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PART I. LONGITUDINAL MOTION
§1. INTRODUCTION AND CONCLUSIONS

The present dynamical investigation of the stabiHty of motion of

aeroplanes is based upon the well-known theory of small oscillations

of rigid dynamics as first applied by Bryan ^ to aeroplanes and ex-

tended by Bairstow.' The necessary coefificients for use in the equa-

tions of motion were determined by model tests in the wind tunnel of

the Massachusetts Institute of Technology.

The application of model experiments to predict the performance

of full-size aeroplanes is now so well established that no general

discussion of the theory of models is undertaken. A great part of

the actual experimental work was performed by Messrs. Hufif and

Douglas. The oscillating apparatus was designed by Mr. Chow
under the direction of Professor E. B. Wilson of the Department of

Mathematics. Captain A. E. Clark, \J. S. A., while a student in

aeronautical engineering, designed an aeroplane which was selected

as one type for investigation.

It is necessary to acknowledge the cordial interest taken in the

work by Professor C. H. Peabody, head of the Department of Naval

Architecture. From the beginning of aeronautical research in his

department, Professor Peabody has offered the warmest encourage-

ment by countless arrangements to facilitate progress and to pre-

vent interruptions.

Following the analysis of Clark's aeroplane, the work was repeated

for a model of a military aeroplane known as Curtiss JN2.' The

' G. H. Bryan, " Stability in Aviation."
" Technical Report of the Advisory Committee for Aeronautics, London,

1912-13.

^ Plans and description given in " First Annual Report of the National Ad-

visory Committee for Aeronautics" (Report No. i, "Report on Behavior of

Aeroplanes in Gusts," by J. C. Hunsaker and E. B. Wilson, Washington, D. C,

1916). Senate Document No. 268, 64th Cong., ist Sess.

Smithsonian Miscellaneous Collections, Vol. 62, No. 5
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Curtiss Aeroplane Company gave their full cooperation with a desire

to learn what improvements in the design might be suggested by our

Stability calculations. Dr. A. F. Zahm of the research department

of that company made careful tests to locate the center of gravity

and to determine the moments of inertia of the actual aeroplane.

The Curtiss machine is a practical aeroplane with powerful con-

trols, which does not pretend to possess any particular degree of

stability. The Clark aeroplane, on the other hand, was designed to

be inherently stable while departing as little as possible from the lines

of the ordinary military aeroplane as typified by the Curtiss JN2.

The comparison of these two aeroplanes is interesting and leads to

the conclusion that inherent dynamical stability, both longitudinal

and lateral, may be secured in an aeroplane of current type by careful

adjustment of its surfaces and without material effect on controlla-

bility or performance.

The discussion in detail is confined to the Clark model, for brevity

of presentation, and the results only of the parallel calculations for

the Curtiss model are introduced where a comparison is suggested.

In Part I the general equations of motion are deduced in a simpli-

fied form which applies to horizontal flight in still air. The longi-

tudinal motion is then considered separately and the necessary

aerodynamical constants determined from wind tunnel tests. It is

found that the longitudinal motion, if disturbed by any accidental

cause, is a slow undulation involving a rising and sinking of the

aeroplane as well as a pitching^ motion. This undulation is stable for

high aeroplane speeds since it is rapidly damped out. At lower

speeds, the undulation is less heavily damped imtil at a certain critical

low speed the damping vanishes. For speeds below this critical

speed, the undulations tend to increase in amplitude with each swing

and the longitudinal motion is, therefore, unstable.

Similar calculations for the Curtiss aeroplane show a similar

critical speed below which the longitudinal motion is unstable. It is

believed that the existence of instability at low speeds has not been

indicated before, and it is hoped that the recommendations made to

reduce the critical speed may be of assistance to designers.

It appears a simple matter to secure any desired degree of longi-

tudinal stability by the use of properly inclined tail surface, and by

the use of light wing loading. It is pointed out that excessive statical

stability, as indicated by strong restoring moments, is vmdesirable

and may cause the motion to become violent in gusty air. This vio-



NO. 5 STABILITY OF AEROPLANES—HUNSAKER AND OTHERS 3

lence of motion may seriously impair the pilot's control and the

aeroplane may " take charge " at a critical time.

However, the longitudinal motion for any particular speed of flight

may be made dynamically stable, while at the same time only slightly

stable in the static sense, by the use of a large tail surface which lies

very nearly in the relative wind. If the minimum of statical stability

be combined with the maximum of damping, the pitching will be very

slow and heavily damped. The longitudinal motion can then be

dynamically stable and yet be without violence of motion in gusty air.

The general prejudice among pilots against " very stable " aero-

planes is believed to be justified. It cannot be too strongly insisted

upon that true dynamical stability is better given by damping than by

stiffness.

Experience with rolling of vessels has led to the design of vessels

of small metacentric height (a measure of statical stability) fitted

with generous bilge-keels (damping surface) for passenger carrying.

An efifort is made to get away from the violence of motion associated

with stiffness.

In Part II, the lateral or asymmetrical motion is investigated. The

necessary aerodynamical constants are determined by wind tunnel

tests wherever practicable and two coefficients which cannot readily

be found experimentally are calculated by a simple approximate

method. The character of the motion as indicated by the solution of

the determinant formed from the equations is then discussed.

It is found that the lateral motion is a combination of a roll, yaw,

and side slip or " skidding." Using approximate methods, the com-

bined motion is resolved into three components, two of which are

important.

One type of motion is a spiral subsidence if stable or divergence

if unstable. The Clark aeroplane becomes spirally unstable at low

speed. The motion is a " spiral dive " due to an overbank and a side

slip inwards. The aeroplane makes a rapid turn with rapidly increas-

ing bank accompanied by side slipping inwards. The instability is

such that an initial deviation from course will double itself in about

7 seconds.

It is shown that the spiral motion may be made stable by adequate

fin surface above the center of gravity or upturned wings and by

reduction in " weather helm " due to too much rudder or fin sur-

face aft.
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The Curtiss aeroplane shows the same sort of spiral instability at

high speeds. This aeroplane had no dihedral angle of wings and

had a large rudder and deep body.

The second type of motion has been called a "Dutch roll" from

analogy to a figure in ice skating. The aeroplane takes up an oscilla-

tion in yaw and roll simultaneously. It swings to the right banking

for a right turn, then swings back to the left banking for a left turn.

The combined yaw and roll has a fairly rapid period. The Clark

model at all speeds shows that this motion is heavily damped and

hence stable. At high speed, the period is 6 seconds and an initial

amplitude is damped to half value in less than 2 seconds. At low

speed the period is 12 seconds, damped to half amplitude in 6 seconds.

It appears from an approximate calculation that the " Dutch roll
"

may become unstable if an aeroplane has too much high fin surface

and if there be not sufificient " weather helm " or rear fin surface. It

is seen that these conditions are the reverse of those for spiral insta-

bility. The conflicting nature of the requirements for stability in

these two kinds of motion suggests that an aeroplane is unlikely ever

to be unstable in each sense. It also indicates the difficulty of obtain-

ing lateral stability by raised wing tips.

In confirmation of theory, we found the Curtiss spirally unstable

at high speed and stable in the " Dutch roll," while at low speed the

spiral motion was stable and the " Dutch roll " unstable. The period

was 6 seconds and an initial amplitude doubled itself in 8 seconds.

It is believed that the majority of modern aeroplanes of ordinary

type are spirally unstable because of excess of fin surface aft. When
attempts have been made to remedy this fault by use of a large

dihedral angle upwards for the wings, matters have been made

worse. It is only to be expected that in overcorrecting spiral in-

stability a " Dutch roll " of more or less violence may be introduced.

Especially in gusty air would one expect high fin surface to produce

violent rolling.

The Clark aeroplane has very slight rise of wings, about i°6,

and a small rudder. It is shown that at ordinary speeds this aero-

plane is stable in every sense, both longitudinally and laterally.

Whether this stability is excessive can only be determined by actual

flight experience in turbulent air. However, it has appeared possible

to secure a degree of stability in every sense in an aeroplane of con-

ventional type.

The object of the research has been to show how various features

of design may afifect the motion of the aeroplane and only incidentally
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to produce a stable aeroplane. The discussion has been confined to

motion in still air. If an aeroplane be unstable in still air it is

obviously worse ofif in gusts. The converse is, unfortunately, not

true, for an aeroplane which is very stable in still air may be so stiff

that in turbulent air it will be violently tossed about.

It is conservative to conclude that aeroplanes should not be un-

stable and that they need not be, since slight changes in the nature

of adjustments suffice to correct such instability of motion.

In view of the military use of aeroplanes inside the zone of fire the

probability of controls becoming inoperative is ever present. An
inherently stable aeroplane, with controls abandoned or shot away,

could still be operated by a skilful pilot by manipulation of the motor

power alone.

Any sort of automatic (or gyroscopic) stabilizer which operates

on the controls is of no use when those controls fail, and it should

be judged as an accessory to assist a pilot rather than as a cure-all

for the inherent instability of an aeroplane's motion.

The ordinary type of aeroplane readily lends itself to adjustments

which make for inherent stability of motion and there is no reason

to seek radical changes of type to insure stability. Freak aeroplanes

of great "stability" may be excessively stable in some ways and

frankly unstable in others. It is likely that the most satisfactory

aeroplane will be only slightly stable and that this aeroplane will in

any possible attitude be easily controlled by the pilot.

Controllability and statical stability are to some extent incompatible.

Dynamical stability recj[uires some amount of statical stability and

considerable damping. It appears to be of advantage to provide the

minimum of statical stability and the maximum of damping. Then

the aeroplane's motion will be of very long period but heavily damped.

It is believed that the methods of investigation here described may

be applied to any type of aeroplane, and, by the systematic variation

of one feature of design at a time, a full understanding may be had

of the effect on the motion of each change. The process is of

necessity laborious, but compared with the diflficulty of full-scale

experiment in the open air, the model method is rapid and inex-

pensive. It is rarely possible in actual flying to obtain any idea of the

effect of slight changes in design. Weather conditions, motor

troubles, personal peculiarities of pilots, etc., tend to add to the com-

plexity of an otherwise very simple problem.

Furthermore, experimental flying is dangerous. For example, I

knew a pilot who, to determine whether a new aeroplane was spirally
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unstable, took his machine up to a good altitude and allowed it

to get into a spiral dive. The machine made five turns of a rapidly

winding and contracting helix before he could bring it out on a

horizontal path. If the controls had been only a little less powerful

the machine would surely have crashed to the ground. That the

controls were adequate was purely a matter of good fortune. The

experiment was a success in that spiral instability was demonstrated.

Only a few minutes of time was required. However, no information

was obtained as to the degree of instability present nor as to what par-

ticular changes would remedy matters. To complete the experiment,

it would be necessary to repeat the dangerous feat for every change

which suggested itself. Naturally, a designer will be very economical

in his suggestions under such conditions.

§2. TYPE DESIGN

The type aeroplane selected for the first investigation is a two-place

biplane tractor designed by Captain V. E. Clark, U. S. A., while a

student in the graduate course in aeronautical engineering at the

Massachusetts Institute of Technology. This aeroplane is considered

to be representative of modern practice in aeroplane design. Its

principal dimensions are as follows

:

Wing area, including ailerons 464 sq. ft.

Span, feet 41 max., 40.2 mean.

Aspect ratio 7

Gap 6.37 ft.

Dihedral of wings, degrees 176-75

Area, stabilizer 16.1 sq. ft.

Area, elevators 16.0 sq. ft.

Area, rudder 9.35 sq. ft.

Length, body 24.5 ft.

Depth, body, maximum 3.2 ft.

Width, body, maximum 3.3 ft.

Weight, bare 1,070 lbs.

Weight, personnel 320 lbs.

Weight, fuel and oil 415 lbs.

Weight, full load 1,805 lbs.

r 5.2 ft., in roll.

Radii of gyration J 4-65 ft., in pitch.

I 6.975 ^t-' ^^ yaw.

Brake horse-power no
Fuel and oil per B. H. P., hour 0.73 lb.
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Maximum speed 8/ miles per hour.

Minimum speed 35 '"i^es per hour.

Initial rate of climb 900 ^^- P^r min.

Best glide i in 9

Endurance, full power 1 5-6 hours.

Endurance, reduced power, 14 hours at. . 47 miles per hour.

§3. MODEL

A model, ^^ scale, was made by Edward Tighe, model maker,
26

giving a span of 1.58 feet. The size of the model was limited by the

size of the wind tunnel which is 16 square feet in section. The model

is shown in figure i (see pp. 8 and 9). Note that wires are omitted

and struts are made round instead of " stream line " in section. It is

believed that the effects of these changes on total resistance largely

counterbalance each other. This model was carefully shellacked and

polished to minimize skin friction. The model is, of course, much

more smooth than the full-size aeroplane, as it should be, in order that

the surfaces may remain geometrically similar. Model work was to

the nearest hundredth of an inch. No propeller was fitted, but in the

design account was taken of the propeller race in augmenting

resistance.

For simplicity, the model was made with trailing ailerons or wing

flaps integral with the wings. This somewhat increases the effective

supporting area. The stabilizer and elevator were made in one,

corresponding to the elevator flaps in neutral position. These points

are made clear on figure i.

§4. WING COEFFICIENTS

In the course of the design, a wing section was devised by Clark

which showed a low resistance at high speed and small angle of

attack and at the same time was thick enough to permit the use of

robust wing spars. A model of this wing was made, of 18 inches

span by 3 inches chord, and tested in the wind tunnel. For various

angles of wing chord to wind, the lift L, drift D in pounds, and

pitching moment M in pounds-inches were observed for a wind of

30 miles per hour; air of density .07608 pound per cubic foot.

The wind tunnel and balance are duplicates of the 4-foot installa-

tion at the National Physical Laboratory, England, and reference

may be made to the technical report of the Advisory Committee for

Aeronautics, year 1912-13, for a description of the apparatus and

method of operation.
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Fig. I a.

Fig. IB.
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The lift and drift coefificients Ky and Kx were computed from the

observed L and D, using such units that the coefficient is pounds force

per square foot area per mile hour velocity. Curves of coefficients

are given on figure 2, which also shows the ratio L/D, a measure of

O ^ 9- 6 G /O /JS. /f^ /&

Fig. 2.—Wing coefficients.

the effectiveness of the wing. A maximum L/D ratio of i8 was

found for an angle of attack of 3°. For a 41-foot wing at 70 miles

per hour, it is believed that the lift coefficient is not greatly different,

but that the drift coefficient at small angles is materially reduced.

The effect is to increase the ratio L/D. Results of tests at the

National Physical Laboratory (Tech. Rept. Adv. Comm. Aero., 1912-
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13, p. 81) were applied to the l./D curve for our model to obtain an

approximate curve of L/D to apply to the full-size wing. As a

monoplane surface, we get a maximum value of L/D of about 20.

The particular design is a biplane of aspect ratio 7. Well-known

corrections for biplane interference loss and aspect ratio gain were

applied to get a corrected curve for use in the design.

Dir^rr^sions orPttoriLC
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§5. LONGITUDINAL BALANCE

The complete model, using wings of the section described above

and fitted with the tail shown in figure i, was mounted in the wind

tunnel on the balance with the wings vertical. A vertical spindle

from the balance was driven into the side of the body at the point

shown on figure i. By swinging the model about the vertical axis

passing through the spindle, the angle of the wind to the wing chord

was varied from +20° to —8°. At each attitude the force across

the wind or lift L, force down wind or drift D, and the pitching

moment about the spindle were measured. The wind velocity was

30 miles per hour for all tests. The signs were taken so that an

actual lift, actual drift, and a stalling moment are positive. Density

of air is at 15° C, 776 mm. Hg., dry.

Test No. I was made with the horizontal tail surface making an

angle of — 2°75 with the wing chord. That is to say, the rear edge

of the tail was tilted up. Test No. II was a repetition but with the

tail at —7°. Test No. Ill had the tail surface at —5°.

The lift and drift in pounds on the model at 30 miles per hour are

given below, and on figure 4.
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respectively. The discrepancy is i per cent only and is about the

precision of the measurements. The comparison is best brought out

by eliminating reference to angle of attack as the effect of the change

in tail angle appears to be mainly to move the curves of L and D,

plotted on i, to the right or left.

Figure 5 shows the ratio L/D for the model for cases I, II, and III,

plotted on L in pounds as abscissae. For small values of L and angles

of incidence between —2° and +2°, corresponding in practice to

high-flight velocity, the curves are practically identical. For angles
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drift on this elevator tiap may be over 20 pounds, making- a waste of

3.5 propeller horse-pov^er, or about 6 brake horse-powder.

It is preferable to balance a machine at high speed by placing the

center of gravity w^ell forward. Then the 'pilot will have to carry

his elevator turned up when flying at low speed. But at low speed,

he is most in need of the full elevator motion for control of pitching.

We, therefore, conclude that case II, with fixed stabiHzer at —7°,

is very much too stable or stiff longitudinally, and case I, with

stabilizer at 2? 75, is not stable enough.

Case III, with stabilizer at —5°, appears to balance longitudinally

at +2° incidence, and at + 12° incidence to have (full size) a natural

diving moment which could be held by a negative lift on the elevator

of only about 44 pounds, corresponding to about 4° elevator angle.

Consequently, it was decided to adopt the arrangement of case III

for the subsequent stability investigation.

§6. VECTOR REPRESENTATION

A clearer conception of longitudinal balance is obtained by repre-

senting the resultant forces acting on the model as vectors. Thus, for

case II, we observed on the balance the lift L and drift D. The

resultant force acting was then of magnitude R=VL^ + D^. This

resultant force lay in a direction making an angle 6 given by

= ta.n~'^ L/D. The line of action of this resultant was at a per-

pendicular distance from the spindle axis given by d= Ms/R, where

Ms is the observed pitching moment about the spindle. The re-

sultant force, R, is thus defined in magnitude, direction, and line of

application, and may be represented graphically as a vector. In

figure I, the resultant force vectors for case III are drawn on the

side elevation of the model. The model is considered to be fixed and

the wind direction to change so that the angle of incidence varies

from —1° to -f-8°. The vectors are, therefore, djiawn relative to

the aeroplane.

The vector for 2° passes near the center of gravity. If it were

desired to balance the machine at some other attitude, 6° for example,

the center of gravity should be located at some point on the vector

for 6°.

Note that on figure i, for angles greater than 2°, the vectors pass

to the rear of the center of gravity indicating diving nwments and

vice versa. Thus the machine is in stable equilibrium at 2°, and if

deviated from this angle, righting moments are at otice created which

tend to restore the normal attitude.
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Such stability is " inherent " in the design of the aeroplane and

depends wholly on the location of the center of gravity and setting of

the stabilizer. No automatic devices are required which may or

may not function in an emergency. The inherent stalnlity here shown

is static only. Later w^e will investig'ate the effects of inertia and

damping involved in dynamical inherent stability. However, dy-

namical stability is impossible unless there be statical stal)ility, and

before undertaking' a study of the former property, we were obliged

to provide a reasonable righting moment to oppose diving and

stalling-.

§7. PERFORMANCE CURVES

In the design of this aeroplane, the resistance, and hence the speed

for given power, was estimated from tests on wings, body, struts,

wires, etc., considered separately. The test results were corrected

and expanded to full speed full size, using reasonable corrective

factors. As is well known, the resistance of many parts does not

increase so rapidly as the square of the speed, on account of skin

friction. Making all allowances a speed of over 85 miles per hour

was predicted for no brake horse-power.

If w^e use the lift and drift observed on the model (-y full size)

at 30 miles per hour and convert to full size by assvnning the " law

of squares,'' the performance is not quite so favorable and a maxi-

mum speed of but 75 miles per hour is indicated.

P"or a stability investigation we are little concerned with the exact

speed, and for simplicity, the L and D from the wind tunnel test on

the complete model of figure i are converted to full size by multiply-

ing by the squares of speed and scale.

A total weight of 1600 pounds is assumed, corresponding to tanks

half full. For any speed [' the lift is a function of speed and atti-

tude and must equal the weight JV.

By the " law of squares
"

Force on Model _ / 30
Force on Aeroplane \26^^

hence

:

V
26V L '

where L is lift on model at 30 miles per hour.

For a series of values of L, corresponding to a series of attitudes

or angles of incidence, the required speed V was computed. The
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head resistance of the aeroplane moving at these attitudes and with

these speeds was computed from

:

where D is drift on model at 30 miles per hour, and T total thrust

required.

so Q,

Fig. 6.—Characteristic performance curves.

The effective horse-power required, angle of wing chord to wand

and thrust required are plotted as " characteristic performance

curves " on figure 6.

§8. AXES AND NOTATION

We shall adopt a notation similar to IJairstow's for the study of

dynamical stability. The normal attitude of the aeroplane is its

position when in steady flight in a straight line. We select rectan-

gular axes with origin at the center of gravity and fixed in the aero-
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plane and moving with it in space. In the normal attitude, the axis

of X is tangent to the trajectory of the center of gravity with its

positive direction toward the rear. The axis of c is normal to x and

Fig. 7.—Coordinate axes, x, y,

y in the vertical plane, and the axis of y horizontal and directed to the

left. The axes are shown in figure 7. As the aeroplane rolls, yaws,

and pitches these axes move with it. so that ^ is no longer in the

vertical plane of x, nor y horizontal.
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Let the aerodynamical forces along the axes x, y, c be denoted by

X, Y, Z and expressed in pounds force per unit mass/ The moments

about these axes are L, M, N in pounds-feet per unit mass. Angular

velocities about the axis are p, q. r in radians per second. Let angles

of pitch, roll, and yaw away from the normal attitude be 6, </>, i/' in

radians. Signs are positive in the directions xy, ys, and sx.

The radii of gyration about the axes x, y, z are K^, Kb, Kc in feet.

The mass of the aeroplane is //; in slugs. The products of inertia are

D, E, F. Two are zero for reasons of symmetry, and one is small in

ordinary aeroplanes.

In normal flight in still air, the apparent wind blows in the posi-

tive direction of the axis of x. Let this velocity be produced by

the forward velocity U of the aeroplane in normal flight, f/ is a

negative number of feet per second.

Let small changes in velocity components along the axes x, y, s

be u, V, w when any departure is made from the normal flying attitude.

In normal flight it is assumed that the power available maintains

the aeroplane at such a speed that the weight is sustained and also

that the normal attitude is that proper for the speed.

§9. EQUILIBRIUM CONDITIONS AND DYNAMICAL
EQUATIONS OF MOTION

Let the inclination ' of the flight path to the horizontal be 0^^. Since

normal flight takes place in a straight line, if/^,z=(fi^ — o. There is no

oscillation and pQ = qQ = rQ= o, and Lq — No= o.

If the propeller thrust Tq be exerted in a line above or below the

center of gravity h feet, then

M,= -ToK
To=-gsm6o-Xo,
Z^ = g cos e^.

In this aeroplane li = o, and hence Mq = o.

If any accidental cause slightly disturbs the normal attitude of the

aeroplane, the relative wind is no longer symmetrical and the aero-

dynamical forces and moments are .Y^ Y, Z, L, M, N.

In general, the aerodynamical forces and moments caused by the

deviation from " normal attitude " depend upon the relative motion

of the aeroplane through the air, which motion is defined by U, it,

V, XV, p, q, r. Thus X= f{U, u, v, w, p, q, r) where the form of the

function / is not known : and five similar expressions for Y, Z,

L, M, N.

' Unit mass is the slug of 32.2 pounds weight.
^ Consider ^0 positive for an upwardly inclined path as when climbing.
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In the theory of small oscillations ti, v, w, p, q. r are small by hy-

pothesis and we may expand X by Alaclanrin's theorem, neglecting

squares and products of these small quantities. Hence,

X= Zo + uX,, + vX, + zvX.o + pXp + qXq + rXr,

Y=Y^ + uYu + vyv + -ci'y,o + pYj,+ q\\+ rYr,

and similar equations for Z, L, M, N.

Here A'„, A'r, etc., are the partial derivatives of .Y with respect to

u, V, etc., and are the rates of change of A' with ii. v, etc. That is,

" dV 'u

There are, therefore, 36 " resistance derivatives '" involved which

are constants for the aeroplane and depend upon the arrangement

of surfaces and their presentation to the relative wind.

Fortunately, for reasons of symmetry, 18 of these derivatives

vanish, for example : Xv, Xp, X,-. We then write :

Z= A^o+ wXm+wXw+ qXq,

M= AIo + t{Mu+ zvMy,+ qZq,

Z= Z(, + uZu + wZui + qMq,

Y=Yo + vYv+pYp+ rYr,

L = Lq+ vLv+ pLj>+ rLr,

N=No+ vNv+ pNp + rNr.

The above expressions are only approximate if ii, v, w, etc., are not

small.

The equations of motion for a rigid body having all degrees of

freedom, are

:

j" +wq-vr=X + T, + gsm{6,-¥e),

'!lf

+(^ + ^')r- zvp=Y-g sin <^,

^-^vp-{U+ u)q = Z-gcos{6, + 6),

at - ' -f 3

^-- -ph:i+ rh^ = niM + h T^,

/here

-^ -qh^ + pho=:mN,

h^=pK\m— qF — rE,

h.,= qK'jiiii — rD — pF,

/13 =: rKl'in — pE — qD.
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But the products of inertia (relative to moving axes fixed in the

body) D =F= o, because the aeroplane is symmetrical about the xz

plane. Substituting the above expressions for h-^, h^, h^, in the

equations of motion, and neglecting products of small quantities,

we have

:

du A' , -r I

•
, n , n\ l- dp E dr J

^ + Ur= y + g s'mil/ sin (6^ + 6) - g s'lVKji cos (0^ + 6)

,

dt ,

, Kl'l^^= M+I,T„.

^-Uq = Z-gcos(0„ + 0). /v-^- ^i^=N.
dt

i>
y

"^ dt m dt

If we substitute for A', Y, etc., their values from the expansion in

terms of the first powers of u, v, zv, etc.. and observing that from the

conditions of equilibrium.

Mo + TJi = To + Zo +g sin e^= Z^-g cos 6^ = o,

we will have, making sin 4> — <l>,
sin i/'= i/', sin B= B, and cos O—i.

--^ - uXu+ zvX-w+ qXq + ge cos 6^0,

~=qU+ uZu +wZ^ + qZq+gd sin 6^,

^ =-rU + vYv+ p Yp + rYr + g^p sin 0^ - g<f> cos 0^,

Kl^= uMu+wM^+ qMq,

i^.dl_Edr _ J J
r

^'dt Mdi-""^"^^^'^^ "

We here assume T,, a constant, or that there is no change of pro-

peller thrust with small change in forward speed. With a motor in

" free route," if the machine speeds up, the propeller tends to race or

to speed up so that the slip shall be about constant, and hence the

thrust is not materially changed. Since the forward speed (U±u)
is approximately equal to U, the thrust is approximately constant

and equal to 7"o-

We have also assumed that T^^ lies parallel to the axis of x. At

very slow speed this is not exactly the case and T^ has a small vertical

component assisting in sustaining the weight of the aeroplane. At

high speeds. To is, however, usually parallel to x and the assumption
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that it al\va\s is so parallel is here made for sinii)licity. Tn any case

To is eliminated l)y the conditions of ecjuililjrium.

In the present investigation the normal flight path is assumed

horizontal, or ^„ = c>- The product of inertia E is small for ordinary

aeroplanes with the heavy weights fairly symmetrical above and

below the axis of x. In view of the probable insignificance of E and

the fact that E cannot easily be determined for an aeroplane by

simple experiments, it is here neglected. In the simplified form the

equations of motion then are :

^ = uA\ + wX,„ + gA', + ..'^. (la)

^ = qU + iiZ, + zvZ,o + qZq, (la)

dv

~dt
^-rU + vYv + pVp + rYr, (ib)

K,^=i'E, + pLp + rEr. (lb)

K%-^=uMu + zvM,, + qM„ (la)

Kl^ =vN,+ pNp+ rNr. ( ib)

It is seen that equations (la) involve only the longitudinal motion

or motion in the plane of symmetry' .r^c: of the aeroplane, since p, r, v,

and ^ do not appear. Likewise, equations (ib) involve only the

asymmetrical motion, lateral and directional, and do not contain

6, u, u% and q. The two sets may then be considered separately, the

former on integration giving' the "symmetrical motion" and the

latter the " asymmetrical motion."

d6
Since -j- =q, eciuations (la) mav be written in terms of three

at

variables u, -a', and H and their first derivatives. The " resistance

derivatives ''
A'„, A',., A'^, etc., are constant coef^cients. The three

variables are each functions of the time, and the three equations at

any instant of time must be satisfied by a concordant set of values of

u, zv, and 6. The equations are, therefore, simultaneous and .are

linear differential equations with constant coefficients.

Writing the operator D to indicate differentiation with regard to

d
tune or ,

{D-x,)ii-x,,zi'-(x,D+g)e=o, ^

-ZuU+{D-Z^)iv-(Zq+U)De= o,[ (2a)

- Muu-M^w+ (Kb-D'-MgD )e= o.
j
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The right-hand members of these equations are no longer zero if

any wind gusts are assumed.' The complementary function may be

found by the well-known " operational method '" by algebraic solution

for D. (See: Wilson's " Advanced Calculus,'' p. 223.)

The physical condition that the three equations shall be simul-

taneous is expressed mathematically by equating to zero the determi-

nant A formed by the coefficients of the variables u, zv, and 6. Thus

:

Z) + X«, ~X^, -(XqD + q)
~Z,„ D-Z^, ~(Zr,+ U)D =0.

-Mu, -M^o, (KID'-AUD)
I

Expanding the determinant we obtain :

where for abbreviation

:

A,=K%,
B^= - (M,+ X„ICs + ZuJ<%),

Am, a to, Ao

C,= +K:
Am, Xi

D,= -

E,=

Mu, My,,

Am, At<

7 7
Mu, M

Q

U+ Z^

M
Q

Q

cos Of,

sin df,

o

Mu, ( - ) sin

cos 0O

The solution of the biquadratic A for D is of the form :

D — a, h, c, or d,

where A'j, K^, K^. K^, Kr„. . . ./v-l2 ^re constants determined by initial

conditions. Solutions for u and zv are similar.

The condition for stability of motion is that 6, u, and zv shall

diminish as time goes on. Hence, each of the roots of the biquadratic

must be negative if real, or, if imaginary, must have its real part

negative. This condition for stability may be applied without finding

the constants /v^ to K^^, by solving only the biquadratic for a, b, c, d.

Indeed, Bryan has shown that by use of Routh's discriminant the

biquadratic need not be solved. The condition that a biquadratic

e({uation have negative real roots or imaginary roots with real parts

negative, is that A-^, B.^, C^, D^, E-^ and B^C^D ^ —AJD ^^ —B ^^E^ be

each positive.

^ Loc. cit.. p. I, §1, footnote 3.
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In a similar manner the equations (ib) defining the asymmetric

motion may be expressed as Hnear differential equations with con-

stant coefficients.

Substitute D-d> for ^/ and Dd) for h.' Then :

(D - Yv) V+ ( U - Yr)r+{g- VpD ) </> = o,

- L,v- L rv+ ( K\D- -LyD )cj>= o,

- Nr:V + (KID - Nr ) ,'- .V,,Z)<^ = O,

A., = A,D' + B.D^ + C.D- + D,D + E., = o.

where

:

A,=K%K\,

C.^-LrX. + NrL. + KlLpYr + KrYvKl+XrUKl
-{L,YpK%+ N,YrK\),

D,= Yr{LrNj>-NrLp) +L,{UNp+gK%) - ULj.Nv

+ (N,-YrL,-L,Y,N„ + LrY,Nr~N,YpLr),
E,=g(NrLr-L,Xr).

As before, the condition for stability is that the real roots and real

parts of imaginary roots of the l)i([ua(lratic be negative.

§10. CONVERSION TO MOVING AXES, LONGITUDINAL DATA

Horizontal flight at 0° incidence i of wing chord re([uires a

speed of 112. 5 feet per second, or about // miles per hour (see the

characteristic performance curves). The normal attitude then has

the axis of x parallel to the wing chord and horizontal. The axis s

is vertical. For slow speed with an angle of incidence i of 12°, a

speed of 54 feet per second, or about t,/ miles per hour, must be main-

tained. In this case, the normal attitude has the axes x horizontal

and c vertical, but the axes are entirely different from those used for

tlfe high-speed condition if they are considered with reference to the

aeroplane. The axis of v is, however, the same in both cases.

' Since we consider only the small oscillations, </> and i^ are of the nature of

infinitesimals, and hence compound vectorially as do p and r. Professor

E. B. Wilson suggests the important implification of the treatment given by

Brvan or Bairstow due to making j — /> and -j^—r. They used angular
at at

coordinates giving expressions for j^and-jy in terms of p and /- and the

angles which are initially cumbersome but ultimately reduce to the simple

form here given.
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The aeroplane may ])itch about its normal attitude. At any instant

the angle of pitch is the angle B between the normal attitude axis of

X and the new position of x. The axes, of course, pitch with the

aeroplane. The axes are fixed by the equilibrium conditions and

differ for each speed since each speed requires a different attitude.

-^' O' -^^' Z"^' ^<5- /^a- t/O' Z'/^' X/^
X^y/i" t>/'>*^yy7^ ^y^e>^o^.^ ' ^^c^ir//o y^A:yi'^y7^/ir^ <S>

Fig. 8.—-V, Z, and M for /= o°.

z/*^' r/s-

It was convenient to measure in the wind tunnel the lift and drift

on the model referred to axes always vertical and horizontal. The

corresponding forces along the moving axes x and z are readily

obtained from

:

Z'= L cos ^+ Z) sin ^,

X'= Dcos^-Lsin^.

Here L and D are })Ounds on model, 6* is angle of pitch, and Z' and X'

are pounds force along the moving axes. A'' and Z' are then con-
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verted to full-speed full scale as usual and divided by the mass in in

slugs to obtain X and Z in poinids jier unit mass on the full-size aero-

plane at the proper speed.
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For this aeroplane we have, for example,

'f'S
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through the experimental points to show the consistency of the

measurements and calculations.

§11. RESISTANCE DERIVATIVES, LONGITUDINAL

The longitudinal oscillations of the aeroplane are given by three

equations of motion of §9, in which certain " resistance derivatives
"

are required.

The quantity X« is the rate of change of X with change of forward

speed u. Since X varies as the square of the speed, Xq= CU~ where

C is some constant.

Then ^J^, =2CU=^ =X« and Z„= ^^« = -^f , so that these
ou u u u

coefficients are readily calculated.

The derivatives X^, Zw, Mw represent the efifect of a vertical com-

ponent of velocity zv. The vertical component of velocity w acts with

the horizontal velocity U to cause the resultant wind to have an

inclination to the horizontal

A^= tan-'^-^57.3g,

when A^ is a small angle measured in degrees.

Hence

Z - ^

"^ u ^t)

The method practically substitutes the slopes , . ,
-„- of

the tangents to curves of X, Z, M, 2XO— 0, for the actual curves. Wc
have assumed A^ small. If a curve be nearly a straight line, we may
substitute the tangent for the curve without great error. Thus it

may not always be necessary to assume A^ very small. In fact, a

range of from 5° to 8° is tolerable.

Since we assume M^— O, the balance should be undisturbed by

change of forward speed. Therefore, Mu,= o in all cases.

Note that a positive value of M^ corresponds to a curve of pitching

moments giving statical stability or a righting moment. If Mio is

positive it does not necessarily follow that the aeroplane will be

dynamically stable, but if Mw is negative, instability is of course

certain. A'„ should be negative to indicate increased resistance for

increase of forward speed —u. For stability, Z^ should be large and

negative, indicating increase lift for larger angles of incidence and

vice versa. At stalling angles, Z^ tends to approach zero.

AX.
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§12. DAMPING

The derivative Mq is the rate of change of pitching moment due to

angular velocity, or rapidity of pitching q. For a pitch of velocity

do
-T. —q, there is a moment of qMq tending to resist such pitching.

This is the damping due to the horizontal stabilizer, elevator flaps,

body, and all parts forward and aft of the center of gravity. The
pitching takes place about the center of gravity. The damping is

increased by a large tail and a long body.

The damping of a surface should depend on the area of the sur-

face, the moment arm of that surface, the linear velocity with which

it swings through the air (which varies also as the moment arm), and

with the velocity of advance. Thus : qMq'-^ql^U, where / is a linear

dimension.

If we can measure Mq for the model at any wind speed, we may
convert it to Mq for the full-scale aeroplane at its proper speed by

multiplying by the fourth power of the scale and the ratio of aero-

-plane speed to wind speed. Naturally this is an approximate method,

but it is the besf available since full-scale tests for Mq are not

practicalile.

Similarly A',- and Lp may be obtained from model tests. These

refer to the damping of a yaw and a roll respectively.

In order to measure Mq, Nr, and Lp a special oscillator was de-

signed, shown in the photograph in figure 12. By setting the appa-

ratus to oscillate in pitch, roll, or yaw the corresponding damping

coefficients can l)e computed from the observed decrement. The pho-

tograph (pi. i) shows the apparatus with model as used for pitching

oscillations.

Let:

/= moment of inertia of all oscillating parts in slug foot units,

m'= mass of all oscillating parts in slugs.

Mo= moment of air forces on model at rest,

Ms= moment of springs at rest,

i^^= additional moment of springs when deflected,

c= center of gravity of entire apparatus above pivot, feet,

^= angle of pitch from normal attitude in radians,

fjif^-.
= damping" moment due to friction,

/i^^ = damping moment due to wind on apparatus,

do
fj-m^ = damping moment due to wind on model,

cw'^= static moment due to gravity.
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The equation of motion then is :

But AIq = Ms by the initial condition of equihbrium. Let

then

The sokition of this equation is well known to be

:

^= C^ 2/ cos j tj (K-cm') 4 - -/^ +« } '

where C and a are arbitrary constants. If time be counted when the

amplitude of swing is a maximum, then cos^ f"=i> si^<i ^= ^0- the

initial displacement. Also if the number of beats be counted by

observing- the times for succeeding maxima, a plot of amplitude on

time will have for its equation the simple form :

fit

The coefficient /x is the logarithmic decrement of the oscillation and

must be numerically positive to insure that the oscillation dies out

with time.

The apparatus was fitted with a small reflecting prism by which a

pencil of light was deflected toward a ground glass plate set in the

roof of the tunnel. Nine lines spaced 0.2 inch were ruled on this plate.

With the model at rest the beam of light was brought to a sharp focus

on the line marked zero. By means of a trigger the observer started

an oscillation of the model, and the spot of light was observed to

oscillate across the scale. The time t was observed in which an

oscillation was damped from an amplitude of 9 to an amplitude of i,

for example.

Then : log, '' = ^ ^= log, Q, and knowing / and t, u. is calculated.

Preliminary tests showed that the same value of ^ was obtained

whether the timing stopped at ^=5, 4, 3, 2, or i.

Oscillation tests were made at five wind velocities varying from 5

to 35 miles per hour. The coefficient /,(. appeared to vary approxi-

mately as the first power of the velocity.

Similar tests were made with the model for no wind to determine

fiQ, which may be said to be due almost wholly to friction and very

slightly to the damping of ap})aratus and model moving through

the air.
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Likewise fjiiu was obtained by oscillating the apparatus without

model in winds from 5 to 35 miles per hour.

The coefficient /x,„ has the dimensions jo/'[', where p is density of

air. / a linear dimension, and V the velocity of the wind. To convert

fim to Mq for the full-size machine at full speed, multiply by the fourth

power of 24, the scale, and by the ratio of full speed to model speed.

The model is mounted in such a manner that the axis of oscillation

through the two steel pivot points passes through the assumed center

of gravity location for the aero])lane. The actual center of gravity

of the model is not considered.

Transverse arms carry counter weights by which the natural period

may be adjusted. The springs insure that the motion shall be

oscillatory. Knife-edged shackles bearing in notches in the trans-

verse arms carry the pull of the springs. The springs are not cali-

brated as the calculation eliminates the spring coefficient.

Friction is kept small by careful design. All pivots are glass-hard

tool-steel points bearing inside polished conical depressions of tool

steel. A convenient period for observation is ^ second. In still air,

the apparatus will oscillate over 300 times before the amplitude is

diminished to ^ the initial displacement. The latter is about 3°.

Numerical results for the pitching oscillation follow :

§13. OSCILLATIONS IN PITCH

Inertia, model and apparatus = .03945

Inertia, aiijiaratus =.03680

Apparatus

Wind velocity, miles per hour 30

/, seconds 94 • o

IX 00172

fjiw (less zero) 00018

Apparatus and Model, Incidence of Wing, 0°

A^elocity, miles per hour 35

t, seconds i5-5

fi 0112

Mo 0015

fJiw 0002

hm (net) 00950

20
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Apparatus and Model, Incidence of Wing, 6°

Velocity 30 24

t 20 24

fx 00870 . 00725

fiQ 00160 .00156

[Xw 0002 . 0002

/xm (net) 00690 -00550

VOL. 62

/<?c?

-?^

S'a

/o

-\ 60
V
\)

\

^0

/o
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Apparatus and Model, Incidence of Wing, 12"

Velocity 35

t 23.5

fi 0074

fJ.Q 0016

jXy} 0002

[Xm (net) 0066

Values computed as above for /.i,,;, net, for the three cases are plotted

in figure 13. The points appear to lie along straight lines in justifica-

tion of the assumption that the damping coefficient varies as the first

power of the velocity of flight, To convert to full-speed full-scale,

we use the formula,

30
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V miles per hour

U feet per sec.

.

Normal incidence

Xj,

Am;

z„

^ w

M..

M,

A
B,

C,

D^

£1 •••
Routh's discr. . .

m
Long period, sec.

Time to damp, 50;;

Time to double.

Character

+

76.9

112.

5

0°

.158

•356

•57

5.62

3-2

192.0

21 .6

317.0

1492.0

266.0

59-2

+ 117X 10"

50

34-7

8.1

Stable

53

78

3

- 3

+ 3

-123
21

207

804

128

106

44

65

6

12

249

823

77

99
o'

+

+

6

o

o

3

o

16.4X lO''

50

17.6

II .0

Stable

6

3

1 194

245

985

92

25

7

6

3

o

6

4

3.2X 10"

50

15.8

13-1

Stable

93
21

T59

444

72

36.9
- 54-0

12°

-
. 162

o

- 1. 19
- 1 .0

+ 1 .41

- 60.5

21 .6

85.1

1 50 . o

22.

1

54 -o

-
. I2X 10''

50

10.56

24.7

Unstable

The coefficients of the biquadratic computed from the formulae of

§9 give for high speed

21.62D* + 31 7-oZ)'' + 1492.0D- + 266.0!) + 59.2= o.

Each coefficient is positive and Routh's discriminant

is also positive and equal to 117x10''. The motion is, therefore,

stable. The aeroplane if set pitching will return in time to its normal

attitude.

Bairstow has shown that, considering the usual values of the

coefficients of the Ijiquadratic, it may be factored approximately,

giving

:

The first factor reduces to :

Z)-+ 14.75/^ + 69.0= 0,

D— -~/.s8±T,.8si where i=\''~^.

This is the well-known condition for a simple damped oscillation of

period,

'
^ 27r ^ ,p= —ry- =1.64 seconds,

3-83

' By interpolation.
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and damped to one-half amplitude in time,

/= -^ =o.ou4 second.
7-3^

For most aeroplanes, this first factor corresponds to a short oscilla-

tion SO heavily damped that it is of no im]:)ortance. Indeed, it could

not be observed on the actual aeroplane in flight.

The second factor, similarly, reduces to

:

Z)=-.o85±.i8i/.

P= ,, = >4-7 ."^econds,
.i8i

t= —/ =8.1 seconds.
.085

This is a longer oscillation but heavily dami)ed. The period of 34.7

seconds for the motion is great, and at high sjieed this aeroplane if

left to itself after an accidental longitudinal disturbance should follow

an undulating path with rising- and sinking of the center of gravity,

together with ])itching- and periodic changing of forward speed.

There is an oscillation in u, iv, and B. In 34.7 seconds, the aeroplane

runs 3900 feet, which is the distance from crest to crest of the flight

path. In one period the ampHtude of the undulation is almost com-

pletely damped. It is unlikely that this motion wpuld be uncom-

fortable to the pilot even if the initial disturbance due to a gust or

other cause were severe.

At high speed, this aeroplane is very stable compared with other

machines which have been tested. The natural period of the Curtiss

JN2 is aljout 34 seconds, damped 50 per cent in 11 seconds, according

to calculations made by us. A Bleriot monoplane model tested by

Bairstow had a period of pitching of 25 seconds, damped 50 per cent

in 15 seconds.

There 'is no other i)ublished data of this character. It appears that

great statical stability or large AUv will give a stiff machine with a

rapid period. Such a machine, though very sta])le, may be so violent

in its motion as to lead the pilot to pronounce it unstable. The design

tested here appears to have as easy a period as the Curtiss and Bleriot,

both considered very satisfactory in flight, together with greater

damping.

High speed and a long tail tend to damp the pitching. What we

aim to secure—namely, steadiness in flight—may better be obtained

by large damping factors rather than by strong righting moments

(statical stability) . It is well known that the French monoplane pilots
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demanded at one time a neutral aeroplane with no stability whatever

against pitching, on the ground that " stable " aeroplanes were too

violent in their motion in gusty air. Another disadvantage of ex-

cessive statical stability lies in the tendency of the machine to " take

charge " and take a preferred attitude relative to the wind at a time

when such a maneuver may embarrass the pilot, as when approaching

a landing. However, it appears possible that a machine with the

minimum of " statical " stability may be given the maximum of damp-

ing and so have a very slow period of pitching. The motion will be

nearly dead beat.

This digression with regard to damping z's. " statical " stability

applies wnth equal force to the rolling" and yawing motions of the

aeroplane to be considered under " lateral stability."

For low speed, 36.9 miles, similar calculations give for the longi-

tudinal motion

2i.6D* + Ss.iD^+ i49.8D~ + 22.iD + S4= o.

Routh's discriminant

B,C,D^-A^D^'-B^^E^=-i2Xio\ Unstable.

Short oscillation

:

D'-+(BJAJD + C,/A, = D^ + 3.90 + 6.94= 0,

£>=- 1.95 ± 1.77i

p= —— =3.58 seconds,

t= —^ = .36 second to damp 50 per cent. Stable.

Long oscillation

:

D^-+ {DJC^-B^EJC^'')D + EJC^ = D'~ - .os6D + .36= 0,

D= +.028±.594J,

p= ^^ = 10. s6 seconds,
•594

t= —-^ = —24.7 seconds,— .028

or + 24.7 seconds will double the initial amplitude. Unstable.

At this speed Routh's discriminant is negative, indicating that the

motion is unstable. The instability is seen to appear when the real

parts of the roots corresponding to the long oscillation become posi-

tive. The motion is rapid : only 1 1 seconds' period compared with

35 seconds at high speed, and any initial displacement will double

itself in two periods. The damping of the motion has vanished and

although the increase of amplitude is not so rapid that there is danger
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of the pilot's losing control, yet it is clear that he cannot fly at this

speed unless he is alert.

Taking Roiith's discriminant as a measure of dynamical stability

we have its value +117x10" at high speed and —0.12x10'' at low

speed. Compared with the high-speed value, the latter is insignificant

and we may conclude that the instability at low speeds is of relatively

slight danger. Indeed, we may say that the aeroplane is stable at high

speed and about neutral at low speed.

The progressive change in Routh's discriminant with speed is more

clearly shown on figure 14. On the same plot, we give a similar curve

for a Curtiss type tractor. The " critical velocity " for the Clark type

is about 40 miles per hour and 47 miles per hour for the Curtiss type.

All aeroplanes of normal type are probably longitudinally stable at

high speeds but lose this stability for all speeds below a certain critical

speed where Routh's discriminant becomes zero or changes sign.

The examination of the longitudinal stabiHty of the Bleriot men-

tioned above applied only to high speed. The importance of investi-

gating stability at low speeds has, it is l)elieved, never before been

shown.

The reason the stability of the longitudinal motion vanishes at a

critical velocity must be found in the approximate factor representing

the long oscillation.

D, _ B,E{
D-'+

Cr'\
D+^' =0.

Stabihty vanishes where D^/C^=EJi^lC\. or where D^C^ — E^B^. In

other words, stability is reduced as EJi^ is made large or D^C^ small.

At high speed we have 266 X I492> 59.2x317, but at low speed

22.1 X I49.8< 54x85.1. It appears that B^ is smaller at low speeds,

which is desired, but Z), and C, are reduced to a greater degree, which

is not desired.

The cause of the reduction in the magnitude of Z), from 266 to

22.1 can be shown in the elifect of change in resistance derivatives in :

D,=
M„, sin 6*0

Mk, cos 6,^

For^,

jIIm, iliw, Mq

o, Xq= Zq= Mu = o, we have

D^=- XuZ^Mq+ XuUMlo + Z,,Xr„AIq-

The first term is reduced at low speed because Z,, is less than }, and

Mq 7^ of their values at high speed. Since [ and M „: are smaller, the
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second term is but ^ of its high-speed vakie. The third term is

unimportant.

From

Mu„ Ma

we see by inspection that the principal reduction in C\ at low speed

is due to smaller values U, Mw, Z^, and Mo, which greatly reduce the

terms ZwMci and UMic- These two terms are the principal numerical

ones in the expression for C\.

In general, £1= —gZuMiv will increase in value due to increase in

Zu and Mio, but the efifect on the motion is not great. On the other

hand, B-^= ~Mq — Kl(Xu + Zu->) will drop rapidly for large angles

of incidence due to drop in Mq and in Z,„. This is favorable to

stability.

It is seen that the quantities U, Zuu and Mq preponderate in the

numerical values of the coefficients D^C-^ and E^B-^. For ordinary

speeds, or s])eeds above the speed of minimum power, we have,

approximately,

D,^-Xn{ZuMq-UM^) +ZuX^Mq= -Xu(ZrMa~UM^),
C, = {Z„Mq- UM,,) +XuMq + Kl(XuZ,,-X,,Zu)= {Z^Mq-UM,,).

B,^-Mq-Kl(Xu + Z,o) = -M,~K\Z,o,
Z:,= —gZuMw
The condition for damped motion then becomes :

D,C\>E,B, or {Z,,Mq-UM,y> - ^^^^ M,,(Mq + K%Zrc),

7 Z
where "- = -^ and J/„; are nearly constant. Damping of the long

oscillation is then favored by large values of Z^^, Mq, and U . That

is, by light wing loading, large damping surfaces, and high velocity.

As speed is reduced these quantities become smaller and the oscilla-

tion is less strongly damped.

For very low speeds, including those below the speed for minimum

power, the value of Zn- nearly vanishes and 'Mq becomes small. Here

the approximate expressions would be written,

D ^
— Xu UM^o + ZuX^uMq,

C,= -UMu^,
B,= -Mq-K%{Xu + Z,o),

Ei=—gZuMw,
and

— l^'^ M,,V +M^X,^>jj {Mq + Kl{Xu + Z^)).
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For very low speeds, the quantity A%o is often found to change sign

;

therefore, the two terms on the left may be of opposite sign and a

large value for Mq diminishes D^C-,^ and increases B-^E-^^. In a " stall-

ing " attitude the aeroplane should have Mq small, Mw large, and, if

possible, the radius of gyration in pitch Kb small.

The attitude of a " stalled " aeroplane is not ordinarily considered

a "normal" attitude of flight, but, unfortunately, an aeroplane is

frequently " stalled " by an inexperienced pilot. The longitudinal

motion of an aeroplane if held in a " stall " would be, in general,

unstable, but vmder favorable circumstances with Zq, Z^, Kb small

and Mw large it is possible to have a stable motion. For example,

in an extreme case with Zw zero, if the aeroplane head up higher due

to large .Y,^ it slows down, loses lift and sinks. In sinking, M^, if

large, will head the machine down, speed \vill be gained on the dive

and the resultant gain in lift causes the aeroplane to rise again. The

oscillation will not increase in amplitude with time if the machine is

able to respond quickly to the righting moment Adw. The damping

Mq and radius of gyration Kb must not be too large. If Mq and

Kb are too large, the machine is dynamically unstable by having

The question of safe flight at a stalling attitude is complicated by

the fact that the lateral controls become ineffective, but by manipula-

tion of the power delivered by the motor, combined with skilful use

of the rudder, an expert can land an aeroplane at surprisingly low

speed.

The period is given by the imaginary part of the roots, or

-,_ 27r

I J4^1.. /D,C,-B,E, y'

5

—

^ ^
^—

1
1 is usually small, we may write approximately,

P = 27ry
E.

then
\ -gZyAU, U

'^y^H^-w-
At low speed, U as well as Z^ and Mq are reduced and the period

becomes short. A stiflf machine with large Mw would have a rapid

period. For given speed, if we make Mq large in order to provide

heavy damping, care must be taken that Mw shall be small in order to
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secure a slow motion in pitch. It will be remembered that Mw is a

measure of statical stability or " stiffness " and was mentioned as

somewhat analogous to metacentric height for a ship.

By adjustment of Z,„, Afq, and Mu, it appears possible to combine

heavy damping with a fairly long period and so obtain great steadi-

ness in normal flight.

§15. CONCLUSIONS (LONGITUDINAL DYNAMICAL STABILITY)

Stability calculations are of greater interest when they can be com-

pared for diff'erent aeroplanes. At present, information is scanty but

we may obtain by inference some general conclusions by comparing

the Clark type aeroplane just described with a Curtiss type aeroplane

previously tested by us.

The two aeroplanes are designed to have about the same perform-

ance. The principal difference at first sight is the greater wing area

of the Clark—about 3.45 pounds per square foot against about 4.7

pounds per square foot for the Curtiss. In consequence of the lighter

wing loading, the Clark type should have a steeper curve of Z giving

Zw large, which is favorable to stability.

The Clark aeroplane has a smaller horizontal tail area than the

Curtiss, but the fixed part is inclined at — 5° to the wing chord against

— 3° 5 in the Curtiss. The Clark tail is only a trifle longer than the

Curtiss and we may conclude that the pitching moment due to air

pressure on the tail surfaces is about the same in the two machines.

However, the Clark model uses a wing section on which the center of

pressure motion for small angular changes is very slight. The

Curtiss has a s.ection described as R. A. F. 6
' in wdiich this motion is

considerable. For equal tail moments we may then expect Mw to be

larger for the Clark machine. This is favorable to stability.

Due to the smaller tail, the damping of the pitching for the Clark

model might be less than for the Curtiss. However, we find Mq at

high speed —150 for the Curtiss against —192 for the Clark model.

The increase must be due to the greater wing area of the latter since

a calculation of the damping due to the tail alone gives a result less

than one-half that observed for the whole machine.

The greater stability of the Clark model at high speeds is then due

principally to greater values of Z^ and Mio. At low speeds, the

resistance derivatives of these two aeroplanes are not greatly differ-

ent. Both become very slightly unstable in their longitudinal motion.

^ See Technical Report Advisory Committee for Aeronautics, 1912-13.
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The following table facilitates comparison :

Stable High Speed Unstable Low Speed

Curtiss Clark Curtiss Clark

1
1° 0° 14° 12°

Xu — .128 - .158 — .223 — .162

X,o + .162 + .356 - .132 O

Zu - -557 - -57 - -993 - i • 19

Z,v - 3-95 - 5-62 - .555 - i.o

Mw + 1-74 + Z-^ + 1-99 + 1-41

Mq —150.0 —192.0 —108.0 —60.5

Kl 340 21.6 34.0 21.6

A-^ 34.0 21.6 34.0 21.6

B^ 289.0 317.0 134.0 85.1

Ci 834-0 1492.0 213.0 150.0

D^ 1 15.0 266.0 28.0 22.1

£, 31-2 59.2 63.6 54.0

Routh's discr. 18x10'' 117x10'' —.37x10" -.12x10'''

P sec 34.0 34.7 II.

5

10.6

f sec 1 1.0 ^ 8.1 — 24.7 —24.7

U, ft.-sec... -II5-5 -112.

5

- 64.8 -54-0

We may infer in general that

:

1. Any ordinary aeroplane is likely to be unstable longitudinally

below a certain critical speed.

2. Stability is improved by large wing area, i. e., light load per

square foot.

3. Stability is improved by large horizontal tail surfaces.

4. Stability is improved by high speed.

5. Stability is improved by great head resistance or a poor lift drift

ratio.

6. Stability is improved by a small longitudinal moment of inertia.

7. Stability is improved by wings with slight center of pressure

motion.^

There appears to be no reason to depart from the normal type of

aeroplane in a search for longitudinal stability. A steady motion in

flight is to be obtained by careful adjustment of surfaces in the ordi-

nary type aeroplane, and the invention of freak types to accomplish

great stability at the expense of speed or climb is to be discouraged.

Furthermore, the ordinary type of aeroplane may be made dy-

namically stable longitudinally without material sacrifice of desirable

^ For a biplane combination giving a stationary center of pressure without

material loss in other desirable features, see " Stable Biplane Arrangements,"

by J. C. Hunsaker, Engineering, London, Jan. 7 and 14, 1916.
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flying- qualities, such as ease of control. In this connection it is im-

portant not to give too great statical stability. Safety in flight may

well depend more upon ease of control than upon stability. The

almost universal prejudice among accomplished flyers against so-

called " stable aeroplanes " appears to have a rational foundation.

PART II. LATERAL MOTION
§1. LATERAL OR ASYMMETRICAL TESTS

When the aeroplane is yawed to right or left of its course through

an angle of yaw i/', the wind blows through the wings obliquely and

gives rise to a lateral force Y at right angles to the longitudinal axis x

of the aeroplane, a rolling moment L tending to roll the aeroplane

about the x axis, and a yawing moment N tending to yaw the machine

about the a axis.

To measure the force V and moments L and A'' as the aeroplane

yaws, the model was mounted in the wind tunnel and held at various

Angles of yaw to the direction of the wind. At each position measure-

ments were made from which the component forces X, Y, Z and

moments L, M, N could be calculated.

The details of the method are given in the Technical Report of the

Advisory Committee for Aeronautics, 1912-13, p. 128, where a de-

scription is found of the special apparatus reciuired.

Briefly stated, the balance is arranged to measure the moments of

the air forces about axes parallel to those axes used for calculation,

whose origin is at the center of gravity of the aeroplane. A yawing

moment is measured about a vertical axis passing through the main

pivot of the balance. The moments of the drift and cross-wind forces

are measured about horizontal axes parallel and at right angles to

the tunnel axis and passing through the same point. In order com-

pletely to determine all forces and moments, a special fitting is pro-

vided on which three more measurements may be made. This moment

device measures the pitching and rolling moments about horizontal

axes passing through the pivot of the attachment. In addition, the

total Hft or vertical force is measured on the balance. We then have

five moment observations and one force observation, as follows :

Vf, measured on vertical force lever (a hft),

Mz, measured on torsion wire (a yawing moment),

Vp, pitching moment about a high point o-^,

Ve, rolling moment about a high point Oj,

Md, moment of drift force about a low point 0.,

Mc, moment of cross-wind force about Oo.
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We first reduce to the orig^in Oj about which [> and T^are
measured, which is / inches vertically above o.,.

Denote by primes forces and moments in pounds and pound-inches

on the model for 30 miles per hour wind velocity referred to axes

through the point o.,- Then :

L'=Vrcos — Mz sin 0,

M'=Vr,
N'=Vjis'mO+ Mzcose,

X'=- Vf sin ^+ ^Md cos xp-McS,\nxp-Vp\——

,

F'= Vr— Mc cos i/'— MjD sin tp

I

sin 6
Z'=J^rcos 6+ ^ Mn cos ip —Mc s'm\l/—J'''p\-

If the center of gravity of the aeroplane (model) be arranged to

have the y coordinate zero, and its x and s coordinates a and b (in

inches) referred to o-^, we have for the axes passing through the

center of gravity

:

X, = X',

i\=y',

L^^L'-^rcY',

M^ =M'-cX' + aZ',

N, = N'-aY',

where A\, F^, Z^, L^, M^, N^ are the quantities expressed in pounds

and inch-pounds on the model at 30 miles per hour. Converting to

full-speed full-scale and to units of pounds and pounds-feet per unit

mass, we obtain the required .Y, Y, Z, L, M, N

.

The model was first set at an angle of wing chord to wind of

0° corresponding to high speed. Measurements were then made
as above for angles of yaw of ±25°, ±15°, ±10°, ±5°, 0°, keeping

the incidence constant. In reducing the observations, values for left-

and right-hand angles of yaw were averaged to eliminate errors due

to lack of symmetry in the model. In the first test the angle of pitch

is zero, and the axis of x horizontal. The test was repeated with the

model at angles of incidence of 6° and 12°, corresponding to the

intermediate and slow speed conditions. Here, again, 9 in the

formulae of reduction is zero, since each new axis of x is also

horizontal.

It is apparent that the labor involved in the complete solution for

X, Y, Z, etc., is considerable and, im fortunately, the method requires
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the use of fornnike in which the (hfference between products of ob-

served quantities is involved. Naturally, the precision of the result

is poor when we are left with a small difference between large

quantities.

The measurements / >, My., I' p, J'ji, Mn, Mc are probably correct

within 2 per cent. L involves no difference and may be taken as

equally precise.

Since iV-, = A'' — a)' we may make the distance a very small in

setting- up the api)ara(us and so keep the precision of N about 2 per

cent.

From

^, _ Vji—Mg cos ifz
—Mn sin ij/

y __ ^ ,

we note that (iUr cos 1// + .I//; sin i//) is from three to five times as

large as I' r. The precision of ]' should then be between 2 and 6 per

cent.

From similar reasoning, we may expect Z and X to be precise

within lo per cent, but in s]iecial cases, where wc must take the

difference of quantities of nearly e([ual magnitude, the precision is

not so good.

The cjuantity ^1/ is a small moment which should be nearly zero if

the aeroplane is balanced properly. Obviously, no estimate of the

precision of M as a per cent can be given in such a case. Where M
is large, as in the 12° condition, the measurement is precise to about

10 per cent.

Fortunately, for a study of lateral stability, we are concerned with

Y, L, and A'^ only, and these quantities are determined with fair

precision.

The values computed for X, Z, and M for zero yaw may be com-

pared w^ith A^, Z, M, determined independently in the tests on lift

and drift discussed in Part I. 1die latter are probably precise within

2 per cent. Consequently the computed A', Z, and ^1/ obtained from

the asymmetrical tests have been adjusted to make them agree with

A', Z, M obtained from the symmetrical tests.

The change of X, Z. and .1/ \vith i// is not important, and A', Z,

and M are not used in the theory of asymmetrical or lateral stability.

Since by our equililirium conditions, the pitching moment M^ must be

zero for normal flight, we must assume that the pilot makes M^ zero

by slight adjustment of his elevator tiaps. In the tables below, the

small value of A/^, observed when the angle of yaw xjj is zero has been
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subtracted from the observed M for each angle of yaw. This adjust-

ment is required to give longitudinal equilibrium to the aeroplane

when in its normal attitude.

The following tables summarize the data upon which the subse-

quent calculations are based

:

High-speed attitude, i= o°, I— 26 inches,

c = 6.37 inches, a= —2.41 inches.
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Low-speed attitude, 1=12°, 1= 26 inches,

^= 6.91 inches, a= — 1.71 inch.
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a steep curve of yawing moments A^, may cause the aeroplane to be

unmanageable in gusty air. It may " take charge " and, due to

excessive " weather helm," be difficult to keep on any desired course.

Fig. 15.—Curves of lateral force, rolling moment, and yawing moment, as

angle of yaw changes.

It wall be shown later that the so-called " directional "' stability is not

only undesirable in gusty air, but is the determining factor in " spiral

instability." Indeed, " directional stability " is very nearly incom-

patible with inherent dynamical stability in roll, yaw, and side slip

considered together.
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If the aeroplane yaw to the rit;ht, it is practically slartini^' off on a

turn to the rii^ht. As is well known, to make such a turn safely an

aeroplane should be "banked" to such an angle of roll that the

centrifugal force, acting to the left, is about balanced by the hori-

zontal component of the normal force Z acting to the right. In other

words, the bank proper to a right turn requires a positive angle of roll

<f>
given by a positive rolling moment L. The curves of L in the figure

show that for this aeroplane the natural rolling or banking moments
are positive for a positive yaw, and hence tend to bank the aeroplane

suitably for the turn. This property is extremely valuable in prevent-

ing capsizing.

As in the case of the yawing moments, an excessive amount of

natural banking may be uncomfortable, especially in gusty air. Thus,

if the wind shifts to the left, the relative angle of yaw is positive, the

aeroplane tends to turn to the left due to its " directional " stability

and to bank for a turn to the right due to the natural banking or

rolling moment L. The result may be to throw the aeroplane about in

a somewhat violent manner, or it may capsize. This motion is dis-

cussed later under the heading " Dutch roll."

Large banking" moments L can be given by vertical fin surface

above the center of gravity, by a dihedral angle upwards or a

" retreat " or sweep back of the wjngs. All these arrangements are

probably equivalent and, though tending to give a stable motion in

still air, tend toward violence in gusty air.

The model under test has, as is shown l)y the drawings, a dihedral

angle upwards of the wings made by raising each wing tip i.6°. This

amount of dihedral has been found in practice to be not excessive on

ordinary aeroplanes.

The curves of lateral force )' are negative for a positive yaw. This

means that if the aeroplane yaws to the right in still air, it is pushed

to the right and started off on a right turn. We saw above that the

natural banking is suitable for the turn. In gusty air, if the apparent

wind shifts io° to the left the lateral force pushes the aeroplane to

the right.

Numerical values are interesting. Suppose a plus yaw of io° in

still air. The rolling moment at high speed is 2,000 pounds-feet.

This is equivalent to a down load of 55 pounds on the right aileron

and an up load of 55 pounds on the left aileron. The pilot with his

aileron control can, if he wish, produce a rolling moment over three

times this magnitude, so that he can prevent the aeroplane taking

charge and hold it level. Approaching a landing, it is most important
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that the aileron control shall be very powerful compared with the

natural banking tendency. Excessively stable aeroplanes may be

really dangerous to land in gusty air. In any aeroplane design, the

relative magnitudes of the natural rolling moment and the aileron

control available should be carefully considered.

If the aeroplane side slip with a lateral velocity v, the resultant

velocity of the center of gravity of the aeroplane is obtained by com-

bining z; as a vector with the forward speed U. The apparent wind

in still air is then inclined to the axis of the aeroplane as it would be

w^ere the aeroplane yawed from her course by an angle

A side slip to the left is equivalent aerodynamically to a positive or

right-hand yaw. The sign of the lateral force Y is negative for a

plus yaw and hence resists the side slip, as is desired.

The asymmetrical motion is a combination of rolling, yawing, and

side slipping as is indicated by the qualitative discussion given above

and by the equations of motion in Part I, §9. In order that, under

the influence of A^, L, and Y, acting in concert, the disturbed motion

shall be stable, the aeroplane must tend to return in time to its original

attitude. It is impossible to determine whether the aeroplane is thus

stable from a consideration of A'^, L, and 1' separately. -The term
" directional stability," frequently used, means very little with regard

to the probable motion of the aeroplane.

The quantitative determination of the stability of the motion can be

made only after we have found the numerical values of the coeffi-

cients needed in the equations of motion in Part I, §9.

§2. RESISTANCE DERIVATIVES

The rates of change of N, L, and Y with velocity of side slip v are

the partial derivatives Nv, Lv, Yv The side slip velocity v is equiva-

lent to an angle of yaw ij/ given by

:

tan i/'= jT .

i U
If (// is small and measured in degrees, the tangent is equal approxi-

mately to the circular measure of the angle, or

and

M - ^N -_ 57-3 ^K^ dv C Aip
'
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The fraction ^^is the slope of the curve of N plotted on angle of yaw

xp as absciss?e.

Similarly : _ _ 57.3 aL

and

V -- ^7-3
.
^>

Taking- the slopes of the curves of L, N, Y at t/'= o from figure 15,

we obtain the following " resistance derivatives " needed in the

lateral equations of motion.

High speed

:

f
Yv=-.204,

i=o°J Lv=+3.o6,
[A^,= -.449.

Intermediate speed

:

fYv=-.oS78,

i=6°J Lv=+3.44,
[a^=--35I-

Slow speed

:

i=i2°J Lv= +1.91,

[Nv=-.53-

Note that these derivatives do not change greatly with speed. In

the longitudinal motion the effect of change of speed (attitude) was

more marked.

§3. ROLLING MOMENT DUE TO YAWING, Lr

It is obvious that if an aeroplane yaws quickly, the outer wing tip

moves through the air more rapidly than the inner wing tip and,

hence, due to the spin, the lift on the outer wing is the greater. The

resultant rolling moment tends to bank the aeroplane suitably for the

turn. The magnitude of this rolling moment was in dispute in the

recent Curtiss-Wright patent litigation. The following calculation

leads to a simple formula to determine the roll due to angular velocity

in yaw.

In our notation, a rolling moment L is expressed in pounds-feet

per unit mass. In pounds-feet on the aeroplane, the moment is niL.

where m is the mass IV/g in slugs.
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The derivative Lr is the rate of change of rolhng moment with an

angular velocity in yaw of r radians per second, or

dL _j
or

Let [/= the velocity of advance of the center of gravity of the aero-

plane in feet per second. U is a negative number.

5"= span of the aeroplane (one plane) in feet.

&= chord of one plane in feet.

lV/g=m= mass of aeroplane in slugs.

r= angular velocity of yaw in radians per second, positive for a

right-hand turn.

Consider an element of wing area on the left wing of width dy in

the y axis and depth b in x axis. The distance from the center of

gravity of the aeroplane to the center of this element is 3; feet, positive

for the left wing.

The velocity through the air of this element is U— yr, since the

increase of air speed due to spin is yr.

If we assume that the lift of the wings is equal to the weight of the

aeroplane, we neglect the small vertical forces on body and tail only.

The lift in pounds per square foot per foot-second velocity is the

usual " lift coefficient " for the wing, which can be computed from

the model tests for Z. Thus :

Where

:

.^ = 265, the total area of both wings.

Then the lift in pounds on the elementary strip of wing of area

bdy is

Kbdy{U— yr)-.

The rolling moment on the aeroplane of this elementary lift force is

Kbydy (U^ — 2Uyr -f- y'r- )

,

and the total rolling moment on one whole plane is,

f+l
Kb (U~ — 2Uyr+ y-r-)ydy.

But
I

by-dy = I, the moment of inertia of the area of one plane,

and

V U'-ydy-O- V y^dy.
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Hence the rolling" moment on one plane is —2UKIr, and substitut-

.ing for K its expression above,

" AU
For two identical wings of rectangular form, we have for our com-

plete aeroplane a total rolling moment in pounds-feet per unit mass

:

L= - ^- -^" r, making Z^ = g,

Lr— — ^,T for horizontal flight.
6(7

It appears that L,- can be made small by short span and high speed.

The sign of L,- is such that the bank is proper for the turn.

Numerically, we have, making the mean span 6'= 40.2 feet and

6= 5.62 feet,

Lr= - 8660/ U,
— '^77-^> l^i?4h speed, i= o°

,

= +132.5, intermediate speed, i=6°,

= + 160.0, slow speed, j= 12°.

Note that /.,• (which is unfavorable to " spiral " stability) becomes

larger at low speed.

§4. YAWING MOMENT DUE TO ROLLING, Np

When an aeroplane rolls with an angular velocity p radians per

second (positive when right wing goes down), an elementary area of

the right wing has its angle of incidence increased and a correspond-

ing element of the left wing has its angle of incidence diminished by

the same amount.

If p is small, the resultant air velocity at a point y feet from the

center line is

VU^ + p^y"=U, neglecting p-. .

On the right wing, the angle of incidence at any point is increased by

a small angle a, given by ta.n u = py/U. Due to the greater angle of

incidence, the head resistance of the element is increased.

On a curve of the "drift coefficient" for the wing shape (see

fig. 3, Part I) we may draw a tangent line at the point on the curve

corresponding to the angle of incidence for normal flight. For small

changes in incidence from normal incidence, we may substitute this

tangent line for the actual curve without material error. The value
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of the drift coefificient in pounds per square foot per foot-second is

then

A - =A.' ,. -j-aa.

where Ka-^ is the coefficient when i is the normal angle, a is the slope

of the tangent line and a the small change in incidence defined above.

The slope o- is conveniently measured in units of Kx change per degree

angle. If the subtangent or projection of the tangent line is ; degrees,

J

and

K^= K„ +K„ *^
.X Jo •'O ,1

The head resistance of an element of the right wing is

- hdyK.W = - ('a;,^+ A;,,^ ": \ hdyU\

and the vawing moment on the aeroplane due to it is

But tana= T?' or a — ^y.-^j^', if a is small. Then the total yawing

moment on a single plane is

The integral of the first term is zero, and the second term reduces to

_ 57-3UKJ

where / is moment of inertia of one plane. For a biplane of two

rectangular wings, the total yawing moment in pounds-feet is

mN= —^^ ^^. -^ p.

Hence

:

To calculate Np, we have

:

i U Ka; j b S

O — 1 1 2 . 5 .... GO 5 . 62 40.

2

6 — 65.3 .0000443 6.0 5.62 40.2

12 — 54.0 .0001047 6.9 5.62 40.2

Since U is feet per second. /C^, must be in pounds per square foot

per foot-second velocity. Values for the drift coefficient were taken

in
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from a curve corrected to apply to full-speed full-scale, aspect ratio 7,

and biplane of gap 1. 1 times chord.

Note that the positive sign of Np indicates that for a positive roll

(to the right) a yaw to the right is assisted. At high speed the aero-

plane flies at a small angle of incidence where the drift curve plotted

on incidence is about horizontal. Np is, therefore, zero at this attitude.

§5. DAMPING OF ROLL, Lp

The wide spreading wings very effectively damp the rolling, and

the resisting or damping moment in pounds-feet on the aeroplane is

nipLp for an angular velocity p radians per second in roll.

The method of oscillations previously used to determine the damp-

ing of the pitching Mq is applied to determine Lp. Figure 17 (pi. 2)

shows the oscillating apparatus set up to impress an oscillation in

roll about the center of gravity of the model.

Using a similar notation, the equation of motion of the complete

apparatus with model is

/^'^f +(Ao + A^-fA„0 '^"^ +{K-Cm')<p + M,-A4s= o.

Where Aq represents damping due to friction, k^) due to wind on

apparatus, and A„, due to wind on model. The moment of inertia of

the entire oscillating mass / is found by a simple experiment.

The solution for points of maximum amplitude is of the form

_xt

or

f = iog.*;=iog.9.

since the ratio *^- is arranged to be as 9 to i on the scale for the pencil

of light.

The numerical work follows :

Oscillation in Roll

/ model and apparatus = .0399, ^ =9
9

I apparatus =-0373

Test on Bare Apparatus

V, wind velocity, miles 30 20 O

t, seconds 78 98 197

A 0021 .00168 .00083

Aw (less zero) 0013 .00085 o
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V 35

t 7-2,'^

k 024 ?

Aq 001

A,( 0014

Am 022 ?

Test on Ai
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INCIDENCE OF WINGS 12°

V 35 30 24 18 o

t 6.5 8 II 14.5 175

A 027 .022 .016 .0121 .001

Ao 001 .001 .001 .001 .001

Atu 001 .001 .001 .001 o

A„, 025 .020 .014 .010 o

The values of \w due to wind on apparatus are taken from the curve

of Xio on figure i6 and apphed in the calculation to find A,„ net. Figure

16 shows the values of Am. It is obvious that the values of Am for i= o''

at 35 miles per hour is grossly in error. This point is, therefore,

rejected.

The curves of A,,, appear to increase more rapidly than the velocity :

in fact, a plot on logarithmic paper shows that over the range of wind

tunnel speeds Am varies approximately as l'^-^-'.

Since this damping- helps to stop violent rolling, we shall be on the

safe side in our stability calculation if we assume that the damping

varies directly as the velocity.

To convert Am to full scale, we have

J _ -26* V .

J-'P
—

• 1 >" * Am-m V„,

Where Tm is the speed at which Am was measured. Taking the scale

factor 26, m=SO slugs, Fm = 30 miles, ^= 76.9 miles for 1 = 0°, and

J/= 36.9 miles for /= 12°, we have

Lp= —631 = 5.61 1/, for high speed,

Lp= —224= 4. 1 5 [7, for low speed,

and for the intermediate speed, by interpolation,

/^.= -319= 4.88^7.

§6. DAMPING OF YAW, Nr

The damping of an oscillation in yaw is probably due to the long-

body and vertical surfaces at the tail, as well as to the wings. It is

not practicable to compute this, and we have employed the same

apparatus as before to determine the damping in yaw by the method

of oscillations. The model set for the oscillation in yaw is shown on

figure 18 (pi. 3).

The equation of motion is similar to that for roll and pitch, thus :

and

^ t^ +(''0 + ''.. + ''»,)
jfl-

+iK-cm')^ +Mo-Ms= o,

il^
= ^,e 2I, or-^. =log, 7 =log, 9.
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Oscillation in Yaw

/ model and apparatus = .0396

/ apparatus =.0343

Test on Bare Apparatus

V 35 20 O

t 108 115 120

V 0014 .00131 .00126

Vo 0013 .00126 .00126

Vw 0001 .00005 O

Test on Apparatus with Model

incidence of wings 0°

V 35 30 24 12

t 52 57 64 105?

V 00335 .00306 .00272 .00166?

Vo 00126 .00126 .00126 .00126

Vw 00013 .00011 .00009 .00004

vm 00196 .00169 -00137 .00036?

incidence of wings 12'

V ...'.
35 30 18 8

t Z2> 36 47 73

V 00528 .00484 .00371 .00239

Vo 00126 .00126 .00126 .00126

Vxo 00013 .00011 .00006 .00003

Vm 00389 .00347 .00239 .00110

incidence of wings 6°

V 35 30 20

t 46 53 71

V 00379 .00329 .00245

Vo 00126 .00126 .00126

Vw 00013 .00011 .00007

Vm 00240 .00192 .00112

M _ 26^ V
50 y,n

Nr= .3SU =-394, forf=o°,

AT^zz.398^7 =-26.0, fort= 6°,

Nr=.72U =-38.9, fori =12°.
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The curves of vm of figure 19 show that the damping of the yaw

increases with speed approximately as the first power. The damping

of Vciw A'r is in magnitude only about y'y the damping of roll Lp.

Consequently, the precise determination of Nr is attended with some

experimental difficulty.

It is to be noted that Nr diminishes with the velocity, while at the

same time it increases with the angle of attack. The value of Nr at

.00 y^

>3 r!^

pi>£ ^ -^

S /O /5 ^O ^5 30 ^^ *''='

FiG. ig.—Curves of damping coefficient for yawing.

high speed .35^ is practically equal to its value at low speed .726^.

It seems reasonable to expect that at large angles of incidence the

damping of yaw due to the wings would be much greater than at

small angles were the speed the same.

For the intermediate "speed i = 6° the coefficient Nr is least. This

is due to the fact that from 0° to 6°, IJ drops from - 117. 5 to —65.3

feet per second, while from 6° to 12° U drops very little more: only

from —65.3 to —54 feet per second.

5
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§7. NEGLECTED COEFFICIENTS

The changes in lateral force Y due to angular velocity of roll and

yaw, represented by the coefificients Yp and Yr, are neglected as un-

important. The surface of the aeroplane is fairly symmetrical about

the center of gravity and it is unlikely that any appreciable lateral

force could be created by any small angular velocity p or r. In the

calculations to follow Yp and Yr are made zero.

The products of inertia are also neglected as not important and

difficult to estimate for an actual machine.

§8. INDEPENDENCE OF THE LONGITUDINAL AND
LATERAL MOTION

It is seen on figure 20 that the values of X, Z, and M are some-

what changed as the aeroplane yaws, and to this extent it is not strictly

correct to consider the lateral motion separately. We may imagine

that if there be set up a combined oscillation about the flight path in

roll, yaw, and side slip, the aeroplane will be influenced to take up an

oscillation in pitch of the nature of a forced oscillation. However,

any oscillation in pitch has already been shown to die out rapidly

(since the longitudinal motion is stable and strongly damped). We
may then consider the pitching induced by yawing, etc., as of the same

nature as that caused by any accidental disturbance of longitudinal

equilibrium, such as might result from gusty winds, shifting of

weights, or the firing of a gun. If the longitudinal motion be stable,

that stability should be quite independent of the nature of any dis-

turbing agent which gives the initial amplitude to the oscillation, pro-

vided the phenomenon of resonance is not present. That is, if the

natural period of the lateral motion, if oscillatory, happen by some

remote chance to be equal to the natural period of the longitudinal

oscillation, it may be possible for a machine which is unstable laterally

to seriously compromise its longitudinal stability.

If the lateral motion be stable and, if oscillatory, damp out quickly,

it is difficult to see how any marked disturbance of the longitudinal

motion can be induced by the lateral motion.

In circling flight, there is a constant angular velocity of yaw and

probably some side slip. In this case, the lateral and longitudinal

motions are interdependent, and the methods of calculation of this

paper will not apply. Indeed, we should have to combine the six

general equations of motion giving rise to a single equation of the

eighth order, which must then be solved for all the roots. In the
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present state of our knowledge, the calculation of the stability of

circling flight appears impracticable.

o' s- ^S"

Fig. 20.—Curves of normal force, longitudinal force, and pitching moment as

angle of yaw changes.

For flight in a straight line, we may reasonably conclude that if the

lateral motion be stable it will not compromise the stability of the

longitudinal motion, and vice versa. Such a machine should, in still
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air, follow its trajectory without the aid of the pilot. In gusty air, it

would roll and pitch and yaw as well as side shp and rise and sink,

but, if the altitude be great, there should be no danger. The machine

would not follow a fixed course, if controls were abandoned, but

would adjust its trajectory constantly to the changing conditions of

the air in an efifort to maintain the same relative velocity through the

air and the same angle of incidence.

On the other hand, if the lateral motion be unstable and the angle

of yaw become as great as io°, the curves of figure i6 show that the

head resistance X is not greatly changed for slow-speed attitudes and

increases but lO per cent at high speed. This should tend to slow

down the aeroplane very little.

The change in Z, or lift, is insignificant.

However, the change in M is most interesting. For i=i2° no

change in M is produced by yaw, but for j= 6° a small diving moment

is induced. For an angle of yaw of 15° or more, this diving moment

is enormously increased. For i= 6° , 1/^=15°, Wilf= 37x50=1,850

pounds-feet, corresponding to a force on the elevator of nearly 100

pounds.

If the pilot attempt to turn without banking he may side slip so

rapidly that he has the relative wind making an angle of 15° to the

longitudinal axis of the aeroplane. The aeroplane will then tend to

dive sharply. Similarly, an excessive bank may induce a side slip

inwards and the same tendency to nose dive. The cause of this

tendency to nose dive showm here is not understood, but it is signifi-

cant that many accidents have occurred to inexperienced pilots in

turning.

§9. LATERAL STABILITY, DYNAMICAL

The combined asymmetrical motion in roll, yaw, and side slip will

be called " lateral." For simplicity we will consider horizontal flight

in a straight line in still air, and for this condition investigate the

character of the disturbed motion.

From the detail plans, the radii of gyration Ka and Kc have been

calculated. It is assumed that these values are not appreciably

changed by change of axes corresponding to the changed attitudes

proper for different speeds. Ka and Kc as given are referred to the

axes used at high speed. The products of inertia are neglected as

unimportant.

From Part I, §9, we obtain the following simplified formute for

the coeflficients of the biquadratic equation which is characteristic of
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the lateral motion. The quantities )',, Yp, are made equal to zero.

Then :

A,D' + B,D'' + C,D- + D,D+E, = o.

^^ here

:

D,= - YriNrLp-LrNp) + U(NpL,-N,Lp) +gKlU
E,=giNrLr-LrNr).

These coefficients may now be calculated from the known constants

of the aeroplane, and Routh's discriminant, B^CnD^_ — A..D.f — B.2'Eo,

found. The condition that the motion shall be stable is that A^, B^,

Co, D.., En shall each be positive as well as Routh's discriminant.

The numerical work is laborious and the results only are given in

the table.

Coefficients Afffxting Lateral Motion

High
speed

Angle of incidence, i o

Velocity, ft.-sec, U — 112

Mass, slugs, ;//

Ka
Kc
Yv

Nv
Vp

L,

Np

Yr

Er

Nr

50

5

6

+ 3

5

o

2

975

204

06

449
o

-631.0

o

o

+ 77-0

- 39-4

A.. 1310.0

B. 31830.0

c 3-274-0

D., 41780.0

£2 2770.0

B.,C.D._-A,DI-BIE^_ 37400 X 10"

Character of motion Stable

Intermediate
speed

6°

- 65.3

50.0

5-2

6-975

. 0878

+ 3-44

-351

o

-319.0

+ 33-5

o

+ 13^-5

— 26.0

1310.0

16350.0

5910.0

5490.0

1386.0-

123 X 10''

Stable

Low
speed

12°

- 54-0

50.0

5-2

6.975
- .106

4- 1. 91

- -53

o

- 224.0

+ 57-0 •

o

+ 160.0

- 38.9

1310.0

12090.0

1630.0

3490.0

-335-0

3.7x10"

Unstable
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It is seen that, for the particular aeroplane under consideration,

Routh's discriminant and the coefficients of the biquadratic are all

positive at high and intermediate speeds. The motion in these two

cases is, therefore, stable.

At low speed, however, we observe that £o becomes negative,

indicating that the lateral motion is unstable. That is to say, one at

least of the roots of the biquadratic increases with time. In this case

Routh's discriminant continues to be positive, but is small compared

with its value at high speed.

It is unfortunate that this lateral instability is associated with the

longitudinal instability which was found in Part I to be present at low

speed.

§10. CHARACTER OF LATERAL MOTION

Bairstow has shown that for the usual values of the coefficients of

the biquadratic equation for the lateral motion, the equation in ques-

tion mav be factored approximately, giving

:

provided £„ is small compared with B., or D.., and B^Do — Co is small

compared with C.,^.

In our cases, the second condition is not satisfied luit the error made
is found by trial solutions to be unimportant.

High Speed.

Thus for the high-speed condition :

First factor, D= — ^^ = —.0665.

This is a subsidence which tends to reduce the amplitude of an initial

disturbance to half value in t— ~ '^/ — 10.4 seconds. We may con-
.0665

^

sider this motion fairly stable.

For the second factor we have another subsidence given by

Z? = — -= ^- =—2^.2.
A.B._ ^ '

which reduces to half value in /= ' ^ = O'i, second. Such motion
23.2

is so heavily damped that it would never be observed on the aeroplane.

The third factor gives upon substitution :

^'+ (r:-D:)^+B/-^:C =D= + .967D+..375 = o,

or

D= — .484± 1.07/.
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This is a pair of imaginary roots indicating an oscillation of natural

period p= =5-9 seconds, which is damped to half the initial

amplitude in t= -^ =14 second. The motion is so heavily damped

as to be of no consequence. The period is fairly rapid, and if the

damping were not great, the oscillation might become uncomfortable.

For the high-speed case, it appears that the lateral motion is quite

stable.

Intermediate Speed.

At the intermediate speed, where j= 6°, we have for the first factor

:

D=-.2S2,
a subsidence which damps to half amplitude in

t= ' ^ =2.72 seconds.
•254

This motion is very strongly damped, even more than at the high

speed.

Similarly, the second factor gives an enormously damped sub-

sidence.

D=-12.l,

/= " =.oS7 second.
12.

1

^^

The oscillation corresponding to the third factor is of fairly slow

period, but so strongly damped that it is of slight importance. Thus

:

, D^+ .iiD + .346= 0,

D=-:5S±.5S6i,

p= —^^ =10.7 seconds' period,

t= °^ =1.25 second to damp 50 per cent.

Slow Speed.

For the slow-speed condition, 1=12°, we observed that the coeffi-

cient Eo is negative indicating instability of motion. Mathematically,

that is to say, the real root corresponding to the first factor of Bair-

stow's approximate method,

D=- ^jy = .096,

is now no longer a subsidence, but a divergence which doubles itself

in f= °^^ =7.2 seconds. This is not an alarming rate of increase,
.096

since 7 seconds should be ample time for a pilot to observe a devia-
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tion from normal attitude and to correct it by use of his controls.

However, the aeroplane could only be flown at this speed even in still

air provided the pilot were alert.

The second factor is a strongly damped subsidence D= —g.i2,

which damps to half amplitude in .08 second.

The third factor is an oscillation,

D- + .2^iD + .292= o,

£>= '-.ii6±.528f,

having- a period of "^5= 12 seconds, which is damped to half ampli-
.52b

tude in t= ^-^ =6 seconds. This oscillation is stable, but the damp-
.116 '^

ing is only moderate, and it may well be felt on the aeroplane in flight.

In some types of aeroplane, it is likely that this motion may be

undamped and hence the amplitude of successive oscillations will be

increasing, giving rise to instability of a new character.

§11. THE "SPIRAL DIVE"

The motion found corresponding to E.y negative, as at slow speed,

may be traced to the resistance derivatives involved in the expression

for E.,. Thus

:

E.= g(N^Lr-L,Nr),
and Eo will be positive only when Lv/Nv is greater than Lr/Nr. For

stability, or E.^ positive, L^ and A^,- should be large and Nv and L,-

small.

The derivative Lv depends on the rolling moment due to side slip

and can be made large and positive by an upward dihedral angle to

the wings or by vertical fin surface above the center of gravity of the

aeroplane. At low speed and high angle of incidence we see that Lv

is diminished. Thus, at 6° and 44.6 miles, L„= 3.44, while at 12° and

36.9 miles, L, = i.9i. The drop in speed is only about 18 per cent.

Hence the drop in L,j cannot be due to the lower speed, but must be

due to the greater angle of incidence.

Let i be the angle between the wind direction and the center line of

the wings where yaw ij/ is zero. Let cj> be the angle through which

each wing tip is raised, and let the angle between the wind direction

for a yaw 1/' and the plane of the chord of the up wind wing be i'.

Then it can easily be shown by geometry that approximately

when i, \p, and /? are small ^ and expressed in circular measure.

^A. Page, "The Aeroplane," p. 82, Griffin, London, 1915.
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In our case p=i°6, then for i=i2° and i/'=io°, i'=i2°3, while

for i= 6°, i'= 6°3. This is an increase of incidence with io° yaw of

but 2.5 per cent at low speed, and 5 per cent at intermediate speed.

Since a side slip is equivalent to a yaw, and since the rolling moment
due to side slip is largely caused by greater lift on the wing which is

toward the wind, it appears reasonable to conclude that this greater

lift is a consequence of the greater angle of incidence. But we see

above, by a rough calculation, that the relative increase in incidence

on a dihedral wing for given angle of yaw is much greater for the

6° attitude than for the 12° attitude. The falling off of Lv observed

experimentally is, therefore, to be expected for an aeroplane with

raised wing tips.

A discussion might be opened here as to whether it would not be

preferable to use vertical fin surfaces above the center of gravity or

a swept back wing (" retreat ") to obtain the desired righting moment

Lv on side slip, rather than the dihedral arrangement. Until further

experiments have been made, it is not profitable to speculate on this

question, but one would see no reason a priori to expect the coeffi-

cient Lr, given by vertical fins, to depend in any way upon the angle

of incidence of the normal flight attitude.

To preserve stability, we must make A^- large also. This coeffi-

cient is a measure of the damping of angular velocity in yaw, and

can be made great by vertical surface forward and aft of the center

of gravity. A rectangular body with flat sides, vertical fin surface at

the tail (rudder), and the increased drift on the forward moving

wing all combine to resist or damp the spin in yaw. The designer can,

at his pleasure, increase both L,. and Nr by proper fin disposition.

Note that Nr is not different at different speeds.

On the other hand, it is necessary to make Nv or the yaw due to

side slip small. A preponderance of fin surface aft will make Nv

large and is, therefore, dangerous. A machine that shows strong

" weather helm " or has great so-called directional stability is likely

to be unstable because the large Nv may make £, negative. The

vertical fin surface should be fairly well balanced fore and aft, and

directional restoring moments should not be great. Note that Nv

does not vary much with different speeds.

The derivative Lr is characteristic of the rolling moment due to

velocity of yaw or spin and was shown to be caused by the greater

air speed on the outer wing in turning. It is not generally possible

for a designer to make Lr small, though a short span will help matters.
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Note that Lr is greatest at low speed and high angle of incidence. It

should be unaffected by dihedral angle of wings.

The instability corresponding to £0 negative is, therefore, a ten-

dency on side slip to the right, for example, to head to the right

toward the relative wind on account of much fin surface aft. At the

same time, due to the spin in yaw, the machine tends to overbank on

account of the greater lift on the left wing. The increased bank,

increases the side slip, the yaw becomes more rapid and in turn the

overbanking tendency is magnified. The aeroplane starts off on a

spiral dive and will spin with greater and greater angular velocity.

The term " spiral instabiUty " has been given to this motion.

Spiral instability appears to be the most probable form of insta-

bility present in an ordinary aeroplane. It appears to be readily

corrected by modification of fin surface and there appears to be no

excuse for leaving it uncorrected. It is true that an alert pilot should

have no trouble in keeping an aeroplane out of a spiral dive, but in

case of breaking of a control wire disaster would be certain if the

machine were spirally unstable.

§12. "ROLLING"

The second approximate factor

when A^C^ is small compared with B^, is seen to reduce to

:

or

Now Yv, Lp, and Nr may be expected to be always negative in

ordinary machines, and the radii of gyration Ka and Kb are essen-

tially positive. Hence this root D will always be negative and the

motion a damped subsidence. It will be observed that Yv expresses

resistance to side slip, Lp damping of an angular velocity in roll due

to the wings, and Nr damping of an angular spin in yaw. In magni-

tude Lp is usually so great that Yv and Nr may be neglected, giving

roughly

A/ 27
^

at low speed, or a subsidence damped 50 per cent in ?=.o8 second.
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The more exact calculation made in §ii showed t=.0'/6 second.

In a machine of very short span and great moment of inertia in roll,

we might expect ^'^-^ to become small, but never positive so long as

forward speed is maintained.

When an aeroplane is at such an attitude that further increase in

angle of incidence produces no more lift (" stalled "), the damping of

a roll by the wings Lp may vanish. Then the downward moving wing,

although its angle of incidence be increased, has no additional lift

over the other and, hence, there is no resistance to rolling. In this

critical attitude, pilots have reported that the lateral control by

ailerons has no effect and the aeroplane is unmanageable.

In any reasonable attitude short of stalling, there appears to be no

reason to fear instability in " rolling " corresponding to this second

factor of the equation.

§13. THE " DUTCH ROLL "

In the approximate solution of the biquadratic, the third factor,

for most machines will have A^C^ small compared with B^^, and we

may write

:

Considering the usual magnitudes of the derivatives entering in

Bo, Co, Do, E2, we may write very approximately

:

^2= —Kc'Lp,

C^=(NrLp-LrNp),

E,= g(NrLr-L,Nr).
C E •

The motion is damped and stable, provided ' — ,v^ is positive, and

the period

27r

W 4^0 _ /C2 _ ^.^ \Bo_ D,

or approximately = /' = 27r ^ ^-

.

Since ^ "^^ jg ordinarily of the order of i or 2 the period may be

of the order of 6 or 12 seconds. This period is rapid compared with
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that of the longitudinal motion and unless strongly damped, the

motion may become so violent as to be uncomfortable. Note that

since A^;, Lv, Np, Lp, N,-, Lr are involved, the motion must consist of

a combination of side slipping, rolling, and yawing.

The motion is stable and the oscillation tends to damp out in time

C E .

and the aeroplane to return to her course if ^ — jy^ is positive. To

damp to half amplitude requires t= ., p x seconds.

Substituting approximate expressions we have

B, D, Kc'Kl, l;

Since L,- is positive, in order for the damping" to be real, —Nv/Ev
must be greater than Np/Lp and positive.

Stability of this motion is, therefore, assisted by

:

1. Large negative yawing moment due to side slip (" weather

cock " stability) A\-. This is incompatible with stability against a

" spiral dive."

2. Large damping of the rolling due to rolling Lp.

3. Small positive rolling moment due to side slip Lv. This is also

incompatible with stability against the " spiral dive."

4. Small yawing moment due to rolling A',^.

5. Large rolling moment due to yawing velocity L,-; another re-

quirement incompatible with " spiral " stability.

6. Small radius of gyration Kc in yaw.

It does not appear practicable to make A'^ small on account of the

steepness of the drift curve at high angles of incidence. The drift of

the downward moving wing when the aeroplane rolls is increased

while the drift of the rising wing is decreased. The resultant yaw-

ing moment tends to swing the aeroplane away from her course. Note

that at slow speed, near stalling angles, A'^, becomes large. This is not

desirable, but is unavoidable.

The rolling is heavily damped by the wings and Lp will always be

large and negative. This assists stability.

To avoid " spiral " instability, we saw above that it was necessary

to make the weather cock or " directional stability " small. That is,

A,; was to be small and the preponderance of vertical fin surface aft

slight. In the motion now under discussion, we wish to make Nv
large. The two conditions imposed are unfortunately conflicting.

We must compromise and make A^ numerically not too great, but

still essentially negative.
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In a similar manner, the rolling moment, due to side slip, or restor-

ing moment, such as is given by high fins or raised wing tips, should

be large to avoid " spiral " instability. In the present case, however,

we wish to make Lv small.

Likewise the natural banking due to spin in yaw we wish small

for " spiral '' stability, but we now wish to have this coefficient large.

The conflicting nature of the requirements for stability is here

shown by the use of rather drastic simplifications in the more exact

formulze. For the analysis of stability the exact formulae are easily

applied, and the present approximate forms are deduced only in order

to trace the efifect on the motion of such changes as the designer may

be tempted to make on a machine.

It is believed that an excessive dihedral angle upwards is not a

cure-all for stability problems. Indeed, in practice, aeroplanes with

a large dihedral angle for the wings have been found so violent in

their motion under certain circumstances that the average pilot has a

firm prejudice against the use of such a wing arrangement. That

this prejudice has some physical basis has been shown here. A
dihedral angle machine is not likely to run into a " spiral dive,'' but

it is very likely to be unstable on what we may term a " Dutch roll,"

from analogy to a well-known figure of fancy skating.

We may imagine an aeroplane to yaw to the right accidentally.

Due to Lr and Lv the aeroplane banks in a manner proper for the

turn, but the roll is retarded by the large damping due to Ly. The

turn is assisted by the increased drift on the lower wing due to A';,,

and were it not for the much discussed " weather helm " given by Nv,

the aeroplane would run off on a right turn. However, Nv tends to

turn the aeroplane back to her course. If Nv be sufficient, the machine

will swing back to her course and the bank will flatten out. But since

the moment of inertia in yaw is considerable, the machine will swing

past her course and start on a turn to the left. This swinging to right

and left of her course is accompanied by rolling outward and some

side slipping.

The analogy to a " Dutch roll " on skates is obvious. If the skater

lean too far out he may fall, and if the aeroplane roll too far on the

side swings it may happen that the motion will become unstable. If

the air be gusty it is very likely that such an aeroplane may be caught

on the roll by a side gust and capsized.

The " Dutch roll " in ordinary aeroplanes (which are " spirally
''

unstable) is not likely to be present, since there is no dihedral and a

large rudder. The average pilot would much prefer to deal with a
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machine which tended to swing down into a " spiral dive "if left to

itself because there is no oscillation of rapid period involved.

The production of a laterally stable aeroplane is attendant with

many compromises, and it cannot be too strongly insisted upon that a

freak type designed to be " very stable " is likely to be rapid and

violent in its motion, and even if stable against a " spiral dive " to be

frankly unstable against the " Dutch roll."

One may inquire whether a machine made directionally neutral can

be made stable. In the notation here used Nv would be approximately

zero. The condition that " spiral " instability be not present is:

Lv/Nv>Lr/Nr.

But for Nv zero, we need only make Lv slightly positive to insure

stability in this motion. Lv may be made positive by a very slight

preponderance of fin surface above the center of gravity, raised wing

tips, etc.

However, in the approximate criterion for stabiHty in the " Dutch

roll," we have

-N^^/Lv>Np/Lp,

and for A^• zero, the motion is clearly unstable unless the magnitude

of the neglected terms is greater than Np/Lp, which is unlikely.

Replacing neglected terms in C„, we obtain as a more nearly exact

expression

:

(C, _ £A _ L, /N, _NA_y_Kl N, ..

[b, dJ-KcALp lJ ^ KIL,

If we make A^„ very small as in the case under analysis, the last

term vanishes as well as the second, and we have as a condition for

C E
r,"" -^ positive

:

Substituting numerical values for the derivatives, for the slow-speed

condition, we find

and

L^Np__ 160x57 ^ _ Q.6
Kc^Lp 48.6x224 .

^^ •

The slow-speed motion would, therefore, be very unstable if Nv were

zero. Consideration of the magnitude of the derivatives leads us to

the conclusion that in any aeroplane, if A''^ be made very small, the
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motion called " Dutch roll " will probably be unstable at low speeds

where Np becomes great.

For high speed, if both A^",, and Np are zero, the lateral motion should

be stable regardless of the magnitude of the other derivatives.

With the yawing moment due to rolling as measured by Np increas-

ing from zero at high speed to +57 at low speed, it would seem that,

at the maximum speed, any reasonable aeroplane will be stable so far

as the " Dutch roll " is concerned, but at low speed it may become un-

stable in this particular motion.

In general, for high speed, considering the two possible kinds of

lateral instability, it is believed that very slight modifications in fin

disposition will suffice to render any ordinary aeroplane laterally

stable. Likewise, at high speed, longitudinal stability is easily

secured. At low speed, the longitudinal motion tends to become un-

stable as well as one or the other kind of lateral motion.

§14. COMPARISON WITH OTHER AEROPLANES

Any stalMlity discussion is much more suggestive if several aero-

j)lancs can be analyzed in parallel. The only published information

on lateral stability is Bairstow's investigation of the Bleriot mono-

plane used al)ove in connection with the longitudinal stability discus-

sion. This monoplane had only a very small rolling moment due to

side sli|) /., = .83 as against Li;= 3.o6 for the Clark aeroplane for high

speed. The coefficient Nv, yawing moment due to side slip, is not

greatly difi^erent in the two machines. The other coefficients are of

the same order of magnitude, except Lp, the damping of a roll, which

is small in the monoplane on account of the small wings of short span.

Without further knowledge, we should expect the Bleriot to be

stable on the " Dutch roll " on account of the small Lv. Bairstow

finds a period of 6.5 seconds damped to half amplitude in 1.65 second.

On the other hand, the small Lv would lead us to suspect the sta

bility of the spiral motion, especially as Lp is also small. In fact, the

coefficient E.. was found to be slightly negative and the aeroplane,

in consequence, spirally sHghtly unstable. The motion is a slow

divergence which doubles itself in 68 seconds. This is an extremely

slow change and should give no trouble to a pilot. Indeed, the w^ell-

known steadiness in flight of this famous aeroplane is in full agree-

ment with the theoretical conclusions. The Bleriot makes no claim to

lateral stability, but is essentially a steady aeroplane easily controlled.

In the " Dutch roll " the Bleriot is very strongly damped and hence

very stable. The spiral motion is not damped, but is so slow that the

stability mav be called neutral. The aim of the French school has
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always been a machine whose lateral sta1)ility is neutral so that it will

not be thrown about by the wind.

The Curtiss type military tractor tested by us in a manner identical

wnth that described in this paper, was found at high speed to have

resistance derivatives of the same order of magnitude as the Clark

tractor, except that a large rudder and deep rectangular body make

A'^ twice as large for the Curtiss, and there being no high fin surface

Li- for the Curtiss is small. As would be expected the spiral motion

is slightly unstable, tending to double itself in 28 seconds. The
" Dutch roll " is very stable, having a period of 5.25 seconds and

damping to half amplitude in 1.77 seconds. The machine in flight at

high speed should then have the characteristics of the Bleriot and be

steady and easily controlled. This is, in fact, the general reputation

of this type of aeroplane.

At low speed, matters are not so favorable. We have no data for

the Bleriot at slow speed, but the Clark model is seen to become

spirally unstable to such an extent that an accidental deviation doubles

itself in 7.2 seconds.

The " Dutch roll " for the Clark model remains stable at low speed,

but is somewhat less strongly damped than at high speed. The period

is 12 seconds damped to half amplitude in 6 seconds. This motion

should be not uncomfortable.

The Curtiss, at low speed, due to falling ofT of Nv. and marked

increase in Lv, becomes spirally stable. The spiral motion is a sul^-

sidence damped 50 per cent in 3.3 seconds. The wings had no

dihedral angle. A separate test ' made on a single wing without

body or tails showed a small rolling moment for an oblique wind

indicating a small and positive Li,. At large angles of incidence this

effect was considerably magnified. The decrease in Nv (or in the

weather helm) at large angles of incidence cannot be laid to the

straight wings. Tests on a wing alone show a small negative A'„

which is not changed at large angles of incidence.

The increase in Lv and decrease in A'^i, for the Curtiss aeroplane,

favorable to stability of the spiral motion, are unfavorable to stability

in the " Dutch roll.'' Furthermore, A^'p increases from zero at high

speed to +38 at the low speed, and Lp decreases from —314 to —78.

These changes are very unfavorable and, as we should expect, the

" Dutch roll " for the Curtiss is unstable. The natural period is

about 5.7 seconds and any initial ami)litu(l(* is doubled in 7.66 seconds.

^ Smithsonian Misc. Coll., Vol. 6j, No. 4. " Experiments on a Dihedral Angle

Wing," J. C Hunsakcr and D. W. Douglas.
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The motion is a swaying of the aeroplane of increasing amphtnde and

intensity. However, we must ahvays point out that an alert pilot

with powerful controls can check the natural motion of the aeroplane

before it has became violent and so maintain his equilibrium.

The increase in A'p at low speed or rather large angle of incidence

is due to the steeper drift curve for a wing at large angles. As the

aeroplane rolls, the downward moving wing has its drift relativelv

more increased as the normal flight attitude requires a larger angle of

incidence.

The drop in Lp is due to the less steep lift ciu've at high angles of

incidence. As the aeroplane rolls, the increase in angle of incidence

of the downward moving wing gives very little increase in lift on

that wing if the wing be already near its angle of maximum lift. We
might imagine an aeroplane flying at an angle of incidence giving the

maximum lift. Any increase in incidence can produce no additional

lift. In most aeroplane wings, an increase in incidence beyond the

optimum angle causes the wing to lift less at the same air speed.

Now if the aeroplane in such an attitude roll, the increased angle of

incidence of the downward moving wing gives no more lift on that

wing and hence the rolling is unresisted. The damping of the roll

will be zero, or even negative. In the Curtiss aeroplane, the low speed

chosen required an incidence of I5°5. very near the "burble point,"

or angle of maximum lift for the wings. The small value —78 of Lp

appears to-be one of the principal causes of the instability. In the

Clark model, the wing loading is smaller and an equal speed about

44 miles per hour is obtained for an incidence of only 6°, giving

Lp= — 319. The lowest speed of the Clark model is taken as about

^y miles per hour where an incidence of but 12° is needed. Lp at this

angle is —224.

It appears that lateral dynamical stability is incompatible with a

high wing loading which requires a large angle at landing speed.

The analysis of longitudinal stability led to a similar conclusion.

If we turn to practical aviation we observe that aeroplanes which

are noted for their steadiness at low speeds are the light Antoinette,

Farman, and the various German Taubes derived from the Etrich.

All these aeroplanes have large wing area and light loading, probably

between 3 and 4 pounds lift per square foot. The light loading

enables these aeroplanes to gain a safe low speed without having the

angle of incidence near the angle of maximum lift.

In the Clark model the loading is about 3.55 pounds per square

foot, while it is 5.2 in the Curtiss type discussed. More recently the
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Curtiss has been given greater wing area in order to reduce the

loading. It should be stated that the comparison is not quite fair,

since the total weight of the Clark aeroplane was taken as 1,600

pounds which includes only half the full 5.6 hours' gasolene supply.

However, the advantage of light wing loading is more clearly brought

out by the marked difference in weight per square foot wing area.

The following table summarizes all the information available and

may be used to make further comparisons if desired:

Clark Tractor

-

Wing area
Mean span
Mean chord
Mean gap
Area, fixed tail... .

Area, elevators... .

Area, rudder
Length, body
Weight, lbs

Rise of wing
Lbs. per sq. ft

Angle of incidence

V, miles, hour. . . .

U, ft.-seconds
m
Ka, feet

Kg, feet

Yv
U
Nv
Yv
Lv
Nv
Yr
Lr
Nr
A;
B2
C2
D',

£2
Kouth's discr

Spiral Motion

Damp 50% in, sec.

Double in, sec

Rolling

Damp 50% in, sec.

"Dutch Roll"

Period, sec.

Damp 50% in, sec.

Double in, sec

464.0
40.2
5-77
6.37

16.

1

16.0

9-35
24-5
1600
i°63

3-55
0°

76.9
112.

5

50.0
i

5.2 i

6.975
.204

3.06 :

— .449
o

—631.0
o
o

+ 770— 39.4
I3I0.0

31800.0
32700.0
41780.0
2770.0
37x10^''

!

10.4 I

Curtiss Tractor^ Bleriot
Monoplane*

6?o
44-6

i— 65.3

-f + 3.44— -351
o

—319.0
+ 33.5

o
+132.5— 26.0
I3I0.0
16350.0
5910.0
5490.0
1386.0
12X10'"

2.7

• 03

5.9
1-4

.06

10.7

1.3

'+

\+

o

24

57
o

+ 160
-38
1310

12090
1630

3490
—335
4X10'

106

91

53

384.0
36.0
5.3
5.3

23.0
19.0
7.8
26.0
1800 .....
0° .....

5^2 ••V
i.o 15.5

78.9 43-6
—115.

5

— 63.8
56.0
6.06
3.4

I

I

. 248— . 09
+ .8441+ .2.7

\— .894— .45;

o !

—314.0 I— 78.0
o !+ 37.7
o I

o

+ 55.2 i+IOI.O
— 27.0 — 30.4
2590.0 2590.0
23800.0 6860.0
18000.0 I 209.0
34600.0 5590.0
—855.0 ' II75.0

9X10'' —7X10'

7.2' 28.0'

I

. 076 . 08

12.0

5-95
5.24
1.77

3.3

.26

5.7

7.66'

* Unstable.
* Tested at Mass. Institute of Technology, Boston.
' Tested at Teddington, England.

244.0

1800
i°8

6?o
65.0

— 95.4
56.0
5.0
6.0

— .108

+ .70
— .44

o—167.0
+ 24.0

+ 54-0— 31.0
900.0
6780.0
5580.0
6640.0— 68.0

21.5X10'"

68.0'

6.5
1.65


