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We estimated the statistical power of the first and last statistical test presented in 697 papers from 10 behavioral journals. First
tests had significantly greater statistical power and reported more significant results (smaller p values) than did last tests. This
trend was consistent across journals, taxa, and the type of statistical test used. On average, statistical power was 13–16% to detect
a small effect and 40–47% to detect a medium effect. This is far lower than the general recommendation of a power of 80%. By
this criterion, only 2–3%, 13–21%, and 37–50% of the tests examined had the requisite power to detect a small, medium, or large
effect, respectively. Neither p values nor statistical power varied significantly across the 10 journals or 11 taxa. However, mean p
values of first and last tests were significantly correlated across journals (r ¼ :67; n ¼ 10; p ¼ :034), with a similar trend for mean
power (r ¼ :63; n ¼ 10; p ¼ :051). There is therefore some evidence that power and p values are repeatable among journals.
Mean p values or power of first and last tests were, however, uncorrelated across taxa. Finally, there was a significant correlation
between power and reported p value for both first (r ¼ :13; n ¼ 684; p ¼ :001) and last tests (r ¼ :16; n ¼ 654; p , :0001). If true
effect sizes are unrelated to study sample sizes, the average true effect size must be nonzero for this pattern to emerge. This
suggests that failure to observe significant relationships is partly owing to small sample sizes, as power increases with sample size.
Key words: effect size, meta-analysis, publication bias, sample sizes, statistical power. [Behav Ecol 14:438–445 (2003)]

The biological literature is dominated by reports of
statistically significant patterns of association (Csada

et al., 1996). This may partly reflect a publication bias toward
significant findings (Kotiaho and Tomkins, 2002; Palmer,
1999, 2000). Recent reviews show that studies with both small
sample sizes and nonsignificant results are underrepresented
in the literature (Jennions and Møller, 2002a,b). This could
bias our assessment of the average strength of biological
relationships. Biologists need to ensure that studies are
equally publishable whether their results are significant or
not. This, however, raises a problem. Should the criteria for
publication be an a priori minimal level of confidence in the
conclusion of a study in case the observed outcome turns out
to be a nonsignificant result? If the answer is yes, then, to
determine publishability, we must calculate our confidence in
a conclusion that there is no significant effect. If the answer is
no, we must still do this because nonsignificant results are
then published, and readers need to assess how much
confidence to place in a negative conclusion. Leaving aside
whether a dichotomy into significant and nonsignificant
results is appropriate for biologists (Stoehr, 1999), this
question is best answered by statistical power analysis (but
see Hoenig and Heisey, 2001). Power is the probability of
obtaining a significant result when the null hypothesis is false.
Power increases as sample size, a-level of significance, and
effect size (magnitude of the difference between the
alternative and null hypothesis) increase, and decreases with
greater variance in the study population. If the effect size is
a standardized measure (e.g., the mean difference between

two groups expressed in standard deviations, d; or the cor-
relation coefficient, r), it is dimensionless, and there is no
need to specify population variance to calculate statistical
power (Thomas and Krebs, 1997). The use of standardized
measures can, however, yield differences in observed effect
size solely owing to predictable differences in the likelihood of
measurement error (e.g., between laboratory and field
studies; Hurlbert, 1994). In general, however, biologists report
post-hoc statistical power to detect standardized measures of
effect sizes of specific magnitude, conventionally referred to
as small, medium, or large effects (Cohen, 1988).

Despite being urged to incorporate power analysis into
research design and presentation (see Greenwood, 1993;
Peres-Neto and Olden, 2001; Stoehr, 1999; Thomas and
Juanes, 1996; Thompson and Neill, 1993; Toft and Shea,
1983), most behavioral ecologists still report nonsignificant
results without indicating a test’s statistical power (Stoehr
1999; this study). Since the first survey by Cohen (1962), those
in the medical and social sciences have conducted surveys to
estimate average power in specific fields or journals (see
Chung et al., 1998; Kloster and Layne, 1997; Maddock and
Rossi, 2001; Moher et al., 1994; additional examples in other
disciplines are given by Cohen, 1988: xi). In biology, the effect
of low power has been examined in a few specific areas. For
example, Noor and Smith (2000) showed that low power
might affect conclusions of studies on sexual isolation in
Drosophila. Palmer (2000) recently pointed out that the ability
to detect small to medium deviations from a one-to-one sex
ratio in vertebrates with even moderate power requires sample
sizes far larger than those in most published studies. To our
knowledge, there has been no systematic attempt to conduct
a power analysis survey of a broad area of research in biology.

Why quantify average statistical power? After all, interpreting
the results of a specific statistical test depend solely on its
power. We propose four reasons. First, surveys invariably show
that the general power to detect relationships is far lower than
most researchers think (see Dickinson et al., 2000; Kazantzis,
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2000). Ignorance of the relationship between sample size and
power could explain why researchers often conduct studies
with small sample sizes, when even modest increases could
have greatly improved their statistical power (Thomas and
Juanes, 1996). When confronted with the reality of low power,
researchers may be encouraged to explicitly consider sample
size and improve experimental design before conducting
studies. Second, power surveys can determine whether
researchers are becoming more aware. If they are, statistical
power should increase through time. For example, Rossi
(1990) and Sedlmeier and Gigerenzer (1989) replicated
Cohen’s original 1962 survey and found no increase in power
between 1960 and 1982–1984. In contrast, Moher et al. (1994)
reported an increase in power in randomized control trials in
medicine over a 25-year period. Stoehr (1999) disagreed with
a reviewer who felt he had created a straw man, by stating that
most behavioral researchers do not take power analysis
seriously. This difference in opinion is easily resolved by
comparing the mean power of tests conducted now and in the
future (or past). Third, if the literature is replete with tests
with low power, this should influence how researchers
interpret the literature. (Even if the main focus of a study is
a clearly significant result, interpretation often relies on the
absence of confounding variables. Their absence is usually
based on subsidiary tests reporting nonsignificant results.)
Many papers in behavioral ecology reach strongly worded
conclusions after refuting an alternate hypothesis, even
though the power to reject the null hypothesis was extremely
low. This leads to fallacious vote counting if scientists simply
tally the proportion of studies that detect a relationship
without considering the influence of sample size (Cooper and
Hedges, 1994). Four, behavioral ecologists may fail to report
power for fear that this will reduce the likelihood of
publication when reviewers see low values. The review process,
however, involves assessment of manuscripts relative to
hypothetical alternatives (e.g., is this paper in the top
25%?). These alternatives are unavailable, so a reviewer’s
assessment is usually based on the quality of previous studies.
Knowing the statistical power of recently published studies will
provide an empirical benchmark that allows better informed
decisions. A statistical power of 30% to detect a small effect is
actually impressively high when compared with the average.

Here we present a power survey of papers from 10 journals.
Eight of these are devoted to ethological and behavioral
ecological studies. The other two often contain studies
directly reporting on animal behavior or the immediate
consequences thereof (e.g., effect of habitat choice on spatio-
temporal abundance).

METHODS

Analysis of statistical power requires knowledge of the effect
size we wish to detect. For standardized measure of the
magnitude of a relationship, Cohen (1988) has defined small,
medium, and large effect sizes for several tests. For example,
a small effect has a mean correlation coefficient, r, of .10 (i.e.,
explains 1% of the variance because r 2 ¼ 1%), a medium
effect has r ¼ :30; and a large effect has r ¼ :50: Biologists
usually perform analyses estimating the power to detect an
effect of medium strength. Here we present data on statistical
power if the effect size is small, medium, or large at the
p ¼ :05 level (two-tailed) as defined in chapters 2–8 of Cohen
(1988). However, a recent survey of 44 biological meta-
analyses examining 242 null hypotheses shows an average
effect for ecological or evolutionary studies of r ¼ :18--:19
(Møller and Jennions, 2002). Thus, the observed average
effect size examined by biologists (at least for relationships

subjected to meta-analysis) is below the medium effect of
Cohen (1988). We do not know the true effect sizes for the
tests we examined. As such, we cannot conclude there is
a publication bias simply because most studies report
significant results (Bauchau, 1997). The expected proportion
of studies reporting significant results depends on the effect
size these studies were trying to detect (and the sample sizes).

We estimated power for 1362 statistical tests from 697
original papers from 10 journals: American Naturalist (33),
Animal Behaviour (187), Behaviour (69), Behavioral Ecology (68),
Behavioral Ecology and Sociobiology (102), Behavioural Processes
(39), Ethology (73), Journal of Insect Behaviour (54), Journal of
Animal Ecology (50), and Ethology, Ecology and Evolution (22).
The number of usable papers per journal is indicated in
parenthesis. In each case, we examined all issues of the
journal with a 2000 publication date (only the Nov/Dec issue
of Behaviour was unavailable).

For each paper, we looked for the first and last statistical test
presented in the text of the Results section. We defined
a statistical test as having been presented if the author(s)
reported a probability value (henceforth, p value) either
exactly or using the phrase ‘‘p , :0X ’’ or ‘‘p . :Y ;’’ or if the
shorthand ‘‘N.S’’ or ‘‘n.s.’’ was used to denote a nonsignificant
p value, and it was clear which statistical test had been used.
We did not consider a test to have been presented if the
authors simply made a statement such as ‘‘there was no
difference between X and Y ’’ or ‘‘there was a significant
correlation between X and Y.’’ If there were fewer than two
usable statistical tests in the main text, we then looked at
tables and figure legends, reading from top left to bottom
right. For 665 of the 697 papers, we obtained data for two
tests. Use of the first and last test provided an objective way to
collect data. Focusing on the so-called main test of a study may
be misleading. Most papers emphasize statistically significant
findings, even though these may not have been the original
focus of the study (Csada et al., 1996; but see Bauchau, 1997).

For each test, we recorded the p value. If p was given as
p ,X ; we set p ¼ X: If given as p .Y ; we only set p as Y if
Y . :05: (In 24 of 1362 tests [1.8%], the only information was
that p . :05:) For summary analyses, we converted p values
into their associated standard normal deviates (z scores,
z ¼ 1:96 when p ¼ :05). We also recorded the taxa/type of
study using 11 categories: crustaceans, insects, spiders, other
invertebrates (excluding insects, spiders, and crustaceans),
fish, amphibians, reptiles, birds, mammals, plants, and species
level (e.g., phylogenies). We analyzed mean power for
different taxa because there is a general assumption that
studies of some taxa (e.g., mammals) have smaller sample
sizes than others (e.g., insects) and that these will therefore
have reduced statistical power.

We calculated the power of the most commonly encoun-
tered statistical tests, specifically binomial tests; sign tests; v2

goodness-of-fit or R 3C contingency table analyses; G tests
(log-likelihood ratio tests for contingency tables); comparison
of two proportions; comparison of two correlation coeffi-
cients; Fisher’s Exact test for a 23 2 table; Friedman’s non-
parametric test; Kruskal-Wallis nonparametric one-way
ANOVA; Mann-Whitney U test (two independent samples);
paired t test; tests for significance of correlation coefficients;
one-sample t test; two-sample t test; Wilcoxon’s matched-pairs
test; one-way ANOVA; and test of main effects for fixed factors
in ANOVA with simple factorial designs (two-way or three-way
ANOVAs), which includes tests for difference in elevation in
ANCOVAs (Cohen, 1988: 379). The only tests excluded with
any regularity were tests for main effects in ANOVAs with
complex designs (specifically repeated measures and nested
factors), tests for interaction terms in all ANOVAs, logistic
regressions, and tests based on maximum likelihood or
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restricted maximum likelihood approaches. These tests were
mainly excluded because of ease of power analysis. They were
not excluded on a priori evidence that they had lower, or
higher, statistical power than that of the included tests.

Statistical power was calculated using tables in Cohen
(1988). In addition, we used G*power to calculate power for
sample sizes smaller than those presented in the tables
(Erdfelder et al., 1996). G*power and Cohen’s tables show
close agreement, with the exception of F tests in which the
approximation method of Cohen can lead to differing results
with complex experimental designs (Bradley et al., 1996).
However, we only used Cohen (1988) to calculate power for
simple one-way, two-way, and three-way ANOVAs. F tests of the
significance of a regression were analyzed as tests of the
significance of the regression coefficient. This is equivalent to
testing the significance of the correlation coefficient (Cohen,
1988: 76–77). To allow us to collect and analyze data on so
many tests, we made a few simplifying assumptions that
slightly inflated our estimates of power. They were as follows.

1. For four nonparametric tests, we calculated the power if
the available data had been analyzed using the equivalent
parametric test. The relative power (efficiency) of non-
parametric tests is weaker than their parametric counter-
parts because they make fewer assumptions (Siegel and
Castellan, 1988: 21). However, with moderate to large
sample sizes, the power of nonparametric tests becomes
similar to that of the equivalent parametric tests.
Specifically, for Wilcoxon tests we calculated power for
a paired t test; for Mann-Whitney U test for a two-sample t
test; and for Kruskal-Wallis and Friedman’s test for
parametric ANOVAs. For Mann-Whitney U tests, Wilcox-
on tests, and Kruskal-Wallis tests, the statistical power
reaches about 95.5% of that of the equivalent parametric
t tests for moderate sample sizes. For Friedman’s test,
power is 64% of that of the equivalent F test when there
are two groups, increasing to 87% for five groups (Siegel
and Castellan, 1988). The estimated power we report for
these nonparametric tests is therefore slightly larger than
the actual power of the tests used by the original authors.

2. For two nonparametric tests, we calculated power for
equivalent nonparametric tests. For G tests we calculated
power for v2 tests. These two methods of analysis usually
yield the same conclusions, and there is no clear
agreement as to which is preferable (Zar, 1999: 475), so
they tend to be used interchangeably by researchers. For
Fisher’s Exact test, we calculated power for a comparison
of two proportions. This was the hypothesis tested by the
original authors as one of the margins has fixed totals
(Cohen, 1988: Table 6.3.5).

3. In some two-sample t tests or Mann-Whitney U tests, only
the total sample size was given. We assumed that group
sample sizes were equal, which maximizes power. Again,
this will slightly inflate our estimates.

We compared statistical power and z scores among journals,
taxa, and statistical test types by using Kruskal-Wallis one-way
ANOVA. (Power for the equivalent parametric ANOVA to
detect small, medium and large effects is given in parenthesis.
In all cases, parametric tests yielded the same conclusions.)
We compared first and last tests by using Wilcoxon’s tests.
When comparing power among groups, we used ‘‘power to
detect a medium effect’’ as the dependent variable. This is
likely to maximize the difference between groups because
power is a percentage that shows asymptotic values at small
and larger sample/effect sizes. Following the method of
Stoehr (1999), we also present the results of our statistical
tests as observed effect size, by converting the test statistic or p
value to r following the method of Cooper and Hedges (1994:
236–240). To avoid confusion, we denote these as E r. Rather

than presenting the mean effect size, we present the 95%
confidence intervals. These provide the clearest indication of
the certainty with which we can conclude that an effect
differed from zero (for an excellent review, see Hoenig and
Heisey, 2001; see also our Discussion).

RESULTS

A few papers presented statistical power for the ‘‘main’’
biological hypothesis under test. However, power was not
reported in any of the 533 tests with nonsignificant results. We
had to calculate power by using the reported sample size. In
many instances, even this was difficult. A close inspection of
the paper was sometimes required to track down the
information (e.g., Journal of Animal Ecology in which sample
sizes were presented in the Methods section but not in the
Results section). In some cases, we were unable to work out
the sample size, either because of an ambiguity in the paper
or because it was never provided.

First and last tests

There were clear differences between first and last statistical
tests. First tests had significantly greater statistical power
(Wilcoxon’s test: n ¼ 550 pairs, z ¼ 6:72; p , :0001; Er ’
0:208--0:362) and smaller p values (Wilcoxon’s test: n ¼ 584
pairs, z ¼ 7:43; p , :0001; Er ’ 0:135--0:290); 68.4% of the 697
cases for first tests and 52.8% of the 665 cases for last tests
were significant at the 0.05 level (Table 1). Across papers, how-
ever, the p values and power of first and last tests were both
positively correlated (p values: r ¼ :143; n ¼ 644; p , :0001;
Er ¼ 0:066--0:218; power: r ¼ :427; n ¼ 665; p , :0001; Er ¼
0:363--0:487). Based on a comparison of average power and
p values of first and last tests, this trend was consistent across
journals (z ¼ 2:80; p ¼ :005; Er ¼ 0:586--0:973; z ¼ 2:701;
p ¼ :0069; Er ¼ 0:485--0:965; both n ¼ 10), taxa (z ¼ 2:93;
p ¼ :0033; Er ¼ 0:611--0:970; Z ¼ 2:76; p ¼ :0058; Er ¼
0:753--0:983; both n ¼ 11) and statistical test types (z ¼ 2:42;
p ¼ :016; Er ¼ 0:172--0:875; z ¼ 3:17; p ¼. 0 0 1 5 , Er ¼
0:579--0:951; both n ¼ 14) (all Wilcoxon tests). The more
important conclusion, however, is that statistical power is
generally low. For first tests, mean power is 13–16% to detect
a small size effect and 40–47% to detect a medium effect. This
is far lower than the generally recommended 80% (Cohen,
1988: 56) or 95% (Peterman, 1990). Using the 80% criterion
for first statistical tests, only 2.9%, 21.2%, and 49.8% of 697
cases had the requisite power to detect a small, medium, or
large effect, respectively. Likewise, for second tests, only 1.8%,
13.2%, and 36.5% of the 665 cases had sufficient power. If
we only consider those tests that reported nonsignificant
relationships, the equivalent figures are 1.4%, 17.8%, and
47.0% for the 219 first tests and 1.3%, 10.8%, and 32.5% for
the 314 second tests.

Table 1

Three power estimates and z scores for first and last statistical tests

First test Last test

z score 2.306 0.04 (684) 1.896 0.04 (654)
Power (small) (%) 16.26 0.68 (697) 12.86 0.56 (665)
Power (medium) (%) 47.26 1.13 (697) 39.46 1.05 (665)
Power (large) (%) 72.36 1.00 (697) 65.36 1.04 (665)

Mean 6 SE. Sample sizes are in parentheses.
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Journal, taxa, and test type

Neither p values (first test: v2 ¼ 10:48; p ¼ :313; last test:
v2 ¼ 14:68; p ¼ :10) nor statistical power (first test:
v2 ¼ 15:61; p ¼ :08; last test: v2 ¼ 6:78; p ¼ :66) varied
significantly among the 10 journals (all Kruskal-Wallis tests,
df ¼ 9; Table 2; power for one-way ANOVA: all .37%,
.99.5%, .99.5%). This suggests that neither impact factor,
policy of the journal or any other assessment of journal
‘‘quality’’ is related to the statistical significance of the results
presented or the sample sizes on which conclusions are based.

Neither p values (first test: v2 ¼ 9:07; p ¼ :53; last test:
v2 ¼ 7:59; p ¼ :67) nor statistical power (first test: v2 ¼ 9:58;
p ¼ :48; last test: v2 ¼ 11:84; p ¼ :30) varied significantly
among the 11 taxa (all Kruskal-Wallis tests, df ¼ 10; Table 3;
power for one-way ANOVA: all .35%, .99.5%, .99.5%). We
then reanalyzed the data only looking at the three taxa with
large sample sizes (birds, mammals, and insects). Again, there
was no difference among taxa in p values (first test: v2 ¼ 2:30;
p ¼ :32; last test: v2 ¼ 2:51; p ¼ :29). For statistical power,
there was no difference for the first test (v2 ¼ 2:29; p ¼ :32),
but there was for the last test (v2 ¼ 8:28; p ¼ :016; all Kruskal-
Wallis tests, df ¼ 2; power for one-way ANOVA: all .46%,
.99%, .99%). Bird studies had less power than insect studies
(p , :05 post-hoc pair-wise comparison).

Among the 14 statistical test types, p values did not differ
significantly (first test: v2 ¼ 15:69; p ¼ :27; last test:

v2 ¼ 12:90; p ¼ :46); but statistical power did (first test:
v2 ¼ 95:45; p , 0:0001; last test: v2 ¼ 70:86; p , :0001; all
Kruskal-Wallis tests, df ¼ 13; Table 4; power for one-way
ANOVA: .36%, .99.5%, .99.5%).

Mean p values of first and last tests were significantly
correlated across journals (r ¼ :670; n ¼ 10; p ¼ :034; Er ¼
0:070--0:914), as was mean power (r ¼ :630; n ¼ 10; p ¼ :051;
Er ¼ 0:001--0:902). There is therefore some evidence that
power and p values are repeatable among journals. Mean p
values or power of first and last tests were not correlated
across taxa (r ¼ :232; p ¼ :493; n ¼ 11; Er ¼ �0:394--0:711;
r ¼ :18; p ¼ :596; n ¼ 11; Er ¼ �0:439--0:683; power: 6%, 16%,
40%); nor were first and last test p values correlated
across statistical tests type (r ¼ �:186; p ¼ :525; n ¼ 14;
Er ¼ �0:652--0:382; power: 6%, 18%, 47%), although mean
power was (r ¼ :974; p , :0001; n ¼ 14; Er ¼ 0:917--0:992).

Power and p values

There was a significant positive correlation between power
and the reported p value (expressed as z score) for both first
(r ¼ :125; p ¼ :001; n ¼ 684; Er ¼ 0:051 to 0.198) and last
tests (r ¼ :162; p , :0001; n ¼ 654; Er ¼ 0:086 to 0.236). Thus,
the greater the statistical power, the more often the test
reported a significant effect. To determine whether this
relationship was owing to combining different types of tests,

Table 2

z scores and power to detect a medium effect for 10 biological journals

z score Power (medium)

Journal (First test) (Last test) (First test) (Last test)

American Naturalist 2.676 0.19 (33) 2.336 1.88 (32) 45.06 5.2 (33) 42.06 4.8 (32)
Animal Behaviour 2.336 0.08 (184) 1.886 0.08 (176) 46.86 2.2 (187) 37.66 2.0 (179)
Behavioral Ecology 2.136 0.13 (68) 1.666 0.13 (67) 51.26 3.6 (68) 41.06 3.3 (67)
Behavioural Ecology and
Sociobiology 2.256 0.11 (99) 1.756 0.11 (98) 52.96 2.9 (102) 42.26 2.7 (99)

Behavioural Processes 2.386 0.17 (39) 1.986 0.17 (38) 40.06 4.8 (39) 33.56 4.4 (38)
Behaviour 2.456 0.13 (67) 2.056 0.14 (63) 44.66 3.6 (69) 40.26 3.4 (63)
Ethology, Ecology, and
Evolution 2.156 0.23 (22) 2.136 0.24 (21) 58.06 6.3 (22) 44.06 5.9 (21)

Ethology 2.246 0.13 (73) 2.036 0.13 (66) 43.06 3.5 (73) 35.56 3.3 (69)
Journal of Animal Ecology 2.286 0.15 (49) 1.736 0.16 (45) 49.36 4.2 (50) 40.36 4.0 (45)
Journal of Insect Behaviour 2.236 0.15 (50) 1.856 0.16 (48) 42.26 4.0 (54) 43.16 3.8 (52)

Mean 6 SE. Sample sizes are in parentheses.

Table 3

z scores and power to detect a medium effect for 11 taxonomic categories

z score Power (medium)

Taxa (First test) (Last test) (First test) (Last test)

Crustaceans 2.006 0.25 (18) 1.966 0.26 (17) 52.16 7.0 (18) 32.86 6.3 (18)
Spiders 2.456 0.25 (19) 2.076 0.26 (18) 51.56 6.8 (19) 41.06 6.2 (19)
Insects 2.356 0.09 (152) 2.006 0.09 (143) 50.26 2.4 (158) 45.56 2.2 (148)
Other invertebrates 2.536 0.23 (21) 2.216 0.24 (21) 39.96 6.3 (22) 40.56 5.9 (21)
Amphibians 2.206 0.19 (32) 1.866 0.20 (31) 40.36 5.3 (32) 37.26 4.8 (31)
Reptiles 2.376 0.23 (21) 2.116 0.24 (21) 53.26 6.5 (21) 40.26 5.9 (21)
Fish 2.446 0.13 (64) 1.816 0.14 (62) 42.56 3.7 (64) 41.76 3.4 (62)
Birds 2.286 0.08 (185) 1.796 0.08 (180) 46.16 2.2 (188) 35.16 2.0 (182)
Mammals 2.186 0.09 (138) 1.886 0.10 (130) 46.06 2.5 (141) 37.76 2.4 (131)
Plants 2.576 0.40 (7) 1.886 0.41 (7) 58.96 11.2 (7) 39.86 10.2 (7)
Species level 2.406 0.22 (23) 1.726 0.24 (21) 55.06 6.2 (23) 44.66 5.9 (21)

Mean 6 SE. Sample sizes are in parentheses.
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we reexamined this relationship for specific statistical tests.
Only tests in which n � 84 were used because the power to
detect a medium effect at a ¼ 0:05 is then greater than 80%.
For correlation coefficient tests, rs ¼ :076 (p ¼ :376; n ¼ 138;
Er ¼ �0:093--0:239) a n d rs ¼ 0:267 ( p , :001; n ¼ 173;
Er ¼ 0:123--0:400); for v2 tests , rs ¼ 0:299 (p ¼ 0:004;
n ¼ 92; Er ¼ 0:102--0:476); and for F tests (all types com-
bined), rs ¼ 0:411 (p , :001; n ¼ 126; Er ¼ 0:254--0:547) and
rs ¼ 0:011 (p ¼ :91; n ¼ 108; Er ¼ �0:178--0:200). A signifi-
cant decrease in p value as statistical power increased was
therefore also apparent for specific statistical tests in three of
five cases.

DISCUSSION

The statistical power of behavioral studies to detect relation-
ships is low. For example, the power to detect a medium effect
is about 39–47%. Only 10–20% of tests exceeded the
recommended minimum criterion of 80% power (Cohen,
1988). This was true whether we considered all tests or only
those reporting nonsignificant results. Authors still fail to
report power for nonsignificant results (see Thomas and
Juanes 1996: 859), even in journals that require them to do so.
For example, since 1997, Animal Behaviour ’s Instructions for
Authors has stated, ‘‘where a significance test based on a small
sample size yields a non-significant outcome, the power of the
test should normally be quoted.’’ Examination of two recent
copy of Animal Behaviour showed, however, that of 215
statistical tests in 17 papers in which p . 0:05; none reported
statistical power (March 2001), whereas only one of 22
empirical papers presented estimates of power in the January
2001 issue. By comparison, the power to detect medium
effects in other fields (mainly medical) was 37% (Sedlmeier
and Gigerenzer, 1989), 48% (Cohen, 1962), 57% (Rossi,
1990), ,58% (Kazantzis, 2000), 62% (Chase et al., 1978), 71%
(Polit and Sherman, 1990), and 77% (Maddock and Rossi,
2001), and the proportion of studies with a power greater
than 80% to detect a medium effect was 0.36 (Moher et al.,
1994), ,0.50 (Chung et al., 1998), and .0.80 (Mengel and
Davis, 1993). Mean statistical power in behavioral biology is
therefore lower than that in medicine. These differences may
be owing to the type of statistical test used, which is partly
determined by experimental design (e.g., paired t tests are
more powerful than two-sample t tests). They are, however, far

more likely to reflect differences in sample sizes for studies
conducted in the various research fields.

Stoehr (1999) noted that criticizing biologists’ failure to
consider power and interpret studies in terms of effect size is
sometimes viewed as attacking a straw man. Surely biologists
are aware of these issues? Our survey suggests otherwise. If
they were, they would more often report statistical power. One
solution is for editors and reviewers to ensure that all
statistical tests are uniformly presented with full information
on sample size (for each group if this influences power
estimates as in, say, a two-sample t test), degrees of freedom,
exact p values (or as precise as possible, e.g., 0:5. p . 0:20, but
not just p ¼ ns) and the statistical power to detect small and
medium effects as conventionally defined (large effects are
probably too rare to warrant presentation). If methods to
determine power are not well established (this will be fairly
rare as most behavioral papers use a limited set of well-studied
statistical tests), the authors should explicitly state this in their
methods. Thomas and Juanes (1996) and Thomas and Krebs
(1997) review and list several free or purchasable software
programs that can be used to calculate a priori statistical power.

Stoehr (1999) recommended that authors report effect
sizes (hence, our own reporting of the 95% confidence
intervals for Er here). Effect sizes are easily calculated and do
not require expensive software, textbooks, or heavy invest-
ment in learning complex skills. To ensure ready access to the
relevant information, journals could publish in print and on
their Web sites the formulae to convert common statistics such
as t, F and v2 or p values to Pearson’s r. Effect size can then be
calculated by using a handheld calculator, spreadsheet, or
user-friendly effect-size calculators (e.g., Metawin 2.0; Rosen-
berg et al., 2000). There are many effect sizes available, so it
would be convenient if biologists agreed on which one to use
(when possible). We suggest Pearson’s r as the most useful
because r2 is the proportion of variance explained. It can be
calculated whenever there is a directional trend (e.g., t tests,
correlations or v2, or F tests where df ¼ 1). For omnibus tests
of variation among groups rather than tests for linear trends
(e.g., F or v2 tests when the numerator df . 1), if possible R2

should be presented. Stoehr (1999) has already listed some
advantages of stating effect sizes. These are mainly related to
ensuring that readers do not use p values when comparing the
strength of relationships (which assumes equivalent sample
sizes). We can add three other advantages. First, it would
greatly facilitate the efforts of meta-analysts and reduce error

Table 4

z scores and power to detect a medium effect for 14 different statistical tests

z score Power (medium)

Test type (First test) (Last test) (First test) (Last test)

Binomial 2.376 0.21 (26) 1.886 0.26 (18) 35.16 5.5 (26) 35.06 6.2 (18)
v2 2.206 0.11 (92) 1.826 0.14 (61) 70.56 2.9 (93) 58.76 3.3 (62)
F test (one-way) 2.276 0.12 (74) 1.946 0.14 (60) 44.36 3.3 (74) 37.26 3.4 (60)
F test (other) 2.536 0.15 (52) 1.746 0.16 (48) 42.76 3.8 (54) 37.56 3.7 (49)
Fisher’s Exact 2.566 0.21 (27) 2.006 0.22 (25) 40.66 5.3 (28) 37.66 5.1 (26)
Friedman’s test 2.086 0.36 (9) 2.866 0.54 (4) 37.56 8.9 (10) 32.36 13.1 (4)
Kruskal-Wallis 2.266 0.24 (20) 1.766 0.25 (19) 36.56 6.0 (22) 35.56 6.0 (19)
Mann-Whitney 2.246 0.14 (58) 2.096 0.13 (69) 39.96 3.9 (61) 31.96 3.1 (73)
Paired t test 2.196 0.15 (52) 1.926 0.16 (44) 47.36 3.9 (52) 44.16 3.9 (45)
Correlation coefficient 2.476 0.09 (138) 1.896 0.08 (173) 42.86 2.9 (138) 36.46 2.0 (175)
Sign test 2.156 0.34 (10) 2.296 0.41 (7) 26.16 8.9 (10) 26.86 9.9 (7)
t test (one-sample) 2.496 0.31 (12) 2.336 0.29 (14) 74.96 7.8 (13) 60.76 7.0 (14)
t test (two-sample) 1.976 0.14 (57) 1.746 0.14 (58) 44.76 3.7 (58) 35.86 3.4 (58)
Wilcoxon’s paired test 2.296 0.14 (57) 1.726 0.15 (52) 50.46 3.7 (58) 41.96 3.6 (53)

Mean 6 SE. Sample sizes are in parentheses.
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rates when interpreting or transcribing statistical tests during
a literature review (Cooper and Hedges, 1994). Second,
stating effect sizes allows researchers planning to replicate or
conduct similar studies to calculate more easily the sample
size needed to achieve the desired statistical power. Knowing
the probable effect size is a prerequisite to a well-designed
experiment or data collection protocol. Three, reviewers
often remind authors to report summary statistics and not just
test statistics. In general, however, effect sizes may be easier to
interpret. For example, stating the mean and SD for body size
in two groups with different sample sizes requires the reader
to somehow visualize the overlap between the groups. In
contrast, stating the effect size r immediately tells the reader
that group identity explains r2 of the observed variation in
body size.

If effect sizes and their confidence intervals are presented,
power analyses gives no additional insights (Hoenig and
Heisey, 2001). We have illustrated this approach here by
converting our statistical results into the effect size r (written
Er) and giving the 95% confidence intervals. Confidence
intervals cover a set of nonrefuted values. If these values are
tightly clustered around the null value (usually zero), then we
are confidence that the true value is near the null hypothesis.
Conversely, a wide confidence interval, even if it includes the
null value, is treated more cautiously because we know there is
a good chance that the true effect size might lie far from the
null value. A second advantage of the confidence interval
approach is that it prevents researchers from erroneously
concluding that when studies fail to reject the null hypothesis,
the greater the statistical power, the greater the likelihood
that the null hypothesis is true. That this is flawed reasoning is
easily visualized by noting that the observed p value—hence,
position of the estimated mean effect size relative to the null
value (for a fixed sample size as the p value decreases effect
size increases)—is also critical in determining the likelihood
that the null hypothesis is correct. For example, an estimate of
r ¼ �:02--:04 is more likely to lead to the conclusion that
the true effect is close to the null value of zero than a study
with lower statistical power (larger confidence intervals)
where r ¼ �:40--:40.

Publication criteria

Should statistical power influence publication decisions? One
view is that studies should not be published if they have low
statistical power, because if they produce negative findings,
there is little confidence in the oft-stated conclusion that the
null hypothesis is correct. This would be fine if reviewers were
equally likely to reject papers with low power that report
significant results. There is, however, good evidence for
a publication bias in biology toward significant results, even
when sample sizes are small (Csada et al, 1996; Møller and
Jennions, 2001, 2002; Palmer, 2000). This culture will be hard
to eliminate. We believe it is more important that the
literature as a whole is unbiased, so we take the pragmatic
view that statistical power should not be a criterion for
publication. In general, we think that synthesis of results from
many studies is more valuable than a conclusion based on
extrapolation from a few big studies. (For an excellent
defense of the search for generalities in behavioral ecology
rather than a focus on the peculiarities of specific systems, see
Reeve, 2001.) Practically speaking, we believe that a require-
ment to present statistical power or confidence intervals for
effect size would (1) ensure readers were fully aware of the
weakness of a conclusion that there is no effect, (2)
encourage researchers to increase sample sizes, and (3) be
achievable without loss of print space if journals create on-line
sections in which studies with negative results and low power

are published. The drive to be cited and for peer acknowl-
edgment of one’s work would probably also encourage
increased sample sizes as authors strove to publish in the
more prestigious print section.

Specific findings

Between 53% and 68% of tests were significant at the 0.05
level. In contrast, the mean power to detect a medium
strength effect was only 40–47%. Why the discrepancy? First,
the true effects for the questions asked in first and last tests
may be greater than r ¼ :3: The estimate of a mean effect size
in biology of r ¼ :20 by Møller and Jennions (2002) was from
meta-analyses that may deal with a different set of biological
relationships. Second, mean estimates of effect size from
biological meta-analyses take into consideration the direction
of the effect. Thus, the mean effect is smaller than the
magnitude of the absolute effect size. Third, there may be
a publication bias toward significant results (Palmer, 2000).
Four, authors may organize papers so as to present significant
results at the beginning and end. The difference between
first and last tests p values suggests that authors do not
present analyses randomly with respect to their statistical
significance.

Significant variation in power among statistical tests was
expected. For example, for a given sample size per group, the
power of a one-sample t test is greater than that of a two-
sample t test, because in the former case, the mean against
which the data is compared is specified, whereas in the latter
case, both means are estimated with error. Given the same
underlying effect size being tested, this should result in lower
p values for tests with greater statistical power. However, p
values did not vary significantly among tests. This suggests
either that the relationship is small and went undetected
(power to detect a small effect was ,36%) or that tests with
greater power are used when testing for relationships with
smaller actual effect sizes.

The first test per paper had significantly greater power and
smaller p values than did the last test. This trend was
consistent across journals, taxa, or statistical test type. In
retrospect, the random selection of tests from papers might
be desirable. This is, however, easier said than done, which
was why we used the first and last test to remove any
subjectivity on our part. In addition, despite these differences
between first and last tests, both convey the same message:
Power to detect small and medium effects is low.

Neither p values nor power varied significantly among the
10 journals (although p , :10 for p values of last tests and
power of first tests). This implies that impact factor or any
assessment of journal quality is unrelated to the statistical
power or effect sizes they generally report. However, mean p
values and power of first and last tests were significantly
correlated across journals, which does suggest some degree of
repeatability among journals.

Somewhat unexpectedly, neither p values nor statistical
power varied significantly among the 11 taxa. (There was,
however, about 10% less statistical power in studies of birds
compared with insects for the last test per study.) In addition,
neither mean p values nor power of first and last tests was
correlated across taxa. We had initially assumed that sample
sizes, hence power, would be larger for insects than, say,
mammals. The lack of detectable variation may partly lie in
the kinds of questions asked. For example, a study on
primates may ask whether distance moved per day differed
between two groups (a very specific question) based on 100
days of observations, whereas a study on insects might ask
whether body size differed between mated and unmated
males based on 100 males per group.
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There was a significant negative correlation between mean
power and p values. There are several possible explanations
why smaller studies more often report nonsignificant results.
First, true effect sizes may be smaller in study systems in which
sample sizes tend to be smaller. We know of no reason why this
should be true. Second, for a nonzero effect size, as sample
size increases, power increases and p values decrease. So, if
there is no underlying correlation between sample size and
the true effect size, then one possible interpretation is that
some tests fail to report a significant relationship because they
lack statistical power. One could argue that there is good
evidence for this conclusion because there should be
considerable variability in the true effect sizes the 1362 tests
were trying to detect. This will greatly reduce the strength of
the pattern (e.g., in a study in which the true effect was large;
even with a small sample size and low power, the reported p
value will tend to be small). Third, researchers may adjust
sample sizes based on their assessment of the likelihood of
detecting an effect. For example, researchers may be
disinclined to increase sample sizes when they infer that
there is no significant effect to detect. This would also yield
a negative correlation between power and p value. We believe
there is a measure of truth to this because, for a given sample
size, a researcher who finds that p ¼ :07 is likely to continue
collecting data in the hope of reaching p , :05; whereas
a researcher faced with p ¼ :57 is likely to conclude that she/
he will not reach significance and therefore discontinue
collecting data. This is a rational, but worrying, behavior
because studies with significant results are more likely to be
published than those without (Møller and Jennions, 2001;
Palmer, 2000; Song et al., 2000).

Conclusions

Statistical power in behavioral ecology is distressingly low. The
unavoidable solution is to increase sample sizes. It may be
argued that logistic, ethical, conservation, and financial
constraints make this impossible. It could be claimed with
equal vigor that designing a study with low power is unethical
and wasteful because nonsignificant findings are inconclusive.
In many cases, especially when dealing with invertebrates, we
suspect sample sizes can be increased. At present, many
researchers decide on a sample size based on examination of
previously published work (i.e., conventions among peers)
rather than explicit consideration of power. If sample sizes are
not readily increased, then it becomes even more important
to conduct meta-analyses to detect broader trends (Cooper
and Hedges, 1994). In medicine, meta-analysis of numerous
small-scale studies (few of which are likely to detect significant
trends) may provide a more cost-effective way of assessing the
value of a new treatment than investing in a few large-scale
studies (Song et al., 2000: 39). In addition, even in medicine,
in which studies are on one species, there is the danger that
a large study, no matter how well designed, may generate
conclusions that can not be extrapolated to society at large if
the study population is unrepresentative (e.g., smoking may
greatly increase mortality in long-lived Western societies, but
have little effect in developing countries where life expectancy
is already low).

Biologists may have to show greater restraints when
discussing the results of their own studies (when conclusions
are hampered by low statistical power) and wait until
sufficient studies have been conducted to determine general
trends. Unfortunately, this is not how papers are currently
written. A researcher whose modest conclusion is ‘‘more
studies are needed until the results of my study can be
interpreted’’ is probably less likely to be published than one
who places a strong interpretation on his or her findings. This

is true whether the results are significant or nonsignificant.
Authors that extrapolate from a single significant study to the
world at large commit an equal but opposite sin. The
publication process needs to place greater emphasis on
evaluation of the design and implementation of experiments
or data collection protocols and less on the p values (or even
the power) of the relationships detected (Palmer, 2000).

We believe there is a need to encourage the quantitative
synthesis of the literature using modern meta-analytic
techniques. Of course, as with any form of review, conclusions
are only as reliable as the studies on which they are based.
Those who are concerned that meta-analysis leads to ‘‘rubbish
in, rubbish out’’ should be emphasizing the importance of
a priori ‘‘quality’’ criteria for the inclusion of studies in meta-
analyses. It is important to note that from a meta-analysis
perspective, poor studies are not those with small sample sizes.
These studies have little bearing on the outcome of a meta-
analysis because effect sizes are weighted by their sampling
variance, which is inversely related to sample size. In contrast,
because narrative reviews do not explicitly consider the
influence of sample size, they are far more likely to incorrectly
estimate trends by giving equal weighting to studies that differ
greatly in the extent to which we can trust their conclusions.
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