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Heat Tolerance in the Black Abalone,

Halwotis cracherodi Leach, 1814:

Effects of Temperature Fluctuation and Acclimation

ANSON HINES 2, SUSAN ANDERSON3 anpo MICHAEL BRISBIN 3

(3 Text figures)

INTRODUCTION

THE corRELATION of higher thermal tolerance with higher
vertical distribution of intertidal mollusks is well known
(e. g., Davies, 1970; FRAENKEL, 1968; SaNDISON, 1968;
WoLcorT, 1973; and many others). However, examinations
of temperature as a limiting environmental factor should
consider the effects of the acclimation temperature and of
temperature fluctuations during the tidal cycle on the ther-
mal tolerance of an intertidal organism. The black abalone,
Haliotis cracherodii Leach, 1814, is common in the inter-
tidal zone of California at levels of 0.3 to 1.0 meters above
mean lower low water, but its thermal tolerance has not
been reported previously. Although the effects of tempera-
ture on the larval development rate of several other species
of abalone from California have been studied (LEicHTON,
1972; 1974), the thermal tolerance of adults of only red
abalone, Haliotis rufescens Swainson, 1822, has been inves-
tigated (EBERrT, 1974). The present study provides com-
parative information on the heat tolerance of adult black
abalone, which were tested for g6 hours to determine the
temperature at which 50 percent of the sample survived,
i. e., the median effective temperature (ETso).

The ability of the abalone to hold onto a substrate was
used as the criterion for irreversible thermal damage in
these experiments, because it is difficult to assess physio-
logical death in this animal. Animals acclimated to both
11°C and 16°C were tested to provide information on

* TERA Corporation, 2150 Shattuck Avenue, Berkeley, Califor-
nia 94704

* Corresponding address: Chesapeake Bay Center for Environ-
mental Studies, Smithsonian Institution, P O. Box 28, Edge-
water, Maryland 21037

3 Lockheed Center for Marine Research, 6350 Yarrow Drive, Suite
A, Carlsbad, California g2008

seasonal changes in thermal tolerance of Haliotis crache-
rodii. Abalone in the experiments were either continuously
submerged in heated water or periodically exposed to
cooler air. Measurements of mortality rates at constant test
temperatures provided standardized comparisons of ther-
mal tolerance of the abalone, but this provided rather un-
realistic experimental conditions. In the field, the tidal
cycle would impose fluctuating temperatures, with stressful
periods lasting about 6-12 hours. Therefore, the response
of abalone exposed to repeated, short intervals of thermal
stress was compared to their response to long, constant
stress. Although intertidal organisms in central California
are usually exposed to fluctuations of warm air and cool
seawater, the experimental design of using heated test
water and cooler air helped eliminate the variable of desic-
cation during heat stress. Because the fluctuating thermal
regimes produced much lower “heat doses” than the con-
stant conditions, and because black abalone were not ex-
pected to have evolved physiological mechanisms for tol-
erating continuous stress for as long as g6 hours, we pre-
dicted that abalone in fluctuating regimes would have bet-
ter survivorship than those in constant conditions. Al-
though the present report confirms this prediction, we
found that the response to heat stress in black abalone was
extremely abrupt once lethal temperatures were reached,
and that exposure to a fluctuating regime produced only a
small increase in the ETso value.

MATERIALS ano METHODS

This study was conducted at the Pacific Gas and Electric
Company Thermal Effects Laboratory at the Diablo Can-
yon Nuclear Power Plant on the central California coast
of San Luis Obispo County. Large (10-15 cm shell length)
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black abalone coliected in the Diablo Canyon area were
acclimated to either 11.5 or 16° C in the laboratory for at
least one week prior to the start of the experiment. During
the experiment, abalone from each of the two acclimation
regimes were maintained either continuously submerged
or held in a cycle of six hours submergence alternating
with six hours exposure to air in laboratory tanks, which
were equipped with a machine that automatically raised
and lowered their water level. Thus, there were 4 experi-
mental groups: 11° C acclimated tidal and non-tidal aba-
lone, and 16° C acclimated tidal and non-tidal abalone.
There were 2 phases to the experiment. The first phase
during June, 1978, measured the thermal tolerance of
16° C acclimated non-tidal abalone moving freely on the
bottom of the tanks. The second phase during August,
1978, measured the thermal tolerance of 16°C tidal,
11°C tidal, and 11°C non-tidal abalone held in trays,
which positioned the animals at a constant level in the
simulated tidal cycle.

A supplemental experiment was run to determine the
core body temperature of 13-14cm long abalone during
exposure to air following heat stress. Following immersion
in seawater at 25° C for 2 hours, the seawater was drained
and the abalone were exposed to air at 19-20° C for 6
hours. At successive intervals during this period, the core
body temperatures of two abalone were measured by re-
moving them from the substrate and quickly inserting a
thermistor probe through the foot into the center of a
body mass. The temperature of each abalone was meas-
ured only once, and the animals were discarded. During
exposure to air, the abalone cooled rapidly, and within 2
hours their core body temperatures equaled the air tem-
perature == 0.2° C. Core body temperatures remained
within == 0.3° C of the air temperature for the rest of the
6-hour period.

In the main experiments, non-tidal test abalone were
held for g6 hours at test scawater temperatures ranging
from 24.7 to 29.4° C, Seawater temperatures were raised
from the acclimation temperatures to the test tempera-
tures within one hour. Control groups of animals were
observed at 11.5 and 16° C, respectively. Air temperatures
encountered by abalone during tidal exposure to air aver-
aged 14.8°C over 11.5°C water, 17.5°C over 16°C
water, and 21.2 to 21.9° C over the test water of 26.5 to
28.5° C. Within any one test group, the air temperature
varied up to = 1.2° C, but water temperatures varied only
=+0.2°C.

Throughout the 96 hour tests, each abalone was ob-
served and gently prodded at 6-hour intervals to determine
its ability to hold to a surface. Following the methods of
EBERT (1974), loss of the ability of an abalone to hold to

a surface constituted “ecological death” during the exper-
iment. Abalone which lost the ability to hold in tests dur-
ing the second phase of the experiment were returned to
16° C to check for recovery. At each observation period,
systematic notes were made of the abalone’s behavior,
checking for such things as shell orientation, tentacular
response, spawning, body turgor, and unusual behavior.
Usually 10, and in a few cases 20, abalone were tested in
each group. A total of 418 abalone, including control
groups, were used in this experiment. Probit analysis of
the mortality data was used in accordance with Standard
Methods (1976). Other statistical treatments are ex-
plained in the Results.

RESULTS

The time courses of mortality for all the test temperatures
during the second phase and for some of the test tempera-
tures during the first phase of the experiment are shown
in Figure 1. The response to elevated temperatures is ex-
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Figure 2

Representative probability plots of the mortality of black abalone
from the four experimental groups at 24 and 66 hours into the g6
hour test period. Note that mortality is plotted on a probability scale.
Test conditions which resulted in either no or 100% mortality are in-
dicated by arrows. Probit regression lines were fitted by eye and

tremely abrupt in that, when lethal temperatures are
reached, the temperature range from no mortality to
100% mortality is only about 1.0° C for any one experi-

(< on facing page)
Figure 1

The time course of mortality of Haliotis cracherodii from the four
experimental groups at five test temperatures. Only some of the data
for the 16° C acclimated, non-tidal group, which was run as a
separate experiment, are included for the most comparable temper-
atures. ) = 11° C acclimated non-tidal group; @ = 11°C ac-
climated tidal group; A = 16° C acclimated non-tidal group;
A = 16° C acclimated tidal group

ignore the spurious result from the 16° C acclimated tidal group
tested at 27.0° C (circled). (O = 11°C acclimated non-tidal
group; @ = 11° C acclimated tidal group; A = 16° C acclimated
non-tidal group; A = 16° C acclimated tidal group

mental group. As might be expected, the precise tempera-
ture at which a given response occurred depended upon
the experimental group, but based on the results of this
experiment, it is predicted that no mortality would occur
at or below 25° C and 100% mortality would occur at or
above 28.0° C for all experimental groups.

The mortality data for each six hour observation period
were plotted on a probability scale versus temperature
(see Figure 2 for examples from the 24 and 66 hour
observations). These plots show good co-linearity of points
necessary for probit analysis. The only exception to co-
linearity occurred in the 16° C acclimated tidal group at
27° C, which experienced high mortality relative to ani-
mals of the same group at other temperatures. Careful
observation of the animals at 27°C did not reveal any
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abnormalities. All of the animals at 27° C were males (by
chance), however, the mortality rates of males was not
significantly different from that of females (x2= 1.1493
for the first phase, and x2=0.4736 for the second phase,
1 d.f., p>o.10). Thus, the anomalous response of the
27° C animals remains unexplained, and these data were
omitted from the probit analysis below. Probit regression
lines were fitted by eye to determine the temperature
which would result in 50% mortality for each of the 4
experimental conditions at each 6-hour period. For ex-
ample, at 24 hours the non-tidal group acclimated to
11° C had a 50% mortality rate at 27° C (see Figure 2).

The temperatures at 50% mortality derived from the
probability plots were used to generate the curves of time
to 50% mortality versus temperature shown in Figure 3.
As determined by the temperature producing an effect in
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Figure g

Temperature tolerance of Haliotis cracherodii from the four experi-
mental groups. The ET,  temperatures at each 6 hour observation
were determined from the probability plots, as shown in Figure 2.
The 16° C acclimated non-tidal group was tested first and the other
3 groups were tested together at a later date. Note that time to 50%
mortality is plotted on a log scale. O = 11°C acclimated non-
tidal group; @ = 11°C acclimated tidal group; A = 16°C
acclimated non-tidal group; A = 16° C acclimated tidal group

1 T T 1

50% of the sample (ET), the 11° C acclimated non-tidal
group had the lowest thermal tolerance (96 hour ETso =
26.1° C), followed by the 11° C tidal group (96 hour ETso
= 26.6° C), and by the 16° C tidal group (96 hour ETs0 =
27.2° C). The 16° C acclimated non-tidal group was tested
in a separate experiment under slightly different conditions
earlier in the summer. This group had the highest 96 hour
ETso (27.4° C); however, it had a thermal tolerancc inter-
mediate between the 11° C acclimated tidal and the 16° C
acclimated tidal groups for the test period from 6 to 65
hours. Mortality between the 11° C acclimated tidal, the
11°C acclimated non-tidal, and the 16°C acclimated
tidal groups was significantly different (x2 = 7.789, 2 d.f.;
p <o0.05) (Table 1). Abalone acclimated to 16°C had
fewer deaths than those acclimated to 11°C (y* =5.56,
1 d.f.; p< 0.05) (Table 2), and abalone exposed to a tidal
cycle had fewer deaths than those constantly submerged
(xz = 6.091, 1 d.{.; p <o.05) (Table 3).

The revival of abalone in the first phase of the experi-
ment (the 16°C acclimated non-tidal) group was not
tested, but revival of abalone failing to hold a surface in
the second phase of the experiment was only 15.8%. Most
of the abalone that revived were animals which lost the
ability to hold during the first 24 hours at temperatures

Table 1

Contingency table comparing the mortality of the 16°C
acclimated tidal, 11°C acclimated tidal, and 11°C
acclimated non-tidal groups. The groups were signifi-
cantly different (p < 0.05; X2 = 7.789, 2d.t.)

16T 0Tt 1INT Total
No.dead 34 (56.7%) 40 (67.8%) 46 (80.7%) 120
No.alive  26(43.3%)  19(32.2%)  11(19.3%) 56
Total 60 59 57 176
Table 2

Contingency table comparing the effect of acclimation
to 16°C or 11°C on mortality. The two conditions had
significantly different mortalities
(p <0.05; X2 =556,1d.1)

16°C 11°C Total
No. dead 34 (56.7%) 86 (74.1%) 120
No. alive 96 (43.3%) 30 (25.9%) 56
Total 60 116 176
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Table 3

Contingency table comparing the effect of continuous
submersion and a simulated tidal cycle on mortality.
The two conditions had significantly different
mortalities (p < 0.05; X2 = 6.091, 1 d.f.)

Tide No tide Total
No. dead 74 (62.2%) 46 (80.7%) 120
No. alive 45 (37.8%) 11 (19.3%) 56
Total 119 57 176

above 27.5° C. Abalone that failed to hold later in the test
period did not recover.

Sperm spawned during the experiment showed no mo-
tility above 27.0°C, whereas sperm motility appeared
unaffected below 27.0°C. Because only one female
spawned during the experiment, it was not possible to
determine the effects of heat stress on eggs.

The behavioral sequence during heat stress in black
abalone was fairly consistent, although all abalone did not
exhibit all stages of the response. The first sign of stress
was a general loss of body turgor. Secondly, the shell was
uplifted from the substrate, usually beginning with a 1-2
cm lift of the anterior end, eventually resulting in elevation
of the entire shell 4 cm off the substrate (“gaping”). Gap-
ing was often followed by a spreading of the epipodium
1-2 ¢m beyond the edge of the shell. Loss of the ability to
hold a surface usually followed epipodial spreading, al-
though failure to hold did occur at various points. Loss of
tentacular responsiveness followed failure to hold. Spawn-
ing by males occurred more frequently at test tempera-
tures than at the control temperatures and did occur at
every observation period during the stress period. Abalone
under heat stress did not move to escape the warm water.

DISCUSSION

EBERT (1974) used methods similar to those in the present
study to determine thermal tolerance of Haliotis rufescens,
and his data were used to estimate the g6 hour ETw of
H . rufescens for comparison with our results for H. crache-
rodii. The thermal tolerance of the intertidal species, H.
cracherodii, was higher than that of the subtidal species,
H. rufescens. The g6 hour ET,, temperature for contin-
uously submerged abalone was 26.1° C for H. cracherodii

acclimated to 11.5°C, whereas for H. rufescens accli-
mated to 10° C it was about 24° C. Acclimation to warmer
temperatures resulted in a small but significant increase in
thermal tolerance in both species. For H. cracherodii rais-
ing the acclimation temperature from 11.5°C to 16.0°C
increased the ET,, about 1.3° C, whereas for H. rufescens
raising the acclimation temperature from 10° to 20°C
increased the ETso about 1° C.

Black abalone at the tidal level of 0.3 to 1.0m above
mean lower low water are not exposed to elevated tem-
peratures for g6 hours before being inundated with cool
seawater: a 6-12 hour exposure would be typical. For these
shorter exposures, the ET,, values are about 1-1.5°C
higher than for the 96 hour exposures and fall in the 28-
31° C range (Figure 3). As expected, Haliotis cracherodii
exposed to a fluctuating thermal regime, which greatly
reduced the “heat dose” during the test period, had a
much higher survivorship than those exposed to contin-
uous stress (37.8% versus 10.3% alive; Table 3). Surpris-
ingly, however, the increase in ETs value for the 11°C
acclimated group in the fluctuating regime was small {only
0.5° C), and the ETso values for all experimental groups
were within a narrow 2° C range of each other.

The response to heat stress in Haliotis cracherodii in all
test groups was extremely abrupt with the difference be-
tween o and 100% mortality in g6 hours being only about
1° C once lethal temperatures were reached. Therefore,
small changes in temperatures near the critical zone of
temperatures above 25° G may have serious consequences
for black abalone. Worcorrt (1973) found similarly abrupt
survivorship responses to elevated temperatures in several
species of intertidal acmaeid limpets, with the difference
between o0 and 100% mortality in short tests also being
only 1-2° C. The behavioral response of black abalone to
thermal stress, especially the uplifted shell gaping and epi-
podial spreading, would be adaptive for evaporative cool-
ing, but this would increase desiccation and leave the
abalone more vulnerable to predation. Because intertidal
organisms are regularly exposed to temperature extremes,
and because limpet-like snails have a foot which presents
a large surface area in contact with the substrate and little
capacity for insolation, the ability to tolerate temperatures
very near the ET5 point has high adaptive value.

SUMMARY

1. The thermal tolerance of adult Haliotis cracherodii
acclimated to 11.5° C and 16° C was determined for
animals exposed to constant temperatures during con-
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tinuous submergence and to fluctuating temperatures
during a simulated tidal cycle. Loss of the ability of an
abalone to hold a surface constituted “ecological
death.”

2. The response to elevated temperature was extremely
abrupt in that, when lethal temperatures are reached,
the temperature range from no mortality to 100% mor-
tality was only about 1.0° C for any one experimental
group.

3. As determined by probit analysis, the 96 hour ETse
value of the 11°C acclimated/non-tidal group was
26.1° C, that of the 11° C acclimated/tidal group was
26.6° C, and that of the 16° C acclimated /tidal group
was 27.2° C. The 16° C acclimated/non tidal group in
separate tests had a g6 hour ET,, value of 27.4° C, but
it had a thermal tolerance intermediate between the
11°C/tidal and the 16° C/tidal groups for the test
period from g to 65 hours.

4. The revival of abalone returned to 16° C after failing
to hold during part of the experiment was only 15.8%.

5. Sperm spawned during the tests were motile below 27°
C, but non-motile above 27° C.

6. The behavioral response of Haliotis cracherodii to heat
stress was described.
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