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† Background and Aims The hypothesis of an ancient introduction, i.e. archaeophyte origin, is one of the most chal-
lenging questions in phylogeography. Arundo donax (Poaceae) is currently considered to be one of the worst invasive
species globally, but it has also been widely utilzed by man across Eurasia for millennia. Despite a lack of phylogen-
etic data, recent literature has often speculated on its introduction to the Mediterranean region.
† Methods This study tests the hypothesis of its ancient introduction from Asia to the Mediterranean by using plastid
DNA sequencing and morphometric analysis on 127 herbarium specimens collected across sub-tropical Eurasia. In
addition, a bioclimatic species distribution model calibrated on 1221 Mediterranean localities was used to identify
similar ecological niches in Asia.
† Key Results Despite analysis of several plastid DNA hypervariable sites and the identification of 13 haplotypes,
A. donax was represented by a single haplotype from the Mediterranean to the Middle East. This haplotype is
shared with invasive samples worldwide, and its nearest phylogenetic relatives are located in the Middle East.
Morphometric data characterized this invasive clone by a robust morphotype distinguishable from all other Asian
samples. The ecological niche modelling designated the southern Caspian Sea, southern Iran and the Indus Valley
as the most suitable regions of origin in Asia for the invasive clone of A. donax.
† Conclusions Using an integrative approach, an ancient dispersion of this robust, polyploid and non-fruiting clone is
hypothesized from the Middle East to the west, leading to its invasion throughout the Mediterranean Basin.

Key words: Arundo donax, Poaceae, invasive species, archaeophyte, herbarium specimens, phylogeography,
domesticated species, Mediterranean, Asia, morphometry, clonal species, crops, giant reed, giant cane.

INTRODUCTION

Human activities have disrupted the distribution ranges and dis-
persal barriers of many organisms, introducing them both delib-
erately (e.g. for food, gardening, construction or erosion control)
and accidentally around the globe (Elton, 1958; Pysek and
Richardson, 2006). Some species have become invasive and con-
stitute a major threat to global biodiversity by competing with
native species for ecosystem resources (Shea and Chesson,
2002). These alien taxa can also cause significant damage and
economic losses to human activities (Pimentel et al., 2005). To
control and reduce their impacts, specific knowledge is needed
regarding not only their biology and ecology (Dandelot et al.,
2005; Blight et al., 2012), but also their genetic and taxonomic
delimitation (Saltonstall, 2002; Verlaque et al., 2011), and
their geographical origins (Lafuma et al., 2003; Verlaque
et al., 2003). Indeed, the designation of weed origin can be ex-
tremely useful from a management perspective as it can assist
with limiting introduction vectors, studying the adaptive poten-
tial of invasive species in their native environments and inform-
ing biological control efforts (Clay, 2003).

Among alien species, the literature distinguishes archaeo-
phytes, i.e. species introduced between the beginning of
Neolithic agriculture and the discovery of the Americas (approx.
1500 AD), from neophytes, i.e. taxa spread after 1500 AD

(Pysek et al., 2004a). In addition, several archaeophytes have
become neophytes, following secondary introductions from
Eurasia and Africa to the Americas (La Sorte and Pysek, 2009).
However, many assumptions of ancient introductions remain hy-
potheses needing validation by further investigation (Preston
et al., 2004). For many archaeophytes, the literature cannot desig-
natea ‘native’or ‘introduced’status,aposition termed‘cryptogen-
ic species’ (Carlton, 1996). Thus, the origins of archeophytes are
often difficult to identify, even using phylogenetic investigations.
Nevertheless, several distinctive generalizations can be used to
help identify ancient introductions: (1) many archaeophytes
were introduced with crop translocations, and their affinities for
agricultural or human-disturbed habitats are always noticeable
despite millennia of occurrence (Pysek et al., 2005); (2) due to
their ancient presence, archaeophytes are generally more wide-
spread than neophytes (Preston et al., 2004; Pysek et al.,
2004b); and (3) in their introduced ranges, alien taxa often
contain lower genetic diversity than in their native area due to
founder effects and genetic drift following their introduction
(Dlugosch and Parker, 2008). However, this genetic pattern may
be disrupted by recurrent introductions and admixture of invasive
populations or by hybridization and introgression with native taxa
(Baumel et al., 2002; Suehs et al., 2004).

Among invasive species, Arundo donax (Poaceae) represents
one of the most aggressive plant taxa in sub-tropical and temperate
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wetlands. This giant cane is a tall (up to 6 m), rhizomatous grass
considered invasive in many warm regions, including Oceania,
Africa and the Americas (Herrera and Dudley, 2003) where it
has invaded mainly riparian areas via clonal growth and dispersal
(Wijte et al., 2005). Described from Spain and south-eastern
France by Linneaus in 1753, A. donax has generally been consid-
eredasnative tosub-tropicalEurasia (including the Mediterranean
Basin, Middle East, northern India and East Asia), but the origin of
invasive populations remains unknown. As an emblematic species
of Mediterranean landscapes, this robust reed mainly occurs in
human-disturbed habitats, including agrosystems, wastelands, and
riparian and coastal zones. Since antiquity, giant cane has had mul-
tiplehuman uses, such as agriculture, fodder, construction, weap-
onry, fishing, hunting, music, erosion control, medicine and fuel
(Perdue, 1958; Täckolm and Drar, 1973; Postgate, 1980). In add-
ition, this species is one of the most promising biomass crops for
biofuel production, leading to an increasing literature on its
genetic characterization (Pilu et al., 2014; Sablok et al., 2014).

Previous work on A. donax has revealed low genetic diversity
across broad geographical areas. Ahmad et al. (2008) tested 185
putative clones of A. donax from the southern USA using SRAP-
(sequence-related amplified polymorphism) and transposable
element (TE)-based molecular markers, and found only one
widespread genotype that was similar to four populations from
southern France. Further, Hardion et al. (2012) used AFLP (amp-
lified fragment length polymorphism) fingerprints to show the
occurrence of only one clone among 16 localities around the
Mediterranean Basin. This lack of genetic diversity calls into
question the native status of A. donax in the Mediterranean,
and redirects research of native populations toward Asia. Using
AFLP and inter-simple sequence repeat (ISSR) markers on 67
Mediterranean and ten Asian herbarium specimens, Mariani
et al. (2010) showed support for a monophyletic origin of
A. donax in Asia. This eastern origin is also supported by the
botanical literature, which reports lower cytotypes (2n ¼ 12x
approx. 72) in Thailand (Larsen, 1963), India (Christopher and
Abraham, 1971; Mehra and Kalia, 1975) and Uzbekistan
(Bochantseva, 1972) than in the Mediterranean region (2n ¼
18x approx. 108; Pizzolongo, 1962; Gorenflot et al., 1972;
Hardion et al., 2011, 2013; Bucci et al., 2013). Further, although
seed production has not been detected in the Mediterranean or the
USA (Johnson et al., 2006; Hardion et al., 2012), caryopses have
been found in Iran and Afghanistan (Bor, 1970), China and
Pakistan (Brach and Song, 2006). The non-fruiting character of
Mediterranean populations has been attributed to their high
ploidy level which may disrupt meiotic processes (Balogh
et al., 2012).

The widespread ruderal distribution of a single non-fruiting
clone leads us to suspect an ancient introduction of A. donax
to the Mediterranean Basin. Here we test the hypothesis of a
founder effect linked to this introduction from Asia to the
Mediterranean using plastid DNA genetic markers. Secondly,
we characterize and localize the invasive lineage among the
Eurasian distribution of A. donax using genetic, morphometric
and seed production data. Finally, we develop a bioclimatic
species distribution model calibrated on Mediterranean occur-
rence data to localize potential Asian origins for the worldwide
invasive genotype. Due to difficulties in obtaining fresh speci-
mens across the Asian range of A. donax, our sampling is
based on herbarium specimens from European collections. In

order to extract the most information from these specimens, we
set up a three-tiered integrative approach: (1) phylogenetics,
using sequencing of plastid DNA micro-/minisatellites and sub-
stitutions; (2) morphometry, including stomatal length as an es-
timation of ploidy; and (3) ecology, using ecological niche
modelling.

MATERIALS AND METHODS

Plant collections

The Eurasian sampling of Arundo donax was divided into three
inclusive datasets, according to the markers used: (1) 57 well-
preserved herbarium specimens suitable for molecular analyses;
(2) a broader collection of 127 herbarium specimens with leaves
andpanicleused formorphometricmeasurements (Supplementary
Data Table S1); and (3) a large dataset of 3429 occurrences for
A. donax in the Mediterranean region. Provided by B, BM, E, G,
K, MARS, P and W Herbaria, these valuable specimens were col-
lected from the 18th century to the present, in particular by some
pioneering botanists in Asia such as V. Jacquemont (1757–
1836), J. G. König (1728–1785), T. Thomson (1817–1878) and
J. S. Gamble (1847–1925). We also included three samples of in-
vasive A. donax collected from New Caledonia (Oceania), Peru
(South America) and Arizona, USA (North America), and
seven samples of the Taiwanese endemic Arundo formosana
(2n ¼ 12xapprox.72;Hardionetal., 2013)which isaclose relative
of A. donax (Hardion et al., 2012).

DNA extraction, sequencing and phylogeographic analysis

DNA extractions were performed on samples collected after
1930 to avoid unnecessary destruction of older specimens and se-
quencing of highly degraded DNA (Telle and Thines, 2008).
About 50 mg of leaves were mechanically ground after treatment
with liquid nitrogen. Total DNA was extracted following Doyle
and Doyle (1987). DNA concentrations were estimated using a
Biophotometer (Eppendorf, Germany) and diluted to 50 ngmL–1.

Plastid DNA diversity was screened on five intergenic spacers:
trnT-trnL (Taberlet et al., 1991), trnCF-rpoB, psaA-ORF170,
rbcL-psaI and trnS(GCU)-psbD (Saltonstall, 2001). Polymerase
chain reactions (PCRs) were performed in 50mL volumes contain-
ing 1 × PCR buffer [10 mM Tris–HCl, 50 mM KCl, 0.001 % (w/v)
gelatin], 1.5 mM MgCl2, 2.5 mM each dNTP, 40 pmol each primer,
0.1mgmL–1 bovine serum albumin (BSA) and 2.5 U of Taq poly-
merase (Q-Biogen, Illkirch, France). The thermal cycling profile
was programmed on a PTC-200 Gradient Thermal Cycler (MJ
Research, Watertown, MA, USA) as follows: 2 min at 94 8C fol-
lowed by 35 cycles of 94 8C for 1 min, 56 8C annealing for 1 min,
and 72 8C for 2 min, followed by a final extension of 72 8C for
5 min. Purification and sequencing of PCR products were
carried out by Eurofins MWG Operon (Ebersberg, Germany).

The five plastid DNA regions were manually aligned in
MEGA 5.05 (Tamura et al., 2011). Haplotype relationships
were inferred using the median-joining network algorithm
implemented in Network 4.6 (Bandelt et al., 1999). Insertion/
deletion (indel) sites (including repetitive regions as mini- and
microsatellites) were reduced, considered as a fifth state and
weighted as one-tenth of a substitution. This down-weighting
isclassicallyadoptedforhypervariablesiteswithhighprobabilities
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of homoplasy (Saltonstall and Lambertini, 2012). In order to dis-
tinguish haplotypes based on substitution patterns from those
supported by hypervariable sites, the same analysis was also gen-
erated without considering indels.

Morphometry

Seven morphometric variables previously used in resolving
the taxonomyof Mediterranean Arundowere measured on spike-
lets collected in the middle part of the panicle: number of flowers
per spikelet, and lengths of lower and upper glumes, lemma,
palea, lemma awn and hairs (Hardion et al., 2012). As leaf epi-
dermal structures are highly resolving in grass systematics
(Prat, 1932; Grass Phylogeny Working Group, 2001) and can
also provide information on polyploid events (e.g. in Phragmites;
Hansen et al., 2007), we also measured three characters under
light microscopy (Dialux 20, Leitz, Weltzer, Germany): length
of stomatal guard cells; stoma density (per 104 mm2); and the
number of prickles per millimetre of rib line. To avoid damaging
herbarium specimens, leaf epidermis peels were prepared with
clear nail polish, following Hilu and Randall (1984), and
mounted on slides. All ten variables were measured ten times and
averaged for each sample. The occurrence of caryopses was also
noted as a qualitative feature. Morphological data were explored
using UPGMA hierarchical clustering on Euclidian distances
using the ade4 package in R v.2.15 (Thioulouse et al., 1997; R
Development Core Team, 2013), after replacement of the few
missing values by variable means. For each morphological vari-
able, we used a Kruskal–Wallis rank sum to test for significant
differencesbetween the threegroups identifiedbyUPGMAcluster-
ing, and the coefficient of determination R2 illustrated the propor-
tion of variability explained by this clustering.

Ecological niche modelling

Using ArcGIS 10 (Environmental Sciences Research Institute,
Redlands,CA, USA), we createda dataset ofA.donax occurrences
collected from the literature, herbaria and databases of
Mediterranean countries, including Croatia (http://hirc.botanic.
hr/fcd/), France (www.silene.eu), Greece (Flora Hellenica data-
base; Strid, 2000), Palestine (http://flora.huji.ac.il) and Spain
(www.anthos.es). To reduce spatial bias due to differential
search intensities across regions (Segurado et al., 2006), we sub-
sampled this dataset to a grid of 5 arc-min cells (i.e. 0.1 × 0.18)
with random origin, reducing the dataset from 3429 to 1221 occur-
rences. Based on our biological knowledge of A. donax, we chose
five bioclimatic variables from the BioClim database as predica-
tors of its distribution (www.worldclim.org; Hijmans et al.,
2005): minimum temperature of the coldest month (BIO6) reflect-
ing potentially lethal frost events; mean temperature of the
warmest (BIO10) and coldest (BIO11) quarters, delimiting
phenological stage for biomass production; precipitation of the
driest month (BIO14) indicating potentially lethal drought
events; and precipitation of the warmest quarter (BIO18) provid-
ing information on water availability during the main period of
biomass production.

To model the potential area of origin for Mediterranean
A. donax, we used a machine learning algorithm based on
presence-only data and implemented in MaxEnt software
v. 3.3.3 (Phillips and Dudik, 2008). This method uses the principle

of maximum entropy to estimate the most uniform distribution
within the study area given the constraint that the expected value
of each environmental predictor variable under this estimated dis-
tribution matches its empirical average (Phillips et al., 2006).
Modeloutputscorrespond toposterior probabilities of habitat suit-
ability.All combinationsof typefeatures (linear,quadratic, thresh-
old and product) were investigated to find the best model with 50
replicates (cross-validation, training gain threshold of 0.0001).
The best model was chosen as the simplest model with the
highest area under the curve (AUC) value and the lowest standard
deviation among the 50 replicates. After calibration on the 1221
Mediterranean occurrences, this model was then used on 5
arc-min cells located from 15 to 508N in latitude to detect suitable
bioclimatic conditions across Eurasia.

RESULTS

Phylogeographic structure

After indel reduction, the plastid DNA alignment of 4518 bp
contained 77 variable sites, i.e. 44 substitutions and 33 indels in-
cluding ten microsatellites, eight minisatellites and three inver-
sions (2, 3 and 5 bp). This dataset distinguishes 13 haplotypes
within A. donax (Fig. 1A), which reduces to nine after the
removal of hypervariable sites (Fig. 1B). Based on the branching
position of other Arundo spp., A. donax appears to be polyphyl-
etic and divided into eastern and western lineages (Figs 1 and
2A). Haplotype diversity is divided into four biogeographic clus-
ters which differentiate along the Himalayas, i.e. Middle-East
(four haplotypes M), Western Himalaya (two haplotypes W),
Central Himalaya (three haplotypes C) and Eastern Himalaya–
China (four haplotypes E) (Fig. 1A). These patterns are also
supported when considering only substitutions, although the
number of haplotypes in the Middle East cluster is reduced to
one which groups with haplotypes in the Western Himalaya
cluster (Fig. 1B). Haplotype M1 was found in the 28 samples
from the Mediterranean and Irano-Touranian regions (Fig. 2A),
and its nearest relatives (M2, M3and M4), which are distinguished
only by hypervariable sites, are located in Afghanistan and
Pakistan (Indus valley). The haplotype M1 was also found in
invasive samples from New Caledonia, Peru and the USA.

Morphometric differentiation

The UPGMA hierarchical clustering of morphological char-
acters also divided A. donax into two clusters along a longitudin-
al gradient (Fig 2A, B): (1) the Mediterranean and Persian
morphotype T1 corresponding to A. donax sensu stricto, with
the largest morphometric sizes and exclusively associated with
plastid DNA haplotype M1; and (2) the smaller Sino-Himalayan
morphotype T2 (Fig. 3). The larger stomatal guard cells of
the morphotype T1 (mean 38.4+4.3 mm) significantly differ
from those of the morphotype T2 (mean 29.5+3.8 mm) and
A. formosana (mean 25.5+2.5 mm; Figs 3 and 4). In addition,
the leaf epidermis of Sino-Himalayan morphotypeT2ischaracter-
ized by numerous prickles and long hairs, whereas those of mor-
photype T1 show few prickles and not any long hairs (Fig. 4).
Although the majority of samples were collected during the
autumn months (i.e. flowering period), seed-set was found in
only 12 samples of the morphotype T2 from the Middle-East
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(south-western Iran, Pakistan and Afghanistan) and along the
Himalayas (Fig. 2A).

Ecological niche modelling

Based on 1221 occurrences, the ecological niche model for
A. donax in the Mediterranean projected high importance of bio-
climatic variables BIO10 (mean temperature of the warmest
quarter), BIO14 (precipitation in the driest month) and BIO6
(minimum temperature of the coldest month). The most parsimo-
nious model was obtained using only linear features (test AUC
value ¼ 0.90, AUC standard deviation ¼ 0.0065, gain threshold
reached after 180 iterations). Projected on Asian bioclimatic
data, this model suggests the highest occurrence probabilities

(.0.5) south of the Caspian Sea, in southern Iran and along
the Indus Valley (Fig. 2C).

DISCUSSION

Genetic uniformity in the Mediterranean

Previous work using AFLPs has questioned the native status of
Arundo donax in the Mediterranean, due to its genetic uniformity
and lack of seed production (Hardion et al., 2012). Similarly, this
study finds no genetic variation in Mediterranean A. donax across
several plastid DNA loci and, further, we document the expanded
range of this clone to the Middle East and other recently invaded
regions worldwide. To date, such an absence of genetic diversity
in plastid and nuclear markers has rarely been shown for such a
widespread plant species. Based on equivalent markers and sam-
pling, the nearest plant model is represented by Pinus pinea,
which has a single Mediterranean-wide haplotype and three
other locally restricted haplotypes (Vendramin et al., 2008).
However, those results were explained not only by plant clonality
but also by demographic bottlenecks linked to human-mediated
dispersal. Such patterns of genetic uniformity are more common
in invasive species, such as Spartina anglica and Pennisetum
setaceum (Poaceae), which also display clonal reproduction,
polyploid genomes and low genetic diversity (Baumel et al.,
2001; Le Roux et al., 2007). Despite low mutation rates and pre-
ponderant clonality in Arundo (Hardion et al., 2012), our results
highlight haplotype variation and phylogeographic structure
across the Asian range of A. donax. Consequently, human-
mediated dispersal and its invasive ability remain prevailing
explanations for the widespread Mediterranean distribution of
this non-fruiting clone.

Restricted origin of a worldwide invasive clone

The nearest relatives of the invasive haplotype M1 are found in
Afghanistan and Pakistan, along the Indus Valley (haplotypes
M2, M3 and M4). These phylogenetic affinities are reinforced
by sequence differences seen only in hypervariable sites (i.e.
mini- and microsatellites), with mutation rates approx. 105-fold
higher than plastid DNA substitutions (Cozzolino et al., 2003).
Further, species distribution modelling predicts suitable biocli-
matic conditions for the Mediterranean clone along the Indus
Valley and in south-western Iran, where seeds were found, but
also to the south of the Caspian Sea. Consequently, this study
clearly supports a Middle East origin for the Mediterranean
clone of A. donax. However, the robust morphotype T1 contrasts
with the morphotype T2 which is also found in this region.
This mismatch between morphometric and phylogenetic cluster-
ing could be a consequence of gigantism associated with differ-
ences in ploidy level from fruiting lower cytotypes, as seen
between A. plinii and A. donaciformis in the Mediterranean
(Hardion et al., 2012). This polyploid differentiation is sup-
ported by stomatal sizes, which clearly distinguish the two mor-
photypes within A. donax, probably corresponding to its two
ploidy levels: 2n ¼ 18x approx. 108 in the Mediterranean
(Gorenflot et al., 1972; Hardion et al., 2011, 2013) and 2n ¼
12x approx. 72 in Asia (Larsen, 1963; Christopher and
Abraham, 1971; Bochantseva, 1972; Mehra and Kalia, 1975).
Following this hypothesis, the seed production of the morphotype
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T2 could be linked to its lower polyploidy level of 2n ¼ 12x
approx. 72. Further studies including extensive sampling of
living material across the Middle East are needed to distinguish
closer fruiting relatives from the invasive clone using chromo-
some counts and highly variable molecular markers.

One of the oldest invasive species?

The use and trade of reeds by human civilizations since the
Neolithic has been documented across scholarly fields
(Täckholm and Drar, 1973; Postgate, 1980; Faiella, 2005) and
in numerous Greek and Roman texts summarized by Pliny the
Elder. For example, several Sumerian tablets mentioned thou-
sands of bundles of reed culms being imported across
Mesopotamia since 2500 BC (Joannes et al., 2001). Among
the reeds, A. donax is an easily transplantable and highly product-
ive species offering an exceptional combination of culm robust-
ness, lightness and flexibility (Perdue, 1958). Numerous plant
species have been dispersed by humans from south-western
Asia to the Mediterranean since the early Neolithic (Zohary
et al., 2012). As a consequence, phylogeographic studies on
European domesticated species often exhibit phylogenetic
origin or diversity in the East, mainly from the Levant, e.g.
olive trees (north Levant, Besnard et al., 2013) and wheat
(Kilian et al., 2007), but also from the Middle East, e.g. grapevine
(Caspian region, Arroyo-Garcia et al., 2006) or the wheat
D-genome (Aegilops tauschii, north-eastern Iran, Saeidi et al.,
2008), and Central Asia, e.g. domesticated apple (Cornille
et al., 2012). Joining the list of ancient introductions from south-
western Asia to the Mediterranean, the invasive clone of A. donax
could even represent one of the oldest plant invasions, in accord-
ance with its broad naturalized distribution.

Conclusions

The present study confirms the genetic uniformity of A. donax
from the Mediterranean to Iran, supporting the hypothesis of its

ancient introduction from eastern to western Eurasia. The three
datasets used here suggest that this archaeophyte, i.e. alien
species introduced before 1500 AD, originates from the
Middle East and was probably introduced to the Mediterranean
Basin in antiquity. In recent times, it has also become a neophyte
as it has subsequently been introduced around the world to other
locations with similar bioclimatic conditions. Due to its high
level of invasiveness and continued spread worldwide, this
clone may represent one of the oldest and most persistent bio-
logical invasions. Because human selection and polyploid dif-
ferentiation could have played a crucial role in the current
range of A. donax, further studies dealing with phylogeographic,
cytogenetic and archaeological aspects of its distribution should
resolve the human-mediated and evolutionary history of this
clonal reed species across Eurasia.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford
journals.org and consist of Table S1: plant sampling list, geo-
graphical origin, herbarium barcode, plastid DNA haplotype
and morphotype assignments. Table S2: GenBank accession
numbers.
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