SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 65, NUMBER 5

THE MICROSPECTROSCOPE IN MINERALOGY

ΒY

EDGAR T. WHERRY

•

Assistant Curator, Division of Mineralogy and Petrology, U. S. National Museum

(PUBLICATION 2362)

CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1915 The Lord Galtimore (Press BALTIMORE, MD., U. S. A.

.

THE MICROSPECTROSCOPE IN MINERALOGY

By EDGAR T. WHERRY

ASSISTANT CURATOR, DIVISION OF MINERALOGY AND PETROLOGY, U. S. NATIONAL MUSEUM

The possibilities of the microspectroscope in the identification of minerals and the study of their composition have apparently not been generally appreciated by mineralogists. Occasional articles in the journals devoted to physics and microscopy have contained references to a few minerals; three contributions to the subject from a mineralogical point of view have appeared in recent years—brief discussions of absorption spectra in Miers' "Mineralogy"¹ and in Smith's "Gem-Stones"² and F. J. Keeley's "Microspectroscopic Observations"⁸; but in none of these is it treated as fully as might be desired. The present paper comprises descriptions of the spectra of a much larger number of minerals than has heretofore been examined.⁴

The apparatus which has proved most satisfactory in the studies here described consists of a Crouch binocular microscope stand, fitted with a 37 millimeter objective, an Abbe-Zeiss "Spectral-Ocular"⁵ in the right hand tube, and in the other an ordinary lowpower eyepiece, marked on the lower lens at the point where the image of a mineral grain falls when it is visible through the spectroscope slit; the prism which diverts part of the light into the left

SMITHSONIAN MISCELLANEOUS COLLECTIONS, VOL. 65, No. 5

¹ Macmillan and Co., New York and London, 1902; pp. 275-276.

² Methuen and Co., London, 1912; pp. 59-62.

⁸ Proc. Acad. Nat. Sci. Phila., 1911, pp. 106-116; Mr. Keeley has made a number of valuable suggestions in connection with the preparation of the present paper, which are herewith gratefully acknowledged.

⁴ Col. Washington A. Roebling, of Trenton, N. J., kindly furnished the writer with samples of a number of rare minerals from his very complete collection to supplement those available at the Museum.

⁶ Mr. Keeley states that he finds a Browning or Beck microspectroscope ocular useful for preliminary examinations; a Wallace grating-microspectroscope, obtained through the kindness of Mr. Thomas I. Miller, of Brooklyn, N. Y., was also tried, but the spectra it yields are too faint for mineral work in general.

VOL. 65

hand tube is withdrawn after the mineral grain has been centered, so as to permit as much light as possible to pass through the spectroscope. A binocular microscope is not absolutely necessary, but frequent readjustments of the scale and slit have to be made if the mineral is observed by swinging out the upper part of the spectroscope and the slit holder.

Light may be obtained from any source yielding a brilliant white light, such as a Welsbach burner or a Nernst lamp, although sunlight or daylight are objectionable because of showing the Fraunhofer lines. For the study of minerals in thin sections, and in a few special cases mentioned below, this is reflected up through the specimen by means of the sub-stage mirror. In the majority of cases, however, better results are obtained by concentrating the light laterally on the specimen by a lens or by a parabolic mirror attached to the objective, and observing the brightest portion of its path. Not only does the latter plan yield the better spectra (apparently because they are connected with fluorescence phenomena), but it permits the examination of crystals on the matrix, gems in their settings, and other similar objects, and, further, does not require any polishing or special preparation of surfaces. The more intense the light the smaller the grains which can be studied in this way.

To set the wave-length scale of the instrument accurately a sodium flame is used, scale division 058.9^{-1} being brought into coincidence with the yellow (D) line. In addition, a small slip of "didymium" glass,² which can be readily inserted at the opening where light for the comparison spectrum enters, is very convenient, the interval between the strong absorption bands of neodymium and praseodymium in the yellow being set at about 058 (580 $\mu\mu$). See figure 1.

The scale of the instrument is graduated in hundredths of microns, but, except at the extreme red end, tenths of divisions can be readily estimated, and it is most convenient to state measurements in threefigure wave lengths. Since the edges of many of the absorption bands are so hazy that they cannot be located exactly, and since the positions of bands vary somewhat in different directions in anisotropic substances, as well as from one crystal to another in minerals of variable composition, readings are liable to an uncertainty of about 5 units. However, as the object of the present paper is not to establish wave lengths, but to record the general characteristics

 $^{^{1}}$ This corresponds to wave length 589 $\mu\mu$; all measurements are stated in the latter form.

² Obtainable from the Corning Glass Co., Corning, N. Y.

of the absorption spectra of the different minerals for determinative purposes, this degree of accuracy is quite sufficient.

The light diffused by mineral grains shows in most cases more intense absorption bands than that transmitted directly through them, yet it must penetrate considerably to be affected at all, so that only transparent or fairly translucent minerals yield any effects; in addition they must be more or less distinctly colored. The number of minerals suitable for microspectroscopic study is therefore rather limited, but the fact that the specimens need not be scratched, broken,

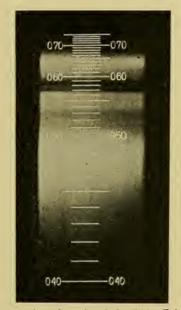


FIG. 1.—The wave length scale of the Abbe-Zeiss microspectroscope, with the absorption spectrum of "didymium" glass, the interval between the two strongest bands of which is set at 058. The several bands lie at 067.5, 062.5, 059.0, 058.2, 057.4, 053.1, 052.5, 051.2, 048.0, 044.8, and 043.3. Transmitted light; source, Welsbach burner; exposure I hour; Wratten and Wainwright Panchromatic plate.

or altered in any way renders the method of considerable use in the identification of crystals too valuable to be broken up for the usual tests, and in particular of cut gems, whether free or in their settings. Even where other methods are applicable the spectra may serve as confirmatory tests.

This method has proved especially useful in determining the genuineness of rubies, sapphires, and emeralds sent to the Museum for examination and report, in picking out corundum, zircon, and garnet from gem gravels in the collection, in distinguishing greenockite from other minerals occurring as yellow coatings, and in the identification of a number of other minerals. The microspectroscope may also be applied to the measurement of the thickness of iridescent films and the discovery of the origin of various color phenomena, but this phase of the subject has been fully discussed by Keeley in the paper cited and need not be further considered here.

THE RARE EARTH MINERALS

The strong absorption bands shown by salts of certain of the rare earth metals have long been recognized as a good means for their detection in solutions, and several writers have pointed out that minerals containing them also show the bands, and have called attention to the value of this property for identification of these minerals. In the preparation of this paper all available minerals known to contain appreciable amounts of the rare earths have been examined. Most of the light colored ones, as listed in the tables below, were found to exhibit two or more of these bands, all except the violet calcite vielding much more intense effects when viewed at an angle to the path of the light than when observed in the direction of the transmitted ray. Not only is the presence of these absorption bands useful as a means of distinguishing rare earth minerals from all others, but it may even serve to differentiate certain of the individual species; the positions and intensities of the bands vary from one to another in a fairly characteristic way, although identification on this basis alone is not always certain, since slight variations may occur between different grains of the same mineral.

The presence of the rare earth metals in calcite from Joplin, Missouri, was discovered by W. P. Headden⁴ by analytical procedure, and has recently been reaffirmed by Pisani,² the amounts present being mostly less than 0.05 per cent. Headden found that the violet calcite from this locality gives "didymium" absorption bands. With the microspectroscope this material shows, by transmitted light, two distinct bands, matching approximately those of neodymium in the "didymium" glass comparison spectrum, and being probably due to that element, the salts of which have a violet tint. The most deeply colored specimens show these bands when as thin as 3 millimeters, although the paler tinted varieties show them only in greater thicknesses, while the colorless and yellow portions

¹ Amer. Journ. Sci., ser. 4, vol. 21, 1906, p. 301.

² Compt. rend., vol. 158, 1914, p. 1121.

of the same crystals fail to show the slightest trace of them. Violet calcite from another locality, Rossie, New York, also shows these bands faintly.

On heating the violet calcite in an air bath to about 400° for ten minutes the color is completely discharged (yellow light being emitted) and the absorption bands disappear. The simplest explanation of this behavior is that the rare earths are originally present as carbonates (in solid solution of the mix-crystal type), and in that form show the absorption bands, but that, on heating, these compounds are converted into oxides, which do not show them. Headden's observation that the yellow calcite from Joplin contains more rare earths than other varieties can be readily reconciled with the absence of bands in its spectrum by recognizing that the metals may be present in it only as oxides in the first place.

It is therefore concluded that violet calcite probably owes its color to the presence, in mix-crystal form, of traces of a carbonate of neodymium.

Yellow titanite labeled as from "Mont Blanc" and brown apatite from several places in Ontario, Canada, show the neodymium bands with about the same intensity as the violet calcite, although the violet color is hidden by stronger ones due to iron or other constituents. The remainder of the minerals listed in the rare earth tables are well known compounds of those elements.

URANIUM MINERALS

Transparent minerals containing uranium in the uranic form show an absorption spectrum consisting of several bands in the green, blue, and violet, viewing the grains at an angle to the path of the light giving the most brilliant effects. The variation in the positions and relative intensities of these bands from one species to another is particularly well marked and of some diagnostic value, although more than 30 per cent of uranium must be present, and many minerals with even this amount yield no spectra.

Some specimens of the mineral zircon yield, as has long been known, a number of absorption bands, which correspond to those shown by uranium salts after reduction with zinc, that is, when in the uranous condition. This uranium, which is present in minute amount, mostly less than 0.5 per cent, has the same valence as the zirconium and no doubt replaces a part of it, giving a blue color to the mineral, which may, however, be hidden by other tints, due to iron, manganese, etc. It therefore cannot be predicted whether a given crystal of zircon will show a spectrum or not, but, on the other hand, if an unknown mineral shows these bands, it is reasonably certain to be zircon, for no other mineral is as yet known to contain uranous uranium.

THE GARNET GROUP

The red colors of garnets of the varieties pyrope, almandite, spessartite, and essonite have been variously interpreted as due to gold,¹ tin,¹ iron,² chromium,³ manganese,⁴ and vanadium.⁵ Two different sets of bands seem to be superposed in the spectra of the members of this group, (A) a narrow band at 620 and a broad one centering at about 590 (these often coalesce); and (B) two broad bands at about 530 and 500. In order to correlate, if possible, these spectra with the amounts of the last three of the above listed elements, specimens were analyzed by fusing with sodium carbonate and nitrate, extracting with water, comparing the color of the solution with that of potassium chromate of known strength, then acidifying with sulfuric acid, evaporating, adding hydrogen peroxide, and titrating the vanadium with standard permanganate ⁶; manganese being determined colorimetrically in the residues (except in the case of spessartite, where the average of published analyses was used). The results were as follows:

Variety	Locality	Color	Spe	ctra	Cr	v	Mn
, and y			A	В	Per ct.	Per ct.	Per ct.
Almandite Almandite Spessartite Essonite	Bohemia Wrangell, Alaska India Amelia C. H., Va. Ceylon. Ceylon.	deep red violet-red. brown brown-red	distinct distinct distinct distinct	strong . strong . distinct. none	0.03 0.02 0.02 0.02	0.02	I.40 I.45 I.20 33.65 0.25 0.35

In this table it is evident that spectrum A is connected with the presence of chromium, while B is, if anything, related to the vana-

¹ "In former ages it was believed that gold and tin were the coloring principle of garnet." Feuchtwanger, Treatise on Gems, New York, 1838, p. 18. I am indebted to Dr. William S. Disbrow, of Newark, N. J., for calling my attention to this reference.

² According to most writers; but inspection of analyses shows no relation between the color and the content of either ferrous or ferric iron.

³ First detected by Klaproth, Beitr. Chem. Min., vol. 5, 1810, p. 171; mentioned as the cause of color of pyrope in many books on precious stones.

⁴Regarded as the cause of the color by various writers, and of the absorption spectrum by Brun, Arch. sci. phys. nat., ser. 3, vol. 28, 1892, p. 410, and by Keeley, loc. cit.

⁸ Uhlig, Verh. nat. Ver. preuss. Rheinl. Westfal., vol. 67, 1910, p. 307; Zeits. Kryst. Min., vol. 53, 1913, p. 203.

⁶ Cain and Hostetter, Journ. Amer. Chem. Soc., vol. 34, 1912, p. 274.

NO. 5 THE MICROSPECTROSCOPE IN MINERALOGY-WHERRY

dium content. Many artificial salts of the former metal, as well as the chlorite minerals colored violet by it, show spectrum A, so it may be considered proved that one factor in the color of magnesium (and manganese) garnets is the element chromium. (Calcium garnets, which are colored green by this element, show an entirely different spectrum.) Spectrum B, it must be admitted, has never been observed in minerals or artificial compounds of vanadium, but no other silicates containing vanadium as a red compound have been available for study (the green roscoelite showing no bands) and as the mode of combination has great influence on the character of the spectra shown by a given element, it may be regarded as probable that vanadium is a second factor in the color of garnets. The total manganese shows no connection with the spectrum, and the presence of more or less ferrous iron in all garnets precludes the possibility of the existence of any manganic compound.

TABLES

The results of the examination of about 200 minerals with the microspectroscope are here presented in tabular form. Only a third of them exhibit distinctive spectra, but as the absence of bands may also have diagnostic value in some cases, it has seemed best to list all those tried. The wave lengths of bands which are especially characteristic of the various minerals are given in bold face type, and of those which are faint and difficult to see in parentheses. The limits of visibility (recorded as "To 700, 440 on," etc.) vary rather widely with the thickness of mineral through which the light passes, but are added for the sake of completeness.

To increase the practical usefulness of the tables a determinative table, or analytical key, is added after the lists of mineral spectra. It is based on general character of spectrum, number of bands and mineral colors, and covers all minerals showing bands of sufficient intensity for diagnostic purposes.

Finally, as this method may also prove useful for demonstrating the presence or absence of certain chemical elements, a table of the elements showing spectra, with their forms, and the limits to the amounts present, is also given. It should be noted here that the elements causing the colors and absorption bands of some minerals are as yet unknown; thus, the band at or near wave length 605 in the rare earth minerals with the yttrium group in excess cannot be ascribed to any known element; and in the other tables interrogation points (?) in the "coloring elements" columns show the lack of information in many cases.

7

ECTH
SPI
NOI
RPT
ABSC
WING THE RARE EARTH ABSORPTION SPECT
RARE
THE
/ING
SHOW
INERALS SHOWI
M

RA

CERIUM GROUP IN EXCESS

	ked	Ora	Urange		Yellow		Ü	Green		Blue	Violet	
Elements causing bands	PN	Er	ΡN	Pr	Nd	Sm	PN	Nd, Er	PN	Pr, Sm Pr	Pr	
		(650)	(623)		580-570		(532)	522	. (513)	(485)	440	10
		(650)	(623)		579 569	: :	(532)	522	(115)	_		010
••••••••••••••••••	To 690 675	:	623	590	to 570	:	533	522	512	485 (470)	(445) 440	010
• • • • • • • • • • • • • • • • • • • •		:			581 (575)	:	(533)	521	512	_		ot
• • • • • • • • • • • • • • • • •		:	(020)		579 570	:	(532)	520	510	Ξ.	(445) 440	Of
let		:			582	:	•	(525)	•			on
•••••••••••••••••••••••••••••••••••••••	10080(075)	:	(020)		to 570	:	(533)	(525)	(512)	(485)	440	no
· · · · · · · · · · · · · · · · · · ·	10070	:	:	:	(585)	:	:	(525)	:	:	460	no
	10 080	:	:	••••	(585)	:	:	(525)	•••••	:	440	uo
• • • • • • • • • • • • • • • •	To 670	:	:		(585)	:	:	(525)	:	:	460	o
•••••••••••••••••••••••••••••••••••••••	To 680 (675)	:	:		585 575	:	530	(525)	(512)	(485)	460	uo
	To 680 (675)	:	:		588-578	:	530	(520)	(512)	(485)	460	ō
••••••••	To 670	:	:	:	(585)	:	:	(525)	:		440	0
	To 680	:	:		588-578	:	:	(525)	::		460	no
			:		(585)	:	:	(525)	:	:	450	on
•••••••••••••••••••••••••••••••••••••••	To 690 675	(645)	622		to 570	(555)	(532)	523	512			no
te		045	622		to 570	(555)	533	524	512	485 (470)	(445) 430	on
•••••••••••••••••••••••••••••••••••••••		:	(020)	590	578	:	(535)	524	(510)	(485)		on
·····umo.	10 670	:	:		(585)	:	:	(525)	:	::.	460	on
ournmete	1 0 000	:	:	÷	585	:	÷	525	÷	: : :	460	uo
		Υı	TRIUM	GROUP	YTTRIUM GROUP IN EXCESS					-		
	Το 660	(645)	:	* (009)	585-575	(בכב)		522		(186)	150	6
	To 670	(645)		(000)	(585)	(555)	:	(522)	: :	(485)	460 on	5 6
	Γο 67ο	:	:	:	$(\bar{5}8\bar{5})$	(555)	:	(522)	:	-	450	ō
e	To 670	(650)	:	(000)	(585)	(555)	:	522	:		460	010
Acnotime.	1.0 000	645	:	605	:	555	:	522	:	(485)	450	on

risörite; the following show no spectra, being for the most part too opaque: allanite, ankylite, blomstrandite, cenosite, euxenite, gadolinite, hatchettolite, loranskite, polycrase, rogersite, samarskite, tengerite, and thorite. Certain specimens of autunite and other secondary uranium minerals, when derived from rare earth bearing primary minerals, show the same spectrum as gummite. *See last paragraph on page 7. cary occurs, inclaim occurs, and steenstrupine; tergusonite includes sipylite; yttrotantalite includes

8

SMITHSONIAN MISCELLANEOUS COLLECTIONS

VOL. 65

MINERALS SHOWING THE URANIUM ABSORPTION SPECTRA URANIC URANIUM

	Red	Orange	Yellow	Gı	een		Blue			Viole	t	
Liebigite Voglite Autunite Uranocircite Torbernite Uranospinite Zeunerite Johannite Uranium glass	To 670 To 680 To 680 To 670 To 680 To 670 To 680	· · · · · · · · · · · · ·		(535) (532) (535) (530) (530) 545		495 504 499 495 503 495 505 497 505	(480) 488 484 (485) 487 482 489 489 479 485	(470) 470 (467) 472	458 (455) (455) 458	445 448 445 (440)	440 440 440 430	on on on on on on

Liebigite includes uranothallite; johannite includes uranochalcite and voglianite; the following do not show definite spectra: carnotite, rutherfordine, trögerite, uraconite, uraninite, uranophane, uranopilite, uranosphærite, walpurgite, and zippeite; it may further be noted that specimens labeled phosphuranylite have proved in almost every case to show the spectrum of autunite, and have yielded calcium on qualitative examination, but an authentic specimen of this mineral in the Brush collection, loaned for examination through the kindness of Prof. Ford, showed no spectrum beyond slight general absorption in the blue.

URANOUS URANIUM

	Red		Orange	Yellow	Green	Blue	Violet
Zircon, blue Zircon, green Zircon, yellow. Zircon, pink	To 690 685 To 690 (685)	(660) (660) 	651 618 651 618 651 (618) 651 (618)			483 (460) (483)	440 on 440 on 450 on 440 on

Brown, white and colorless zircons do not show spectra.

V	01	L.	6	5

	Coloring elements	Red	Orange	Yellow	Green	Blue	Violet
Hematite	Fe'''	To 690					140 00
	Fe'''	To 680	• • • •		560	on	44 0 on
Botryogen Spherocobaltite	Co"	To 680	• • •	(F70 t	0 540)	on	
	Co″	To 680	•••	(5/01		(======================================	430 on
Erythrite	Co″	To 680	•••	(550 +	560-540	(500-490)	430 on
Roselite	Mn″		•••		0 540)	•••	430 on
Zincite		To 680	•••	(600-570)		510	on
Rhodochrosite	Mn″	To 670	• • •		0 540	• • •	460 on
Rhodonite	Mn″	To 670	•••	580 t	0 540	· · ·	460 on
Zoisite var. thulite	Mn″	To 670			560-530	• • •	450 on
Piedmontite	Mn″	To 660	• • •			•••	450 on
Tourmaline var. ru- bellite.	Mn″	To 670		•••	(560 t	0 490)	430 on
Hübnerite	Mn″	To 680					460 on
Corundum, pink	Cr'''	To 700 680		600-570			460 on
Corundum var. ruby.	Cr'''	To 700 680		600-570			450 on
Corundum var. ruby,	Čr'''	To 700 680		600 t	0 510		460 on
synthetic.		, i			U		
Garnet var. pyrope (see text).	Cr'''	То 670	620 t	o 560 .			460 on
Garnet, grossularite, pink.	Cr'''	То 660	(б10 t	o 580)		•••	460 on
Crocoite	Crvi	To 670		- 70	on		
Cuprite	Ču'	To 700	630	570	011	•••	450 on
Imitation ruby (Cu-	Ču'	To 680		600-560			450 on
glass).				ĩ			
Garnet var. alman- dite (see text).	V'''+Cr'''		620	585-570		510-495	450 on
Garnet var. spessar- tite.	V'''+Cr'''	To 680	(620)	580-565	(540-520)	470	on
Rutile	Vv	To 680					450 on
Vanadinite	Vv	To 670		580 t	0 550	490	on
Pascoite	Vv	To 670			550	on	
Wulfenite	Vv	To 670			560	on	
Cinnabar	Hg″	To 600		0 590			460 on
Realgar	As"	To 680		580 t	0 540	470	on
Proustite	As"'	To 670		600-570			460 on
Pyrargyrite	Sb"'	To 670		0 580			460 on
Halite	~~~? ?	To 680			0 540)	480	on
Fluorite	2	To 670		-	0 340)	· · · · ·	440 on
Ouartz var. rose-	2	To 680	• • • •	•••	•••		440 on
~	•	10000	• • • •	•••	•••	•••	440 011
quartz.	2	To 680		(-80 +	0.510)		460 on
Spinel	2		• • • •		0 540)	•••	
Calcite	:	To 670	• • • •	•••	• • •	-190	on
Beryl	2	To 670		(-=====================================		• • •	440 on
Topaz	-	То 680	•••	(570 t	0 530)		450 on

COLOR RED, PINK OR ORANGE

The diagnostic importance of the spectra of the red corundums (shown in reflected light only) was pointed out by Keeley (*op. cit.*, p. 109).

4

	Color- ing ele- ments	Red	Orange	Yellow	Green	Blue	Vi	olet
Sphalerite	Fe''	To680				510	on	
Goethite	Fe'''	T0650		• • •	550	on		• • •
Siderite	Fe'''	To 680		• • •		470	on	• • •
Garnet var. andradite	. Fe'''	T0670		• • •	•••	480	on	• • •
Garnet var. grossularite	Fe'''	T0670		• • •		470	on	• • •
Vesuvianite	Fe'''	To 660		•••	•••	480	on	•••
Staurolite	Fe'''	T0670		• • •	(560-550)	470	on	• • •
Tourmaline	Fe'''	T0650		•••		490	on	•••
Copiapite	Fe'''	To 680			•••	490	on	• • •
Imitation topaz (Fe-glass)	Fe'''	T0660			•••	490	on	• • •
Corundum	Fe'''	T0670		•••	•••		455	440 on
Greenockite	Cd''	T0670			525-515	500	on	· · ·
Iodyrite	Ag'	To 680			•••		(445)	440 on
Orpiment	As'''	T0680			•••	480	on	
Wulfenite	Movi	T0670			• • •			460 on
Sulfur	So	To 680				480	on	· · ·
Selensulfur	Seo	T0680			• • • •	480	on	• • •
Fluorite	1	To 680						.4.40 on
Quartz var. citrine	?	T0670				470	on	•••
Cassiterite	2	T0670		• • •				450 on
Chrysoberyl		T0670						460 on
Calcite	?	T0660		• • • •		480	on	• • •
Smithsonite	?	T0670						460 on
Beryl	?	T0670	-					450 on
Olivine	?	T0670						460 on
Willemite	: ?	T0670			• • • •			440 on
Thorite	?	T0670				480	on	· • •
Topaz	?	Тоб70						460 on
Axinite	?	T0670						450 on
Titanite	?	T0660				470	on	
Apatite		To 660				470	on	
Barite	2	T0670				470	on	
		1		1	1		1	

Color Yellow or Brown

.

In addition, many rare earth and uranium minerals, listed in the preceding tables, are yellow or brown in color.

-

. •

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			_	COLOR GREE	N					
			Red	Orange	Yellow	Green	Blue	v	iolet	
Olivine. Fe" To 670 500-490 (450) 430 on Ourmaline. Fe" To 650 458 430 on Clinochlore. Fe" To 650 450 430 on Serpentine. Fe" To 650 450 on Manganosite. Mn" To 700 650 to 575 520 on 450 on Zaratite Ni" To 640 500 on Cabrerite. Ni" To 650 500 on Garnet var. der Cr" To 680 (640) (620) 470 on Garnet var. uvaro- Cr" To 670 500 on Muscovite var. Cr" To 670 500 on Muscovite var. Cr" To 670 500 on Muscovite var. Cr" To 670 500 on	Diopside	Fe"	T0670		1			455	450	on
Epidote.Fe" + Fe"To 670(478)458450450Commaline.Fe"To 65045000Serpentine.Fe"To 65045000Manganosite.Mn"To 700650105755200001ZaratieNi"To 6605000145001Spodumene v ar.Ni"To 6405000150001Spodumene v ar.Gr"To 680(640) (620)5000150001Garnet var. de- mantoid.Gr"To 6305000150001Muscovite v ar.Gr"To 670To 63050001Muscovite v ar.Gu"To 640 <td< td=""><td>Actinolite</td><td>Fe"</td><td></td><td>•••</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Actinolite	Fe"		•••						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•••		•••				
	Epidote	Fe"+Fe"			•••	•••	(478)	458		
Serpentine. Fe" To650 460 on Manganosite. Mn" To700 650 to 575 520 on 450 on Zaratite Ni" To 640 500 on Cabrerite Ni" To 620 500 on Spodumene var. Cr" To 680 (640) (620) 500 on Garnet var. uvaro- Cr" To 680 (640) (620) 500 on Vesuvianite. Cr" To 670 To 570 500 on Vesuvianite. Cr" To 670 480 on Malachite. Cu" To 630 500 on Matachite. Cu" To 640 500 on Intichaleite. Cu" </td <td>Tourmaline</td> <td>Fe //</td> <td></td> <td>030</td> <td>•••</td> <td>•••</td> <td>• • •</td> <td></td> <td></td> <td></td>	Tourmaline	Fe //		030	•••	•••	• • •			
Melanterite. Fe" To 650 450 on Zaratite Ni" To 700 650 to 575 520 on 500 on 500 on 500 on 500 on 500 on 500 on 500 on 500 on 500 on 500 on 500 on 500 on 500 on for 500 on for for<				•••	• • •					
Manganosite Mn" To 700 650 to 575 520 on on Zaratite Ni" To 70 640 500 on Spodumene var. Cr" To 70 580 500 on Berylvar.emerald. Cr" To 680 (640) (620) 470 on Garnet var.uvaro Cr" To 680 (640) (620) 500 on Mascovite var. Cr" To 670 To 570 500 on Muscovite var. Cr" To 670 500 on Muscovite var. Cu" To 630 500 on Atacamite Cu" To 640 500 on Malachite Cu" To 640 500 on Malachite Cu" To 640<				•••						
Zaratite				•••					450	on
Cabrerite. Ni ⁿ To 520 500 on Spodumene var. Cr''' To 680 (640) (620) 500 on Beryl var. emerald. Cr''' To 680 (640) (620) 510 on Garnet var. uvaro- Cr''' To 670 To 570 500 on Muscovite var. Cr''' To 670 To 500 on Muscovite var. Cr''' To 670 500 on Muscovite var. Cu'' To 630 500 on Atacamite Cu'' To 630 500 on Malachite Cu'' To 640 500 on Viritaliane merald Cu'' To 640 500 on R										
Spodumene var. hiddenite. Cr''' \dots To 580 \dots 500 on \dots Barret var. emerald. Garnet var. de- mantoid. Cr''' To 680 (640) (620) \dots \dots 510 on \dots Garnet var. uvaro- vite. Cr''' To 670 \dots To 570 \dots 500 on \dots Vesuvianite. Cr''' To 670 \dots To 500 on \dots Atacamite. Cu'' \dots To 630 \dots 500 on \dots Dioptase. Cu'' \dots 640 \dots 500 on \dots Tyrolite. Cu'' \dots 620 \dots 500 on \dots Dioptase. Cu'' \dots 640 \dots 500 on \dots Tryrolite. Cu'' \dots 620 \dots 500 on \dots To 650 Gao \dots \dots 500<		IN1"	$\dots 10$		•••					
hiddenite. Cr''' To 680 (640) (620) 470 on Garnet var. uvaro- vite. Cr''' To 680 (640) (620) 470 on Matcovite var. Cr''' To 670 To 570 500 on Muscovite var. Cr''' To 670 To 570 500 on Muscovite var. Cr''' To 670 630 500 on Malachite. Cu'' To 630 500 on Dioptase. Cu'' To 640 500 on Tyrolite. Cu'' To 620 500 on Natrochalcite. Cu'' To 620 500 on Imitation emerald Cu'' To 620 500 on				7 0			-			
Garnet var. demantoid. Gr"' To 680 $(640)''(620)$ 510 on Mantoid. Garnet var. uvaro-vite. Cr"' To 570 500 on Vesuvianite. Cr"' To 670 500 on Muscovite var. Cr"'' To 670 500 on Atacamite. Cu" To 670 630 500 on Atacamite. Cu" To 640 500 on Dioptase. Cu" To 630 500 on Brochantite. Cu" To 630 500 on Imitation emerald Cu" To 630 500 on Imitation emerald Cu" To 630 500 on	hiddenite.				580	• • •	500	on	•••	
mantoid Garnet var. uvaro- vite.Cr'''To570500onMuscovite var. fuchsite.Cr'''To670480onMuscovite var. fuchsite.Cr'''To670(650)480onAtacamite. Malachite.Cu''To 670(650)500onMalachite. Dioptase. Cu''Cu''To630500onDioptase. Tyrolite. Tyrolite.Cu''To640500onNatrochalcite. (Cu''Cu''To630500onNatrochalcite. (Cu''Cu''To630500onNatrochalcite. (Cu''Cu''To630500onNatrochalcite. (Cu''Cu''To640500onRoscoelite. prase. Spinel.V'''To640500onQuartz var.chryso- 		Cr'''			•••	• • •	470		• • •	
vite. Cr''' To 670 To 670 \dots \dots \dots 480 on \dots fuchsite. Cu'' \dots To 670 (650) \dots \dots 500 on \dots Malachite. Cu'' \dots To 630 \dots 500 on \dots Malachite. Cu'' \dots To 640 \dots 500 on \dots Dioptase. Cu'' \dots 640 $(610 to 580)$ \dots 490 on \dots Chrysocolla. Cu'' \dots 640 \dots 500 on \dots Matrochaltite. Cu''' \dots 630 \dots 500 on \dots Matrochaltite. Cu''' \dots 630 \dots 500 on \dots Matrochaltite. V''' \dots 640 \dots 470 on \dots 490 on \dots Quartz var.chryso ? \dots $fo650$ \dots \dots 10600 \dots <th< td=""><td></td><td></td><td>To 680</td><td>(640) (620)</td><td>•••</td><td></td><td>510</td><td>on</td><td>•••</td><td></td></th<>			To 680	(640) (620)	•••		510	on	•••	
VesuvianiteCr''' To670To670 (650)480 onMuscovite var.Gr''' To670To670(650)500onMalachiteGu'' To630500onAurichalciteGu'' To640500onAurichalciteGu'' To640500onDioptase.Gu'' To640500onTyrolite.Gu'' To620500onBrochantite.Gu'' To620500onNatrochalcite.Cu''' To620500onImitation emerald (Cu-glass).Cu''' To620500onQuartz var. chryso- prase.?To630500onSpinel.??To660500onMicrocline.??To660450onMicrocline.??To660		Cr'''	•••	То	570		500	on	•••	
Muscovite var. fuchsite. Cr''' To 670 (650) 500 on Atacamite. Cu'' To 630 500 on Atacamite. Cu'' To 630 500 on Aurichalcite. Cu'' To 640 (610 to 580) 490 on Dioptase. Cu'' To 640 (610 to 580) 500 on Tyrolite. Cu'' To 640 500 on Natrochalcite. Cu'' To 630 500 on Roscoelite. V''' To 640 490 on Quartz var.chryso- ? To 650 500 on Alexandrite. ? To 660 500 on <tr< td=""><td></td><td>Cr'''</td><td>To670</td><td></td><td></td><td></td><td>480</td><td>on</td><td></td><td></td></tr<>		Cr'''	To670				480	on		
fuchsite. Atacamite.Cu" To 630630 500on 		Ēr'''	T0670	(650)						
Atacamite Cu" To 630 500 on Malachite Cu" To 630 500 on Aurichalcite Cu" To 640 500 on Dioptase Cu" To 640 500 on Dioptase Cu" To 640 500 on Chrysocolla Cu" To 640 500 on Brochantite Cu" To 620 500 on Matochalcite Cu" To 620 500 on Matochalcite Cu" To 620 500 on Matochalcite V"'' To 640 470 on <t< td=""><td></td><td>01</td><td></td><td>(0)0)</td><td></td><td></td><td>500</td><td></td><td></td><td></td></t<>		01		(0)0)			500			
Malachite. Cu" \dots To 630 \dots 500 on \dots Aurichalcite Cu" \dots To 640 \dots 500 on \dots Dioptase. Cu" \dots To 640 \dots 500 on \dots Dioptase. Cu" \dots To 640 \dots 500 on \dots Chrysocolla. Cu" \dots To 640 \dots 500 on \dots Brochantite Cu" \dots To 630 \dots 500 on \dots Imitation emerald Cu" \dots To 620 \dots 1000 100 \dots 1000 100 10000 1000 1000		C11″	To	630			500	on		
Aurichalcite Cu" To 640 500 on Dioptase Cu" To 640 610 580 490 on Chrysocolla Cu" To 640 500 on Brochantite Cu" To 620 500 on Matrochalcite Cu" To 620 500 on Imitation emerald Cu" To 620 500 on Imitation emerald Cu" To 620 470 on Roscoelite V"" To 640 470 on Guartz var. chryso- ? To 630 450 on guartz var. chryso- ? To 630 (490) 460 on Chrysoberyl var. ?					-	-	-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0 580)		-		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. .					
Brochantite. Cu" \dots To 630 \dots \dots 500 on \dots Natrochalcite. Cu" \dots To 620 \dots \dots 500 on \dots Imitation emerald Cu" \dots To 620 \dots \dots 490 on \dots Roscoelite. V"' \dots To 640 \dots \dots 470 on \dots Calciovolborthite. V"' To 650 \dots \dots 510 on \dots Quartz var. chryso- ? To 660 630-610 \dots \dots 450 on \dots prase. ? To 660 \dots \dots \dots 450 on \dots Spinel. ? To 660 \dots \dots \dots (490) 460 on Chrysoberyl var. ? To 660 \dots \dots \dots \dots \dots 450 on Beryl. ? To 660 \dots \dots \dots \dots 450 on \dots Andulusite (gem ? To 6							-			
Natrochalcite. Cu" \dots To 620 \dots \dots 500 on \dots Imitation emerald Cu" \dots To 620 \dots \dots 490 on \dots (Cu-glass). N"' \dots To 640 \dots \dots 470 on \dots Calciovolborthite. V"'' To 650 \dots \dots 500 on \dots Quartz var. chryso- ? To 660 630-610 \dots \dots 500 on \dots Quartz var. chryso- ? To 660 \dots \dots \dots 450 on prase. ? To 660 \dots \dots \dots (490) 460 on Chrysoberyl var. ? To 660 \dots \dots \dots \dots 450 on Beryl. ? To 660 \dots \dots \dots \dots 450 on Microcline ? To 660 \dots \dots \dots \dots 450 on Milemite ? To 660 \dots			To	630			-	on		
Imitation emerald (Cu-glass). Cu" \dots To 620 \dots 490 on \dots Roscoelite V"' \dots To 640 \dots \dots 470 on \dots Calciovolborthite. V"'' To 650 \dots \dots 510 on \dots Pluorite ? To 660 630 - 610 \dots \dots 500 on \dots Quartz var. chryso- prase. ? To 660 \dots \dots 490 460 on \dots Spinel ? To 660 \dots \dots (490) 460 on \dots Chrysoberyl var. ? To 660 \dots \dots \dots 450 on \dots Beryl. ? To 660 \dots \dots \dots \dots 450 on \dots \dots 450 on Microcline ? To 660 \dots \dots \dots \dots 450 on \dots \dots \dots 100 100 100 100 100 100 100 100	Natrochalcite	Cu″	To					on		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				620		•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-12-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			To	640			470	on		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V'''								
Quartz var. chrysoprase.? To 630 450 onprase.?To 660 (490) 460 onChrysoberyl var.?To 690 $600-570$ (490-470) 560 onalexandrite.?To 660 500 onMicrocline?To 660 500 onBeryl?To 660 500 onMilemite.?To 660 450 onDatolite?To 660 450 onAndalusite (gem?To 640 555 510 onPrehnite?To 670 500 on 450 onTitanite?To 670 500 on 450 onPyromorphite?To 660 500 onVariscite?To 660 500 onVariscite?To 660 500 on?To 660 500 onVariscite?To 660 500 onVariscite?To 660 <	Fluorite	?		630-610			-			
prase. Spinel?To 660 To 690600-570(490) (490-470)460 on 560 on 360 on 560 onalexandrite. 	Quartz var. chryso-	?	To	630	· · .		-			on
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Spinel		То660				(490)		460	on
alexandrite. ? To 660 500 on Beryl. ? To 670 450 on Milemite. ? To 660 450 on Datolite ? To 660 450 on Andalusite (gem ? To 670 450 on Variety). ? To 670 450 on The form the ? To 670 450 on Prehnite. ? To 670 450 on Apatite. ? To 660 450 on Pyromorphite ? To 660 450 on Variscite ? To 660 450 on Variscite ? To 660 <td></td> <td>?</td> <td>To 690</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>560</td> <td>on</td>		?	To 690						560	on
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	alexandrite.		-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Microcline	?	To 660				500	on		
Willemite ? To 660 460 on Datolite ? To 660 450 on Andalusite (gem ? To 640 555 525 510 on Prehnite ? To 670 450 on Apatite ? To 670 450 on Apatite ? To 660 500 on Pyromorphite ? To 660 500 on Variscite ? To 660 500 on		?	T0670							on
Andalusite (gem variety). ? To 640 555 525 510 on 450 on Prehnite? ? To 670 450 on 450 on Apatite? ? To 660	Willemite	?	То 660							
variety). Prehnite	Datolite	?	То 660						450	on
Prehnite ? To670 450 on Titanite ? To670 500 on Apatite ? To660 450 on Pyromorphite ? To660 450 on Variscite ? To660 500 on		;	To	640		555 525	510	on		
Titanite ? To 670 500 on Apatite ? To 660 450 on Pyromorphite ? To 660 510 on Variscite ? To 660 500 on	Prehnite	?	To670						450	on
Apatite		?						on		
Pyromorphite ? To660 510 on Variscite ? To660 500 on	Apatite	?					-			on
Variscite	Pyromorphite	?						on		
Wavellite? To 660 450 on	Variscite	?	То 660				-			
	Wavellite	?	То 660							on

COLOR GREEN

A few green minerals are included in the rare earth and uranium tables. The absorption band shown by manganosite has recently been observed by Ford (Amer. Journ. Sci., vol. 38, 1914, p. 502).

	Coloring elements	Red	Orange	Yellow	Green	Blue	Violet
Glaucophane	Fe"+Fe"	То 670					440 on
Tourmaline var. in- dicolite.	Fe"+Fe"	To 650	• • • •		• • • •		450 on
Vivianite	Fe"+Fe'''	To 660					460 on
Imitation sapphire (Co-glass).	Co"	To 700 670 t	o 640	600-580	550-530		430 on
Spinel.	Co″	To	640	(590)	555-545	(510) 465 t	0 455 430 on
Covellite	Ċu″	To 650				•••	440 on
Boleite	Cu″	To 650					450 on
Smithsonite(stained)		To	640				450 on
Azurite		То 650				510-480	430 on
Calamine (stained).	Cu″	Το 66ο					440 on
Turquois	Cu″	To 650					440 on
Chalcanthite	Cu″	To	620	(590 t	0 550)		440 on
Linarite	Cu″	То 650		(600-560)			440 on
Corundum var. sap- phire.	Ti'''	То ббо	• • • •	•••	•••	•••	425 on
Corundum var. sap- phire, synthetic.	Ti'''	То 650		•••			430 on
Octahedrite	Ti'''	Το 650	• • • •				440 on
Cyanite	Ti''' (?)	То ббо					430 on
Dumortierite	Ťi‴	To 650					450 on
Benitoite	Ti'''	To 650					425 on
Halite	Nao	To 680	610 t	0 580			440 on
Calcite	?	To 660					440 on
Beryl var. aquama- rine.	?	То 660			• • •	•••	460 on
Iolite	?	To 680			0	500-490	425 on
Sodalite	?	To 660					430 on
Lazurite	?	To 660	1			• • •	440 on
Topaz	?	To 660					440 on
Euclase.	?	To 660				•••	450 on
Lazulite	?	То 660				•••	460 on
Barite	?	То 660					440 on
Celestite	?	То 660					440 on
				-			

.

COLOR BLUE

Color	VIOLET	OR PURPLE

	Coloring elements	Red	Orange	¥ ellow	Green	Blue	Violet
Pyroxene var. violan. Spodumene var. kun-		To 680 To 650	 		560-520		440 on 440 on
zite. Tremolite var. hex- agonite.	Mn'''	To 670	•••	(580–570)	•••		450 on
Hodgkinsonite		To 660 To 670	•••	(590-570)	•••	•••	450 on 460 on
Lepidolite Imitation amethyst		To 670 To 650		(580-570) (590)	(545)		460 on 430 on
(Mn-glass). Spinel	Co''	To 670			555-545		(460) 440 on
Chlorite var. kotschu- beite, kämmererite, etc.	Cr'''	То 670	(610 t	0 560)		•••	450 on
Dumortierite Corundum	Ti''' Cr'''+Ti'''	To 670 To 700 (680)	•••	(590-560)			430 on 450 on
Garnet var. almandite. Fluorite	V'''	To 670 To 670		590-570	540-520 0 550)	510-490	460 on 440 on
Quartz var. amechyst. Diaspore	?	To 660 To 660				0 490)	430 on 450 on
Apatite	?	To 660	·· · ·	•••	•••		4400n

Violet calcite and lanthanite are included in rare earth list.

ANALYTICAL KEY

GROUP I.--SPECTRUM COMPOSED OF NARROW BANDS

Num- ber of bands	Wave length of strong- est	Elements	Minerals	
10	650	Uranium (uranous)	Zircon (certain varieties)	
9	575	Neodymium + praseo- dymium	See tables	
8	500	Uranium (uranic)	See tables	
6	555	Samarium+erbium	See tables	
2	555 585	Neodymium (0.005-	See tables	
		0.5%)	•	
			· · · · · · · · · · · · · · · · · · ·	
GROUP II.—Spectrum Composed of Broad Bands				
A.—Color Red				
4	575	Chromium+vanadium.	Garnet (almandite and spessartite)	

4		Chromium+vanadium.	Garnet (almandite and spessartite)
2	680	Chromium	Corundum (ruby and pink)
2	550	Cobalt.	Erythrite
I	630	Copper (cuprous)	Cuprite
I		Chromium	

B.-Color Yellow

I	520	Cadmium (as sulfide)	Greenockite
I	455	Iron (ferric)	Corundum (oriental topaz)

C	Color	GREEN

2 2 2 2 2 2 1	640 585 555 495 460 455	Iron (ferric)	Chrysoberyl (alexandrite) Andalusite (gem variety) Olivine (chrysolite, peridote)	
---------------------------------	--	---------------	---	--

D.—Color Blue

4 [3 1 1	500	Copper	Spinel Cobalt glass (imitation sapphire)] Azurite Iolite
-------------------	-----	--------	---

E.--Color Violet

4 3 2 1	555 680	Chromium + vanadium . Cobalt . Chromium Manganese (?)	Spinel Corundum (oriental amethyst)
------------------	------------	--	--

Average positions of bands	610-580 580-540 580-540 600-570 600-570 600-570 600-570 600-570 610-600 600-570 620 600-490 555-545 (510) 630 555-545 600-500 600-490 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 600-500 650-575 600-500 650-575 600-500 650-570 600-500 650-570 600-500 650-570 600-500 650-570 600-500 650-570 600-500 650-570 600-500 650-570 600-585 650-580-510 600-585 650-580-510 600-500 530-510 50
Compounds	$\begin{array}{c} Ag_{3}SbS_{3}\\ AsS\\ AsS\\ AsS\\ CdS\\ AsS\\ (Al, Cr)_{2}O_{3}\\ (Ml, Cr)_{2}O_{3}\\ (Ml, Cr)_{2}(SiO_{4})_{3}\\ (Mg, Fe)_{3}(Al, Cr)_{2}(SiO_{4})_{3}\\ (Mg, Cl)_{12}(C_{12})_{3}O_{4}\\ Be_{3}(Al, Cr)_{2}(SiO_{3})_{6}\\ Co_{3}(AsO_{4})_{2}\cdot 8H_{2}O\\ (Mg, Co)Al_{2}O_{4}\\ (Mg, Co)Al_{2}O_{4}\\ (Mg, Fe)_{2}O_{3}\\ (Y, Er)PO_{4}, etc.\\ (Ms, Fe)_{2}O_{3}\\ (Y, Er)PO_{4}, etc.\\ (Ms, Fe)_{2}O_{3}\\ (Al, Fe)_{3}(OH) (SiO_{4})_{3}\\ (Al, Fe)_{2}O_{3}\\ (Al, Fe)_{2}$
Percentages	18-22 70 78 78 78 0.1-2.5 0.1-2.5 0.1-2.5 0.1-0.2 89 55 26 1-20 89 55 26 1-20 4-15 77 4-15 77 4-15 0.1-1.0 0.5-15.0 0.5-15.0 0.5-15.0 0.5-15.0 0.0-1-1.5 33-55 0.01-0.5 0.0-1-20 80 1 20 0.1-2.5 20 0.1-0.2 20 0.1-0.2 20 0.1-0.2 20 0.1-0.2 20 0.1-2.5 20 0.1-2.5 20 0.1-2.5 20 0.1-2.5 20 0.1-2.5 20 0.0 0.0 20 0.0 20 0.0 20 0.1-2.5 20 0.1-2.5 20 0.1-2.5 20 0.1-2.5 20 0.0 20 0.1-2.5 20 0.0 20 0.1-2.5 20 0.0 20 0.1-2.5 20 0.1-2.5 20 0.0 20 0.1-0.5 20 20 0.1-1.0 20 20 20 0.1-1.0 20 20 20 20 20 20 20 20 20 20 20 20 20
Forms	Sb''' As''' Cd" Cd" Cr''' (red) Cr''' (red) Cr''' (violet) Co" Co" Co" Cu'' Fe" Fe" Fe" Fe" Fe" Nd"'' Cu'' Fe" Fe" Nd"'' Cu'' Cu'' Cu'' Cu'' Cu'' Cu'' Cu'' C
Elements	Antimony Arsenic Cadmium Chromium Chromium Copper Erbium Iron Iron Manganese Mercury Neodymium Praseodymium Uranium Vanadium

THE ELEMENTS AND THEIR SPECTRA

16

SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 65