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! Minimalistic savanna model with long-range competition and fire-induced local facilitation.
! Long-time coexistence of grass and trees. Clustering of trees may appear.
! Patterns in the system are determined by the long-range kernel competition function.
! Study the influence of demographic fluctuations in the patterns.
! Realistic patterns for mesic savannas under demographic noise and parameter constraints.
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a b s t r a c t

We propose a model equation for the dynamics of tree density in mesic savannas which considers long-
range competition among trees and the effect of fire indirectly acting as a local facilitation mechanism.
Despite the fact that we take short-range facilitation to the local-range limit, the standard full spectrum
of spatial structures already obtained in self-organization models of vegetation is recovered. Nonlocal
competition, in the limit of infinitesimally short facilitation, promotes the clustering of trees. The long
time coexistence between trees and grass, and how fires affect the survival of trees as well as the
maintenance of the patterns is studied. The influence of demographic noise is analyzed. The stochastic
system, under the parameter constraints typical of mesic savannas, shows non-homogeneous patterns
characteristic of realistic situations. The coexistence of trees and grass still remains at reasonable noise
intensities.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Savanna ecosystems are characterized by the long-term coex-
istence between a continuous grass layer and scattered or clus-
tered trees (Sarmiento, 1984). Occurring in many regions of the
world, in areas with very different climatic and ecological condi-
tions, the spatial structure, persistence, and resilience of savannas
have long intrigued ecologists (Scholes and Archer, 1997; Sankaran
et al., 2005; Borgogno et al., 2009; Belsky, 1994). However, despite
substantial research, the origin and nature of savannas have not
yet been fully resolved considering the diversity of ecological
situations that are encompassed via the general concept of
savanna.

Savanna tree populations often exhibit pronounced, non-
random spatial structures (Skarpe, 1991; Barot et al., 1999;
Jeltsch et al., 1999; Caylor et al., 2003; Scanlon et al., 2007). Much
research has therefore focused on explaining how some types of
spatial patterns observable in mesic savannas may arise (Jeltsch
et al., 1996, 1999; Scanlon et al., 2007; Skarpe, 1991; Calabrese
et al., 2010; Vázquez et al., 2010). In most natural plant systems
both facilitative and competitive processes are simultaneously
present (Scholes and Archer, 1997; Vetaas, 1992) and hard to
disentangle (Veblen, 2008; Barbier et al., 2008). Some savanna
studies have pointed toward the existence of short-distance
facilitation (Caylor et al., 2003; Scanlon et al., 2007), while others
have demonstrated evidence of competition (Skarpe, 1991; Jeltsch
et al., 1999; Barot et al., 1999), with conflicting reports sometimes
arriving from the same regions.

Different classes of savannas, which can be characterized by
how much rainfall they typically receive, should be affected by
different modalities of interactions between facilitation and com-
petition. For example, in semiarid savannas water is extremely
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limited (low mean annual precipitation) and competition among
trees, and more generally among all plants, is expected to be
strong. However, fire plays little role because there is typically not
enough grass biomass to serve as fuel. In contrast, humid savannas
should be characterized by weaker competition among trees, but
also by frequent and intense fires. In-between these extremes, in
mesic savannas, trees likely have to contend with intermediate
levels of both competition for water and fire (Calabrese et al.,
2010; Sankaran et al., 2005, 2008; Bond et al., 2003; Bond, 2008;
Bucini and Hanan, 2007).

Competition among trees is mediated by roots that typically
extend well beyond the crown (Borgogno et al., 2009; Barbier
et al., 2008). Additionally, fire can lead to local facilitation due to a
protection effect, whereby vulnerable juvenile trees placed near
adults are protected from fire by them (Holdo, 2005). We are
particularly interested in how the interplay between these
mechanisms governs the spatial arrangement of trees in mesic
savannas, where both mechanisms may operate. On the other side,
it has frequently been claimed that pattern formation in arid
systems can be explained by a combination of long-distance
competition and short-distance facilitation (Klausmeier, 1999;
Lefever and Lejeune, 1997; Lefever et al., 2009; Lefever and
Turner, 2012; Rietkerk et al., 2002; Hardenberg et al., 2001;
D'Odorico et al., 2006a). This combination of mechanisms is also
known to produce spatial structures in many other natural
systems (Cross and Hohenberg, 1993). Although mesic savannas
do not display the same range of highly regular spatial patterns
that arise in arid systems (e.g., tiger bush), similar mathematical
mechanisms might be at work. Specifically, the interaction
between long-range competition and short-range facilitation
might still play a role in pattern formation in savanna tree
populations, but only for a limited range of parameter values
and possibly modulated by demographic stochasticity.

Although the facilitation component has often been thought to
be a key component in previous vegetation models (D'Odorico
et al., 2006a, 2006b; Rietkerk et al., 2002; Scanlon et al., 2007),
Rietkerk and van de Koppel (2008), speculated, but did not show,
that pattern formation could occur without short-range facilitation
in the particular example of tidal freshwater marsh. In the case of
savannas, as stated before, the presence of adult trees favors the
establishment of new trees in the area, protecting the juveniles
against fires. Considering this effect, we take the facilitation
component to its infinitesimally short spatial limit, and study its
effect in the emergence of spatially periodic structures of trees. To
our knowledge, this explanation, and the interrelation between
long-range competition and local facilitation, has not been
explored for a vegetation system. One of our main results is that
when considering the limit of local facilitation and nonlocal
competition, clustering of trees appears.

Here we develop a minimalistic model of savannas that con-
siders two of the factors, as already mentioned, thought to be
crucial to structure mesic savannas: tree-tree competition and fire,
with a primary focus on spatially nonlocal competition. Employing
standard tools used in the study of pattern formation phenomena
in physics (stability analysis and the structure function) (Cross and
Hohenberg, 1993), we explore the conditions under which the
model can produce non-homogeneous spatial distributions. A key
strength of our approach is that we are able to provide a complete
and rigorous analysis of the patterns the model is capable of
producing, and we identify which among these correspond to
situations that are relevant for mesic savannas. We further
examine the role of demographic stochasticity in modifying both
spatial patterns and the conditions under which trees persist in
the system in the presence of fire, and discuss the implications of
these results for the debate on whether the balance of processes
affecting savanna trees is positive, negative, or is variable among

systems. This is the framework of our study: the role of long-range
competition, facilitation and demographic fluctuations (in the
second part of the paper) in the spatial structures of mesic
savannas. To complete our work we include Appendix D, where
we study the effect of external fluctuations (mimicking for
example rainfall) on savanna dynamics.

Our model is inspired by the one presented by Calabrese et al.
(2010). It complements theirs by providing further analytical
results that clearly demonstrate that this simple system, where
we focus on the local limit of facilitation, can produce the full
spectrum of spatial patterns reported from models employing
both short-range facilitation and long-range inhibition
(competition).

2. The deterministic model

In this section we derive the deterministic equation for the
local density of trees, such that dynamics is of the logistic type and
we only consider tree-tree competition and fire. We study the
formation of patterns via stability analysis and provide numerical
simulations of our model, showing the emergence of spatial
structures.

2.1. The nonlocal savanna model

Calabrese et al. (2010) introduced a simple discrete-particle
lattice savanna model that considers the birth-death dynamics of
trees, and where tree-tree competition and fire are the principal
ingredients. These mechanisms act on the probability of establish-
ment of a tree once a seed lands at a particular point on the lattice.
In the discrete model, seeds land in the neighborhood of a parent
tree with a rate b, and establish as adult trees if they are able to
survive both competition by neighboring trees and fire. As these
two phenomena are independent, the probability of establishment
is PE¼PCPF, where PC is the probability of surviving the competi-
tion, and PF is the probability of surviving a fire event, both
dependent on the tree density. From this dynamics, we write a
deterministic differential equation describing the time evolution
of the global density of trees (mean field), ρðtÞ, where the
population has logistic growth at rate b, and an exponential death
term at rate α. It reads

dρ
dt

¼ bPEðρÞρðtÞð1−ρðtÞÞ−αρðtÞ: ð1Þ

Generalizing Eq. (1), we propose an evolution equation for the
space-dependent (local) density of trees, ρðx; tÞ:

∂ρðx; tÞ
∂t

¼ bPEρðx; tÞð1−ρðx; tÞÞ−αρðx; tÞ: ð2Þ

We allow the probability of overcoming competition to depend on
tree crowding in a local neighborhood, decaying exponentially
with the density of surrounding trees as

PC ¼ exp −δ
Z

Gðx−rÞρðr; tÞ dr
! "

; ð3Þ

where δ is a parameter that modulates the strength of the
competition, and GðxÞ is a positive kernel function that introduces
a finite range of influence. This model is related to earlier models
of pattern formation in arid systems (Lefever and Lejeune, 1997),
and subsequent works (Lefever et al., 2009; Lefever and Turner,
2012; Borgogno et al., 2009), but it differs from standard kernel-
based models in that the kernel function defines an interaction
neighborhood, and it has not information about the type of
interaction depending on the distance. Note also that the nonlocal
term enters nonlinearly in the equation.
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Following Calabrese et al. (2010), PF is assumed to be a
saturating function of grass biomass, 1−ρðx:tÞ, similar to the
implementation of fire of Jeltsch et al. (1996),

PF ¼
s

sþ 1−ρðx; tÞ
; ð4Þ

where s governs the resistance to fire, so s¼ 0 means no
resistance to fires. Notice how our model is close to the one in
Calabrese et al. (2010) through the definitions of PC and PF,
although we consider the probability of surviving a fire depending
on the local density of trees, and in Calabrese et al. (2010) it
depends on the global density. The deterministic differential
equation that considers tree-tree competition and fire for the
spatial tree density is

∂ρðx; tÞ
∂t

¼ beff ðρÞρðx; tÞð1−ρðx; tÞÞ−αρðx; tÞ; ð5Þ

where

beff ðρÞ ¼
be−δ

R
Gðx−rÞρðr;tÞ drs

sþ 1−ρðx; tÞ
: ð6Þ

Thus, we have a logistic-type equation with an effective growth
rate that depends nonlocally on the density itself, and which is a
combination of long-range competition and local facilitation
mechanisms (fire). The probability of surviving a fire is higher
when the local density of trees is higher, as can be seen from the
definition in Eq. (4).

In Fig. 1 we show numerical solutions for the mean field
equation (1) (lines) and the spatially explicit model (Eq. (5)) (dots)
in the stationary state ðt-∞Þ using different values of the competi-
tion, and a top-hat function as the competition kernel, GðxÞ (see
Section 2.2 for more details on the kernel choice). We observe a
very good agreement of both descriptions which becomes worse
when we get closer to the critical point sn, where the model
presents a phase transition from a tree-grass coexistence to a
grassland state. This disagreement appears because while the
mean field equation describes an infinite system, the Eq. (5)
description forces us to choose a size for the system.

The model reproduces the long-term coexistence between
grass and trees that is characteristic of savannas. To explore this
coexistence, we study the long-time behavior of the system and
analyze the homogeneous stationary solutions of Eq. (5), which
has two fixed points. The first one is the absorbing state repre-
senting the absence of trees, ρ0 ¼ 0, and the other can be obtained,

in the general case, by numerically solving

beff ðρ0Þð1−ρ0Þ−α¼ 0: ð7Þ

In the regime where ρ0 is small (near the critical point), if
competition intensity, δ, is also small, it is possible to obtain an
analytical expression for the critical value of the probability of
surviving a fire, sn,

sn ¼
α

b−α
: ð8Þ

Outside of the limit where δ51, we can solve Eq. (7) numerically
in ρ0 to show that the critical value of the fire resistance
parameter, sn, does not depend on competition. A steady state
with trees is stable for higher fire survival probability (Fig. 1).

The model, then, shows a transition from a state where grass is
the only form of vegetation to another state where trees and grass
coexist at sn. In what follows, we fix α¼ 1, so we choose our
temporal scale in such a way that time is measured in units of α.
This choice does not qualitatively affect our results.

2.2. Linear stability analysis

The spatial patterns appearing in the nonlocal savanna model
can be studied by performing a linear stability analysis (Cross and
Hohenberg, 1993) of the stationary homogeneous solutions of Eq.
(5), ρ0 ¼ ρ0ðs; δÞ. The stability analysis is performed by considering
small harmonic perturbations around ρ0, ρðx; tÞ ¼ ρ0 þ ϵeλt−ik&x ,
ϵ51. After some calculations (Appendix A), one arrives at the
dispersion relation

λðk; s; δÞ ¼ beff ðρ0Þ
1þ sð1−2ρ0Þ
s−ρ0 þ 1

−beff ðρ0Þ
ρ0½2−ρ0 þ δĜðkÞðρ0−1Þðρ0−1−sÞ(

ðs−ρ0 þ 1Þ
−1; ð9Þ

where ĜðkÞ, k¼ jkj, is the Fourier transform of the kernel,

ĜðkÞ ¼
Z

GðxÞe−ik&x dx: ð10Þ

The critical values of the parameters of the transition to
pattern, δc and sc, and the fastest growing wavenumber kc are
obtained from the simultaneous solution of

λðkc; sc; δcÞ ¼ 0; ð11Þ

∂λ
∂k

! "

kc ;sc ;δc
¼ 0: ð12Þ

Note that kc represents the most unstable mode of the system,
which means that it grows faster than the others and eventually
dominates the state of the system. Therefore, it determines the
length scale of the spatial pattern. These two equations yield the
values of the parameters δ and s at which the maximum of the
curve λðkÞ, right at kc, starts becoming positive. This signals the
formation of patterns in the solutions of Eq. (5). As Eq. (12) is
explicitly written as

λ′ðkcÞ ¼ beff ðρ0Þδρ0Ĝ′ðkcÞðρ0−1Þ; ð13Þ

the most unstable wavenumber kc can be obtained by evaluating
the zeros of the derivative of the Fourier transform of the kernel, G.

Eq. (9) shows that competition, through the kernel function,
fully determines the formation of patterns in the system. The local
facilitation appears in beff ðρ0Þ and it is not relevant in the forma-
tion of spatial structures. If the Fourier transform of G always takes
positive values, then λðk; s; δÞ is always negative and only the
homogeneous solution is stable. However, when Ĝ can take
negative solutions then patterns may appear in the system. What
does this mean in biological terms? Imagine that we have a family
of kernels described by a parameter p: GðxÞ ¼ expð−jx=RjpÞ (R gives
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Fig. 1. Grass-coexistence phase transition. Stationary tree density, ρ0, as a function
of the resistance to fires parameter, s. The lines come from the mean field solution,
Eq. (7), and the dots from the numerical integration of Eq. (5) over a square region
of 1.0 ha. Competition is introduced in a range of R¼8.0 m using a top-hat kernel
function. We fix α¼ 1:0, b¼5.0. In the case of the spatial model, ρ0 involves an
average of the density of trees over the studied patch of savanna.

R. Martínez-García et al. / Journal of Theoretical Biology 333 (2013) 156–165158



the range of competition). The kernels are more peaked around
x¼ 0 for po2 and more box-like when p42. It turns out that this
family of functions has non-negative Fourier transform for
0≤po2, so that no patterns appear in this case. A lengthy
discussion of this property in the context of competition among
species can be found in Pigolotti et al. (2007). The key message
from this work is that slowly decaying kernels promote the
formation of exclusion zones where new species cannot establish.
Equivalently, in our vegetation model, the shape of the competi-
tion kernel dictates whether or not exclusion areas, and therefore,
patterns will appear in the system. If pattern formation is possible,
then the values of the fire and competition parameters govern the
type of solution (see below).

Our central result for nonlocal competition is that, contrary to
conventional wisdom, it can, in the limit of infinitesimally short
(purely local) facilitation, promote the clustering of trees. Whether
or not this occurs depends entirely on the shape of the competi-
tion kernel. For large p we have the box-like shape of the top-hat
function used in Fig. 1, and in these cases trees compete strongly
with other trees, roughly within a distance R from their position.
The mechanism behind this counterintuitive result is that trees
farther than R away from a resident tree area are not able to invade
the zone defined by the radius R around the established tree (their
seeds do not establish there), so that an exclusion zone develops
around it. For smaller p there is less competition and the exclusion
zones disappear.

For a more detailed analysis, one must choose an explicit form
for the kernel function. Our choice is determined by the original PC
taken in Calabrese et al. (2010), so that it decays exponentially
with the number of trees in a neighborhood of radius R around a
given tree. Thus, for G we take the step function (limit p-∞Þ,

GðjrjÞ ¼
1 if jrj≤R
0 if jrj4R:

(

ð14Þ

As noticed before, the idea behind the nonlocal competition is to
capture the effect of the long roots of a tree. The kernel function
defines the area of influence of the roots, and it can be modeled at
first order with the constant function of Eq. (14). Thus the
parameter R, which fixes the nonlocal interaction scale, must be
of the order of the length of the roots (Borgogno et al., 2009). Since
the roots are the responsible for the adsorption of resources (water
and soil nutrients), a strong long-range competition term implies
strong resource depletion. For this kernel the Fourier transform is
(López and Hernández-García, 2004) ĜðkÞ ¼ 2πR2J1ðkRÞ=kR and its
derivative is Ĝ′ðkÞ ¼ −2πR2J2ðkRÞ=k, where k≡jkj, and Ji is the ith-
order Bessel function. Since ĜðkÞ can take positive and negative
values, pattern solutions may arise in the system, that will in turn
depend on the values of δ and s. The most unstable mode is
numerically obtained as the first zero of λ′ðkÞ, Eq. (13), which
means the first zero of the Bessel function J2ðkRÞ. This value only
depends on R, being independent of the resistance to fires and
competition, and it is kc ¼ 5:136=R. Because a pattern of n cells is
characterized by a wavenumber kc ¼ 2πn=L, where L is the system
size, the typical distance between clusters, dt¼L/n, using the
definition of the critical wavenumber is given by dt≈1:22R. In
other words, it is approximately the range of interaction R. This
result is also independent of the other parameters of the system.

Since we are interested in the effect of competition and fire on
the distribution of savanna trees, we will try to fix all the
parameters but s and δ. We will explore the effect of different
values of these parameters on the results. First, we have chosen (as
in Calabrese et al., 2010) the death rate α¼ 1, and solving Eq. (7)
we will roughly estimate the birth rate, b. We will work in the limit
of intermediate to high mean annual precipitation, so water is
non-limiting and thus we can neglect the effects of competition

ðδ¼ 0Þ. At this intermediate to high mean annual precipitation the
empirically observed upper limit of savanna tree cover is approxi-
mately ρ0 ¼ 0:8 (Sankaran et al., 2005; Bucini and Hanan, 2007). To
reach this upper limit in the tree cover, disturbances must also be
absent, implying no fire ðs-∞Þ. In this limit, the mean field
equation (1) is quantitatively accurate, as it is shown in Fig. 1,
and the stationary mean field solution of the model depends only
on the birth rate

ρ0ðs-∞Þ ¼
b−1
b

: ð15Þ

It can be solved for b for a fixed ρ0 ¼ 0:8, and it yields b¼5
(Calabrese et al., 2010), which is the value used in all the figures. In
the following we just consider the dependence of our results on δ
and s. In particular, ρ0 ¼ ρ0ðs; δÞ.

The phase diagram of the model, computed numerically, is
shown in Fig. 2, where we plot the spatial character of the steady
solution (homogeneous or inhomogeneous) as a function of δ and
s. Note that increasing competition enhances the inhomogeneous
or pattern solution. This is because, as we are now in the case of a
kernel giving rise to clusters, increasing δ makes it more difficult to
enter the exclusion zones in-between the clusters. In the limit of
arid systems where water is very scarce and therefore competition
is extremely strong ðδ-∞Þ, and thus unrealistic for mesic savannas,
fire has no influence on pattern formation as there is insufficient
grass to fuel fires under these conditions.

The critical line separating these two solutions (pattern and
homogeneous) can be analytically computed as a function of the
parameters δ, s, ρ0 and ĜðkcÞ (see Eq. (B.1) in Appendix B). In Fig. 2
we have plotted (with crosses) this critical line separating homo-
geneous and pattern solutions for the step kernel. Note that the
stationary density of trees, ρ0, must be computed numerically
from Eq. (7).

With b¼5, in the absence of fire ðs-∞Þ, and for weak
competition, we can take the limits δ-0 and s-∞ of the
dispersion relation Eq. (9), leading to

λðk; δ-0; s-∞Þ ¼ 4−10ρ0: ð16Þ

In Fig. 1, for large s, it can be seen that typically ρ040:4, so Eq. (16)
becomes negative. This result means that in this limit, trees are
uniformly distributed in the system as there is no competition, and
space does not play a relevant role in the establishment of new
trees. Such situation could be interpreted as favorable to forest
leading to a fairly homogeneous density of trees. This result agrees
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Fig. 2. Phase diagram of the mean field equation (5) for b¼5.0, α¼ 1:0, and a step
kernel. The absorbing-active transition is shown at sn with circles (o). The
homogeneous-pattern transition (Eq. (B.1)) is indicated with crosses (x). The
diamond, the square, and the up-triangle show the value of the parameters s
and δ taken in Figs. 3(a)–(c) respectively. The stars point out the transition to
inhomogeneous solutions in the stochastic model as described in Section 3, with
Γ ¼ 0:2. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)
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with the phase plane plotted in Fig. 2. In biological terms, there are
no exclusion zones in the system because there is no competition.

2.3. Numerical simulations

The previous analysis provides information, depending on the
competition and fire parameters, about when the solution is
spatially homogenous and when trees arrange in clusters. How-
ever, the different shapes of the patterns have to be studied via
numerical simulations (Ridolfi et al., 2011) of the whole equation
of the model. We have taken a finite square region of savanna with
an area of 1 ha., allowed competition to occur in a circular area of
radius R¼8 m, and employed periodic boundary conditions and a
finite differences algorithm to obtain the numerical solution. Birth
and death rates keep their values b¼5 (from the solution of
equation (15) with ρ0 ¼ 0:8) and α¼ 1. Similarly to what has been
observed in studies of semiarid water limited systems (D'Odorico
et al., 2006a; Rietkerk et al., 2002), different structures, including
gaps, stripes, and tree spots, are obtained in the stationary state as
we increase the strength of competition for a fixed value of the fire
parameter. On the other hand, if we fix the competition parameter,
decreasing the parameter s makes the local facilitation stronger.
Therefore, lower values of the resistance to fires promote the
emergence of exclusion areas where new trees are not able to
establish leading to tree spots. Increasing s, we observe stripes and
finally, gaps.

In both equivalent cases, we observe this spectrum of patterns
as far as we go to a more dry state of the system, where resources
(mainly water) are more limited (see Figs. 3(a)–(c)) and competi-
tion is consequently stronger. This same sequence of appearance of
patterns has been already observed in the presence of different
short-range facilitation mechanisms (Lejeune and Tlidi, 1999;
Rietkerk et al., 2002). It indicates that, when δ is increased (i.e.,
the probability of surviving competition is decreased), new trees
cannot establish in the exclusion areas so clustering is enhanced.

On the other hand, in the case of fire-prones savannas, previous
works had only shown either tree spot (Lejeune et al., 2002) or
grass spots (D'Odorico et al., 2007). Therefore, at some values of
the parameter space (see Fig. 3b), the patterns in our deterministic
approach are not observed in mesic savannas, and should corre-
spond to semiarid systems. However, we will show in the follow-
ing sections that under the parameter constraints of a mesic
savanna, and considering the stochastic nature of the tree growth
dynamics in the system (i.e., demographic noise), our model
shows realistic spatial structures.

A much more quantitative analysis of the periodicity in the
patterns can be performed via the structure function. This will be
helpful to check the previous results and, especially, for the
analysis of the data of the stochastic model of the next section,
for which we will not present analytical results. The structure
function is defined as the modulus of the spatial Fourier transform
of the density of trees in the stationary state,

SðkÞ ¼
###
Z

dx eik&xρðx; t-∞Þ
###

$ %
ð17Þ

where the average is a spherical average over the wavevectors
with modulus k. The structure function is helpful to study spatial
periodicities in the system, similar to the power spectrum of a
temporal signal. Its maximum identifies dominant periodicities,
which in our case are the distances between tree clusters. Note
that the geometry of the different patterns cannot be uncovered
with the structure function, since it involves a spherical average. In
Fig. 4, we show the transition to patterns using the maximum of
the structure function as a function of the competition parameter.
A peak appears when there are spatial structures in the system, so
max½SðkÞ(≠0. However, we do not have information about the
values where the shapes of the patterns change. Taking R¼8 m,
the peak is always at λc ¼ 10 m for our deterministic savanna
model, independently of the competition and fire resistance
parameters, provided that they take values that ensure the

Fig. 3. (a) Grass spots ðδ¼ 7:0Þ, (b) striped grass vs. tree ðδ¼ 8:0Þ, and (c) tree spots ðδ¼ 11:0Þ patterns in the deterministic model in a square patch of savanna of 1:0 ha.
s¼ 2:9, R¼ 8:0 m, b¼5.0 and α¼ 1:0 in all the plots.
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emergence of patterns in the system (see the line labeled by Γ ¼ 0
in Fig. 5; for the definition of Γ see next section). This result is in
good agreement with the theoretical result provided for the
wavelength by the linear stability analysis λ¼ 2π=kmax ¼ 9:78 m,
which is also independent of competition and resistance to fires.

3. Stochastic model

The perfectly periodic patterns emerging in Fig. 3 from the
deterministic model seem to be far from the disordered ones
usually observed in aerial photographs of mesic savannas and
shown by individual based models (Calabrese et al., 2010; Jeltsch
et al., 1999; Barot et al., 1999; Caylor et al., 2003). We have so far
described a savanna system in terms of the density of trees with a
deterministic dynamics. The interpretation of the field ρðx; tÞ is the
density of tree (active) sites in a small volume, V. If we think of
trees as reacting particles which are born and die probabilistically,
then to provide a reasonable description of the underlying
individual-based birth and death dynamics, we have to add a
noise term to the standard deterministic equation. It will take into
account the intrinsic stochasticity present at the individual level in
the system.

If we take a small volume, V, the number of reactions taking
place is proportional to the number of particles therein, N, with
small deviations. If N is large enough, the central limit theorem
applies to the sum of N independent random variables and
predicts that the amplitude of the deviation is of the order of

ffiffiffiffi
N

p
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞ

p
(Gardiner, 1985). This stochasticity referred to as

demographic noise. The macroscopic equation is now stochastic,

∂ρðx; tÞ
∂t

¼ beff ðρÞ½ρðx; tÞ−ρ2ðx; tÞ(−αρðx; tÞ þ Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞ

p
ηðx; tÞ; ð18Þ

where Γ∝
ffiffiffiffiffiffiffi
beff

q
(but we take it as a constant, Dickman, 1994)

modulates the intensity of ηðx; tÞ, a Gaussian white noise termwith
zero mean and correlations given by Dirac delta distributions

〈ηðx; tÞηðx′; t′Þ〉¼ δðx−x′Þδðt−t′Þ: ð19Þ

The complete description of the dynamics in Eq. (18) should have
the potential to describe more realistic patterns.

We first investigate the effect of demographic noise on the
persistence of trees in the system. We show in Fig. 6 that the
critical point, sn, depends on the value of the competition para-
meter δ. This effect is rather small, so that when δ increases the
transition to the grassland state appears only for a slightly larger s
(i.e., less frequent fire). The reason seems to be that fire frequency
and intensity depend on grass biomass. Seasonally wet savannas
support much more grass biomass that serves as fuel for fires
during the dry season (D'Odorico et al., 2006c; Hanan et al., 2008).
Dry savannas have much lower grass biomass, so they do not burn
as often or as intensely. The shift of the critical value of s when
competition is stronger is consistent with the one showed in
Calabrese et al. (2010), as can be seen comparing Fig. 2 in
Calabrese et al. (2010) with Fig. 6 here. Besides, the values
obtained for sn are larger when we consider the demographic
stochasticity (Stanley, 1971) neglected in the deterministic field
approach.

We explore numerically the stochastic savanna model using an
algorithm developed in Dickman (1994) (see Appendix C). Note
that the noise makes the transition to pattern smoother so the
change from homogeneous to inhomogeneous spatial patterns is
not as sharp as it is in the limit where the demographic noise
vanishes (see Fig. 4). The presence of demographic noise in the
model, as shown in Fig. 2 (red stars), also decreases the value of
the competition strength at which patterns appear in the system,
as has been observed in other systems. Mathematically, these new
patterns appear since demographic noise maintains Fourier modes
of the solution which, due to the value of the parameters, would
decay in a deterministic approach (Butler and Goldenfeld, 2009).
Biologically, exclusion zones are promoted by demographic noise,
since it does not affect regions where there are not trees. On the
other hand in vegetated areas fluctuations may enhance tree
density, leading to stronger competition. The presence of demo-
graphic noise in the model allows the existence of patterns under
more humid conditions. This result is highly relevant for mesic
savannas, as we expect competition to be of low to intermediate
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Fig. 4. Maximum of the structure function for different values of the competition
parameter δ at long times. The fire parameter is fixed at s¼ 2:9. Black circles refers
to the deterministic model and red squares to the stochastic model, Γ ¼ 0:2. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)
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Fig. 5. Numerical computation of the structure function defined in Eq. (17) for
different values of the demographic noise intensity. δ¼ 9:8, s¼ 2:9, R¼8.0 m,
α¼ 1:0, b¼5.0.

Fig. 6. Active-absorbing phase transition in the deterministic (circles) and the
stochastic model (squares). In the later case, we integrate Eq. (18) with Γ ¼ 0:2 and
average the density of trees in the steady state.
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strength in such systems. We show two examples of these
irregular patterns in Fig. 7(a) and (b). Unrealistic stripe-like
patterns no longer appear in the stochastic model.

We have studied the dynamics of the system for some values of
the fire and competition parameters. Demographic noise influ-
ences the spatial structures shown by the model. The deterministic
approach shows a full spectrum of patterns which are not visually
realistic for mesic savannas (but for arid systems). The role of the
noise is to transform this spectrum of regular, unrealistic patterns
into more irregular ones (Figs. 7(a)–(d)) that remind the observed
in aerial photographs of real mesic savannas. On the other hand,
these patterns are statistically equivalent to the deterministic
ones, as it is shown with the structure function in Fig. 5. The
dominant scale in the solution is given by the interaction radius R,
and it is independent of the amplitude of the noise (see the
structure function in Fig. 5, peaked around λ¼ 10 m independently
of the noise). Besides, over a certain treshold in the amplitude,
demographic noise destroys the population of trees. Therefore, the
model presents an active-absorbing transition with the noise
strength, Γ, being the control parameter.

4. Discussion

Understanding the mechanisms that produce spatial patterns
in savanna tree populations has long been an area of interest
among savanna ecologists (Skarpe, 1991; Jeltsch et al., 1999; Barot
et al., 1999; Caylor et al., 2003; Scanlon et al., 2007). A key step in
such an analysis is defining the most parsimonious combination of
mechanisms that will produce the pattern in question. In this
paper the combination of long-range competition for resources
and the facilitation indirectly induced by fire are considered the
responsible of the spatial structures, in the line of studies of
vegetation pattern formation in arid systems, where also a
combination of long-range inhibition and short-range facilitation

is introduced (Klausmeier, 1999; Lefever and Lejeune, 1997;
Rietkerk et al., 2002; Hardenberg et al., 2001). The main difference
is that the facilitation provided by the protection effect of adult
trees against fires in our savanna model takes the short-range
facilitation to its infinitesimally short limit (i.e., local limit). Under
this assumption we have studied the conditions under which our
model could account for patterns. We have shown that nonlocal
competition combined with local facilitation induces the full range
of expected spatial patterns, provided the competition term enters
nonlinearly in the equation for the density of trees, and that
competition is strong enough.

The key technical requirement for this effect to occur is that the
competition kernel must be an almost constant function in a given
competition region, and decay abruptly out of the region. We
verify this condition working with supergaussian kernel functions.
In practice, this means that competition kernels whose Fourier
transform takes negative values for some wavenumber values, will
lead to competition driven clustering.

The other mechanism we have considered for a minimalistic
but realistic savanna model, fire, has been shown to be relevant for
the coexistence of trees and grass and for the shape of the
patterns. However, competition is the main ingredient allowing
pattern solutions to exist in the model. If the shape of the kernel
allows these types of solutions, then the specific values of fire and
competition parameters determine the kind of spatial structure
that develops. It is also worth mentioning that one can observe the
full spectrum of patterns in the limit where fires vanish ðs-∞Þ, so
there is no facilitation at all, provided competition is strong
enough and the Fourier transform of the kernel function, G, takes
negative values. However, when there is no competition, δ¼ 0, no
patterns develop regardless of the value of the fire term. Therefore,
we conclude that the nonlocal competition term is responsible for
the emergence of clustered distributions of trees in the model,
with the fire term playing a relevant role only to fix the value of
the competition parameter at which patterns appear. In other

Fig. 7. Patterns of the stochastic model in a square patch of savanna of 1.0 ha. s¼ 2:9, R¼8.0 m, b¼5.0 and α¼ 1:0 in all the plots. (a) Γ ¼ 0:2, δ¼ 3:0. (b) Γ ¼ 0:2, δ¼ 5:0. (c)
Γ ¼ 0:1, δ¼ 10:0. (b) Γ ¼ 0:2, δ¼ 10:0.
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words, for a given competition strength, patterns appear more
readily when fire is combined with competition. A similar
mechanism of competitive interactions between species has been
shown to give rise to clusters of species in the context of classical
ecological niche theory. Scheffer and van Nes (2006) showed that
species distribution in niche space was clustered, and Pigolotti
et al. (2007) showed that it is crucial to consider nonlinear
interactions and the way species compete with their neighbors
in the niche space through the choice of the kernel function. This
promotes the existence of certain regions where new species
cannot establish and enhances the formation of clusters. From a
technical point of view, clusters arise as an instability of the
nonlocal nonlinear equation describing the competition among
species.

Long-distance competition for resources in combination with
the local facilitation due to the protection effect of adult trees in
the establishment of juvenile ones can explain the emergence of
realistic structures of trees in mesic savannas. In these environ-
mental conditions, competition is limited, so we should restrict to
small to intermediate values of the parameter δ, and the effect of
fires is also worth to be taken into account. However, these two
ingredients give a full range of patterns observed in vegetated
systems, but not in the particular case of savannas. It is necessary
to consider the role of demographic noise, which is present in the
system through the stochastic nature of the birth and death
processes of individual trees. In this complete framework our
model shows non-homogeneous patterns of trees similar to the
observed in real savannas.

The other important feature of savannas, the characteristic
long-time coexistence of trees and grass is well captured with
our model (Figs. 1 and 6). Besides, the presence of demographic
noise, as it is shown in Fig. 6, makes our approach much more
realistic, since the persistence of trees in the face of fires is related
to the water in the system. On the other hand, demographic
stochasticity causes tree extinction at lower fire frequencies (larger
s) than in the deterministic case. This is because random fluctua-
tions in tree density are of sufficient magnitude that this can hit
zero even if the deterministic stationary tree density (for a given
fire frequency) is greater than zero. This effect vanishes if we
increase the system size. The demographic noise is proportional to
the density of trees (proportional to ðLx ) LyÞ−1), so fluctuations are
smaller if we study bigger patches of savannas. As usually happens
in the study of critical phenomena in Statistical Mechanics, the
extinction times due to demographic noise increase exponentially
with the size of the system for those intensities of competition and
fire that allow the presence of trees in the stationary state. Over
the critical line, this time will follow a power law scaling, and a
logarithmic one when the stationary state of the deterministic
model is already absorbing (without trees) (Marro and Dickman,
1999).

5. Summary

We have shown the formation of patterns in a minimal savanna
model, that considers the combination of long-range competition
and local facilitation mechanisms as well as the transition from
trees-grass coexistence to a grass only state.

The salient feature of the model is that it only considers
nonlocal (and nonlinear) competition through a kernel function
which defines the length of the interaction, while the facilitation is
considered to have an infinitesimally short influence range. Our
model thus differs from standard kernel-based savanna models
that feature both short-range facilitation and long-range competi-
tion. The same sequence of spatial patterns appears in both
approaches, confirming Rietkerk and van de Koppel's suggestion

that short-range facilitation does not induce spatial pattern
formation by itself, and long-distance competition is also needed.
It also suggests that long-range competition could be not only a
necessary, but also a sufficient condition to the appearance of
spatial structures of trees.

Inspired by Calabrese et al. (2010), we have proposed a
nonlocal deterministic macroscopic equation for the evolution of
the local density of trees where fire and tree-tree competition are
the dominant mechanisms. If the kernel function falls off with
distance very quickly (the Fourier transform is always positive) the
system only has homogenous solutions. In the opposite case,
patterns may appear depending on the value of the parameters
(δ and s), and in a sequence similar to the spatial structures
appearing in standard kernel-based models. Under less favorable
environmental conditions, trees tend to arrange in more robust
structures to survive (Fig. 3(c)). Biologically, trees are lumped in
dense groups, separated by empty regions. Entrance of new trees
in these exclusion zones is impossible due to the intense competi-
tion they experience there.

A great strength of our approach is that our deterministic
analysis is formal, and we have shown the different spatial
distributions of the trees that occur as competition becomes more
intense, concluding that self organization of trees is a good
mechanism to promote tree survival under adverse conditions
Rietkerk et al. (2002). Trees tend to cluster in the high competition
(low resources) limit (Fig. 3(c)), due to the formation of exclusion
zones caused by non-local competition, and not as a result of
facilitation. However, because we are dealing with a deterministic
model, the patterns are too regular and the transition between the
grass-only and a tree-populated states is independent of tree
competition. We therefore considered stochasticity coming from
the stochastic nature of individual birth and death events, to
provide a more realistic description of savanna dynamics.
Calabrese et al. (2010) also noted that savanna-to-grassland
transition was independent of competition intensity in the mean
field approach, but not when demographic noise was included. In
the present model, both the grassland to savanna transition and
the spatial structures that develop are influenced by demographic
stochasticity. In the case of spatial structures, demographic noise is
specially relevant, since it turns much of the unrealistic patterns of
the deterministic model into more realistic ones, that remind the
observed in real savannas. It also allows the existence of periodic
arrangements of trees in more humid systems, which means
environmental conditions closer to mesic savannas.

We have quantified the characteristic spacing of spatial pat-
terns through the structure function. The irregular patterns
produced by the stochastic model still have a dominant wave-
length whose value is the same as in the deterministic model and
depends only on the value of the range of the interaction, R, in the
kernel function. The match between the typical spatial scale of the
patterns and the characteristic distance over which nonlocal
competition acts indicates that competition is responsible for the
presence of clustered spatial structures.
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Appendix A. Linear stability analysis

This appendix shows the details of the linear stability analysis,
in particular how it is obtained the dispersion relation in Eq. (9).
We consider the stationary solution ρ0 plus a small harmonic
perturbation,

ρðx; tÞ ¼ ρ0 þ ϵeλt−ik&x; ðA:1Þ

where ϵ51. Substituting Eq. (A.1) into the original Eq. (5), and
retaining only linear terms in ϵ, we arrive to the relation dispersion

λðkÞ ¼ bCsðρ0−ρ20Þ
1

ðsþ 1−ρ0Þ2
− ĜðkÞδ
sþ 1−ρ0

" #
þbCs

1−2ρ0
sþ 1−ρ0

−1;

ðA:2Þ

where ĜðkÞ is the Fourier transform of the kernel,
ĜðkÞ ¼

R
GðxÞexpðλt−ik & xÞ, and C≡ expð−δρ0IÞ, where I is the inte-

gral of the kernel function over the region defined by R. Eq. (A.2)
can be written as Eq. (9) using the definition of beff ðρ0Þ.

Appendix B. Expression of the transition to pattern critical
line

We show here the analytical expression for the critical line in
the transition from homogeneous to inhomogeneous solutions.
Starting from Eq. (11) it is possible to write an expression for the
value of the resistance to fires parameter, s, at which the macro-
scopic equation (5) starts showing pattern solutions, as a function
of the competition parameter, δ, and the most unstable mode kc.
Considering the value of the parameters taken in our study, b¼5
and α¼ 1, and a flat kernel as defined in Eq. (14), it is

sc ¼
ðρ0−1Þ½5ðρ0−1ÞðδĜðkcÞρ0−1Þ−2eδπR

2ρ0 (
10½1−2ρ0 þ δĜðkcÞρ0ð1þ ρ0Þ−eδπR

2ρ0=5(

þðρ0−1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5½5ðρ0−1Þ2ðδĜðkcÞρ0−1Þ2−4eδπR

2ρ0ρ0(
q

10½1−2ρ0 þ δĜðkcÞρ0ð1þ ρ0Þ−eδπR
2ρ0=5(

: ðB:1Þ

This complicated expression must be evaluated numerically
together with the solution of Eq. (7) for the stationary density of
trees, which is also a function of the competition and fire
parameters. We show the results in Fig. 2, where the curve,
represented with the black crosses, fits perfectly with the numer-
ical results from the linear stability analysis.

Appendix C. Numerical algorithm for the integration
of Eq. (18)

The integration of stochastic equations where the noise ampli-
tude depends on the square root of the variable, ρ, and there are
absorbing states (i.e., states where the system stays indefinitely),
has awaken a great interest, specially in the study of critical
phenomena (i.e., properties of the system that appear when it is
close to the critical point, often the absorbing state). The ampli-
tude of the fluctuations tends to zero there, and thus numerical
instabilities may appear. Recently (Dornic and Chaté, 2005;
Pechenik and Levine, 1999), a very efficient method has been
developed, but we have used in this work an older one, presented
in Dickman (1994), since its implementation is easier and it gives
precise results working far from the transition point. It consists on
discretizing the Langevin equation, taking a step size Δρ in the
variable.

To apply the method to Eq. (18), first of all we discretize the
space. Particularly, we compute the integral in the exponential
term approximating it by a sum of the field evaluated in the nodes

of the discrete space
Z

ρðx; tÞGðx−x′Þ dx≈ ∑
Nx

i ¼ 1
∑
Ny

j ¼ 1
ρi;jGi;j;i′;j′ΔxΔy: ðC:1Þ

Then, we integrate the temporal dependence. The key of the
algorithm is to prevent ρþ Δρ to take negative values. From a
general equation

dρ
dt

¼ f ðρÞ þ
ffiffiffi
ρ

p
ψðtÞ; ðC:2Þ

where ψðtÞ is a Gaussian white noise with zero mean and delta
correlated, it is

Δρ¼ f ðρÞΔt þ ffiffiffi
ρ

p ΔW ; ðC:3Þ

where ΔW ¼
ffiffiffiffiffiffi
Δt

p
Y &Y is a Gaussian number with zero mean and

unit variance. At this point, to prevent ρþ Δρ to take negative
values, the author in Dickman (1994) proposes to dicretize the
density setting ρ¼ nρmin and to truncate the Gaussian distribution
from where Y is obtained simetrically so that jYj≤Ymax. The
negatives values are avoided requiring Ymax

ffiffiffiffiffiffi
Δt

p
≤ρmin. It can be

done in many ways but following Dickman (1994) we use

Ymax ¼
jln Δtj

3
;

ρmin ¼
ðln ΔtÞ2Δt

9
: ðC:4Þ

Finally, rescaling the equation, we can achieve a discretized
version in which positive and zero-mean noise are ensured at
the cost of a “quantized” density.

Appendix D. The effect of rainfall: random switching between
death and birth

One of the key ingredients for the long coexistence between
grass and trees is the largely inhomogeneous temporal distribu-
tion of precipitations over time (Sankaran et al., 2005; Vázquez
et al., 2010; Ridolfi et al., 2011). We have studied this environ-
mental variability following the idea in D'Odorico et al. (2006b),
considering the switching between unstressed vegetation growth,
given by the first term in (5), and drought-induced vegetation
decay, represented with the second term in Eq. (5). These
processes take place each time step with probability P and 1−P,
respectively. From now on, we call

f b½ρðx; tÞ( ¼ beff ðρÞ½ρðx; tÞ−ρ2ðx; tÞ(;

f d½ρðx; tÞ( ¼−αρðx; tÞ; ðD:1Þ

and

f 7 ½ρðx; tÞ( ¼ 1
2½f b½ρðx; tÞ(7 f d½ρðx; tÞ((: ðD:2Þ

The random dynamics of the system is written in terms of a
stochastic partial differential equation,

∂ρðx; tÞ
∂t

¼ fþ½ρðx; tÞ( þ f −½ρðx; tÞ(ξdnðtÞ; ðD:3Þ

where ξdnðtÞ is a dichotomous noise (DMN), assuming values +1
(wet season) and −1 (dry season) with probability P and 1−P,
respectively.

If the rate of random switching, taken as the inverse of the
integration time step, is relatively fast respect to the rate of
convergence to equilibrium in each of the two states, we can
replace the noise term in Eq. (D.3) with its average value,
〈ξdnðtÞ〉¼ 1−2P. It is meaningful since the rainfall seasons are much
shorter than the time needed to reach one of the equilibrium
stationary states of death and birth processes, ρðx; tÞ ¼ 0;1,
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respectively. This substitution leads to a deterministic equation

∂ρðx; tÞ
∂t

¼ fþ½ρðx; tÞ( þ f −½ρðx; tÞ(ð1−2PÞ; ðD:4Þ

where we will be able to perform linear stability analysis as usual.
The new dispersion relation is easily obtained,

λðk; s; δÞ ¼ beff ðρ0ÞP
1þ sð1−2ρ0Þ
s−ρ0 þ 1

−ð1−PÞ

−beff ðρ0ÞP
ρ0½2−ρ0 þ δĜðkÞðρ0−1Þðρ0−1−sÞ þ 2s(

ðs−ρ0 þ 1Þ
; ðD:5Þ

which means that the main effect of the dichotomous noise is to
renormalize the rates α and b. The patterns observed now are the
same as the ones in the deterministic case, though the regions
where they emerge change in accordance with this renormaliza-
tion. Thus, the effect of stochastic precipitation, as modeled with
this random switching mechanism, is a change of the parameter
values for the different transitions observed in the deterministic
continuum model equation (5).

According to the value of P, an absorbing-active phase transi-
tion is observed, Pc≈0:20. Small values of P, meaning long dry
season, lead to an absorbing state while increasing the probability
of raining implies the appearance of trees in the system. In this
latter case, the solution can be either homogeneous or showing
spatial patterns, depending on fire and competition.

This attempt to model rainfall has not been very successful and
does not give a lot of new information. Much effort of future
research should be put on this point, trying to get much more
realistic modelling of external environmental variability, according
to empirical observations, with long runs of dry years and rare
wet years.
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