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Abstract

Individual species are distributed inhomogeneously over space and time, yet, within large
communities of species, aggregated patterns of biodiversity seem to display nearly universal
behaviour. Neutral models assume that an individual’s demographic prospects are independent
of its species identity. They have successfully predicted certain static, time-independent patterns.
But they have generally failed to predict temporal patterns, such as species ages or population
dynamics. We construct a new, multispecies framework incorporating competitive differences
between species, and assess the impact of this competition on static and dynamic patterns of
biodiversity. We solve this model exactly for the special case of a Red Queen hypothesis,
where fitter species are continually arising. The model predicts more realistic species ages than
neutral models, without greatly changing predictions for static species abundance distributions.
Our modelling approach may allow users to incorporate a broad range of ecological
mechanisms.
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INTRODUCTION

Understanding the mechanisms governing spatial and tempo-
ral patterns of biodiversity on the Earth has proven a formi-
dable challenge. A step forward came with the development
of the neutral theory of biodiversity (Hubbell, 1979 2001;
Chave, 2004; Rosindell et al., 2011; O’Dwyer & Chisholm
2013), which showed that many static patterns of biodiversity
can be explained by the mechanisms of random drift, dis-
persal and speciation, without including the effects of species
differences (Hubbell, 2001; Volkov et al., 2003; Etienne,
2005; Etienne & Alonso 2005; Volkov et al., 2007; Etienne
et al. 2007; Chisholm & Lichstein 2009; Condit et al., 2002;
Chave & Leigh 2002; Rosindell & Cornell 2007, 2009;
O’Dwyer & Green 2010; Vellend, 2010). Neutral theory has
had considerably less success in predicting dynamic patterns
of diversity, from decadal-scale species abundance fluctua-
tions to geological ages of species (Leigh, 2007; Wang et al.,
2013; Chisholm & O’Dwyer 2014). For example, in the case
of rainforest trees, species ages predicted by neutral theory
are sometimes older than the age of the Earth (Nee, 2005).
This suggests that even an approximate understanding of
temporal patterns of biodiversity requires a consideration of
what neutral theory leaves out: species differences. Incorpo-
rating these differences into biodiversity modelling is there-
fore a priority.
We focus on deterministic, selective differences between

species, mediated by competitive interactions. Competition is
a core ecological process, in which interactions between
organisms affect their relative reproductive success.
Competitive differences between species can be driven both
by ‘niche’ differences, where species’ abundances are

stabilised by specialisation, and by ‘fitness’ differences, where
some species competitively replace others. Both are
potentially relevant mechanisms for determining patterns of
diversity (Chesson, 2000; Ricklefs, 2003); both are
represented mathematically by asymmetries in the strengths
of competitive interactions between species. But introducing
species asymmetries into mathematical biodiversity models
leads to two critical problems. First, introducing these
interactions tends to lead to models that are analytically
intractable. Second, without a systematic principle underly-
ing the strength of competitive interactions, this approach
introduces potentially hundreds of new parameters (Haeg-
eman & Loreau 2011). With so many parameters to vary,
and the vast majority difficult to determine empirically, any
improved fit for ecological patterns lacks clear interpreta-
tion.
While we clearly need to go beyond neutral models, it

seems that introducing even the simplest species differences
through competition will leave us with models that are both
hard to solve and hard to interpret. And yet there is reason
to think that biodiversity dynamics could be understood
with simple models, if we could only discover how to intro-
duce additional ecological mechanisms in a parsimonious
way. When aggregated across large numbers of organisms,
many biodiversity patterns appear to be robust emergent
properties of ecosystems, in that their qualitative form does
not depend on the underlying complexities and idiosyncra-
sies of each system (Blythe & McKane 2007; Chave et al.
2002). But we lack a principled way to distinguish relevant
from irrelevant parameters, and the analytical intractability
introduced by any kind of species asymmetry only makes
this problem harder.
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Here, we provide tractable, general, mathematical methods
that incorporate destabilising species fitness differences, and
we apply the resulting framework to solve a specific
example based on species fitness differences and the Red
Queen hypothesis. This classic scenario was originally intro-
duced to explain extinction rates of both species and higher
level taxa (Van Valen, 1973; McCune, 1982), and represents
the idea that under some circumstances organisms must
keep increasing in fitness just to stand still, in evolutionary
terms. In our Red Queen model, speciation continually pro-
duces fitter species, which have a net competitive advantage
over older, extant species, unlike neutral models. We solve
this asymmetric, multispecies model and make predictions
for three large-scale patterns of biodiversity: total species
richness, the species abundance distribution and species
ages. The species abundance distribution is one of the most
successful predictions of neutral theory, and we find that it
is largely robust to introducing the Red Queen asymmetry.
On the other hand, we show that species asymmetry
introduces significant differences in community dynamics,
and we obtain more realistic, shorter species ages than
neutral models. These results provide evidence for the
hypothesis that species differences are more important for
dynamic than static patterns of biodiversity, and our frame-
work provides the tools for a much more comprehensive
exploration of asymmetries in ecology (Levin, 2002; Blythe
& McKane 2007).

COMMUNITY DYNAMICS, SPECIES AGES AND RED

QUEEN HYPOTHESIS

To infer the mechanisms driving ecological community
dynamics, ecologists build mechanistic models and compare
their assumptions and predictions to empirical data. These
data are often in the form of statistical patterns such as
species abundance distributions and species area curves. A
more complete understanding of biodiversity and biogeogra-
phy will require models that predict not just these static
patterns, but also dynamic patterns on various timescales.
The introduction of neutral theory into ecology lead to a
new interest in these kinds of tests, but, as noted above,
neutral theory itself was ultimately shown to give inade-
quate descriptions of time-dependent patterns. The failure
of neutral models to predict realistic species ages, in partic-
ular, provides a natural starting point for an improved
model of biodiversity.
Several possible resolutions of these issues with long-term

dynamics and species ages have been proposed, but so far
none has been entirely satisfactory. First, there is the intro-
duction of selective differences between species due to a
fluctuating environment, considered by Allen & Savage
(2007). In their model, environmental stochasticity led to
more realistic species ages, but at the cost of introducing
demographic rates that are large relative to observed gener-
ation times. Second, it is possible that neutral theory’s pre-
dictions of species ages fail not because of the neutrality
assumption, but because of the assumption that the system
has reached a steady state. There is evidence that species
abundances equilibrate much faster under neutral dynamics

than do species ages, so it may be possible to resolve the
species age problem by relaxing the assumption that
the system is at the steady state. A problem with this
approach is that if initial conditions are important, then
these initial conditions must be parameterised. This destroys
the original theory’s parsimony, for doing this makes nearly
any distribution of species ages possible by choosing the
right initial conditions. Nor would assuming disequilibrium
reduces neural theory predictions of excessively long
extinction times.
Here, we consider a third possible mechanism driving

short species ages: deterministic directional evolution. Deter-
ministic evolution can be broadly separated into biotically
driven and abiotically driven evolution. In the Red Queen
model of biotic evolution, competitive forces drive a never-
ending succession of species, with absolute fitness increasing
over time. Under the abiotic model, evolution is driven
mainly by factors such as climate and geological events.
Directional biotically driven evolution has been observed in
long-term bacterial experiments (Elena & Lenski 1997; Wiser
et al., 2013), in viruses (Clarke et al., 1994) and in evolu-
tionary arms races (Vermeij, 1986). On macroevolutionary
timescales, paleobiological studies suggest that abiotic fac-
tors dominate directional evolution (Benton, 2009). Regard-
less of the exact mixture of biotic and abiotic factors,
directional evolutionary processes have in common the con-
tinual appearance of new, fitter species and the disappear-
ance of old, less-fit species.
Intuitively, models of directional evolution should predict

steady-state species ages that are more realistic (i.e. shorter)
than those predicted by neutral theory, but a quantitative
treatment of community dynamics under directional evolution
requires specification of the fitness landscape, i.e. we must
specify what the possible fitnesses of new species are relative
to extant species. A typical framework in evolutionary biology
(Desai et al., 2007) is a fitness landscape where a new species
has an incremental change in fitness relative to its ‘parent’
species, providing a ladder of relative species fitnesses. This
type of fitness landscape has been investigated in molecular
evolution (Neher & Hallatschek 2013), where it leads to radi-
cally different allele- and site-frequency spectra than predicted
by neutral models. In ecology, this could be problematic
because the neutral species abundance distribution (the eco-
logical equivalent of an allele-frequency spectrum) already
provides a good fit to data and so radical changes may lead
to a worse description of the static patterns that neutral the-
ory largely gets right.
We therefore consider a different kind of fitness land-

scape, where a new species has a competitive advantage
over all extant species due to its novelty alone, irrespective
of its parent species. For example, species population
growth rates may be limited by host-specific predators or
pathogens (Comita et al., 2010; Mangan et al., 2010),
leading to a competitive advantage for new species (who
have a lower pathogen or predator load) over extant spe-
cies, but such that this advantage diminishes over time as
the species acquires enemies. This new species advantage
could also approximate circumstances where only species
with a fitness advantage over extant species are likely to
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reach appreciable abundances (it might be imagined that
some species with submaximal fitness arise too, but go
extinct relatively quickly and can be ignored in a first
approximation).
Regardless of the specific driver of this kind of directional

evolution, the resulting fitness landscape can be modelled in a
similar way. For this reason, we group these different biologi-
cal scenarios together under the umbrella of the Red Queen
hypothesis. Again, we consider a ladder of species interac-
tions, but where new species always appear at the top of the
ladder. This assumption alone does not specify the relative
fitnesses of different species, and one way to calculate species
relative fitnesses in the model would be to make the competi-
tive advantage of species A over B proportional to the differ-
ence in age of the two species. We make a simpler choice (and
we provide evidence in the Supporting Information that this
does not make a big difference to the evolutionary dynamics),
which is to assume that new species have the same competitive
advantage over all extant species. Each species then sees three
distinct groups: newer, fitter species; conspecifics; and older,
less-fit species. We represent competition between species by
interaction coefficients, aij which encode the competitive effect
of species j on species i, and depend on speciation times sj
and si:

aij ¼ að1� �0Þ for sj\si
aii ¼ a

aij ¼ að1þ �0Þ for si\sj:

ð1Þ

Here, a is a coefficient characterising the strength of compe-
tition, and e0 is a constant between 0 and 1 that introduces
species asymmetry. In summary, we address the issue of
problems with neutral dynamics by introducing determinis-
tic, selective differences between species. While the mathe-
matical methods we will introduce could be applied to quite
general fitness landscapes, we focus on the species interac-
tions defined by eqn (1), which we also argue may capture
much of the general behaviour of a broader class of land-
scapes.

MODEL AND MEAN FIELD THEORY

Our model community contains many competing species.
Each species i has the same intrinsic net birth and mortality
rates, b and d, and competitive interactions characterised by
the Lotka–Volterra-like interaction rates aij, introduced above.
In contrast to neutral ecology, the degree of competition
between different species may vary for different i and j, and
selective forces may influence the community through these
differences. We also incorporate speciation at a per capita rate
m, whereby a new species may arise with a single individual.
This speciation process in effect slightly reduces the effective
birth rate for each extant species, as extant species very slowly
“shed” individuals into new species, as in neutral theory
(Hubbell, 2001; Volkov et al., 2003). Putting these features
together, the community is described by the following master
equation for the conditional probability PsðfnigjfsigÞ for
species abundances ni:

dPsðfnigjfsigÞ
ds

¼ ðb� mÞ
X
k

½ðnk � 1ÞPsðn1; . . .; nk � 1; . . .jfsigÞ

� nkPsðn1; . . .; nk; . . .jfsigÞ�
þ d

X
k

½ðnk þ 1ÞPsðn1; . . .; nk þ 1; . . .jfsigÞ

� nkPsðn1; . . .; nk; . . .jfsigÞ�
þ
X
k

akk½ðnk þ 1ÞnkPsðn1; . . .; nk þ 1. . .jfsigÞ

� nkðnk � 1ÞPsðn1; . . .; nk; . . .jfsigÞ�
þ
X
k6¼j

ajk½ðnj þ 1ÞnkPsðn1; . . .; nj þ 1; . . .; nk; jfsigÞ

� njnkPsðn1; . . .; nj; . . .; nk; . . .jfsigÞ�:
ð2Þ

This probability distribution depends on the absolute time, s,
and is conditioned on the set of speciation times {sk} of all spe-
cies that appeared in the community up until s. The first brack-
eted summation on the right-hand side represent the birth
process, at a per capita rate b � m, and the sum over species
index k is due to the possibility of birth events for each species.
The second summation corresponds to mortality for all extant
species at a per capita rate d. We note that some of these terms
appear with positive signs, representing the increase in
PsðfnigjfsigÞ due to transitions into that configuration of spe-
cies abundances, whereas others appear with negative signs, rep-
resenting the opposite process. For example, the birth process
from ni to ni + 1 acts to reduce the probability PsðfnigjfsigÞ.
The remaining terms are due to intra-specific and inter-specific
competition, and contain interaction rates proportional to the
parameters aij, chosen above to reflect the Red Queen–type fit-
ness landscape. These terms are nonlinear in species abun-
dances. For example, in the final term we have an interaction
between species j and species k, resulting in a mortality event.
The probability that any two individuals in species j and species
k interact is proportional to the current number of individuals
of each of the two species, leading to the product njnk. For com-
pactness we have not explicitly included the appearance of new
species in this equation. The equations governing speciation can
be written down by defining P to have an infinite number of
entries which initially have zero abundance, and subsequently
transition to non-zero abundance with a speciation rate m.
We now make a series of approximations, detailed in Sup-

porting Information, beginning with a mean field theory
approach which treats each species as interacting with the
average background of other species. The mean field approxi-
mation states that in the limit of a large number of species,
we expect the correlations between the abundances of any two
species to be small. This assumption means that the dynamics
of a focal species is determined only by the mean dynamics of
all the other species, rather than being coupled individually to
the fluctuations in every other species. We can then factor the
probability distribution Psðfnkg; fskgÞ,
Psðfnkg; fskgÞ ’

Y
i

Pfig
s ðni; fskgÞ: ð3Þ

This is necessarily an approximation to the full community
dynamics, which we expect to be a good approximation when the
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number of species is large. This mean field theory leads to a trac-
table model of our community, and we now focus on steady-state
solutions for the marginal probability Pfig

s ðnijfskgÞ, averaged
over all other speciation times sk6¼i. We also drop the explicit spe-
cies indices i in this marginal probability because all species enter
the same (averaged) background of competitors, and we rewrite
this marginal probability as P(n|t), the probability that
a given species has an abundance n, conditioned on its age t.
Applying our approximation step by step, we show in

Appendix S2 that the probability that a species has abundance
n a time t after it enters the community, P(n|t), solves the fol-
lowing mean field master equation,

dPðnjtÞ
dt

¼ ðb� mÞ½ðn� 1ÞPðn� 1jtÞ � nPðnjtÞ�
þ ðb� RðtÞÞ½ðnþ 1ÞPðnþ 1jtÞ � nPðnjtÞ�:

ð4Þ

The first pair of terms in eqn (4) represents the birth of indi-
viduals at per capita rate b � m, whereas the second pair of
terms approximates the effects of intra-specific and inter-spe-
cific competition, represented by a time-dependent mortality
process with a per capita rate b � R(t). R(t) is fully deter-
mined by the mathematical model that we have already intro-
duced, and depends on this focal species’ age, t, therefore
acting to change a species’ net fitness through time. This time-
dependent fitness is the only part of eqn (4) that differs from
the standard, neutral theory master equation (Volkov et al.,
2003), but we will show below that it significantly changes
neutral theory predictions.
We have formulated this model so that each species experi-

ences the average effect of all other species in the community,
and so the natural expectation is that the effect of R(t) should
be to decrease species fitness with age, reflecting the competi-
tive advantage for newer species over older species in our Red
Queen hypothesis. We now show that this expectation is accu-
rate, and derive an analytical solution for R(t). In Appendix
S2 we first show that R(t) can be explicitly written as:

RðtÞ ¼ rm
Z 1

t

hnðt0Þidt0 �
Z t

0

hnðt0Þidt0
� �

; ð5Þ

where the parameter r = (b�d)e0 translates the asymmetry e0
into a demographic rate, and 〈n(t)〉 is the expected species
abundance as a function of its age. This equation has an
intuitive interpretation. The first term is a sum over abun-
dances of all species that appeared in the community before
the focal species, which contribute a net positive term to
the focal species fitness. Similarly, the second term sums
over abundances of species that appeared after the focal
species, contributing a net negative term to species fitness.
In Appendix S2, we then derive the following explicit solu-
tion:

RðtÞ ¼ r
2ðrþ mÞ

rþ meðrþmÞt � 1

� �
: ð6Þ

This solution for R(t) initially takes value r at t = 0, and
decreases over time, asymptoting to �r: This is the

backwards conveyer belt arising from the Red Queen
hypothesis, and is shown in Fig. 1 for various parameter
values.
We can now derive a solution for P(n|t), by plugging R(t)

given by eqn (6) into our mean field master eqn (4). We
solve this master equation for a point speciation process
(Hubbell, 2001), where abundance n = 1 when species age
t = 0:

PðnjtÞ ¼ hnðtÞi½hnðtÞiFðtÞ�n�1

½1þ hnðtÞiFðtÞ�nþ1
; ð7Þ

for n > 0. For large new-species advantage, we will see that
growth in abundance will initially be almost deterministic,
whereas in the neutral case drift dominates. The functions
〈n(t)〉 and F(t) depend on speciation rate m and new species
advantage, r, and are given by

hnðtÞi ¼ ðrþ mÞ2eðrþmÞt

ðrþ meðrþmÞtÞ2

FðtÞ ¼ mrðb� mÞ
ðmþ rÞ3 2ðmþ rÞtþ m

r
ðeðmþrÞt � 1Þ þ r

m
ð1� e�ðmþrÞtÞ

h i
:

ð8Þ

〈n(t)〉 is also the expected species abundance through time,
whereas F(t) is related to an integral of 〈n(t)〉, and given in
more detail in Appendix S3. We note that for any alterna-
tive landscape and different R(t), P(n|t) always takes the
same exponential form in n, but with different functions 〈n
(t)〉 and F(t).

Figure 1. The fitness of a single species through time, with per capita

speciation rate m = 10�4 in all three cases, and initial species fitness

defined in terms of the asymmetry parameter e0 by r = (b�d)e0. The three

cases shown are r = 1 (maximal, red), r = 10�2 (high, blue) and 0

(neutral, green).
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RESULTS

We began with a community with birth, death, competition
and speciation. Through our approximations and choice of
landscape, we have taken an intractable, interacting multispe-
cies community in eqn (2), and by considering species asymme-
tries but ignoring niche differentiation we have transformed it
into a linear, single-species master equation, (4), involving
explicitly just birth, death and speciation. This equation implic-
itly summarises the entire effect of the competitive interactions
through the time dependence of these birth and mortality rates.
We now present results for expected species richness, the spe-
cies abundance distribution and the expected age of a species as
a function of its abundance. In general, the results for each of
these three quantities must be obtained by numerical integra-
tion. However, in the neutral limit, when the asymmetry r
between species is small, or in a highly asymmetric community,
where r is much larger than the speciation rate m, we can obtain
analytical results, derived in Appendix S3 and presented below.

Expected Species Richness and Species Abundance Distribution

The expected Species Abundance Distribution (SAD) is given
by the following integral of our analytical solution for P(n|t):

SðnÞ ¼ mJ
Z 1

0

dtPðnjtÞ: ð9Þ

This should be thought of as a sum over the possible contribu-
tions from species of all ages, which has then been averaged over
speciation times. We can compute this integral numerically for
any given choice of parameters m and r, and to support the valid-
ity of our mean field and other approximations, we compared
this mean field expected SAD to the SAD arising from simula-
tions of our full community dynamics, as defined by eqn (2). The
details of the simulations are given in Appendix S4 and our
results are shown in Fig. 2, where we compare the mean field
and simulated SAD. We examine a range of parameter values
for m and J, each designed such that the expected number of spe-
cies is always relatively large, but allowing us to test our results
for different speciation rates. The mean field approximation for
expected species abundances performs well in comparison with
the average abundance across all simulation runs, suggesting
that our mean field approximation works as an approximation
of the steady-state distribution of species abundances. We note
that the speciation rate and community size in our simulations
are too small to be realistic; the prohibitive computational power
needed to simulate a full interacting community with realistic
parameters is one reason that our mean field formalism is useful.
In the neutral limit, r = 0, species richness is given by the

usual analytical result arising from neutral models (Hubbell,
2001; Volkov et al., 2003):

Sneut ¼ mJ
b� m

log
b

m

� �
: ð10Þ

In contrast, in the highly asymmetric limit we have a new
result, detailed in Appendix S3: Smax=2Sneut, exactly twice the
neutral species richness.
We can also derive exact results for the SAD in neutral and

extreme Red Queen limits. In the neutral limit, the SAD reduces

to the usual neutral log series (Hubbell, 2001; Volkov et al.,
2003). In the opposite limit of r ≫ m, we have another new result.
We still observe an exponential drop-off for large abundances,
but for abundances n � 1/m the behaviour is captured by

SasymðnÞ ¼ mJ
bn

2� b

bþ r

� �n� �
: ð11Þ

In the most extreme non-neutral limit, when r = b, this
reduces to 2mJ

bn for n ≫ 1. We note that this mathematical result
is strictly true in the limit of m ? 0. Our numerical results
show that in this limit of r ≫ m, and m still finite, there is
approximately 1/n scaling behaviour with an exponential cut-
off for n > 1/m. This echoes results from early studies intro-
ducing asymmetry into neutral theory (Pueyo et al., 2007): In
the extreme non-neutral limit, we recover a SAD which has
the same scaling behaviour as the log series.
How can we understand the origin of this log series–like

behaviour? In the limit r = b, the dynamics of individual species
are increasingly well approximated by deterministic trajectories
with small fluctuations around them. This is quite unlike the
neutral case, when the expected trajectory 〈n(t)〉 = e�mt is almost
always a poor approximation to any given species’ actual abun-
dance through time. We now consider what would happen if we
assume that the fluctuations around the expected trajectory
were actually zero. If this were the case, we could write a ‘deter-
ministic’ probability distribution PdetðnjtÞ ¼ dðn� hnðtÞiÞ,
where d is the Dirac delta function, which is zero unless n
equals 〈n(t)〉. This in turn results in a deterministic species abun-
dance distribution, as shown in Appendix S3:

SdetðnÞ� 2mJ
bn

; ð12Þ

for n less than the maximum value of 〈n(t)〉, which is ðmþrÞ2
4mr . In

this expression, the 1
n, log series–like factor arises due to our

mean field approximation, whereas the factor of 2 is because
the expected trajectory 〈n(t)〉 passes through each value of n
twice; once as the species is increasing in abundance, and once
as it is decreasing.
While heuristic, this gives us some insight into why the com-

bination of large numbers of species (mean field) and very
strong asymmetry (deterministic trajectories) leads to the same
scaling behaviour as the neutral log series, but with an overall
factor of 2. This analysis does not identify the neutral-like
exponential cut-off that we see numerically, as the determinis-
tic approximation inevitably breaks down when n is near its
maximum, and therefore does not agree with our earlier exact
analytical results for species richness. Finally, we note that
this result clarifies the importance of both stochastic and
deterministic forces at any intermediate asymmetry, where the
SAD interpolates between the stochastic, neutral result and
the deterministic result above, as demonstrated by our simula-
tion and analytical results in Fig. 2.

Species Ages

So far, we have identified analytical results for species rich-
ness and the SAD in both neutral and extreme Red Queen lim-
its. But the results show that this species asymmetry has
a relatively minor effect. Even in the most asymmetric limit,
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Figure 2. Species asymmetry leaves the shape of the Species Abundance Distribution (SAD) largely unchanged. Left panels show the raw SAD and right

panels are binned into Preston abundance classes. Simulation results are plotted as dots, with a grey 95% confidence interval, while mean field results are

plotted as solid lines. Each pair of panels plots SADs for communities with a given speciation rate, represented by differing values of m, and within each

plot are multiple values of r in units of birth rate, b, from the extreme, asymmetric case of r = 1 to the neutral case of r = 0. For the lower two speciation

rates, only the mean field result for neutral case is shown, for comparison with the more general values of r. We note that the intermediate case of high

asymmetry has a “hump-shaped” SAD, interpolating between two bounding log series.

© 2014 John Wiley & Sons Ltd/CNRS
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we only see an overall factor of 2 relative to the neutral
results – the shape of the SAD is largely unchanged. We now
turn to the distribution of species ages, defined as the expected
age of a species as a function of its current abundance. Neu-
tral theory has drawn criticism for overestimating the age of
abundant species, with this overestimate largely arising due to
the long time it takes a population to reach a high abundance
solely through drift (Leigh, 1981; Nee, 2005; Leigh, 2007).
Mathematically, this expectation value is given by:

TðnÞ ¼
R1
0 dt tPðnjtÞR1
0 dtPðnjtÞ :

In Fig. 3, we show that expected species ages increase initially
with abundance, before reaching an asymptotic limit. The
result indicates that by introducing species asymmetry we can
potentially avoid the neutral theory’s prediction of overlong
lifetimes for large populations.
Again, we can compute this integral numerically for any

given choice of parameters m and r, and to support the valid-
ity of our model we compared the mean field expected species
age as a function of abundance to the equivalent distribution
arising from simulations of our full community dynamics, as
defined by eqn (2). The details of the simulations are given in
Appendix S4, and our results are shown in Fig. 3. In the neu-
tral limit, the solution for T(n) reduces to a closed-form, ana-
lytical expression,

TneutðnÞ ¼ 1

m
b� m
b

� ��n

B½1� m=b; 1þ n; 0� þHn þ log½m=b�
� �

;

ð13Þ
where B is the incomplete beta function, and Hn are harmonic
numbers (Abramowitz & Stegun 1972). For large n, this
increases logarithmically with abundance, leading to the issues
previously identified with neutral theory: For very abundant
species, neutral species ages are larger than consistency with the
geological record would require (Chisholm & O’Dwyer 2014).

In the opposite, asymmetric limit of r ≫ m, we have a more
complicated analytical result for the expected species age as a
function of abundance, given in Appendix S3. However, despite
its apparent complexity, for large n this result asymptotes to

TasymðnÞ ¼ 1

r
log½r=m�: ð14Þ

This asymptotic behaviour is also apparent from our simula-
tions, shown in Fig. 3. Instead of increasing indefinitely with
abundance as in neutral theory, Red Queen species can have
realistic ages even for abundant species.

DISCUSSION

Neutral ecology introduced a framework for understanding
and predicting macroecological patterns (Hubbell, 2001; Ros-
indell et al., 2011), making the radical assumption that species
differences do not significantly affect these patterns. Its early
successes in matching species abundance distributions sug-
gested that this assumption might be reasonable. On the other
hand, neutral predictions often fail to match dynamical pat-
terns of biodiversity in nature (Nee, 2005; Leigh, 2007; Wang
et al., 2013). An example is the distribution of species ages as
a function of current species abundance, where it has been
argued that neutral species would be much older than those
observed in real communities – even in the cases where the
species abundance distribution matches well. One possibility
was that by introducing species differences, the biology under-
lying those differences will incrementally improve predictions
that work well (like species abundances) and salvage those
that do not (species ages). Comparing these time-dependent
patterns against theoretical predictions could also help iden-
tify what mechanisms associated with species differences are
most important.
We have addressed this by introducing a tractable model for

competing species. This framework incorporates demographic
stochasticity, speciation and the competitive interactions and

Figure 3. In Red Queen models, the expected species age reaches an asymptotic limit as a function of abundance. The three plots show simulated and

mean field results for three different speciation rates and community sizes. We compare our mean field expected age (solid lines) to simulations (dots and

grey 95% confidence interval) of our full community, and plot the neutral result (green line) for comparison.

© 2014 John Wiley & Sons Ltd/CNRS
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selective forces arising from adaptation. We introduced
approximations to make this model solvable, outlining their
domains of applicability, and reinforced these results with
numerical simulations. This approach allowed us to reduce
our general framework to a linear stochastic master equation
with time-varying demographic rates. It is in these rates that
the impact of competition and adaptation is encoded, and this
formulation is the central new mathematical result arising
from our approach. The neutral theory has been compared to
the ideal gas in physics: A first approximation to be built on
(Volkov et al., 2003; Zillio & Condit 2007; Rosindell et al.,
2011). But it may be that ecology without selective differences
is an inadequate starting point. Including such differences
between species is analogous to adding interactions to the ideal
gas.
We find that in the neutral limit our master equation

reduces to the standard, neutral theory master equation. Mov-
ing beyond neutrality, we solved exactly for a type of Red
Queen hypothesis, where every new species has a fitness
advantage over extant species, and this new species advantage
declines over time due to the introduction of yet newer, fitter
species. This kind of landscape may be relevant in ecological
systems that undergo directional evolution, or where diversity
is maintained in part through predation or interactions like
plant–soil feedbacks (Comita et al., 2010; Mangan et al.,
2010). These feedbacks affect plant dynamics in numerous
ways, but one effect may be that new species have fewer pre-
dators or pathogens by virtue of their novelty. It could also
reflect a quasi-cyclical scenario, where new species have an
advantage over extant species, but phenotypes are cycling over
the long term (Dieckmann et al., 1995; McGlone, 1996). Our
results for this Red Queen model are best described as a func-
tion of the asymmetry between species. As this asymmetry
becomes larger, we find that species ages become much
shorter, whereas the species abundance distribution at first
becomes more ‘humped’, but is otherwise largely unchanged.
In the maximally asymmetric community, the species abun-
dance distribution approaches a log series, providing a mathe-
matical underpinning to previous expectations that neutral-
like patterns may be found in highly asymmetric (‘idiosyn-
cratic’) communities (Pueyo et al., 2007).
Our formulation in terms of competitive interactions allows

for the possibility of stabilising mechanisms (Chesson, 2000;
Wright, 2002). If we were to remove speciation in our current
model, one species would eventually drive the others extinct,
with no long-term coexistence, reflecting our choice to focus on
fitness differences rather than niche differences. Instead, we
could introduce multiple niches through an appropriate, more
complex fitness landscape, which could be compared to previ-
ous combinations of niche structure and neutrality (Purves &
Pacala 2005; Zillio & Condit 2007; Chisholm & Pacala 2010).
In contrast to fitness differences, the stabilising mechanisms of
niche differentiation may increase species ages, particularly in
the absence of environmental fluctuations, but are likely to be
an important part of a more general framework. In summary,
our model takes a step from neutral theory towards this more
general ‘statistical mechanics of heterogeneous populations, in
which new types are continuously appearing’ (Levin, 2002;
Blythe & McKane 2007). In particular, we note the role of high

diversity in simplifying apparently complex communities, much
like sheer large numbers are enough to simplify interacting sys-
tems in physics and chemistry. This mirrors the macroecologi-
cal intuition that high diversity leads to emerging regularities,
but we now have a mathematical approach on which to sup-
port and guide this intuition.
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