$	6318.027	Fe	6	7611.194	$\mathrm{Atm} \mathrm{O}_{2}$	0
6145.020	$\mathrm{Si} \quad 2$	6322.694	Fe	5	7616.980	Ni	8
6149.249	$\mathrm{Fe}+2$	6327.604	Ni	2	7619.214	Ni	4
6151.623	Fe 4	6330.852	Fe	2	7621.802	Atm $\mathrm{O}_{2}$	0
6154.230	Na 2	6335.337	Fe	7	7625.354	Atm $\mathrm{O}_{2}$	1
6157.733	Fe 5	6336.830	Fe	7	7638.306	Atm $\mathrm{O}_{2}$	3
6161.295	Ca 4	6344.155	Fe	4	7647.202	Atm $\mathrm{O}_{2}$	1
6162.180	Ca 15	6355.035	Fe	4	7649.553	Atm $\mathrm{O}_{2}$	-1
6165.363	Fe 2	6358.687	Fe	6	7651.963	Atm $\mathrm{O}_{2}$	0
6166.440	Ca 5	6378.256	Ni	2	7657.606	Mg	9 N
6169.564	Ca 7	6380.750	Fe	4	7665.944	Atm $\mathrm{O}_{2}$	10
6170.516	$\mathrm{Fe}-\mathrm{Ni} 4$	6393.612	Fe	7	7671.669	Atm $\mathrm{O}_{2}$	10
6173.341	$\mathrm{Fe} \quad 5$	6400.009	Fe	8	7676.565	Atm $\mathrm{O}_{2}$	9
6175.370	$\mathrm{Ni} \quad 3$	6400.323	Fe	2	7677.619	Atm $\mathrm{O}_{2}$	9
6176.816	Ni 5	6408.026	Fe	5	7682.758	Atm $\mathrm{O}_{2}$	8
6180.209	$\mathrm{Fe} \quad 5$	6411.658	Fe	7	7683.802	Atm $\mathrm{O}_{2}$	8
5186.717	Ni 2	6419.956	Fe	4	7690.218	Atm $\mathrm{O}_{2}$	6
6187.995	$-\mathrm{Fe} 4$	6421.360	Fe	7	7695.838	Atm $\mathrm{O}_{2}$	4
6191.571	Fe 9	6430.856	Fe	7	7696.869	Atm $\mathrm{O}_{2}$	4
6200.321	Fe 6	6449.820	Ca	6	7714.310	Ni	6

TABLE 618.-STANDARD SOLAR WAVELENGTHS MEASURED IN AIR AT $15^{\circ} \mathrm{C}$ AND 1 ATMOSPHERE PRESSURE (continued)

$\lambda$ Solar	Origin	Intensity	$\lambda$ Solar	Origin	Intensity	$\lambda$ Solar	Origin	Intensity
7727.616	Ni	5	8259.692	Atm	8	9073.134	Atm	1
7748.284	Fe	6	8263.445	Atm	7	9074.306	Atm	7
7751.116	Fe	2	8272.042	Atm	8	9092.482	Atm	5
7780.568	Fe	8	8279.600	Atm	9	9105.399	Atm	7
7788.933	Ni	5	8300.408	Atm	10	9118.009	Atm	5
7797.588	Ni	5	8304.300	Atm	6	9132.443	Atm	3
7807.916	$\mathrm{Fe} ?-\mathrm{Fe}$	e 4	8311.956	Atm	6	9140.457	Atm	1
7832.208	Fe	9	8316.224	Atm	5	9150.800	Atm	1
7836.130	Al	4 N	8327.061	Fe	10	9175.249	Atm	5
7864.437	Atm	2	8329.682	Atm	8	9178.534	Atm	3
7885.014	Atm Ti	1	8333.584	Atm	5	9181.203	Atm	3
7887.117	Atm	3	8342.290	Atm	3	9190.208	Atm	3
7893.512	Atm	4	8349.162	Atm	4	9192.568	Atm	5
7912.870	Fe	2	8357.040	Atm	6	9205.584	Atm	3
7915.634	Atm	3	8362.302	Atm	5	9225.006	Atm	6
7920.666	Atm	7	8367.331	Atm	6	9232.750	Atm	3
7928.618	Atm	7	8376.381	Atm	4	9251.100	Atm	6
7937.150	Fe	7	8394.020	Atm	3	9254.347	Atm	1
7941.096	Fe	2	8397.152	Atm	2	9275.072	Atm	2
7945.858	Fe	7	8426.514	Ti	2	9289.856	Atm	2
7958.492	Atm	7	8434.968	Ti	4	9301.910	Atm	5
7971.522	Atm	4	8439.581	Fe	5	9311.734	Atm	6
7984.342	Atm	4	8468.418	Fe	9	9314.006	Atm	4
7994.488	Fe	3	8471.744	Fe	2	9320.768	Atm	7
8000.300	Atm	6	8514.082	Fe	7	9321.650	Atm	0
8012.940	Atm	4	8515.122	Fe	5	9348.382	Atm	2
8036.460	Atm	3	8526.676	Fe	3	9361.227	Atm	6
8039.600	Atm	3	8556.797	Si	8 N	9363.334	Atm	3
8045.530	Atm	3	8571.807	Fe	2	9374.280	Atm	1
8046.058	Fe	8	8582.271	Fe	6	9400.094	Atm	7
8047.625	Fe	4	8595.968	Si	3 N	9406.904	Atm	6
8063.286	Atm	2	8598.836	Fe	3	9444.412	Atm	5
8075.158	Fe	2	8611.812	Fe	7	9463.992	Atm	3
8096.580	Atm	3	8613.946	Fe	1	9472.418	Atm	1
8103.165	Atm	1	8616.284	Fe	2	9476.754	Atm	4
8107.842	Atm	4	8648.472	Si	10 N	9478.884	Atm	0
8118.910	Atm	2	8674.756	Fe	7	9483.970	Atm	1
8125.445	Atm	3	8699.461	Fe	4	9486.042	Atm	7
8133.209	Atm	2	8713.208	Fe	3	9504.434	Atm	3
8139.718	Atm	3	8717.833	Mg ?	7 N	9507.742	Atm	1
8146.213	Atm	5	8747.438	Fe	0	9512.630	Atm	5
8147.188	Atm	5	8773.906	A1	6	9533.411	Atm	4
8165.337	Atm	3	8784.444	Fe	1	9549.958	Atm	2
8169.386	Atm	6	8790.454	Fe Si	6	9550.962	Atm	2
8177.932	Atm	7	8793.350	Fe	6	9558.836	Atm	2
8178.491	Atm	4	8824.234	Fe	10	9575.680	Atm	3
8181.848	Atm	9	8866.943	Fe	9	9587.126	Atm	5
8194.836	Na	12 N	8868.444	Fe	3	9598.870	Atm	7
8200.694	Atm	6	8876.030	Fe	1	9601.170	Atm	3
8207.749	Fe	4	8879.316	Atm	4	9624.496	Atm	3
8212.132	Atm	5	8917.506	Atm	1	9629.997	Atm	1
8218.114	Atm	10	8927.392	$\mathrm{Ca}+$	7	9643.105	Atm	3
8221.553	Atm	6	8930.270	Atm	4	9651.932	Atm	2
8225.688	Atm	5	8946.878	Atm	4	9664.646	Atm	6
8229.762	Atm	8	8950.744	Atm	1	9686.386	Atm	3
8233.906	Atm	8	8958.402	Atm	4	9694.588	Atm	0
8234.628	Atm	3	8963.492	Atm	4	9700.139	Atm	2
8237.341	Atm	5	8969.030	Atm	0	9708.922	Atm	6
8239.132	Fe	2	8976.424	Atm	1	9730.638	Atm	4
8239.924	Atm	4	8993.043	Atm	0	9755.979	Atm	0
8248.137	Fe	4	9047.412	Atm	2	9765.495	Atm	4
8248.802	$\bigcirc$	4	9052.974	Atm	7	9768.637	Atm	2
8252.727	Atm	6	9060.434	Atm	6	9776.818	Atm	3

# TABLE 618.-STANDARD SOLAR WAVELENGTHS MEASURED IN AIR AT $15^{\circ} \mathrm{C}$ AND 1 ATMOSPHERE PRESSURE (concluded) 

$\lambda$ Solar	Origin	Intensity	$\lambda$ Solar	Origin	Intensity	$\lambda$ Solar	Origin	Intensity
9779.406	Atm	5	9803.241	Atm	3	9843.978	Atm	2
9787.146	Atm	3	9821.754	Atm	3	9850.524	Atm	-1
9791.006	Atm	7	981.690	$\mathrm{Atm}-\mathrm{Ti}$	4	9873.638	Atm	4
9795.288	Atm	1	9835.758	Atm	1	9878.200	Atm	Fe
1	1							
9799.476	Atm	7	9840.092	Atm	-1	9889.050	Fe	5

Prominent lines in simple spectra of elements.-The more prominent lines, in simple spectra, easily excited with high intensity, are universally employed in spectroscopy, refractometry, polarimetry, spectrophotometry, interferometry, and metrology either to calibrate the wavelength scales of dispersing instruments or to make optical measurements at various wavelengths. A brief tabulation of the wavelengths most commonly used for these purposes is given in Table 619, where numerical values of wavelengths and approximate relative intensities by elements are followed by graphical presentation (fig. 30). The spectral range is restricted to that easily observed photographically in air (2000 to 10000 A). Values of wavelengths are quoted from the M.I.T. Wavelength Tables (John Wiley \& Sons, New York, 1939) and relative intensities in individual spectra are estimated from arc spectrograms made at the National Bureau of Standards.

TABLE 619.-WAVELENGTHS (IN ANGSTROMS) AND RELATIVE INTENSITIES OF PROMINENT LINES IN SIMPLE SPECTRA

Wavelength	Intensity		Wavelength	Intensity		Wavelength	Intensity
H 6562.849	200	Mg	5183.618	75	Cu	5782.132	30
6562.725	100		5172.699	45		5218.202	100
4861.327	40		5167.343	15		5153.235	30
4340.465	15		3838.258	75		5105.541	15
4101.735	5		3832.306	50		4651.134	10
3970.074	1		3829.350	20		4586.954	8
			2852.129	500		4062.698	25
He 7065.188	40		2802.695	400		4022.657	20
6678.149	75		2795.53	800		3273.962	400
5875.618	500					3247.540	800
5015.675	45	AI	3961.527	500		2961.165	4
4921.929	25		3944.032	250		2824.369	8
4713.143	25		3092.713	100		2766.371	15
4471.477	40		3082.155	50		2618.366	30
4026.189	20		2660.393	5		2492.146	5
3888.646	500		2652.489	4		2406.665	5
3203.14	25		2575.100	10		2392.627	20
3187.743	50		2567.987	5		2293.842	15
2945.104	25					2263.079	10
2733.32	25	A	8521.441	200		2246.995	8
2511.22	10		8424.647	250		2230.084	4
2385.42	5		8408.208	300		2225.697	6
			8264.521	150		2199.583	5
Li 8126.52	30		8115.311	400		2192.260	4
6707.844	900		8103.692	200		2135.976	4
6103.642	60		8014.786	80			
4971.990	5		8006.156	60	Zn	4810.534	100
4602.863	10		7503.867	150		4722.159	60
4132.29	3		7067.217	300		4680.138	20
3232.61	4		6965.430	500		3345.572	15
2741.31	2		6871.290	100		3345.020	80
			6752.832	100		3302.941	15
Na 8194.811	30		6677.282	80		3302.588	40
8183.270	15		4200.675	50		3282.333	20
5895.923	500		4158.590	50		3075.901	10
5889.953	900		4044.418	20		2138.56	950
5688.224	10		3948.979	20		2061.91	15
5682.657	6					2025.51	30
3302.988	10	Cu	8092.634	30			
3302.323	20		7933.130	15			
			(continued)				

TABLE 619.-WAVELENGTHS (IN ANGSTROMS) AND RELATIVE INTENSITIES OF PROMINENT LINES IN SIMPLE SPECTRA (concluded)


## TABLE 620.-WAVELENGTHS OF FRAUNHOFER LINES

For convenience of reference the values of the wavelengths corresponding to the Fraunhofer lines usually designated by the letters in the column headed "Index letter," are here tabulated separately. The letters $. x, y$, and $Z$ were assigned by Abney. ${ }^{192}$ Except for $D_{3}$, the rest have been taken from Higg's map of the normal solar spectrum. The data in columns 2, 3, and 4 are from the following sources:
For $\lambda>6600$, Babcock, H. D., and Moore, C. E., Carnegie Inst. Washington Publ. 579, 1947.

For $\lambda$ 3062-6600, Revised Rowland Table, St. John, C. E., et al., Carnegie Inst. Washington Publ. 396, 1928, with additions and corrections by C. E. Moore, unpublished (1949).

For $\lambda<3062$, Babcock, H. D., Moore, C. E., and Coffeen, M. F., Astrophys. Journ., vol. 107, p. 287, 1948 (Mount W'ilson Contr. No. 745).

[^238](continued)

TABLE 620.-WAVELENGTHS OF FRAUNHOFER LINES (concluded)

Index letter	Identification	Solar wavelength	Solar intensity	Index letter	Identification	Solar wavelength	Solar intensity
$y$	Atm	8987.65	10	G	$\{\mathrm{Fe} \mathrm{Ti}+$	4307.912	6
$x_{4}$	Mg	8806.775	14	$G$	$\{\mathrm{Ca}$	4307.747	3
$x_{2}$	$\mathrm{Ca}+$	8662.170	23		Ca	$4226.740 \ddagger$	20d
$x_{2}$	$\mathrm{Ca}+$	8542.144	25	$h$	$\mathrm{H}_{0}$	4101.748	40N
$x_{1}$	$\mathrm{Ca}+$	8498.062	20	H	$\mathrm{Ca}+$	$3968.49 ?$	700
Z	Atm	8226.962	(20)	K	$\mathrm{Ca}+$	3933.682	1000
A	Atm $\mathrm{O}_{2}$	7593.695*	10	$L$	$\mathrm{Fe}_{\mathrm{Fe}}$	3820.436 3727	25
$a$	Atm	7184.526	8	$\stackrel{M}{1}$	Fe Fe	3727.634 3581.209	30
$B$	Atm $\mathrm{O}_{2}$	6867.187 *	4	$\bigcirc$	$\stackrel{\mathrm{Fe}}{ }$	3441.019	15
C	$\mathrm{H}_{0}$	6562.808	40	P	$\stackrel{\mathrm{Fe}}{\mathrm{Ti}}+$	3361.193	8
a	Atm $\mathrm{O}_{2}$	6276.607 *	2 d	$Q$	Fe	3286.772	7N
$D_{2}$	Na	5895.940	20	Q	$\{\mathrm{Ca}+$	3181.276	3
$D_{2}$	Na	5889.973	30	$R$	$\left\{\begin{array}{l}\text { Ca }+ \\ \end{array}\right.$	3179.342	5 d ?
$D_{\text {i }}$	$\left\{\begin{array}{l}\mathrm{He} \\ \hline\end{array}\right.$	$5875.650{ }^{\dagger}$				3143.996	2
$\mathrm{D}_{2}$	$\{\mathrm{He}$	$5875.618{ }^{\dagger}$		$r$	$\{\mathrm{Ti}+$	3143.764	4
	Fe	5270.388	4			3101.895	3
$E$	$\{\mathrm{Ca}$	5270.268	3	$S_{2}$	$\{\mathrm{Ni}$	3101.574	4N
	Fe	5269.550	8D		Fe	3100.682	3
$b_{2}$	Mg	5183.619	30		Fe	3100.325	4N
$b_{2}$	Mg	5172.698	20	$S_{2}$	$\{\mathrm{Fe}$	3099.987	3
$b_{3}$	$\{\mathrm{Fe}+$	5169.050	4		Fe	3099.896	3
$b_{3}$	, Fe	5168.908	3	$s$	Fe	3047.614	35
$b_{4}$	$\{\mathrm{Fe}$	5167.508	5		$(\mathrm{Fe}$	3021.077	30
b4	$\{\mathrm{Mg}$	5167.328	15	$T$	$\{\mathrm{Fe}$	3020.656	40
$F$	$\mathrm{H}_{8}$	4861.342	30		Fe	3020.490	20
. 9	$\mathrm{H}_{7}$	4340.475	20N	$t$	FeNi	2994.436	40

[^239]
## REFERENCES FOR STAND.ARD WAVELENGTHS

177 Trans Int. Union Coop. Solar Res., vol. 2, p. 142, 1907.
${ }^{178}$ Trans. Int. Astron. Union, vol. 1, p. 35, 1922.
${ }_{179}$ Procès Verbaux Comité Int. Poids et Mesures, Ser. 2, vol. 12, p. 67, 1927.
150 Ihid., vol. 17. p. 91, 1935.
${ }^{181}$ Proc. Roy. Soc. London, vol. A186, p. 164, 1946.
182 Journ. Opt. Soc. Amer., vol. 38, p. 7, 1948 ; vol. 40, p. 545,1950 . Comptes Rendus, vol. 228, p. 964, 1949.
${ }_{183}$ Trans. Int. Astron. Union, vol. 5, p. 86, 1935.
154 Ibid., vol. 5, p. 87, 1935.
iss Ihid., vol. 1, p. 36, 1922.
${ }^{158}$ Ihid., vol. 3, p. 86, 1928 ; vol. 4, p. 234,1932 ; vol. 6, p. 79, 1938.
${ }^{157}$ Ihid., vol. 5, p. 84, 1935 ; vol. 7, p. $146,1949$.
158 Ibid., vol. 6, p. 80, 1938.
${ }^{18}$ Ibid., vol. 1, p. 41, 1922 ; vol. 2, p. 42, 1925.
${ }^{2} 0$ Phys. Rev., vol. 47, f. 653, 1935.
${ }^{101}$ Trans. Int. Astron. 'tnion, vol. 3, p. 93, 1928 ; vol. 6, p. 90, 1938.
192 Philos. Trans., vol. 177, p. $457,1886$.

Series relations in atomic spectra.-The analysis of atomic spectra began in 1889 when J. R. Rydberg first found that the wave number (number of waves per cm ) of a spectral line could be represented as the difference between two numerical quantities that he called spectral terms. From the data of alkali and alkaline-earth spectra Rydberg sorted singlet, doublet, and triplet terms that formed sequences of the form $\frac{R}{(n+\mu)^{2}}$, where $R$ is Rydberg's constant, $n$ is an integer, and $\mu$ a fraction. Rydberg also distinguished between sharp, principal, and diffuse terms; the initial letters $s, p$, and $d$ survive in spectroscopic notation today. To distinguish between successive terms of a series, cardinal numbers ( $n$ ) were prefixed to the literal symbols, and to distinguish between the components of doublet and triplet terms numerical subscripts were arbitrarily attached.

Thus the wave numbers of the yellow doublet of sodium were represented symbolically: $\sigma=1 s-2 p_{1,2}$. More than 30 years passed before these arbitrary symbols could be given any atomic interpretation.
The concept of atomic energy levels was first clearly stated in 1913 by N. Bohr who postulated (1) that stationary atomic states exist, and (2) that the frequency of atomic radiation is proportional to the difference between two atomic energy states, $h v=\left(E_{1}-\right.$ $E_{2}$ ), the proportionality factor being Planck's constant, h. By 1919 the accumulation of singlet, doublet, and triplet terms found in arc and spark spectra barely sufficed to suggest two general laws of spectral structures: (1) the alternation law which states that even and odd multiplicities alternate in successive columns of the periodic chart of the atoms, and (2) the displacement law which states that the spectrum of an ionized atom resembles that of the preceding atom but the analogous lines are displaced toward higher frequencies. Term multiplicities of atoms or ions are thus determined solely by the number of electrons in the atoms, whereas the atomic charge controls the position of the spectrum. These two facts suggested that electrons and protons were involved in the exegesis of atomic spectra.
The more complex spectra resisted all attempts at interpretation until 1922 when M. A. Catalán deliberately set out to discover a new or more general principle in spectral structure. He found in the arc spectra of chromium and manganese terms having five or six levels which combined to produce groups of lines that he called multiplets. In a few years thousands of terms were found in atomic and ionic spectra, and contemporaneously the present quantum theory of atomic encrgy levels was developed. As a result of these developments the arbitrary symbols that empirical spectroscopy devised for the yellow doublet of sodium were replaced by the following:

$$
\sigma=3{ }^{2} S_{1 / 2}-3^{2} P^{\circ}{ }_{14,11 / 2}
$$

Each and every item of this spectroscopic notation now has definite physical meaning in terms of a vector model of the Rutherford-Bohr atom which is assumed to consist of a minute but massive nucleus (composed of protons and neutrons) with one or more electrons circulating about it. The normal number of electrons in any atom is equal to the atomic number, $Z$ : identical with the number of protons in its nucleus.

Spectral lines result from changes in atomic energies defined by the positions of one or more optical electrons in successive shells and by their orbital and axial momenta, each of which is associated with an appropriate quantum number. In general, the first large change in atomic energy occurs when an clectron jumps from its normal shell, represented by the principal quantum number $n$, to another shell. These principal quantum numbers identify the successive shells of the periodic system and serve as coefficients to the spectral term symbols $S, P, D, F$, etc. If an electron is moved from its lowest value of $n$ to $n=\infty$ the atom is ionized, and the voltage necessary to remove this electron is called the ionization potential. This ionization energy is expressed in wave number $\left(\mathrm{cm}^{-1}\right)$ or in electron volts (ev) as in Tables 623 and 624. Increasing atomic energies are exhibited in absorption spectra, decreasing energies in emission spectra.

After that due to a change in $n$, the next largest change in atomic energy is usually one associated with orbital angular momentum symbolized by an azimuthal quantum number $l$ having integral values $0,1,2,3,---$ corresponding respectively to the empirical term symbols $S, P, D, F,--$. Electrons with $l=0$ are called $s$-electrons, those with $l=1, p$-electrons, etc. These four $l$ values and the first seven $n$ values suffice to describe the normal electron configurations of all possible atoms and ions. When two or more optical electrons are present, their individual orbital momenta $l_{1} . l_{2}---$ are added vectorially to form a resultant $L$ which is restricted by quanturn theory to integral values ranging in the case of two electrons from $l_{1}+l_{2}$ to $\left|l_{1}-l_{2}\right|$. The types of spectral terms resulting from various simple configurations of electrons are shown in Table 621.

## TABLE 621.-L VALUES AND SPECTRAL TERMS RESULTING FROM TWO ELECTRONS

Electrons	$L$	Terms
ss	0	$S$
$s p$	1	$P$
$p p$	012	$S P D$
$p d$	123	$P D F$
dd	$\begin{array}{lllll}0 & 1 & 234\end{array}$	$S P D F G$
$\stackrel{d f}{\text { ff }}$	1 0 0 1234456	
	(continued)	

## TABLE 621.-L VALUES AND SPECTRAL TERMS RESULTING FROM TWO ELECTRONS (concluded)

A third contribution to the total energy of an atom or ion comes from the rotation of each electron about its own axis. This axial angular momentum is the same for all electrons ; it is represented by the spin quantum number $s=1 / 2$. When two or more electrons are present the individual spin vectors $s_{1}, s_{2}, \ldots$ combine with each other to yield a resultant $S$, but (like $L$ ) the resultant spin $S$ can take only certain discrete values, the maximum being obtained when all the individual spins are parallel, and the minimum being either one-half or zero according as the number of electrons is odd or even. Electron spins account for the splitting of most spectral terms into two or more components (called levels) and give a physical meaning to the subscripts attached to these levels. These subscripts are called inner quantum numbers: they are symbolized by $J$ to represent the vector sum of $L$ and $S$. The largest and smallest values of $J$ result from simple addition and subtraction of $L$ and $S$ and all intermediate values of $J$ that differ by integral amounts are allowed:

$$
J=(L+S),(L+S-1)
$$

when $L>S$ the number of permitted $J$ values is $2 S+1$, which fixes the term multiplicity $R$ and underlies the alternation law, since the maximum multiplicity will be even or odd according as the number of electrons is odd or even. The $S$ values and spectral-term multiplicities associated with numbers of optical electrons are displayed in Table 613.

Because $s=1 / 2$ for each electron the total angular momentum $J$ of an atom or ion will have integral values for levels belonging to odd multiplicities, and half-integral values for levels if the term multiplicities are even, as shown in Table 615.

TABLE 622.-TERMS FROM EQUIVALENT ELECTRONS

Electrons	Terms (omitting $J$ values)
$s^{2}$	${ }^{1} S$
$p^{2}$	${ }^{1} S,{ }^{1} D,{ }^{3} P$
$p^{8}$	${ }^{2} P,{ }^{2} D,{ }^{4} S$
$d^{2}$	${ }^{1} S,{ }^{1} D,{ }^{1} G,{ }^{8} P,{ }^{8} \mathrm{~F}$
$d^{3}$	${ }^{2} P,{ }^{2} D,{ }^{2} D,{ }^{2} F,{ }^{2} G,{ }^{2} H,{ }^{4} P,{ }^{4} F$
$f^{2}$	${ }^{1} S,{ }^{1} D,{ }^{1} G,{ }^{1} I,{ }^{3} P,{ }^{3} F,{ }^{8} \mathrm{H}$

The actual types and multiplicities of terms arising from various configurations of optical electrons depend on whether the electrons are equivalent or nonequivalent, that is, have the same or different values of $n$ and $l$. In any atom the maximum number of equivalent electrons is $2(2 l+1)$, and no shell can contain more than two $s$ electrons $\left(s^{2}\right)$, six $p$ electrons ( $p^{6}$ ), ten $d$ electrons ( $d^{\text {10 }}$ ) or fourteen $f$ electrons ( $f^{14}$ ). In simple cases the spectral terms arising from nonequivalent electrons may be obtained from the $L$ values of Table 621 and the $S$ values of Table 613, as shown in Table 616.

When the optical electrons are equivalent, the Pauli exclusion principle introduces simplifications, some of which are evident by comparing Tables 616 and 622.

An important consequence of the Pauli principle is that closed shells, in which the maximum number of equivalent electrons is present, have $L=O$ and $S=O$ and therefore may be ignored in deriving the terms given by any electron configuration. Furthermore, any subgroup that lacks one or more electrons to fill the group behaves spectroscopically as if the lacking electrons were present, except that the terms are, in general, regular (smallest $J$ level has least energy) when the group is less than half filled but inverted when more than half filled.

Each configuration (excluding single eiectrons and closed shells) yields many energy states, and the object of spectrum analysis is to determine (1) the numerical values of the energy levels, (2) the quantum numbers that characterize them, and (3) the electron configurations from which they arise. The wave number of each obscrved spectral line measures the energy difference between two quantized states of an atom or ion, but, because the same level can in general combine with many others, the number of levels is usually much smaller than the number of classified lines. The combining properties of atomic energy levels are governed by simple rules. Thus all terms or levels of a given atom fall into two groups of different parity called even and odd according as the arithmetical sum of the $l$ values of the optical electrons is even or odd (distinguished by the sign ${ }^{\circ}$ and by
level value in italics), and normally spectral lines are permitted only when terms of different parity combine. Furthermore, an overwhelning majority of the transitions between atomic energy levels obey the following rules:

$$
\begin{aligned}
& \Delta R=0 \\
& \Delta L= \pm 1 \\
& \Delta J=0, \pm 1, \text { excepting } 0 \text { to } 0
\end{aligned}
$$

In complex spectra, especially of heavy elements, intersystem combinations are observed for $\Delta R= \pm 2, \pm 4$. Likewise, transitions for $\Delta L=0$ give strong multiplets, and transitions for which $\Delta L= \pm 2, \pm 3$ are observed but usually only faintly. Violations of the $\Delta J$ rule are extremely rare. Assignment of $L$ values and electron configurations to energy levels implicitly assumes that $L S$ coupling or interaction exists among the individual vectors. This means that the individual $l$ vectors are strongly coupled to produce resultant $L$ values of different energies, and the individual $s$ vectors are also strongly coupled to produce resultant $S$ values. These $L$ and $S$ resultants are then less strongly coupled with each other to produce resultant $J$ values. Other types of coupling such as $J J$ or $J L$ are sometimes met with and in such cases $L$ loses all or most of its significance. Also when the levels of two like-parity configurations overlap or dovetail, it is practically impossible to distinguish the two configurations or choose the levels that belong to each. However, because $L S$ coupling holds for all the higher elements, predominates in many others, and is either accurately or approximately valid for the ground states of all atoms and ions, it is basic for the standardized notation for spectral terms. Thus, any atomic energy level or spectral term is symbolically represented by four quantities. (1) its principal quantum number $n$ written as a coefficient of the term-type symbol; (2) its type- $S, P, D, F$, etc.where the capital letters stand for azimuthal quantum numbers or orbital angular momenta $L=0,1,2,3$, etc., respectively ; (3) its inner quantum number or total angular momentum $J=L+S$, written as a subscript to the term-type symbol; and (4) its multiplicity number, $R=2 S+1$, written as a superior prefix to the term-type symbol. In addition the parity, if the sum of $p$ and $f$ electrons is odd, is indicated by the sign ${ }^{\circ}$ attached like an exponent to the term-type symbol.

For any given spectrum in which energy levels have been established, and in which $L S$ coupling exists, it is possible to assign notation as well as electron configuration without ambiguity. Relative values of $J$ are readily determined from the combining properties of the levels and the selection rule, $\Delta J=0 \pm 1$. In terms of odd multiplicity the absolute value of $J$ is fixed by the absence of the transition 0 to 0 which is forbidden. In other cases the absolute value of $J$ can often be deduced from the sum rule (the sum of the intensities of all the lines of a multiplet that belong to the same initial or final state is proportional to the statistical weight $2 J+1$ of the initial or final state respectively), or from the interval rule (the interval between two successive components, $J$ and $J+1$, of a polyfold term is proportional to $J+1$ ). The most decisive determination of $J$ and $L$ (excepting singlet terms) results from the observation of completely resolved Zeeman patterns since an external magnetic field causes each energy level to be split into $2 J+1$ sublevels and the splitting factors indicate $L$ values.

It is a consequence of atomic structure that long series of spectral terms of the same parity, $L, S, J$, but increasing $n$, are observed only in one-electron spectra, as for example to $n=79$ in the first spectrum of sodium. Five- six- or seven-electrons provide so many configurations and competing levels that it is often exceedingly difficult to detect the second or any higher members of a spectral series.

Quantum principles having thus specified the various spectral terms arising from certain electrons, it became possible in 1925 to determine from identified terms the electron configurations of all atoms and ions. By 1950 the ground states of 82 species of neutral atoms and 75 singly ionized atoms had been uniquely determined from spectral structure. Besides disclosing the ground level and normal electron configuration of each atom or ion, the discovery of series relations in atomic spectra has given exact values for many ionization potentials which measure the forces with which the optical electrons are bound to atoms and ions. Furthermore, since the most intense radiations are usually associated with the largest $L$ and $J$ values of low-lying levels, the analysis of spectra has aided in selecting the strongest spectral lines characteristic of atoms and ions. In general, the strongest lines result from $s \longleftrightarrow p$ electron transitions, but do not necessarily end on the ground state. Because these data are of great importance in spectroscopy, atomic physics, chemistry, and astrophysics, they are collected for neutral atoms in Table 623 and for singly ionized atoms in Table 624. ${ }^{193}$

[^240]TABLE 623．－SPECTROSCOPIC PROPERTIES OF NEUTRAL ATOMS
The wavelengths of strongest lines exceeding 2000 A are valid for standard air，the remainder for vacuum．

$\underset{n}{\text { Period }}$	$\begin{aligned} & \text { Neutral } \\ & \text { atom } \end{aligned}$	Normal electron configuration	Ground	Spectral multiplicities	Ionization potential volts	Strongest line，$A$
1	1 H	$1 s^{1}$	${ }^{2} \mathrm{~S}_{01 /}$	2	13.595	1215.66
	2 He	$1 s^{2}$	${ }^{1} \mathrm{~S}$ 。	1， 3	24.580	584.33
2	3 Li	$2 s^{1}$	${ }^{2} \mathrm{~S}_{01 / 4}$	2	5.390	6707.85
	4 Be	$2 s^{2}$	${ }^{1} \mathrm{~S}^{2}$	1，3	9.320	2348.61
	5 B	$2 s^{2} 2 p^{1}$	${ }^{2} \mathrm{P}^{\circ}{ }^{0}{ }^{1 / 2}$	2	8.296	2497.73
	6 C	$2 s^{2} 2 p^{2}$	${ }^{3} \mathrm{P}$ 。	1， 3	11.264	1657.01
	7 N	$2 s^{2} 2 p^{3}$	${ }^{4} \mathrm{~S}^{\circ}{ }^{1 / 2}$	2，4	14.54	1134.98
	8 O	$2 s^{2} 2 p^{4}$	${ }^{3} \mathrm{P} \mathrm{P}_{2}$	1，3，5	13.614	1302.19
	9 F	$2 s^{2} 2 p^{5}$	${ }^{2} \mathrm{P}^{\circ}{ }^{1 / 1 / 8}$	2，4	17.418	954.80
	10 Ne	$2 s^{2} 2 p^{6}$	${ }^{1} \mathrm{~S}$ 。	1，3	21.559	735.89
3	11 Na	$3 s^{1}$	${ }^{2} \mathrm{~S}_{01 / 8}$	2	5.138	5889.95
	12 Mg	$3 s^{2}$	${ }^{1} \mathrm{~S}_{0} \mathrm{P}_{0}$	1，3	7.644	2852.13
	13 Al	$3 s^{2} 3 p^{1}$	${ }^{2} \mathrm{P}^{0}{ }_{0}{ }^{1 / 2}$	2	5.984	3961.53
	14 Si	$3 s^{2} 3 p^{2}$	${ }^{8} \mathrm{P}$ 。	1，3	8.149	2516.12
	15 P	$3 s^{2} 3 p^{3}$	${ }^{4} \mathrm{~S}^{\circ}{ }^{1 / 1 / 8}$	2，4	10.55	1774.94
	16 S	$3 s^{2} 3 p^{4}$	${ }^{8} \mathrm{P}_{2}$	3， 5	10.357	1807.31
	17 Cl	$3 s^{2} 3 p^{5}$	${ }^{2} \mathrm{P}^{0}{ }^{0}{ }_{1 / 2}$	2， 4	13.01	1347.2
	18 A	$3 s^{2} 3 p^{8}$	${ }^{1} \mathrm{~S}$ 。	1， 3	15.755	1048.22
4	19 K	$4 s^{1}$	${ }^{2} \mathrm{~S}_{01 / 8}$	2	4.339	7664.91
	20 Ca	$4 s^{2}$	${ }^{2} \mathrm{~S}_{0}$	1，3	6.111	4226.73
	21 Sc	$3 d^{1} 4 s^{2}$	${ }^{2} \mathrm{D}_{11 /}$	2，4	6.538	5671.80
	22 Ti	$3 d^{2} 4 s^{2}$	${ }^{3} \mathrm{~F}_{2}$	1，3，5	6：818	4981.73
	23 V	$3 d^{3} 4 s^{2}$	${ }^{4} \mathrm{~F}_{1} 1 / 4$	2，4， 6	6.743	4379.24
	24 Cr	$3 d^{6} 4 s^{1}$	${ }^{7} \mathrm{~S}_{3}$	1，3，5， 7	6.74	4254.35
	25 Mn	$3 d^{5} 4 s^{2}$	${ }^{8} \mathrm{~S}_{21 / 4}$	2，4，6， 8	7.432	4030.76
	26 Fe	$3 d^{6} 4 s^{2}$	${ }^{6} \mathrm{D}$ 4	1，3，5， 7	7.868	3581.20
	27 Co	$3 d^{7} 4 s^{2}$	${ }^{4} \mathrm{~F}_{44 / 8}$	2，4， 6	7.862	3453.50
	28 Ni	$3 d^{88} 4 s^{2}$	${ }^{3} \mathrm{~F}$ ；	1，3， 5	7.633	3414.76
	29 Cu	$3 d^{10} 4 s^{1}$	${ }^{2} \mathrm{~S}^{\circ}{ }_{01 / 9}$	2，4	7.724	3247.54
	30 Zn	$4 s^{2}$	${ }^{1} \mathrm{~S}$ 。	1，3	9.931	2138.56
	31 Ga	$4 s^{2} 4 p^{1}$	${ }^{2} \mathrm{P}^{0}{ }_{01 / 2}$	2，4	6.00	4172.06
	32 Ge	$4 s^{2} 4 p^{2}$	${ }^{3} \mathrm{P}_{0}$	1，3	7.88	2651.18
	33 As	$4 s^{2} 4 p^{3}$	${ }^{4} S^{\circ}{ }^{1}{ }_{1 / 2}$	2，4	9.81	1890.43
	34 Se	$4 s^{2} 4 p^{4}$	${ }_{3}^{3} \mathrm{P}_{2}$	3，5	9.750	1960.91
	35 Br	$4 s^{2} 4 p^{5}$	${ }^{2} \mathrm{P}^{\circ}{ }^{\circ}{ }_{1 / 8}$	2， 4	11.84	1488.4
	36 Kr	$4 s^{2} 4 p^{6}$	${ }^{1} \mathrm{~S}_{0}{ }^{1 / 2}$	1， 3	13.996	1235.82
5	37 Rb	$5 s^{1}$	${ }^{2} \mathrm{~S}_{01 / 8}$	2	4.176	7800.23
	． 38 Sr	$5 s^{2}$	${ }^{1} \mathrm{~S}$ o	1，3	5.692	4607.33
	39 Y	$4 d^{1} 5 s^{2}$	${ }^{2} \mathrm{D}_{1 / 2}$	2，4	6.377	5466.47
	40 Zr	$4 d^{2} 5 s^{2}$	${ }^{3} \mathrm{~F}_{2}$	1，3，5	6.835	4687.80
	41 Nb	$4 d^{4} 5 s^{1}$	${ }^{6} \mathrm{D}_{0} 1 / 4$	2，4， 6	6.881	4058.94
	42 Mo	$4 d^{5} 5 s^{1}$	${ }^{7} \mathrm{~S}_{3} \mathrm{~S}_{3}$	3，5， 7	7.131	3798.25
	43 Tc	$4 d^{8} 5 s^{2}$	${ }^{8} \mathrm{~S}^{5} \mathrm{~F}_{21 / 2}$	4，6， 8	7.23	3636.10 349894
	${ }_{45}^{44 \mathrm{Ru}}$	$4 d^{7} 5 s^{1}$ $4 d^{8} 5 s^{1}$	${ }^{5}{ }^{5} \mathrm{~F}_{5} \mathrm{~F}_{5}$	3，5， 7	7.365 7.461	3498.94 3434.89
	46 Pd	$4 d^{10}$	${ }^{1} \mathrm{~S}_{0}{ }^{1 / 2}$	1，3， 5	8.33	3404.58
	47 Ag	$5 s^{1}$	${ }^{2} \mathrm{~S}_{01 / 8}$	2，4	7.574	3280.68
	48 Cd	$5 s^{2}$	${ }^{1} \mathrm{~S}$ 。	1，3	8.991	2288.02
	（continued）					

TABLE 623.-SPECTROSCOPIC PROPERTIES OF NEUTRAL ATOMS (concluded)


TABLE 624．－SPECTROSCOPIC PROPERTIES OF SINGLY－IONIZED ATOMS
The wavelengths of strongest lines exceeding 2000 A are valid for standard air，the remainder for vacuum．

$\underset{n}{\text { Period }}$	Ionized	$\begin{gathered} \text { Normal } \\ \text { electron } \\ \text { configuration } \end{gathered}$	$\begin{gathered} \text { Ground } \\ \text { level } \end{gathered}$	Spectral multiplicities	Ionization potential volts	Strongest line，$A$
1	$1 \mathrm{H}^{+}$					
	$2 \mathrm{He}^{+}$	$1 \mathrm{~s}^{1}$	${ }^{2} \widetilde{S}_{0}{ }_{0}$	$\dddot{2}$	54.403	303.78
2	$3 \mathrm{Li}^{+}$	$1 s^{2}$	${ }^{1} \mathrm{~S}_{0}$	1，3	75.6193	1．99．26
	$4 \mathrm{Be}^{+}$	$2 s^{1}$	${ }^{2} \mathrm{~S}_{01 / 4}$	2	18.206	3130.42
	$5 \mathrm{~B}^{+}$	$2 s^{2}$	${ }^{2} \mathrm{~S}^{2}$	1， 3	25.149	1362.46
	$6 \mathrm{C}^{+}$	$2 s^{2} 2 p^{1}$	${ }^{2} \mathrm{P}^{\circ}{ }_{0}{ }^{1 / 2}$	2，4	24.376	1335.71
	7 N ＋	$2 s^{2} 2 p^{2}$	${ }^{3} \mathrm{P}_{0}$	1，3，5	29.605	1085.74
	$8 \mathrm{O}^{+}$	$2 s^{2} 2 p^{3}$	${ }^{1} \mathrm{~S}^{\circ}{ }_{1}{ }^{1 / 1}$	2，4	35.146	834.47
	$9 \mathrm{~F}+$	$2 s^{2} 2 p^{4}$	${ }^{3} \mathrm{P}_{2}$	1，3，5	34.98	606.81
	$10 \mathrm{Ne}+$	$2 s^{2} 2 p^{5}$	${ }^{2} \mathrm{P}^{2}{ }^{1} 1 / 4$	2，4	41.07	460.73
3	$11 \mathrm{Na}+$	$2 s^{2} 2 p^{8}$	${ }^{1} \mathrm{~S}_{0}$	1， 3	47.29	372.07
	$12 \mathrm{Mg}{ }^{+}$	$3 s^{1}$	${ }^{2} \mathrm{~S}_{0} \mathrm{~S}_{4}$	2	15.03	2795.53
	$13 \mathrm{Al}^{+}$	$3 s^{2}$	${ }^{1} \mathrm{~S}$ 。	1，3	18.823	1670.81
	$14 \mathrm{Si}+$	$3 s^{2} 3 p^{1}$	${ }^{2} \mathrm{P}^{\circ}{ }_{0} 1 / 2$	2，4	16.34	1817.0
	$15 \mathrm{P}+$	$3 s^{2} 3 p^{2}$	${ }^{3} \mathrm{P}$ 。	1，3，5	19.65	1542.32
	16 S ＋	$3 s^{2} 3 p^{3}$	${ }^{4} \mathrm{~S}^{\circ}{ }_{1 / 1}$	2，4	23.4	1259.53
	$17 \mathrm{Cl}+$	$3 s^{2} 3 p^{4}$	${ }^{3} \mathrm{P}_{2}$	1，3， 5	23.80	1071.05
	$18 \mathrm{~A}+$	$3 s^{2} 3 p^{5}$	${ }^{2} \mathrm{P}^{\circ}{ }_{1 / 2}$	2，4	27.62	919.78
4	$19 \mathrm{~K}+$	$3 s^{2} 3 p^{0}$	${ }^{1} \mathrm{~S}_{0}{ }^{1 / 2}$	1，3	31.81	600.77
	$20 \mathrm{Ca}+$	$4 s^{1}$	${ }^{2} \mathrm{~S}_{014}$	2	11.87	3933.67
	${ }_{21} \mathrm{Sc}^{+}$	$3 d^{1} 4 s^{1}$	${ }^{3} \mathrm{D}_{1}$	1，3	12.80	3613.84
	$22 \mathrm{Ti}+$	$3 d^{2} 4 s^{1}$	${ }^{4} \mathrm{~F}_{1}{ }^{1 / 2}$	2，4	13.57	3349.41
	$23 \mathrm{~V}+$	$3 d^{4}$	${ }^{5} \mathrm{D}$ 。	1，3，5	14.65	3093.11
	${ }_{24} \mathrm{Cr}+$	$3 d^{5}$	${ }^{8} \mathrm{~S}_{2 \%}$	2，4， 6	16.49	2835.63
	25 Mn ＋	$3 d^{5} 4 s^{1}$	${ }^{7} \mathrm{~S}_{3}$	3，5， 7	15.64	2576.10
	${ }^{26} \mathrm{Fe}{ }^{+}$	$3 d^{6} 4 s^{2}$	${ }^{6} \mathrm{D}_{4}{ }_{4} / 4$	2，4，6， 8	16.18	2382.04
	${ }^{27} \mathrm{Co}^{+}$	$3 d^{8}$	${ }^{9} \mathrm{~F}_{4}{ }^{\text {d }}$	3，5	17.05	2286.14
	$28 \mathrm{Ni}^{+}$	$3 d^{\text {b }}$	${ }^{2} \mathrm{D}_{2 / 2}$	2， 4	18.15	2216.47
	${ }_{29} \mathrm{Cu}^{+}$	$3 d^{10}$	${ }^{1} \mathrm{~S}^{2}$	1，3，5	20.29	2135.98
	${ }_{30} \mathrm{Zn}^{+}$	$4 s^{1}$	${ }^{2} \mathrm{~S}_{0} \mathrm{~S}_{1 / 8}$	2，4	17.96	202551
	${ }_{31} \mathrm{Ga}{ }^{+}$	$4 s^{2}$	${ }^{1} \mathrm{~T}^{1} \mathrm{~S}$ 。	1，3	20.51	1414.44
	$32 \mathrm{Ge}+$	$4 s^{2} 4 p$	${ }^{2} \mathrm{P}^{\circ}{ }_{0 \%}$	2	15.93	1649.26
	$33 \mathrm{As}+$	$4 s^{2} 4 p^{2}$	${ }^{8} \mathrm{P}_{0}{ }^{\text {a }}$	1，3	20.2	1266.36
	$34 \mathrm{Se}+$	$4 s^{2} 4 p^{8}$	${ }^{6} \mathrm{~S}{ }^{\circ}{ }_{1 / 1}$	2，4	21.5	1192.29
	${ }^{35} \mathrm{Br}^{+}$	$4 s^{2} 4 p^{4}$	${ }^{3} \mathrm{~S}_{2}{ }^{2}$	1，3，5	21.6	1015.42
	${ }_{36} \mathrm{Kr}^{+}$	$4 s^{2} 4 p^{5}$	${ }^{2} \mathrm{P}^{0}{ }_{1 \%}$	2，4	24.56	917.43
5	$37 \mathrm{Rb}+$	$4 s^{2} 4 p^{6}$	${ }^{1} \mathrm{~S}_{0}{ }^{1 /}$	1， 3	27.5	741.4
	$38 \mathrm{Sr}{ }^{+}$	$5 s^{1}$		2	11.026	4077.71
	$39 \mathrm{Y}+$	$5 s^{2}$	${ }^{1} \mathrm{~S}_{0}{ }^{\text {a }}$	1，3	12.233	3710.29
	$40 \mathrm{Zr}+$	$4 d^{2} 5 s^{1}$	${ }^{4} \mathrm{~F}_{12 / 4}$	2，4	12.916	3391.98
	$41 \mathrm{Nb}{ }^{+}$	$4 d^{4}$	${ }^{5} \mathrm{D}$ 。	1，3，5	13.895	3094.18
	$42 \mathrm{Mo}+$	$4 d^{5}$	${ }^{6} \mathrm{~S}_{21 / 2}$	4， 6	．．．	2816.15
	$43 \mathrm{Tc}{ }^{+}$	$4 d^{5} 5 s^{1}$	${ }^{7} \mathrm{~S}_{3}$	5，7	．．．	2543.24
	$44 \mathrm{Ru}+$	$4 d^{7}$	${ }^{4} \mathrm{~F}_{44}{ }^{\text {a }}$	2，4，6		2402.72
	$45 \mathrm{Rh}{ }^{+}$	$4 d^{8}$	${ }^{3} \mathrm{~F}$	3，5		2334.77
	$46 \mathrm{Pd}+$	$4 d^{\circ}$	${ }^{2} \mathrm{D}_{2 / 8}$	2，4	19.9	2296.53
	$47 \mathrm{Ag}+$	$4 d^{10}$	${ }^{1} \mathrm{~S}^{2}{ }^{2}$	1，3	21.5	2246.41
	$48 \mathrm{Cd}^{+}$	$5 s^{1}$	${ }^{2} \mathrm{~S}^{151 / 2}$	2，4	16.90	2144.38
	$49 \mathrm{In}{ }^{+}$	5s ${ }^{2}$	${ }^{1} \mathrm{~S}$ ，	1,3	18.86	1586.4
	$50 \mathrm{Sn}^{+}$	$5 s^{2} 5 p^{1}$	${ }^{2} \mathrm{P}^{\circ}{ }^{01 / 2}$	2， 4	14.6	2152.22
	${ }_{52} \mathrm{Sb}^{+}$	$5 s^{2} 5 p^{2}$	${ }^{3} \mathrm{P}$ ．	1，3	19	1606.98
	${ }_{53} \mathrm{TE}^{+}$	5s ${ }^{2} 5 p^{2} 5 p^{1}$	${ }^{3} \mathrm{~S}_{12}{ }^{3} \mathrm{P}^{2}$	1，3，5	21.5 19.0	1161.52
	$54 \mathrm{Xe}{ }^{+}$	$5 s^{2} 5 p^{5}$	${ }^{2} \mathrm{P}^{2}{ }_{1 / 4}$	1，4	21.2	1100.42


$\underset{n}{\text { Period }}$	Ionized atom	$\begin{gathered} \text { Normal } \\ \text { electron } \\ \text { configuration } \end{gathered}$	Ground level	Spectral multiplicities	Ionization potential volts	Strongest line，$A$
6	55 Cs ＋	$5 s^{2} 5 p^{\circ}$	${ }^{1} \mathrm{~S}^{2}$ ，	1，3	23.5	926.75
	$56 \mathrm{Ba}+$	$6 s^{1}$	${ }^{2} \mathrm{Sa}_{3}{ }_{3}$	2	10.00	4554.04
	$57 \mathrm{La}{ }^{+}$	$5 d^{2}$	${ }^{3} \mathrm{~F}$ ，	1，3	11.43	3949.10
	${ }_{58} \mathrm{Ce}^{+}$	$4 f^{2} 6 s^{1}$	${ }^{4} \mathrm{H}_{3}{ }^{1 / 4}$	2，4	．．．	4186.60
	$59 \mathrm{Pr}{ }^{+}$	$4 f^{\circ} 6 s^{1}$	${ }^{\circ} \mathrm{I}^{\circ}$ ．	3，5		4179.42
	$60 \mathrm{Nd}^{+}$	$4 f^{6} 6 s^{1}$	${ }^{\circ} \mathrm{I}_{31 / 4}$	4，6，8		4303.57
	$61 \mathrm{Pm}{ }^{+}$	$4 f^{6} 6 s^{1}$	$\stackrel{\square}{8}$			
	$62 \mathrm{Sm}{ }^{+}$	$4 f^{8} 6 s^{1}$	${ }^{8} \mathrm{~F}_{0}{ }^{\text {a }}$	6，8	11.2	3568.27
	$63 \mathrm{Eu}{ }^{+}$	$4 f^{\prime} 6 s^{1}$	${ }^{9} \mathrm{~S}$ ，	7，9	11.24	4205.05
	$64 \mathrm{Gd}^{+}$	$4 f^{7} 6 s^{1} 5 d^{1}$	${ }^{10} \mathrm{D}^{\circ}{ }_{23 /}$	6，8， 10	$12 \pm$	3422.47
	$65 \mathrm{~Tb}^{+}$		．．．	．．．		．．．
	$66 \mathrm{Dy}{ }^{+}$	．．．	．．．	$\ldots$	．．．	．．．
	$67 \mathrm{Ho}{ }^{+}$		$\ldots$	$\ldots$	$\ldots$	
	${ }_{69} 68 \mathrm{Tm}^{+}$	$4{ }^{1 \mathrm{f}^{\mathrm{is}} \dot{6} s^{2}}$	${ }^{3} \stackrel{1}{5}^{\circ}$ 。	1， 3		3848.02
	$70 \mathrm{Yb}^{+}$	$4 f^{4} 6 s^{1}$	${ }^{2} \mathrm{~S}_{0}{ }^{3}$	2	12.10	3694.20
	$71 \mathrm{Lu}{ }^{+}$	$6 s^{2}$	${ }^{1} \mathrm{~S}_{0}$	1，3	14.7	2615.43
	$72 \mathrm{Hf}+$	$5 d^{1} 6 s^{2}$	${ }^{2} \mathrm{D}_{13}{ }^{\text {a }}$	2，4	14.9	2641.41
	$73 \mathrm{Ta}+$	$5 d^{3} 6 s^{1}$	${ }^{6} \mathrm{~F}_{3}$	1，3， 5	．．．	2685.17
	$74 \mathrm{~W}^{+}$	$5 d^{4} 6 s^{1}$	${ }^{6} \mathrm{D}_{014}$	4，6	$\ldots$	2204.49
	$75^{+} \mathrm{Re}$＋	$5 d^{5} 6 s^{1}$	${ }^{7} \mathrm{~S}_{3}$	5，7	$\ldots$	．．．
	$76 \mathrm{Os}{ }^{+}$		．．．	$\ldots$	．．．	
	$77 \mathrm{Ir}{ }^{+}$					
	$78 \mathrm{Pt}{ }^{+}$	$5 d^{\text {b }}$	${ }^{2} \mathrm{D}_{2}{ }^{1 / 4}$	2，4	18.54	1777.09
	$79 \mathrm{Au}+$	$5 d^{10}$	${ }^{1} \mathrm{~S}^{2}{ }^{\text {a }}$	1	20.5	1740.47
	$80 \mathrm{Hg}^{+}$	$6 s^{2}$	${ }^{2} \mathrm{~S}_{0} \mathrm{~S}_{0}$	2，4	18.751	1649.96
	${ }_{82}^{81 ~} \mathrm{Tl}^{+}+$	$6 s^{2}$	${ }_{2}^{1} \mathrm{~S}_{2} \mathrm{p}_{0}$	1， 3	20.42	1908.64
8	$82 \mathrm{~Pb}{ }^{+}$	$6 s^{2} 6 p^{1}$	${ }^{2} \mathrm{P}^{\circ}{ }^{\text {anh }}$	2，4	15.03	1726.75
	$83 \mathrm{Bi}^{+}$	$6 s^{2} 6 p^{2}$	${ }^{3} \mathrm{P}$ 。	3	16.7	1902.41
	$84 \mathrm{Po}^{+}$	$\ldots$	．．．	$\cdots$	$\cdots$	．．．
	$86 \mathrm{Rn}{ }^{+}$			$\ldots$		
	$87 \mathrm{Fr}{ }^{+}$					
7	88 Ra ＋	$7 \mathrm{~s}^{1}$	${ }^{2} \mathrm{~S}_{04}$	2	10.14	3814.42
	$89 \mathrm{Ac}+$	$7 s^{2}$	${ }^{1} \mathrm{~S}$ 。	1，3	．．．	
	$90 \mathrm{Th}{ }^{+}$	$6 d^{2} 7 s^{1}$	${ }^{4} \mathrm{~F}_{14}{ }^{\text {a }}$	2，4	$\ldots$	4019.14
	${ }_{92} 91 \mathrm{~Pa}^{+}+$	$5 \mathrm{f}^{9} 7 s^{2}$	${ }^{\circ} \mathrm{I}{ }^{\circ}{ }^{\circ}{ }^{\text {a }}$	4，6		3719.29
	$93 \mathrm{~Np}+$		［1／2	4，6		．．．
	$94 \mathrm{Pu}{ }^{+}$		．．．	．．．	．．．	$\ldots$
	$95 \mathrm{Am}+$	$\ldots$	$\ldots$	．．．		
	$96 \mathrm{Cm}{ }^{+}$	$\ldots$	$\ldots$	$\ldots$		$\ldots$
	$97 \mathrm{Bk}{ }^{+}$	．．．	．	$\cdots$		$\ldots$
	98 Cf	．．．	$\ldots$	．．．	$\cdots$	．．．

References for series relations in atomic spectra：Meggers，W．F．，Journ．Opt．Soc．Amer．，vol．31， p．44，1941；vol．31．p．606，1941．Pauling，L．，and Goudsmit，S．，The structure of line spectra， McGraw－Hill Book Co．，New York， 1930 ．White，H．E．，Introduction to atomic spectra，McGraw－ Hill Book Co．，New York，1934．Herzberg，G．，Atomic spectra and atomic structure，Dover Publica－ tions，New York，1944．Condon，E．U．，and Shortley，G．H．，The theory of atomic spectra，Macmillan Co．，New York，1935．Bacher，R．F．，and Goudsmit，S．，Atomic energy states，McGraw－Hill Book Co．，New York．1932．Moore，C．E．，Atomic energy levels，Nat．Bur．Standards Circ．467，vol．1， 1949；vol．2， 1952.

## TABLE 625.-MOLECULAR CONSTANTS OF DIATOMIC MOLECULES *

The energy, $E$, of a molecule is the sum of three contributions, the electronic energy, $E_{e}$, the vibrational energy, $E_{v}$, and the rotational energy, $E_{r}$, i.e.,

$$
\begin{equation*}
E=E_{0}+E_{v}+E_{r} \tag{1}
\end{equation*}
$$

The electronic energy, $E_{e}$, gives the largest contribution and is entirely similar to the energy of atoms. Similar to $S, P, D$ states of atoms, one distinguishes $\Sigma, \Pi, \Delta, \ldots$ states of diatomic molecules depending on whether the electronic orbital angular momentum about the intes nuclear axis is $0,1,2 \ldots$ in units of $h / 2 \pi$. Just as for atoms the resultant electron spin $S$ determines the multiplicity $(2 S+1)$ of the electronic state which is added to the term symbol as a left superscript. $\Sigma$ states are designated $\Sigma^{+}$or $\Sigma^{-}$depending on whether their eigenfunctions remain unchanged or change sign upon reflection at a plane through the internuclear axis. For molecules with identical nuclei (such as $\mathrm{N}_{2}, \mathrm{H}_{2}$, $\mathrm{O}_{2}, \ldots$ ) a subscript $g$ or $u$ indicates whether the eigenfunction upon reflection at the center remains unchanged or changes sign (e.g. ${ }^{1} \Sigma_{0}{ }^{+},{ }^{1} \Sigma_{u}{ }^{+},{ }^{1} \Pi_{g}, \ldots$. . .
In each electronic state the molecule may have various amounts of vibrational energy. Quantum mechanics shows that for diatomic molecules the vibrational energy is given by

$$
\begin{equation*}
\frac{E_{v}}{h c}=G(v)=\omega_{e}\left(v+\frac{1}{2}\right)-\omega_{e} x_{e}\left(v+\frac{1}{2}\right)^{2}+\ldots \tag{2}
\end{equation*}
$$

where $v$ is the vibrational quantum number which can assume the values $0,1,2, \ldots$ and where $\omega_{e}$ is the (classical) vibrational frequency (in $\mathrm{cm}^{-1}$ ) for infinitesimal amplitudes. The constant $\omega_{e} x_{e}$ is small compared to $\omega_{e}$ and is due to the anharmonicity of the vibration.
If the vibrational energy is increased more and more, a point is reached at which the two atoms fly apart, that is, the molecule is dissociated. The dissociation energy, $D_{0}$, corresponds to the maximum of the function $G(v)$ and can in many cases be determined from the spectrum.

In each vibrational level the molecule may have various amounts of rotational energy. For diatomic molecules, in the simplest case ( ${ }^{1} \Sigma$ state), the rotational energy is given by

$$
\begin{equation*}
\frac{E_{r}}{h c}=F(J)=B_{v} J(J+1)-\ldots \tag{3}
\end{equation*}
$$

where $J$ is the rotational quantum number which may take the values $0,1,2, \ldots$ and where $B_{v}$ is the so-called rotational constant which is slightly different for different vibrational levels of a given electronic state: one has

$$
\begin{equation*}
B_{v}=B_{e}-a_{e}\left(v+\frac{1}{2}\right)+\ldots \tag{4}
\end{equation*}
$$

Here $a_{0}$ is small compared to the rotational constant $B_{e}$ which refers to the equilibrium position. For $B_{e}$ one finds

$$
\begin{equation*}
B_{0}=\frac{h}{8 \pi^{2} c \mu r_{\mathrm{e}}{ }^{2}} \tag{5}
\end{equation*}
$$

Here $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ is the reduced mass of the molecule with $m_{1}$ and $m_{2}$ the masses of the two atoms, and $r_{e}$ is the internuclear distance in the equilibrium position. The product $\mu r_{e}{ }^{2}$ is the moment of inertia of the molecule; in other words, $B_{e}$, apart from universal constants, is the reciprocal moment of inertia.

Each electronic state of a diatomic molecule is characterized by a certain set of values for the vibrational and rotational constants $\omega_{e}, \omega_{e} x_{e}, \ldots, D_{0}, r_{e}, B_{e}, a_{e}, \ldots$ These constants have been determined for a large number of diatomic molecules in various electronic states from the analysis of band spectra. A comprehensive and up-to-date table may be found in "Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules," by G. Herzberg (Van Nostrand. New York, 1950). The following table is an excerpt from the compilation just mentioned, but brought up to date, 1953. Here only the constants $\omega_{e}, D_{0}{ }^{\circ}$, and $r_{e}$ for the ground states are listed and the type of the ground state is given. From $r_{e}$ the rotational constant $B_{e}$ can be obtained according to the formula (5) given above. $D_{0}{ }^{\circ}$ corresponds to dissociation into normal atoms. The values are given in ev (electron-volts) where 1 ev corresponds to $8068.3 \mathrm{~cm}^{-1}$. The numbers on the element symbols give the mass numbers of the isotopic species to which the constants refer. When no mass number is given the data refer to the ordinary isotopic mixture. With the exception of the hydrogen molecule in each case only the data for one isotopic species are listed.

More detailed explanation of the underlying theory, the methods of determination of these constants and references for each individual molecule may be found in the book already quoted.

[^241]TABLE 625A.-MOLECULAR CONSTANTS FOR THE GROUND STATES OF DIATOMIC MOLECULES

The following symbols are used: ( ) Constants and symbols in parentheses are uncertain or of low accuracy. [ ] Constants in brackets refer to the lowest vibrational levels rather than to the equilibrium position. Such a value under $\omega_{e}$ is the first vibrational quantum $\Delta G_{1} / 2=G(1)-G(0)=\omega_{e}$ $2 \omega_{\text {exe }}{ }^{+} \ldots$; under $r_{e}$ it is the effective value $r_{0}$ in the lowest vibrational level ( $v=0$ ), that is, it has been obtained from $B_{0}$ rather than $B_{e}$. "An asterisk in the column "Type of state" indicates that it is doubtful whether the state whose constants are given is the ground state of the molecule. $\dagger$ A dagger after a value under $r_{e}$ indicates that it has been obtained from electron diffraction rather than from the spectrum of the molecule. \{In a few cases several values of the dissociation energy are compatible with the available data. These values are grouped together by braces.

Molecule	Type of state	$\omega_{e}\left(\mathrm{~cm}^{-1}\right)$	$D_{0}{ }^{\circ}(\mathrm{ev})$	$r$ ( ${ }^{( }$)
$\mathrm{Ag}^{109} \mathrm{Br}^{81}$	( $\left.{ }^{1} \Sigma\right)$	247.72	2.6	
$\mathrm{Ag}^{107} \mathrm{Cl}^{25}$	$\left({ }^{1} \Sigma\right)$	343.6	3.1	
$\mathrm{AgH}^{1}$	${ }^{1} \Sigma^{+}$	1760.0	2.5	1.617
$\mathrm{Ag}^{107} \mathrm{I}^{127}$	$\left({ }^{1} \Sigma\right)$	206.18	2.98	
$\mathrm{AgO}^{18}$	${ }^{2} \Sigma^{-}$	493.2	(1.8)	
$\mathrm{Al}^{77} \mathrm{Br}^{78}$	${ }^{1} \Sigma^{+}$	378.0	(2.4)	2.295
$\mathrm{Al}^{27} \mathrm{Cl}^{19}$	${ }^{1} \Sigma^{+}$	481.30	(3.1)	2.14
$\mathrm{Al}^{27} \mathrm{~F}^{18}$	${ }^{1} \mathrm{\Sigma}$ +	814.5	(2.5)	
$\mathrm{Al}^{2} \mathrm{H}^{1}$	${ }^{1} \mathrm{\Sigma}$ +	1682.57	<3.06	1.6459
$\left(\mathrm{Al}^{27} \mathrm{H}^{1}\right)^{+}$	${ }^{2} \Sigma^{+}$	(1610)		1.602
$\mathrm{Al}^{27} \mathrm{I}^{127}$	${ }^{1} \Sigma^{+}$	316.1	(2.9)	
$\mathrm{Al}^{27} \mathrm{O}^{18}$	${ }^{2} \Sigma{ }^{+}$	978.2	(<3.75)	1.6176
$\mathrm{As}_{2}{ }^{75}$	${ }^{1} \Sigma_{0}^{+}$	429.44	$\leq 3.96$	
$\left(\mathrm{As}^{75}\right)^{7}{ }^{+}$	$\left({ }^{2} \Sigma^{+}\right.$)	314.8	(2.4)	
$\mathrm{As}^{775} \mathrm{~N}^{16}$	${ }_{2}^{1} \Sigma^{+}$	1068.0	(6.5)	
$\mathrm{As}^{78} \mathrm{O}^{16}$	${ }^{2} \Pi$	967.4	$\leq 5.0$	
$\mathrm{Au}^{107} \mathrm{Cl}^{108}$	$\left({ }^{1} \Sigma^{+}\right.$)	382.8	(3.5)	
$\mathrm{Au}^{189} \mathrm{H}^{1}$	${ }^{1} \Sigma^{+}$	2305.01	3.1	1.5237
$\mathrm{B}_{2}{ }^{11}$	${ }^{8} \Sigma^{8} 0^{-}$	1051.3	(3.6)	1.589
$\mathrm{BaBr}^{79}$	${ }^{2} \Sigma^{+}$	193.8	(2.8)	
$\mathrm{Ba}^{138} \mathrm{Cl}^{38}$	${ }^{2} \mathrm{\Sigma}$	279.3	(2.7)	
$\mathrm{BaF}^{19}$	${ }^{2} \Sigma$	468.9	(3.8)	
$\mathrm{BaH}^{1}$	${ }^{2} \Sigma^{*}$	1172	$\leq 1.82$	2.2318
$\mathrm{BaO}^{19}$	${ }^{1} \Sigma$	669.8	4.7	1.940
BaS			(2.3)	
$\mathrm{B}^{11} \mathrm{Br}^{79}$	${ }^{1} \Sigma^{+}$	684.31	(4.1)	1.89
$\mathrm{B}^{12} \mathrm{Cl}^{25}$	${ }^{1} \Sigma$ +	839.12	(4.2)	1.716
$\mathrm{Be}^{9} \mathrm{Cl}^{19}$	${ }^{2} \Sigma{ }^{2}+$	846.58	(4.3)	(1.7)
$\mathrm{Be}^{9} \mathrm{~F}^{19}$	${ }^{2} \Sigma^{+}$	1265.6	(5.4)	1.3614
$\mathrm{Be}^{9} \mathrm{H}^{1}$	${ }^{2} \Sigma^{+}$	2058.6	(2.2)	1.3431
$\left(\mathrm{Be}^{9} \mathrm{H}^{1}\right)^{+}$	${ }^{1} \Sigma^{+}$	2221.7	(3.2)	1.3122
$\mathrm{Be}^{9} \mathrm{O}^{18}$	${ }^{1} \Sigma^{+}$	1487.32	$\left\{\begin{array}{l}(3.7) \\ (3.0)\end{array}\right.$	1.3308
$\mathrm{B}^{11} \mathrm{~F}^{19}$	${ }^{1} \Sigma{ }^{\text {L }}$	1400.6	(4.3)	1.262
${ }^{111} \mathrm{H}^{1}$	${ }^{1} \Sigma^{+}$	(2366)	<3.51	1.2325
$\left(\mathrm{B}^{11} \mathrm{H}^{1}\right)^{+}$	${ }^{2} \Sigma^{+}$	(2435)		[1.2146]
${ }^{\mathrm{Bi}_{2}{ }^{200}}{ }^{200}{ }^{\text {cem }}$	${ }^{1} \Sigma_{0}{ }^{+}$	172.71	1.70	
$\mathrm{Bi}^{200} \mathrm{Br}^{79}$		209.34	2.74	
${ }^{\mathrm{Bi}^{205} \mathrm{C} \mathrm{Cl}^{28}} \mathrm{Bi}^{200} \mathrm{~F}^{18}$		308.0 510.7	(3.0)	
${ }^{\mathrm{Bi}^{200} \mathrm{~F}^{20} \mathrm{~F}^{20}} \mathrm{Bi}^{\text {a }} \mathrm{H}^{1}$		510.7 1698.9	(2.7)	1.809
$\mathrm{Bi}^{200} \mathrm{I}^{127}$	(0)	163.9 163.1	(2.7)	1.809
$\mathrm{Bi}^{200} \mathrm{O}^{16}$		702.1	(2.9)	
$\mathrm{B}^{11} \mathrm{~N}^{14}$	${ }^{8} \mathrm{II}$ *	1514.6	(5.0)	1.281
$\mathrm{B}^{11} \mathrm{O}^{16}$	${ }^{2} \Sigma+$	1885.44	(9.1)	1.2049
$\mathrm{Br}^{87} \mathrm{BrCl}^{81}$	${ }^{1} \Sigma_{0}{ }^{+}{ }^{+}$	[430] ${ }^{3}$	1.971 2.138	2.284
$\mathrm{Br}^{7 \mathrm{~F}^{18}}$	${ }^{1} \Sigma$	673	2.16	1.75555
$\mathrm{BrO}^{16}$	*	713	(2.2)	
$\mathrm{C}_{2}^{12}$	${ }^{8} \Pi_{4}$	1641.35	(3.6)	1.3117
$\mathrm{CaBr}^{78}$	${ }^{2} \Sigma+$	285.3	(2.9)	
$\mathrm{CaCl}^{\text {s5 }}$	${ }^{2} \Sigma+$	369.8	$\leq 2.76$	(1.866)
$\mathrm{Ca}^{10} \mathrm{~F}^{10}$	${ }^{2} \Sigma^{2}+$	587.1	$\leq 3.15$	([2.02])
$\mathrm{Ca}^{40} \mathrm{H}^{1}$	${ }^{2} \Sigma$	1299	$\leq 1.70$	2.0020
(continued)				

TABLE 625A.-MOLECULAR CONSTANTS FOR THE GROUND STATES OF DIATOMIC MOLECULES (continued)

Molecule	Type of state	$\omega_{0}\left(\mathrm{~cm}^{-1}\right)$	$D_{0}{ }^{\circ}(\mathrm{ev})$	re( $(\underset{A}{ })$
$\left(\mathrm{Ca}^{\text {0 }} \mathrm{H}^{1}\right)^{+}$				[1.73]
$\mathrm{CaI}^{127}$	$\left({ }^{2} \Sigma\right)$	242.0	(2.8)	
$\mathrm{Ca}^{10} \mathrm{O}^{16}$	${ }^{2}$ *	732.1	5.0	1.822
CaS			$\leq 5.2$	
$\mathrm{C}^{12} \mathrm{Cl}^{185}$	${ }^{2} \mathrm{II}$	846		
$\mathrm{Cd}_{2}$			. 087	
CdBr	*	230.0	(3.3)	
$\mathrm{CdCl}^{25}$	${ }^{2} \Sigma$	330.5	(2.8)	
$\mathrm{CdF}^{19}$	$\left({ }^{2} \Sigma\right)$	(535)		
$\mathrm{CdH}^{1}$	${ }^{2} \Sigma^{+}$	1430.7	. 678	1.762
$\left(\mathrm{CdH}^{1}\right)^{+}$	${ }^{1} \Sigma^{+}$	1775.4	(2.0)	1.667
CdI ${ }^{127}$	${ }^{2} \Sigma$	178.5	(1.6)	
CdS			$\leq 3.9$	
CdSe			$\leq 3.2$	
$\mathrm{CeO}^{16}$	*	865.0	(77)	
CF	${ }^{2} 1$	1308.4	(4.8)	1.27
$\mathrm{C}^{12} \mathrm{H}^{1}$	${ }^{2} I I$	2861.6	3.47	1.1198
$\left(\mathrm{C}^{12} \mathrm{H}^{1}\right)^{+}$	${ }^{1} \Sigma^{+}$	[2739.54]	3.6	1.13083
$\mathrm{Cl}_{2}{ }^{28}$	${ }^{1} \Sigma_{0}{ }^{+}$	564.9	2.475	1.988
$\left(\mathrm{Cl}_{2}{ }^{38}\right)^{+}$	${ }^{2} \Pi$	645.3	(4.4)	1.891
$\mathrm{Cl}^{28} \mathrm{~F}^{18}$	${ }^{1} \Sigma$	786.3	2.616	1.62813
$\mathrm{ClO}^{16}$	*	(780)	1.9	
$\mathrm{C}^{12} \mathrm{~N}^{16}$	${ }^{2} \Sigma{ }^{+}$	2068.70		1.1718
$\mathrm{C}^{12} \mathrm{O}^{16}$	${ }^{1} \Sigma^{+}$	2170.21	$\left\{\begin{array}{r}11.108 \\ 9.844\end{array}\right.$	1.1282
	2	2170.21	9.605	1.1282
$\left(\mathrm{C}^{12} \mathrm{O}^{16}\right)^{+}$	${ }^{2} \Sigma^{+}$	2214.24	(9.9)	1.1151
CoCl	*	421.2		
$\mathrm{CoH}^{1}$	$\Omega=4$	(1890)		[1.542]
$\mathrm{CoO}^{16}$	*	(850)		
$\mathrm{C}^{12} \mathrm{P}^{81}$	${ }^{2} \Sigma$	1239.67	(6.9)	1.562
$\mathrm{CrO}^{12} \mathrm{~S}^{18}$	*	898.8	4.4	
$\mathrm{C}^{12} \mathrm{CS}_{2} \mathrm{~S}^{188}$	${ }^{1} \Sigma^{+}{ }^{+}$	1285.1	(7.8)	1.534
$\mathrm{Cs}^{188} \mathrm{Br}$	${ }^{1} \mathrm{\Sigma}^{\text {\% }}$	(194)	$\geq 3.9$	[3.14] †
$\mathrm{Cs}^{183} \mathrm{Cl}$	${ }^{1} \Sigma^{+}$	299		2.88
$\mathrm{C}^{12} \mathrm{Se}$	${ }^{1} \Sigma^{+}$	1036.0	(6.8)	
$\mathrm{CsF}{ }^{19}$	${ }^{1} \Sigma^{+}$	(270)	5.67	2.34
$\mathrm{Cs}^{128} \mathrm{H}^{1}$	${ }^{1} \Sigma^{+}$	890.7	(1.9)	2.494
$\mathrm{Cs}^{128} \mathrm{I}^{127}$	${ }^{1} \mathrm{\Sigma}$ +	142	$3.37{ }^{7}$	[3.41] $\dagger$
CsRb		49.4		
$\mathrm{Cu}_{2}$	( ${ }^{1} \Sigma_{0}^{+}$)	160	( .17)	
$\mathrm{Cu}^{\mathbf{x s}} \mathrm{Br}^{78}$	${ }^{12}{ }^{+}$	314.10	(2.5)	
$\mathrm{Cu}^{48 \mathrm{Cl}^{125}}$	${ }^{1} \Sigma^{+}$	416.9	(3.0)	
$\mathrm{Cu}^{\text {es }} \mathrm{F}^{19}$	${ }^{1} \mathrm{E}+$	622.7	(3.0)	1.743
$\mathrm{Cu}^{088} \mathrm{H}^{1}$	${ }^{1} \Sigma^{+}$	1940.4	$<2.89$	1.463
$\left(\mathrm{Cu}^{\text {as }} \mathrm{H}^{1}\right)^{+}$	${ }^{2} \mathrm{\Sigma}$	[1874]		[2.27]
$\mathrm{Cu}^{281} \mathrm{I}^{127}$	${ }^{1} \Sigma^{+}$	264.8	(3.0)	
$\mathrm{CuO}^{16}$	$\left({ }^{2} \Sigma^{+}\right)$	628	4.9	
$\mathrm{F}_{2}{ }^{10}{ }^{\text {a }}$	${ }^{1} \Sigma^{\circ} \Sigma^{+}{ }^{+}$	[892.1]	$<1.63$	$1.418 \dagger$
$\mathrm{FeCl}^{\text {2s }}$	${ }^{6} \Sigma^{\text {\% }}$	406.6		
$\mathrm{FeO}^{16}$		880	$\leq 4.24$	
$\mathrm{Ga}^{\infty} \mathrm{Br}^{81}$	${ }^{1} \Sigma^{+}$	263.0	(2.7)	
$\mathrm{Ga}^{* \infty} \mathrm{Cl}^{15}$	${ }^{1} \Sigma{ }^{+}$	365.3	$\leq 5.0$	[2.21]
$\mathrm{Ga}^{20} \mathrm{~F}^{10}$	${ }^{1} \Sigma^{+}$	623.2	(6.3)	
$\mathrm{Ga}^{\infty} \mathrm{I}^{18}$	${ }^{1} \Sigma^{+}$	216.4	$\leq 2.88$	
$\mathrm{GaO}^{10}$	${ }^{2} \Sigma$	767.69	(2.9)	
$\mathrm{GdO}^{16}$	*	841.0	(5.9)	
GeBr	${ }^{2} 1$	296.6	(3.0)	
$\mathrm{Ge}^{74} \mathrm{Cl}^{15}$	${ }^{2} 11$	406.6	(4.0)	
GeF ${ }^{19}$	${ }^{2} 11$	665.2	(4.9)	
${ }_{\text {Ge }} \mathrm{Ge}^{7{ }^{78} \mathrm{O}^{16} \mathrm{~S}^{16}}$	${ }^{1} \Sigma^{1} \Sigma^{+}$	985.7 575.8	(6.9)	1.651
$\mathrm{Ge}^{74} \mathrm{~S}^{81}$	${ }^{1} \Sigma^{*}$	575.8	(5.6)	
		(continued)		

TABLE 625A.-MOLECULAR CONSTANTS FOR THE GROUND STATES OF DIATOMIC MOLECULES (continued)

Molecule	Type of state	$\omega_{e}\left(\mathrm{~cm}^{-1}\right)$	$D_{0}{ }^{\circ}(\mathrm{ev})$	$r$ ( ${ }^{\text {a }}$ )
$\mathrm{Ge}^{74} \mathrm{Se}^{80}$	${ }^{1} \Sigma^{+}$	406.8	(4.1)	
$\mathrm{Ge}^{74} \mathrm{Te} \mathrm{e}^{130}$	${ }^{1} \Sigma^{+}$	323.4	(3.2)	
$\mathrm{H}_{2}{ }^{1}$	${ }^{1} \Sigma_{g}{ }^{+}$	4395.2	4.476	.7416
$\mathrm{H}^{1} \mathrm{H}^{2}$	${ }^{1} \Sigma_{0}+$	3809.7	4.511	.7414*
$\mathrm{H}^{2} \mathrm{H}^{3}$	${ }^{1} \Sigma_{0}{ }^{+}$	2853.8	4.570	(0.7416 ${ }^{\text {a }}$ )
$\mathrm{H}_{2}{ }^{2}$	${ }^{1} \Sigma_{0}{ }^{+}$	3118.5	4.554	(.74166)
$\mathrm{H}^{1} \mathrm{H}^{8}$	${ }^{1} \Sigma_{0}{ }^{+}$	3608.3	4.524	(.74169)
$\mathrm{H}_{2}{ }^{\text {a }}$	${ }^{1} \Sigma_{0}{ }^{+}$	2553.8	4.588	(.74166)
$\left(\mathrm{H}_{2}{ }^{1}\right)^{+}$	${ }^{2} \Sigma_{\square}{ }^{+}$	2297	2.648	1.06
$\mathrm{H}^{1} \mathrm{Br}$	${ }^{1} \Sigma^{+}$	2649.67	3.75	1.414
$\left(\mathrm{H}^{1} \mathrm{Br}\right)^{+}$	${ }^{2} \Pi_{1}$		3.5	[1.459]
$\mathrm{H}^{1} \mathrm{Cl}^{25}$	${ }^{1} \Sigma^{+}$	2989.74	4.430	1.27460
$\left(\mathrm{H}^{1} \mathrm{Cl}^{35}\right)^{+}$	${ }^{2} \mathrm{II}_{4}$	2675.4	4.48	1.3153
$\mathrm{He}_{2}{ }^{4}$	${ }^{1} \Sigma_{0}{ }^{+}$	unstable		
$\left(\mathrm{He}_{2}{ }^{4}\right)^{+}$	${ }^{2} \Sigma_{u}{ }^{+}$	[1627.2]	(3.1)	1.08
$\mathrm{H}^{1} \mathrm{~F}^{10}$	${ }^{1} \Sigma^{+}$	4138.52	5.8	. 9171
$\mathrm{Hg}_{2}$	${ }^{1} \Sigma_{0}+$	(36)	. 060	3.3
$\mathrm{Hg}^{202} \mathrm{Br}^{81}$	$\left({ }^{2} \Sigma\right)$	186.2	. 7	
$\mathrm{HgCl}^{25}$	${ }^{2} \Sigma^{+}$	292.61	1.0	[2.23] †
$\mathrm{HgF}^{18}$	$\left({ }^{2} \Sigma\right)$	490.8	(1.8)	
$\mathrm{HgH}{ }^{1}$	${ }^{2} \Sigma^{+}$	1387.09	. 376	1.7404
$\left(\mathrm{HgH}^{1}\right)^{+}$	${ }^{1} \Sigma^{+}$	2033.87	(2.3)	1.594
$\mathrm{HgI}^{127}$	$\left({ }^{2} \Sigma\right)$	125.6	. 36	
HgS			$\leq 2.8$	
HgSe			$\leq 2.7$	
HgTl		26.9	(.031)	
$\mathrm{H}^{1} \mathrm{I}^{127}$	${ }^{1} \Sigma^{+}$	2309.5	3.056	1.604
$\left(\mathrm{H}^{1} \mathrm{I}^{127}\right)^{+}$			3.11	
$\mathrm{H}^{1} \mathrm{~S}^{32}$	${ }^{2} \mathrm{II}_{4}$		$<3.8$	[1.35]
$\mathrm{I}_{2}{ }^{127}$	${ }^{1} \Sigma^{+}{ }^{+}$	214.25	1.5417	2.667
$\mathrm{I}^{187} \mathrm{Br}^{78}$	${ }^{1} \Sigma^{+}$	268.4	1.817	
$\mathrm{I}^{129} \mathrm{Cl}^{28}$	${ }^{1} \Sigma^{+}$	384.18	2.152	2.32070
$\mathrm{I}^{127} \mathrm{~F}^{10}$	${ }^{1} \Sigma^{+}$	610	1.98	
$\mathrm{In}^{115} \mathrm{Br}^{81}$	${ }^{1} \Sigma^{+}$	221.0	$\leq 3.3$	[2.57] †
$\mathrm{In}^{115} \mathrm{Cl}^{95}$	${ }^{1} \Sigma^{+}$	317.4	$\leq 4.54$	2.32
In ${ }^{115} \mathrm{~F}^{18}$	${ }^{1} \Sigma+$	534.7	(5.7)	
In ${ }^{115} \mathrm{H}^{1}$	${ }^{1} \Sigma^{+}$	1474.7	$\leq 2.48$	1.8376
$\mathrm{In}^{116} \mathrm{I}^{129}$	${ }^{1} \Sigma^{+}$	177.1	$\leq 2.7$	[2.86] †
$\mathrm{InO}{ }^{18}$	$\left({ }^{2} \Sigma\right)^{*}$	703.09	(1.3)	
$\mathrm{I}^{177} \mathrm{O}^{16}$	*	687	(1.9)	
$\mathrm{K}_{2}{ }^{80}$	${ }^{1} \Sigma_{0}{ }^{+}$	92.64	. 514	
KBr	${ }^{1} \Sigma^{+}+$	231	3.96	[2.94] †
KCl	${ }^{1} \Sigma^{+}$	280	4.42	[2.79] ${ }^{\dagger}$
$\mathrm{KF}^{19}$	${ }^{1} \Sigma+$	(390)	$\leq 5.9$	[2.55]
$\mathrm{K}^{89} \mathrm{H}^{1}$	${ }^{1} \Sigma^{+}$	985.0	1.88	2.244
KI ${ }^{127}$	${ }^{1} \Sigma^{2}+$	212	3.33	[3.23] †
$\mathrm{La}^{189} \mathrm{O}^{18}$	${ }^{2} \Sigma$	811.6	(9)	
$\mathrm{Li}_{2}{ }^{7}$	${ }^{1} \Sigma_{0}+$	351.43	1.03	2672
LiBr	${ }^{1} \Sigma^{+}$		4.5	
LiCl	${ }^{1} \Sigma^{+}$		5.1	
$\mathrm{Li}^{7} \mathrm{Cs}^{138}$	${ }^{1} \Sigma^{+}$	(167)		
$\mathrm{LiF}^{19}$				
$\mathrm{Li}^{7} \mathrm{H}^{1}$	${ }^{1} \Sigma^{+}$	1405.65	(2.5)	1.5953
$\mathrm{LiI}^{127}$	${ }^{1} \Sigma^{+}$	450	3.6	
LiK	${ }^{1} \Sigma^{+}$	(207)		
LiRb	${ }^{1} \Sigma^{+}$	(185)		
$\mathrm{LuO}^{16}$		841.66	(5.3)	
$\mathrm{Mg}^{24} \mathrm{Br}^{79}$	${ }^{2} \Sigma{ }^{2}$ )	373.8	$\leq 3.35$	
$\mathrm{Mg}^{24} \mathrm{Cl}^{25}$	${ }^{2} \mathrm{\Sigma}+$	465.4	(3.2)	
Mg ${ }^{24} \mathrm{~F}^{19}$	${ }^{2} \Sigma \Sigma^{+}$	717.6	(4.2)	[1.75]
$\mathrm{Mg}^{24} \mathrm{H}^{1}$	${ }^{2} \Sigma+$	1495.7	$\leq 2.49$	1.7306
$\left(\mathrm{Mg}^{24} \mathrm{H}^{1}\right)^{+}$	${ }^{1} \Sigma^{+}$	1695.3	(2.1)	1.649
MgI ${ }^{127}$	$\left({ }^{2} \Sigma^{+}\right)$	[312]		

(continued)

TABLE 625A.—MOLECULAR CONSTANTS FOR THE GROUND STATES OF DIATOMIC MOLECULES (continued)

Molecule	Type of state	$\omega_{0}\left(\mathrm{~cm}^{-1}\right)$	$D_{0}{ }^{\circ}(\mathrm{ev})$	re(A)
$\mathrm{Mg}^{24} \mathrm{O}^{16}$	${ }^{1} \Sigma$ *	785.1	5.2	1.749
MgS	*	525.2	(2.9)	
$\mathrm{Mn}^{\text {55 }} \mathrm{Br}$	${ }^{7} \mathrm{\Sigma}$	289.7	(2.9)	
$\mathrm{Mn}^{\text {55 }} \mathrm{Cl} \mathrm{C}^{(8)}$	${ }^{7} \Sigma$ )	384.9	(3.3)	
$\mathrm{Mn}^{55} \mathrm{~F}^{19}$	$\left({ }^{7} \Sigma\right)$	618.8	(3.9)	
$\mathrm{Mn}^{585} \mathrm{H}^{1}$	${ }^{7} \Sigma$	[1490.58]	< (2.4)	1.73075
$\mathrm{Mn}^{555} \mathrm{I}^{127}$	( ${ }^{\text {² }}$ )	(240)		
$\mathrm{Mn}^{65} \mathrm{O}^{16}$	*	840.7	(4.4)	
$\mathrm{N}^{14}$	${ }^{1} \Sigma_{0}{ }^{+}$	2359.61	9.756	1.094
$\left(\mathrm{N}_{2}{ }^{24}\right)^{+}$	${ }^{2} \Sigma_{0}{ }^{+}$	2207.19	8.724	1.116
$\mathrm{Na}_{2}{ }^{23}$	${ }^{1} \Sigma_{0}{ }^{+}$	159.23	. 73	3.079
$\mathrm{Na}^{23} \mathrm{Br}$	${ }^{1} \Sigma^{+}$	315	3.85	[2.64] $\dagger$
$\mathrm{Na}^{23} \mathrm{Cl}$	${ }^{1} \Sigma^{+}$	380	3.58	[2.51] †
$\mathrm{Na}^{23} \mathrm{C} \mathrm{C}^{138}$	${ }^{1} \Sigma^{+}$	(98)		
$\mathrm{Na}{ }^{23} \mathrm{~F}^{18}$			$\leq 5.3$	
$\mathrm{Na}^{29} \mathrm{H}^{1}$	${ }^{1} \Sigma^{+}$	1172.2	(2.2)	1.8873
$\mathrm{Na}^{23} \mathrm{I}^{127}$	${ }^{1} \Sigma^{+}$	286	3.16	[2.90] $\dagger$
$\mathrm{Na}^{23} \mathrm{~K}$	${ }^{1} \Sigma^{+}$	123.29	. 62	
$\mathrm{Na}^{23} \mathrm{Rb}$	${ }^{1} \Sigma^{+}$	106.64	(.57)	
$\mathrm{N}^{14} \mathrm{Br}$	*	693	(3.0)	
$\mathrm{N}^{43} \mathrm{H}^{2}$	${ }^{3} \Sigma^{-}$	(3300)	(3.8)	1.038
NiBr	*	334		
NiCl	$\left({ }^{2} \Pi\right)$ *	419.2	(7.3)	
$\mathrm{NiH}^{1}$	${ }^{2} \Delta_{5} / 2$	[1926.6]	$\leq 3.1$	1.475
$\mathrm{NiO}^{18}$	**	(615)	$\leq 4.27$	
	${ }^{2} \mathrm{II}$	1903.85	6.49	1.1508
$\left({ }_{\left(\mathrm{N}^{14} \mathrm{~N}^{14} \mathrm{O}^{18}\right)^{18}}{ }^{\text {a }}\right.$			10.6	
$\mathrm{N}^{14} \mathrm{~S}^{82}$	${ }^{2} \Pi_{r}$	1220.0	(5.9)	
$\mathrm{O}_{2}{ }^{\text {10 }}$	${ }^{3} \Sigma_{0}{ }^{2}$	1580.36	5.080	1.20740
$\mathrm{O}_{2+}^{+{ }^{+18}{ }^{\text {a }}}$	${ }^{2} \Pi^{2} \Pi_{0}$	1876.4	6.48	1.1227
$\mathrm{O}^{19} \mathrm{H}^{19}$	${ }^{2} \Pi_{4}$	3735.21	4.35	. 9706
$\left(\mathrm{O}^{16} \mathrm{H}^{1}\right)^{+}$	${ }^{9} \Sigma^{-}$	[2955]	$\geq 4.4$	1.0289
$\mathrm{P}_{2}{ }_{2}{ }^{31}$	${ }^{1} \Sigma_{0}{ }^{+}$	780.43	5.031	1.894
$\mathrm{Pb}_{2} \mathrm{PbBr}^{\text {º }}$		256.5	(.7)	
$\stackrel{\mathrm{PbBr}}{ } \mathrm{PbCl}^{\text {as }}$	$\left.{ }^{2}{ }^{2} \Pi_{1} / 2\right)$	207.5	3.0	
$\mathrm{PbF}^{19}$	${ }_{2}{ }^{2} \Pi_{1} / 2$	303.8 507.2	3.1	
$\mathrm{PbH}^{1}$	$\left.{ }^{2}{ }^{2} \Pi_{1} / 2 / 2\right)$	1564.1	$\leq 1.59$	1.839
$\mathrm{PbI}^{127}$	$\left({ }^{2} \Pi_{1} / 2\right)$	160.5	2.8	
$\mathrm{PbO}^{18}$	${ }^{1} \Sigma^{+}$	721.8	(4.2)	1.922
$\mathrm{Pb}^{209} \mathrm{~S}^{32}$	$1 \Sigma$ ${ }^{1} \Sigma+$ $1^{2}+$	428.14	(4.7)	2.395
PbSe	${ }^{1} \Sigma^{+}$	277.6	(4.7)	
$\mathrm{PbTe}^{81}$	${ }^{1} \Sigma$	211.8	(3.5)	
${ }_{\mathrm{P}^{31}}^{\mathrm{P}^{31} \mathrm{H}^{14}}$	${ }^{3} \Sigma^{3} \Sigma^{+}$	${ }^{(2380)}$		[1.433]
$\mathrm{P}^{81} \mathrm{O}^{19}$	${ }^{1} \Sigma^{+}{ }_{r}$	1337.24 1230.6	(6.3)	1.4470
$\mathrm{Pr}^{141} \mathrm{O}^{16}$	*	818.9		
$\mathrm{Rb}_{2}{ }^{\text {ab }}$	${ }^{1} \Sigma_{0}+$	57.28	. 49	
RbBr	(15)		3.9	
$\mathrm{RbCl}^{18}$	${ }_{1}^{15}$	(253)	$>3.96$	[2.89] †
$\mathrm{RbCs}^{183}$	${ }^{1} \Sigma^{1}+$	49.41		
$\mathrm{RbF}^{19}$	$\left({ }_{1}^{1} \Sigma\right)$	340	5.48	
$\mathrm{RbH}^{1}$	${ }^{1} \Sigma^{1} \Sigma^{+}$	936.77	(1.9)	${ }_{[3.267}^{2.367} \dagger$
$\mathrm{S}_{2}{ }^{82}$	${ }^{3} \Sigma_{\square}-$	725.68	$\leq 4.4$	1.889
	${ }^{1} \Sigma_{0}{ }^{+}$	269.85	(3.7)	
$\mathrm{SbBi}^{209}$	${ }^{1} \Sigma^{+}$	220.0	(3.0)	
$\mathrm{SbCl}^{\text {58 }}$		369.0	(4.6)	
$\mathrm{SbF}^{18}$		614.2	(4.2)	
$\mathrm{SbN}^{19}$	${ }_{2}^{1 / 2}$	942.0	(4.8)	
$\mathrm{Sc}^{45} \mathrm{O}^{16}$	${ }^{2} \mathrm{I}$	817.2	(7)	
		continued)		

TABLE 625A.-MOLECULAR CONSTANTS FOR THE GROUND STATES OF DIATOMIC MOLECULES (concluded)

Molecule	Type of state	$\omega_{e}\left(\mathrm{~cm}^{-1}\right)$	$D_{0}{ }^{\circ}(\mathrm{ev})$	$r$ ( ${ }_{\text {( }}$ )
$\mathrm{Se}_{2}{ }^{80}$	$\left({ }^{1} \Sigma_{0}{ }^{+}\right)$	391.77	$\leq 3.55$	2.16
$\mathrm{SeO}^{18}$		907.1	(5.4)	
$\mathrm{Si}_{2}$	*	(750)		
$\mathrm{SiBr}^{\text {r }}$	${ }^{2}$ II	425.4	(3.7)	
$\mathrm{Si}^{28} \mathrm{C} 1^{35}$	${ }^{2} \mathrm{II}_{r}$	535.4	(4.0)	
$\mathrm{Si}^{28} \mathrm{~F}^{18}$	${ }^{2} \Pi_{r}$	856.7	(4.8)	[1.603]
$\mathrm{Si}^{28} \mathrm{H}^{1}$	${ }^{2} \Pi_{r}$	(2080)		1.520
$\mathrm{Si}^{29} \mathrm{~N}^{14}$	${ }^{2} \Sigma^{+}$	1151.68	(4.5)	1.572
$\mathrm{Si}^{28} \mathrm{O}^{18}$	${ }^{1} \Sigma^{+}$	1242.03	7.2	1.510
$\left(\mathrm{Si}^{28} \mathrm{O}^{18}\right)^{+}$	${ }^{2} \Sigma+$	(851)		1.504
$\mathrm{Si}^{28} \mathrm{~S}^{32}$	${ }^{1} \Sigma^{+}$	749.5	(6.6)	1.929
$\mathrm{Si}^{28} \mathrm{Se}$	${ }^{1} \Sigma \Sigma^{+}$	580.0	(5.8)	
$\mathrm{Si}^{28} \mathrm{Te}$	${ }^{1} \Sigma^{\prime}+$	481.2	(5.5)	
SnBr	${ }^{2} \Pi_{r}$	247.7	(3.0)	
$\mathrm{SnCl}{ }^{35}$	${ }^{2} \mathrm{II}$	352.5	(3.6)	
$\mathrm{SnF}{ }^{18}$	${ }^{2} \mathrm{IH}_{1} / 2$	582.9	(3.9)	
$\mathrm{SnH}{ }^{1}$	${ }^{2} \mathrm{II}_{r}$	(1580)	$<3.2$	[1.782]
$\mathrm{SnO}^{16}$	${ }^{1} \Sigma+$	822.4	5.7	1.838
SnS	${ }^{1} \Sigma^{+}$	487.68	$\leq 3.0$	(2.06)
SnSe	${ }^{1} \Sigma^{+}$	331.2	(4.6)	
SnTe	${ }^{1} \Sigma^{+}$	259.5	(4.2)	
$\mathrm{S}^{32} \mathrm{O}^{16}$	${ }^{3} \Sigma^{-}$	1123.7	$\left\{\begin{array}{l}4.001 \\ 5.146\end{array}\right.$	1.4933
$\mathrm{SrBr}{ }^{70}$	${ }^{2} \boldsymbol{\Sigma}+$	216.5	(2.8)	
$\mathrm{SrCl}^{35}$	${ }^{2} \Sigma+$	302.3	(3.0)	
$\mathrm{SrF}{ }^{19}$	${ }^{2} \Sigma^{+}$	500.1	(3.5)	
SrH ${ }^{1}$	${ }^{2} \Sigma \Sigma^{+}$	1206.2	$\leq 1.68$	2.1455
SrI ${ }^{127}$	$\left({ }^{2} \Sigma\right)$	173.9	(2.2)	
$\mathrm{SrO}^{18}$	${ }^{1} \Sigma^{*}$	653.5	(4.5)	1.921
SrS			$\leq 2.7$	
$\mathrm{Te}_{2}$		251	$\leq 3.18$	[2.59] †
$\mathrm{TeO}^{16}$		796.0	$\left\{\begin{array}{l}2.728 \\ 3.453\end{array}\right.$	
$\mathrm{Ti}^{48} \mathrm{Cl}^{\text {85 }}$	*	456.4	(1.0)	
$\mathrm{Ti}^{48} \mathrm{O}^{16}$	${ }^{8} \mathrm{II}{ }_{r}$	1008.26	(6.9)	1.620
T1Br ${ }^{81}$	${ }^{1} \Sigma^{+}$	192.1	$\leq 3.19$	[2.68] $\dagger$
$\mathrm{TlCl}^{36}$	${ }^{1} \Sigma^{+}$	287.47	3.75	[2.55] $\dagger$
T1F ${ }^{18}$	${ }^{1} \Sigma^{+}$	475.00	<4.72	
T1H ${ }^{1}$	${ }^{1} \Sigma^{+}$	1390.7	$\leq 2.18$	1.870
T11 ${ }^{177}$	${ }^{1} \Sigma^{+}$	150	$\leq 2.64$	[2.87] $\dagger$
$\mathrm{V}^{51} \mathrm{O}^{16}$	$\left.{ }^{2} \Delta\right)^{*}$	1012.7	(6.4)	1.890
YbCl	$\left({ }^{2} \Sigma\right)^{*}$	293.6	(1.2)	
$\mathrm{Y}^{89} \mathrm{O}^{16}$	${ }^{2} \Sigma$	852.5	(9)	
$\mathrm{Zn}_{2}$	${ }^{1} \Sigma$ )		(.25)	
ZnBr	$\left({ }^{2} \Sigma\right)^{*}$	(220)		
$\mathrm{ZnCl}^{35}$	${ }^{2} \Sigma$	390.5	(3.0)	
$\mathrm{ZnF}{ }^{19}$	${ }^{2} \Sigma$	(630)		
$\mathrm{ZnH}{ }^{1}$	${ }^{2} \Sigma+$	1607.6	. 851	1.5945
$\left(\mathrm{ZnH}^{1}\right)^{+}$	${ }^{1} \Sigma^{2}+$	1916	(2.5)	1.515
$\mathrm{Zn}^{84} \mathrm{I}^{127}$	$\left({ }^{2} \Sigma\right)^{*}$	223.4	(2.0)	
ZnO			$\leq 4.0$	
ZnS			$\leq 4.4$	
ZnTe			$\leq 2.2$	
$\mathrm{Zr}^{\text {00 }} \mathrm{O}^{16}$	${ }^{8} \mathrm{II}$	937.2	(7.8)	(1.416)

The atmosphere, with a total mass of about $5.3 \times 10^{21} \mathrm{~g}$ (about one-millionth the mass of the earth), extends $7,000-60,000$ miles above sea level (depending upon the definition of the top) and for purposes of discussion may be divided into several regions or layers. From sea level up to about 10-15 km (the troposphere), about the next 30 km above this (the stratosphere), and the entire region above this (i.e., above about 40 km ) is spoken of as the upper atmosphere. At heights above 80 km in the upper atmosphere strong ionization is found and thus this region is called the ionosphere. Again the ionosphere may be divided into three or four layers ; first, the $E$ layer (about 100 km ) moderately ionized; next the $F_{1}$ layer (at about 200 km ) more strongly ionized ; the $F_{2}$ layer (about 300 km ) much more strongly ionized. Above this, there is some recent evidence indicating an additional ionized region, the $G$ layer ( $400-700 \mathrm{~km}$ ).
The following tables give some characteristics of the atmosphere as a function of the height above sea level.

TABLE 626.-COMPOSITION OF THE AIR NEAR GROUND LEVEL ${ }^{196}$

Gas	Molecular weight	Percent per volume
Nitrogen	28	78.09
Oxygen	32	20.95
Argon	40	.93 100.00
Carbon dioxide	44	. $02-.04$
Neon	20.2	$18 \times 10^{-4}$
Helium		$5.3 \times 10^{-4}$
Krypton	83	$1.1 \times 10^{-4}$
Hydrogen	2	$.5 \times 10^{-4}$
Xenon	130	. $08 \times 10^{-4}$
Ozone	48	$.02 \times 10^{-4}$, increasing with altitude
Radon .		$7 \times 10^{-18}$, decreasing with altitude
Water vapor	18	. $2-4$, variable

104 Regener, E., The structure and composition of the stratosphere, No. 509, Headquarters Air Materiel Command, Wright Field, Dayton, Ohio, April 1946.

TABLE 627.-COMPOSITION OF THE ATMOSPHERE UP TO THE F LAYER, LATITUDE $45^{\circ} 195$

$\underset{\mathrm{km}}{\text { Altitude }}$	Composition,   1 percent volume	Molecular weight of mixture, $M$	$\begin{gathered} \text { Altitude } \\ \mathrm{km} \end{gathered}$	Composition   1 percent volume	Molecular weight of mixture, $M$
0	$21 \mathrm{O}_{2}, 78 \mathrm{~N}_{2}, .93 \mathrm{~A}$	28.9	120	$30.5 \mathrm{O}, 69.5 \mathrm{~N}_{2}$	24.35
50	$18 \mathrm{O}_{2}, 82 \mathrm{~N}_{2}$	28.66	300	$30.5 \mathrm{O}, 69.5 \mathrm{~N}_{2}$	24.35
83	$18 \mathrm{O}_{2}, 82 \mathrm{~N}_{2}$	28.66	( $F_{2}$ layer)		

[^242]A standard atmosphere is defined by an altitude-temperature-pressure relation. It is an aeronautic necessity in valuating the performance of airplanes and for the calibration of instruments. The following standard has been officially adopted by the Army Air Corps, National Bureau of Standards, National Advisory Committee for Aeronautics, and the Weather Bureau. See Table 343.

Altitude Meters	Pressure		Density		Temperature
	$\mathrm{mmHg}^{\text {m }}$	in Hg	$\mathrm{kg} / \mathrm{m}^{8}$	$\underline{1 b / f t^{8}}$	
0	760.0	29.921	1.2255	. 07650	15.0
1000	674.1	26.54	1.1120	. 06942	8.5
2000	596.2	23.47	1.0068	. 06286	+ 2.0
3000	525.8	20.70	. 9094	. 05678	-4.5
4000	462.3	18.20	. 8193	. 05115	-11.0
5000	405.1	15.95	. 7363	. 04597	-17.5
6000	353.8	13.93	. 6598	. 04119	-24.0
7000	307.9	12.12	. 5896	. 03681	-30.5
8000	266.9	10.51	. 5252	. 03279	-37.0
9000	230.4	9.07	. 4664	. 02912	-43.5
10000	198.2	7.80	. 4127	. 02577	-50.0
11000	169.7	6.68	. 3614	. 02256	-55.0
12000	145.0	5.71	. 3090	. 01929	-55.0
13000	124.0	4.88	. 2642	. 01649	-55.0
14000	106.0	4.17	. 2259	. 01410	$-55.0$
15000	90.6	3.57	. 1931	. 01206	-55.0

table 629.-VALUES OF ATMOSPHERIC TEMPERATURE, PRESSURE, AND DENSITY UP TO THE F LAYER*

Heigbt, $h$		Apparent gravity, $g^{\prime}$ $\mathrm{cm} / \mathrm{sec}^{3}$	${ }_{\text {Temp }}{ }_{\mathbf{K}}$	Pressure, $p$   millibars	Density, $\rho$	$\begin{gathered} \text { Number } \\ \text { density, } \\ \text { particles } / \mathrm{cm}^{2} \end{gathered}$	Mean particle speed, $v$ $\mathrm{cm} / \mathrm{sec}$	Mean free path, $L$ cm	Mean collision freq, $\nu$ $1 / \mathrm{sec}$	Speed of sound, $c$ $\mathrm{cm} / \mathrm{sec}$
km	mi									
0	0	980.69	288.0	1014	$1.223 \times 10^{-2}$	$2.568 \times 10^{18}$	$4.590 \times 10^{4}$	$9.744 \times 10^{-6}$	$4.712 \times 10^{0}$	$3.410 \times 10^{4}$
1.524	. 947	980.22	278.1	843.5	$1.055 \times 10^{-6}$	$2.213 \times 10^{19}$	4.511	$1.130 \times 10^{-8}$	$3.991 \times 10^{0}$	3.351
3.048	1.894	979.74	268.2	697.5	$9.047 \times 10^{-4}$	$1.898 \times 10^{10}$	4.432	$1.318 \times 10^{-5}$	$3.362 \times 10^{\circ}$	3.291
6.096	3.788	978.80	248.4	466.8	$6.537 \times 10^{-4}$	$1.371 \times 10^{10}$	4.264	$1.825 \times 10^{-8}$	$2.337 \times 10^{\circ}$	3.167
9.144	5.682	977.87	226.6	302.3	$4.601 \times 10^{-4}$	$9.652 \times 10^{18}$	4.090	$2.592 \times 10^{-5}$	$1.578 \times 10^{0}$	3.038
10.769	6.629	977.37	218.0	236.2	$3.768 \times 10^{-6}$	$7.905 \times 10^{18}$	3.996	$3.165 \times 10^{-8}$	$1.262 \times 10^{\circ}$	2.967
13.716	8.523	976.46	218.0	149.2	$2.381 \times 10^{-4}$	$4.995 \times 10^{18}$	3.996	$5.010 \times 10^{-5}$	$7.976 \times 10^{8}$	2.967
16.764	10.417	975.52	218.0	92.88	$1.482 \times 10^{-6}$	$3.109 \times 10^{28}$	3.996	$8.048 \times 10^{-5}$	$4.965 \times 10^{8}$	2.967
22.860	14.205	973.66	218.0	36.14	$5.761 \times 10^{-5}$	$1.210 \times 10^{18}$	3.996	$2.069 \times 10^{-6}$	$1.931 \times 10^{8}$	2.968
27.432	17.045	972.26	218.0	17.89	$2.849 \times 10^{-8}$	$5.989 \times 10^{17}$	3.999	$4.178 \times 10^{-6}$	$9.572 \times 10^{7}$	2.970
32.000	19.884	970.87	218.0	8.901	$1.415 \times 10^{-5}$	$2.979 \times 10^{17}$	4.002	$8.399 \times 10^{-6}$	$4.765 \times 10^{7}$	2.972
39.624	24.621	968.54	276.0	3.148	$3.946 \times 10^{-6}$	$8.323 \times 10^{18}$	4.508	$3.006 \times 10^{-6}$	$1.499 \times 10^{7}$	3.348
50.000	31.068	965.40	355.0	1.054	$1.024 \times 10^{-6}$	$2.166 \times 10^{18}$	5.118	$1.155 \times 10^{-2}$	$4.430 \times 10^{6}$	3.802
60.000	37.282	962.39	355.0	$4.136 \times 10^{-1}$	$4.019 \times 10^{-7}$	$8.501 \times 10^{18}$	5.118	$2.943 \times 10^{-2}$	$1.739 \times 10^{6}$	3.802
68.581	42.614	959.81	300.2	$1.740 \times 10^{-1}$	$2.000 \times 10^{-7}$	$4: 230 \times 10^{18}$	4.706	$5.915 \times 10^{-2}$	$7.956 \times 10^{5}$	3.496
78.000	48.466	957.00	240.0	$5.469 \times 10^{-2}$	$7.860 \times 10^{-8}$	$1.663 \times 10^{15}$	4.209	$1.505 \times 10^{-1}$	$2.797 \times 10^{5}$	3.126
83.000	51.573	955.51	240.0	$2.752 \times 10^{-8}$	$3.956 \times 10^{-8}$	$8.367 \times 10^{14}$	4.209	$2.990 \times 10^{-1}$	$1.408 \times 10^{5}$	3.126
92.965	57.765	952.55	276.4	$7.938 \times 10^{-8}$	$9.507 \times 10^{-9}$	$2.096 \times 10^{14}$	4.612	1.194	$3.862 \times 10^{4}$	3.443
100.58	62.500	950.30	304.2	$3.526 \times 10^{-4}$	$3.713 \times 10^{-0}$	$8.459 \times 10^{18}$	4.916	2.958	$1.662 \times 10^{4}$	3.686
120.00	74.564	944.60	375.0	$6.677 \times 10^{-4}$	$5.218 \times 10^{-10}$	$1.299 \times 10^{13}$	5.708	$1.926 \times 10$	$2.964 \times 10^{8}$	4.322
152.40	94.697	935.20	505.5	$8.67 \times 10^{-5}$	$5.02 \times 10^{-11}$	$1.25 \times 10^{12}$	6.63	$2.00 \times 10^{2}$	$3.32 \times 10^{2}$	5.02
213.36	132.58	917.88	751.0	$5.99 \times 10^{-6}$	$2.33 \times 10^{-12}$	$5.83 \times 10^{10}$	8.07	$4.29 \times 10^{3}$	$1.88 \times 10$	
259.08	160.98	905.21	935.2	$1.40 \times 10^{-8}$	$4.38 \times 10^{-18}$	$1.09 \times 10^{10}$	9.01	$2.29 \times 10^{4}$	$3.93 \times 10$	
300.00	186.41	894.09	1100	$4.84 \times 10^{-7}$	$1.29 \times 10^{-18}$	$3.21 \times 10^{0}$	9.78	$7.79 \times 10^{4}$	$1.25 \times 10$	

[^243]* For reference, see footnote 195, p. 592.
$\dagger d=$ diameter of particle.

Mean mol wt M	Pressure, p millibars	$\underset{\mathrm{g} / \mathrm{cm}^{3}}{\substack{\text { Density, }}}$	Number density, $n$ particles $/ \mathrm{cm}^{3}$	$\dagger=2 \times 10^{-8} \mathrm{~cm}$		
				Mean particle speed $v$ $\mathrm{~cm} / \mathrm{sec}$	Mean free path, $L$ cm	Mean collision freq, $\nu$ $1 / \mathrm{sec}$
24.35	$4.84 \times 10^{-7}$	$1.29 \times 10^{-13}$	$3.21 \times 10^{9}$	$9.78 \times 10^{4}$	$1.76 \times 10^{5}$	$5.56 \times 10^{-1}$
14.40	$9.70 \times 10^{-8}$	$1.12 \times 10^{-14}$	$4.72 \times 10^{8}$	$1.48 \times 10^{5}$	$1.20 \times 10^{6}$	$1.24 \times 10^{-1}$
14.36	$4.06 \times 10^{-8}$	$3.69 \times 10^{-15}$	$1.56 \times 10^{8}$	$1.67 \times 10^{5}$	$3.63 \times 10^{9}$	$4.62 \times 10^{-2}$
14.33	$2.05 \times 10^{-8}$	$1.54 \times 10^{-15}$	$6.49 \times 10^{7}$	$1.84 \times 10^{5}$	$8.69 \times 10^{6}$	$2.12 \times 10^{-2}$
14.31	$1.16 \times 10^{-8}$	$8.00 \times 10^{-10}$	$3.39 \times 10^{7}$	$1.92 \times 10^{5}$	$1.66 \times 10^{7}$	$1.16 \times 10^{-2}$
14.28	$4.01 \times 10^{-0}$	$2.75 \times 10^{-16}$	$1.17 \times 10^{7}$	$1.93 \times 10^{5}$	$4.81 \times 10^{7}$	$4.00 \times 10^{-8}$
14.26	$2.41 \times 10^{-0}$	$1.65 \times 10^{-16}$	$7.03 \times 10^{0}$	$1.93 \times 10^{5}$	$8.01 \times 10^{7}$	$2.41 \times 10^{-8}$
14.19	$2.31 \times 10^{-10}$	$1.58 \times 10^{-17}$	$6.73 \times 10^{5}$	$1.93 \times 10^{5}$	$8.36 \times 10^{8}$	$2.31 \times 10^{-4}$
14.11	$2.96 \times 10^{-11}$	$2.01 \times 10^{-19}$	$8.62 \times 10^{4}$	$1.94 \times 10^{5}$	$6.52 \times 10^{0}$	$2.97 \times 10^{-5}$
9.14	$9.75 \times 10^{-14}$	$4.29 \times 10^{-21}$	$2.84 \times 10^{2}$	$2.41 \times 10^{5}$	$1.98 \times 10^{12}$	$1.22 \times 10^{-7}$
1.76	$2.58 \times 10^{-14}$	$2.18 \times 10^{-22}$	$7.52 \times 10$	$5.48 \times 10^{5}$	$7.49 \times 10^{12}$	$7.32 \times 10^{-8}$
1.12	$1.58 \times 10^{-14}$	$8.52 \times 10{ }^{23}$	$4.61 \times 10$	$6.87 \times 10^{5}$	$122 \times 10^{13}$	$562 \times 10^{-8}$
1.04	$9.82 \times 10^{-15}$	$4.90 \times 10^{-23}$	$2.86 \times 10$	$7.14 \times 10^{5}$	$1.96 \times 10^{18}$	$3.64 \times 10^{-8}$
1.02	$7.90 \times 10^{-15}$	$3.94 \times 10^{-23}$	$2.33 \times 10$	$7.19 \times 10^{5}$	$2.41 \times 10^{13}$	$2.98 \times 10^{-8}$
1.02	$7.11 \times 10^{-15}$	$3.49 \times 10^{-23}$	$2.08 \times 10$	$7.20 \times 10^{5}$	$2.71 \times 10^{13}$	$2.66 \times 10^{-8}$
1.02	$6.60 \times 10^{-15}$	$3.23 \times 10^{-20}$	$1.93 \times 10$	$7.21 \times 10^{5}$	$2.92 \times 10^{13}$	$2.47 \times 10^{-8}$
1.02	$6.27 \times 10^{-15}$	$3.06 \times 10^{-29}$	$1.83 \times 10$	$7.22 \times 10^{5}$	$3.08 \times 10^{13}$	$2.34 \times 10^{-8}$
1.02	$6.03 \times 10^{-15}$	$2.94 \times 10^{-23}$	$1.76 \times 10$	$7.22 \times 10^{5}$	$3.20 \times 10^{13}$	$2.26 \times 10^{-8}$

# Percentage composition by mass 





$=$	
䄔	

# TABLE 631.-RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES 

Part 1.-Values of $\frac{h}{760}$, from $h=1$ to $h=9$, for the computation of different values of the ratio of actual to normal barometric pressure

This gives the density of moist air at pressure $h$ in terms of the same air at normal atmosphere pressure. When air contains moisture, as is usually the case with the atmossphere, we have the following equation for pressure term: $h=B-0.378 p$, where $p$ is the vapor pressure, and $B$ the corrected barometric pressure. When the necessary psychrometric observations are made the values of $p$ may be taken from Table 640 and then $0.378 p$ from Table 632, or the dew point may be found and the value of $0.378 p$ taken from Table 632.

h	$\frac{h}{760}$	Examples of use of the table To find the value of $\frac{h}{760}$ when $h=754.3$ $h=700$ gives .92105
1	. 0013158	50 " 0.065789
2	. 0026316	4 " . 005263
3	. 0039474	. 3 " . 000395
4	. 0052632	754.3 . 992497
5	. 0065789	
6	. 0078947	To find the value of $\frac{h}{760}$ when $h=5.73$
7	. 0092105	$h=5$ gives . 0065789
8	. 0105263	- . 7 " . 0009210
9	. 0118421	. 03 " . 0000395
		5.73 . 0075394

Part 2.-Values of the logarithms of $\frac{h}{760}$ for values of $h$ between 80 and 800
Values from 8 to 80 may be got by subtracting 1 from the characteristic, and from 0.8 to 8 by subtracting 2 from the charactcristic, and sc on.

Values of $\log \frac{h}{760}$										
h	0	1	2	3	4	5	6	7	8	9
80	$\overline{1} .02228$	$\overline{1} .02767$	$\overline{1} .03300$	$\overline{1} .03826$	$\overline{1} .04347$	$\overline{1} .04861$	1. 05368	$\overline{1} .05871$	$\overline{1} .06367$	1.06858
90	. 07343	. 07823	. 08297	. 08767	. 09231	. 09691	. 10146	. 10596	. 11041	. 11482
100	$\overline{1} .11919$	$\overline{1} .12351$	$\overline{1.12779 ~}$	$\overline{1} .13202$	$\overline{1} .13622$	$\overline{1} .14038$	$\overline{1} .14449$	1.14857	1. 15261	$\overline{1.15661}$
110	. 16058	. 16451	. 16840	. 17226	. 17609	. 17988	. 18364	. 18737	. 19107	. 19473
120	. 19837	. 20197	. 20555	. 20909	. 21261	21611	. 21956	. 22299	. 22640	. 22978
130	. 23313	. 23646	. 23976	. 24304	. 24629	. 24952	. 25273	. 25591	. 25907	. 26220
140	. 26531	. 26841	. 27147	. 27452	. 27755	. 28055	. 28354	. 28650	. 28945	. 29237
150	$\overline{1} .29528$	$\overline{1} .29816$	$\overline{1} .30103$	$\overline{1} .30388$	1. 30671	1. 30952	$\overline{1} .31231$	$\overline{1} .31509$	$\overline{1} .31784$	-1.32058
160	. 32331	. 32601	. 32870	. 33137	. 33403	. 33667	. 33929	. 34190	. 34450	. 34707
170	. 34964	. 35218	. 35471	. 35723	. 35974	. 36222	. 36470	. 36716	. 36961	. 37204
180	. 37446	. 37686	. 37926	. 38164	. 38400	. 38636	. 38870	. 39128	. 39334	. 39565
190	. 39794	. 40022	. 40249	. 40474	. 40699	. 40922	. 41144	. 41365	. 41585	. 41804
200	$\overline{1.42022 ~}$	1. 42238	$\overline{1} .42454$	$\overline{1} .42668$	1. 42882	1. 43094	$\overline{1.43305}$	1. 43516	- 1.43725	1. 43933
210	. 44141	. 44347	. 44552	. 44757	. 44960	. 45162	. 45364	. 45565	. 45764	. 45963
220	. 46161	. 46358	. 46554	. 46749	. 46943	. 47137	. 47329	. 47521	. 47712	. 47902
230	. 48091	. 48280	. 48467	. 48654	. 48840	. 49025	. 49210	. 49393	. 49576	. 49758
240	. 49940	. 50120	. 50300	. 50479	. 50658	. 50835	. 51012	. 51188	. 51364	. 51539

[^244]TABLE 631.-RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT PRESSURES AND HUMIDITIES (continued)
Part 2.-Values of the logarithms of $\frac{h}{760}$ for values of $h$ between 80 and 800 (continued)
Values of $\operatorname{Iog} \frac{h}{760}$
$h$
250
260
270
280
290

0	1	2	3	4


$\overline{1} .51713$	$\overline{1} .51886$	$\overline{1} .52059$	$\overline{1} .52231$	$\overline{1} .5$
.53416	.53583	.53749	.53914	.5
.55055	.55216	.55376	.55535	.55
.56634	.56789	.56944	.57097	.57
.58158	.58308	.58457	.58605	.58

$\overline{1} .5$$\overline{1} .59631 \overline{1} .5$ .59775 $\overline{1} .59919$ 1.
.62434
.63770
.

6506 $\begin{array}{rrrrr}.59631 & \overline{1} .59775 & \overline{1} .59919 & \overline{1} .60063 & \overline{1} .60 \\ .61055 & .61195 & .61334 & .61473 & .6161 \\ .62434 & .62569 & .62704 & .62839 & .629 \\ .63770 & .63901 & .64332 & .64163 & .64 \\ .65067 & .65194 & .65321 & .65448 & .6557 \\ .66325 & \overline{1} .66449 & \overline{1} .66573 & \overline{1} .66696 & \overline{1} .668\end{array}$ 1. $\begin{array}{rr}\overline{1} .66325 & \overline{1} \\ .67549 & .67\end{array}$ .52402

.54079
.55694
.57250

.58753 .69897 . .71025 . 7 67669 . 67790 | 6 | $\overline{1} .66$ |
| :--- | :--- | 0206 ̄̄

$\overline{1} .52573$	$\overline{1} .5$
.54243	.54
.55852	-.5
.57403	.5
.58901	.5

$\square$$1.51713 \quad \overline{1} .51886 \quad \overline{1} .52059 \quad \overline{1} .52231$
1.527
.5
.560
.5
.5
43
10 . $.52912 \overline{1}$.
.54570 1.53081
54732 54732
.56323 1.53249
.54894
.56479
.58008
.59486 $.59048 \quad .59194 \quad .59340$ $\begin{array}{lr}.60774 & \overline{1} .60914 \\ .62161 & .62298\end{array}$

## $\qquad$

.61887 .
$\begin{array}{rr}\overline{1} .60632 & \overline{1} .6 \\ .62025 & .61 \\ .63373 & \end{array}$ 62973 . 63107 . 63240 . 63373 . 63506 . 63638 .64293 . 64423 . 64553 . 64682 . 64810 . 64939 .65574 . 65701.65826 . 65952 . 66077 . 66201

$$
9 \overline{1} .66941 \overline{1} .
$$

$\overline{1} .67064 \overline{1}$$7 \overline{1} .67428$688191| .66941 | 1. |  |
| :--- | :--- | :--- |
| .69322 | . |  |
|  | .70465 |  |
| .71578 | . |  |$\begin{array}{llllll}.68029 & .68148 & .68267 & .68385 & .68503 & .68621 \\ .69206 & .69322 & .69437 & .69553 & .69668 & .69783\end{array}$.68385

.69553

.70690.68503170352.70577.70690| 70802 | .70978 |
| :--- | :--- |.71688.71798.71907.71

-.71578
1.72125 1.72233 72233 1.72341 $\overline{1}$ . 1.72449 $\overline{1} .7$ $\begin{array}{rr}\overline{1} .72557 & \overline{1} . \\ .73619 & .\end{array}$ 1.72664

.73723 $\overline{1.7277}$ | 1 | $\overline{1} .7$ |
| :--- | ---: |
|  | .7 |

.73828
.74860
.75867 72878 1. 1.72985 $\overline{1.73091}$ .74244 .75265 .76264 $\overline{1}$. 1.77240

- 1.7 .74347 $75366 \quad .75467 \quad .75567$ .74655
.75668
.76657
.74758
.75768 .7586 .76755
- 1.7
4 1.
20 1. .76852
74961 74036 4140 .75967 . 76066 . 76165 77336 1.77 $32 \overline{1.77}$ .77528

1.7762 1.77720 | .78664 | 1.77815 | $\overline{1} .779$ |
| ---: | ---: | ---: |
| .78757 | .788 |  |

[^245]78005
$\overline{1.78100}$
.78194
.78570
.79496
.80403
.80043
.79221 . 79313 . 79405
.80938 . 81027 . 81115 . 81203
$\overline{1} 818$

$3 \overline{1} .8$
$81902 \overline{1} .819$


1.82075	1
.82930	
.83769	
8	

$\overline{1} .8$
-.80493.79679$78770 \quad .78943$79770 . 79861 . 7995280672 . 80761.80850.81554 .8164281729

- 
- 1.82
$\overline{1}$. 1.82590580 . 88261590
600 ī189734
. $90452 \quad .90523 \quad .90594$

620	.91158	.91228	.91298
630	.91853	.91922	.91990


640	.92537	.92604	.92672

# TABLE 631.-RELATIVE DENSITY OF MOIST AIR FOR DIFFERENT 

 PRESSURES AND HUMIDITIES (concluded)
## Part 2.-Values of the logarithms of $\frac{h}{760}$ for values of $h$ between 80 and 800 (concluded)

h	Values of $\log \frac{h}{760}$									
	0	1	2	3	4	5	B	7	8	9
750	$\overline{1} .99425$	$\overline{1} .99483$	$\overline{1} .99540$	1.99598	$\overline{1} .99656$	$\overline{1} .99713$	$\overline{1} .99771$	$\overline{1} .99828$	$\overline{1} .99886$	1.99942
760	. 00000	. 00057	. 00114	. 00171	. 00228	. 00285	. 00342	. 00398	. 00455	. 00511
770	. 00568	. 00624	. 00680	. 00737	. 00793	. 00849	. 00905	. 00961	. 01017	. 01072
780	. 01128	. 01184	. 01239	. 01295	. 01350	. 01406	. 01461	. 01516	. 01571	. 01626
790	. 01681	. 01736	. 01791	. 01846	. 01901	. 01955	. 02010	. 02064	. 02119	. 02173

## TABLE 632.-DENSITY OF MOIST AIR, VALUES OF 0.378p

This table gives the humidity term $0.378 p$, which occurs in the equation $\delta=\delta_{0} \frac{h}{760}=$ $\delta_{0} \frac{B-0.378 p}{760}$ for the calculation of the density of air containing aqueous vapor at pressure $p ; \delta_{0}$ is the density of dry air at normal temperature and barometric pressure, $B$ the observed barometric pressure, and $h=B-0.378 p$, the pressure corrected for humidity. For values of $\frac{h}{760}$, see Table 631. Temperatures are in degrees centigrade, and pressures in mmHg .

Dew point	$\stackrel{p}{p}$ pressure (ice)	0.378p	$\begin{aligned} & \text { Dew } \\ & \text { point } \end{aligned}$	$\underset{\substack{\text { Vapor } \\ \text { nessure }}}{p}$ $\begin{aligned} & \text { pressure } \\ & \text { (water) } \end{aligned}$ (water)	0.378p	$\begin{aligned} & \text { Dew } \\ & \text { point } \end{aligned}$	$\begin{gathered} \text { papor } \\ \text { pressure } \\ \text { (water) } \end{gathered}$	0.378p
${ }^{\circ} \mathrm{C}$	mmHg	mmHg	${ }^{\circ} \mathrm{C}$	mmHg	mmHg	${ }^{\circ} \mathrm{C}$	mmHg	mmHg
-50	. 029	. 01	0	4.58	1.73	30	31.86	12.0
-45	. 054	. 02	1	4.92	1.86	31	33.74	12.8
-40	. 096	. 04	2	5.29	2.00	32	35.70	13.5
-35	. 169	. 06	3	5.68	2.15	33	37.78	14.3
-30	. 288	. 11	4	6.10	2.31	34	39.95	15.1
-25	. 480	. 18	5	6.54	2.47	35	42.23	16.0
24	. 530	. 20	5	7.01	2.66	36	44.62	16.9
23	. 585	. 22	7	7.51	2.84	37	47.13	17.8
22	. 646	. 24	8	8.04	3.04	38	49.76	18.8
21	. 712	. 27	9	8.61	3.25	39	52.51	19.8
-20	. 783	. 30	10	9.21	348	40	55.40	20.9
19	. 862	. 33	11	9.85	3.72	41	58.42	22.1
18	. 947	. 36	12	10.52	3.98	42	61.58	23.3
17	1.041	. 39	13	11.24	4.25	43	64.89	24.5
16	1.142	. 43	14	11.99	4.53	44	68.35	25.8
-15	1.252	. 47	15	12.79	4.84	45	71.97	27.2
14	1.373	. 52	16	13.64	5.16	46	75.75	28.6
13	1.503	. 57	17	14.54	5.50	47	79.70	30.1
12	1.644	. 62	18	15.49	5.85	48	83.83	31.7
11	1.798	. 68	19	16.49	6.23	49	88.14	33.3
-10	1.964	. 74	20	17.55	6.63	50	92.6	35.0
9	2.144	. 81	21	18.66	7.06	51	97.3	36.8
8	2.340	. 88	22	19.84	7.50	52	102.3	38.6
7	2.550	. 96	23	21.09	7.97	53	107.3	40.6
6	2.778	1.05	24	22.40	8.47	54	112.7	42.6
- 5	3.025	1.14	25	23.78	8.99	55	118.2	44.7
4	3.291	1.24	26	25.24	9.54	56	124.0	46.9
3	3.578	1.35	27	26.77	10.12	57	130.0	49.1
2	3.887	1.47	28	28.38	10.73	58	136.3	51.5
1	4.220	1.60	29	30.08	11.37	59	142.8	54.0
0	4.580	1.73	30	31.86	12.04	60	149.6	56.5

TABLE 633.-MAINTENANCE OF AIR AT DEFINITE HUMIDITIES
The relative humidity and vapor pressure of aqueous vapor of moist air in equilibrium conditions above aqueous solutions of sulfuric acid are given below.

Density of acid sol	Relativehumidity	Vapor pressure		Density ofacid sol	Relativehumidity	Vapor pressure	
		$\overparen{\substack{20^{\circ} \mathrm{C} \\ \mathrm{~mm}}}$	$\begin{gathered} 30^{\circ} \mathrm{C} \\ \mathrm{~mm} \end{gathered}$			$20^{\circ} \mathrm{C}$	$\begin{aligned} & 30^{\circ} \mathrm{C} \\ & \mathrm{~mm} \end{aligned}$
1.00	100.0	17.4	31.6	1.30	58.3	10.1	18.4
1.05	97.5	17.0	30.7	1.35	47.2	8.3	15.0
1.10	93.9	16.3	29.6	1.40	37.1	6.5	11.9
1.15	88.8	15.4	28.0	1.50	18.8	3.3	6.0
1.20	80.5	14.0	25.4	1.60	8.5	1.5	2.7
1.25	70.4	12.2	22.2	1.70	3.2	. 6	1.0

## TABLE 634.-PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE

For various altitudes (barometric readings)
The amount of water vapor in the atmosphere may be determined by the use of the wet-bulb-dry-bulb hygrometer.
The first column gives the depression of the wet-bulb temperature $t_{1}$ below the air temperature $t$. The value corresponding to the barometric height at the altitude of observation is to be subtracted from the vapor pressure corresponding to the wet-bulb temperature taken from Part 3, Table 635. The temperature corresponding to this vapor pressure taken from Part 3, Table 635 is the dew point. The wet bulb should be ventilated about 3 meters per second. For sea-level use Table 640. Example : $t=35^{\circ}, t_{1}=30^{\circ}$, barometer 74 cmHg . Then $31.83-2.46=29.37 \mathrm{~mm}=$ aqueous vapor pressure; the dew point is $28.6^{\circ} \mathrm{C}$.

${ }^{t}{ }^{\circ} \mathrm{C}{ }^{t_{1}}$	Barometric pressure in cmHg													
	74	72	70	68	86	64	62	60	58	56	54	52	50	48
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
$1{ }^{\circ}$	. 50	. 48	. 47	. 46	. 44	. 43	. 42	. 40	. 39	. 38	. 36	. 35	. 34	. 32
2	. 98	. 96	. 93	. 90	88	. 85	. 82	. 80	. 77	. 75	. 72	. 69	. 67	. 64
3	1.47	1.43	1.39	1.35	1.32	1.28	1.24	1.20	1.15	1.12	1.08	1.04	1.00	. 96
4	1.97	1.91	1.86	1.81	1.75	1.70	1.65	1.60	1.54	1.49	1.44	1.38	1.33	1.28
5	2.46	2.39	2.32	2.26	2.19	2.13	2.06	1.99	1.93	1.86	1.80	1.73	1.66	1.60
6	2.95	2.87	2.79	2.71	2.63	2.55	2.47	2.39	2.32	2.24	2.16	2.08	2.00	1.92
7	3.45	3.36	3.26	3.17	3.08	2.99	289	2.80	2.71	2.61	2.52	2.43	2.33	2.24
8	3.95	3.84	3.73	3.63	3.53	3.42	3.31	3.20	3.10	2.99	2.88	2.78	2.67	2.56
9	4.44	4.32	4.21	4.09	3.97	3.85	3.73	3.61	3.49	3.37	3.25	3.13	3.00	2.88
10	4.94	4.81	4.68	4.54	4.41	4.28	4.14	4.01	3.88	3.74	3.61	3.48	3.34	3.21
11	5.44	5.30	5.15	5.00	4.86	4.71	4.56	4.42	4.27	4.12	3.97	3.83	3.68	3.53
12	5.94	5.78	5.62	5.46	5.30	5.14	4.98	4.82	4.66	4.50	4.34	4.18	4.02	3.85
13	6.45	6.27	6.10	5.92	5.75	5.57	5.40	5.23	5.05	4.88	4.70	4.53	4.36	4.18
14	6.95	6.76	6.58	6.39	6.20	6.01	5.83	5.64	5.45	5.26	5.07	4.88	4.70	4.51
15	7.46	7.26	7.06	6.85	6.65	6.45	6.25	6.05	5.85	5.64	5.44	5.24	5.04	4.84
16	7.96	7.75	7.54	7.32	7.11	6.89	6.68	6.46	6.24	6.03	5.81	5.60	5.38	5.17
17	8.47	8.24	8.02	7.79	7.56	7.33	7.10	6.87	6.64	6.41	6.18	5.95	5.72	5.50

## TABLE 635.-PRESSURE OF SATURATED WATER VAPOR FOR VARIOUS CONDITIONS OF TEMPERATURE AND SURROUNDINGS

Pressure in mmHg , temperature in ${ }^{\circ} \mathrm{C}$
Part 1.-At low temperatures over ice

Temp	0	1	2	3	4	5	6	7	8	9
-60	.0081	.0371	.0062	.0054	.0047	.0041	.0035	.0030	.0026	.0023
-50	.0295	.0261	.0222	.0203	.0178	.0157	.0138	.0121	.0106	.0094
-40	.0962	.0858	.0766	.0681	.0607	.0540	.0479	.0425	.0377	.0333
-30	.2855	.2560	.2308	.2075	.1865	.1675	.1502	.1337	.1205	.1078
-20	.7740	.7030	.6380	.5780	.5240	.4790	.4290	.3880	.3500	.3160
-10	1.945	1.782	1.630	1.486	1.359	1.239	1.130	1.029	.9360	.8510
0	4.580	4.219	3.880	3.565	3.280	3.010	2.765	2.531	2.322	2.128

Part 2.-At low temperatures over water

Temp	0	1	2	3	4	5	6	7	8	9
-10	2.148	1.983	1.832	1.690	1.556	1.434	1.319	1.215	1.109	1025
0	4.580	4.260	3.968	3.672	3.410	3.160	2.930	2.712	2.510	2.321

Part 3.-Fcr temperatures $0^{\circ}$ to $374^{\circ}$ over water

Temp	0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
0	4.580	4.615	4.648	4.685	4.712	4.750	4.784	4.820	4.855	4.888
1	4.922	4.960	4.998	5.030	5.065	5.105	5.140	5.175	5.212	5.250
2	5.289	5.328	5.365	5.404	5.442	5.482	4.525	5.566	5.602	5.642
3	5.680	5.720	5.761	5.801	5.842	5.885	5.930	5.972	6.014	6.055
4	6.095	6.139	6.182	6.125	6.270	6.314	6.358	6.401	6.445	6.490
5	6.535	6.582	6.535	6.679	6.724	6.770	6.816	6.862	6.910	6.960
6	7.010	7.058	7.106	7.155	7.204	7.254	7.306	7.356	7.408	7.460
7	7.509	7.560	7.613	7.666	7.720	7.772	7.823	7.875	7.929	7.984
8	8.039	8.095	8.149	8.205	8.260	8.315	8.370	8.425	8.482	8.542
9	8.605	8.670	8.726	8.782	8.838	8.900	8.960	9.020	9.080	9.140
10	9.200	9.263	9.325	9.390	9.455	9.520	9.580	9.645	9.707	9.770
11	9.835	9.901	9.965	10.032	10.100	10.170	10.240	10.308	10.375	10.445
12	10.518	10.580	10.655	10.718	10.790	10.858	10.928	11.000	11.075	11.150
13	11.225	11.300	11.375	11.750	11.525	11.600	11.677	11.755	11.829	11.905
14	11.980	12.060	12.140	12.217	12.295	12.375	12.455	12.538	12.620	12.698
15	12.776	12.860	12.945	13.025	13.110	13.195	13.280	13.365	13.450	13.540
16	13.625	13.710	13.801	13.895	13.985	14.075	14.165	14.255	14.345	14.440
17	14.530	14.620	14.710	14.800	14.895	14.990	15.085	15.172	15.270	15.375
18	15.460	15.560	15.660	15.760	15.960	15.960	16.060	16.160	16.260	16.360
19	16.460	16.570	16.680	16.790	16.900	17.000	17.100	17.210	17.315	17.425
20	17.525	17.635	17.745	17.855	17.965	18.080	18.195	18.310	18.425	18.540
21	18.650	18.765	18.880	19.000	19.110	19.225	19.345	19.460	19.580	19.700
22	19.820	19.940	20.060	20.185	20.310	20.430	20.580	20.690	20.800	20.930
23	21.050	21.190	21.320	21.450	21.580	21.710	21.840	21.970	22.100	22.230
24	22.365	22.500	22.630	22.763	22.905	23.050	23.190	23.310	23.450	23.600
25	23.750	23.900	24.030	24.200	24.345	24.490	24.640	24.790	24.935	25.080
Temp	0	1	2	3	4	5	6	7	8	9
20	17.53	18.65	19.82	21.05	22.37	23.75	25.21	26.74	28.32	30.03
30	31.82	33.70	35.69	37.71	39.15	42.20	44.60	47.04	49.70	52.45
40	55.30	58.35	61.50	64.85	68.30	71.90	75.65	79.55	83:00	88.00
50	92.50	97.25	102.1	107.1	113.0	118.0	123.9	129.9	136.2	142.6
60	149.4	156.3	163.9	171.7	179.4	187.6	196.1	205.0	214.1	223.8
70	308.5	243.2	252.2	265.9	275.2	289.1	301.5	314.2	327.3	340.9
80	355.2	369.7	384.8	400.6	416.5	439.8	450.8	468.6	487.0	506.0
90	525.5	546.5	567.0	588.5	610.8	634.0	658.0	682.0	707.0	733.0
100	767.0	786.5	815.5	845.0	875.1	906.0	937.8	970.5	1004.2	1038.8
(continued)										

TABLE 635.-PRESSURE OF SATURATED WATER VAPOR FOR VARIOUS CONDITIONS OF TEMPERATURE AND SURROUNDINGS (concluded)

Temp	0	1	2	3	4	5	6	7	8	9
110	1074	1111	1149	1187	1227	1268	1310	1353	1397	1442
120	1489	1536	1585	1636	1687	1740	1794	1850	1907	1965
130	2025	2086	2149	2214	2280	2347	2416	2487	2559	2633
140	2709	2786	2866	2947	3030	3115	3201	3290	3381	3473
150	3568	3665	3763	3864	3967	4072	4180	4290	4402	4516
160	4632	4751	4873	4997	5123	5252	5383	5518	5654	5794
170	5936	6080	6228	6378	6532	6688	6847	7009	7174	7342
180	7513	7688	7865	8046	8230	8417	8608	8802	8999	9200
190	9404	9612	9823	10040	10260	10480	10700	10940	11170	11410
200	11650	11890	12140	12400	12650	12920	13180	13450	13730	14010
210	14290	14580	14870	15160	15470	15770	16080	16400	16720	17040
220	17370	17710	18050	18390	18740	19100	19450	19820	20190	20560
230	20950	21330	21720	22120	22520	22930	23350	23770	24190	24620
240	25060	25500	25950	26410	26870	27340	27810	28290	28780	29270
250	29770	30280	30790	31310	31830	32360	32900	33450	34000	34560
260	35130	35700	36280	36870	37470	38070	38680	39300	39920	40560
270	41200	41840	42500	43160	43840	44520	45200	45900	46600	47320
280	48040	48760	49500	50250	51000	51770	52540	53320	54110	54910
290	55710	56530	57360	58190	59040	59890	60750	61620	62510	63400
300	64300	65210	66130	67060	68000	68960	69920	70890	71870	72860
310	73870	74880	75910	76940	77990	79050	80120	81200	82290	83390
320	84500	85630	86760	87910	89070	90250	91430	92630	93840	95060
330	96290	97530	98790	100060	101350	102640	103950	105280	106600	108000
340	109300	110700	112100	113500	114900	116300	117800	119200	120700	122200
350	123700	125200	126800	128300	129900	131400	133000	134600	136300	137900
360	139600	141200	142900	144600	146300	148100	149800	151600	153400	155200
370	157000	158800	160700	162600	164400	-	-	-	-	-

## TABLE 636.-WEIGHT IN GRAMS OF A CUBIC METER OF SATURATED AQUEOUS VAPOR

$\mathrm{Temp}^{\circ} \mathrm{C}$	0	1	2	3	4	5	6	7	8	9
-20	1.074	. 988	. 909	. 836	. 768	. 705	646	. 592	. 542	. 496
-10	2.358	2.186	2.026	1.876	1.736	1.605	1.483	1.369	1.264	1.165
-0	4.847	4.523	4.217	3.930	3.660	3.407	3.169	2.946	2.737	2.541
$+0$	4.847	5.192	5.559	5.947	6.360	6.797	7.260	7.750	8.270	8.819
+10	9.399	10.01	10.66	11.35	12.07	12.83	13.63	14.84	15.37	16.21
$+20$	17.30	18.34	19.43	20.58	21.78	23.05	24.38	25.78	27.24	28.78
$+30$	30.38	32.07	33.83	35.68	37.61	39.63	41.75	43.96	46.26	48.67

For higher temperatures see Table 166.

## TABLE 637.-WEIGHT IN GRAINS OF A CUBIC FOOT OF SATURATED AQUEOUS VAPOR

${ }_{\mathrm{T}_{\mathrm{O}} \mathrm{~F}}^{\mathrm{T}}$	0	1	2	3	4	5	6	7	8	9
-20	. 219	. 208	. 198	. 188	. 179	. 170	. 161	. 153	. 146	. 138
$-10$	. 355	. 339	. 323	. 308	. 293	. 280	. 266	. 254	. 242	. 230
-0	. 563	. 540	. 517	. 492	. 469	. 448	. 428	. 408	. 390	. 372
$+0$	. 563	. 587	. 614	. 642	. 671	. 701	. 732	. 768	. 799	. 834
+10	. 870	. 908	. 947	. 988	1.030	1.074	1.119	1.166	1.215	1.265
+20	1.318	1.375	1.431	1.488	1.548	1.612	1.676	1.746	1.815	1.886
$+30$	1.961	2.038	2.118	2.200	2.285	2.375	2.466	2.558	2.656	2.755
$+40$	2.862	2.970	3.081	3.195	3.315	3.438	3.563	3.691	3.822	3.965
$+50$	4.105	4.256	4.410	4.565	4.722	4.890	5.060	5.235	5.420	5.608
$+60$	5.805	6.000	6.195	6.410	6.628	6.855	7.080	7.317	7.560	7.810
+70	8.060	8.325	8.600	8.880	9.165	9.460	9.765	10.075	10.390	10.720
+80	11.06	11.40	11.76	12.12	12.50	12.87	13.27	13.70	14.09	14.52
+90	14.96	15.41	15.98	16.34	16.84	17.32	17.82	18.34	18.90	19.39
+100	19.96	20.55	21.15	21.75	22.35	23.05	23.65	24.32	24.98	25.68
+110	26.35	27.12	27.90	28.62	29.40	30.20	31.00	31.85	32.68	33.55

## TABLE 638.-RELATIVE HUMIDITY FOR VARIOUS PRESSURES AND DRY-BULB TEMPERATURES

Vertical argument is the observed vapor pressure which may be computed from the wet-bulb and dry-bulb readings through Tables 634 or 640 . The horizontal argument is the observed air temperature (dry-bulb reading).

Vapor pressure mmHg	Air temperatures, dry bulb, ${ }^{\circ} \mathrm{C}$																
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12				20
. 25	6	7	7	8	8	9	10	10	11	13	15	15	15	16	17	18	28
. 50	12	13	14	15	16	17	18	19	21	23	26	28	29	31	34	37	55
. 75	17	19	20	22	24	25	27	29	32	34	37	40	43	46	50	54	81
1.00	23	25	27	29	32	34	36	39	42	45	49	53	57	61	67	72	
1.25	29	31	33	36	39	42	45	48	52	56	60	65	70	76	82	87	
1.50	35	37	40	43	46	49	53	57	61	67	71	77	83	90	97		
1.75	40	43	46	48	53	57	62	66	71	77	82	87	92	98			
2.00	45	48	52	56	60	65	70	75	81	87	94	97					
2.25	51	54	59	63	68	73	79	84	91	98			mmHg			-2	$-3^{\circ}$
2.50	56	60	65	70	75	81	88	94	100				3.50	78	84	90	97
2.75	61	66	71	76	81	87	94						3.75	84	90	96	
3.00	67	72	78	83	88	94	99		.	.	.		4.00	90	96		
3.25	72	78	84	90	96	.	.				.		4.25	96			
3.50	78	84	90	97	.	.	.	$\cdots$	$\cdots$	..	.	..	4.50	100	.	.	


$\begin{aligned} & \text { Vapor } \\ & \text { pressure } \\ & \mathrm{mmHg} \end{aligned}$																					
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
. 5	12	11	11	10	9	9	8	8	7	7	6	6	6	5	5	5	4	4	4	3	3
1.0	24	23	21	20	18	17	16	15	14	13	13	12	11	10	10	9	9	8	8	7	7
1.5	35	33	31	29	27	25	23	21	20	19	18	17	16	15	14	13	12	11	11	10	10
2.0	46	43	40	37	35	32	30	28	27	25	23	22	21	20	18	17	16	15	14	13	12
2.5	56	52	48	45	42	39	36	34	32	30	28	26	25	23	22	21	19	18	17	16	15
3.0	67	63	58	54	50	47	44	41	38	36	34	32	30	28	26	25	23	22	20	19	18
3.5	78	73	68	63	59	55	52	48	45	43	40	38	35	33	31	29	28	26	24	23	22
4.0	91	85	79	74	69	65	61	57	53	50	47	44	41	39	37	35	32	30	29	27	25
4.5	99	93	87	81	76	71	67	62	58	55	52	49	46	43	40	38	36	33	31	29	28
5.0			95	89	83	78	73	68	64	60	56	53	50	47	44	41	39	36	34	32	31
5.5				96	S1	86	81	75	70	66	62	58	55	51	48	45	42	40	37	35	33
6.0					100	94	88	82	76	72	68	64	60	56	53	50	46	43	40	38	36
6.5					$\ldots$	99	93	89	83	78	72	68	64	60	56	52	49	46	44	41	39
7.0	$\cdots$						200	94	88	82	77	72	68	64	60	56	52	49	47	44	42
7.5	..	$\cdots$	.	.	..	.	.	100	94	88	83	77	73	68	65	61	57	54	51	48	46
8.0				.	.	.		.	100	94	88	83	77	73	68	65	61	57	54	51	48
8.5										98	92	86	81	76	72	68	63	60	57	53	51
9.0											97	91	86	81	76	72	67	64	60	56	53
9.5												97	91	85	80	75	71	67	63	59	56
10.0													95	89	84	7	7	70	66	62	59
11.0														96	92	87	82	77	72	67	64
12.0																94	89	84	79	74	70
13.0																	96	90	85	80	76
14.0				.														98	93	88	84
15.0				.	.	.							$\cdots$	.			.		97		86
16.0																					
17.0																					


Vapor																					
	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
1	7	6	6	6	5	5	5	5	4	4	4	4	3	3	3	3	3	2	2	2	2
2	12	11	11	10	10	9	9	8	8	7	7	7	6	6	6	5	5	5	5	4	
3	18	17	16	15	15	14	13	12	12	11	11	10	9	9	8	8	7	7	7	6	6
4	25	23	22	20	19	18	17	16	15	15	14	13	12	12	11	11	10	10	9	9	8
5	30	28	27	25	24	23	22	20	19	18	17	16	15	15	14	14	13	12	11	11	10
6	36	34	32	30	29	27	26	24	23	21	20	19	18	17	17	16	15	14	13	12	12
7	42	39	37	35	34	32	30	28	26	25	23	22	21	20	19	18	17	16	16	15	14
8	48	45	42	40	38	36	34	32	30	29	27	26	24	23	22	21	20	19	18	17	

(continucd)

TABLE 638.-RELATIVE HUMIDITY FOR VARIOUS PRESSURES AND DRY-BULB TEMPERATURES (continued)

$\begin{gathered} \text { Vapor } \\ \text { pressure } \\ \text { mmHg } \end{gathered}$	Air temperatures, dry bulb, ${ }^{\circ} \mathrm{C}$																				
	20	21	22	23	24	25	26	27	28	29	30	31	32	233	3334	35	36	37	38	3940	40
9	53	50	47	44	41	39	37	35	33	31	29	27	26	25	524	23	22	21	20	1918	18
10	59	56	52	50	47	44	42	40	37	35	34	32	30	20 28	827	26	24	23	22	2120	20
11	64	61	57	53	50	48	45	43	41	38	36	35	33	331	129	28	26	25	24	2322	2
12	70	66	62	59	56	53	50	47	44	42	40	38	36	34	3432	31	29	28	26	2524	24
13	75	71	67	63	60	57	53	50	48	45	43	31	38	86	3635	33	32	30	28	$27 \quad 26$	6
14	81	76	72	68	64	61	57	54	51	49	46	44	41	139	3937	35	33	32	30	2927	27
15	86	82	77	72	68	65	61	56	54	52	49	46	44	442	240	38	36	34	32	3129	29
16	92	87	82	77	73	69	65	62	58	55	52	249	47	75	542	40	38	36	34	3331	31
17		92	86	82	77	73	69	65	62	58	55	52	49	47	745	42	40	38	36	3433	33
18	$\ldots$	100	91	86	82	77	73	69	65	62	58	55	52	250	047	45	42	40	38	$36 \quad 35$	35
19		.	99	93	86	81	77	73	69	65	61	158	55	52	250	47	45	42	40	3836	36
20				96	90	85	80	76	72	68	65	51	58	85	55	50	47	45	42	4038	38
21				99	94	89	84	79	75	72	68		61	158	585	52	49	47	44	4240	
22					98	93	88	83	79	75	71	167	63	360	057	54	51	49	46	4442	42
23						97	92	87	82	78	74	470	66	66	259	57	54	51	48	4644	44
24							96	90	85	81	77	73	69	65	65	59	56	53	50	4846	46
25							100	- 94	89	84	79	975	71	168	68	61	58	55	51	5048	
26			.	.				97	92	87	83	378	74	470	067	63	60	57	54	5249	
27									96	91	86	82	78	873	369	65	62	59	56	5351	51
28									99	94	89	85	82	277	771	68	64	61	58	5553	53
29										97	92	87	83	378	874	70		63	60	5754	54
30								.			95	90	85	581	8177	73	70	66	62	5956	
31								.	.		98	83	88	883	8379	75	71	68	64	6158	58
32						.				.		95	90	086	8681	77	73	69	66	6360	
33		.	..							.	..	98	95	589	8985	80	76	72	69	6562	
34		.	.				.	. ..	..	.	..		98	893	388	84			72	6865	
35		.	.	.			.	. .	..	.	..	. ..	100	- 95	99	85	81		73	6966	
36							.	-	.	.	-	. ..		97	791	86	82	78	74	7067	
37		...						.		.	-.			98	8894	89	84	80	76	7269	
38		..						$\cdots$	.	.	.	. .		. ..	96	91	86	82	78	7470	
39		.			.		.	. .	. .	.	.	. .			98	93	88	84	80	7672	
40			.					.	. .	.	.	. .			100	95	90	86	82	7874	
41								.	.	.		. .			. ..	97	92	88	83	8076	
42									.	.		. .	.	. .	. $\cdot$			90	85	8177	
43								. $\cdot$	.	.		- .	.	. ..	. .			92		83 85 81	
44				.	..			. .	. .	.	.	. .			. ..		99		90	8581	
45			.	.				.	$\cdots$	$\cdots$	$\cdots$	. $\cdot$	$\cdots$	- .	.			96			
46								.	.						. ..			98			
47									.	$\cdots$		. -			. ..				95		
48								.	..	$\cdots$		. .		- .	. ${ }^{\text {. }}$	.			99	$\begin{array}{ll} 92 & 88 \\ 94 & 89 \end{array}$	
49			.											. ..	. ..					$96 \quad 91$	
50		.	.																	9892	
52									.-	.		. ..			. ..	.	.			9994	
53			.					.	.	..		. .		. ..	. ..						
54			.						.	.		. ..			. .		.				98
55															.						100
$\begin{gathered} \text { Vapor } \\ \text { pressure } \\ \mathrm{mmHg} \end{gathered}-$	Air temperatures, dry bulb, ${ }^{\circ} \mathrm{C}$																				
	40	41	42	43	44	45	46	47	48	49	50	51	52	253	5354	55	56	57	58	5960	60
5	10		9	9	8	8			7	'	6	66	6	66	65	5	5	5	5	44	4
10	20	19	18	17	16	15	14		13	13	12	12	11	111	1110	10	9	9	-	87	7
15	29	28	26	25	24	23	22	21	20	19	18	17	16	16	1615	14	14	13	12	$12 \quad 11$	11
20	38	37	35	33	31	30	29	27	26	25	24	423	22	220	2019	18	18	17	16	1515	15
25	47	45	43	41	39	37	35	33	32	31	29	528	27	25	24	23	22	21	20	1919	19
30	56	53	51	49	46	44	42	40	38	36	35	533	32	2730	3029	28	27	25	24	$22 \quad 21$	21
35	66	62	59	57	53	51	48	46	44	42	40	038	37	735	3533	32	30			26	
40	74	70	67	64	60	58	55	52	50	48	45	543	41	139	3938	36	35	33	32	3028	
45	82	78	75	71	68	65	61	58	56	53	51	148	46	644	44	40	39	37	35	$34 \quad 32$	
50		87	82	79	75	71	68	65	62	59	56	53	51	149	4947	45	43	41	39	3735	

(continued)

604

## TABLE 638.-RELATIVE HUMIDITY FOR VARIOUS PRESSURES AND DRY-BULB TEMPERATURES (concluded)

$\underset{\substack{\text { Vapors } \\ \text { presure }}}{ }$	Air temperatures, dry bulb, ${ }^{\circ} \mathrm{C}$																			
	40	41	42	43	44	45		47	48	49	50	51	52	53	54	55	56	57	58	59
55	100	95	90	86	82	78	74	71	68	65	62	59	56	54	51	49	47	45	43	4139
60			97	93	88	84	80	77	73	70	67	64	61	58	55	53	51	49	47	4543
65					96	91	87	83	79	75	72	69	65	62	60	57	55	52	50	4846
70							93	89	85	81	77	74	70	67	64	461	59	56	54	5249
75				.			100	95	91	86	83	79	75	72	69	66	63	60		5553
80									96	91	87	83	80	76	73	369	66	63	61	5856
85								$\cdots$		97	92	88	84	81	77	74	70	67	64	6259
90								.-			96	92	89	85	81	178	74	71	68	$65 \quad 62$
95			5	58	59	0						97	93	89	85	582	78	75	71	6865
100		125	96	92	88	84							99	94	89	986	82	78	75	7269
105		130		96	92	88								98	94	490	86	82	78	7572
110		135		99	95	91									98	894	89	85		7875
115		140			99	94										97	93	89	85	8278
125		145				97											97			8582
125		150																		8884

## TABLE 639.-RELATIVE HUMIDITY, WET AND DRY THERMOMETERS

This table gives the relative humidity direct from the difference between the reading of the dry ( $t^{\circ} \mathrm{C}$ ) and the wet ( $t_{1}{ }^{\circ} \mathrm{C}$ ) thermometer. It is computed for a barometer reading of 1000 mb . The wet thermometers should be ventilated about 3 meters per second. Changes due to different pressure can be calculated from the data given in Tables 634 and 640.

Temperatures of dry thermometer, $t^{\circ}$

$\left(t^{\circ}-t_{1}{ }^{\circ}\right)$	-15	-10	-5	0	5	$\left(t^{\circ}-t_{1}{ }^{\circ}\right)$	10	15	20	25	30	35	40
. 2	92	94	95	96	97	. 5	94	95	96	96	97	97	97
. 4	84	89	91	92	95	1.0	89	90	92	93	93	94	94
. 5	80	86	89	91	93	1.5	83	86	88	89	90	91	91
. 6	76	82	88	90	92	2.0	77	81	83	85	86	88	89
. 8	68	77	83	87	89	2.5	72	76	80	82	83	85	86
1.0	60	71	78	83	86	3.0	67	72	75	78	80	82	83
1.2	52	65	74	80	84	3.5	61	67	72	75	77	79	81
1.4	43	59	72	76	81	4.0	56	63	68	71	74	76	78
1.5	39	56	67	74	80	4.5	51	58	64	68	71	73	76
1.6	35	53	65	73	78	5.0	46	54	60	65	68	71	73
1.8	27	49	61	69	75	6	36	46	53	58	62	65	68
2.0	18	41	56	65	73	7	26	38	46	52	57	60	63
2.5	.	27	46	58	66	8	15	29	39	46	51	55	59
3.0	.	10	35	50	60	9	5	21	32	40	46	51	54
3.5	.	.	24	41	53	10	.	13	25	34	41	46	50
4.0		.	12	33	47	11	.	5	19	30	36	42	46
4.5		$\cdots$		25	40	12		.	13	23	31	37	43
5		$\cdots$	$\cdots$	16	34	13		$\cdots$	.	18	28	33	38
6	.	$\cdots$	$\cdots$	,	21	14	$\because$	$\cdots$	$\cdots$	13	25	29	34
7	$\ldots$	$\ldots$	$\ldots$		8	15	$\ldots$	$\ldots$	$\cdots$	8	19	25	31
						16			$\ldots$		13	21	28
						17		$\cdots$	$\cdots$	.	9	18	24
						18	$\ldots$	$\ldots$	$\ldots$	$\ldots$	5	14	21
						19	$\ldots$	$\cdots$	$\cdots$	.	3	10	18
						20	.		.	.	2	7	14
						22			.	.	..		11
						24	.	$\ldots$	$\ldots$	$\ldots$	$\ldots$	.	9

TABLE 640.-PRESSURE OF AQUEOUS VAPOR IN THE ATMOSPHERE: SEA LEVEL

This table gives the vapor pressure corresponding to various values of the difference $t-t_{1}$ between the readings of dry-bulb and wet-bulb thermometers and the temperature $t_{1}$ of the wet-bulb thermometer. The difference $t-t_{1}$ is given by two-degree steps in the top line, and $t_{1}$ by degrees in the first column. Temperatures in Centigrade degrees, vapor pressures in millimeters of mercury are used throughout the table. The table was calculated for barometric pressure $B$ equal to 76 cmHg . A correction is given for each centimeter at the top of the columns. Ventilating velocity of wet thermometer about 3 meters per second.

$t_{1}$	$\begin{aligned} & t-t_{1} \\ & =0^{\circ} \end{aligned}$	$2^{\circ}$	$4^{\circ}$	$6^{\circ}$	$8^{\circ}$	$10^{\circ}$	$12^{\circ}$	$14^{\circ}$	$16^{\circ}$	$18^{\circ}$	$20^{\circ}$	Differ
Corrections for $B$ per $\mathrm{cmH}_{8}$		. 013	. 026	. 040	053	. 966	. 079	. 09	. 106	. 119	. 132	$\begin{aligned} & \text { ence } \\ & \text { for } \\ & 0.1^{\circ} \text { in } \\ & t-t_{1} \end{aligned}$
-10	1.96	. 97		-	-							. 050
-9	2.14	1.15	. 16					Exar	nple			. 050
-8	2.34	1.35	. 35									050
-7	255	1.56	. 66				$=$	10.0		74.5	Hg	. 050
- 6	2.78	1.78	. 79			From	table:		$12 \times$	$0.050=$		. 050
- 5	3.02	2.03	1.03	. 03			, $1.5 \times$					. 050
-4 -3	3.29 3.58	2.29	1.29 1.58	. 29		Henc					5.64	. 050
-2	3.89	2.89	1.89	. 88	-	-	-	-	-	-	-	. 050
-1	4.22	3.22	2.22	1.21	. 21	-	-		-			. 050
0	4.58	3.58	2.57	1.57	. 57	-	-	-	-			. 050
1	4.92	3.92	2.92	1.91	. 91	-						. 050
2	5.29	4.29	3.28	2.27	1.27	26	-					. 050
3	5.68	4.68	3.67	2.66	1.66	. 65	-	-	-			. 050
4	6.10	5.09	4.08	3.07	2.07	1.06	. 05	-	-	-		. 050
5	6.54	5.53	4.52	3.51	2.51	1.50	. 49	-		-		. 050
6	7.01	6.00	4.99	3.98	2.97	1.96	. 95	-	-			. 050
7	7.51	6.50	5.49	4.48	3.47	2.46	1.45	. 43	-			. 050
8	8.04	7.03	6.02	5.01	400	2.98	1.97	96	-			. 050
9	8.61	7.60	6.58	5.57	4.56	3.54	2.53	1.52	. 50	-	-	. 050
10	9.21	8.20	7.18	6.17	5.15	4.14	3.12	2.11	1.09	. 08	-	. 050
11	9.85	8.83	7.81	6.80	5.78	4.77	3.75	2.73	1.72	. 70		. 051
12	10.52	9.50	8.49	7.47	6.45	5.44	4.42	3.40	2.38	1.37	. 35	. 051
13	11.24	10.22	9.20	8.18	7.16	6.14	5.13	4.11	3.09	2.07	1.05	. 051
14	11.99	10.97	9.95	8.93	7.91	6.90	5.88	4.86	3.84	2.82	1.80	. 051
15	12.79	11.77	10.75	9.73	8.71	7.69	6.67	5.65	4.63	3.61	2.59	. 051
16	13.64	12.62	11.60	10.58	9.95	8.53	7.51	6.49	5.47	4.45	3.43	. 051
17	14.54	13.52	12.49	11.47	10.45	9.42	8.40	7.38	6.36	5.33	4.31	. 051
18	15.49	14.46	13.44	12.42	11.39	10.37	9.34	8.32	7.30	6.27	5.25	. 051
19	16.49	15.46	14.44	13.41	12.39	11.36	10.34	9.31	8.29	7.26	6.24	. 051
20	17.55	16.52	15.50	14.47	13.44	12.42	11.39	10.36	9.34	8.31	7.29	. 051
21	18.66	17.64	16.61	15.58	14.56	13.53	12.50	11.47	10.45	9.42	8.39	. 051
22	19.84	18.82	17.79	16.76	15.73	14.70	13.67	12.64	11.62	10.59	10.57	. 051
23	21.09	20.06	19.03	18.00	16.97	15.94	14.91	13.88	12.85	11.82	10.79	. 051
24	22.40	21.37	20.34	19.31	18.27	17.24	16.21	15.18	14.15	13.12	12.09	. 051
25	23.78	22.75	21.71	20.68	19.65	18.62	17.59	16.56	15.52	14.49	13.46	. 052
26	25.24	24.20	23.17	22.14	21.10	20.07	19.04	18.00	16.97	15.94	14.90	. 052
27	26.77	25.73	24.70	23.66	22.63	21.60	20.56	19.53	18.49	17.46	16.42	. 052
28	28.38	27.34	26.31	25.27	24.24	23.20	22.17	21.13	20.10	19.06	18.02	. 052
29	30.08	29.04	28.00	26.97	25.93	24.89	23.86	22.82	21.78	20.75	19.71	. 052
30	31.86	30.82	29.78	28.75	27.71	26.67	25.63	24.60	23.56	22.52	21.48	. 052
31	33.74	32.70	31.66	30.62	29.58	28.54	27.50	26.46	25.42	24.38	23.34	. 052
32	35.70	34.66	33.62	32.58	31.54	30.50	29.46	28.42	27.38	26.34	25.30	. 052
33	37.78	36.73	35.69	34.65	33.61	32.57	31.53	30.49	29.44	28.40	27.36	.052
34	39.95	38.90	37.86	36.82	35.78	34.73	33.69	32.65	31.61	30.57	29.52	. 052
35	42.23	41.18	40.14	39.10	3805	37.01	35.97	34.92	33.88	32.83	31.79	. 052
36	44.62	43.57	42.53	41.48	40.44	39.40	38.35	37.31	36.26	35.22	34.17	.052
37	47.13	46.08	45.04	43.99	42.94	41.90	40.85	39.81	38.76	37.71	36.67	. 052
38	49.76	48.71	47.66	46.61	45.57	44.52	43.47	42.43	41.38	40.33	39.29	.052
39	52.51	51.46	50.41	49.37	48.32	47.27	46.22	45.17	44.12	43.08	42.03	. 052
40	55.40	54.35	53.30	52.25	51.20	50.15	49.10	48.05	47.00	45.95	44.00	. 052

TABLE 641.-PRESSURE OF COLUMNS OF MERCURY AND WATER
British and metric measures. Correct at $0^{\circ} \mathrm{C}$ for mercury and at $4^{\circ} \mathrm{C}$ for water.

Metric $\underbrace{\text { measure }}$			British measure		
cmHg	Pressure $\mathrm{g} / \mathrm{cm}^{2}$	Pressure 1b/in. ${ }^{2}$	inHg	Pressure   $\mathrm{g} / \mathrm{cm}^{2}$	Pressure 1b/in. ${ }^{2}$
1	13.5954	. 193367	1	34.532	. 491152
2	27.1908	. 386734	2	69.065	. 982304
3	40.7862	. 580101	3	103.597	1.473457
4	54.3816	. 773468	4	138.129	1.964609
5	67.9770	. 966835	5	172.662	2.455761
6	81.5724	1.160204	6	207.194	2.946918
7	95.1678	1.353566	7	241.726	3.438058
8	108.7632	1.546936	8	276.259	3.929286
9	122.3586	1.740303	9	310.791	4.420370
10	135.9540	1.933670	10	345.323	4.911522
$\begin{gathered} \mathrm{cm}_{2} \text { of } \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	Pressure $\mathrm{g} / \mathrm{cm}^{2}$	Pressure   lb/in. ${ }^{2}$	$\underset{\mathrm{H}_{2} \mathrm{O}}{\text { Inches of }}$	Pressure $\mathrm{g} / \mathrm{cm}^{2}$	Pressure lb/in. ${ }^{2}$
1	1	. 0142234	1	2.54	. 036127
2	2	. 0284468	2	5.08	. 072255
3	3	. 0426702	3	7.62	. 108382
4	4	. 0568936	4	10.16	. 144510
5	5	. 0711170	5	12.70	. 180637
6	6	. 0853404	6	15.24	. 216764
7	7	. 0995638	7	17.78	. 252892
8	8	. 1137872	8	20.32	. 289019
9	9	. 1280106	9	22.86	. 325147
10	10	. 1422340	10	25.40	. 361274

107 The tables on the barometer have been adapted from the Smithsonian Meteorological Tables, sixth edition.

TABLE 642.-CORRECTION OF THE BAROMETER FOR CAPILLARITY * Metric measure

Diameter of tube in mm	Height of meniscus in millimeters							
	. 4	. 6	. 8	1.0	1.2	1.4	1.6	1.8
4	1.1	1.7	2.1	2.4	2.6			
5	. 73	1.06	1.34	1.55	1.76			
6	. 47	. 71	. 91	1.08	1.21	1.30	1.37	1.43
7	. 33	. 48	. 63	. 76	. 86	. 96	1.03	1.08
8	. 24	. 35	. 46	. 55	. 63	. 70	. 77	. 82
9	. 18	. 27	. 35	. 41	. 47	. 53	. 57	. 61
10	. 12	. 18	. 24	. 30	. 35	. 40	. 44	. 47
12	. 07	. 10	. 13	. 16	. 20	. 22	. 25	. 27
14	. 04	. 06	. 08	. 10	. 11	. 13	. 15	. 17
16	. 02	. 04	. 05	. 06	. 07	. 09	. 10	. 11

* Corrections to be added in millimeters.

TABLE 643.—VOLUME OF MERCURY MENISCUS IN mm ${ }^{3}$

Height of meniscus	Diameter of tube in mm										
	14	15	16	17	18	19	20	21	22	23	24
mm											
1.6	157	185	214	245	280	318	356	398	444	492	541
1.8	181	211	244	281	320	362	407	455	507	560	616
2.0	206	240	278	319	362	409	460	513	571	631	694
2.2	233	271	313	358	406	459	515	574	63,	704	776
2.4	262	303	350	400	454	511	573	639	708	781	859
2.6	291	338	388	444	503	565	633	706	782	862	948

TABLE 644.-CONSTANT a FOR REDUCTION OF BAROMETRIC HEIGHT TO STANDARD TEMPERATURE *

Brass scale and English measure		Brass scale and metric measure		Glass scale and metric measure	
Height of barometer in inches	$\begin{gathered} \text { in inches for } \\ \text { temp }{ }^{\circ} \mathrm{F} \end{gathered}$	Height of barometer in mmHg	$\underset{\substack{a \\ \text { in mm for } \\ \text { temp } \\{ }^{\circ} \mathrm{C}}}{\text { 俍 }}$	Height of barometer in mmHg	$\begin{gathered} a \\ \text { in mm } \\ \text { temp }{ }^{\circ} \mathrm{C} \mathrm{C} \end{gathered}$
15.0	. 00135	400	. 0651	50	. 0086
16.0	. 00145	410	. 0668	100	. 0172
17.0	. 00154	420	. 0684	150	. 0258
17.5	. 00158	430	. 0700	200	. 0345
18.0	. 00163	440	. 0716	250	. 0431
18.5	. 00167	450	. 0732	300	. 0517
19.0	. 00172	460	. 0749	350	. 0603
19.5	. 00176	470	. 0765		
		480	. 0781	400	. 0689
20.0	. 00181	490	. 0797	450	. 0775
20.5	. 00185			500	. 0861
21.0	. 00190	500	. 0813	520	. 0895
21.5	. 00194	510	. 0830	540	. 0930
22.0	. 00199	520	. 0846	560	. 0965
22.5	. 00203	530	. 0862	580	. 0999
23.0	. 00208	540	. 0878		
23.5	. 00212	550	. 0894	600	. 1034
		560	. 0911	610	. 1051
24.0	. 00217	570	. 0927	620	. 1068
24.5	. 00221	580	. 0943	630	. 1085
25.0	. 00226	590	. 0959	640	. 1103
25.5	. 00231			650	. 1120
26.0	. 00236	600	. 0975	660	. 1137
26.5	. 00240	610	. 0992		
27.0	. 00245	620	. 1008	670	. 1154
27.5	. 00249	630	. 1024	680	. 1172
		640	. 1040	690	. 1189
28.0	. 00254	650	. 1056	700	. 1206
28.5	. 00258	660	. 1073	710	. 1223
29.0	. 00263	670	. 1089	720	. 1240
29.2	. 00265	680	. 1105	730	. 1258
29.4	. 00267	690	. 1121		
29.6	. 00268			740	. 1275
29.8	. 00270	700	. 1137	750	. 1292
30.0	. 00272	710	. 1154	760	. 1309
		720	. 1170	770	. 1327
30.2	. 00274	730	. 1186	780	. 1344
30.4	. 00276	740	. 1202	790	. 1361
30.6	. 00277	750	. 1218	800	. 1378
30.8	. 00279	760	. 1235		
31.0	. 00281	770	. 1251	850	. 1464
31.2	. 00283	780	. 1267	900	. 1551
31.4	. 00285	790	. 1283	950	. 1639
31.6	. 00287	800	. 1299	1000	. 1723

[^246]
## Free-air altitude term. Correction to be subtracted.

The correction to reduce the barometer to sea level is $\left[\left(g_{1}-g\right) / g\right] \times B$ where $B$ is the barometer reading and $g$ and $g_{1}$ the value of gravity at sea level and the place of observation respectively. The following values were computed for free-air values of gravity $g_{1}$ (Table 802). It has been customary to assume for mountain stations that the value of $g_{1}=$ say about $\frac{子}{}{ }^{3}$ the free-air value, but a comparison of modern determinations of $g_{1}$ in this country shows that little reliance can be placed on such an assumption. Where $g_{1}$ is known its value should be used in the above correction term. (See Tables 803-805.) Similarly for the latitude term, see succeeding tables; the true value of $g$ should be used if known; the succeeding tables are based on the theoretical values, Table 802.)

Height		Observed height of barometer in mmHg										
sea level	$g_{1}-g$	400	450	500	550	600	650	700	750	800		
meters 100	. 031	Correction in mmHg to be subtracted for height above sea level						. 02	. 02	. 02	-	-
200	. 062							. 04	. 05	. 05	-	
300	. 093	in first column and barometer read-						. 07	. 07	. 07		
400	. 123	ing in the top line.						. 09	. 10	. 10	-	
500	. 154		-		-	-		. 11	. 12	. 13	-	
600	. 185	-	-	-	-	-	. 12	. 13	. 14	-	-	
700	. 216	-	-	-	-	-	. 14	. 15	. 16	-	-	
800	. 247		-			-	. 16	. 18	. 19	-	-	
900	. 278	-	-			-	. 18	. 20	. 22	-		
1000	. 309	-	-	-	. 18	. 19	. 20	. 22	. 24	-	-	
1100	. 339	-	-	-	. 19	. 21	. 22	. 24	-	-	-	
1200	. 370	-	-		. 21	. 23	. 24	. 26	-	-	-	
1300	. 401				. 22	. 24	. 26	. 29	-	-	-	
1400	. 432				. 24	. 26	. 28	. 31	-	-		
1500	. 463	-	-	. 24	. 26	. 28	. 30	. 33	-	-	-	
1600	. 494	-	-	. 25	. 28	. 30	. 32	-	-	-	-	
1700	. 525	-	-	. 27	. 30	. 32	. 34	-	-	-		
1800	. 555	-	-	. 28	. 31	. 34	. 36	-	-	. 020	. 0463	15000
1900	. 586	-	-	. 30	. 33	. 36	. 39	-	-	. 019	. 0447	14500
2000	. 617	-	. 28	. 31	. 34	. 38	. 41	-	. 021	. 019	. 0432	14000
2100	. 648	-	. 30	. 33	. 36	. 40	-	-	. 021	. 018	. 0416	13500
2200	. 679	-	. 31	. 35	. 38	. 41	-	-	. 020	. 017	. 0401	13000
2300	. 710	-	. 32	. 36	. 40	. 43	-	. 021	. 019	. 017	. 0386	12500
2400	. 740		. 34	. 38	. 42	. 45	-	. 021	. 018	. 016	. 0370	12000
2500	. 771	. 31	. 35	. 39	. 43	. 47		. 020	. 018	. 015	. 0355	11500
2600	802	. 33	. 37	. 41	-	-	. 021	. 019	. 017	. 015	. 0339	11000
2700	. 833	. 34	. 38	. 42	-	-	. 020	. 018	. 016	. 014	. 0324	10500
2800	. 864	. 35	. 40	. 44	-	-	. 019	. 017	. 015	. 013	. 0308	10000
2900	. 895	. 36	. 41	. 46	-	. 020	. 018	. 016	. 015	. 013	. 0293	9500
3000	. 926	. 38	. 42	. 47	-	. 019	. 017	. 016	. 014	. 012	. 0278	9000
3100	. 957	. 39	. 44		-	. 018	. 016	. 015	. 013	-	. 0262	8500
3200	. 988	. 40	. 46	-	-	. 017	. 015	. 014	. 012	-	. 0247	8000
3300	1.019	. 42	. 47	-	. 017	. 016	. 014	. 013	-	-	. 0231	7500
3400	1.049	. 43	. 48		. 016	. 015	. 013	. 012	-	-	. 0216	7000
3500	1.080	. 44	. 49	-	. 015	. 014	. 012	. 011	-	-	. 0200	6500
3600	1.111	. 45	-	-	. 014	. 013	. 011	-	-	-	. 0185	6000
3700	1.142	. 46	-	-	. 013	. 012	. 011	-	-	-	. 0170	5500
3800	1.173	. 48		. 012	. 011	. 011	. 010	-	-		. 0154	5000
3900	1.204	. 49	-	. 011	. 010	. 010		-			. 0139	4500
4000	1.235	. 50	-	. 010	. 009	. 009		-	-		. 0123	4000
-	-	-	. 008	. 008	. 007	. 007	Cor	ectio	in	n. to	. 0092	3000
	-	. 006	. 005	. 005	. 004	-	be sub	ract	for	eight	. 0062	2000
	-	. 003	. 003	. 003	-		above colum	$\begin{gathered} \text { sea } 1 \\ 1 \text { and } \end{gathered}$	vel i bas		. 0031	1000
		$\underbrace{30}$	28	26			20	18	16		$g_{1}-g$	Height
		Observed height of barometer in inches										abo sea level

TABLE 646.-REDUCTION OF BAROMETER TO STANDARD GRAVITY*
METRIC MEASURES
From latitude $0^{\circ}$ to $45^{\circ}$, the correction is to be added algebraically.

$\begin{aligned} & \text { Liti- } \\ & \text { tude } \end{aligned}$	520	540	560	580		620	640	660	680	00	720			780
$-1.37-1.42-1.48-1.53-1.58-1.64-1.69-1.74-1.79-1.85-1.90-1.95-2.00-2.06$														
6	1.36	1.42	1.47	1.52	1.57	1.63	1.68	1.73	1.78	1.83	1.89	1.94	1.99	2.04
7	1.35	1.40	1.46	1.51	1.56	1.61	1.66	1.72	1.77	1.82	1.87	1.92	1.98	2.03
8	1.34	1.39	1.44	1.49	1.55	1.60	1.65	1.70	1.75	1.80	1.85	1.91	1.96	2.01
9	1.33	1.38	1.43	1.48	. 53	1.58	1.63	1.68	1.73	1.78	1.84	1.	19	1.99
$-1.31-1.36-1.41-1.46-1.51-1.56-1.61-1.66-1.71-1.76-1.81-1.86-1.92-1.97$														
11	1.29	1.34	1.39	1.44	1.49	1.54	1.59	1.64	1.69	1.74	1.79	1.84	1.89	1.94
12	1.27	1.32	1.37	1.42	1.47	1.52	1.57	1.62	1.67	1.72	1.76	1.81	1.86	1.91
13	1.25	1.30	1.35	1.40	. 45	1.50	1.54	1.59	1.6	1.69	1.74	1.78	1.83	1.88
14	1.23	1.28	1.33	1.38	1.42	1.47	1.52	1.56	1.6	1.66	1.71	1.75	1.80	85
$15-1.21-1.26-1.30-1.35-1.40-1.44-1.49-1.54-1.58-1.63-1.67-1.72-1.77-1.81$														
16	1.19	1.23	1.28	1.32	1.37	1.41	1.46	. 50	1.55	1.60	1.64	1.69	1.73	1.78
17	1.16	1.20	1.25	1.29	1.34	1.38	1.43	1.47	1.5	1.56	1.60	1.65	1.69	1.74
18	1.13	1.18	1.22	126	1.31	1.35	1.39	1.44	1.48	1.52	1.57	1.61	1.65	1.70
19	1.10	1.15	1.19	1.23	1.27	1.32	1.36	1.40	1.44	1.48	1.53	1.57	16	1.65
$20-1.07-1.11-1.16-1.20-1.24-1.28-1.32-1.36-1.40-1.44-1.49-1.53-1.57-1.61$														
21	1.04	1.08	1.12	116	1.20	1.24	1.28	1.32	1.36	1.40	1.44	1.48	1.52	1.56
	1.01	1.05	1.09	13	. 16	1.20	1.24	1.28	1.3	1.36	1.40	1.44	1.48	1.51
23		1.01	1.05	1.09	1.13	1.16	1.20	1.24	1.28	1.31	1.35	1.39	1.43	1.46
24		. 98	1.01	1.05	1.08	1.12	1.16	1.19	1.23	1.27	1.30	1.3	. 3	
$25-.90-.94-.97-1.01-1.04-1.08-1.11-1.15-1.18-1.22-1.25-1.29-1.32-1.36$														
26		. 90	. 93	. 97	1.00	1.03	1.07	1.10	1.13	1.17	1.20	1.23	1.27	1.30
$27$	. 83	. 86	. 89	. 92	. 96	. 99	1.02	1.05	1.08	1.12	1.15	1.18	1.21	1.24
28	79	. 82	. 85	88	. 91	. 94	. 97	1.00	1.03	1.06	1.09	1.12	1.15	1.18
29	. 75	78	81		. 86	89	. 92	. 95	. 98	1.01	1.04	1.07	1.10	112
$30-.71-.74-.76-.79-.82-.85-.87-.90-.93-.95-.98-1.01-1.04-1.06$														
31	. 67	. 69	. 72	. 74	. 77	. 80	. 82	. 85		. 90		. 95		1.00
$32$	. 62	. 65	. 67	. 70	. 72	. 74	. 77	. 79	. 82	. 84	. 86	:89	. 91	. 94
33	. 58	. 60	. 63	. 65		. 69	. 72	. 74		. 78	. 80	. 83		87
34		. 56	. 58				. 66	. 68			. 74	. 76		
	- . $49-.51-.53-.55-.57-.59-.61-.63-.64-.66-.68-.70-.72$													
36	. 45	. 46	. 48	. 50	. 52	. 53	. 55	. 57		. 60	. 6	. 64		67
$37$	. 40	. 42	. 43	4	. 46	. 48	49	. 51	. 52	. 54	. 56	. 57	. 59	
38	. 36	37	. 38			. 42	. 44	. 45	. 46	48	. 49	. 51		3
39		. 32	. 33				. 38			. 42	. 43			
$40-.26-.27-.28-.29-.30-.31-.32-.33-.34-.35-.36-.37-.38-.39$	- $.26-.27-.28-.29-.30-.31-.32-.33-.34-.35-.36-.37-.38-.39$													
41	. 21	. 22	. 23	. 24	. 25	. 26	. 26	27		. 29	. 30	. 30		
42	. 17	. 17	18			20		. 21	22	. 22	. 23	. 24	. 24	
43	. 12	12	13			. 14				. 16	. 16	. 17		. 18
44	. 07	. 07								. 10				
	- . $02-.02-.03-.03-.03-.03-.03-.03-.03-.03-.03-.03-.03-.04$													

[^247]
## (continued)

From latitude $46^{\circ}$ to $90^{\circ}$, the correction is to be added algebraically.


TABLE 647.-REDUCTION OF BAROMETER TO STANDARD GRAVITY*
ENGLISH MEASURES
From latitude $0^{\circ}$ to $45^{\circ}$, the correction is to be added algebraically.

Lati-	19	20	21	22	23	24	25	26	27	28	29	30
0	$\begin{array}{r} \text { Inch } \\ -.051 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.054 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.056 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.059 \end{array}$	$\begin{array}{r} \mathrm{In}-\mathrm{h} \\ -.062 \end{array}$	$\begin{array}{r} \text { Incl } \\ -.064 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.067 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.070 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.072 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.075 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.078 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.080 \end{array}$
5	-. 050	-. 053	-. 055	-. 058	-. 061	-. 063	-. 066	-. 069	-. 071	-. 074	-. 077	79
6	. 050	. 052	. 055	. 058	. 060	. 063	. 066	. 068	. 071	. 073	. 076	079
7	. 049	. 052	. 055	. 057	. 060	. 062	. 065	. 068	. 070	. 073	. 075	. 078
8	. 049	. 052	. 054	. 057	. 059	. 062	. 064	. 067	. 070	. 072	. 075	077
9	. 048	. 051	. 054	. 056	. 059	. 061	. 064	. 066	. 069	. 071	. 074	. 076
10	-. 048	-. 050	-. 053	-. 055	-. 058	-. 060	-. 063	-. 066	-. 068	$-.071$	-. 073	-. 076
11	. 047	. 050	. 052	. 055	. 057	. 060	. 062	. 065	. 067	. 070	. 072	. 075
12	. 047	. 049	. 051	. 054	. 056	. 059	. 061	. 064	. 066	. 069	. 071	074
13	. 046	. 048	. 051	. 053	. 055	. 058	. 060	. 063	. 065	. 068	. 070	07
14	. 045	. 047	. 050	. 052	. 055	. 057	. 059	. 062	. 06	. 06	. 069	071
15	-. 044	$-.047$	-. 049	-. 051	-. 053	-. 056	-. 058	-. 060	-. 063	-. 065	-. 067	-. 070
16	. 043	. 046	. 048	. 050	. 052	. 055	. 057	. 059	. 062	. 064	. 066	. 068
17	. 042	. 045	. 047	. 049	. 051	. 053	. 056	. 058	. 060	. 062	. 065	. 067
18	. 041	. 044	. 046	. 048	. 050	. 052	. 054	. 057	. 059	. 061	. 063	65
19	. 040	. 042	. 045	. 047	. 049	. 051	. 053	. 055	. 057	. 059	. 062	. 064
20	$-.039$	-. 041	$-.043$	-. 045	-. 047	$-.050$	-. 052	-. 054	-. 056	-. 058	-. 060	-. 062
21	. 038	. 040	. 042	. 044	. 046	. 048	. 050	. 052	. 054	. 056	. 058	. 060
22	. 037	. 039	. 041	. 043	. 045	. 047	. 049	. 050	. 052	. 054	. 056	05
23	. 036	. 038	. 039	. 041	. 043	. 045	047	. 049	. 051	. 053	. 054	. 56
24	. 034	. 036	. 038	. 040	. 042	. 043	045	. 047	. 049	. 051	. 052	054
25	-. 033	-. 035	-. 037	-. 038	-. 040	-. 042	-. 043	-. 045	-. 047	-. 049	-. 050	-. 052
26	. 032	. 033	. 035	. 037	. 038	. 040	. 042	. 043	. 045	. 047	. 048	. 05
27	. 030	. 032	. 033	. 035	. 037	. 038	. 040	. 041	. 043	. 045	. 046	. 04
28	. 029	. 030	. 032	. 033	. 035	. 036	. 038	. 039	. 041	. 043	. 044	46
29	. 027	. 029	. 030	. 032	. 033	. 035	. 036	. 037	. 039	040	042	
30	-. 026	-. 027	-. 029	-. 030	-. 031	-. 033	-. 034	-. 035	-. 037	-. 038	-. 040	-. 041
31	. 024	. 026	. 027	. 028	. 030	. 031	. 032	. 033	. 035	. 036	. 037	. 038
32	. 023	. 024	. 025	. 026	. 028	. 029	. 030	. 031	. 032	. 034	. 035	. 036
33	. 021	. 022	. 023	. 025	. 026	. 027	. 028	. 029	. 030	. 031	. 032	. 034
34	. 020	. 021	. 022	. 023	. 024	. 025	. 02	. 027	. 028	1020		
35	-. 018	-. 019	-. 020	-. 021	-. 022	-. 023	-. 024	-. 025	-. 026	-. 027	-. 027	-. 028
36	. 016	. 017	. 018	. 019	. 020	. 021	. 022	. 022	. 023	. 024	. 025	. 026
37	. 015	. 015	. 016	. 017	. 018	. 019	. 019	. 020	. 021	. 022	. 022	. 023
38	. 013	. 014	. 014	. 015	. 016	. 016	. 017	. 018	. 018	. 019	. 020	. 020
39	. 011	. 012	. 012	. 013	. 014	. 014	. 0	. 015	. 016	. 017	. 017	. 018
40	-. 010	-. 010	-. 011	-. 011	-. 012	-. 012	-. 013	-. 013	-. 014	-. 014	-. 015	-. 015
41	. 008	. 008	. 009	. 009	. 009	. 010	. 010	. 011	. 011	. 012	. 012	. 012
42	. 006	. 006	. 007	. 007	. 007	. 008	. 008	. 008	. 009	. 009	. 009	. 010
43	. 004	. 005	. 005	. 005	. 005	. 005	. 006	. 006	. 006	. 006	. 007	. 007
44	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 004	. 00	. 004	4	004
45	-. 001	-. 001	-. 001	-. 001	-. 001	-. 001	$-.001$	-. 001	-. 001	-. 00	-. 001	-. 001

[^248](continued)

## ENGLISH MEASURES

From latitude $46^{\circ}$ to $90^{\circ}$, the correction is to be added algebraically.

Latitude	19	20	21	22	23	24	25	26	27	28	29	30
45	$\begin{array}{r} \text { Inch } \\ -.001 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.001 \end{array}$	$-.001$	$\begin{array}{r} \text { Inch } \\ -.001 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.001 \end{array}$			$\begin{array}{r} \text { Inch } \\ -.001 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.001 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.001 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.001 \end{array}$	$\begin{array}{r} \text { Inch } \\ -.001 \end{array}$
46	$+.001$	$+.001$	$+.001$	$+.001$	$+.001$	$+.001$	$+.001$	$+.001$	$+.001$	$+.001$	$+.001$	. 001
47	. 003	. 003	. 003	. 003	. 003	. 003	. 003	. 004	. 004	. 004	. 004	. 004
48	. 004	. 005	. 005	. 005	. 005	. 006	. 006	. 006	. 006	. 006	. 007	. 007
49	. 006	. 006	. 007	. 007	. 007	. 008	. 008	. 008	. 009	. 009	. 009	. 010
50	. 008	. 008	. 009	. 009	. 010	. 010	. 010	. 011	. 012	. 012	. 012	12
51	$+.010$	$+.010$	$+.011$	+. 011	+. 012	$+.012$	+. 013	$+.013$	$+.014$	+. 014	$+.015$	+. 015
52	. 011	. 012	. 012	. 013	. 014	. 014	. 015	. 015	. 016	. 016	. 017	18
53	. 013	. 014	. 014	. 015	. 016	. 016	. 017	. 018	. 018	. 019	. 020	. 020
54	. 015	. 015	. 016	. 017	. 018	. 019	. 019	. 020	. 021	. 022	. 022	. 023
55	. 016	. 017	. 018	. 019	. 020	. 021	. 021	. 022	. 023	. 024	. 025	. 026
56	$+.018$	$+.019$	$+.020$	$+.021$	+. 022	$+.023$	+. 024	$+.024$	$+.026$	+. 026	$+.027$	+. 028
57	. 020	. 021	. 022	. 023	. 024	. 025	. 026	. 027	. 028	. 029	. 030	. 031
58	. 021	. 022	. 023	. 025	. 026	. 027	. 028	. 029	. 030	. 031	. 032	. 033
59	. 023	. 024	. 025	. 026	. 028	. 029	. 030	. 031	. 032	. 033	. 035	36
60	. 024	. 026	. 027	. 028	. 029	. 031	. 032	. 033	. 034	. 036	. 037	. 038
61	$+.026$	$+.027$	+. 028	$+.030$	$+.031$	$+.033$	+. 034	+. 035	$+.037$	+. 038	+. 039	+. 041
62	. 027	. 029	. 030	. 032	. 033	. 034	. 036	. 037	. 039	. 040	. 042	. 043
63	. 029	. 030	. 032	. 033	. 035	. 036	. 038	. 039	. 041	. 042	. 044	. 045
64	. 030	. 032	. 033	. 035	. 036	. 038	. 040	041	. 043	. 044	. 046	. 047
65	. 031	. 033	. 035	. 036	. 038	040	. 041	. 043	. 045	. 046	. 048	. 050
66	+.033	+. 034	$+.036$	+. 038	$+.040$	$+.041$	$+.043$	+. 045	$+.047$	+. 048	$+.050$	+. 052
67	. 034	. 036	. 038	. 039	. 041	. 043	. 045	. 047	. 048	. 050	. 052	. 054
68	. 035	. 037	. 039	. 041	. 043	. 045	. 046	. 048	. 050	. 052	. 054	. 056
69	. 036	. 038	. 040	. 042	044	. 046	. 048	. 050	. 052	. 054	. 056	. 05
70	. 038	. 040	. 042	. 044	. 046	. 048	. 050	. 052	. 053	. 055	. 057	. 059
71	+. 039	$+.041$	$+.043$	+. 045	+. 047	+. 049	$+.051$	+. 053	+. 055	$+.057$	+. 059	$+.061$
72	. 040	. 042	. 044	. 046	. 048	. 050	. 052	. 054	. 057	. 059	. 061	063
73	. 041	. 043	. 045	. 047	. 049	. 052	. 054	. 056	. 058	. 060	. 062	. 064
74	. 042	. 044	. 046	. 048	. 051	. 053	. 055	. 057	. 059	. 062	. 064	. 066
75	. 043	. 045	. 047	. 049	. 052	. 05	. 056	. 058	. 061	. 063	065	
76	+. 044	+. 046	$+.048$	$+.050$	$+.053$	$+.055$	+. 057	$+.060$	+. 062	+. 064	066	069
77	. 044	. 047	. 049	. 051	. 054	. 056	. 058	. 061	. 063	. 065	. 068	. 070
78	. 045	. 047	. 050	. 052	. 055	. 057	. 059	. 062	. 064	. 066	. 069	. 071
79	. 046	. 048	. 051	. 053	. 055	. 058	. 060	. 063	. 065	. 067	. 070	. 072
80	. 046	. 049	. 051	. 054	. 056	. 059	. 06	. 063	. 06	. 06	. 07	. 073
81	$+.047$	+. 049	+. 052	+. 054	$+.057$	$+.059$	+. 062	+. 064	$+.067$	+. 069	$+.072$	$+.074$
82	. 047	. 050	. 052	. 055	. 057	. 060	. 062	. 065	. 067	. 070	. 072	. 075
83	. 048	. 050	. 053	. 056	. 058	. 061	. 063	. 066	. 068	. 071	. 073	. 076
84	. 048	. 051	. 053	. 056	. 059	. 061	. 064	. 066	. 069	. 071	. 074	. 076
85	. 049	. 051	. 054	. 056	. 059	. 061	. 064	. 067	. 069	. 072	. 074	. 07
90	+. 049	+. 052	+. 055	+. 057	$+.060$	+. 062	+. 065	+. 068	+. 070	+. 073	+. 075	+. 078

TABLE 648.-DETERMINATION OF HEIGHTS BY THE BAROMETER

> Formula of Babinet : $Z=C \frac{B_{0}-B}{B_{0}+B}$
> $C$ (in feet) $=52494\left[1+\frac{t_{0}+t-64}{900}\right]$ English measures.
> $C$ (in meters) $=16000\left[1+\frac{2\left(t_{0}+t\right)}{1000}\right]$ metric measures.

In which $Z=$ difference of height of two stations in feet or meters.
$B_{0}, B=$ barometric readings at the lower and upper stations respectively, corrected for all sources of instrumental error.
$t_{0}, t=$ air temperatures at the lower and upper stations respectively.
values of $C$

English measures			Metric measures		
$\begin{aligned} & \frac{1}{2}\left(t_{0}+t\right) \\ & 0 \mathrm{~F} \end{aligned}$	$C$ Feet	Log C	$\frac{1}{\frac{1}{2}\left(t_{0}+t\right)}$	$\stackrel{C}{C}$	Log C
10	49928	4.69834	-10	15360	4.18639
15	50511	. 70339	-8	15488	. 19000
			- 6	15616	. 19357
20	51094	4.70837	-4	15744	. 19712
25	51677	. 71330	-2	15872	. 20063
30	52261	4.71818	0	16000	4.20412
35	52844	. 72300	+ 2	16128	. 20758
			4	16256	. 21101
40	53428	4.72777		16384	. 21442
45	54011	. 73248	8	16512	. 21780
50	54595	4.73715	10	16640	4.22115
55	55178	. 74177	12	16768	. 22448
			14	16896	. 22778
60	55761	4.74633	16	17024	. 23106
65	56344	. 75085	18	17152	. 23431
70	56927	4.75532	20	17280	4.23754
75	57511	. 75975	22	17408	. 24075
			24	17536	. 24393
80	58094	4.76413	26	17664	. 24709
85	58677	. 76847	28	17792	. 25022
90	59260	4.77276	30	17920	4.25334
95	59844	. 77702	32	18048	. 25643
			34	18176	. 25950
100	60427	4.78123	36	18304	. 26255

TABLE 649.-THUNDERSTORM ELECTRICITY ${ }^{198}$
(Lightning strokes consist of current peaks and continuing currents.)

Cloud-to-ground stroke characteristics.-First discharge in a stroke progresses from cloud to ground as stepped leaders (average velocity, 1 foot per microsecond). After contacting earth a return stroke progresses toward the cloud (velocity, $65-450$ feet $/ \mu$ sec; average, 100 feet $/ \mu$ sec). Subsequent discharges progress from the cloud as continuous leaders (average velocity, 10 feet $/ \mu \mathrm{sec}$ ) and again a return stroke is formed. is hear case of tall objects (skyscrapers) stroke leaders may start from the building toward the cloud. In such a case no thunder or very little thunder is heard unless initial discharge is followed by current peaks.
${ }^{198}$ McEachron, K. B., "Lightning and Lightning Protection," Encycl. Brit., vol. 14, June 1948. Used by permission.

The elements of atmospheric electricity show variations, both regular and irregular. Over land the irregular variations are very pronounced and the regular variations differ notably from place to place, in marked contrast to the corresponding characteristics over the ocean. Therefore, and because of the wider and more uniform geographical distribution of ocean observations, it seems best to give the greater weight to the ocean data when attempting to arrive at values characterizing world-wide conditions. Because of the wide variation from place to place in the means from land stations, due to local factors, a general mean of these is of questionable significance. Hence it seems better to indicate the extremes of station means in the case of elements for which the data are sufficiently abundant.

Certain disparities, which will be found between published tables of ocean data, arise largely from the inclusion of more recent data.

Of the atmospheric-electric clements the potential gradient has been the most extensively observed. The sign of the average gradient is everywhere such as to drive positive ions toward the earth. The periodic variations in this element are of great interest because of their apparent relation with cosmic phenomena. Thus the potential gradient apparently increases with increase in sunspot numbers and varies throughout the year. The maxima in monthly means occur everywhere, with few exceptions, at the time of northern winter, and the corresponding minima occur at the time of northern summer. The diurnal variation observed over the oceans is cverywhere in phase when considered on a common-time basis, except for a minor phase-shift that depends upon the season. This diurnal variation derived from observatories made on the Carnegie during 1915 to 1921, given by the Fourier expression $\Delta P / P=0.15 \sin \left(\theta+186^{\circ}\right)+0.03 \sin \left(2 \theta+237^{\circ}\right)$ where $\theta$ is reckoned at $15^{\circ}$ per hour beginning at $0^{\text {h }}$ Greenwich mean civil time, is in close agreement with that obtained from 1928-1929 observations.

No general expression that will approximately characterize the diurnal variation over land can be given. These variations determined by local factors are apparently superimposed upon a variation of the same world-wide character as that found to prevail over the oceans.

* Tables 650-653 prepared by G. R. Wait, Department of Terrestrial Magnestism, Carnegie Institution of Washington.


## TABLE 651.-IONIC EQUILIBRIUM IN THE ATMOSPHERE

Equilibrium for atmospheric ionization occurs when $q=a n^{2}+\eta_{1} N_{0} n+\eta_{2} N n$, where $n$ and $N$ are the number of pairs of small and large ions of one sign and $N_{0}$ the number of uncharged nuclei ; $a, \eta_{1}, \eta_{2}$, are coefficients of recombination of small ions with small ions, with uncharged nuclei, and with large ions. If for both small and large ions the positive and negative are equally abundant, then $N_{0} / N=\eta_{2} / \eta_{1}$. When $n / N \ll 2 \eta_{2} / a$, the equilib-rium-condition is expressed by $q=\beta n ; \beta$ is designated the diminution-constant; $1 / \beta=\ominus$ is the "average life" of a small ion in air which contains an abundance of large ions; $\Theta$ varies inversely as $N$.

$\begin{aligned} & a: 1.6 \times 10^{-8} \mathrm{~cm}^{3} / \mathrm{sec} \\ & \eta_{1}: 5 \times 10^{-6} " \\ & \eta_{2}: 6 \times 10^{-8} \quad " \\ & \Theta \text { Over land, } \\ & \text { Average, } 30 \mathrm{sec} \end{aligned}$

Extremes, 10 to 60 sec
Over sea, 230 sec
$N$ : Over land, 500 to 50,000 ions $/ \mathrm{cm}^{3}$
Aitken nuclei, number per $\mathrm{cm}^{3}$ :
Over open country, up to $10^{5}$
Over midocean, about 800
In free air,
Altitude $1 \mathrm{~km} 6,000 \quad 5 \mathrm{~km} 50$
$3 \mathrm{~km} \quad 200 \quad 8.5 \mathrm{~km}$ about 5

TABLE 652.-CHARGE ON RAIN AND SNOW
Specific net charge on precipitation:
Average, $0.5 \mathrm{esu} / \mathrm{g}$
Maximum observed, $20 \mathrm{esu} / \mathrm{g}$
Specific charge on individual raindrops or snowflakes:
Rain, +2.7 to $-3.2 \mathrm{esu} / \mathrm{g}$
Snow, +11.6 to $-8.1 \mathrm{esu} / \mathrm{g}$

Element	Symbol	Means	Units	Variations	
Potential gradient.		Land: 64 to 317		$\begin{array}{ll} \text { Range } & \text { Percent of mean } \\ \text { Annual } & 22 \text { to } 145 \end{array}$	
				Diurnal 35 to 120	
		Sea: 128		Annual 13	
				Diurnal 35	
		Free air		Percentage of surface values at various altitudes	
				$\begin{array}{lllll} 0 & \mathrm{~km} & 100 & 6 & 6 \mathrm{~km} \\ 3 & 8 & 17 & 9 & 4 \end{array}$	
Air-conductivity total	$\lambda=\lambda_{+}+\lambda_{-}$				
		Land: 1 to 5	esu $\times 10^{-4}$	Variations determined chiefly by local factors	
		Sea: $\quad 2.6$		Variations small and chiefly ir regular	
		Free air		Ratio of value at various altitudes to that at surface $\begin{array}{lll} 0 \mathrm{~km} \\ 3 \times 8 & 6 \mathrm{~km} 20 \\ 3 & " & 38 \end{array}$	
Ratio of positive   to negative   conductivity $\ldots$.$\lambda_{+} / \lambda_{-}$ Land: 1.12      Sea: 1.26					
Air-earth current density	$i=\lambda P / 30000$	Land: 7.0	esu $\times 10^{-7}$		
		Sea: 11.0			
Density of small ions: Positive ..	$n_{+}$   $n-$ $\left(n_{+}+n_{-}\right) / 2$	Land: 750	ions/ $\mathrm{cm}^{3}$		
		Sea: 600			
Negative .		Land: 650	"		
		Sea: 500	"		
		Free air		. Values at various altitudes   2 km 1300   4 " 1900	
Ratio of positive to negative ionic density				5 " 2300	
	$p=n_{+} / n_{-}$	Land: 1.23			
		Sea: 1.23			
		(continue ${ }^{\text {d }}$			

Element
Space-charge, over land. .

Space-charge, over land..	$\rho$
	$\rho=-\left(\frac{d P}{d h} / 1.2 \pi\right) \times$
	$($ For $h=$ height in
Mobility of small ions:	
Positive $\ldots \ldots \ldots \ldots \ldots$	$k_{+}=\lambda_{+} / 300 \mathrm{en}$
$k_{+}$	
Negative $\ldots \ldots \ldots \ldots$.	$k_{-}$

Rate of formation of ion-pairs $\qquad$
Symbol
$\rho$

Means
At surface: * -2000 to +1900
Free air :

0 to 3 km	$\stackrel{\rho}{9.0}$	"
3 to 6	0.9	"
6 to 9	0.4	"
Land:	0.9	$\mathrm{cm} \mathrm{sec}{ }^{-1}$ volt $^{-1} \mathrm{~cm}^{-1}$
Sea:	1.6	
Land :	1.0	"
Sea :	1.7	"
Over land:   Ra and Th products in air		
a rays	4.6	ions $\mathrm{cm}^{-8} \mathrm{sec}^{-1}$
$\beta$ rays	0.2	
		"
Radioac		
matter in the		
earth's		
$\beta$ rays	0.1	"
$\gamma$ rays	3.0	"
Penetrating		
Total	9.55	"
At sea :		
Penetrating		
radiat		"
(?		"
Total	2.2	"

*The sign and magnitude of surface values are exceedingly variable from place to place.

Just a few years ago it was held that the universe was made up of 92 elements and that probably these elements were made of two elementary particles. While most of these 92 elements had been identified and their properties studied, there were several that had not been identified and thus very little was known directly about their properties.

As a result of a great amount of study and investigation, during the past few years the number of known elementary particles has been extended to seven or eight (see Table 720), and all the elements missing from the periodic table (see Table 658) have been identified and some of their properties studied. ${ }^{199}$ In addition to this, the number of elements has been extended to five or six beyond uranium and some of the properties of these elements have been studied. (See Table 658.)

It is now generally considered that the elements are made up of electrons, protons, and neutrons. Each element now has three designations: the name; the atomic number, $Z$, i.e., the charge on the atomic nucleus and the mass number, $A$, which is the number of protons and neutrons that make up the nucleus of the atom and extends from 1 for hydrogen (or the neutron) to 246 for the isotope of californium. This mass number is not too definite since, in many cases, several atoms have isotopes of the same mass number.

Atoms of number greater than 83 and certain isotopes of eight atoms of lower atomic number, are unstable in that they break down into other isotopes, i.e., they are radioactive. (See Table 732.) There are in all about 1,220 different isotopes ${ }^{199}$ that have been identified and have had some of their properties studied. Of these only 274 are stable. A number of atoms ${ }^{200}$ $(Z=43,61,85,93,94,95,96)$ are so unstable that they are not now found on the earth. Two of the isotopes, $A=5$, and 8 , have so short a life that it is almost impossible to detect them. A radioactive material with a life shorter than about $10^{-20} \mathrm{sec}$ and longer than about $10^{14}$ years will be unobservable as such.

The values given for certain physical dimensions of molecules, atoms, or nuclei depend upon the definition of the particular dimension and the method used in its calculation. Diameters may be calculated from Van der Waal's equation, from viscosity, and from certain force relations. Some values are the results of assuming the atom or nucleus to be a sphere. While these various methods give results that do not differ too much, neither are the results in good enough agreement for one to feel that the answer is final. The following tables give some results of physical dimension obtained by various means of calculation.

[^249]TABLE 654.-CONVERSION FACTORS FOR UNITS OF MOLECULAR ENERGY*


[^250]| Element | Symbol | At | Atomic weight * | Element | Symbol | At | Atomic weight * |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Actinium | Ac | 89 | 227 | Molybdenum | Mo | 42 | 95.95 |
| Aluminum | . Al | 13 | 26.98 | Neodymium | Nd | 60 | 144.27 |
| Americium | Am | 95 | [243] | Neon | Ne | 10 | 20.183 |
| Antimony | . Sb | 51 | 121.76 | Neptunium | Np | 93 | [237] |
| Argon ... | . A | 18 | 39.944 | Nickel .... | Ni | 28 | 58.69 |
| Arsenic | . As | 33 | 74.91 | Niobium | Nb | 41 | 92.91 |
| Astatine | . At | 85 | [210] | Nitrogen | N | 7 | 14.008 |
| Barium | Ba | 56 | 137.36 | Osmium | Os | 76 | 190.2 |
| Berkelium | . Br | 97 | [245] | Oxygen | . O | 8 | 16 |
| Beryllium | Be | 4 | 9.013 | Palladium | Pd | 46 | 10.5 .7 |
| Bismuth . | Bi | 83 | 209.00 | Phosphorus | . P | 15 | 30.975 |
| Boron | B | 5 | 10.82 | Platinum . | Pt | 78 | 195.23 |
| Bromine | . Br | 35 | 79.916 | Plutonium | Pu | 94 | [242] |
| Cadmium | . Cd | 48 | 112.41 | Polonium | Po | 84 | 210 |
| Calcium | . Ca | 20 | 40.08 | Potassium | K | 19 | 39.100 |
| Californium | . $\mathrm{C} f$ | 98 | [246] | Praseodymium | Pr | 59 | 140.92 |
| Carbon . . | . C | 6 | 12.010 | Promethium | Pm | 61 | [145] |
| Cerium | . Ce | 58 | 140.13 | Protactinium | Pa | 91 | 231 |
| Cesium . | . Cs | 55 | 132.91 | Radium . | Ra | 88 | 226.05 |
| Chlorine | . Cl | 17 | 35.457 | Radon | Rn | 86 | 222 |
| Chromium | . Cr | 24 | 52.01 | Rhenium | Re | 75 | 186.31 |
| Cobalt . | . Co | 27 | 58.94 | Rhodium | R h | 45 | 102.91 |
| Copper | . Cu | 29 | 63.54 | Rubidium | Rb | 37 | 85.48 |
| Curium | . Cm | 96 | [243] | Ruthenium | Ru | 44 | 101.7 |
| Dysprosium | . Dy | 66 | 162.46 | Samarium | Sm | 62 | 150.43 |
| Erbium . . . | . Er | 68 | 167.2 | Scandium |  | 21 | 44.96 |
| Europium | . Eu | 63 | 152.0 | Selenium | Se | 34 | 78.96 |
| Fluorine . |  | 9 | 19.00 | Silicon | Si | 14 | 28.06 |
| Francium | Fr | 87 | [223] | Silver | Ag | 47 | 107.880 |
| Gadolinium | . Gd | 64 | 156.9 | Sodium | Na | 11 | 22.997 |
| Gallium | . Ga | 31 | 69.72 | Strontium | Sr | 38 | 87.63 |
| Germanium | . Ge | 32 | 72.60 | Sulfur | S | 16 | $32.066 \dagger$ |
| Gold | . Au | 79 | 197.2 | Tantalum | Ta | 73 | 180.88 |
| Hafnium | . Hf | 72 | 178.6 | Technetium | Tc | 43 | [99] |
| Helium . | . He | 2 | 4.003 | Tellurium | Te | 52 | 127.61 |
| Holmium | . Ho | 67 | 164.94 | Terbium | Tb | 65 | 1592 |
| Hydrogen |  | 1 | 1.0080 | Thallium | Tl | 81 | 204.39 |
| Indium . . | . In | 49 | 114.76 | Thorium | Th | 90 | 232.12 |
| Iodine | . I | 53 | 126.91 | Thulium | Tm | 69 | 169.4 |
| Iridium |  | 77 | 193.1 | Tin | Sn | 50 | 118.70 |
| Iron . . . | . Fe | 26 | 55.85 | Titanium | Ti | 22 | 47.90 |
| Krypton | Kr | 36 | 83.80 | Tungsten |  | 74 | 183.92 |
| Lanthanum | La | 57 | 138.92 | Uranium | U | 92 | 238.07 |
| Lead . . . | Pb | 82 | 207.21 | Vanadium | V | 23 | 50.95 |
| Lithium | . Li | 3 | 6.940 | Xenon | Xe | 54 | 131.3 |
| Lutetium | Lu | 71 | 174.99 | Ytterbium | Yb | 70 | 17304 |
| Magnesium | Mg | 12 | 24.32 | Yttrium . | Y | 39 | 88.92 |
| Manganese | . Mn | 25 | 54.93 | Zinc | Zn | 30 | 65.38 |
| Mercury . . | . Hg | 80 | 200.61 | Zirconium | Zr | 40 | 91.22 |

[^251]| 1 Hydrogen | H | 34 Selenium | Se | 67 Holmium | Ho |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 Helium | He | 35 Bromine | Br | 68 Erbium | Er |
| 3 Lithium | Li | 36 Krypton | Kr | 69 Thulium | Tm |
| 4 Beryllium | Be | 37 Rubidium | Rb | 70 Ytterbium | Yb |
| 5 Boron | B | 38 Strontium | Sr | 71 Lutetium | Lu |
| 6 Carbon | C | 39 Yttrium | Y | 72 Hafnium | Hf |
| 7 Nitrogen | N | 40 Zirconium | Zr | 73 Tantalum | Ta |
| 8 Oxygen | O | 41 Niobium | Nb | 74 Tungsten | W |
| 9 Fluorine | F | 42 Molybdenum | Mo | 75 Rhenium | Re |
| 10 Neon | Ne | 43 Technetium | Tc | 76 Osmium | Os |
| 11 Sodium | Na | 44 Ruthenium | Ru | 77 Iridium | Ir |
| 12 Magnesium | Mg | 45 Rhodium | Rh | 78 Platinum | Pt |
| 13 Aluminum | A1 | 46 Palladium | Pd | 79 Gold | Au |
| 14 Silicon | Si | 47 Silver | Ag | 80 Mercury | Hg |
| 15 Phosphorus | P | 48 Cadmium | Cd | 81 Thallium | Tl |
| 16 Sulfur | S | 49 Indium | In | 82 Lead | Pb |
| 17 Chlorine | Cl | 50 Tin | Sn | 83 Bismuth | Bi |
| 18 Argon | A | 51 Antimony | Sb | 84 Polonium | Po |
| 19 Potassium | K | 52 Tellurium | Te | 85 Astatine | At |
| 20 Calcium | Ca | 53 Iodine | I | 86 Radon | Rn |
| 21 Scandium | Sc | 54 Xenon | Xe | 87 Francium | Fr |
| 22 Titanium | Ti | 55 Cesium | Cs | 88 Radium | Ra |
| 23 Vanadium | V | 56 Barium | Ba | 89 Actinium | Ac |
| 24 Chromium | Cr | 57 Lanthanum | La | 90 Thorium | Th |
| 25 Manganese | Mn | 58 Cerium | Ce | 91 Protactinium | Pa |
| 26 Iron | Fe | 59 Praesodymium | Pr | 92 Uranium | U |
| 27 Cobalt | Co | 60 Neodymium | Nd | 93 Neptunium | Np |
| 28 Nickel | Ni | 61 Promethium | Pm | 94 Plutonium | Pu |
| 29 Copper | Cu | 62 Samarium | Sm | 95 Americium | Am |
| 30 Zinc | Zn | 63 Europium | Eu | 96 Curium | Cm |
| 31 Gallium | Ga | 64 Gadolinium | Gd | 97 Berkelium | Bk |
| 32 Germanium | Ge | 65 Terbium | Tb | 98 Californium | Cf |
| 33 Arsenic | As | 66 Dysprosium | Dy |  |  |

Given below by atomic numbers are some foreign or obsolete names for certain of the elements.

4 Glucinium, Gl
11 Natrium
13 Aluminium
19 Kalium
26 Ferrum

41 Columbium, Cb
43 Masurium, Ma
47 Argentum
50 Stannum
51 Stibium

61 Illinium, Il
71 Cassiopeium
72 Celtium
75 Bohemium
79 Aurum

80 Hydragyrum
82 Plumbum
85 Alabamine, Ab
86 Emanation, niton
87 Virginium, Vi
TABLE 657.-PERIODIC SYSTEM OF THE ELEMENTS ${ }^{20}$

	$\overbrace{0}^{\text {I }}$		II		$\underbrace{\text { III }}$	$\mathrm{I}^{\text {IV }}$		v		VI		VII		$\underbrace{\text { VIII }}$			
I	$\begin{gathered} a \\ 1 \mathrm{H} \\ 1.0080 \end{gathered}$	$b$	a	$b$	${ }_{a} \quad{ }^{\text {b }}$	a	$b$	$a$	b	$a$	$b$	a	$b$		$a$		$\begin{aligned} & b \\ & 2 \mathrm{He} \\ & 4.003 \end{aligned}$
II	$\begin{aligned} & 3 \mathrm{Li} \\ & 6.940 \end{aligned}$			$\begin{aligned} & 4 \mathrm{Be} \\ & 9.013 \end{aligned}$	$\begin{array}{r} 5 \mathrm{~B} \\ 10.82 \end{array}$		$\underset{12.010}{6 \mathrm{C}}$		$\begin{gathered} 7 \mathrm{~N} \\ 14.008 \end{gathered}$		${ }_{16}^{80}$		$\begin{gathered} 9 \mathrm{~F} \\ 19.00 \end{gathered}$				$\begin{aligned} & 10 \mathrm{Ne} \\ & 20.183 \end{aligned}$
III	$\begin{aligned} & 11 \mathrm{Na} \\ & 22.997 \end{aligned}$		$\underset{24.32}{12 \mathrm{Mg}}$		$\begin{aligned} & 13 \mathrm{Al} \\ & 26.98 \end{aligned}$		$\begin{aligned} & 14 \mathrm{Si} \\ & 28.06 \end{aligned}$		$\begin{aligned} & 15 \mathrm{P} \\ & 30.975 \end{aligned}$		$\begin{aligned} & 16 \mathrm{~S} \\ & 32.066 \end{aligned}$		$\begin{aligned} & 17 \mathrm{Cl} \\ & 35.457 \end{aligned}$				$\begin{aligned} & 18 \mathrm{~A} \\ & 39.944 \end{aligned}$
IV	$\begin{aligned} & 19 \mathrm{~K} \\ & 39.100 \end{aligned}$	$\underset{63.54}{29 \mathrm{Cu}}$	$\begin{aligned} & 20 \mathrm{Ca} \\ & 40.08 \end{aligned}$	$\begin{aligned} & 30 \mathrm{Zn} \\ & 65.38 \end{aligned}$	$\begin{array}{ll} \begin{array}{l} 21 \mathrm{Sc} \\ 44.96 \end{array} & \\ & \\ & 31 . \mathrm{Ga} \end{array}$	$\begin{aligned} & 22 \mathrm{Ti} \\ & 47.90 \end{aligned}$	$\begin{aligned} & 32 \mathrm{Ge} \\ & 72.60 \end{aligned}$	$\begin{aligned} & 23 \mathrm{~V} \\ & 50.95 \end{aligned}$	$\begin{aligned} & 33 \mathrm{As} \\ & 74.91 \end{aligned}$	$\begin{aligned} & 24 \mathrm{Cr} \\ & 52.01 \end{aligned}$	$\begin{aligned} & 34 \mathrm{Se} \\ & 78.96 \end{aligned}$	$\begin{aligned} & 25 \mathrm{Mn} \\ & 54.93 \end{aligned}$	$\begin{aligned} & 35 \mathrm{Br} \\ & 79.916 \end{aligned}$	$\begin{aligned} & 26 \mathrm{Fe} \\ & 55.85 \end{aligned}$	$\begin{aligned} & 27 \mathrm{Co} \\ & 58.94 \end{aligned}$	$\begin{aligned} & 28 \mathrm{Ni} \\ & 58.69 \end{aligned}$	$\begin{aligned} & 36 \mathrm{Kr} \\ & 83.80 \end{aligned}$
v	$\begin{aligned} & 37 \mathrm{Rb} \\ & 85.48 \end{aligned}$	$\begin{gathered} 47 \mathrm{Ag} \\ 107.880 \end{gathered}$	$\begin{aligned} & 38.63 \end{aligned}$	${ }_{112.41}^{48 \mathrm{Cd}}$	$\begin{array}{lr} 39 \mathrm{Y} & \\ 88.92 & 49 \mathrm{In} \\ & 114.76 \end{array}$	$\begin{aligned} & 40 \mathrm{Zr} \\ & 91.22 \end{aligned}$	$\begin{array}{r} 50 \mathrm{Sn} \\ 118.70 \end{array}$	$\begin{aligned} & 41 \mathrm{Nb} \\ & 92.91 \end{aligned}$	$\begin{array}{r} 51 \mathrm{Sb} \\ 121.61 \end{array}$	$\begin{aligned} & 42 \mathrm{Mo} \\ & 95.95 \end{aligned}$	$\begin{gathered} 52 \mathrm{Te} \\ 127.61 \end{gathered}$	${ }^{43} \mathbf{~} 99 \mathrm{Tc}$	$\begin{array}{r} 531 \\ 126.91 \end{array}$	$\begin{gathered} 44 \mathrm{Ru} \\ 101.7 \end{gathered}$	$\begin{gathered} 45 \mathrm{Rh} \\ 102.91 \end{gathered}$	${ }_{106.7}^{46 \mathrm{Pd}}$	$\underset{131.3}{54 \mathrm{Xe}}$
VI	$\begin{array}{r} 55 \mathrm{Cs} \\ 132.91 \end{array}$		$\begin{array}{r} 56 \mathrm{Ba} \\ 137.36 \end{array}$		$\begin{aligned} & 57 \mathrm{La} \\ & 138.92 \\ & 58 \text { to } 71 \\ & \text { Rare carths * } \end{aligned}$	$\begin{gathered} 72 \mathrm{Hf} \\ 178.6 \end{gathered}$		$\begin{gathered} 73 \mathrm{Ta} \\ 180.88 \end{gathered}$		$\begin{array}{r} 74 \mathrm{~W} \\ 183.92 \end{array}$		$\begin{gathered} 75 \mathrm{Re} \\ 186.31 \end{gathered}$		$\begin{array}{r} 76 \mathrm{Os} \\ 190.2 \end{array}$	$\begin{gathered} 77 \mathrm{Ir} \\ 193.1 \end{gathered}$	$\begin{gathered} 78 \mathrm{Pt} \\ 195.23 \end{gathered}$	
		$\begin{gathered} \text { 79. Au } \\ 197.2 \end{gathered}$		$\begin{gathered} 80 \mathrm{Hg} \\ 200.61 \end{gathered}$	$\begin{array}{r} 81 \mathrm{Tl} \\ 204.39 \end{array}$		$\begin{gathered} 82 \mathrm{~Pb} \\ 207.21 \end{gathered}$		$\begin{array}{r} 83 \mathrm{Bi} \\ 209.00 \end{array}$		${ }_{210}^{84} \mathrm{Po}$		$\begin{aligned} & 85 \mathrm{At} \\ & {[210]} \end{aligned}$				${ }_{222}^{86} \mathbf{R n}$
VII	${ }_{223}^{87 \mathrm{Fr}}$		$\begin{gathered} 88 \mathrm{Ra} \\ 226.05 \end{gathered}$		$\begin{aligned} & 89 \mathrm{Ac} \\ & 227 \\ & 90.103 \\ & \text { Actinide rare } \\ & \text { earths } \dagger \end{aligned}$												

[^252]TABLE 658.-ELECTRON CONFIGURATIONS OF THE ELEMENTS, NORMAL STATES *

	$K$		$L$		M			$N$		
	Js	$2 s$	$2 p$	$3 s$	$3 p$	$3 d$	$4 s$	4p	$4 d$	$\overline{5 s}$
1 H	1									
2 He	2									
3 Li	2	1								
4 Be	2	2								
5 B	2	2	1							
6 C	2	2	2							
7 N	2	2	3							
8 O	2	2	4							
9 F	2	2	5							
10 Ne	2	2	6							
11 Na	2	2	6	1						
12 Mg	2	2	6	2						
13 Al	2	2	6	2	1					
14 Si	2	2	6	2	2					
15 P	2	2	6	2	3					
16 S	2	2	6	2	4					
17 Cl	2	2	6	2	5					
18 A	2	2	6	2	6					
19 K	2	2	6	2	6		1			
20 Ca	2	2	6	2	6		2			
21 Sc	2	2	6	2	6	1	2			
22 Ti	2	2	6	2	6	2	2			
23 V	2	2	6	2	6	3	2			
24 Cr	2	2	6	2	6	5	1			
25 Mn	2	2	6	2	6	5	2			
26 Fe	2	2	6	2	6	6	2			
27 Co	2	2	6	2	6	7	2			
28 Ni	2	2	6	2	6	8	2			
29 Cu	2	2	6	2	6	10	1			
30 Zn	2	2	6	2	6	10	2			
31 Ga	2	2	6	2	6	10	2			
32 Ge	2	2	6	2	6	10	2	2		
33 As	2	2	6	2	6	10	2	3		
34 Se	2	2	6	2	6	10	2	4		
35 Br	2	2	6	2	6	10	2	5		
36 Kr	2	2	6	2	6	10	2	6		
37 Rb	2	2	6	2	6	10	2	6		1
38 Sr	2	2	6	2	6	10	2	6		2
39 Y	2	2	6	2	6	10	2	6	,	2
40 Zr	2	2	6	2	6	10	2	6	2	2
41 Nb	2	2	6	2	6	10	2	6	4	1
42 Mo	2	2	6	2	6	10	2	6	5	1
43 Tc	2	2	6	2	6	10	2	6	5	
44 Ru	2	2	6	2	6	10	2	6	7	1
45 Rh	2	2	6	2	6	10	2	6	8	1
46 Pd	2	2	6	2	6	10	2	6	10	

[^253](continued)

TABLE 658.-ELECTRON CONFIGURATIONS OF THE ELEMENTS, NORMAL STATES (concluded)

	K	$L$			${ }^{M}$				$N$			0				$P$		
	$1 s$	$2 s$	$2 p$	35	3p	$3 d$	4s	$4 p$	$4 d$	$4 f$	$5 s$	5p	$5 d$	$5 f$	$6 s$	6p	$6 d$	7s
47 Ag	2	2	6	2	6	10	2	6	10		1							
48 Cd	2	2	6	2	6	10	2	6	10		2							
49 In	2	2	6	2	6	10	2	6	10		2	1						
50 Sn	2	2	6	2	6	10	2	6	10		2	2						
51 Sb	2	2	6	2	6	10	2	6	10		2	3						
52 Te	2	2	6	2	6	10	2	6	10		2	4						
53 I	2	2	6	2	6	10	2	6	10		2	5						
54 Xe	2	2	6	2	6	10	2	6	10		2	6						
55 Cs	2	2	6	2	6	10	2	6	10		2	6			1			
56 Ba	2	2	6	2	6	10	2	6	10		2	6			2			
57 La	2	2	6	2	6	10	2	6	10		2	6	1		2			
58 Ce	2	2	6	2	6	10	2	6	10	2	2	6			2			
59 Pr	2	2	6	2	6	10	2	6	10	3	2	6			2			
60 Nd	2	2	6	2	6	10	2	6	10	4	2	6			2			
61 Pm	2	2	6	2	6	10	2	6	10	5	2	6			2			
62 Sm	2	2	6	2	6	10	2	6	10	6	2	6			2			
63 Eu	2	2	6	2	6	10	2	6	10	7	2	6			2			
64 Gd	2	2	6	2	6	10	2	6	10	7	2	6	1		2			
65 Tb	2	2	6	2	6	10	2	6	10	9	2	6			2			
66 Dy	2	2	6	2	6	10	2	6	10	10	2	6			2			
67 Ho	2	2	6	2	6	10	2	6	10	11	2	6			2			
68 Er	2	2	6	2	6	10	2	6	10	12	2	6			2			
69 Tm	2	2	6	2	6	10	2	6	10	13	2	6			2			
70 Yb	2	2	6	2	6	10	2	6	10	14	2	6			2			
71 Lu	2	2	6	2	6	10	2	6	10	14	2	6	1		2			
72 Hf	2	2	6	2	6	10	2	6	10	14	2	6	2		2			
73 Ta	2	2	6	2	6	10	2	6	10	14	2	6	3		2			
74 W	2	2	6	2	6	10	2	6	10	14	2	6	4		2			
75 Re	2	2	6	2	6	10	2	6	10	14	2	6	5		2			
76 Os	2	2	6	2	6	10	2	6	10	14	2	6	6		2			
77 Ir	2	2	6	2	6	10	2	6	10	14	2	6	7		2			
78 Pt	2	2	6	2	6	10	2	6	10	14	2	6	9		1			
79 Au	2	2	6	2	6	10	2	6	10	14	2	6	10		1			
80 Hg	2	2	6	2	6	10	2	6	10	14	2	6	10		2			
81 Tl	2	2	6	2	6	10	2	6	10	14	2	6	10		2	1		
82 Pb	2	2	6	2	6	10	2	6	10	14	2	6	10		2	2		
83 Bi	2	2	6	2	6	10	2	6	10	14	2	6	10		2	3		
84 Po	2	2	6	2	6	10	2	6	10	14	2	6	10		2	4		
85 At	2	2	6	2	6	10	2	6	10	14	2	6	10		2	5		
86 Rn	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6		
87 Fr	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6		1
88 Ra	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6		2
89 Ac	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6	1	2
90 Th	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6	2	2
91 Pa	2	2	6	2	6	10	2	6	10	14	2	6	10	2	2	6	1	2
92 U	2	2	6	2	6	10	2	6	10	14	2	6	10	3	2	6	1	2
93 Np	2	2	6	2	6	10	2	6	10	14	2	6	10	4	2	6	1	2
94 Pu	2	2	6	2	6	10	2	6	10	14	2	6	10	5	2	6	1	2
95 Am	2	2	6	2	6	10	2	6	10	14	2	6	10	6	2	6	1	2
96 Cm	2	2	6	2	6	10	2	6	10	14	2	6	10	7	2	6	1	2
97 Bk	2	2	6	2	6	10	2	6	10	14	2	6	10	8	2	6	1	2
98 Cf	2	2	6	2	6	10	2	6	10	14	2	6	10	9	2	6	1	2

TABLE 659.-RADII, IN ANGSTROM UNITS, OF THE ELECTRONIC ORBITS OF LIGHTER ELEMENTS ${ }^{203}$

	K	$L$		M			$N$	
Element	$1 s$	$2 s$	$2 p$	$3 s$	$3 p$	${ }^{3 d}$	$4 s$	$4 p$
H	. 53							
He	. 30							
Li	. 20	1.50						
Be	. 143	1.19						
B	. 112	. 88	. 85					
C	. 090	. 67	. 66					
N	. 080	. 56	. 53					
O	. 069	. 48	. 45					
F	. 061	. 41	. 38					
Ne	. 055	. 37	. 32					
Na	. 050	. 32	. 28	1.55				
Mg	. 046	. 30	. 25	1.32				
A1	. 042	. 27	. 23	1.16	1.21			
Si	. 040	. 24	. 21	. 98	1.06			
P	. 037	. 23	. 19	. 88	. 92			
S	. 035	. 21	. 18	. 78	. 82			
Cl	. 032	. 20	. 16	. 72	. 75			
A	. 031	. 19	. 155	. 66	. 67			
K	. 029	. 18	. 145	. 60	. 63		2.02	
Ca	. 028	. 16	. 133	. 55	. 58		2.03	
Sc	. 026	. 16	. 127	. 52	. 54	. 61	1.80	
Ti	. 025	. 150	. 122	. 48	. 50	. 55	1.66	
V	. 024	. 143	. 117	. 46	. 47	. 49	1.52	
Cr	. 023	. 138	. 112	. 43	. 44	. 45	1.41	
Mn	. 022	. 133	. 106	. 40	. 41	. 42	1.31	
Fe	. 021	. 127	. 101	. 39	. 39	. 39	1.22	
Co	. 020	. 122	. 096	. 37	. 37	. 36	1.14	
Ni	. 019	. 117	. 090	. 35	. 36	. 34	1.07	
Cu	. 019	. 112	. 085	. 34	. 34	. 32	1.03	
Zn	. 018	. 106	. 081	. 32	. 32	. 30	. 97	
Ga	. 017	. 103	. 078	. 31	. 31	. 28	. 92	1.13
Ge	. 017	. 100	. 076	. 30	. 30	. 27	. 88	1.06
As	. 016	. 097	. 073	. 29	. 29	. 25	. 84	1.01
Se	. 016	. 095	. 071	. 28	. 28	. 24	. 81	. 95
Br	. 015	. 092	. 069	. 27	. 27	. 23	. 76	. 90
Kr	. 015	. 090	. 067	. 25	. 25	. 22	. 74	. 86

${ }^{208}$ Slater, J. C., Introduction to chemical physics, 1939. Courtesy of McGraw-Hill Book Co.

TABLE 660.-ELEMENTAL ABUNDANCES IN THE UNIVERSE ${ }^{204}$
(Atoms per 10,000 atoms of $\mathrm{Si}^{*}$ )

$Z$	Element	Abundance	Source II	$z$	Element	Abun. dance	Source	$Z$	Element	Abundance	Source
1	H $\dagger$	$3.5 \times 10^{8}$	S	29	Cu	4.6	M	58	Ce	. 023	M
2	$\mathrm{He}^{+}$	$3.5 \times 10^{7}$	S	30	Zn	1.6	M	59	Pr	. 0096	M
3	Li	1.		31	Ga	. 65	M	60	Nd	. 033	M
4	Be	. 2		32	Ge	2.5	M	61	Pm		
5	B	. 2		33	As	4.8	M	62	Sm	. 012	$\ddot{M}$
6	C	80,000	S	34	Se	. 25	M	63	Eu	. 0028	M
7	N	160,000	S	35	Br	. 42	M	64	Gd	. 017	M
8	O	220,000	S	36	Kr $\ddagger$			65	Tb	. 0052	M
9	F	90	P	37	Rb	. 071	M	66	Dy	. 020	M
10	$\mathrm{Ne} \ddagger$	9,000-24,000	$\mathrm{P}, \mathrm{Sc}$	38	Sr	. 41	M	67	Ho	. 0057	M
11	Na	$462 \pm 36$	M	39	Y	. 10	M	68	Er	. 016	M
12	Mg	$8,870 \pm 250$	M	40	Zr	1.5	M	69	Tm	. 0029	M
13	Al	$882 \pm 81$	M	41	Nb	. 009	M	70	Yb	. 015	M
14	Si	10,000	M	42	Mo	. 19	M	71	Lu	. 0048	M
15	P	130	M	43	Tc			72	Hf	. 007	M
16	S	3500	S	44	Ru	. 093	M	73	Ta	. 0031	M
17	Cl	170	P	45	R h	. 035	M	74	W	. 17	M
18	A $\ddagger$	130-2,200	$\mathrm{P}, \mathrm{Pe}$	46	Pd	. 032	M	75	Re	. 0041	M
19	K	$69.3 \pm 7.5$	M	47	Ag	. 027	M	76	Os	. 035	M
20	Cas	$670 \pm 74$	M, S	48	Cd	. 026	M	77	Ir	. 014	M
21	Sc	. 18	M	49	In	. 01	M	78	Pt	. 087	M
22	Ti	$26.0 \pm 9.0$	M	50	Sn	. 62	M	79	Au	. 0082	M
23	V	2.5	M	51	Sb	. 017	M	80	Hg	?	M
24	Cr	95	M	52	Te	?	.	81	T1	?	M
25	Mn	77	M	53	I	. 02		82	Pb	. 27	M
26	Fe	18,300	M	54	Xe $\ddagger$		M	83	Bi	. 0021	M
27	Co	+ 99	M	55	Cs	. 001	M	90	Th	. 012	M
28	Ni	1,340	M	56	Ba	. 039	M	92	U	. 0026	M
				57	La	. 021	M				

${ }^{204}$ Brown and Harrison, Rev. Mod. Phys., vol. 21, p. 625, 1949.

* Silicon is 12.3 percent by weight in meteorites. p. $\dagger$ The hydrogen-helium ratio and the ratio of hydrogen and helium to the "oxygen group" elements ( $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Ne}, \mathrm{Fe}$ ) are those computed by J. Greenstein and reported by M. Harrison, Astrophys. Journ., vol. 108, p. 310, 1940. $\ddagger$ See Table 663. \& Stellar and meteoritic values have been combined by equalizing the calcium abundances. I| The letters $\mathrm{S}, \mathrm{P}, \mathrm{Sc}, \mathrm{Pe}$, and M desig. nate the sources chosen (solar, planetary nebulae, $\tau$-Scorpii, $\gamma$ Pegasi, or meteoritic).

TABLE 661.-ABUNDANCE OF ELEMENTS IN OUR PLANET GIVEN IN PERCENTAGE BY WEIGHT*

Element	$\begin{gathered} \text { Earth } \\ \text { crust } \end{gathered}$	Earth	Lithosphere, $\dagger$   hydrosphere, atmosphere	Element	$\begin{gathered} \text { Earth } \\ \text { crust } \end{gathered}$	Earth	Lithosphere, $\dagger$ hydrosphere, atmosphere
O	46.6	24.4	49.38	P	...	. 17	. 12
Si	27.7	12.2	25.8	C	...	. 07	. 17
Al	8.1	1.0	7.5	Cl	...	. 05	. 19
Fe	5.0	45.6	4.66	H	$\ldots$	. 04	. 87
Ca	3.63	1.2	3.34	Cu	$\ldots$	. 01	. 01
Na	2.8	. 47	2.55	Zn	...	. 0005	. 03
K	2.16	. 12	2.38	As	$\cdots$	. 01	
Mg	2.1	9.4	2.07	$\stackrel{\mathrm{Ba}}{ }$		...	. 04
Ti	. 4	. 06	. 61	F	...	...	. 04
Mn	. 1	. 19	. 09	N	$\cdots$	...	. 03
Ni		3.41	. 01	Zr	...	...	. 02
S		1.08	. 07	V	...	...	. 02
Co		. 26	. 002	Sr	$\ldots$	...	. 02
Cr		. 22	. 03				

[^254]TABLE 662.-CHEMICAL COMPOSITION OF EARTH—METEORITES AND SOLAR ATMOSPHERE * 205

The table gives $\log N H$, where $N H=$ the number of atoms, neutral and ionized, per $\mathrm{cm}^{3}$. Constants added to data of Russell and Brown to give order of magnitude agreement with Unsöld. : indicates less accuracy; ? origin doubtful.

H and He are about 97 percent of the total solar mass, the oxygen group 2.7 percent, the metals 0.3 percent ; and by numbers of atoms 99 percent, 0.9 percent, and 0.1 percent respectively.

The level of ionization in the solar atmosphere is such that atoms of $I P=8.33 \mathrm{ev}$ are 50 percent ionized; ionization temperature $=5676^{\circ} \mathrm{K}$; electron pressure $\approx 32 \mathrm{bar}$; 85 percent of free electrons come from $\mathrm{Mg}, \mathrm{Si}, \mathrm{Fe}$, according to Unsöld.

Element	Earth. meteorite $\dagger$	Sun $\ddagger$	Sun 8	Element	Earth meteorite $\dagger$	Sun $\ddagger$	Sun §
1 H	18.04	22.1	24.13	41 Nb	13.05	12.6:	
2 He	...	20.6?		42 Mo	14.38	13.0	13.40
3 Li	14.91	13.6:		44 Ru	14.07	13.3	
4 Be	14.23	13.4	. . . .	45 Rh	13.64	12.1	
5 B	14.72	16.6:		46 Pd	13.61	12.7	
6 C	17.22	19.1	19.91	47 Ag	13.53	126	
7 N	15.01	19.6:	20.23	48 Cd	13.52	13.8 :	
8 O	19.64	20.6	20.35	49 In	13.10	11.6:	
9 F	15.48	17.6:	. . .	50 Sn	14.89	12.8?	
10 Ne				51 Sb	13.33	12.4 :	
11 Na	17.76	18.8	17.90	53 I	13.35		
12 Mg	19.05	18.9	19.13	55 Cs	12.10	?	
13 Al	18.04	18.0	17.95	56 Ba	13.69	14.9	14.57
14 Si	19.10	19.1	18.91	57 La	13.42	13.4	
15 P	17.21	15.6:		58 Ce	13.46	14.0	
16 S	17.98	17.3 :	18.54	59 Pr	13.08	12.2 :	
17 Cl	16.63			60 Nd	13.62	13.6	
18 A				62 Sm	13.18	13.1	
19 K	16.94	18.4 :	16.82	63 Eu	12.55	13.0 :	
20 Ca	17.93	183	17.85	64 Gd	13.33	12.7 :	
21 Sc	14.36	15.2	14.95	65 Tb	12.82		
22 Ti	16.52	16.8	16.58	66 Dy	13.40	13.2 :	
23 V	15.50	16.6	15.67	67 Ho	12.85		
24 Cr	17.80	17.3	17.20	68 Er	13.30	11.7:	
25 Mn	16.99	17.5	17.08	69 Tm	12.56	12.1:	
26 Fe	19.37	18.8	19.34	70 Yb	13.28	12.6:	
27 Co	17.10	17.2	16.65	71 Lu	12.78	12.6 :	
28 Ni	18.23	17.6	17.57	72 Hf	12.94	12.0	
29 Cu	15.76	16.6	15.85	73 Ta	12.59	11.6 :	
30 Zn	15.30	16.5	16.40	74 W	14.33	11.8	
31 Ga	14.91	13.6 :		75 Re	12.71		
32 Ge	15.50	14.6		76 Os	13.64	12.1 :	
33 As	15.78			77 Ir	13.25	11.4?	
34 Se	14.50			78 Pt	14.04	13.2	
35 Br	14.72			79 Au	13.01		
37 Rb	13.95	13.3 :		82 Pb	14.53	12.8	14.2
38 Sr	14.71	14.9	14.97	83 Bi	12.42		
39 Y	14.10	14.2	14.83	90 Th	13.18		
40 Zr	15.28	14.1	13.99	92 U	12.51		

[^255]
## TABLE 663.-COSMIC ABUNDANCES OF THE RARE GASES*

As estimated by interpolation of the abundance curves (abundances in atoms per 10,000 atoms of silicon).

	Isotope used   for inter-   polation	Estimated   ahundance   of isotope	Estimated   abundance   of element	Gas	Isotone used   for inter-   polation	Estimated   abundance   of isotope
Ne	$\mathrm{Ne}^{21}$	100	37,000	Kr	$\mathrm{Kr}^{\text {Estimated }}$ahundance   of element	
A	$\mathrm{A}^{36}$	1000	1,000	Xe	$\mathrm{Xe}^{181}$	.004

[^256]Part 1.-Approximate counts of atomic lines identified in solar and sunspot spectra ${ }^{200}$

$\underbrace{\text { Neutral }}$ atoms								Singly ionized atoms			
	Disk				$\underbrace{\text { Spot }}$				${ }^{\text {Disk }}$		
		$\overbrace{}^{\text {No. lines ** }}$			No. $\overbrace{\text { lines }}$				No. lines		
$\begin{aligned} & \text { ® } \\ & \stackrel{4}{4} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{y y} \\ & \stackrel{E}{E} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\underline{x}} \\ & \stackrel{x}{\mu} \end{aligned}$			$\begin{aligned} & . \vec{B} \\ & \times \\ & \stackrel{x}{\approx} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{5}}{\stackrel{y}{E}}$			
1	$\mathrm{H}^{\dagger}$	9		40			25 ?				
2	Hei ${ }^{\dagger}$	1		5			5				
3	LiI	2		-3			3				
4	Bei	2		-3							
5	B $\ddagger$							Beir	2		1
6	$\mathrm{C}_{1}$	41	7	12			10				
7	N I	8	6	-1			-2				
8	OI	12	1	5			1				
9	F										
11	Na 1	21	6	30			70?				
12	Mg I	55	4	(200)			30	Mg II	12	2	(1000)
13	Ali	22	5	20			25				
14	Sil	156	29	(80)			12				
15	P I	6	1	1				Si II	4	2	2
16	SI	31	10	8			2				
19	K I	4	3	12			20				
20	CaI	108	21	20			40				
21	Sci	43	14	2	15	1	7	Ca II	25		1000
22	Til	687	264	7	134	2	10	Scin	57	26	6
23	V I	272	133	4	53	2	8	Ti II	255	119	12
24	$\mathrm{Cr}{ }^{\text {I }}$	776	305	10	23		12	V II	160	103	5
25	Mn I	185	73	7	1		12	Crif	216	133	6
26	Fe 1	4164	877	40	2		35	Mnil	16	11	6
27	Cor	501	209	6	7		6	Feil	371	140	6
28	Nir	617	180	25			9	Coir	6	7	0
29	Cu	14	3	10			7	Ni ir	13	8	3
30	Zn I	9	3	3			1				
31	Ga I	1	1	1			2				
32	Ge I	5		3							
37	RbI	1		-3	1		4				
38	Sri	13	2	1	6		3	Sr ${ }^{11}$	8	2	9
39	Y I	17	10	0	12	1	3	Y II	53	18	3
40	Zri	59	41	0	41		3	Zrin	148	93	3
41	Nb I	4	2	-1				Nb II	13	8	-1
42	Moi	8	6	-2				Moir	7	5	0
44	Ru 1	15	5	-1							
45	Rhi	8	3	-2				Rhin?	3	2	-2
46	Pd	8	7	0							
47	Ag I	3		0							
48	Cdi	1		-1							
49	In I	1		-2			-1				
50	Sn I	2	2	-2							
51	Sb I	1	1	$-3 \mathrm{~N}$							
56	BaI				1		1	Ba II	6	3	8

[^257](continued)

TABLE 664.-66 KNOWN ELEMENTS IN THE SUN'S ATMOSPHERE (concluded)

Neutral atoms								Singly ionized atoms			
		Disk			$\underbrace{\text { Spot }}$				$\underbrace{\text { Disk }}$		
		No. lines			$\overbrace{}^{\text {No. }}$ lines				$\underbrace{\text { No. lines }}$		
$\begin{aligned} & \text { 艺 } \\ & \text { 4 } \end{aligned}$	$\begin{aligned} & \text { 号 } \\ & \text { E } \\ & \underline{y} \end{aligned}$	تِ $\stackrel{\rightharpoonup}{E}$ $\stackrel{0}{0}$ $\stackrel{0}{5}$		$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \stackrel{\rightharpoonup}{x} \\ & \text { añ } \end{aligned}$			$\begin{aligned} & \ddot{E} \\ & \times \\ & \stackrel{x}{\pi} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{E}} \\ & \stackrel{ت}{E} \end{aligned}$	
57	La I				1		-2 N	La in	44	20	1
58								Ceir	106	81	0
59								PriI	11	16	-1
60								Nd ii	74	72	1
62								Smil	82	63	0
63	EuI			2			-1	Eu II	10	4	1
64								Gd II	29	20	0
65								Tbir?	2	2	-1
66								Dy 11	29	25	1
68								EriI	2		-1
69								Tm Ii?	6	5	-1
70	Yb I	2		0			1	Ybil		2	3 ?
71								Luil?	1	4	$-3$
72	Hf I		1	-3				Hf in	13	5	-1
73	Ta I?	3		-2							
74	W i	13	8	-1			-1				
76	Os I	2	4 ?	0		1	-1				
77	Ir I	2	4	-2							
78	Pt I	3		2							
79	Aul	1		-3			-2				
82	Pb 1	2		-2							
90	Thi	1		-1							

Part 2.—Molecules in the sun-18 present (either disk or spot spectrum, or both) ${ }^{207}$

OH	Mg H	Sc O	CH	Mg O	Y O
NH	$\mathrm{C}_{2}$	$\mathrm{A1} \mathrm{O}$	Cn	CaH	MgF
$\mathrm{O}_{2}$	Ti O	ZrO	Si H	BH	SrF

[^258]
## TABLE 665.-ABUNDANCES OF LIGHT ELEMENTS IN EARLY TYPE STARS

The table gives the number of atoms per 1000 atoms oxygen for $\tau$ Scorpii, spectrum $d B o^{208} ; 10$ Lacertae, $O ;{ }^{209} ; \gamma$ Pegasi, $B 2.5$ IV ${ }^{200}$; mean for $8 B$-stars, weighted mean by Aller, ${ }^{200}$ the last 3 columns from letters to the editor, 1950. : less certain.

Element	$\tau$ Sco	10 Lac	$\gamma \mathrm{Peg}$	8 B-stars	Mean
1 H	$10 \times 10^{5}$	$20 \times 10^{5}$	$87 \times 10^{5}$	....	$20 \times 10^{5}$
2 He	$1.8 \times 10^{5}$	$1.68 \times 10^{5}$	$5.5 \times 10^{5}$ :		$1.7 \times 10^{5}$
6 C	170	200	120	150	160
7 N	380	220	200	230	250
80	1000	1000	1000	1000	1000
10 Ne	1100	880			1000
12 Mg	59	62	310	93	120
13 Al	3.7		11	4.2	6
14 Si	64	82	90	38	60
15 P			1.1		1.1
16 S	.....		40	22	30
17 Cl			20 :		20 :
18 A	$\ldots$	....	$100:$		100 :

[^259]The gases that have been detected are listed together with the means of detection and approximate abundances. Both the observations and the application of ionization theory introduce considerable uncertainty in the determination of abundances. Values given are the best current estimates. In general, the composition of the interstellar gas appears to be the same as for the stars.

Gas	Density in clouds atoms $/ \mathrm{cm}$	Detection	Gas	$\begin{gathered} \text { Density } \\ \text { in clouds } \\ \text { atoms } / \mathrm{cm}^{3} \end{gathered}$	Detection
Hydrogen	10	Emission lines	Titanium	$10^{-8} \dagger$	Absorption lines
Oxygen	. 01	Emission lines	Nitrogen		N emission, CN ab-
Carbon	. 003	Molecular absorption lines	Potassium	$10^{-5} \dagger$	sorption lines Absorption lines
Calcium	$2 \times 10^{-8}$	Absorption lines	Sulfur		Emission lines
Sodium	$4 \times 10^{-5}$	Absorption lines	CH	$10^{-6} \dagger$	Absorption lines
Iron		Absorption lines	CN	$10^{-8} \dagger$	Absorption lines

The interstellar gas is strongly concentrated in clouds as evidenced by the multiplicity of interstellar absorption lines. Stromgren suggests density between clouds is about $1 \%$ of that in clouds.

[^260]TABLE 667.-THE ABUNDANCE OF CERTAIN ELEMENTS IN THE NEBULAE ${ }^{211}$
(Given as the exponent of 10 )

Element	Abundance	Element	Abundance	Element	Abundance	Element	Abundance	Element	Abundance
H	11-	C	9	Na	. $27+$	S	8	Sc	. $<6+$
He	10	N	9-	Mg	$7+$	Cl	$7+$	Ti	7 -
Li	. $<8$ -	O	9	Al	. <8-	A	7	V	
Be	. $<8$ -	F	6	Si	. $<9$	K	6+	Cr	7
B	$<9$	Ne	8	P	. $<8$ -	Ca	7-	Mn	

${ }^{211}$ Bowen and Wyse, Lick Obs. Bull., vol. 19. p. 1. 1939.

## TABLE 668.-MATTER IN INTERSTELLAR SPACE * 212

The interpretation of the interstellar absorption curve and of absorption by dark clouds requires the presence of small grains with radii ranging around $10^{-5} \mathrm{~cm}$. Polarization of starlight indicates that some, if not all, grains are elongated. Composition, from absorption curve and scattering appears to be mainly dielectric.

## Density of matter

Solid grains:	
Uniform region, abs $0.5 \mathrm{~m} / \mathrm{kpc}$	$10^{-28} \mathrm{~g} / \mathrm{cm}^{3}$
Large cloud, abs 1 mag ( $10 \mathrm{~m} / \mathrm{kpc}$ )	$10^{-25} \mathrm{~g} / \mathrm{cm}^{3}$
Dense condensation, abs 5-10 m ( $1000 \mathrm{~m} / \mathrm{kpc}$ )	$10^{-28} \mathrm{~g} / \mathrm{cm}^{3}$
Mean density, gas and grains.	$3 \times 10^{-24} \mathrm{~g} / \mathrm{cm}^{3}$
Oort limit (Max density, stars plus diffuse matter)	$6 \times 10^{-24} \mathrm{~g} / \mathrm{cm}^{3}$
Mean space density of stellar matter.	$3 \times 10^{-24} \mathrm{~g} / \mathrm{cm}^{3}$

[^261]Colloidal science originally dealt with that large field of small particles, but now it has been extended to cover also those materials that are small in one or two of the three dimensions. Thus, this field now includes chain molecules and films as well as the fine particles.

The diameters of atoms range from 2 to $3 A$ (angstroms) while diameters of ordinary inorganic molecules extend from about 7 to $10 A$. Organic molecules are much larger and their dimensions may extend to $20 A$ or larger. It is sometimes stated that colloid particles range in diameter from $20 A$ to a much larger value but it must be remembered that it is difficult to fix such dimensions.

Many of the properties of colloids are due to their relatively very great surface as compared with their volumes. Some of the newer experimental tools, i.e., ultracentrifuges, X-rays, and the electron microscopes, have been a great help in studying these particles and their reactions. Several tables follow that give properties and characteristics of colloids and colloidal particles.

## TABLE 669.-BROWNIAN MOVEMENT

The Brownian movement is a microscopically observed agitation of colloidal particles. It is caused by the bombardment of them by the molecules of the medium and may be used to determine the value of Avogadro's number. Perrin, Chaudesaignes, Ehrenhaft, and De Broglie found, respectively, 70, 64,63 and $64 \times 10^{22}$ as the value of this constant. The following table indicates the size and the dependence of this movement on the magnitude of the particles.

Material	Diameter $\times 10^{5} \mathrm{~cm}$	Medium	${ }^{\text {Temp }}{ }^{\text {C }}$	$\begin{aligned} & \text { Velocity } \\ & \times 10^{\circ} \mathrm{cm} / \mathrm{sec} \end{aligned}$
Dust particles	2.0	Water		none
Gold	. 35		20 ?	200.
Gold	. 1	"		280.
Gold	. 06	"	"	700.
Platinum	. 4 to .5	Acetone	18	3900.
Platinum	. to . 5	Water	20	3200.
Rubber emuls	10.		17	124.
Mastic	10.	"	20?	1.55
Gamboge	4.5	"	20	2.4
	2.13	"	"	3.4

The movement varies inversely as the size of the particles; in water, particles of diameter greater than $4 \mu$ show no perceptible movement; when smaller than $.1 \mu$, lively movement begins, while at $10 m \mu$ the trajectories amount to up to $20 m \mu$.

TABLE 670.-PARTICLE SIZES OF SOME INDIVIDUAL DUSTS ${ }^{212 a}$

Dust	Diameter, cm
Milk powder (by evaporation of fine spray)	$1.4 \times 10^{-2}-.7 \times 10^{-2}$
Fine powder ( 300 mesh) e.g., cement......	$1 \times 10^{-2}-.7 \times 10^{-2}$
Smelter fumes	$1 \times 10^{-2}-1 \times 10^{-5}$
Atmosphere, fog particles	$1.4 \times 10^{-3}-3.5 \times 10^{-3}$
Cement kiln flue dust..	$6 \times 10^{-3}-.8 \times 10^{-8}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$ mist from concentrators	$1.1 \times 10^{-3}-1.6 \times 10^{-4}$
$\mathrm{NH}_{4} \mathrm{Cl}$ fumes	$1 \times 10^{-4}-1 \times 10^{-5}$
Oil sinoke	$1 \times 10^{-4}-5 \times 10^{-8}$
Resin smoke	$1 \times 10^{-4}-1 \times 10^{-6}$
Tobacco smoke	$1.5 \times 10^{-5}-1 \times 10^{-6}$

[^262]$M$, molecular weight; $f / f_{0}$, dissymmetry constant ; $a$, short diameter; $b$, long diameter.

Substance	M	$f / f_{0}$	$b / a$	a (A)	$b$ (A)
Zein	35000	2.0	20.1	16	322
Cytochromec C	15600	1.3	5.8	18	98
Gliadin	26000	1.6	11.1	18	196
Hordein	27500	1.6	11.1	18	196
Erythrocruorin (chironimus)	31400	1.6	11.1	19	208
Serum albumin, urea denatured.	67100	1.98	19.4	20	356
Lactalbumin a	17500	1.2	4.3	21	91
Erythrocruorin (lampetra)	17100	1.2	4.3	22	94
Bence-Jones $\beta$.........	37700	1.3	5.8	25	144
Myoglobin	17200	1.1	2.9	24	70
Crotoxin	30000	1.2	4.3	25	109
Concanavalin B	42000	1.3	5.8	26	149
Tuberculin protein	32000	1.2	4.3	26	112
Lactoglobulin ....	41800	1.2	4.3	28	122
Pepsin . .	35500	1.08	2.7	31	84
Insulin	40900	1.13	3.3	31	102
Egg albumin	40500	1.1	2.9	32	91
Hemoglobin (horse)	69000	1.24	4.8	32	155
Serum albumin (horse)	67100	1.2	4.3	34	145
Yellow ferment	82800	1.2	4.3	36	152
Canavalin	113000	1.3	5.8	36	207
Serum globulin	167000	1.4	7.5	37	280
Diphtheria toxin	72000	1.2	4.3	34	145
Antipneumococcus serum globulin (rabbit)	157000	1.4	7.5	37	274
Antipneumococcus serum globulin (man).	195000	1.5	9.2	37	338
Concanavalin A . . . . . . . . . . . . . . . . . . .	96000	1.1	2.9	43	124
Erythrocruorin (arc a)	33600	1.0	1.	43	43
Bence-Jones a ........	35000	1.0	1.	43	43
Catalase ....	248000	1.3	5.8	46	297
Antipneumococcus serum globulin (horse)	920000	2.0	20.1	47	950
Phycoerythrin (seramium) ...............	290000	1.2	4.3	54	232
Amandin ...............	329000	1.3	5.8	51	291
Tyroglobulin	628000	1.5	9.2	54	498
Edestin ....	309000	1.2	4.3	55	237
Excelsin	294000	1.1	2.9	62	179
Urease	483000	1.2	4.3	64	274
Hemocyanin (palinurus)	446000	1.2	4.3	62	268
Tobacco mosaic virus..	60000000	3.0			
Legumin	208000	1.02			

[^263]TABLE 672.-INFLUENCE OF PARTICLE SIZE UPON SOLUBILITY ${ }^{214}$

Material	Size of particles ${ }^{\mu}$	Solubility at $25^{\circ} \mathrm{C}$
CaSO	2.0	2.085 g per liter*
	. 3	2.476 g per liter
BaSO4	1.8	2.29 mg per liter *
	. 1	4.15 mg per liter
HgO	Coars	50 mg per liter *

[^264](In small calories)

Substance	Fuller's earth	Bone charcoal	Kaolin	Dispersive power percent
Amylene	57.1		78.8	1.54
Water .	30.2	18.5		2.82
Acetone	27.3	19.3		1.72
Methyl alcohol	21.8	17.6	27.6	1.60
Ethyl acetate	18.5	16.5		1.05
Ethyl alcohol	17.2	16.5	24.5	...
Aniline	13.4			. .
Amyl alcohol	10.9	10.6	20.4	
Ethyl ether	10.5			. 90
Chloroform	8.4	14.0	15.7	. 86
Benzene	4.6	11.1	9.9	. 39
Carbon disulfide	4.6	8.4	9.9	
Carbon tetrachloride	4.2	13.9	9.4	. 27
Hexane	3.9	8.9	7.2	. 22

* For reference, see footnote 214 , p. 631.


# TABLE 674.-EFFECT OF ACTIVATION ON THE ADSORBING POWER OF CHARCOAL ${ }^{215}$ 

Substance tested	Adsorption $\mathrm{mg} \mathrm{CCl} 4 /(\mathrm{g} \mathrm{C})$	Granular density	Physical character
Ironwood	22	. 96	Fibrous, hard
Primary ironwood charcoal	30	. 89	Hard
Activated ironwood charcoal	1160	. 72	Hard, friable, granular
Commercial wood charcoal	11	. 46	Firm, fibrous
Highest activated wood charcoal *	. 1480	. 30	Soft, friable
Cocoanut shell ....	18	1.20	Hard
Primary cocoanut charcoal	47	. 96	Hard
Activated cocoanut charcoal.	. 630	. 84	Hard
Lignite semi-coke	30	1.09	Firm
Good activated lignite charcoal	640	. 89	Firm
Highest activated lignite charcoal *	. 2715	. 31	Friable, granular

[^265]TABLE 675. -HEATS OF ADSORPTION OF VAPORS ON CHARCOAL*

	Vapor	Integral heat of adsorption, $\stackrel{h}{\text { cal/mole }}$	Heat of liquefaction, cal/mole	Net heat of adsorption, h-Q cal/mole	$\begin{gathered} h \cdot Q / \mathrm{ml} \\ \mathrm{cal} / \mathrm{mole} \end{gathered}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$		12330	6220	6110	86.4
$\mathrm{CS}_{2}$		12630	6830	5800	99.1
$\mathrm{CH}_{3} \mathrm{OH}$		. 12950	9330	3620	90.8
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$		. 14330	6850	7480	102.0
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$		. 14250	7810	6440	81.5
$\mathrm{CHCl}_{3}$		. 14930	8000	6930	87.5
$\mathrm{HCOOC}_{2} \mathrm{H}_{5}$		15420	8380	7040	90.1
$\mathrm{C}_{6} \mathrm{H}_{8} \ldots . .$.		. 15170	7810	7360	85.0
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$		. 14980	10650	4330	76.8
$\mathrm{CCl}_{4}$		16090	8000	8090	85.6
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$		. 16090	6900	9190	80.3

[^266]TABLE 676.-SPREADING COEFFICIENTS, $S$, OF ORGANIC LIQUIDS ON WATER AT $20^{\circ} \mathrm{C}$ *

Spreading liquids	$S=W_{a}-W_{c} \dagger$	Spreading liquids	$S=W_{a}-W_{c}$
Butyric acid	45.66	Heptane	22.40
Ethyl ether	. 45.50	Ethyl bromide	17.44
Isoamyl chloride	33.88	Chloroform	13.04
Heptaldehyde	32.22	Anisole	11.76
Nitromethane	26.32	Phenetole	10.66
Mercaptan	24.86	p-Cymene	10.10
Oleic acid	. 24.62	Isopentane	9.44
	Liquids which form lenses $\quad S=W_{a}-W_{0}$   Ethylene dibromide .......... -3.19   Carbon disulfide ............... -6.94   Monoiodobenzene ............. -8.74   Bromoform .................... 9.58   Liquid petrolatum .............-13.64		

*For reference, see footnote 215, p. 632 . $\dagger W_{a}$, work adhesion; $W_{c}$, work of cohesion.

TABLE 677.-HEATS OF ADSORPTION OF GASES BY CHARCOAL ${ }^{216}$

Gas				Gas			
Argon	3636	1504	4180	Carbon dioxide	7300	2540	6100
Nitrogen	3686	1250		Ammonia	7200	5000	7120
Carbon monoxide. .	3416	1410	3715				

[^267]TABLE 678.-BOND ENERGIES* IN KILOCALORIES PER MOL ${ }^{217}$


[^268]TABLE 679.-IGNITION AND PROPAGATION TEMPERATURES OF DUSTS IN AIR*

Degrees Centigrade

Dust	Ignition temperature	Propagation temperature	Dust	Ignition temperature	Propagation temper ature
Sugar	. 540	805	Cork	630	1000
Dextrin	. 540	940	Rice	. 630	970
Starch	. . 640	1035	Mustard	. 680	1050
Cocoa	. 620	970	Wheat elev		(1295)
		995	Oat and co		(995)
Flour	630	(1265)	Oat hull		(1020)

* For reference, see footnote 214, p. 631.

TABLE 680.-LOWER EXPLOSIVE LIMITS *
Milligrams per liter of air

Dust	Glowing Pt wire	Arc	Induc. tion spark	Dust	Glowing Pt wire	Arc	Induction spark
Starch	7.0	10.3	13.7	Sugar	10.3	17.2	34.4
Corn elevator	10.3	10.3	13.7	Aluminum	7.0	7.0	13.7
Wheat elevator	10.3	10.3		Coal	17.2	24.1	No
Sulfur	7.0	13.7	13.7				ignition

* For reference, see footnote 214, p. 631.

TABLE 681.-SOME MEASUREMENTS OF EXPLOSION PRESSURES*

Dust	Pressure generated, lb/in. ${ }^{2}$	Dust	Pressure generated, lb/in. ${ }^{2}$	Dust	Pressure generated, 1b/in. ${ }^{2}$
Lycopodium	17.5	Cornstarch	12.7	Cocoa	9.9
Dextrin ...	14.6	Wheat elevator	. 12.5	Sulfur flour	8.8
Wheat starch	. 14.0	Sugar . . . . . .	. 12.2	Rice-bran dust	8.7
Tanbark dust	. 13.3	Linseed meal ..	. 11.7	Ground-cork dust	t. 7.4
Wood dust .	. 12.8	Pittsburgh coal	. 10.1		

* For reference, see foot note 214, p. 631.


## TABLE 682.-pH STABILITY RANGE OF SOME PROTEINS*

Protein	Source	Stable in the pH range of
Amandin	Almonds	4.3 to 10.0
Bence-Jones	Pathological urine	3.5 to 7.5
Edestin	Hempseed	5.5 to 9.7
Egg albumin	Hens' eggs	4.0 to 9.0
Erythrocruorin	Blood of Arenicola marina	2.6 to 8.0
Erythrocruorin	Blood of Lumbricus terrestris	2.6 to 10.0
Excelsin .....	Brazil nuts	5.5 to 10.0
Hemocyanin	Blood of Helix pomatia	4.5 to 7.4
CO-hemoglobin	Horse blood hemoglobin plus	6.0 to 9.05
Insulin ......	Beef pancreas	4.5 to 7.0
Legumin	Vetch ..	5.0 to 9.0
Phycocyan	Ceramium rubrum	1.5 to 8.0
Serum albumin	Horse blood	4.0 to 9.0
Serum globulin	Horse blood	4.0 to 8.0

[^269]
## TABLE 683.-ELECTRON EMISSION FOR HOT SOLIDS

The electron emission from a solid varies with the temperature $T\left({ }^{\circ} \mathrm{K}\right)$ in accordance with the Richardson-Laue-Dushman equation

$$
\begin{equation*}
I=A T^{2}\left[\exp \left(-b_{0} / T\right)\right] \tag{1}
\end{equation*}
$$

where $I=$ current in amps $\mathrm{cm}^{-2}$, and $A$ and $b_{\circ}$ are constants, characteristic of the material.
The constant $b_{0}$ is ordinarily expressed in terms of electron volts ( $\Phi_{0}$ ) where

$$
\begin{align*}
& \Phi_{o}=8.620 \times 10^{-5} b_{0} \\
& b_{0}=1.160 \times 10^{4} \theta_{o} \tag{2}
\end{align*}
$$

The values of $A$ and $b_{0}$ (or $\boldsymbol{\Phi}_{o}$ ) are customarily derived from a plot of $\log \left(I / T^{2}\right)$ versus $1 / T$, where

$$
\begin{equation*}
\log I=\log A+2 \log T-\frac{b_{0}}{2.303 T} \tag{3}
\end{equation*}
$$

and

$$
\log =\log \text { to base } 10
$$

Hence,

$$
\begin{equation*}
\Phi_{o}=1.986 \times 10^{-4}\left(b_{0} / 2.303\right) \tag{4}
\end{equation*}
$$

Theoretically, $\boldsymbol{\Phi}_{o}$, as determined from thermionic emission data, should be identical with $\boldsymbol{\Phi}_{e}$, the "work function" from contact potential measurements, and $\Phi_{e}$, the work function determined by means of Einstein's equation

$$
V e=h \nu-\Phi
$$

where $\nu=$ frequency for photoelectric emission, $V=$ retarding potential, $e=$ charge on the electron, and $h=$ quantum constant.

[^270]
## TABLE 684.-ELECTRON EMISSION CONSTANTS FOR METALS AND CARBON

The table gives emission constants (see preceding equations) for metals and carbon. For other values and comprehensive data on this topic see references in footnote 218.

Element	A	$10^{-4} b_{0}$	$\phi$ 。	$I_{T}$	$T^{\circ} \mathrm{K}$	$\phi$ e
Barium	60	2.47	2.10	$1.5 \times 10^{-8}$	800	2.48-2.51
Calcium	60	2.60	2.24	$2.9 \times 10^{-7}$	800	2.71
Carbon	30	5.03	4.34	$1.4 \times 10^{-3}$	2000	4.82
Cesium	162	2.10	1.81	$2.5 \times 10^{-11}$	500	1.91
Chromium	48	5.34	4.60	$3.8 \times 10^{-8}$	1500	4.37
Cobalt	41	5.12	4.41	$1.3 \times 10^{-7}$	1500	
Copper	65	5.08	4.38	$5.6 \times 10^{-15}$	1000	4.46
Hafnium	15	4.10	3.53	$2.8 \times 10^{-4}$	1600	
Iron	26	5.20	4.48	$6.8 \times 10^{-16}$	1000	4.63
Molybdenum	60	5.07	4.37	$2.4 \times 10^{-3}$	2000	4.12
Nickel ....	30	5.35	4.61	$2.2 \times 10^{-8}$	1500	
Niobium	37	4.65	4.01	$1.2 \times 10^{-3}$	2000	
Palladium	60	5.79	4.99	$3.0 \times 10^{-8}$	1600	4.92
Platinum	32	6.17	5.32	$1.8 \times 10^{-9}$	1600	
Rhenium	200	5.92	5.1	$1.0 \times 10^{-4}$	2000	
Rhodium	33	5.57	4.80	$1.1 \times 10^{-4}$	2000	4.92
Tantalum	55	4.86	4.19	$6.2 \times 10^{-9}$	2000	4.05
Thorium	60	3.89	3.35	$4.3 \times 10^{-9}$	1600	3.3-3.6
Tungsten	60	5.24	4.52	$1.00 \times 10^{-3}$	2000	4.3-4.5
Zirconium	330	4.79	4.13	$8.5 \times 10^{-5}$	1600	

[^271]The table gives emission data for a range of temperature, for the most frequently used metals and for thoriated tungsten (ThW). Values of $A$ and $b_{0}$ oused in calculation of $I$ (amp $/ \mathrm{cm}^{2}$ ) are those given in Table 684. For ThW, the values used are $A=3.0$ and $\phi_{0}=2.72, b_{0}=3.15 \times 10^{4}$.

$T{ }^{\circ} \mathrm{K}$	Tungsten		Molybdenum		Tantalum		${ }^{\text {Niobium }}$		ThW ${ }_{\text {c }}$
	I	$w$	I	W	I	$w$	I	W	
1000									$1.73 \times 10^{-7}$
1200									$3.95 \times 10^{-5}$
1400									$2.03 \times 10^{-3}$
1600	$9.27 \times 10^{-7}$	7.74	$2.39 \times 10^{-6}$	6.30	$9.1 \times 10^{-8}$	7.36	$2.19 \times 10^{-5}$	6.40	$4.06 \times 10^{-2}$
1800	$4.47 \times 10^{-5}$	14.2	$1.05 \times 10^{-6}$	11.3	$3.32 \times 10^{-6}$	13.3	$6.95 \times 10^{-6}$	11.4	. 428
2000	$1.00 \times 10^{-3}$	24.0	$2.15 \times 10^{-8}$	19.2	$6.21 \times 10^{-8}$	21.6	$1.16 \times 10^{-2}$	18.5	2.864
2200	$1.33 \times 10^{-2}$	38.2	$2.59 \times 10^{-2}$	30.7	$6.78 \times 10^{-2}$	34.2	. 115	29.9	
2400	. 116	57.7	. 215	47.0	. 509	51.3	. 800	45.3	
2600	. 716	83.8	1.29	69.5	2.25	75.4	5.20	67.0	
2800	3.54	117.6	6.04	98.0	12.53	105.5	60.67	130.6	
3000	14.15	160.5	23.28	116.0	45.60	144.4			

[^272]
## TABLE 686.-PHOTOELECTRIC EFFECT

A negative charged body loses its charge under the influence of ultraviolet radiation because of the escape of negative electrons freed by the absorption of the energy of the radiation. The radiation must have a wavelength shorter than some limiting value $\lambda_{0}$ characteristic of the metal. The emission of these electrons, unlike that from hot bodies, is independent of the temperature. The relation between the maximum velocity $v$ of the expelled electron and the frequency $\nu$ of the radiation is $\left(\frac{1}{2}\right) m v^{2}=h \nu-P$ (Einstein's equation) where $h$ is Planck's constant ( $6.62 \times 10^{-27} \mathrm{erg} \mathrm{sec}$ ), $h \nu$, the energy of a "quanta," $P$, the work which must be done by the electron in overcoming surface forces. ( $\frac{1}{2}$ ) $m v^{2}$ is the maximum kinetic energy the electron may have after escape. Richardson identifies the $P$ of Einstein's formula with the $\phi_{e}$ of electron emission of Table 683. The minimum frequency $\nu_{0}$ (corresponding to maximum wavelength $\lambda_{0}$ ) at which the photoelectric effect can be observed is determined by $h \nu=P . P$ applies to a single electron, whereas $w$ applies to 96,500 coulombs ( $6.02 \times 10^{23}$ electrons) ; therefore $w=N P=.00399 \nu_{0}$ ergs. $\phi=(12.4$ $\left.\times 10^{-5}\right) \lambda_{0}$ volts.

TABLE 687.-THE ELECTRON AFFINITY OF THE ELEMENTS, IN VOLTS

Metal	Contact (Henning)	Thermionic (Langmuir)	Photo- electric and contact (Millikan)	Photo- electric Richardson	Miscellaneous	$\begin{gathered} \text { Single- } \\ \text { inne- } \\ \text { spectra } \end{gathered}$	Adjusted mean
Tungsten	. -	4.52	-	-	-	-	4.52
Platinum	-		-	4.3	4.45	-	4.4?
Tantalum	-	4.31	-	-	-		4.3
Molybdenum	-	4.31	-				4.3
Carbon ....		4.14	-	-	-		4.1
Silver	4.05	-	-	-	-		4.1
Copper	(4.0)	-	-	4.1	-	-	4.0
Bismuth		-	-	3.7	-	-	3.7
Tin	3.78			3.5			3.8
Iron	3.86	3.2?					3.7
Zinc	3.46		-	3.4	-	4.04	3.4
Thorium	-	3.36	-				3.4
Aluminum	3.06	-	-	2.8			3.0
Magnesium	2.63			3.2		4.35	2.7
Titanium		2.4?					2.4
Lithium	-	-	2.35		-	1.85	2.35
Sodium	-	-	1.82	2.1	-	2.11	1.82

There has been considerable controversy over the reality and nature of the contact differences of potential between two metals. At present, owing to the studies of Langmuir, there is a decided tendency to believe that this Volta difference of potential is an intrinsic property of metals closely allied to the phenomena given in Tables 684 to 688 and that the discrepancies among different observers have been caused by the same disturbing surface conditions. The values are for freshly cut surfaces in vacuo. Freshly cut surfaces are more electropositive and grow more electronegative with age. That the observed initial velocities of emission of electrons from freshly cut surfaces are nearly the same for all metals suggests that the more electropositive a metal is the greater the actual velocity of emission of electrons from its surface.


From the equation $w=R T \log \left(N_{A} / N_{B}\right)$, where $w$ is the work necessary per grammolecule when electrons pass through a surface barrier separating concentrations $N_{A}$ and $N_{B}$ of electrons, it can be shown that the Volta potential difference between two metals should be

$$
v_{1}-v_{2}=\frac{1}{F}\left\{w_{2}-w_{1}+R T \log \left(N_{A} / N_{B}\right)\right\}=\frac{w_{2}-w_{1}}{F}=\phi_{2}-\phi_{1}
$$

(see Table 686 for significance of symbols), since the number of free electrons in different metals per unit volume is so nearly the same that $R T \log \left(N_{A} / N_{B}\right)$ may be neglected. The contact potentials may thus be calculated from photoelectric phenomena. They are independent of the temperature. The following table gives a summary of values of $\phi$ in volts obtained from the various phenomena where an electron is torn from the attraction of some surface. In the case of ionization potentials the work necessary to take an electron from an atom of metal vapor is only approximately equal to that needed to separate it from a solid metal surface.

## TABLE 689.-ELECTRODE POTENTIALS

It should not be assumed that all the emf of an electrolytic cell is contact emf. Its emf varies with the electrolyte, whereas the contact emf is an intrinsic property of a metal. There must be an emf between the two electrodes of such a cell dependent upon the concentration of the electrolyte used. The following table gives in its first line the electrode potential $e_{n}$ of the corresponding metals (in solutions of their salts containing normal ion concentration) on assumption of no contact emf at the junction of the metals. The second line, $\phi-e_{n}-3.7$ volts, gives an idea of the electrode potentials (arbitrary zero) exclusive of contact emf.

Metal	g	Cu	Bi	Sn	Fe	Zn	Mg	Li	Na
$e_{\text {A }}$	$+.80$	$+.34$	$+.20$	-. 10	-. 43	-. 76	$-1.55$	$-3.03$	-2.73
$\phi-e_{n}-3.7$	-. 40	$+.04$	+. 20	$-.20$	$-.43$	-. 46	$-.55$	$-1.65$	$-.85$

## TABLE 690-PRESSURE AND NUMBER OF MOLECULES

1. Units of Pressure
```
 \(A_{n}=\) normal atmosphere
 \(=760 \mathrm{mmHg}\) at \(0^{\circ} \mathrm{C}\) and \(45^{\circ}\) latitude
 \(=1.01325 \times 10^{8}\) microbars
1 dyne \(\mathrm{cm}^{-2}=1\) microbar \(=0.75\) micron
 1 micron \(=10^{-3} \mathrm{mmHg}=1.333\) microbars
 \(=1 \mu\)
 \(P_{m m}=\) pressure in mmHg
 \(P_{\mu}=\) pressure in microns \(=10^{-3} P_{m m}\)
 \(P \mu b=\) pressure in microbars \(=1.333 \times 10^{-3} P_{m m}\)
```

2. Number of molecules per unit volume

For ideal gas,

$$
\begin{aligned}
P V & =R_{\circ} T \\
\text { Where } & =\text { volume per gram-molecular weight } \\
P & \equiv \text { pressure } \\
T & \equiv \text { absolute temperature in degrees Absolute }\left({ }^{\circ} \mathrm{K}\right) \\
& \equiv \text { degrees Centigrade }+273.16
\end{aligned}
$$

For ideal gas at $0^{\circ} \mathrm{C}$ and $A_{n}=1$,

$$
\begin{aligned}
& V=V_{o}=22,414.6 \mathrm{~cm}^{3} \\
& \text { Hence } R_{0}=62.364 \mathrm{~mm} \text { liter, } \mathrm{deg}^{-1} \mathrm{~K} \mathrm{~g} \mathrm{~mole}^{-1} \\
& =8.3146 \times 10^{7} \mathrm{erg} \mathrm{deg}^{-1} \mathrm{~K} \mathrm{~g} \mathrm{~mole}^{-1} \\
& \rho=\text { density of gas } / \mathrm{g} / \mathrm{cm}^{3} \\
& =1.2027 \times 10^{-8} M P \mu b / T^{-1} \mathrm{~g} \mathrm{~cm}^{-8} \\
& =1.6035 \times 10^{-5} M P_{m m} / T^{-1} \mathrm{~g} \mathrm{~cm}^{-8} \\
& \text { Where } M=\text { molecular weight in grams } \\
& n=\text { number of molecules per } \mathrm{cm}^{3} \\
& =7.244 \times 10^{15} P \mu b / T \\
& =9.656 \times 10^{18} P_{m m} / T
\end{aligned}
$$

3. The number of molecules per $\mathrm{cm}^{8}$ for different temperatures and pressures

$T\left({ }^{\circ} \mathrm{K}\right)$	$P_{\mu \mathrm{t}}$	$P_{m m}$	$n$	T.	$P_{\mu \nu}$	$P_{m m}$	$n$
273.16	$1.0133 \times 10^{8}$	760	$2.687 \times 10^{19}$	298.16	$1.333 \times 10^{3}$		$3.240 \times 10^{10}$
298.16		"	$2.462 \times 10^{10}$	273.16	1.000	$7.50 \times 10^{-4}$	$2.653 \times 10^{13}$
273.16	$1.333 \times 10^{3}$	1	$3.536 \times 10^{18}$	298.16			$2.430 \times 10^{18}$

[^273]TABLE 691.-MEAN FREE PATHS, L, MOLECULAR DIAMETERS, $\delta$, AND RELATED DATA FOR WATER AND MERCURY VAPORS*

	$t^{\circ} \mathrm{C}$	$P_{m m * *}{ }^{*}$	$10^{5} \eta_{0}$	$10^{9} L^{1}{ }^{1}$	$L_{1}{ }^{\text {P }}$	$10^{8} \delta_{6}$	$10^{-14} \mathrm{~N}$ ¢ $\dagger$
$\mathrm{H}_{2} \mathrm{O}$	0	4.58	8.69	2.90	$6.34 \times 10^{-4}$	4.68	5.27
	15	12.79	9.26				
-	25	23.76	9.64	3.37	$1.42 \times 10^{-4}$		
Hg	219.4	31.57	46.66	6.28	$1.99 \times 10^{-4}$	4.27	6.32
	1500	2.807	39.04	4.87	$1.74 \times 10^{-8}$	4.50	5.70
	100.0	. 2729	33.56	3.93	$1.44 \times 10^{-2}$	4.70	5.22
	25.0	. 0018	25.40	2.66	1.45	5.11	4.42
	. 0		16.2(J)			$6.26(J)$	

[^274]Part 1.-Discussion
Let a denote the most probable velocity, $v_{a}$, the average velocity and $v_{\mathrm{r}}$, the mean velocity (the square root of the mean square). Then

$$
\begin{aligned}
\alpha & =\sqrt{2 R_{n} T / M}=12,895 \sqrt{T / M} \mathrm{~cm} \mathrm{sec} \\
v_{a} & =(2 / \sqrt{\pi}) \quad a=1.1284 a=14,551 \sqrt{T / M} \mathrm{~cm} \mathrm{sec}^{-1} \\
v_{r} & =\sqrt{3 / 2} a=1.225 a=15,794 \sqrt{\Gamma / M} \mathrm{~cm} \mathrm{sec}^{-1}
\end{aligned}
$$

The probability of a random velocity $v=c a$ is

$$
f_{c}=(r / \sqrt{\pi}) c^{2}\left[\exp -c^{2}\right]
$$

The fraction of the total number of molecules, $N$, which have a random velocity equal to or less than $v=c a$ is

$$
y=\frac{N_{c}}{N}=\int_{0}^{0} f_{c} d c
$$

Part 2 of this table gives values of $f_{c}$ and of $y$ for a series of values of $c$. The third column gives values of $\Delta y$, which is the fraction of the total number that have values of $c$ between that given in the same horizontal row and that in the preceding row.
From the relation for $f_{c}$ we obtain the relation for the probability that a molecule possesses the translational energy $E$. Let $x=E /(k T)$ where $x$ is a dimensionless quantity. Then

$$
f_{x}=2 \sqrt{x / \pi}(\exp -x)
$$

and the average kinetic energy is $E_{a v}=(3 / 2) k T$
where

$$
\begin{aligned}
k & =\text { Boltzmann constant } \\
& =1.3805 \times 10^{-10} \mathrm{erg} \mathrm{deg}^{-1} \mathrm{~K}
\end{aligned}
$$

The last two columns in Part 2, below, give values of $f_{x}$ for a series of values of $x$.
Part 2.-Values of functions for application of distribution laws

c	$f$ c	$y$	$\Delta y$	$x$	$f_{x}$
0	0	0		0	
. 2	. 0867	. 0059	. 0059	. 1	. 3229
. 3	. 1856	. 0193	. 0134	. 2	. 4131
. 5	. 4393	. 0812	. 0619	. 5	. 4839
. 7	. 6775	. 1939	. 1127	. 7	. 4688
1.0	. 8302	. 4276	. 2337	1.0	. 4152
1.3	. 7036	. 6634	. 2358	1.4	. 3294
1.6	. 4464	. 8369	. 1735	1.8	. 2502
1.8	. 2862	. 9096	. 0727	2.2	. 1855
2.0	. 1652	. 9540	. 0444	2.5	. 1464
2.2	. 0867	. 9784	. 0244	3.0	. 0973
2.5	. 0275	. 9941	. 0157	3.5	. 0637
3.0	. 0025	$1-4.2 \times 10^{-8}$		4.0	. 0413
4.0	$4.1 \times 10^{-6}$	$1-5.1 \times 10^{-7}$		5.0	. 0170
5.0	$\% .8 \times 10^{-10}$	$1-7.9 \times 10^{-11}$		6.0	. 0069

Part 3.-Rates of incidence and of evaporation of molecules
The rate at which molecules strike a surface is given by

$$
\begin{aligned}
\nu & =(1 / 4) n v_{a} \mathrm{~cm}^{-2} \mathrm{sec}^{-1} \\
& =2.635 \times 10^{10}\left(P_{\mu b}\right) /(\sqrt{M T}) \mathrm{cm}^{-2} \mathrm{sec}^{-1} \\
& =3.513 \times 10^{22} P_{m m} / \sqrt{M T} \mathrm{~cm}^{-2} \mathrm{sec}^{-1} \\
G & =\text { mass of gas of molecular wt, } M, \\
& =1.6604 \times 10^{-24} M \nu \\
& =4.375 \times 10^{-5}\left(P_{\mu b}\right)(\sqrt{M / T}) \mathrm{g} \mathrm{~cm}^{-2} \mathrm{sec}^{-1} \\
& =5.833 \times 10^{-2}\left(P_{m m}\right)(\sqrt{M / T}) \mathrm{g} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}
\end{aligned}
$$

If we assume that the accommodation coefficient for condensation is unity, then the rate of evaporation is equal to the rate of condensation and the vapor pressure, $P_{m m}$, is given by the relation

$$
P_{m m}=17.14 G \sqrt{T / M}
$$

# TABLE 693.-MASSES, VELOCITIES, AND RATES OF INCIDENCE OF MOLECULES* 

$\nu_{1}=$ rate of incidence of molecules per $\mathrm{cm}^{2}$ per sec, at $0^{\circ} \mathrm{C}$ and 1 microbar.
$\nu_{1}=$ rate of incidence of molecules per $\mathrm{cm}^{2}$ per sec, at $0^{\circ} \mathrm{C}$ and 1 mm .
$G_{1}=$ mass of gas corresponding to $\nu_{1}\left(\mathrm{~g} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}\right)$.
$G_{1^{\prime}}=$ mass of gas corresponding to $\nu_{1^{1}}\left(\mathrm{~g} \mathrm{~cm}^{-2} \sec ^{-1}\right)$.
$m=$ mass of molecule in grams $=1.66035 \times 10^{-24} M ; M=$ molecular weight ; $\rho_{1}{ }^{\circ}$ $=$ density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ of gas at $0^{\circ} \mathrm{C}$ and 1 microbar.
$v_{a}=$ average velocity ( $\mathrm{cm} \mathrm{sec}^{-1}$ ).

$\begin{gathered} \text { Gas or } \\ \text { vapor } \end{gathered}$	M	$10^{29} \mathrm{~m}$	$10^{-4} \times v_{\text {a }}$			$10^{-17 \nu_{1}}$	$10^{-20} \nu_{1}{ }^{\prime}$	$10^{5} G_{1}$	$10^{2} G_{1}{ }^{\prime}$
			$10^{10} \rho_{1} 0$	$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$				
$\mathrm{H}_{2}$	2.016	. 3347	. 8878	16.93	17.70	11.23	14.97	. 3759	. 5012
He	4.003	. 6646	1.7631	12.01	12.56	7.969	10.63	. 5297	. 7062
CH4	16.04	2.663	7.063	6.005	6.273	3.981	5.308	1.060	1.414
$\mathrm{NH}_{3}$	17.03	2.827	7.498	5.829	6.089	3.865	5.152	1.092	1.456
$\mathrm{H}_{2} \mathrm{O}$	18.02	2.992	7.936	5.665	5.919	3.756	5.007	1.124	1.498
Ne	20.18	3.351	8.886	5.355	5.594	3.550	4.733	1.190	1.586
CO	28.01	4.651	12.34	4.543	4.746	3.012	4.016	1.402	1.868
$\mathrm{N}_{2}$	28.02	4.652	12.34	4.542	4.745	3.011	4.015	1.402	1.868
Air	28.98**	4.811	12.77	4.468	4.668	2.962	3.950	1.425	1.900
$\mathrm{O}_{2}$	32.00	5.313	14.09	4.252	4.442	2.819	3.758	1.497	1.996
A	39.94	6.631	17.59	3.805	3.976	2.523	3.363	1.675	2.230
$\mathrm{CO}_{2}$	44.01	7.308	19.38	3.624	3.787	2.403	3.204	1.756	2.342
$\mathrm{CH}_{3} \mathrm{Cl}$	50.49	8.383	22.23	3.385	3.356	2.244	2.991	1.881	2.508
$\mathrm{SO}_{2}$	64.06	10.64	28.21	3.004	3.139	1.992	2.656	2.118	2.825
$\mathrm{Cl}_{2}$	70.91	11.77	31.23	2.856	2.984	1.893	2.524	2.229	2.973
Kr	83.7	13.90	36.85	2.629	2.747	1.743	2.324	2.422	3.229
$\mathrm{C}_{7} \mathrm{H}_{10}$	100.2	16.63	44.12	2.403	2.510	1.593	2.123	2.650	3.533
Xe	131.3	21.80	57.82	2.099	2.193	1.392	1.856	3.034	4.044
$\mathrm{CCl}_{4}$	153.8	25.54	67.72	1.939	2.026	1.286	1.714	3.283	4.377
$\mathrm{Hg}{ }^{\dagger}$	200.6	33.31	(88.33)	1.698	1.774	(1.126	1.501	3.750	4.998)

* For reference, see footnote 219 , p. 636.
** Calculated from the value $\rho$ (density) $=1.293 \times 10^{-8}$ at $0^{\circ} \mathrm{C}$ and 760 mmHg .
$\dagger$ Since the vapor pressure of mercury at $0^{\circ} \mathrm{C}$ is $1.85 \times 10^{-4} \mathrm{mmHg}(=0.247 \mu b)$, the values given in parentheses have no physical significance. Actual values at $0^{\circ} \mathrm{C}$, corresponding to saturation pressure, are as follows: $\rho=21.79 \times 10^{-10} ; \nu=2.777 \times 10^{16} ; G=9.249 \times 10^{-6}$.

TABLE 694.-MOLECULAR VELOCITIES ${ }^{220}$

Gas	Root mean square velocities, NTP	Average velocities, NTP
Hydrogen	$18.38 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$	$16.93 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$
Helium .	13.11	12.08
Water vapor	6.15	5.65
Neon	5.84	5.38
Carbon monoxide	4.93	4.54
Nitrogen	4.93	4.54
Ethylene	4.93	4.54
Nitric oxide	4.76	4.38
Oxygen .	4.61	4.25
Argon	4.13	3.80
Carbon dioxide	3.93	3.62
Nitrous oxide	3.93	3.62
Krypton	2.86	2.63
Xenon	2.28	2.10
Mercury vapor	1.84	1.70
Air ........	4.85	4.47
Ammonia	6.33	5.82

[^275]Let $L=$ mean free path, $\delta=$ molecular diameter. Then

$$
\begin{array}{ll} 
& L=\frac{1}{\sqrt{2} \pi n \delta^{2}} \\
\text { and } & \eta=0.499 \rho v_{o} L  \tag{2}\\
\text { when } & \eta=\text { coefficient of viscosity } \\
& \rho=\text { density of gas at given pressure and temperature }
\end{array}
$$

Unit of $\eta$ is the poise $=\mathrm{g} \mathrm{cm}^{-1} \mathrm{sec}^{-1}$
Hence

$$
\begin{align*}
L & =1.1451 \times 10^{4} \frac{\eta}{P_{\mu b}} \sqrt{\frac{T}{M}} \mathrm{~cm}  \tag{3}\\
& =8.589 \frac{\eta}{P_{m m}} \sqrt{\frac{T}{M}} \mathrm{~cm}  \tag{4}\\
\delta^{2} & =\frac{2.714 \times 10^{-21}}{\eta} \sqrt{M T} \mathrm{~cm}^{2} \tag{5}
\end{align*}
$$

and
$\eta$, as a function of $T$, is given by the relation

$$
\begin{equation*}
\eta_{T}=\left(\frac{T}{T_{0}}\right)^{3 / 2}\left(\frac{C+T_{0}}{C+T}\right) \tag{6}
\end{equation*}
$$

where $\eta_{o}=$ value at $T_{0 .} \eta=$ value at $T$ and $C$ is known as the Sutherland constant. For short ranges of temperature, the exponential relation is used, of the form

$$
\begin{equation*}
\left(\eta_{r} / \eta_{0}\right)=\left(T / T_{\theta}\right)^{x} \tag{7}
\end{equation*}
$$

In Tables 691 and 696, which give values of $L, \delta$ and related data for a number of gases and vapors,

$$
\begin{aligned}
& \eta_{15}=\text { coefficient of viscosity at } 15^{\circ} \mathrm{C} \\
& \eta_{0}=\text { " " " " } 0^{\circ} \mathrm{C} \\
& \text { and } \eta_{25}=\text { " " " " } 25^{\circ} \mathrm{C} \\
& x=\text { valuc of exponent in equation (7) } \\
& L_{0}{ }^{1}=\text { value of mean free path (in } \mathrm{cm} \text { ) at } 0^{\circ} \mathrm{C} \text { and } \\
& 1 \mathrm{mmHg} \\
& L_{0}{ }^{280}=\text { value of mean free path (in } \mathrm{cm} \text { ) at } 0^{\circ} \mathrm{C} \text { and } \\
& 760 \mathrm{mmHg} \\
& L_{25}{ }^{1}=\text { value of mean free path (in } \mathrm{cm} \text { ) at } 25^{\circ} \mathrm{C} \text { and } \\
& 1 \mathrm{mmHg} \\
& L_{25}{ }^{750}=\text { value of mean frce path (in } \mathrm{cm} \text { ) at } 25^{\circ} \mathrm{C} \text { and } \\
& 760 \mathrm{mmHg} \\
& \delta=\text { value of molecular diameter (in cm) at } 0^{\circ} \mathrm{C} \\
& N_{s}=1.154 / \delta^{2}=\text { of molecules per } \mathrm{cm}^{2} \text { to form a mono- } \\
& \text { layer (assuming that the spacing is that of } \\
& \text { close-packed or face-centered lattice) } \\
& \omega=\text { collision-frequency at } 25^{\circ} \mathrm{C} \text { and } 760 \mathrm{mmHg} \\
& =\tau^{\prime} / L_{25}{ }^{\text {sico}}
\end{aligned}
$$

For the vapors of $\mathrm{H}_{2} \mathrm{O}$ and Hg (Table 691), $P=$ vapor pressure in mmHg at the ten1perature $t$, and $L_{t}$ and $\delta_{t}$ denote the values of the mean free path and diameter, respectively, at this temperature. For $\mathrm{H}_{2} \mathrm{O}$ vapor, $C=650$ and $\eta_{15}=9.26 \times 10^{-5}$. For $\mathrm{Hg}, C=$ 942.2 and value of $\eta$ at $t=219.4^{\circ} \mathrm{C}$ was used. The values of $\eta_{0}$ and $\delta_{0}$ for Hg at $0^{\circ} \mathrm{C}$ are those given by Jeans.

642
TABLE 696.-VISCOSITY, $\eta$, MEAN FREE PATHS, L, MOLECULAR DIAMETERS, $\delta$, AND RELATED DATA FOR A NUMBER OF GASES *

Gas:   Characteristic	$\mathrm{H}_{2}$	He	Ne 67	Air 79	$\begin{aligned} & \mathrm{O}_{2} \\ & 81 \end{aligned}$	A $.86$	$\mathrm{CO}_{2}$	Kr 85	Xe 92
$x^{* *}$	.$^{.} 69$								. 92
$10^{*} \times \eta_{15}{ }^{\circ} \dagger$	871	1943	3095	1796	2003	2196	1448	2431	2236
$10^{7} \times \eta_{0}{ }^{\circ}$	839	1878	2986	1722	1918	2097	1377	2372	2129
$10^{7} \times \eta_{25}{ }^{\circ}$	892	1986	3166	1845	2059	2261	1496	2502	2308
$10^{3} \times L_{0}{ }^{10} \ddagger$	8.39	13.32	9.44	4.54	4.81	4.71	2.95	3.69	2.64
$10^{\text {n }} \times L_{0^{0}}{ }^{\text {780 }}$	11.04	17.53	12.42	5.98	6.33	6.20	3.88	4.85	3.47
$10^{3} \times L_{20^{0}}{ }^{1}$	9.31	14.72	10.45	5.09	5.40	5.31	3.34	4.06	2.98
$10^{6} \times L_{25}{ }^{0700}$	12.26	19.36	13.75	6.69	7.10	6.67	4.40	5.34	3.93
$10^{8} \times \delta$	2.75	2.18	2.60	3.74	3.64	3.67	4.65	4.15	4.91
C	84.4	80	56	112	125	142	254	188	252
$10^{-14} \times N_{8}$ §	15.22	24.16	17.12	8.24	8.71	8.54	5.34	6.69	4.78
$10^{-0} \times \omega$ i	14.45	7.16	1.68	6.98	6.26	5.70	8.61	6.48	5.71

* For reference, see footnote 219, p. 636.
** ${ }_{x}$ from relations $\eta_{T}=a T^{x} . \quad \stackrel{\dagger}{\dagger} \stackrel{6}{=}$ a measure of strength of the attraction forces (in dynes) between molecules. $\ddagger L_{o 0^{1}}=$ mean free path at $0^{\circ} \mathrm{C}$ and .1 mmHg , etc. $\delta N_{s}=$ number of molecules $/ \mathrm{cm}^{2}$ for monomolecular layer. If $\omega=$ collision frequency ( $\mathrm{sec}^{-1}$ ) at $25^{\circ} \mathrm{C}$ and 760 mmHg .


## TABLES 697-712.-ATOMIC AND MOLECULAR DIMENSIONS

## TABLE 697.-EFFECTIVE ATOMIC RADII

Goldschmidt, on the basis of reasonable though empirical assumptions, has calculated effective radii of atoms in various charged conditions; Pauling, on the basis of wave mechanics, has presented theoretical values for most of the elements, the two series agreeing well in many cases. The latter values are printed in boldface type ; the values considered nontypical are in parentheses ; e.g., for silicon we have : $\mathrm{Si}^{+4}(0.22-) 0.39-\mathbf{0 . 4 1}, \mathrm{Si}^{\circ}\left(1.12-\right.$ ) $1.18, \mathrm{Si}^{-4}$ (1.98); 2.71, signifying silicon, carrying $4+$ charges, has apparent radius between 0.22 and 0.41 ; but the lower values relate to compounds where the atoms appear to be deformed ; so Goldschmidt gives 0.39 as most significant. Wave mechanics yields 0.41. Neutral, the radius ranges from 1.2, in abnormal compounds, to 1.18 in those typical ; when carrying 4 - charges, the value is 1.98 , according to calculations deemed faulty, 2.71 according to theory.

In applying the data to replacements, halides and oxides are usually ionized, and the values in the outer columns apply. Thus in fluorite the value for $\mathrm{Ca}^{+2}$ should be added to that for $\mathrm{F}^{-1}$, giving between 2.32 and 2.42 , or 2.37 as a mean; and the observed $\mathrm{Ca}-\mathrm{F}$ distance in the crystal is 2.36 angstrom units. In the remaining types of compounds the atoms appear to be largely neutral and the first column should be used.


TABLE 698*.-DIFFUSION COEFFICIENTS OF GASEOUS IONS AT NTP ${ }^{221}$

Gas	Dry gas		Moist gas	
	$D^{+}$	$D^{-}$	D+	D-
Air	. 028	. 043	. 032	. 035
Oxygen	. 025	. 0396	. 0288	. 0358
Carbon dioxide	. 023	. 026	. 0245	. 0255
Nitrogen	. 029	. 0414		
Hydrogen	. 123	. 190	. 128	. 142

[^276]TABLE 699.-DIFFUSION COEFFICIENTS OF NEUTRAL GASES AT $0^{\circ} \mathrm{C}$ AND 760 mmHg *

Gases	$D^{* *}$	$m \dagger$	Gases	$D^{* *}$	$m \dagger$
A - He	. 706		$\mathrm{H}_{2}-\mathrm{CO}$	. 651	1.75
$\mathrm{Air}-\mathrm{CO}_{2}$	. 134		$\mathrm{H}_{2}-\mathrm{CO}_{2}$	. 534	1.75
Air - $\mathrm{O}_{2}$	. 178		$\mathrm{H}_{2}-\mathrm{N}_{2}$	. 674	1.75
$\mathrm{CO}-\mathrm{CO}_{2}$	. 136	2.00	$\mathrm{H}_{2}-\mathrm{N}_{2} \mathrm{O}$	. 535	1.75
$\mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$	. 642		$\mathrm{H}_{2}-\mathrm{O}_{2}$	. 679	1.75
$\mathrm{CO}-\mathrm{O}_{2}$	. 183	1.75	$\mathrm{H}_{2} \mathrm{O}-\mathrm{Air}$	. 220	1.75
$\mathrm{CO}_{2}-\mathrm{Air}$	. 134		$\mathrm{Hg}-\mathrm{Air}$	. 112	
$\mathrm{CO}_{2}-\mathrm{H}_{2} \mathrm{O}$	. 528		$\mathrm{O}_{2}-\mathrm{Air}$	. 178	1.75
$\mathrm{He}-\mathrm{A}$	. 641	1.75	$\mathrm{O}_{2}-\mathrm{H}_{2}$	. 722	
$\mathrm{H}_{2}-$ Air	. 661	1.75	$\mathrm{O}_{2}-\mathrm{CO}$	. 185	1.75
			$\mathrm{O}_{2}-\mathrm{CO}_{2}$	. 136	2.00

[^277]
## TABLE 700.-MOBILITIES OF POSITIVE IONS IN NOBLE GASES AT 760 mmHg AND $0^{\circ} \mathrm{C}$ *

( $\mathrm{cm} / \mathrm{sec}$ per volt $/ \mathrm{cm}$ )

Ion	He	Ne	A	Kr	Xe
Gas ${ }^{\dagger}$	20.1	5.85	1.81	. 88	. 61
Li	24.2	11.87	4.68	3.72	2.84
Na	22.7	8.16	3.03	2.20	1.69
K	21.5	7.51	2.64	1.86	1.35
Rb	20.1	6.75	2.24	1.49	1.03
Cs	18.4	6.10	2.10	1.33	. 91

* For reference, see footnote 221 , above.
$\dagger$ Ions same as gas.

TABLE 701.-MOLECULAR DIAMETERS, $\delta$, FOR ATTRACTIVE SPHERES *

Gas	From $\eta$ †	From $b \ddagger$	Gas	From $\eta$ †	From $b \ddagger$
Argon	$2.87 \times 10^{-8} \mathrm{~cm}$	$2.87 \times 10^{-8} \mathrm{~cm}$	Hydrogen	$2.38 \times 10^{-8} \mathrm{~cm}$	$2.53 \times 10^{-8} \mathrm{~cm}$
Krypton	3.15	3.16	Nitrogen	3.13	3.56-3.10
Xenon	3.50	3.45	Air ....	3.11	3.32
Helium	1.91	1.97	Carbon		
Oxygen	2.96	2.91	dioxide	3.23	3.22
			. .	3.30	3.42

[^278]
## TABLE 702.-MOBILITY* OF SINGLY-CHARGED GASEOUS IONS AT 760 mmHg AND $0^{\circ} \mathrm{C}$ **

( $\mathrm{cm} / \mathrm{sec}$ per volt $/ \mathrm{cm}$ )

Gas	$(\epsilon-1) \dagger$	$K_{0}{ }^{-}$	$K{ }^{+}$
Air (dry)	. 000585	2.2	1.6
A (pure)	. 00056	206.0	1.81
$\mathrm{Cl}_{2}$		. 74	. 74
$\mathrm{CCl}_{4}$	. 0030	. 31	. 30
CO	. 00070	1.14	1.10
$\mathrm{CO}_{2}$ (dry)	. 00098	. 98	. 84
$\mathrm{H}_{2}$	. 00028	8.15	5.9
$\mathrm{H}_{2}$ (pure)		7900.0	13.8
HCl .....	. 0046	. 62	. 53
$\mathrm{H}_{2} \mathrm{O}$ (at $100^{\circ} \mathrm{C}$ )		. 95	1.1
$\mathrm{H}_{2} \mathrm{~S} \ldots . . . . .$.	. 0040	. 56	. 62
He	. 000074	6.3	5.09
He (pure)		500.0	21.4
Hg in He .	....	...	13.4
Hg in $\mathrm{N}_{2}$.		. .	2.02
$\mathrm{Kr} \ldots .$.	. 0007685		. 94
$\mathrm{N}_{2}$	. 00058	1.84	1.27
$\mathrm{N}_{2}$ (pure)		145.0	2.51
$\mathrm{NH}_{3}$	. 0072	. 66	. 56
$\mathrm{NH}_{3}$ in $\mathrm{N}_{2}$.			3.06
$\mathrm{N}_{2} \mathrm{O}$	. 00113	. 90	. 82
Ne	. 0001231		5.64
$\mathrm{O}_{2}$	. 00051	1.8	1.31
$\mathrm{SO}_{2}$	. 0095	. 41	. 41

* $K=K_{o \rho_{0}} / \rho$, where $\rho_{0}$ is the gas density at $N T P$ and $\rho$ is the density at which $K$ is desired.

$$
K=\frac{0.235\left(\frac{m_{1}+m_{2}}{m_{1}}\right)^{1}}{\left(\rho / \rho_{o}\right)(\epsilon-1)_{o} M_{o}}
$$

where $m_{1}=$ mass of ion, $m_{2}=$ mass of gas particle, $\epsilon=$ dielectric constant, $(\epsilon-1) o$ is calculated for NTP. $M_{0}=$ molecular weight of gas. Values of mobility in this table may not be absolute, but are of orienting value.
** For reference, see footnote 221, p. 644.
$\dagger$ International Critical Tables; Tables Annuelles Internationales de Constants.

TABLE 703.-MOLECULAR DIAMETER (BRAGG)*

Gas	From crystal measured in $2 d$	From viscosity 7	Ratio, $2 d / \eta$
Neon	$1.30 \times 10^{-8} \mathrm{~cm}$	$2.35 \times 10^{-8} \mathrm{~cm}$	. 553
Argon	2.05	2.87	. 714
Krypton	2.35	3.15	. 746
Xenon .	2.70	3.50	. 771

* For reference, see foot note 220, p. 640.

TABLE 704.-NUMBER OF MOLECULES (PER $\mathrm{cm}^{2}$ AT $0^{\circ} \mathrm{C}$ ) OF MONOLAYER AND EQUIVALENT VOLUME ( $\left.\mathrm{cm}^{\mathrm{s}}\right)^{*}$

Gas	$\begin{aligned} & \text { No molecules } \\ & \times 10^{-14} \end{aligned}$	$\begin{aligned} & \text { Vol gas } \\ & \text { at } 760 \mathrm{~mm} \mathrm{mg} \\ & \text { and } 20^{\circ} \mathrm{C} \\ & \times 10^{5} \end{aligned}$	Gas	$\begin{gathered} \text { No molecules } \\ \times 10^{-14} \end{gathered}$	$\begin{aligned} & \text { Vol gas } \\ & \text { at } 760 \mathrm{~mm} \mathrm{mg} \\ & \text { and } 20^{\circ} \mathrm{C} \\ & \times 10^{5} \end{aligned}$
$\mathrm{H}_{2}$	. 15.22	6.08	CO	8.07	3.23
He	. 24.16	9.65	$\mathrm{CO}_{2}$	5.34	2.13
A	. 8.54	3.41	$\mathrm{CH}_{4}$	5.23	2.09
$\mathrm{N}_{2}$	8.10	3.24	$\mathrm{NH}_{3}$	4.56	1.82
O	. 8.71	3.48	$\mathrm{H}_{2} \mathrm{O}$	5.27	2.11

[^279]According to Langmuir, in solids and liquids every atom is chemically combined to adjacent atoms. In most inorganic substances the identity of the molecule is generally lost, but in organic compounds a more permanent existence of the molecule probably occurs. When oil spreads over water evidence points to a layer a molecule thick and that the molecules are not spheres. Were they spheres and an attraction existed between them and the water, they would be dissolved instead of spreading over the surface. The presence of the $-\mathrm{COOH},-\mathrm{CO}$ or -OH groups generally renders an organic substance soluble in water, whereas the hydrocarbon chain decreases the solubility. When an oil is placed on water the -COOH groups are attracted to the water and the hydrocarbon chains repelled but attracted to each other. The process leads the oil over the surface until all the -COOH groups are in contact if possible. Pure hydrocarbon oils will not spread over water. Benzene will not mix with water. When a limited amount of oil is present the spreading ceases when all the water-attracted groups are in contact with water. If weight $w$ of oil spreads over water surface $A$, the area covered by each molecule is $A M / w N$ where $M$ is the molecular weight of the oil $(\mathrm{O}=16), N$, Avogadro's constant. The vertical length of a molecule $l=M / a \rho N=W / \rho A$ where $\rho$ is the oil density and $a$ the horizontal area of the molecule.

Substance	Cross section in $\mathrm{cm}^{2} \times 10^{16}$	$\begin{aligned} & l \text { in } \mathrm{cm} \\ & \left(\text { lengtb) } \times 10^{8}\right. \end{aligned}$
Palmitic acid $\mathrm{C}_{13} \mathrm{H}_{31} \mathrm{COOH}$	24	19.6
Stearic acid $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}$.	24	21.8
Cerotic acid $\mathrm{C}_{25} \mathrm{H}_{51} \mathrm{COOH}$	25	29.0
Oleic acid $\mathrm{C}_{1}: \mathrm{H}_{33} \mathrm{COOH}$.	48	10.8
Linoleic acid $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{COOH}$	47	10.7
Linolenic acid $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{COOH}$	66	7.6
Ricinoleic acid $\mathrm{C}_{17} \mathrm{H}_{32}(\mathrm{OH}) \mathrm{COOH}$	90	5.8
Cetyl alcohol $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{OH} \ldots . . . . . .$. .	21	21.9
Myricyl alcohol $\mathrm{C}_{30} \mathrm{H}_{61} \mathrm{OH}$.	29	35.2
Cetyl palmitate $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOC}_{10} \mathrm{H}_{33}$	21	44.0
Tristearin ( $\left.\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{5} \ldots \ldots$.	69	23.7
Trielaidin $\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{5}$	137	11.9
Triolein $\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{5}$.	145	11.2
Castor oil ( $\left.\mathrm{C}_{77} \mathrm{H}_{32}(\mathrm{OH}) \mathrm{COO}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{5}$	280	5.7
Linseed oil ( $\left.\mathrm{C}_{12} \mathrm{H}_{31} \mathrm{COO}\right)_{3} \mathrm{C}_{3} \mathrm{H}_{5} \ldots$	143	11.0

TABLE 706.-VOLUMES OF INERT GAS ATOMS *

Gas	Vo'ume from radius	$b$	$\frac{b}{\text { volume }}$	$\begin{gathered} \text { Volume } \\ \text { of } \\ \text { liquid } \end{gathered}$
Neon	3.33	17.1	5.1	16.7
Argon	8.6	32.2	3.8	28.1
Krypton	12.5	39.7	3.2	38.9
Xenon	18.8	50.8	2.7	47.5

[^280]| Material | $\begin{gathered} \text { ro } \\ \text { observed } \\ A \end{gathered}$ | $\stackrel{r_{0}}{\text { calculated }}$ | Melting ${ }^{\circ} \mathrm{C}$ ( C , | Material | $\stackrel{\text { ro }}{\text { observed }}$ |  | Melting ${ }^{\text {point, }} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sodium chloride structure |  |  |  |  |  |  |  |
| LiF | 2.01 | 2.10 | 870 | NH4 | 3.62 | 3.65 |  |
| LiCl | 2.57 | 2.60 | 613 | AgF | 2.46 | 2.30 | 435 |
| LiBr | 2.75 | 2.75 | 547 | AgCl | 2.77 | 2.80 | 455 |
| LiI | 3.00 | 3.00 | 446 | AgBr | 2.88 | 2.95 | 434 |
| NaF | 2.31 | 2.35 | 980 | MgO | 2.10 | 2.15 | 2800 |
| NaCl | 2.81 | 2.85 | 804 | MgS | 2.60 | 2.60 |  |
| NaBr | 2.98 | 3.00 | 755 | MgSe | 2.73 | 2.70 |  |
| NaI | 3.23 | 3.25 | 651 | CaO | 2.40 | 2.40 | 2572 |
| KF | 2.67 | 2.65 | 880 | CaS. | 2.84 | 2.85 |  |
| KCl | 3.14 | 3.15 | 776 | CaSe | 2.96 | 2.95 |  |
| KBr | 3.29 | 3.30 | 730 | CaTe | 2.97 | 3.15 |  |
| KI | 3.53 | 3.55 | 773 | SrO | 2.58 | 2.60 | 2430 |
| RbF | 2.82 | 2.80 | 760 | SrS . | 3.01 | 3.05 | 882 |
| RbCl | 3.27 | 3.30 | 715 | SrSe | 3.12 | 3.15 |  |
| RbBr | 3.43 | 3.45 | 682 | SrTe. | 3.33 | 3.35 |  |
| RbI | 3.66 | 3.70 | 642 | BaO. | 2.77 | 2.75 | 1923 |
|  | 3.00 | 3.05 | 684 | BaS . | 3.19 | 3.20 |  |
| $\mathrm{NH}, \mathrm{Cl}$ | 3.27 | 3.25 |  | BaSe | 3.30 | 3.30 |  |
| $\mathrm{NH}_{4} \mathrm{Br}$ | 3.45 | 3.40 |  | BaTe | 3.50 | 3.50 |  |
| Cesium chloride structure |  |  |  |  |  |  |  |
| CsCl | 3.56 | 3.55 | 646 | $\mathrm{NH}_{4} \mathrm{Br}$ | 3.51 | 3.40 |  |
| CsBr | 3.71 | 3.70 | 636 | $\mathrm{NH}_{4} \mathrm{I}$ | 3.78 | 3.65 |  |
|  |  | 3.95 | 621 | TICl | 3.33 |  | 430 |
| $\mathrm{NH}_{4} \mathrm{Cl}$ | 3.34 | 3.25 |  | TlBr | 3.44 |  | 460 |
| Zincblende structure |  |  |  |  |  |  |  |
| CuCl | 2.34 | 2.30 | 422 | ZnTe | 2.64 | 2.65 |  |
| CuBr | 2.46 | 2.45 | 504 | CdS | 2.52 | 2.50 | 1750 |
| CuI | 2.62 | 2.70 | 605 | CdSe | 2.62 | 2.60 |  |
| BeS | 2.10 | 2.10 |  | CdTe |  | 2.80 |  |
| BeSe | 2.18 | 2.20 |  | HgS | 2.53 | 2.50 |  |
| BeTe | 2.43 | 2.40 |  | HgSe | 2.62 | 2.60 |  |
| ZnS | 2.35 | 2.35 | 1800 | HgTe | 2.79 | 2.80 |  |
| ZnSe | 2.45 | 2.45 |  |  |  |  |  |

Wurtzite structure (first distance is that to neighbor along axis, second to three neighbors in same layer)

$\mathrm{NH}_{4} \mathrm{~F}$	2.63, 2.76	2.75		ZnS	2.36, 2.36	2.35	1850
BeO	1.64, 1.60	1.65	2570	CdS	2.52, 2.56	2.50	1750
Z 11 O	1.94, 2.04	1.90		CdSe	2.63, 2.64	2.60	

[^281](Angstroms)

$\begin{gathered} \mathrm{Be}^{++} \\ .20 \end{gathered}$	$\begin{gathered} \mathrm{Li}^{+} \\ .80 \end{gathered}$				
$\mathrm{Mg}^{++}$	$\mathrm{Na}^{+}$	$\mathrm{F}^{-}$	$\mathrm{O}^{--}$		
. 70	1.05	1.30	1.45		
$\mathrm{Ca}^{++}$	$\mathrm{K}^{+}$	$\mathrm{Cl}^{-}$	$\mathrm{S}^{--}$	$\mathrm{Zn}^{++}$	$\mathrm{Cu}^{+}$
. 95	1.35	1.80	1.90		. 50
Sr ${ }^{++}$	$\mathrm{Rb}^{+}$	$\mathrm{Br}^{-}$	Se--	$\mathrm{Cd}^{++}$	$\mathrm{Ag}^{+}$
1.15	1.50	1.95	2.00	. 60	1.00
$\mathrm{Ba}^{++}$			Te ${ }^{-}$	$\mathrm{Hg}^{+}$	
1.30	$1.75$	2.20	2.20	. 60	
	$\begin{aligned} & \mathrm{NH}_{4}^{+} \\ & 1.45 \end{aligned}$				

*For reference, see footnote 203, p. 624.

TABLE 703.-CRYSTAL STRUCTURE AND INTERATOMIC DISTANCES FOR METALS (Angstroms) ${ }^{*}$

Abbreviations: b.c., body-centered cubic; f.c., face-centered cubic ; hex, hexagonal ; di, diamond; *, other structures.

$\begin{aligned} & \mathrm{Li} \text { b.c. } \\ & 3.03 \end{aligned}$	Na b.c. 3.72	$\begin{aligned} & \text { K b.c. } \\ & 4.50 \end{aligned}$	$\begin{aligned} & \mathrm{Rb} \text { b.c. } \\ & 4.86 \end{aligned}$	$\begin{aligned} & \text { Cs b.c. } \\ & 5.25 \end{aligned}$
$\begin{aligned} & \text { Be hex } \\ & 2.28 \\ & 2.24 \end{aligned}$	Mg hex   3.20   3.19	$\begin{aligned} & \text { Ca f.c. } \\ & 3.93 \end{aligned}$	$\begin{aligned} & \mathrm{Sr} \text { f.c. } \\ & 4.29 \end{aligned}$	$\begin{aligned} & \text { Ba b.c. } \\ & 4.35 \end{aligned}$
B	$\begin{aligned} & \mathrm{Al} \text { f.c. } \\ & 2.85 \end{aligned}$	Sc	$\begin{aligned} & \mathrm{Y} \\ & 3.58 \end{aligned}$	La hex, f.c. 3.72, 3.73
		Ti hex 2.95	$\begin{aligned} & \mathrm{Zr} \text { hex } \\ & 3.23 \end{aligned}$	${ }_{3.32}$ Hex
		2.90	3.18	3.33
		$\begin{aligned} & \text { V b.c. } \\ & 2.63 \end{aligned}$	Nb	$\begin{aligned} & \text { Ta b.c. } \\ & 2.88 \end{aligned}$
		$\begin{aligned} & \mathrm{Cr} \text { b.c. } \\ & 2.49 \end{aligned}$	$\underset{2.72}{\text { Mo b.c. }}$	$\begin{aligned} & \mathrm{W} \text { b.c. } \\ & 2.73 \end{aligned}$
		$\mathrm{Mn}_{2.50}{ }^{*}$		
		Fe f.c. $2.57,2.48$	$\begin{aligned} & \text { Ru hex } \\ & 2.69 \\ & 2.65 \end{aligned}$	$\begin{aligned} & \text { Os hex } \\ & 2.71 \\ & 2.67 \end{aligned}$
		$\begin{aligned} & \text { Co hex, f.c. } \\ & 2.71 \end{aligned}$	$\begin{aligned} & \mathrm{Rh} \text { f.c. } \\ & 2.69 \end{aligned}$	$\begin{aligned} & \text { Ir f.c. } \\ & 2.70 \end{aligned}$
		$\begin{aligned} & \mathrm{Ni} \text { f.c. } \\ & 2.49 \end{aligned}$	Pd f.c. 2.74	$\begin{aligned} & \mathrm{Pt} \text { f.c. } \\ & 2.76 \end{aligned}$
		${\underset{2.55}{\mathrm{Cu}} \text { f.c. } . ~}_{\text {. }}$	$\begin{aligned} & \mathrm{Ag} \text { f.c. } \end{aligned}$	Au f.c. 2.87
		$\begin{aligned} & \mathrm{Zn} \text { hex } \\ & 2.65 \\ & 2.94 \end{aligned}$	$\begin{aligned} & \text { Cd hex } \\ & 2.97 \\ & 3.30 \end{aligned}$	${\underset{2 g}{ } \mathrm{Hg}^{*}}^{*}$
		$\begin{gathered} \mathrm{Ga}_{2.56}^{*} \end{gathered}$	$\begin{aligned} & \text { In * } \\ & 3.24,3.33 \end{aligned}$	Tl hex, f.c. 3.45, 3.43
	$\underset{2.35}{\mathrm{Si} \mathrm{di}}$	$\begin{aligned} & \mathrm{Ge} \text { di } \\ & 2.43 \end{aligned}$	$\underset{2.80}{\mathrm{Sn}^{\mathrm{di}}}$	$\mathrm{Pb} \text { f.c. }$ $3.49$
		$\begin{aligned} & \text { As * } \\ & 2.50 \end{aligned}$	$\mathrm{Sb}_{2.88}{ }^{*}$	$\begin{aligned} & \mathrm{Bi}^{\mathrm{Bi}}{ }^{*} \end{aligned}$
		$\begin{aligned} & \mathrm{Se}^{*} .32 \end{aligned}$	$\begin{aligned} & \mathrm{Te}^{*} \\ & 2.88 \end{aligned}$	

[^282]The binding energy has been calculated by multiplying the absolute value of the appropriate energy level (in $\mathrm{cm}^{-1}$ ), referred to its proper limit,
by the factor 0.00012395 , to express it in electron volts. A dash indicates that no such term exists. Brackets denote an estimated value.

Element	$1 s$	2 s	$2 p$	3 s	3p	$3 d$		$4 s$		4p		$4 d$		5s		5p		5d	
HI	13.59	3.40	3.40	1.51	1.51			. 85		. 85		. 85		. 54		. 54		. 54	
He 1	24.58	4.77	3.62	1.87	1.58			$.99$		. 88		. 85				. 56		. 54	
Li 1	. . .	5.39	3.54	2.02	1.56					[1.87		. 85		. 62		. 55		. 54	
Be I	. .	9.32	6.60	2.86	2.03					[1.15]		. 90		. 77		[.69]		. 57	
$\mathrm{B}_{1}$	-	...	8.30	3.33										. 84		[.69]		. 55	
$\mathrm{C}_{\mathrm{N}} \mathrm{I}$	...	. .	11.26	3.79	2.73					1.33		. 91		. 87		. 75		. 58	
N O I	$\ldots$	. .	11.54 13.61	4.22 4.47	2.95									. 93		.		. 57	
$\mathrm{F}_{\mathrm{F}}^{1}$	$\ldots$	$\ldots$	13.61 $17.42^{*}$	4.47 4.72	2.88 3.05							. 86		. 96		. 74		. 55	
$\mathrm{Ne} \mathrm{I}^{\text {I }}$	...	...	21.56	4.94	3.18							. 86		. 98		. 78		. 55	
Na 1	...	. .	. . .	5.14	3.04							. 86		1.02		. 79		. 55	
Mg 1	. . .	. .	. . .	7.64	4.94									1.21		. 92		. 66	
Al 1	. .	. .	. .	. .	5.98							1.16				. 99		. 75	
Si 1	...	...	. .		8.15					$\begin{array}{ll}2.29 & 1.45\end{array}$				1.43		1.15		. 83	
${ }^{P} 1$	...	...	...	. .	[10.55] ${ }^{\text {b }}$									[1.59]					
$\mathrm{S}_{1}$	...		...	. .	10.36					2.49		1.06				1.201.30		. 66	
$\mathrm{Cl}_{1}$					13.01									1.69					
$A_{1}$	- .	- .	- .	- .	15.76	1.91		4.21		2.85		1.07				1.30		. 66	
						$A \dagger$	$B \ddagger$	A	$B$										
$\mathrm{K}_{1}$		...	...		. .	1.67	5	4.34	.	2.73		. 94		1.73		1.28	-	. 60	
Ca I	...	$\ldots$	. .		. .		3.59	5.28	6.11	3.37	4.23	1.44	1.49	1.92	2.20	1.45	1.58	. 81	. 81
Sci	. .					2.97	5.13	5.73	6.56	3.56	4.62		1.96	1.96	2.30				
Ti 1	...	...	$\ldots$	. . .		3.38	6.02	6.13	6.83	3.66	4.87	1.51	1.73	2.10	2.38		1.65		. 90
V I	. $\cdot$	$\ldots$	...	$\cdots$	. $\cdot$	4.23	6.80	6.48	7.06	3.68	5.03	1.53	1.65	2.14	2.43				. 90
$\mathrm{CrI}^{\text {r }}$	...	$\ldots$	$\ldots$	$\ldots$	$\ldots$	2.38	8.25	6.76	7.29	3.87	5.15	1.53	1.66	2.19	2.49	1.53		. 85	
Mn I	$\cdots$	$\cdots$	. $\cdot$	...	$\ldots$		5.32	7.09	7.43	4.03	5.15	1.55	1.64	2.24	2.54		1.73		. 90
Fe 1	...	...	...		. . .	4.05	7.04	7.27	7.90	4.03	5.50	1.55	1.66	2.30	2.59				. 9
Cor			$\cdots$			4.45	7.85	7.43	8.28	3.89	5.35	1.54	1.65	2.31	2.62				
Ni 1						5.81	8.65	7.61	8.67	4.09	5.48	1.56	1.65	2.35	2.67	1.59		. 87	. 89
Cu I		$\ldots$					10.44	7.72	9.05	3.94	5.61	1.53	1.66	2.38	2.71	1.60	1.73	. 86	. 92
Zn 1		. .				-			9.39		5.39		1.65		2.74		1.80		. 92
Ga 1	...	. .	. . .	. .	$\cdots$														4
Ge 1	. . .	$\ldots$	$\cdots$		...														
As 1	. .	$\ldots$	. .	$\ldots$	...														
Se I	. .	...																	
$\stackrel{\mathrm{Br}}{1}$																			
Kr 1	- .		$\cdots$		$\cdots$														
												$A$	$B$	A	$B$	A	$B$	A	$B$
Rb i												1.78		4.18		2.62		. 99	-
Sri		$\ldots$	. $\cdot$	$\ldots$	...								3.44		5.69	3.37	3.92		1.39
	$\ldots$	$\ldots$	$\ldots$	. .	$\ldots$							3.89 4.58	5.27 6.35	6.16 6.67	6.63 695	3.96 4.34	4.78		1.86
$\stackrel{\mathrm{Nr}_{1}}{ }$	$\cdots$	$\ldots$	$\ldots$	$\ldots$	.							4.58 5.36	6.35	6.67 6.77	6.63 6.92	4.34 4.04	5.12 4.99		2.00

[^283] SINGLY-IONIZED ATOMS* $\dagger$

Element	is	$2 s$	$2 p$	$3 s$	3p	$3 d$	$4 s$	$4 p$	$4 d$	$5 s$	5p	5d
He II	54.40	13.60	13.60	6.04	6.04	6.04	3.40	3.40	3.40	2.18	2.18	2.18
Li ir	75.62	16.61	14.35	6.86	6.27	6.05	3.73	3.49	3.40	2.34	2.22	2.18
Be II		18.21	14.25	7.27	6.25	6.05	3.89	3.49	3.40	2.42	2.22	2.18
B II		25.15	20.52	9.06	7.30	6.48	4.53	3.89	3.57	2.73		2.26
C II			24.38	9.93	8.05	6.33	4.89	4.23	3.54	2.89	2.65	2.25
N II			29.61	11.15	9.20	6.49	5.24	4.55	3.62	3.05		2.25
O II			35.15	12.19	9.87	6.48	5.57	4.68	3.60	3.20	2.80	2.27
$\mathrm{F}_{\text {II }}$			34.98	13.08	9.86	6.33	5.81	4.40	3.49			
Ne II			41.07	13.91	10.55	6.47	6.12		3.60			
Na II			47.29	14.45	10.95	6.32	6.20		3.47	3.50		
Mg II				15.03	10.61	6.17	6.38	5.04	3.47	3.53	2.95	2.21
Al II				18.82	14.19	6.98	7.51	5.76	3.77	3.94	3.24	2.36
Si II					16.34	6.51	8.22	6.28	3.82	4.20	3.47	2.41
P II					19.65	6.81	8.92	6.86	4.16	4.36		2.41
S II					23.4	9.75	9.82	7.85	4.57	4.78	3.06	
Cl II					23.80	10.13	10.43	7.86	4.63	4.93		2.75
A II					27.62	11.22	10.98	8.40	4.85	5.11	4.05	2.28
K II					31.81	11.55	11.67	9.10	5.11	5.46		
Ca II						10.18	11.87	8.75	4.82	5.40	4.36	2.85
Sc II						12.20	12.80	9.56	5.42	5.66		
Ti II						13.46	13.57	9.91	5.53	5.87		
V II						14.65	14.33	10.36	5.67			
Cr II						16.49	15.01	10.69	5.76	6.24		
Mn II						13.86	15.64	10.88	5.78	6.39	4.99?	3.25
Fe II						15.95	16.18	11.41	5.91	6.53	5.35	
Co II						17.05	16.64	11.45		6.64		
Ni II						18.15	17.11	11.76		6.77		
Cu II						20.29	17.57	12.05	6.09	6.90	5.40	3.39
Zn II							17.96	11.95	5.95	7.00	5.39	3.34
Ga II							20.51	14.64	7.16	7.75	5.83	3.51
Ge II								15.93	5.91	8.20	6.14	3.52
As II								20.2	9.2	10.4	8.4	
Se II								21.5		9.70	7.50	4.36
Br II								21.6	7.65	9.94	7.37	4.32
Kr ${ }_{11}$								24.56	8.95	10.58	7.96	4.63
Rb II								27.50		10.97	8.38	4.67
Sr II									9.22	11.03	8.09	4.42
Y 11									11.40	12.29	9.15	5.14
Zr II									13.71	14.03	10.56	4.87
Nb II			. . .		....	....	....					

* See column 6, Table 623.
$\dagger$ For reference, see footnote 222, p. 649.


## TABLE 712.-CONSTANTS OF DIATOMIC MOLECULES *

The attractive force between atoms varies with the distance between centers. When this distance $=r_{e}$, the sum of the two radii, the force changes from an attraction to a repulsion. The force, $D$, at this distance, $r_{e}$, is thus the force necessary to pull the two atoms apart. The energy of separation is generally given.

Substance	$\underset{\substack{\text { kgcal } \\ \text { mole }}}{D}$	electron volts	$\stackrel{r}{\text { a }}$	Substance	$\underset{\substack{\text { kgcal } \\ \text { mole }}}{\text { and }}$	$\underset{\substack{D \\ \text { electron } \\ \text { volts }}}{ }$	${ }^{\text {r }}$
$\mathrm{H}_{2}$	103	4.454	. 75	CO	223	9.6	1.13
CH	81	3.5	1.12	$\mathrm{C}_{2}$	128	5.6	1.31
NH	97	4.2	1.08	$\mathrm{Cl}_{2}$	57	2.47	1.98
OH	102	4.4	. 96	$\mathrm{Br}_{2}$	46	1.96	2.28
HCl	102	4.40	1.27	$\mathrm{I}_{2}$	36	1.53	2.66
NO	123	5.3	1.15	$\mathrm{Li}_{2}$	26	1.14	2.67
$\mathrm{O}_{2}$	117	5.09	1.20	$\mathrm{Na}_{2}$	18	. 76	3.07
$\mathrm{N}_{2}$	170	7.35	1.09	$\mathrm{K}_{2}$	12	. 51	3.91

[^284]Nuclear physics may be divided into three fields: radioactivity, cosmic rays, and artificial disintegration. The third division-artificial disintegration-is today the most active single experimental (and theoretical) problem of the physicist. This new branch of physics has introduced a number of terms, some of which are defined in Table 716. There is hardly a major physical laboratory that does not have at least one of the devices listed in Table 718 for producing high-energy particles of one kind or another.

The study of nuclear physics started more than 50 years ago with the discovery of radioactivity. This was a study of natural disintegration up to about 1919 when Rutherford produced and studied artificial disintegration by bombarding nitrogen with swift $a$-particles from $\mathrm{RaC}^{\prime}$. However, he had to depend upon nature for the high-speed particles that he used. The value of the speed and energy of the $\alpha$-rays from natural radioactive materials (Table 732) shows the nature of the particles then available. It was not until about 10 years later that a start was made on the development of the various devices for producing the regulated high-speed and high-energy particles listed in Table 718.
By bombarding different materials with one of the high-speed particles produced by various devices it has been found possible to produce one or more radioactive isotopes of each of the 92 elements and, in addition, to produce 6 elements beyond uranium-each with a number of isotopes.* There are now 9 or 10 known fundamental particles (Table 720), 5 or 6 of which are used in the bombardment of isotopes for the production of new reactions. Some examples of reactions thus brought about by the use of different ones of these high-speed particles together with the minimum energy of the particles necessary to produce the reactions are given in Table 726.

The relative masses of the isotopes vary from 1.0081374 for $\mathrm{H}^{1}$ to about 242.14152 for $\mathrm{Cm}^{242}$. The actual mass in grams for $\mathrm{H}^{1}$ is $1.67339 \times 10^{-24}$ grams, and thus the mass, in grams, of any atom may be determined from its atomic weight. The mass of the neutron is $1.67473 \times 10^{-24} \mathrm{~g}$. The radius of a nucleus, $r$, is given approximately by $1.4 \times 10^{-13} A^{1 / 3} \mathrm{~cm}, A$ being the atomic mass number. These values give for the density of the nucleus about $10^{14}$ $\mathrm{g} / \mathrm{cm}^{3}$ (see Table 872). The atomic weight, the magnetic moment, and the spin of a number of isotopes are given in Table 719.

* For reference, see footnote 199, p. 618.

TABLE 713.-MASS, ENERGY, AND VELOCITY RELATIONS FOR THE ELECTRON

| Energy <br> Mev <br> very small | g <br> $9.1066 \times 10^{-28}$ | $m_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

The neutrons and protons are held together in a nucleus by attractive forces (nuclear force) which have a range of only about $2 \times 10^{-13} \mathrm{~cm}$ but are stronger than the electric Coulomb forces at distances less than this range. The energy which would be required to separate a nucleus into its constituent protons and neutrons (collectively denoted by nucleons) is called the nuclear binding energy. According to Einstein's mass-energy relation this binding energy is equal to $c^{2}$ times the difference between the nuclear mass and the mass in the free state of the nucleons contained in the nucleus. The binding energy per nucleon is of the order of magnitude of a few Mev, its actual amount depending on various factors. Starting at about 1 Mev for the deuteron (nucleus of heavy hydrogen) the binding energy per nucleon increases on the average with increasing atomic weight $A$ reaching a maximum of about 10 Mev for $A$ about 50 ; as $A$ increases further the Coulomb repulsion between the constituent protons becomes more and more important and the binding energy per particle decreases again. In addition to this general trend there are individual variations in stability, a notable example being the great stability of the $a$-particle (nucleus of $\mathrm{He}^{4}$ ) with a binding energy of more than 7 Mev per nucleon.

The theory of relativity shows that energy and mass are related and that mass may be converted into energy, giving an amount of energy in ergs $=m c^{2}$, where $c$ is the velocity of light expressed in $\mathrm{cm} / \mathrm{sec}$ and $m$ the mass in grams. This theory also shows that the velocity of light is the upper limit for the velocity for any particle. It is to be noted that this theory tells us nothing as to the method of converting mass to energy!

The mass $m$ of a fast-moving particle depends upon its velocity $v$, thus, $m$ (at velocity $v$ ) $=\frac{m_{o}}{\sqrt{1-\beta^{2}}}$ where $\beta=v / c$. The kinetic energy of a particle moving with a velocity near that of light

$$
K E \doteq m_{0} c^{2}\left(\frac{1}{\sqrt{1-\beta^{2}}}-1\right)
$$

or

$$
m \doteq m_{o}+\frac{K E}{c^{2}}
$$

Some calculated results of the above relations are shown in Table 713. This theory, together with nuclear physics, shows that each moving particle has a wavelength that is given thus: the wavelength, $\lambda=h / m v$ for a particle of mass $m$ with a velocity $v$. (See Table 722.)

## TABLE 715.-TWO INTERESTING RESULTS OF ARTIFICIAL DISINTEGRATION *

Different results from the same material ${ }_{13} \mathrm{Al}^{27}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{15} \mathrm{P}^{20}+{ }^{20}{ }^{1}$ ${ }_{13} \mathrm{Al}^{27}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{14} \mathrm{Si}^{30}+{ }_{1} \mathrm{H}^{1}$ ${ }_{13} \mathrm{Al}^{27}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{12} \mathrm{Mg}^{25}+{ }_{6} \mathrm{He}^{4}$ ${ }_{13} \mathrm{Al}^{27}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{13} \mathrm{Al}^{24}+{ }_{1} \mathrm{H}^{2}$ ${ }_{13} \mathrm{Al}^{27}+{ }_{1} \mathrm{H}^{1} \rightarrow{ }_{14} \mathrm{Si}^{27}+{ }_{\mathrm{on}}{ }^{1}$ ${ }_{13} \mathrm{Al}^{27}+{ }_{0 n^{1}} \rightarrow{ }_{13} \mathrm{Al}^{28}+h \nu$ ${ }_{13} \mathrm{Al}^{27}+{ }_{0 n^{1}} \rightarrow{ }_{12} \mathrm{Mg}^{27}+{ }_{1} \mathrm{H}^{1}$ ${ }_{13} \mathrm{Al}^{27}+{ }_{o n}{ }^{1} \rightarrow{ }_{11} \mathrm{Na}^{24}+{ }_{2} \mathrm{He}^{6}$

Different results from the same material ${ }_{13} \mathrm{Al}^{27}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{15} \mathrm{P}^{30}+{ }_{0} n^{1}$ ${ }_{13} \mathrm{Al}^{27}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{44} \mathrm{Si}^{30}+{ }_{1} \mathrm{H}^{1}$ ${ }_{13} \mathrm{Al}^{27}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{12} \mathrm{Mg}^{25}+{ }_{8} \mathrm{He}^{4}$ ${ }_{13} \mathrm{Al}^{27}+\mathrm{H}^{1} \rightarrow{ }_{13} \mathrm{~S}^{27}+\mathrm{H}_{12}$ ${ }_{13} \mathrm{Al}^{27}+{ }_{o n^{1}} \rightarrow{ }_{18} \mathrm{Al}^{28}+h \nu$ ${ }_{13} \mathrm{Al}^{27}+{ }_{\mathrm{on}}{ }^{1} \rightarrow{ }_{12} \mathrm{Mg}^{27}+{ }_{1} \mathrm{H}^{1}$ ${ }_{13} \mathrm{Al}^{27}+{ }_{o n}{ }^{1} \rightarrow{ }_{11} \mathrm{Na}^{24}+{ }_{2} \mathrm{He}^{4}$
Different ways of
producing the same materials
${ }_{12} \mathrm{Mg}^{25}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{13} \mathrm{Al}^{28}+{ }_{1} \mathrm{H}^{1}$
${ }_{33} \mathrm{Al}^{28}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{13} \mathrm{Al}^{28}+{ }_{1} \mathrm{H}^{1}$
${ }_{18} \mathrm{Al}^{27}+{ }^{29}{ }^{2} \rightarrow{ }_{13} \mathrm{Al}^{28}+h \nu$
${ }_{14} \mathrm{Si}^{28}+{ }_{0 n^{1}} \rightarrow{ }_{18} \mathrm{Al}^{28}+{ }_{1} \mathrm{H}^{1}$
${ }_{15} \mathrm{P}^{31}+{ }_{o n^{1}} \rightarrow{ }_{13} \mathrm{Al}^{28}+{ }_{2} \mathrm{He}^{4}$

[^285]Alpha-particle.-A helium atom, stripped of its outer electrons, that is expelled from a radioactive material.

Artificial disintegration.-Breaking down of an atom by a controlled experiment.
Atom.-The smallest particle of any material substance that can exist as such.
Atomic bomb.-A bomb depending upon atomic energy. ( U or Pu fission.)
Atomic energy.-Energy due to some breaking down of an atom.
Atomic mass unit, amu.-(1) The mass of a unit atomic weight (see Dalton). (2) An energy unit equal to the mass energy ( $m c^{2}$ ) of a unit atomic mass ( $1 / 16$ mass $0^{16}$ ) $=$ $1.4921 \times 10^{-4} \mathrm{ergs}=931.3 \mathrm{Mev}$.

Atomic number.-The value of the positive charge of the atom. This determines the chemical properties.

Atomic weight.-Chemical: The relative weight of an atom taking the oxygen atom, found in nature, as having a weight of 16 . Physical: The relative weight of an atom taking the oxygen isotope 16 as having a weight of 16 . This makes the ratio of physical to chemical scale $=1.000272 \pm .000005$.

Barn.-Unit area cross section of nucleus $=10^{-24} \mathrm{~cm}^{2}$.
Baryton.-See Table 720. See meson.
Beta-ray.-An electron expelled from a radioactive material.
Betatron.-See Table 718.
Binding energy.-The energy due to the packing of an element assuming that the element is made up of protons, electrons, and neutrons.

Bursts (cosmic ray).-A very great output of particles due to a cosmic-ray encounter with an atom.

Cathode rays.-Electrons that are driven from the negative electrode (the cathode) of a discharge tube. (See Table 758.)

Chain reaction.-A reaction in which one or more of the products of the reaction keeps it going, i.e., such as the fission of $92 \mathrm{U}^{235}$.

Compton effect.-The change in wavelength due to the scattering of radiation by a material substance.

Cosmic rays.-A radiation that falls upon the outer atmosphere, generally thought to come from outer space. (See page 710.)

Cosmos.-The entire universe.
Cross section, $\sigma$.-The proportionality constant between the beam intensity and the number of particles, considered, that strike a target. It has the dimension of an area. See Barn.

Cyclotron.-See Table 718.
De Broglie wavelength.-For a particle of mass $m$ and velocity $v$, the De Broglie wavelength $\lambda=h / m v$.

Delta-rays.-Electrons that are emitted from certain materials due to a-ray bombardment.

Deuterium.-See deuteron.
Deuteron.-This isotope of hydrogen that has twice the atomic weight of the proton.
Electron 士.-The smallest particle of electricity that can exist.
Positron, + electron. (Charge $+4.8025 \times 10^{-10}$ esu.)
Negatron, - electron. (Charge $-4.8025 \times 10^{-17}$ esu.)
Electron shell.-The shell that is used to describe the location of the outer electrons of an atom. These are $K, L, M, N, O$. (See Table 658.)

Energy units.-See Table 654. Erg:
ev-The energy equal to that of an electron moving under an emf of 1 volt $=1.602 \times$ $10^{-12}$ ergs.
Mev-The energy equal to that of an electron moving under an emf of $10^{6}$ volts.
amu-The mass-energy of a unit mass of atomic weight $=1.492 \times 10^{-3} \mathrm{ergs}$.
Mass unit-Energy value of one gram $=8.987 \times 10^{20} \mathrm{ergs}$.
Fission. -The breaking down of a heavy atom into two parts of about equal mass. (See page 706.)

Gamma-rays.-Radiation of very short wavelength that results from some radioactive breakdown. (See Tables 747-752.)

H-rays.-Hydrogen atoms that are emitted from certain materials due to a-ray bombardment.
h.-Planck constant. See quantum.
h or $\mathrm{h}=h / 2 \pi$.
Isobar.-One of two or more nuclei that have the same weight but different atomic numbers.

Isomer.-As applied to an isotope, it is one of two or more that have the same atomic number and weight but different radioactive properties.

Isotope.-One of two or more atomic nuclei that differ in weight but have the same atomic number, thus the same chemical characteristics.
Magnetic moment.-Nuclear unit of $=\frac{e h}{4 \pi M_{c}}=5.05 \times 10^{-24} \mathrm{erg} /$ oersted where $M=$ mass of proton.

Magneton (Bohr).-The magnetic moment of the electron $=\frac{c h}{M_{e} 2 \pi c}=9.27 \times 10^{-21}$ erg/oersted.

Mass-energy ratio.-The relativistic relation between mass and energy, i.e., $E=m c^{2}$.
Mass, rest.-The mass of a particle $M_{0}$ when at rest. See Table 714.
Mass-velocity ratio.-The variation of mass with velocity, $v=$ velocity, then
$M_{v}=\frac{M_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}, c=$ velocity of light. (See Table 714.)
Meson (Mesotron).—See Table 720.
Maximum velocity.-The highest velocity for any material substance, i.e., the velocity of light.

Mev.-A unit of energy; an electron moving under an emf of $10^{8} \mathrm{v}$. ( $1.603 \times 10^{-6} \mathrm{ergs}$ ). See energy units (Table 654).
Molecule. - An aggregate of two or more atoms of a substance that exists as a unit.
Momentum, angular of nucleus, measured in units $\hbar=\hbar=h / 2 \pi$.
Negatron.-See negative electron. (Sometimes spelled negaton.)
Neutrino.-See Table 720.
Neutron.-A neutral particle with a mass about the same as the proton. See Table 720.
Nucleon.-General name for protons and neutrons.
Nucleus.-The central part of an atom, i.e., what is left of an atom after all the outer electrons are stripped off.
Packing fraction.-Related to the mass lost when the atom was formed $=\frac{M_{1}-A}{A}$ where $M$ is the atomic weight of the atom and $A$ the atomic number.
Photon.-The quantum of radiation $=h \nu$.
Proton.-The nucleus of the smallest unit mass, the smallest isotope of the hydrogen atom.

Positron.-See electron. (Sometimes written positon.)
Quantum $=h \nu$, a so-called atom of energy. $h=$ Planck constant. See photon.
Radioactivity.-Natural breakdown of atoms. (See page 672.)
Range of a particle. -The distance it can move through different media.
Rest mass.-The mass of any particle at rest.
Shower.-(Cosmic rays.) See Bursts. Showers may extend a very great distance, i.e., several hundred meters, and have about $10^{15} \mathrm{ev}$ energy.
Spin.-Unit of nuclear spin $=\hbar=\hbar=h / 2 \pi$.
Synchrotron.-See Table 718.
Tritium.-See Triton.
Triton.-The isotpe of hydrogen that has three times the atomic weight of the proton.
Ultimate particle.-See Table 720.
Valence electrons.-The electrons of an atom, in the outer shell that determines its chemical valency.
Van de Graaff generator.-See Table 718.
Volt-electron, ve.-A unit of energy equal to that of an electron moving under an e:nf of 1 volt $=1.602 \times 10^{-12}$ ergs.
X-rays.-A radiation of very short wavelengths that results when an electron is stopped (or started) very quickly, as when striking a metal target. (See page 692.)

Atomic number	Element	Isotopes (total number)	Naturally radioactive isotopes (number)	Artificially radioactive isotopes (number) $\qquad$	Relative abundance of natural isotopes
1	Hydrogen	3		1	$\mathrm{H}^{1} \dagger: \mathrm{H}^{2}=99.9844$ : 0156
2	Helium	3		1	$\mathrm{He}^{8}: \mathrm{He}^{4}=1.3 \times 10^{-4}: 99.9999$
3	Lithium	3		1	$\mathrm{Li}^{9}: \mathrm{Li}^{\text {² }}=7.39: 92.61$
	Beryllium	4		3	$\mathrm{Be}^{9}=100.00$
5	Boron	3		1	$\mathrm{B}^{10}: \mathrm{B}^{11}=18.83: 81.17$
6	Carbon	5		3	$\mathrm{C}^{12}: \mathrm{C}^{18}=98.9: 1.1$
7	Nitrogen	5		3	$\mathrm{N}^{14}: \mathrm{N}^{15}=99.62: .38$
8	Oxygen	6		3	$\mathrm{O}^{18}: \mathrm{O}^{17}: \mathrm{O}^{18}=99.757: .039:$
9	Fluorine	4		3	$\mathrm{F}^{19}=100.00$
10	Neon	5		2	$\begin{aligned} & \mathrm{Ne}^{20}: \mathrm{Ne}^{21}: \mathrm{Ne}^{22}=90.51: .28: \end{aligned}$
11	Sodium	5		4	$\mathrm{Na}^{23}=100.00$
12	Magnesium	5		2	$\begin{aligned} & \mathrm{Mg}^{24}: \mathrm{Mg}^{25}: \mathrm{Mg}^{26}=78.60: \\ & 10.11: 11.29 \end{aligned}$
13	Aluminum	5		4	$\mathrm{Al}^{27}=100.00$
14	Silicon	5		2	$\mathrm{Si}_{3.05}^{\mathrm{Si}^{88}} \mathrm{Si}^{20}: \mathrm{Si}^{30}=92.28: \quad 4.67:$
15	Phosphorus	5		4	$\mathrm{P}^{31}=100.00$
16	Sulfur	7		3	$\mathrm{S}^{: 2}: \mathrm{S}^{18}: \mathrm{S}^{3 .}: \mathrm{S}^{30}=95.06: .74:$
17	Chlorine	7		5	$\mathrm{Cl}^{35}: \mathrm{Cl}^{38}=75.4: 24.6$
18	Argon	7		4	$\begin{gathered} \mathrm{A}^{38}: \mathrm{A}^{58}: \mathrm{A}^{40}=.307: .060: \\ 99.633 \end{gathered}$
19	Potassium	9	$\mathrm{K}^{40}$	6	$\mathrm{K}^{39}: \mathrm{K}^{40}: \mathrm{K}^{41}=93.3: 011: 6.7$
20	Calcium	10		4	$\begin{aligned} & \mathrm{Ca}^{40}: \mathrm{Ca}^{42}: \mathrm{Ca}^{43}: \mathrm{Ca}^{44}: \mathrm{Ca}^{40} \\ & \mathrm{Ca}^{45}=96=96: .64: .15: 206: \\ & .0033: 19 \end{aligned}$
21	Scandium	10		9	$\mathrm{Sc}^{15}=100.00$
22	Titanium	9		4	
23	Vanadium	5		4	$\mathrm{V}^{81}=100.00$
24	Chromium	7		3	$\begin{aligned} & \mathrm{Cr}^{50}: \mathrm{Cr}^{52}: \mathrm{Cr}^{53}: \mathrm{Cr}^{54}=4.49: \\ & \quad 83.78: 9.43: 2.30 \end{aligned}$
25	Manganese	6		5	$\mathrm{Mn}^{555}=100.00$
26	Iron	8		4	$\begin{aligned} & \mathrm{Fe}^{54}: \mathrm{Fe}^{58}: \mathrm{Fe}^{57}: \mathrm{Fe}^{58}=5.81: \\ & 91.64: 2.21: .34 \end{aligned}$
27	Cobalt	9		8	$\mathrm{Co}^{59}{ }^{59}=100.00$
28	Nickel	10		5	
29	Copper	10		8	
30	Zinc	12		7	$\begin{gathered} \mathrm{Zn}^{84}: \mathrm{Zn}^{88}: \mathrm{Zn}^{67}: \mathrm{Zn}^{98}: \mathrm{Zn}^{\mathrm{nop}} \\ 48.89: 27.81: 4.07: 18.61: .6 \end{gathered}$
31	Gallium	10		8	$\mathrm{Ga}^{\mathrm{m}_{98}}: \mathrm{Ga}^{71}{ }^{71}=60.2: 39.8$
32	Germanium	14		9	$\begin{aligned} & \mathrm{Ge}^{70}: \mathrm{Ge}^{72}: \mathrm{Ge}^{73} \cdot \mathrm{Ge}^{74}: \mathrm{Ge}^{79} \\ & 20.55: 27.37: 7.61: 36.74: 7.6 \overline{{ }^{7}} \end{aligned}$
33	Arsenic	9		8	${ }^{\mathrm{As}^{75}{ }^{75} 5}=100.00$
34	Selenium	16		10	
35	Bromine	14		12	
36	Krypton	22		16	$\mathrm{Kr}^{78}:{ }^{50}:^{62}:{ }^{63}:^{84}:^{88}=.342: 2.223:$ 11.50: 11.48: 57.02: 17.43
37	Rubidium	16	$\mathrm{Rb}^{87}$	14	
38	Strontium	14		10	
39	Yttrium	11		10	$\mathrm{Y}^{88}=100.00$
40	Zirconium	12		7	
41	Niobium	15		14	$N \mathrm{~b}^{93}=100.00$

* For reference, see foot note 199, p. 618.
$\dagger$ Numbers following symbol indicate names of isotopes of that element.

[^286]| $\begin{aligned} & \text { Atomic } \\ & \text { number } \\ & Z \end{aligned}$ | Element | Isotopes number) number | $\begin{gathered} \text { Naturally } \\ \text { radioactive } \\ \text { isotopes } \\ \text { (number) } \end{gathered}$ | Artificially radioactive isotopes (number) (number) | Relative abundance of natural isotopes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 42 | Molybdenum | 12 |  | 5 |  |
| 43 | Technetium | 19 |  | 19 |  |
| 44 | Ruthenium | 13 |  | 6 |  |
| 45 | Rhodium | 11 |  | 10 | $\mathrm{Rh}^{103}=100.00$ |
| 46 | Palladium | 12 |  | 6 | $\mathrm{Pd}^{102}::^{104}::^{105}:{ }^{100}:{ }^{108}:{ }^{110}=.8: 9.3$ $\quad 22.6: 27.2: 26.8: 13.5$ |
| 47 | Silver | 14 |  | 12 | $\mathrm{Ag}^{107}: \mathrm{Ag}^{109}=51.35: 48.65$ |
| 48 | Cadmium | 16 |  | 8 |  |
| 49 | Indium | 15 |  | 13 | $\mathrm{In}^{113}: \mathrm{In}^{115}=4.23: 95.77$ |
| 50 | Tin | 27 |  | 17 |  |
| 51 | Antimony | 19 |  | 17 | $\mathrm{Sb}^{121}: \mathrm{Sb}^{123}=53.25: 42.75$ |
| 52 | Tellurium | 26 |  | 18 | $\begin{aligned} & \mathrm{Te}^{120}: 122: 123: 124: 125: 128: 128: 130= \\ & .091: 2.49: 89: 4.63: 7.01: \\ & 18.72: 31.72: 34.46 \end{aligned}$ |
| 53 | Iodine | 17 |  | 16 | $\mathrm{I}^{127}=100.00$ |
| 54 | Xenon | 22 |  | 13 |  <br> $.094: .088: 1.90: 26.23: 4.07$ <br> 21.17: 26.96: 10.54: 8.95 |
| 55 | Cesium | 16 |  | 15 |  |
| 56 | Barium | 19 |  | 12 | $\mathrm{Ba}^{180}:^{132}::^{184}:^{155}:{ }^{138}:{ }^{187}:{ }^{138}=.101$ $.097: 2.42: 6.59: 7.81: 11.32:$ $71.66$ |
| 57 | Lanthanum | 12 |  | 10 | $\mathrm{La}^{138}: \mathrm{La}^{130}=.089: 99.911$ |
| 58 | Cerium | 12 |  | 8 | $\begin{gathered} \mathrm{Ce}^{198}: 188 \text { : } 1400 . \overline{142} \\ 88.48: 11.07 \end{gathered}=.193: .250:$ |
| 59 | Praseodymium | 7 |  | 6 |  |
| 60 | Neodymium | 12 | $N d^{180}$ | 4 |  |
| 61 | Promethium | 8 |  | 8 |  |
| 62 | Samarium | 13 | $\mathrm{Sm}^{152}$ | 6 |  |
| 63 | Europium | 11 |  | 9 |  |
| 64 | Gadolinium | 11 |  | 4 |  |
| 65 | Terbium | 7 |  | 6 | $\mathrm{Tb}^{159}=100.00$ |
| 66 | Dysprosium | 10 |  | 3 |  |
| 67 | Holmium | 7 |  | 6 | $\mathrm{Ho}^{105}=100.00$ |
| 68 | Erbium | 10 |  | 4 | $\operatorname{Er}^{182}: \overline{164}: 108::^{107}: 188: 170=.1: 1.5$ 32.9: 24.4: 26.9: 14.2 |
| 69 | Thulium | 8 |  | 7 | $\mathrm{Tm}^{1209}=100.00$ |
| 70 | Ytterbium | 10 |  | 3 | $\begin{array}{r} \mathrm{Y}^{108,} 1770: 171_{: 172}^{: 173}: 174: 178 \\ 4.21: 14.26: \quad 21.49: \quad 17.02: \\ 29.58: 13.38: \end{array}$ |
| 71 | Lutetium |  | $\mathrm{Lu}^{178}$ | 5 | $\mathrm{Lu}^{175}: \mathrm{Lu}^{178}=97.5: 2.5$ |
| 72 | Hafnium | 9 |  | 3 | $\mathrm{Hf}^{174}: \mathrm{inf}^{177}:^{1778}:{ }^{178}: 150=.18: 5.30$ : <br> 18.47: 27.10: 13.84: 35.11 |
| 73 | Tantalum | 9 |  | 8 | $\mathrm{Ta}^{281}=100.00$ |
|  |  |  | (conti |  |  |


Atomic number Z	Element	Isctopes (total number)	Naturally radioactive isotopes (number)	Artificially radioactive isotopes (number)	Relative abundance of natural isotopes
74	Tungsten	10		5	$W^{180}:^{182}:^{188}:^{184}:^{188}=.122: 25.77$ :
					14.24: 30.68:29.17
75	Rhenium	11	$\mathrm{Re}^{187}$	9	$\mathrm{Re}^{185}: \mathrm{Re}^{187}=37.07: 62.93$
76	Osmium	10		3	Os ${ }^{184}:^{188}:{ }^{187}:^{188}:^{189}:^{180}:{ }^{182}=.018$ :
					$1.59: 1.64: 13.3: 16.1: 26.4:$
77	Iridium	6		4	$\mathrm{Ir}^{191}: \mathrm{Ir}^{199}=38.5: 61.5$
78	Platinum	11		6	$\mathrm{Pt}^{182}:{ }^{184}:^{196}:^{108}:{ }^{188}=.78: 32.8$ :
79	Gold	13		12	$\begin{array}{rl}33.7 & 25.4: 7.23 \\ \mathrm{uu}^{187}=100.00\end{array}$
80	Mercury	13		6	
	Mercury			6	$\begin{aligned} & \mathrm{Hg}^{100}: i^{108}::^{100}::^{200}:{ }^{201}::^{202}:{ }^{204}=.15: \\ & \quad 6.7 \end{aligned}$
81	Thallium	15	$\mathrm{Tl}^{2017}\left(\mathrm{AcC}^{\prime \prime}\right)$	10	$\mathrm{Tl}^{203}: \mathrm{Tl}^{205}=29.1: 70.9$
			$\mathrm{Tl}^{2088}\left(\mathrm{ThC}^{\prime \prime}\right)$		
			$\mathrm{Tl}^{210}\left(\mathrm{RaC}^{\prime \prime}\right)$		
82	Lead	14	$\mathrm{Pb}^{210}(\mathrm{RaD})$	6	$\mathrm{Pb}^{204}:{ }^{208}:{ }^{207}:{ }^{208}=1.5: 23.6: 22.6$ :
			$\mathrm{Pb}^{211}$ ( AcB )		$52.3$
			$\mathrm{Pb}^{212}$ (ThB)		
			$\mathrm{Pb}^{214}(\mathrm{RaB})$		
83	Bismuth	13	$\mathrm{Bi}^{210}(\mathrm{RaE})$	8	$\mathrm{Bi}^{209}=100.00$
			$\mathrm{Bi}^{211}$ ( AcC )		
			$\mathrm{Bi}^{212}$ ( ThC )		
			$\mathrm{Bi}^{214}(\mathrm{RaC})$		

## TABLE 718.-DEVICES FOR PRODUCING HIGH.ENERGY PARTICLES* $\dagger \ddagger$

Impulse generator.
Transformer rectifier.-Max about 2 Mev.
Electrostatic generator, belt type.-Originated by R. J. Van de Graaff at M.I.T. Developed for use in nuclear physics at M.I.T. by Van de Graaff and at Carnegie Institution in Washington by M. A. Tuve. About 1-3 Mev. Performance improved at Wisconsin, by enclosing equipment in pressure chamber (with freon added to air), up to 4-5 Mev (under pressure) $100 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}$ This device can accelerate any kind of charged particle. Under construction (M.I.T., Los Alamos) 12 Mev .

Cyclotron.-Originated at Berkeley by E. O. Lawrence. For accelerating any heavy charged particles (not electrons). 44 Mev alpha-particles, 22 Mev deuterons, 9.5 Mev protons.

Betatron.-Originated at Illinois by D. W. Kerst. For accelerating electrons. 300 Mev , Illinois; 100 Mev , General Electric Co.

Synchro-cyclotron.-Developed at Berkeley. 390 Mev alpha-particles, 400 Mev protons, 195 Mev deuterons.

Synchrotron (electron).-Berkeley, 335 Mev electrons; General Electric Co., Cornell, Michigan, Perdue, Berkeley, about 300 Mev ; Harvard, 125 Mev .

Linear accelerator.-Berkeley, 32 Mev protons; Stanford, 5.7 Mev electrons (under construction, 1000 Mev ) ; M.I.T., 20-30 Mev electrons.

Proton synchrotron.-Berkeley, 3-6 Mev (under construction) ; Brookhaven, 3 Mev (under construction).

Some of the smaller cyclotrons at various laboratories have been converted to F. M. cyclotrons. There are now in use, or under construction in this country, over 100 devices for producing particles of over 1 Mev energy.

[^287]658
TABLE 719.-ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES ${ }^{22}$
Part 1.-The neutron to fluorine ${ }^{a}$

$z$	Element	Isotope	Atomic mass	Spin ${ }^{\text {d }}$	Magnetic moment 0	Quadrupole $\underset{\left(10^{-24} \mathrm{~cm}^{2}\right)^{\text {moment }}}{ }$
0	n	1	1.008977	1/2	$-1.91280 \pm 9$	
1	H	1	1.0081374	1/2	$+2.79254 \pm 0$	
		2	2.014719	1	$+.857352 \pm 9$	$+.002766 \pm 25$
			3.016971	1/2	$+2.978624 \pm 28$	
2	He	3	3.016951	1/2	$(-) 2.127414 \pm 3$	
		4	4.003910	0		
3	Li	6	6.017043	1	$+.82189 \pm 4$	$\left\|<9 \times 10^{-4}\right\|$
		7	7.018242	3/2	$+3.25586 \pm 11$	+(.02) $\pm 2$
		8	8.025031			
4	Be	7	7.019169	$\ldots$	.......	
		8	8.007916			
		9	9.015098	3:2	(-). $7849 \times 1 * \pm 5$	
		10	10.016774			
5	B	9	9.016246	.		
		10	10.016173	3	$+1.8004 \pm 7$	$+.06 \pm 4$
		11		3/2	$+2.68858 \pm 28$	$+.03 \pm 2$
6	C	12				......
		13	13.007554	1/2	$+.70225 \pm 14$	
		14	14.007733	0		
7	N	13	13.009941			
		14	14.007565	1	$+.40365 \pm 3$	+. 02
		15		1/2	$-.28299 \pm 3$	
8	O	17	17.004515	$\begin{gathered} 0 \\ (1 / 2) \end{gathered}$	.......	
		18		(0)		$\left\|<4 \times 10^{-8}\right\|$
9	F	19	19.004486	1/2	+2.6285 $\pm 7$	

${ }^{227}$ References and other footnotes at end of table, p. 663. Superior letters ( ${ }^{a}$, ${ }^{b}$, etc) refer to authorities cited in footnote.

Part 2.-Fluorine to thallium ${ }^{\text {b }}$


TABLE 719.-ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES (continued)

$z$	Element	Isotope	Atomic mass	Spin ${ }^{\text {a }}$	Magnetic moment ${ }^{\prime}$	Quadrupole moment $\dagger$
		30	29.9832	(0)	.....	$\sim 0$
		31	30.9862	(a)	$\ldots$	
		32	(31.9849)	...	.....	
15	P	29	28.9919	$\ldots$		
		30	29.9873	-		
		31	30.9843	$1 / 2$	$+1.13165 \pm 20$	$\ldots$
		32	31.9827	$\ldots$	.	
		33	32.9826	$\ldots$		
		34	33.9826	$\ldots$		
16	S	31	30.9899			
		32	31.98089	0		
		33	32.9800	3/2	(+)(.3土.2, .9)	- ${ }^{\text {. }} \times 8$
		34	33.97710	(0)	(1)...	$\mid<2 \times 10^{-3}$ \|
		35	34.9788	3/2	....	+ 06
		36	35.978	(0)	......	< 01
		37	36.982			
17	Cl	33	32.9860	$\ldots$		
		34	33.9801			
		35	34.97867	$3 / 2$	$+.82191 \pm 22$	$-.0795 \pm 5$
		36	35.9788	2		-. $0172 \pm 4$
		37	36.97750	$3 / 2$	+.68414 $\pm 24$	$-.0621 \pm 5$
		38	37.981	...		....
		39	(38.9794)	$\ldots$	.....	....
18	A	35	34.9850			....
		36	35.98780	(0)	$\sim 0$	$\ldots$
		37	36.9777	(a)	.....	....
		38	38.974	...	.....	....
		39	(38.9755)			....
		40	39.9756	(0)	$\sim 0$	....
		41	40.9770	...		
19	K	37	(36.9830)	$\cdots$	.....	$\ldots$
		38	37.9795 38	$3 / 2$	$391 \pm 1$	$\ldots$
		$40 \ddagger$	39.9760	4	$-1.291 \pm 4$	$\ldots$
		41	40.974	3/2	$-.215 \pm 1$	$\ldots$
20	Ca	40	39.97530	(0)	$\sim 0$	....
		42	41.9711	(0)		$\ldots$
		43	42.9723			....
21	Sc	45	44.9669	7/2	$-4.7556 \pm 10$	$\ldots$
22	Ti	46	45.9661	$\ldots$	.....	$\ldots$
		47	46.9647			
		48	47.9631	...	.....	$\ldots$
		49	48.9646	...	$\ldots$	$\ldots$
		50	49.9621	...		
		51	50.5887			
23	V	51	50.9577	7/2	$(+) 5.1478 \pm 5$	$\ldots$
24	Cr	51	50.958	...	.....	$\ldots$
		52	51.956	$\ldots$		
		53	52.956			
25	$\mathrm{Me}^{\mathrm{Mn}}$	55	54.957	5/2	$+3.4677 \pm 4$	$\ldots$
26	Fe	54 56	53.957 55.9568	...	.....	$\cdots$
		57	56.957		$\sim 0$	
27	Co	59	58.94	7/2	+4.6482	$\ldots$
28	Ni	58	57.9594	...	.....	....
		60	59.9495	...		
		61	60.9537	$\ldots$	$\sim 0$	$\ldots$
		62	61.9493	$\ldots$	$\ldots$	$\ldots$
29	Cu	64	63.9471	$3 / 2$		- . $26 \pm 10$
	Cu	65	64.955	3/2	$\begin{aligned} & +2.3845 \pm 4 \end{aligned}$	$-.14 \pm 10$
30	Zn	64	63.955	(0)	$\sim 0$	....
				inued)		

TABLE 719.-ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES (continued)

$z$	Element	Isotope	Atomic mass	Spin 0	Magnetic moment ${ }^{g}$	Quadrupole moment $\dagger$ g
		66	65.954	(0)	$\sim 0$	.....
		67	66.954	5/2	$+.9$	
		68	67.955	(0)	$\sim 0$	
		70	69.954			
31	Ga	69	68.952	3/2	$+2.0167 \pm 11$	$+.2318 \pm 23$
		71	70.952	3/2	$+2.5614 \pm 10$	$+.1461 \pm 15$
32	Ge	70	.....	(0)		$\left\|<7 \times 10^{-8}\right\|$
		72		(0)	$\ldots$	\|<7×10-31
		73	$\ldots$	$9 / 2,>9 / 2$		$-.21 \pm 10$
		74		(0)		$\left\|<7 \times 10^{-8}\right\|$
		76		(0)		$\left\|<7 \times 10^{-8}\right\|$
33	As	75	74.91	3/2	+1.4	+ . $3 \pm 2$
34	Se	74		(0)		
		76	.....	(0)	$\sim 0$	$1<2 \times 10^{-3}$ \|
		77	.	$7 / 2 \pm 1,(1 / 2)$		<2×10 $0^{-3}$
		78	.	(0)	$\sim 0$	<2×10-3
		80	.....	0		$1<2 \times 10^{-3}$
		82		(0)	$\sim 0$	
35	Br	79	$\ldots$	3/2	$+2.10576 \pm 37$	+.26 $\pm 8$
		81	.....	3/2	$+2.2696 \pm 5$	$+.21+7$
36	Kr	82	......	(0)	$\sim 0$	
		83	.....	9/2	-. 9704	+. 15
		84		(0)	$\sim 0$	
		86	.	(0)	$\sim 0$	
37	Rb	85	.....	5/2	$+1.3532 \pm 4$	....
		$87 \pm$	.....	3/2	$+2.7501 \pm 5$	$\ldots$
38	Sr	86	.....	(0)		$\ldots$
		87		9/2	-1.1	
		88	......	(0)	$\sim 0$	
39	Y	89	.....	1/2	$-.14$	....
40	Zr	91		5/2		
41	Nb	93		9/2	$+6.165 \pm 32$	$\sim 0$
42	Mo	92		(0)	$\sim 0$	
		94	93.945	(0)	$\sim 0$	$\ldots$
		95	94.946	(5/2)		
		96	95.944		$\sim 0$	$\ldots$
		97	96.945	(5/2)		
		98	97.943	(0)	$\sim 0$	$\ldots$
44	Ru	96	95.945	$\ldots$	$\ldots$	
		98	97.943	$\ldots$	.....	
		99	98.944	...	.....	$\ldots$
		100	99.942	...	$\ldots$	$\ldots$
		101	100.946	...	.....	....
		102	101.941			
45	Rh	102	102.941			
		103		$>(1 / 2 ?)$	<0	
46	Pd	102	101.941	...	.....	$\ldots$
		104	103.941	...	.....	
		105	105.941	$\ldots$	.	$\ldots$
		108	107.941	$\ldots$		
		110	109.941			
47	Ag	107	106.945	1/2	$-.086$	
		109	108.944	1/2	$-.160$	
48	Cd	110		(0)	$\sim 0$	$\ldots$
		111	.....	1/2	$-.59492 \pm 8$	
		112	.....	(0)	$\sim 0$	..
		113		1/2	-. $62238 \pm 8$	
		114		(0)	$\sim 0$	
49	In	116 113	$\ldots .$.	9/2	$\sim 00$	
		115	$\ldots$	9/2	$+5.500 \pm 3$	1.161
50	Sn	115	114.940	1/2	$-.9177 \pm 2$	
				(ontinued)		

TABLE 719.-ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES (continued)

$Z$	Element	Isotope	Atomic mass	Spin ${ }^{\text {a }}$	Magnetic moment	Quadrupole moment $\dagger$ g
		116	115.939	(0)	$\sim 0$	
		117	116.937	1/2	-. $9997 \pm 2$	
		118	117.937	(0)	$\sim 0$	
		119	118.938	1/2	$-1.0459 \pm 2$	
		120	119.937	(0)	$\sim 0$	
		122	121.945	(0)		
		124	123.944			
51	Sb	121	.....	$5 / 2$	$+3.3591 \pm 5$	$-.3 \pm 2$
		123		7/2	$+2.5465 \pm 5$	$-1.2 \pm 2$
52	Te	123	.....	1/2		
		125	. . . .	1/2		
		126	. . . .	(0)	$\sim 0$	
		128		(0)	$\sim 0$	
		130		(0)	$\sim 0$	
53	I	127	126.92	5/2	$+2.8086 \pm 8$	-. $59 \pm 20$
		129		$7 / 2$	$(+) 2.74 \pm 14 \mathrm{~h}$	-. $43 \pm 15$
54	Xe	129		1/2	-. $7766 \pm 1$	
		131		3/2	$+.7$	$1<.1 \mid$
		132	. . . .	(0)	$\sim 0$	
		134		(0)	$\sim 0$	...
		136		(0)	$\sim 0$	
55	Cs	133	13291	7/2	$+2.5771 \pm 9$	$\|\leqslant .3\|$
		135		$7 / 2$	$+2.7271 \pm 33$	
		137		7/2	$+2.8397 \pm 30$	
56	Ba	134		(0)	$\sim 0$	...
		135	.....	3/2	$+.8346 \pm 25$	. . .
		136		(0)	$\sim 0$	
		137		3/2	+. $9351 \pm 27$	
		138		(0)	$\sim 0$	
57	La	139	138.953	$7 / 2$	$+2.7769 \pm 28$	$\neq 0$
58	Ce					
59	Pr	141	140.95	5/2	+4.5938	
60	Nd	145	144.962	...	.....	. . .
		146	145.962	. . .	. . . .	.
		148	147.962	. . .	. . . .	... .
		$150 \ddagger$	149.964	-••	-•...	
61	Pr			(		
62	Sm	147		$(>1 / 2)$	.....	
		149	. . . .	$(>1 / 2)$		
63	Eu	151	,	$5 / 2$	$+3.4$	$+1.2$
		153		5/2	+1.5	+2.5
64	Gd	154	153.971	,	+	+
		155	154.971	...	.....	. . .
		156	155.972	...	.....	....
		157	156.973	...	. . . . .	$\ldots$
		158	157.973	...	.....	....
		160	159.974	$\cdots$	. . . .	....
65	Tb	159	159.2	3/2		. . .
66	Dy					
67	Ho	165	164.94	7/2	. . . $\cdot$	. $\cdot$.
68 69	$\mathrm{Er}_{\mathrm{Tm}}$					
70	Yb	169 171	169.4	1/2	$+.45$	
		173	. . . .	5/2	-. 65	$+3.9 \pm 4$
71	Lu	175		7/2	+2.6	$+5.9$
		176 $\ddagger$	.	$\geq 7$	+3.8	$+7 \pm 1$
72	Hf	177	.....	(1/2,3/2)		....
		178		(0)	$\sim 0$	. . .
		179 180		(1/2,3/2)	$\sim 0$	. . .
73	Ta	181	180.88	$7 / 2$	+2.1	+6
74	W	182		(0)	.....	....
		183	. . . .	1/2	. . . .	. $\cdot$.

(continued)

TABLE 719.-ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES (continued)

$Z$	Element	Isotope	Atomic mass	Spin ${ }^{\text {a }}$	Magnetic moment ${ }^{g}$	Quadrupole moment $\dagger s$
		184		(0)		
75	Re	186		(0)		
		185	.....	5/2	+3.3	$(+2.8)$
		186		5/2		
76	Os	$187 \ddagger$		5/2	$+3.3$	+2.6
		189	189.04	1/2	.....	....
		190	190.03	1/2		
77	Ir	192	192.04			
		191	191.04	$(>1 / 2)$		
		193	193.04	$(3 / 2)$		
78	Pt	194	194.039		$\sim 0$	
		195	195.039	1/2	-. $60592 \pm 8$	....
		196	196.039	(0)	$\sim 0$	....
		198	198.05			
79	$\mathrm{Al}^{1}$	197	197.04	3/2	+. 20	$\cdots$
80	Hg	198		(0)		
		199		1/2	. $50413 \pm 13$	
		200	$\ldots$	(0)		
		201		3/2	$+.5590 \pm 1$	$+.5$
		202		(0)	$\sim 0$	
		204		(0)	$\sim 0$	

Part 3.-Thallium to curium (1950) §
The masses have been derived as outlined by Stern. ${ }^{d}$ The mass of the a-particle is assumed to be 4.00389 mass units and the mass of $\mathrm{Pb}^{206}$ is 206.04519 mass units. The masses of thallium, lead, and bismuth isotopes are determined from the following neutron binding energies (in Mev):

T1 ${ }^{\text {pos }}$	$6.52 \pm 0.03$	$\mathrm{Pb}^{208}$	$8.15 \pm 0.05$	$\mathrm{Pb}^{200}$	$3.87 \pm 0.05$
T1 ${ }^{108}$	$7.48 \pm 0.15$	$\mathrm{Pb}^{207}$	$6.719 \pm 0.016$	$\mathrm{Bi}^{200}$	$7.44 \pm 0.05$
T1 ${ }^{20}$	$6.30 \pm 0.03$	$\mathrm{Pb}^{288}$	$7.38 \pm 0.008$	$\mathrm{Bi}^{210}$	$4.62 \pm 0.015$

The decay energies are taken from a paper by Wapstra ${ }^{\circ}$ except for two corrections. The decay energy of $\mathrm{Ra}^{223}$ is taken to be 170 Kev higher than that given by Wapstra as was assumed by Stern. Also, it is assumed that the decay of $\mathrm{Ra}^{225}$ is 700 Kev , and the masses based on this assumption are in parentheses. A few other disintegration energies not given by Wapstra were taken from Perlman, et al. ${ }^{\prime}$


TABLE 719.-ATOMIC WEIGHTS AND OTHER CHARACTERISTICS OF ISOTOPES (concluded)


[^288]
## TABLE 720.-SOME FUNDAMENTAL PARTICLES OF MODERN PHYSICS *

Electron.-A negatively charged stable particle. The negative charge surrounding the nuclei in all neutral atoms consists entirely of electrons.

Positron.-A particle of the same mass, $M_{e}$, as an ordinary electron. It has a positive electrical charge of exactly the same amount as that of an ordinary electron (which is sometimes called negatron). Positrons are created either by the radioactive decay of certain unstable nuclei or, together with a negatron, in a collision between an energetic (more than one Mev ) photon and an electrically charged particle (or another photon). A positron does not decay spontaneously but on passing through matter it sooner or later collides with an ordinary electron and in this collision the positron-negatron pair is annihilated. The rest energy of the two particles, which is given by Einstein's relation $E=\mathrm{mc}^{2}$ and amounts to 1.0216 Mev altogether, is converted into electromagnetic radiation in the form of one or more photons.

Proton.-This is the nucleus of an ordinary hydrogen atom. It has a positive charge of exactly the same amount as that of an electron and a mass $M_{P}$ which is 1837 times larger than $M_{e}$ and is a stable particle. No experimental evidence of negative protons has been found as yet.

Neutron.-An electrically neutral particle of mass only very slightly greater (by a factor of 1.0013) than that of the proton. Neutrons are produced in various nuclear reactions. In the free state a neutron is unstable, decaying spontaneously with a half-life of about 10 minutes into a proton, and electron and (presumably) a neutrino. When passing through matter a neutron can also be captured by atomic nuclei.

Deuteron. $\dagger$-Nucleus of $\mathrm{H}^{2}$.
a-particle, $\dagger$-Nucleus of $\mathrm{He}^{\dagger}$.
Meson.-Two types of particles of mass intermediate between that of the electron and proton have been discovered in cosmic radiation and in the laboratory. The one particle with mass about $215 m_{e}$ is called $\mu$-meson, the other with about $280 m_{e} \pi$-meson. Mesons of both positive and negative charge have been found and there is now reasonably good evidence for neutral mesons. Both types of mesons decay spontaneously. Some evidence exists for a meson of mass about $1000 \mathrm{~m}_{\text {e }}$.

Neutrino.-An electrically neutral particle of mass very much smaller than that of the electron and possibly zero. There exists as yet no direct experimental evidence for the existence of neutrinos since they interact extremely weakly with matter (e.g., only a small fraction of neutrinos passing through a body of solar mass would be absorbed). There exist, however, extensive measurements on the momentum and energy of the parent and daughter nucleus and of the emitted $\beta$-particle in a $\beta$-decay process. These measurements show that energy and momentum (as well as spin and charge) in such a process can be conserved if, and only if, a light neutral particle such as the neutrino is emitted together with the $\beta$-particle.
Photon.-A photon (or $\gamma$-ray) is a quantum of electromagnetic radiation which has zero rest mass and an energy of $h$ (Planck's constant) times the frequency of the radiation. Photons are generated in collisions between nuclei or electrons and in any other process in which an electrically charged particle changes its momentum. Conversely photons can be absorbed (i.e., annihilated) by any charged particle.
There have been some reports of other particles than those listed above.


[^289]If a neutron or proton (or a light nucleus) approaches a nucleus at a distance less than the range of nuclear forces it may interact with the nucleus in various ways. If the kinetic energy of the incident particle is not more than a few Mev it is usually first captured by the nucleus, forming a compound nucleus. This compound nucleus is in an excited state (having an excess energy due to the extra binding energy of the additional particle as well as its initial kinetic energy) and in a short time either (a) makes a transition to its groundstate releasing the excess energy in the form of photons, (b) re-emits the incident particle returning to the ground-state or an excited state of the original nucleus (elastic or inelastic scattering), or (c) emits some other particle (neutron, proton, deuteron or $a$-particle usually).

A neutron does not experience any Coulomb repulsion on approaching a nucleus and hence can react with a nucleus however low its kinetic energy. However, if the incident particle is a proton or deuteron (and even more so if it is an $\alpha$-particle) it has to overcome an energy barrier due to the electrostatic Coulomb repulsion of the nucleus. For a proton incident on a light nucleus (small Z) this barrier is a few hundred Kev and increases almost proportionately with $Z$. If the kinetic energy of an incident proton is larger than this barrier it can react about as easily as a neutron. If its energy is lower it can still react due to a purely quantum phenomenon called barrier penetration, but the probability of such a reaction's taking place decreases extremely rapidly as the kinetic energy is decreased relative to the barrier.

Nuclear processes in stars.-There are no free neutrons in stellar interiors (any produced are quickly captured by nuclei), but there is a large proportion of ionized hydrogen and helium (protons and $a$-particles). At a stellar temperature of, say, $2 \times 10^{7}{ }^{\circ} \mathrm{C}$ the mean thermal kinetic energy of a proton is less than 2 Kev which is appreciably less than the Coulomb barrier of even light nuclei. This means that the reaction rate for protons being captured by a nucleus in stars is in general low and decreases very rapidly with increasing charge $Z$ of the nucleus, reactions with nuclei of $Z$ greater than 8 (oxygen) being negligible for practical purposes in stars.

Two different cycles (the carbon and proton-proton cycle respectively) are of importance in connection with nuclear energy production in stars. In each of these cycles four protons are captured, separately, by certain light nuclei, two of the compound nuclei thus formed, beta-decay, emitting a positron and neutrino. Each positron subsequently finds an electron and the pair is annihilated, accompanied by the emission of photons. The net effect in each of these cycles is that four protons and two electrons have disappeared, an a-particle has appeared in their place and two neutrinos have been emitted. The energy generated is the total binding energy of an a-particle plus the rest-energy of two electrons which amounts to about 29 Mev per cycle. About 7 percent of this energy is lost in the form of kinetic energy of neutrinos, which escape without interacting any further. The remaining 93 percent of the energy is converted into thermal kinetic energy and radiation. The photons created in the original nuclear processes are absorbed after traversing only a short distance in the star and a larger number of photons of lower frequency are emitted, etc., so that the radiation finally leaving the star has approximately the spectral distribution of blackbody radiation. The rate at which these cycles take place and hence the rate of energyproduction increases very much for even a small increase in the stellar temperature.

- Prepared by E. E. Salpeter.

TABLE 722.-THE THEORETICAL DE BROGLIE WAVELENGTHS ASSOCIATED WITH VARIOUS PARTICLES AND BODIES OF GROSS MATTER ${ }^{226}$

$$
(\lambda=h /(m v))
$$

		Melocity	Energy	De Broglie   wavelengths   Particle
ergs				

[^290]TABLE 723.-RATES OF NUCLEAR REACTIONS IN STARS AND OF ENERGY PRODUCTION AT VARIOUS TEMPERATURES * ${ }^{225}$

Reaction Temperature:						
	$10 \times 10^{6}$	$15 \times 10^{6}$	$17.5 \times 10^{6}$	$20 \times 10^{6}$	$25 \times 10^{\text {e }}$	$30 \times 10^{8}$
$\mathrm{H}^{1}+\mathrm{H}^{1} \rightarrow \mathrm{H}^{2}+e^{+}$	$6 \times 10^{10} \mathrm{yr}$	$1.2 \times 10^{10} \mathrm{yr}$	$6 \times 10^{9} \mathrm{yr}$	$4 \times 10^{0} \mathrm{yr}$	$2 \times 10^{9} \mathrm{yr}$	$1 \times 10^{9} \mathrm{yr}$
$\mathrm{H}^{2}+\mathrm{H}^{1} \rightarrow \mathrm{He}^{3}+\gamma$	15 sec	2 sec	1 sec	. 5 sec	. 2 sec	.1 sec
$\mathrm{He}^{3}+\mathrm{He}^{4} \rightarrow \mathrm{Be}^{7}+\gamma$	$2 \times 10^{12} \mathrm{yr}$	$1.5 \times 10^{9} \mathrm{yr}$	$1.2 \times 10^{8} \mathrm{yr}$	$1.5 \times 10^{7} \mathrm{yr}$	$5 \times 10^{5} \mathrm{yr}$	$5 \times 10^{4} \mathrm{yr}$
$\mathrm{Be}^{7} \rightarrow \mathrm{Li}^{7}-\mathrm{c}^{-}$	70 days	70 days	70 days	70 days	70 days	70 days
$\mathrm{Li}^{7}+\mathrm{H}^{1} \rightarrow \mathrm{He}^{4}+\mathrm{He}^{4}$	10 hr	50 min	50 sec	15 sec	2 sec	.4 sec
Mean life of hydrogen	$6 \times 10^{10} \mathrm{yr}$	$3 \times 10^{9} \mathrm{yr}$	$1.5 \times 10^{8} \mathrm{yr}$	$1 \times 10^{9} \mathrm{yr}$	$5 \times 10^{8} \mathrm{yr}$	$3 \times 10^{8} \mathrm{yr}$
Energy production in ergs/(g sec)	. 75	40	80	120	250	400

Part 2.-Carbon cycle, temperatures in ${ }^{\circ} \mathrm{K}$

Reaction	ture:					
	$10 \times 10^{6}$	$15 \times 10^{0}$	$17.5 \times 10^{6}$	$20 \times 10^{6}$	$25 \times 10^{8}$	$30 \times 10^{8}$
$\mathrm{C}^{12}+\mathrm{H}^{7} \rightarrow \mathrm{~N}^{13}+\gamma$	$2 \times 10^{9} \mathrm{yr}$	$1 \times 10^{6} \mathrm{yr}$	$6 \times 10^{4} \mathrm{yr}$	$7 \times 10^{3} \mathrm{yr}$	200 yr	15 yr
$\mathrm{N}^{13} \rightarrow \mathrm{C}^{13}+\mathrm{c}^{+}$	10 min	10 min	10 min	10 min	10 min	10 min
$\mathrm{C}^{12}+\mathrm{H}^{2} \rightarrow \mathrm{~N}^{14}+\gamma$	$\leq 5 \times 10^{8} \mathrm{yr}$	$\leq 2.5 \times 10^{5} \mathrm{yr}$	$\leq 1.5 \times 10^{4} \mathrm{yr}$	$\leq 1.5 \times 10^{3} \mathrm{yr}$	$\leq 50 \mathrm{yr}$	$\Sigma 3 \mathrm{yr}$
$\mathrm{N}^{14}+\mathrm{H}^{4} \rightarrow \mathrm{O}^{15}+\gamma$	$2 \times 10^{11} \mathrm{yr}$	$4 \times 10^{7} \mathrm{yr}$	$1.7 \times 10^{6} \mathrm{yr}$	$1.5 \times 10^{5} \mathrm{yr}$	$3 \times 10^{3} \mathrm{yr}$	150 yr
$\mathrm{O}^{15} \rightarrow \mathrm{~N}^{15}+\mathrm{c}^{+}$	2 min	2 min	2 min	2 min	2 min	2 min
$\mathrm{N}^{15}+\mathrm{H}^{1} \rightarrow \mathrm{C}^{12}+\mathrm{He}^{4}$	$4 \times 10^{7} \mathrm{yr}$	$8 \times 10^{3} \mathrm{yr}$	300 yr	30 yr	. $6 \times \mathrm{yr}$	${ }_{3} .1 \mathrm{yr}$
Mean life of hydrogen	$5 \times 10^{13} \mathrm{yr}$	$1 \times 10^{10} \mathrm{yr}$	$4 \times 10^{8} \mathrm{yr}$	$4 \times 10^{7} \mathrm{yr}$	$7 \times 10^{5} \mathrm{yr}$	$3 \times 10^{4} \mathrm{yr}$
Energy production in ergs/ (g sec)	. 0025	12	300	3,000	200,000	4,000,000

Relative abundances of $\mathrm{N}^{14}: \mathrm{C}^{12}: \mathrm{C}^{13}: \mathrm{N}^{15}$ at a temperature of $17.5 \times 10^{0}{ }^{\circ} \mathrm{K}$ are in the approximate ratios of 5,000: 200: 50: 1.

Note that the energy-production for the carbon cycle increases much more rapidly with temperature than for the proton-proton cycle. At very "low" temperatures ( $\leq 10^{7}{ }^{\circ} \mathrm{K}$ ) the protonproton reactions are the only ones of importance. The net result at these temperatures is the formation of $\mathrm{He}^{3}$ and a positron out of three $\mathrm{H}^{1}$ nuclei, since the reaction between $\mathrm{He}^{3}$ and $\mathrm{He}^{4}$ is then too slow to be important. In Table 724 the reaction times of a few other nuclear reactions are given merely to show the rapid increase of the reaction time with increasing charge of the interacting muclei especially at lower temperatures. None of the reactions listed in Table 724 are of importance as sources of stellar energy.

* Tables 723 and 724 prepared by E. E. Salpeter.
${ }^{225}$ Bethe, Phys. Rev., vol. 55, p. 434, 1939; Astrophys. Journ., vol. 92, p. 118, 1940
Gamow and Critchfield, Theory of atome nucleus and nuclear energy sources, Oxford Univ. Press, 1940. Fowler, W. A., and Hall, R. N., Phys. Rev., vol. 77, p. 197, 1950, and private communication. Christy, R. F., and O'Reilly, J., unpublished work.

TABLE 724.-TIMES REQUIRED FOR SOME OTHER REACTIONS

Reaction	Temperature: $15 \times 10^{6}{ }^{\circ} \mathrm{K}$	$20 \times 10^{\circ}{ }^{\circ} \mathrm{K}$	$30 \times 10^{\circ}{ }^{\circ} \mathrm{K}$
$\mathrm{F}^{19}+\mathrm{H}^{1} \rightarrow \mathrm{O}^{16}+\mathrm{He}^{4}$	$5 \times 10^{9} \mathrm{yr}$	$1 \times 10^{7} \mathrm{yr}$	$5 \times 10^{8} \mathrm{yr}$
$\mathrm{N}^{15}+\mathrm{H}^{1} \rightarrow \mathrm{O}^{18}+\gamma$	$1 \times 10^{8} \mathrm{yr}$	$5 \times 10^{8} \mathrm{yr}$	$5 \times 10^{3} \mathrm{yr}$
$\mathrm{O}^{16}+\mathrm{H}^{2} \rightarrow \mathrm{~F}^{17}+\gamma$	$5 \times 10^{18} \mathrm{yi}$	$2 \times 10^{11} \mathrm{yr}$	$1 \times 10^{8} \mathrm{yr}$
$\mathrm{Ne}^{22}+\mathrm{H}^{1} \rightarrow \mathrm{Na}^{23}+\gamma$	$5 \times 10^{15} \mathrm{yr}$	$5 \times 10^{12} \mathrm{yr}$	$5 \times 10^{8} \mathrm{yr}$
$\mathrm{Li}^{7}+\mathrm{He}^{4} \rightarrow \mathrm{~B}^{11}+\gamma$	$2 \times 10^{17} \mathrm{yr}$	$2 \times 10^{24} \mathrm{yr}$	$2 \times 10^{10} \mathrm{yr}$
$\mathrm{Be}^{7}+\mathrm{He}^{4} \longrightarrow \mathrm{C}^{11}+\gamma$	$5 \times 10^{23} \mathrm{yr}$	$1 \times 10^{20} \mathrm{yr}$	$2 \times 10^{15} \mathrm{yr}$


#### Abstract

All mean reaction times are proportional to the density $\rho$ of the stellar material and to $C_{n}$, the percentage by weight of hydrogen (except the reactions in which one of the colliding nuclei is $\mathrm{He}^{+}$instead of $\mathrm{H}^{1}$ in which case $C_{\# e}$ replaces $C_{\prime \prime}$ ). The figures in the above tables are for $C_{H}=67$ percent, $C_{H e}=30$ percent, and for $\rho=160 \mathrm{~g} / \mathrm{cm}^{3}$. The calculations of Christy and O'Reilly* for the interior of the sun give these values for $C_{H}, C_{I I}$ and $\rho$ as wcll as a concentration of 1.5 percent for carbon, nitrogen, and oxygen combined and of 1.5 percent for all other elements combined. Their calculations predict a temperature of about $17 \times 10^{\prime \circ} \mathrm{K}$ in the interior of the sun. The mean life of all the hydrogen now present and the total energy production due to the proton-proton cycle and the carbon cycle are also given in Table 723 . For the carbon cycle the mean life of hydrogen and the energy production depend on the concentration of the isotopes of carbon and nitrogen. These elements play the role of a "catalyst" controlling the speed of the reaction and are reproduced at the end of each cycle. The figures in Part 2 of Table 723 are for a concentration of 1 percent by weight for $\mathrm{N}^{14}$.


[^291]TABLE 725.-SLOW NEUTRON PRODUCED RADIOACTIVITIES OF LONG HALF-LIFE * ${ }^{220}$

Radioactive isotope	Half-life	$\begin{gathered} \text { Max energy } \\ \beta-\text { particles } \\ \text { emited } \\ M \mathrm{Mev} \end{gathered}$	$\begin{gathered} \text { Max energy } \\ \gamma-\text { rays } \\ \text { emitted } \\ \text { Mev } \end{gathered}$	Thermal neutron cross section in barns	Percent abundance of parent nucleus
${ }_{1} \mathrm{H}^{3}$	12.1 yr	. 0179	none	$6.5 \times 10^{-4}$	. 016
${ }_{1} \mathrm{H}^{3}$	12.1 yr	. 0179	none	860 ( $n, a$ )	7.5
${ }_{1} \mathrm{H}^{3}$	$12.1 \mathrm{yr}^{\circ}$	. 0179	none	5000 ( $n, p$ )	$1.2 \times 10^{-4}$
${ }_{4} \mathrm{Be}^{10}$	$2.7 \times 10^{\circ} \mathrm{yr}$	. 6	none	. 0085	100.
${ }_{-} \mathrm{C}^{14}$	5700 yr	. 156	none	$1.7(n, p)$	99.6
${ }_{0} \mathrm{C}^{14}$	5700 yr	. 156	none	. 1	1.12
${ }_{11} \mathrm{Na}^{24}$	14.8 hr	1.39	2.76	. 4	100.
${ }_{14} \mathrm{Si}^{31}$	170 min	1.8	none	. 11	3.05
${ }_{15} \mathrm{~S}^{35}$	14.3 d	1.72	none	. 23	100.
${ }_{10} \mathrm{~S}^{35}$	87.1 d	. 169	none	. 26	4.15
${ }_{17} \mathrm{Cl}^{36}$	$2 \times 10^{\circ} \mathrm{yr}$	. 64	none	53.	75.4
${ }_{17} \mathrm{C}^{198}$	37.5 min	4.94	2.15	. 6	24.6
${ }_{18} \mathrm{~A}^{41}$	1.83 hr	2.55	1.37	1.2	99.6
${ }_{19} \mathrm{~K}^{42}$	12.4 hr	3.5	1.5	1.0	6.6
${ }_{20} \mathrm{Ca}^{45}$	152 d	. 260	none	. 63	2.06
${ }_{20} \mathrm{Ca}^{48}$	2.5 hr	2.3	. 8	. 2	. 19
${ }_{21} \mathrm{Sc}^{48}$	85 d	1.49	1.12	22.	100.
${ }_{22} \mathrm{Ti}^{\text {i }}$	72 d	. 36	1.0	. 04	5.34
${ }_{24} \mathrm{Cr}^{51}$	26.5 d	K capture	. 32	16.2	4.49
${ }_{25} \mathrm{Mn}^{58}$	2.59 hr	2.81	2.06	12.8	100.
${ }_{28} \mathrm{Fe}^{55}$	4 yr	K capture	. 07	2.1	5.8
${ }_{20} \mathrm{Fe}^{59}$	47 d	. 46	1.30	. 32	. 28
${ }_{27} \mathrm{Co}^{\text {a0 }}$	5.3 yr	. 3	1.3	22.5	100.
${ }_{28} \mathrm{Ni}^{\text {as }}$	2.6 hr	1.9	1.1	2.6	. 88
${ }_{29} \mathrm{Cu}^{\text {es }}$	12.8 hr	. 66	1.35	4.3	69.1
${ }_{30} \mathrm{Zn}^{\text {es }}$	250 d	. 4	1.14	. 51	50.9
${ }_{30} \mathrm{Zn}^{\text {®0 }}$	13.8 hr	I.T.	. 44	. 09	17.4
${ }_{30} \mathrm{Zn}^{\text {e9 }}$	57 min	1.0	none	. 9	17.4
${ }_{31} \mathrm{Ga}^{72}$	14.1 hr	3.17	2.5	3.4	39.8
${ }_{32} \mathrm{Ge}^{71}$ (?)	40 hr	1.2		. 073	21.2
${ }_{32} \mathrm{Ge}^{71}$	11.4 d	K capture	. 32	. 45	21.2
${ }_{32} \mathrm{Ge}^{75}$	89 min	1.2		. 60	36.7
${ }_{32} \mathrm{Ge}^{77}$	12 hr	2.0		. 085	7.7
${ }_{33} \mathrm{As}^{78}$	26.8 hr	3.0	1.2	4.6	100.87
${ }_{34} \mathrm{Se}^{75}$	127 d .	K capture	. 5	24.	. 87
${ }_{34} \mathrm{Se}^{81}$	58 min	I.T.	. 10	. 03	49.8
${ }_{35} \mathrm{Br}^{80}$	4.4 hr	I.T.	. 049	3.0	50.6
${ }_{35} \mathrm{Br}^{82}$	34 hr	. 47	1.35	2.25	49.4
${ }_{36} \mathrm{Kr}^{79}$	34 hr	. 9	. 2	. 27	. 34
${ }_{30} \mathrm{Kr}^{\text {88 }}$	4.5 hr	. 94	. 37	. 96	57.
${ }_{36} \mathrm{Kr}^{88}$	9.4 yr	. 74	none	. 06	57.
${ }_{33} \mathrm{Kr}^{87}$	74 min	4.		. 06	17.4
${ }_{37} \mathrm{Rb}^{88}$	19.5 d	1.8	1.08	. 72	72.8
${ }_{3 \times} \mathrm{Sr}^{57}$	2.7 hr	I.T.	. 386	1.3	9.9
${ }_{3} \mathrm{Sr}^{88}$	55 d	1.5	none	. 005	82.6
${ }_{38} \mathrm{Y}^{90}$	62 hr	2.35	none	1.2	100.
${ }^{\circ} \mathrm{Zr}{ }^{\text {05 }}$	65 d	1.0	. 92	. 1	17.
${ }^{10} \mathrm{Z} \mathrm{r}^{97}$	17 hr	2.1	. 8	. 29	2.8
${ }^{12} \mathrm{Mo}^{\text {m8 }}$	6.7 hr	3.7	1.6	. 2	15.9
${ }_{42} \mathrm{Mo}^{08}$	67 hr	1.5	. 75		24.
${ }_{43} \mathrm{Tc}^{98}$	6.6 hr	I.T.	. 136	from $\mathrm{Mo}^{\text {ox }}$ decay	
${ }_{\text {14 }} \mathrm{Ru}^{177}{ }^{103}$	$2.8{ }_{41} \mathrm{~d}$	K capture	. 23	.01 .2	5.7 31.3
${ }_{4} \mathrm{Ru}^{105}$	4 hr	1.35	. 76	1.67	18.3
${ }_{45} \mathrm{Rh}^{105}$	35 hr	. 78	. 3	from Ru ${ }^{105}$ decay	
${ }_{46} \mathrm{Pd}^{109}$	13 hr	1.1	none	12.1	27.
${ }_{60} \mathrm{Pd}^{111}$	26 min	3.5		. 39	13.5
${ }_{\text {* }} \mathrm{Ag}^{110}$	225 d	. 59	1.40	2.3	48.7
${ }_{4}^{47} \mathrm{Ag}^{111}$	7.5 48.6 din	I. 1.0	none	from $\mathrm{Pd}_{2}^{111}$ decay	12.8

[^292]\begin{tabular}{|c|c|c|c|c|c|}
\hline Radioactive
isotope \& Half-life \& Max energy $\beta$-particles emitted
Mev \& $$
\begin{gathered}
\text { Max energy } \\
\gamma-\text {-ays } \\
\text { emited } \\
\text { Mev }
\end{gathered}
$$ \& Thermal neutron cross section in barns \& Percent
abundance
of parent
nucleus <br>
\hline ${ }_{48} \mathrm{Cd}^{115}$ \& 43 d \& 1.7 \& . 5 \& . 14 \& 28. <br>
\hline ${ }_{48} \mathrm{Cd}{ }^{115}$ \& 2.33 d \& 1.13 \& . 55 \& 1.1 \& 28. <br>
\hline ${ }_{88} \mathrm{Cd}^{177}$ \& 2.8 hr \& 1.7 \& \& 1.4 \& 7.3 <br>
\hline ${ }_{40} \mathrm{Cn}^{114}$ \& 48 d . \& I.T. \& . 19 \& 61. \& 4.5 <br>
\hline ${ }_{40} \mathrm{In}^{113}$ \& 53.9 min \& . 85 \& 2.32 \& 56. \& 95.77 <br>
\hline ${ }_{50} \mathrm{Sn}^{113}$ \& 105 d \& . 080 \& . 085 \& 1.1 \& 1.1 <br>
\hline ${ }_{51} \mathrm{Sb}^{122}$ \& 2.8 d \& 1.94 \& . 57 \& 6.8 \& 57. <br>
\hline ${ }_{51} \mathrm{Sb}^{124}$ \& 60 d \& 2.37 \& 2.06 \& 2.5 \& 44. <br>
\hline ${ }_{52} \mathrm{Te}^{27}$ \& 9.3 hr \& . 70 \& none \& . 78 \& 18.7 <br>
\hline ${ }_{62} \mathrm{~T}^{1289}$ \& 72 min \& 1.8 \& . 8 \& . 13 \& 31.8 <br>
\hline ${ }_{63} \mathrm{I}^{128}$ \& 25 min \& 2.02 \& . 428 \& 6.8 \& 100. <br>
\hline ${ }_{53} \mathrm{I}^{131}$ \& 8 d \& . 687 \& . 37 \& from $\mathrm{Te}^{131}$ decay \& <br>
\hline ${ }_{54} \mathrm{Xe}^{138}$ \& 5.27 d \& . 35 \& . 085 \& . 2 \& 26.9 <br>
\hline ${ }_{\text {65 }} \mathrm{CS}^{184}$ \& 3.1 hr \& 2.4 \& . 7 \& . 016 \& 100. <br>
\hline ${ }_{65} \mathrm{Cs}^{134}$ \& 2.3 yr \& . 66 \& 1.40 \& 26. \& 100. <br>
\hline ${ }_{60} \mathrm{Ba}^{131}$ \& 11.7 d \& K capture \& 1.2 \& 24. \& . 09 <br>
\hline ${ }_{58} \mathrm{Ba}^{139}$ \& 85 min \& 2.27 \& . 163 \& . 5 \& 71.7 <br>
\hline ${ }_{5:} \mathrm{La}^{140}$ \& 40 hr \& 2.12 \& 2.3 \& 9. \& 99.9 <br>
\hline ${ }_{58} \mathrm{Ce}^{141}$ \& 30 d \& . 6 \& . 2 \& . 95 \& 88.5 <br>
\hline ${ }_{88} \mathrm{Ce}^{143}$ \& 33 hr \& 1.35 \& . 5 \& . 31 \& 11.1 <br>
\hline ${ }_{69} \mathrm{Pr}^{142}$ \& 19.3 hr \& 2.14 \& 1.9 \& 11. \& 100. <br>
\hline ${ }^{60} \mathrm{Nd}^{147}$ \& 11.0 d \& . 90 \& . 58 \& 1.5 \& 16.5 <br>
\hline ${ }_{00} \mathrm{Nd}^{149}$ \& 1.7 hr \& 1.5 \& \& 2.4 \& 6.8 <br>
\hline ${ }_{82} \mathrm{Sm}^{153}$ \& 47 hr \& . 78 \& . 61 \& 280. \& 26.6 <br>
\hline ${ }_{72} \mathrm{Sm}_{\mathrm{E}}{ }^{1505}$ \& 25 min \& 1.9 \& . 3 \& 6. \& 22.5 <br>
\hline ${ }_{93} \mathrm{Eu}^{182}$ \& 9.2 hr \& 1.88 \& . 725 \& 1530. \& 49.1 <br>
\hline ${ }_{83} \mathrm{Eu}^{154}$ \& 7 yr \& . 9 \& 1.2 \& 1000. \& 52.2 <br>
\hline ${ }_{84} \mathrm{Gd}^{150}$ \& 18 hr \& . 95 \& . 38 \& 1.1 \& 24.8 <br>
\hline ${ }_{\text {as }} \mathrm{Tb}^{180}$ \& 3.9 hr \& \& \& 11. \& 100. <br>
\hline ${ }^{59} \mathrm{~Tb}^{180}{ }^{108}$ \& 75 d \& ${ }_{1} .88$ \& 1.15 \& 22. \& 100. <br>
\hline ${ }_{07}^{88} \mathrm{Ho}^{188}$ \& 27.2 hr \& 1.6 \& . 8 \& 2700.
67. \& 100. <br>
\hline ${ }_{08} \mathrm{Er}^{180}$ \& 9.4 d \& . 33 \& none \& \& 27.1 <br>
\hline ${ }_{88} \mathrm{Er}^{171}$ \& 7.5 hr \& 1.5 \& . 81 \& 7. \& 14.9 <br>
\hline ${ }_{08} \mathrm{Tm}^{170}$ \& 127 d \& . 98 \& . 833 (?) \& 118. \& 100. <br>
\hline ${ }_{78} \mathrm{Yb}^{189}$ \& 33 d \& K capture \& . 4 \& 18,000. \& . 14 <br>
\hline ${ }_{70} \mathrm{Y}^{7} \mathrm{Yb}^{177}$ \& 4.1
2.1 d

hr \& .50
1.2 \& . 35 \& 50. \& 31.8
127 <br>
\hline ${ }_{71} \mathrm{Lu}^{178}$ \& 3.7 hr \& 1.15 \& none \& 30. \& 97.5 <br>
\hline ${ }_{71} \mathrm{Lu}^{177}$ \& 6.6 d \& . 47 \& . 2 \& 3200. \& 2.5 <br>
\hline ${ }_{72} \mathrm{Hf}^{181}$ \& 46 d \& . 46 \& . 47 \& 10. \& 35.1 <br>
\hline ${ }_{73} \mathrm{Ta}^{182}$ \& 120 d \& . 53 \& 1.22 \& 20.6 \& 100. <br>
\hline ${ }_{74} \mathrm{~W}^{188}$ \& 73 d \& . 43 \& none \& 2.1 \& 30.7 <br>
\hline ${ }_{74} \mathrm{~W}^{187}$ \& 24.1 hr \& 1.33 \& . 69 \& 37.2 \& 29.2 <br>
\hline ${ }_{75} \mathrm{Re}^{188}$ \& 90 hr \& 1.05 \& none \& 101. \& 38.2 <br>
\hline ${ }_{75} \mathrm{Re}^{188}$ \& 18 hr \& 2.05 \& 1.43 \& 75. \& 61.8 <br>
\hline ${ }_{78} \mathrm{Os}^{191}$ \& 15 d \& . 142 \& . 129 \& 3.4 \& 26.4 <br>
\hline ${ }_{76} \mathrm{Os}^{193}$ \& 32 hr \& 1.2 \& 1.58 \& 3.9 \& 41.0 <br>
\hline ${ }_{77 \text { IT }}{ }^{192}$ \& 70 d \& . 67 \& . 607 \& 740. \& 38.5 <br>
\hline ${ }_{77} \mathrm{Ir}^{109}$ \& 19 hr \& 2.2 \& 1.4 \& 130. \& 61.5 <br>
\hline ${ }_{78} \mathrm{Pt}^{107}$ \& 3.3 d \& \& \& 4.5 \& 25.4 <br>
\hline ${ }_{78} \mathrm{PP}^{107}$ \& 18 hr \& . 7 \& \& 1.1 \& 25.4 <br>
\hline ${ }_{79} \mathrm{Pt}^{198}{ }^{198}$ \& 31 min \& 1.8 \& \& 3.9 \& 7.2 <br>
\hline ${ }_{79} \mathrm{Au}^{198}$ \& 2.7 d \& . 96 \& . 411 \& 96. \& 100. <br>
\hline ${ }_{80} \mathrm{Hg}^{208}{ }^{208}$ \& 51.5 d \& . 21 \& . 3 \& 2.4 \& 29.6 <br>
\hline ${ }_{81}{ }_{82} \mathrm{Tl}^{204} \mathrm{~Pb}^{208}$ \& ${ }_{3.32}^{3.5 \mathrm{yr}}$ \& . 87 \& none \& 7.5 \& 29.2 <br>
\hline ${ }_{83}{ }_{83} \mathrm{~PB}^{210}{ }^{200}$ \& $5.0{ }^{3.32 \mathrm{dr}}$ \& .68
1.17 \& none \& .00045
.015 \& 52.3
100. <br>
\hline ${ }_{38} \mathrm{PO}^{210}$ \& 138 d \& \& ${ }_{\text {or }}{ }^{\text {nine }}$ decay \& \& <br>
\hline ${ }_{00} \mathrm{Th}^{238}$ \& 23.5 min \& 1.6 \& none \& \& 100. <br>
\hline ${ }_{01} \mathrm{PP}^{238}$ \& 25 d \& . 23 \& . 30 \& from $\mathrm{Th}^{288}$ decay \& <br>
\hline ${ }_{93}^{02} \mathrm{U}^{239} \mathrm{~N}^{239}$ \& 23.5
2.3 dmin
d \& 1.20
1.18 \& . 076 \& from $\underline{U}^{2 s}{ }^{\text {d }}$ dec \& 99. <br>
\hline
\end{tabular}

When various materials are bombarded with the high－speed particles produced by one of the de－ vices given in Table．718，disintegrations，or the building up of elements higher in the atomic table，result．Some examples of these reactions are given in the table．

Part 1．－Some values of the energy of artificial disintegration for different isotopes and for different reactions ${ }^{277}$

Neutron bombardment								
$\mathrm{H}^{1}(n, \gamma) \mathrm{H}^{2}$	$-2.320$	Mev	$\mathrm{B}^{11}\left(n, H^{3}\right) \mathrm{Be}^{9}$	$-9.57$	Mev	$\mathrm{N}^{14}(n, a) \mathrm{B}^{11}$	－． 28	Mev
$\mathrm{He}^{3}(n, p) \mathrm{H}^{3}$	． 764		$\mathrm{B}^{11}(n, \gamma) \mathrm{B}^{12}$	2.6		$\mathrm{N}^{14}(n, p) \mathrm{C}^{14}$	． 60	
$\mathrm{Li}^{8}(n, p) \mathrm{He}^{8}$	$-2.9$		$\mathrm{Be}^{19}(n, \gamma) \mathrm{Be}^{10}$	6.69		$\mathrm{O}^{16}(n, 2 n) \mathrm{O}^{15}$	－15．6	
$\mathrm{Li}^{0}(n, a) \mathrm{H}^{3}$	4.785		$\mathrm{Be}^{( }(n, a) \mathrm{He}^{8}$	－． 80		$\mathrm{O}^{18}(n, a) \mathrm{C}^{13}$	$-2.31$	
$\mathrm{Li}^{7}(\boldsymbol{n}, \boldsymbol{\gamma}) \mathrm{Li}^{8}$	1.98		$\mathrm{Be}^{0}(n, 2 n) \mathrm{Be}^{8}$	$-1.63$		$\mathrm{O}^{17}(n, a) \mathrm{C}^{14}$	1.73	
$\mathrm{B}^{10}(n, a) \mathrm{Li}^{7}$	2.79		$\mathrm{C}^{12}(n, n) 3 a$	－ 7.43		$\mathrm{N}^{14}\left(n, H^{3}\right) \mathrm{C}^{12}$	－ 4.10	
$\mathrm{B}^{10}\left(n, H^{3}\right) \mathrm{Be}^{8}$	． 22		$\mathrm{C}^{12}(n, 2 n) \mathrm{C}^{11}$	－18．68		$\mathrm{N}^{14}(n, p) \mathrm{C}^{14}$	． 626	
$\mathrm{B}^{10}(n, p) \mathrm{Be}^{10}$	． 20		$\mathrm{C}^{18}(n, a) \mathrm{B}^{10}$	－ 3.94		$\mathrm{N}^{14}\left(n, H^{3}\right) 3 \mathrm{a}$	$-11.43$	
$\mathrm{B}^{11}(n, a) \mathrm{Li}^{8}$	－ 6.66					$\mathrm{N}^{15}\left(n, H^{3}\right) \mathrm{C}^{13}$	－ 9.97	
Proton bombardment								
$\underline{L i}{ }^{0}(p, \gamma) \mathrm{Be}^{7}$	5.53	Mev	$\mathrm{Be}^{9}(p, d) \mathrm{Be}^{8}$	． 558		$\mathrm{N}^{14}(p, a) \mathrm{C}^{11}$	－ 3.00	
$\mathrm{Li}^{\text {e }}$（ $\left.p, a\right) \mathrm{He}^{8}$	4.021		$\mathrm{B}^{10}(p, \gamma) \mathrm{C}^{11}$	8.70		$\mathrm{N}^{15}(p, a) \mathrm{C}^{12}$	4.92	
$\mathrm{Li}^{7}(p, n) \mathrm{Be}^{7}$	－ 1.645		$\mathrm{B}^{10}(p, n) \mathrm{C}^{10}$	－ 5.2		$\mathrm{C}^{12}(p, \gamma) \mathrm{N}^{18}$	1.92	
$\mathrm{Li}^{7}(p, \gamma) \mathrm{Be}^{8}, \mathrm{Be}^{8}$	17.21		$\mathrm{B}^{10}(p, a) \mathrm{Be}^{7}$	1.146		$\mathrm{C}^{13}(p, \gamma) \mathrm{N}^{14}, \mathrm{~N}^{16}$＊	7.56	
$\mathrm{Li}^{7}(p, a) \mathrm{He}^{4}$	17.28		$\mathrm{B}^{11}(p, a) \mathrm{Be}^{8}$	8.57		$\mathrm{C}^{13}(p, n) \mathrm{N}^{13}$	2.96	
$\mathrm{Be}^{9}(p, d) \mathrm{Be}^{8}$	． 559		$\mathrm{B}^{11}(p, n) \mathrm{C}^{11}$	$-2.762$		$\mathrm{F}^{19}(p, a) \mathrm{O}^{18}$	8.113	
$\mathrm{Be}^{9}(p, \gamma) \mathrm{B}^{10}, \mathrm{~B}^{10}$＊	6.49		$\mathrm{B}^{11}(p, \gamma) \mathrm{C}^{12}, \mathrm{C}^{12}$＊	15.96		$\mathrm{F}^{19}(p, n) \mathrm{Ne}^{19}$	$-3.84$	
$\mathrm{Be}^{9}(p, n) \mathrm{B}^{9}$	－ 1.84					$\mathrm{O}^{18}(p, n) \mathrm{F}^{18}$	－ 2.455	
$\mathrm{Be}^{9}(p, a) \mathrm{Li}^{8}$	$2.125$	Mev						
Deuteron bombardment								
$\mathrm{Li}^{\text {® }}$（ ${ }^{\text {d，a }}$ ） $\mathrm{He}^{4}$	22.23	Mev	$\mathrm{B}^{11}($ d，a $) \mathrm{Be}^{\text {e }}$	8.03	Mev	$\mathrm{C}^{13}(d, p) \mathrm{C}^{14}$	5.99	Mev
$\underline{\mathrm{Li}}{ }^{6}(d, n) \mathrm{Be}^{8}$	3.54		$\mathrm{B}^{11}(d, n) \mathrm{C}^{12}, \mathrm{C}^{12}$＊	13.78		$\mathrm{N}^{14}(d, a) \mathrm{C}^{12}$	13.50	
$\underline{L} \mathrm{i}^{i}(d, p) \mathrm{Li}^{7}$	5.012		$\mathrm{B}^{11}(d, p) \mathrm{B}^{12}$	． 7.4		$\mathrm{N}^{14}(d, p) \mathrm{N}^{15}$	8.57	
$\mathrm{Li}^{\mathbf{8}}(d, n) \mathrm{Be}^{7}$	3.34		$\mathrm{Be}^{9}(d, a) \mathrm{Li}^{7}, \mathrm{Li}^{7}{ }^{*}$	7.09		$\mathrm{N}^{14}(d, n) \mathrm{O}^{15}$	5.1	
$\mathrm{Li}^{\mathbf{8}}(d, a) \mathrm{He}^{4}$	22.29		$\mathrm{Be}^{9}\left(d, H^{3}\right) \mathrm{Be}^{8}$	4.53		$\mathrm{N}^{14}\left(d, H^{3}\right) \mathrm{N}^{18}$	$-4.36$	
$\underline{L^{17}}(d, p) \mathrm{Li}^{8}$	－ .193		$\mathrm{Be}^{\theta}(d, p) \mathrm{Be}^{10}$	4.52		$\mathrm{N}^{14}(d, a) 3 a$	6.16	
$\mathrm{Li}^{7}(d, a) \mathrm{He}^{5}$	14.3		$\mathrm{C}^{12}(d, p) \mathrm{C}^{18}$	2.726		$\mathrm{N}^{18}(d, a) \mathrm{C}^{13}$	7.62	
$\mathrm{B}^{10}($ d，a $) \mathrm{Be}^{8}, \mathrm{Be}^{8}$	17.81		$\mathrm{C}^{12}(d, n) \mathrm{N}^{13}$	－． 279		$\mathrm{O}^{18}(d, a) \mathrm{N}^{14}$	3.07	
$\mathrm{B}^{10}(d, p) \mathrm{B}^{11}, \mathrm{~B}^{11}$＊	9.24		$\mathrm{C}^{13}(d, a) \mathrm{B}^{11}$	5.10				
$\mathrm{B}^{10}(d, n) \mathrm{C}^{11}$	6.53							
$a$－ray bombardment								
$\mathrm{Be}^{9}\left(a, a^{\prime}\right) \mathrm{Be}^{8}+n$	$-1.63$	Mev	$\mathrm{Li}^{7}(\mathrm{a}, n) \mathrm{B}^{10}, \mathrm{~B}^{10} *$	$-2.78$	Mev	$\mathrm{Be}^{9}\left(a, a^{\prime}\right) \mathrm{Be}^{9}{ }^{*}$	$-1.63$	Mev
$\mathrm{Be}^{\theta}\left(a, a^{\prime}\right) \mathrm{Be}^{8}{ }^{*}$	$-1.63$		$\mathrm{B}^{10}(\mathrm{a}, \mathrm{d}) \mathrm{C}^{12}$	1.44		$\mathrm{B}^{11}(a, n) \mathrm{N}^{14}$	． 28	
$\mathrm{Be}^{0}\left(a, a^{\prime}\right) \mathrm{He}^{5}+a$	$-2.4$		$\mathrm{B}^{10}(a, p) \mathrm{C}^{13} \mathrm{C}^{13}{ }^{*}$	4.14		$\mathrm{B}^{11}(a, p) \mathrm{C}^{14}$	． 88	
$\mathrm{Be}^{9}\left(a, a^{\prime}\right) 2 a+n$	－ 1.58		$\mathrm{B}^{10}(a, n) \mathrm{N}^{18}$	1.18		$\mathrm{C}^{12}(a, n) \mathrm{O}^{15}$	$-8.4$	
$\mathrm{Li}^{\text {® }}$（ $\left.a, p\right) \mathrm{Be}^{9}$	$-2.12$		${ }^{1} \mathrm{e}^{9}(\mathrm{a}, n) \mathrm{C}^{12}, \mathrm{C}^{12}$＊	5.75				

[^293] p．372， 1950.

Part 2．－Photo－nuclear reactions，threshold values ${ }^{228}$

$\mathrm{H}^{2}(\boldsymbol{\gamma}, n) \mathrm{H}^{1}$	$2.20 \pm .05 \mathrm{Mev}$	$\mathrm{Ca}^{40}(\gamma, n) \mathrm{Ca}^{30}$	$15.9 \pm .4 \mathrm{Mev}$	$\mathrm{Cd}^{113}(\gamma, n) \mathrm{Cd}^{112}$	$6.44 \pm .15 \mathrm{Mev}$
$\mathrm{Be}^{0}(\gamma, n) \mathrm{Be}^{8}$	1．63 $\ddagger .3$	$\mathrm{Fe}^{54}(\gamma, n) \mathrm{Fe}^{53}$	$13.8 \pm .2$	$\mathrm{Sn}^{119}(\gamma, n) \mathrm{Sn}^{118}$	$6.51 \pm .15$
$\mathrm{Lij}^{7}(\gamma, p) \mathrm{He}^{8}$	$9.8 \pm .5$	$\mathrm{Mn}^{55}(\gamma, n) \mathrm{Mn}^{54}$		$\mathrm{Sn}^{124}(\gamma, n) \mathrm{Sn}^{123}$	$8.50 \pm .15$
$\mathrm{C}^{12}(\gamma, n) \mathrm{C}^{11}$	$18.7 \pm 1.0$	$\mathrm{Cu}^{13}(\gamma, n) \mathrm{Cu}^{02}$	$10.9 \pm .2$	$\mathrm{Sb}^{121}(\gamma, n) \mathrm{Sb}^{120}$	$9.25 \pm .2$
	$10.65 \pm .2$	$\mathrm{Cu}^{65}(\gamma, n) \mathrm{Cu}^{\text {ad }}$	10.2 士 ． 2	${ }_{\mathrm{P}^{127}}^{127}(\gamma, n){ }^{128}(\gamma){ }^{128}$	$9.3 \pm .2$
$\mathrm{Mg}^{24}(\gamma, n) \mathrm{Mg}^{23}$	16.2 ¥．3	$\mathrm{Zn}^{\text {²4 }}\left(\gamma, n, \mathrm{Zn}^{\text {²3 }}\right.$	$11.80 \pm .20$	${ }^{\operatorname{Pr}^{141}(\gamma, n)} \operatorname{Pr}^{140}$	$9.40 \pm .10$
$\mathrm{Mg}^{25}(\boldsymbol{\gamma}, \boldsymbol{p}) \mathrm{Na}^{24}$	$11.5 \pm 1.0$	$\mathrm{Zn}^{70 *}(\gamma, n) \mathrm{Zn}^{\text {®9 }}$	9．20士． 20	$\mathrm{Nd}^{150}(\gamma, n) \mathrm{Nd}^{148}$	$7.40 \pm .20$
$\mathrm{Mg}^{28}\left(\boldsymbol{\gamma}, p\right.$ ） $\mathrm{Na}^{28}$	$14.0 \pm 1.0$		$10.7 \pm .20$	$\mathrm{Ta}^{181}(\boldsymbol{\gamma}, n) \mathrm{Ta}^{180}$ $\mathrm{Au}^{197}(\boldsymbol{\gamma}, n) \mathrm{Au}^{180}$	${ }_{8.00}^{7.7} \pm .2$
					$8.00 \pm .15$
${ }^{\text {P }}$	$12.35 \pm .2$	$\mathrm{Zr}^{91}(\gamma, n) \mathrm{Zr}^{90}$	$7.20 \pm .40$	$\mathrm{T}^{205}(\gamma, n) \mathrm{T} \mathrm{P}^{204}$	$7.38 \pm .15$
$\mathrm{S}^{32}(\gamma, n) \mathrm{S}^{31}$	$14.8 \pm .4$	$\mathrm{Mo}^{82}(\boldsymbol{\gamma}, n) \mathrm{Mo}^{91}$	13．28	$\mathrm{Pb}^{207}(\gamma, n) \mathrm{Pb}^{208}$	$6.85 \pm .20$
$\mathrm{K}^{39}(\gamma, n) \mathrm{K}^{38}$	13.2 士 ． 2	$\mathrm{Mo}^{87}(\gamma, n) \mathrm{Mo}^{88}$	$7.10 \pm .30$	$\mathrm{Bi}^{208}(\boldsymbol{\gamma}, n) \mathrm{Bi}^{208}$	$7.45 \pm .2$

[^294]The heavier elements, $\mathrm{Np}, \mathrm{Pu}, \mathrm{Am}, \mathrm{Cm}, \mathrm{Bk}$, and Cf may be produced by artificial transformation of $U$, followed by radioactive breakdown. A few examples follow :

$$
\begin{aligned}
& { }_{43} \mathrm{~N}_{\mathrm{p}}{ }^{20} \rightarrow{ }_{{ }_{4} \mathrm{Pu}^{23 n}}+\beta^{-} \text {(2.3 days) }
\end{aligned}
$$

For quantity production:

$$
\begin{aligned}
& { }_{94} \mathrm{Pu}^{241} \rightarrow{ }_{{ }_{5}} \mathrm{Am}^{241}+\beta^{-} \\
& { }_{06} \mathrm{Pu}^{239}+{ }_{2} \mathrm{He}^{4} \rightarrow \frac{{ }_{n P} \mathrm{Cm}^{242}}{}+\underset{{ }_{00} \mathrm{Cm}^{201}}{ }+{ }^{1} n^{2}+{ }^{2} n^{1}+{ }_{0} n^{1}
\end{aligned}
$$

For quantity production:

$$
\begin{aligned}
& { }_{93} \mathrm{Am}^{241}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{n i} \mathrm{Bk}^{243}+{ }_{o n}{ }^{1}+{ }_{0} n^{1} \\
& { }_{90} \mathrm{Cm}^{242}+{ }_{2} \mathrm{He}^{4} \rightarrow \overline{{ }^{4}} \mathrm{Cf}^{24+}+{ }_{0} n^{1}+{ }_{0} n^{1}
\end{aligned}
$$

[^295]TABLE 728.-PILE YIELDS OF SOME ISOTOPES*
Calculated for 10 liters of material exposed to $10^{10}$ neutrons $\mathrm{cm}^{-3} \mathrm{sec}^{-1}$

Radioactive isotope	Cross section in units of $10^{-24} \mathrm{~cm}^{2}$ times relative isotope abundance	Density material $\mathrm{g} / \mathrm{cm}^{3}$	Half-life in hours	Atomic weight of material	Mean free path cm	Yields $\mathrm{mc} / \mathrm{hr}$
$\mathrm{H}^{3}$	$10^{-7}$	1	$1.1 \times 10^{5}$	9	$7 \times 10^{7}$	$10^{-7}$
$\mathrm{Be}^{10}$	. 0086	1.85	$2.4 \times 10^{10}$	- 9	570	$7 \times 10^{-8}$
$\mathrm{C}^{14}$	1.7	1.6	$4 \times 10^{7}$	30	12	$2 \times 10^{-3}$
$\mathrm{Na}^{24}$	. 4	. 97	14.8	23	60	1100
$\mathrm{P}^{22}$	. 23	2.2	343	31	60	45
$\mathrm{K}^{+2}$	. 066	. 86	12.4	39	680	120
$\mathrm{Ca}^{45}$	. 012	1.54	3650	40	2220	. 12
$\mathrm{Fe}^{50}$	. 001	4.86	1110	56	7000	. 1
$\mathrm{Zn}^{65}$	. 26	7.14	6000	65	65	4.5
$\mathrm{As}^{78}$	4.6	5.7	26.8	75	2.86	1300
$\mathrm{Br}^{\mathrm{N}_{2}}$	1.12	3.12	34	80	22.8	1300
$\mathrm{Rb}^{83}$	. 52	1.53	469	85	106	20
$\mathrm{Sr}^{89}$	. 0041	2.6	1770	88	8000	. 1
$\mathrm{Ag}^{110}$	1.1	10.5	5400	108	. 41	200
In ${ }^{144 m}$	2.74	7.3	1150	115	5.7	150
Ta ${ }^{182}$	20.6	16.6	2800	181	. 48	680
$B i^{210}$	. 015	9.8	120	209	1420	6

[^296]TABLE 729.-COMPARATIVE PROPERTIES OF ORDINARY AND HEAVY WATER*

Property	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2}{ }^{2} \mathrm{O}$
Specific gravity at $25^{\circ} \mathrm{C}$ relative to ordinary water at $25^{\circ} \mathrm{C}$	1.0000	1.1079
Temperature of maximum density	$4.0{ }^{\circ} \mathrm{C}$	$11.6{ }^{\circ} \mathrm{C}$
Dielectric constant	81.5	80.7
Surface tension	72.75 dynes/cm	67.8
Viscosity at $10^{\circ} \mathrm{C}$	13.10 millipoises	16.85
Melting point	$.000^{\circ} \mathrm{C}$	$3.802^{\circ} \mathrm{C}$
Boiling point ( 76 cmHg pressure)	$100.00^{\circ} \mathrm{C}$	$101.42^{\circ} \mathrm{C}$
Heat of fusion.	$1436 \mathrm{cal} / \mathrm{mole}$	1510
Heat of vaporization at $25^{\circ} \mathrm{C}$	$10484 \mathrm{cal} / \mathrm{mole}$	10743
Refractive index at $20^{\circ} \mathrm{C}$ for NaD line.	1.33300	1.32828

* For reference, see footnote 224, p. 665.

TABLE 730.-THE MECHANICAL EFFECTS OF RADIATION ${ }^{230}$


[^297]A number of elements ( $12 ; 43$ isotopes) of high atomic weight, now found in the earth, and one of the isotopes of each of six lighter elements (Table 732) are unstable in that they spontaneously break down into other elements, emitting $a, \beta$ or $\gamma$ rays. The study of artificial radioactivity shows some other types of breakdown. Some of the artificial radioactive nuclei break down by the emission of positive electrons or of neutrons; a $K$ electron may be captured (designated by $K^{\prime}$ ) ; some internal conversion of electrons may take place ( $e^{-}$) or there may be some isomeric transition of the nucleus (I.T.).

The characteristics of the three rays- $a, \beta$, and $\gamma$-are quite different. A $3 \mathrm{Mev} a$-particle has a velocity of about $1 / 25$ that of light, a range in air of 1.7 cm , and produces some 4,000 ion pairs per mm in air at 760 mmHg at $15^{\circ} \mathrm{C}$. A $3 \mathrm{Mev} \beta$-ray has a velocity of nearly 99 percent of that of light and a range in air of about 13 meters, and produces only about 4 ion pairs per mm in air. The energy of a $\gamma$-ray, which is very short-wavelength radiant energy, is $E=h \nu$, and it has the velocity of light. Thus a $3 \mathrm{Mev} \gamma$-ray has a wavelength of 4.1 XU. However, the $\gamma$-rays given by the natural radioactive materials have much less energy than this ( 4 Mev ), generally about 1 Mev . [Some artificial radioactive materials emit $\gamma$-rays with very high energy (See Tables 750-752.).] The wavelengths of the $\gamma$-rays from natural radioactivity particles range from about 4.5 to about $4,000 \mathrm{XU}$. $\gamma$-rays have a very long range. A $\gamma$-ray produces directly no ions along its path but spends almost its entire energy in producing a photoelectron. Rutherford ${ }^{2300}$ says that the $\beta$-rays are about 100 times as penetrating as the $a$-rays, and the $\gamma$-rays 10 to 100 times as penetrating as the $\beta$-rays.

Today it should be stated that, in general, the radioactive isotopes (about 43 in number) of these 12 elements change into other isotopes, either smaller or of the same weight, depending upon the type of breakdown. The nucleus of the resulting isotope may be smaller in weight by about four units and have a charge two units smaller than the parent due to the emission of an $\alpha$-particle, or it may be of almost the same weight and have a charge one unit greater due to the emission of a $\beta$-ray. There are several changes in both the weight and charge that may take place for some of the artificial radioactive nuclei.

The character of these changes varies with the element and seems to be determined by some probability law. It does not seem possible, by any ordinary physical or chemical means, to change these characteristics. (See artificial disintegration, Table 726.)

[^298]
## TABLE 731.-UNITS FOR THE RATE OF RADIOACTIVE DISINTEGRATION

The curie, the adopted unit of the rate of radioactive decay, is defined as the number of disintegrations of 1 gram of radium $\left(3.61 \times 10^{10}\right)$ in 1 second. As a working value for the curie the National Bureau of Standards some years ago adopted the value $3.700 \times 10^{10}$ disintegrations per second.

The rutherford (abbreviated $r d$ ) $=10^{6}$ disintegrations per second, has been suggested as a smaller working standard. Then, 1 millirutherford ( mrd ) $=10^{3}$ disintegrations per second and 1 microrutherford $(\mu r d)=1$ disintegration per second.
The rate of disintegration of an isotope that emits gamma-rays may be determined by a measure of the $\gamma$-ray emission in roentgens.

A committee of the National Research Council ${ }^{281}$ recommended that the curie be defined as $3.70 \times 10^{10}$ disintegrations per second; the rutherford ( $r d$ ) as just given. For quantitative comparison of radioactive sources emitting gamma-rays, for which disintegration rates cannot be determined, the roentgen per hour at 1 meter ( rhm ) is recommended.

[^299]TABLE 732.-NATURAL RADIOACTIVE MATERIALS


[^300]TABLE 732.-NATURAL RADIOACTIVE MATERIALS (concluded)






TABLE 733.-THE ORIGINAL NAMES OF CERTAIN RADIOACTIVE MATERIALS*

Radioactive name	Element and isotope	Radioactive name	Element and isotope
Actinium	89 Actinium 227	" D	82 Lead 210
Actinium A	84 Polonium 215	Radium E	83 Bismuth 210
" B	82 Lead 211	F	84 Polonium 210
" C	83 Bismuth 211	" G	82 Lead 206
" C'	84 Polonium 211	Radon $\dagger$	86 Radon 222
" C"	81 Thallium 207	Actinon	86 Radon 219
" D	82 Lead 207	Emanation	86 Radon 222
" K	87 Francium 223	Niton	86 Radon 222
" X	88 Radium 223	Thoron	86 Radon 220
Actinouranium	92 Uranium 235	Thorium	90 Thorium 232
Brevium (see   Uranium $\mathrm{X}_{2}$ )	91 Protactinium 234m	Thorium ${ }_{\text {" }}^{\text {A }}$	84 Polonium 216 82 Lead 212
Emanation	86 Radon 222	" ${ }^{\prime}$ '	84 Polonium 212
Mesothorium I	88 Radium 228	" C"	81 Thallium 208
" II	89 Actinium 228	* D	82 Lead 208
Niton	86 Radon 222	" X	88 Radium 224
Radioactinium	90 Thorium 227	Thoron	86 Radon 220
Radiothorium	90 Thorium 228	Uranium I	92 Uranium 238
Radium	88 Radium 226	" II	92 Uranium 234
Radium A	84 Polonium 218	" $\mathrm{X}_{1}$	90 Thorium 234
" B	82 Lead 214	" $\mathrm{X}_{2}$	91 Protactinium 234 m
" C	83 Bismuth 214	" Y	90 Thorium 231
" C'	84 Polonium 214	" Z	91 Protactinium 234
" C"	81 Thallium 210	Uranium lead	82 Lead 206

* At times the prefix cca was used to designate the element following certain elements either in the periodic table or in radioactive series. $\dagger$ At one time all these materials were called Emanation, i.e., RaEm, AcEm, ThEm.


## TABLE 734.-THE FOUR RADIOACTIVE FAMILIES

The radioactive isotopes of the heavy materials arrange themselves into four families, or series, that are known either by the parent of the family or by the member of the series with the longest life. Before the various isotopes had been established some of the different members of the families had special names. (See Table 733.) These families or series are also designated by the numerical relation of the particular isotopes of the family involved and the number 4. Thus the four families or series are: (1) Thorium, or $4 n$ series; (2) Neptunium,* or $4 n+1$; (3) Uranium, or $4 n+2$; (4) Actinium, or $4 n+3$.

Generally, tables of these families show the type of radiation emitted, the energy of the radiation, the end product, and two or three factors that describe the time characteristics of the disintegrations; i.e., $T$ the half-life (that is, the time it takes for one-half of the given material to disintegrate, which can be accurately measured $T_{a}$, the average life, and $\lambda$, the decay constant. From the law of disintegration which radioactive materials have been found to follow, the three constants are shown to be related as follows: $\lambda=\frac{0.693}{T}$ and $T_{a}=\frac{1}{\lambda}$.
There are a number of isomers ${ }^{232}$ in the series as shown in Table 742, as for instance, see Uranium $\mathrm{X}_{1}$, Radium C, Actinium, etc. As a result of recent work on the artificial production of radioactive isotopes many more isomers could be given. Also, the first member of some of the series might be different. Thus, the $4 n+3$ series (the Actinium group) might start in this manner:

Element	Rays and   end products	$T$   (half-period)	Decay constant   sec $^{-1}$
92 Uranium 239	$\beta^{-}, \mathrm{Np}^{238}$	23.5 min	$4.9 \times 10^{-8}$
93 Neptunium 239	$\beta^{-}, \mathrm{Pu}^{238}$	2.3 days	$3.5 \times 10^{-7}$
94 Plutonium 239	$a, \mathrm{U}^{298}$	$2.4 \times 10^{4} \mathrm{yr}$	$9.2 \times 10^{-18}$

To be sure, any trace of such members of this family would no longer be found in the earth.

[^301]TABLE 734.-THE FOUR RADIOACTIVE FAMILIES (continued)

Part 1.-Thorium series (4n)									
Atomic	Element	Isotope	Radioactive name	Rays and end product		$\underset{\text { (half period) }}{T}$	$\begin{aligned} & \text { Decay } \\ & \text { constant } \\ & \lambda \text { sec }^{-1} \end{aligned}$	Energy of radiation $\alpha$ or $\beta$   in Mev	
90	Thorium	232	Thorium	$a$	MsTh 1	$1.39 \times 10^{10} \mathrm{yr}$	$1.58 \times 10^{-19}$	4.0	
88	Radium	228	Mesothorium 1	$\beta^{-}$	MsTh 2	6.7 yr	$3.28 \times 10^{-0}$	. 05	-
89	Actinium	228	Mesothorium 2	$\beta^{-}, \gamma$	RaTh	6.13 hr	$3.14 \times 10^{-5}$	1.5	
90	Thorium	228	Radiothorium	a, $\gamma$	ThX	1.90 yr	$1.16 \times 10^{-8}$	5.4	
88	Radium	224	Thorium X	${ }_{a}$	Tn	3.64 days	$2.20 \times 10^{-8}$	5.7	-
86	Radon	220	Thoron	a	ThA	54.5 sec	$1.27 \times 10^{-2}$	6.3	-
84	Polonium	216	Thorium A	a	ThB	. 158 sec	4.4	6.8	-
82	Lead	212	Thorium B	$\beta^{-}, \gamma$	ThC	10.6 hr	$1.8 \times 10^{-5}$	. 36	-
83	Bismuth	212	Thorium C	${ }_{\boldsymbol{a}}{ }^{\text {a }}$	ThC"	60.5 min	$1.91 \times 10^{-3}$	6.1	-
	Polonium	212	Thorium C'	$\underset{a}{\beta-\gamma}$	ThC'	$3 \times 10^{-7} \mathrm{sec}$	$2.3 \times 10^{-8}$	8.8	
81	Thallium	208	Thorium C"	$\beta^{-}, \gamma$	ThD	3.10 min	$3.72 \times 10^{-3}$	1.7	2.6
82	Lead	208	Thorium D		Stable				

Part 2.-Neptunium series $(4 n+1)$

Energy of radiation in Mev	
.01-.02	-
5.46	. 06
23	. 2
4.7	
. 4	. 3
4.8	. 3
5.	-
5.8	



$\dagger$ Not isolated from ores, artificially produced by bombarding uranium with a-particles.
TABLE 734.-THE FOUR RADIOACTIVE FAMILIES (continued)

Part 3.-Uranium series $(4 n+2)$


$\begin{gathered}\text { Decay } \\ \text { constant } \\ \lambda \text { sec } \\ 2 \text { sec }\end{gathered}$
$2.3 \times 10^{-3}$
33.
$2.5 \times 10^{1}$
$1.6 \times 10^{-5}$
$5.2 \times 10^{-3}$
$5.8 \times 10^{-5}$
(half period)
5 min
.021 sec
$46^{2} \mathrm{~min}$
$4.2 \times 10^{-0} \mathrm{sec}$
2.2 ming
3.3 hr
 ,


Isotope	Rays and end product		$\begin{gathered} T \\ \text { (half period) } \end{gathered}$	$\begin{gathered} \text { Decay } \\ \text { constant } \\ \lambda \sec ^{-1} \end{gathered}$	Energy of radiation	
221	a	At	5 min	$2.3 \times 10^{-3}$	6.31	-
217	a	Bi	. 021 sec	33.	7.0	-
213	$\beta^{-}$	$\mathrm{Po}^{\text {o }}$	46 min	$2.5 \times 10^{1}$	1.3	-
	a	T1			5.8	-
213	$\alpha$	Pb	$4.2 \times 10^{-9} \mathrm{sec}$	$1.6 \times 10^{-3}$	8.4	-
209	$\beta^{-}$	Pb	2.2 min	$5.2 \times 10^{-3}$	1.8	-
209	$\beta^{-}$	${ }_{\text {Bi }}$	3.3 hr	$5.8 \times 10^{-8}$	. 70	-
209		Stable				


$\qquad$

Atomic	Element	Isotope	Radioactive name name	Rays and end product		$\stackrel{T}{\text { (half period) }}$	$\begin{gathered} \text { Decay } \\ \text { constant } \\ \lambda \sec ^{-1} \end{gathered}$	Energy of radiation in Mev	
92	Uranium	238	Uranium I	a	UX 1	$4.5 \times 10^{\mathrm{n}} \mathrm{yr}$	$4.9 \times 10^{-18}$	4.2	-
90	Thorium	234	Uranium $\mathrm{X}_{1}$	$\begin{aligned} & \beta^{-}, \gamma \\ & \text { I.T. } \end{aligned}$	$\begin{aligned} & \text { UX } 2 \\ & \text { UZ } \end{aligned}$	24.1 days	$3.3 \times 10^{-7}$	. 15	. 09
	Protactinium		Uranium $\mathrm{X}_{2}$						
91		234 m		$\beta^{-}, \gamma$	U II	1.14 min	$1.01 \times 10^{-}$	2.0	. 8
91		234	Uranium Z	$\underset{a}{\beta^{-}, \gamma}$	U II	6.7 hr	$2.9 \times 10^{-5}$	1.0	. 70
92	Uranium	234	Uranium II		Io	$2.5 \times 10^{-5} \mathrm{yr}$	$8.8 \times 10^{-14}$	4.7	-
90	Thorium	230	Ionium	${ }_{a, \gamma}$,	Ra	$8.0 \times 10^{1} \mathrm{yr}$	$3.1 \times 10^{-11}$	4.7	-
88	Radium	226	Radium		$\begin{aligned} & \mathrm{Rnn} \\ & \mathrm{RaA} \end{aligned}$	1620 yr	$1.355 \times 10^{-14}$	4.8	. 19
86	Radon	222	Emanation	$\underset{a}{a, \gamma}$		3.825 days	$2.10 \times 10^{-9}$	5.5	-
84	Polonium	218	Radium A	${ }_{\text {a }}{ }^{-}$	RaB	3.05 min	$3.85 \times 10^{-2}$	6.0	-
					AcRaC	26.8 min			
82	Lead	214	Radium B	$\beta^{-}$			$4.3 \times 10^{-4}$	5.4	1.8
83	Bismuth	214	Radium C	$\underset{\beta^{-}}{a, \gamma}$	RaC"	19.7 min	$5.85 \times 10^{-4}$	3.1	-
					$\mathrm{RaC}^{\text {RaD }}$		$4.5 \times 10^{3}$	7.7	
81	Thallium	210	Radium C"	${ }^{\beta^{-}, \gamma}$	$\begin{aligned} & \mathrm{RaD} \\ & \mathrm{RaD} \end{aligned}$	$1.5 \times 10^{-4} \mathrm{sec}$ 1.32 min	$9.8 \times 10^{-2}$	1.80	
82	Lead	210	Radium D		RaE	22 yr	$1.0 \times 10^{-0}$	. 025	. 05
83	Bismuth	210	Radium E	$\begin{gathered} \beta^{\prime} \\ a, \gamma \end{gathered}$	RaF	5.0 days	$1.6 \times 10^{-0}$	1.17	
84	Polonium	210	Radium F		RaG Stable	138 days	$5.35 \times 10^{-9}$	5.3	. 77
82	Lead	206	Radium G   (uranium lead)	a, $\gamma$					


Atomic	Element	Isotope	Radioactive name name	Rays and end product		$\stackrel{T}{\text { (half period) }}$	$\begin{gathered} \text { Decay } \\ \text { constant } \\ \lambda \sec ^{-1} \end{gathered}$	Energy of radiation in Mev	
92	Uranium	238	Uranium I	a	UX 1	$4.5 \times 10^{\mathrm{n}} \mathrm{yr}$	$4.9 \times 10^{-18}$	4.2	-
90	Thorium	234	Uranium $\mathrm{X}_{1}$	$\begin{aligned} & \beta^{-}, \gamma \\ & \text { I.T. } \end{aligned}$	$\begin{aligned} & \text { UX } 2 \\ & \text { UZ } \end{aligned}$	24.1 days	$3.3 \times 10^{-7}$	. 15	. 09
	Protactinium		Uranium $\mathrm{X}_{2}$						
91		234 m		$\beta^{-}, \gamma$	U II	1.14 min	$1.01 \times 10^{-}$	2.0	. 8
91		234	Uranium Z	$\underset{a}{\beta^{-}, \gamma}$	U II	6.7 hr	$2.9 \times 10^{-5}$	1.0	. 70
92	Uranium	234	Uranium II		Io	$2.5 \times 10^{-5} \mathrm{yr}$	$8.8 \times 10^{-14}$	4.7	-
90	Thorium	230	Ionium	${ }_{a, \gamma}$,	Ra	$8.0 \times 10^{1} \mathrm{yr}$	$3.1 \times 10^{-11}$	4.7	-
88	Radium	226	Radium		$\begin{aligned} & \mathrm{Rnn} \\ & \mathrm{RaA} \end{aligned}$	1620 yr	$1.355 \times 10^{-14}$	4.8	. 19
86	Radon	222	Emanation	$\underset{a}{a, \gamma}$		3.825 days	$2.10 \times 10^{-9}$	5.5	-
84	Polonium	218	Radium A	${ }_{\text {a }}{ }^{-}$	RaB	3.05 min	$3.85 \times 10^{-2}$	6.0	-
					AcRaC	26.8 min			
82	Lead	214	Radium B	$\beta^{-}$			$4.3 \times 10^{-4}$	5.4	1.8
83	Bismuth	214	Radium C	$\underset{\beta^{-}}{a, \gamma}$	RaC"	19.7 min	$5.85 \times 10^{-4}$	3.1	-
					$\mathrm{RaC}^{\text {RaD }}$		$4.5 \times 10^{3}$	7.7	
81	Thallium	210	Radium C"	${ }^{\beta^{-}, \gamma}$	$\begin{aligned} & \mathrm{RaD} \\ & \mathrm{RaD} \end{aligned}$	$1.5 \times 10^{-4} \mathrm{sec}$ 1.32 min	$9.8 \times 10^{-2}$	1.80	
82	Lead	210	Radium D		RaE	22 yr	$1.0 \times 10^{-0}$	. 025	. 05
83	Bismuth	210	Radium E	$\begin{gathered} \beta^{\prime} \\ a, \gamma \end{gathered}$	RaF	5.0 days	$1.6 \times 10^{-0}$	1.17	
84	Polonium	210	Radium F		RaG Stable	138 days	$5.35 \times 10^{-9}$	5.3	. 77
82	Lead	206	Radium G   (uranium lead)	a, $\gamma$					


Atomic	Element	Isotope	Radioactive name name	Rays and end product		$\stackrel{T}{\text { (half period) }}$	$\begin{gathered} \text { Decay } \\ \text { constant } \\ \lambda \sec ^{-1} \end{gathered}$	Energy of radiation in Mev	
92	Uranium	238	Uranium I	a	UX 1	$4.5 \times 10^{\mathrm{n}} \mathrm{yr}$	$4.9 \times 10^{-18}$	4.2	-
90	Thorium	234	Uranium $\mathrm{X}_{1}$	$\begin{aligned} & \beta^{-}, \gamma \\ & \text { I.T. } \end{aligned}$	$\begin{aligned} & \text { UX } 2 \\ & \text { UZ } \end{aligned}$	24.1 days	$3.3 \times 10^{-7}$	. 15	. 09
	Protactinium		Uranium $\mathrm{X}_{2}$						
91		234 m		$\beta^{-}, \gamma$	U II	1.14 min	$1.01 \times 10^{-}$	2.0	. 8
91		234	Uranium Z	$\underset{a}{\beta^{-}, \gamma}$	U II	6.7 hr	$2.9 \times 10^{-5}$	1.0	. 70
92	Uranium	234	Uranium II		Io	$2.5 \times 10^{-5} \mathrm{yr}$	$8.8 \times 10^{-14}$	4.7	-
90	Thorium	230	Ionium	${ }_{a, \gamma}$,	Ra	$8.0 \times 10^{1} \mathrm{yr}$	$3.1 \times 10^{-11}$	4.7	-
88	Radium	226	Radium		$\begin{aligned} & \mathrm{Rnn} \\ & \mathrm{RaA} \end{aligned}$	1620 yr	$1.355 \times 10^{-14}$	4.8	. 19
86	Radon	222	Emanation	$\underset{a}{a, \gamma}$		3.825 days	$2.10 \times 10^{-9}$	5.5	-
84	Polonium	218	Radium A	${ }_{\text {a }}{ }^{-}$	RaB	3.05 min	$3.85 \times 10^{-2}$	6.0	-
					AcRaC	26.8 min			
82	Lead	214	Radium B	$\beta^{-}$			$4.3 \times 10^{-4}$	5.4	1.8
83	Bismuth	214	Radium C	$\underset{\beta^{-}}{a, \gamma}$	RaC"	19.7 min	$5.85 \times 10^{-4}$	3.1	-
					$\mathrm{RaC}^{\text {RaD }}$		$4.5 \times 10^{3}$	7.7	
81	Thallium	210	Radium C"	${ }^{\beta^{-}, \gamma}$	$\begin{aligned} & \mathrm{RaD} \\ & \mathrm{RaD} \end{aligned}$	$1.5 \times 10^{-4} \mathrm{sec}$ 1.32 min	$9.8 \times 10^{-2}$	1.80	
82	Lead	210	Radium D		RaE	22 yr	$1.0 \times 10^{-0}$	. 025	. 05
83	Bismuth	210	Radium E	$\begin{gathered} \beta^{\prime} \\ a, \gamma \end{gathered}$	RaF	5.0 days	$1.6 \times 10^{-0}$	1.17	
84	Polonium	210	Radium F		RaG Stable	138 days	$5.35 \times 10^{-9}$	5.3	. 77
82	Lead	206	Radium G   (uranium lead)	a, $\gamma$					

 Radioactive
 $-$

TABLE 734.-THE FOUR RADIOACTIVE FAMILIES (concluded)

Atomic	Element	Isotope	Radioactive name	$\begin{aligned} & \text { Rays and end } \\ & \text { product } \end{aligned}$		$\underset{\text { (half period) }}{T}$	$\begin{gathered} \text { Decay } \\ \text { constant } \\ \lambda \sec ^{-1} \end{gathered}$	Energy of radiation $a$ or $\beta$	
92	Uranium	235	Actinouranium	$a, \gamma$	UY	$8 \times 10^{\text {e }} \mathrm{yr}$	$3.1 \times 10^{-17}$	4.6	. 16
90	Thorium	231	Uranium Y	$\beta^{-}, \gamma, c^{-}$	Pa	25.6 hr	$7.52 \times 10^{-5}$	. 2	. 04
91	Protactinium	231	Protactinium	$a, \gamma$	Ac	$3.4 \times 10^{4} \mathrm{yr}$	$6.5 \times 10^{-13}$	5.0	. 3
89	Actinium	227	Actinium	$\beta^{-}$	RdAc			4.9	. 04
				$\gamma$	Ack	21.7 yr	$\begin{aligned} & 1.01 \times 10^{-9} \\ & 4.3 \times 10^{-7} \end{aligned}$		
90 87	Thorium	227	Radioactinium Actinium K	$a_{1}, \gamma$ $\beta^{-}, \gamma$	AcX AcX	18.6 days	$5.5 \times 10^{-4}$	1.2	. 1
87 88	Francium Radium	223	${ }_{\text {Actinum }} \mathrm{K}$	${ }_{a, \gamma}{ }^{\prime}$	Acx An	11.2 days	$7.2 \times 10^{-7}$	5.7	.
86	Radon	219	Actinon	a	AcA	3.9 sec	. 178	6.8	
84	Polonium	215	Actinium A	a	AcB	$1.8 \times 10^{-3} \mathrm{sec}$	$3.9 \times 10^{-1}$	7.4	-
				$\beta^{-}$ $a$	$\mathrm{At}_{\mathrm{AcC}}$		$6.9 \times 10^{3}$		
85 82	Astatine Lead	215	Astatine Actinium B	$\stackrel{a}{\beta^{-}, \gamma}$	AcC AcC	36 min	$3.2 \times 10^{-4}$	1.5	. 8
83	Bismuth	211	Actinium C	$\beta^{-}, \gamma$	$\mathrm{AcC}^{\prime}$ ',	2.2 min	$5.2 \times 10^{-3}$	6.6	-
	Polonium	211	Actinium $\mathrm{C}^{\prime}$	a	AcC AcD	$5 \times 10^{-3} \mathrm{sec}$	$1.4 \times 10^{2}$	7.4	-
81	Thallium	207	Actinium C"	$\beta^{-}, \gamma$	AcD	4.8 min	$2.4 \times 10^{-3}$	1.5	-
82	Lead	207	Actinium D		Stable				


Atomic	Element	Isotope	Radioactive name	$\begin{aligned} & \text { Rays and end } \\ & \text { product } \end{aligned}$		$\underset{\text { (half period) }}{T}$	$\begin{gathered} \text { Decay } \\ \text { constant } \\ \lambda \sec ^{-1} \end{gathered}$	Energy of radiation $a$ or $\beta$	
92	Uranium	235	Actinouranium	$a, \gamma$	UY	$8 \times 10^{\text {e }} \mathrm{yr}$	$3.1 \times 10^{-17}$	4.6	. 16
90	Thorium	231	Uranium Y	$\beta^{-}, \gamma, c^{-}$	Pa	25.6 hr	$7.52 \times 10^{-5}$	. 2	. 04
91	Protactinium	231	Protactinium	$a, \gamma$	Ac	$3.4 \times 10^{4} \mathrm{yr}$	$6.5 \times 10^{-13}$	5.0	. 3
89	Actinium	227	Actinium	$\beta^{-}$	RdAc			4.9	. 04
				$\gamma$	Ack	21.7 yr	$\begin{aligned} & 1.01 \times 10^{-9} \\ & 4.3 \times 10^{-7} \end{aligned}$		
90 87	Thorium	227	Radioactinium Actinium K	$a_{1}, \gamma$ $\beta^{-}, \gamma$	AcX AcX	18.6 days	$5.5 \times 10^{-4}$	1.2	. 1
87 88	Francium Radium	223	${ }_{\text {Actinum }} \mathrm{K}$	${ }_{a, \gamma}{ }^{\prime}$	Acx An	11.2 days	$7.2 \times 10^{-7}$	5.7	.
86	Radon	219	Actinon	a	AcA	3.9 sec	. 178	6.8	
84	Polonium	215	Actinium A	a	AcB	$1.8 \times 10^{-3} \mathrm{sec}$	$3.9 \times 10^{-1}$	7.4	-
				$\beta^{-}$ $a$	$\mathrm{At}_{\mathrm{AcC}}$		$6.9 \times 10^{3}$		
85 82	Astatine Lead	215	Astatine Actinium B	$\stackrel{a}{\beta^{-}, \gamma}$	AcC AcC	36 min	$3.2 \times 10^{-4}$	1.5	. 8
83	Bismuth	211	Actinium C	$\beta^{-}, \gamma$	$\mathrm{AcC}^{\prime}$ ',	2.2 min	$5.2 \times 10^{-3}$	6.6	-
	Polonium	211	Actinium $\mathrm{C}^{\prime}$	a	AcC AcD	$5 \times 10^{-3} \mathrm{sec}$	$1.4 \times 10^{2}$	7.4	-
81	Thallium	207	Actinium C"	$\beta^{-}, \gamma$	AcD	4.8 min	$2.4 \times 10^{-3}$	1.5	-
82	Lead	207	Actinium D		Stable				

## Part 4.-Actinium series $(4 \boldsymbol{n}+3)$

TABLE 735.-VAR!ATIONS IN THE ISOTOPIC COMPOSITION OF COMMON LEAD *


* For reference, see footnote 45, p. 136.

TABLE 736.—LEAD RATIOS OF SELECTED RADIOACTIVE MINERALS*


[^302]TABLE 737.-ANALYSIS OF THORIUM C" (THALLIUM 208) BETA-RAY SPECTRUM ${ }^{233}$

		$\begin{gathered} \stackrel{5}{6} \\ \stackrel{y}{0} \\ \hline 0 \end{gathered}$	Energy of $\beta$-ray line + absorption nergy in Mev	$\begin{gathered} \text { Energy } \\ \text { of } \begin{array}{c} \text { r-ray } \\ \text { Mev } \end{array} \end{gathered}$		$\stackrel{\text { 立 }}{\stackrel{y}{E}}$	$\begin{aligned} & \text { 霝 } \end{aligned}$	Energy of $\beta$-rav line + absorption energy Mev Mev	$\begin{gathered} \text { Energy } \\ \text { of } \begin{array}{c} \text { Yray } \\ \text { Mev } \end{array} \end{gathered}$
1	v.s.	$L_{\text {I }}$	. $0252+.0158$	. 0410	23	m .	$L_{1}$	$.2446+.0158$	. 2604
2	s.	$l^{\prime \prime}$	$.0259+.0152$	. 0411	18	v.s.	K	$.1915+.0875$	. 2790
3	m.	$L_{\text {III }}$	$.0278+.0133$	. 0411	25	m	$L_{1}$	$.2640+.0158$	. 2798
4	v.s.	$M_{1}$	$.0369+.0038$	. 0407	20	s.	K	$.2042+.0875$	. 2917
5	m.	$M_{v}$	$.0380+.0025$	. 0406	26	m.s.	$L_{1}$	$.2756+0158$	. 2914
6	.	$N_{t}$	. $0398+.0009$	. 0407	29	v.s.	K	$.4281+.0875$	. 5156
7	m.	$N \mathrm{~N}$ or O	. $0404+.0001$	. 0405	30	v.s.	$L_{1}$	$.5025+.0158$	. 518.3
8	f.	K	$.0577+.0875$	. 1452	31	m.f.	$M_{t}$	$.5150+.0038$	. 5188
13	f.	$L_{t}$	$.1283+.0158$	. 1441	30	v.s.	K	$.5025+.0875$	. 5900
12	m.s.	K	$.1231+.0875$	. 2106	33	m.s.	Ll	$.5729+.0158$	. 5887
19	m.f.	$I_{1}$	$.1954+.0158$	. 2112	35	m.f.	K	$.6990+.0875$	. 786
14	m.s.	$K$	. $1458+.0875$	. 2333	36	f.	$L_{1}$	$.770+.0158$	. 786
21	m.f.	$L_{1}$	. $2165+.0158$	. 2323	40	s.	K	$2.558+.0875$	2.646
16	m.s.	K	$.1661+.0875$	. 2536	41	m .	$L_{1}$	$2.635+.0158$	2.651
22	f.	$L_{1}$	$.2369+.0158$	. 2527	42	f	$M_{r}$	$2.646+.0034$	2.649
17	m.	K	$.1706+.0875$	. 2581					

[^303]
## TABLE 738.-ALPHA-RAY SPECTRA OF SOME NATURAL RADIOACTIVE MATERIALS

It is sometimes stated that all alpha-particles from any one source are emitted with the same energy or velocity. This is in the main true for most of the particles but careful measurements have shown that this is not always the case. For some time it was known that occasionally an alpha-particle had a range much longer than average, which, of course, means a high initial velocity.

$\begin{aligned} & \text { Atomic } \\ & \text { No. } \end{aligned}$	Element and isotope	a-ray	Mean range in air, cm	Velocity   ( $\mathrm{cm} / \mathrm{sec}$ ) $\times 10^{-v}$	$\begin{gathered} \text { a-ray } \\ \text { energy } \end{gathered}$ $\mathrm{Mev}$	Disintegration energy Mev	Energy differences from main group Mev	Relative number of particles	
92	Uranium 238   (Uranium I)		2.92	1.420	4.20	4.28	. . .		
	Uranium 234 (Uranium II)		3.5	1.515	4.76	4.85	....	....	
91	Protactinium 231		3.8	1.553	5.01	5.11			
90	Thorium 232		2.90	1.390	4.00	4.75			
	Thorium 230 (Ionium)		3	$1.500$	4.66	4.67	...	....	
	Thorium 228   (Radiothorium)   Thorium 227   (Radioactinium)	$a_{0}$		1.6150	5.418	5.517	0	5	
		$a_{1}$		1.6020	5.335	5.431	. 086	1	
		$a_{0}$		1.7063	6.049	6.159	0	80	
		$a_{1}$	....	1.7021	6.019	6.127	. 32	15	
		$\alpha_{2}$	. . .	1.6979	5.990	6.097	. 62	100	
		$a_{3}$		1.6948	5.986	6.075	. 84	15	
		$a_{4}$		1.6885	5.924	6.030	1.29	5	
		$a_{5}$		1.6806	5.870	5.975	1.84	10	
		$a_{6}$	....	1.6729	5.817	5.921	2.38	5	
		$a_{3}$	....	1.6558	5.766	5.869	. 290	80	
		$a_{8}$		1.6627	5.744	5.847	. 312	15	
		$\alpha_{9}$		1.6589	5.719	5.822	. 337	60	
		$\alpha_{10}$	$\ldots$	1.6524	5.674	5.776	. 383	10	
88	Radium 226	$a_{0}$	$\begin{aligned} & 3.5 \\ & 3.4 \end{aligned}$	1.520	4.793	4.879	0	. .	
				1.492	4.612	4.695	. 184		
	Radium 224   (Thorium X)		....	1.653	5.681 5.719	5.786 5.823	. .18		
	Radium 223   (Actinium X)	$a_{0}$$a_{1}$		$\begin{aligned} & 1.6589 \\ & 1.6424 \end{aligned}$	$\begin{aligned} & 5.719 \\ & 5.607 \end{aligned}$	$\begin{aligned} & 5.823 \\ & 5.709 \end{aligned}$	0		
							. 114	6 4	
		Radon 222   (Emanation)			1.6316	5.533	5.634	. 186	1
86				4.3	1.626	5.486	5.58867	....	. . . .
	Radon 220   (Thoron)		4.967	1.7387	6.2872	6.3995	$\cdots$	10	
	Radon 219	$a_{0}$	5.655	1.8117	6.824	6.953	0	10	
	(Actinon)	$a_{1}$	(5.308)	1.7763	6.561	6.683	. 270	1	
		$a_{2}$	5.147	1.7593	6.436	6.556	. 397	1	
84	Polonium 218   (Radium A)		4.9	1.700	6.00024	6.11239	. . .	...	
	Polonium 216   (Thorium A)		5.601	1.8054	6.774	6.9038	....	....	
	Polonium 215   (Actinium A)   Polonium 214   (Radium C')		6.420	1.8824	7.368	7.508	$\cdots$	$\cdots$	
			$6.870$	1.9220	7.68300	$7.82934$	$0$	$10^{8}$	
			7.755	1.9550 2.0729	8.280	$\begin{aligned} & 8.437 \\ & 9.112 \end{aligned}$	.608 1.283	$\begin{gathered} .43 \\ (.45) \end{gathered}$	
			9.00	2.0876	9.068	9.242	1.412	22	
				2.1157	9.315	9.493	1.663	. 38	
				2.1356	9.492	9.673	1.844	1.35	
				2.1543	9.660	9.844	2.015	. 35	
			....	2.1678	9.781	9.968	2.138	1.06	
				2.1817	9.908	10.097	2.268	. 36	
			....	2.2001	10.077	10.269	2.439	1.67	
				2.2079	10.149	10.342	2.513	. 38	
				2.2274	10.329	10.526	2.697	1.12	
			11.47	2.2466	10.509	10.709	2.880	. 23	
	Polonium 213		3.805	1.59715	5.3006	5.4033	...	...	

TABLE 738.-ALPHA-RAY SPECTRA OF SOME NATURAL RADIOACTIVE MATERIALS (concluded)

Atomic No.	Element and isotope	a-ray	Mean range in air, cm	Velocity   ( $\mathrm{cm} / \mathrm{sec}$ ) $\times 10^{-9}$	a-ray energy Mev	Disintegration Mev	Energy differences from main group Mev	Relative number of particles
	Polonium 212		8.533	2.05405	8.7783	8.9476	0	$10^{6}$
	(Thorium C')		9.687	2.1354	9.4912	9.6736	. 726	34
			11.543	2.2501	10.5418	10.7447	1.797	190
	Polonium 211   (Actinium C')		6.518	1.8911	7.434	7.581		
83	Bismuth 214	$a_{0}$	(4.039)	1.630	5.5068	5.6117	0	94
	(Radium C)	$a_{1}$	(3.969)	1.620	5.4458	5.5495	. 062	113
	Bismuth 212	$a_{1}$		1.7108	6.081	6.20069	0	27.2
	(Thorium C)	$a_{2}$		1.7053	6.044	6.16069	. 0400	69.8
		$a_{3}$		1.6651	5.762	5.8729	. 3278	1.80
		$\alpha_{4}$	....	1.6446	5.620	5.7283	. 4724	. 16
		$a_{5}$		1.6418	5.610	5.7089	. 4918	1.10
	Bismuth 211	$a_{0}$	5.392	1.7832	6.619	6.739	0	100
	(Actinium C)	$a_{1}$	4.947	1.7356	6.262	6.383	. 356	19

TABLE 739.-CHARACTERISTICS OF SOME HIGH-SPEED ALPHA-PARTICLES FROM NATURAL RADIOACTIVE SOURCES*

$\begin{aligned} & \text { Atomic } \\ & \text { No. } \end{aligned}$	Element	Isotope	Common name	Velocity	Energy Mev	Range $\dagger$ cm
92	Uranium	234	Uranium II	$1.516 \times 10^{0}$	4.76	3.4
		235	Actinouranium	1.483	4.56	3.2
		238	Uranium I	1.43	4.18	2.9
91	Protactinium	231		1.555	5.01	3.7
90	Thorium	227	Radioactinium		6.05	4.8
		228	Radiothorium	1.616	5.42	4.1
		230	Ionium	1.500	4.66	3.3
		232	Thorium	1.498	3.98	2.7
89	Actinium	227	Actinium	1.537	4.94	3.6
88	Radium	223	Actinium X	1.660	5.72	4.4
		224	Thorium X	1.657	5.68	4.4
		226	Radium	1.520	4.79	3.5
86	Radon	219	Actinon	1.814	6.82	5.8
		220	Thoron	1.729	6.28	5.1
		222	Radon	1.628	5.49	4.2
85	Astatine	215	Rador	1.964	8.00	7.4
		216		1.937	7.79	7.1
		218		1.802	6.72	5.7
84	Polonium	210	Polonium	1.599	5.30	4.0
		211	Actinium $\mathrm{C}^{\prime}$	1.894	7.43	6.6
		212	Thorium C'	2.058	8.78	8.7
		214	Radium $\mathrm{C}^{\prime}$	1.925	7.68	7.0
		215	Actinium A	1.886	7.37	6.5
		216	Thorium A	1.805	6.77	5.8
		218	Radium A	1.701	6.00	4.8
83	Bismuth	211	Actinium C	1.787	6.62	5.6
		212	Thorium C	1.713	6.08	4.9
		214	Radium C	1.630	5.51	4.2

[^304]TABLE 740.-CHARACTERISTICS OF SOME HIGH-SPEED ALPHA-PARTICLES FROM ARTIFICIAL RADIOACTIVE SOURCES *

Atomic No.	Element	Isotope	Velocity $\mathrm{cm} / \mathrm{sec}$	Energy Mev	Range in air, $\dagger \mathrm{cm}$
96	Curium	. 238	$1.77 \times 10^{9}$	6.50	5.4
		240	1.74	6.26	5.1
		241	1.71	6.08	4.9
		242	1.72	6.1	4.9
95	Americium	239	1.67	5.77	4.5
		241	1.62	5.48	4.2
94	Plutonium	. 232	1.78	6.6	5.5
		234	1.73	6.2	5.0
		236	1.66	5.75	4.5
		238	1.63	5.51	4.2
		239	1.57	5.15	3.8
		240	1.57	5.1	3.8
93	Neptunium	. 231	1.73	6.2	5.0
		235	1.56	5.06	3.8
		237	1.51	4.77	3.4
92	Uranium	. 228	1.80	6.72	5.7
		229	1.76	6.42	5.3
		230	1.68	5.85	4.6
91	Protactinium	226	1.81	6.81	5.8
		227	1.76	6.46	5.4
		228	1.71	6.09	4.9
		229	1.66	5.69	4.4
90	Thorium	. 224	1.86	7.20	6.3
		225	1.78	6.57	5.5
		226	1.74	6.30	5.1
		227	1.71	6.05	4.8
		229	1.56	5.02	3.7
89	Actinium		1.83	6.96	6.0
		223	1.79	6.64	5.6
		224	1.73	6.17	5.0
		225	1.67	5.80	4.5
88	Radium	. 220	1.90	7.49	6.7
		221	1.80	6.71	5.6
		222	1.77	6.51	5.4
		224	1.65	5.68	4.4
87	Francium	218	1.94	7.85	7.2
		219	1.88	7.30	6.4
		220	1.80	6.69	5.6
		221	1.74	6.30	5.2
86	Radon	. 216	1.97	8.07	7.6
		217	1.93	7.74	7.1
		218	1.85	7.12	6.2
85	Astatine	207	1.67	5.76	4.5
		208	1.65	5.66	4.4
		211	1.69	5.89	4.6
		214	2.06	8.78	8.4
		217	1.84	7.02	6.1
84	Polonium	208	1.57	5.14	3.8
		205	1.61	5.35	4.0
		206	1.58	5.2 8.34	3.9 8.0
		213 197	2.01	8.34	8.0 5.0
83	Bismuth	- 197	1.73 1.68	6.20 5.83	5.0 4.6
		198	1.68 1.62	5.83 5.47	4.6
		200	1.58	5.15	3.8

[^305]TABLE 741.-VAPOR PRESSURE OF THE RADIUM EMANATION IN $\mathbf{c m H g}$
$\begin{array}{llrrrrrrrrrrrr}\text { Temperature }{ }^{\circ} \mathrm{C} & \ldots \ldots \ldots & -127 & -101 & -65 & -56 & -10 & +17 & +49 & +73 & +100 & +104 \\ \text { Vapor pressure } \ldots . . . & .9 & 5 & 76 & 100 & 500 & 1000 & 2000 & 3000 & 4500 & 4745 & \end{array}$

TABLE 742.-BETA-RAYS FROM RADIOACTIVE MATERIALS—BOTH NATURAL (MARKED WITH *) AND ARTIFICIAL

$\begin{aligned} & \text { Atomic } \\ & \text { No. } \end{aligned}$	Element	Isotope	Radioactive	Energy in Mev
95	Americium	242 m	.....	. 8
93	Neptunium	239	$\ldots$	. 68
92	Uranium	238		1.20
91	Protactinium	234 m*	Uranium $\mathrm{X}_{2}$	2.32
		230		$\sim 1.1$
90	Thorium	233		1.2
89	Actinium	228*	Mesothorium 2	1.55
87	Francium	223*	Actinium K	1.20
83	Bismuth	213		$\sim 1.3$
		210*	Radium E	1.17
82	Lead	211*	Actinium B	1.40
		209	....	. 7
81	Thallium	209		1.8
		208*	Thorium C"	1.82
		207*	Actinium C"	1.47
		206	.	1.70
		204	....	. 8
80	Mercury	205	....	1.62
79	Gold	200-202	....	2.5
		198		. 96
78	Platinum	199	....	1.8
		197		. 65
77	Iridium	194	$\ldots$	2.2
		192	....	. 67


Atomic No. No.	Element	Isotope	Energy in Mev	$\begin{aligned} & \text { Atomic } \\ & \text { No. } \end{aligned}$	Element	Isotope	Energy in Mev
76	Osmium	193	1.5	54	Xenon	137	4.0
75	Rhenium	188	2.5	53		135	. 93
		186	1.07		Iodine	136	6.5
74	Tungsten	187	. 63			135	1.4
73	Tantalum	182	1.0			133	1.4
71	Lutetium	176 m	1.15			128	1.59
		170	$1.7 \beta^{+}$	52	Tellurium	129	1.8
7069	Ytterbium	177	1.3			127	. 76
	Thulium	170	1.0	51	Antimony	126	2.8
6867	Erbium	171	1.49			124 m	3.2
	Holmium	166	$1.8{ }^{1.8}{ }^{+}$			124	2.37 1.36
656463	Terbium Gadolinium Europium	${ }_{154}^{162-161}$	$\begin{array}{lll}2.0 & \beta^{+} \\ 2.6 & \beta^{+}\end{array}$			122	${ }_{1}^{1.36}{ }^{+}$
		161	1.5			118	$3.1 \beta^{+}$
		$>154$	$\sim 2.5$	50	Tin	$>120$	1.8
63		157 154	$\sim_{9}$			125	$\sim 2.6$
		152	1.88	49	Indium	117	1.73
62	Samarium	155	1.9			116	2.8
		153	. 78			114	1.5
61	Promethium	149 148	1.1			112	$1.5{ }^{1.2} \beta^{+}$
			1.7	48	Cadmium	115 m	1.8
			2.0	47	Silver	113	2.2
60	Neodymium	149	1.6			112	3.6
		141	. $78 \beta^{+}$			110	2.6
59	Praseodymium	145	3.2			108	
		144 140	${ }_{2.5}^{3.0} \beta^{+}$	46	Palladium	106	$2.04 \beta^{+}$
5857	Cerium Lanthanum	143	1.36			101	$2.3 \beta^{+}$
		141	2.9	45	Rhodium	106	3.55
		<139	2.1	44	Ruthenium	104	-4.3.
		139	2.27			105	1.4
55	Cesium	138	2.6			95	$1.1 \beta^{+}$

TABLE 742.-BETA-RAYS FROM RADIOACTIVE MATERIALS—BOTH NATURAL (MARKED WITH *) AND ARTIFICIAL (concluded)

$\begin{aligned} & \text { Atomic } \\ & \text { No. } \end{aligned}$	Element	Isotope	Energy in Mev	Atomic No.	Element	Isotope	Energy   in Mev
43	Technetium	101	1.3	28	Nicke1	65	1.9
		100	2.3			57	. $67 \beta^{+}$
		95	1.3	27	Cobalt	62	
		94	$2.47 \beta^{+}$			56	$1.5 \beta^{+}$
		92	$4.3 \beta^{+}$	26	Iron	52	. 55 \%
42	Molybdenum	101	2.0	25	Manganese	52 m	$2.66 \beta^{+}$
		99	1.3			51	$2.0 \beta^{+}$
		93	$2.65 \beta^{+}$	24	Chromium	49	$1.45{ }^{+}$
41	Niobium	97	1.4	23	Vanadium	52	2.05
		96	1.8			47	$1.9 \beta^{+}$
		92	1.38	22	Titanium	51 m	
40	Zirconium	97	2.2			45	$1.2{ }^{+}$
39	Yttrium	89 93	$1.07{ }^{\text {d }}{ }^{+}$	21	Scandium	49	1.8 1.5
	Ytrium	92	3.5			41	$4.94{ }^{\text {/ }}$
		91	1.5	20	Calcium	49	2.3
		90	2.35	19	Potassium	42	2.04
		88	. $83 \beta^{+}$			40*	1.9
38	Strontium	91	1.3			38	$2.5{ }^{+}$
37	Rubidium	88	1.5 4.6	18	Argon	41 35	${ }_{4.1}^{1.18} \beta^{+}$
		86	1.8	17	Chlorine	38	1.19
		81	. $9 \beta^{+}$			34	$2.5 \beta^{+}$
36	Krypton	87	$\sim 4$.			33	$4.1 \beta^{+}$
		85	1.0	16	Sulfur	37	
35	Bromine	85	2.5			31	$3.85 \beta^{+}$
		84	5.3	15	Phosphorus	34	5.1
		80 78	2.0			32	$1.7$
		78 76 78	$2.3 \beta^{+}$			30 29	$\begin{array}{lll}3.0 & \beta^{+} \\ 3.6 & \beta^{+}\end{array}$
		75	$1.6 \beta^{+}$	14	Silicon	31	
34	Selenium	83	1.5			27	$3.74 \beta^{+}$
		83 m	3.4	13	Aluminum	29	2.5
		81	1.5			28	3.0
33	Arsenic	78	1.4			26	$3.0{ }^{+}$
		74	1.3	12	Magnesium	23	$2.82 \beta^{+}$
32		72 77	$2.78 \beta^{+}$	11	Sodium	24	1.4
32	Germanium	${ }_{77}^{77}$	2.8	10	Neon	23 19	$4.12 \beta^{+}$
		71	$1.2 \beta^{+}$	9	Fluorine	20	5.0
31	Gallium	73	1.4			17	$2.1 \beta^{+}$
		70	1.68	8	Oxygen	19	4.5
		68	$1.9 \beta^{+}$			14	$1.8 \beta^{+}$
		66	$3.1{ }^{+}{ }^{+}$	7	Nitrogen	17	3.75
30	Zinc	69	1.0			16	
29	Copper	66	2.9	6	Carbon	$\sim 10$	$2{ }^{\text {}}$
		62	$2.6 \beta^{+}$	5	Boron	12	12
		61	$1.2 \beta^{+}$		Lithium	8	12
		60	$1.8 \beta^{+}$	2	Helium	6	3.7

TABLE 743.-RELATIVE STOPPING POWER OF SELECTED SUBSTANCES FOR a-PARTICLES ${ }^{234}$

${ }^{234}$ Rasetti, Franco, Elements of nuclear physics. Copyright 1936 by Prentice-Hall, Inc., New York.

	$\begin{aligned} & \text { N} \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{y}{E} \end{aligned}$		Energy of $\beta$－ray line + absorption nergy Mev	$\begin{gathered} \text { Energy } \\ \text { of } \begin{array}{c} \text {-ray } \\ \text { Mev } \end{array} \end{gathered}$				$\begin{gathered} \text { Energy of } \beta \text {-ray } \\ \text { line +ahorption } \\ \text { energy } \\ \text { Mev } \end{gathered}$ $\mathrm{Mev}$	$\begin{aligned} & \text { Energy } \\ & \text { of } \begin{array}{c} \text { Y-ray } \\ \text { Mev } \end{array} \end{aligned}$
1	20	$L_{1}$	$.0125+.0192$	． 0317	26	40	$L_{1}$	． $0813+.0192$	． 1005
3	20	$L_{\text {III }}$	$.0160+.0154$	． 0314	29	30	$M_{t}$	． $0965+.0048$	． 1013
6	15	$M_{1}$	$.0262+.0048$	． 0310	30	30	$N_{1}$	$.0990+.0012$	． 1002
7	10	$M_{\text {II }}$	$.0271+.0044$	． 0315	18	100	K	$.0454+.1035$	． 1489
9	15	Mv	$.0290+.0031$	． 0321	35	80	$L_{1}$	$.1305+.0192$	． 1497
10	30	$N_{t}$	$.0299+.0012$	． 0311	36	30	$M_{1}$	$.1445+.0048$	． 1493
11	20	$N_{v i}$	$.0305+.0003$	． 0308	28	50	K	$.0936+.1035$	． 1971
12	15		． 0320	． 0320	38	30	$L_{1}$	$.1753+.0192$	． 1945
4	50	$L_{1}$	$.0246+.0192$	． 0438	40	20	$M_{1}$	$.1899+.0048$	． 1947
5	20	$L_{\text {II }}$	$.0255+.0185$	． 0440	37	60	$K$	$.1501+.1035$	． 2536
8	25	$L_{\text {III }}$	$.0281+.0154$	． 0435	46	40	$L_{1}$	$.2348+.0192$	． 2540
16	10	$M_{t}$	$.0388+.0048$	． 0436	47	30	$M_{t}$	$.2488+.0048$	． 2536
14	40	$L_{1}$	$.0340+.0192$	． 0532	39	60	$K$	$.1796+.1035$	． 2831
19	20	$M_{t}$	$.0486+.0048$	． 0534	48	20	$L_{1}$	$.2618+.0192$	． 2810
17	90	$L_{1}$	$.0425+.0192$	． 0617	41	50	K	． $1976+.1035$	． 3011
20	70	$M_{\text {t }}$	$.0567+.0048$	． 0615	49	20	$L_{I}$	$.2800+.0192$	． 2992
21	50	$N_{1}$	$.0598+.0012$	． 0610					

[^306]TABLE 745．－ANALYSIS OF BETA．RAY SPECTRUM OF MESOTHORIUM 2 （ACTINIUM 228）＊

点单		$\begin{aligned} & \underline{E} \\ & \stackrel{y}{E x} \\ & \hline 0 \end{aligned}$	Energy of $\beta$－ray line + absorption nergy Mey Mev	$\begin{gathered} \text { Energy } \\ \text { of } \begin{array}{c} \text {-ray } \\ \text { Mev } \end{array} \end{gathered}$				$\begin{gathered} \text { Energy of } \beta \text {-ray } \\ \text { line + absorption } \\ \text { energy } \\ \text { Mev } \end{gathered}$ $\mathrm{Mev}$	$\begin{gathered} \text { Energy } \\ \text { of } \begin{array}{c} \text { orgay } \\ \text { Mev } \end{array} \end{gathered}$
1	100	$L_{1}$	$.0381+.0204$	． 0585	18	6	$M_{1}$	$.1782+.0052$	． 1834
2	85	$L_{H I}$	$.0416+.0162$	． 0578	16	18	K	$.1406+.1092$	． 2498
3	65	$M_{1}$	$.0523+.0052$	． 0584	20	8	$L_{1}$	$.2291+.0204$	． 2495
4	45	$N_{\text {I }}$	$.0566+.0012$	． 0579	19	16	K	． $2099+.1092$	． 319
5	6	$L_{1}$	$.0593+.0204$	． 0797	21	6	$L_{I}$	$.299+.0204$	． 319
6	4	$L_{\text {HII }}$	$.0631+.0162$	． 0793	22	2	$N_{t}$	$.318+.001$	． 319
The $M$ and $N$ lines would be masked exactly by the intense lines 8 and 9 ．					$\begin{array}{r}23 \\ 24 \\ \hline\end{array}$	8	$K$   $L_{I}$	． $352+.109$	． 461
					25	2	$M_{\text {I }}$	$.458+.005$	． 463
12	25	$L_{\text {III }}$	． $1129+.0162$	． 1291	26	6	K	$.804+.109$	． 913
13	22	$M_{1}$	． $1245+.0052$	． 1297	28	3	$L_{K}$	． $897+.020$	． 917
14	6	$N_{t}$	$.1279+.0013$	． 1292	27	3	K	． $8619+.109$	． 970
8	50	K	． $0749+.1092$	． 1841	29	2	$L_{t}$	． $949+.020$	． 969
17	20	$L_{1}$	$.1644+.0204$	． 1848					

＊For reference，see footnote 233，p． 679.

TABLE 746．－ANALYSIS OF THE BETA．RAY SPECTRUM OF PROTACTINIUM＊

		品	$\begin{aligned} & \text { Energy of } \beta \text {-ray } \\ & \text { line + alsorption } \\ & \text { energy } \\ & \text { Mev } \end{aligned}$	$\underset{\substack{\text { Energy } \\ \text { of } \begin{array}{c} \text { Mev } \\ \text { Mev } \end{array}}}{ }$				$\begin{aligned} & \text { Energy of } \beta \text {-ray } \\ & \text { line + absorption } \end{aligned}$ $\begin{aligned} & \text { energy } \\ & \text { Mev } \end{aligned}$	$\begin{gathered} \text { Energy } \\ \text { of } \begin{array}{c} \text { ray } \end{array} \\ \text { Mev } \end{gathered}$
1	60	$L_{1}$	． $0753+.0198$	． 0951	10	30	$M_{\text {I }}$	$.2869+.0050$	． 2919
2	40	$L_{\text {III }}$	$.0788+.0158$	． 0946	6	70	$K$	$.2194+.1064$	． 3258
3	40	$M_{1}$	$.0905+.0050$	． 0950	11	40	$L_{\text {r }}$	$.3016+.0198$	． 3214
5	100	K	$.1896+.1064$	． 2960	12	20	$M_{1}$	$.3182+.0050$	． 3232
9	60	$L_{1}$	． $2746+.0198$	． 2944					

[^307]TABLE 747.-GAMMA-RAY ENERGY OF SOME HEAVY ISOTOPES, NATURAL AND ARTIFICIAL


* Natural radioactive source.


## TABLE 748.-THE GAMMA-RAY SPECTRUM OF ThC" *

These differences of energies, or velocities, of the $a$-ray from thorium $C$ are sometimes explained on the encrgy-level basis of the nucleus. The agreement with the energies of the $\gamma$-rays emitted from $\mathrm{ThC}^{\prime \prime}$, the daughter of ThC , and these apparent differences of disintegration energy of a-ray of ThC , given in the table show one agreement with this theory.


* For reference, see footnote 225, p. 666.

TABLE 749.-DANGER RANGES FOR PERSONS WHO ARE WORKING WITH RADIUM, FOR DIFFERENT AMOUNTS OF RADIUM, PROVIDING THE RADIUM IS ENCLOSED IN NOT LESS THAN 1 mm LEAD OR ITS EQUIVALENT

Amount of radium element milligrams	Daily exposure (in hours)				
	1	2	4	8	16
	Danger range (in meters)				
100	. 9	1.3	1.8	2.5	3.6
200	1.3	1.8	2.6	3.6	5.1
400	1.8	2.5	3.5	5	7.1
1000	2.9	4	5.7	8	11.3

TABLE 750.-GAMMA-RAY ENERGY OF SOME ARTIFICIAL RADIOACTIVE ISOTOPES OF LOW ATOMIC WEIGHT

$\begin{aligned} & \text { Atomic } \\ & \text { No. } \end{aligned}$	Element	Isotope	$\begin{gathered} \gamma-\text { ray } \\ \text { enery } \\ \text { Mev } \end{gathered}$	$\begin{aligned} & \text { Atomic } \\ & \text { No. } \end{aligned}$	Elenient	Isotope	$\begin{gathered} \gamma \cdot \mathrm{ray} \\ \text { eneryy } \\ \text { Mev } \end{gathered}$
4	Beryllium	7	. 49	40	Zirconium	95	. 73
7	Nitrogen	15	6.7	41	Niobium	92	1.0
8	Oxygen	14	2.3			96	1.0
		19	1.6	42	Molybdenum	93	1.6
11	Sodium	20	2.2	43	Technetium	92,93	2.4
		22	1.3	45	Rhodium	100	1.2
		24	1.38			106	1.25
12	Magnesium	27	1.0	47	Silver	110	1.40
13	Sulfur	28	1.80	48	Cadmium	107	. 84
16		37	2.6	49	Indium	116	2.32
17	Chlorine	34	3.4	50	Tin	126	1.2
		38	1.60	51	Antimony	118	1.5
1819	Argon   Potassium *	41	1.37			124	2.04
		38	2.15	52	Tellurium	119	1.4
		40	1.54	53	Iodine	135	1.6
		42	1.4			136	2.9
20	Calcium	47	1.3	54	Xenon	127	. 9
		48	. 8	55	Cesium	136	1.2
21	Scandium	43	1.65			138	1.2
		44	1.33	56	Barium	140	. 53
		48	1.3	57	Lanthanum	140	1.63
222325	Titanium	51	1.0	58	Cerium	139	1.8
	Vanadium	52	1.46	59	Praseodymium	142	1.9
	Manganese	52 m	1.46			146	1.4
		56	2.06	61	Promethium	143	. 67
26	Iron	59	1.10	63	Europium	156	2.0
27	Cobalt	60	1.16	65	Terbium	154	1.4
		62	1.3	67	Holmium	162	1.1
28	Nickel Copper	65	1.1	69	Thulium	166	1.5
		60	1.5	71	Lutetium	170	1.5
		64	1.35	72	Hafnium	175	1.5
		66	1.32	73	Tantalum	176	1.7
30		65	1.11			182	1.2
32	Germanium	75	1.1	75	Rhenium	182	1.5
	Arsenic	72	2.4	76	Osmium	193	1.58
33	Bromine	76	2.0	77	Iridium	194	1.35
		82	1.35	78	Platinum	193	1.5
37	Rubidium	81	. 8	79	Gold	192	2.3
		82	1.0	81	Thallium	198	1.3
		86	1.08	82	Lead	204 m	1.1
3839	Strontium Yttrium	91	1.3	83	Bismuth	206	. 74
		$\begin{aligned} & 88 \\ & 93 \end{aligned}$	$2.76$				

* Natural radioactive source.

TABLE 751.-TOTAL MASS ABSORPTION COEFFICIENT, $\mu / \rho$, FOR $\gamma$-RAYS IN VARIOUS ELEMENTS (IN CM ${ }^{2} / \mathrm{G}$ )

Wavelength					Cu
A	C	Cr	Ag	Pb	
.1	.15	.16	.36	1.4	3.8
.2	.16	.28	1.5	5.6	4.9
.3	.19	.47	4.3	17.	14.
.4	.35	2.1	9.8	38.	31.
.5		19.	71.	54.	

TABLE 752.-GAMMA SPECTRUM FOR SOME RADIOACTIVE BREAKDOWNS *


[^308](continued)

TABLE 752.-GAMMA SPECTRUM FOR SOME RADIOACTIVE BREAKDOWNS (concluded)
$\gamma$-rays ${ }^{295}$ from $82 \underset{(\operatorname{RaD})}{\text { Lead }} 210 \rightarrow 83 \underset{(\mathrm{RaE})}{\text { Bismuth }} 210$

$\gamma$-ray line	$E$ (kev)	$\boldsymbol{\gamma}$-ray line	$E$ (kev)
$(X)$	$65 \pm 5.1$	$D$	$32 . \pm 1$
$A$	$46.7 \pm .1$	$E$	$23.2 \pm .6$
$B$	$43 \pm 1$	$F$	$7.3 \pm .7$

${ }^{235}$ San Tsiang Tsien, Phys. Rev., vol. 69, p. 38, 1946.

# TABLE 753.-THE ENERGY RADIATED BY A NUMBER OF RADIOACTIVE MATERIALS * 

Material	Half-life	Radiation	Energy of radiation in Mev		DisintegrationsNo $\mathrm{g}^{-1} \mathrm{sec}^{-1}$	Radiation Mev $\mathrm{g}^{-1} \mathrm{sec}^{-1}$
			$a$ or $\beta$	$\boldsymbol{\gamma}$		
92 Uranium 238	$4.5 \times 10^{\circ} \mathrm{yr}$	$a$	4.2	.	$1.23 \times 10^{4}$	$5.2 \times 10^{4}$
90 Thorium 232	$1.39 \times 10^{10} \mathrm{yr}$	$a$	4.1		$4.1 \times 10^{3}$	$1.70 \times 10^{4}$
88 Radium 226	1620 yr	$a \gamma$	4.79	. 19	$3.6 \times 10^{10}$	$1.80 \times 10^{12}$
86 Radon 222	3.825 d	$a$	5.486		$5.7 \times 10^{18}$	$3.1 \times 10^{18}$
86 Radon 220	54.5 sec	a	6.282	.	$3.5 \times 10^{19}$	$2.2 \times 10^{20}$
$86 \begin{gathered}\text { Radon } 219 \\ \text { (Actinon) }\end{gathered}$	3.92 sec	$a$	6.824		$4.8 \times 10^{20}$	$3.3 \times 10^{21}$
86 Radon 217	$10^{-3} \mathrm{sec}$	$a$	7.74	.	$1.93 \times 10^{24}$	$1.50 \times 10^{28}$
$84 \begin{gathered}\text { Polonium } 214 \\ \text { (Radium C') }\end{gathered}$	$1.5 \times 10^{-6} \mathrm{sec}$	a	7.680	.	$1.30 \times 10^{25}$	$1.0 \times 10^{28}$
84 Polonium 212   (Thorium C')	$3.1 \times 10^{-7} \mathrm{sec}$	$a$	8.776		$6.4 \times 10^{27}$	$5.6 \times 10^{28}$
84 Polonium 211   (Actinium $\mathrm{C}^{\prime}$ )	$5 \times 10^{-8} \mathrm{sec}$	$a$	7.434		$3.9 \times 10^{23}$	$2.9 \times 10^{24}$
84 Polonium 210	138 d	$a \gamma$	5.3	. 77	$1.57 \times 10^{15}$	$1.2 \times 10^{18}$
83 Bismuth 214	$19.7 \mathrm{~min}$	a ${ }^{\text {r }}$	5.5	1.8	$1.65 \times 10^{18}$	
81 Thallium 210 (Radium C")	1.32 min	$\beta^{-}$	1.8	.	$2.51 \times 10^{10}$	$4.5 \times 10^{10}$
81 Thallium 208 (Thorium C")	3.1 min	$\beta^{-} \gamma$	1.7	2.6	$1.08 \times 10^{19}$	$4.7 \times 10^{10}$
81 Thallium 207   (Actinium C")	4.76 min	$\beta^{-\gamma}$	1.47	.	$7.1 \times 10^{18}$	$1.04 \times 10^{19}$
59 Praseodymium 142	19.3 hr	$\beta^{-\gamma}$	2.1	1.9	$4.28 \times 10^{17}$	$8 \times 10^{17}$
53 Iodine 136	1.8 min	$\beta^{-} \gamma$	6.5	2.9	$2.85 \times 10^{20}$	$8 \times 10^{20}$
19 Potassium 40 **	$1.8 \times 10^{\circ} \mathrm{yr}$	$\beta^{-} \gamma$	1.9	1.54	$1.84 \times 10^{5}$	$3.9 \times 10^{5}$

[^309] thorium, in part due to its greater number of atoms per gram.

TABLE 754.-SAFE WORKING DISTANCES FOR DIFFERENT EXPOSURE
TIMES TO DIFFERENT AMOUNTS OF RADIUM

Daily exposure   milligram-hr	Safe distance   meters	Daily exposure   milligram-hr	Safe distance   meters
100	1	800	$2 \frac{1}{2}$
200	$1 \frac{1}{2}$	1600	$3 \frac{1}{2}$
400	2	3200	5

## TABLE 755.-COMBINATION OF LEAD SHIELD THICKNESS AND DISTANCE FOR ADEQUATE PROTECTION FOR EXPOSURES TO DIFFERENT AMOUNTS OF RADIUM, NOT EXCEEDING 8 HOURS PER DAY

Workers with radioactive materials must observe certain precautions to avoid being burned by the emitted radiations. Tables 749, 751, 754, 755, taken from the National Bureau of Standards Handbook H 23 on Radium Protection, give some of the necessary precautions. These precautions are for radium; if some other radioactive product is being worked with, care must be taken to increase these precautions if the materials are more active than radium. See Table 732.

The $\alpha$-rays are much more easily stopped than the $\beta$ - or $\gamma$-rays. The most energetic a-rays are stopped by an ordinary sheet of paper or a sheet of aluminum .06 mm thick. The $\beta$-rays are stopped by a few millimeters of aluminum, while many of the $\gamma$-rays will penetrate a block of lead a number of inches thick.

Amount of radium milligrams	Thickness of lead cm	Distance	Amount of radium milligrams	Thickness of lead cm	$\begin{aligned} & \text { Distance } \\ & \text { cm } \end{aligned}$
10.100.	. 5	. 70	1000.	1	. 570
	1			3	340
	2	. 45		6	160
	1	. 185	5000.	. 4	. 550
	2	. 140		6	160
	3	. . 105		10	220

## TABLE 756.-CONSTANTS FOR CATHODE-RAY SPEEDS IN MATTER

Cathode rays whose direction of motion is perpendicular to the direction of a uniform magnetic field $(H)$ describe a circular path of radius ( $r$ ) according to the formula corrected for relativity change of mass of electron.

$$
H r=1704\left[\beta\left(1-\beta^{2}\right)^{-1 / 2}\right]
$$

where $H$ is expressed in gauss and $r$ in cm .
When cathode rays impinge on matter they are deflected from their original direction of motion. These deflections grade all the way from $180^{\circ}$ "reflections" to the "diffusion" corresponding to deflections through very small angles. The large-angle deflections are ordinarily comparatively infrequent. However, when the substance struck by the cathode rays is crystalline, certain directions may be preferred by the deflections. Here the beam of cathode rays behaves as though it consisted of a train of waves of wavelength $\lambda_{e}=0.02426 / \beta$, where $\lambda_{e}$ is in angstroms. The preferred directions for the "reflected" cathode-ray beams may be calculated from the Bragg formula (see Siegbahn's "X-ray Spectroscopy"). The simple Bragg formula is quite limited in application here, however, since refraction in the crystal is very appreciable for the cathode-ray beams. In general, the cathode rays which have been deflected bv matter will have lost speed, but the rays which have undergone these "preferred" deflections remain of the same speed as the primary cathode beam.

Cathode rays lose speed on penetrating matter. The losses of speed by individual cathode particles grade from complete stoppage to no loss of speed. The maiority of the cathode particles, however, lose speed according to the relation (Thomas-WhiddingtonBohr law)

$$
\beta_{0}{ }^{4}-\beta^{4}=a x
$$

where $\beta_{0}$ is the initial speed, and $\beta$ the speed after traversing a path length $x$ in the material ( $x$ to be measured in cm along the actual curved path), and $a$ is a constant roughly equal to $6.5 \rho$ where $\rho$ is the density of the material in $\mathrm{g} / \mathrm{cm}^{3}$. A convenient form for the expression is the following. Note that the two forms are not equivalent except at very low speeds (experiment has not yet decided between the two) :

$$
V_{0}{ }^{2}-V^{2}=b x
$$

where $V_{0}$ and $V$ are the initial and final "equivalent voltages" (see above) of the cathode rays, in kv, and $b$ is a constant roughly equal to $40 \times 10^{\prime} \rho$. A tabulation of experimental values of $a$ and $b$ for various materials follows:


TABLE 757.-ENERGY IN CALORIES/HR DEVELOPED BY ONE GRAM OF RADIUM IN EQUILIBRIUM WITH ITS PRODUCTS*


Total energy radiated ( $a, \beta^{-}, \gamma$ in Mev $)=144.46 \times 10^{10}=199 \mathrm{cal} / \mathrm{hr}$.
The total heating effect developed by one gram of radium in equilibrium with its products in $199 \mathrm{cal} / \mathrm{hr}$.

[^310]
## TABLE 758.-CATHODE RAYS

Owing to the growth of the subject, electrons are treated under three separate headings; cathode rays, the swiftly moving electrons from the cathode in a discharge tube ; beta rays, from radioactive breakdown; and the general field, electrons. The velocity of the cathode rays (electrons) depends upon the applied voltage. At comparatively low pressures the cathode rays have a nearly uniform velocity. Free electrons are emitted from hot bodies (Table 683-689), especially if the heated substance is coated with barium, calcium, or strontium oxide (Wehnelt cathode). These electrons can be given any desired speed, always less than that of light, if the heated substance (usually in the form of a wire) be enclosed in an evacuated tube and the difference of potential $(V)$ applied between the wire (cathode) and another electrode (anode, anticathode, or target). The speed of the electron and also its kinetic energy is often designated by giving the applied voltage, i.e., a 10 kv electron has a speed of 10 kv , about .2 that of light, and an energy of $10,000 \mathrm{ev}$, or $1.602 \times 10^{-8}$ ergs. (See Table 713.) The speed ( $v$ ) of the cathode rays, expressed as a fractional part $(\beta)$ of the speed of light $(\beta=v / c$, where $c$ is the speed of light), when they have fallen through the entire potential difference, is given by the formula (which is corrected for the relativity change of mass)

$$
V=510.8\left[\left(1-\beta^{2}\right)^{-1 / 2}-1\right]
$$

where $V$ is in kilovolts.
A tabulation of the corresponding values of $V$ (kilovolts) and $\beta$ follows.

$\beta$	$V(\mathrm{kv})$	$\beta$	$V(\mathrm{kv})$	$\beta$	$V(\mathrm{kv})$
.01	.0255	.40	46.5	.90	661.
.02	.1022	.50	79.0	.942	1000.
.05	.639	.548	100	.95	1085.
.10	2.574	.80	127.7	.98	2045.
.20	10.53		80	340.4	

X-rays, which are short wavelength (. $06-1020 \mathrm{~A}$ ) radiant energy, are, in general, generated whenever swiftly moving electrons are suddenly stopped by striking any material substance. The electrons may come from a cold cathode (gas-filled tube) and the current increased by ionization of the gas in the tube, or they may come from a hot cathode (Coolidge tube) in a tube of very low gas pressure. Soft and hard X-rays are terms applied to X-rays produced by low or high applied voltage respectively.

Two types of X-rays are generated when the electrons hit the target-continuous spectrum (over a limited wavelength) and the radiation that is characteristic of the material of which the anode is made. The continuous X-ray spectrum has a very definite short-wave limit that depends upon the voltage applied to the tube. Thus

$$
V_{0} e=h \nu_{0}=h c / \lambda_{0}
$$

If $V_{0}$ is given in volts, this wavelength $\lambda_{0}$ will be in angstroms if the other units are properly chosen.

$$
\lambda_{0}(\text { in } A)=\frac{12395}{V_{0}}
$$

The characteristic spectra are designated $K, L, M, N, O$, etc., where these letters refer to the various electron shells (Table 658).
X-rays, like any type of radiant energy, have two characteristics ; intensity (i.e., the rate of energy transfer), and wavelength. These two quantities are connected thus: the energy $E=h \nu=h c / \lambda$.
This, of course, assumes monochromatic radiation or the energy for a narrow wavelength interval, which is not always the case ; all electrons do not hit the anode with the same energy nor do all materials react alike to electron bombardment. Some of the characteristics of X-rays and the reaction of X -rays to various materials are given in the following tables.

TABLE 759.—X-RAY PRODUCTION ${ }^{283}$
Quantity of X-rays emitted by a tungsten-target tube per kilowatt of energy in cathode-ray beam.**

Operating   potential   kilovolts	Power in total   X-rays from   focal spot   watts	Effective   wavelenghth   (unfiltered	Roentgens ( $r$ )   per second at   meter from   target
50	2.5	.56	units   (unfiltered)
70	3.5	.40	1.2
100	5.	.28	.62
200	10.	.14	.34
500	25.	.056	.39
1000	48.	.028	1.1
2000	95.	.014	2.1

\footnotetext{
${ }^{238}$ Clark, George L., Applied X-rays, McGraw-Hill Book Company, Inc., 1940. Used by permission of the publishers.

* Compiled by A. H. Compton.

TABLE 760.-CRITICAL ABSORPTION WAVELENGTHS (A), K SERIES*

12 Mg	9.5112	35 Br	. 9182	74 W	. 17807
13 Al	7.9470	40 Zr	. 6874	78 Pt	. 1581
17 Cl	4.3938	42 Mo	. 61842	79 Au	. 1534
24 Cr	2.0663	47 Ag	. 4852	82 Pb	. 1410
26 Fe	1.7405	53 I	. 3738	92 U	. 1075
29 Cu	1.3780	56 Ba	. 3308		

[^311]TABLE 761.-RELATIVE IONIZATION PRODUCED IN VARIOUS GASES BY HETEROGENEOUS X-RAYS*

Gas or vapor	Density relative to air $=1$	Ionization relative to air $=1$	
		Soft X-rays	Hard X-rays
Hydrogen, $\mathrm{H}_{2}$	. 07	. 01	. 18
Carbon dioxide, $\mathrm{CO}_{2}$	. 1.53	1.57	1.49
Ethyl chloride, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Cl}$	. 2.24	18.0	17.3
Carbon tetrachloride, $\mathrm{CCl}_{4}$	. 5.35	67	71
Nickel carbonyl, $\mathrm{Ni}(\mathrm{CO})$	. 5.90	89	97
Ethyl bromide, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} .$.	. 3.78	72	118
Methyl iodide, $\mathrm{CH}_{3} \mathrm{I}$.	. 4.96	145	125
Mercury methyl, $\mathrm{Hg}\left(\mathrm{CR}_{3}\right)_{2}$.	. 7.93	425	...

* For refcrence, see foot note 236, p. 692.


# TABLE 762.-WAVELENGTHS OF FLUORESCENT RADIATION EXCITED BY X-RAYS * 

Material	Region	$\underset{A}{\text { of } \underset{\text { Pasition }}{\text { maximum }}}$
Fluorspar	3640-2400	2840
Fluorspar and iron spar.	3900-2310	2800
Scheelite (Ca tungstate).	4800-3750	4330
Zinc sulfide	5090-4120	4500
K platinocyanide	4900-4120	4500
Ba platinocyanide	5090-4420	4800
Ca platinocyanide	5090-4550	4800
U NH، fluoride.	4400-3800	4100
X-ray tube glass	5090-3000	3750

[^312]
## TABLE 763.-THE ABSORPTION OF X-RAYS

The absorption of X -rays by materials follows the same law as the absorption of radiant energy, i.e.,

$$
I=I_{0} \times e^{-\mu x}
$$

where $I_{0}$ is the initial intensity and $I$ the intensity after a distance $x$, and $\mu$ the absorption coefficient. $\mu / \rho$ is the mass absorption ( $\rho$ density) of the material. $\mu / \rho$ is really the sum of two coefficients- $\tau / \rho$ the true or fluorescent X-ray mass-absorption coefficient-and $\sigma / \rho$ the mass-absorption due to scattering. For light elements $\sigma / \rho$ has a practically constant value of 0.17 independent of the wavelength for intermediate ranges.
The following relations may be written

$$
\mu / \rho=\tau / \rho+\sigma / \rho=K \lambda^{8}+\sigma / \rho
$$

The constants for this absorption equation for several materials follow: *

	Mo 42	Ag 47	Sn 50	W 74	Au 79	Pb 82
$K_{K}$	375	545	595	1870	2230	2570
$K_{L}$	50	70	90	330	395	476
$K_{K} / K_{L}$	7.5	7.8	6.6	5.65	5.65	5.40
$\tau A\left(10^{-21}\right)$	13.3	11.0	8.90	3.19	2.57	2.37

* For reference, see footnote 236, p. 692.

TABLE 764.-APPROXIMATE LEAD THICKNESS REQUIRED TO REDUCE RADIATION DOSAGE RATE TO 5 PERCENT OF USEFUL BEAM ${ }^{237}$

| Kilovolts _........... | 50 | 75 | 100 | 150 | 200 | 250 | 400 | 500 | 1000 | 2000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Lead thickness, mm..... | .1 | .3 | .4 | .7 | 1.0 | 1.3 | 3.0 | 7 | 32 | 50 |

[^313] MATERIALS FOR DIFFERENT WAVELENGTHS *

Wavelength   angstroms	C	Al	Cu	Sn
.010				

*For reference, see footnote 236, ก. 692.

TABLE 766.-EXPONENTIAL FORMULAE FOR THE TOTAL MASS-ABSORP. TION VALUES, $\mu / \rho$, FOR SEVERAL ELEMENTS*

Absorber	$\lambda(A)$	$\mu / \rho$	Absorber	$\lambda(A)$	$\mu / \rho$
Al	. 1 to . 4	$14.45 \times \lambda^{3}+.15$	Mo	. 1 to . 35	$450 \times \lambda^{3}+.4$
A1	.4 to . 7	$14.30 \times \lambda^{3}+.16$	Mn	$>\lambda_{\kappa_{\mathrm{abs}}}$	$51.5 \times \lambda^{3}+1.0$
Fe	.1 to . 3	$110 \times \lambda^{3}+.18$	Ag	. 1 to . 4	$603 \times \lambda^{3}+.7$
Co.	.1 to . 3	$124 \times \lambda^{3}+.18$	Ag	$>\lambda_{K_{\text {atix }}}$	$86 \times \lambda^{3}+.6$
$\stackrel{\mathrm{Ni}}{\mathrm{Cu}}$.	. 1 to 1 to .6	$145 \times \lambda^{3}+.20$	Pb	$>\lambda_{K_{\text {abs }}}$	$510 \times \lambda^{3}+.75$

* For reference, see footnote 236, p. 692.


## TABLE 766A.-X-RAY DOSAGE UNITS

The international unit of quantity or dose of X-rays (and gamma-rays), one roentgen, $r$, is obtained from that X-ray (or gamma-ray) energy which, when the secondary electrons are fully utilized and secondary radiation from the walls of the chamber avoided, under standard conditions $0^{\circ} \mathrm{C}$ and 760 mmHg , produces in a cubic centimeter of atmospheric air such a degree of conductivity that thé quantity of electricity, measured at saturation, equals 1 esu.

## TABLE 767.-PROTECTIVE POWERS OF MATERIALS RELATIVE TO LEAD*

A lead screen is very effective in protecting against X -rays. The data in the table show the thickness of lead is as effective as 1 mm of certain other materials that are in common use for protection against X-rays generated by a 100,000 -volt Coolidge tube.

Lead glass	. 12 to . 20	Wood	
Lead rubber	. 25 to . 45	Barium	. 05
Bricks and	. 01		

[^314]TABLE 768.-THE MINIMUM THICKNESS OF LEAD RECOMMENDED FOR PROTECTION FOR VARIOUS INTENSITIES OF X-RAYS

X-rays generated   by peak voltage   not in exess of   (kilovolts):	Minimum equivalent   thickness of lead   millimeters	X-rays generated   by peak voltage   not in excess of   (kilovolts)	Minimum equivalent   thickness of lead   millimeters
75	1.0	225	5.0
100	1.5	300	9.0
125	2.0	400	15.0
150	2.5	500	22.0
175	3.0	600	34.0
200	4.0		

The National Bureau of Standards Handbook 41 on X-ray protection gives as the permissible dosage rate $0.3 r$ per week. On the basis of a 48 -hour week of uniform exposure the permissible dosage rate is $0.00625 r$ per hr ( 6.25 mr per hr ).
This booklet also gives safety rules for operating X-ray equipment and the thickness of lead or concrete necessary for protection against X -ray tubes operated at various intensities.

TABLE 769.-DISTANCE PROTECTION*

Distance $\dagger$ for various applied voltages (kilovolts)										
Target current	50	75	100	150	200	250	400	500	1000	2000
ma					feet					
. 005	15	20	20	25	25	25	25	30	90	195
. 05	40	50	60	60	65	70	70	75	220	400
. 5	85	115	145	145	165	170	170	200	460	850
2.5	120	185	235	245	270	285	295	340	690	. . .
10	160	250	330	350	390	420			...	...
25	195	300	390	420	480	510				

* For reference, see footnote 237, p. 693.
$\dagger$ These distances were computed by taking into account distance and air absorption. The air absorption was determined by assuming the radiation was monochromatic and of double the minimum wavelength of the polychromatic radiation given off by the tube at the indicated potential.


## TABLE 770.-PRIMARY PROTECTIVE-BARRIER REQUIREMENTS FOR 10 MILLIAMPERES AT THE PULSATING POTENTIALS* AND DISTANCES INDICATED $\dagger$

	Lead thickness with peak kilovolts of -					Target distance	Lead thickness with peak kilovolts of 一				
Target distanc	75	100	150	200	250		75	100	150	200	250
$f t$			mm						mm		
2 ( .61 m )	2.2	3.4	4.3	6.7	11.8	20 ( 6.1 m )	1.0	1.7	2.4	3.6	6.4
5 ( 1.52 m )	1.7	2.7	3.6	5.5	9.6	$50(15.2 \mathrm{~m})$	. 5	1.1	1.7	2.4	4.3
10 ( 3.05 m )	1.3	2.2	3.0	4.5	8.1						

[^315]TABLE 771.-PRIMARY PROTECTIVE-BARRIER REQUIREMENTS FOR 400-KILOVOLTS PEAK PULSATING POTENTIAL WITH REFLECTION TARGET*

Target distance ft	Lead thickness with target current of 一			Target distance ft	Lead thickness with target current of -		
	1 ma	3 ma   mm	5 ma		1 ma	$\begin{aligned} & 3 \mathrm{ma} \\ & \mathrm{~mm} \end{aligned}$	5 ma
5 ( 1.52 m )	16.5	20	22	$20(6.1 \mathrm{~m})$	9.5	11.5	13.0
10 ( 3.05 m )	12.5	15.5	17.0	$50(15.2 \mathrm{~m})$	5.5	8.0	9.0

* For reference, see footnote 237 , p. 693.

TABLE 772.-PRIMARY PROTECTIVE-BARRIER REQUIREMENTS FOR 1000-KILOVOLT CONSTANT POTENTIAL WITH TRANSMISSION TARGET *

Target distance ft	Barrier thicknesses with target current of-					
	1 ma		2 ma		3 ma	
	Lead mm	Concrete $\dagger$ in.	Lead mm	Concrete in.	Lead mm	Concrete in.
5 ( 1.52 m )	123	30.5	131	32.5	136	33.5
10 ( 3.05 m )	107	27.0	115	28.5	120	29.5
20 ( 6.1 m )	91	23.0	99	25.0	103	26.0
$100(30.5 \mathrm{~m})$	53	15.0	61	17.0	66	18.0

* For reference, see footnote 237, p. 693.
$\dagger$ These concrete thicknesses are for a concrete density of 147 pounds per cubic foot.

TABLE 773.-FILTERS FOR OBTAINING MONOCHROMATIC X-RAYS *

Target	Lowest approximate voltage for $K$ series kilovolts	$\lambda$ for K n doublet	Filter	Thickness, millimeters	$\mathrm{g} / \mathrm{cm}^{3}$
Chromium	6	2.287	Vanadium	. 0084	. 0048
Iron	7	1.935	Manganese	. 0075	. 0055
Copper	9	1.539	Nickel	. 0085	. 0076
Molybdenum	20	. 710	Zirconium	. 037	. 024
Silver	25	. 560	Palladium	. 03	. 036

* For reference, see footnote 236, p. 692.

TABLE 774.—CRITICAL ABSORPTION WAVELENGTHS (A), L SERIES*

Element	$\begin{gathered} L_{1} \\ \left(L_{11}\right) \end{gathered}$	$\underset{\left(L_{21}\right)}{L_{11}}$	$\stackrel{L_{111}}{\left(L_{22}\right)}$	Element	$\begin{aligned} & L_{1} \\ & \left(L_{11}\right) \end{aligned}$	$\underset{\left(L_{21}\right)}{L_{11}}$	$\underset{\left(L_{22}\right)}{L_{111}}$
47 Ag	3.2474	3.5067	3.6908	78 Pt	. 8921	. 9321	1.0709
53 I	2.3839	2.5475	2.7139	82 Pb	. 7806	. 8136	. 9500
56 Ba	2.0620	2.1993	2.3568	92 U	. 5687	. 5920	. 7216
74 W	1.0205	1.0713	1.2116				

* For reference, see footnote 236, p. 692.

TABLE 775.-CRITICAL ABSORPTION WAVELENGTHS (A), M SERIES *

Element	$M_{\mathrm{I}}$	$M_{\mathrm{II}}$	$M_{\mathrm{III}}$	$M_{\mathrm{IV}}$	$M_{\mathrm{V}}$	Element	$M_{\mathrm{I}}$	$M_{\mathrm{II}}$	$M_{\mathrm{III}}$	$M_{\mathrm{IV}}$	$M_{\mathrm{V}}$
W	$\ldots$	4.38	4.83	5.45	6.62	6.85	Th	$\ldots$	2.338	2.571	3.058
Bi	$\ldots$	3.100	3.342	3.889	4.574	4.763	U	$\ldots$	2.228	2.385	2.873

* For reference, see footnote 236, p. 692.

TABLE 776.-CHARACTERISTIC EMISSION WAVELENGTHS (A). K SERIES*

Element	$\gamma\left(\beta_{2}\right)$	$\beta_{1}$	$\beta_{2}$	$a_{1}$	$a_{2}$
24 Cr	$\left.2.0667^{( } \beta_{\mathrm{s}}\right)$	2.0806		2.28503	2.28891
26 Fe	$1.74080\left(\beta_{5}\right)$	1.753013	1.75646	1.932076	1.936012
28 Ni	1.48561	1.49705		1.65450	1.65835
29 Cu	1.37824	1.38935		1.53739	1.54123
42 Mo	. 619698	. 630978	. 631543	. 707831	. 712105
45 Rh	. 53396	. 54449	. 54509	. 61202	. 61637
47 Ag	. 486030	. 496009	. 49665	. 55828	. 56267
74 W	. 17899 †	. 18397	. 18477	. 20860	. 21341
78 Pt	. 15887	. 16370		. 18523	. 19004

[^316]TABLE 777.-WAVELENGTHS IN ANGSTROMS OF K-SERIES LINES REPRESENTING TRANSITIONS IN THE ORDINARY X-RAY ENERGY LEVEL DIAGRAM * ALLOWED BY THE SELECTION PRINCIPLES ${ }^{288}$

Siegbahn Sommerfeld transition	$\begin{aligned} & K a_{2} \\ & K a^{2} \\ & K \cdot L_{11} \end{aligned}$	$\begin{aligned} & K a_{1} \\ & K \cdot \\ & K \cdot L_{1 I I} \end{aligned}$	$\begin{aligned} & K \beta \\ & K \beta_{3} \\ & K-M_{1 I} \end{aligned}$	$\begin{aligned} & K \beta_{1} \\ & K \cdot \beta_{1} \\ & K \cdot M_{11} \end{aligned}$	$\begin{aligned} & { }_{l}^{K} \beta_{2} \\ & K \cdot \mathcal{L}_{\mathrm{HI}} N_{\mathrm{HI}} \end{aligned}$
4 Be	115.7				
5 B	67.71				
6 C	44.54				
7 N	31.557				
8 O	23.567				
9 F	18.275				
11 Na	11.885		11.594		
12 Mg	9.869		9.539		
13 Al	8.3205		7.965		
14 Si	7.11106		6.7545		
15 P	6.1425		5.7921		
16 S	5.3637	5.3613	5.0211		
17 Cl	4.7212	4.7182	4.3942		
19 K	3.73707	3.73368	3.4468		
20 Ca	3.35495	3.35169	3.0834		
21 Sc	3.02840	3.02503	2.7739		
22 Ti	2.74681	2.74317	2.5090		
23 V	2.50213	2.49835	2.2797		
24 Cr	2.28891	2.28503	2.0806		
25 Mn	2.10149	2.09751	1.90620		
26 Fe	1.936012	1.932076	1.753013		
27 Co	1.78919	1.78529	1.61744		
28 Ni	1.65835	1.65450	1.47905		1.48561
29 Cu	1.541232	1.537395	1.38935		1.37824
30 Zn	1.43603	1.43217	1.29255		1.28107
31 Ga	1.34087	1.33715	1.20520		1.1938
32 Ge	1.25521	1.25130	1.12671		1.11459
33 As	1.17743	1.17344	1.05510		1.04281
34 Se	1.10652	1.10248	. 993013		. 97791
35 Br	1.04166	1.03759	. 93087		. 91853
36 Kr	. 9821	. 9781	. 8767		. 8643
37 Rb	. 92776	. 92364	. 82749	. 82696	81476
38 Sr	. 87761	. 87345	. 78183	. 78130	.76921
39 Y	.83132	. 82712	. 73072	. 73919	. 72713
${ }_{41}^{40 \mathrm{Zr}} \mathrm{Nb}$	. 788889	. 784465	. 70083	. 600238	. 685280
42 Mo	. 712105	. 707831	. 631543	. 630978	. 619698
43 Tc	. 675	. 672	. 601		
44 Ru	. 64606	. 64174	. 57193	. 57131	. 56051
45 Rh	. 61637	. 61202	. 54509	. 54449	. 53396
46 Pd	. 58863	. 58427	. 52009	. 51947	. 50918
47 Ag	. 56267	. 55828	. 49665	. 49601	. 48603
48 Cd	. 53832	. 53390	. 47471	. 47408	. 46420
49 In	. 51548	. 51106	. 45423	. 45358	. 44428
50 Sn	. 49402	. 48957	. 43495	. 43430	. 42499
51 Sb	. 47387	. 46931	. 41623		. 40710
52 Te	. 45491	. 45037	3822.39926		. 39037
53 I	. 43703	. 43249	. 38292	. 38315	. 37471
${ }_{55}^{54 \mathrm{Cs}}$	. 417		35436.360		
55 Cs 56 Ba	. 40411	. 39959	.35436 .34089	.35360 .34022	. 34516
57 La	. 37466	. 37004	. 32809	. 32726	. 31966
58 Ce	. 36110	. 35647	. 31572	. 31501	. 30770
59 Pr	. 34805	. 34340	. 30439	. 30360	. 29625
60 Nd	. 33595	. 33125	. 29351	. 29275	. 28573
62 Sm	. 31302	. 30833	. 27325	. 27250	. 26575
63 Eu	. 30265	. 29790	. 26386	. 26307	. 25645

[^317]TABLE 777.-WAVELENGTHS IN ANGSTROMS OF K-SERIES LINES REPRE-
SENTING TRANSITIONS IN THE ORDINARY X-RAY ENERGY LEVEL
DIAGRAM ALLOWED BY THE SELECTION PRINCIPLES
(concluded)

Siegbahn Sommerfeld transition	$\begin{aligned} & K a_{2} \\ & K a^{\prime} \\ & K \cdot \dot{L}_{\mathrm{II}} \end{aligned}$	$\begin{aligned} & K a_{1} \\ & K \\ & K-L_{I I I} \end{aligned}$	$\begin{aligned} & K \beta \\ & K \beta_{3} \\ & K-M_{\mathrm{II}} \end{aligned}$		$\begin{aligned} & K \beta_{1} \\ & K \beta-M_{1 I I} \\ & K \end{aligned}$	$\begin{aligned} & K \beta_{2} \\ & K \cdot \mathcal{L}_{\mathrm{II}} N_{\mathrm{III}} \end{aligned}$
64 Gd	. 29261	. 28782	. 25471		. 25394	. 24762
65 Tb	. 28286	. 27820	. 24629		. 24551	. 23912
66 Dy	. 27375	. 26903	. 23787		. 23710	. 23128
67 Ho	. 26499	. 26030				
68 Er	. 25664	. 25197	. 22300		. 22215	. 21671
69 Tm	. 24861	. 24387	. 21558		. 21487	
70 Yb	. 24098	. 23628	. 20916		. 20834	. 20322
71 Lu	. 23358	. 2282	. 20252		. 20171	. 19649
72 Hf	. 22653	. 22173	. 19583		. 19515	. 19042
73 Ta	. 21973	. 21488		. 18991		. 18452
74 W	. 21337	. 20856	. 18475		. 18397	. 17906
76 Os	. 20131	. 19645		. 17361		. 16875
77 Ir	. 19550	. 19065		. 16850		. 16376
78 Pt	. 19004	. 18223		. 16370		. 15887
79 Au	. 18483	. 17996		. 15902		. 15426
81 Tl	. 17466	. 16980		. 15011		. 14539
82 Pb	. 17004	. 16516		. 14606		. 14125
83 Bi	. 16525	. 16041		. 14205		. 13621
92 U	. 13095	. 12640		. 11187		. 10842

TABLE 778.-WAVELENGTHS, TUNGSTEN L SERIES*

$\gamma_{4}$	$L_{11}-O_{22}$	1.02647	$\beta_{7}$	$L_{22}-N_{43}, 4$	1.2208
$\gamma_{0}$	$L_{11}-N_{33}$	1.0439	$\beta_{11}, 12$	$L_{22} \cdots N_{32}$	1.2354
$\gamma_{3}$	$L_{11}-N_{22}$	1.05965	$\beta_{2}$	1.24191	
$\gamma_{2}$	$L_{11}-N_{21}$	1.06584	$\beta_{3}$	$L_{11}-M_{22}$	1.26000
$\gamma_{8}$	$L_{21}-O_{32}$	1.0720	1.079	$\beta_{1}$	$L_{21}-M_{32}$
$\gamma_{8}$	$L_{21}-O_{11}$	1.09553	$\beta_{0}$	$L_{12}-N_{11}$	1.27971
$\gamma_{1}$	$L_{21}-N_{32}$	1.2971			
$\gamma_{5}$	$L_{21}-N_{11}$	1.1292	$\beta_{4}$	$L_{11}-M_{21}$	1.29874
$\beta_{0}$	$\cdots \cdots{ }_{31}$	1.2021	$\beta_{11}$	$L_{11}-M_{11}$	1.3344
$\beta_{8}$	$L_{11}-M_{33}$	1.2034	$\eta$	$L_{12}-M_{11}$	1.4177
$\beta_{10}$	$\cdots \cdots$	1.2094	$a_{1}$	$L_{22}-M_{33}$	1.47348
$\beta_{5}$	$L_{22}-O_{32}, 33$	1.2125	$a_{2}$	$L_{22}-M_{32}$	1.48452

* For reference, see footnote 236, p. 692.

TABLE 779.-TYPICAL SAFE RATINGS OF DIAGNOSTIC X-RAY TUBES

General Electric Company Benson-type X-ray tube Westinghouse Corporation WL-355 tube

Effective focal area		wave	$\begin{aligned} & \text { Half } \\ & \mathrm{Hv}^{*} \end{aligned}$				Effective focal area	$\begin{aligned} & \text { Full wave } \\ & \text { kv ma } \end{aligned}$	$\underset{\text { kv malf wa }}{\text { kave }}$	Self. rectified kv ma
Stationary target : 1 second							Stationary target: 1 second			
$1.5 \mathrm{~mm}^{2}$	110	20	110	15			$1.5 \mathrm{~mm}^{2}$	2770	2025	1520
3.7	110	60	95	50			2.1	4830	3410	2570
5.2	90	150	100	100	78	100	2.6	6500	4730	3400
	1/60 second						3.0	7680	5915	4150
5.2	72	500					4.2	11900	${ }_{1 / 60 \text { second }}^{9650}$	
	104	350					4.2	25000		
Rotating target: 1 second									...	
	80	280								
1/60 second										

[^318]TABLE 780.-WAVELENGTHS OF THE MORE PROMINENT L-GROUP LINES IN ANGSTROMS*


[^319]
## 700

TABLE 780.-WAVELENGTHS OF THE MORE PROMINENT L-GROUP LINES IN ANGSTROMS (concluded)

Siegbahn Sommerfeld transition	$\begin{aligned} & a_{3} \\ & \stackrel{a}{z}^{L_{\mathrm{II}}} \mathrm{M}_{\mathrm{IV}} \end{aligned}$	$\begin{aligned} & a_{1} \\ & \stackrel{a}{L_{111}} \cdot M_{\mathrm{v}} \end{aligned}$	$\begin{aligned} & \beta_{1} \\ & \stackrel{\beta}{1 I}^{L_{11}} M_{\mathrm{v}} \end{aligned}$	$\begin{aligned} & \beta_{2} \\ & \stackrel{L}{L I I I}^{-N} \end{aligned}$	$\begin{aligned} & \gamma_{1} \\ & {\underset{L}{1 I}}^{L_{11}} N_{\mathrm{IV}} \end{aligned}$
80 Hg	1.24951	1.23863	1.04652	1.03770	. 8946
81 Tl	1.21626	1.20493	1.01299	1.00822	. 86571
82 Pb	1.18408	1.17258	. 98083	. 98083	. 83801
83 Bi	1.15301	1.14150	. 95002	. 95324	. 81143
90 Th	. 96585	. 95405	. 76356	. 79192	. 65176
91 Pa	. 9427	. 9309	. 7407	. 7721	. 6325
92 U	. 92062	. 90874	. 71851	. 75307	. 61359

TABLE 781.-WAVELENGTHS OF M-SERIES LINES IN ANGSTROMS FROM
73 Ta TO $92 U^{*}$

Transition	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	81 Tl	82 Pb	83 Bi	90 Th	92 U
$M_{11} O_{2 v}$											2.613	2.440
$M_{1} N_{111}$		5.163				4.451	4.291	4.005	3.864	3.732	2.938	2.745
$M_{\text {II }} N_{\text {IV }}$	5.558	5.342		4.944	4.770	4.590	4.424	4.110	3.964	3.829	3.006	2.813
$\mathrm{MuH}_{\mathrm{H}} \mathrm{O}$					4.859	4.682	4.514	4.207	4.063	3.926	3.124	2.941
$\mathrm{MiHI}^{\text {O }}$		5.620							4.235	4.096		3.114
$M_{11} N_{\text {I }}$												3.322
$\boldsymbol{\gamma}^{\prime}$								4.800	4.650	4.506	3.661	3.463
$M_{\text {III }} N_{V}$	6.299	6.076	5.875	5.670	5.490	5.309	5.135	4.815	4.665	4.522	3.672	3.473
$M_{\text {III }} N_{\text {IV }}$	6.340	6.121	5.919	5.712	5.529	5.346	5.175	4.855	4.705	4.560	3.710	3.514
$\mathrm{Miv}_{\text {IV }} \mathrm{O}_{11}$	7.083	6.794								4.813	3.804	3.570
$\beta^{\prime}$	6.984	6.718		6.233	6.009	5.796	5.595	5.220	5.045	4.881	3.924	3.698
$M_{\text {Iv }} N_{\text {vi }}$	7.008	6.743	6.491	6.254	6.025	5.8168	5.612	5.239	5.065	4.899	3.934	3.708
$\mathrm{MvO}_{\text {HiI }}$						5.975	5.755					
$a^{\prime \prime}$	7.201	6.932		6.440	6.215	5.997	5.794	5.416	5.239			
$a^{\prime}$	7.219	6.948		6.459	6.231	6.011	5.811	5.433	5.256	5.087	4.112	3.886
$M_{\mathrm{v}} \mathrm{Nvir}^{\text {rem }}$	7.237	6.969	6.715	6.477	6.249	6.034	5.828	5.450	5.274	5.108	4.130	3.902
$M_{\mathrm{v}} N_{\text {vi }}$					6.262	6.045	5.842	5.461	5.288	5.119	4.143	3.916
$M_{111} N_{1}$	7.596	7.346			6.653	6.442	6.241	5.870	5.694	5.526	4.554	4.322
$M_{\text {IV }} N_{\text {III }}$		8.559	8.222		7.629	7.356	7.086		6.371	6.149	4.901	4.615
$M_{\text {V }} N_{\text {III }}$	9.297	8.943	8.612	8.293	8.002	7.722	7.451	6.960	6.726	6.508	5.229	4.937
$M_{\text {IV }} N_{\text {II }}$	9.311	8.977	8.646	8.344	8.048	7.774	7.507	7.017	6.788	6.571	5.329	5.040

* E. Lindberg, Dissertation, Uppsala (1931). In addition to the values listed here, measurements have been made in the range from Ce 58 to 72 Hf . The wavelengths may be found in the dissertation, or in Siegbalin, Spektroskopie der Röntgenstrahlen (1931). For reference, see footnote 238, p. 697.

TABLE 782.-X-RAY TERMS FOR VARIOUS ELEMENTS *
$\nu^{\prime} R$ values; $\nu$ in $\mathrm{cm}^{-1}, R=109,737 \mathrm{~cm}^{-1}$

Term	13 Al	20 Ca	29 Cu	42 Mo	47 Ag	74 W	92 U
K	10.71	297.4	661.6	1473.4	1880.9	5120.7	8474
$L_{1}$			81.0	211.3	282.7	890.8	1602.6
$L_{11}$	2.30	25.8	70.3	193.7	260.9	849.9	1542.7
$L_{\text {III }}$	2.30	25.5	68.9	186.0	248.6	751.3	1264.2
$M_{1}$	.		8.9	37.5	54.4	207.3	408.5
$M_{11}$	. 63	1.9	5.7	30.5	46.7	189.3	381.5
$M_{\text {III }}$	. 63	1.9	5.7	29.2	44.4	167.5	316.8
$M_{\text {Iv }}$	. . .	. 4	. 4	17.3	29.2	137.5	274.2
$M_{V}$	. . .	. 4	. 4	17.1	28.8	132.9	261.2
$N_{1}$				5.1	8.7	43.3	106.0
$N_{\text {II }}$	....	. . .	...	2.9	6.5	36.0	93.5
$N_{111}$				2.9	6.5	31.0	76.6
$N_{\text {Iv }}$					1.1	18.7	57.5
$N_{V}$				. 4	2.0	17.6	54.3
$N \mathrm{vi}$					. . .	2.3	28.5
$N \mathrm{vil}$		. . . .		....	. . .	2.0	27.6
$\mathrm{O}_{1}$						5.4	23.7
$O_{11}$					. . .	2.9	18.3
$O_{\text {IIf }}$					. . .	2.9	13.9
$O_{\text {Iv }} O_{\mathrm{v}}$						. . .	7.0
$P_{\text {II }} P_{\text {III }}$		. . .		. . .	. . .		. 8

[^320]Longer wavelengths
$M_{\mathrm{v}}$
zก্ড
722.08
$M_{\text {IV }}$
708.18
$M_{\text {III }}$
786.8
$\ldots$

$\ldots$
M
$\begin{array}{ll}\infty & \vdots \\ \infty\end{array}$
$M_{1}$
$M_{\text {IV }}$
13.15
$\ldots$
$L_{\text {III }}$
TABLE 783.-CRITICAL ABSORPTION WAVELENGTHS IN ANGSTROMS*

TABLE 783.-CRITICAL ABSORPTION WAVELENGTHS IN ANGSTROMS*

（continued）
（
Longer wavelengths

$$
\begin{gathered}
N_{\mathrm{III}} \\
855.63
\end{gathered}
$$

令三N゙

$$
\begin{array}{rllll}
\Xi & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots
\end{array}
$$



[^321]TABLE 783.-CRITICAL ABSORPTION WAVELENGTHS IN ANGSTROMS (concluded)
Longer wavelengths
2
0
$-\infty$
$=-\infty$
$=1$ N
$\infty$
$\infty$
ヘN
${ }_{1153.52}^{P_{\text {II, }} \text { III }}$

$N$
N
M
M


$\begin{array}{ll}\circ & \text { N } \\ \text { M } \\ \text { N }\end{array}$

$M_{\text {III }}$
5.427
5.027
4.851
4.676
4.508
4.340
4.184
4.034
3.893





	8	$\infty$









8
+






$\stackrel{\rightharpoonup}{\underset{\sim}{7}}$

$$
\begin{aligned}
& \stackrel{7}{7}
\end{aligned}
$$

TABLE 784.-CALCULATED MASS ABSORPTION COEFFICIENTS (concluded)
8


$\stackrel{8}{+}$	




Material
Molybdenum
Palladium
Silver
Tin
Tellurium
Iodine
Xenon
Barium
Cerium
Neodymium
Terbium
Tantalum
Tungsten
Platinum
Gold
Mercury
Lead
Bismuth
Thorium
Uranium


Artificial disintegration is generally considered in two parts: the first when the bombarded atom suffers a change not greater than the loss (or gain) of an alpha particle, and the second when the change in the bombarded atom is much greater-the bombarded atom being at times split into two nearly equal parts. This latter is called fission : the former, artificial disintegration. Fission was at first brought about by bombardment with neutrons but it can be caused by bombardment by almost any particle with the proper energy (see Table 726). This effect can be produced in a number of isotopes of the heavier atoms such as $\mathrm{Np}, \mathrm{U}, \mathrm{Pa}, \mathrm{Th}, \mathrm{Pb}, \mathrm{Sn}, \mathrm{Eu}$, and Ni . Some other atoms such as $\mathrm{Bi}, \mathrm{Rb}, \mathrm{Tl}$, $\mathrm{Hg}, \mathrm{Au}, \mathrm{Pt}, \mathrm{W}$, and many others show no fission; at least if such an effect exists it is less than $1 / 1000$ that of Th . There are a great many products of fission as shown by a paper by scientists of the Plutonium Project. ${ }^{240}$ One example of fission is

$$
{ }_{92} \mathrm{U}^{235}+{ }_{0} n^{1} \rightarrow{ }_{40} \mathrm{Zr}^{97}+{ }_{52} \mathrm{Te}^{137}+{ }_{0} n^{1}+{ }_{0} n^{1}
$$

There is a considerable release of energy when fission takes place. Complete data are not available but such as are available give values of about 200 Mev per fission per atom of the heavier elements. (See Table 790.) It is also to be noted that there are two neutrons given as a result of the above reaction; thus, it is self-sustaining.
${ }^{240}$ Journ. Amer. Chem. Soc., vol. 68, p. 2411, 1946.

TABLE 785.-FISSION DATA*


* For reference, see footnote 226, p. 667.

TABLE 786.-FISSION THRESHOLDS *

	Threshold energy for exciting fission				Threshold energy for exciting fission		
${ }_{90} \mathrm{Th}^{282}$	$5.40 \pm .22 \mathrm{Mev}$	$\gamma$	${ }_{90} \mathrm{Th}^{232}$	${ }_{92} \mathrm{U}^{238}$	$5.08 \pm .15 \mathrm{Mev}$	$\gamma$	${ }_{92} \mathrm{U}^{298}$
${ }_{00} \mathrm{Th}^{233}$	$1.10 \pm .05$	$n$	${ }_{90} \mathrm{Th}^{232}$	${ }_{92} \mathrm{U}^{239}$	$1.0 \pm .1$	$n$	${ }_{92} \mathrm{U}^{298}$
${ }_{11} \mathrm{~Pa}^{232}$	$\sim 1$	$n$	${ }_{91} \mathrm{~Pa}^{231}$	${ }_{93} \mathrm{~Np}^{258}$	<0	slow $n$	${ }_{93} \mathrm{~Np}^{237}$
${ }_{91} \mathrm{~Pa}^{233}$	<6.9	$p$	${ }_{80} \mathrm{Th}^{232}$	${ }_{93} \mathrm{~N} \mathrm{p}^{238}$	<6.9	$p$	${ }_{92} \mathrm{U}^{238}$
${ }_{91} \mathrm{~Pa}^{294}$	$\sim 8$	$d$	${ }_{90} \mathrm{Th}^{232}$	${ }_{33} \mathrm{~N} \mathrm{p}^{240}$	$\sim 8$	d	${ }_{92} \mathrm{U}^{298}$
${ }_{92} \mathrm{U}^{233}$	$5.18 \pm .27$	$\gamma$	${ }_{92} \mathrm{U}^{233}$	${ }_{94} \mathrm{Pu}^{239}$	$5.31 \pm .27$	$\gamma$	${ }_{04} \mathrm{Pu}^{239}$
${ }_{92} U^{2235}$	$5.31 \pm .25$	$\gamma$	${ }_{22} U^{235}$	${ }_{94} \mathrm{Pu}^{240}$	<0	slow $n$	${ }_{40} \mathrm{Pu}^{239}$
${ }_{92} \mathrm{U}^{238}$	<0	slow $n$	${ }_{02} \mathrm{U}^{235}$				

[^322]TABLE 787.-ESTIMATED VALUES OF THE NEUTRON BINDING ENERGY OF THE DIVIDING NUCLEUS *

Compound nucleus	Neutron binding energy	Compound nucleus	Neutron binding energy
${ }_{90} \mathrm{Th}^{232}$	6.2 Mev	${ }_{82} \mathrm{U}^{237}$	5.2 Mev
${ }_{90} \mathrm{Th}^{238}$	5.2	${ }_{92} \mathrm{U}^{238}$	6.1
${ }_{91} \mathrm{~Pa}^{231}$	6.4	${ }_{92} \mathrm{U}^{239}$	5.1
${ }_{81} \mathrm{~Pa}^{232}$	5.4	${ }_{93} \mathrm{~Np}^{239}$	$\sim 6.3$
${ }_{92} \mathrm{U}^{234}$	6.5	${ }_{33} \mathrm{~Np}^{249}$	$\sim 5.3$
${ }_{92} \mathrm{U}^{235}$	5.4	${ }_{94} \mathrm{Pu}^{239}$	$\sim 5.4$
${ }_{92} \mathrm{U}^{236}$	6.4	${ }_{04} \mathrm{Pu}^{240}$	$\sim 6.4$

* For reference, see footnote 226 , p. 667.


## TABLE 788.-THE CRITICAL ENERGY FOR FISSION *

The experimental values of the critical energy for fission of a number of isotopes have been determined by Koch, McElhinney, and Gasteiger ${ }^{241}$ who give the following photofission threshold energies. (The work of Shoupp and Hill ${ }^{242}$ on the fast neutron fission energies for $\mathrm{Th}^{232}$ and $\mathrm{U}^{238}$ was used for the values given for $\mathrm{Th}^{233}$ and $\mathrm{U}^{230}$.)


* Prepared by J. L. Rhodes, University of Pennsylvania.
${ }^{241}$ Phys. Rev., vol. 77, p. 329, 1950.
242 Phys. Rev., vol. 75, p. 785, 1949.

TABLE 789.-HALF-LIVES FOR SPONTANEOUS FISSION ${ }^{243}$
These half-lives are calculated on the basis of a half-life of $10^{15}$ years for $\mathrm{U}^{235}$

${ }^{243}$ Turner, Rev. Mod. Phys., vol. 17, p. 292, 1945.

TABLE 790.-THE ENERGY RELEASED BY FISSION ON DIVISION OF SOME ATOMS INTO EQUAL PARTS *

Original	Two products	Energy released on division	Energy released in subsequent beta decay
${ }_{2 \times} \mathrm{Ni}^{01}$	${ }_{14} \mathrm{Si}^{\text {co, }}{ }^{31}$	-11 Mev	2 Mev
${ }_{50} \mathrm{Sn}^{117}$	${ }_{25} \mathrm{Mn}^{38,54}$	10	12
${ }_{68} \mathrm{Er}^{167}$	${ }_{34} \mathrm{Se}^{83,84}$	94	13
${ }_{82} \mathrm{~Pb}^{208}$	${ }_{41} \mathrm{Nb}^{103,104}$	120	32
${ }_{92} \mathrm{U}^{239}$	${ }_{41} \mathrm{Pd}^{110}{ }^{120}$	200	31

[^323]|  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{30} \mathrm{Kr}^{\text {85 }}$ | 9.4 yr | . 74 | none | . 24 | ${ }_{52} \mathrm{Sb}^{127}$ | 93 hr | 1.2 | . 72 |  |
| ${ }_{32} \mathrm{Rb}^{88}$ | 19 d | 1.82 | 1.08 | . 00016 | ${ }_{52} \mathrm{Te}^{129}$ | 90 d | I.T. |  | . 033 |
| ${ }_{38} \mathrm{Sr}^{89}$ | 55 d | 1.5 | none | 4.6 | ${ }_{52} \mathrm{Te}^{128}$ | 32 d | I.T. |  | . 19 |
| ${ }_{38} \mathrm{Sr}^{20}$ | 25 yr | . 65 | none | $\sim 5$ | ${ }_{52} \mathrm{Te}^{132}$ | 77 hr | . 28 | . 22 | 3.6 |
| ${ }_{39} \mathrm{Y}^{20}$ | 62 hr | 2.35 | none |  | ${ }_{63}{ }^{191}$ | 8 d | . 687 | . 37 | 2.8 |
| ${ }_{38} \mathrm{Y}^{91}$ | 61 d | 1.6 | none | 5.9 | ${ }_{44} \mathrm{Xe}^{138}$ | 5.3 d | . 35 | . 085 | 6 |
| * $\mathrm{Zr}^{\text {a5 }}$ | 65 d | 1.0 | . 92 | 6.4 | ${ }_{55} \mathrm{Cl}^{188}$ | 13 d | . 28 | 1.2 | . 008 |
| ${ }_{41} \mathrm{Nb}^{\text {958 }}$ | 35 d | . 15 | . 77 |  | ${ }_{55} \mathrm{CS}^{137}$ | 37 yr | . 8 | . 75 | $\sim 6$ |
| ${ }_{41} \mathrm{Nb}^{88}$ | 90 hr | I.T. |  |  | ${ }_{56} \mathrm{Ba}^{140}$ | 12.8 d | 1.05 | . 53 | 6.1 |
| ${ }_{42} \mathrm{Mo}^{90}$ | 67 hr | 1.5 | . 75 | 6.2 | ${ }_{58} \mathrm{Ce}^{141}$ | 30 d | . 6 | . 2 | 5.7 |
| ${ }_{48} \mathrm{Ru}^{108}$ | 41 d | . 67 | . 55 | 3.7 | ${ }_{\text {ss }} \mathrm{Ce}^{144}$ | 275 d | . 35 | none | 5.3 |
| ${ }_{48} \mathrm{Ru}^{108}$ | 1.0 yr | $\sim .03$ | none | . 5 | ${ }_{50} \mathrm{Pr}^{1 / 3}$ | 13.8 d | 1.0 | none | 6 |
| ${ }_{42} \mathrm{Ag}^{111}$ | 7.5 d | 1.0 | none | . 018 | ${ }_{00} \mathrm{Nd}^{147}$ | 11 d | . 90 | . 58 | 2.6 |
| ${ }_{48} \mathrm{Cd}^{1115}$ | 43 d | 1.7 |  | . 0008 | ${ }_{61} \mathrm{Pm}^{147}$ | 3.7 yr | . 23 | none | 2.6 |
| ${ }_{48} \mathrm{Cd}^{115}$ | 43 d | 1.7 | . 5 | . 0008 | ${ }_{83} \mathrm{Eu}^{155}$ | 2 yr | . 2 | . 084 | . 03 |
| ${ }_{\text {50 }}{ }_{\text {60 }} \mathrm{Sn}^{128} \mathrm{Sb}^{128}$ | 130 d | 1.3 | . 69 | . 02 | ${ }_{93} \mathrm{Eu}^{150}$ | 15.4 d | 2.4 | 2.0 | . 013 |

* Revised by J. L. Rhodes, University of Pennsylvania. For reference, see footnote 226, p. 667.

TABLE 792.-CROSS SECTIONS OF FISSIONABLE NUCLEI FOR NEUTRONS (IN UNITS OF $10^{-2 t} \mathrm{~cm}^{2}$ ) *

$\begin{gathered} \text { Target } \\ \text { substance } \end{gathered}$	Process	Cross section for energy ranges		
		Thermal	Resonance	Fast $\dagger$
${ }_{82} \mathrm{U}^{235}$	fission	$420 \pm 100$	30	2.4
${ }_{88} \mathrm{U}^{238}$	scattering	17	17	6
	fission	0	0	. 5
	scattering	17	17	
	absorption (resonance)	3	$5000 \ddagger$	0
Ordinary uranium	fission.	3 (ave)	. 2 (ave)	. 5
	scattering	17	17	6
	absorption	3	$5000 \pm$	0
$\begin{aligned} & { }_{84} \mathrm{P}^{\mathrm{U}^{298}} \\ & { }_{25} \mathrm{~T}^{282} \end{aligned}$	fission	\}assumed same as for ${ }_{92} \mathrm{U}^{235}$		
	scattering			
	fission.	0	0	. 1
	scattering	17	17	6
	absorption	8.3		
${ }_{91} \mathrm{~Pa}^{281}$	fission	0	0	3
	scattering	17	17	6
${ }_{00} \mathrm{Th}^{230}$	fission	0	0	. 3
	scattering	17	17	6

[^324]TABLE 793.-CROSS SECTIONS OF SOME FISSION PRODUCTS FOR THERMAL NEUTRONS*

Atomic number	Element	"Average nucleus"		Isotope (in units of $\underbrace{10^{-12} \mathrm{~cm}^{2} \text { ) }}$		
		Absorption $\sigma a$	$\underset{\substack{\text { Total } \\ \sigma 1}}{ }$	$\begin{gathered} \text { Mass } \\ \text { number } \end{gathered}$	$\underset{\sigma a}{\text { Absorption }}$	$\begin{gathered} \text { Relative } \\ \text { natural } \\ \text { abundance } \end{gathered}$
35	Br	7	9.5	$\begin{aligned} & 79 \\ & 81 \end{aligned}$	$\begin{gathered} 12 \\ 2.25 \end{gathered}$	$\begin{array}{ll} 50.6 \\ 49.4 \end{array}$
36	Kr	. 1	27	$\begin{aligned} & 78 \\ & 84 \\ & 86 \end{aligned}$	$\begin{aligned} & .27 \\ & .16 \\ & .061 \end{aligned}$	$\begin{array}{r} .34 \\ 57.0 \\ 17.4 \end{array}$
37	Rb	. 7	12	$\begin{aligned} & 85 \\ & 87 \end{aligned}$	$\begin{aligned} & .724 \\ & .135 \end{aligned}$	$\begin{aligned} & 72.8 \\ & 27.2 \end{aligned}$
38	Sr	1.5	11	$\begin{aligned} & 86 \\ & 88 \end{aligned}$	$\stackrel{1.3}{.005}$	$\begin{gathered} 9.8 \\ 82.56 \end{gathered}$
39	Y	1.1	...	89	1.1	100
40	Zr	. 4	15	$\begin{aligned} & 90 \\ & 91 \\ & 92 \\ & 94 \\ & 96 \end{aligned}$	$\begin{array}{r} .12 \\ 1.54 \\ .27 \\ .53 \\ 1.07 \end{array}$	$\begin{array}{r} 51.5 \\ 11.2 \\ 17.1 \\ 17.4 \\ 2.8 \end{array}$
41	Nb	1.0	6.9	93	1.0	100
42	Mo	3.9	7.9	$\begin{array}{r} 95 \\ 97 \\ 98 \\ 100 \end{array}$	$\begin{aligned} & 13 \\ & 2.3 \\ & .37 \\ & .23 \end{aligned}$	$\begin{array}{r} 15.7 \\ 9.5 \\ 24.1 \\ 9.25 \end{array}$
51	Sb	4.7	9	$\begin{aligned} & 121 \\ & 123 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 56 \\ & 44 \end{aligned}$
52	Te	5	10	$\begin{aligned} & 126 \\ & 128 \\ & 130 \end{aligned}$	$\begin{aligned} & .88 \\ & .2 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.7 \\ & 31.86 \\ & 34.52 \end{aligned}$
53	I	6.1	9.4	127	6.1	100
54	Xe	...	35	$\begin{aligned} & 132 \\ & 136 \end{aligned}$	$.2$	$\begin{array}{r} 26.9 \\ 8.9 \end{array}$
56	Ba	1.25	9.25	138	. 56	71.66
57	La	9	25	139	9	99.9
62	Sm	8000	$\ldots$	149	53,000	15.5
63	Eu	2500	4500	$\begin{aligned} & 151 \\ & 153 \end{aligned}$	$\begin{array}{r} 5200 \\ 240 \end{array}$	$\begin{aligned} & 49.1 \\ & 50.9 \end{aligned}$
64	Gd	38,000	$\cdots$	$\begin{aligned} & 155 \\ & 157 \end{aligned}$	$\begin{array}{r} 50,000 \\ 180,000 \end{array}$	$\begin{aligned} & 14.8 \\ & 15.7 \end{aligned}$

* Revised by J. L. Rhodes, University of Pennsylvania. For reference, see footnote 226, p. 667.

Cosmic rays are an ionizing radiation that has been discovered in the atmosphere of the earth. As generally discussed these rays are divided into primary and secondary cosmic rays, the primary rays being the high-energy particles that fall upon the outer atmosphere of the earth. In general, the intensity of cosmic radiation is given as the number of rays per $\mathrm{cm}^{2}$ per second. The intensity (i.e., number of particles per $\mathrm{cm}^{2}$ ) increases for about the first onetenth of the atmosphere where it is about 5 times the initial intensity and from there down to sea level the intensity decreases. These primary rays appear to come from all directions from outer space and to consist almost entirely, if not altogether, of particles charged positively ${ }^{245}$ (i.e., protons, alpha-particles, and probably other nuclei). Several theories have been advanced for the origin of this primary radiation: (1) Annihilation of matter; (2) speeding up of stripped atoms in outer space either by electrical fields or by changing magnetic fields; (3) from some activity in stars in distant space; or even (4) that it is radiation remaining from the original explosion some $10^{9}-10^{10}$ years ago when the present known universe was started. These assumptions are based upon the theory that this radiation comes from the cosmos or outer space. Some ${ }^{246}$ present arguments for the sun as the source of the cosmic rays and argue that the magnetic field of the sun traps at least a part of the radiation from the sun, which give the results as now found on the earth. There are seemingly very great difficulties to explain away in establishing any one of these theories.

Owing to the effect of the earth's magnetic field there is less of this energy that reaches even the outer atmosphere at or near the magnetic equator than in higher latitudes, the lower-energy particles being screened off by the strong magnetic fields of the earth near the magnetic equator. The energy of the cosmic-ray particles that strike the upper atmosphere extends from about $10^{\circ}$ to $10^{17} \mathrm{ev}$, or even higher, with a maximum number for about $6 \times 10^{3} \mathrm{ev}$. The average energy of all particles entering the atmosphere at the equator is about $3 \times 10^{10} \mathrm{ev}$ and for geomagnetic latitudes above about 40 the average is about $6 \times 10^{3} \mathrm{ev}$.

In Tables 794 and 797 are given some data on the primary radiation reaching the outer atmosphere for different geomagnetic latitudes.

[^325]
## TABLE 794.-PROBABLE CHARACTERISTICS OF COSMIC RAYS FALLING UPON THE TOP OF THE ATMOSPHERE AT VARIOUS MAGNETIC LATITUDES

All energies are given in electron volts.

	Geomagnetic latitude		
	$3{ }^{\circ}$	$39^{\circ}$	$52^{\circ}$
Energy falling per sec un each $\mathrm{cm}^{2}$ of the atmosphere..	$1 \times 10^{9}$	$1.7 \times 10^{0}$	$3.2 \times 10^{9}$
Total number of ions formed per sec below each $\mathrm{cm}^{2}$ of the upper surface of the atmosphere.	$3 \times 10^{7}$	$5.4 \times 10^{7}$	$7.4 \times 10^{7}$
Low energy limit of oncoming particles imposed by the earth's magnetic field	$15 \times 10^{9}$	$8 \times 10^{3}$	$2 \times 10^{9}$
Average energy per particle striking the atmosphere..	$3 \times 10^{10}$	$1.6 \times 10^{10}$	. $88 \times 10^{10}$
Probable number of particles striking each $\mathrm{cm}^{2}$ of outer surface of the atmosphere per min.	1.9	6.5	21.8

The secondary cosmic rays, which are due to the ionization and other actions of the highenergy particles of the primary cosmic rays, have been studied by various methods for various positions with respect to the geomagnetic latitude on the earth's surface and for different elevations up to such heights that only about 0.5 percent of the atmosphere, by weight, is above the measuring instrument. The secondary rays consist of all sorts of particles such as electrons, both positive and negative; protons, and other heavy particles; mesons; neutrons, traveling with various speeds, and radiant energy of very short wavelength.

At the surface of the earth (sea level) the cosmic rays are of such intensity that they produce 1.63 ion pair $\mathrm{cm}^{-3} \mathrm{sec}^{-1}$. The intensity is about constant, within a very few percent, for geomagnetic latitudes higher than above 40 and from this point to the equator the intensity drop-off is about 9 percent.

The ionization increases with altitude up to about $16,000 \mathrm{~m}$ for geomagnetic latitudes $>40$, where it is about $150-200$ times as large as at sea level. Above this altitude the intensity of ionization drops off until, at an elevation where the amount of the atmosphere above the measuring instrument :s only about 0.5 percent ( $35,300 \mathrm{~m}$ ), the intensity is about 0.2 percent of that at the maximum, or about the same as that observed at 0.4 atmosphere above the earth. The variation with altitude is much less at the geomagnetic equator.

Cosmic rays react with the atoms of the atmosphere and produce a variety of effects; the production of a simple ion pair, the production of neutrons and electrons, the production of mesons, the production of extensive showers, where the released energy is so great that the cosmic ray must be only the cause of some explosion or some artificial disintegration. Mesons are particles that may have a unit positive or negative charge or they may be neutral as to charge. The mass of the meson is about 200 times that of an electron; it is very penetrating and is radioactive, with a life of about $2 \times 10^{-8} \mathrm{sec}$. Some evidence exists for mesons with a mass of about 1000 m .

Thus, there are formed bursts, an extensive production of ionization, and stars when a group of particles have a common origin as shown by cloud-chamber pictures. Stars are probably so named because these pictures show a number of tracks that have a common origin. These tracks vary from 2 to 10 with an average of about 4. The number of stars increases with the elevation above sea level. At an elevation of about $4,500 \mathrm{~m}$ the average energy ionization star particle was about 12 Mev .

Cosmic-ray showers, extensive ionizations of exceedingly complex reactions taking place in the atmosphere, extend over distances up to several hundred meters. These showers contain millions of particles and represent a total of about $10^{18} \mathrm{ev}$.

These secondary rays may be roughly divided into a hard and a soft component. The separation is generally made by filtering out the soft component with about 10 to 12 cm of lead. The hard component consists of mesons, a small number of protons, possibly some fast-moving electrons, and short-wavelength photons. The soft component consists of electrons, photons, and some slow-moving mesons, protons, and neutrons. The number of rays of the hard component does not reach a maximum with height but seems to increase to as great a height as measurements have been made, i.e., up to a height where the pressure is above 0.8 mmHg , where it is about 15 times as intense as at sea level. The soft component increases in intensity down from the top of the atmosphere to a pressure of 75 mmHg , then decreases to sea level, where the intensity is about 1 percent of that at its maximum. At its maximum intensity the soft component is about 5 times that of the hard component, in the vertical direction. At the earth's surface this hard component makes up about 75 percent of the cosmic radiation and a much smaller part at high altitudes. This hard component is very penetrating, since it will pass through many meters of water or lead. Cosmic rays have been detected in a mine at a depth of 384 meters, and by tipping the apparatus, the thickness through which the cosmic rays passed was equivalent to 1,408 meters of water (about 124 meters of lead!). Another observer detected this radiation in a coal mine at a depth of 610 meters, which is equivalent to 1,600 meters of water! In this case, the intensity measured at the depth corresponding to 1,600 meters of water was only about $1 / 20000$ of that at the surface! These highly penetrating rays are thought to be mesons, produced by the primary cosmic rays.

TABLE 796.-MEAN IONIZATION ENERGY OF $\gamma$-RAY NECESSARY TO PRODUCE AN ION PAIR*
(See Table 799.)

Gas		ev	Gas		ev	Gas	
$\mathrm{H}_{2}$	$\ldots \ldots$	33.0	$\mathrm{~N}_{2}$	$\ldots \ldots$	$\ldots$	35.0	Nev
He	$\ldots \ldots$	27.8	$\mathrm{O}_{2}$	$\ldots \ldots \ldots$	32.3	$\ldots$	27.4

[^326]TABLE 797.-THE CRITICAL ENERGY* AND THE TOTAL ENERGY OF COSMIC RAYS ENTERING THE ATMOSPHERE AT FOUR LOCATIONS

Location				Location			
Saskatoon	$60^{\circ}$	1.4	2.36	San Antonio	$38^{\circ}$	6.7	1.81
Omaha	$51^{\circ}$	2.9	2.25	Madras	$3^{\circ}$	17.0	. 94

* The energy of a cosmic ray which enables it to enter the earth's atmosphere.


## TABLE 798.—ESTIMATED COSMIC RAY INTENSITIES AT 50응 GEOMAGNETIC LATITUDE

In this table are given some data on cosmic rays for various altitudes for geomagnetic latitudes of $50^{\circ}$

Altitude		Total intensity			Hard component			Soft component		
		Omnidirec. tional	Vertical	Latitude effect	Omni-directional	Vertical	Latitude effect	Omnidirec. tional	Vertical	Latitude effect
meters	atm	sec $\mathrm{cm}^{2}$	$\underline{\sec \mathrm{cm}^{2} \omega}$	cent	$\frac{\mathrm{sec} \mathrm{cm}^{2}}{}$	$\frac{\sec \mathrm{cm}^{2} \omega}{}$	cent	sec cm ${ }^{2}$	$\frac{\mathrm{sec} \mathrm{cm}^{2} \omega}{}$	per-   cent
0	1.000	. 020	. 015	10	. 013	. 009	10	. 007	. 006	10
2,000	. 784	. 035	. 025	15	. 018	. 012	15	. 017	. 013	15
4,500	. 570	. 10	. 07	25	. 03	. 020	25	. 07	. 05	25
10,000	. 261	. 7	. 3	45	. 10	. 05	30	. 6	. 25	30
16,100	. 100	1.5	. 5	75	. 25	. 08	?	1.25	. 42	80
30,000	. 0115	. 5	. 15	85	. 4	. 13	?	. 06	. 02	?
$\infty$	0	. 3	. 1	90	?	?	?	?	?	?

TABLE 799.-SOME COSMIC-RAY DATA

Total number of rays at top of the atmos	$8 \times 10^{17} \mathrm{sec}^{-1}$
Total energy carried to earth per second (outer atmosphere)   $9 \times 10^{18} \mathrm{Bev} / \mathrm{sec}, 1.4 \times 10^{9}$ watts	
a current of	.13 amp
Average number of rays ${ }^{\dagger}$ at top of atmosph	$.16 \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$
Average energy of all incident particles, latitude $>40$	7 Bev
Average energy of all incident particles, all areas, about	11 Bev
Cosmic energy reaching earth's outer atmosphere, high latitude	
Average energy of the cosmic rays entering the atmosphere is about	$7 \times 10^{9} \mathrm{ev}$
The spectrum extends from about	$1 \times 10^{91}$ to $10^{17} \mathrm{ev}$ and probably higher
The energy required for the ionization found in a column	
$1 \mathrm{~cm}^{2}$ in cross section extending to top of atmosphere	
at 60 N geomagnetic latitude	$3.8 \times 10^{-8} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$
Thus in this column there are for	$7.4 \times 10^{7}$ ion pairs
This means about......	90 ion pair, $\mathrm{cm}^{-1} \mathrm{sec}^{-1}$
Total number of rays at sea level from all directio	1.2 ray $\mathrm{min}^{-1} \mathrm{~cm}^{-2}$
Cosmic ray at sea level produces $\ddagger$	1.63 ion pair, $\mathrm{cm}^{-3} \mathrm{sec}^{-1}$
Total cosmic energy reaching earth per second at sea level.	40 joules
Radiant energy flux reaching earth from all st	$3.02 \times 10^{-8} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$

[^327]TABLE 800.-RADIATION AT EARTH'S SURFACE, MASS AND RADIATION DENSITY IN OUR GALAXY, AND IN THE UNIVERSE

Our galaxy:	
Total number of stars	$30 \times 10^{\text {a }}$
Average mass of stars	$2 \times 10^{38} \mathrm{~g}$
Total mass of galaxy	$3.27 \times 10^{44} \mathrm{~g}$
Total volume	$10^{08} \mathrm{~cm}^{3}$
Diameter (disk)	$5 \times 10^{22} \mathrm{~cm}$
Average mass density	$3 \times 10^{-24} \mathrm{~g} \mathrm{~cm}^{-3}$
Total mass energy...	$2.95 \times 10^{88} \mathrm{ergs}$
Total kinetic energy	$1.6 \times 10^{00} \mathrm{ergs}$
Average mass-energy-density	$3 \times 10^{-8} \mathrm{erg} \mathrm{cm}^{-3}$
Average kinetic energy-density	$1.6 \times 10^{-8} \mathrm{erg} \mathrm{cm}^{-8}$
Universe:	
Mass density	$3 \times 10^{-30} \mathrm{~g} \mathrm{~cm}^{-3}$
Mass-energy-density	$3 \times 10^{-9} \mathrm{erg} \mathrm{cm}^{-8}$
Radiant-energy-density	$6 \times 10^{-18} \mathrm{erg} \mathrm{cm}{ }^{-8}$
Cosmic ray energy-density	$1.7 \times 10^{-11} \mathrm{erg} \mathrm{cm}^{-8}$
At earth's surface (top of atmosphere) :	
Total radiant energy from all stars.	$1.78 \times 10^{-8} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$
Total radiant energy density (our galaxy)	$5.8 \times 10^{-14} \mathrm{erg} \mathrm{cm}^{-3}$
Total radiant energy (sun directly overhead)*	$1.2 \times 10^{8} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$
Cosmic ray energy	$3.8 \times 10^{-8} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$
Cosmic ray energy-density	$10^{-18} \mathrm{erg} \mathrm{cm}{ }^{-8}$

[^328]
## TABLE 801.-COMPOSITION OF COSMIC RADIATION AT GEOMAGNETIC LATITUDE $30^{\circ} 247$

Nuclei	Relative No. of particles			Nuclei	Relative No. of particles		
	Sun	$\tau$ Sco	Cosmic rays		Sun	$\tau$ Sco	Cosmic rays
H		$1.6 \times 10^{8}$	$1.6 \times 10^{8}$	$11 \leqslant Z \leqslant 14$	157	215	$\sim 2600$
He		$2.9 \times 10^{5}$	$4.0 \times 10^{5}$	$16 \leqslant 2 \leqslant 20$	28	5	$\sim 1000$
$6 \leqslant 2 \leqslant 8$	3200	2500	14000	Fe	150		$\sim 400$

[^329]
## TABLE 802.-ACCELERATION OF GRAVITY

For sea-level and different latitudes. Calculated from the International Gravity Formuia:
$g=978.0490\left[1+0.0052884 \sin ^{2} \phi-0.0000059 \sin ^{2} 2 \phi\right]$

$\begin{gathered} \text { Latitude } \\ \hline \end{gathered}$	$\stackrel{g}{\mathrm{~cm} / \mathrm{sec}^{2}}$	$\log g$	$\stackrel{g}{\mathrm{ft} / \mathrm{sec}^{2}}$	$\underset{\phi}{\text { Latitude }}$	$\stackrel{g}{\mathrm{~cm} / \mathrm{sec}^{2}}$	$\log g$	$\stackrel{g}{\mathrm{ft} / \mathrm{sec}^{2}}$
$0^{\circ}$	978.0490	2.9903607	32.08	$50^{\circ}$	$981.0786^{2}$	2.9917038	32.19
5	. 0881	. 9903780	. 09	51	. 1673	. 9917431	. 19
10	. 2043	. 9904296	. 09	52	. 2554	. 9917821	. 19
12	. 2716	. 9904594	. 09	53	. 3427	. 9918207	. 20
14	. 3504	. 9904944	. 10	54	. 4291	. 9918589	. 20
15	978.3940	. 9905138	32.10	55	981.5146	. 9918968	32.20
16	. 4404	. 9905344	. 10	56	. 5990	. 9919341	. 20
17	. 4893	. 9905561	. 10	57	. 6822	. 9919709	-. 21
18	. 5409	. 9905790	. 10	58	. 7642	. 9920072	. 21
19	. 5951	. 9906031	. 11	59	. 8448	. 9920428	. 21
20	978.6517	. 9906281	32.11	60	981.9239	. 9920778	32.21
21	. 7107	. 9906543	. 11	61	982.0015	. 9921122	. 22
22	. 7721	. 9906815	. 11	62	. 0773	. 9921457	. 22
23	. 8357	. 9907098	. 11	63	. 1515	. 9921785	. 22
24	. 9015	. 9907390	. 12	64	. 2238	. 9922105	. 22
25	978.9694	. 9907691	32.12	65	982.2941	. 9922415	32.23
26	979.0394	. 9908001	. 12	66	. 3624	. 9922718	. 23
27	. 1113	. 9908321	. 12	67	. 4287	. 9923010	. 23
28	. 1850	. 9908648	. 12	68	. 4927	. 9923293	. 23
29	. 2606	. 9908983	. 13	69	. 5545	. 9923567	. 24
30	979.3378	. 9909325	32.13	70	982.6139	. 9923829	32.24
31	. 4165	. 9909674	. 13	71	. 6709	. 9924081	. 24
32	. 4968	. 9910030	. 14	72	. 7254	. 9924322	. 24
33	. 5785	. 9910392	. 14	73	. 7774	. 9924552	. 24
34	. 6614	. 9910760	. 14	74	. 8267	. 9924769	. 24
35	979.7455	. 9911133	32.14	75	982.8734	. 9924976	32.25
36	. 8308	. 9911511	. 15	76	. 9173	. 9925170	. 25
37	. 9170	. 9911893	. 15	77	. 9585	. 9925351	. 25
38	980.0041	. 9912279	. 15	78	. 9968	. 9925521	. 25
39	. 0919	. 9912668	. 15	79	983.0322	. 9925678	. 25
4.1	980.1805	. 9913060	32.15	80	983.0647	. 9925821	32.25
41	. 2696	. 9913455	. 16	81	. 0942	. 9925951	. 25
42	. 3591	. 9913852	. 16	82	. 1207	. 9926068	. 25
43	. 4490	. 9914250	. 17	83	. 1442	. 9926172	. 25
44	. 5391	. 9914649	. 17	84	. 1645	. 9926262	. 26
45	980.6294	. 9915049	32.17	85	983.1818	. 9926338	32.26
46	. 7197	. 9915449	. 18	86	. 1960	. 9926402	. 26
47	. 8098	. 9915848	. 18	87	. 2071	. 9926450	. 26
48	. 8998	. 9916246	. 18	88	. 2150	. 9926485	. 26
49	. 9894	. 9916643	. 18	90	983.2213	. 9926513	. 26

## TABLE 803.-FREE-AIR CORRECTION OF ACCELERATION OF GRAVITY FOR ALTITUDE

To reduce $\log g$ ( cm per sec per sec) to $\log g$ ( ft per sec per sec) add $\log 0.03280833=$ $8.5159842-10$.

The standard value of gravity, used in barometer reductions, etc., is 980.665 . It was adopted by the International Committee on Weights and Measures in 1901. It corresponds nearly to latitude $45^{\circ}$ sca-level.
$-0.0003086 \mathrm{~cm} \mathrm{sec}^{-2} \mathrm{~m}^{-1}$ when altitude is in meters.
$-0.000003086 \mathrm{ft} \mathrm{sec}^{-2} \mathrm{ft}^{-1}$ when altitude is in feet.

Altitude	Correction	Altitude	Correction
200 m	$-.0617 \mathrm{~cm} / \mathrm{sec}^{2}$	200 ft	$-.000617 \mathrm{ft} / \mathrm{sec}^{2}$
300	.0926	300	.000926
400	.1234	400	.001234
500	.1543	500	.001543
600	.2162	600	.001852
700	.2469	700	.002160
800	.2777	800	.002469
900		900	.002777

[^330]TABLE 804.-ACCELERATION OF GRAVITY, VARIOUS WORLD STATIONS

Name	Latitude	Longitude	Elevation meters	Gravity, ${ }_{\text {cm } / \mathrm{sec}^{2}}$	
				Observed	Reduced to sea level
Santiago, Chile	33²7.1 S	$70^{\circ} 39^{\prime} 8 \mathrm{~W}$	541.3	979.429	979.596
Rio, Brazil	2253.7 S	4313.4 W	29.0	978.805	978.814
Tacna, Peru	1801.0 S	7015.0 W	557.1	978.298	978.470
Chala, Peru	1549.0 S	7418.5 W	14.0	978.452	978.456
Lima, Peru	1201.1 S	7702.3 W	143.6	978.289	978.333
Minkindani, E. Africa	1016.6 S	4007.6 E	,	978.224	978.225
Timor Sea	936 S	12807 E	- 340	978.233	978.233
Trujillo, Peru	807.0 S	7902.3 W	29.4	978.095	978.104
Mafia, E. Afric	754.9 S	3939.4 E	5	978.168	978.169
Indian Ocean	735 S	10655 E	- 230	978.292	978.292
Kaliwa, E. Afri	504.2 S	3147.5 E	1080	977.783	978.116
Banda Sea	145 S	12657 E	-1390	978.058	978.058
Limuru, E. Africa	107 S	3640 E	2193	977.412	978.089
Marigal, E. Africa	028 N	3559 E	1036	977.664	977.984
Kanifuri, India	522.2 N	7319.2 E	1	978.107	978.107
Indian Ocean	756 N	6846 E	-4390	978.102	978.102
Punalur, India	901.0 N	7655.8 E	34	978.107	978.117
Pacific Ocean	952 N	13246 E	-6050	978.212	978.212
Pacific Ocean	1335 N	9527 W	-3870	978.360	978.360
Dharwar, India	1527.6 N	7500.2 E	728	978.183	978.407
Musmar, E. Africa	1813.0 N	3558.	493	978.399	978.551
Tacubaya, Mexico	1924.3 N	9911.7 W	2299	977.941	978.650
Pacific Ocean . .	1958 N	16456 W	-4960	978.660	978.660
Atlantic Ocean	2044 N	6537 W	-5510	978.704	978.704
Santiago, Cuba	2230.9 N	8030.4 W	67	978.826	978.847
Atlantic Ocean	2321 N	4705 W	-3550	978.880	978.880
Key West, Fla	2433.6 N	8148.4 W		978.973	978.973
Dholpur, India	2642.0 N	7754.8 E	176	978.999	979.054
Nagasaki, Japan	3244.7 N	12952.2 E	30	979.594	979.603
Mount Wilson, Ca	3413.4 N	11803.4 W	1719.4	979.253	979.783
Batna, Algeria	3533.0 N	610 E	1050	979.468	979.792
Atlantic Ocean	3623 N	2643 W	-3610	979.890	979.890
Sevilla, Spain	3723.0 N	559.5 W	11	979.965	979.968
Denver, Colo.	39406 N	10457.1 W	1639.5	979.612	980.118
Buffalo, N. Y	4257.1 N	7849.3 W	210	980.363	980.428
Atlantic Ocean	4314 N	1936 W	-4100	978.520	978.520
Ottawa, Ontario	4523.6 N	7543.0 W	83	980.622	980.648
Müchen, Germany	4809 N	1137 E	525	980.733	980.895
Greenwich, England	5128.6 N	000.3 E	47	981.189	981.204
Saskatoon, Saskatchewan	5207.8 N	10638.1 W	497	981.138	981.291
Vladimirskaja, Siberia	5457 N	8559 E	265	981.424	981.506
Tomsk, Siberia ........	5628 N	8457 E	125	981.582	981.621
Oslo, Norway	5954.7 N	1043.5 E	28	981.927	981.936
St. Michael, Alaska	6328.5 N	16202.4 W	1	982.197	982.197
Arctic Red River. N. T	6726.6 N	13344.3 W	41	982.438	982.451
Whales Point, Spitzbergen	7730.4 N	2058.8 E	458	982.897	983.038
Hellwald, Spitzbergen	7844.1 N	2050.2 E	660	982.871	983.075
Ile de Rosse ........	8049.6 N	2020.6 E	31	983.145	983.155
Arctic Ocean	8148 N	1925 E	-3402	983.096	983.096

[^331]
## TABLE 805.-ACCELERATION OF GRAVITY ( $g$ ) IN THE UNITED STATES

The following table is abridged from the table of Principal Facts in U. S. Coast and Geodetic Survey Special Publication No. 244, Pendulum Gravity Data in the United States. The observed values depend on relative determinations and on an adopted value of 980.118 for the Commerce Building Base in Washington, D. C.

There are also given two types of gravity anomalies. The free-air anomaly is the difference between the observed value of gravity and the theoretical values of gravity for the latitude of the station corrected for the elevation of the station. The isostatic anomaly is the difference between the observed values of gravity and the theoretical value of gravity for the latitude of the station corrected for the elevation of the station, topography and isostatic compensation in the earth's crust to a depth of 113.7 kilometers.

Station	Latitude	Longitude	Elevation	Observed gravity gal	$\begin{aligned} & \text { Free-air } \\ & \text { anomaly } \end{aligned}$ gal	Isostatic anomaly gal
Atlanta, Ga.	$33^{\circ} 45.3$	$84^{\circ} 23.5$	324.0	979.527	-. 014	-. 030
Austin, Tex. (university)	3017.2	9744.2	189	979.286	-. 016	-. 017
Baltimore, Md.	3917.8	7637.3	30.5	980.114	+. 005	+. 002
Beaufort, N.	3443.1	7639.8	1.5	979.732	+. 011	-. 026
Birmingham, Ala	3330.8	8648.8	179	979.539	-. 027	-. 038
Bismarck, N. Da	4648.5	10047.1	514.4	980.628	-. 006	-. 001
Boise, Idaho	4337.2	11612.3	822.0	980.215	-. 036	+. 010
Boston, Mass	4221.6	7103.8	22	980.399	$+.014$	+. 002
Burbank, Okla	3642.2	9641.0	345	979.788	$+.003$	-. 001
Calais, Maine	4511.2	6716.9	38	980.634	. 000	-. 008
Cambridge, Mas	4222.8	7107.8	14	980.401	+. 012	+. 001
Charleston, S. C.	3247.2	7956.0	6.1	979.549	-. 010	-. 026
Charlottesville, Va.	3802.0	7830.3	166	979.941	-. 015	-. 017
Chicago, IIl.	4147.4	8735.9	182	980.281	-. 003	-. 004
Cincinnati, Ohio	3908.3	8425.3	245	980.007	-. 022	-. 024
Cleveland, Ohio	4130.4	8136.6	210	980.244	-. 006	-. 006
Cloudland, Tenn.	3606.2	8207.9	1890	979.386	+. 129	-. 001
Colorado Springs, Colo	3850.8	10449.5	1841.8	979.493	-. 017	-. 008
Columbus, Ga.	3227.0	8457.6	73.5	979.526	+. 015	+. 014
Columbus, Ohio	3957.8	8259.4	231.0	980.092	-. 014	-. 014
Denver, Colo.	3940.6	10457.1	1639.5	979.612	-. 034	-. 016
Duluth, Minn.	4647.0	9206.4	215.8	980.761	+. 037	+. 048
Durham, N.	3600.2	7856	126	979.838	+. 046	$+.034$
El Paso, Te	3146.3	10629.0	1146.0	979.127	+. 002	+. 009
Empire State Building,	4044.9	7359.2	16.2	980.269	+. 027	+. 020
Eugene, Oreg	4402.7	12305.6	129	980.493	-. 010	+. 005
Fort Dodge, Iowa	4230.8	9411.4	340.1	980.314	+. 014	+. 011
Grand Canyon, Ariz	3605.3	11206.8	847.0	979.466	-. 111	-. 014
Grand Canyon, Wyo	4443.7	11029.7	2386.0	979.902	+. 033	-. 002
Grand Rapids, Mich	4258.0	8539.5	235.8	980.375	+. 002	-. 004
Green River, Uta	3859.4	11009.9	1243	979.639	-. 068	-. 025
Iowa City, Iowa	4139.6	9132.2	212.3	980.250	-. 013	-. 012
Ithaca, N. Y.	4227.1	7629.0	246.9	980.303	$-.020$	-. 022
Key West, Fla.	2433.6	8148.4	1	978.973	$+.034$	-. 011
Knoxville, Tenn.	3557.7	8355	280	979.715	-. 027	-. 026
Lancaster, N. H.	4429.5	7134.3	261.8	980.489	-. 014	-. 014
Las Vegas, N. Me	3535.8	10513.1	1959.6	979.207	$+.015$	-. 003
Little Rock, Ark	3444.9	9216.4	89.0	979.724	+. 027	+. 028
Madison, Wis.	4304.6	8924.0	270	980.368	-. 005	-. 008
Memphis, Tenn.	3508.7	9003.3	80.3	979.743	+. 010	+. 008
Miles City, Mon	4624.2	10550	718	980.542	+. 008	+. 028
Minneapolis, Minn	4458.7	9313.9	256.1	980.600	+. 052	+. 055
Mitchell, S. Dak	4341.8	9801.8	408	980.378	-. 003	-. 002
Mount Hamilton, Calif	3720.4	12138.6	1281.7	979.663	+. 112	-. 004
New Orleans,	2956.9	9004.3	2.4	979.326	-. 007	-. 020
New York, N.	4048.5	7357.7	38.1	980.270	+. 029	+. 019
Oberlin, Ohio	4117.5	8213.2	248	980.208	-. 011	-. 013
Philadelphia, Pa	3957.1	7511.7	15.8	980.199	+. 028	+. 018
Pike's Peak, Col	3850.4	10502.5	4293.1	978.957	+. 203	+. 018
Pittsburgh, Pa.	4027.4	8000.6	235	980.121	-. 027	-. 027
Prestonsburgh, Ky.	3740.6	8245.6	193	979.884	-. 032	-. 028
Princeton, N. J..	4021.0	7439.5	64.0	980.181	-. 011	-. 025

(continued)

# TABLE 805.-ACCELERATION OF GRAVITY (g) IN THE UNITED STATES (concluded) 

Station	Latitude	Longitude	$\begin{gathered} \text { Elevation } \\ m \end{gathered}$	Observed gravity gal	Free-air anomaly anomal	Isostatic anomaly   ga!
Richmond, Va.	$37^{\circ} 32.2$	$77^{\circ} 26{ }^{\prime} 1$	29.9	979.963	+. 009	. 000
St. Louis, Mo.	3838.0	9012.2	153.9	980.004	-. 008	-. 007
St. Petersburg, F	2748.9	8240.2	15	979.191	$+.025$	+.006
Salt Lake City, Utah	4046.1	11153.8	1322	979.806	-. 035	+. 006
San Francisco, Calif.	3737.5	12225.7	114.3	979.968	+. 018	-. 022
Seattle, Wash. (university)	4739.6	12218.3	58	980.736	-. 115	-. 095
Sheridan, Wyo.	4448.0	10658.7	1149.9	980.244	-. 012	+. 010
Smith College, Mas	4219.0	7238.2	54.6	980.376	$+.005$	+. 006
State College, Pa.	4047.9	7751.8	357.8	980.127	+. 014	$\pm .014$
Terre Haute, Ind.	3928.7	8723.8	150.9	980.075	-. 013	-. 011
Traverse City, Mich.	4445.8	8537.2	180.1	980.553	+. 001	$+.001$
Washington, D. C.:						
Geophysical Laboratory	3856.6	7703.4	88.1	980.104	$\dot{+} .044$	$+.036$
National Bureau of Standar	3856.5	7703.9	95.1	980.100	$+.042$	+. 034
Smithsonian Institution	3853.3	7701.5	10.4	980.118	+. 039	+. 038
Wheeling, W. Va...	4004.0	8043.3	205	980.088	-. 035	-. 032
Winnemucca, Nev.	4058.4	11743.8	1311	979.847	-. 016	-. 012
Worcester, Mass.	4216.5	7148.5	170.0	980.328	-. 003	-. 022
Wright Field, Ohio	3946.6	8405.9	247.8	980.094	+. 010	+. 008
Yuma, Ariz. .	3243.3	11437.0	53.9	979.532	-. 007	+. 006

TABLE 806.-LENGTH OF SECONDS PENDULUM AT SEA LEVEL AND FOR DIFFERENT LATITUDES

	Length   cm	Log	Length   in.	Log	Lat   Lathgth   cm	Log	Length   in.	Log	
$0^{\circ}$	99.097	1.996061	39.014	1.591221	$50^{\circ}$	99.404	1.997404	39.135	1.592565
5	99.101	1.996078	39.016	1.591243	55	99.449	1.997597	39.153	1.592765
10	99.113	1.996131	39.020	1.591287	60	99.490	1.99778	39.169	1.592943
15	99.132	1.996215	39.028	1.591376	65	99.527	1.997942	39.184	1.593109
20	99.158	1.996329	39.038	1.591488	70	99.560	1.998084	39.196	1.593242
25	99.190	1.996469	39.051	1.591632	75	99.586	1.998198	39.207	1.593364
30	99.228	1.996633	39.066	1.591799	80	99.605	1.998283	39.214	1.593441
35	99.269	1.996814	39.082	1.591977	85	99.618	1.998335	39.219	1.593497
40	99.313	1.997006	39.099	1.592166	90	99.622	1.998352	39.221	1.593519
45	99.359	1.997205	39.117	1.592366					

Calculated from Table 802 by the formula $l=g / \pi^{2}$. For each 100 ft of elevation subtract 0.000953 cm or 0.000375 in . or 0.0000313 ft . This table could also have been computed by either of the following formulas derived from the gravity formula at the top of Table 802.
$l=0.990961\left(1+0.0052884 \sin ^{2} \phi-0.0000059 \sin ^{2} 2 \phi\right)$ meters.
$l=0.990961+.0052406 \sin ^{2} \phi-0.0000058 \sin ^{2} 2 \phi$, meters.
$l=39.014135\left(1+0.0052884 \sin ^{2} \phi-0.000059 \sin ^{2} 2 \phi\right)$ inches.
$l=39.014135+0.203214 \sin ^{2} \phi-0.0002302 \sin ^{2} 2 \phi$, inches.

The departures are from values of gravity normally expected, from Table 802.

Latitude	Longitude	Elevation meters *	Gravity $\mathrm{cm} / \mathrm{sec}^{2}$	Departure from values of table	Place
$19^{\circ} 29.8 \mathrm{~N}$	$155^{\circ} 34.8 \mathrm{~W}$	3970	978.096	+698	Mauna Loa
1942.2 N	155 27.9 W	2030	978.504	$+495$	Kalaieha
1925.4 N	15515.7 W	1211	978.673	$+428$	Kilavea
2347.0 N	16612.5 W	2	979.201	+315	East Island
3221 N	6440 W	2	979.806	$+282$	St. Georges
3730.0 N	2 45.0 W	858	979.669	+265	Baza
3806.7 N	304.5 W	805	979.792	$+248$	Villacarrillo
4255.8 N	008 E	2877	979.779	+224	Pic du Midi
3711.0 N	3 36.0 W	669	979.669	+206	Granada
4550 N	652 E	4807	979.401	+180	Mont Blanc
4557.5 N	748.9 E	2797	980.019	+166	Bétempshütte
4559.5 N	742.7 E	2582	980.080	+157	Schwarzsee
6753.6 N	1302.0 E	19	982.622	+142	Sörvaagen
3348.5 N	7433.3 E	3338	978.752	+133	Korag
5148 N	1037 E	1140	981.015	+129	Brocken
3544.5 N	1539.5 E	- 460	979.926	+118	Mediterranean Sea
4038 N	1757 E	16	980.337	+107	Brindisi
2306.1 N	7458.5 W	2	978.941	+100	Clarence Town
4208 N	4142 E	3	980.317	-53	Poti
4621.9 N	907.6 E	1030	980.374	-61	Augio
5608.0 N	9118.0 E	339	981.435	- 70	Kosulka
814 S	3035 E	783	977.835	- 78	Moliro
3019.5 N	7803.4 E	683	979.063	- 89	Dehra Dun
5030.2 N	11603.4 W	828	980.767	-100	Invermere
150 N	3119 E	623	977.753	-109	Butiaba
750 S	12048 E	-5140	978.024	-121	Java Sea
512 N	9412 E	-2555	977.962	-129	Indian Ocean
4026 N	5000 E	57	980.065	-136	Surachany
848 S	12826 E	-2120	978.019	-151	Timor Sea
2641.8 N	8824.8 E	118	978.887	-166	Siliguri
209 N	12659 E	-2200	977.877	-179	Celebes Sea
1017 N	12641 E	-8740	978.013	-200	Philippine Sea
029 S	12559 E	-2390	977.833	-216	Celebes Sea
536 S	13108 E	-7330	977.843	-255	Banda Sea
1932 N	6646 W	-8040	978.284	-341	Atlantic Ocean

[^332]
## TABLE 808.-THE SOLAR CONSTANT

A long series of measurements has been made ${ }^{289}$ at widely separated, selected stations by the astrophysicists of the Smithsonian Institution on both the total intensity of the solar radiation and the spectral distribution of this radiation. One result of these measurements is the value of the solar constant, that is, the total solar radiation (cal $\mathrm{cm}^{-2} \mathrm{~min}^{-1}$ ) at normal incidence outside the atmosphere at the mean solar distance. As a result of the work up to 1913 the solar constant was found to be $1.9408 \mathrm{ly} . \mathrm{min}^{-1}$ (langley ; see Table 2, Part 2). .Later investigations ${ }^{250}$ showed that the standard used in these measurements was somewhat in error. Observations showed that the correction employed for the unmeasured ultraviolet radiation was too low; also solar radiation in the infrared region beyond about $2.5 \mu$ introduced some error. As a final result of all the corrections it was found that this 1913 value of the solar constant was very good. It should be pointed out that there is evidence ${ }^{240}$ that the solar constant fluctuates as much as $\pm 1.5$ percent. In addition, the varying distance between the sun and earth (see Table 827) produces a change in the actual solar radiation at the top of the atmosphere of about $\pm 3.5$ percent from the mean value. Now in 1951 the value of the solar constant (amount of energy falling at normal incidence on one square centimeter per minute on body at earth's mean distance) $=1.946$ calories $=$ mean 6430 determinations 1924-47. Subject to variations, usually within the range of 2.8 percent, and occurring irregularly in periods of a week or 10 days. New data on the ultraviolet and infrared corrections to the solar constant given by F. S. Johnson (in press) indicate that the value 1.946 should be increased by 2.6 percent. Johnson's best value is $2.00 \pm 2$ percent.
Computed effective temperature of the sun: from form of blackbody curves, $6000^{\circ}$ to $7000^{\circ}$ Absolute; from $\lambda_{\text {max }} T=2930$ and $\max =0.470 \mu, 6230^{\circ}$; from total radiation, $J=$ $76.8 \times 10^{-12} \times T^{4}, 5830$ :

Sun radiates	$\begin{aligned} & 3.8 \times 10^{38} \mathrm{erg} / \mathrm{sec}^{-1} \mathrm{coc}^{-2} \times 10^{10} \mathrm{erg} \mathrm{sec}^{-1} \mathrm{~cm}^{-2} \end{aligned}$
of this	$1.72 \times 10^{24} \mathrm{erg} / \mathrm{sec}$ strikes the eart

[^333]TABLE 809.-ATMOSPHERIC TRANSMISSION COEFFICIENTS

$\underset{\mu}{\substack{\text { Wave. } \\ \text { length } \\ \mu}}$	Montezuma, Chile		Table Mt., Calif.		$\begin{gathered} \text { Miami, } \\ \text { Fla. } \end{gathered}$	
	High	Low	High	Low	High	Low
. 34	. 620	. 568	. 605	. 552	. 512	. 464
. 35	. 656	. 600	. 641	. 585	. 541	. 492
. 36	. 687	. 630	. 672	. 615	. 567	. 519
. 37	. 714	. 657	. 701	. 643	. 593	. 545
. 38	. 738	. 681	. 726	. 668	. 617	. 571
. 39	. 759	. 703	. 749	. 692	. 642	. 595
. 40	. 778	.722	. 769	. 712	. 662	. 615
. 45	. 848	. 792	. 840	. 783	. 755	. 709
. 50	. 890	. 838	. 883	. 831	. 818	. 764
. 55	. 900	. 849	. 890	. 838	. 850	. 788
. 60	. 913	. 863	. 905	. 854	. 873	. 814
. 65	. 936	. 884	. 933	. 880	. 925	. 872
. 70	. 963	. 924	. 961	. 922	. 935	. 890
. 75	. 972	. 936	. 970	. 934	. 943	. 902
. 80	. 980	. 945	. 978	. 943	. 949	. 911
. 85	. 984	. 952	. 983	. 950	. 954	. 917
. 90	. 985	. 956	. 984	. 954	. 957	.922
. 95	. 986	. 957	. 985	. 956	. 960	. 925
1.00	. 987	. 958	. 986	. 957	. 962	. 928
1.25	. 989	. 960	. 989	. 959	. 964	. 933
1:50	. 994	. 965	. 994	. 968	. 969	.942
1.75	. 997	. 970	. 997	. 970	. 973	. 946
2.00	. 996	. 975	. 996	. 974	. 969	. 945
2.25	. 988	. 970	. 987	. 965	. 955	. 930

High transmissions are for every clear day and low precipitable water, 2 mm for Montezuma and Table Mt., and 3.5 mm for Miami.
Low transmissions are for very hazy days and high precipitable water, 10 mm for Montezuma and Table Mt., and 25 mm for Miami.
Transmission coefficients in the range $.70-2.25 \lambda$ are all smooth-curve values drawn over the tops of the water-vapor bands.
Unit air mass.

TABLE 810.-THE SOLAR CONSTANT, MONTHLY AND YEARLY MEANS*

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. mean

1920								1.945	1.950	1.953			
21	1.957	1.955	1.949	1.947	1.950	1.939	1.950	1.943	1.950	55	57	52	1.950
22	47	46	36	30	30	18	14	21	17	25	26	24	28
23	42	29	32	31	36	28	36	34	53	45	44	43	38
24	44	41	47	42	50	52	51	46	47	52	53	50	48
25	46	55	50	50	48	48	49	47	49	48	46	48	49
26	45	38	40	38	40	41	42	46	43	38	36	37	40
27	39	39	40	44	43	46	44	43	48	42	46	44	43
28	41	42	46	44	48	49	43	42	42	43	46	47	44
29	48	41	41	43	43	37	41	39	40	39	43	46	42
1930	44	44	43	42	47	50	50	49	46	46	48	52	47
31	48	46	47	46	51	47	48	47	49	47	45	46	47
32	45	39	39	41	39	42	44	41	41	39	39	46	41
33	50	48	42	40	41	43	46	43	49	49	50	50	46
34	48	45	47	43	44	48	47	44	48	51	51	50	47
35	48	45	47	46	47	47	47	49	45	47	50	51	47
36	47	46	44	46	47	49	47	47	48	49	52	51	48
37	49	48	43	41	43	47	44	46	48	46	48	51	46
38	47	46	48	44	44	43	44	45	46	49	52	51	47
39	47	42	44	43	42	41	42	40	46	44	51	47	44
1940	47	45	43	48	48	48	49	47	49	46	45	49	47
41	48	48	50	47	51	48	52	50	48	50	49	51	49
42	49	48	43	45	47	48	48	45	44	44	48	44	46
43	42	44	43	45	46	51	48	49	47	46	43	48	46
44	48	52	44	44	46	44	45	43	40	43	46	46	45
45	39	46	44	48	47	44	47	41	42	42	47	43	44
46	46	39	38	46	53	52	51	48	50	48	53	54	48
47	53	49	45	49	50	51	47	49	47	52	53	54	50
48	51	53	49	51	52	56	57	53	56	52	56	55	53
49	55	56	47	49	51	44	49	49	47	50	52	54	50
1950	56	49	47	45	49	49	47	50	47	52	51	49	49
1951	50	52	55	43	40	44	46	48	47	47	42	46	46
1952	45	41	36	44	46	47	40	43	42	43	40	47	43

* Calories per cm per min.


## TABLE 811.-AIR MASSES

The transmission, both total and spectral, of the atmosphere depends upon several varying factors besides the actual air masses, that is, the length of the path of the rays in the atmosphere ; thus, corrections must always be determined for different tests.

Values of the transmission of the atmosphere for any position of the sun except when it is directly overhead are calculated from measurement when the sun is in the zenith, i.c., $\epsilon_{m}=e_{0} a^{m}$ when $\epsilon_{m}$ is the intensity of the radiation at air mass $m, e_{0}$ the intensity for the sun in the zenith, and $a$ the transmission for unit air mass. $m$ is unity when the sun is in the zenith and approximately equals the secant of the zenith distance for the other positions.

Besides values derived from the pure secant formula, the table contains those derived from various other more complex formulas, taking into account the curvature of the earth, refraction, etc. The most recent is that of Bemporad.

Zenith dist	$0^{\circ}$	$20^{\circ}$	$40^{\circ}$	$60^{\circ}$	$70^{\circ}$	$75^{\circ}$	$80^{\circ}$	$85^{\circ}$	$88^{\circ}$
Secant	1.00	1.064	1.305	2.000	2.924	3.864	5.76	11.47	28.7
Forbes	1.00	1.065	1.306	1.995	2.902	3.809	5.57	10.22	18.9
Bouguer	1.00	1.064	1.305	1.990	2.900	3.805	5.56	10.20	19.0
Laplace	1.00	-	-	1.993	2.899	-	5.56	10.20	18.8
Bemporad	1.00	-	-	1.995	2.904	--	5.60	10.39	19.8

TABLE 812.-THE AMOUNT OF SOLAR RADIATION IN DIFFERENT SECTIONS OF THE SPECTRUM, ULTRAVIOLET, VISIBLE, AND INFRARED

Calories, $\mathrm{min}^{-1} \mathrm{~cm}^{-2}$, Smithsonian scale of 1913

${ }_{\mu}^{\text {Wavelength }}$	0	Miami, Fla.   Air mass					Montezuma, Chile Air mass				
		1	2	3	4	5	1	2	3	4	5
. 00 to .400	. 151	. 070	. 036	. 018	. 010	. 005	. 094	. 061	. 041	. 028	. 019
. 400 to . 770	. 925	. 740	. 591	. 476	. 386	. 314	. 813	. 734	. 664	. 603	. 549
. 770 to $\sim$	. 874	. 606	. 517	. 450	. 398	. 359	. 742	. 695	. 657	. 630	. 608
.00 to ${ }^{\sim}$	1.950	1.416	1.144	. 944	. 794	. 678	1.649	1.490	1.362	1.261	1.176

Average clear day at Miami, Fla. (sea level) precipitable water about 2.00 cm .
Average clear day at Montezuma, Chile (altitude 9,000 feet) precipitable water 0.25 cm .

## TABLE 813.-SPECTRAL DISTRIBUTION OF SOLAR RADIATION OUTSIDE THE ATMOSPHERE

On the bases of the Smithsonian and other observations, Moon ${ }^{251}$ in 1940 proposed a spectral solar-radiation curve at normal incidence outside the atmosphere at the mean solar distance and also a like curve for solar radiation at the earth's surface for air mass 2 (Table 815). More recently a rocket observation ${ }^{252}$ has given a direct measurement (at 55 km ) of the ultraviolet spectrum of the sun at wavelengths below $0.34 \mu$. Since less than 1 percent of atmospheric ozone is above this level, this observation should be closely representative of ultraviolet solar radiation at wavelengths above $0.22 \mu$ at the top of the atmosphere. Moon's values for wavelengths above $0.33 \mu$ and data from the rocket observation for wavelengths below $0.33 \mu$ were used in constructing the table.

Part 1.-Intensity of solar radiation outside the atmosphere

Wave-   length   $\mu$	Intensity   Relative   units	Wave--   length   $\mu$	Intensity   Relative   units	Wave-   length   $\mu$	Intensity   Relative   units	Wave-   length   $\mu$	Intensity   Relative   units
.220	14	.420	1766	.68	1473	2.5	50
.230	33	.424	1742	.69	1439	2.6	43
.240	40	.430	1788	.70	1405	2.7	38
.250	55	.44	1939	.71	1371	2.8	33
.260	126	.45	2036	.72	13337	2.9	30
.265	174	.46	2096	.73	1304	3.0	26
.270	162	.47	2119	.74	1270	3.1	23
.275	136	.48	2127	.75	1236	3.2	21
.280	145	.49	2103	.80	1097	3.3	19
.290	378	.50	2061	.85	976	3.4	17
.295	418	.51	2000	.90	871	3.5	15
.300	386	.52	1954	.95	781	3.6	14
.310	538	.53	1912	1.0	706	3.7	12
.320	621	.54	1894	1.1	590	3.8	11
.330	796	.55	1878	1.2	488	3.9	10
.335	826	.56	1861	1.3	395	4.0	9
.340	856	.57	1841	1.4	319	4.1	8
.345	886	.58	1819	1.5	260	4.2	8
.350	916	.59	1795	1.6	214	4.3	7
.360	976	.60	1762	1.7	177	4.4	6
.370	1046	.61	1727	1.8	148	4.5	0
.380	1121	.62	1690	1.9	124	4.6	5
.390	1202	.63	1653	2.0	105	4.7	5
.400	1304	.64	1616	2.1	89	4.8	5
.405	1427	.65	1579	2.2	76	4.9	4
.410	1728	.66	1543	2.3	66	5.0	4
.413	1803	.67	1508	2.4	57		

[^334]TABLE 813.-SPECTRAL DISTRIBUTION OF SOLAR RADIATION OUTSIDE THE ATMOSPHERE (concluded)

Part 2.-Energy distribution of solar radiation outside the atmcsphere

Wavelength   interval   $\mu$	Energy   cal $\mathrm{cm}^{-2}$   $\mathrm{~min}^{-1}$	Wavelength   interval   $\mu$	Energy   cal $\mathrm{cm}^{-2}$   $\mathrm{~min}^{-1}$	Wavelength   interval   $\mu$	Energy   cal $\mathrm{cm}^{-2}$   $\mathrm{~min}^{-1}$	Wavelength   interval   $\mu$	Energy   cal $\mathrm{cm}^{-2}$   $\mathrm{~min}^{-1}$
$.22-.23$	.0004	$.45-.46$	.0303	$.68-.69$	.0213	$.91-.92$	.0123
$.23-.24$	.0006	$.46-.47$	.0309	$.69-.70$	.0208	$.92-.93$	.0121
$.24-.25$	.0010	$.47-.48$	.0312	$.70-.71$	.0203	$.93-.94$	.0118
$.25-.26$	.0011	$.48-.49$	.0311	$.71-.72$	.0198	$.94-.95$	.0116
$.26-.27$	.0025	$.49-.50$	.0306	$.72-.73$	.0194	$.95-.96$	.0113
$.27-.28$	.0021	$.50-.51$	.0299	$.73-.74$	.0189	$.96-.97$	.0111
$.28-.29$	.0029	$.51-.52$	.0290	$.74-.75$	.0183	$.97-.98$	.0109
$.29-.30$	.0059	$.52-.53$	.0283	$.75-.76$	.0179	$.98-.99$	.0107
$.30-.31$	.0067	$.53-.54$	.0279	$.76-.77$	.0175	$.99-1.0$	.0105
$.31-.32$	.0085	$.54-.55$	.0277	$.77-.78$	.0171	$1.0-1.1$	.0948
$.32-.33$	.0107	$.55-.56$	.0274	$.78-.79$	.0167	$1.1-1.2$	.0792
$.33-.34$	.0121	$.56-.57$	.0271	$.79-.80$	.0163	$1.2-1.3$	.0643
$.34-.35$	.0130	$.57-.58$	.0268	$.80-.81$	.0159	$1.3-1.4$	.0518
$.35-.36$	.0138	$.58-.59$	.0264	$.81-.82$	.0155	$1.4-1.5$	.0424
$.36-.37$	.0149	$.59-.60$	.0260	$.82-.83$	.0152	$1.5-1.6$	.0348
$.37-.38$	.0159	$.60-.61$	.0255	$.83-.84$	.0148	$1.6-1.7$	.0288
$.38-.39$	.0171	$.61-.62$	.0251	$.84-.85$	.0145	$1.7-1.8$	.0240
$.39-.40$	.0184	$.62-.63$	.0245	$.85-.86$	.0142	$1.8-1.9$	.0197
$.40-.41$	.0212	$.63-.64$	.0240	$.86-.87$	.0138	$1.9-2.0$	.0168
$.41-.42$	.0262	$.64-.65$	.0234	$.87-.88$	.0135	$2.0-3.0$	.0719
$.42-.43$	.0256	$.65-.66$	.0229	$.88-.89$	.0132	$3.0-4.0$	.0227
$.43-.44$	.0276	$.66-.67$	.0224	$.89-.90$	.0129	$4.0-5.0$	.0084
$.44-.45$	.0292	$.67-.68$	.0219	$.90-.91$	.0126		

## TABLE 814.-DISTRIBUTION OF INTENSITY (RADIATION) OVER SOLAR DISC

Fraction of radius

Wavelength	. 00	. 30	. 50	. 60	. 70	. 80	. 90	. 95	. 975
. 3149	1.000	. 959	. 857	. 760	. 721	. 607	. 446	. 337	. 251
. 3518	1.000	. 977	. 895	. 841	. 785	. 679	. 524	. 407	. 328
. 3665	1.000	. 980	. 881	. 841	. 787	. 703	. 546	. 437	. 359
. 4030	1.000	. 959	. 877	. 859	. 767	. 664	. 533	. 423	. 346
. 4487	1.000	. 977	. 912	. 859	. 804	. 720	. 594	. 500	. 389
. 5186	1.000	. 975	. 929	. 877	. 832	. 759	. 644	. 551	. 466
. 5485	1.000	. 967	. 919	. 884	. 832	. 756	. 650	. 565	. 487
. 6151	1.000	. 980	. 936	. 900	. 853	. 790	. 687	. 600	. 528
. 6980	1.000	. 983	. 946	. 916	. 872	. 812	. 722	. 644	. 574
. 8384	1.000	. 984	. 952	. 926	. 893	. 843	. 766	. 695	. 640
. 9920	1.000	. 987	. 957	. 933	. 903	. 860	. 788	. 727	. 670
1.1973	1.000	. 988	. 965	. 944	. 918	. 880	. 814	. 758	. 702
1.5397	1.000	. 993	. 973	. 960	. 940	. 912	. 863	. 811	. 763
1.7093	1.000	. 994	. 980	. 967	. 950	. 925	. 878	. 832	. 786
2.0664	1.000	. 994	. 980	. 970	. 955	. 929	. 888	. 849	. 811
2.2870	1.000	. 995	. 980	. 968	. 953	. 931	. 891	. 850	. 814
3.5	1.000	. 996	. 988	. 980	. 969	. 952	. 928	. 902	. 875
8.3	1.000	. 998	. 992	. 990	. 986	. 977	. 960	. 942	. 928
10.2	1.000	. 998	. 994	. 991	. 988	. 982	. 966	. 953	. 946

[^335]TABLE 815.-SOLAR IRRADIATION AT SEA LEVEL WITH SURFACE
PERPENDICULAR TO SUN'S RAYS $m=2 *$
(Watts per square meter per micron)

$\underset{\text { microns }}{\lambda}$	$J_{\lambda}$	$\underset{\text { microns }}{\lambda}$	$J_{\lambda}$	$\underset{\text { microns }}{\lambda}$	$J_{\lambda}$	$\underset{\text { microns }}{\lambda}$	$J_{\lambda}$
. 295	2.09 *	. 60	1167	1.15	216	1.65	173
. 296	$2.35{ }^{\text {* }}$	. 61	1168	1.16	271	1.66	163
. 297	$2.87{ }^{\text {b }}$	. 62	1165	1.17	328	1.67	159
. 298	$9.87{ }^{\text {b }}$	. 63	1176	1.18	346	1.68	145
. 299	. 0346	. 64	1175	1.19	344	1.69	139
. 300	. 0810	. 65	1173	1.20	373	1.70	132
. 301	. 177	. 66	1166	1.21	402	1.71	124
. 302	. 342	. 67	1160	1.22	431	1.72	115
. 303	. 647	. 68	1149	1.23	420	1.73	105
. 304	1.16	. 69	978	1.24	387	1.74	97.1
. 305	1.91	. 70	1108	1.25	328	1.75	80.2
. 306	2.89	. 71	1070	1.26	311	1.76	58.9
. 307	4.15	. 72	832	1.27	381	1.77	38.8
. 308	6.11	. 73	965	1.28	382	1.78	18.4
. 309	8.38	. 74	1041	1.29	346	1.79	5.70
. 310	11.0	. 75	867	1.30	264	1.80	. 920
. 311	13.9	. 76	566	1.31	208	1.81	
. 312	17.2	. 77	968	1.32	168	1.82	...
. 313	21.0	. 78	907	1.33	115	1.83	...
. 314	25.4	. 79	923	1.34	58.1	1.84	...
. 315	30.0	. 80	857	1.35	18.1	1.85	...
. 316	34.8	. 81	698	1.36	. 660	1.86	$\ldots$
. 317	39.8	. 82	801	1.37	...	1.87	$\ldots$
. 318	44.9	. 83	863	1.38	$\ldots$	1.88	
. 319	49.5	. 84	858	1.39	...	1.89	...
. 32	54.0	. 85	839	1.40		1.90	
		. 86	813	1.41	1.91	1.91	. 705
		. 87	798	1.42	3.72	1.92	2.34
. 33	101	. 88	614	1.43	7.53	1.93	3.68
. 34	151	. 89	517	1.44	13.7	1.94	5.30
. 35	188	. 90	480	1.45	23.8	1.95	17.7
. 36	233	. 91	375	1.46	30.5	1.96	31.7
. 37	279	. 92	258	1.47	45.1	1.97	37.7
. 38	336	. 93	169	1.48	83.7	1.98	22.6
. 39	397	. 94	278	1.49	128	1.99	1.58
. 40	470	. 95	487	1.50	157	2.00	2.66
. 41	672	. 96	584	1.51	187	2.01	19.5
. 42	733	. 97	633	1.52	209	2.02	47.6
. 43	787	. 98	645	1.53	217	2.03	55.4
. 44	911	. 99	643	1.54	226	2.04	54.7
. 45	1006	1.00	630	1.55	221	2.05	38.3
. 46	1080	1.01	620	1.56	217	2.06	56.2
. 47	1138	1.02	610	1.57	213	2.07	77.0
. 48	1183	1.03	601	1.58	209	2.08	88.0
. 49	1210	1.04	592	1.59	205	2.09	86.8
. 50	1215	1.05	551	1.60	202	2.10	85.6
. 51	1206	1.06	526	1.61	198	2.11	84.4
. 52	1199	1.07	519	1.62	194	2.12	83.2
. 53	1188	1.08	512	1.63	189	2.13	20.7
. 54	1198	1.09	514	1.64	184	2.14	...
. 55	1190	1.10	252				
. 56	1182	1.11	126				
. 57	1178	1.12	69.9				
. 58	1168	1.13	98.3				
. 59	1161	1.14	164				

* For reference, see footnote 251, p. 721.
$\cdot \times 10^{-4} \quad b \times 10^{-8}$

TABLE 816.-THE BIOLOGICALLY EFFECTIVE COMPONENT OF ULTRAVIOLET, SOLAR, AND SKY RADIATION PER MONTH PER CM² (UVQ IN WATT MINUTES) AND THE TOTAL SOLAR AND SKY RADIATION (Q IN CALORIES PER MONTH PER CM ${ }^{2}$ ) INCIDENT IN WASHINGTON, D. C., 1941-1946, MONTHLY AVERAGE ${ }^{263}$

Month	$\begin{gathered} U V Q \\ \begin{array}{c} \text { watt min } \\ \text { month } \\ \text { min } \\ \mathrm{cm}^{-2} \end{array} \end{gathered}$	$\underset{\substack{\text { cal } \\ \text { month } \\ \mathrm{cm}^{-1}}}{\substack{\text { and }}}$	Month	$\begin{gathered} U V Q \\ \text { watt min } \\ \text { month }^{-1} \mathrm{~cm}^{-2} \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { cal } \\ \text { month } \\ \mathrm{m}^{-1} \end{array} \mathrm{~cm}^{-2} \end{gathered}$
Jan.	. 112	4,982	July	1.091	15,239
Feb.	. 209	6,987	Aug.	1.012	14,470
Mar.	. 466	10,847	Sept.	. 721	11,158
Apr.	. 692	12,916	Oct.	. 406	8,767
May	. . 990	15,203	Nov.	. 177	6,085
June	. 1.108	16,019	Dec.	. 087	4,690

${ }^{253}$ Coblentz, W. W., Bull. Amer. Meteorol. Soc., vol. 28, p. 465, 1947.

TABLE 817.-DURATION OF SUNSHINE *

Approx declination of sun:	$-23^{\circ} 27^{\prime}$	$-15^{\circ}$	$-10^{\circ}$	$-5^{\circ}$	$0^{\circ}$	$+5^{\circ}$	$+10^{\circ}$	+15 ${ }^{\circ}$	+20	$+23^{\circ} 27^{\prime}$
Approx date:	Dec. 22	Feb. 9 Nov. 3	Feb. 23   Oct. 19	Mar. 8   Oct. 6	Mar. 21   Sept. 23	Apr. 3   Sept. 10	Apr. 16   Aug. 28	$\begin{gathered} \text { May } 1 \\ \text { Aug. } 13 \end{gathered}$	$\begin{aligned} & \text { May } 20 \\ & \text { July } 24 \end{aligned}$	June 21
Latitude	h m	h m	h m	h m	h m	$h \mathrm{~m}$	h m	$h \mathrm{~m}$	h m	h m
$0^{\circ}$	1207	1207	1207	1207	1207	1207	1206	1206	1207	1207
$10^{\circ}$	1132	1145	1153	1200	1207	1214	1221	1229	1237	1243
$20^{\circ}$	1055	1123	1138	1152	1207	1222	1237	1253	1308	1321
$30^{\circ}$	1012	1058	1121	1144	1208	1231	1254	1319	1345	1405
$40^{\circ}$	920	1026	1101	1135	1209	1243	1316	1353	1432	1501
$50^{\circ}$	804	943	1035	1123	1212	1259	1347	1439	1537	1623
$55^{\circ}$	710	915	1016	1114	1212	1311	1408	1511	1624	1723
$60^{\circ}$	552	836	953	1103	1215	1325	1435	1554	1730	1853
$65^{\circ}$	334	742	921	1050	1217	1345	1514	1658	1916	2203
$70^{\circ}$		614	832	1029	1221	1414	1613	1844		
$80^{\circ}$			310	846	12. 38	1644				

[^336]
## TABLE 818.-RELATIVE DISTRIBUTION IN NORMAL SPECTRUM OF SUNLIGHT AND SKY LIGHT AT MOUNT WILSON

Zenith distance about $50^{\circ}$
This table is abstracted in modified form from the Annals of the Smithsonian Astrophysical Observatory. The observations, which were visual, made on October 17, 1906, probably represent the most ideal sky conditions on Mount Wilson.

							$C$	$D$	$b$	$F$
Place in spectrum $(\mu) \ldots \ldots \ldots$	.422	.457	.491	.566	.614	.660				
Intensity sunlight $\ldots \ldots \ldots \ldots$.	186	232	227	211	191	166				
Intensity sky light..........	642	986	701	395	231	174				
Ratio at Mount Wilson........	-	-	309	187	121	105	102	143	246	316
Ratio computed by Rayleigh...	-	-	-	-	-	-	102	164	258	328
Ratio observed by Rayleigh...	-	-	-	-	102	168	291	369		

TABLE 819.-ILLUMINATION DUE TO DIRECT SUNLIGHT, SKY LIGHT, AND TOTAL ON HORIZONTAL AND VERTICAL PLANES ${ }^{254}$

$\begin{gathered} \text { Solar } \\ \text { altitude } \\ h \end{gathered}$	$\underset{\substack{\text { mass } \\ m}}{\operatorname{Ain}_{2}}$	Direct sunlight		Skylight		Total	
		Ind	$I_{p d}$	TA,	$I_{p}$	TIA	$I_{p}$
		$\mathrm{ft}-\mathrm{c}$		$\mathrm{ft}-\mathrm{c}$		$\mathrm{ft}-c$	
3	15.36	19.6	374	256	587	277	961
5	10.39	100	1150	325	746	425	1900
7	7.77	252	2050	395	848	647	2900
10	5.60	590	3350	491	953	1080	4300
15	3.82	1310	4910	629	1070	1940	5980
20	2.90	2130	5860	750	1140	2880	7000
25	2.36	2980	6390	856	1180	3840	7570
30	2.00	3820	6620	945	1210	4760	7830
35	1.74	4650	6640	1020	1220	5670	7860
40	1.55	5440	6490	1090	1220	6530	7710
45	1.41	6170	6170	1160	1220	7330	7390
50	1.30	6850	5750	1210	1200	8060	6950
55	1.22	7450	5220	1270	1180	8720	6400
60	1.15	8000	4620	1310	1150	9310	5770
65	1.10	8470	3950	1350	1090	9820	5040
70	1.06	8860	3230	1390	1020	10250	4250
75	1.04	9160	2450	1420	930	10580	3380
80	1.02	9380	1650	1440	834	10820	2480
85	1.01	9510	833	1460	728	10970	1560
90	1.00	9570	00	1480	615	11050	615

The solar altitude, $h$, is expressed in angular units, the illumination, $I$, in foot-candles. The subscripts $p$ and $h$ designate the evaluation of illumination on the perpendicular (facing the sun) and horizontal planes. The additional subscripts, $d, s$, and $t$, designate direct sunlight, sky light and total light (direct sunlight plus sky light).

[^337]TABLE 820.-MEAN INTENSITY J FOR 24 HOURS OF SOLAR RADIATION ON A HORIZONTAL SURFACE AT THE TOP OF THE ATMOSPHERE AND THE SOLAR RADIATION A, IN TERMS OF THE SOLAR RADIATION, A., AT EARTH'S MEAN DISTANCE FROM THE SUN

Date	$\begin{gathered} \text { Motion of } \\ \text { the sun } \\ \text { inn } \\ \text { longi. } \\ \text { tude } \end{gathered}$	Relative mean vertical intensity $\frac{J}{A_{0}}$Latitude north Latitude north										
		$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$30^{\circ}$	$40^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	${ }^{80}$	$90^{\circ}$	$\frac{A}{A_{0}}$
Jan. 1	0:99	. 303	. 265	. 220	. 169	. 117	. 066	. 018				1.0335
Feb. 1	31.54	. 312	. 282	. 244	. 200	. 150	. 100	. 048	. 006			1.0288
Mar. 1	59.14	. 320	. 303	. 279	. 245	. 204	. 158	. 108	. 056	. 013		1.0173
Apr. 1	89.70	. 317	. 319	. 312	. 295	. 269	. 235	. 195	. 148	. 101	. 082	1.0009
May 1	119.29	. 303	. 318	. 330	. 329	. 320	. 302	. 278	. 253	. 255	. 259	. 9841
June 1	149.82	. 287	. 315	. 334	. 345	. 349	. 345	. 337	. 344	. 360	. 366	. 9714
July 1	179.39	. 283	. 312	. 333	. 347	. 352	. 351	. 345	. 356	. 373	. 379	. 9666
Aug. 1	209.94	. 294	. 316	. 330	. 334	. 330	. 318	. 300	. 282	. 295	. 300	. 9709
Sept: 1	240.50	. 310	. 318	. 316	. 305	. 285	. 256	. 220	. 180	. 139	. 140	. 9828
Oct. 1	270.07	. 317	. 308	. 289	. 261	. 225	. 183	. 135	. 084	. 065		9995
Nov. 1	300.63	. 312	. 286	. 251	. 211	. 164	. 114	. 063	. 018			1.0164
Dec. 1	330.19	. 304	. 267	. 224	. 175	. 124	. 072	. 024				1.0288
Year		. 305	. 301	. 289	. 268	. 241	. 209	. 173	. 144	. 133	. 126	

Average annual solar energy received per square dekameter of horizontal surface in kilowatt hours. U. S.: Lincoln, 160,906; Mount Weather, 148,824; Washington, 145,403; New York, 106,460; Chicago, 97,856 . Other countries: Toronto, 139,523; Johannesburg, 175,696; Davos Platz, 174,043; South Kensington, 78,569; Stockholm, 79,267.

Mean temperatures of a few selected American stations, also of one station of very high and two of very low temperature, and one of very great and one of very small range of temperature.


Lat., Long., Alt. respectively : $(1)+58.5,63 \circ 0 \mathrm{~W},-:(2)+49.9,97.1 \mathrm{~W}, 233 \mathrm{~m} ;(3)+45.5$, $73.6 \mathrm{~W}, 57 \mathrm{~m} ;(4)+42.3,71.1 \mathrm{~W}, 38 \mathrm{~m} ;(5)+41.9,87.6 \mathrm{~W}, 251 \mathrm{~m} ;(6)+39.7,105.0 \mathrm{~W}, 1613 \mathrm{~m}$; $(7)+38.9,77.0 \mathrm{~W}, 34 \mathrm{~m} ;(8)+38.8,105.0 \mathrm{~W}, 4308 \mathrm{~m} ;(9)+38.6,90.2 \mathrm{~W}, 173 \mathrm{~m} ;(10)+37.8$, $122.5 \mathrm{~W}, 47 \mathrm{~m}:(11)+32.7,114.6 \mathrm{~W}, 43 \mathrm{~m} ;(12)+30.0,90.1 \mathrm{~W}, 16 \mathrm{~m} ;(13)+15.6,37.5 \mathrm{E}, 9 \mathrm{~m}$; $(14)+81.7,64.7 \mathrm{~W},-;(15)+67.6,133.8 \mathrm{E}, 140 \mathrm{~m}$; (16) $-6.2,106.8 \mathrm{E}, 7 \mathrm{~m}$.
Note.-Highest recorded temperature in world $=57^{\circ} \mathrm{C}$ in Death Valley, California, July 10, 1913. Lowest recorded temperature in world $=-68^{\circ} \mathrm{C}$ at Verkhoyansk, Feb. 1892.

TABLE 822.-TEMPERATURE VARIATION OVER EARTH'S SURFACE (HANN)
Maximum values for month in italics.

Latitude	Temperatures ${ }^{\circ} \mathrm{C}$						Mean ocean temp	$\begin{gathered} \text { Land } \\ \text { surface } \\ \% \end{gathered}$
	Jan.	Apr.	July	Oct.	Year	Range		
North pole	-41.0	-28.0	- 1.0	-24.0	-22.7	40.0	- 1.7	-
+80 ${ }^{\circ}$	-32.2	-22.7	+ 2.0	-19.1	-17.1	34.2	-1.7	20
70	-26.3	-14.0	7.3	$-9.3$	-10.7	33.6	+ 7	53
60	-16.1	$-2.8$	14.1	+ . 3	- 1.1	30.2	4.8	61
50	- 7.2	+ 5.2	17.9	6.9	+ 5.8	25.1	7.9	58
40	+ 5.5	13.1	24.0	15.7	14.1	18.5	14.1	45
30	14.7	20.1	27.3	21.8	20.4	12.6	21.3	43.5
20	21.9	25.2	28.0	26.4	25.3	6.1	25.4	31.5
+10	25.8	27.2	27.0	26.9	26.8	1.4	27.2	24
Equator	26.5	26.6	25.7	26.5	26.3	. 9	27.1	22
-10	26.4	25.9	23.0	25.7	25.5	3.4	25.8	20
20	25.3	24.0	19.8	22.8	23.0	5.5	24.0	24
30	21.6	18.7	14.5	18.0	18.4	7.1	19.5	20
40	15.4	12.5	8.8	11.7	11.9	6.6	13.3	4
50	8.4	5.4	3.0	4.8	5.4	5.4	+ +6.4	2
60	3.2	-	- 9.3	-	$-3.2$	12.5	. 0	0
70	- 1.2	-	-21.0	-	-12.0	19.8	$-1.3$	71
80	(-4.3)	-	(-28.7)	-	(-20.6)	(24.4)	-	100
South pole	( -6.0 )	-	(-33.0)	-	(-25.0)	(27.0)	-	(100)

Table illustrates temperature changes underground at moderate depths due to surface warming (read from plot for Tiflis, Lehrbuch der Meteorologie, Hann and Süring, 1915). Below $20-30 \mathrm{~m}$ (nearer the surface in Tropics) there is no annual variation. Increase downward at greater depths, $0.03 \pm{ }^{\circ} \mathrm{C}$ per $\mathrm{m}\left(1^{\circ}\right.$ per 35 m$)$ 1.c. At Pittsburgh, 1524 m , $49.4^{\circ}$, 0294 per m; Oberschlesien, $2003 \mathrm{~m}, 70^{\circ}, .0294$ per m; or West Virginia, 2200 m ; $70^{\circ}, .034^{\circ}$ per m (Van Orstrand). Mean value outflow heat from earth's center, 0.00000172 g cal $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$, or $54 \mathrm{~g} \mathrm{cal} \mathrm{cm}^{-2} \mathrm{yr}^{-1}$ ( 39 Laby ). Open ocean temperatures: Greatest mean annual range (Schott) $40^{\circ} \mathrm{N} ., 4.2^{\circ} \mathrm{C} ; 30^{\circ} \mathrm{S} ., 5.1^{\circ}$; but $10^{\circ} \mathrm{N}$., only $2.2^{\circ} ; 50^{\circ} \mathrm{S} ., 2.9^{\circ}$. Mean surface temp. whole ocean (Krümmel) $17.4^{\circ}$ : all depths, 3.9 :. Below 1 km nearly isothermal with depth. In Tropics, surface $28^{\circ}$; at $183 \mathrm{~m}, 11^{\circ}, 80$ percent water less than $4.4^{\circ}$. Deep-sea (bottom) temps. range $-0.5^{\circ}$ to $+2.6^{\circ}$. Soundings in South Atlantic: $0 \mathrm{~km}, 18.9^{\circ} ; .25 \mathrm{~km}, 15^{\circ} ; .5 \mathrm{~km}, 8.3^{\circ} ; 1 \mathrm{~km}, 3.3^{\circ} ; 3 \mathrm{~km}, 1.7^{\circ} ; 4.5 \mathrm{~km}, 0.6^{\circ}$.

Maximum values in boldface.

Depth.	Tan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
$\boldsymbol{m}$	Jat											
0	1	4	10	14	21	29	32	32	24	16	9	4
.5	4	4	9	13	18	23	26	28	24	18	12	6
1.0	6	6	8	12	15	20	24	26	23	18	14	10
1.5	9	8	9	11	14	18	21	23	22	18	15	12
20	11	10	10	11	13	16	19	21	21	18	16	14
3.0	14	12	12	11	13	14	16	17	18	18	17	15
4.0	15	13	12	12	12	13	14	16	16	17	17	16
5.0	15	14	13	13	13	13	14	14	15	16	16	16
6.0	$\mathbf{1 5}$	14	14	14	14	14	14	14	14	15	15	15

## TABLE 824.-WOLF'S SUNSPOT NUMBERS, ANNUAL MEANS* ${ }^{255}$

Sunspot number $=k(10 \times$ number of groups and single spots observed + total number of spots in groups and single spots). $k$ depends on observer and telescope, equaling unity for Wolf with 3 -in. telescope and power of 64 . Wolf's numbers are closely proportional to spotted area on sun, 100 corresponds to about $1 / 600$ of visible disk covered (umbras and penumbras). Periodicity: successive outbursts about 11 years apart, extremes 7.3 years and 17.1 years. See references for daily and monthly values.
Smoothed monthly numbers are formed from monthly means of observed number by weighting the sixth months preceding and following 1 , all 11 intervening months 2.

Smoothed monthly sunspot numbers, annual means
Maximunn and minimum values for period in boldface

Year	0	1	2	3	4	5	6	7	8	9
1750	83.1	52.2	45.9	28.9	13.5	9.3	12.2	31.9	47.2	54.5
1760	64.7	80.2	60.1	48.5	36.7	21.4	14.2	35.9	66.8	103.4
1770	98.5	86.7	65.7	39.7	27.5	8.8	21.7	92.2	151.3	123.4
1780	89.2	66.5	38.7	22.5	10.3	26.7	81.2	128.2	133.3	117.0
1790	90.6	67.6	59.8	47.3	38.5	24.0	15.6	6.5	4.6	6.9
1800	15.0	33.7	44.1	43.0	46.8	42.5	27.3	11.6	7.6	3.1
1810	. 0	1.7	4.5	12.1	15.5	35.1	46.1	39.8	30.0	23.4
1820	16.6	6.6	4.0	2.6	8.3	16.9	35.3	51.6	62.1	67.1
1830	67.2	50.5	26.3	9.4	13.3	59.1	121.1	137.0	103.4	83.4
1840	61.9	38.5	23.0	13.2	17.7	38.4	59.7	97.3	125.0	95.4
1850	69.8	63.2	52.8	38.6	21.0	7.7	5.2	23.0	56.3	90.3
1860	94.9	77.7	61.1	45.4	45.2	31.4	14.7	8.8	36.9	78.6
-1870	131.8	113.8	99.7	67.9	43.1	18.9	11.7	11.0	3.9	7.7
1880	31.6	54.4	58.1	65.4	63.3	51.3	25.1	12.6	7.0	6.3
1890	8.4	37.7	70.0	83.7	79.1	61.5	43.1	28.1	24.6	13.8
1900	8.8	3.4	5.7	23.0	44.1	58.7	60.3	56.0	51.2	40.6
1910	21.0	6.5	3.4	2.2	11.8	46.4	59.1	96.2	83.1	65.5
1920	36.9	27.0	13.0	6.3	16.8	43.7	66.5	70.0	74.5	62.0
1930	38.8	21.1	12.1	5.9	9.4	36.5	79.6	113.2	103.9	89.6
1940	66.8	50.5	30.3	15.3	11.1	36.4	91.7	145.6	141.2	134.7
1950	83.9	69.4								

[^338]
## 728 TABLES 825-884.-ASTRONOMY AND ASTROPHYSICS *

Astronomy, including astrophysics, is a study of the geometry and physics of the heavenly bodies and the material in the intervening space. This experimental science requires some very special apparatus-in general, used in connection with large telescopes. Table 825 gives a list of the larger telescopes that are now (1949) in active scientific use. Some definitions and standards and other data on astronomy follow.

[^339]$\dagger$ Prepared by J. J. Nassau, Case Institute of Technology.

## TABLE 826.-APPROXIMATE EQUATION OF TIME**

The equation of time in this table is to be added algebraically to local apparent solar time to obtain local mean solar time.

Accurate values of the equation of time may be obtained from the American Ephemeris and Nautical Almanac.

	1 nin		min		min		min
Jan. 1	$+3$	Apr. 1	+ 4	July 1	+ 4	Oct. 1	-10
	+ 8	11	+1	11	+ 5	11	-13
21	+11	21	$-1$	21	+ 6	21	-15
Feb. 1	+14	May 1	- 3	Aug. 1	+6	Nov. 1	-16
11	+14	11	-4	11	+ 5	11	-16
21	+14	21	-4	21	+ 3	21	-14
Mar. 1	+13	June 1	-2	Sept. 1	0	Dec. 1	-11
11	+10	${ }^{\text {J }} 11$	-1	${ }^{11}$	-3	Dec 11	-7
21	+ 8	21	$+1$	21	-7	21	-2

[^340]Aberration constant. $-20^{\prime \prime} 47$ (conventional value; work of Doolittle, Spencer Jones, and others, indicates a value of $20: 50$ ).
Aphelion.-Point where earth is farthest from sun $=1.520 \times 10^{18} \mathrm{~cm}$.
Astronomical unit (A. U.)-Distance: mean distance earth to sun, $149,500,000 \mathrm{~km}$. (Conventional value, solar parallax 8 " 79 would give $149,700,000$.) Mass: the combined mass of the sun and earth which means, practically, the sun's mass $=1.987 \times 10^{28} \mathrm{~g}$.

Color index.-Ordinary stellar magnitudes are supposed to correspond to observations with the normal eye. This is by no means easy to define, for the brightness of a red star compared with a white, appears greater when the amount of light entering the eye is increased for both in the same ratio (Purkinje effect) for low brightness.

Owing to differences in the actual distribution of the energy with wavelength, the relative brightness of stars of different temperatures and colors measured with receptors sensitive to different spectral regions vary greatly.

On ordinary photographs, red stars appear much fainter than to the eye. If the measures are calibrated so that the visual and photographic magnitudes average the same for spectral class $A$, the difference for any other group of stars is called color index. This ranges from about $-0^{m} .3$ to +1.8 for class $M$ and reaches $5^{m}$ for the reddest stars of class $N$.
The difference in color index between the two standard types, e.g., $A O$ and $K O$ is called the color-equation. It varies over a wide range with the spectral sensitivity of the receiver, very large and positive for the violet and ultraviolet and negative for the red and infrared.

Photoelectric devices, combined with screens and measurable transmission have at last provided standard systems for stellar photometry of at least approximately definite physical significance for spectral regions ranging from the ultraviolet to the infrared. Radiometric magnitudes correspond to the measures of the whole observable energy radiztion.

Bolometric magnitudes are supposed to represent the total energy radiation of all wavelengths, and must be found bv calculation.

Date line.-Established by convention not far from the 180th meridian from Greenwich. Where the line runs across a group of islands, the change of the date line is diverted to one side so that the group has the same day. Ships crossing from the east, skip a day ; going east, count the same day twice.

Day.-Mean solar day $=1,440$ minutes $=86,400$ seconds $=1.0027379$ sidereal day. Sidereal day (ordinary, two successive transits of vernal equinox, might be called equinoctial day $)=86,164.09054$ mean solar seconds $=23 \mathrm{hr}, 56 \mathrm{~min}, 4.09054 \mathrm{sec}$ mean solar time.

Two successive transits of same fixed star $=86,164.09967$ mean solar seconds.
Declination.-If $\delta=$ declination, $t$, hour angle measured west from meridian, $h$, altitude, $\phi$, latitude and $A$, azimuth measured from S. point through W . Then

$$
\left.\begin{array}{rl}
\sin h & =\sin \phi \sin \delta+\cos \phi \cos \delta \cos t \\
\cos h \cos A & =-\cos \phi \sin \delta+\sin \phi \cos \delta \cos t \\
\cos h \sin A & = \\
\cos \delta \sin t
\end{array}\right\} \text { given } \delta, t, \phi
$$

Delaunay's $\gamma=\sin 1 / 2 I=0.04488716$ (Brown).
Dip of horizon.-In minutes of arc $=\sqrt{\text { eievation in } \mathrm{ft}}$ (approximately).
Earth.-Mean $r=6.3712 \times 10^{8} \mathrm{~cm}$. Equatorial diameter $=12,756.78 \mathrm{~km}$; polar diameter $=12,713.82 \mathrm{~km}$. Area $=5.101 \times 10^{18} \mathrm{~cm}^{2}$. Angular velocity $=72.9 \times 10^{-6}$ radians $/ \mathrm{sec}$. Volume $=1.083 \times 10^{27} \mathrm{~cm}^{3}$. Mass $=5.975 \times 10^{27} \mathrm{~g}$. Density $=5.517 \mathrm{~g} / \mathrm{cm}^{3}$. Mean distance to sun $=$ $1.495 \times 10^{13} \mathrm{~cm}$. Distance to the moon $=3.844 \times 10^{19} \mathrm{~cm}$. Light traverses mean radius of earth's orbit in 498.6 sec . Semimajor axis orbit $=1.4950 \times 10^{13} \mathrm{~cm}$; semi ninor axis $=$ $1.4948 \times 10^{18} \mathrm{~cm}$. Viscosity $=10.9 \times 10^{16} \mathrm{cgs}$. Velocity of equatorial point on earth, because of rotation: $1,050 \mathrm{mi} / \mathrm{hr}=1,550 \mathrm{ft} / \mathrm{sec}=1,650 \mathrm{~km} / \mathrm{hr}=460 \mathrm{~m} / \mathrm{sec}$. In orbit: $18 / 5 \mathrm{mi} / \mathrm{sec}$ $=30 \mathrm{~km} / \mathrm{sec}$. See Tables 831 and 833 . Rotational energy $=2.16 \times 10^{30} \mathrm{erg}$.

Earth's orbital velocity $=18.5$ miles $/ \mathrm{second}$. $1,550 \mathrm{ft} / \mathrm{sec}$ (rotation at Equator).
Eccentricity of earth's orbit $=e=0.01675104-4.180 \times 10^{-7}(t-1900)-1.26 \times 10^{-11}$ $(t-1900)^{2}$ :

Eccentricity of moon's orbit $=e_{2}=0.05490056$ (Brown).
Gal.-Unit of gravity acceleration $=1 \mathrm{~cm} \mathrm{sec}-{ }^{-2}$.
General precession (westward movement of the equinoxes) $=50: 2564+0 " 000222$ $\left.{ }^{( } t-1900\right)$ per year (Newcomb). Probably requires correction of about $+0 \% 01$. See Table 838.
Gravitation constant $=(6.670 \pm 0.005) \times 10^{-8}$ dyne $\mathrm{cm}^{2} \mathrm{~g}^{-2}($ Heyl, 1930 $)$.
Gravity, acceleration due to, $g=978.0495 \mathrm{~cm} \mathrm{sec}^{-2}$ (conventional value at sea level at equator. See Table 802). Unit, gal $=1 \mathrm{~cm} \mathrm{sec}{ }^{-2}$.

[^341](continued)

## TABLE 827.-MISCELLANEOUS ASTRONOMICAL DATA (continued)

Heat index.-Radiometric (heat or bolometric), zero taken to agree with Class $A O$, (radiometric - visual magnitude) $=$ heat index, + for red stars.
Horizon.-Distance at sea is approximately, miles $=\sqrt{(3 / 2)}$ height in feet. Local refraction (mirage) may introduce large percentage changes in either direction for observations from altitudes of 30 feet or less.
Inclination of moon's orbit $=I=5^{\circ} 8^{\prime} 43.5^{\prime \prime}$ (Brown).
Julian period, $1950=6663$.-January 1, 1950, Julian-day number $=2433283$.
Latitude variation.-The direction of the axis of the earth in space changes approximately $20 " 5$ per year owing to precession. The change is roughly periodic in 25,800 years with an amplitude of $23: 5$. This does not affect terrestrial latitudes, but a variation in them is caused by a shift of the earth's body about this axis. The two ascertained components of the polar motion have periods of 1.00 and nearly 1.20 years (the annual and Chandlerian components, respectively), so that the oscillations in $X$ and $Y$, as well as the resultant total motion have variations in amplitude with a "beat period" of about 6 years. In contrast to the annual terms, Chandler's term shows striking variations in amplitude. There is, further, a variation in the period of the Chandlerian term (1.18, 1.20, 1.17, 1.15, 1.19 years) which appears nearly proportional to the corresponding amplitude variations according to the relation $P=0.185 A+1.128$, where $P$ is the period in years and $A$ the amplitude in 0"01 units. (See T. Nicolini, appendix to Commission 19 Report, Trans. Int. Astron. Union, Zurich, 1948.)
Light, velocity of.-(Mean value) in vacuo, $299773 \pm 10 \mathrm{~km} \mathrm{sec}^{-1}$ (Dorsey).
$299792.5 \pm 0.8 \mathrm{~km} \mathrm{sec}^{-1}$ (Bearden).
$299776 \pm 0.00004 \mathrm{~km} \mathrm{sec}^{-1}$ (Birge).
Light year.-The distance light travels in 1 year $=9.5 \times 10^{12}$ kilometers $=5.9 \times 10^{18}$ miles. Light traverses mean radius of earth's orbit in 498.6 sec .
Lunar inequality of earth $=L=6.454$.'
Lunar node $d=$ daily motion $=-0.052954$.
Lunar parallax $=3422.70^{\prime \prime}$ (Brown).
Lunar perigee, daily motion $=+0.111404$.
Lunar-solar precession $=p^{\prime}=50.3714^{\prime \prime}$ per year (De Sitter, 1927). Of this 0.0191", Einstein, orbital motion earth.
Magnitudes.-The observed intensity of light received on the earth from astronomical bodies ranges over a factor exceeding $10^{19}$. It is therefore expressed on a logarithmic scale-the system of stellar magnitudes. This system, which was adopted by Hipparchus more than 2,000 years ago, is closely represented by the equation

$$
m=2.5 \log _{10}\left(l_{0} / l\right)
$$

where $l$ is the observed light and $l_{0}$ a standard value corresponding roughly to the light of Arcturus or Vega. Decrease of light by a factor of 100 increases the stellar magnitude by 5.00 ; hence the brightest objects have negative magnitudes. (Sun: -26.8 ; mean full moon: - 12.5 ; Venus at brightest: - 4.3 ; Jupiter at opposition: -2.3 ; Sirius: -1.6 ; Vega: +0.2 ; Polaris: +2.1 ). The faintest stars visible to the naked eye on a clear dark night are of about the sixth magnitude (though on a perfectly black background the limit for a single luminous point approaches the eighth magnitude). The faintest stars visible with a telescope of aperture $A$ (in inches) is one approximately of magnitude $9+5$ $\log _{10} A$. The magnitude of the faintest stars which can be photographed with the 200 -inch telescope is about +22.7 . The apparent magnitude of a standard candle at a distance of 1 meter is -14.2 .
Absolute magnitude, $M$, is that which the body would exhibit if placed at a distance of 10 parsecs, and corresponds to its actual luminosity. For a star of magnitude $m$, and parallax $p$, in seconds of arc

$$
M=m+5+5 \log p
$$

For the sun, $M=+4.7$. The brightest stars probably exceed $M=-7$ and the faintest observed value is $M=+18$, a range of $10^{20}$. The full moon (could it be observed without interference from the standard distance) would have $M=+32$ and a standard candle +72.8 .
Mean distance earth to moon $=60.2678$ terrestrial radii.
$=384,411$ kilometers $=238,862$ miles. (See Table 834.)
Mean distance earth to sun $=149,500,000$ kilometers $=92,900.000$ miles. (See Astronomical unit.) See Table 833.
Month.-Sidereal $=27.321661$ days, synodical (ordinary) $=29.530588$ days $($ Brown $)$.
Nutation constant (periodic motion of celestial pole) $=9.21^{\prime \prime}$ : conventional value ; 9.207". Principal in long $=\Delta \phi=\left(-17.234^{\prime \prime}-.017^{\prime \prime} T\right)$ sin $\Omega$; principal term in obliquity $=\Delta \epsilon=(+9.210+.0009 T) \cos \Omega$ (Newcomb). $T$ centuries from 1900.
Obliquity of ecliptic $=23^{\circ} 27^{\prime} 8.26^{\prime \prime}-0.4684(t-1900)^{\prime \prime}($ Newcomb $)$.
(continued)

TABLE 827.-MISCELLANEOUS ASTRONOMICAL DATA (concluded)
Parallactic inequality moon $=Q=124.785^{\prime \prime}$ (Brown.)
Parsec.-Distance of star whose parallax is $1 \mathrm{sec}=31 \times 10^{12} \mathrm{~km}=19.2 \times 10^{12}$ miles $=3.263$ light years.
Perihelion-Point where earth is nearest sun $=1.4700 \times 10^{18} \mathrm{~cm}$.
Planetary precession $=\lambda=0.1247^{\prime \prime}$ (Newcomb).
Pole of Milky Way = R. A., $12 \mathrm{hr} 48 \mathrm{~min} ;$ Dec., $+27^{\circ}$ :
Refraction. $r$ in. (") $=\left[983 \times\left(\right.\right.$ barometer in in.) $\left./\left(460+t^{\circ} \mathrm{F}\right)\right]$ tan $Z$, where $Z=$ zenith distance. Error $<1^{\prime \prime}, Z<75^{\circ}$, ordinary $t$ and pressure.

Solar diameter $=864,408$ miles .
Solar parallax $=8.80$ (conventional value), 8 ".79 (Newcomb, Spencer Jones).
Sun. $-r=6.965 \times 10^{10} \mathrm{~cm}$. Area $=6.093 \times 10^{24} \mathrm{~cm}^{2}$. Volume $=1.412 \times 10^{38} \mathrm{~cm}^{3}$. Mass $=1.987 \times 10^{33} \mathrm{~g}$. Density $=1.41 \mathrm{~g} / \mathrm{cm}^{3}$. Mean distance to earth $1.495 \times 10^{13} \mathrm{~cm}$. See Table 831.

Twilight.-There are three definitions of twilight: civil, nautical, and astronomical. Civil twilight lasts until the sun is about $6^{\circ}$ below the horizon, after which motor-car lights must be turned on. Nautical twilight lasts until the sun is about $12^{\circ}$ below the horizon. This is the limit for observations of stars with the sea horizon. Astronomical twilight is considered to end when the sky is dark in the zenith. It lasts until the sun is about $18^{\circ}$ below the horizon. For latitudes $>50^{\circ}$ there is a faint twilight at midnight in midsummer.

Year.-Anomalistic (two successive passages of the perihelion) $=365.25964134+3.04$ $\times 10^{-8}(t-1900)$ days. Eclipse (time taken by sun to pass from a node of the moon's orbit to the same node) $=346.620031+3.2 \times 10^{-7}(t-1900)$ days. Sidereal (from given star to same star again) $=365.25636042+1.1 \times 10^{-9}(t-1900)$ days. Tropical (ordinary) (two successive passages of vernal equinox by sun) $=365.24219879-6.14 \times 10^{-8}$ ( $t-1900$ ) days.

## TABLE 828.-ELEMENTS OF SOLAR MOTION *

Because of the asymmetry in stellar motions (Table 876), determinations of the speed and direction of the sun's motion are very sensitive to the selection of stars to which it is referred. Ideally we wish to refer the sun's motion to the circular velocity with respect to the galactic center; this may be called the basic solar motion. It is possible to determine this basic solar motion from detailed studies of the distribution of motions among nearby stars and it is found that such a determination made from the giant $K$ stars is in excellent agreement with an independent determination from the $A$ stars (Janssen and Vyssotsky). This value is given in the last line of the table. The figures listed for the first five groups are smoothed values obtained from a combination of the best observational results. ${ }^{288}$ The values for the next four groups come from investigations made at Leiden, Mount Wilson, and McCormick Observatories. The solar motion with respect to $B$ stars, $c$-stars, and Cepheids is difficult to determine satisfactorily because of uneven distribution in space, very small proper motions, etc.

		Coordinates of the apex			
Stellar group of reference	Solar velocity	R A	Dec	$\begin{aligned} & \text { Gal } \\ & \text { long } \end{aligned}$	$\begin{aligned} & \text { Gal } \\ & \text { lat } \end{aligned}$
B8 to A3.	$16 \mathrm{~km} / \mathrm{sec}$	$263{ }^{\circ}$	$+20^{\circ}$	$11^{\circ}$	$+24^{\circ}$
A5 to F2.	17	266	$+23$	15	$+22$
F5 to G0.	18	269	+26	18	$+21$
K 0 to K2.	20	273	+29	23	$+19$
gK5 to gM8.	22	276	+31	27	$+17$
dK8 to dM5.	23	275	$+44$	39	$+22$
Irregular var	35	265 :	+38:	30 :	+28:
Long-period var	54	295	+46	47	$+10$
Gluster-type var	130	297	$+52$	53	$+12$
Basic solar motion.	15	260	$+17$	7	+25

[^342]This calendar gives the day of the week for any known date from the beginning of the Christian Era down to the year 2400.

Dominical letters


To find the calendar for any year of the Christian Era, first find the Dominical letter for the year in the upper section of the table. Two letters are given for leap years; the first is to be used for January and February, the second for the other months. In the lower section of the table, find the column in which the Dominical letter for the year is in the same line with the month for which the calendar is desired; this column gives the days of the week that are to be used with the month.
E.g., in the table of Dominical Letters we find that the letter for 1951 is G ; in the line with July, this letter occurs in the first column; hence July 4, 1951, is Wednesday.

[^343]Days are numbered consecutively, beginning with the number 0 , from Greenwich mean noon on Jan. 1, 4713 B.C. The number of days since that time that have elapsed at Greenwich mean noon on any given date is the Julian Day Number of that day.

For A.D. 0 to A.D. 1580 inclusive, the Julian Day Numbers in this table are the days elapsed at Greenwich mean noon up to January 0 of the Julian Calendar in each leap year.

For 1584 to 2096 inclusive, the Julian Day Numbers are for January 0 of the Gregorian Calendar, except that in 1700, 1800, and 1900, which were not leap years, they are for January -1 .

A.D.	0	100	200	300	400	500	600	700	800	900
0	1721057	1757582	1794107	1830632	1867157	1903682	1940207	1976732	2013257	782
4	1722518	1759043	1795568	1832093	1868618	1905143	1941668	1978193	2014718	2051243
8	1723979	1760504	1797029	1833554	1870079	1906604	1943129	1979654	2016179	2052704
12	1725440	1761965	1798490	1835015	1871540	1908065	1944590	1981115	2017640	2054165
16	1726901	1763426	1799951	1836476	1873001	1909526	1946051	1982576	2019101	2055626
20	1728362	1764887	1801412	1837937	1874462	1910987	1947512	1984037	2020562	2057087
24	1729823	1766348	1802873	1839398	1875923	1912448	1948973	1985498	2022023	2058548
28	1731284	1767809	1804334	1840859	1877384	1913909	1950434	1986959	2023484	2060009
32	1732745	1769270	1805795	1842320	1878845	1015370	1951895	1988420	2024945	2061470
36	1734206	1770731	1807256	1843781	1880306	1916831	1953356	1989881	2026406	2062931
40	1735667	1772192	1808717	1845242	1881767	1918292	1954817	1991342	2027867	2064392
44	1737128	1773653	1810178	1846703	1883228	1919753	1956278	1992803	2029328	2065853
48	1738589	1775114	1811639	1848164	1884689	1921214	1957739	1994264	2030789	2067314
52	1740050	1776575	1813100	1849625	1886150	1922675	1959200	1995725	2032250	2068775
56	1741511	1778036	1814561	1851086	1887611	1924136	1960661	1997186	2033711	2070236
60	1742972	1779497	1816022	1852547	1889072	1925597	1962122	1998647	2035172	2071697
64	1744433	1780958	1817483	1854008	1890533	1927058	1963583	2000108	2036633	2073158
68	1745894	1782419	1818944	1855469	1891994	1928519	1965044	2001569	2038094	2074619
72	1747355	1783880	1820405	1856930	1893455	1929980	1966505	2003030	2039555	2076080
76	1748816	1785341	1821866	1858391	1894916	1931441	1967966	2004491	2041016	2077541
80	1750277	1786802	1823327	1859852	1896377	1932902	1969427	2005952	2042477	2079002
84	1751738	1788263	1824788	1861313	1897838	1934363	1970888	2007413	2043938	2080463
88	1753199	1789724	1826249	1862774	1899299	1935824	1972349	2008874	2045399	2081924
92	1754660	1791185	1827710	1864235	1900760	1937285	1973810	2010335	2046860	2083385
96	1756121	1792646	1829171	1865696	1902221	1938746	1975271	2011796	2048321	2084846
A.D.	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900
0	2086307	2122832	2159357	2195882	2232407	2268932	2305447	23+1971†	$2378495 \dagger$	$2415019 \dagger$
4	2087768	2124293	2160818	2197343	2233868	2270393	2306908	2343432	2379956	2416480
8	2089229	2125754	2162279	2198804	2235329	2271854	1308369	2344893	2381417	2417941
12	2090690	2127215	2163740	2200265	2236790	2273315	2309830	2346354	2382878	2419402
16	2092151	2128676	2165201	2201726	2238251	2274776	2311291	2347815	2384339	2420863
20	2093612	2130137	2166662	2203187	2239712	2276237	2312752	2349276	2385800	2422324
24	2095073	2131598	2168123	2204648	2241173	2277698	2314213	2350737	2387261	2423785
28	2096534	2133059	2169584	2206109	2242634	2279159	2315674	2352198	2388722	2425246
32	2097995	2134520	2171045	2207570	2244095	2280620	2317135	2353659	2390183	2426707
36	2099456	2135981	2172506	2209031	2245556	2282081	2318596	2355120	2391644	2428168
40	2100917	2137442	2173967	2210492	2247017	2283542	2320057	2356581	2393105	2429629
44	2102378	2138903	2175428	2211953	2248478	2285003	2321518	2358042	2394566	2431090
48	2103839	2140364	2176889	2213414	2249939	2286464	2322979	2359503	2396027	2432551
52	2105300	2141825	2178350	2214875	2251400	2287925	2324440	2360964	2397488	2434012
56	2106761	2143286	2179811	2216336	2252861	2289386	2325901	2362425	2398949	2435473
60	2108222	2144747	2181272	2217797	2254322	2290847	2327362	2363886	2400410	2436934
64	2109683	2146208	2182733	2219258	2255783	2292308	2328823	2365347	2401871	2438395
68	2111144	2147669	2184194	2220719	2257244	2293769	2330284	2366808	2403332	2439856
72	2112605	2149130	2185655	2222180	2258705	2295230	2331745	2368269	2404793	2441317
76	2114066	2150591	2187116	2223641	2260166	2296691	2333206	2369730	2406254	2442778
80	2115527	2152052	2188577	2225102	2261627	$2298152 \ddagger$	2334667	2371191	2407715	2444239
84	2116988	2153513	2190038	2226563	2263088	$2299603 \S$	2336128	2372652	2409176	2445700
88	2118449	2154974	2191499	2228024	2264549	2301064	2337589	2374113	2410637	2447161
92	2119910	2156435	2192960	2229485	2266010	2302525	2339050	2375574	2412098	2448622
96	2121371	2157896	2194421	2230946	2267471	2303986	2340511	2377035	2413559	2450083
	2000	2451544	2020	2458849	2040	2466154	2060	2473459	2080	2480764
	2004	2453005	2024	2460310	2044	2467615	2064	2474920	2084	2482225
	2008	2454466	2028	2461771	2048	2469076	2068	2476381	2088	2483686
	2012	2455927	2032	2463232	2052	2470537	2072	2477842	2092	2485147
	2016	2457388	2036	2464693	2056	2471998	2076	2479303	2096	2486608

Days to be added to reduce to the beginning of each month: For dates from 1582 October 15 to 1583 December 31, inclusive, Gregorian Calendar, diminish all numbers in this table by 10.

In 1700, 1800, and 1900, Gregorian Calendar, for January 0 use the number 1 instead of the tabular value 0 , and for February 0 use 32 instead of 31.

| Year | Jan. 0 | Feb. 0 | Mar. 0 | Apr. 0 | May 0 | June 0 | July 0 | Aug. 0 | Sept. 0 | Oct. 0 | Nov. 0 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Dec. 0

[^344]TABLE 831.-PHYSICAL DATA; PLANETS AND PRINCIPAL SATELLITES
(From unpublished compilation by G. P. Kuiper and D. L. Harris, Yerkes Observatory.)

Planet or satellite	$\begin{gathered} \text { Mass * } \\ (\text { Earth }=1) \end{gathered}$	$\begin{gathered} \text { Mean } \\ \begin{array}{c} \text { diameter } \\ (E=1) \end{array} \dagger \end{gathered}$	$\begin{gathered} \text { Mean } \\ \text { density } \\ \mathrm{H}_{2} \mathrm{O}=1 \end{gathered}$	Surface gravity ( $E=1$ )	Velocity of escape $\mathrm{km} / \mathrm{sec}$	Rotation period (days)
Mercury	. 0543	. 38	5.46	. 38	4.3	88.0
Venus .	. 8136	. 967	4.96	. 87	10.4	15-30?
Farth	1.0000	1.000	5.52	1.00	11.3	1.00
Mars	. 1069	. 523	4.12	. 39	5.1	1.03
Jupiter	318.35	10.97	1.33	2.65	61.0	. 41
Saturn	95.3	9.03	. 71	1.17	36.7	. 43
Uranus	14.58	3.72	1.56	1.05	22.4	. 45
Neptune	17.26	3.38	2.47	1.23	25.6	. 66
Pluto . .	< 1 ?	. 45	$<5.5$ ?	$<.5$ ?	$<5.3$ ?	?
Moon	. 0123	. 273	3.33	. 16	2.4	27.3
Jupiter I	. 0121	. 255	4.03	. 19	2.5	1.77
Jupiter II	. 0079	. 226	3.78	. 16	2.1	3.55
Jupiter III	. 0261	. 394	2.35	. 17	2.9	7.15
Jupiter IV	. 0160	. 350	2.06	. 13	2.4	16.69
Titan .	. 0235	. 371	2.54	. 17	2.8	15.95
Triton	. 022	. 35 ?	2.8?	.18?	2.8?	5.88

[^345]TABLE 832._PLANETARY TEMPERATURES


All temperatures are given on the absolute scale. To change to centigrade, sibtract 273. The column headed "measured" presents values determined by Coblentz and Lampland, and by Pettit and Nicholson. The column headed " $A$ " gives black sphere temperatures; " $B$ " gives these multiplied by $\sqrt{2}$ or the calculated maximum temperatures of the center of the illuminated hemisphere of atmosphereless black plancts. The observed values lie, as expected, between $A$ and $B$ in nearly pwery case.

TABLE 833.-PLANETARY ORBITS * 257

Body	Mean distance to Sun		Sidereal period		Inclination	Eccentricity
	$\overparen{A Y^{\circ}}$	km	Mean   days	Tropical years		
Mercury	. 387	$57.9 \dagger$	87.97	. 241	$7: 004$	. 2056
Venus	. 723	108.1	224.70	. 615	3.394	. 0068
Earth	1.000	$149.5 \ddagger$	365.26	1.000	. 000	. 0167
Mars	1.524	227.8	686.98	1.881	1.850	. 0934
Jupiter	5.203	777.8	4332.58	11.862	1.306	. 0484
Saturn	9.539	1426.1	10759.20	29.458	2.490	. 0557
Uranus	19.191	2869.1	30685.91	84.015	. 773	. 0472
Neptune	30.071	4495.6	60187.60	164.788	1.774	. 0086
Pluto	39.457	5898.9	90469.27	247.697	17:143	. 2485

[^346]| Body | Mean distance from planet ( km ) | Sidereai period (days) | $V$ is magnitude at mean opp | Direction of motion $\dagger$ |
| :---: | :---: | :---: | :---: | :---: |
| Earth |  |  |  |  |
| Moon | 384,400 | 27.322 | $-12.7$ | D |
| Mars |  |  |  |  |
| Phobos | 9,400 | . 319 | 11.5 | D |
| Deimos | 23,500 | 1.262 | 13.0 | D |
| Jupiter |  |  |  |  |
| V | 181,200 | . 498 | 13.0 | D |
| I Io | 421,400 | 1.769 | 5.0 | D |
| II Europa | 670,500 | 3.551 | 5.3 | D |
| III Ganymede | 1,069,500 | 7.155 | 4.6 | D |
| IV Callisto . | 1,881,200 | 16.689 | 5.6 | D |
| VI | 11,500,000 | 250.6 | 137 | D |
| VII | 11,750,000 | 259.6 | 16. | D |
| X | 11,750,000 | 260. | 17.8 | D |
| VIII | 23,500,000 | 739. | 16. | R |
| IX | 23,700,000 | 758. | 17.6 | R |
| XI | 22,500,000 | 692. | 17.4 | R |
| Saturn |  |  |  |  |
| Mimas | 185,500 | . 942 | 12.1 | D |
| Enceladus | 238,000 | 1.370 | 11.6 | D |
| Tethys | 294,600 | 1.888 | 10.5 | D |
| Dione | 377,300 | 2.737 | 10.7 | D |
| Rhea | 526,900 | 4.518 | 9.7 | D |
| Titan | 1,220,800 | 15.945 | 8.2 | D |
| Hyperion | 1,482,000 | 21.277 | 13.0 | D |
| Iapetus . | 3,558,000 | 79.330 | 10.1-11.8 | D |
| Phoebe | 12,950,000 | 550.48 | 16. | R |
| Uranus |  |  |  |  |
| Miranda | 129,700 | 1.413 | 16.8 | D |
| Ariel | 190,700 | 2.520 | 14.8 | D |
| Umbriel | 265,700 | 4.144 | 15.4 | D |
| Titania | 435,800 | 8.706 | 13.9 | D |
| Oberon | 582,800 | 13.463 | 14.3 | D |
| Neptune |  |  |  |  |
| Triton | 353,700 | 5.877 | 13.5 | R |
| Nereid | 5,580,000 | 368. | 18.5 | ? |

[^347] direct motion, $R=$ retrograde motion.

TABLE 835.—NUMBER OF STARS [ $\phi$ (M)] PER CUBIC PARSEC NEAR THE SUN WITH ABSOLUTE (PHOTOGRAPHIC AND VISUAL) MAGNITUDES $M-1 / 2$ TO $M+1 / 2$ * ${ }^{259}$

	$\log \phi(M)+10$			$\log \phi(M)+10$		
	M	Phot	Visual	M	Phot	Visual
	$-6.0$	2.10	1.63	$+5.0$	7.35	7.40
	$-5.0$	3.07	2.77	+ 6.0	7.49	7.45
-	$-4.0$	3.65	3.58	+ 7.0	7.53	7.45
	$-3.0$	4.25	4.12	+8.0	7.46	7.55
	$-2.0$	4.75	4.71	+ 9.0	7.49	7.75
	$-1.0$	5.07	5.32	$+10.0$	7.64	7.84
	. 0	5.68	5.98	+11.0	7.81	7.99
	$+1.0$	6.34	6.59	+12.0	7.97	8.02
	+ 2.0	6.77	6.71	+13.0	8.01	8.05
	+ 3.0	6.86	6.98	$+14.0$	8.06	. . .
	+ 4.0	7.19	7.29			

[^348]Relationship between diameter and depth of terrestrial explosion craters, terrestrial meteoritic craters and lunar craters. (All explosions occurred slightly below the surface.)

$$
D=0.1083 d^{2}+0.6917 d+0.75
$$

where

$$
\begin{aligned}
D & =\log \text { diameter (feet) } \\
d & =\log \text { depth (feet) }
\end{aligned}
$$

Examples:

	Diameter	Observed depth	$\begin{gathered} \text { Calculated } \\ \text { depth } \end{gathered}$
Shell crater	10 ft	$3 \mathrm{ft}+$	2.20 ft
Arizona meteorite crater	4150 ft	700 ft (originally)	732 ft
Lunar crater Moretus	77 mi	$14,600 \mathrm{ft}$	$16,900 \mathrm{ft}$

Relationship between diameter of crater and rim height above ground level for terrestrial explosion craters, terrestrial meteoritic craters, and lunar craters.

$$
E=-0.097 D^{2}+1.542 D-1.841
$$

where
$E=\log$ rim height (feet)
$D=\log$ diameter (feet)
Examples:

Examples.	Diameter	Observed rim height	Calculated rim height
Shell crater	10 ft	$.4 \mathrm{ft} \pm$	40 ft
Arizona meteorite crater	4150 ft	165 ft (past erosion	295 ft
Lunar crater Cleomedes	80 mi	5200 ft	5830 ft

Terrestrial meteoritic craters

	$\underset{(\mathrm{ft})}{\text { Diameter }}$	Present depth (ft)	Original depth (ft)	$\begin{aligned} & \text { Present } \\ & \text { rim height } \end{aligned}$	Discovered
American craters: 4150					
Arizona ........	4150	570	700	165	1891
Odessa 1, near Odessa, Tex.	550	14	130	12	1921
Odessa 2	70	shallow	17	0	1921
At least one other small crater identified nearby					
	d $56 \times 36$	shallow	>10	0	1933
Chubb (Quebec)	$2 \frac{1}{2} \mathrm{mi}$	filled-i	overed lake	550	1950
South American craters:					Pits known
Campo del Cielo, Argentine; many craters	. 20 to 254		$\ldots$		since 1576
Australian craters:					
Henbury 1, near Henbury cattle station	75	shallow		0	1930
2 2...................................	90	shallow	$\ldots$	0	1930
3	135	18	$\ldots$	2	1930
4	135	18		2	1930
5	75	6	$\cdots$	4	1930
6	240	25	...	12	1930
7 (probably double)	$660 \times 360$	60	$\ldots$	high	1930
$8 . .$.	175	15		high	1930
9 ...................................... . .	small				1930
10	60	shallow		low	1930
11	45				1930
12	60			12	1930
13 ............................	30	3	10	low	1930
Boxhole crater, 200 miles N. E. of					
Dalgaranga crater ...................	. 230	16	...	prominent	1923

[^349](continued)


The 1947 meteorite probably disintegrated high in the air. The 1908 meteorite exploded violently either just before striking the ground or immediately after a ricochet. All others seem to have struck the ground, penetrated a short distance, and then exploded.

It will be noticed that there is a tendency for several craters to be formed simultaneously as if the meteorites traveled in clusters.

Only authenticated craters are here listed. Possible or doubtful cases have been omitted.

TABLE 837.-ALBEDOS

Object	$m$	${ }^{9}$	$\sigma$	$p$	$q$	Visual albedo	Color index	Photographic albedo
Moon	-12.66	+. 29	2".40	. 104	. 694	. 072	$+.75$	. 059
Mercury	- 2.20	-. 14	3.34	. 080	. 72	. 058	$+1.00$	. 038
Venus	- 5.12	-4.41	8.50	. 630	1.20	. 76	$+.62$	. 70
Mars	- 1.88	-1.39	4.60	. 133	1.11	. 148	$+1.00$	. 088
Jupiter	$-2.53$	$-9.23$	95.19	. 424	1.2:	. 51	+. 67	. 45
Saturn	+ .76	-8.80	78.95	. 416	1.2 :	. 50	+. 90	. 36
Uranus	+ 5.55	-7.17	32.4	. 548	1.2 :	. 66	+ . 42	. 73
Neptune	+ 7.80	-6.91	29.7	. 514	1.2:	. 62	+. 42	. 68
Pluto	+14.74	-1.17	4.0	. 146	1.1 :	. 16	+. 67	. 14

Table compiled by D. L. Harris on the basis of measures by G. Müller and E. S. King and reduced to the International Photovisual System. Long-period variations of the outer planets have been suspected by W. Becker ${ }^{\text {zand }}$ but are subject to confirmation.

The albedo, according to Pond, is defined as follows: "Let a sphere $S$ be exposed to parallel light. Then its albedo is the ratio of the whole amount reflected from $S$ to the whole amount of light incident on it." In the above table, $m=$ the stellar magnitude at mean opposition: $y=$ magnitucle it would have at full phase and unit distance from earth and sun; $\sigma=$ assumed mean semidiameter at unit distance; $p=$ ratio of observed brightness at full phase to that of a flat disk of same size and same position, illuminated and viewed normally and reflecting all the incident light according to Lambert's law ; q depends on law of variation of light with phase; albedo $=p q$.
Albeds of the earth: $0.39 .^{\text {2an }}$

[^350]




[^351]

## Part 1.-Density and pressure

The density distribution in the earth's interior is obtained by a series of approximations made to conform with known data as boundary conditions. These known facts, with which any density distribution must harmonize, include the following:
(1) The average density is 5.522 , obtained by comparing the attraction of the earth with that of a known mass. Dr. Heyl's value for the constant of gravitation is used, $6.664 \times 10^{-8}$ dyne $\mathrm{cm}^{2} g^{-2}$ (Table 27).
(2) The precession constant and other astronomic and geodetic data (Table 827) give the earth's moments in inertia. $I=0.33344 \mathrm{Er}^{2}$ where $I$ is the moment of inertia about the polar axis, $r$ the equatorial radius, and $E$ the mass of the earth; further

$$
I=\frac{8 \pi}{15} \int \rho d\left(a r^{4}\right)
$$

where $a$ is the polar semi-axis and $\rho=f(a, r)$, the density. If the earth were a homogeneous sphere its moment of inertia would be $0.4 \mathrm{Mr}^{2}$ and density 4.6 .
(3) The known flattening of the earth from geodetic data is $1 / 297$. If the earth were homogeneous the flattening would be larger. These should be sufficient to give a unique density distribution but, as Lambert of the Coast and Geodetic Survey pointed out, a distribution satisfying condition (2) also satisfies condition (3).
(4) The last boundary condition results by comparing the elastic behavior at various depths with the known elastic constants of rocks. Time-distance curves of earthquake impulses enable one to calculate the velocities of the compressional, $V_{p}$, and distortional, $V_{s}$, waves at various depths in the earth. Assuming isotropy there are simple relations between $K, R, E$ (moduli of compression, rigidity, Young's respectively), $\sigma$ (Poisson's ratio), $V_{p}$ and $V$ such that if the density and any two of them are known the others can be had. The variation in elastic constants for different rocks is small but sufficient to permit discrimination when compared with the elastic properties at different depths computed by means of the equations

$$
V_{s}^{2}=R / \rho, \quad V_{p}^{2}-4 / 3 V_{s}^{2}=K / \rho, \quad\left(V_{p} / V_{s}\right)^{2}=\frac{2(1-\sigma)}{1-2 \sigma}
$$

The uncertainties result from extrapolating low pressure and temperature laboratory data to high pressures and temperatures.

Whence we deduce: "granitic" material to a depth of 10 to 30 km ; below this the rock is denser, about 3.0 , and corresponds to a basalt or gabbro. At about 45 km depth a discontinuity occurs; the change in elastic properties corresponds with a transition to peridotite, density 3.4 . From this depth to $1,600 \mathrm{~km}$ the variation is uniform, the density increasing slowly with pressure. From 1,600 to $2,900 \mathrm{~km}$ the earthquake velocities remain somewhat constant and could be accounted for by a slow addition of iron and nickel to the material, the density changing from 3.4 to 9.0 . Below. $2,900 \mathrm{~km} V_{p}$, begins to decrease slightly and the assumption is that this core consists of nickel-iron with a density at the center of about 10.7.

Depth	Density	Pressure	Rock type
0 km	$2.7 \mathrm{~g} / \mathrm{cm}^{3}$		Granitic
10	2.7	. $0027 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$	
30	3.0	. 0067	Basaltic
60	3.4	. 0171	Peridotitic
120	3.5	. 0381	
400	3.75	. 131	
800	4.0	. 30	
1200	4.25	47	
1700	4.4	. 68	
2000	5.8	. 84	
2450	7.25	1.135	
2900	9.0	1.5	Transition layer
3200	9.6	1.7	
4800	10.25	2.8	Ni -Fe core
6370	10.7	3.1	

[^352](continued)

TABLE 839.-CHARACTERISTICS OF EARTH'S INTERIOR (concluded)
Part 2.-Elastic constants of earth's interior

Depth km	$\begin{aligned} & \text { Bulk modulus } \\ & \times 10^{-12} \\ & \text { dynes } / \mathrm{cm}^{2} \end{aligned}$	$\begin{gathered} \text { Rigidity } \\ \times 10^{-12} \\ \text { dynes } / \mathrm{cm}^{2} \end{gathered}$	$\begin{gathered} \text { Depth } \\ \mathbf{k m} \end{gathered}$	$\begin{gathered} \text { Bulk modulus } \\ \times 10^{-12} \\ \text { dynes } / \mathrm{cm}^{2} \end{gathered}$	$\begin{gathered} \text { Rigidity } \\ \times 10^{-12} \\ \text { dynes } / \mathrm{cm}^{2} \end{gathered}$
0	. 415	. 26	1200	$3.6 \pm .3$	$2.2 \pm .3$
0-20	. $5 \pm .05$	. $3 \pm .05$	1700	$4.2 \pm .3$	$2.7 \pm .3$
20-45	. $7 \pm .1$	$.4 \pm .1$	2850	$8 \pm 2$	$4.0 \pm 1.0$
45-120	$1.4 \pm .2$	. $6 \pm .1$	2900	$7 \pm 1$ ?	Smaller than at
120-400	$1.6 \pm .2$	$1.0 \pm .2$	6370	$12 \pm 10$ ?	surface, perhaps zero.

## Part 3.-Velocities of earthquake waves

$V_{n}^{\prime}$ is the velocity in $\mathrm{km} / \mathrm{sec}$ of the primary or condensational wave, $V_{s}$, of the secondary or distortional wave. Turner speaks of them as the push and shake waves.

Layer	$V_{p}, \mathrm{~km} / \mathrm{sec}$	$V_{*}, \mathrm{~km} / \mathrm{sec}$
0 to $20 \pm 10 \mathrm{~km}$ depth, depending on locality	5.4 to 5.6 , depending on locality. May reach 6.1	$3.2 \pm .3$
$20 \pm 10$ to $45 \pm 10 \mathrm{~km}$ depth, depending on locality	6.25 to 6.75 , depending on locality	$3.5 \pm .3$
Between $45 \pm 10$ and 2900 km depth:		
$45 \pm 10$ 1300	$\begin{array}{r}8.0 \\ 12.5 \pm .1 \\ \hline .1\end{array}$	$4.4 \pm .2$ $6.9 \pm .2$
2400	$13.5 \pm .1$	$7.5 \pm .2$
$<2900$	$13.5 \pm .1$	$7.4 \pm .2$
Core, 2700 to 6370 km (center) : $\begin{aligned} & >2900 \\ & 6000 \end{aligned}$	$\begin{array}{r} 8.7 \pm .2 \\ 10.9 \pm .2 \end{array}$	$\begin{aligned} & 7 \\ & ? \end{aligned}$

## TABLE 840.—BULK MODULI OF ROCK-FORMING MINERALS*

The bulk modulus, $K$, of a compact holocrystalline rock can be obtained with a fair degree of accuracy except for low pressures by adding the proportionate bulk moduli of the constituent minerals.

Pressure, $P$, and $K \times 10^{-8}$ are in bars.

	Pressure in bars		
Mineral	1	2,000	10,000
Feldspar: Orthoclase	. 527	. 538	. 603
Oligoclase, $\mathrm{Ab}_{7 \times} \mathrm{An}_{122}$	. 582	. 592	. 641
Labradorite, $\mathrm{Ab}_{4} \mathrm{An}_{52}$	. 654	. 671	. 758
Pyroxene: Orthorhombic .....		1.00	1.00
Diopside ....	. 935	. 935	. 935
Augite ..	. 981	. 981	. 981
Hornblende: Actinolite	. 769	. 769	. 769
Mica: Phlogopite ....	. 431	. 451	. 516
Quartz .........	. 373	. 383	.437
Calcite	. 736	. 741	. 758
Magnetite	1.818		
Corundum	2.44	-	-
Tourmaline	1.22	-	-
Rutile	1.72	-	-

[^353]$P$ (pressure), and $K, R . E$ (bulk, rigidity, and Young's moduli resp), are given in bars ( 1 bar $=10^{0}$ dynes $\left./ \mathrm{cm}^{2}\right) . V_{p}$ and $V_{s}^{\prime}$ (compressional and distortional wave velocities respectively), are in $\mathrm{km} / \mathrm{sec} . \sigma$ is Poisson's ratio and $\rho$ is the density. $\rho$ is in $\mathrm{g} / \mathrm{cm}^{3}$.
Dynamically determined elastic constants are surrounded by parentheses (single parenthesis represents seismic data) ; the others are static determinations. Italicized figures are calculated. In places where insufficient data were present to complete the calculations, figures in square brackets have been assumed. In the " $P$ " column m.s. denotes mean stress.

The basis of this table includes data of L. H. Adams and Williamson, F. D. Adams and Coker, Bridgman and others.

Name	$P$	$K \times 10^{-18}$	$\stackrel{\sigma}{0}$	$R \times 10^{-0}$	$E \times 10^{-8}$	${ }^{\rho}$	$V_{p}$	$V$.
Granite		(.439)	(.32)	(.18)	(.46)	2.62	(5.05)	(2.62)
	m.s. 350	. 303	. 23	. 20	. 50			
	2000	. 472	[.28]	. 26	. 62	2.62	5.53	3.05
	10000	. 552	[.28]	. 29	. 73	2.67	5.91	3.26
Basalt	200	(.476)	(.30)	(.22)	(.58)	2.91	(5.06)	(2.72)
	2000	. 538	[.28]	. 28	. 71	2.91	5.59	3.08
	10000	. 654	[.28]	. 34	. 86	2.95	6.11	3.38
		. 606	. 24	. 35	. 84	2.85		
Gabbro, norite, diabase.	12	(.041)	(.27)	(.35)	$\begin{gathered} (.88) \\ (. .911)) \end{gathered}$	2.85	(6.22)	(3.49)
	600	. 641			(.91))			
	2000	. 700	[.27]	. 38	. 97	2.85	6.50	3.65
	10000	. 714	[.27]	. 39	. 99	2.89	6.54	3.67
Olivine diabase, olivine gabbro	$1\{$	. 736	. 28	. 38	$\stackrel{1.01}{(.985))}$	$\stackrel{3.00}{-}$ -	6.46	3.57
	m.s. 350	. 741	. 28	. 37	. 95	3.00		
	600	. 752	-	-				
	2000	. 806	[.28]	. 42	1.06	3.01	6.7	3.7
	10000	. 826	[.28]	. 43	1.09	3.08	6.7	3.7
Peridotite dunite	1	1.064	[.27]	. 58	1.47	3.28	7.5	4.2
	2000	1.191	[.27]	. 65	1.64	3.28	7.9	4.4
	10000	1.265	[.27]	. 69	1.74	3.29	8.15	4.57
Obsidian	1	. 345	. 17	-	( (.682))	2.34	-	
	2000	. 352		-	-	2.35		
Basalt glass	10000	. 352		-	-	2.41		
Cryst limestone, parallel bed	$\left.\begin{array}{r}2000 \\ 10000\end{array}\right\}$	. 690	$\{1 . \overline{27}]$		95	2.85	6.4	
	$\begin{array}{r} 100005 \\ \text {.m.s. } 350 \end{array}$	. 437	[1.27]	. 37	. 95	2.89	6.4	3.6
	7000	. 715	[.28]	. 37	. 94	2.71	6.68	3.69
	1	(.439)	(.29)	(.17)	(.55)	2.71	(5.2)	(2.81)
		. 402	. 26	. 23	. 57	2.69		-
Quartzitic sandstone	1	. 374	. 21	. 27	. 65	2.64	5.3	1.9
	2000 10000	.383 .437	[. $\overline{27}]$	24	. 60	2.70	5.4	2.9

* Compiled by R. W. Goranson.


## TABLE 842.-AGE OF EARTH, MOON, AND STRATA

The age of the earth is probably from ( 1.3 to 3 ) $\times 10^{8}$ years (radioactive data). Its liquefaction was probably complete within 5,000 years, solidification within 15,000 years from start. The age of the earth's crust may be taken as roughly 2,000 million years.

Ages of geologic strata

Late Oligocene ....	$37,000,000 \mathrm{yr}$	Late pre-Cambrian (?). $\quad 587,000,000 \mathrm{yr}$
Permian-Carboniferous	204,000,000	Middle pre-Cambrian ... 987,000,000 to
Permian to Devonian...	$\begin{aligned} & 239,000,000 \text { to } \\ & 374,000,000 \mathrm{yr} \end{aligned}$	Lower pre-Cambrian ... $1,087,000,000 \mathrm{yr}$

The diagram, figure 31, prepared by the U. S. Naval Observatory, shows the paths of total and total-annular eclipses in the United States during the twentieth century. The following data for total United States solar eclipses betwcen 1950 and 2000 are taken from the complete table of eclipses from A.D. 1900-A.D. 2000, given by D. H. Menzel. ${ }^{202}$

Date	Beginning		"Noon"		End		Maximum duration	
	Lati- tude	Longitude	Latitude	Longitude	Latitude	Longitude		
June 30, 1954.	$+42^{\circ}$	+ $99^{\circ}$	$+62^{\circ}$	+ $5^{\circ}$	$+26^{\circ}$	$-74^{\circ}$	$2{ }^{\text {m }}$	$40^{\circ}$
October 2, 1959	+42	+ 72	$+23$	+ 6	+ 7	-56	3	
July 20, 1963.	+43	-143	+62	+126	+33	+44	1	
March 7, 1970	-2	+149	+25	+ 88 +	+55	+23	3	
February 26, 1979	+47	+140	+61	+ 77	+77	+34	3	

[^354]

Fig. 31.-Curves showing the paths of solar eclipses during the twentieth century.

TABLE 843.-SPECTRUM CLASS AND PROPER MOTIONS*

Limits of pm	0	B	$A$	$F$	G	K	M	$N$
".00 to "02.	13	238	392	97	107	218	48	3
. 02 to . 04	6	164	533	115	91	327	54	4
. 04 to . 10.	1	88	476	231	168	393	99	2
. 10 to . 20.			160	245	70	242	27	1
. 20 to . 45.	$\cdots$	1	31	168	56	88	8	
.45 to .80			1	46	20	23	1	
. 80 to 2.00 .			1	12	19	13	.	
Over 2"00				1	6	6		
Mean pm	"22	" 03	"06	"17	."18	".12	".07	".04
Percentage of $\mu>": 20$	0	. 2	5	25	18	10	4	0

[^355]|  | Mean area in <br> $10^{-6}$ of sun's <br> hemisphere | Mean <br> duration | Class | Mean area in <br> $10^{-6}$ of sun's <br> hemisphere | Mean <br> duration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Class | 217 | 17 min | 3 | 1266 | 62 min |
| 1 | 570 | 29 | $4+$ | 2350 | 3 hr |

The following paragraphs are reprinted from F. Hoyle, "Some Recent Researches in Solar Physics," p. 36, Cambridge Lniversity Press, $1949 . \dagger$

Flares are a particular class of bright reversal characterized by sudden commencements. The properties of flares are:
(a) They are roughly classified in order of increasing importance as $1,2,3$, and $3+$. The area of the flare, seen in projection against the solar disk, is, at present, used as the criterion of importance. Flares of class $3+$ are rare, occurring on an average only once or twice per year. At the other extreme, flares of class 1 occur every few hours during periods of marked solar activity.
(b) The effective line width in $H$ a at peak intensity varies between 1.75 A and 16 A . being approximately proportional to the importance of the flare. $H \beta, H \gamma$ show lesser widths, but the data for these are somewhat meager.
(c) The contour of the bright emission is nearly symmetrical about the normal position of $H a$ and is independent of the position of the flare upon the disk (there is invariably a greater extension in the red wing than in the blue wing, which increases with the importance of the flare, reaching 0.7 A for those of the greatest intensity). Doppler displacements of the contour indicating large-scale turbulence of the emitting material in the line of sight have not been observed in excess of $\pm 10 \mathrm{~km} / \mathrm{sec}$.
(d) Flares are associated with sunspots, and in particular with complicated spot groups. The size of a sunspot, however, is not always a criterion of flare activity, some large spots being relatively inactive. The emitting material is mainly situated either in the reversing layer or the lower chromosphere, and the emission occurs in a region with fixed position relative to the position of the spot group. The areas of flares projected on the solar disk vary from a few hundred millionths up to the values exceeding 10,000 millionths of the area of the disk. The duration of a flare is usually of the order of an hour or less, but lifetimes $>5$ hours occasionally occur.
(e) Flares are strongly correlated with a number of terrestrial effects. Radio fadeouts, due to increased ionization in the $D$-layer, occur simultaneously with the visible appearance of intense flares. Great magnetic storms are associated with flares of classes 3 and $3+$. The magnetic disturbances commence about 26 hours after the appearance of the flare, and are most marked when the flare is near the center of the disk. Finally, there is a growing body of evidence that the sun emits cxceptionally high intensities in the radio meter wave-band during flares.

[^356]TABLE 845.-CONSTELLATION ABBREVIATIONS (Astron. Union, 1922)

Andromeda ... And	Circinus ...... Cir	Lacerta ...... Lac	Pisces Austr . . PsA
Antlia .... .... Ant	Columba ...... Col	Leo ........... Leo	Puppis ........ Pup
Apus ......... Aps	Coma Beren . . Com	Leo Minor .... LMi	Pyxis ........ Pyx
Aquarius ..... Aqr	Corona Aust . . CrA	Lepus ......... Lep	Reticulum .... Ret
Aquila ........ Aql	Corona Bor ... CrB	Libra ......... Lib	Sagitta ....... Sge
Ara.......... Ara	Corvus ........ Cry	Lupus ........ Lup	Sagittarius .... $\mathrm{Sgr}_{\text {Sc }}$
Aries .......... Ari	Crater ......... Crt	Lynx ......... Lyn	Scorpius ...... Sco
Auriga ....... Aur	Crux .......... Cru	Lyra ......... Lyr	Sculptor ...... Scl
Roötes ....... Boo	Cygnus ....... Cyg	Mensa ........ Men	Scutum ........ Sct
Caelum ....... Cae	Delphinus ..... Del	Microscopium . Mic	Serpens ...... Ser
Camelopardalis. Cam	Dorado ....... Dor	Monoceros .... Mon	Sextans ......S Sex
$r_{\text {ancer }}$....... Cnc	Draco ........ Dra	Musca ........ Mus	Taurus .......T Tau
Canes Venatici. CVn	Equaleus ..... Equ	Norma . ...... Nor	Telescopium . . Tel
Canis Major .. CMa	Eridanus ...... Eri	Octans ....... Oct	Triangulum ... Tri
" Minor .. CMi	Fornax ....... For	Ophiuchus .... Oph	" Austr ... TrA
Capricornus ... Cap	Gemini ....... Gem	Orion ........ Ori	Tucana
Carina ........ Car	Grus ......... Gru	Pavo ......... Pav	Ursa Major ... UMa
Cassiopeia .... Cas	Hercules . . . . Her	Pegasus .......Peg	" Minor ... UMi
Centaurus . . . . . Cen	Horologium .. Hor	Perseus ...... Per	Vela $\ldots . . . . . V{ }^{\text {Vel }}$
Cepheus ...... Cep	Hydra ........ Hya	Phoenix ...... Phe	Virgo ........Vir
Cetus ......... Cet	Hydrus ....... Hyi	Pictor ........ Pic	Volans .......V Vol
Chamaeleon ... Cha	Indus ......... Ind	Pisces ........ Psc	Vulpecula .... Vul

The following table was taken from Edlén's paper. ${ }^{283}$ It summarizes the results of the identification of 19 of the coronal lines caused by forbidden transitions. Fe X, XI, XIII, XIV, XV; Ni XII, XIII, XV, XVI ; Ca XII, XIII, XV; A X, XIV. Two of these identifications, namely $\lambda 4359$ attributed to A XIV and $\lambda 5694$ attributed to Ca XV, are somewhat questionable and therefore these two identifications are given with a (?) in the table. All these identified lines are caused by magnetic dipole radiation.

The first column gives the wavelengths of the coronal lines taken from Mitchell's compilation ${ }^{24}$ and reduced values from later work by Lyot. ${ }^{2 n 5}$. The second column gives the corresponding wave numbers. The third and fourth columns give the intensities as measured by Grotrian and Lyot respectively. The proposed identification is given in column five and the transition probabilities in column six. The seventh and eighth columns give the excitation potential and ionization potentials of the next preceding ionization stages.

A	$\mathrm{cm}^{-1}$	Intensity	Identification	${ }_{\text {sec }}{ }_{\text {amm }}{ }^{\text {m }}$	EP	$1 P^{\dagger}$
3328	30039	1.0	Ca XII $2 s^{2} 2 \mathrm{p}^{5}{ }^{2} \mathrm{P}_{1 / 2}-{ }^{2} \mathrm{P}_{11 / 2}$	488	3.72	589
3388.1	29507	16	Fe XIII $3 \mathrm{~s}^{2} 3 \mathrm{p}^{21} \mathrm{D}_{2}-{ }^{3} \mathrm{P}_{2}$	87	5.96	325
3454.1	28943	2.3				
3601.0	27762	2.1	Ni XVI $3 \mathrm{~s}^{2} 3 \mathrm{p}{ }^{2} \dot{\mathrm{P}}_{11 / 2}-{ }^{2} \mathrm{P}_{1 / 2}$	193	3.44	455
3642.9	27443		Ni XIII $3 \mathrm{~s}^{3} 3 \mathrm{p}^{4} \mathrm{D}_{2}-{ }^{3} \mathrm{P}_{1}$	18	5.82	350
3800.8	26303					
3986.9 4086.3	25075 24465	. 7	Fe XI $3 \mathrm{~s}^{2} \mathrm{sp}^{4}{ }^{1} \mathrm{D}_{2}-{ }^{3} \mathrm{P}_{5}$	${ }_{319}^{9.5}$	4.68	261
4231.4	23626	2.6	Ni XII $3 \mathrm{~s}^{2} 3 \mathrm{p}^{5} \mathrm{P}^{1 / 2}-{ }^{2} \mathrm{P}_{11 / 2}$	237	2.93	6
4311	23190					
4359	22935		? A XIV 2s ${ }^{2} 2 \mathrm{p}{ }^{2} \mathrm{P}_{11 / 2}-{ }^{2} \mathrm{P}_{1 / 2}$	108	2.84	682
4567	21890	1.1				
5116.03	19541.0	$4.3 \quad 2.2$	Ni XIII $3 \mathrm{~s}^{2} 3 \mathrm{p}^{4} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{2}$	157	2.42	350
5302.86	18852.5	100100	Fe XIV 3s $\mathrm{s}^{2} 3 \mathrm{p}^{2}{ }^{2} \mathrm{P}_{11 / 2}-{ }^{2} \mathrm{P}_{1 / 2}$	$\epsilon 0$	2.34	355
5536	18059		A X ${ }^{\text {c }} \mathrm{s}^{2} 2 \mathrm{p}^{5} \mathrm{~S}^{2} \mathrm{P}_{1 / 2}-{ }^{2} \mathrm{P}_{1 / 2}$	106	2.24	421
5694.42	17556.2	1.2	? Ca XV $\mathrm{s}^{2} 2 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{0}$	95	2.18	814
6374.51	15683.2	8.118	Fe X ${ }^{\text {d }}{ }^{2} \mathrm{Sp}^{5}{ }^{2} \mathrm{P}_{1 / 2}-{ }^{2} \mathrm{P}_{1 / 2}$	69	1.94	233
6701.83	14917.2	5.42 .0	Ni XV $3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{0}$	57	1.85	422
7059.62	14161.2	2.2	$\mathrm{Fe} \mathrm{XV} \quad 3 \mathrm{~s}{ }^{3} \mathrm{p}{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{1}$		31.7	390
7891.94	12667.7	13	Fe XI $3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}{ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{2}$	44	1.57	261
8024.21	12458.9		$\mathrm{Ni} \mathrm{XV} \quad 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{2}-{ }^{3} \mathrm{P}_{1}$	22	3.39	422
10746.80	9302.5	55	Fe XIII $3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{1}-{ }^{3} \mathrm{P}_{0}$	14	1.15	325
10797.95	9258.5	35	Fe XIII $3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{2} \rightarrow{ }^{3} \mathrm{P}_{1}$	9.7	2.30	325

* Prepared by Edith J. Tebo, Harvard College Observatory.
${ }_{28}{ }^{26}$ Zeitschr. Astrophys., vol, 22, p. 30, 1943.
${ }^{204}$ Handbook d' $\mathbf{A}$ strophys., vol. 4, p. 324, 1929; vol. 7, p. 401, 1936.
285 Monthly Notices, Roy. Astron. Soc., vol. 99, p. 580, 1939.
$\dagger$ The ionization polential refers to the next lower stage.

TABLE 847.-THE CEPHEID PERIOD-LUMINOSITY CURVE*

					镸		
. 0	F 2.5	-. 31	-. 85	1.2	G 6	-2.39	$-3.77$
. 2	$F 5.5$	-. 68	-1.26	1.4	G 8	$-2.80$	-4.31
. 4	F 7.5	-1.01	$-1.74$	1.6	K. 5	$-3.25$	-4.99
. 6	G 0	-1.33	-2.25	1.8	K 2.5	-3.73	$-5.87$
. 8	G 2	-1.66	-2.74	2.0	M 0	-4.24	-7.52
1.0	$G 4$	-2.02	-3.26				

[^357]| $\lambda$ | Classification | Excitation potential | Intensity |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 7027 | 7662 |
| H I |  |  |  |  |
| 4340.5 | $2{ }^{2} \mathrm{~S}, \mathrm{P}-5^{2} \mathrm{~S}, \mathrm{P}, \mathrm{D}$ | 13.0 | 39 | 40 |
| 4861.3 | $2{ }^{2} \mathrm{~S}$, P $-4{ }^{2} \mathrm{~S}$ S, P, D | 12.7 | 100 | 100 |
| 6562.8 | $2{ }^{2} \mathrm{~S}, \mathrm{P}-3{ }^{2} \mathrm{~S}, \mathrm{P}, \mathrm{D}$ | 12.0 | 580 | 500 |
| He I |  |  |  |  |
| 3888.6 | $2 \mathrm{~s}{ }^{3} \mathrm{~S}-3 \mathrm{p}{ }^{8} \mathrm{P}$ | 22.9 | $<13$ | <25 |
| 4471.5 | $2 \mathrm{p}{ }^{3} \mathrm{P}-4 \mathrm{~d}^{3} \mathrm{D}$ | 23.6 | 6 | 5 |
| 5015.7 | $2 \mathrm{~s}{ }^{1} \mathrm{~S}-3 \mathrm{p}{ }^{1} \mathrm{P}$ | 23.0 | $5 \pm$ |  |
| 5875.6 | $2 \mathrm{p}{ }^{3} \mathrm{P}-3 \mathrm{~d}^{8} \mathrm{D}$ | 23.0 | 50 | 30 |
| 6678.1 | $2 \mathrm{p}{ }^{1} \mathrm{P}-3 \mathrm{~d}^{1} \mathrm{D}$ | 23.0 | 8 | 6 |
| He II |  |  |  |  |
| 4541.6 | $4{ }^{2} \mathrm{~S}, \mathrm{P}, \mathrm{D}, \mathrm{F}-9{ }^{2} \mathrm{~S}, \mathrm{P}, \mathrm{D}, \mathrm{F}, \mathrm{G}$ | 53.5 | 4 | 3 |
| 4685.8 | $3{ }^{2} \mathrm{~S}, \mathrm{P}, \mathrm{D}-4{ }^{2} \mathrm{~S}, \mathrm{P}, \mathrm{D}, \mathrm{F}$ | 50.8 | 39 | 60 |
| 5411.6 | $4{ }^{2} \mathrm{~S}, \mathrm{P}, \mathrm{D}, \mathrm{F}-7{ }^{2} \mathrm{~S}, \mathrm{P}, \mathrm{D}, \mathrm{F}, \mathrm{G}$ | 53.1 | 25 | 10 |
| C II |  |  |  |  |
| 4267.2 | $3 \mathrm{~d}^{2} \mathrm{D}-4 \mathrm{f}{ }^{2} \mathrm{~F}$ | 20.9 | 3 | 1 |
| N II |  |  |  |  |
| 5755.0 | $\left[2 \mathrm{p}^{2}{ }^{1} \mathrm{D}-2 \mathrm{p}^{21} \mathrm{~S}\right]$ | 4.0 | 30 |  |
| 6548.4 | $\left[2 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{1}-2 \mathrm{p}^{2}{ }^{1} \mathrm{D}\right]$ | 1.9 | 150 | $5 \pm$ |
| 6583.9 | $\left[2 \mathrm{p}^{23} \mathrm{P}_{2}-2 \mathrm{p}^{21} \mathrm{D}\right]$ | 1.9 | 260 | $10 \pm$ |
| O I |  |  |  |  |
| O II |  |  |  |  |
| 3726.2 | $\left[2 p^{24} \mathrm{~S}-2 \mathrm{p}^{32} \mathrm{D}_{1 / 2}\right]$ | 3.3 | 20 | 8 |
| 3729.1 | $\left[2 \mathrm{p}^{3}{ }^{4} \mathrm{~S}-2 \mathrm{p}^{8}{ }^{2} \mathrm{D}^{21 / 3}\right]$ | 3.3 | 11 | 5 |
| 7319.0 | $\left[2 \mathrm{p}^{3}{ }^{2} \mathrm{D}_{2 / /}-2 \mathrm{p}^{3{ }^{3 / 2} \mathrm{P}}\right.$ ] | 5.0 | P |  |
| 7330.4 | $\left[2 p^{3}{ }^{2} \mathrm{D}_{11 /}-2 \mathrm{p}^{3} \mathrm{P}\right.$ ] | 5.0 | P |  |
| O III |  |  |  |  |
| 4363.2 | [ $2 \mathrm{p}^{21} \mathrm{D}-2 \mathrm{p}^{2} \mathrm{~S}$ ] |  |  |  |
| 4959.5 | $\left[2 \mathrm{p}^{2} \mathrm{P}^{3} \mathrm{P}_{1}-2 \mathrm{p}^{2} 1{ }^{1} \mathrm{D}\right]$ | 2.5 | 430 | 350 |
| 5007.6 | $\left[2 \mathrm{p}^{23} \mathrm{P}_{2}-2 \mathrm{p}^{21} \mathrm{D}\right]$ | 2.5 | 1200 | 1000 |
| Ne III |  |  |  |  |
| 3868.7 | [ $2 \mathrm{p}^{4}{ }^{3} \mathrm{P}_{2}-2 \mathrm{p}^{4} \mathrm{D}$ ] | 3.2 | 95 | 80 |
| 3967.5 | $\left[2 p^{4} P_{1}-2 p^{4} \mathrm{D}\right]$ | 3.2 | 24 | <80 |
| Ne IV |  |  |  |  |
| 4714.1 | $\left[2 p^{3}{ }^{2} \mathrm{D}_{21 / 2}-2 \mathrm{p}^{3}{ }^{2} \mathrm{P}\right]$ | 7.7 | <6 | <10 |
| 4719.7 | $\left[2 p^{3}{ }^{2} \mathrm{D}_{1 / 2}-2 \mathrm{p}^{3} \mathrm{P}\right.$ ] | 7.7 | ... |  |
| Ne V |  |  |  |  |
| 3345.8 34258 | $\left[2 \mathrm{p}^{2}{ }^{3} \mathrm{P}_{1}-2 \mathrm{p}^{2}{ }^{1} \mathrm{D}\right]$ | 3.8 | 43 | P |
| 3425.8 | [ $\left.2 \mathrm{p}^{2} \mathrm{P}_{2}-2 \mathrm{p}^{21} \mathrm{D}\right]$ | 3.8 | 109 | P |
| S II |  |  |  |  |
| 4068.5. | $\left[3 p^{34} \mathrm{~S}-3 \mathrm{p}^{3}{ }^{2} \mathrm{P}_{1} /{ }^{1 / 3}\right]$ | 3.0 |  |  |
| 4076.5 6717.3 |  | 3.0 1.8 | 5 6 6 | ${ }_{5} .5$ |
| 6731.5 | $\left[3 \mathrm{p}^{3} \mathrm{~S}\right.$ S $3 \mathrm{p}^{\left.3{ }^{3} \mathrm{D}^{2 / 1 / 2}\right]}$ | 1.8 | 12 ) | 5 |
| A 1 V |  |  |  |  |
| 4711.4 | $\left[3 p^{34} \mathrm{~S}-3 p^{3}{ }^{2} \mathrm{D}_{21 / 2}\right.$ ] | 2.6 | <6 | <10 |
| 4740.3 | $\left[3 \mathrm{p}^{3} \mathrm{~S}-3 \mathrm{p}^{3} \mathrm{D}_{11 / 2}\right]$ | 2.6 | 10 | 10 |
| $\begin{aligned} & \mathrm{Fe} \mathrm{XII} \\ & 3871.9 \end{aligned}$ | $\left[3 p^{48} \mathrm{P}_{1}-3 \mathrm{p}^{4} \mathrm{D}\right.$ ] | 4.7 | <<95 | <<80 |

The above table, containing most of the strongest and/or important lines under nebular conditions, is taken from a more complete list." ${ }^{\text {"19 }}$ The brackets [] about a classification indicate a forbidden transition. These wavelengths are in all cases except Ne III and Ne V the values calculated from series analyses of the ions concerned. The last two columns give the observed intensities in the objects NGC 7027 and 7662. P indicates the line is present but out of the range covered by the observations and intensity estimates; $<$ represents a blend with a line classified otherwise, transition indicated probably an appreciable contributor; 《 is also a blend with a line classified otherwise, transition indicated probably is not an appreciable contributor.

[^358]The solar neighborhood distance of 50 light-ycars, explored chiefly through the motions of nearby stars. A large majority are of less than solar luminosity, most below naked-eye visibility. Only 40 percent of the stars known to be nearer than 16 light-years are brighter than the sixth magnitude. Exploring the solar neighborhood therefore involves a search for telescopic dwarf stars. Any body $1 / 100$ of sun's mass within 1,000 astronomical units ( .015 light year) would be detected by its disturbance on Neptune and Uranus even if invisible (Russell). Nearest known star is 4 light-years distant (Proxima Centauri, $m=11, M=15.5$ ).

Region of brighter stars extending 500 light-ycars. The great majority of naked-eye stars lie in this region, though some of unusually high intrinsic luminosity are farther away. It includes probably 500,000 telescopic stars. Studied by proper motions, trigonometric and spectroscopic parallaxes, and photometry.

The Milky Way with a radius of about 50,000 light-ycars. The stars within 5,000 light-years of the sun are a trifling part of the galactic system outlined by the globular clusters and Milky Way clouds. The stars are so remote that proper motions and spectroscopic analyses hopelessly fail. Statistical counts are of some help in the nearer parts. But most of our knowledge comes from eclipsing binaries, long-period variables, and Cepheids. The period-luminosity relation for Cepheid variables is the key to practically all distances $>$ a few 1,000 light-years.

The Clouds of Magellan, nearly 100,000 light-ycars distant, nearest of all external galaxies and the most easily studied. Great advantage, all of its varied manifestations are seen at practically the same distance. These phenomena include gaseous nebulae, star clusters, giant and supergiant stars, some 1,500 known Cepheids in the Larger Cloud. In this cloud 750 stars brighter than -5.0 abs mag and over 200,000 brighter than the 0.0 have been estimated.

The Supergalaxies, $1,000,000$ to $500,000,000$ light-years distant. Composed of clusters of extragalactic nebulae. The relative diameters and brightnesses have been determined for some of the supergalaxies. The most conspicuous is the Coma-Virgo cloud $A$, a stream of several hundred bright spiral, spheroidal, and irregular galaxies, about $10^{7}$ light-years distant ; its greatest length about one-half this. One of the richest and most distinct supergalaxies is in Centaurus.

## TABLE 850.-STELLAR SPECTRA AND RELATED CHARACTERISTICS*

The one-dimensional classification system.-The spectra of almost all the stars can be arranged in a continuous sequence, the various types connected in a series of imperceptible gradations. With two unimportant exceptions, the sequence is linear. According to the now generally accepted Harvard (or Draper) system of classification, certain principal types of spectrums are designated by letters- $P, W, O, B, A, F, G, K, M, R, N$, and $S$-and the intermediate types of suffixed numbers. A spectrum halfway between $B$ and $A$ is denoted by $B 5$ while those differing slightly from class $A$ in the direction of Class $B$ are called $B 8$ or $B 9$. Classes $R$ and $N$ apparcntly form one side chain, and class $S$ another chain, both branching from the main series near class $K$.

The two-dimensional classification system.-In addition to the larger characteristics used to determine the spectral class (temperature differences) there are smaller luminosity effects that depend mainly on differences in densities in the atmospheres of the stars. Thus one can distinguish betwcen dwarfs, giants, and supergiants. At Harvard, in 1897, Miss Maury was actually the first to denote certain stars by prefixing the letter " $c$ " to the spectral class. These stars are now known to be supergiants. Mount Wilson observers still use this letter "c" to denote supergiants, "g" for giants, and "d" for dwarfs. This $d M 5$ denotes a dwarf star of spectral type M5 (see Table 874). Morgan, Keenan, and Kellman have extended the classification even further. ${ }^{\text {T0 }}$ ) Their luminosity classes include not only giants (III) and dwarfs (V) but subgiants (IV) and several classes of supergiants (I: Ia, and Ib) and intermediates (II).

Almost all the stars can be classified on the above system. In addition to individual peculiar stars there are, however, groups of stars that cannot be given specific classifications, such as the $A$-type spectrum variables ${ }^{271}$ and the "metallic-line" stars. ${ }^{272}$

The colors of the stars, the degree to which they are concentrated into the region of the sky, including the Milky Way (Table 854), and the average magnitudes of their peculiar velocities in space (Tables 828 and 876 ) all show important correlations with spectral type. In the case of colors, the correlation is so close as to indicate that both spectrum and color depend almost entirely on the surface temperature of the stars. The correlation in the other two cases, though statistically important, is by no mean so close.

[^359]Part 1.-The Harvard spectrum classification

Class	Principal spectral lines   (absorption unless otherwise stated)	Example	Number than 6.25,	$\begin{gathered} \text { Percent } \\ \text { in } \\ \text { galactic } \\ \text { region } \end{gathered}$
$P$	Gaseous nebulae. Emission lines and bands of H, He I and II, and O II.		....	
W	Wolf-Rayet objects divided into two sequences: carbon, WC, have emission lines attributed to He I and II, C II, III, and IV, and O II, III, IV, have emission lines attributed to He I and II, and N III, IV, and V.	$\gamma$ Velorum	5	100
O	Lines of H, He I and II, O II and III, and N II and III.	$\xi$ Puppis	20	100
B	Neutral H and He, N II, and O II, and a few ionized lines of metals.	$\epsilon$ Orionis	696	82
A	H series at maximum, Ca II ( H and K ), and weak ionized metallic lines.	Sirius	1885	66
F	Ca II ( H and K ) strong, H lines fainter, metallic lines more abundant.	Canopus	720	57
G	H lines faint, Ca II ( H and K ) strong, many fine metallic lines.	The sun	609	58
$K$	Ca II ( H and K ) very strong, many neutral metallic lines. Spectrum faint in the violet.	Arcturus	1719	56
M	Molecular bands of TiO , lines of Ca I and II, and other metals. Long-period variables have emission H lines.	Antares	457	54
$S$	ZrO bands and metallic lines. Longperiod variables have emission H lines.	$r_{1}$ Gruis	0	$\ldots$
$R$	Bands of $\mathrm{C}_{2}, \mathrm{CN}$, and CH ; many metallic lines.	$\begin{gathered} \mathrm{BD} \mathrm{D} \\ -10^{\circ} 5057 \end{gathered}$	0	63
$N$	Bands of $\mathrm{C}_{2}, \mathrm{CN}$, and CH ; very little violet light.	19 Piscium	8	87
$Q$	Novae. Rapid spectral changes from early. supergiant type near maximum, through nebular stage, and finally to a Wolf-Rayet type.	$\ldots$	$\ldots$	$\ldots$

Part 2.-Prototypes for luminosity classification ${ }^{273}$

Class	Supergiants	Giants	Main sequence	Class	Supergiants	Giants	Main sequence
B 0	$\epsilon$ Ori	$\kappa$ Ori	$\zeta \mathrm{Oph}$	G 5	9 Peg	$\gamma \mathrm{Hya}$	$\kappa$ Cet
B 5	67 Oph	$\delta$ Per	$\kappa$ Hya	K2	56 Ori	$\kappa$ Oph	$\epsilon$ Eri
A 2	a Cyg	$\lambda$ UMa	$\zeta$ Vir	M 1	a Sco	75 Cyg	$B D+42.2296$
F0	a Lep	$\zeta$ Leo	$\mu$ Cap	M 5	a Her	56 Leo	$B D+4.3561$
F 8	$\gamma$ Cyg	1 Com	$\beta$ Vir				

For description of classification of Wolf-Rayet stars see reference, footnote 274. The "galactic region" here means the zone between galactic latitudes $\pm 30^{\circ}$, and including half the area of the heavens. 96 percent of the stars of known spectra belong to classes $A, F, G, K, 99.7$ percent including $B$ and $M$ (Innes, 1919). Henry Draper Catalog, 9 vols., 1918-24, and H. D. Extension, 2 vols., 1925-49, give positions, magnitudes, and spectra of nearly 360,000 stars. See also Yale Zone Catalogs, and the Bergedorf and Potsdam Spectral-Durchmusterungen.

[^360]TABLE 852．－PERCENTAGE OF STARS OF VARIOUS SPECTRAL CLASSES＊


The data are taken from the publications of the Harvard，McCormick，and Bergedorf Observ－ atories．The discontinuity in trend appearing between the visual and photographic groupings is in the sense to be expected．Ninety－nine percent of the stars brighter than magnitude 8.5 belong to the six classes listed；less than one percent have spectra of classes $P, W R, O, R, N, S$ ，and Peculiar，and such stars are even more uncommon among the fainter groupings．

Among stars brighter than sixth magnitude the percentages of dwarfs are as follows（Öpik et al．）：
F5
F． 8
G 0
G 5
15
K 0
5
$K 2$
3
K 5
$M$
0

A limited sampling in the Milky Way yields the following percentages of dwarfs among fainter stars（Nassau and McCrae）：

Photographic   magnitude	$F 8$ to $G 2$	$G 5$	$G 8$ to K 3
8 to 10	75	23	7
10 to 11	77	31	8
11 to 12	82	42	10

In higher galactic latitudes the percentages of dwarfs are higher ；thus in latitudes $31^{\circ}$ to $90^{\circ}$ dwarfs constitute about 17 percent of the $K 0$ and $K 2$ stars of visual magnitude 10.4 （Janssen and Vyssotsky）．Among the $M 0$ and $M 8$ stars of all latitudes between visual magnitudes 8.5 and 10.53 percent are dwarfs（Dyer and Vyssotsky）．

[^361]TABLE 853．－THE LOCAL FAMILY OF GALAXIES ${ }^{275}$

Member	Type	Modulus $\dagger$		Distance （corrected for   Lat effect）	$M_{p g}$	Diameter	
		Ohs	Corr			$\overbrace{\text { pparent }}$	Linear
Our galaxy	Sb						24 kpc
M 31 ．．．．	Sb	22.4	21.8	231 kpc	－17．9	$3.2{ }^{\circ}$	12.9
LMC	I	17.1	16.7	22 kp	－15．9	$12^{\circ}$	4.6
M 33	Sc	22.3	21.9	239	－14．9	$62^{\prime}$	4.3
SMC	I	17.3	17.0	25	－14．5	$8^{\circ}$	3.6
M 32	E 2	22.4	21.8	231	－12．9		
Fornax system	E	21.0 ：	20.8 ：	142：	－11．9：	$50^{\prime}$	2.1 ：
NGC 205	E 5p	22.4	21.8	231	－11．5	15.8	1.1
NGC 6822	I	21.6	21.0	161	－10．8	$20^{\prime}$	． 94
IC 1613	I	22.0	21.8	225	－10．8	$17^{\prime}$	1.1
Sculptor system		19.4	19.2	69	－10．6	$45^{\prime}$	． 90
NGC 185	E	$22.4 \pm$	21．5土	204士	－10．6	14.5	． 86
NGC $147 \ldots$		$22.4 \pm$	$21.5 \pm$	204土	－10．3	14.1	． 83

[^362]
# TABLE 854.-GALACTIC CONCENTRATION OF STARS OF VARIOUS SPECTRAL CLASSES* 

Part 1.-Number of stars per 100 square degrees


The data are taken from the publications of the Harvard, McCormick, and Bergedorf Observatories. The spectral groupings are the same as in the preceding table. Absorption accounts for the apparent discrepancy in low latitudes between the numbers of early type stars in the last line of the visual magnitudes and those in the first line of the photographic magnitudes.

A measure of apparent galactic concentration may be found from the ratios of the star numbers in low latitudes to those in high latitudes. We obtain the figures given in Part 2:

Part 2.-Index of apparent galactic concentration

Visual magnitude	$B$	A	F	G	K	M
$<6.0$	22	2.8	2.3	2.1	1.2	1.9
6.0 to 7.0		4.0	1.9	1.2	1.5	3.7
7.0 to 8.25		10	1.5	1.3	1.7	2.2
8.5 to 9.4		24	4.2	1.2	2.7	
9.5 to 10.4		76	12	1.8	2.3	9
Photographic magnitude						
9.5 to 10.5	.	56	4.8	1.8	2.4	2.1
10.5 to 11.5		97	16	2.5	2.9	3.5
11.5 to 12.5	.	99	35	2.9	3.5	5.5

The irregularities here are attributable in part to inadequate sampling.
Among the stars of the main sequence the true concentration increases with the stellar mass; the true concentration of the red giants is relatively low. The $W, O$, and $N$ stars show high apparent concentration to the Milky Way as do the Cepheids, and planetary nebulae; on the other hand, the long-period variables show little concentration and the cluster-type variables even less.

[^363]TABLE 855.-MEAN ANNUAL PARALLAX FOR STARS*
Part 1.-Stars of given visual magnitude and galactic latitude

Mag	$0^{\circ}-20^{\circ}$	$20^{\circ}-40^{\circ}$	$40^{\circ}-90^{\circ}$	Mag	$0^{\circ}-20^{\circ}$	$20^{\circ}-40^{\circ}$	$40^{\circ}-90^{\circ}$
3.0	$\because 027$	$\because 036$	$\because .036$	9.0	$\because 0043$	$\because 0047$	$\because 0073$
4.0	.020	.025	.027	10.0	.0032	.0037	.0057
5.0	.015	.017	.020	11.0	.0023	.0030	.0045
6.0	.011	.012	.015	12.0	.0018	.0024	.0034
7.0	.0080	.0086	.0117	13.0	.0014	.0020	.0027
8.0	.0059	.0062	.0092	14.0	.0011	.0016	.0021

These tabular values have been obtained by combining and smoothing the secular parallaxes derived at Groningen and McCormick together with mean parallaxes for fainter stars derived at Leiden. To obtain annual parallaxes from secular parallaxes a solar velocity of 19 kilometers per second has been assumed. Similarly the leiden figures rest on certain assumptions as to the peculiar motions of faint stars. Recent studies of the space motions of stars more than 500 parsecs from the plane of the galaxy indicate that the annual parallaxes listed here may well be systematically too large for stars fainter than tenth magnitude in the higher latitudes.

Some idea of the dependence of the mean parallaxes on the spectral type may he gained from Part 2. Here the probable error of a secular parallax is approximately 0.001 .

Part 2.-Mean parallaxes according to spectral class for stars of visual magnitude 10.0 (latitude $0^{\circ}$ to $90^{\circ}$ )

Spectral class	Secular parallax	Solar velocity	$\begin{gathered} \text { Innual } \\ \text { parallax } \end{gathered}$
$B 8$ to $A 3$	".007	$16 \mathrm{~km} / \mathrm{sec}$	"0021
$A 5$ to $F 2$	. 011	17	. 0031
F 5 to $G 0$	. 022	18	. 0058
K0 to K2	. 014	20	. 0033
$g M 0$ to $g M 8$	. 005	22	. 0011

* Prepared by A. N. Vyssotsky, University of Virginia.

TABLE 856.-SPECTRUM CLASSES AND TEMPERATURES OF STARS*

${ }_{\substack{\text { Spectral } \\ \text { type }}}^{\text {cen }}$	Observed		Temperature by several methods, ${ }^{\circ} \mathrm{K}$				
	Heat	Water-cell	Heat	index			
	index	al) sorption Mag	$\lambda 0.555 \mu$	$\lambda 0.529 \mu$	Water-cell absorption	$\text { index }{ }^{276}$	Ioniza tion
B 0	. 05	. 20				$25000^{\circ}$	20000
B 5	. 01	. 23				15500	15000
$A 0$	. 00	. 26				10700	10000
A 5	. 02	. 30			$7500^{\circ}$	8530	8400
F0	. 15	. 36	$6750^{\circ}$	$7300^{\circ}$	6200	7500	7500
F 5	. 30	. 41	5760	6160	5450	6470	7000
$d G 0$	. 32	. 42	5700	6100	5350	6000	
$d G 5$	. 39	. 47	5350	5750	4920	5360	
DK 0	. 55	. 54	4820	5100	4460	4910	
$d K 5$	1.10	. 76	3720	3980	3550	4150 †	
dM 0	1.40	. 87	3400	3650	3260	$3600 \ddagger$	
$d M 2$	2.1	1.14	2870	3060	2780	3200	
$g G 0$	. 47	. 50	5000	5450	4700	5200	5600
gG 5	. 65	. 60	4550	4870	4140	4620	5000
gK 0	. 90	. 70	4020	4300	3750	4230	4000
gK 5	1.57	. 93	3240	3480	3130	3580	3000
g $M 0$	1.86	1.01	3030	3250	2980	3400	3000
gM 2	2.2	1.14	2810	3000	2810	3200	
gM 4	3.1	1.30	2400	2590	2550	2930	
$g M 6$	4.2	1.46	2050	2200	2390	2750	
gM 8	5.2	1.62	1780	2000	2250		
Mc Max	4.4	1.5	1990	2160	2350		
Mc Min	8.9	2.2			1830		

[^364]TABLE 857.—STARS KNOWN TO BE WITHIN 5 PARSECS OF THE SUN *

	$\begin{aligned} & \text { R A } 1950 \text { Dec } \\ & \text { h m } \end{aligned}$	$m$ v	St	$\stackrel{ }{\prime \prime}$	M	${ }^{\mu}$	$\theta$	$V \mathrm{rad}$
a Cen A	$1436.2-60^{\circ} 38^{\prime}$	. 3	dG 3	. 755	4.7	3.68	$281{ }^{\circ}$	- 22
a Cen B	14 36.2-60 38	1.7	dK 2	. 755	6.1	3.68	281	- 22
a Cen C	14 26.3-62 29	11.5	$d M$ :	. 778	16.0	3.85	282	
+ 4:3561	$1755.4+433$	9.4	dM 5	. 544	13.1	10.26	356	-110
W 359	$1054.1+719$	13.8	dM 6	. 402	16.8	4.70	235	+13
L 726-8 A	$136.4-1813$	12.4	dM 6 c	. 4 :	15.4	3.38	80	+ 30
L 726-8 B,	$136.4-1813$	12.9	dM $6 e$	. 4 :	15.9	3.38	80	+ 30
$+36: 2147 \mathrm{~A} \dagger$	$1100.6+3618$	7.5	dM 2	. 390	10.5	4.78	187	-87
a CMa A.	$642.9-1639$	$-1.6$	A 0	. 378	13	1.32	203	- 8
a CMa B	6 42.9-16 39	8.5	$F$	. 378	11.4	1.32	203	8
R 154	18 46.7-23 54	10.5	dM 5	. 354	13.2	. 74	106	0
R 248	$2339.4+4355$	12.2	dM 6	. 318	14.7	1.82	176	-81
$\epsilon$ Eri	$330.6-938$	3.8	dK2	. 301	6.2	. 97	271	+ 15
61 Cyg A	$2104.7+3830$	5.6	dK 5	. 298	8.0	5.21	52	- 64
61 Cyg B	$2104.7+3830$	6.3	dK 7	. 298	8.7	5.21	52	-64
$\tau \mathrm{Cet}$	1 41.7-16 12	3.6	$d G 7$	. 298	6.0	1.92	296	-16
a CMi A	$736.7+521$	. 5	$d F 4$	. 294	2.8	1.25	214	- 4
a CMi B	$736.7+521$	10.8		. 294	13.1	1.25	214	
L 789-6	$2235.7-1536$	12.3	dM 6	. 293	14.6	3.27	46	- 60
$\epsilon$ Ind	21 59.6-5700	4.7	$d K^{\prime} 5$	. 288	7.0	4.69	123	- 40
R 128	$1145.1+107$	11.0	dM 5	. 288	13.3	1.39	153	$-12$
+ 59:1914 A	$1842.2+5933$	8.9	dM 3	. 285	11.2	2.28	324	+ 2
$+59: 1915$ B	$1842.2+5933$	9.7	dM 4	. 285	12.0	2.28	324	
+43:44 A $\dagger$	$015.4+4344$	8.1	dM 3	. 279	10.3	2.90	82	+ 8
$+43: 44 \mathrm{~B}$	$015.4+4344$	10.8	$\operatorname{sd} M 14 \mathrm{c}$	. 279	13.0	2.90	82	+ 8
-36:9694	23 02.6-36 09	7.3	dM 1	. 277	9.5	6.91	79	+ 10
-44:612	5:09.7-45:00	9.0	sdM 0	. 262	11.1	8.74	131	+242
+ 5:1668	$724.7+528$	10.1	dM 5	. 262	12.2	3.76	171	+ 27
-39:8920	21 14.3-39 04	6.6	dM 0	. 257	8.8	3.46	251	+ 22
+56:2783 A	$2226.6+5726$	9.8	dM 4	. 256	11.8	. 86	246	- 24
+56:2783 B	$2226.6+5726$	11.2	dM 6	. 256	13.2	. 86	246	- 24
R 614 AB $\dagger$	$626.8-246$	11.6	$d M 6 e$	. 256	13.6	1.00	131	+ 25 :
-12:4523	$1627.5-1232$	9.9	dM 4	. 253	11.9	1.18	182	-18.
vMa 1	$046.6+510$	12.3	I) $F$	. 245	14.2	2.98	155	+238
W 424 A	$1230.8+918$	12.7	dM 7	. 225	14.5	1.80	279	
W 424 B	$1230.8+918$	12.7	dM 7	. 225	14.5	1.80	279	
Co-46: 11540	17 24.9-46 51	9.7	dM 3	. 224	11.5	1.04	147	
-37:9435	0 02.5-37 36	8.5	dM 3	. 222	10.2	6.07	113	+ 24
+68:946	$1736.7+6823$	92	dM 3	. 218	10.8	1.31	197	-17
+ $50: 1725$	$1008.3+4942$	6.7	$d K 8$	. 218	8.4	1.45	249	- 27
-49:11439	21 30.3-49 14	9.0	dM 2	. 212	10.6	. 81	185	
-15:6290	22 50.7-14 31	10.2	dM 5	. 211	11.8	1.11	123	+ 10
CO-44: 11909	17 33.4-44 16	10.5	dM15	. 210	12.1	1.15	217	
a Aql	$1948.3+844$	. 9	A 4	. 206	2.5	. 66	55	- 26
L 145-141	$1142.7-6434$	12.1	I) $A$	. 204	13.6	2.68	97	
+43:4305	$2244.7+4405$	10.1	dM 5	. 203	11.6	. 86	237	
$\mathrm{o}_{2} \mathrm{Erj}$ A	$413.0-744$	4.5	dK 0	. 200	6.0	4.08	213	- 42
$0_{2}$ Eri B	$413.0-744$	9.4	DA	. 200	10.9	4.08	213	- 42
$c_{2}$ Eri C	4 13.0-7 44	11.1	dM 5c	. 200	12.6	4.08	213	- 42
Grw+79:3888	$1145.4+7858$	11.0	dM 4	. 200	12.5	87	57	-120

The stars have been designated by their $R I$ or $C P D$ numbers and only if neither of these was available, by their Cordoba Durchmusterung numbers: for very faint stars the discoverer's numbers have had to be used. $p=$ parallax, $\mu=$ proper motion, $m=$ magnitude, $M=$ absolute magnitude, $V_{\text {rad }}=$ radial velocity, $S_{p}=$ spectrum, $\theta=$ position angle.

[^365]
## TABLE 858.-MASSES OF STARS FOR BINARIES WITHIN 10 PARSECS FROM THE SUN*

This table contains all visual binary stars within 10 parsecs for which the orbital elements and parallax are well determined.
The sum of the masses follows from the harmonic relation:

$$
M_{1}+M_{2}=\frac{a^{3}}{P^{2}}
$$

where $a$ is the semimajor axis of the relative orbit, expressed in astronomical units, $P$ the period in years; the masses are referred to the sun's mass as unit. For the majority of these binaries the mass-ratio is known, thus permitting a determination of the masses of the individual component.

Star	Parallax	A ${ }_{\text {U }}$	$\underset{\text { years }}{P}$	$\begin{gathered} \text { Sum of } \\ \text { masses } \\ M_{1}+M_{2} \end{gathered}$	Separate masses	
					$M_{1}$	$M_{2}$
$\eta$ Cas	"184	67.9	526	1.13	. 69	. 44
$p$ Eri	. 161	52	251	2.22		
$\mathrm{O}_{2}$ Eri B, C	. 202	34.1	248	. 64	. 44	. 20
Sirius	. 381	20.0	49.94	3.21	2.15	1.06
Procyon	. 287	15.8	40.65	2.37	1.74	. 63
$\xi$ UMa	. 129	19.7	59.86	2.13	. 98	1.15
$a$ Cen A, B	. 756	23.2	80.09	1.92	1.06	. 86
$\xi$ Boo	. 142	34.4	149.95	1.81	. 96	. 85
$\zeta$ Her	. 102	13.24	34.42	1.96	1.12	. 84
$-8^{\circ} 4352$	. 148	1.28	1.72	. 70		
Fu 46	. 155	4.58	13.12	. 56	. 31	. 25
HR 6416	. 132	37.4	242	. 89	.	
HR 6426	. 147	12.5	42.2	1.09	.	.
$\mu$ Her B, C	. 109	11.8	43.0	. 87		
$7^{\circ} \mathrm{Oph} . .$.	. 197	23.14	87.85	1.61	. 89	. 72
61 Cyg	. 294	83.5	720	1.12	. 69	. 43
Krü 60	. 256	9.23	44.52	. 40	. 26	. 14

[^366]
## TABLE 859.-THE FIRST-MAGNITUDE STARS ARRANGED IN ORDER OF BRIGHTNESS *

Name	$\underset{\mathrm{h}}{\mathrm{R}} \underset{\mathrm{~m}}{\mathrm{~A}} 1950$	Dec	${ }_{m}^{m_{v}}$	$s p$	$\mu$	$\theta$	$\underset{\mathrm{km} / \mathrm{s}}{V}$	$p$	$M_{\text {abs }}$	
Sirius ${ }^{\dagger}$	642.9	$-16^{\circ} 39^{\prime}$	$-1.6$	$A 0$	$1: 32$	$203{ }^{\circ}$	-8	"378	+1.3	
Canopus	622.8	-52 40	-. 9	$c F 0$	. 02	47	+20	. 012	-5.5	
a Centauri $\dagger \ddagger$	1436.2	-60 38	. 1	$d G 3$	3.68	281	-22	. 755	$+4.5$	
Vega ${ }^{\text {8 }}$	1835.2	+38 44	. 1	A 0	. 34	36	-14	. 122	$+.5$	
Capella II	513.0	+4557	. 2	G 1	. 44	168	$+30$	. 073	$-.5$	
Arcturus	14134	+1927	. 2	K 0	2.28	209	-5	. 091	. 0	
Rigel $\dagger 11$	512.1	-815	. 3	cB8	. 00		+24	. 002 :	-8. :	
Procyon ${ }^{\dagger}$	736.7	+ 521	. 5	$d F 4$	1.25	214	-4	. 294	+2.8	
Achernar	135.9	-5729	. 6	B 7	. 10	110	+19	. 032	-1.9	
$\beta$ Centauri $\dagger \\|$	1400.3	-60 08	. 9	$B 3$	. 04	217	-12:	. 036 :	-1.3 :	
Altair \%	1948.3	+ 844	. 9	A 4	. 66	55	-26	. 206	+2.5	
Betelgeuse \|	$\delta$	552.4	+ 724	. 9 :	M 2	. 03	75	+21	. 013	-3.5
Aldebaran $\ddagger$	433.0	+1625	. 8	K 5	. 20	160	+54	. 058	$-.4$	
a Crucis $\dagger \ddagger ⿻$	1223.8	-62 49	1.1	B1	. 04	235	-8:	. 03 :	-1.5	
Spica II	1322.6	-10 54	1.2	B 2	. 06	230	+ 2 :	. 011 :	-2.6:	
Pollux 8	742.3	+28 09	1.2	$G 8$	. 62	265	+ 3	. 100	+1.2	
Antares $\dagger$	1626.3	-26 19	1.2	M 1	. 03	200	- 3	. 020 :	-2.3:	
Fomalhaut	2254.9	-29 53	1.3	A 3	. 37	116	$+6$	. 145	+2.1	
Deneb ${ }^{\text {8 }}$	2039.7	+4506	1.3	$c A 2$	. 0		- 5 :	. 002 :	-7.:	
Regulus $\dagger \ddagger$	1005.7	+1213	1.3	B 8	. 25	270	+ 3:	. 042	-. 6	
$\beta$ Crucis \|		1244.8	-59 25	1.5	B1	. 05	235	+20	. 006 :	-4.4:

[^367]| Main sequence | Sp | $p$ | Mv | $T$ | $R$ | d | $\mu$ | $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\beta$ Centauri ...... . 9 | B 3 | "036 | -1.3 | $21,000^{\circ} \mathrm{K}$ | 11 | ".001 | (25) | . 018 |
| $\nu$ Scorpii ........ 4.3 | B 3 | . 009 | - . 8 | 21,000 | 3.2 | . 0003 | (5.2) | . 16 |
| $\beta$ Aurigae A .... 2.8 | A0 | . 034 | . 6 | 10,700 | 2.4 | . 0008 | 2.2 | . 13 |
| a Lyrae ......... . 1 | A 0 | . 122 | . 5 | 10,700 | 2.4 | . 003 | (3.0) | . 11 |
| a Can Maj A ...-1.6 | A 0 | . 378 | 1.3 | 10,700 | 1.8 | . 006 | 2.4 | . 42 |
| a Aquilae ....... . 9 | $A 4$ | . 206 | 2.5 | 8,800 | 1.4 | . 003 | (1.7) | . 6 |
| a Can Min ...... . 5 | $d F 4$ | . 294 | 2.8 | 6,100 | 1.9 | . 006 | 1.1 | . 16 |
| a Centauri A .... . 1 | $d G 3$ | . 755 | 4.5 | 5,850 | 1.0 | . 007 | 1.1 | 1.1 |
| 70 Ophiuchi A ... 4.3 | dK 0 | . 192 | 5.7 | 5,740 | 1.0 | . 002 | . 9 | . 9 |
| 61 Cygni A ..... 5.6 | $d K 5$ | . 298 | 8.0 | 4,300 | . 7 | . 003 | (.45) | 1.3 |
| Krüger 60 A .... 9.8 | $d M 4$ | . 256 | 11.8 | 3,180 | . 34 | . 0008 | . 26 | 9. |
| Barnard's Star ... 9.4 | $d M 5$ | . 544 | 13.1 | 3,020 | . 16 | . 0008 | (.18) | $45:$ |
| Giants |  |  |  |  |  |  |  |  |
| a Aurigae A .... . 2 | $g G 1$ | . 073 | - . 5 | 5,150 | 12 | . 007 | 4.2 | . 0024 |
| a Boötis ........ . 2 | $g K 0$ | . 091 | . 0 | 4,620 | 30 | . 023 | (8) | . 0003 |
| a Tauri ......... . 8 | $g K 5$ | . 058 | $-.4$ | 3,940 | 70 | . 034 | (5) | $1.4 \times 10^{-5}$ |
| $\beta$ Pegasi ........ 2.2 | $g M 3$ | . 016 | $-1.0$ | 3,390 | 160 | . 025 | (6) | $1.5 \times 10^{-6}$ |
| a Orionis ......... ${ }^{\text {a }} 9$ | cM 2 | . 017 | -4.0 | 3,060 | 480 | . 048 | (35) | $3 \times 10^{-7}$ |
| a Scorpii A ..... 1.2 | cM 2 | . 0095 | -3.5 | 3,060 | 380 | . 042 | (22) | $5 \times 10^{-7}$ |
| White dwarfs |  |  |  |  |  |  |  |  |
| a Can Maj B ... 8.5 | F | . 378 | 11.4 | 7,500 | . 034 | . 00012 | . 96 | $5 \times 10^{4}$ |
| 40 Eridani B .... 9.4 | A | . 200 | 10.9 | 11,000 | . 018 | . 00004 | . 44 | $7 \times 10^{4}$ |
| van Maanen's Star. 12.3 | F | . 245 | 14.2 | 7,500 | . 009 | : 00002 | (.14) | $10^{5}-10^{8}$ |

Many of the data were taken from the reference given in footnote 277. The spectra, magnitudes, radii, parallaxes, and densities have been revised for some of the stars. The letters $A$ and $B$ denote the brighter and fainter components, respectively, of binary stars.

Apparent (visual) magnitude is denoted by $m_{v}$, spectral class by $S p$, parallax in seconds of arc, $p$, absolute (visual) magnitude by $M_{v}$, radius in terms of the sun by $R$, apparent diameter in seconds of arc by $d$, mass in terms of the sun by $\mu$, and density by $\rho$ (in $\mathrm{g} / \mathrm{cm}^{3}$ ).

[^368]TABLE 861.-SPECTRUM TYPE AND MEAN VISUAL ABSOLUTE MAGNITUDE*

Type	Main   sequence	Super-   giants	Type	Main   sequence	Giants	Super-   giants	Sub-   giants
$O$	-3.8	..-	$F 5$	+3.7	+1.2	-4.2	$\cdots$
$B 0$	-3.1	-5.4	$F 8$	+4.1	+.8	-4.0	$\cdots$
$B 1$	-2.6	-5.4	$G 0$	+4.4	+.6	-3.8	$\cdots$
$B 2$	-2.2	-5.3	$G 2$	+4.7	+.6	-3.6	$\cdots$
$B 3$	-1.7	-5.3	$G 5$	+5.1	+.5	-3.2	+3.0
$B 5$	-.8	-5.2	$G 8$	+5.5	+.5	-2.8	$\cdots$
$B 8$	+.2	-5.0	$K 0$	+5.9	+.5	-2.6	+3.0
$B 9$	+.4	-5.0	$K 2$	+6.3	+.5	-2.3	$\cdots$
$A 0$	.+ .7	-4.9	$K 5$	+7.1	+.2	-2.0	$\cdots$
$A 2$	+1.2	-4.8	$K 8$	+7.7	.0	-.5	$\cdots$
$A 3$	+1.5	-4.8	$M 0$	+8.4	-.2	-4.5	$\cdots$
$A 5$	+1.7	-4.7	$M 1$	+9.0	$\cdots$	$\cdots$	$\cdots$
$A 8$	+2.3	-4.5	$M 2$	+9.6	$\cdots$	$\cdots$	$\cdots$
$F 0$	+2.6	-4.4	$M 3$	+10.4	$\cdots$	$\cdots$	$\cdots$
$F 2$	+3.1	-4.3	$M 4$	+11.5	$\cdots$	$\cdots$	$\cdots$

For Type $R, \overline{\mathrm{M}}=-0.5$; and for Type $N, \overline{\mathrm{M}}=-2.0$.

[^369]
## TABLE 862.-REDUCTION OF VISUAL TO BOLOMETRIC MAGNITUDE*

The bolometric corrections (B C) given in the table are added algebraically to visual magnitudes. From tables by G. P. Kuiper, ${ }^{278}$ slightly revised for $O$ and $B$ stars by same author. The (effective) temperature, Te, scale of the $O$ and early $B$ stars is still to be regarded as provisional. The corrections for $O_{5}-F_{0}$ stars are based on the stellar temperature scale and on theoretical spectral-energy curves. For $F_{0}-M_{5}$ stars they are based on radiometric observations by Pettit and Nicholson.

Type	$\mathrm{C}^{\text {Main seq }}$		Type	${ }^{\text {Main }}$ seq		$\begin{gathered} \text { Giants } \\ (M \stackrel{1}{=} 0) \end{gathered}$		$\begin{aligned} & \text { Supergiants } \\ & (M=-4) \end{aligned}$	
	B C	Te		B C	$T$ 。	B C	$T$ e	B C	$T$ 。
O 5	-5.3:	100,000:	F. 0	. 0	6500	. 0	6500	. 0	6500
06	-4.8	70,000:	F 2	-. 04	6100	-. 04	6100	-. 04	6100
07	-4.3	50,000	F 5	-. 04	6100	-. 08	5850	-. 12	5720
O 8	-3.9	41,600	F 8	-. 05	6050	-. 17	5500	-. 28	5150
$\bigcirc 9$	-3.5	35,000	G 0	-. 06	6000	-. 25	5240	-. 42	4830
$B 0$	-3.0	28,500	G 2	-. 07	5900	-. 31	5070	-. 52	4650
B 1	-2.8	26,300	$G 5$	$-.10$	5770	-. 39	4880	-. 65	4480
B 2	-2.5	23,000	G 8	-. 10	5770	-. 47	4720	-. 80	4330
B 3	-2.3	21,000	K0	$-.11$	5740	-. 54	4620	-. 93	4240
B 4	-2.1	19,300	K 2	$-.15$	5580	$-.72$	4420	-1.20	4060
B 5	-1.9	17,800	K 3	$-.31$	5070	-. 89	4260	$-1.35$	3940
B 6	-1.6	15,600	$K 4$	$-.55$	4600	-1.11	4120	$-1.56$	3780
B 7	-1.4	14,300	$K 5$	$-.85$	4300	-1.35	3940	-1.86	3590
B 8	-1.2	13,100	K 6	-1.14	4100				
B 9	-. 9	11,600	M 0	$-1.43$	3880	$-1.55$	3800	-2.2	3420
A 0	$-.7$	10,700	M 1	$-1.70$	3700	-1.72	3680	-2.6	3230
A 1	$-.6$	10,150	M 2	-2.03	3540	-1.95	3560	-3.0 :	3060
A 2	-. 5	9,600	M 3	-2.4 :	3320	-2.26	3390	-3.6 :	2840
A 3	-. 4	9,000	M 4	-2.7:	3180	-2.72	3160		
A 5	$-.3$	8,500	M 5	-3.1:	3020	-3.4:	2920 :		
A 7	-. 2	7,900							
F0	-. 0	6,500							

* Prepared by G. P. Kuiper, Yerkes Observatory.
278 Astrophys. Journ., vol. 88, p. 446, 1938.


## TABLE 862A.-RUSSELL-HERTZSPRUNG DIAGRAM*

Absolute magnitudes (ordinates) of 3,915 stars of different spectrum types (abscissae) determined by the spectroscopic method by W. S. Adams and his associates (courtesy of Mount Wilson Observatory, 1932). The diagram shows distinctly the division of types $G$, and later, into giants (high-luminosity stars) and dwarfs (low-luminosity) with few intermediate stars. The curve simulates the mirror image of the figure 7 , and with the addition of much new material confirms fully that first drawn by Russell in 1913.

The majority of the stars may be divided into dwarfs, giants, and supergiants (a few stars do appear to have luminosities intermediate between these classifications). The luminosity of the dwarfs decreases regularly with advancing spectral type (reduced surface temperature) ; it drops abruptly for the coolest. Among the giants the luminosity decreases until about class $F 5$ and then increases with decreasing temperature at least as far as the early subdivisions of class $M$. For supergiants, the luminosity does not appear to change appreciably with spectral class.

In the diagram, the concentration into vertical columns is purely an effect of rough spectral classification. Most of the stars on this diagram belong to Population Type I (Table 874). The white dwarfs occupy the lower left corner (Table 872).

Kuiper ${ }^{279}$ has more recently derived the empirical mass luminosity relation for (1) the visual binaries. (2) some selected spectroscopic binaries, and (3) Trumpler's massive stars in clusters. His diagram is reproduced in figure 33. Morgan, Keenan, and Kellman ${ }^{250}$ have presented a preliminary calibration of their luminosity classes in terms of visual absolute magnitudes, which includes $B$ stars as well as subclasses (intermediates between giants and dwarfs and between giants and supergiants).

[^370]Fig. 32.-The Russell-Hertzsprung Diagram

TABLE 863.-LOG (NO. STARS)/(SQ. DEGREE) BRIGHTER THAN PHOTOGRAPHIC MAGNITUDE, m, AT STATED GALACTIC LATITUDES*

										Ratio Nos. successive magnitudes			$\begin{gathered} \text { Ratio } \\ \text { Nos. at } \\ 0^{\circ} \pm 90^{\circ} \end{gathered}$	
$m$	$+90^{\circ}$	$+40^{\circ}$	$+20^{\circ}$	$+10^{\circ}$	$0^{\circ}$	$-10^{\circ}$	$-20^{\circ}$	$-40^{\circ}$	$90^{\circ}$	$+90^{\circ}$		-90 ${ }^{\circ}$	+90	$-90^{\circ}$
5.0	8.15	8.24	8.37	8.49	8.77	8.65	8.50	8.25	8.07				4.1	5.0
6.0	8.59	8.72	8.85	8.95	9.22	9.10	8.94	8.71	8.62	2.8	2.8	3.5	4.3	4.0
7.0	9.02	9.18	9.31	9.41	9.64	9.51	9.35	9.16	9.08	2.7	2.6	2.9	4.1	3.6
8.0	9.44	9.62	9.77	9.87	. 09	9.93	9.79	9.60	9.50	2.6	2.8	2.6	4.5	3.9
9.0	9.86	. 05	. 21	. 33	55	. 37	. 23	. 04	9.92	2.6	2.9	2.6	4.9	4.3
10.0	. 25	. 47	. 65	. 77	1.02	. 82	. 67	. 47	. 32	2.5	3.0	2.5	5.9	5.0
11.0	. 63	. 87	1.08	1.21	1.49	1.26	1.11	. 89	. 72	2.4	3.0	2.5	7.2	5.9
12.0	1.01	1.26	1.50	1.64	1.95	1.70	1.54	1.29	1.12	2.4	2.9	2.5	8.7	6.8
13.0	1.38	1.63	1.90	2.05	2.39	2.14	1.95	1.68	1.48	2.3	2.8	2.3	10	8.1
14.0	1.70	1.97	2.28	2.45	2.82	2.57	2.34	2.03	1.78	2.1	2.7	2.0	13	11
15.0	1.98	2.30	2.66	2.85	3.22	2.99	2.72	2.34	2.02	1.9	2.5	1.7	17	16
16.0	2.26	2.61	3.02	3.25	3.60	3.39	3.07	2.64	2.26	1.9	2.4	1.7	22	22
17.0	2.53	2.90	3.36	3.64	3.96	3.76	3.40	2.92	2.48	1.9	2.3	1.7	27	30
18.0	2.79	3.15	3.67	3.97	4.32	4.10	3.68	3.18	2.70	1.8	2.3		34	42
19.0										1.6	2.0			
20.0									es.		1.9			
21.0										1.4	1.9			

## (Characteristic 8. or 9. means, of course, -2 . or -1 .)

For values averaged over all galactic longitudes see reference, footnote 281. An excess of stars, relative to the averages, between longitudes $230^{\circ}$ and $50^{\circ}$, and a deficit elsewhere, reflect the eccentric position of the sun within the stellar system, which, in a first approximation, may be regarded as a greatly flattened spheroid. For more detailed values for both longitude and latitude see references, footnote 282 . The Groningen numbers are generally larger than the Mount Wilson values, notably so in low galactic latitudes. This defference arises partly from the irregular influence of the highly complex structure of the stellar system and especially of the obscuring dust clouds in and near the Milky Way. Mount Wilson results were derived from counts of stars in small areas at and north of declination $-15^{\circ}$; Groningen results from sample counts over the whole sky. The Groningen magnitude scale for faint stars south of declination $-15^{\circ}$ is, however, somewhat in doubt and may also affect the totals.

[^371]TABLE 864.-STARS OF LARGE PROPER MOTION*

Star	$m$	Sp		$\theta$	Star		Sp		
+ 4:3561	9.4	$d M 5$	10"26	$356^{\circ}$	W 489	14.8	DC	3"92	$252^{\circ}$
-44:612	9.0	sdM 0	8.74	131	Proxima Cen	11.5	dM	3.85	282
+38:2285	6.4	$d G 6$	7.04	145	+ 5:1668	10.1	$d M 5$	3.76	171
-36:9694	7.3	dM 1	6.91	79	$\mu$ Cassiopeiae	5.3	$d G 5$	3.75	115
-37:9435	8.5	dM 3	6.07	113	a Centauri	. 3	$d G 3$	3.68	281
R 619	12.6	dM 6	5.40	167	-15:4041/2	9.3	sdG 6	3.68	235
61 Cygni	5.6	$d K 5$	5.21	52	-39:8920	6.6	dM 0	3.46	251
+36:2147	7.5	dM 2	4.78	187	L 726-8	12.4	$d M 6{ }^{\text {c }}$	3.38	80
W 359	13.8	dM 6	4.70	235	L 789-6	12.3	dM 6	3.27	46
$\epsilon$ Indi	4.7	$d K 5$	4.69	123	R 451	12.7	sdK 8	3.20	174
+44:2051	8.7	$d M 1$	4.49	282	-43:354	4.3	$d G 5$	3.15	76
$\mathrm{o}_{2}$ Eridani	4.5	$d K 0$	4.08	213	R 578	14.1	sdM 2	3.06	152

$m=$ magnitude, $S p=$ spectrum, $\mu=$ proper motion, $\theta=$ position angle.
Stars have been identified with their B.D. or C.P.D. numbers. In case of multiple stars the magnitudes and spectra of the brightest component are given. For further information on stars possessing large proper motions see references, footnote 283.

[^372]| Photographic magnitude | Number stars | Equivalent no. 1st mag stars (photogr) | Totals to mag m | Photographic magnitude | Number of stars | Equivalent no. 1st mag stars (photogr) | Totals to mas m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1.6 | Sirius | 11 | 11 | $8.0-9.0$ | 40,600 | 40 | 258 |
| -. 9 | a Carinae | 6 | 17 | $9.0-10.0$ | 116,000 | 46 | 304 |
| . 0 | a Centauri | 2 | 19 | 10.0-11.0 | 304,000 | 48 | 352 |
| .0-1.0 | 8 | 14 | 33 | $11.0-12.0$ | 789,000 | 50 | 402 |
| $1.0-2.0$ | 24 | 15 | 48 | $12.0-13.0$ | 2,000,000 | 50 | 452 |
| $2.0-3.0$ | 66 | 17 | 65 | $13.0-14.0$ | 4,950,000 | 50 | 502 |
| $3.0-4.0$ | 188 | 19 | 84 | $14.0-15.0$ | 11,500,000 | 46 | 548 |
| $4.0-5.0$ | 767 | 31 | 115 | $15.0-16.0$ | 25,400,000 | 40 | 588 |
| $5.0-6.0$ | 2,000 | 32 | 147 | $16.0-17.0$ | 56,000,000 | 35 | 623 |
| 6.0-7.0 | 5,360 | 34 | 181 | $17.0-18.0$ | 115,000,000 | 29 | 652 |
| $7.0-8.0$ | 14,800 | 37 | 218 | 18.0 - | . . . . . | 48 | 700 |

This table derived from van Rliijn's counts (Table 7 of reference 281) shows that to photographic magnitude 18.0 the total of starlight received is equivalent to 652 stars of photographic magnitude 1.0. If all the remaining stars are included, the equivalent addition is only 481 st -magnitude stars, giving a total of 700 , equal to about a hundredth part of full moonlight. The corresponding total of stars of visual magnitude 1.0 would be about 1,320 , which agrees reasonably well with the equivalent total of 1,440 stars (zenith) found by van Rhijn from direct measurement of the visual brightness of the sky; or 1,674 stars outside the earth's atmosphere. Density of stellar radiation $=0.8 \times 10^{-13} \mathrm{erg} / \mathrm{cm}^{3}$. Cosmic radiation density $=1.3 \times 10^{-13} \mathrm{erg} / \mathrm{cm}^{3}$ (near the earth).

The number of stars in each magnitude interval is still increasing rapidly at $m=18$, but the run in the numbers in the second column of the table indicates that somewhere about $m=30$ the numbers begin to decrease and eventuaily to approach zero as the limit of the stellar system is reached. The extrapolated total number of stars in the system given by different investigations ranges from 30 to 100 billion. The great inherent uncertainty of this total is further increased by the unknown influence of interstellar absorption.

Practically all the stars visible to the naked eye lie within 1,000 parsecs of the sun, and most of them are more than 100 parsecs distant. In the vicinity of the sun, the majority of the stars lie within 200 or 300 parsecs of the galactic plane; but along this plane the star-filled region extends far beyond 1,000 parsecs in all directions, and may reach 30,000 parsecs in the great southern star clouds (Shapley).

[^373]TABLE 866.—BRIGHT OR WELL.OBSERVED NOVAE*

Nova and year	Apparent magnitures			Dura. tion 3 maks decline days	$\begin{aligned} & \text { Dis. } \\ & \text { tance } \\ & \text { parsecs } \end{aligned}$	. Absolute magnitudes			Expansion velocities in $\mathrm{km} / \mathrm{sec}$ (absorption lines)		
		Max	Al in			Max	Min		$\begin{aligned} & \text { Prin- } \\ & \text { cinal } \end{aligned}$	Diffuse enhanced	Orion
Aquilae	1918	-1.1	10.8 v	8	430	-9.3	+2.6	$1{ }^{\prime \prime} 0$	$+1500^{\text {a }}$	-2200	-4000
T Aurigae	1891	3.8	14.8	100	800	$-5.3$	+5.7	. 12	- 400	- 870	-1200
Carinae	1843	$-.8$	7.9	6000:	$170{ }^{\text {b }}$	-7: $\ddagger$	+1.7:				
T Coronae B	1946 ${ }^{\circ}$	3.0	11 :v	9	850	$-7.0$	+1:		$-1100$	-4360	
Cygni	1920	2.0	15.5	16	1470	-8.9	$+4.6$	. 09	- 725	-1400	-2500
Geminorum	1912	3.5	14.7	37	$790{ }^{\text {d }}$	-6. 4	$+4.8$		- 800	-1400	-2100
DQ Herculis	1934	1.4	15 :v	100	230	-5.5	$+7.5$	. 27	- 318	- 800	-1100
CP Lacertae	1936	2.1	15.3	9	1350	-8.6	$+4.6$	. 25	$-1500^{\dagger}$	-3200	-3800
RS Ophiuchi	$1933{ }^{\text {c }}$	4.3	11.0 v	9	$1150{ }^{\text {² }}$	-8.0 $\ddagger$	$-1.3$		Note		
Persei	1901	. 2	13 : v	13	470	-8.4	+4:v	. 4	-1300	-3500	-3700
RR Pictoris	1925	1.2	12.7	150	500	$-7.3$	+4.2	. 17	- 320	- 750	-1500
CP Puppis	1942	. 4	117	7	500 : ${ }^{\text {d }}$	-8:	$1+8.5$	. .	$-1000$		
RT Serpentis	$1909{ }^{\text {c }}$	10.5	[16)	8000:	$3300{ }^{\text {b }}$	+3.6 ${ }^{\text {b }}$			small		
T Pyxidis	$1944^{\circ}$	6.4	13.6	130	$1370{ }^{\text {" }}$	$-5.4{ }^{\prime \prime}$	$+1.6$		- 940	$-1800$	-1900
Tauri	$1054{ }^{\text {f }}$	-5:	15.9		1180	$-16$	$+4.3$	. 20	-1100		

[^374]The mass-luminosity relation is shown in figure 33, which is based on data by G. P. Kuiper. ${ }^{284}$ Dots and open circles represent visual and spectroscopic binaries, each component being shown separately. Crosses represent several visual binaries in the cluster of the Hyades. Squares represent the white dwarfs. The symbol $\odot$ stands for the sun.

[^375]

Fig. 33.-The mass luminosity relation for stars.

TABLE 867.-CLASSIFICATION OF NEBULAE


Radiometric magnitude of any star = visual (or photographic) magnitude of a spectral class $A^{\circ}$ star giving the same radiometric deflection. If $m_{r}, m_{p r}$, and $m_{p g}$ are, respectively, radionetric, photovisual, and photographic magnitude, then Color Index, $C I=\left(m_{p g}-\right.$ $\left.m_{p v}\right)$; heat index, $H I_{p v}=m_{p v}-m_{r} ; H I_{p g}=m_{p g}-m_{r}$. Spectral class: Henry Draper, revised by 1). Hoffleit (DH) ; by W. W. Morgan (WWM). All measures reduced to zenith at Mount Wilson; two reflections from fresh silver; zinc-antimony black thermojunction; rock salt window. Stars of known or suspected variability are rejected from this list.
All the stars were in both the Mount Wilson and Harvard observing programs. ${ }^{285}$
The reduction of the Mount Wilson and Harvard data to a common basis has been rather difficult. The following are the principal factors that differ between the Mount Wilson and Harvard observations.
(1) The Atmosphere.-There was more water vapor over Oak Ridge than Mount Wilson ; hence, early-type stars would be too faint at Oak Ridge.
(2) The thermocouple blacking.-Probably the surfaces were equally "black" in the ultraviolet and visible regions; the Harvard surfaces were blacker in the infrared; hence, late-type stars would be too faint at Mount Wilson.
(3) The cell winduw.-Ruck salt was used at Mount Wilson; fluorite was used at Harvard. These are equally good throughout the ultraviolet, visible, and infrared to the region of 6 to 8 microns. For longer wavelengths, rock salt is better. The effect of this difference is in the opposite direction to the thermocouple blacking in (2) above. However, the very small percentage of stellar energy beyond 8 microns and absorption bands in the earth's atmosphere means that the difference in the cell windows has a very much smaller effect than the thermocouple blacking and, therefore, (2) above dominates.
A systematic difference exists between the Mount Wilson and Harvard observations which follows a pattern predicted in accordance with factors (1) and (2) above. Therefore, corrections which are usually less than 0.1 magnitudes have been applied. The largest, 0.16 magnitudes, is for 51 Gem . This correction brings the two sets of data into better agreement but there remains an apparent difference in zero-point of about 0.13 magnitudes. Since it is impossible to determine which of these two sets of observations is in error, the mean of the Mount Wilsen and Harvard data has been taken, corrected as indicated for factors (1) and (2) above. These mean values are the data given in the $m_{r}$ column.

Star	Magnitude			Speciral class		Star	Magnitude			Spectral class	
	$m_{p v}$	$m_{p g}$	$m_{r}$	DH	. WWM		$m_{p v}$	$m_{p o}$	$m_{r}$	DH	WWM
a And	2.11	2.08	2.12	$\mathrm{B}_{\text {в }}$		51 Gem	4.85		2.17	$\mathrm{M}_{8}$	
$\beta$ Cas	2.34	2.82	2.11	$\mathrm{F}_{3}$	$\mathrm{F}_{2}$ III	a CMi	. 40	. 83	. 10	$\mathrm{F}_{5}$	$\mathrm{F}_{4} \mathrm{~V}$
$\gamma \mathrm{Peg}$	3.00	2.67	2.83	$\mathrm{B}_{2}$		$\beta$ Gem	1.13	2.31	. 37	$\mathrm{K}_{0}$	$\mathrm{K}_{0}$ III
$\beta$ And	2.07	3.94	. 28	$\mathrm{K}_{8}$	$\mathrm{K}_{5}$ III	$\epsilon$ Leo	2.96		2.44	$\mathrm{G}_{0}$	$\mathrm{G}_{1}$ II
$\boldsymbol{\alpha}$ Cet	2.54	4.47	. 53	M	$\mathrm{M}_{n}$ III	$\pi$ Leo	4.52		2.77	$\mathrm{M}_{2}$	
a Per	1.78	2.43	1.47	$\mathrm{F}_{3}$	Fs I	$\beta$ UMa	2.34	2.40	2.50	$\mathrm{A}_{1}$	
$\eta$ Tau	2.90	2.92	2.86	$\mathrm{B}_{5}$ :		a UMa	1.70	3.09	1.02	$\mathrm{G}_{7}$	K ${ }_{0}$ III
a Tau	. 77	2.70	$-.80$	$\mathrm{K}_{5}$	$\mathrm{K}_{5}$ III	a Cyg	1.24	1.40	1.17	$\mathrm{A}_{2 \mathrm{p}}$	
a Aur	. 14	1.03	$-.53$	$\mathrm{G}_{2}$	$\mathrm{G}_{2}$ I	$\beta$ Peg	2.25	4.39	. 11	$\mathrm{M}_{3}$	
$\beta$ Tau	1.68	1.52	1.66	$\mathrm{B}_{8}$		a Peg	2.56	2.53	2.59	$\mathrm{A}_{1}$	

[^376]
## TABLE 869.-NONGALACTIC NEBULAE

Some 400 considered. Distribution of magnitudes appears uniform throughout sequence. For each stage in the sequence the total magnitude ( $M_{r}$ ) is related to the max diameter ( $d$ ) by the formula: $M_{T}=\mathrm{C}-5 \log d$. When minor diameter is used, $C$ approx constant throughout sequence $(C=10.1)$. Mean absolute visual magnitude -15.2 . The statistical expression for distance in parsecs is $\log D=4.04+0.2 M_{\text {r }}$. Masses appear to be of the order of $2.6 \times 10^{8} \times$ our sun's. Apparently nebulae as far as measured are distributed uniformly in space, one to $10^{18}$ parsecs ${ }^{3}$ or $1.5 \times 10^{-31}$ in cgs units.

Corresponding radius of curvature of the finite universe of general relativity is of order of $2.7 \times 10^{10}$ parsecs, about 600 times the distance at which normal nebulae can be detected with the Mount Wilson 100 -inch reflector.

The task of cataloging and naming variable stars was delegated in 1946 by the International Astronomical Union to the Sternberg Astronomical Institute in Moscow. The 1948 General Catalogue lists 10,912 variable stars; a supplement lists 265 additional variables discovered in 1948. Several thousands of variable stars in globular clusters, in the Magellanic Clouds, and in the nearest galaxies are not included in this catalog, nor are thousands of stars whose variability has been announced, but which are not officially recognized pending confirmation. The total number of variable-star discoveries announced until 1950 probably amount to 20,000 .
Classification.-Variable stars, with the exception of eclipsing binaries (see Table 879), can be divided roughly into three major groups: (1) Pulsating stars. The variables of this group are all giants, located above the main sequence in the Russell diagram. (2) Explosive stars. The variables of this group are, as far as is known, dwarfish; located below the main sequence in the Russell diagram. (3) Erratic variables, whose light, fluctuations, mostly of an erratic nature, are produced by external causes (nebulosity) or by peculiar phenomena in their atmospheres.

Pulsating stars.-Cepheids. Usually divided into cluster-type variables, with periods shorter than one day, and classical Cepheids, with periods longer than one day, although at least five subgroups are indicated.

Cluster-type variables belong to Population II, have spectra ranging from $A$ to $F$, absolute magnitudes close to zero: most variables found in globular clusters belong to this group. Periods range from $0^{d} .061$ (CY Aquarii) to $1^{4} .35$ (a star in the $\omega$ Centauri cluster), with the greatest concentration around $0^{d} .53$. Typical variable: RR Lyrae ( $7^{\mathrm{m}} .1$ $-8^{\mathrm{m}} .0$; period $0^{d} .57$; spectrum $.42-F 0$ ). About 1,700 galactic objects and 600 stars in globular clusters are known to belong to this group.

Classical Cepheids belong to Population I, have spectra ranging from $F$ to $K$, with marked dependence on period, and intrinsic luminosities increasing with the period (periodluminosity law) from $-0^{\mathrm{M}} .5$ to $-3^{\mathrm{M}}$ (absolute visual magnitudes). Periods range from $1^{d} .13$ (BQ Coronae Austrinae) to $45^{\mathrm{d}} .2$ (SV Vulpeculae), with the greatest concentration around $2^{\mathrm{a}} .7$. Typical variable: $\delta$ Cephei ( $3^{\mathrm{m}} .8-4^{\mathrm{m}} .6$, period $5^{\mathrm{d}} .37$, spectrum $F 5-G 2$ ). About 500 galactic stars and 2,500 stars in the Magellanic Clouds and other extragalactic systems are known to belong to this group.

For both cluster-type and classical Cepheids the shape of the light curve is a function of the period; the rise to maximum is always faster than the decline. Average visual amplitude $0^{\mathrm{m}} .75$; photographic amplitudes 50 percent larger. Radial-velocity curves are in phase with light curves (maximum approach at maximum light); Average amplitude $30-40 \mathrm{~km} / \mathrm{sec}$.

Long-period variables. Typical variable: o (Mira) Ceti ( $2^{\mathrm{m}} .0-10^{\mathrm{m}} .1$ : period $331^{\mathrm{d}}$; spectrum $M G c$ ). Characterized by very large amplitudes (from 4 to 10 magnitudes, visual), late spectra ( $M, S, R, N$ ) with bright hydrogen emission lines near maximum light, unstable light curves and periods ranging from $120^{1}$ (W Puppis) to $1379^{\circ}$ (BX Monocerotis). Greatest concentration of periods around $275^{\circ}$. Long-period variables seem to fall into two major groups, whose periods overlap to a great extent. Stars of the first group have nearly symmetrical light curves with moderate amplitudes and periods ranging from $120^{d}$ to $450^{\text {d }}$; they seem to belong to Population II. Stars of the second group have strongly asymmetrical light curve (rise faster than decline), large amplitudes and periods upward of $200^{\text {d }}$; they seem to belong to Population I.

The enormous visual (and photographic) amplitudes are accounted for by a shift in the effective wavelength of the radiation with phase and by the formation of strong absorption bands at minimum light in the visual region of the spectrum. The total (bolometric) radiation has an amplitude of only one magnitude. Absolute bolometric magnitudes near -4. About 2,600 stars are known to belong to this group.

Semiregular red variables. Typical variables: Af Cygni ( $6^{\mathrm{m}} .3-8^{\mathrm{m}} .0$; period $89^{\text {d }}$; spectrum $M 6$ ). Spectra similar th those of long-period variables, except for much weaker, or entirely absent, hydrogen emission lines. Amplitude mostly comprised between 1 and 3 magnitudes (both visual and photographic). Light curves very irregular, often erratic; periods ranging from $42^{4}$ (TX Tauri) to $810^{\circ}$ (S Persei), but mostly comprised between $100^{4}$ and $200^{4}$; several unrelated periods often occur in the same star and for many variables periods have only a statistical significance. Then mean brightness often changes slowly, with cycles of $1,000-2,000$ days. Absolute visual magnitudes high, between 0 and -4. Their galactic distribution suggests Population II. Total number of recognized variables 600 .
$R V$ Tauri stars. Typical variable: RV Tauri ( $8^{\mathrm{m}} .7-11^{\mathrm{m}} .8$; period $39^{\mathrm{d}} .3$; spectrum $K$ IV). Spectra Cepheid-like, but light curves similar to those of the preceding group. Deep and shallow minima often alternate. Periods (intervals between two successive

[^377]TABLE 870.—VARIABLE STARS, GENERAL CHARACTERISTICS (concluded)
minima, irrespective of principal and secondary) range from $16^{d .5}$ (SX Centauri) to $73^{\text {d }}$ ( R Scuti). Galactic distribution suggests Population I. Only 60 stars can be safely assigned to this group.
Explosive stars.-U Geminorum stars. Typical variable: U Geminorum ( $8^{\mathrm{m}} .8$ $14^{\mathrm{m}} .0$; average cycle $97^{\mathrm{d}}$ ). Characterized by long permanence at minimum light, interrupted by brief, sudden explosions which bring the star almost always to the same maximum magnitude; the time between explosions might vary as from 1 to 4 for an individual star, but the average length of cycles over long periods of time are constant for each star. Average cycle length ranges from $13^{4}$ (AB Draconis) to $340^{4}$ (AW Geminorum). A few stars undergo temporary spells of continuous, irregular fluctuations. The amplitude increases from 3 magnitudes for short-cycle stars to 5 magnitudes for long-cycle stars. Spectra are of early type and peculiar; hydrogen lines in emission at minimum in absorption at maximum galactic concentration low for short-cycle variables, greater for long-cycle ones. Group numbers about 70 stars.
$Z$ Camclopardalis stars. Typical variable: Z Camelopardalis ( $10^{\mathrm{m}} .5-13^{\mathrm{m}} .3$; average cycle $22^{d} .1$ ). Similar to the preceding, but with shorter minima and smaller amplitudes; erratic variation is the rule rather than the exception: Less than a dozen stars are known of this type.
Novae, repeating novae, and novaelike stars. Novae are stars that suddenly blaze up with startling rapidity and then gradually fade out again. For data on bright or wellobserved novae see Table 866. A repeating (or recurrent) nova, such as T Pyx, has several outbursts, any one of which would have identified it as a nova. A novalike star, e.g., $Z$ Andromeda, from time to time shows novalike characteristics with the formation of a shell spectrum and displaced absorption lines and later emission lines. Nebular lines are often associated with these objects.
Erratic variables.- $R$ Coronae Borcalis stars. Supergiants with $G$ and $R$ spectra and an abnormal abundance of carbon in their atmospheres. For long periods of time (often years) the light remains constant at maximum. At entirely irregular intervals the light is dimmed, probably by a carbon veil, with resulting fluctuations which may reach 9 or 10 magnitudes. Typical stars: R Coronae Borealis (variable from $5^{\mathrm{m}} .8$ to $15^{\mathrm{m}} .0$ ), RY Sagittarii (variable from $5^{\mathrm{m}} .9$ to $15^{\prime \prime \prime} .0$ and probably fainter). Only 23 stars are known to belong to this type.
l'ariables associated zevith nebulosities. Stars in gaseous nebulae of the diffuse or of the cometary type, or even in dark nebulac, often show erratic variations with various amplitudes and speeds. At least three subtypes are indicated, typified by the following stars: T Orionis ( $9^{\mathrm{m}} .6-11^{\mathrm{m}} .9$; rapid; often constant at maximum) ; R Monocerotis ( $10^{\mathrm{mm}}-14^{\mathrm{m}}$; slow) ; RW Aurigae ( $9^{\text {m }} .0-13^{\text {m }} .5$; very rapid, no constant light at any time). About 200 stars can be attributed to one or the other of these groups.
$P C y g n i$ and $B e$ Stars. These early-type giants are normally quiescent, but occasionally some of them undergo slow fluctuations of moderate amplitude $\left(1^{m}-4^{m}\right)$ which last over a series of years. Typical: P Cygni ( $3^{\prime \prime \prime}-6^{m}$ ), active in the 17 th century $; \gamma$ Cassiopeiae $\left(1^{\mathrm{m}} .6-3^{\mathrm{m}} .0\right)$, active after 1936.

## TABLE 871.-VISUAL BINARY STARS*

A. Visual binary stars are cataloyed as follows:

1. "New General Catalog of Double Stars within $120^{\circ}$ of the North Pole" (abbreviated: $A D S=$ Aitken Double Stars), by R. G. Aitken, Carnegie Inst. Washington Publ. 417, 1932 ( 2 vols.) ; contains 17,180 objects.
2. $A D S$ is the successor to $B D S=$ "A General Catalog of Double Stars within $121^{\circ}$ of the North Pole," by S. W. Burnham, Carnegie Inst. Washington Publ. 5, 1906 ( 2 vols.) ; this catalog contains 13,665 pairs. About one-third of these (mostly wide objects) are not repeated in $A D S$.
3. SDS or "Southern Double Star Catalog," from $-19^{\circ}$ to $-90^{\circ}$ declination, by R. T. A. Innes, B. H. Dawson, and W. H. van den Bos, Union Observatory, Johannesburg, South Africa, 1927 (4 vols.).
4. Many zeide double stars of interest are contained in "Measures of Proper Motion Stars," by S. W. Burnham, Carnegie Inst. Washington Publ. 168, 1913.
B. A full discussion of mass determinations of visual binary stars is found in "The Masses of the Stars with a General Catalog of Dynamical Parallaxes," by H. N. Russell and C. E. Moore, Univ. Chicago Press, 1940.
C.. Orbits of visual binaries are listed in W. H. Finsen, "Second Catalog of Orbits of Visual Binary Stars," Union Obs. Circ. 100, 1938. Supplementary orbits are found in later Union Observatory Circulars and in the Astronomical Journal.
[^378]| Star | $m_{0}$ | CI | Sp | $\mu$ | $p$ | $M_{v}$ | $\odot^{r} \stackrel{r}{=}$ | $\begin{gathered} \rho \\ \text { cgs } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V Ma 1 | 12.3 | m + +69 | DF | 2"98 | "245 | 14.2 | . 009 : | $10^{5}-10^{6}$ |
| $o_{2}$ Eridani B | 9.4 | . 0 : | DA | 4.08 | . 200 | 10.9 | . 018 | $7 \times 10^{\text {c }}$ |
| Sirius B | 8.5 |  | DF | 1.32 | . 378 | 11.4 | . 034 | $5 \times 10^{\text {s }}$ |
| He 3 | 12.0 | -. 80 | $D B$ | . 90 | . 066 | 11.1 | . 002 : | $10^{8}-10^{7}$ |
| LDS 275 A | 14.7 | +. 15 | $D C$ | . 35 | ... | ... | . 012 : | $10^{5}-10^{6}$ |
| LDS 275 B | 15.0 | +. 15 | DC | . 35 |  |  | . 012 : | $10^{5}-10^{8}$ |
| L 39-44 ... | 17.2 | +.2: |  | . 57 |  |  | . 005 : | $10^{\text {b }}$ |
| W 489 | 14.8 | +. 77 | DC | 3.92 | . 129 | 15.4 | . 012 : | $10^{5}-10^{6}$ |
| LDS 678 A | 12.0 | -. 14 | DA | . 20 |  |  | . 014 | $10^{5}$ |

$p=$ parallax, $\mu=$ proper motion, $S p=$ spectrum, $m=$ magnitude, $M=$ absolute magnitude.
A representative selection of white dwarfs is given above, including the two stars for which the masses are known ( $o_{2}$ Eri B and Sirius B), the bluest white dwarf ( He 3 ), the reddest degenerate star ( W 489), the only known double white dwarf (LDS 275), the faintest known white dwarf ( $\mathrm{L} 39-44$ ) and a typical example of a white component of red-white dwari double (LDS 678 which has a red component of 13.7 vis with a color index of +1.81 ).

The values given for the radii and the densities ( $\rho$ ) are in most cases very uncertain estimates based on very approximate parallaxes and estimated masses.

* Prepared by W. Luyten, University of Minnesota.

TABLE 873.-LOW-DENSITY STARS, GIANTS *

Star	Type	Visual   abs mag	Density   sun $=1$	$\begin{gathered} \text { Radius } \\ \text { sun }=1 \end{gathered}$	$\begin{gathered} \text { Mass } \\ \text { sun }=1 \end{gathered}$
a Orionis	cM 2	-4.0	$3 \times 10^{-7}$	480	(35)
a Scorpii A	$c M 2$	-3.5	$5 \times 10^{-7}$	380	(22)
$\beta$ Pegasi	${ }_{\text {g }} M 3$	-1.0	$1.5 \times 10^{-6}$	160	(6)
a Tauri	g $K 5$	$-.4$	$1.4 \times 10^{-5}$	70	(5)

* Prepared by W. S. Adams, Mount Wilson Observatory.


## TABLE 874.-GIANT AND DWARF STARS*

The table gives a list of typical supergiants, giants, and main-sequence stars. The relations between the absolute magnitudes and spectral types of the stars are conspicuous and complicated. Along the main sequence $M$ (visual) falls very rapidly from about -4 for class $O$ to +14 for $M 6$. For identical spectra, the scatter about the mean is of the order of $\pm 1^{m}$. The normal giants form a sequence with $M$ ranging from about 0 for class $G 2$ to -1.5 for $M 8$ with a somewhat greater scatter. Supergiants, with $M$ from -4 to -7 , are found sparingly in all spectral classes. The white dwarfs, of which nearly 100 are now known, form a widely separated group with spectra from $A$ (or perhaps $B$ ) to $G$ and with $M$ from +10 to +15 . Subgiants, one or two magnitudes fainter than the normal giants, are recognizable and the existence of other sequences is indicated by recent precise work.
The above discussion applies to stars of Population Type I, which is found in many parts of the galaxy, the arms of spiral nebulae, and other regions where absorbing interstellar material is present. Population 1I, in regions far from such matter, includes no supergiants or bright blue stars and the relation of the sequences are different. This type is found in the globular clusters, the elliptical nebulae, and the central regions of spiral nebulae and the galaxy. Both types occur near the sun.

The majority of the stars visible to the naked eye are giants, since these, being brighter, can be seen at much greater distances. Classes $F$ and $G$ comprise the greatest percentage of dwarf stars among those visible to the eye. The dwarf stars of classes $K$ and $M$ are actually much more numerous per unit of volume, but are so faint that few of the former, and none of the latter, are visible to the naked eye.

[^379](continued)

Typical supergiants, giants, and main-sequence stars

$\begin{gathered} \text { Mount } \\ \text { Wilson } \\ \text { type } \end{gathered}$	Star	Boss	Vis mag	1950	
cB 0	$\epsilon$ Ori	1370	1.8	$\begin{array}{lll}\text { h m } \\ 5 & 3 \\ 5\end{array}$	- $1^{\circ} 14^{\prime}$
$g B 0$	${ }_{\kappa}^{\epsilon}$ Ori	1435	2.2	545.4	- 941
$d B 1$	$\eta$ Ori	1301	3.4	522.0	-226
$d B 3$	$\eta$ Aur	1204	3.3	503.0	+4110
c ${ }^{5}$	$\eta$ CMa	1934	2.4	722.7	-29 12
$g B^{5}$	$\delta$ Per	838	3.1	339.4	+4738
$d B 5$	$\tau$ Her	4162	3.9	1618.2	+4626
c ${ }^{8} 8$	$\beta$ Ori	1250	. 3	512.8	-815
g $B 8$	$\beta$ Tau	1304	1.8	523.1	+28 34
dB9	${ }_{\boldsymbol{a}} \mathrm{Peg}$	5944	2.6	2302.3	+1456
$g A 0$	$\delta \mathrm{Cyg}$	5048	3.0	1943.4	+4500
d $A 1$	a Lyr	4722	. 1	1835.2	+3844
cA 2	$a \mathrm{Cyg}$	5320	1.3	2039.7	+4506
dA 2	a CMa	1732	1.6	642.9	-1639
gA 5	$\beta$ Tri	482	3.1	206.6	+34 45
dA 5	$\beta$ Ari	428	2.7	151.9	+2034
g $A 7$	$\gamma$ Воо	3722	3.0	1430.1	+38 42
$d F 0$	$\gamma$ Vir	3307	2.9	1239.1	- 111
gF 2	$\beta$ Cas	12	2.4	006.5	+5852
dF 3	a CMi	2008	. 5	736.7	+ 521
cF 5	a Per	772	1.9	320.7	+49 41
Df 5	$\gamma \mathrm{Ser}$	4055	3.9	1554.1	+1549
cF 8	$\gamma \mathrm{Cyg}$	5229	2.3	2020.4	+4006
gF 8	$\epsilon$ Hya	2354	3.5	844.1	+636
dF 8	$\beta$ Vir	3105	3.8	1148.1	+203
$d G 0$	$\delta \mathrm{Tri}$	514	5.4	214.0	$+3400$
$g G 1$	a Aur	1246	. 2	513.0	+4557
$c G 2$	GC10756	2099	4.4	754.7	-22 45
gG 5	$\gamma$ Hya	3449	3.3	1316.2	-2255
$d G 5$	$\kappa$ Cet	752	5.0	316.7	+ 311
cG 8	$\epsilon$ Gem	1717	3.3	640.8	+25 11
$g K 0$	a Boo	3662	. 2	1413.4	+1927
$d K 0$	70 Oph	4571	4.3	1802.9	+231
	$\xi \mathrm{Cyg}$	5431	3.9	2103.1	+43 44
$g K 5$	a Tau	1077	1.1	433.0	+1625
dK 6	61 Cyg A	5433	5.6	2004.7	+3830
dM0	61 Cyg B	5434	6.3	$20 \cdot 04.7$	+3830
$g M 0$	$\beta$ And	259	2.4	106.9	+3521
cM 1	a Sco	4193	1.2	1626.3	-2619
cM 2	a Ori	1468	. 9	552.5	+724
gM2	${ }^{\text {a }}$ Cet	691	2.8	259.7	+354
$d M 2$	GC15183	2935	7.6	11.6	+3618
cM 5	${ }_{5}{ }_{5} \mathrm{Her}$	4373	3.6	1712.4	+1427
gM 5	56 Leo	2915	6.0	1053.4	+627
dM 5	GC923		9.2	1516.9	-732

TABLE 875.-TEMPERATURE IN INTERSTELLAR SPACE*287
Because interstellar matter is far from being in thermodynamic equilibrium, the temperature of space will depend on the measuring process used.

```
Temperature from energy density of starlight.......... \(3^{\circ} \mathrm{K}\)
Color temperature of starlight........................... \(10,000-15,000^{\circ} \mathrm{K}\)
 dilution factor \(10^{-14}\)
Temperature of gas (kinetic)
 H I region (hydrogen neutral) \(60^{\circ} \mathrm{K}\)
 H II region (hydrogen ionized) \(10,000^{\circ} \mathrm{K}\)
Temperature of цrains (internal energy) \(20^{\circ} \mathrm{K}\)
```

[^380]The motions of the stars show various well-marked features, of which the ellipsoidal distribution and the asymmetry are a conscquence of the rotation of the galaxy; the significance of certain other features is not yet fully understood. If we assume the circular velocity around the galactic center (Table 828) as our origin, and plot the individual motions of the stars of any group as vectors from this origin, the ends of these vectors do not form a spherical distribution (as they would if the motions of the stars were at random) but rather an elongated distribution which is more or less asymmetrical and in which the area of highest concentration of the vector points is centered about the origin. If for the moment we ignore the asymmetry, the distribution may be characterized as roughly ellipsoidal and the approximate extent and shape of the distribution may be inferred from the dispersions of the velocity components along each of the three principal axes, $\sigma_{a}, \sigma_{b}$, and $\sigma_{c}$, in $\mathrm{km} / \mathrm{sec}$.

Spectral group 288   (main sequence)	$\sigma_{a}$	$\sigma_{b}$	$\sigma_{c}$	$\bar{M}_{\sigma_{o}{ }^{2}}$
$A 0$ to $A 9$	17	12	$8 \frac{1}{2}$	180
$F 0$ to $F 9$	$24 \frac{1}{2}$	16	$12 \frac{1}{2}$	250
$F 5$ to $G 0$	27	17	$13 \frac{1}{2}$	240
$G 0$ to $K 6$	32	16	$16 \frac{1}{2}$	270
$K 8$ to $M 5$	37	25	17	170
(Giant branch)				
$K 0$ to $K 9$	$23 \frac{1}{2}$	17	20	1300
$M 0$ to $M 9$	27	$19:$	$19:$	$1800:$

The direction of the $a$-axis is called the direction of the preferential motion; the two opposite points on the sky at the extremities of this axis are called the vertices. The $a$-axis for any group of stars is always nearly parallel to the plane of the galaxy. In the case of most groups of stars fainter than eighth magnitude, it appears that the $a$-axis is directed approximately toward the galactic center at longitude 325\%. Among stars brighter than sixth magnitude the direction deviates from the direction of the galactic center toward greater longitudes and the deviation is most marked in the case of the $A$ stars, for which the longitude of the vertex is close to $350^{\circ}$. In every case the $c$-axis is directed toward some point close to the galactic pole. The asymmetry referred to above characterizes the distribution of the components parallel to the $b$-axis. It is relatively slight when the dispersions are small as with the $A$ stars, but becomes very pronounced in the case of groups with large dispersions, there being practically no large motions in the direction of the galactic rotation (longitude $55^{\circ}$ ).

The last column in the table contains the product of the mean stellar mass (in terms of the sun's mass) and the square of the dispersion along the $c$-axis. This quantity (analogous to kinetic energy) is practically constant for the various groups of the main sequence but is much larger for the giant branch.

The dispersions of velocities for the $B$ stars, the $c$ stars, and the Cepheids are of the order of $10 \mathrm{~km} / \mathrm{sec}$ and difficult to determine accurately. For long-period variables the dispersions average about $50 \mathrm{~km} / \mathrm{sec}$ and for the cluster-type variables $90 \mathrm{~km} / \mathrm{sec}$.

A general card catalog of radial velocities is kept at Mount Wilson Observatory. It now contains approximately 14,000 entries and will be published in the near future. The proper motions of all stars brighter than magnitude 7.0 and of many fainter stars may be found in the Albany General Catalog. The Transactions of the Yale Observatory contain the proper motions of many thousands of stars down to magnitude 9.5 and north of declination $-30^{\circ}$ and two catalogs of the Cape Observatory contain 40,000 proper motions in the zone $-40^{\circ}$ to $-52^{\circ}$.

[^381]TABLE 877.-STARS WITH LARGE SPACE VELOCITY GREATER THAN $20.0 \mathrm{~km} / \mathrm{sec}$, BASED ON PARALLAXES $\geqslant \because 005 * 220$

Star	$V$ is mag	Spec	Par	Rad vel $\mathrm{km} / \mathrm{sec}$	Apex		$\begin{aligned} & \mathrm{Vel} \\ & \mathrm{~km} / \mathrm{sec} \end{aligned}$
					$1 a$	$b_{a}$	
20 C 1321	10.8	$d G 1$	".005	-178	$163^{\circ}$	$-29^{\circ}$	699
20 C 879	10.2	$d G 2$	. 008	-138	190	+13	546
HD 134439	9.4	d ${ }^{\prime} 2$	. 040	+295	273	-3	521
HD 104800	9.3	$d G 0$	. 006	+11	286	$-17$	488
HD 111980	8.3	dF 6	. 009	+144	296	-26	472
HD 177095	9.4	dG 3	. 009	+ 78	246	- 6	433
HD 160693	8.4	$d F 8$	. 011	+ 40	299	+18	432
HD 224618	9.0	$d G 6$	. 014	- 44	178	-4	388
18 C 560	8.9	dA 8	. 007	+338	187	0	380
HD 179626	9.3	$d F 4$	. 007	-71	264	$+10$	358
HD 6755.	7.8	$d G 0$	. 018	-325	248	+ 7	352
HD 64090	8.2	$s d G 0$	. 038	-242	294	$-15$	345
20 C 825	10.2	$s d A 4 p$	. 009	-164	289	-18	324
HD 230409	10.0	$d G 4$	. 009	- 19	288	$-1$	316
HD 222766	9.7	$d G 4$	. 009	- 98	188	$+1$	307
18 C 3002	8.4	$d K 0$	. 023	- 26	162	-10	304
HD 103095	6.5	$s d G 5$	. 108	- 98	299	$-12$	296
18 C 2348	9.1	$d F 1$	. 008	-240	231	+2	276
HD 113083	8.2	$d F 4$	. 014	$+227$	242	+18	275
HD 33793	9.2	$s d K^{2} 2$	. 262	+242	243	-8	273
20 C 58	12.3	stl: 3	. 243	$+263$	97	$-66$	264
HD 134113	8.7	dF 8	. 009	- 60	197	+21	263
HD 193901	8.2	$d F 5$	. 027	-179	341	-13	258
18 C 756	9.2	dF 8	. 031	-191	307	$+12$	243
HD 5223	8.8	$R 3$	. 019	-234	275	+41	235
HD 148816	7.4	$d F 7$	. 029	- 52	256	$-16$	223
HD 219175	8.3	$d F 5$	. 011	- 32	173	$-13$	223
HI) 102158	8.0	$d G 0$	. 014	+ 24	162	$+21$	221
HD 74000	9.4	$d F 5$	. 005	+200	238	+13	215
HD 25329	8.6	dK 0	. 047	- 30	229	+88	214
HD 140283	7.3	sdA 5p	. 033	$-170$	179	$-5$	214
HD 219962	6.4	$g K 1$	. 006	$+23$	161	$-10$	210
HD 219617	9.0	$\operatorname{sd} A 88$	. 030	+ 6	293	$-6$	202

[^382]|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^383]| Star | $\begin{gathered} \text { Period } \\ \text { days } \end{gathered}$ | $\underset{\text { App }}{\text { bright }}$ | Sp 1 | Sp 2 | Radius |  | Mass |  | Ref ${ }^{200}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\overbrace{\left(i_{1}^{R_{1}}\right)}$ | $\begin{aligned} & \text { (in } \left.{ }_{2}^{R_{2}}\right) \end{aligned}$ | $\overbrace{\left(i^{M_{1}}\right)}$ | (in ${ }_{\text {¢ }}^{\text {¢ }}$ ) |  |
| V 444 Cyg | 4.212 | ${ }^{\text {m }} 8.4$ | 06 | WN 6 | 13 |  | 35 | 20 | a |
| AO Cas.. | 3523 | 5.8 | O 8.5 | O 8.5 | 16 | 10 | 31 | 29 | b |
| $\gamma \mathrm{Cyg}$ | 2.996 | 7.0 | $\bigcirc 9$ | $\bigcirc 9$ | 5.9 | 5.9 | 17.4 | 17.2 | c |
| SZ Cam | 2.698 | 7.0 | B 0 | ( $B^{2}$ ) | 12.7 | 5.6 | 36 | 10.3 | d |
| AH Cep | 1.775 | 6.6 | $B 0$ | B 0 | 6.1 | 6.1 | 16.5 | 14.2 | e |
| $\delta$ Ori | 5.733 | 2.4 | B 0 | (B2) | 17 | 10 | 26 | 10 | f |
| V 478 Cyg | 2.881 | 8.9 | B . 5 | B . 5 | 7.1 | 7.1 | 15.4 | 15.2 | g |
| VV Cep.. | 7430 | 6.6 | $B$ | cM 2 | 13 | 1200 | 33 | 47 | h |
| V Pup | 1.454 | 4.5 | B 1 | B 3 | 6.1 | 5.5 | 16.6 | 9.8 | i |
| V 470 Cyg | 1.873 | 8.7 | B 2 | B 2 | 6.0 | 7.2 | 13 | 11 | j |
| $\mu^{\prime}$ Sco | 1.446 | 3.0 | B 3 | B6 | 5.2 | 5.7 | 14.0 | 9.2 | k |
| TT Aur | 1.333 | 8.1 | B 3 |  | 3.8 | 3.4 | 6.7 | 5.3 | 1 |
| EO Aur | 4.066 | 7.6 | B 3 | ( $B 8$ ) | 13 | 16 | 27 | 27 | m |
| $v$ Her | 2.051 | 4.6 | B 3 | B 7 | 4.4 | 4.4 | 6.8 | 5.4 | n |
| CW Cep | 2.729 | 7.6 | B 3 | B 3 | 4.5 | 4.0 | 10.0 | 9.8 | j |
| AG Per | 2.029 | 6.5 | B 3 | B 4 | 2.7 | 2.6 | 5.0 | 4.4 | $\bigcirc$ |
| SX Aur | 1.210 | 8.2 | B 3.5 | B 3.5 | 5.1 | 4.4 | 10.7 | 5.6 | i |
| $\xi$ Aur | 972.15 | 6.6 | B6 | cK 4 | 2.8 | 200 | 10 | 22 | p |
| U CrB | 3.452 | 7.6 | B 5 | ( $A 2$ ) | 3.4 | 5.5 | 6.4 | 2.4 | q |
| U Oph | 1.677 | 5.8 | B 5 | $B 5$ | 3.1 | 3.0 | 5.3 | 4.6 | r |
| V 599 Ag 1 | 1.849 | 6.5 | B 5 | B 8 | 7.8 | 4.4 | 12 | 6.4 | s |
| Z Vul | 2.455 | 7.0 | B 3 |  | 4.6 | 4.3 | 5.3 | 2.4 | t |
| 6 Agl | 1.950 | 5.0 | B 8 | B 8 | 3.6 | 3.6 | 6.8 | 5.4 | u |
| TX UMa | 3.063 | 6.8 | B 8 | $g F 2$ | 2.1 | 3.4 | 2.8 | . 9 | v |
| $\beta$ Per | 2.867 | 2.2 | B 8 | (G) | 2.7 | 2.8 | 2.3 | . 6 | w |
| AR Aur | 4.135 | 5.8 | B 9 | A 0 | 1.8 | 1.8 | 2.6 | 2.3 | c |
| $\beta$ Lyr | 12.908 | 3.4 | cB9 |  | 47 | 31 | 52 | 43 | w |
| U Sge | 3.381 | 6.4 | B 9 | G 2 | 4.5 | 5.8 | 6.7 | 2.0 | x |
| GO Cyg | . 718 | 8.3 | $B 9$ |  | 2.0 | 1.4 | 1.6 | 1.3 | y |
| $\beta$ Aur | 3.960 | 2.1 | A 0 | A 0 | 2.6 | 2.6 | 2.4 | 2.4 | z |
| TV Cas | 1.813 | 7.3 | A 0 |  | 2.4 | 2.5 | 1.7 | 1.0 | a 1 |
| RX Her | 1.779 | 7.1 | A 0 | $A 0$ | 2.3 | 1.8 | 2.1 | 1.9 | b 1 |
| MR Cyg | 1.677 | 8.5 | A 0 | (A0) | 3.2 | 3.6 | 3.0 | 2.6 | c 1 |
| WX Cep | 3.378 | 9.1 | A 2 | (A5) | 3 | 3 | 1.0 | 1.0 | d 1 |
| TX Her | 2.060 | 8.3 | A 2 | A 2 | 1.6 | 1.6 | 2.0 | 1.8 | e 1 |
| CM Lac | 1.605 | 8.3 | A 2 | A 8 | 1.3 | 1.7 | 2.0 | 1.5 | $f 1$ |
| UX Mon | 5.905 | 8.7 | A 3 | G 2 | 1.8 | 6.6 | 3.4 | 1.5 | g 1 |
| RX Gem | 12.208 | 8.5 | A 4 | K 0 | 2.2 | 5.5 | 3.1 | . 6 | $h 1$ |
| WW Aur | 2.525 | 5.7 | A 7 | A 7 | 2.2 | 2.2 | 2.2 | 1.9 |  |
| S Aut | . 648 | 8.8 | A 8 | A 8 | 1.4 | 1.1 | 1.0 | . 9 | i 1 |
| Z Her | 3.993 | 7.2 | F 2 | (F2) | 1.5 | 3.1 | 1.5 | 1.3 |  |
| RS CV | 4.798 | 8.0 | $F 4$ | G 8 | 1.6 | 5.3 | 1.9 | 1.7 | j 1 |
| VZ Hya | 2.904 | 9.2 | $F 5$ | $F 9$ | 1.3 | 1.0 | 1.2 | 1.1 | k 1 |
| WUMa | . 334 | 8.3 | F 8 | F 8 | . 8 | . 6 | 1.0 | . 9 | 11 |
| WZ Oph | 4.183 | 9.7 | G 0 | G 0 | 1.3 | 1.2 | 1.4 | 1.3 | m 1 |
| UV Leo | . 600 | 8.5 | G0 | G 2 | 1.1 | 1.2 | 1.3 | 1.2 | n 1 |
| RT And | . 629 | 9.0 | G 0 | $K 1$ | . 8 | 1.4 | 1.5 | 1.0 | - 1 |
| \& Boo | . 268 | 6.6 | G 2 | G 2 | . 7 | . 6 | 1.0 | . 5 | p 1 |
| WW Dra | 4.630 | 8.8 | $g G 2$ | $g K 0$ | 4.8 | 8.3 | 3.5 | 2.5 | q 1 |
| Ar Lac | 1.983 | 7.3 | G 5 | K 0 | 1.8 | 3.0 | 1.4 | 1.4 | k 1 |
| RT Lac | 5.074 | 8.8 | G 9 | K 1 | 4.9 | 4.9 | 1.0 | 1.9 | r 1 |
| AH Vir | . 408 | 9.7 | $K 0$ | K 0 | 1.3 | . 8 | 1.4 | . 6 | s 1 |
| YY Gem | . 814 | 8.6 | M 1 | M 1 | . 6 | . 6 | 1.0 | . 9 | t 1 |

[^384]Huffer and Eggen, Astrophys. Journ., vol. 106, p. 313, 1947. f, Luyten-Struve-Morgan, Yerkes Publ., vol. 7, pt. 4, 1939. g, McDonald, Publ. Dominion Istrophys. Obs., vol. 7, p. 135, 1949. h, Geodicke, Michigan Publ., vol. 8, No. 1, $1939 . \quad$ i, Popper, Astrophys. Journ., vol. 97, p. 394, 1943. j, Gaposchkin, $\Lambda$ stron. Journ., vol. 53, p. 112, 1948 . k, Stibbs, Monthly Notices, Roy. Astron. Soc., vol. 108, p. 398, 1948.1 , Joy and Sitterly, Astrophys. Journ., vol. 73, p. 77, 1931. m, Gaposchkin, Publ. Astron. Soc. Pacific, vol. 55, p. 192, 1943. n, Baker, Lick Obs. Bull., vol. 12, p. 130, 1926. o, Eggen (private communication). Kopal, Astrophys. Journ., vol. 103, p. 310, 1946. q, Shapley, Princeton Contr., No. 3, 1915. r, Huffer and Kopal, Istrophys. Journ. (in press). s, Gaposchkin, Harvard Bull., No. 917, 1943. i, Baker, Laws Bull., No. 2, p. 173,1916 . t. Wylie, Astrophys. Journ., vol. 56, p. 232,1922 . v, Huffer and Eggen, Astrophys. Journ., vol. 105, p. 217, 19.f7. w, Kopal, Astrophys. Journ., vol. 93, p. 92, 1941. x, Joy, Astrophys. Journ., vol. 71, p. 336, 1930. y, Pierce, istron. Journ., vol. 48, p. 113, 1939. z, Piotrowski, Astrophys. Journ., vol. 108, p. 510, 1948; Smith. Astrophys. Journ., vol. 108, p. 504, 1948. a 1, McDiarmid, Princeton Contr., No. 7, $1924 . \quad$ h 1, Wood, Astrophys. Journ., vol. 110, p. 465, 1949. c 1, Fracastaro, Arcetri Publ., vol. 55, p. 37, 1937. d 1, Sahade and Cesco, Astrophys. Journ., vol. 102, p. $128,1945$. e 1, Baker, Laws Bull., No. 31, 1921. f 1, Wachmann, Astron. Journ., vol. 259, p. 323, 1936. g $]$, Struve, Astrophys. Journ., vol. 106, p. 255, 1947. h 1, Gaposchkin, Astrophys. Journ., vol. 104, p. $376,1946$. i 1, Joy. Astrophys. Journ., vol. 64, p. 293, 1926. J1, Sitterly, Princeton Contr., No. 11, 1930. k 1 , Wood, Princeton Contr., No. 21, 1946. 11,' Huffer, Astrophys. Journ., vol. 79, p. 369, 1934.1 m 1, Gaposch' kin, Harvard Bull., No. 907, 1938. n 1, Gaposchkin, Astrophys. Journ., vol., 104, p. 370, $1946 . \mathrm{p} 1$, Eggen, Astrophys. Journ., vol. 108, p. 15, 1948. q 1, Plant, Diss. Leiden. 1939. r 1, Fowler, Astrophys. Journ., vol. 52, p. 261, 1920. s 1, Chang, Istrophys. Journ., vol. 107, p. 96, 1948. t 1, Kuiper, Astrophys. Journ., vol. 88, p. 456, 1938.

## TABLE 880.—SPECTROSCOPIC BINARY STARS*

These binary systems were discovered and investigated by measuring the Doppler displacements of the spectrum lines. All except the widest systems are too close to each other to be observed as double stars through the telescope. The data given are from J. H. Moore's "Fifth Catalogue of Spectroscopic Binaries." ${ }^{2011}$ In the table a designates the semimajor axis of the orbit in kilometers and refers to the center of gravity of the system; $i$ is the inclination of the orbit plane to the plane of the sky; and $m$ designates the mass of each component. When both components of a binary system are bright enough to record their spectral lines, individual mass functions can be derived and these are shown in column 8. When only the spectrum of one star is visible a more complicated mass function is obtained involving the total mass of the system and the mass ratio. Several systems in the table are eclipsing stars and for them the inclination is nearly 90 : Hence for them the quantity $\sin ^{3} i$ in columns 8 and 9 is nearly equal to 1 .


[^385]
## TABLE 881.-PROPERTIES AND CLASSIFICATION OF STAR CLUSTERS*

Star clusters fall into two distinctly different types:
Globular.-Typical, Messier 13; open, Messier 4; elongated, Messier 19. Have strong central condensations, rich in faint stars. Scattered widely in latitude, restricted in longitude. Many variables-nearly 1,300 in 62 clusters. Radial velocities $>100 \mathrm{~km} / \mathrm{sec}$. All more than 5,000 , and one-third more than 50,000 light-years away. Very few new ones found-about 100 known. Very definitely part of galaxy. Although concentrated toward its plane, only 2 within $4^{\circ}$ of it (obstruction by interstellar dust clouds). Diameters about 35 parsecs. Many stars, tens and hundreds of thousands. Many giants and supergiants with maximum luminosity about -2.5 .

Galactic.-Very varied: rich, M11; irregular, M 35; nebulous, Pleiades; accidental, M 103. Almost exclusively in Milky Way, all longitudes : apparently no variables. Radial velocities rarely $>40 \mathrm{~km} / \mathrm{sec}$, generally less. Almost all less than 4,000 light-years distant. Almost exclusively in galactic region devoid of globulars. Tens and hundreds, rarely thousands of stars. Hyades type, yellow stars as dominant as $A$ type. Pleiades type, almost all $B$ 's and $A$ 's, on Russell's main sequence.

* Prepared by H. Shapley, Harvard University.


## Part 1.-Globular star clusters

This table contains those with galactic latitudes $>20^{\circ}$, for which space absorption can be evaluated and distance correctly estimated (also the giant cluster Omega Centauri in lower latitude). ${ }^{292}$

NGC	RA (1900)	) Dec	Galactic		Apparent magnitude	Distance (kiloparsecs)	Absolute magnitude	No. of variables
			Long	Lat				
	${ }^{\text {h }} \mathrm{m}$							
104 (47 Tuc)	$\begin{array}{ll}0 & 19.6\end{array}$	$-72^{\circ} 38^{\prime}$	$272^{\circ}$	$-45^{\circ}$	(4.5)	7.6	$-10.2$	8
288 ....	047.8	$-2708$	157	-88	8.96	14.5	- 6.8	2
362	058.9	-71 23	268	-47	8.0	10.0	$-7.3$	14
1261	39.5	-55 36	237	-51.5	9.5	22	$-7.2$	0
1851	510.8	-40 09	212	-34.5	7.72	14	$-8.1$	3
2419	731.4	+39 06	148	$+26$	11.51	56.2	$-7.7$	36
4147	125.0	+1906	226	+79	11.01	20.0	$-5.5$	4
4590 (M 68)	1234.2	$-2612$	269	$+36$	9.12	13.5	$-6.8$	28
5024 (M 53)	138.0	+1842	305	+79	8.68	20.2	$-7.8$	42
5053 .....	1311.5	+1813	310	+78	10.9	17.4	$-5.3$	10
5139 ( $\omega$ Cen)	1320.8	-46 47	277	$+15$	(4.7:)	6.8	-10:	168
5272 (M3).	1337.6	+28 53	8	$+78$	7.21	12.2	$-8.2$	186
5466 .	141.0	+2900	8	+72.5	10.39	17.0	- 5.8	18
5634	1424.4	- 532	310	+48.5	10.8	32	- 6.7	7
5694	1433.8	-26 36	299	+29	10.87 :	33.1	- 7.1:	0
5897	1511.7	-20 39	312	+29	9.61	13.8	- 6.5	0
5904 (M 5)	1513.5	+227	332	$+46$	7.04	10.1	- 8.0	97
6205 (M 13)	1638.1	+36 39	27	+40	6.78	9.5	$-8.1$	15
6218 (M 12)	1642.0	-146	344	$+25$	7.95	8.3	$-7.3$	1
6229 .....	1644.2	+47 42	40	+40	10.26	30	$-7.1$	21
6254 (M 10)	1651.9	- 357	343	+22	7.64	8.3	$-7.6$	2
6341 (M 92)	1714.1	+4315	36	+35	7.30	10.3	$-7.8$	16
6752 …	192.0	-60 48	303	-26.5	7.2 :	5.8	-7.4 :	1
6809 (M 55)	1933.7	$-3110$	336	-25	7.08	5.8	-7.7	2
6864 (M 75)	20.2	$-2212$	347	-27	9.50	42	-8.9 :	11
6934	2029.3	+ 704	20	$-20$	10.01	18	$-7.0$	51
6981 (M 72)	2048.0	-12 55	3	-34	10.24	16.6	$-6.6$	31
7006 …	2056.8	+1548	32	-21	11.45	44	$-7.3$	20
7078 (M 15)	2125.2	+1144	33	$-28$	7.33	11.5	$-8.3$	66
7089 (M 2)	2128.3	-116	21	-36	7.30	13.8	- 8.5	17
7492 ....	233.1	$-1610$	22	-64	12.33	25.1	$-4.7$	,

[^386]TABLE 881.-PROPERTIES AND CLASSIFICATION OF STAR CLUSTERS (concluded)

## Part 2.-Galactic star clusters

Columns 2 through 6 from Shapley. ${ }^{203}$ Distances from R. J. Trumpler, unpublished. Linear diameters computed on basis of revised distances. 1 kiloparsec $=31 \times 10^{15} \mathrm{~km}=$ $3 \times 10^{3}$ light-years.


## TABLE 882.-OUR GALAXY, ITS CENTER AND ROTATION*

The center of the galaxy apparently lies among the dense Milky Way clouds in Sagittarius, at a distance of about 9,000 to 10,000 parsecs from the sun. About this center the sun revolves with a period of some 200 million years at an orbital speed of nearly $300 \mathrm{~km} / \mathrm{sec}$. The amount of matter within the sun's orbit is probably more than 200 billion times the sun's mass. In the table, $A$ is the differential orbital radial velocity per kiloparsec of distance from the sun, $r A$ is the maximum group velocity for a distance $r$, and $l_{0}$ is the longitude of the galactic center. The sun is about 33 parsecs above the galactic plane. ${ }^{214}$

Stars	No.	$\begin{gathered} \text { Vis } \\ \text { mag } \\ \text { limit } \end{gathered}$	Distance kpc	$\begin{gathered} \frac{\mathrm{Max}}{r} A \\ \mathrm{~km} / \mathrm{sec} \end{gathered}$	$\underset{\mathrm{km} \mathrm{sec}^{-1} \mathrm{kpc}^{-1}}{A}$	10	$\begin{aligned} & \text { Dist } \\ & \text { to } \\ & \text { center } \\ & \text { kpc } \end{aligned}$	Source ${ }^{295}$
$\mathrm{O}-\mathrm{M}$	210	8.0	.2-1.1	35	19.0	324	6.3	a
O-B 7	849	7.5	.2-1.4	22.2	15.0	324.4	10.0	b
Interstellar	261	8.6	. $4-1.2$	13.5	16.6	331.7		c
B-K	3786				15.0	324	6.5	d
PGC and 18 C	4233				15.0		8.8	e
K	392	7.5	2		17.0	17		f
Plan Neb	110		.5-12.0	264	14.0	333.0	9.4	g
Cepheids	156	14.1	. $4-2.3$	39.4	20.9	325.3	10.0	h
O B, Ceph, c, gas			.2-10.0	39.6	17.7	326.0	9.4	i
-	205	8.4	.2-1.3	26.6		324.4	. .	j
O 5-B 5	987	6.4	. $3-1.1$	18.8			$\cdots$	k
Irreg var	116	. .	. 5	9.5	...	325.7		1

[^387]The maximum component ( $v \sin i$ ) along the line of sight of the equatorial velocity $v$ of rotation is found from the distortion of an absorption line produced by differential Doppler effect across the observed hemisphere. For stars in the following groups, v> $50 \mathrm{~km} / \mathrm{sec}$ very rarely, and $v \ll 50 \mathrm{~km} / \mathrm{sec}$ usually: supergiants, giants; main-sequence stars later than $I: 5$ and not close spectroscopic binaries. For main-sequence stars of early type, and not spectroscopic binaries or cluster members, the distribution function $f(v)$ is found to be well represented by the formula

$$
f(v)=(j / \sqrt{v \pi})\left\{\exp \left[-j^{2}\left(v-v_{1}\right)^{2}\right]+\exp \left[-j\left(v+v_{1}\right)^{2}\right]\right\},
$$

where the parameters $j^{-1}, v_{1}$, and $\bar{v}$ have the following values:

|  | $\overbrace{B e}$ | $O-B$ | $A$ | $F 0 \cdot F 2$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $j^{-1}(\mathrm{~km} / \mathrm{sec})$ | 70 | 63 | 107 | 90 |
| $\frac{v_{1}}{v}(\mathrm{~km} / \mathrm{sec})$ | 350 | 95 | 107 | 0 |
| $\frac{v}{v}(\mathrm{~km} / \mathrm{sec})$ | 348 | 94 | 112 | 51 |

In an idealized Roche model, rotational instability sets in at $v=560 \mathrm{~km} / \mathrm{sec}$. The Be stars are surmised to be rotationally unstable $B$ 's. Number of $B 8$ 's per $B 8 e=123$; number of $(B 0-B 5$ )'s per $(B 0 c-B 5 e)=15$. In the Pleiades and in $h$ and $\chi$ Persei, $v$ for $B$ 's is $\sim 2 \times \overline{v^{\prime}}$ for noncluster $B$ 's. For 13 Pleiades earlier than $B 9$, number of $B$ 's per $B e=$ 3. In many close spectroscopic binaries of both late and early types, the components rotate with the orbital period. In some eclipsing systems, the sense of rotation is found from the Doppler shift of an absorption line at partial phrase. The sense is always that of the orbital motion. For the sun, $v=2.1 \mathrm{~km} / \mathrm{sec}$.

* Prepared by A. J. Deutsch, Harvard University.


## TABLE 884.-TRANSMISSION OF LIGHT THROUGH SPACE*

The obscuring matter in space is too irregularly distributed to be described by a mean extinction coefficient for the galaxy. For bright Milky Way regions a minimum value of $0.2 \mathrm{~m} / \mathrm{kpc}$ has been found. ${ }^{210}$

Photoelectric measurements by Stebbins and Whitford ${ }^{207}$ indicate that the wavelength dependence of the interstellar extinction is essentially the same throughout the galaxy. Their results are given with the table. See references to Oort ${ }^{208}$ and Strohmeier ${ }^{2010}$ for possibility of variations in bright and obscured regions.

$\lambda(A)$	$\frac{1}{\lambda}\left(\mu^{-1}\right)$	$m(\mathrm{mag})$	$\lambda(A)$	$\frac{1}{\lambda}\left(\mu^{-1}\right)$	$m(\mathrm{mag})$
3200	3.12	$1.30 \dagger$	5700	1.75	.64
3550	2.83	1.18	7190	1.39	.35
4220	2.37	1.00	10300	.97	.00
4880	2.05	.81	21000	.48	$-.25 \dagger$

An unknown constant must be added to these values to give the actual extinction. The scale has been adjusted arbitrarily to give 1 mag differential extinction between $\lambda 4200$ and 10,300 .

A value of 4 for the ratio of total photographic absorption to international color excess [ $\left.R=A_{44 \times} /\left(A_{\text {tum }}-A_{\text {stan }}\right)\right]$ is obtained by extrapolation of the above table to $1 / \lambda=0$. Most observational determinations are between 3 and $5 .{ }^{300}$

Light from distant stars shows polarization up to 5 percent, approximately proportional to reddening. Plane of polarization variable but generally perpendicular to galactic plane. ${ }^{301}$

[^388]
# TABLE 885.-SOME DATA ON THE EARTH AND ITS SURFACE <br> Part 1.—Dimensions 

'The earth is a great oblate spheroid with the oceans making up about 71 percent of the area. The dimensions of the earth are as follows :

Equatorial radiu   Polar radius   Area of surface.   Volume of geoid	6378.388 km   6356.912 km   $510,100,934 \mathrm{~km}^{2}$   $1,083,319,780,000 \mathrm{~km}^{8}$
The surface consists of:	
Oceans and seas Land	$\begin{aligned} & 351.059 \times 10^{9} \mathrm{~km}^{2} \text { or } 70.8 \text { percent } \\ & 148.892 \times 10^{9} \mathrm{~km}^{2} \text { or } 29.2 \text { percent } \end{aligned}$

The land surface is of various elevations above sea level, the mean being about 840 m , while the average depth of the three great oceans and adjacent seas is about 3800 m (Table 886). The highest elevation and the lowest elevation in each continent are given in Part 2.

Part 2.-Area and elevation of continents

	$\begin{gathered} \text { Area } \\ 10^{n} \mathrm{~km}^{2} \end{gathered}$	Highest mountain	Height	Lowest	$\begin{gathered} \text { Depth } \\ m \end{gathered}$
Africa	298	Kibo	5970	Libian Desert	133
North America	21.5	McKinley	6150	Death Valley	85
South America	17.6	Aconcagua	6960	Sea level	
Asia ..........	44.0	Fverest	8880	Dead Sea	392
Europe	9.7	Elbrus	5640	Caspian Sea	28
Australia	7.7	Korciusko	2230	Lake Eyre	12

TABLE 886.-SEA.WAVE HEIGHT IN FEET FOR VARIOUS WIND VELOCITIES AND DURATIONS

Wind   duration   in hours	$\overbrace{10}$	20	30	40	50	60
6	2	5	10	14	20	25
12	2	7	13	20	30	35
24	2	9	17	30	40	55
48	2	10	22	35	45	70

Waves consistently higher than the values given are not found because stronger winds blow the tops of the waves off. Isolated waves up to 80 feet are due to the addition of two or more crests.
One of the longest swell periods recorded was 23 seconds. According to the relations given, its length in deep water would equal 2,650 feet, and its velocity 69 knots. A 28 -second swell has been recorded near Cape of Good Hope. Its length must have been almost three-quarters of a mile and its speed 84 knots.

## TABLE 887.-APPROXIMATE HEIGHT OF SWELL IN FEET AT VARIOUS DISTANCES FROM THE STORM AREA

| Distance from storm |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | area in nautical miles |  |  |  |
| 40 | 500 | 1000 | 2000 | 3000 |
| 30 | 19 | 20 | 12 | 8 |
| 20 | 12 | 14 | 8 | 5 |
| 15 | 8 | 8 | 5 | 3 |
| 10 | 5 | 5 | 3 | 2 |
| 5 | 2 | 3 | 2 | 1 |

[^389]| Body | $\begin{gathered} \text { Area } \\ 10^{8} \mathrm{~km}^{2} \end{gathered}$ | Volume $10^{6} \mathrm{~km}^{3}$ | Mean depth m |
| :---: | :---: | :---: | :---: |
| Atlantic Ocean | 82.441 | 323.613 | 3,926 |
| Pacific Ocean $\}$ excluding adjacent seas | 165.246 | 707.555 | 4,282 |
|  | 73.443 | 291.030 | 3,963 |
| All oceans (excluding adjacent seas). | 321.130 | 1,322.198 | 4,117 |
| Arctic Mediterranean . . | 14.090 | 16.980 | 1,205 |
| American Mediterranean | 4.319 | 9.573 | 2,216 |
| Mediterranean Sea and Black Sea | 2.966 | 4.238 | 1,429 |
| Asiatic Mediterranean | 8.143 | 9.873 | 1,212 |
| Large Mediterranean seas | 29.518 | 40.664 | 1.378 |
| Baltic Sea .............. | . 422 | . 023 | 55 |
| Hudson Bay | 1.232 | . 158 | 128 |
| Red Sea ... | . 438 | . 215 | 491 |
| Persian Gulf | . 239 | . 006 | 25 |
| Small Mediterranean seas. | 2.331 | . 402 | 172 |
| All Mediterianean seas. | 31.849 | 41.066 | 1,289 |
| North Sea | . 575 | . 054 | 94 |
| English Channel | . 075 | . 004 | 54 |
| Irish Sea | . 103 | . 006 | 60 |
| Gulf of St. Lawrence. | . 238 | . 030 | 127 |
| Andaman Sea | . 798 | . 694 | 870 |
| Bering Sea | 2.268 | 3.259 | 1,437 |
| Okhotsk Sea | 1.528 | 1.279 | 838 |
| Japan Sea | 1.008 | 1.361 | 1,350 |
| East China Sea. | 1.249 | . 235 | 188 |
| Gulf of California. | . 162 | . 132 | 813 |
| Bass Strait | . 075 | . 005 | 70 |
| Marginal seas | 8.079 | 7.059 | 874 |
| All adjacent seas | 39.928 | 48.125 | 1,205 |
| Atlantic Ocean $7 . . . . . . . . . . . .$. | 106.463 | 354.679 | 3,332 |
| Pacific Ocean $\}$ including adjacent seas. | 179.679 | 723.699 | 4,028 |
| Indian Ocean $\}$. . . . . . . . . . . . . . . . . . . | 74.917 | 291.945 | 3,897 |
| All oceans (including adjacent seas) | 361.059 | 1,370.323 | 3,795 |

$$
\begin{array}{ll}
\text { Mean elevation of land } & =840 \mathrm{~m} \\
\text { Mean depth of oceans } & =3,800 \mathrm{~m} \\
\text { Mean sphere depth } & =2,440 \mathrm{~m}
\end{array}
$$

Continental shelves extend out with small gradients to depths of about 100 to 150 m . Average width about 30 miles but varies from zero to several hundred. Continental slopes have about $2^{\circ}$ to $3^{\circ}$ inclination. Volcanic islands, fault scarps, etc., may have slopes as steep as similar features on land.

Greatest depths known are in the Pacific Ocean-10,800 m
Deepest sounding in the Atlantic Ocean is
Deepest sounding in the Indian Ocean is
, 200 m
$7,450 \mathrm{~m}$

Greatest depths occur in troughs or trenches paralleling mountainous coasts and insular arcs. These areas are centers of seismic and volcanic activity.

Topography of the ocean floor is in general similar to major features found on land. Submerged features such as the Mid-Atlantic Ridge are comparable in size and extent to the combined Rockies and Andes Mountains. In the Pacific are hundreds of isolated guyots, flat-topped seamounts rising thousands of feet from the ocean bed with minimum depths of $1,000-2,000 \mathrm{~m}$. Many isolated seamounts rise more than $3,000 \mathrm{~m}$ from the sea floor. Continental and insular shelves and slopes are not regular but generally show topographic relief such as shoals, terraces, canyons and valleys. Certain areas such as the Mediterranean, Black Sea, Sea of Japan, Red Sea, etc., are isolated at depth by ridges separating the deep water from the adjacent sea or ocean.

[^390]| Depth interval ( $m$ ) | Including adjacent seas |  |  | $\begin{gathered} \text { All } \\ \text { oceans } \end{gathered}$ | Excluding adjacent seas |  |  | $\underset{\text { oceans }}{\text { All }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Atlantic | Pacific | Indian |  | Atlantic | Pacific | Indian |  |
| 0-200 | 13.3 | 5.7 | 4.2 | 7.6 | 5.6 | 1.7 | 3.2 | 3.1 |
| 200-1000 | 7.1 | 3.1 | 3.1 | 4.3 | 4.0 | 2.2 | 2.7 | 2.8 |
| 1000-2000 | 5.3 | 3.9 | 3.4 | 4.2 | 3.6 | 3.4 | 3.1 | 3.4 |
| 2000-3000 | 8.8 | 5.2 | 7.4 | 6.8 | 7.6 | 5.0 | 7.4 | 6.2 |
| 3000-4000 | 18.5 | 18.5 | 24.0 | 19.6 | 19.4 | 19.1 | 24.4 | 20.4 |
| 4000-5000 | 25.8 | 35.2 | 38.1 | 33.0 | 32.4 | 37.7 | 38.9 | 36.6 |
| 5000-6000 | 20.6 | 26.6 | 19.4 | 23.3 | 26.6 | 28.8 | 19.9 | 26.2 |
| 6000-7000 | . 6 | 1.6 | . 4 | 1.1 | . 8 | 1.8 | . 4 | 1.2 |
| $>7000$ |  | . 2 |  | . 1 |  | . 3 |  | . 1 |

*For reference, see footnote 302, p. 773.

## TABLE 890.-PHYSICAL PROPERTIES OF SEA WATER (Fig. 34)

Temperatures in the sea range from $-2^{\circ}$ to $30^{\circ} \mathrm{C}$. The lower limit is set by the formation of ice and the higher limit by the balance between incoming radiation, back radiation, and evaporation.

Pressures in the sea vary from zero at the sea surface to about $1,000 \mathrm{~atm}$ in the greatest depths $(10,000 \mathrm{~m})$. Standard unit is the bar $=10^{6}$ dynes $/ \mathrm{cm}^{2}$. Approximately 10 m of sea water $=1 \mathrm{~atm}$.

Concentration of the dissolved constituents varies from nearly zero in river mouths to $40^{\circ} \%$ (parts per thousand) in isolated seas in arid regions. In most ocean waters the total solids are between 33 and $37 \%$. In addition, sea water contains dissolved gases, dissolved organic matter, and variable amounts of particulate material of biological or terrigenous origin.

Salinity is defined as the total amount of solid material in grams in one kg of sea water when all carbonates are converted to oxides, the bromine and iodine replaced by chlorine, and all organic matter completely oxidized.

Chlorinity, determined by titration with $\mathrm{AgNO}_{3}$, is essentially equal to the amount of chlorine in grams in one kg of sea water when all the bromine and iodine have been replaced by chlorine.

$$
\text { Salinity }=0.03+1.805 \times \text { Chlorinity }(\% / \text { oo })
$$

Distribution of temperature and salinity is most variable in the surface layers. Low temperatures occur in high latitudes with relatively low salinities. In the Tropics surface temperatures and salinities are high. The great ocean basins are filled with highdensity water produced in high latitudes during the winter when ice forms or when water of high salinity is cooled. Deep temperatures are therefore generally between $0^{\circ}$ and $2^{\circ} \mathrm{C}$. Convection and wind mixing produce a surface layer in which uniform conditions prevail. This may be as thick as several hundred meters. Immediately beneath this there is a rapid change in temperature called the thermocline. Diurnal variations of temperature at the surface rarely exceed $1^{\circ} \mathrm{C}$. Annual variations of surface temperature are greatest in midlatitudes (about $10^{\circ} \mathrm{C}$ ). Annual variations diminish with depth and rarely extend below 200 m .

Density of sea water is a function of salinity as well as temperature and pressure. The range in values is from 1.00 to about $1.04 \mathrm{~g} / \mathrm{cm}^{3}$. Most of the other properties are functions of temperature, salinity, and pressure. The difference from the values for pure water depends then on the effects of the dissolved organic compounds. Light absorption and color will also be primarily determined by suspended or dissolved debris. Processes of heat conduction, diffusion, and transfer of momentum are dominated by turbulent water movements and consequently the laboratory coefficients of conductivity, diffusion, and viscosity have to be replaced by "eddy" coefficients of vastly greater magnitude.

Absorption of light.-Water is essentially opaque to electromagnetic radiation except in the visible spectrum. Below several hundred meters, even in the clearest water, all the solar radiation is absorbed. (See Tabic 891 and fig. 35.) In coastal waters that contain suspended debris, the radiation may be absorbed in only a few meters. The rapid absorption of radiation limits photosynthesis to the surface layers.

Evaporation.-The principal source of heat is radiation from sun and sky. The chief heat losses are due to long-wave radiation to space and evaporation. Evaporation is greatest when the air is dry and colder than the water. Regional variations are generally between 50 and $150 \mathrm{~cm} /$ year.


Fig. 34.-Osomotic pressure, vapor pressure, of sea water, relative to that of pure water, freezing point, and temperature of maximum density as functions of chlorinity and salinity.

TABLE 891.-PERCENTAGE OF RADIATION OF GIVEN WAVELENGTH TRANSMITTED BY 1 M OF WATER *

Type of water	Wavelength ( $\mu$ )						
	. 46	. 48	. 515	. 53	. 565	. 60	. 66
Pure water	98.5	98.5	98.2	97.9	96.8	88.3	75.9
[ highest	96.4	97.5	96.6	96.3	92.9	81.8	
Oceanic water highest	91.8	92.7	92.5	91.8	89.8	75.9	
average	85.1	85.7	86.7	86.9	84.5	71.6	
¢ average	80.0	79.4	82.6	84.5	. .	68.7	62.0
Coastal water lowest .		71.6	75.9	76.4		64.6	53.6
lowest .	60.0	63.5	67.1	70.6		61.4	46.7

* For reference, see footnote 302, p. 773.


Fig. 35.-Extinction coefficients of radiation of different wavelengths in pure water and in different types of sea water.

## TABLE 892.-COMPOSITION OF SEA WATER*

The major ions present (over 99.9 percent of dissolved solids) are given in the table for $\mathrm{Cl}=19.00 \%$.

Ion	\% $\%$	Cl-ratio	Equiv/kg	Ion	\% $\%$	Cl-ratio	Equiv/kg
$\mathrm{Cl}^{-}$	18.9799	. 99894	. 5353	$\mathrm{Na}^{+}$	10.5561	. 5556	. 4590
$\mathrm{SO}_{4}{ }^{-}$	2.6486	. 1395	. 0551	$\mathrm{Mg}^{++}$	1.2720	. 06695	. 1046
$\mathrm{HCO}_{3}{ }^{--}$	. 1397	. 00735	. 0023	$\mathrm{Ca}^{++}$	. 4001	. 02106	. 0200
$\mathrm{Br}^{-}$	. 0646	. 00340	. 0008	$\mathrm{K}^{+}$	. 3800	. 02000	. 0097
$\mathrm{F}^{-}$	. 0013	. 00007	. 0001	$\mathrm{Sr}^{++}$	. 0133	. 00070	. 0003
$\mathrm{H}_{3} \mathrm{BO}_{3}$	. 0260	. 00137					
			. 5936				. 5936

$$
\text { Salinity }=34.325 \% \text { Total solids }=34.48 \%
$$

The Cl -ratios are constants for oceanic waters except for $\mathrm{HCO}_{3}{ }^{--}$and $\mathrm{Ca}^{++}$which are affected by biological activity. Ratios are not valid in areas of river dilution.

* For reference, see footnote 302 , p. 773.


## TABLE 893.-GEOCHEMISTRY OF THE OCEANS

The oceans contain about $5 \times 10^{16}$ metric tons of dissolved solids. The amount in tons of any element can be estimated by multiplying the values in Table 894 by $1.42 \times 10^{12}$. Rivers each year add about $2.7 \times 10^{9}$ metric tons.

TABLE 894.-ELEMENTS PRESENT IN SOLUTION IN SEA WATER*
Elements present in solution in sea water in terms of $\mathrm{Cl}=19 \%$ are listed in order of abundance in the table. Adding the dissolved gases $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{He}$, and A, a total of some 49 elements are known to occur.

Ranges are indicated for $\mathrm{Si}, \mathrm{N}, \mathrm{P}, \mathrm{As}, \mathrm{Fe}, \mathrm{Mn}$, and Cu . The distribution of these elements, present in small quantities, is affected by biological activity. Lower values are usually near surface.

All atmospheric gases are found in the sea. Their solubility decreases with increasing temperature and salinity. At $0^{\circ} \mathrm{C}, \mathrm{Cl}=19 \%$, surface water contains $8.08 \mathrm{~m} / / l$ of $\mathrm{O}_{2}$ and $14.40 \mathrm{ml} / \mathrm{l}$ of $\mathrm{N}_{2}$. At $20^{\circ} \mathrm{C}$ corresponding values are 5.38 and 9.65 . Distribution of dissolved $\mathrm{N}_{2}$ is determined by temperatures and salinity. Oxygen at middepths is reduced, but only in the waters of isolated basins such as the Black Sea is there stagnation and $\mathrm{H}_{2} \mathrm{~S}$ present. Plant activity near the surface may increase $\mathrm{O}_{2}$ above saturation values. Carbon dioxide is present in large quantities (about $50 \mathrm{ml} / \mathrm{l}$ ) chiefly as $\mathrm{HCO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{--}$ balanced against basic cations. Strong acid must be added to drive off all $\mathrm{CO}_{2}$. The pH in the sea varies between 7.4 and 8.4 depending upon the $\mathrm{O}_{2} \rightleftarrows \mathrm{CO}_{2}$ changes due to respiration or photosynthesis.
(Dissolved gases not included)

Element	$c l=19.00 \%$	Element	$\mathrm{Cl}=19.00 \%$
Chlorine	. 18980	Copper	. $001-.01$
Sodium	10561	Zinc	. 005
Magnesium	1272	Lead	. . 004
Sulfur	884	Selenium	. . 004
Calcium	400	Cesium	. . 002
Potassium	380	Uranium	. . 0015
Bromine	65	Molybdenum	. . 0005
Carbon	28	Thorium	. . 0005
Strontium	13	Cerium	. . 0004
Boron	4.6	Silver	. . 0003
Silicon	. $02-4.0$	Vanadium	. . 0003
Fluorine	1.4	Lanthanum	. . 0003
Nitrogen ${ }^{\dagger}$	. $01-.7$	Yttrium	. . 0003
Aluminum	. 5	Nickel	. . 0001
Rubidium	. 2	Scandium	. . 00004
Lithium		Mercury	. . 00003
Phosphorus	. $001-.10$	Gold	. 000006
Barium	. 05	Radium	. $2-3 \times 10^{-10}$
Iodine	. 05	Cadmium	. traces
Arsenic	. $01-.02$	Chromium	. traces
Iron	.002-. 02	Cobalt	traces
Manganese	. .001-. 01	Tin	traces

[^391]TABLE 895.-WAVE VELOCITY IN VERY SHALLOW WATER

Denth   of water   feet	Speed   of wave   knots
15	13
10	11
	8

TABLE 896.-VELOCITY OF EARTHQUAKE WAVES WITH DEPTH OF WATER

| Depth in feet. . . . . . . . . . . . | 500 | 1,000 | 2,000 | 5,000 | 10,000 | 15,000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Velocity in knots. . $\ldots \ldots \ldots \ldots$ | 70 | 100 | 150 | 240 | 340 | 420 |

If a large swell or an earthquake wave approaches a shoreline great damage may be done before the energy of the moving water is absorbed.

The permanent currents of the ocean are maintained by differential heat and cooling and by the indirect effects of the wind. They may extend to depths as great as $1,000 \mathrm{~m}$ and their speed is usually less than $50 \mathrm{~cm} / \mathrm{sec}$. In the Gulf Stream and Kuroshio, speeds may exceed $250 \mathrm{~cm} / \mathrm{sec}$. Volume transparents of the large current systems exceed 50 million tons $/ \mathrm{sec}$.

Wind-driven currents induced by the drag of the wind are generally shallow, less than 100 m , flow with speeds about 2 percent of wind, and deviate about $30^{\circ}$ from the wind direction, to the right in the Northern Hemisphere and to the left in the Southern Hemisphere.

Tidal currents follow elliptical orbits during each tidal cycle. Motion probably extends to the bottom. In restricted coastal channels the currents are reversing and sometimes exceed $250 \mathrm{~cm} / \mathrm{sec}$.
WAVES AT SEA *

Whenever the wind blows over the water, the surface is formed into waves which grow under the influence of the wind and form a most irregular surface known as a sea. Such waves traveling out from a storm area are called swells. As waves break near the shore surfs are formed.

Waves may also be formed by earthquakes, fault movements, submarine landslides, or volcanic eruptions beneath the sea.
The height of a wave, $H$, is the vertical distance from crest to trough. The length, $L$, is the horizontal distance between adjacent crests. The wave period, $P$, is the time interval between passage of successive crests at a fixed point. The velocity, $V$, of a wave is the speed with which the wave travels along the sea surface.

The following relations hold for depths greater than one-quarter wavelength with good approximation:

$$
L=5 P^{2}, V=3 P
$$

where the wavelength, $L$, is in feet, the period, $P$, in seconds, and the velocity, $V$, in knots. The waves move along the surface of the water but the water, on the other hand, advances very little-about one percent only of the wave velocity.

The height of the sea is determined by three factors:
Wind velocity, average speed of wind over fetch.
Fetch, distance over wind blows.
Wind duration, how long the wind blows.
Tables 886 and 898 show the wave heights for some conditions.

[^392]TABLE 898.-WAVE HEIGHT IN FEET FOR VARIOUS WIND VELOCITIES AND FETCHES

Fetch in   nautical   miles	$\overbrace{10}^{5}$	20	30	40	50	60
10	2	3	5	7	9	10
20	2	4	7	9	12	14
50	2	6	10	14	18	22
100	2	7	13	17	25	30
500	2	10	20	31	45	55
1000	2	10	21	35	50	70

(See also Tables 886, 887, and 895.)
(Nat. Res. Council Bull. 78, 1931.)
Spring tides.-When moon (new or full) is in line with sun (large tide).
Neap tide. -When moon is in quadrature with sun (small tide).
Generally two high and two low each day. Variation in heights of two high and two low $=$ "diurnal inequality."

River-type tide, steep short-period graph for flood, more inclined and longer for ebb. Extreme case = "bore", tide rises so rapidly it assumes form of wall several feet high. Most famous bores, Tsientang Kiang, China; Turnagain Arm, Alaska; Severn and the Wye, England; Seine in France; Hoogly, India; Petitcodiac, Canada.
Mean sea level (geodetic).-The equipotential surface which the oceans woud assume if undisturbed by the tides and effects of wind and weather. Starting with mean sea level at any given initial point the geodesist can determine by precise spirit leveling, the equipotential surface.
Mean sea level (geographic).-Determined by averaging actual tidal heights over a sufficient period. It is a local or geographic value. It is much disturbed by prevalent winds and local contours. Note difference between average of hourly readings (mean sea level) and half-tide point (because of the shape of the tide height as related to time). On Atlantic coast $\frac{1}{2}$ tide level lies below mcan by about $1 / 10 \mathrm{ft}$ : on Pacific above by $1 / 20 \mathrm{ft}$. Mean tide near rivers varies with rainfall. Nineteen years' observation used for full tide cycle. A fundamental level net has been connected with mean sea level at Portland, Me., via Boston, Mass., Ft. Hamilton, N. Y., Sandy Hook and Atlantic City, N. J., Old Point Comfort and Norfolk, Va., Brunswick, Ga., Fernandina, St. Augustine, and Cedar Keys, Fla., Biloxi, Miss., Galveston, Tex., San Diego, San Pedro, San Francisco, Calif., Ft. Stevens, Oreg., and Seattle, Wash. The accuracy of high precision leveling is measured by the correction necessary to close circuits, about 0.00063 foot/mile. Mean sea level difference indicated by special adjustment of leveling network in 1929: Portland, Maine, 9 cm higher than Ft. Hamilton; Vancouver, 2 cm higher than Seattle; Galveston, 27 cm higher than St. Augustine; San Diego, 33 cm higher than Galveston; Fort Stevens, 26 cm higher than San Diego; Isthmus of Panama, Pacific coast, 20 cm higher than Atlantic; Death Valley, 280 ft ( 84.1 ) below sea level ; Mount Whitney, $14,495 \mathrm{ft}(4418.1 \mathrm{~m}$ ) above.

From observations, Spencer Jones (Monthly Notices, Roy. Astron. Soc., vol. 99, p. 541, 1939) deduces as the best value of the apparent solar acceleration $2.5^{\prime \prime} /$ (century) ${ }^{2}$. Lunar theory predicts $12.0^{\prime \prime} /$ (century $)^{2}$ leaving part attributable to tidal friction $10^{\prime \prime \prime}$ ( century) ${ }^{2}$.
Estimates of tidal friction losses (Jeffreys, Philos. Trans., A, vol. 221, p. 239, 1920) :


Other contributions are small. Total for spring tides $22 \times 10^{18} \mathrm{erg} / \mathrm{sec} .1 .1 \times 10^{20} \mathrm{erg} / \mathrm{sec}$ average, corresponding to about $7^{\prime \prime}$ secular acceleration per century per century. If $\Omega$ is earth's angular velocity of rotation, $d \Omega / d t=-2.5 \times 10^{-22} / \mathrm{sec}^{2} . \Omega=7.3 \times 10^{-5} \mathrm{rad} . / \mathrm{sec}$. $\Omega$ changes by $10^{-5}$ of its amount in $3 \times 10^{12} \mathrm{sec}$ or $10^{5}$ years. The day should have lengthened by 1 sec in 120,000 years.

The fluctuations in the earth's rate of rotation indicated by astronomical evidence are of a quite greater order of magnitude. Moreover the changes vary in sign whereas frictional effects should not. The observations come from deviations of the sun and moon from their gravitational orbits, the transits of Mercury, and eclipses of Jupiter's satellites. Changes in the speed of rotation of the earth rotation seem the only explanation. This may be due to shifts of matter within or on the earth. The following figure by Brown indicates that in 1928 the earth was about 25 sec ahead of its average rotational motion during the last three centuries. The greatest apparent change in the loss or gain of one sec in a whole year. (1 part in $30,000,000$.)


Fig. 36.-Irregularities in the earth's rotation derived from the moon's motions.

Tidal friction should make the earth rotate more slowly and the moon recede from the earth. The rate of dissipation of energy by friction is about $1.4 \times 10^{18} \mathrm{erg} / \mathrm{sec}$. The earth's rotation from this cause should have slowed by 4 hours during geologic time. The moon should continue to recede until its period of revolution and that of the earth's rotation are equal to 47 of our present days. The moon should then gradually approach the earth, ultimately coming within Roche's limit (about twice the earth's radius) breaking up possibly into a ring like Saturn's.

[^393]| Area (See Tables 31-33) |  |  | Density |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Multiply | by | to obtain | Multiply | by | to obtain |
| acre | 40.47 | are | $\mathrm{g} / \mathrm{ft}^{\text {3 }}$ | 35.31 | $\mathrm{g} / \mathrm{m}^{3}$ |
|  | $1.60 \times 10^{2}$ | $\mathrm{rod}^{2}$ | $\mathrm{g} / \mathrm{liter}$ | $8.345 \times 10^{-8}$ | lb/gal |
|  | $4.356 \times 10^{4}$ | $\mathrm{ft}^{2}{ }^{2}$ | $\mathrm{g} / \mathrm{cm}^{3}$ | 62.43 | $\mathrm{lb} / \mathrm{ft}^{3}$ |
| are | $10^{2}$ | $\mathrm{m}^{2}$ | $\mathrm{g} / \mathrm{cm}^{3}$ | 1.94 | slug/ $\mathrm{ft}^{\text {8 }}$ |
| cir mils | $5.067 \times 10^{-6}$ | $\mathrm{cm}^{2}$ | $\mathrm{lb} / 1000 \mathrm{ft}^{8}$ | 1.602 | $\mathrm{kg} / 100 \mathrm{~m}^{3}$ |
| $\mathrm{ft}^{2}$ | $9.290 \times 10^{2}$ | $\mathrm{cm}^{2}$ | $\mathrm{lb} / \mathrm{ft}^{8}$ | $1.602 \times 10^{-2}$ | $\mathrm{g} / \mathrm{cm}^{3}$ |
| in. ${ }^{3}$ | 6.452 | $\mathrm{cm}^{2}$ | $\mathrm{lb} / \mathrm{in}^{\text {. }}$ | 27.68 | $\mathrm{g} / \mathrm{cm}^{8}$ |
| Capacity units (See Tables 31-33) |  |  | siug/ft ${ }^{3}$ | $32.17{ }^{.} 5153$ | $\begin{aligned} & \mathrm{g} / \mathrm{cm}^{2} \\ & \mathrm{lb} / \mathrm{ft}^{3} \end{aligned}$ |
| barrel | 31.5 | gal |  | Electrical units (See Tables 6-8) |  |
| bushei | 1.244 | $\mathrm{ft}^{3}$ |  |  |  |
|  | $2.1504 \times 10^{3}$ | in. ${ }^{3}$ | amu |  | $\mathrm{Mev}$ |
|  | $3.524 \times 10^{-2}$ | $\mathrm{m}^{3}$ |  | $1.492 \times 10^{-8}$ | ergs |
|  | 4 64 | pecks pt (dry) |  | Energy units (See Tables 7, |  |
|  | 32 | qt (dry) | cal | $4.185 \times 10^{7}$ |  |
| chaldrons (U.S., dry) | 36 | bu | erg | $9.4801 \times 10^{-11}$ $2.389 \times 10^{-8}$ | Btu* ${ }_{\text {cal }}{ }^{\text {a }}$ |
| firkin | 9 | gal |  | $1.0197 \times 10^{-8}$ | g-cm |
| $\mathrm{ft}^{3}$ | 7.48 | gal |  | $7.376 \times 10^{-8}$ | ft-lbs |
| $\mathrm{ft}^{\text {² }}$ | 28.32 | liter |  | $2.373 \times 10^{-6}$ | ft-poundals |
| gallon | $3.7854 \times 10^{3}$ | $\mathrm{cm}^{3}$ |  | $6.24 \times 10^{5}$ | Mev |
|  | .1337 | $\mathrm{ft}^{3}$, | electron-volt <br> $\mathrm{ft}^{3}$-atm <br> ft-lb | $1.602 \times 10^{-12}$ | erg |
|  | $2.31 \times 10^{2}$ | in. ${ }^{3}$ |  | 28.32 | liter-atm |
|  | 3.7853 | liter |  | $1.356 \times 10^{7}$ | ergs |
|  | 8 | pt (liquid) |  | $3.766 \times 10^{-7}$ | kw-hr |
|  | 4 | qt (liquid) |  | ${ }_{32} .3238$ | cal |
| hogsheads | 8.423 | $\mathrm{ft}^{3}$ |  | 32.17 - ${ }^{-3}$ | ft-poundal |
|  | ${ }^{63} 1.000028 \times 10^{3}$ | $\mathrm{gal}^{3}$ | ft-poundal | $1.285 \times 10^{-3}$ | Btu |
| $l \mathrm{liter}{ }_{\text {l }} \mathrm{H}$ of $\mathrm{H}_{2} \mathrm{O}$ | $1.000028 \times 10^{3}$ | $\mathrm{cm}^{3}$ |  | $4.214 \times 10^{5}$ | ergs |
| lb of $\mathrm{H}_{2} \mathrm{O}$ | $1.602 \times 10^{-2}$ | $\mathrm{ft}^{3}$ of $\mathrm{H}_{2} \mathrm{O}$ |  | $3.108 \times 10^{-2}$ | $\mathrm{ft}-1 \mathrm{~b}$ |
|  | 27.72 | in. ${ }^{3}$ of $\mathrm{H}_{2} \mathrm{O}$ | g-cm | $9.806 \times 10^{2}$ | erg |
| pt (liquid) | 28.88 | in. ${ }^{\text {gal }}$ | hp-hr | $2.545 \times 10^{3}$ | Btu Btal |
| qt (dry) | 67.20 | in. ${ }^{3}$ |  | $6.413 \times 10^{2}$ | kg-cal |
| qt (liquid) | 57.75 | in. ${ }^{3}$ |  | . 7457 | kw-hrs |
|  | 1.164 | qt (dry) |  |  |  |

* In this table the calorie $=4.185$ joules and the Btu $=252$ calorics $($ See Table 7).
TABLE 901.-GENERAL CONVERSION FACTORS (continued)


Energy units (continued)		
Multiply	by	to obtain
joule	$10^{7}$	ergs
	$9.482 \times 10^{-4}$	Btu
	23.73	ft-poundals
	. 7376	ft -lbs
	$3.021 \times 10^{18}$	quanta ( $\lambda=.6 \mu$ )
kg -cm	$9.807 \times 10^{5}$	ergs
kw-hr	$7.233 \times 10^{-2}$	$\mathrm{ft}-1 \mathrm{~b}$
	$3.6 \times 10^{6}$	joule
	$3.414 \times 10^{3}$	Btu
	$8.602 \times 10^{5}$	cal
Mev   pound-foot poundal-foot quantum ( $\lambda=.6 \mu$ )	$1.602 \times 10^{-6}$	ergs
	$1.3553 \times 10^{7}$	ergs
	$4.2130 \times 10^{5}$	ergs
	$3.310 \times 10^{-12}$	ergs
Energy flow (See Tables 129-130)		
$\mathrm{ft}^{3} / \mathrm{min}$	Flow	
	$4.720 \times 10^{2}$	$\mathrm{cm}^{3} / \mathrm{sec}$
	. 1247	$\mathrm{gal} / \mathrm{sec}$
	. 47200	liter/sec
$\mathrm{gal} / \mathrm{min}$	$2.228 \times 10^{-3}$	$\mathrm{ft}^{3} / \mathrm{sec}$
liter/min	$5.885 \times 10^{-4}$	$\mathrm{ft}^{3} / \mathrm{sec}$
	$4.403 \times 10^{-3}$	gal/sec
dyne	Force	
	$7.233 \times 10^{-5}$	poundal
	$2.248 \times 10^{-6}$	poundweight
	$1.0197 \times 10^{-6}$	kg weight
newton $\dagger$   pound (see lb)	$10^{5}$	dyne
poundal	$1.3827 \times 10^{4}$	dyne
pound (weight)	$4.448 \times 10^{5}$	dyne
gram (weight)	$9.81 \times 10^{2}$	dyne
grav (gal)	Gravitational	
	$9.80665 \times 10^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$
	32.174	$\mathrm{ft} / \mathrm{sec}^{2}$

$\dagger$ The unit of force in the MKS system.
TABLE 901.-GENERAL CONVERSION FACTORS (continued)
(U)


	กั๊	\%	$\underset{\text { E }}{\underset{E}{\sim}}$		

Metric system prefixes (continucd)
(continucd)
to obtain
by
.01
.1
10
$1.00 \times 10^{2}$
$1.00 \times 10^{3}$
$1.00 \times 10^{4}$
$1.00 \times 10^{6}$
Paper measure
$5.00 \times 10^{2}$
Photometric units (See Tables 66 and $69-74$ )
Multiply
centi
deci
deka
hecto
kilo
myra
$\ldots$.
mega reams $_{\text {Btu/min }}^{\text {cal/min }} \begin{aligned} & \text { ft-lb/sec } \\ & \text { hp } \\ & \text { hp } \\ & \text { kw } \\ & \text { atm }\end{aligned}$

$\underset{\mathrm{Btu} / \mathrm{ft}^{3}}{\mathrm{Btu} / \mathrm{lb}}$ 정
等
year ${ }^{8}$ day
$\mathrm{kg} / \mathrm{m}^{2}$
$\mathrm{~kg} / \mathrm{cm}^{2}$
$\mathrm{kips} / \mathrm{in}^{2}{ }^{2}$
$\mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{lb} / \mathrm{in}^{2}{ }^{2}$
mmHg

$$
\begin{aligned}
& \text { It of wa } \\
& \mathrm{kg} / \mathrm{m}^{2} \\
& \mathrm{lb} / \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { to obtain } \\
& \text { grains } \\
& \mathrm{kg} \\
& \mathrm{mg} \\
& \mathrm{oz} \\
& \mathrm{lb} \\
& \mathrm{lb} \\
& \text { grains } \\
& \mathrm{g} \\
& \mathrm{oz} \\
& \mathrm{lb} \text { (av) } \\
& \text { gee lb } \\
& \mathrm{lb} \\
& \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{m}^{3} \text { of gas } / 100 \mathrm{~kg} \\
& \mathrm{lb} .
\end{aligned}
$$

4
n

Abampere, 10, 20
Abbreviations: common units of measurcment, 56
constellations, 743
Abcoulomb, 10, 20
Aberration constant, 729
Abfarad, 20
Abhenry, 20
Absolute units (see under name of unit), 20
Absorption (see also Transmission) :
for air (atmosphere) , 538, 546
components, 538
moist, 546
for crystals, 517, 545
for filters, 535-537
for gases, long wavelengths, 552
for glass, 512
red pyranometer, 537
various, 512
for mass: $\gamma$-rays, 687
X-rays, 694
for materials for blackening receivers, 548
for radiant energy, 517, 535-546
for screens, color, 535
for various materials, 535
for water, 536
of gases by liquids, 360
of vapors by liquids, 360
of various radiations: alpha rays, 672,684
beta rays, 672,690
cathode rays, 672,690
gamma rays, 672,687
radiant energy, 549
X-rays, 693, 694, 701
critical, 701
Abundance (see Elements, chemical): elements, 625-629
isotopes, 655
Abvolt, 12, 20
Acceleration: angular, 4
gravity (see Gravitation), 714
linear, 6
Acoustics (see also Sound), 309
architectural, 315
attenuation coefficient, 315
definition of terms, 315
hearing, 314
differential sensitivity, 314
distribution of hearing losses, 315
sensitivity of ear, 314
reverberation time, 315
calculations, 315
optimum, 316
room type, 317
sound type, 317
Actinium 228,
Beta-ray spectrum, 685

Activity (power), 4
Adsorption, heats of, 632, 633
charcoal, 632, 633
Aeronautics, 337
air flow, 337, 349
compressible, 348
force, parameters, 337,343
illustrations, 349
isentropic, 348
formulas, 348
normal-shock, 348
formulas, 348
oblique-shock, 348
parameters (force) and Mach numbers, 350, 352
speed vs. pressure, 338
supersonic, 348
types, 339,349
vs. Mach number, 349, 352
vs. Reynolds number, 349
bodies moving through a liquid, 337
forces on, 337
angle of attack, 339
aspect ratio, 339
depends upon, 337
for air: attitule to wind, 337
center of pressure, 339
drag coefficient, 339, 340, 342
lift coefficient, 339
Mach number, 337, 340
and flow paramcters, 342, 350
pressure, dynamic, 338
vs. air speeds, 358
Reynolds number, 337
critical, 341
shape of body, 337
speed, 338
surface, roughness, 337
turbulence of air, 337
sample bodies:
airfoils, 353
air flow around, 352
angle of attack, 352
Mach number, 352
Reynolds number, 352
surface roughness, 352,353
flow parameters, 353
vs. Mach number, 353
force coefficients, 353
illustrations, 352
cylinders, nonrotating, 340
drag coefficient, 340. 341
aspect ratio. 340
Mach number. 340-342
Reynolds number, 340, 341
inclination of axis to wind direction, 341

Aeronautics-continued
flat plates, thin, 339
force coefficients, 339
angle of attack, 339
drag, 339, 340
lift, 339
Mach number, 340
Reynolds number, 340
local skin friction, 343,345
moment thickness, 344
skin friction, 343
laminar flow, 343, 344
Reynolds number, 343
turbulent flow, 343, 344
miscellaneous bodies, 343
drag coefficient, 343
Reynolds number, 343
various bodies, 343
forces on, 343
spheres, 341
drag coefficient, 341
Mach number, 342
Reynolds number, 342
forces on, 342
pressure coefficient, 342
Reynolds number, 341
critical, 341
sphere size, 341
standard atmosphere for, 345
basis of, 345
characteristics of, 347
extension of, 347
properties, 347
ratio specific heats, 345,348
velocity of sound in, 347
viscosity, 347
kinematic, 347
Age, earth, 741
moon, 741
radioactive materials, 679
strata, 741
universe, 710
Air (see also Atmosphere), 592
aqueous vapor, pressure in atmosphere, 599
sea-level, 605
composition, ground level, 592
up to Fa layer, 592
compressibility, 265
density of moist air, 596-598
dry, thermal properties, 269, 270
effects on weighing, 69
corrections, 69
flow (see under Aeronautics), 337
compressible, 348
heat capacity, 163
height, 592
humidity, relative, 602
determination, 602-604
dry-bulb temperature, 604
maintenance, 599
various vapor pressures, 601
wet and dry temperature, 604
index of refraction, 532
infrared transmission, 546
Joule-Thomson effect in, 278

Air-continued
mass, 592, 720
different values, 720
with direction of sight, 720
moist:
density, calculated, 596
relative, 598
transmission, 546
saturated water vapor, 600
pressure, 600
weight, 601
sound, speed in, 306,594
thermal conductivity, 142
thermal properties, 270
dry, 269, 270
transmission of radiation, 538,546
components, 538
ultraviolet, 538
viscosity, kinematic, 345
weight, 592
Albedos (see Astronomy), 737
Alcohol: compressibility, 282
density, mixtures with water, 302
melting point, with pressure, 118
vapor pressure, 370
viscosity, 320
Alloys: alnico, 454
aluminum, 192, 220
Babbitt, 226
brazing, 223
carboloy, 224
conductivity, electrical, 390,391
super, 394
thermal, 138
copper, 198
density, 293
Heusler, 458
latent heat of fusion, 165
low melting point, 125, 225
composition, 125, 225
magnetic, 458
alnico, 454
Heusler, 458
permalloy, 453
silmanal, 454
superpermalloy, 453
melting points, 125
low, 125
miscellaneous, 217
resistivity, 384
soldering, 223
special purpose, 220
thermal emf vs. lead, 379
thermal expansion, 149
invar, 221
low expansion, 221
special purpose, 220
Alnico, 454
Alpha particles (see also Radioactivity), $664,672,680$
charge, 50
characteristics, 672, 680, 681
high-speed, artificial radioactive sources, 682
natural radioactive sources, 681
ionization, 672
mass, 49
range in air, 672, 684

Alpha particles-continued
relative stopping power of selected substances, 684
velocity, 672
Alpha-ray spectra, artificial radioactive substances, 682
natural radioactive substances, 681
Altitude, by barometer, 613
Aluminum: alloys, properties, 192
atomic weight, 619
boiling point, 117
conductivity, 404
mechanical properties, 192
melting point, 117
oxide, 162
solder, 223
wire, 414
Alums, 521
index refraction, 521
American candle (see Photometry), 94
after 1948, 94
Ammonia: compressibility, 266
hydrolysis, 399
latent heat of vaporization, 167
pressure variation, 167
liquid, density, 178
heat content, 162,178
latent heat, 178
pressure variation, 167
pressure effects, 167
properties, 178
specific heats, 178
thermal properties, 162
Ampere, 20
Ampere-turn units, 18
Amu, 21
Angle, 4
Angstrom, 4, 63
Angular acceleration, 4
Angular momentum, 4
Angular velocity, 4
earth, 729
Antenna arrays, 434
Antifreeze solutions, 135
Aphelon, 729
API scale, 290
Apostilb, 93
Apothecary mass unit, 63, 64, 66
Aqueous solutions, 300-305
density, 300-305
diffusion into water, 354
Arcs (see under name of)
Area, 4
Argon: compressibility, 264
melting point vs. pressure, 117, 118 parameters, 117
volume-pressure, 118
Artificial disintegration, 653, 669, 706
bombardment, 669, 670
alpha-ray, 669
deuteron, 669
neutron, 667,669
photonuclear, 669
products, 669
proton, 669
interesting results, 652, 669
methods of producing elements beyond uranium, 670

Artificial disintegration-continued
parts, 706
pile yields, 670
results of, 666-670
Artificial radioactivity, 667
slow-neutron-produced, 667
Asbestos, thermal conductivity, 139
Astronomical units, 729
Astronomy, 728
albedos, 737
planets, 737
calendars, 728, 732, 733
equation of time, 728
Julian day, 733
perpetual, 732
clouds of Magellan, 746
constellation abbreviations, 743
craters, 736
lunar, 736
terrestrial, 736
data, miscellaneous, 729
day (see also under Definitions), 729
change of, 780
definitions, 729
earth, 734, 741
age, 741
strata, 741
diameter, 729
dimensions, 729, 734
distance, to moon, 730 to sun, 730
interior, characteristics, 739
density, 739
with depth, 739
elastic constants, 740
rocks, 740, 741
pressure, 739
temperature, 727
velocity, earthquake waves, 739, 740
mass, 729
orbit, 729, 734
physical data, 729
precession for 50 years, 738
quake waves, 739
velocity in ocean, 777
rigidity, 740
rotation, 729, 780
variation, 780
satellites, 734
strata, 741
temperature, 734
various places, 726
velocity, earthquake waves, 739
viscosity, 729
galaxies, local family, 748
our galaxy, 713, 770
center,. 770
rotation, 770
stars, mass, 713
number, 713
interstellar space, 771
matter, 629, 771
temperature, 763
Magellanic clouds, 746
moon (see also Moon), age, 741
nebulae (see also under stars), classifica-
tion, 758
nebulae lines, 745

Astronomy-continued
novae, well observed, 757
orbits, planets, 734
planets, 734
albedos, 737
distance to sun, 730
orbits, 734
period, 734
physical data, 734
satellites, 735
orbits, 735
temperature, 734
precession for 50 years, 738
rotation, earth, 780
our galaxy, 770
stars, 771
Russell-Hertzsprung diagram, 754
satellites, orbits, 735
physical data, 734, 735
planets, 735
solar constant, 719
variation, 720
solar corona, emission lines, 744
solar eclipses, 742
solar flares, 743
solar motion, elements of, 731
stars:
binary mass of, within 10 parsec of sun, 752
spectroscopic, 768
spectroscopic eclipsing, 767
visual, 761
brighter than magnitude $\mathrm{m}, 756$
Cepheids, 760
period-luminosity curve, 744
clusters, classification, 769
galactic, 769
globular, 769
properties, 769
concentration, 749
near sun, 751
constellations, abbreviations, 743
near sun, 751
degenerate, 762
diameters, 753
dwarfs, 762, 763
degenerate, 762
density, 762
white, 762
equivalent light from, 757
explosive, 761
first magnitude, 752
galactic concentration, 749
magnitude, 749
galaxies, 746, 748
local family, 748
our galaxy, 770
center, 770
rotation, 770
stars, number, 770
giants, 762
low density, 762
magnitude, 730
absolute, 730
bolometric, 754
first, and brightness, 752
per cubic parsec, 735

Astronomy, stars-continued
number and brightness, 756
near sun, 735
per square degree, 756
photographic, 735, 749
radiometric, 730
reduction to visual, 754
spectrum type, 753
visual, absolute, 753
to bolometric, 754
mass, total our galaxy, 713
mass-luminosity, 758
masses, binaries, 752
motion of, 764
large, 756
velocities, 765
near sun, 751, 752
masses, 752
nebulae, brightness, 757
classification, 758
nongalactic, 759
variables with, 760
novae, 757
brightness, 757
well observed, 757
characteristics, 757
classification, 758
Milky Way, 746
nongalactic, 759
number of, 757
and galactic latitude, 756
and light, 757
and magnitude, 756
$\log$. No. per square degree, 756
near sun, 735, 751, 752
per cubic parsec, 735
our galaxy, 713
universe, 713
various classes, 748
within 5 parsec of sum, 751
within 10 parsec of sun, 752
of large proper motion, 756
parallax, mean annual, 750
magnitude 10,750
rotation of, 771
Russell-Hertzsprung diagram, 754
spectrum classes, 748, 750, 753
galactic concentration, 749
proper motion, 742
temperatures, 750
and diameters, 753
visual magnitude, 753
spectrum types, 753
magnitude, 750, 753, 754
temperatures, 750
and diameter, 753
variables: Be stars, 761
classification, 760
Cepheids, 760
period-luminosity curve, 744
erratic, 760
explosive, 760
general characteristics, 760
long period, 760
luminosity curve, 744
nebulosities, 761

Astronomy, stars-continued
novae, 761
repeating, 761
pulsating, 760
P Cygni, 761
red, 760
RV Tauri, 760
semi-irregular red, 760
semiregular, 760
temperature, 750
with large radial velocities, 766
Z Camelopardalis, 761
stellar (see stars)
stellar diameters, 753
stellar radiation measurements, 759
stellar spectra: classes, 748, 750, 753
dwarf, 762, 763
galactic concentration, 749
luminosity classification, 747
percentage various classes, 748
proper motion, 742
related characteristics, 746
systems, 746
brighter stars, 746
clouds of Magellan, 746
Milky Way, 746
supergalaxies, 746
temperature, 753, 754
types and magnitudes, 753
strata, age, 741
sun (see Sun), eclipses, 742
telescopes, largest in use, 728
temperature, interstellar space, 763
time, calendars, 732, 733
equation, 728
transmission of light through space, 771
Astrophysics, 728
Atmosphere (see also Air), 592
aqueous vapor, 599
pressure, sea level, 605
characteristics, above Fs layer, 595
up to $\mathrm{F}_{2}$ layer, 594
density, above $\mathrm{F}_{2}$ layer, 595
up to $\mathrm{F}_{2}$ layer, 594
vs. height, 594,595
electricity (see Lightning), 614
extent of, 592
humidity, 596
maintenance, 599
pressure, 602
relative, dry-bulb temperature, 602
temperature, 602
vapor pressure, 602
wet-dry thermometer, 604
ionic equilibrium, 615
layers:
ionosphere, 592
E layer, 592
Filayer, 592
$\mathrm{F}_{2}$ layer, 592
G layer, 592
stratosphere, 592
troposphere, 592
upper atmosphere, 592
mass, 592
and solar altitude, 725
path through (radiation), 720

Atmosphere-continued
potential gradient, 614
pressure, above $\mathrm{F}_{2}$ layer, 595
$u p$ to $\mathbf{F}_{2}$ layer, 594
vs. height, 594, 595
regions, 592
standard, 4, 47, 345
basis, 345
characteristics, 347
above $\mathrm{F}_{2}$ layer, 595
height, 594, 595
ratio specific heats, 345,349
up to $\mathrm{F}_{2}$ layer, 594
density, 347
extension of, 347
properties, 347
stratosphere, 592
temperature, above $\mathrm{F}_{2}$ layer, 595
harmonic mean, 346
up to $\mathrm{F}_{2}$ layer, 594
vs. height, 594,595
transmission of radiation, 538,546
components, 538
ultraviolet, 538
with direction, 720
troposphere, 592
unit of pressure, 4
viscosity, 345,347
water-vapor pressure, 600, 605
saturated, weight, 601
Atmospheric electricity, 615
charge, 615
rain, 615
snow, 615
space, 615
conductivity, air, 615
current, 614
density, 614
ions, 615
equilibrium, 615
life of, 615
mobility, 617
rate of formation, 615
lightning (see also Lightning), 614
potential gradient, air, 614
Atom, 653
angular momentum, 579
Bohr, 579
bomb, 653
composition, 618
data, 582, 618-624
diameters, 643
elements, 643
diffusion coefficient, 644
gaseous ions, 644
neutral gases, 644
dimensions, 618
effective radii, 643
electric orbits, 624
electron configuration, 622
elements, 622
neutral atoms, 582
ionization potential, 582
normal states, 622
singly ionized, 584
ionization potential, 584

Atom-continued
elementary particles, 618, 664
energy, 579, 653
heat, elements, 160
ionized, 584
singly, 584
isotopes, 654
mass, 50, 51
mass units, 654
molecular data, 618
names, 620
foreign, 620
obsolete, 620
neutral, electron binding energy, 649, 650
spectroscopic properties, 582
number, 620
periodic system, 621
radii, 643
effective, 643
radioactive, 672, 673
specific heats, 160
spectra (see also Series relations), 582
spectroscopic properties, 582-585
neutral, 582
singly ionized, 584
susceptibility, 451
volume (elements), 160
inert gas, 646
weights, 47,619
international, 619
physical to chemical, 47
units, 47
Atomic (see Atom), 653
Attenuation coefficient, radio waves, 442, 443
Avogadro's number, 4, 47, 51, 54
Avoirdupois, 62, 63, 64, 66

Babbitt metal, physical properties, 226
Bakelite, 152
Bar, 4, 277
Barn, 653
Barometer, 606
capillarity, correction for, 606
metric units, 606
determination of heights, 613
expansion, correction for, 607
mercury meniscus, volume, 606
pressure: columns of mercury, 606
columns of water, 606
reduction: barometric height to standard temperature, 607
to standard gravity (different heights), 608
English units, 611
metric units, 609
temperature correction, 607
Barye, 4, 277
mega, 6
Baryton, 653, 664
Batteries, 377
composition, 377
emf, 377
standard cells, 378
Baumé scale: density of cane sugar, 305 specific gravity of, 289

Bel, 309
Beta particles, 651, 653, 691
Beta rays (see also Radioactivity), 653
characteristics, $651,672,683,691$
from radioactive materials, 683, 685
energy, 683, 684
isotopes, 683, 684
spectrum: actinium 228, 685
protactinium, 685
thallium, 679
thorium 227, 685
Betatron, 653, 657
Binding energy of electron, neutral atoms, $649,652,653$
singly-ionized atoms, 650
Blackbody, 7, 79, 80
brightness, 95,96
calculated values, $81,82,85,95,104$
changes due to changes in $c_{2}, 86$
precautions in using $\mathrm{c}_{1}, 80$
constants (radiation), 80
value of $c_{2}$ at different times, 80
crova wavelength, 96
efficiency of radiation, 96
luminous, 93
equations, 7,79
Planck, 7, 79
Stefan-Boltzmann, 7, 80
Wien, 79
displacement, 80
laws, 7, 79
lumens/cm, 93, 96
lumens/watt, 93, 96
luminous efficiency, 93 temperature, 96
luminous intensity, 93
spectral vs. temperature, 95
mechanical equivalent of light, 96
plane, lumens per unit, 80
solid angle, 80
radiant energy, 79
calculated values: effect of change in c2, 86
short method, 85
spectral, 82
temperature, 82
spectral intensity vs. temperature, 95
spectral luminous intensity, 95
standard radiator, 79
symbols, 79
total radiation, 81
calculated values, 81
Blackening receivers of radiation, 548
Body moving through a liquid (see also under Aeronautics), 337
Bohr atom, 581
magnetic moment, 49
magnetron, 49, 52, 54
radius first orbit, 51
Boiling points: elements, 117
inorganic compounds, 120
metals with pressure, 119
organic compounds, 122
pressure, 119
salts in solution, 131
rise in, 133

Boiling points-continued
water, 133
pressure effect, 118, 169
rise of boiling point due to salts in solution, 133
Boltzmann's constant, 49, 52, 54, 80
Bond energies, 633
Bougie decimal, 92
Brass, mechanical properties, 195
Brazing alloys, 223
brass, 223
iron, 223
steel, 223
Brazing flux, 223
Brightness, 93
blackbody, 94, 96
blue and candlepower, various materials, 104
candle, 104
flames, 104
fluorescent lamp, 110
lamps, acetylene, 104
filaments, 104
molybdenum, 103
moon, 104
Nernst glower, 104
oxides, 104
sky, 104
sun, 104
tantalum, 103
temperature, 7
correction to true, 100
materials, 104
various illuminants, 104
tungsten, 102
units of, 93
various materials, 104
Welsbach mantle, 104
Brinell hardness, 187
British Imperial system of weights and measures, 64
metric equivalents, 64
British Thermal Unit, btu, 7, 21, 60
Brix degrees, 305
Bronze, mechanical properties, 197
Brownian movement, 630
Btu, 7, 21, 60
Building materials, 229
brick masonry, 231
strength, 231
bricks: characteristics of, 230
coefficient of expansion, 152
water absorption, 230
weighted average strength, 230, 231
characteristics, 229
concrete: compressive and tensile strengths, 230
elastic properties, 230
strength, 230
effect of quantity of mixing water, 230
compressive; effect of entrained air, 230
tensile, 229
masonry mortars, 229
reflection factor, 553

Building materials-continued
stone: American, 231 stiffness, 231
ultimate strength, 231
Bursts (cosmic ray), 653
ct, 80
c2, 80
at different times, 80
Cadmium red line, 569
lamp, 568
Calendar, Julian day, 733
perpetual, 732
Calcite: density, 48
grating space, 48
molecular weight, 48
ratio grating vs. Seigbahn, 48
structural constant, 48
Calcium fluoride, 515
Calorie, 7, 21
international, 8, 60
Candle, 93
foot-, 91,94
international, 94
meter, 93
1948, 94
old, 92
spherical, 93
Waidner-Burgess, 94 color, 94
Cañdlepower, 93
distance, 95
inverse square law, 95
disk, 95
line, 95
Capacitance, 11
Capacity, electric, 16
physical, 60
Carat, 4
metric, 4
Carboloy, characteristics, 224
Carbon, 105
arc, 105
light output, 105
cycle, 666
energy, 666
lamps, 104, 105
untreated, 105
Carbon dioxide, compressibility, 265
Joule-Thompson effect, 280
values of pv, 265
Carcel unit, 92
Castor oil, density, 322
viscosity, 322
Cathode rays (see also Electron), 653, 691
constants for speed, 690, 691
impinge on matter, 690
ionization, 672
path, 690
speed in matter, 690
three headings, 691
velocity, 691
and voltage, 691
voltage, 691
Cells (batteries), composition, 377
emf, 377
standard, 378
Celsius temperature scale, 8

Centigrade temperature scale, 8
Centipoise, 318
Centistoke, 321
Cgs, 15
Chain (Gunter), 62
Chain reaction, 653
Charcoal:
adsorbing power, 632
activation, 632
increased by treatment, 632
heats of, 632
gases, 633
vapors, 632
physical properties, 632
types of, 632
Charge, electron, 47
hydrogen atom, 49
rain, 615
snow, 615
unit, 10
Chemical composition, earth, 626
meteors, 626
sun (atmosphere), 627
Chemical energy data, 185
Circular area, 4
Circular functions, 32
Circular inch, 4
Coal, 181
analysis, 181
heats of combustion, 181
Coefficient of thermal expansion, 8
Colloids, 630
bond energies, 633
Brownian movement, 630
charcoals, adsorbing power, 632
effect of activation, 632
heats of adsorption, gases, 633 vapors, 632
dimensions, 630
dusts, explosion limits, lower, 634
explosion pressures, 634
ignition temperatures, 634
particle size, 630
propagation temperature, 634
field, 630
heat of sorption, 632
particle size, 630
dusts, 630
influence of solubility, 631
protein molecules, 631
properties due to, 630, 631
solubility, 631
proteins: characteristics, 631
molecules, 631
pH stability range, 634
spreading coefficients, organic liquids, 633
types, 630
Color, equation, 729
index, 729
of light emitted by various sources, 103
screens, 535
temperature, 8
blue brightness and candlepower, various materials, 104
illuminants, 104
materials, various, 103, 104

Color-continued
minus brightness temperature, carbon, 104
Combustion, constants (some substances), 179
flame temperatures, 179
heats of, carbon, 179,180
carbon compounds, 179
coals, 181
gases, 182
liquid fuels, 181
miscellaneous compounds, 180
peat, 181
petroleum (crude), 182
various sources, 182
solids, 181
sugars, 182
values, fuels, 181
woods, 181
Common units of measurement, spelling and
abbreviations, 56
Compressibility: ammonia, 266
carbon dioxide, 261
compounds, 286
crystals, 287
elements, 285
ether, 282
gases, 267
low temperature, 264
under high pressure, 265
glasses, 288, 289
liquids, 282
mercury, 282
metals, high pressure, 286
petroleum oils, 284
quartz, 288
rocks, 288
rubber, 235,237
solids, 283
sulfur dioxide, 266
water, 283
Compton effect, 49, 52, 55
Concrete (see Building materials)
Conductance, 11, 12
electrolytic, 397
temperature effects, 397
Conduction (see also Thermal conduction) : gases, 115
heat across air space, 114
high temperature, 115
Conductivity (see also Resistivity): acid solutions, 398
air, 616
alloys, 384,390
temperature coefficient, 390
bases, solutions, 398
calculating, 417
dielectrics, 395
electrical, 11, 12
electrolytic solutions, 397
molecular, 398
temperature coefficient, 397
equivalent vs. temperature, 397
ions. 399 separate, 399
solutions: acids, 400
bases, 400
salts, 400

Conductivity-continued
glass, 396
high-frequency, 396
metals, 384, 389
molecular (specific), 398
nonconductors, 428
oxides, 395
plastics, 239
pressure effects, 388
rocks, 395
salts (solutions), 398
soils, 395,440
solids, 395
solutions, 397
specific molecular, 398
super, 394
alloys, 394
compounds, 394
metals, 394
tellurium, 380
temperature coefficient, 390,391
tension effects, 387
thermal (see Thermal conductivity)
Conductor, resistance of, 11
Cones in eye (see also under Eye), 90
Constants: critical gases, 276
mathematical, 25
physical (see also Units), 47, 51, 54
Bearden and Watts, 54
Birge, 47
DuMond and Cohen, 51
radiation, 80
Constellations, abbreviations, 743
Contact potentials: liquids, 376
solids, 376
various metals, 379-381
Continents, 772
area, 772
highest point, 772
lowest point, 772
Convection of heat, 114
air, 114
cooling by, 112
gases, 115
pressure, 115
temperature, 114, 115
Conversion factors, 2, 57
Centigrade to Fahrenheit, inside front cover
dimensional formulas, $2,58,59$
Fahrenheit to Centigrade, inside front cover
formulae, 57
methods of calculating, 2,57
units: ampere turns to ordinary, 18
area, 60, 781
atomic mass to $\mathrm{Mev}, 54$
British imperial to metric, 67
capacity, 60, 62, 781
changing, 57
conduction of heat, 137
density
API, 290
Baumé, 289
electrical equivalents, 20
former, 22
electricity, 10, 20, 781
international to 1948, 20

Conversion factors, units-contimued
National Bureau of Standards to international, 20
three systems, 20
energy, 17, 20, 21
flow, 781
molecular, 618
gage pressure (lb./in. ${ }^{2}$ ) to atmosphere, 267
gas laws, 260, 267
gaseous states (thermal), 268
general, 781, 785
gravitational, 782
heat, 58, 784
flow, 136
for different gradients, 137
illumination, 93, 94
length, 60
linear, 60, 782
magnetic quantities, 16,18
mass, 60
metric, to British, 64, 66 to U.S.A., 61,63
Mev to atomic mass, 21, 53, 54
miscellaneous, 63, 781, 785
molecular energy, 618
paper measure, 783
photometric, 93, 94, 783
photometry, 93
brightness, 93
illumination, 93
pressure, 277, 783
radiation, 136
resistivity, 784
speed, 784
temperature, 784
per area, 784
thermal, 784
time, 784
U.S. customary to metric, 61-63
volume, 60, 785
wavelength, 509
weight, 785 per volume, 785
Cooling: by convection, 112
by radiation, 112
effect of pressure, 112
platinum wire, 113
Copper (see also under Wire), 198
alloys, properties, 198
freezing point, 72
high conductivity, 404
mechanical properties, 198
resistance standards, 404
wire, 208
annealed, 208
characteristics, 408-414
medium hard, 208
ratio, ac-dc resistances, 419
resistance, to compute, 416
temperature coefficient, 406
safe carrying capacity, 416
soft. 208
specification values, 208
standard annealed, 408
Core losses, electric steel sheets, 456
Cosines, 32

Cosmic rays, 653, 710
bursts, 711
characteristics, 711
top atmosphere, 710
critical energy, 712
composition
at geometric latitude $30^{\circ}, 713$
data, 712
earth's magnetic field, 710
energy, 710
critical, 712
total, 712
entering atmosphere, 712
hard component, 711
ionization, 710, 711
intensity, 710
$50^{\circ}$ geometric latitude, 712
sea level, 711
top atmosphere, 710
meson, 711
origin, 710
penetration, 711
variation with latitude, 712
primary, 710
characteristics, 710
source, 710
radiation, composition and latitude, 712
earth's surface, 712
our galaxy, 713
universe, 713
reaction, atmosphere, 711
secondary, 711
hard, characteristics, 711
intensity and altitude, 711
earth's surface (sea level), 711
latitude, 710
soft, 711
showers, 711
soft component, 711
source, 710
stars, 711
theories, 710
total energy, 710
variation, latitude, 710
Cosmos, 653
Cotangents, 32-36
Cotton, thermal conductivity, 139
Craters (see also Astronomy), 736
Critical constants: gases, 276 light hydrocarbons, 293
Cross section (particle), 653
fission products, 709
fissionable nuclei, 708
organic molecules, 646
Crova wavelength, 96
Cryostats, liquids for (noninflammable), 183 viscosity, 183
Crystals: artificial (optical), 515
biaxial, 529
characteristics, 515, 529
compressibility, 287
cubic, 430
dielectric: constant, 430
monoclinic, 431
strength, 430
index of refraction, 516, 518-529
temperature, 520

Crystals-continued
infrared, 516-527 transmission (spectral), 517, 545
inversion, 126
ionic, lattice spacing, 647 radii, 648
isotropic minerals, 522
metals, interatomic distances, 648 structure, 648
optical, 515-521
orthorhombic, 430, 432
phases, 126
size, 515
thermal expansion, 152
transitions, reversible, 126 pressure, 126
transmission, 517, 545
range, 515-545
spectral, 517-545
types, 515
uniaxial, 430
uses, 515
Cubical expansion (thermal) : elements, 148
gases, 154
leather, 233
liquids, 153
organic, 153
water, 153
Cubit, 4
Curie (unit radioactive decay), 672
Curie constant for paramagnetic substances, 461
Current, electric, 12, 20
effect on human body, 375
Cyclotron, 653, 657
Dalton, 5
Data, experimental, 1-37
treatment of, 37-40
average deviation, 37
errors, 37
equations for: least squares solutions, 38
linearly related quantities, 38
quadratic and other related quantities, 39
indexes of precision, 37
least squares: relations, 37-39
solutions, 39
terms, even, 42
odd, 42
tables, 41-43
methods of averaging, 37
modulus of precision, 37
precision constants, 37
average deviation, 37
probable error, 37, 43
reciprocal, 37
modulus of precision, 37
relation of, 37
standard deviation, 37
Date, international line, 729
Day (see Astronomy), 729 change of, 780
De Broglie wavelength, 653, 665
Debye unit, 441 various particles, 441

Decibel, 309
Declination, 729
magnetic, 468
Definitions: astronomy, 729
atomic physics, 653
blackbody, 79
electric: 10-20
international units, 20
1948 units, 20
electromagnetic, 10
gas laws, 259
geomagnetism, 468, 469
geometric, 4
heat, 7
illumination, 93
magnetic, 10, 451
magnetism, 451
mechanical, 4
nuclear, 653
photography, 562
photometry, 93
physical properties, 187
radiation, 79
temperature, 9, 70
viscosity, 319
Degeneration (see Artificial disintegration)
Delaunay's $\gamma, 729$
Delta rays, 653
Demagnetization factor for rods, 467
Denier, 242
Density, 5, 291
air, 269, 270
moist, 598
alloys, 293
API, 290
aqueous solutions, 300
alcohol, ethyl, 302
methyl, 304
cane sugar, 304
Baumé and Brix degrees, 305
sulfuric acid, 304
Baumé scale, 305
Brix, 305
calcite, 48
castor oil, 322
critical, 276
earth, 48
variation with depth, 739
elements, 291
liquids, 291
solids, 291
ethyl-alcohol mixtures, 302
gases (various units), 269
gasolene, 322
glycerol-water, 321
hydrocarbons, 329
inorganic compounds, 120
kerosene, 295
leather, 233
liquids, 295
methyl alcohol and water solutions, 304
cane sugar, 304
sulfuric acid, 304
mercury, 299
and volume, 299

Density-continued
minerals, artificial, 294 natural, 294
organic compounds, 122
photographic, 562
planets, 734
plastics, 238, 239
reduction in air to vacuum, 69
salts, 531
satellites, 734
solids, various, 292
cgs, 292
English, 292
stars, high, 753, 762
low, 753, 762
sugar: Baumé degree, 305
Brix, 305
solutions, 304,305
sulfuric acid and water solutions, 304
sun, 731
vapors, 269
water, 295, 296
air-free, 296
and volume, 298
woods, 246,258
Derivatives and integrals, 23
Deuterium, 653
Deuteron, 653
Developers, photographic, 563
Deviation in experimental data (see under Data), average, 37
standard, 37
Diamagnetic elements, temperature effect, 461
Diamagnetic substance, 451
susceptibility, 451
temperature effects, 461
Diatomic constants, 586
Diatomic molecules, 586
energy: electronic, 586
rotational, 586
formula, 586
vibrational, 586
formula, 586
level, 589
states, 586, 589
molecular constants, 587
Dielectric constant (specific inductive capacity), 10, 423
air, 423, 424
pressure, 422, 424
alcohol, 424
ceramics, 437
crystals, 437
clamped, 430
free, 430
elastomers, 438
gases, 423, 424
liquefied, 426
nonpolar, 436
pressure, 424
temperature, 423
glasses, 427
guttapercha, 427
ice, 427

Dielectric constant-continued
insulating materials, 429
at radio frequencies, 429
kerosene, 425
liquids, 425
formula, 426
pressure, 424
temperature, 426
coefficient, 426
wavelengths, long, 426
loss tangent of dielectric materials, 437
lucite, 438
materials (various), 427, 428
dielectric, 437
oils, 425,426
organic, 425
pressure effects, 424
silicone. 438
soils, 440
vaseline, 439
mica, 427
minerals, 428
nonconductors, 428
radio-frequencies, 429
paper, 427
paraffin, 427
plastics, 437
quartz (fused), 428
quartz crystals, 430
rochelle salt, 431
rock salt. 430
rocks, 42 b
rubber, 438
artificial, 438
shellac, 427, 438
soils, 440
solids, 427
standard solutions, 428
sulfur, 430
unit, 10. 423, 430
water, 425
woods, 438
Dielectric materials (dielectric constant and
loss tangent): amber, 438
ceramics, 437
crystals, 437
frequency, 437
glasses, 437
guttapercha, 438
liquids, 439
inorganic, 439
organic, 439
lucite, 438
nylon, 437
oils, 439
paraffin, 438
plastics, 437
rubber, 438
shellac, 438
solids, 437
temperature, 423
vaseline, 439
water, 439
waxes, 438
woods, 438
Dielectric properties of nonconductors, 428

Dielectric strength, 421
air, 421
electrodes, 421
spacing, 421, 422
potential, 421
pressure, 422
voltage for spark: ac, 421
voltage for spark: dc, 421, 422
materials (various), 423
glass, 423
guttapercha, 423
kerosene, 422
voltage for spark, 422
liquid air, 423
mica, 423
oils, 423
paper, 423
paraffin, 423
rubber, 423
unit, 423
Diffusion: aqueous solutions into water, 354
coefficients
gaseous ions, 644
gases, neutral, 644
constants, water vapor through leather, 232
gases, 356
ions, positive, mobility in noble gases, 644
metals into metals, 356
vapors, 355,356
Diffusivities for materials, 143
Digit, 5
Dimensional equations, 2
examples, 57
Dimensional formulas, 2, 58
use of, 3
Dimensional formulas of units, 2
derived, 58
dynamical, 58
electrical, 59
fundamental, 57
geometrical, 58
heat, 58
light, 58
magnetic, 59
mechanical, 58
photometric, 58
thermal, 58
use of, 57
Diopter, 5
Dip: horizon, 730
magnetic, 468
Dipole moment, 441
inorganic, 441
organic, 441
unit, 441
Debye, 441
Discharge in air, 421
ac, 421
dc, 421
effect of electrode shape, 421
effect of pressure, 422
length of gap, 421, 422
voltage required, 422
Disintegration, artificial, 651, 653, 669
types, 669
Disk source, 95

Dispersion, glass, 509
Displacement constant (Wien), 80
Displacement law (Wien), 79, 80
Dominical letter, 732
Dowmetal, 220
Duralumin, 220
Dusts (see under Colloids)
Dyestuffs, transmission of radiation, 538
Dyne, 5
Ear (see also under Sound), 306, 314
Earth (see also under Astronomy), 728 age, 741
angular velocity, 780
area, 729, 772
land, 772
oceans and seas, 772
atmosphere (see also Atmosphere), 592
characteristics, 734, 739
composition, 625
constants, various, 729, 772
craters, 736
density, 48, 739
vs. depth, 739
depth, oceans, 773
dimensions, 729, 772, 773, 774
distance to moon, 729, 730
distance to sun, 729,730
earthquake waves, velocity, 740
electrical data, 502
elements, percent, 625
elevation, mountains, 772
energy, rotational, 729
gravitation (see also Gravitation), 714
interior characteristics: density, 739
elastic constants, 739
pressure, 739
land area, 772
liquefaction, 740
magnetic data, 502
magnetism (see also under Geomagnetism ), 470
mass, 729
moment of inertia, 739
oceans and seas, 772
orbit, 729
dimensions, 729, 774
eccentricity, 729
general precession, 729
obliquity, 734
physical data, 729, 734
radius, 729, 734, 772
equatorial, 729, 734
polar, 729, 734
rigidity, 740
rotational energy, 729
solidification, 741
temperature: depth, 726, 727
oceans, 774
surface, 726
highest, 726
lowest, 726
selected stations, 726
variation, 726
velocity: in orbit, 729
rotation, 729
volume, 729

Earthquake waves (see also under Astronomy), 740
Effective wavelength, red pyrometer glass, 537
Efficiency, lamps, 105, 110
Elastic limit, 187
Electric arcs, 105, 109
capacity, 16
current, 11
effect on human body, 375
dipole moment, 441
field intensity, 11, 12
inductance, 17
potential, 11, 12, 20
difference, 11
power, 17
quantity, 13
standards, 13, 19
surface density, 11
units, $10,15,16$
definitions, $10-20$
1948, 19
relative values, three systems, 20
Electrical capacity, 16
characteristics of materials, 375, 380
conductivity, 12
alloys, 390
metals, 390
conversion factors, 18, 20
definitions, $10-20$
effect on human body, 375
equivalents, former, 22
fundamental standards, 13,19
inductance, 17
properties of insulating materials, 429
resistivity, metals, 393
sheets, magnetic properties, 456,459
standards, 10, 20
steel sheets, core losses, 456
units: ampere turn, 18
basis of each, 16
capacity, 16
conversion factors, 20
electromagnetic, 10,20
electrostatic, 10,20
unit quantity, 10
former, 22
international prior to $1948,16,19$
new (1948), 19
absolute, 19
how maintained, 19
relation to electromagnetic, 20
relation to electrostatic, 20
relation to international (prior to 1908), 20
old, 22
practical, 20
relation of three systems, 20
Electricity:
atmospheric, 614
constants, 615
charge on rain, 615
charge on snow, 615
elements, 615
ionic equilibrium, 615
lightning, 614
piezo, 432

Electricity-continued
quantity, 16,20
specific heat, 379
thunderstorm, 614
characteristics, 614
unit quantity, 10
Electrochemical equivalents, 397
iodine, 48
normal solutions, 397
silver, 48
Electrode potential, 637
Electromagnetic properties, 451
Electromagnetic systems, 10-13
Electromagnetic units, 10, 451
definitions, 10
difference of potential between metals in solutions of salts, 378
Electrolytes, 397
solutions, 397
vs. temperature, 397
Electron, 653, 664
affinity, elements, 636
angular momentum, 580
atomic weight, 49
binding energy, 649, 650
neutral atoms, 649
singly-ionized atoms, 650
charge, $47,50,51,54$
specific, 47
configuration, 622
neutral atoms, 582
normal states, 622
singly ionized atoms, 584
emission, 635
carbon, 635
equation, 635
hot solids, 635
materials, various, 636
metals, 635,636
temperature, 635, 636
photoelectric effect, 636
potentials, 637
contact (volta), 637
electrode, 637
solids, hot, 635
formula, 635
energy levels, 579
energy relations, 651
energy-velocity, 651
mass, 651
mass-velocity relations, 651
negatron, 654
positron, 654
shell, 622,653
terms: from equivalent electrons, 580, 581
from nonequivalent electrons, 580
velocity relations, 651
volt, 49, 54, 654
weight, $50,51,54$
work function, 635
Electronic charge, 47, 51, 54
orbits, 624
Electrostatic capacity, 12
definitions, 11
generator, 657
units, 10
Electrostriction, 427

Elementary particles, 651, 664
alpha particle, 664
deuteron, 664
electron, 664
negative, 664
positive, 664
meson (several types), 664
neutrino, 664
neutron, 664
photon, 664
proton, 664
Elements:
atomic: heats, 160
numbers, 620
radii, 643
volume, 160
weights, 619
beyond uranium, 623, 651, 663
production, 670
binding energy: neutral atoms, 649
singly-ionized atoms, 650
boiling point, 117
chemical: absorption wavelength, 701
abundance: atmosphere, 592, 625
early type stars, 628
earth, 625
earth-meteorites, 626
gases, interstellar space, 629
matter, interstellar space, 629
meteorites, 626
nebulae, 629
rare gases, cosmos, 626
sun, 627, 628
sun's atmosphere, 626
universe, 625
composition, 618
compressibility, 285
configuration, 622
density, 291
diameters, 643
electrochemical equivalents, 403
electron configuration, 622
neutral atoms, 582
normal states, 622
radius of orbits, 624
singly-ionized atoms, 584
electron emission, 635
emissivities, 98
energy levels, x-ray, 697
energy units, 618,653
evaporation, 363
hardness, relative, 228
heat: capacities, 155, $15^{7}$
evaporation, 165
fusion, 157
ionization potential: neutral atoms, 582
singly-ionized atoms, 584
isotopes, 654, 655
abundance, 655
atomic mass, 658
radioactive, 655-663
K-wavelength series, 697
L-wavelength series, 698
latent heat of fusion, 157
latent heat of vaporization, 165
mass absorption, 704
mechanical properties, 189

## Elements-continued

melting points, 117
standards, 9, 117
number 1952, 651
optical constants (metals), 558
periodic system, 621
physical properties, 189
Poisson's ratio, 227
radii, clectron orbits, 624
resistivity, 384
temperature coefficient, 384
specific heat, 155,160
formula for, 157
true, 157
spectroscopic properties: neutral atoms, 582
singly-ionized, 584
symbols, 117
thermal conductivity, 138
thermal expansion: crystals, 145
cubical, 148
linear, 145
vapor pressure, 362,363
Emf (thermal), alloys vs. lead, 379
alloys vs. platinum, 381
aluminum vs. platinum, 376
batteries, 377
cadmium vs. platinum, 383
low temperature, 381
metals, in solution of salts, 378
vs. platinum, 381
vs. silver alloys, 381
vs. zine solutions, 377
nickel, vs. copper, 381
vs. platinum, 389
platinum-rhodium vs. platinum, 381,387
vs. lead, 379
zinc vs. platinum, 390
Emissivity, 8, 98
spectral, 8, 98
alloys, 99
correction to brightness temperature, 99
liquids, 98
materials, 98
metals and oxides, 101
at melting point, 98
out-gassed, 99
molybdenum, 103
solids, $100,101,102$
tantalum, 103
tungsten, 99, 102
total: glass, 100
materials, 100
metals, 101
at low temperatures, 101
oxides, 101
relative, 100
Emu, 20
Energy, 5, 17, 21
blackbody radiation, 79, 85, 96
bond, 633
conversion factors, 20,21
cosmic ray, 712
dissipation in cycle (magnctism), 460)
electron-volt, 49
levels, 581
losses, magnetic, 459, 460

## Energy-continued

radiant, 9, 79
radiated by a number of radioactive niaterials, 689
temperature for $1 \mathrm{ev}, 55$
transformer steel (losses), 459
units, 21, 653, 618 conversion factors, 21, 618
Enthalpy, 8, 270
Entropy, 8, 270
Equation of time, 728
Erg, 5
Erichsen value, 187
Error, probable, 37
Esu/emu, 48
Ether, volume-pressure, 283
Ethylene, 265
Ettinghausen effect, 507
Eutectic mixtures, 130
Ev, 618, 653
Evaporation of metals, 363
formulas, 363
constants (various metals), 364
rate of, 363
Expansion (thermal), 145
cubical, 148
linear, 145
Experimental data (see also under Data), - 37-40

Explosives, 183
analysis, 184
chemical properties, 184
ignition temperatures, 183, 634
physical properties, 184
pressures, 634
time of heating, 183
Exponential formulas for mass absorption
values, elcments, 694
Exponential functions, 43
Exposure, photographic, 562
Eye: as measuring instrument for radiation, 87
blind spot, 90
contrast sensibility, 89
diameter of pupil, 90
and flux density, 90
distribution coefficients, 91
glare sensibility, 89
I.C.I. standard observer, 90, 91
distribution coefficients, 91
instantaneous thresholds, 88
luminosity factors, 87 and brightness, 88
macula lutea, 90
minimum energy to produce sensation, 89
miscellaneous data, 90
physical properties, 90
Purkinge effect, 87
rate of adaptation, 89
relative luminosity factors, 87
various brightnesses, $87,88,89$
sensitivity, 87,89
standard observer. 90
distribution coefficients, 91
thresholds, 88
various field brightness, 88
vision, persistence of, 90
visual range for white light, 92

Factorials, 26
$\log$ of, 26
Factors, conversion (see Conversion factors)
Fahrenheit temperature scale, 8
conversion to Centigrade, inside front corer
Farad, 20
Faraday, 47, 51, 54
constant, 47, 54
Fathom, 62
Ferromagnetic substances, 451
Fibers:
artificial, 243
acetate, 244
glass, 244
nylon, 244
polyethylene, 244
quartz, 534
rayon, 243
resin, 243
characteristics, 242
miseellaneous, 244
natural, 242
cotton, 242
flax, 242
hemp, 242
jute, 242
linen, 242
ramie, 242
silk, 242
spider, 242
wool, 242
properties of, 241, 243
rope, 245
various kinds, 245
Filaments, incandescent, heat loss from, 116 temperature, 102, 116
Filters (see also Color, screens), for obtain-
ing monochromatic x-rays, 696
light, 537
narrow spectrum region. 536
Fine structure constant, 49, 51, 54
First radiation constant, 80
units, 80
Fission, 653, 706
binding energy, 707
cause, 706
critical energy for, 707
eross section of fissionable muclei for nentrons, 708
cross section of fission products for thermal neutrons, 708
data, 706
elements. 706
energy, 706
critical, 707
released by, 707
examples, 706
neutron-binding energy of divided nucleus, 707
produced, 706
elements. 706
products of long life. 708
spontaneous, half-life, 707
thresholds (Mev), 706
Fixed points, temperature scale, primary, 71
secondary, 72

Flame temperatures, 179, 182, 183
Flash lamps, 110
Flash tubes, 111
Fluidity, 5, 318
Fluorescent lamps, characteristies of, 110
Fluorescent powders, characteristics of, 107
Fluorite, 515, 520
Flux (see under type of), 93
Foot-caudle, 93
Foot-lambert, 93
Foot-pound, 5, 21
Foot-poundal, 5
Force, 5
magnetic, 18
Formulas (see under name of)
Fourier, 144
Fraunhofer lines, wavelengths, 577
Freezing mixtures, 134
anti, for radiators, 135
Freezing point, lowered by various salts in solution, 131
water-pressure effect, 118
Fresnel formula, reflection of light, 549
Friction. different materials, 336
interior, at low temperatures, 227
Frictional eleetric series, 375
Fuels (see also under Combustion), 180
coal, 181
analysis, 181
gas, 182
gravity, 182
heat values, 180
liquid, 181
gravity, 181
petroleum, 182
density, 182
woods, 181 analysis. 181
Fundamental particles, 664
alpha-particles, 664
denteron. 664
electron, 664
negatron. 664
positron, 664
meson, $\mu$ (charge,+- ), 664
$\pi$ (charge,,+- 0$), 664$
neutrino, 664
neutron, 664
photon, 664
proton, 664
Fundamental standards, 1, 13
mainterance of, 14
primary, 13
qualities of, 13,14
secondary, 13,14
selection of, 1, 2
standards of, international temperature scale, 14, 70
length, 14
mass, 14
temperature, 14
Celsius scale (Centigrade), 14
Fahrenheit, 8
Kelvin scale, 9
Reaumur, 9
thermodynamic, 9
time, 14

Fundamental units (see under Units)
Fusion, latent heats of, 157
alloys, 165
metals, 165
substances, various, 165
Gage pressure to atmospheres, 267
Gages, wire, 405
Gal, 5
Galvanometric effects (see under Magnetic)
Gamma (photography), 562
Gamma infinity (photography), 562
Gamma-rays, 653, 686-688
absorption, mass, 687
characteristics of, $672,687,688$
energy, of artificial radioactive isotopes, low atomic weight, 687
of heavy isotopes, 686
artificial, 686
natural, 686
to produce ion pair, 711
ionization energy, 672
mass absorption, 687
various elements, 687
spectrum, radioactive breakdowns, 686
Thorium "C," 686
total mass absorption coefficient, 687
Gas, absorption by liquids, 360
abundance, cosmic, 626
combustion values, 182
compressibility (various gases and vapors), 264
low temperature, 264
under high pressure, 267
conduction of heat by, 115
conductivity, thermal, 142
constant, 49, 259
convection of heat by, 115
critical points, 276
definition of laws, 259
densities, 163
critical, 276
dielectric constant, 423
liquefied gases, 426
nonpolar, 436
variation, with pressure, 424
with temperature, 424
diffusion cqefficient, 356, 644
neutral gases, 644
energy, 259
fuels, 182
heat, absorption, 633
capacity, 164
combustion, 182
helium, 260, 261
hydrogen, 260, 261, 268
ideal gas state, 638
ideal, 261
in interstellar space, 629
inert, atomic volume, 646
infrared transmission, 546
ions (see also Ions), diffusion coefficient, 644
Joule-Thompson effect, 278
kinetic theory, 638
calculations, 638-642
collision frequencies, 641

Gas, kinetic theory-continued
discussion, 638
incidences, ratios of, 640
mass, 640
mean free path, 641
molecular, 640
diameters, 638
energies, 639
mass, 640
mean free path, 638
number, 638
velocities, 639, 640
average, 639
distribution law, 639
pressure, units, 638
laws, 259
simple, 259
value of R, 259
different conditions, 259
units, 259
long-wavelength absorption, 532
mean free path, 641
mixtures. 259
ignition temperature, 186
mobility, of positive ions, 644
of singly charged ions, 645
mol, 6, 259
molecules:

- diameters, 638, 644
attractive spheres, 644
Bragg, 645
number per $\mathrm{cm}^{3}, 638$
velocities, 639
neon, 262, 264
perfect, 261
volume, 47, 54
pressure, 268
critical, 276
high, 260
temperature, 263
Van der Waal's equation, 261
constants, 262
volume, 261
with vapors, 260
properties, 259
saturated, 263
correcting factor, 263
temperature, critical, 276
thermal expansion, 154
thermal properties, 259
Van der Waal's equation, 261
constants of (imperfect gases), 262
velocity of sound in, 306
Verdet's constant, 506
viscosity, 331, 642
liquefied gases, 329
volume:
conversion, 259, 260
factor (Z), 260
correction factor, 260
saturated gas, 263
ideal gas, 47, 54
inert gas atoms, 646
pressure relations, 263. 265
relative with pressure, 263-267
weight, 259
Gasoline, density, 322
viscosity, 322

Gauss, 18
Gaussian system of units, 15
Gem lamps, color temperature, 104
General physical constants, 46
discussion of, 46
tables according to Bearden and Watts, 54 Birge, 47
Du Mond and Cohen, 51
Gencral precession, 738
Geographical data (see also under Astronomy and Oceanography), 728, 772
Geologic strata, ages, 741
Geomagnetism, 468
coordinates, 468
north magnetic pole, 470
position on earth, 493
south magnetic pole, 471
earth, as a dipole, 469
geomagnetic coordinates of position, 493
magnetic-
axis, 502
characteristics, 502
data, 502
dip in U.S.A., 471
disinclination, hourly departure from normal, 477, 478
isogonic, 472
secular change in U.S.A., 479
field, elements of, 468
horizontal intensity (isodynainic), 474
inclination (isoclinic), 473
intensity, horizontal, U.S.A., 478 total, U.S.A., 480
vertical, U.S.A., 479, 480
moment, 470
pole (earth), 470, 471
potential, Gauss coefficients, 470
spherical harmonic coefficients, 470
surveys, 469
United States, dip or inclination, 471 horizontal magnetic intensity, 478
secular change of dip, 471
secular change of horizontal intensity, 479
secular change of magnetic declination, 478
secular change of total intensity, 480
secular change of vertical intensity, 480
total magnetic intensity, 480
vertical magnetic intensity, 479
values of magnetic elements at observatories, 481
variations, 469
world isoclinic lines, 473
world isodynamic lines, 474
horizontal intensity, 474
total intensity, 476
vertical intensity, 475
world isogonic lines, 472
sun, magnetic data, 502
Geometrical minits. 4
definitions, 3-4
Geophysical data, 739-741
Giga, 5

Gilbert, 18, 22
Glass, compressibility, 289
emissivity at low temperatures, 100
optical, 509
characteristics, American made, 509
forcign made, 514
National Bureau of Standards, 510
coefficient of expansion, 529
index of refraction, 509
change with temperature, 513
nu values, 509
temperature, 513
physical properties, special glasses, 534
specific gravity, 529
stain class, 529
physical properties, 529
transmission, 512, 514, 535
red pyrometer, effective wavelength, 537
transmission, 537
reflection, Fresncl formula, 549
resistivity, 396
special, physical properties, 534
stain, 529
expansion, 529
specific gravity, 529
vessels, volume, 68
viscosity, 330
Glycerol-water, 321
Gram, 5
Gram-centimeter, 5, 21
Gram-mass, 21
Gram-molecule, 5
Gravitation, 714
acceleration of gravity at different latitudes, 714
free-air correction for altitude, 714
log, 714
United States, 716
various world stations, 715
anomalous gravity, some places of, 718
constant, 5,47
length of seconds pendulum, 717
Gravity, specific, 5
unit, 5, 729
API scale, 290
specific, Baumé scale, 289
Graybody, 8
Gunter's chain, length, 62
Gyration, radius of, 27
h. 653

H or $\mathbf{k}, 653$
H-ray, 653
Hall constant, 507
variation with temperature, 508
Hall effect, 451
Hardness, 187, 227
Brinell, 187
relative, of elements, 228
of plastics, 239
of various materials, 228
Poisson's ratio, 227
scale of, 227
Shore scleroscope, 188
Hearing (see also Sound), differential sensitivity, 314

Hearing-continued
distribution of hearing losses (population), 315
sensitivity of the ear, 314
Heat, 7
atomic, 160
of elements, 160
capacity, gases, 163
materials, various, 157
vapors. 163
combustion (see also Combustion, heats of ), 179
conduction, across air spaces, 114 at high temperatures (gases), 115
content, ammonia, 162 steam, 169
convection in air, 114 at high temperature, 115
definitions, 7
dilution of $\mathrm{H}_{2} \mathrm{SO}_{4}, 186$
dimensional formulas, 2, 57, 58, 59
entropy, 8
steam, 169
flow, 136
conversion factors of units, 136
different gradients, 137
formation, compounds, 185
ions, 186
index, 730
latent, 165
formula for, 167
fusion, 165
elements, 165
materials, various, 165
steam, 175
vaporization, 166
elements, 166
liquids, 166
formulas, 167
loss, effect of pressure, 113
from incandescent filaments, 116
from platinum wires, 116
mechanical equivalent, 8
neutralization, 186
Peltier, 383
radioactive materials, 689, 691
specific, 155
elements, 155
gases, 163
liquids, 161
mercury, 161
solids, 159
vapors, 163
water, 161
Thomson, 383
units, 7, 8
values, fuels, 181
Hefner unit, 92
Height, determination by barometer, 613
Helium:
abundance, early type stars, 628
nebulae, 629
sun's atmosphere, 627
universe, 625
atomic numbers, 620
atomic weights, 47,619
boiling point, 117

Helium-continued
compressibility, 264
high pressure, 267
conductivity, thermal, 142
density, 269, 291
critical, 276
dielectric constant, 436
electric dipole moment, 441
electron configuration, 582
expansion, thermal, 154
heat, latent, 166
heat capacity, 163
index of refraction, 533
ionization, energy for production of ion pair, 711
isotopes, 655
Joule-Thomson effect. 278
magnetic susceptibility, 462
melting point, 117
molecular data, 640
diameter, 644
velocities, 640
molecules, number of, 645
percent in air, 592
physical properties, 189
pressure, critical, 276
resistivity, thermal, 144
Rydberg constant, 48, 51, 54
temperature, critical, 276
Van der Waal's constant, 261, 262
vapor pressure, 360
velocity of sound in, 306
viscosity, 331
volume conversions, 260
relative, 261
Henry, 17, 20
Heusler magnetic alloys, 451, 458
High-energy particles, 657
Horizon, 730
dip, 729
Horsepower, 5
Horsepower-hour, 5, 21
Human body, electrical resistance of, 375
Humidity, 596
and density, 597
relative, and vapor pressure, 602, 604
water-vapor pressure, 605 at sea level, 605
wet- and dry-bulb thermometer, 602, 604
Hydrocarbons, physical properties (light), 293
viscosity, 329
Hydrogen:
abundance, 625
early type stars, 628
earth, 625
interstellar space, 629
meteorites, 626
nebulae, 629
sun, 626, 627
universe, 625
atomic number, 620
atomic weight, 619
Bohr atom, 579, 622
boiling point, 117
charge on one gram, 49
combustion constant, 179

Hydrogen-continued
compressibility, 264
factor, 264
high pressure, 267
low temperature, 264

De Broglie wavelength, 665
density, 276, 291
critical, 276
dielectric constant, 423
doublet separation, 55
electric dipole moment, 441
electron configuration, 582,584
heat, latent, 166
heat capacity, 163
heavy, $54,653,655$
index of refraction, 533
ions, diffusion coefficient, 644
ionization energy necessary for production of ion pair, 711
ionizing potential, 53
mobility, 644
isotopes, 655
denteron, 653
triton, 654
long-wave absorption, 552
magnetic susceptibility, 462
mass, 50
relative to mass of proton, 50
mass absorption coefficient, 704
melting point, 117
molecular, properties of, 268
molecules, diameter, 642, 643
mass, 640
mean free path, 642
number of, 645
rate of incidence, 6.40
velocity, 640
percent in air, 592
physical properties, 189
pressure, critical, 276
radii of electronic orbit, 624
Rydberg constant, 48, 54
Schrödinger constant, 51, 54
temperature, critical, 276
thermal conductivity, 142
thermal properties, 268
thermal resistivity, 144
Van der Waal's constant, 261, 262
velocity of sound in, 306
viscosity, 642
volume, relative, 261,264
with pressure, 267
Hydrolysis, ammonium acetate, 399
Hysteresis, 451
losses, Steinmetz constant, 460
Ice crystals, modifications of, 119
Ice point, 47, 71
effect of pressure, 119
Iceland spar, 521, 545
I.C.I. standard observer, 90
distribution coefficients, 91
Ignition temperature: dusts in air, 634 gas mixtures, 186
Illuminants (see also Lamps): brightness, 104
brightness temperature, 104

Illuminants-continued
color temperature, 104
photographic efficiency, 565
Illumination, 93
expressions, 93
on surface, 93
symbols, 94
units, relative magnitudes, 91
conversion factors, 91,94
Impulse generator, 657
Incandescent filaments, heat losses, 116
Incandescent lamps (see also Lamps) : efficiency of, 1878 to clate, 105
efficiency of tungsten, 106
minature, 107
photoflash, 110
sealed-beam, 108
temperature of tungsten, 106
Inclination: magnetic (see also under Geomagnetism), 471
moon's orbit, 735
Index of refraction: air, 532
alums, 521
crystals, 515,529
artificial, 515
fats, 525,530
fluorite, 520
calcium, 520
lithium, 521
gases, 533
liquefied, 52.5
glasses: change with temperature, 513, 520
foreign-made, 513
nonsilica, 512
Iceland spar, 521, 545
isotropic materials, 522
monorefringent, 522
liquefied gases, 525
liquids, 530
relative to air, 530
lithium fluoride, 521
media for determination with microscope, 561
minerals, biaxial, 526
monoref ringent, 522
uniaxial, 524
nitroso-dimethyl-aniline, 519
oils, 525
plastics, 240
potassium bromide, 519
potassium chloride, 519
formula, 519
potassium iodide, 516
quartz, 518
reflection vs. 549
rock salt, 518
formulas, 518
silver chloride, 520
silvite, 519
solutions, acids, relative to air, 531
salts, relative to air, 531
thallium bromide-iodide, 516
vapors, 533
waxes, 525
Inductance (electrical), 17
mutual, 13

Inductance-continued
self-, 13
standards, 17
Inertia: moment of, 27
photography, 562
Infrared reflectivity: solids, 548
tungsten, 555
Infrared transmission, 545
air, moist, 546
crystals, 545
gases, 547
solids, 547
various substances, 546-547
Inorganic compounds: boiling point, 120
density, 120
melting point. 120
solubility, 357
and temperature, 357
Insulating materials: electrical properties, 429
values: of diclectric constant, 429 of power factor, 433
Integrals, 23
Intensity: magnetic (sce also under Geomagnetism), 478
of magnetization, 12
Interior friction at low temperatures, 227
International date line, 729
International electrical units, 16
Interstellar gases, 629
Interstellar matter, 629
Interstellar temperature, 763
Inverse square law (photometric), disk or source, 95
Ionic crystals, lattice spacings, 647
Ionic equilibrium, atmospheric, 615
Ionic radii, 648
Ionization: energy, production of ion pair, 711
gamma rays, 711
potentials. elements, 582
neutral, 582
singly ionized, 584
water, 399
Ions: equilibrium in atmosplere, 615
equivalent conductivity, 399
gaseous, diffusion coefficient, 644
mobility, positive, 644
singly charged, 645
heat of formation, 186
mobility, in noble gases, 644
of singly charged, 645
positive, mobilities, 644
Iron: arc lines, 571
magnetic properties, 452-456
cast, in intense fields, 464
in very weak fields, 452
soft, 458
mechanical properties, 209
permeability, 458
resistivity, 384
spectral lines, 571
Irradiancy, 79
Isobar, 653
Isomer, 654
Isotope, 654-655
abundance, relative, 655

## Isotope-continued

atomic weight, 658
characteristics, 655,658
gamma-ray energy, 686, 687
lead, 679
life, 667
magnetic moment, 658
masses, 658
nuclear magnetron, 662
number, 655
pile yields of, 670
quadrupole moment, 658
radioactivity: artificial, 655
natural, 655
number, 655,658
spin, 658
table of, 655,658

Jena glasses, 513
Joule, 5, 20
Joule's equivalent, 8, 47
Joule-Thomson effect, 278
air, 278
argon, 279
carbon dioxide, 280
helium, 278
mixtures, of belium and argon, 280
of helinm and nitrogen, 281
nitrogen, 279
Julian day: calendar, 733
number (days), 733
period, 730
Jupiter, 734
K. Boltzmann constant, 49, 52, 54

K-wavelength series (see also under
X-rays), 697
Kelvin temperature scale, 9, 14
Kerosenc: density, 295
dielectric constant, 425
(lielectric strength, 422
discharge in, 422
viscosity, 322
Kerr constant, 507
Kerr effect, dispersion, 504, 508
Kilodyne, 5
Kilowatt-hour, 21
Kinematic viscosity, 318
Kinetic energy, 6
Kinctic theory, 638
mercury vapor: mean free paths, 638
molecular diameters, 638
molecular constants, 640
molecular diameters, 638, 642
molecular distribution laws, 639
molecular energies, 639
molecular velocities, 639,640
molecules:
gases: mean free path, 638
molecular diameters, 638
viscosity, 642
masses, 640
mean free path, 641
number of, 638
pressure, 638
rate of evaporation, 639
rate of incidence, 639, 640 velocities, 640
Kundt's constant, 506
L series (see also under X-rays), 696
Lambert, 93
Lamps (see also Illuminants) :
arcs, carbon, 105
mercury, 109
automobile, 107
carbon, 105
carbon ares, 105
coiled-coil, 106
color of light, 111
CX, 106
early (incandescent), 105
efficiencies, 105
filaments, coiled-coil, 106
temperature, 106
flash tube, 111
fluorescent, 110
gem, 105
incandescent (see Incandescent lamps)
large, 106
mercury ares, 109
miniature, 107
photoflash, 110
photoflood, 106
photographic, 106
projection, 106
sealed-beam (all glass), 108
small, 107
street series, 106
tungsten, 106
characteristics, 106
efficiency, 1908-1948, 106
temperature, 106
different types, 106
efficiency, 106
various, 106
Langley, 9
Latent heat, 9, 165
fusion, 615
alloys, 165
beeswax, 165
ice, 165,167
metals, 165
vaporization, 167
ammonia, 167
liquid, 167
elements, 165
formulas, 167
liquids, 166
metals, 165, 366
substances, various, 165
total heat, 167
Latitude variation, 730
Lead: age ratios, radioactive materials, 679
atomic weight, 619
common, isotope variation, 679
isotopes, 657, 662
composition, locality, 679
protective thickness, X-rays, 693, 695
materials relative to, 694
Least squares solutions, 37-44
tables for, 40-47
Leather: diffusion constant, 232
density, 233

Leather-continued
elongation, 232
physical properties and humidity, 232, 233
tensile strength, 232
thermal conductivity, 233
thermal expansion
cubic, 233
types of, 232
Leduc effect, 507
Length, unit of, standard, 14,60
Light: color, various sources, 104
defined, 87
definitions, 93
filters, red pyrometer glass, 537
mechanical equivalent, 93
minimum, 93
minimum energy for, 89
polarization, rotation plane, 557
quantity, 94
reflected, 549
scattering of, 3
sources and source materials, 102, 103
characteristics, 102, 103
standards of intensity, 92, 94
symbols, 94
transmission through space, 771
velocity, $47,51,54,80$
visual range of white, 92
white, 96
year, 731
Lightning, 614
channel, 614
diameter, 614
constants, 614
current, 614
data, 614
peaks, 614
interval between, 614
polarity, 614
potential, 614
cloud, 614
gradient, air, 614
beneath cloud, 614
quantity of electricity discharged, 614
single current peak, 614
total stroke, 614
strokes:
cloud to ground, 614
polarity, 614
potential gradient, 614
energy, 614
number strokes per mile ${ }^{2}, 614$
number strokes per year, 614
thunder, 614
velocity, 614
Light-year, 730
Lime-alumina-silica compounds, 130
eutectic mixture, 130
melting point, 130
transformation, 130
Lincar acceleration, 6
Linear accelerator, 657
Linear expansion: alloys, 149
elements, 145
materials, various, 152
Linear measurements, 62
Linear units, 62, 509
wavelength, 509

Liquids: absorption of gases by, 360
combustion, heats of, 181
compressibility, 282
conductivity, thermal, 143
contact difference of potential, 376
cubical expansion, thermal, 153
density, 295
dielectric constant, 424, 425
pressure effect, 424
temperature coefficient, 426
expansion, thermal, 153
fuels, 181
index of refraction, 530
latent heat of evaporization, 166
magnetic susceptibility, 462
media for determining refractive indices with microscope, 561
melting temperatures, 118 vs. pressure, 118
noninflammable, for cryostat, 183
organic: spreading coefficient, 633 vapor pressure, 368 viscosity, 323
potential difference vs. other materials, 376
specific heat, 161
surface tension, 361
thermal conductivity, 143
thermal expansion, 153
vapor pressure, 371
velocity of sound in, 307
Verdet's constant, 505
viscosity, 319-328
pressure effect, 333
Liter, 6, 47, 61
Liter-atm, 21
Lithium fluoride, index refraction, 515,520 , 521
Logarithms, 28-31
Loschmidt number, 6, 49, 51, 54
Lubricants, 335
for cutting tools, 335
Lumen, 93
Luminosity, 93
factors, 87, 93
field brightnesses, 88
Luminous efficiency, 93
Luminous flux, 93
Luminous intensity, 93
spectral, 95
Lunar craters, 736
inequalities, 730
Lınar node, 730
Lunar orbits, 735
Lunar parallax, 730
Lunar parigee, 730
Lunar solar precession, 730
Lux, 93

M series (see also under X-rays), 696
Mach number, 337
Magnet, permanent, 454
Magnetic (see also Magnetism) -
data, earth, 470, 502
sun, 502
definitions, 451

Magnetic-continued
effects (galvanometric), 451
Ettinghausen, 451, 507
Hall, 451, 508
temperature, 508
hysteresis, 451
Joule, 451
Laduc, 451, 507
Nernst, 451, 507
Villari, 451
Weidemann, 451
field strength (intensity), 12, 451
flux, 12, 451
Maxwell, 18, 451
force, 12, 451
hysteresis, 451
energy lost, 451, 460
Steinmetz constant, 460
induction, 12, 17, 451
intensity, $12,18,451$
moment, 12, 451
permeability, 451
and temperature, 457, 458
iron, 453
steel, 458, 459
pole strength, 12
unit pole, 10, 451
poles, of earth (see also under Geomag-
netism), 470, 471
potential, 12
properties of materials:
alloys, 455
alnico, 454, 455
comal, 455
Heusler, 458
nickel-iron, 457
nonmagnetic, 458
permalloy, 453
permanent magnet, 454
composition, 454
atomic susceptibility, 451
basic equations, 451
cobalt, 457
composition, 453
correction to ring specimens, 464
demagnetization factor for rods, 467
dissipation of energy, 460
Steinmetz constant, 460
earth (see under Geomagnetism), 470, 502
electrical sheets, 456
energy loss, 460
high permeability, 453
iron, $452,457,458,464,465$
annealed, 452
cast, 464
composition, 465
intense field, 464
soft, 452,458
temperature, 461
very pure, 452,453
weak fields, 452
magnetite, 457
metals, 457
nickel-iron alloy, 457
temperature, 457

Magnetic-continued
sheets (electrical), 456
core losses, 456
steel, 456
carbon, 454
composition, 465
electrical sheets, 456
permeability, 458
sheets, 156
temperature, 459, 461
transformer, 459
core loss (ac), 456
energy loss, 459
tungsten steel, 454
reluctance, 12
susceptibility, 13, 18
atomic, 451
materials, 462
molecular, 451
specific, 451
temperature effects, 461
units, 16, 18
Gauss, 18
Gilbert, 18
Maxwell, 18
Oersted, 18
pole, 451
Magnetism (see also Magnetic) : Curie constant, 461
definitions, 18, 451
demagnetization factor for rods, 467
diamagnetic substances, 451. 461
susceptibility vs. temperature, 461
dissipation of energy, 460
energy losses, 460
ferromagnetic substances, 451
hysteresis, 451, 460
Steinmetz constant, 460
magnetic substances, 451
moment, 451
paramagnetic substances, 451, 461
susceptibility vs. temperature, 461
quantity of, 12
and resistance (see Resistance), 463, 465
resistance effects: bismuth, 463
nickel, 463
varions metals, 463
Steinmetz constant, 460
susceptibility, 462
vs. temperature, 461
terrestrial (see under Geomagnetism), 468
Magnetization intensity, 12, 18
energy loss, various materials, 460
specific: atomic, 451
molecular. 451
Steinmetz constant, 460
Magnetizing force, 12, 451
Magnetomotive force, 12, 18
Magneton, Bohr, 49, 54, 654
Magneto-optic rotation, 503
definitions. 503
Faraday effect, 503
Verdet constant (see also Verdet constant), 504

Magneto-strictive effects: Joule, 451
Villari, 451
Weidemann, 451
Magnets, permanent, 454
Magnitudes (stellar) : absolute, 730
bolometric, 759
Mass: electron, 50
$\mathrm{H}^{1}, 50$
$\mathrm{H}^{1}$ to electron, 50
neutron, 654, 664
rest, 654
standard, 14, 16
units of, 14
Mass-energy ratio, 654
Mass-velocity ratio, 654
Mathematical tables: constants, 25
derivatives, 23
exponentials. 43
factorials, 26
$\log$ of, 26
formulas: moment of inertia, 27
radius of gyration, 27
weights, 27
integrals, 23
least squares, $42-45$
logarithms, 28-31
moment of inertia, 27
radius of gyration, 27
series, 24
trigonometric functions, 31-36
weights, 27
Maximum velocity, 654
Maxwell, 18, 451
Mean free path, 641
Measurements (see also Data) : definitions, 4
derived, 2
two factors, 1
units, 1,2 choice of, 1
Mechanical equivalent: definition, 8, 93
heat, 8
light, 93, 94, 96
Mechanical properties (see also Physical properties), 187
alloys, miscellaneous, 217
special purpose, 220
aluminum, 192
Babbitt metal, 226
brass, 195
bronze, 195
building materials (see also under Building materials), 229
carboloy, 224
concrete (see also under Building materials), 229
copper (see also Wire), 198
alloys. 198
wire, 208
hard-drawn, 208
soft, 208
definitions. 187
elements, 189
fibers (see also under Fibers), 241
artificial, 243
miscellaneous, 244

Mechanical properties-continued
natural, 242
quartz, 534
ropes, 245
iron, 209
leather (see also Leathers)
masonic mortars (see also under Building materials), 229
plastics, 239
ropes, 245
special-purpose alloys, 220
steel, 209
wire, 215
experimental value, 216
plow, 215
rope, 215
tungsten, 225
white metal (Babbitt), 226
woods, hard, 246
soft, 254
zinc, 225
Mechanical units, 4, 187
Megabarye, 6
Melting point: alcohol vs. pressure, 118
argon, with pressure, 117, 118
compounds, inorganic, 120
organic, 122
effect of pressure, 119
elements, 117
inorganic compounts, 120
lime-alumina-silica compounds, 130
liquids, as a function of pressure, 118
low-melting-point alloys, 125, 225
metals, mixtures, 125 pressure, 119
nitrogen, with pressure, 118
organic compounds, 122
salts in solution, 131
standard, $8,14,70,71,72,117$
sccondary, 725
water, 119 vs. pressure, 118, 119
Melting temperatures: elements, 117
eutectic mixtures, 130
lime-alumina-silica compounds, 130
metals, 72
standard, 8, 14
Meniscus, volume of mercury, 606
Mercury:
arcs, characteristics, 109
types, 109
atomic: heat, 160
radius, 643
volume, 160
weight, 619
boiling point, 117
pressure, 119
compressibility, 282
conductivity, super, 394
critical points, 276
density, 48, 177, 299
and volume, 299
diffusivity, 143
electrochemical equivalents, 403
electron configuration, 582, 583, 622
entropy, 177

Mercury-continued
evapuration, 365
expansion, cubical, 153
linear, 147
freezing point, 72
heat: content, 177
latent fusion, 165
vaporization, 166
of formation of ions, 186
specific, $156,160,161$
isotopes, 657
magnetic susceptibility, 462
mean free path. 638
melting point, 72, 119
effect of pressure, 119
meniscus, volume, 606
molecular diameter, 638
optical constants, 560
planet, 734
physical properties, 177
pressure, columns, 606
resistance, 389
resistivity, 385
pressure effect, 389
specific gravity, 48
specific heat, 161
and temperature, 161
surface tension, 362
at solidifying point, 362
temperature of equilibrium with vapor, 72
thermal conductivity, 138
thermal emf, 378
thermal properties, 177
thermal resistivity, 144
thermometers: corrections, 73
stem, 73
vapor: mean free path, 638
molecular diameter, 638
pressure at low temperature, 369
pressure vs. temperature, 372
properties of, 177
velocity of sound in, 307
viscosity, 328, 331. 332
effect of pressure, 334
volume, 299
and temperature, 299
of glass vessel from weight of $\mathrm{Hg}, 68$
wavelength, $\mathrm{Hg}^{198}, 568$
Meson, 654, 664
Mesotron, 654
Metals: boiling points, 119
compressibility, 285, 286
crystal structure, 648
diffusion of, into metals, 356
electrical conductivity, 384,390
emf vs. platinum, 376, 381
emmissivities, 98
evaporation, 363-367
equations for, 363
constants, 363
rate of, 363
friction, interior, 227
interatomic distances, 648
magnetic properties, 453, 457-461
melting temperature of mixtures, 125
molten, viscosity, 327

Metals-continued
optical constants, 558
reflecting factor, 558-560
resistance, with pressure, 388, 389
effect of tension on, 387
temperature, high and low, 393
resistivity, 384
rigidity, 226
vs. temperature, 227
superconductivity, 394
thermal conductivity, 138
vapor pressure, 363
variation of volume with pressure, 286
Meteorology (see also Air and Atmosphere), 592
Meteors, composition, 626
Meter, 6, 61
candle, 93
Metric slug, 337
Metric system: conversion to British Imperial, 64, 66
conversion to U. S., 61
prefixes, 782, 783
values in British Imperial, 64
Mev, 21
Micro-, 6, 782
Micron, 6, 63
Microscope, media for determination of refractive index, 561
Mil, 6, 63
Mile, 6, 62
nautical, 62
statute, 6, 62
Milky Way, 746
pole, 731
Milli-, 6
Millilambert, 93
Milliphot, 93
Minerals: density, 294
dielectric constant, 428
electrical resistivity, 395
index of refraction biaxial, 526
monorefringent, 522 uniaxial, 523
rock-forming, bulk moduli, 740
specific heat, 162
MKS system of units, 15
Mobility of ions, 644, 645
Modulus of elasticity, 6, 189
Modulus of rupture, 188
Mol (mole), 6
Molecular constants of diatomic molecules, 586
energy, 586
conversion factors, 618
dissociation, 586, 587
electronic, 586
rotational, 586
states, 587
characterized, 586
designated, 586
electronic, 586
for ground state, 587
intermolecular distances, 586
equilibrium position, 587
moment of inertia, 586

Molecule, 618, 654
diameter, 638, 642, 644, 645
diatomic, 586
constants, 587
ground state, 586, 587
dimensions, 631, 644
evaporation, 639
masses, 640
mean free path, 641
formula, 641
number, 638
of monolayer and equivalent volume, 645
pressure, 638
temperature, 638
organic, 646
cross section, 646
length, 646
pressure, gases (units), 638
protein, 631
rates of incidence, 639
velocity, 639,640
formula, 639
value, 640
volume, inert gas atoms, 646
Molybdenum, radiation and other properties, 103
Moment of inertia of various bodies, 27
Momentum, 6
angnlar, of nucleus, 654
Month, 730
Moon: age, 741
albedo, 737
craters, 736
dimensions, 734
mass, 734
orbit, 735
eccentricity, 729
general precession, 730
inclination, 730
parallactic, 731
physical data, 734
temperature, 734
Mortars (see under Building materials)
Mountains, 772
Musical instruments (see also under Sound), 310, 311
peak power, 310
Musical scales, 312
Mutual inductance, 13
Nebulae (see also under Astronomy), lines, 745
Neptune, 734
Neon, compressibility, 264
standard wavelengths, 568
Nernst effect, 451
Nernst glower, 103, 104
Neutralization, heats of, 186
Neutrino (see under Particles, fundamental), 664
Neutron, 654
slow to produce radioactive isotopes, 667
radioactivity, 667
Newton, 6
Nickel, radiation from, 101
soot covered, 101

Nickel-iron alloy, temperature effects, 457
Nitrogen, abundance, 625, 626, 628
atomic weight, 47
boiling point, 117
compressibility, 264
high pressure, 267
conductivity, thermal, 142
density, 269
critical, 276
dielectric constant, 436
diffusion, coefficient of, 356
electric dipole moment, 441
electron configuration, $582,584,622$
expansion, thermal, 154
heat, latent, 166
heat capacity, 163
index of refraction, 533
ionization energy for production of ion pair, 711
isotopes, 655, 658
Joule-Thomson effect, 279
magnetic susceptibility, 462
melting parameters, 118
melting point, 117
pressure, 119
molecular diameter, 643
molecular velocity, 640
molecules, number of, 638, 642
percent in air, 592
percent in atmosphere, 592
physical properties, 190
pressure, critical, 276
solubility in water, 358
temperature, critical, 276
thermal properties (molecular), 272
Van der Waal's constant, 262
vapor pressure, 360
at low temperatures, 360
relations, 119
velocity of sound in, 306
Verdet's constant, 506
viscosity, 331
volume, conversions, 260
pressure relation, 119
relative, 261
Nitroso-dimethyl-anilene, 519
Noise (see also Sound), 309
Novae (see also under Astronomy), 757
Nuclear physics, 651
artificial disintegration, 651
produced, 651
binding energy, 653
cosmic rays, 653
definition of terms, 653
fields, 651
mass-energy, 654
mass-relocity, 654
particles, 652
attraction, 652
fundamental, 664
high-energy, device for producing, 657 mass, 654
formulas, 654
velocity and mass, 654
radioactivity, 654
Nuclear reaction, 665
barrier penetration, 665

Nuclear reaction-continued
cycles, carbon, 666
proton-proton, 666
temperature, 666
energy produced, 666
rates, 666
stars, 665
carbon cycle, 666
proton-proton cycle, 666
time required, 666
Nucleon, 652, 654
Nuclens, 654
mass, 651
Nutation, 730
constant, 730
Nylon, 244
Obliquity of ecliptic, 730
Observatories, magnetic values (see also
Geomagnetism), 481
Oceans, 772
area, 773
area vs. depth, 773, 774
currents, 778
depth and velocity, 778
volume transported, 778
depth, greatest mean, 773
dissolved, material, 777
éarthquake waves, velocity, 777
geochemistry, 776
greatest depth, Atlantic, 773
Indian, 773
Pacific, 773
physical data, 773
topography, ocean floor, 773
volume, 773
waves (see Waves at sea)
Oersted, 18
Ohm, 20
Oils, index of refraction, 530
petroleum, compressibility, 284
thermal expansion, 284
viscosity, 334
Optical constants, metals, 558
crystals (see also Crystals), 509, 513
glass (see also Glass), 509-514
pyrometry, 97
brightness temperature, 7, 97
correction to true, 99
calibration of pyrometer, 97
effective wavelengths, 97
emissivity, 98
monochromatic screen, 97
effective wavelengths, 97
true temperature, 97, 99
wavelength used, 97,537
Orbits, planets, 734
Orchestral instruments, frequency range, 311
Organic compounds, boiling point, 122
density, 122
liquids, dielectric constant, 424, 439
spreading coefficients, 633
vapor pressure, 368
melting point, 122
solubility vs. temperature, 358

Osmium filament, color temperature, 104
Oxides, brightness, 104
blue brightness, 104
electrical resistivity, 395
molten, viscosity, 326
percentage emissivities, 101
Oxygen, abundance, 625
atomic weight, 47, 619
boiling point, 117
combustion constant, 179
compressibility, 264
conductivity, thermal, 142
density, 48
critical, 276
diameter, 644
dielectric constant, 436
diffusion, coefficient of, 356
electric dipole moment, 441
electrochemical equivalents, 403
electron configuration, 582, 584, 622
entropy, 274
expansion, thermal, 154
factor to ideal gas, 48
heat capacity, 163
index of refraction, 533
ionization energy for production of ion pair, 711
isotopes, 655, 658
magnetic susceptibility, 462
melting point, 117
molecular data, 274
molecular diameter, 644
molecular velocity, 640
molecules, number of, 642
percent in air, 592
percent in atmosphere, 592
physical properties, 190
point, 71
pressure, critical, 276
solubility in water, 358
temperature, critical, 276
thermal properties (molecular), 274
Van der Waal's constant, 262
vapor pressure, 360
at low temperatures, 360
velocity of sound in, 306
Verdet's constant, 506
viscosity, 331, 642
volume, relative, 261
volume conversions, 260
Packing fraction, 654
Palladium point, 72
Paramagnetic substances, 451
Curie constant, 461
temperature, 461
Parsec, 63, 731
Particles,
attraction, 652
range, 652
De Broglie wavelength, 653
elementary, 651, 664
force, attractive, 652 range, 652
fundamental, 664
alpha particle, 664
characteristics, 664

Particles-continued
deuteron, 664
electron, 664
negative, 664
positive, 664
meson, 664
neutrino, 664
neutron, 664
production, 664
photon, 664
positron, 664
proton, 664
high-energy, devices for producing, 657
mass and velocity, 652
range, 654
various, De Broglie wavelength, 665
velocity, 665
Peltier effect (see also Emf, thermal), 13, 379
coefficient of, 13
iron-constantan, 381
metals vs. lead, 380
nickel-copper, 381
Peltier heats, pressure effects, 382
Pendulum, length of seconds, 717
vs. latitude, 717
Pentane candle, 92
Perihelion, 731
Periodic system, 621
Permalloy, 453
Permeability, 10, 457
iron, 457, 458
nickel-iron, 456
steel, 458
Petroleum (see also Oil): combustion values, 182
compressibility, 284
density, 284
thermal expansion, 284
viscosity, 284
$\mathrm{p}^{\mathrm{H}}, 634$
sea water, 777
Phot, 93
Photoelectric effect, 636
equation, 636
Photoflash lamps, characteristics, 110
Photographic materials, 563
range of, 566
Photography, 562
characteristic curves, 562,566
comparison of nuclear and optical emulsions, 564
definitions, 562
developers (formulas), 563
edge gradient values, 564
formulas for developers, 563
illuminants, relative photographic efficiency, 565
lamps for, 110,111
nuclear track plates, 567
emulsions, 567
nuclear, 567
specification, 567
optical emulsions, 564
photoflash lamps, 110
range of spectral sensitivity, 566
resolving power, 564

Photography-continued edge gradient, 564 value, 565
sensometric constants for type plates and films, 563
spectral sensitivity, 566
films, 566
range, 566
Photometric standards, 92, 94
candle, 94
color temperature, 94
international, 92
low brightness, 95
standard of 1948, 94
units, definitions, 93 obsolete, 92
Waidner-Burgess standard, 94
color, 94
value, 94
Photometry, 87
apostilb, 93
apparent candlepower with distance, 95
brightness, 93
candle, 93
Waidner and Burgess, 94
conversion factors, 94
definitions and units, 93
equivalents, 94
eye as measuring instrument, 89
effect of color, 90
Fechner law, 90
foot-candle, 91, 93
flux, luminous, 93, 94
radiant, 93, 79
glare, effect on sensibility, 89
illumination, 93
light, 87
lumen, 93
luminosity factors, 87
vs. field brightness, 88
lux, 91, 93
mechanical equivalent of light, 93
phot, 93
photon, 93
relation, instantaneous threshold to field brightness, 88, 90
vs. field brightness, 90
spherical candle, 93
standards (see Photometric standards), 92, 94
obsolete, 92
Waidner-Burgess, 94
stilb, 93
symbols and definitions, 94
units, 93, 94
I'hoton, 93, 654
Physical constants (see also under name of), 20, 46
relations, 46
Physical properties of materials (see also
Mechanical properties), 187
alloys: aluminum, 192
Babbitt metal, 226
bearing metal, 226
beryllium, 220
brass, 195
brazing, 223

Physical properties of materials-continued
bronze, 195
carboloy, 224
copper, 198
Dow metal, 220
hardness, 187, 224 ,
iron, 209
low expansion, 221
low melting, 225
magnetic, 455
alnico, 454, 455
Heusler, 458
permalloy, 453
superpermalloy, 453
mirror, 222
miscellaneous, 217
resistance, 221
sealing to glass, 220,221
soldering, 223
special purpose, 220
steel, 209
stainless, 213
tungsten, 214, 224
wire, 215
strength with lightness, 220
thermocouples, 221, 222
white metal bearing, 226
alıminum, 192
concrete (see under Building Materials)
copper, 198
crystals, 515, 529
definitions: elastic limit, 187
Ericksen values, 187
hardness, 187
Brinell, 187
Shore sceleroscope, 188
modulus of elasticity, 188
Young's, 188
proportional limits, 188
ultimate strength, 188
compression, 188
tension, 188
elements, 189
fibers (see Fibers)
glass, 534
special, 534
hardness, 187
elements, relative, 228
measuring, 187
units, 187
interior friction, 227
iron, 228
isolated tubular conductors, 418
leather, 232
light hydrocarbons, 293
masonic mortars, 229
plastics, 239
optical, 240
Poisson's ratio, 227
rigidity modulus, 226
temperature effects, 227
rope, 245
rubber, 234
artificial, 236
compression, 237
natural, 235
rupture, modulus, 188

Physical properties of materials-continued steel, 228
strength, ultimate, 188
tungsten, 225
wood, 246
zinc, 225
Pi (values), 6, 25
Piezoelectricity, 432
crystals, 432
strain coefficient, 432
unit, 432
Pile yield of isotopes, 670
Planck's constant, 49, 51, 54, 79, 80
Planck's law, 7, 79
Planetary precession, 731
Planets (see also under Astronomy), 734
orbits, 734
physical data, 734
satellites, 735
temperature, 734
Plastics, characteristics, 239
dielectric constant, 239
dielectric strength, 239
elasticity, 239
index refraction, 240
optical, 240
properties, 240
specific gravity, 239
thermal conductivity, 239
thermal expansion, 239
Platinum, color temperature, 103
cooling by radiation, 116
emissivity, 98
freezing point, 72
thermocouples, 75
Pluto, 734
Poise, 318
Poisson's ratio, 227
Polarized light, rotation of plane, 557
various materials, 557
Pole, Milky Way, 731
North, 470
South, 471
Pesitron, 651
Potassium bromide, 515, 516
Potassium chloride, index refraction, 515
Potassium iodide, 515, 516
Potential difference, contact, 376
alloys, 379
aluminum vs. platinum, 376
electrode, 637
metals, $376,378,380$
in solution of salts, 378
solids vs. liquids, 376
voltaic cells, 377
Potential excitation, 745
Pound (see under name of)
Pound weight, 6
Poundal, 6
Power, 6, 17, 22
factor, 433
insulating materials, 433
radio frequency, 433
Precession, 738
Pressure, boiling point, 119
columns of mercury and water, 606
conversion factors, 267

Pressure-continued
freezing point of water, 119
gases, critical, 276
melting point, 119
units of, 4, 638
Van der Waal's equation, 262
volume relation (see also Compressibility): argon, 118
compounds, 286
gases, 261
metals, 286
nitrogen, ' 119
solids, 286-289
Probable error, 37
Propagation temperature, dust, 634
Proportional limit, 188
Proteins (see also Colloids), 631
Proton, 50, 654, 664
mass, 50
molecules, 631
pH stability, 634
synchrotron, 657
Pyrometer, optical (see also Optical pyrometer), 97
glass, 537
Pyron, 9
Quantity of electricity, $10,11,20$
Quantity of light, 94
Quantum, 21, 89, 654
Quartz, crystal, 517, 518
compressibility, 287
dielectric constant, 428,430
fibers, characteristics, 534
fused, 518
index of refraction, 518
physical properties, 534
relative, volume with pressure, 289
resistivity, 396
rotation of plane of polarized light, 558
transparency, 517, 546
Radian, 6
Radiancy, 79
Radiant energy, 79
absorption (see also Absorption), 517, 535, 546
blackbody, 79
constants, 50, 80
first ( $\mathrm{c}_{1}$ ) $, 50,54,80$
density, 50
second ( $\mathrm{c}_{2}$ ), 50, 54, 80
different values, 80
definitions, 79
Stefan-Boltzmann constant, 50, 52, 80
Wien displacement constant, 54, 80
cooling by, 112
definitions, 79
density, 50
flux, 79, 93, 94
density, 79
intensity of source, 79
mechanical effects, 671
nickel, 101
reflection, formula, 549
light, 549

Radiant energy-continued
solar (sce Solar radiation)
spectral, 79
standard radiator (see also under Blackbody), 79
symbols, 79
temperature, 70
total, earth's surface, 713
our galaxy, 713
universe, 713
transmission, various substances, 535-556
units, 36
wavelength units, 509
Radiation, alpha ray, 653-664
beta ray, 653
cathode, 653
constants, 50, 54, 80
cosmic, 651, 653, 710
earth's surface, 713
electromagnetic (see Radiant energy)
extraterrestrial, 449
gamma, 653, 672
mechanical effects, 671
our galaxy, 713
radioactivity, 654, 672
receivers, 548
solar, 721, 723
over disk, 722
spectral, outside atmosphere, 721 sea level, 723
universe, 713
Radioactivity, 654, 672
actinium family, 678
alpha rays, 680
artificial, 682
long life, 667
slow neutron produced, 667
atoms (natural), 672, 680
number, 672, 680
beta rays (see also Beta rays), 672
breakdown: character, 672
decay constant, 673, 675
rate, 672
units of, Curie, 672
Rutherford, 672
danger from, 686, 689
range, 686,689
disintegration, 672
units for rate of, 672
elements, number, 672
emission characteristics, 672
three rays, 672
energy of, 672
radiated, 689
families (natural), 675
artificial additions, 675
characteristics, 675
actinium $(4 n+3), 678$
neptunium ( $4 \mathrm{n}+1$ ), 676
thorium (4n), 676
uranium $(4 n+2), 677$
gamma rays (see also Gamma rays), 653, 672
isotopes, 672
characteristics, 667
neutron produced, 667

Radioactivity-continued life
range for determination, 618
materials, 673, 675
age, 679
alpha-ray spectrum, 680
beta-ray spectrum, 683
energy emitted by, 689
radium in equilibrium, 691
isotopes, 675
number, 672
natural, 673
characteristics, 673
spectra, 680-689
original names of, 675
neptunium family, 676
protection, distances, 686, 689, 690
lead, thickness, 690
other materials, 684
radiation: alpha rays (see also Alpha rays), 672
beta rays (see also Beta rays), 672
gamma rays (see also Gamma rays), 672
ionization, 672
radium in equilibrium, 691
thorium family, 676
uranium family, 677
Radio propagation, 434
antenna array, 434
direction control, 434
formula, 435
pattern, 434
attenuation, 443
coefficient, 442
constant, 442
formulas, 443
ground, 444
low frequency, 442
formula, 442
oxygen (atm), 449
rain, 449
sea water, 444
water vapor, 445
formulas, 443
frequency: critical, 444,445
different layers, 448
high, 446
low, 442
maximum usable (muf): 445
2000 km , E-layer, 448
$4000 \mathrm{~km}, \mathrm{~F}_{2}$-layer, 446
factors for calculating, 448
$\mathrm{F}_{2}$-layer muf, 448
other distances, 448
path length layers, 448
reflection, 444
different layers, 444
frequency, 444
ion density, 445
layers, 445
minimum height, 445
skip distance, 445
Radio radiation, 434
directivity, 434
extraterrestrial, 449
patterns, 434

Radio radiation-continued reflection, 444
atmosphere layers, 444
transmission, 444
factors, 444
over ground, 444
bad, 444
good, 444
over sea water, 444
Radium:
danger ranges for persons working with Ra, 686, 689, 690
amounts of radium, 690
emanation, vapor pressure ( cmHg ) , 682
energy emitted by 1 g Ra in equilibrium 691
protection for 8 hours pər day exposure, 686
distance, 686
thickness of lead, 690
safe working distance, 689
Radius: atomic, 643, 644
gyration, 27
ionic, 648
molecules, 645
Range of particles, 654
Rankin temperature scale, 9
Rayon, 243
Reaumur temperature scale, 9
Receivers for radiation, 548
blackening, 548
Reflection factor: angle, 549, 550
building materials, 553
diffuse, 551, 555
formula, 549
long wavelengths, 554, 555
materials for, $554,555,556$
metals, 550,552
ultraviolet, 550
pigments, dry, 551
powders, 550, 551
sand, 554
snow, 554
surfaces, with angle, 550
tungsten, 555
Refraction, index of (see also Index of Refraction), 509, 532
Refractive indices with microscope, 561
materials for, 561
Reluctance, 18
Resilience, 6
Resistance (electric), 11
alternating to direct current, 419
diameter wire for ratio $1.01,420$
average pressure coefficients for metals, 389
bismuth, temperature variation, transverse magnetic field, 463
change of: metals, transverse magnetic field, 463 nickel, 463
high-frequency, conductors, 417-419
calculation of, 417, 418
resistance ratio, 418
temperature, 393
human body, 375

Resistance-continued
increase of, due to transverse magnetic field, nickel, 463
manganin, under pressure, 389
mercury, under pressure, 389
metals, effect of tension, 387 pressure, 388
nickel, magnetic field, 463
of conductor, 11
pressure coefficient, 388, 389
proximity factor, 419
ratio, wire diameters, ac to dc resistances, 419
skin effect, 417
standard, 16, 19
annealed copper, 404
temperature
high, 393
low, 393
tension, 387
tubular conductors, 418 frequency, 418
variation with pressure (metals), 388
Resistivity (see also Conductivity), 12, 13, 19
alloys, 384, 390
aluminium, 404
at high and low temperatures, 393
copper, 404
temperature coefficient, 406
dielectrics (solid), surface, 395
volume, 395
elements, 384,387
glass vs. temperature, 396
mercury vs. pressure, 389
metals, 384
vs. pressure, 388
vs. temperature, 385
minerals, miscellaneous, 395
oxides, 395
plastics, 239
pressure effect, 388
rocks, 395
sea water, 396
soils, 395
solutions (electrolytic), 397
surface, solid dielectric, 395
temperature: coefficient, 384 low, 393
thermal, 44
volume, of solid dielectrics, 395
water, natural, 396
sea (high-frequency), 396
Resolving power (photography), 564
Rest mass, 654
Restrahlung bands, various materials, 555
Reverberation time, 315
optimum, 316
room type, 317
Reynolds number, 337
Rigidity modulus, number of materials, 226 and temperature, 227
Ring (magnetic) specimens, corrections for, 464
Rock salt: index of refraction, 518 transmission, 517

Rocks: bulk modulus (rock forming materials), 740
dielectric constant, 426
elastic constants, 740, 741
electrical resistivity, 395
specific heat, 162
Rods, demagnetizing factor, 467
Rope, 245
fiber, 245
wire, 215
plow, 215
specification, 215
steel, 215
values, 215
Rotation of plane of polarized light, 557
Rubber:
artificial, 236
physical properties, 236
comparison, 237
compressibility, 237
natural, 235
physical properties, 235
strength, 235
Rupture, modulus, 188
Rutherford, 672
Rydlberg constant, 48
deuterium, 48, 51, 54
helium, 48, 51
hydrogen, 48, 51, 54
infinite mass, $48,51,54$
Sackur-Tetrode constant, 52
Satellites (see also under Astronomy), 734, 735
Saturn, 735
Schrödinger constant, 51,54
Screens (woven wire), 188
Sealed-beam lamp, 108
Seas, physical data (see also Oceans), 773
Sea water (see also Water), 774
Second radiation constant, 50,80
precaution for use, 80
value, 80
Seconds pendulum, length vs. latitude, 717
Self-inductance, 13
Series, mathematical, 24
Series relations in atomic spectra, 578
Bohr atom, 579
energy levels, designations, 579
J values, 570, 580
L values, 579
quantum principle. 581
Rydberg constant, 578
S values, 569
symbols, 580
spectral designation, 580,581
quantum principles, 581
spectral levels, 581
Pauli principle, 580
spectral terms, 579
means of identification, 580
spectroscopic properties, neutral atoms, 582
singly-ionized atoms, 584
terms from electrons, 579,580
wave numbers, 578,579

Showers, cosmic rays, 654
Siegbahn, wavelength scale, 48, 54
Silver chloride, 520
Sines, 32
Sky, illumination due to, 725
Slug, 6, 337
metric, 337
Snow reflection factors, 554
Sodium carbonate, 550
Sodium chloride, 531, 550
Solar constant, 719
monthly ineans, 720
1920-1952, 720
yearly means, 720
Solar corona, 744
emission lines, 744
flares, 743
Solar irradiation at sea level, 723
latitude, 725
monthly, 720
Solar motion, 731
clements, 731
Solar parallax, 731
Solar radiation, 719
air masses, 720

- vs. sun's elevation, 720
atmospheric transmission, 719
biological effective component, 724
constant, 720
corona emission, 744
distribution over disk, 722
flares, 743
illumination, 725
sky, 725
sun, 725
intensity, 721, 725
outside atmosphere, 721
mean intensity, 721
relative intensity, 724
spectral distribution, 724
Mount Wilson, 724
outside earth's atmosphere, 721, 722
sea level, 723
sunlight, distribution over Mount Wilson, 724
illumination due to, 725
sunshine, duration, 724
total, 719
to earth, 719
variation with time and latitude, 725
Wolf's sunspot number, 727
Solder, 223
flix, 223
hard, for aluminum, 223
for brass, 223
for copper, 223
for gold, 223
for iron, 223
soft, for brass, 223
for copper, 223
for gold, 223
for iron, 223
for lead, 223
for zine, 223

Solids, compressibility, 286
contact difference of potential, 637
dielectric constant, 427
electron emission, 635, 636
infrared reflection, 548
infrared transmission, 547
specific heat, 155-158
velocity of sound in, 306
Verdet's constant, 504
Solubility, 357
gases in alcohol, 360
gases in water (temperature variation), 358, 360
inorganic salts (temperature variation), 357
organic salts (temperature variation), 358
organic solvents, 359
pressure effect, 359
vapors, 360 alcohol, 360 water, 360
Solutions, density, 300-305
molecular conductivity, 398, 399
Solvents, organic, 359
boiling point, 359
Sound (see also Acoustics), 309-317
acoustics, architectural, 315
attenuation coefficient vs. humidity, 316
reverberation time, 315
and frequency, 317
as function of volume, 317
calculated, 315
optimum, 316
and volume of room, 317
bel, 309
consonants, frequency of occurrence, 309
power, relative, 309
decibel, 309, 314
ear sensitivity to: binaural, 314
differential, 314
frequency range, 314
monaural, 314
threshold, 314
fundamental frequency, female voices, 310 male voices, 310
hearing acuity: and frequency, 314
loss by groups, 315
thresholds, 314
levels, various locations, 309
musical: power peak, various instruments, 310
range frequency, orchestral instruments, 311
scales, 312
cent, 312
equally tempered, 312
frequency and piano key numbers, 313
frequency ratios, two scales, 312
intervals, 312
just, 312
semitone, 312
noise levels, various locations, 309
pressure levels, 309
pressure unit, 309
sensitivity of ear, 314

Sound-continued
speech:
consonants, 309
frequency of occurrence, 309
relative power, 309
power, 309
men, 310
women, 310
pressure field around head, 313
vowels, frequency of occurrence, 309
relative power, 309
resonance values, 311
velocity:
in air, 306
for various densities and heights, 594
in gases, 306
in liquids, 307
in sea water, 307
in solids, 306
in vapors, 306
Spark in air, voltage required vs. distance, 421-423
ac, 421
dc, 421
Specific gravity, 291
API, 290
Baumé scale, 289
Specific heat, 9,155
aluminum oxide, 162
ammonia, liquid, 162
saturated, 162
at fusion, 157
atomic, 160
electricity, 379
elements, 155
formula for (true), 157
gas, 163
ratio, 164
hydrocarbons, light, 293
liquids, various, 161
materials, varions, 158
mercury, 161
metals, 157
minerals, 162
rocks, 162
silicates, 164
solids, various, 158
true, 157
temperature, 157
vapor, 163
water, 161
Specific inductive capacity (see Dielectric constant), 11
Specific intensity of magnetization, 461
Specific luminous radiation, 93
Specific susceptibility, 451
Spectra:
alpha ray, 681
artificial, 682
natural, 680,681
atomic, series relations, 578
energy state, 581
beta ray, 653
blackbody, 95
Bohr atom, 579

Spectra-continued
Catalán's analysis, 579
classes, stars, 746, 747, 753
emissivities, 8, 98-103
energy 'evels, 581
quantum numbers, 579
rotation of electron, 580
Rydberg constant, 578
spinning electron, 580
terms, 579, 580
symbols, 579
X-rays, 699
Spectral intensity, 79, 82, 85
Spectral luminosity factors, 87, 90
Spectral luminous flux, 93
Spectral luminous intensities, 95
blackbody at various temperatures, 95
brightness of blackbody, 96
crova wavelength, 96
mechanical equivalent of light, 93,96
Spectral radiant energy, 79
Spectral radiation, 79
Spectral sensitivity (photographic), 566
Speech (see Sound)
Speed (photography), 562
Spherical candlepower, 93
Spin, 580
Spreading coefficient (see Colloids)
Square statute mile, 62
Standard atmosphere, 47, 345, 593
Standard observer, 1931 I.C.I., 90
Standard temperature, 9, 71
Standard wavelengths, 568
cadmium red line, value of, 569
elements, prominent lines in simple spectra, 575, 577
extreme ultraviolet standards, 571
Fraunhofer lines, wavelengths, 577, 578
preliminary values of mercury ${ }^{188}, 568$
primary standard, 568
cadmium, 568
mercury, 568
secondary standards, $568-571$
iron, 571
krypton, 570
neon, 568
simple spectra, wavelengths and relative intensities, 575, 577
solar wavelengths, 571, 572
tertiary standards, iron, 571
Standards, fundamental, 13
Stars (see also under Astronomy), 728, 746
Statahenry, 20
Statampere, 11, 20
Statcoulomb, 20
Statfarad, 20
Statohm, 20
Statute mile, 63
Statvolt, 11, 20
Steam: saturated, properties, 169, 175
superheated, properties, 176
Steel, composition of, 465
high speed, 224
magnetic properties, 452,457
mechanical properties, 209
permeability, 457, 458

Steel-continued
stainless, 213
transformer, energy losses, 459
wire, 215
specifications, 215
wire rope, 215
specifications, 216
Stefan-Boltzmann constant, 50, 80
Stellar system (see also under Astronomy), 728, 746
Steradiancy, 79
Stilb, 93
Stoke, 321
Stone (see under Building materials)
Strain, 7
Stress, 7
Sugar, combustion values, 182
Sugar solutions:
density, 304
Baumé degrees, 305
Brix degrees, 305
specific gravity, 305
Sulfur dioxide, 266
compressibility, 266
Sun (see also under Solar) : area, 731
brightness, 92

- calculated, 92
density, 731
diameter, 731
distance to earth, 731
eclipses 1950-2000, 742
electric data, 502
illumination due to, 725
magnetic data, 502
mass, 731
orbit, 770
matter within, 770
radiation, 719-725
at sea level, 723
biological effective, 724
over surface, 722
radius, 731
shine, duration, 724
latitude, 724
time, 724
spots, 727
annual means, 727
volume, 731
Sun and sky illumination, 725
Mount Wilson, 724
Superconductivity, 394
Surface tension, 361
liquids, 361,362
miscellaneous, 361
metals at solidification point, 362
salts in water, 361
solutions of salt and water, 361
various materials, 362
water plus alcohol, 361
Sylvite, 519
Synchro-cyclotron, 657
Synchroton, 654, 657
Tangents, 32
Tantalum: physical properties, 98, 103
radiation characteristics, 103

Telescopes, largest in use, 728
Temperature, 7
brightness, 97
correction to true, 99
variation with $\mathrm{c}_{2}, 86$
color, 8
and brightness, 104
carbon, 104
various substances, 104
conversion tables, inside front cover
correction to true, 99
corrections to mercury thermometer, 72
critical (gas and vapors), 276
definition in different ranges, 70
earth:
highest. 726
lowest, 726
selected stations, 726
surface, 726
variation with depth, 727
electron volt, equivalent, 21, 54
fixed points: ${ }^{\circ} \mathrm{C}$ 1948, 71
primary, 71, 72
gold point, 71
ice point, 47, 71, 72, 73
oxygen point, 71
silver point, 71
steam point, 71
sulfur point, 71
secondary, 70, 72
flames, 182, 293
ice point, 47, 73
international temperature scale of 1927, 70
and older scales, 74
international temperature scale of 1948 , 71
and 1927 scale, 74
interpretation for different ranges, 74
Wien's equation, 72
interstellar space, 763
measurement, 71, 72, 87, 97
correction for emergent mercurial thread, 72, 73
old thermoelectric scales, 74
planets, 734
reduction to gas scale, 73
reduction to thernodynamic scale, 73
reference tables for thermocouples, 75
scales, 75
Celsius, 8
Centigrade, 8
Fahrenheit, 8
gas to thermodynamic, 73
international:
1927, 70, 71
1948, 70, 72
comparison with 1927 scale, 71
Kelvin, 9
old, 74
radiant, 9
Rankin, 9
Reaumur, 9
thermodynamic, 9
secondary points (1948), 70, 71
standard, 71

Temperature-continued
standard fixed points (see also Fixed points), 8
thermocouple data, 75
true, 99
less brightness, 99
various places (monthly means), 726
Wien equation, corresponding temperatures on 1948 scale, 72
Tenth-meter, 7
Terrestrial magnetism (see Geomagnetism)
Thallium brome-iodide, 515
Thermal capacitance, 9
Thermal conduction vs. temperature, 114
Thermal conductivity, 9
alloys, 138
cork, 139
cotton, 139
fireclay, 141
fourier, 144
various materials, 144
gases, 142
insulating materials, 139
leather, 233
liquids: as a function of pressure, 143
organic, 142
materials, various, $136,139,141$
metals, 138
organic liquids, 142
plastics, 239
rocks, various, 136, 140
rubber, 140
salt solutions, 136
substances, various, 136, 141
water, 142
salt solutions, 136
woods, 140
wool, 140
Thermal emf (see Emf)
Thermal expansion, coefficient of, 8,145
alloys, 149
crystals, 152
cubical, 148, 153
elements, 145
gases, 154
leather, 233
liquids, 153
metals, 145
miscellaneous materials, 152
plastics, 239
rubber, 235
Thermal properties: gases, 259
liquid ammonia, 178
saturated steam, 168, 169, 175
saturated water, 168
superheated steam, 176
Thermal resistivity in fouriers, 144
Thermochemistry, various materials, 185 heat of formation, 186
Thermocouples, reference tables for, 74-78
chromel-alumel, ${ }^{\circ} \mathrm{F}, 78$
iron-constantin, ${ }^{\circ} \mathrm{C}-{ }^{\circ} \mathrm{F}, 76,77$
platinum to platinum 10 percent, ${ }^{\circ} \mathrm{C} \cdot{ }^{\circ} \mathrm{F}$, 75
Thermodynamic laws, 9

Thermodynamic temperature, 9,14
Thermodynamics, 9
Thermoelectric effect, 13, 379
properties at low temperatures, 381
vs, copper, 379
vs. lead, 379
alloys, 379
metals, 379-381
pressure effect, 382
temperature, 387
vs. platinum
alloys, 381
aluminium, 376
cadmium. 383
metals, 376-390
nickel, 389
zinc, 390
Thermomagnetic effects, 508
Thermometry: correction for emergent thread, 72
mercury thermometers, 72
reduction, gas thermometer to thermodynamic scale, 73
corrections for various gas thermometers, 73
Thomson effect, microvolt per degree, 382
Thomson heats, 382. 383
pressure effects. 382
temperature, 383
Thunderstorm electricity (see also Lightning), 614
Tides: height at various places, 779
mean sea level, 779
geodetic, 779
geographic, 779
neap, 779
spring, 779
Time, equation of, 728
unit, 14
Torque, 7
Transformation: eutectic mixtures, 130
lime-alumina-silica compounds, 130
of units, 1,57
Transformer rectifier, 657
Transitions, crystals, 126
Transmission of radiation:
air, 538
components, 538
moist, 546
alum, 545
atmospheric transparency for ultraviolet, 538
cesium bromide, 547
color screens, 535
crystals, 515,517
dyestuff solutions, 538
gases, 547
glass, 512
Jena, 514
lead chloride, 547
optical, 512
red pyrometer glass, 537
effective wavelength, 537
light filters: Bausch and Lomb, 537
Corning glass, 536
narrow band pass, 536
spectral regions, 536
Wratten, 536

Transmission of radiation-continued
light through space, 771
long wavelength, 545, 547
magnesium oxide, 547
optical crystals, 517, 545
red pyrometer glass, 537
rock salt, 517, 545
sapphire, 547
silver chloride, 547
solids, 547
substances, various, 546,547
sylvite, 517
thallium bromide, 517
thallium bromide-iodide, 517
thallium chloride, 547
various materials, 554,556
water, 536
Transparency :
atmospheric, for ultraviolet, 538
substances, various, infrared, 546 various, for long wavelengths, 555
ultraviolet, for atmospheric components, 538
water, 536
water vapor (steam), 545
Transverse galvanomagnetic and thermo-
magnetic effects, 507
Treatment of experimental data (see under Data)
Triboelectricity, series, 375
vs. silica, 375
Trigonometric functions, 32
cosine, 32
cotangent, 32
sine, 32
tangent, 32
Tritium, 654
Triton, 654
Troy measurements, 63, 64, 66
Tungsten (Wolfram), characteristics, 102
color temperature, 102, 103
emissivity, 99
lamp, 106
melting point, 72
pressure, 119
radiation, 102
Twilight, 731
Ultimate particles, 654, 657
strength, materials, 187, 188
Ultraviolet, transparency for atmospheric components, 538
Uniform point source, 92
Unit pole, 451
United States system of weights and measures, 60, 61, 63
metric to, 60,61
to metric, 60, 62
Units: absolute, 2
ampere turn, 18
capacity
carrying copper wires, 416
electrical, 16
mechanical, 60
physical, 60-67
specific inductive, 11
cgs, 15
changing, 57

Units-continued
choice of, 1
common, 56
abbreviations, 56
spelling, 56
conversion (see Conversion factors)
cubic, 63
defined (see under name of unit)
derived, 2,58
dimensions, 58
electrical and magnetic, 59
geometric and heat, 58
different systems, 15
absolute, electric and magnetic (1948), 19
relation to international (1927), 20
ampere turns, 18
cgs, 15,20
electrical, 10
dimensional equations, 11,59
equivalents of discarded systems, 22
relative value of 3 systems, 20
Gaussian, 15
heat, 58
dimensional equation, 58
flow, 136
international electrical, 19
magnetic units, 451
ampere turn, 18
Gauss, 18
Gilbert, 18
Maxwell, 18
Oersted, 18
ordinary, 18
pole, 12
practical, 16
some proposed, 15
MKS, 15
dimensional formulas, 2, 58, 59
use of, 2, 57
dimensions, 58, 59
electric, 10, 15
absolute (1948), 19
maintained, 19
vs. international, 20
electromagnetic, 12
practical, 16
electrostatic, 12
energy, 17, 618, 653
established, 2
extensive, 1
former electrical equivalents, 22
fundamental, 1, 56, 60
area, 60
capacity, 60
choice of, 2
dielectric constant, 1
dimensions, 57-59
heat, 58
length, $\mathbf{1}, 60$
magnetic permeability, 10, 451
mass, 60
number of, 2
temperature, 1, 14, 70
scale of 1948,70
time, 14
volume, 2,60
Gaussian system, 15
geometrical, 4
heat, 7

Units-continued
intensive, 1
legal definitions, 60
linear, 60
list of, 56
magnetic, 18, 451
mass, 60
measurements, 1
numeric, 1
unit, 1
mechanical, 4
metric, 61, 62
MKS, 15
number of, 2
numerically different, 15
photometric, 94
proposed systems, 15
radiant energy, 136
radiant wavelength, 509
relations among wire size units, 404
resistivity, 11
square, 60
transformation of, 1, 57
Universe:
abundance of elements, 625
cosmic rays, 713
mass density, 713
radiant energy. 713
Uranium:
elements beyond, 619, 623, 670
americium, 619, 670
berkelium, 619, 670
californium, 619, 670
curium, 619, 670
methods of producing, 670
neptunium, 619, 670
plutonium, 619, 670
radioactive properties, 676, 677
Uranus, 734

Valence electrons, 654
Value of $e, 47,51,54$
Van de Graff generator, 654
Van der Waal's equation, 261
constants for different gases, 262
Vapor pressure:
alcohol, ethyl, 370
methyl, 370
argon, 117
critical, 276
diffusion, 354, 355
elements (some), 362
ethyl alcohol, 370
gases (low temperature), 360
hydrocarbons, light, 293
liquids, 371
organic, 368, 371
mercury, 372
metals, 362, 363
rate of evaporation, 362,363
methyl alcohol, 370
organic liquids, 368
rate of evaporation, 362
solutions of salts in water, 373
temperature effects, 368,369
Vaporization, latent heat of, 167
ammonia, 167
elements, 165
formula for, 167

Vaporization-continued
liquids, 166
pressure variation, 167
water, 167
Vapors: density, 269
diffusion, 354
molecules, 640
mass, 640
velocity, 640
Velocity, 7
maximum, 654
of light, 47, 51, 54
in different materials (see under name of material)
of sound: in gases, 306
liquids, 307
sea water, 307
solids, 306
vapor, 306
Verdet's constant: acids, 505
gases, 506
liquids, 505
salts in water, 505
solids, 504-506
Viscosity, 318
air, 331
alcohol-water mixtures, 320
boron trioxide, 326
castor oil, 322
temperature, 322
centipoise, 319
coefficient, 318
constants, 331
Couette correction, 318
definition, 318
equations, 318
dimensions, 318
dimethyl-siloxane polymers, 325
diopside-albite-a northite, 327
fluids, 319-324
formulas, 319
gases and vapors, 331, 332
pressure and temperature, 331, 332
gasoline, with temperature, 322
glasses, with compositions, 330
with temperature, 330
glucose, 321
thermal effect, 321
glycerin-water mixtures, 322
glycerol in aqueous solution, 321
with temperature, 321
heavy water, 320
hydrocarbons, 329
pure, 329
ice glacier, 319
kerosene, with temperature, 322
kinematic, 318, 321
unit, 321
liquefied gases and vapors, 329
liquids, 328,333
miscellaneous, 328
pressure effects, 333, 334
pure, 333
lubricants, 334
oils, crank case, 334
metals, molten, 327
methods of measuring, 318, 319 equations, 318

Viscosity-continued
Meyer's formula, constants, 331
molten metals. 327
oxides, 326
number of gases, 331
oils, 328,334
pressure, 328
organic liquids, temperature effect, 323
orthoclase-albite, 325
oxides, molten, 326
pitch, 319
pressure effects, 328, 333
liquids, 328
silicon dioxide, 325
sodium silicates (temperature). 324
solids, 319
equations, 319
Southerlands formula, 331
specific, 318
stoke, 321
temperature variation, 322-326
units of, 318, 321
poise, 318, 319
vapors, 319
Venice turpentine, 319
water: at high temperatures, 320
at low temperatures, 319
heavy water, 320
pressure, 334
water-alcohol mixture, 320
wax, shoemaker's, 319
Volt, 20
Voltaic cells, 377
composition, 377
emf, 377
standard, 378
Volt-electron, 654
Volume, 60
gas, correction factor, 260
relative at various pressures, 261
glass vessel, 68
pressure relation: argon, 117
compounds, 286
gases, 261
metals, 119, 286
nitrogen, 118
Water:
absorption, gases, 360
vapors, $360^{\circ}$
barometric pressure, column of water, 606
boiling point, 71
with pressure, 169
compressibility, 283
cubical expansion, 153
density, 295, 296, 298
free from air, 296
maximum, 48, 297
water and alcohol, 302
ethyl, 302
methyl, 304
dielectric constant, 425
dielectric loss tangent, 439
diffusion of aqueous solution into, 354
diffusivity, 143
electrical resistivity, 396
freezing point, effect of pressure, 119
heat capacity, 161

Water-continued
heat of sorption, 632
heavy water, comparative properties, 671 viscosity, 320
humidity, 602
and wet-dry bulb temperature, 602
index of refraction, 530
ionization, 399
latent heat of vaporization, formula, 167
magnetic susceptibility, 462
mean free path, 638
melting temperatures, effect of pressure, 118
mixture, with alcohol, density, 302, 304
molecules, diameter, 638
phases, 119
freezing point, 119
pressure of columns, 606
properties, heavy, 671 ordinary, 295
pure, free from air, 296
relative volume, different pressures, 283
saturated, thermal properties, 168
sea:
absorption of light, 774
with wavelength, 776
chlorinity, 774
composition, 776
concentration of dissolved material, 774
density, 774
elements in, 777
evaporation, 774
geochemistry, 776
osmotic pressure, 775
pH, 777
physical properties, 775
absorption of light, 775
chlorinity, 774
concentration, 774
pressure, osmotic, 775
vapor, 775
salinity, 774
transmission of radiation, 775
pressure, 774
resistivity, 396
salinity, 774
solids dissolved, 776
amount of, 776
yearly addition, 776
specific heat, 161
temperature, 774
vapor pressure, 775
vaporization, 774
velocity of sound in, 307
solubility: of gases in, 358
of salts in, 357
inorganic, 358
organic, 358
solution of salts in, 300
specific heat, 161
spreading, 633
surface tension, 362
thermal conductivity, 136, 142
thermal properties, 168
total heat of vaporization, 169
transmission of radiation, 775
transparency, 538
vapor: coefficient of diffusion, 356

Water, vapor-continued
density, 276
diffusion of, 355
heat capacity, 163
index of refraction, 533
mean free path, 638
molecular diameter, 638
molecular velocities, 640
pressure in atmosphere, 599
at sea level, 605
saturated: pressure, 600
temperature, 600
weight, 601
transparency, 545
variation of dielectric constant, 423
velocity of sound in, 306
viscosity, 332
weight of, 601
wet-dry bulb, 602
vapor pressure of salts in, 373
velocity of sound in, 307
Verdet's constant for, 505
viscosity, 319
effect of pressure, 334
effect of temperature, 319
volume, and density, 298
and temperature, 298
at temperature of maximum density, 297
free from air, 296
influence of pressure, 297
of glass vessel from its weight in water, 68
Watt, 20
Wavelength: cadmium red line, 569
conversion factor, 509
De Broglie, 665
elements, prominent lines in simple spectra, 577
extreme ultraviolet, 571
Fraunhofer lines, 577
mercury ${ }^{108}, 568$
primary standards, 568
sample spectra of some elements, 577
secondary standards (international), 570
iron, 571
krypton, neon, 570
solar lines, 572
standard, 568
cadmium, 569
mercury, 568
tertiary standards, iron, 571
units, 509
ultraviolet, 571
Wave number, 578, 581
absolute volt, 50
electron volt, 54
moment of inertia and band spectra, 49
one volt, 50
Waves at sea: earthquake, 777, 778
fetch, 778
height, 778
vs. fetch, 778
vs. wind duration, 772
vs. wind velocity, 772,778
length, 778
deep water, 777, 778
shallow water, 777,778

Wares at sea-continued
sea, 778
surf, 778
swell, 778 height
vs. distance from source, 772
vs. wind, 778
velocity: deep water, 777 shallow water, 777
Weighing: effect of the air, 69 reduction to vacuo, 69
Weight, calculated, various bodies, 27
Wet-dry bulb temperature and humidity, 602
Wien displacement constant, 80
Wien displacement law, 80
Wire (see also Copper) :
aluminum, properties of, 415
mass resistivity, 404
copper, properties of, 406
annealed, 408
characteristics of, 408
electric, 408
carrying capacity (safe), 416
mass resistivity, 404
resistance, computing, 417
resistance to standard temperature, 407
temperature coefficient of resistance, 404
electrical and mechanical characteristics, 408
gages, comparison of, 405
high-frequency resistance, 417
calculations, 417, 419
of conductors, 417, 419
maximum diameter for high-frequency resistance ratio of $1.01,420$
ratio of alternating to direct current resistance, 419
rope, 216
steel, 216
tables. comparison (gages), 405
for computing resistances, 416
tubular conductors, resistance, 418
Wolf's sunspot number, 727
Wolfram (see Tungsten)

X-rays, 654, 692
absorption, 693
coefficients, 693, 694
formulas, 693
constants, 693
critical, 692
K series, 696, 698
L series, 696, 699
M series, 696
mass absorption, 704
calculated, 704
elements, 695, 697
materials, 696
formula, 693
wavelengths, critical, 692
elements, 697
voltage, 692
characteristics, intensity, 692, 693
wavelength, 692,693

X-rays-continued
dosage units, 694
lead thickness to reduce, 695
rate, 695
emission, characteristic, materials, 696
K series, 696
energy, radiated, 692
filters for obtaining monochromatic, 696
fluorescence, excited by, 693
materials, 693
wavelength, 693
generated, 692
ionization, 693
gas and vapors, 693
mass absorption, 694
formula, 694
nature, 692
production, 692
quantity, 692
protection against, 693, 694, 695
concrete, 694
distance vs. voltage, 695
lead, 695
materials vs., 694
minimum thickness vs. intensity, 693
requirement vs. voltage, 693, 695
for 400 kv pulsating, 695
for 1000 kv pulsating, 696
for 10 ma pulsating, 695
thickness vs. voltage, 695
quantity, tungsten target, 692
safe rating of tubes, 698
spectrum, 692
limit, 692
terms, various elements, 698
tubes, safe operating, 698
types, 692
characteristics, 692
continuous spectrum, 699
wavelength limit, 692
wavelength, 692
characteristic, 692
critical absorption for elements, 701
fluorescent, 693
K series, elements, 696, 697
L series, elements, 699
M series ( 72 Ta to 92 U ), 700
tungsten L series, 698
various elements, 700
various transitions, 697
voltage and, 692
X-unit, 509
Year: anomalistic, 731
light, 730
sidereal, 731
tropical, 731
Yearly means: magnetic characteristics, 481-492
solar constant, 719
sunspots, 727
temperature, 726
Yield point (materials), 188
Young's modulus, 7, 188
Zeeman effect, 50
Zero, absolute, 9, 47, 73
Zinc, physical properties, 225


[^0]:    ${ }^{1}$ Because of its greater psychological and physical simplicity, and the desirability that the unit chosen should have extensive magnitude, it has been proposed to choose as the fourth fundamental quantity a quantity of electrical charge, $e$. The standard units of electrical charge would then be the electronic charge. For thermal needs, entropy has been proposed. While not generally so psychologically easy to grasp as temperature, entropy is of fundamental importance in thermodynamics and has extensive magnitude. (Tolman, R. C., The measurable quantities of physics, Phys. Rev., vol. 9, p. 237, 1917.)

[^1]:    ${ }^{2}$ Buckingham, E., Phys. Rev., vol. 4, p. 345, 1914 ; also Philos. Mag., vol. 42, p. 696, 1921.
    ${ }^{3}$ Philos. Mag., ser. 4, vol. 41, p. 107, 1871. See also Robertson, Dimensional analysis, Gen. Electr. Rev., vol. 33, p. 207, 1930.

[^2]:    ${ }^{4}$ For dimensional formula see Table 30, part 2.
    4a Some writers have used this term for 1 dyne $/ \mathrm{cm}^{2}$.

[^3]:    ${ }^{6}$ Gen. Electr. Rev., vol. 47, p. 26, 1944.

[^4]:    ${ }^{8}$ Circular 60 of the National Bureau of Standards, Electric Units and Standards, 1916. The subsequent matter in this introduction is based upon this circular.
    ${ }^{9}$ For example, A. G. Webster, Theory of electricity and magnetism, 1897; J. H. Jeans, Electricity and magnetism, 1911; H. A. Lorentz, The theory of electrons, 1909; and O. W. Richardson, The electron theory of matter, 1914.

[^5]:    ${ }^{10}$ There was, however, some slight error in these values that had to be taken into account for accurate work. (See Table 5.)

[^6]:    12 Nat. Bur. Standards Circ. C-459, 1947.

[^7]:    *Where 3 occurs it is to be taken as 2.99776 (from velocity of light). Where 9 occurs (not as an exponent), it is the square of this number.

[^8]:    * Arlapterl from National Bureau of Standards Tables.
    $\ddagger$ Is defined for International Steam Tables.
    § init atomic weight energy equivalent.

[^9]:    *This table is now superseded by the adoption of the new system of electrical units in January 1948 and is given for reference only.

[^10]:    *Taken from B. O. Peirce's Short table of integrals, Ginn \& Co.

[^11]:    * Prepared by the late A. G. Worthing. of the C'niversity of Pittsurgh.

[^12]:    ${ }^{13}$ Worthing, A. G., and Geffner, J., Treatment of experimental data, p. 259, John Wiley and Sons, New York, 1943. Used by permission.

[^13]:    ${ }^{14}$ Birge, R. T., and Shea, J. D., Univ. California Publ. Math., vol. 2, p. 67, 1921 ; Worthing, A. G., and Geffner, J., Treatment of experimental data, p. 250, John Wiley and Sons, New York, 1943.
    ${ }^{15}$ Baily, J. L., Ann. Math. Statistics, vol. 2, p. 355, 1931.
    ${ }^{16}$ Cox, G. C., and Matuschak, Margaret, Journ. Phys. Chem., vol. 45, p. 362, 1941.

[^14]:    ${ }^{17}$ Phys. Rev. Suppl., vol. 1, p. 1, 1929 ; Rev. Mod. Phys., vol. 13, p. 233, 1941 ; Amer. Journ. Phys., vol. 13, p. 63, 1945.

    18 Phys. Rev., vol. 58, p. 457, 1940; Rev. Mod. Phys., vol. 20, p. 82, 1948.
    ${ }^{18:}$ Bearden, J. A., and Watts, H. M., Phys. Rev., vol. 81, p. 73, 1951.
    ${ }^{18}$ bearden, Earle, Minkowski, and Thomsen, private communication from J. A. Bearden.

[^15]:    * Unless otherwise specified, all quantities in this table that involve the mol or the gram equivalent are on the chemical scale of atomic weights.

[^16]:    ** $J_{\lambda}$ may be defined in several ways and this determines the value of $c_{1}$. If $J_{\lambda} d \lambda$ gives the energy density of unpolarized radiation in range $d \lambda$, then $c_{1}=8 \pi h c$. If $J_{\lambda} d \lambda$ gives the emission of linearly polarized light, in range $d \lambda$ per unit solid angles perpendicular to the surface, then $c_{1}=h c^{2}$. If this expression $J_{\lambda} d \lambda$ denotes the emission of radiation in range $d \lambda$, per unit surface from one side in all directions ( $2 \pi$ solid angle) then $c_{2}=2 \pi h c^{2}$. See Table 53.

    + For $2 \pi$ solid angle.

[^17]:    : The binding energy of the electron in the hydrogen atom has been included in the quantity. The mass of the electron when found in the hydrogen atom is not $m$ but more correctly $m\left(1-1 / 2 a^{2}+\cdots\right)$.

[^18]:    ${ }^{\mathrm{b}}$ The numerical constant 4.96511423 is the root of the transcendental equation $x=5\left(1-c^{-x}\right)$.

[^19]:    c These formulas apply only to non-relativistic velocities. If the velocity of the particle is not negligible compared to the velocity of light, $c$, or the energy not negligible compared to the rest mass energy, we must use $\lambda_{D}=\lambda_{c}[\epsilon(\epsilon+2)]^{-1 / 2}$ where $\lambda_{c}$ is the appropriate Compton wavelength and $\epsilon$ is the kinetic energy measured in units of the particle rest mass.

[^20]:    * For reference, see footnote 18a, p. 46.
    $\dagger$ Private communication by J. A. Bearden. Data presented at May 1953 meeting of Physical Society at Washington by Bearden, Earle, Minkowski, Thomsen, Johns Hopkins University.

[^21]:    * For these formulæ the numbers in the last column are the exponents of $F$ where $F$ refers to the luminous Hux. For definitions of these quantities see Tables 70 and 72.

[^22]:    * As adopted by Imerican Institute of Electrical Engineers, 1915.
    $+c$ is the velocity of an electromagnetic wave in the ether $=3 \times 10^{10}$ approximately.
    $\ddagger$ This conversion factor should include $\left[A^{-1}\right]$.

[^23]:    * Quoted from sheets issued by the National Bureau of Standards.

[^24]:    ${ }^{10}$ Taken from Circular 47 of the National Bureau of Standards, 1915, which see for more complete tables. .

[^25]:    * In accordance with the schedule adopted under the Weights and Measures (metric system) Act, 1897.

[^26]:    ${ }_{21} 20$ Nat. Bur. Standards Journ. Res., vol. 42, p. 209, 1949.
    ${ }^{21}$ The General Conference, held in October 1948, decided to discontinue the use of the words "Centesimal" and "Centigrade" and to replace them by "Celsius." See also Nat. Bur. Standards Techn. News Bull., vol. 33, p. 110, 1949.
    *See footnote 5a, p. 7.

[^27]:    ${ }^{22 a}$ Bull. Nat. Bur. Standards, vol. 8, p. 239, 1912.

[^28]:    * These values are now superseded by the introduction of the 1948 International Temperature Scale and are given for reference only.
    ${ }^{23}$ Taken from Nat. Bur. Standards Res. Papers RP 1080, RP 767, and RP 530.

[^29]:    * Hoskins Thermocouple.

[^30]:    ${ }^{23 a}$ Rev. Sci. Instr., vol. 7, p. 322, 1936. "These terms apply only to a source. The term "radiance" is not recommended as a substitute for radiant flux; however, if a single term is desired to express the radiant flux from a source, the word "radiance" is suggested as the most logical. † See footnote 5a, p. ${ }^{7}$
    ${ }^{24}$ For a more extensive list of values of $J_{\lambda}$ reference sbould be made to two papers by Parry Moon: Journ. Math. and Phys., vol. 16, p. 133, 1937; Publ. Electr. Eng., Massachusetts Institute of Technology, 1947.

[^31]:    * Energy radiated from $3000^{\circ} \mathrm{K}$ can be obtained from the value for this temperature by multiplying it by $10^{4}$. Likewise for other temperatures that are 10 times the
    values given in the table.

[^32]:    *For reference, see footnote 23, p. 74.

[^33]:    ${ }^{25}$ Blanchard, Phys. Rev., vol. 11, 1. 81, 1918; Stiles and Crawford, Proc. Roy. Soc. London, ser. B, vol. 112, p. 428, 1933 ; Lowry, Journ. Opt. Soc. Amer., vol. 18, p. 29, 1929.

[^34]:    ${ }^{25}$ I.E.S. Nomenclature and photometric standards, American Standards Association. ASA C.42. 1941.

[^35]:    ** For reference, see foot note 25, p. 87.

    * The field brightnesses are values ohtained hy mechanically increasing or reducing values measured at photopic levels. † Taken from smooth curve drawn through Blanchard's data. The unit will depend upon definition. As these figures stand they are brightnesses for this radiation measured at photopic levels and reduced mechanically to values given. $\ddagger$ For radiation from a source at a color temperature of $2680{ }^{\circ} \mathrm{K}$. § This is the ratio of the eye sensitivity to that of the eye adapted to the next lower (one-tenth) field brightness for this radiation. \| Minimum threshold from Taylor's value.

[^36]:    ${ }^{28}$ Judd, D. B., Journ. Opt. Soc. Amer., vol. 23, p. 359, 1933.

[^37]:    * The lumens within a unit solid angle around the normal from a plane blackbody is equal to 0.92 times the normal intensity.

[^38]:    1 candle per $\mathrm{ft}^{2}{ }^{2}=3.142$ foot-lamberts.
    1 stilb $=1$ candle per $\mathrm{cm}^{2}$
    1 apostilb $=0.1$ millilambert.

[^39]:    so Wensel, Roeser, Barbrow, and Caldwell, Nat. Bur. Standards Journ. Res., vol. 6, p. 1103, 1931.
    ${ }^{31}$ Nat. Bur. Standards Circ. C.459, 1947.

[^40]:    32 Weaver, K. S., Journ. Opt. Soc. Amer., vol. 38, p. 278. 1949; vol. 40, p. 60, 1950.
    ${ }^{39}$ Terrien, Journ. Opt. Soc. Amer., vol. 39, p. 888, 1949.

    * Platinum point.

[^41]:    * Calculated, $\sigma=5.6724 \times 10^{-12}$, watts $\mathrm{cm}^{-2} \mathrm{deg}^{-4}$.
    $\dagger$ Brightness, Waidner-Burgess standard. See Table 69.

[^42]:    ${ }^{\text {s }}$ Worthing, A. G., Tenperature radiation emissivities and emittances, Temperature, Its Measurement and Control, p. 1184, Reinhold Publishing Co., 1941.

[^43]:    ${ }^{\text {st }}$ Private communication from Wahlin, taken from data by Wahlin and Knop, L. V. Whitney, Wahlin and Wright, Worthing, Fiske, Phys. Rev.

[^44]:    * The values given in this table also give the correction for a window having a transmission given in column 1 for different temperatures of the source when this window is used between the source and the pyrometer.

[^45]:    ${ }^{3}$ Barnes, B. T., Forsythe, W. E., and Adams, E. Q. Journ. Opt. Soc. Amer., vol. 37, p. 804, 1947.

    * Assuming no radiation transmitted through sample from heater and no temperature gradient.
    $\dagger$ Assuming all of sample at heater temperature. $\ddagger$ Between front and hack surfaces.

[^46]:    * As observed with total radiation pyrometer sighted on the platinum.

[^47]:    * Data furnished by W. W. Lozier of National Carbon Co. $\dagger$ All direct-current power. $\ddagger$ "National" white fiame photographic carbons, rare earth cored. \& "National" 2 F carbon, neutral cored.

[^48]:    ${ }^{42}$ Forsythe, W. E., and Adams, E. Q., Bull. Denison Sci. Lab., vol. 32, p. 70, 1937.

[^49]:    * Data furnished by W. E. Forsvthe and E. M. Watson, of the General Electric Co. t These values furnished by W. H. Fisher, Nela Park. $\ddagger$ Vacuum lamps, all others are gas-filled. \& Temperature at junction of base and bulb. II Area of coil in $\mathrm{mm}^{2}$. II Candlepower in direction used. - Color temperature.

[^50]:    * Data furnished by H. C. Froelich, of Nela Park. $\dagger 2200$ A was lower limit of measurements.

[^51]:    
    A, $120^{\circ}$ cylindrical shield to side of filament. B, Hemispherical shield in front of filament masking all direct light. C, $90^{\circ}$ spherical shield in front of filament
    masking all upward direct light. masking all upward direct light.

[^52]:    Note.-Rated lives of black-light and general-lighting lamps listed above are based on specified test conditions with the lamps turned off and restarted no of tener than
     ife of the A-H5 is 5,000 hours, and the $\mathrm{E}-\mathrm{Hi} 4,000$ hours. If the $\mathrm{A}-\mathrm{H} 9$ lamp is started once every base down.

    * Prepared by C. L. Amick, General Electric Co., Nela Park.

[^53]:    ＊Data taken from reports by General Electric Lamp Department and from reports by Sylvania Electric Products．$\quad$ Add auxiliary watts for total．$\ddagger$ Nominal length includes the lamp and two standard lamp－ holders．\＆Approximate．｜｜See Table 96.

[^54]:    ＊The data given for the light and time characteristics and for the color temperature of the lamps are average values for a large number of lamps．Individual lamps may differ considerably from these averages．Prepared by Adelaide Easley，General Electric Lamp Division．$\dagger$ Milliseconds．$\ddagger \times 10^{3}$ ．$\& \times 10^{6}$ ．

[^55]:    * Data furnished by L. R. Benjamin, General Electric Co., Nela Park, Cleveland, Ohio. t With approximately 0.5 millihenry of inductance in series with each 100 microfarads of capacity. $\ddagger$ Data taken from circular of Amglo Corporation, Chicago, Ill.

[^56]:    * See Table 80.

[^57]:    * Computed with $\sigma=5.32$, blackbody efficiency of platinum as follows (Lummer and Kurlbaum): $492^{\circ} \mathrm{K}, .039 ; 654^{\circ}, .060 ; 795^{\circ}, .075 ; 1108^{\circ}, .112 ; 1481^{\circ}, .154 ; 1761^{\circ} \mathrm{K}, .180 . \quad \dagger$ Weighted mean.

[^58]:    ${ }^{45}$ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 70, p. 25, 1935.

[^59]:    ${ }^{44}$ Bridgman, P. W., Journ. Phys. Chem., vol. 9, p. 795, 1941.

    * Second modification of the solid.

[^60]:    *Prepared by F. C. Kracek, Geophysical Laboratory, Carnegie Institution of Washington. $\dagger$ Decomposes. $\ddagger$ At 2.5 atm pressure. $\delta$ At 5.2 atm pressure.

[^61]:    || At 10.5 mmHg pressure.

[^62]:    * See Table 201.

[^63]:    * Arranged by F. C. Kracek, Geophysical Laboratory, Carnegie Institution. All other footnotes at end of table.

[^64]:    $\ddagger$ Third modification at room temperature. $\ddagger$ Acetone. § Five cther modifications; not accurately located. $\quad$ Very heautiful for demonstration purnoses. a Leucite. $b$ Prohably pentamorphic, inv. at $1150^{\circ}$ and $1300^{\circ} \mathrm{C}$. $\quad$ Acetate. $\quad d$ Sluggish. $e$ Quartz. $f$ Cristobalite. $g$ Zincblende and wurtzite. $h$ Tridymite.

[^65]:    ＊The majority of these determinations are by G．A．Rankin．
    $\dagger$ The accuracy of the melting points is 5 to 10 units．（Geophysical Laboratory．）

[^66]:    * Lowest temperature obtained.

[^67]:    * Copper: $100-197^{\circ} \mathrm{C}, k_{t}=1.043 ; 100-268^{\circ}, 0.969 ; 100-370^{\circ}, 0.931 ; 100-541^{\circ}, 0.902$.
    $\dagger$ Iron: $100-727^{\circ} \mathrm{C}, k_{t}=0.202 ; 100-912^{\circ}, 0^{\prime} .184 ; 100.1245^{\circ}, 0.191$.

[^68]:    * Compiled from the International Critical Tables, which see for more complete data.

[^69]:    ${ }^{46}$ Griffiths, E., Journ. Inst. Fuel, vol. 15, p. 111, 1942.

[^70]:    * Air: $k_{n}=5.22\left(10^{-5}\right) \mathrm{cal} \mathrm{cm}^{-1} \mathrm{sec}^{-1} \mathrm{deg} \mathrm{C}^{-1} ; 5.74$ at $22^{\circ}$; temp. coef. $=.0029$.

[^71]:    47 Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 59, p. 158, 1923

    * $1.2,6,8,12,13$, extreme purity ; $3,4,5,7,9,10,11$, very pure; 14,15 , commercial.
    $\dagger$ Toluol freezes at $9900 \mathrm{~kg} / \mathrm{cm}^{2}$ at $30^{\circ}$. The figure at 11000 is for the solid.

[^72]:    ${ }^{48}$ Harper, D. R., Journ. Washington Acad. Sci., vol. 18, p. 469, 1928.

    * Substances marked with the asterisk vary widely in thermal conductivity according to composition. For limits of such variation, consult International Critical Tables, vol. 2. The figure listed above for any such material represents the author's estimate of the "best guess" for use in those cases where the composition of the material is not specified.

    In preparing this table, the author has consulted vol. 2, I.C.T. For still other materials, grateful acknowledgment is made to the staff of the National Bureau of Standards for advice in selecting most probable values in the light of present information.

[^73]:    *Compiled by Peter Hidnert and H. S. Krider, of the National Bureau of Standards.
    $\dagger$ The coefficient of cubical expansion of an isotropic solid element may be taken as 3 times the coefficient of linear expansion within a high degree of approximation (See Part 3 for determined coefficients of cubical expansion of some chemical elements.)
    **Numbers refer to authorities given at end of table.
    $\ddagger$ The coefficients of expansion depend upon the orientation of the constituent crystals.
    § The coefficients of expansion depend upon coarseness of grains and treatment of metal.

[^74]:    Compiled by Peter Hidnert and H. S. Krider, National Bureau of Standards.
    $\ddagger$ Chemical composition is given in percent by weight. $\ddagger$ Coefficient of expansion varies with coms. position and treatment. ** Numbers refer to authorities given at end of table.

[^75]:    $\S$ Composition of Kanthal: A: 68.5 Fe, 23.4 Cr, $6.2 \mathrm{Al}, 1.9 \mathrm{Co}, 0.06 \mathrm{C}$; A-1: $69.0 \mathrm{Fe}, 23.4 \mathrm{Cr}, 5.7 \mathrm{Al}$, $1.9 \mathrm{Co}, 0.06 \mathrm{C}$; $\mathrm{D}: 70.9 \mathrm{Fe}, 22.6 \mathrm{Cr}, 4.5 \mathrm{Ai}, 2.0 \mathrm{Co}, 0.09 \mathrm{C}$.
    (continued)

[^76]:    *Compiled hy Peter Hidnert and H. S. Krider, National Bureau of Standards. "* Numbers refer to authorities given helow. $\ddagger$ With load of $30 \mathrm{lh} / \mathrm{in}^{2}{ }^{2} \ddagger$ includes terms "ebonite" and "vulcanite." \& Vari-

[^77]:    * Allotropic heat of transformation: $\mathrm{Mn}, 1070-1130^{\circ} ; \mathrm{Ni}, 320-330^{\circ} ; \mathrm{Co}, 950-1100^{\circ} ; \mathrm{Fe}, 725-785^{\circ} ; 919^{\circ} \pm 1$; $1404.5^{\circ} \pm 0.5$.

[^78]:    ** For reference, see footnote 45, p. 136.

    * The heat capacity of an ideal monatomic gas (at constant pressure) is equal to (5/2) $R$.

[^79]:    ${ }^{51}$ From Slater, John C., Introduction to chemical physics, McGraw•Hill Book Co., copyright 1939. Iised by permission.

[^80]:    * Abridred from Steam tables and Mollier's diagram, by Keenan, 1930. Printed by permission of publisher, The American Society of Mechanical Engineers.

[^81]:    *See also Table 175.

[^82]:    ＊Prepared by E．W．Dean，Standard Oil Co．of New Jersey．†API（American Petroleum Industry）unit $=\frac{141.5}{\text { sp．g．} 60^{\circ} / 60^{\circ}}-131.5 . \quad \ddagger$ Spec．gravity $15^{\circ} \mathrm{C} . \quad$ \＆Calories per gram．

[^83]:    I Prepared by G. Stegeman, University of Pittsburgh.

[^84]:    * Because of volatility and oxidation of some, these liquids should be kept in well-stoppered bottles when not in use.

[^85]:    $n$, failure to explode in twenty minutes.
    *The decomposition of nitrocellulose in celluloid commences at about $100^{\circ} \mathrm{C}$; above that the heat of decomposition may raise the mass to the ignition point if loss of heat is prevented. Above $170^{\circ}$, decomposition occurs with explosive violence as with nitrocellulose. Rate of combustion is 5 to 10 times that of poplar, pine, or paper of the same size and conditions. $\dagger$ Measured by contact with porcelain tube of given temperature. Average. $\ddagger$ Measured by contact with molten lead. Average.

[^86]:    am =amorphous: $d i=$ diamond; $\mathrm{cr}=$ crystal $; \mathrm{g}=\mathrm{gas} ; \mathrm{gr}=\mathrm{graphite} ; \mathrm{l}=$ liquid; $\mathrm{rh}=$ rhombic (sulfur); $\mathrm{s}=$ solid; $\mathrm{y}=$ yellow (gold).

    * Heats of formation not from elements but as indicated.

[^87]:    ${ }^{* 5}$ Everhart, Lindlief, Kanegis, Weissler, and Siegel, Nat. Bur. Standards Circ. C-447, 1943.
    ${ }^{56}$ Selected from Nat. Bur. Standards Circ. C-447, Mechanical properties of metals and alloys, and from Alcoa's circular, Aluminum and its alloys.
    ${ }^{57}$ Chase Brass \& Copper Co.'s circular, Copper and commercially important copper alloys, 1948 ; American Brass Co., Copper and copper alloys, 1945.

[^88]:    * Data furnished by the W. S. Tyler Co., Cleveland.

[^89]:    Element Samarium
    Scandium
    Selenium
    Silicon .....
    Silver
    Sodium ...
    Strontium
    Sulfur (rh
    Tantalum
    Technetium
    Tellurium
    Terbium
    Thallium
    Thorium
    Tin
    Titanium
    Tungsten
    Uranium
    Vanadium
    Xenon
    Ytterbium
    Yttrium
    Zinc
    Zirconium

[^90]:    (continued)

[^91]:    

[^92]:    * For 4.55 mm wire drawn cold to indicated sizes.
    $\dagger$ For 4.55 mm (. 018 in. ) wire annealed in $\mathrm{H}_{2}$ at $850^{\circ} \mathrm{C}$.

[^93]:    Recommended allowable load for wire rope running over sheave is onefifth of specified minimum strength.

[^94]:    * Commercial composition for some incandeseent electric lamp filaments containing thoria ( $\mathrm{ThO}_{2}$ ) approx. 0.75 percent.
    $\dagger$ Ordinary annealing treatment makes $W$ hrittle, and severe working, below recrystallization or equiaxing temperature, produces ductility. W rods which have been worked and recrystallized are stronger than sintered rods. The equiaxing temperature of worked tungsten, with a 5 -min exposure, varies from $2200^{\circ} \mathrm{C}$ for a work rod with 24 percent reduction, to $1350^{\circ} \mathrm{C}$ for a fine wire with 100 percent reduction. Tungsten wire, $\mathrm{D}=0.635$ mm or 0.025 in .
    $\ddagger$ Compression on cylinder 25.4 mm ( 1 in .) hy 65.1 mm ( 2.6 in .), at 20 percent deformation:
    For spelter (cast zinc) free from Cd, av. $17.2 \mathrm{~kg} / \mathrm{mm}^{2}$ or $24,500 \mathrm{lb} / \mathrm{in} .^{2}$
    For spelter with Cd 0.26 , av. $27.4 \mathrm{~kg} / \mathrm{mm}^{2}$ or $39,000 \mathrm{Hb} / \mathrm{in} .^{2}$
    Modulus of rupture averages twice the corresponding tensile strength.
    Shearing strength: rolled, averages $13.6 \mathrm{~kg} / \mathrm{mm}^{2}$ or $194,000 \mathrm{ib} / \mathrm{in}^{2}{ }^{2}$
    Modulus of elasticity: cast, $7,750 \mathrm{~kg} / \mathrm{mm}^{2}$ or $11,025,000 \mathrm{lb} / \mathrm{in}^{2}$
    Modulus of elasticity: rolled, $8450 \mathrm{~kg} / \mathrm{mm}^{2}$ or $12,000,000 \mathrm{lb} / \mathrm{in}^{2}$

[^95]:    * See also Table 123.

[^96]:    * U. S. Navy Spec. $46 \mathrm{M} 2 \mathrm{~b}(\mathrm{Cu} 3$ to $4.5, \mathrm{Sn} 88$ to $89.5, \mathrm{Sb} 7.0$ to 8.0$)$ covers manufacture of antifrictionmetal castings. (Composition W.)

[^97]:    ${ }^{62}$ Walker and Bloem, Journ. Amer. Concrete Inst., vol. 42, p. 629, 1946.

    * Strengths given are for mixes in which full advantage was taken of the sand and water-content reductions made possible by the increased workability resulting from entrained air.

[^98]:    ${ }^{63}$ McBurney and Lovewell, Proc. Amer. Soc. Test. Mat., vol. 33, p. 1, 1933.

[^99]:    * Prepared by R. Hobbs, National Bureau of Standards.
    ${ }^{65}$ Beek, J., and Hobbs, R. B., Journ. Amer. Leather Chem. Assoc., vol. 36, p. 190, 1941.
    ${ }_{68}$ Federal specification for leather and leather products, $\mathrm{K}_{\mathrm{k}}$-L-311. Government Printing Office, Washington, D. C., March 1945.

[^100]:    ${ }^{67}$ Wilson, J. A., Modern practice in leather manufacture, Reinhold Publishing Co., New York, 1941.

[^101]:    ex Progress in leather science, 1920-1945, British Leather Manufacturers' Res. Assoc., London, 1948.

[^102]:    ${ }^{6 n}$ Kanagy, J. R., and Wallace, E. I.., Journ. Amer. I.eather Chem. Assoc., vol. 38, p. 314, 1943 ; Rose, H., ibid., p. 107.

[^103]:    * For reference, see foot note 68, p. 232.

[^104]:    * Prepared by Lawrence A. Wood, National Bureau of Standards.

[^105]:    ${ }^{73}$ Bridgman, P. W., Proc. Amer. Acad. Mrts and Sci., vol. 74, p. 50, 1940.

[^106]:    ${ }^{74}$ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 76, p. 22, 1942.

[^107]:    ${ }^{75}$ Taken from Technical data on plastics，Plastic Mfg．Assoc．，Inc．，May 1948．For trade names see original reference．
    ＊Compression．
    $\dagger$ To fracture．

[^108]:    ${ }^{76}$ Polaroid Corporation, NDRC Report, Library of Congress PB 28553.

    * See Table 523.

[^109]:    * Acetate rayon or estron. $\dagger$ Including regular and high-tenacity varieties. $\ddagger$ "Denier" is the weight in grams of 9000 meters of the fiber. \& The value given for stiff ness is a measure of the ability of the fiber substance to resist deformation. || The toughness index is a measure of the ability of the fiber substance to absorb work.

[^110]:    * Data from the Plymouth Rope Co. and Mr. Axelsson of Columbian Rope Co. Data on cotton rope furnished by Mr. Moss, Southeastern Cordage Co. †Excellent resistance to acids, alkalis, and most chemicals.

[^111]:    * Table prepared by W. N. Watkins, U. S. National Museum.

[^112]:    * Adapted from data furnished by J. Hilsenrath, National Bureau of Standards.
    ${ }^{78}$ Woolley, Scott, and Brickwedde, Nat. Bur. Standards Res. Pap. RP 1932, vol. 41, 1948.

[^113]:    ${ }^{79}$ Slater, J. C., Introduction to chemical physics, page 408, 1939, McGraw-Hill Book Co. Used by permission of the publishers.
    (continued)

[^114]:    * Abridged from Nat. Bur. Standards Circ. ${ }^{2} 79,1926$.

[^115]:    * Taken from Nat. Bur. Standards Circ. 279, 1926.

[^116]:    * For reference, see footnote 45, p. 136.
    * At 710 mmHg .

[^117]:    ** For reference, see footnote 45, p. 136.

    * Plait point. † Critical point of contact.

[^118]:    * The material on the Joule-Thomson effect was supplied by J. R. Roebuck, of the University of Wisconsin.

[^119]:    ${ }^{84}$ Phys. Rev., vol. 43, p. 60, 1933 (corrected).

[^120]:    ${ }^{86}$ Phys. Rev., vol. 48, p. 45, 1935 (corrected).

[^121]:    88 Journ. Amer. Chem. Soc., vol. 64, p. 400, 1942.

[^122]:    89 Journ. Amer. Chem. Soc., vol. 60, p. 341, 1938 (corrected).

[^123]:    ${ }^{\infty}$ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 47, p. 345, 1911; vol. 48, p. 309, 1912; vol.

[^124]:    * $-\Delta V / V_{0}$.

[^125]:    Qs Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 76, p. 75, 1948.

    * Transition at 23,300. Compressions . 3716 and . 3776 . $\dagger$ Transition at 23,370 . Compressions .0755 and .0781. $\ddagger$ Transition at 12,430 . Compressions .0736 and .1504 .

    TABLE 275.-VARIATION OF THE VOLUME ( $\Delta V / V_{0}$ ) FOR A NUMBER OF COMPOUNDS WITH PRESSURE FOR TWO TEMPERATURES ${ }^{\circ}$

[^126]:    ${ }^{04}$ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 74, October 1940.

    * Transition below this point.

[^127]:    ** For reference, see footnote 45, p. 136.

[^128]:    * Dynamical measurements.

[^129]:    ${ }^{95}$ Bridgman, P. W., Proc. Amer. Acad. Arts and Sci., vol. 76, p. 68, 1948.

    * Glass $A$ is a potash lead silicate of very high lead content. $\dagger$ Glass $C$ is a soda potash lime silicate. $\ddagger$ Glass $D$ is a lead zinc borosilicate.

[^130]:    * Where the temperature is not given, ordinary temperature is understood.

[^131]:    * According to P. Chappuis, Bureau International des Poids et Mesures.

[^132]:    * Cf. Table 269.

[^133]:    (continued)

[^134]:    95 References: a, Weissler, A., Journ. Amer. Chem. Soc., 1948 and 1949 ; also unpublished work with V. A. Del Grosso, b, Bergmann, L., Ultrasonics, 3d ed., p. 175, Edwards Brothers, Ann Arbor, Mich., 1944. c, Rao, M. R., Ind. Journ. Phys., vol. 14, p. 109, 1940. d, Lagemann, R. J., et al., Journ. Chem. Phys., vol. 16, p. 247, 1948; Journ. Amer. Chem. Soc., vol. 70, p. 2994, 1948. e, Kandall, C. R., Nat. Bur. Standards Journ. Res., vol. 8, p. 95, 1932.

[^135]:    * Data selected and arranged by Cyril M. Harris, Bell Telephone Laboratories.
    ${ }_{100}$ Fletcher, H., Speech and hearing, p. 74, D. VanNostrand, 1929. French, Carter, and Koenig, Bell System Techn. Journ., vol. 9, p. 290, 1930.

[^136]:    $\dagger$ The bel is a dimensionless unit for expressing the ratio of two values of power, the number of bels being the logarithm to the base 10 of the power ratio.

    The decibel, abbreviated db , is one-tenth of a bel. When conditions are such that scalar ratios of pressure amplitudes or particle velocities are the square roots of the corresponding power ratios, the number of decibels by which the corresponding powers differ is expressed by
    $20 \log \left(p_{1} / p_{2}\right) \mathrm{db}$
    where $p_{1} / p_{2}$ represents the scalar ratio. This relationship is frequently applied where the scalar ratio is not the square root of the corresponding power ratio, but such usage should be accompanied by a specific statement of application.

[^137]:    ${ }^{101}$ Dunn, H. K., and White, S. D., Journ. Accoust. Soc. Amer., vol. 11, p. 278, 1940.

[^138]:    102 Sivian, L. J., Dunn, H. K., and White, S. D., Journ. Acoust. Soc. Amer., vol. 2, p. 330, 1931.

[^139]:    ${ }^{106}$ Sivian, L. J., and White, S. D., Journ. Acoust. Soc. Amer., vol. 4, p. 228, 1933.

[^140]:    ${ }^{107}$ Taken from Acoustical designing in architecture, by V. O. Knudsen and C. M. Harris, John Wiley \& Sons, 1949. Used by permission of the publishers.

[^141]:    * The data on viscosity were selected and arranged by George V. McCauley, Corning Glass Works.
    ${ }^{100}$ L.illie, H. R., Journ. Amer. Cer. Soc., vol. 12, p. 505, 1929.
    ${ }^{100}$ Hunter, R. G., Journ. Amer. Cer. Soc., vol. 17, p. 123, 1934 ; Ann. d. Phys., ser. 4, vol. 22, p. 287, 1907 ; vol. 23, p. 447, 1907.

[^142]:    * Tables 314 and 315 tiken from Nat. Bur. Standards Techn. Pap. No. 112, 1918. Gilycerol data,

    Table 314, from Archbutt. Deeley, and Gerlack; castor oil data, Table 315, from Kahlbaum and Raber. Archhutt and Deeley give for the density and viscosity of castor oil at $65.6^{\circ} \mathrm{C}, 0.9284$ and 0.605 , respectively; at $100^{\circ} \mathrm{C}, 0.9050$ and 0.169 .
    $\dagger$ The kinematic viscosity is the ordinary viscosity in cys units (poises) divided by the density in $\mathrm{g} / \mathrm{cm}^{3}$. The cgs unit of kinematic viscosity is the stoke.

[^143]:    ${ }_{115}$ Herschel, Nat. Bur. Standards Techn. Pap. No. 125, 1919.

[^144]:    ${ }^{117}$ Babcock, C. L., Journ. Amer. Cer. Soc., vol. 17, p. 319, 1934. Lillie, H. R., Journ. Amer. Cer. Soc., vol. 22, p. 367, 1939.

[^145]:    118 Volarovich, M. P., and Leontieva, A. A., Journ. Soc. Glass Techn., vol. 20, p. 139, 1936.

[^146]:    ${ }^{121}$ Landolt and Börnstein, 1935. Based on data by Esser, Greis, and Brundgart. Arch. Eisenhütten, vol. 7, p. 385, 1934. Viscosity in centipoises. Data on tin by Stott, Proc. Phys. Soc., vol. 45, p. 530, 1933, included.
    *Esser, Greis, and Brundgart. $\dagger$ Stott.

[^147]:    * American mineral oils; based on water as .01028 at $20^{\circ} \mathrm{C}$. $\dagger$ Based on water as per 1 st footnote. $\ddagger$ Densities.

[^148]:    ${ }^{128}$ Lipkin, M. R., Davison, J. A., and Kurtz, S. S., Ind. Eng. Chem., vol. 34, p. 976, 1942.

[^149]:    ${ }^{124}$ Babcock, C. L., Journ. Amer. Cer. Soc., vol. 17, p. 329, 1934 ; English Journ. Soc. Glass Techn., vol. 7, p. 25,1923 ; vol. 8, p. 205,1924 ; vol. 9 , p. 83,1925 ; vol. 10 , p. 52,$1926 ;$ Lillie, H. R., Journ. Amer. Cer. Soc., vol. 14. p. 502, 1931; Hunter, Journ. Amer. Cer. Soc., vol. 17, n. 121, 1934; Lillie, H. R., unpublished data. * $\mathrm{R}_{2} \mathrm{O}_{3}$. Glasses 11 and 12 contained 0.50 and 0.34 nercent BaO, respectively. $\dagger$ Glass 14 contains 20 percent liaU. $\ddagger$ Data by H. R. Lillie, Corning Glass Works Laburatory.

[^150]:    ${ }^{125}$ Dushman, S., Vacuum technique, p. 37. John Wiley \& Sons, New York, 1949 ; Banerjea, G. B., and Plattanaik, B., Zeit. Physik, vol. 110, p. 676, 1938; Partington, J. R., Phys. Zeit., vol. 34, p. 289, 1933; Fisher, Phys. Rev., vol. 24, 1907.

[^151]:    ${ }^{127}$ Bridgman, P. W., Proc. Acad. Arts and Sci., vol. 61, p. 59, 1926.

[^152]:    ${ }^{130}$ Metals Handbook, 1948 ed., p. 69, American Society for Metals, Cleveland.
    Symbols: $D r y=$ no cutting fluid, $E m=$ soluble or emulsifiable oils and compounds, $K=$ kerosene, $L=$ lard oil, $M L=$ mineral-lard oils, $M O=$ mineral oils, Sulf $=$ sulfurized oils.

[^153]:    *Tables 339 to 346 and figures 6 to 15 were prepared under the direction of C. H. Helms, assistant director of aeronautical research, National Advisory Committee for Aeronautics.

[^154]:    ${ }^{131}$ Authorities: 1, Eiffel G., Resistance de 1'air et l'aviation, 2d ed., p. 231, Dunod et Pinat, Paris. 2, Dines, Proc. Roy. Soc. London, A, Math. and Phys. Sci., vol. 48, p. 233, 1890. 3, Föppl, Jahrb. Motor-luftschiff-Studiengesellsch., vol. 4, p. 51, 1910. 4, Riabouchinski, Bull. Inst. Aerodynam. de Koutchino, Petrograd, vol. 4, p. 113, 1912. 5, Stanton, T. E. Air resistance of plane surfaces, Minutes of Proc. Inst. Civil Eng., vol. 156, p. 78, 1903. 6 and 6 a , National Bureau of Standards, private communication. 7, Knight, Montgomery, and Wenzinger, Carl J., Wind tunnel tests on a series of wing models through a large angle of attack range, Pi. 1, Force tests. NACA Rep. No. 317, 1929.

[^155]:    132 Wieselberger, C., New data on the laws of fluid resistance. NACA TN No. 84, 1922. Relf, E. F., Discussion of the results of measurements of the resistance of wires with some additional tests on the resistance of wires of small diameter. R. \& M. No. 102, British ACA, March 1914. Wieselsberger, C., Further information on the laws of fluid resistance. NACA TN No. 121, December 1922.

[^156]:    ${ }^{133}$ Allen, H. S., The motion of a sphere in a viscous fluid, Phil. Mag., vol. 50, p. 323, 1900. Wieselberger, C., Further information on the laws of fuid resistance, NACA TN No. 121 , Decemher 1922. Millikan, C. B., and Klein, A. L.. The effect of turbulence, Aircraft Eng., vol. 5, p. 169, 1933. Platt, Robert C., Turbulence factors of NACA wind lunnels as determined by sphere tests, NACA Rep. No. 558, 1936. Dryden, Hugh L., Schubauer, G. B., Mock, W. C., Jr., and Skramstad, H. K., Measurements of intensity and scale of wind-tunnel turbulence and their relation to the critical Reynolds number of spheres, NACA Rep. No. 581, 1937. Ferri, Antonio, The influence of Reynolds numbers at high Mach numbers, Atti di Guidonia, n. 67/69, Mar. 10, 1942.

[^157]:    ${ }^{184}$ Tetervin, Neal, A method for the rapid estimation of turbulent boundary-layer thickness for calculating profile drag, NACA 1 CR No. L.4G14, July 1944

[^158]:    195 Aiken, William S.. Tr.. Standard nomenclature for airsneeds with tables and charts for use in calculation of airspeed, NACA Rep. No. $837,1947$. Warfield, Calvin N., Tentative tables for the properties of the upper atmosphere, NACA TN No. 1200, January 1947.

[^159]:    * For metric values see Table 628.

[^160]:    ${ }^{106}$ Burcher. Marie $\Lambda$., Compressible flow tables for air, N.\C. $\overline{\text { T N No. 1592, August }} 1948$.

[^161]:    137 Abbott, Ira H., von Doenhoff, Albert E., and Stivers, Louis S., Jr., Summary of airfoil data. NACA Rep. No. 824, 1945. Stack, John, and von Doenhoff, Albert E., Tests of 16 related airfoils at high speeds, NACA Rep. No. 492, 1934.

[^162]:    ＊Table by J．W．H．Randall，reprinted with permission of Chemical Catalog Co．

[^163]:    $p=K . T^{-1} e^{-\lambda 0 / R T}$ dynes $/ \mathrm{cm}^{2}$ (Egerton)
    $\mathrm{Zn}, \lambda_{0}=3.28 \times 10^{4} ; K=1.17 \times 10^{14} ; \mathrm{Cd}, \lambda_{0}=2.77 \times 10^{4} ; K=5.27 \times 10^{13} ;$
    $\mathrm{Hg}, \lambda_{0}=1.60 \times 10^{4} ; K=3.72 \times 10^{13}$ (Knudsen).

[^164]:    * Prepared by Saul Dushman, General Electric Research Laboratory, Schenectady, N. Y.

[^165]:    138a Cromwell, J. C., Origins and prevention of laboratory accidents, 1950; Bell Laboratories Rec., p. 318 , June 1936; Johns Hopkins University, Report of Electrician, November 1934; Journ. Franklin Inst., vol. 215, p. 1, 1933.

[^166]:    * Everett, Units and physical constants: Table of Ayrton and Perry's results, prepared by Ayrton.

[^167]:    ${ }^{140}$ Nat. Bur. Standards Circ. 346, 1927.

[^168]:    * Amalgamated. $\ddagger$ Not constant. $\ddagger$ After some time. $\$$ A quantity of bromine was used corresponding to $\mathrm{NaOH}=1$.

[^169]:    (continued)

[^170]:    * Electrical conductivity of $T e_{\beta}=0.04, T e_{a}=1.7 \mathrm{emu}$.

[^171]:    * See note to Table 377

[^172]:    ${ }^{142}$ Bridgman, Proc. Amer. Acad. Arts and Sci., vol. 72, p. 174, 1938.

[^173]:    * For reference, see footnote 142, above.

[^174]:    * This line gives the specific mass resistance at $25^{\circ}$, the other lines, the specific volume resistance.

    The use of mercury as ahove has the advantage of beng perfectly reproducihle so that at any time a pressure can be measured without recourse to a fundamental standard. However, at $0^{\circ} \mathrm{C}$ mercury freezes at $7500 \mathrm{~kg} / \mathrm{cm}^{2}$. Manganin is suitahle over a much wider range. Over a temperature range 0 to $50^{\circ} \mathrm{C}$ the pressure resistance relation is linear within $1 / 10$ percent of the change of resistance up to $13,000 \mathrm{~kg} / \mathrm{cm}^{2}$. The coefficient varies slightly with the sample. Bridgman's samples (German) had values of ( $\Delta R / p R_{0}$ ) $\times 10^{0}$ from 2295 to 2325. These are + instead of - , as with most of the above metals.

[^175]:    ${ }^{13}$ Smith, G. H., and W'ilhelm, J. O., Rev. Mod. Phys., vol. 7, p. 240, 1935.

[^176]:    * For reference, see footnote 45, p. 136.

[^177]:    ${ }^{147}$ Corning Glass Co. publication, Properties of selected commercial glasses, 1949. General Electric Co. publication, Fused quartz, 1947.

[^178]:    * Acids and alkaline salts show peculiar irregularities.

[^179]:    * These values are at the concentration 80.0.

[^180]:    *The American wire gage sizes have been rounded off to the usual limits of commercial accuracy. They are given to four significant figures in Tables 420 to 423 . They can be calculated with any desired accuracy, being based upon a simple mathematical law. The diameter of No. 0000 is defined as 0.4600 inch and of No. 36 as 0.0050 inch. The ratio of any diameter to the diameter of the next greater number $\sqrt[39]{\frac{.4600}{.0050}}=1.1229322$.
    $\dagger$ The steel wire, gage is the same gage that has been known by the various names: "Washburn and Moen," "Roebling," "American Steel and Wire Co.'s." Its abbreviation should he written "Stl. W. G." to distinguish it from "S. W. G.," the usual abbreviation for the (British) Standard Wire Gage.

[^181]:    * These values are for voltages in the range up to 5,000 or 7,000 and for 75 to 100 percent time load, ambient temperature $30^{\circ} \mathrm{C}$ and copper temperature $75-80^{\circ} \mathrm{C}$. Adapted from Publication No. P-29-226 of the Insulated Power and Cable Engineers' Association. For other values see these tables

[^182]:    * Prepared by F. W. Grover, Nat. Bur. Standards.

[^183]:    148 Danforth, Phys. Rev., vol. 38, p. 1224, 1931.

[^184]:    ＊For reference，see footnote 45，p． 136.

[^185]:    * Prepared by Hans Jaffe, Brush Development Co., Cleveland, Ohio.
    $n$, e Letters refer to references, p. 431 .

[^186]:    ** Table from Corning Glass Works publication on Properties of Selected Commercial Glasses (B-83).
    *Values of P. H. Moon and A. S. Norcross, Trans. Amer. Inst. Electr. Engr., vol. 49, p. 775 (1930).
    $\dagger$ Values of S. Whitehead. World Power, p. 72, September 1936.

[^187]:    *Tables 444, 450, and 451 prepared by Hans Jaffe, Brush Development Co., Cleveland, Ohio. † All data refer to room temperature unless otherwise noted.

[^188]:    149 For authorities, see references, p. 431.
    $\ddagger$ Synthetic, Linde Air Products Company.

[^189]:    * The coefficient $d_{14}$ of Rochelle salt is extremely dependent on temperature and on amplitude. The ratio of $d_{14}$ to dielectric constant $K$ (for the latter see figure 16 ) is, however, nearly constant; $4 \pi d_{14} / K=$ $g_{14}=6.4 \times 10^{-7}$ statvolt $\mathrm{cm} /$ dyne
    m Letters refer to references, p. 431

[^190]:    Range of 9 samples. $\dagger$ Range of 27 samples $\ddagger$ Range of 10 samples. $f$ Range of a of samples from different localities. || Range of several samples. $\quad$ A After drying 48 hours at $80^{\circ} \mathrm{C}$.

[^191]:    * Data arranged by Newbern Smith and Marcella Phillips, Central Radio Propagation Laboratory, National Bureau of Standards.

[^192]:    ${ }^{160}$ Jelatis, J. G., Journ. Appl. Phys., vol. 19, p. 419, 1948; Hecter, L. G., and Woernley, D. C., Phys. Rev., vol. 69, p. $101,1946$.

[^193]:    ${ }^{151}$ These data were selected from Tables of Dielectric Materials, volume 3, Laboratory of Insulation Research, Massachusetts Institute of Technology, Cambridge, Mass., June 1948.
    $\epsilon$ is used for dielectric constant in this table in the place of K .

    * Numbers refer to notes at end of table.
    ** Not corrected for variations of density.
    $\dagger$ Rod stock in $\mathrm{H}_{11}$ ( $\mathrm{TE}_{11}$ ) made of circular wave guide.

[^194]:    Notes: 1, From conductivity water. 2, Fresh crystals (Harshaw). Audio frequency loss decreases with time. For a discussion of low-frequency dispersion in ionic crystals see R. G. Breckenridge, Bull. Amer. Phys. Soc., vol. 23, p. 33, 1948. 3, Magnesium silicate (American Lava). 4, Muscovite. 5, Mica, glass, TiO (Mycalex) 6, Knox. 7, $96 \% \mathrm{SiO}_{2}$. ${ }^{8}$ Iron sealing glass. ${ }^{2}$, Soda-lime (Pittsburgh-Corning) ${ }^{2}$ $10, \mathrm{SiO}_{2}$ (General Electric). 11, Eastman Kodak; recryst. and resubl. Lab. Ins. Res. 12, Mica-filled (Bakelite). 13, $50 \%$ paper laminate (Formica). $14,58 \%$ mica, $2 \%$ misc. (Monsanto). $15,55 \%$ filler (Formica). 16, Mineral filler (American Cyanamid). 17, a-cellulose (Libbey-Owens-Ford). 18, DuPont. 19, 5-15\% plasticizer, pigments, dyes (Tennessee Eastman). 20, $25 \%$ camphor (DuPont). 21, 2.73 ethoxy groups/glucose, plast. (Dow). $\quad 2$, Cross-linked organo siloxane polymer (Dow Corning). 23 .

[^195]:    ${ }^{152}$ Smith-Rose, Journ. Inst. Electr. Eng., London, vol. 75, p. 221, 1934.

[^196]:    ${ }^{153}$ Norton, K. A.. The calculation of ground wave ficld intensity over a finitely conducting spherical earth, Proc. Inst. Radio Eng., December 1941; Van der Pol. Balth, and Bremmer, H., Philos. Mag., vol. 24, p. 141, 1937 ; vol. 24, p. 825, supplement. November 1937.

[^197]:    ${ }^{154}$ Adapted from Becker and Autler, Phys. Rev., vol. 70, p. 303, September 1946.

[^198]:    * Prepared by C. R. Burrows.

    157 For references, see p. 450.

[^199]:    References: a, Bolton, J. G., Nature, vol. 162, p. 141, 1948; b, Bolton, J. G., Stanley, G. J., and Slee, O. B., Nature, vol. 164, p. 101, 1949; c, Unpublished; d, Ryle, M., and Śmith, F. G., Nature, vol. 162, p. 462, 1948; e, Hey, J. S., Parsons, S. J., and Phillips, J. W., Nature, vol. 158, p. 234, 1946; f, Bolton, J. G., and Stanley, G. J., Nature, vol. 161, P. 312, 1948; g, Hey, J. S., Parsons, S. J., and Phillips, J. W., Proc. Roy. Soc. London, vol. 192, p. 425, 1948; h, Bolton, J. G., and Stanley, G. J., Australian Journ. Sci. Res., vol. 2, p. 139, 1949; i, Williamson, R. E., Journ. Roy. Astron. Soc. Canada, vol. 42, p. 9, 1948; j, Pawsey, J L., and Yabsley, D. E., Australian Journ. Sci. Res., vol. 2, p. 198, 1949.

[^200]:    * See pages 16-18.

[^201]:    * $Q$, quench or controlled cooling.

[^202]:    

[^203]:    * Much of the data on magnetism was corrected by W. E. Ruder, of the General Electric Co.

[^204]:    158 Hicks, Laurence C., Nickel-iron alloys for magnetic circuits, Electrical Manufacturing, January 1946.

[^205]:    * Prepared by E. H. Vestine, Carnegie Institution of Washington, and David G. Knapp, U. S. Coast and Geodetic Survey.
    ${ }^{150}$ For references, see bibliography following Table 511, p. 501.

[^206]:    * East declination. $\dagger$ Values on this line are west, except those marked (*).

[^207]:    * Melting point.

[^208]:    ${ }^{160}$ Adapted from data from Bausch \& Lomb (BL) and Corning Glass Works (CG). F. A. Molby, West Virginia University, assisted in selecting and arranging these data. For reference see Molby, Journ. Opt. Soc. Amer., vol. 39, p. 600, 1949.

[^209]:    * Abbreviated from a list of results of measurements on freshly polished samples of Bausch \& Lomb glasses. Data supplied by the Bausch \& Lomb Optical Co.

[^210]:    Fig. 26.-Spectral transmission of a number of infrared materials. Curves: 1, Fluorite, $\mathrm{CaF}_{2}, 1 \mathrm{~cm}$ thick. 2, Rocksalt, $\mathrm{NaCl}, 1 \mathrm{~cm} .3$, SilBaird Associates, Engineering Research Development Laboratories, Rep. W-44-009 Eng. 473, 1949.

[^211]:    ${ }^{162}$ Baird Associates, Infrared optical materials, Engineer Research and Development Laboratories, Fort Belvoir, Va.

[^212]:    ${ }^{163}$ Schonrock, Zeitschr. Instrumentenkunde, vol. 40, p. 94, 1920; vol. 41, p. 104, 1921.

[^213]:    * Types of glass in class 1 or 2 are not likely to stain even when used as exposed surfaces in tropical climates. Glasses in class 5 are liable to stain when exposed to rain, moisture condensation, or fingerprints in any climate. Other glasses are intermediate in stain resistance.

[^214]:    * Corning Glass Works. $\dagger$ Second max at 2.55 with transmission at 5.0 percent. $\ddagger$ Second max at .605 with transmission at 1.0 percent.

[^215]:    ${ }^{185}$ b, Tsukamoto, K., Rev. d'Optique, vol. 7, p. 89, 1929. c, Dawson, L. H., and Hulburt, E. O., Journ. Opt. Soc. Amer., vol. 24, p. 175, 1934. d,'Hulburt, E. O., Journ. Opt. Soc. Amer., vol. 35, p. 698, 1945. e, Collins, J. R., Phys. Rev., vol. 26, p. 771, 1925.

[^216]:    * Adapted from data furnished by J. W. Forrest, Bausch \& Lomb Optical Co.
    $\dagger t=2.0 \mathrm{~mm}$.

[^217]:    See Table 77.
    100 "Temperature, Its Measurement and Control," a symposium prepared by the American Institute of Physics, p. 1115, Reinhold Publishing Co.

[^218]:    * Data furnished by I. H. Godlove, General Aniline \& Film Corporation.

[^219]:    107 Barnes, Phys. Rev., vol. 39, p. 562, 1932.
    *On celluloid $1 \mu$ thick.

[^220]:    ${ }^{170}$ Cartwright, Phys. Rev., vol. 35, p. 415, 1930; Pfund, Rev. Sci. Instr., vol. 1, p. 397, 1930, and Journ. Opt. Soc. Amer., vol. 23, p. 375, 1933.

[^221]:    *This column gives the degree of polarization. †Columns 5 and 6 furnish a means of determining $A$ and $B$ for other values of $n$. They represent the change in these quantities for a change of $n$ of 0.01 .

[^222]:    *The smoke of magnesium turnings freely burning in air and deposited on a satisfactory base forms a uniform fine-grained diffusing surface of high reflectance. This oxide should be deposited so as not to be affected by the heat from the burning Mg. A satisfactory base may be Al, silver-plated Cu , block porcelain. The oxide adheres better to depolished surfaces. Surfaces of high and uniform reflectance throughout the spectrum are best. † Revised values.

[^223]:    ${ }^{171}$ Coblentz, Stair, Nat. Bur. Standards Journ. Res., vol. 4, p. 189, 1930.

[^224]:    ＊Nonmonochromatic means from Coblentz．
    A surface of plate glass，ground uniformly with the finest emery and then silvered，used at an angle of $75^{\circ}$ ，reflected 90 percent at $4 \mu$ ，approached 100 for longer waves，only 10 at $1 \mu$ ，less than 5 in the visible＇red and approached 0 for shorter waves．Similar results were obtained with a plate of rock salt for transmitted energy when roughened merely by breathing on it．In both cases the finer the surface， the more suddenly it cuts off the short waves．

[^225]:    *Restrahlung from KBr . $\dagger$ Isolated with quartz lens.

[^226]:    ${ }^{178}$ Hulburt, Journ. Opt. Soc. Amer., vol. 17. p. 23, 1928.

    * Yellow-white grains of many kinds. $\dagger$ Very white. $\ddagger$ Anhydrous. \& Handkerchief.

[^227]:    ${ }^{174}$ Strong, Phys. Rev., vol. 38, p. 1818, 1931.
    *The use of a paraffin window about 3 mm thick stops the short wavelength restrahlung of quartz at $8.7 \mu$ and of calcite at $6.7 \mu$. Weak reflection at $41 \mu$.

[^228]:    * Degrees per dm . The above values are for a near normal solution, i.e., approximately 26 g of sucrose per $100 \mathrm{~cm}^{3}$.

[^229]:    * See footnote 5, p. 7.

[^230]:    * The material on photography was prepared by L. A. Jones, of the Eastman Kodak Co.

[^231]:    - $S_{i}=10 / i$, where $i$ is the inertia value at $\gamma=1.0$. Reciprocal inertia was originally proposed by Hurter and D'riffeld as a sensitometric measure of the speed of photographic materials. It bears no direct relation to their effective speed as determined by camera exposures, however. It is useful for comparing different types of materials which have no common basis of application in practice.

[^232]:    ${ }^{175}$ Mees, C. E. K., The theory of the photographic process, chap. 21, Macmillan, 1942.
    ${ }^{176}$ Mees, C. E. K., Proc. Roy. Soc. London, vol. 83, p. 10, 1909.

[^233]:    * This value was obtained by direct exposure to a line interference pattern. With conventional methods of measurement, the value is limited by the optical system rather than by the characteristics of the emulsion.

[^234]:    New values of 20 krypton lines as secondary standards of wavelength were adopted in 1935 by the International Astronomical Union. ${ }^{184}$ See Table 614.

[^235]:    ${ }^{184}$ For reference, see p. 578.

[^236]:    ${ }^{182}$ For reference, see p. 578.

[^237]:    180-191 For references, see p. 578.

[^238]:    102 For reference, see p. 578.

[^239]:    - Band lines due to molecular oxygen in the earth's atmosphere. The wavelength of the first line of the band is recorded here.
    $\dagger$ Jahoratory wavelengths listed. He lines are conspicuous in the spectrum of the chromosphere.
    $\ddagger$ Rowland assigns the index letter " $g$ " to this line.

[^240]:    ${ }^{198}$ For more detailed discussions of atomic spectra and complete compilations of atomic energy levels, see the list of references, page 585.

[^241]:    * Prepared by G. Herzberg, National Research Council of Canada.

[^242]:    ${ }^{185}$ Grimminger, G., Analysis of temperature, pressure and density of the atmosphere extending to extreme altitudes, p. 18, Rand Corporation, November 1948.

[^243]:    $\left.\begin{array}{l}\text { - For reference. see } \\ \dagger 1 \text { millibar }(\mathrm{mb})\end{array}\right)=10^{2}$ dynes $/ \mathrm{cm}^{2}=0.750 \mathrm{mmHg}$.

[^244]:    ${ }^{106}$ The tables on densities and humidities have been adapted from the sixth edition of the Smithsonian Meteorological Tables, which see for more extensive data.

[^245]:    - 1.7

[^246]:    * The height of the barometer is affected by the relative thermal expansion of the mercury and the glass, in the case of instruments graduated on the glass tube, and by the relative expansion of the mercury and the metallic enclosing case, usually of brass, in the case of instruments graduated on the brass case. This relative expansion is practically proportional to the first power of the temperature. The above tables of values of the coefficient of relative expansion will be found to give corrections almost identical with those given in the International Meteorological Tables. The numbers tabulated under a are the values of $a$ in the equation $H_{t}=H_{t^{\prime}}-a\left(t^{\prime}-t\right)$ where $H_{t}$ is the height at the standard temperature, $H t^{\prime}$ the observed height at the temperature $t^{\prime}$, and $a\left(t^{\prime}-t\right.$ ) the correction for temperature. The standard temperature is $0^{\circ} \mathrm{C}$ for the metric system and $28^{\circ}: 5 \mathrm{~F}$ for the English system. The English barometer is correct for the temperature of melting ice at a temperature of approximately $28^{\circ} .5 \mathrm{~F}$, because of the fact that the brass scale is graduated so as to be standard at $62^{\circ} \mathrm{F}$, while mercury has the standard density at $32^{\circ} \mathrm{F}$.

    EXAMPLE.-A barometer having a brass scale gave $H=765 \mathrm{~mm}$ at $25^{\circ} \mathrm{C}$; required, the corresponding reading at $0^{\circ} \mathrm{C}$. Here the value of $a$ is the mean of .1235 and 1251 , or $.1243 ; \therefore a\left(t^{\prime}-t\right)=.1243 \times$ $25=3.11$. Hence $H_{0}=765-3.11=761.89$.

    Note.-Although $a$ is here given to three and sometimes to four significant figures, it is seldom worth while to use more than the nearest two-figure number. In fact, all barometers have not the same values for $a$, and when great accuracy is wanted the proper coefficients have to be determined by experiment.

[^247]:    * $980.665 \mathrm{~cm} \mathrm{sec}^{-2}$

[^248]:    * 32.17 in. $\mathrm{sec}^{-2}$

[^249]:    ${ }^{1209}$ Seaborg and Perlman, Rev. Mod. Fhys., vol. 20, p. 585, 1948.
    ${ }^{200}$ Bethe, H. A., Elementary nuclear theory, John Wiley \& Sons, Inc., 1947. Reprinted by permission.

[^250]:    *This table adapted from data furnished by the National Bureau of Standards.
    $\dagger$ This means $h \nu /$ molecule where the values given are for $\nu=$ unity.

[^251]:    201 Wichers, Edward Journ. Amer. Chem. Soc., vol. 74, p. 2447, 1952

    * A value given in brackets denotes the mass number of the isotope of longest known half life.

    Because of natural variations in the relative abundance of the isotopes of sulfur, the atomic weight of this element has a range of $\pm .003$.

[^252]:    202 Meggers, W. F., Science, vol. 105, p. 514, 1947; G. T. Seaborg, private communication.

    - Rare earths:
    71 Lu
    174.99
    ${ }_{169.4}^{69 \mathrm{Tm}} \stackrel{170 \mathrm{Yb}}{173.04}$
    $\begin{array}{rr}67 \mathrm{Ho} & 68 \mathrm{Er} \\ 164.94 & 167.2\end{array}$
    $\begin{array}{cccc}\begin{array}{c}63 \mathrm{Eu} \\ 152.0\end{array} & \begin{array}{c}64 \mathrm{Gd} \\ 156.9\end{array} & \begin{array}{c}65 \mathrm{~Tb} \\ 159.2\end{array} & \begin{array}{c}66 \mathrm{Dy} \\ 162.46\end{array} \\ & & & \\ 95 \mathrm{Am} & 96 \mathrm{Cm} & 97 \mathrm{Bk} & 98 \mathrm{Cf}\end{array}$
    $\begin{array}{ll}{ }_{1471}^{61} \mathrm{Pm} & \begin{array}{c}62 \mathrm{Sm} \\ 150.43\end{array} \\ & \\ 93 \mathrm{~Np} & 94 \mathrm{Pu}\end{array}$
    
    $\begin{array}{lll}57 \mathrm{La} & 58 \mathrm{Ce} & 59 \mathrm{Pr} \\ 138.92 & 140.13 & 140.92\end{array}$
    $\quad 57 \mathrm{La} \quad \begin{gathered}58 \mathrm{Ce} \\ 138.92 \\ 140.13\end{gathered}$
    + Actinide rare earths
    
    05 Am 96 Cm -
    ${ }_{238.17}^{92}$
    $\dagger$ Actinide rare earths: 91 Pa

[^253]:    * See column 3, Table 623. G. T. Seaborg, private communication.

[^254]:    *This table was selected from several sources including the report by Brown (see footnote 204) and data furnished by Ingerson of the U. S. Geological Survey. †The lithosphere, 10 miles of earth crust, makes up 93 percent, the hydrosphere makes up 7 percent, and the atmosphere makes up 0.03 percent of the part of the earth considered. Proc. Nat. Acad. Sci., vol. 8, p. 114, 1922.

[^255]:    * Prepared by B. Bell.
    ${ }^{205}$ Brown. Rev. Mod. Phys., vol. 21, p. 625, 1949; Russell-Dugan-Stewart, Astronomy, vol. 2, p. 503, 1938: Unsöld, Zeitschr. f. Astrophys., vol. 24, p. 307, 1948. $\dagger$ Brown. $\ddagger$ Russell. §Unsöld.

[^256]:    * For reference, see footnote 204, p. 625.

[^257]:    * Prepared by Charlotte E. Moore, National Bureau of Standards.
    ${ }^{200}$ The sources used are as follows:
    2935 A-3062A, Babcock, H. D., Moore, C. E., and Coffeen, M. F., Astrophys. Journ., vol. 107, p. 287, 1948 (Mount Wilson Contr. No. 745).
    3062A-6600A, St. John, C. C. ., and others, Revised Rowland Table, Carnegie Inst. Washington Publ. 396, 1928, with unpublished corrections and revisions by C. E. Moore (September 1949).
    6600.1-13495A, Babcock, H. D., and Moore, C. E., Carnegie Inst. Washington Publ. 579, 1947.

    The counts included also the raic ultime of $\mathrm{Mg} 1(2852 \mathrm{~A})$; the ultimate lines of Mg 11 (2795A, 2802A) and the strong Si i line at 2881 A . These lines, ainong others, have been identified in the ultraviolet solar spectrum photographed from a V-2 rocket. Intensities in parentheses are quoted from the paper on this subject by Durand, E., Oherly. J. J., and Tousey, R., Astrophys. Journ., vol. 109, p. 1, 1949. (See also Hopfield, J. J., and Clearman, H. E., Phys. Rev., vol. 73 , p. $877,1948$.

    For lines of H and He see Menzel, D. H., Lick Obs. Publ. 17, p. 1, 1931; Mitchell, S. A., Astrophys. Journ., vol. 105, p. 1, 1947.
    ** These counts refer to lines not present in disk spectrum. † Lines of $H$ and He are prominent in the spectrum of the chromosphere. $\ddagger B$ and $F$ are identified only from their presence in compounds (see Part 2 ).

[^258]:    207 Babcock, H. D., Astrophys. Journ., vol. 102, p. 154, 1945 (Mount Wilson Contr. No. 708).

[^259]:    ${ }^{208}$ Unsöld, Zeitschr. f. Astrophys., vol. 21, p. 1, 1941.
    200 Aller, Astrophys. Journ., vol. 104, p. 347, 1946.

[^260]:    * Prepared by B. Donn.
    ${ }^{210}$ Adams, Astrophys. Journ., vol. 109, 1949; Publ. Astron. Soc. Pacific, vol. 60, p. 354, 1948; Dunham, Proc. Amer. Philos. Soc., vol. 81, p. 277, 1939. Ledoux, Pop. Astr., vol. 49, p. 513, 1941. Stromgren, Astrophys. Journ., vol. 108, p. 242, 1948. Struve, Journ. Washington Acad. Sci., vol. 31, p. 217, 1941; Astrophys. Journ., vol. 89. p. 517, 1939.
    $\dagger$ Values for apparently abnormally dense cloud.

[^261]:    * Prepared by B. Donn.
    ${ }^{212}$ Greenstein, Harvard Circ. 422, 1938. Spitzer, Astrophys. Journ., vol. 93, p. 369, 1941. Van de Hulst, Rech. Astron. de l'Obs. d'Utrecht, vol. 11, pt. 1, 1946, pt. 2, 1949. Schalen, Publ. of Uppsala Oliservatory, 1930 on. Oort, Astron. Inst. Netherlands Bull. No. 283, 1932.

[^262]:    ${ }^{212 a}$ Alexander, J., Colloid chemistry, vol. 2, Chemical Publishing Co. Used by permission.

[^263]:    ${ }_{213}$ Neurath, Journ. Arer. Chem. Soc., vol. 61, p. 1841, 1939.

[^264]:    216 Thomas, Arthur W., Colloid chemistry, McGraw-Hill Book Co., 1934. Used by permission of the author.

    * These are the permanent saturated solutions. The more concentrated solutions, obtained from contact with the more finely ground particles, slowly revert to the normally saturated solutions and the particles grow to $2 \mu$ in size.

[^265]:    ${ }^{215}$ Weiser, H. B., Colloid chemistry, 2d ed., John Wiley \& Sons, Inc., 1949. Reprinted by permission.

    * Further activation reduces the granules to a fine powder.

[^266]:    * For reference, see \{ootnote 215 , above.

[^267]:    ${ }^{216}$ Lewis, Squires, and Broughton, Industrial chemistry of colloidal and amorphous materials, Macmillan Co., 1942. Used by permission of the publishers.

[^268]:    * For the energy per atom, divide these values by the Avogadro number, $6.023 \times 10^{23}$.
    ${ }_{217}$ Pauling, Linus, The nature of the chemical bond. Used by permission of the author.

[^269]:    * For reference, see footnote 214, p 631.

[^270]:    *Prepared by Saul Dushman, General Electric Research Laboratory, Schenectady, N. Y.

[^271]:    ${ }_{218}$ Herring, C., and Nichols, M. H., Rev. Mod. Phys., vol. 21, p. 185, 1949. R_imann, A. L., Thermionic emission, John Wiley \& Sons, Inc., 1934. Dushman, S., Rev. Mod. Phys., vol. 2, p. 381, 1930.

[^272]:    ${ }^{210}$ Dushman, Saul, The scientific foundations of vacuum technique, John Wiley \& Sons, Inc., 1949. Reprinted by permission.

    * Layer of thorium on tungsten.

[^273]:    * Prepared by Saul Dushman, General Electric Co. The formulae and calculations in this section are based on a more comprehensive discussion in chapter 1 of his "Scientific Foundations of Vacuum Technique" (John Wiley \& Sons, New York, 1949).

[^274]:    * For reference, see footnote 219, p. 636.
    ${ }^{* *} P_{m n t}=$ vapor pressure at $t^{\circ} \mathrm{C}$. ${ }^{+}{ }^{+} \dot{N}_{n}=$ number of molecules $/ \mathrm{cm}^{2}$ for monomolecular layer.
    In the case of $\mathrm{H}_{2} \mathrm{O}$, for which the values of $L$ (path length) and $\delta$ (diameter) for a series of temperatures are given in the table, the Sutherland relation was used with $C=650$ and $\eta_{15}=926 \times 10^{-5} \mathrm{cgs}$ units.

    In the case of Hg the values of $\eta$ (viscosity) used are based on $t=219.4^{\circ} \mathrm{C}$. Values at other temperatures were derived by means of Sutherland's relations, with $C=942.2$

[^275]:    ${ }^{220}$ Newman and Searle, The gencral properties of matter, Edward Arnold \& Co., London.

[^276]:    * Tables $698-700$ and 702 prepared by J. D. Cobine, General Electric Co., Schenectady, N. Y. ${ }_{221}$ Cobine, J. D., Gaseous conductors, 2d ed., McGraw-Hill Book Co. Used by permission of the publishers.

[^277]:    * For reference, see foot note 221 , above.
    ${ }^{* *} D$ in $\mathrm{cm}^{2} / \mathrm{sec}$. $\dagger D={ }^{*} D_{0}\left(T / T_{0}\right)^{m}\left(p_{0} / p\right)$, where $D_{o}$ is the value of $D$ in the table, $T_{0}=0^{\circ} \mathrm{C}$, $p_{0}=1 \mathrm{~atm}$.

[^278]:    * For reference, see footnote 220, p. 640.
    $\dagger$ Viscosity. $\ddagger$ Van der Waal's equation.

[^279]:    * For reference, see footnote 219, p. 636.

[^280]:    *For reference, see foctnote 203, p. 624.

[^281]:    * For reference, see footnote 203, p. 624.

[^282]:    ** For reference, see footnote 203, p. 624.

[^283]:    

[^284]:    * For reference, see footnote 203, p. 624.

[^285]:    * For reference, see footnote 224, p. 665.

[^286]:    (continued)

[^287]:    * This list was prepared by R. G. Herb, University of Wisconsin, and W. W. Brobeck, University of California. See Brookhaven National Laboratory Publication BNL-L-101, Particle accelerators, 1948.
    $\dagger$ High-speed neutrons cannot, of course, be produced directly by any of these devices. Neutrons are produced by bombarding certain materials with one of the high-speed particles produced by these devices. If beryllium, boron, or lithium are bombarded by a-particles neutrons are produced thus:

    $$
    \begin{gathered}
    { }^{{ }^{\mathrm{Be}}{ }^{\theta}+2 \mathrm{He}^{4} \rightarrow{ }_{0} \mathrm{C}^{12}+{ }_{0} n^{1}} \\
    \mathrm{~B}^{11}+2 \mathrm{He}^{4} \rightarrow{ }_{7} \mathrm{~N}^{14}+{ }_{0} n^{1} \\
    { }_{1} \mathrm{H}^{2}+h \nu \rightarrow \mathrm{H}^{1}+{ }_{0} n^{1}
    \end{gathered}
    $$

    $\ddagger$ Machines up to about 6 Mev now produced commercially.

[^288]:    ${ }^{223}$ References: a, Tollestrup, Fowler, and Lauritsen, Phys. Rev., vol. 78, p. 372, 1950. b, Bethe, H. A Elementary nuclear theory, John Wiley \& Sons, Inc., 1947; Rasetti, F.. Elements of nuclear physics. PrenticeHall, Inc. 1936 ; Poss, H. L., Phys. Rev., vol. 75, D. 600, 1949. c, Harvey, J. A., Bull. Amer. Phys. Soc., vol. 25, p. U4, 1950 . d, Stern, M. O., Rev. Mod. Phys.. Anril 19.49. e, Wapstra, A. H.. Phvsica, vol. 16, p. 33, 1950. f, Perlman, I., Ghiorso, A., and Seaborg, G. T., Phys. Rev., vol. 77, p. 26, 1950; Kinsey, B. B. et al., Phys. Rev., vol. 78, f. 77,1950 ; also private communications; Hanson, et al., Phys. Rev., vol. 76, p. 578 , 1949. g, Ramsey, Norman, Experimental nuclear physics (forthcoming), John Wilev \& Srns. Inc.

    Note added in proof, 1953 .- Because of recent mass measurements, the mass of Pb 200 should be taken as 206.03859. All mass values should be lowered 0.00660 mass units. See Stone, Martin O., Rep. Univ. California Radiation Lab., April 1952.
    ${ }^{*} I=$ spin. $\quad{ }^{*}$ Quadrupole moment $=-0.4 . \quad \dagger\left(10^{-24} \mathrm{~cm}^{2}\right) . \quad \ddagger$ Radioactive series.
    § Prepared by J. A. Harvey, Massachusetts Institute of Technology (see footnote 223, above, reference c).

[^289]:    - Prepared by E. E. Salpeter and W. K. H. Wolfgang. quantum), $h \nu: \gamma ;$ value $(\lambda=.6 \mu)=3.310 \times 10^{-12}$ ergs.

[^290]:    ${ }^{24}$ Stranathan, J. D., The particles of modern physics, Blakiston Co., 1942. Used by permission of the publishers.

[^291]:    * For reference, see footnote 225 above.

[^292]:    * Revised by Jacol L. Rhodes, I'niversity of Pennsylvania.
    ${ }_{200}$ Stephens, W. E.. (editor), Nuclear fission and atomic energy, Science Press. Used by permission of the editor.

[^293]:    ${ }^{227}$ Hornyak，W．F．，and Lauritsen，T．，Rev．Mod．Phys．，vol．20，p．191，1948；Phys．Rev．，vol．78，

[^294]:    ${ }_{228}$ McElhinney，J．，Hanson，A．O．，Becker，R．A．，Duffield，R．B．，and Diven，B．C．，Phys．Rev．，vol．75， p． $542,1949$.

[^295]:    ${ }^{22 y}$ G. T. Seaborg, private communication.

    * Sixteen-hour +100 -year isomers.

[^296]:    - Revised by J. L. Rhodes. For reference, see footnote 226, p. 667.

[^297]:    ${ }^{280}$ Nat. Res. Council Bull. 80, 1931.

[^298]:    * For reference, see footnote 199, p. 618.
    ${ }^{2200}$ Rutherford, E., Chadwick, J., and Ellis, C. D., Radiation from radioactive substances, Cambridge Univ. Press, 1930.

[^299]:    ${ }^{231}$ Physics Today, vol. 3, p. 5, 1950.

[^300]:    (continued)
    (cefore it was known that they were isotopes of other elements.

[^301]:    * Almost all the isotopes of this family are artificial products and arc not now found in the earth.
    ${ }^{232}$ Sergè, Emilio, and Helmholtz, A. C., Rev. Mod. Phys., vol. 21, p. 271, 1949.

[^302]:    * For reference, see footnote 45, p. 136.

[^303]:    ${ }^{233}$ Rutherford, E., Chadwick, J., and Ellis. C. D., Radiation from radioactive substances, Cambridge University Press, 1930.

[^304]:    * For reference, see foolnole 199. 1). 618.
    $\dagger$ Approximate range in air (from curve).

[^305]:    * For reference, see footnote 199, p. 618.
    $\dagger$ Approximately, from curve.

[^306]:    ＊For reference，see footnote 233，p． 679.

[^307]:    ＊For reference，see footnote 233，p． 679.

[^308]:    * For reference, see fool note 234, p. 684.

[^309]:    * For reference, see footnote 199, p. 618.
    * The radiation from potassium may seem to be too intense as compared to that from thorium 232 or uranium 238 but it must be remembered that the active isotope of potassium constitutes only . 01 percent of ordinary potassium while the active isotopes of uranium and thorium constitute about 100 percent of the material. It is also to be noted that the active isotope of potassium has more disintegration than either uranium or

[^310]:    * For reference, see footnote 199, p. 618.

[^311]:    - For reference, see footnote 236, above.

[^312]:    * For reference, see footnote 236, p. 692.

[^313]:    ${ }^{237}$ National Bureau of Standards Handbook 41, Medical X-ray protection up to two million volts.

[^314]:    * For reference, see footnote 236, p. 692.

[^315]:    * Direct-current potentials require the order of 10 percent greater thickness than those given here for pulsating potential.
    $\dagger$ For reference, see footnote 237, p. 693.

[^316]:    *For reference, see footnote 236, p. 692.
    $\dagger \delta=0.17803, \delta_{2}=0.17917$ (Duane, 1933).

[^317]:    *This criterion cannot be strictly applied to the $K$ a line from 4 Be to 9 F , nor to the $K \beta_{1}$ line from 11 Na to 29 Cu as reported in this table.
    ${ }_{228}$ Compton, A. H., and Allison, S. K., X-rays in theory and experiment, D. Van Nostrand Co., Inc., New York, 1935. Courtesy of the publishers.

[^318]:    * Peak kilovolts.

[^319]:    *For reference, see footnote 238, p. 697.

[^320]:    * For reference, see footnote 238, p. 697.

[^321]:    
    

[^322]:    * Revised by J. L. Rhodes, University of Pennsylvania. For reference, see footnote 226, p. 667.

[^323]:    * For reference, see foot note 226, p. 667.

[^324]:    *For reference, see footnote 226, p. 667.
    $\dagger$ Most of the scattering of fast neutrons is inelastic scattering, resulting in large energy losses (as much as 90 percent). $\ddagger$ The resonance peak for $U^{238}$ occurs at approximately 5 ev and is taken to have an effective width of 0.16 .

[^325]:    ${ }^{244}$ Rev. Mod. Phys., vol. 21, p. 1, 1949 ; Stranathan, The "particle" of modern physics, D. Blakiston Co.; Montgomery, D. J. X., Cosmic ray physics, Princeton University Press; Johnson, T. R., Rev. Mod. Phys., vol. 10, p. 193, 1938; Swann, W. F. G., Reports on progress in physics, vol. 10. p. 1, 1946.
    ${ }^{245}$ Korff, Physics Today, vol. 3, p. 9, 1950.
    ${ }^{246}$ Teller, Edward, Physics Today, vol. 2, p. 6, 1949.

[^326]:    * For reference, see footnote 203, p. 624.

[^327]:    * If there were no compensating effects the potential of the earth would increase about $180 \mathrm{~V} / \mathrm{sec}$. $\dagger$ The number varies with the geomagnetic latitude, being about 0.33 particles $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ at high latitudes ( $>40^{\circ}$ ) and about 0.032 particles $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ at the equator. This data is based upon an energy of 32 ev necessary to produce one ion pair. $\ddagger$ Thus the average ray entering the $\mathrm{cm}^{3}$ at sea level has an energy of about $10^{8} \mathrm{ev}$.

[^328]:    * Astrophysical data.

[^329]:    ${ }^{247}$ Bradt and Peters, Phys. Rev., vol. 77, p. 54, 1950.

[^330]:    * Prepared under the direction of K. T. Adams, U. S. Coast and Geodetic Survey.

[^331]:    *For sea stations, the depth is recorded in this column; the observations were made in submarines and reduced to sea level.

[^332]:    ${ }^{248}$ Heiskanen, W., Catalogue of the isostatically reduced gravity stations, Helsinki, 1939.
    *For sea stations, the depth is recorded in this column; the observations were made in submarines and reduced to sea level.

[^333]:    * Prepared by L. B. Aldrich and W. H. Hoover, Astrophysical Ohservatory, Smithsonian Institution.
    ${ }_{249}$ Abbot, C. G., Solar radiation and weather studies, Smithsonian Misc. Coll., vol. 94, No. 10. 1935.
    250 Aldrich, L. B., and Abbot, C. G., Smithsonian pyrheliometry and the standard scale of solar radiation, Smithsonian Misc. Coll., vol. 110, No. 5, 1948. See also Annals, Smithsonian Astrophysical Observatory, vol. 7, ch. 3 (in press).

[^334]:    ${ }^{251}$ Moon, P., Journ. Franklin Inst., vol. 230, p. 583, 1940.
    ${ }^{252}$ Hulbert, E. O., Journ. Opt. Soc. Amer., vol. 37, p. 405, 1947.

[^335]:    * Values . 3149 through . $4487 \mu$ from Cavanaggia and Chalonge, Ann. d'Astrophys., vol. 9, p. 143 1946; . 5186 through $10.2 \mu$ from Pierce, McMath, Goldberg, and Mohler, Astrophys. Journ., vol. 112, p. 289, 1950.

[^336]:    * Prepared by G. M. Clemence, U. S. Naval Observatory. For more extensive tables, see "Tables of Sunrise, Sunset, and Twilight," Supplement to the American Ephemeris, 1946.

[^337]:    251 Jones, L. A., and Condit, H. R., Journ. Opt. Soc. Amer., vol. 38, p. 147, 1948.

[^338]:    * Prepared hy Allan F. Cook II
    ${ }^{2555}$ Astron. Mitt. Zürich, No. 145. 1945; Tourn. Geophys. Res., vol. 54. p. 347, 1949: Waldmeier, M., Astron. Mitt Zürich; Terr, Mag.; Tourn. Geophys. Res., Trans. Int. Astron. Vnion Quart. Bull. Solar Activity; Imerican Sunspot Number Reductions, Central Radio Propagation Laboratory, National Bureau of Standards.

[^339]:    *These tables were prepared under the supervision of D. H. Menzel, of Harvard University, and Edith Janssen Tebo, of Harvard College Observatory.

    # TABLE 825.-THE LARGEST TELESCOPES IN ACTIVE SCIENTIFIC USE (1949) $\dagger$ 

    ## Reflectors <br> ( 60 -inch mirrors and larger)

    Hale Telescope, Palomar Mountain, Calif., U. S. A.............................. 200 -inch
    Hooker Telescope, Mount Wilson, Calif., U. S. A.................................. . . . 100-inch
    MacDonald Observatory, Mount Locke, Tex., U. S. A............................... . . 82-inch
    Radcliffe Observatory, Pretoria, South Africa...................................... 76-inch
    David Dunlap Observatory, Richmond Hill, Ontario, Canada................... 74-inch
    Dominion Astrophysical Observatory, Victoria, B. C., Canada.................... 72-inch
    Perkins Observatory, Delaware, Ohio, U. S. A..................................... 69 -inch
    Wyeth Reflector, Harvard Jbservatory, Oak Ridge, Mass., U. S. A.............. 61-inch
    Southern Station of the Harvard Observatory, Bloemfontein, South Africa..... 60-inch
    Mount Wilson Observatory, Mount Wilson, Calif., U. S. A........................ 60 -inch
    Cordoba Observatory, Bosque Alegre, Argentina................................... 60 -inch

    ## Refractors <br> (30-inch lenses and larger)

    Yerkes Observatory, Williams Bay, Wis., U. S. A............................... 40 -inch
    Lick Observatory, Mount Hamilton, Calif., U. S. A................................. 36-inch
    Astrophysical Section, Observatory of Paris, Mundon, France.................... 33-inch
    Allegheny Observatory, Pittsburgh, Pa., U. S. A.................................... . . . 30-inch
    University of Paris Observatory, Nice, France....................................... . 30-inch
    Schmidt-type telescopes
    (of large aperture)
    48 -inch correction plate, 72 -inch mirror, Palomar Observatory, Calif., U. S. A.
    24 -inch correction plate, 36 -inch mirror (Burrell Telescope), Warner \& Swasey Observatory, Case Institute of Technology, Cleveland, Ohio, U. S. A.
    24 -inch correcting plate, 33 -inch mirror (Jewett Telescope) Harvard Observatory, Oak Ridge, Mass., U. S. A.

[^340]:    ** Prepared by G. M. Clemence, U. S. Naval Observatory.

[^341]:    * Prepared by G. M. Clemence, U. S. Naval Observatory.

[^342]:    * Prepared by A. N. Vyssotsky, University of Virginia.
    ${ }_{250}$ Astron. Journ., vol. 53, p. 87, 1948.

[^343]:    * Prepared by G. M. Clemence, U. S. Naval Observatory, $\dagger$ On and before 1582, Oct. 4 only. $\ddagger$ On and after 1582 , Oct. 15 only.

[^344]:    * Prepared by G. M. Clemence, U. S. Naval Observatory.
    $\dagger$ For January - 1.
    $\ddagger$ Julian Calendar. § Gregorian Calendar.

[^345]:    * Mass of the Earth is $5.975 \times 10^{27}$ grams; of the Sun $332,488(1 \pm 0.00013) E=1.987 \times 10^{33}$ grams; of the Moon $(0.012289 \pm 0.000004) E=7.343 \times 10^{25}$ grams. $\quad \dagger$ Equatorial diameter of the Earth $=12,756.78 \mathrm{~km}$; polar diameter $12 \overline{, 7} 13.82 \mathrm{~km}$; "mean diameter" $12,742.46 \mathrm{~km}$. See Table 827

[^346]:    *Prepared G. P. Kuiper, Yerkes Observatory
    ${ }^{257}$. Imerican Ephemeris and Nautical Almanac for 1950.
    $+\times 10^{n}$. $\ddagger$ Mean distance in km computed from earth's equatorial radius ( 6378.388 km ) and solar parallax of $8 . " 80$. Recent determinations by Spencer Jones (Monthly Notices, Roy. Astron. Soc. vol. 101, P. 356, 1941) and Rabe ( $\lambda$ stron. Journ., vol. 55, p. 112, 1950) give $8 . " 790 \pm 0 . " 001$ and $8 . " 7984 \pm 0 . " 0004$, respectively.

[^347]:    * Compiled by D. L. Harris, Yerkes Olservatory. † With respect to rotation of planet. $D=$

[^348]:    * Prepared by S. W. McCuskey, Case Institute of Technology.
    ${ }^{258}$ van Rhijn, Groningen Publ. No. 47, 1936.

[^349]:    * Prepared by R. B. Baldwin, Oliver Machinery Co., Grand Rapids, Mich.

[^350]:    275 13ecker, W., Astron. Nachs., wot. 277, p. 65, $19+9$.
    ${ }^{260}$ Dinjon, . Inn. Sirashourg, vol. 3, sit. 3, 1. $168,1937$.

[^351]:    - Selected by Edith J. Tebo, Harvard Observatory.

    2ai The Observer's Handbook for 1949, Royal /lstronomical Society of Canada.

[^352]:    * Compiled by R. W. Goranson.

[^353]:    * Compiled by R. W. Goranson.

[^354]:    ${ }^{202}$ Menzel, D. H., Our Sun, p. 260, Harvard Univ. Press, 1949. U'sed by permission.

[^355]:    *This table, after Boss, gives the number of stars in his catalog brighter than $6^{m} .5$ which have proper motions between given limits. For reference, see footnote 272, p. 746.

[^356]:    * Prepared by Edith J. Tebo, Harvard College Observatory. † Used with permission of the author.

[^357]:    * Prenared by H. Shapley, Harvard University.
    ${ }^{200}$ Shapley, Harvard Bull., vol. 861, 1928.
    207 Shapley, Proc. Nat. Acad. Sci., vol. 26, n. 544. 1940.
    ${ }^{268}$ Kuiper, Astrophys. Journ., vol. 88, p. 453, 1938.

[^358]:    * Prepared hy Edith J. Teho. Harvard College Observatory.
    ${ }^{200}$ Bowen, I. S., and W$\dot{\text { Wen }}$. A. B., Lick Obs. Mull., vol. 19, p. 1, 1939.

[^359]:    * Prepared hy Fidith J. Tebo. Harvard College Observatory.
    ${ }_{270}$ An Atlas of Stellar Spectra. Tniversity of Chicago Press, 1943.
    ${ }^{271}$ Deutsch, Istrophys. Journ., vol. 105, n. 283, 1947.
    ${ }^{272}$ Roman. Morgan, and Eggen, Astrophys. Journ., vol. 107, p. 107, 1948. Gireenstein, Astrophys. Journ., vol. 107, p. 151, 1948; vol. 109, ก. 121, 1949.

[^360]:    * Prepared by M. W. Mayall, Harvard College Observatory.
    ${ }^{273}$ Trans. Int. Astron. Union, vol. 7, p. 408, 1950.
    274 Trans. Int. Astron. Union, vol. 6, p. 248, 1938.

[^361]:    ＊Prepared by A．N．Vyssotsky，University of Virginia．

[^362]:    ${ }_{275}$ Baade，Walter，Astrophys．Journ．，vol．100，n．150， 1944.
    $\dagger$ Modulus in stellar magnitude is $m-M=5(\log d-1)$ ，where $d$ is distance in parsecs and $M$ is absolute magnitude．

[^363]:    * Prepared by A. N. Vyssotsky, University of Virginia.

[^364]:    * Prepared liy S. B. Nicholson, Mount Wilson Observatory.
    ${ }_{270}$ Kuiper, G. P., Astrophys. Journ., vol. 88, p. 464, 1938.
    $\ddagger$ Payne, Stellar atmospheres, 1925 . $\ddagger$ Interpolated.

[^365]:    * Prepared by W. I.uyten, University of Minnesota. †These stars have invisible companions.

[^366]:    * Prepared by Peter van de Kamp, Swarthmore College.

[^367]:    *Prepared by W. Luyten, University of Minnesota. † Visual binary. $\ddagger$ Has distant companion. § Has an optical companion. The magnitude shown is the combined visual magnitude. I| Spectroscopic binary. $m=$ magnitude, $S p=$ spectrum, $\mu=$ proper motion, $\theta=$ position angle, $V=$ radial velocity, $p=$ parallax, $M=$ absolute magnitude.

[^368]:    * Prepared by Edith J. Tebo, Harvard College Observatory.
    ${ }_{277}$ Russell, Dugan, and Stewart, Istronomy, p. 740, Ginn \& Co., 1926. Used by permission.

[^369]:    * Prepared by R. E. Wilson, Mount Wilson Observatory

[^370]:    * Prepared by Edith J. Tebo, Harvard College Observatory.
    ${ }_{279}$ Astrophys. Journ., vol. 88, p. 472, 1938.
    280 An atlas of stellar spectra, p. 34, University of Chicago Press, 1943.

[^371]:    * Prepared by F. H. Seares, Mount Wilson Observatory
    ${ }^{281}$ van Rhijn, Groningen Publ. No. 43, Table 6, 1929.
    ${ }^{282}$ van Rhijn, Groningen Publ. No. 43, Table 10; Seares and Joyner, Mount Wilson Contributions Nos. 346, 347; Astrophys. Journ., vol. 67, p. 24, 123, 1928; Publ. $\Lambda$ stron. Soc. Pacific, vol. 40, p. 303, 1928.

[^372]:    * Prepared by W. Luyten, University of Minnesota.
    ${ }^{288}$ Lick Obs. Bull. No. 344 ; Harvard Circ. 283; Publ. Cincinnati Obs. LO 18; Publ. Astronomical Ohs. Univ. Minnesota, vol. 3, No. 1.

[^373]:    * Prepared by F. H. Seares, Mount Wilson Observatory.

[^374]:    * Prepared hy D. B. Mclaughlin. ['niversity of Michigan. a. Shsorption velocities increased with time: N $\backslash$ (q), to $-1700 \mathrm{~km} / \mathrm{sec}$; (PP 1.ac, to $-2500 \mathrm{~km} / \mathrm{sec}$. D. Absolute magnitude assumed; distance based on asamed alisolute magnitude. c, Recurrent novae: T CrB; RS Oph, 1898; T Pyx, 1890, $1902,1920$. T (rB: distance based on spectroscopic parallax of class $M$ companion, i, Nova Gem and CP Pup: distances bised on strength of interstellar calcium lines. e, RT Serpentis reached maximum in 1919. f , Nova Tauri 1054; a super novz; now the (rab) Nebula. Note on velocity of RS Ophiuchi: there was no system of ahsorption lines at the short-wavelength edge of the emissions as in other novae.

[^375]:    * Prepared by O. Struve, University of California, Berkeley.

    284 Astrophys. Journ., vol. 88, p. 472, 1938.

[^376]:    * Prepared by R. M. Emberson, Research and Development Board, Washington, D. C.
    ${ }_{245}$ Pettit and Nicholson, Astrophys. Journ., vol. 56, p. 295, 1922; vol. 68, p. 279, 1928; vol. 78, p. $320,1933$. Stern and Emberson, \strophys. Journ., vol. 94, p. 412, 1941.

[^377]:    * Prepared by L. Tacchia, Massachusetts Institute of Technology.
    ${ }^{288}$ Kukarkin, B. V., and Parenago, P. P., Fizičeskic Peremennye Zvjozdy, 1937; Gaposchkin, C. P., and Gaposchkin, S., Variable stars, 1938; Camphcll, I.., and Jacchia, I.., The story of variable stars, 1941.

[^378]:    * Prepared by G. P. Kuiper, Yerkes Observatory.

[^379]:    * Prepared by R. E. Wilson, Mount Wilson Observatory, and E. M. Janssen, Harvard College Observatory.

[^380]:    * Prepared by B. Donn, Harvard University
    ${ }^{287}$ Dunham, Proc. Amer. Philos. Soc., vol. 81, p. 277, 1939; Eddington, Proc. Roy. Soc. London, vol. A 111, p. 424, 1926; Spitzer, Astrophys. Journ., vol. 107, p. 6, 1948; vol. 109, p. 337, 1949; vol. 111, p. 593, 1950; van de Hulst, Rech. Astron. Obs. Utrecht, vol. 11, pt. 1, 1946.

[^381]:    * Prepared by A. N. Vyssotsky, University of Virginia.

    289 Astron. Journ., vol. 53, p. 94, 1948.

[^382]:    * Revised by R. E. Wilson, Mount Wilson Observatory.
    ${ }^{284}$ Miczaika, G., Astron. Nachs., vol. 271, p. 265, 1940.

[^383]:    * Prepared by R. E. Wilson, Mount Wilson Observatory.

[^384]:    * Prepared by Z. Kopal, Harvard College Observatory.
    ${ }^{290}$ References: a, Keeping, Publ. Dominion Astrophys. Obs., vol. 7, p. 349, 1947. b, Wood, Astrophys. Journ., vol. 108, p. 28, 1948. c, Dugan, Princeton Contr., No. 12, 1931. d, Kopal (unpublished). e,

[^385]:    * Prepared by O. Struve, University of California, Berkeley.

    201 Lick Obs. Bull. No. 521, 1949.
    $\dagger$ System of Castor.

[^386]:    292 Shapley, Proc. Nat. Acad. Sci., vol. 30, p. 63, 1944; Pop. Astron., vol. 57, p. 9, 1949. For number of variables see Sawyer, Helen B., Publ. David Dunlap Obs., vol. 1, p. 388, 1947.

[^387]:    * Prepared by A. H. Joy, Mount Wilson Observatory.
    ${ }^{204}$ Gerasimič, Luyten, Proc. Nat. Acad. Sci., vol. 13, p. 180, 1927.
    245 a, Oort, Bull. Astron. Inst. Netherlands, vol. 4, p. 80, 1927. b, Plaskett, Pearce, Publ. Dominion Astrophys. Olss.. vol. 5. n. 241, 193 G. C, Plaskett, Pearce, Publ. Dominion Astrophys. Obs., vol. 5, p. 167, 1933. d, Lindlhad, Monthly Notices, Roy. Astron. Soc., vol. 90, p. 503, 1930. e, Wilson, R., Astron. Tourn., vol. 40, p. 121, 1930. f, Relman, Publ. Dominion Astrophys. Obs., vol. 6, p. 27, 1931. G. Berman, Lick Obs. Bull.. vol. 18, p. 57, 1937. h, Jov, Astrophys. Journ., vol. 89, p. 356, 1939. i, Wilson, Astrophys. Journ., vol. 93, p. 212, 194i. k, Wilson, Astrophys. Journ., vol. 94, p. 12, 1941. 1, Wilson, Astrophys. Journ., vol. 96, p. 371, 1942.

[^388]:    * Prepared by B. Donn, Harvard University.
    $\dagger$ Preliminary values, currently under investigation by Whitford.
    ${ }_{2016}$ Stebbins, Huffer, and Whitford, Astrophys. Journ., vol. 96, p. 209, 1939; Bok, Pop. Astron., vol. 52. p. $261,1944$.
    ${ }_{297}$ Stebbins and Whitford, Astrophys. Journ., vol. 98, p. 323, 1943; Whitford, Astrophys. Journ., vol. 107, p. 102, 1948.
    ${ }_{298}$ Oort. Ann. d'Astrophys., vol. 1, p. 91, 1938.
    ${ }_{299}$ Strohmeier, Zeitschr. Astrophys., vol. 17, p. 83, 1939.
    300 Greenstein, Astrophys. Journ., vol. 87, p. 151, 1938; Oort, Bull. Astron. Inst. Netherlands, vol. 8, p. 308, 1938; Stehbins, Astrophys. Journ., vol. 90, P. 209, 1939; van Rhijn, Groningen Publ. 51, 1946; Weaver, Astrophys. Journ., vol. 110, p. 190.1949.

    302 Hall, Science, vol. 109, p. 166, 1949; Hiltner, Science. vol. 109, p. 165, 1949, Astrophys. Journ., 1949.

[^389]:    * Tables 888 to 894 , and 897 prepared by R. H. Fleming, U. S. Hydrographic Office.

[^390]:    ${ }^{302}$ Reprinted by permission of the publishers from The oceans; their physics, chemistry, and general biology, by H. U. Sverdrup, Martin W. Johnson, and Richard H. Fleming. Copyright 1942 by PrenticeHall, Inc.

[^391]:    * For reference, see footnote 302, p. 773.
    $\dagger$ Computed.

[^392]:    * Absiracted from an article prepared for the Encyclopedia Britannica, by Walter Munk, Scripps Institute of Occanography. Used by permission.

[^393]:    ${ }^{503}$ Jeffreys, The earth, Macmillan, 1929 , Innes, Changes in the length of the day, Scientia, vol. 42 , p. 69, 1927; Brown, Nature, vol. 119, P. 200, 1927; Jo rrn. Roy. Astron. Soc. Canada, vol. 24, p. 177, 1930. Kevised by G. M. Clemence, U. S. Naval Observatory.

