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Abstract. The ability to classify the biological condition of unsurveyed streams accurately would be an
asset to the conservation and management of streams. We compared the ability of 5 modeling methods
(classification and regression trees, conditional inference trees, random forests [RF], conditional random
forests [cRF], and ordinal logistic regression) to predict stream biological condition (very poor, poor, fair,
or good) based on benthic macroinvertebrate Index of Biotic Integrity data taken from the Maryland
Biological Stream Survey. Predictor variables included land use and land cover (e.g., impervious surface,
row-crop agriculture, and population density) and landscape measures (annual precipitation and
watershed area). We included 1561 sites on small nontidal streams in the Maryland portion of the
Chesapeake Bay watershed. We used 1248 sites (80%) as a training data set to build models and 313 sites
(20%) as an independent evaluation data set. RF and cRF models most accurately predicted observed
integrity scores in the evaluation data set, but we selected the cRF as the best model because of weaknesses
in the RF model (e.g., biased variable selection). Percent impervious surface was the most important
variable in the cRF model, and the probability that a site was in very poor or poor biological condition
increased rapidly as % impervious cover increased up to 20%. When applied to predict stream biological
conditions in all 7908 small nontidal stream reaches in the study area, the cRF model predicted that 33.8%
were in fair, 29.9% in good, 22.7% in poor, and 13.6% in very poor biological condition. Our analyses can
be used to manage and conserve freshwater and estuarine resources of Maryland and the Chesapeake Bay
watershed. Model predictions for unsurveyed streams can help target field studies to identify high-quality
streams deserving of conservation and impaired streams in need of restoration.

Key words: stream condition, landscape-scale, land use, random forests, conditional inference,
classification and regression trees (CART), ordinal logistic regression, prediction.

Biological assessments have shown that many small
streams have been impaired by anthropogenic stress-
ors (Benke 1990, USEPA 2000). These results have
generated much interest in conserving and managing
these streams and their watersheds. However, small
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streams are numerous (Leopold et al. 1964), and
assessing the biological condition of all small streams
is logistically impractical and cost prohibitive. Models
that reliably predict biological conditions at unsur-
veyed locations are needed. One way to estimate
regional biological conditions in streams and rivers is
to extrapolate the observed proportions of impair-
ment classifications from a sample of streams to all
streams in a landscape (e.g., if 30% of the sampled
sites are impaired, then 30% of the sites in the region
are impaired; USEPA 2006). However, such results
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provide limited information to managers who need
estimates of biological condition for individual
streams to target management efforts. Models that
predict stream biological condition from watershed
attributes, such as watershed size, human population,
and land use/land cover, could provide reach-specific
biological condition estimates for unsurveyed loca-
tions and could help quantify how watershed
attributes affect stream biological condition.

Classification and regression trees (Breiman 1984,
De’ath and Fabricius 2000, Loh 2008) are statistical
techniques that might be useful for constructing
classification models for predicting stream biological
condition. Such models are being applied more often
in ecology, partly because they can handle complex
data sets with higher-order interactions and nonlinear
relationships (Breiman 1984, De’ath and Fabricius
2000). Robust models are useful for stream classifica-
tion and prediction because the relationships between
stream biological conditions and stressors are com-
plex. For example, land cover often is used as a
surrogate for anthropogenic stressors in watersheds
and streams. However, percentages of land cover in
different categories often are correlated with each
other or with natural gradients, and land cover data
can have interactive and nonlinear relationships with
stream biological condition (Allan 2004, King et al.
2005, Walton et al. 2007).

Tree models explain variation in categorical (classifi-
cation trees) or continuous (regression trees) response
variables as a function of >1 explanatory variables,
which also can be categorical or continuous. Many
algorithms exist for constructing classification or regres-
sion trees (e.g., C4.5, CART, CRUISE, GUIDE, and
QUEST; Loh 2008), but most follow a simple general
scheme. A covariate is selected from all available
exploratory variables, and a split point that separates
the response values into 2 homogenous groups is
estimated. For a continuous explanatory variable, such
as precipitation, the split point is determined by a
numerical value of the explanatory variable. For a
categorical variable, such as ecoregion, the 2 groups are
defined by the set of levels of the explanatory variable to
which the observations belong. Once the split point has
been estimated for a selected explanatory variable and
the groups have been defined, each group is further
separated with new explanatory variables and split
points. A predefined stopping criterion is used to end
the recursive splitting procedure.

Recent advances in the field of machine learning
have increased the accuracy and the predictive ability
of single-tree models by using ensembles of trees
(forests; Cutler et al. 2007). This approach averages the
predictions of multiple trees (e.g., 500) generated from
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a permutated subsample of the data set. Random
forests (RF) are one of the simplest examples of such a
procedure (Breiman 2001, Liaw and Wiener 2002,
Cutler et al. 2007). In RF, bootstrap samples are drawn
with replacement from the original data set. Observa-
tions not included in a bootstrap sample are named
out-of-bag observations. A very large tree is generated
for each bootstrap sample, and is used to classify the
out-of-bag observations; i.e., the tree predicts (votes
for) the class of the out-of-bag observations. The
overall predicted class for each sample in the original
data set is the classification that receives the most
votes. RF-type models do not provide an easily
interpretable relationship between the response vari-
able and the predictor variables (unlike CART or linear
regression). However, inferences about the relation-
ships between predictor and response variables can be
drawn from variable importance plots and partial
dependence plots. Variable importance is calculated
for each predictor variable by randomly permuting the
values of the variable for the out-of-bag observations.
These modified out-of-bag observations are passed
through the tree to obtain new predictions. The
importance of the variable is the difference between
the misclassification rate for the modified and original
out-of-bag observations divided by the standard error
(Cutler et al. 2007).

CART and ensemble tree methods show promise for
developing predictive-based models for stream bio-
logical condition, but their efficacy has not been
evaluated or compared for streams. We compared
results from 5 models that classified biological condi-
tion of small nontidal streams in the Maryland portion
of the Chesapeake Bay watershed. We built models
with Brieman’s CART algorithm and its ensemble-tree
analog (RF). However, CART and RF models are
biased because they select against categorical explan-
atory variables and treat ordinal response variables as
nominal (Hothorn et al. 2006, Strobl et al. 2007, Loh
2008). This bias could lead to incorrect inferences
between responses and predictors. Therefore, we also
built models with conditional inferences trees (cTREE)
and an ensemble-tree method based on these trees
(conditional random forests [cRF]). cTree methods use
classical statistical tests (Hothorn et al. 2006) to select a
split point based on the minimum p-value among all
tests of independence between the response variable
and each explanatory variable. ¢cTREEs and cRFs
derive unbiased estimates of explanatory variables
and correctly handle ordinal response variables (Ho-
thorn et al. 2006, Strobl et al 2007). We also built a
model using ordinal logistic regression (OLR) because
OLR has been successfully used to classify ecological
condition (Bigler et al. 2005).
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Fic. 1. The Maryland portion of the Chesapeake Bay watershed, its major ecoregions (Omernik 1987), and stream assessment
points with data for benthic macroinvertebrates. Inset shows the study area (dark gray) in relation to the Chesapeake Bay
watershed (light gray) and 7 states in the mid-Atlantic region of the USA. DE = Delaware, MD = Maryland, NJ = New Jersey, NY
= New York, PA = Pennsylvania, VA = Virginia, WV = West Virginia.

We built models with a training data set in which
stream biological condition (assessed with a benthic
macroinvertebrate Index of Biotic Integrity [IBl]) was
the dependent variable, and watershed attributes,
including measures of natural landscape variation
(e.g., watershed area and elevation), climate (precipita-
tion), and anthropogenic stressors represented by land
cover (e.g., % impervious cover, % row-crop cover)
were explanatory variables. We evaluated models with
an independent validation data set. We applied the best
of the models to predict stream biological conditions in
all small nontidal streams in the Maryland portion of the
Chesapeake Bay watershed.

Methods
Study area

Maryland is in the Mid-Atlantic region of the US
(Fig. 1) and encompasses an area of 31,873 km? We
focused on the 23,408-km? part of Maryland in the
Chesapeake Bay watershed (Fig. 1), which includes 6
Level III ecoregions: Central Appalachians, Ridge and
Valley, Blue Ridge, Northern Piedmont, Southeastern
Plains, and Middle Atlantic Coastal Plains (Omernik

1987). Climate types range from cold with hot
summers in the mountainous western area to tem-
perate with hot summers toward the southeast (Peel
et al. 2007). Vegetation patterns range from northern
hardwood forests in the highlands to oak, hickory,
pine, and southern mixed forests of the Coastal Plains
(Omernik 1987). The Appalachian, Ridge and Valley,
and Blue Ridge ecoregions are underlain mainly by
folded and faulted sedimentary rocks; the Piedmont
ecoregion is underlain by crystalline igneous and
metamorphic rocks; and the Plains ecoregions are
underlain by unconsolidated sediments (Edwards
1981). Stream types range from coldwater streams in
the highland ecoregions (Central Appalachians and
Ridge and Valley) to blackwater streams of the
Coastal Plains (MDDNR 2005).

Macroinvertebrate indices of biotic integrity

We obtained benthic macroinvertebrate data from
the Maryland Biological Stream Survey (MBSS;
USEPA 1999). MBSS scientists used a probabilistic
sampling design stratified by major watershed and
stream order (1°- to 4% order streams as shown on
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TasLE 1. Summary statistics for explanatory watershed variables used in models. * indicates variables highly correlated with
other variables and, therefore, eliminated from model development (see Methods). Count = number of sites in each ecoregion.

Abbreviation Description Range/ecoregion Mean Count

PerPast % of watershed under pasture cover 0-84.0 16.3

PerCrop % of watershed under row-crop cover 0-85.6 15.5

PerExtr % of watershed under extractive (i.e., mining) cover 0-24.7 0.2

PerTree % of watershed under tree cover 0.7-99.0 35.9

PerImp % of watershed under impervious cover 0-61.3 53

Pop* Human population density (no. persons/km?) 0-7598 303

Elevation* Average watershed elevation (m) 0.8-876.7 170.3

Slope* Average slope of watershed (%) 0.0-17.2 42

Precip Average watershed annual precipitation (cm) 93.8-126.8 112.3

WSArea Watershed area (km?) 0.1-197.1 20.5

Latitude Latitude in decimal degrees 38.02-39.72 39.22

Longitude Longitude in decimal degrees —79.40 to —75.32 -76.97

Ecoregion Dominant Omernik (1987) Level III ecoregion of watershed Blue Ridge 58
Central Appalachians 44
Mid-Atlantic Coastal Plain 191
Northern Piedmont 542
Ridge and Valley 134
Southeastern Plains 279

1:100,000 US Geological Survey [USGS] maps; South-
erland et al. 2005b) to sample ~2500 streams from
1994 to 2004. We used the benthic macroinvertebrate
IBI data from these samples in our models (Souther-
land et al. 2005b). We used data from streams with
watershed areas <200 km”? and that were in the
Chesapeake Bay watershed. We used only the first
record for sites that were sampled more than once. Of
the ~2500 samples, 1561 satisfied these conditions.

In the MBSS survey, benthic macroinvertebrates
were sampled with a D-frame net from all habitats
within a 75-m stream reach (Klauda et al. 1998), and
subsampled to 100 organisms. Insects were identified
to genus level (Southerland et al. 2005b).

Watershed characteristics

We modeled the relationships between the record-
ed IBI at each sampling point and the attributes of the
watershed draining to the sampling point (Table 1).
We used watershed boundaries delineated in previ-
ous studies (King et al. 2005) with methods described
in Baker et al. (2006). We summarized watershed
attributes by overlaying watershed boundaries on
spatial data sets for land cover, human population,
and elevation. We calculated percentages of each land
cover in the entire watershed of each sampling point
and within a 100-m riparian buffer of the upslope
stream network for each site. Riparian conditions are
good predictors of stream biological condition (e.g.,
Strayer et al. 2003, King et al. 2005). We estimated the
percentage of each area (watershed or 100-m riparian

buffer) covered by impervious surface, trees, row-
crop agriculture, pasture, and extractive cover (e.g.,
mines) from land cover, tree cover, and impervious
surface maps derived from circa 2000 Landsat images
(RESAC 2000) with methods later adopted by federal
agencies for the National Land Cover Database
(Huang et al. 2001, Yang et al. 2003, Homer et. al.
2004). Population block data also were overlaid with
watershed boundaries, and population density was
calculated as the no. people/km?* (US Census 2000).
For partial census blocks within a watershed, we
estimated the population contributing to the water-
shed total by multiplying the percentage of the census
block within the watershed by the total population
within the census block (i.e., we assumed a homog-
enous population distribution within the census
block). We calculated average watershed slope and
elevation from a digital elevation model (DEM) and
average annual precipitation for each watershed from
a publicly available data set (PRISM Climate Group
2006) using Zonal Statistics (++) in Hawth’s Analysis
Tools for ArcGIS (Beyer 2007). During preliminary
variable screening, we found that all riparian land
cover proportions except extractive land cover (r =
0.39) were highly correlated with whole watershed
proportions (all r > 0.65), slope and elevation were
highly correlated with longitude (both r > 0.80), and
population density was highly correlated with im-
pervious surface (r = 0.78). Therefore, % land covers
in the 100-m riparian buffer, slope, elevation, and
population density were eliminated from further
model development.
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Model development

We used a random subsample of 80% of the sites
selected from the MBSS database as a training data set
for model development (n = 1248), and we reserved
the remaining 20% for an independent data set for
model validation (1 = 313). The same training and
validation data sets were used for every model. All
analyses were done with R statistical software (R
Development Core Team 2008).

We built models to relate the benthic IBI classification
of stream biological condition (very poor, poor, fair, or
good) to the explanatory variables describing water-
sheds. Our 1°" model was a classification tree model
using CART (Brieman 1984; R package rpart; http://
cran.r-project.org/web/packages/rpart/index.html).
Many user-defined stopping criteria options can be
chosen for the traditional CART model (e.g., no
samples misclassified, end nodes reach a threshold
homogeneity, or a set minimum number of samples/
node is attained; McCune and Grace 2002). We set the
minimum number of samples to create a split at 10, the
minimum number of observations in a terminal node
(or leaf) at 7, the complexity parameter (cp; a threshold
at which any split that does not decrease the lack of fit
by the value of cp is not done) at 0.001, and the number
of cross-validation procedures at 20. We used the 1-SE
rule, which does an internal 10-fold cross validation to
select the largest cp with a cross-validation error <1
standard deviation (SD) of the minimum to prune our
models (see Venables and Ripley 1999). Our 2™ model
was an ensemble-tree analog (RF) based on CART (R
package randomForest; http://cran.r-project.org/
web /packages/randomForest/index.html). We built
500 trees using default values for other parameters in
the randomForest package. Our 3™ model was a
cTREE (R package party, cTREE function; http://
cran.r-project.org/web/packages/party /index.html).
We set the p-value to define a split at 0.05 (the analysis
stops when no split is found below this criterion). We
used default values for all other parameters. Our 4™
model was an ensemble-tree analog (cRF) based on
cTREE (R package party, cforest function). We used the
default parameters for forest construction.

For single-tree methods (CART, cTREE), we present
the relationships between the response variable and
explanatory variables with a dichotomous tree dia-
gram with nodes that represent split points, branches
that connect nodes, and leaves or terminal nodes that
represent the final groups. For the ensemble-tree
methods (RF, cRF), we present partial dependence
plots constructed by plotting observed values of a
certain predictor variable against the predicted status
of the response variable on a probability scale to

illustrate the regression relationship between the
response and explanatory variables.

Our 5™ model was fit with OLR. OLR selects an
optimal combination of the explanatory variables for
predicting an ordinal response variable, much like
multiple linear regression analysis does for a contin-
uous response variable. However, unlike linear
regression, which models changes in the response
variable, OLR models changes in the log odds (the
natural logarithm of the odds ratio) of the response
variable. OLR yields easily interpreted models and
does not assume normality or homogeneity of
variance in the response variable. OLR does require
that explanatory variables be linearly related to the
logit of the response variable. We fit a proportional
odds model to the data (R Design Package, lrm
function;  http://cran.r-project.org/web/packages/
Design/index.html) and reduced model complexity
by backwards elimination using the Akaike Informa-
tion Criterion (AIC) for variable removal until the
lowest AIC was achieved. Preliminary diagnostics
indicated possible nonlinear relationships between
the biological condition category and % pasture cover,
so we also tested a 2"%-order polynomial for this
explanatory variable during model construction.

Model accuracy

We evaluated model performance with 3 commonly
used accuracy measures: percentage of observations
correctly classified (PCC), weighted «, and the area
under the receiver operating characteristic curve
(AUC). Each of these measures has specific advan-
tages and disadvantages (Harrell 2001, McPherson et
al. 2004), and models are best assessed with several
accuracy measures (e.g., Fielding and Bell 2002, Cutler
et al. 2007, Rutherford et al. 2007). Both PCC and
weighted « are derived from the model confusion
matrix, a table that contrasts predicted vs observed
classifications. Weighted « adjusts PCC for agreement
caused by chance alone and gives more importance to
more similar classes (Cohen 1968, Meyer et al. 2008,
Fleiss and Cohen 1973). Values of weighted « range
from —1 to 1. Positive values indicate that the
classification is more successful than would be
expected from chance alone, whereas negative values
indicate worse results than expected from chance
alone. A value of +1 indicates perfect agreement
between the modeled and measured classifications
(Cohen 1960). AUC evaluates the sensitivity (true
positives) and specificity (false positives) of the
model. AUC values range from 0 to 1, with values
>0.5 indicating model performance better than would
be expected from chance alone and a value of +1
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indicating perfect agreement (Swets 1988). We calcu-
lated AUC values with the ordROC function in the
nonbinROC R package (http://cran.r-project.org/
web /packages/nonbinROC/index.html). We used a
weighted penalty matrix in which sites incorrectly
classified by 3 categories (e.g., a very poor site
misclassified as good) were weighted 3X as much as
sites incorrectly classified by 1 category (e.g., a fair site
misclassified as good). Sites incorrectly classified by 2
categories were weighted 2X as much as sites
incorrectly classified by 1 category.

For every model, we calculated each accuracy
measure in 2 ways. First, we calculated each accuracy
measure for the confusion matrix from the training
data set (resubstitution method; Cutler et al. 2007).
Second, we calculated each accuracy measure for the
confusion matrix from the validation data set. We put
greater emphasis on the validation results because we
were most interested in the ability of models to predict
stream biological conditions at unsurveyed sites.

Prediction of stream biological condition in the Maryland
portion of the Chesapeake Bay watershed

We predicted stream biological condition (very poor,
poor, fair, good) for all (7908) small (<200 km?
watershed area) nontidal streams in the Maryland
portion of the Chesapeake Bay watershed. We applied
the best of the models to stream reaches and associated
watersheds in the 1:100K National Hydrography
Dataset plus (NHDplus; USGS 2006). The NHDplus
data set is based on the same 1:100,000 USGS maps as
were used to select sites for the stream surveys. We
calculated attributes for each NHDplus watershed
with methods detailed above using the entire water-
shed draining to the downstream end of a reach.

Results

The CART model produced a pruned tree with 14
splits and 15 terminal nodes (Fig. 2), and the ¢TREE
model produced a tree with 10 splits and 11 terminal
nodes (Fig. 3). Both models split sites based on %
impervious cover (PerImp; CART Perlmp = 6.6%,
cIREE PerImp = 6.5%). Both models split sites with
PerImp greater than these levels into terminal nodes for
sites in fair and very poor biological condition based on
% wetland cover (PerWet). However, sites with lower
PerImp levels were modeled differently by the CART
and cTREE models. The CART model split this subset
by longitude, whereas the cTREE model split it again by
PerImp. The CART model had several terminal nodes
for sites in poor or good biological condition, whereas
the cTREE model had 1 terminal node for sites in each of
these biological conditions (Figs 2, 3).
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In the RF and cRF models, PerImp was the most
important variable, and precipitation (Precip) and %
tree cover (PerTree) were among the 4 most important
variables for both models (Fig. 4A, B). In the RF model,
longitude was the 2™! most important variable, and
ecoregion was the 3™ least important variable. How-
ever, in the cRF model, ecoregion was the 4™ most
important variable, and longitude the 5™ most impor-
tant. These results might indicate a bias against
selecting categorical variables in the RF model.

Partial dependence plots show the relationship
between a particular predictor variable and the
response variable. As an example, we present these
plots for PerImp for both the RF and cRF models
(Figs 5A-D, 6A-D). As Perlmp increased from 0 to
20%, both models showed a rapid increase in the
probability that a site would be classified as in very
poor or poor biological condition (Figs 5A, B, 6A, B)
and a rapid decrease in the probability that a site
would be classified as in fair biological condition
(Figs 5C, 6C). The probability that a site would be
classified as in good biological condition decreased
sharply over a smaller increase in PerImp (0-15%) in
both models (Figs 5D, 6D). When Precip <~110 cm,
RF and cRF models indicated a high probability that a
site. would be classified as in very poor or poor
biological condition, and a low probability of being
classified as in good biological condition. At values
>110 cm, the probability that a site would be
classified as in good biological condition was high
and the probabilities that a site would be classified as
in very poor and poor biological condition were low
(data not shown). As PerTree increased, RF and cRF
models showed decreasing probability that a site
would be classified as in very poor or poor biological
condition and increasing probability that a site would
be classified as in good biological condition. The
probability that a site would be classified as in fair
biological condition increased as PerTree rose from 0
to ~25% and then decreased as PerTree rose further
to ~80% (data not shown). In the RF model, more
westward sites (lower longitude) had higher proba-
bilities of being classified as in very poor or poor
biological condition and lower probabilities of being
classified as in fair or good biological condition (data
not shown). In the cRF model, sites in the Southeast-
ern Plains ecoregion had the highest probabilities of
being classified as in fair or good biological condition
and lowest probabilities of being classified as in very
poor or poor biological condition. Sites in the Blue
Ridge ecoregion had the highest probabilities of being
classified as in very poor or poor biological condition
and the lowest probabilities of being classified as in
fair or good biological condition (data not shown).
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Fic. 2. Classification tree from the Classification and Regression Tree (CART) model based on the training data set. Values on
lines connecting explanatory variables indicate splitting criteria (e.g., if a site had <6.6% PerImp then it was placed in the group to
the right on the branch, otherwise it was placed on the branch to the left). Numbers in boxes above the explanatory variable
indicate the node number. Numbers in parentheses next to terminal nodes indicate the number of sites classified in that node. The
overall predicted biological condition for each terminal node is in italics in the boxes. Bar graphs illustrate the proportion of sites
in measured biological condition in that node. V = very poor, P = poor, F = fair, G = good. See Table 1 for variable names.

The best OLR models (those with the lowest AICs)
were 7- and 6-variable models (Appendix 1). Both
models included linear relationships with PerTree,
PerImp, Precip, % row-crop cover (PerCrop), and
ecoregion, and a nonlinear relationship with %
pasture cover (PerPast). The 7-variable model also
included a linear relationship with PerWet (Appendix
1). The 2 models were comparable according to AIC
(AAIC = 0.95, evidence ratio = 1.61), and both models
explained the same amount of variation in IBI (both
R* = 0.28), so we selected the simpler 6-variable
model as the best OLR model. For OLR, variable
importance (VI) can be calculated by subtracting a
variable’s degrees of freedom from its Wald »*
(Harrell 2001). For the 6-variable model, ecoregion
was the most important variable (x* = 107.7, df = 5,
VI = 102.7, followed by PerTree (x> = 46.7,df = 1, VI
= 45.7), PerCrop (x> =283,df = 1, VI = 27.3), PerImp

(x> =255,df =1, VI—245) Precip(x2:221 df =1,
VI = 211) PerPast (x> = 9.7, df = 2, VI = 7.7), and
PerWet (x> = 3.0, df = 1, VI = 2.0). In this model, the
log odds of stream biological condition decreased
significantly (p < 0.05) with the amounts of PerImp
and PerWet in a watershed, but increased with
PerTree, Precip, and PerCrop.

Model accuracy

Both CART and ¢TREE models classified <2 of the
validation sites correctly (PCC < 50%; Table 2), and
weighted « values indicated that CART and cTREE
model predictions of biological condition were slight-
ly better than predictions based on chance alone (0.57
and 0.58, respectively). AUC indicated that both
models performed better than chance alone (0.61,
0.61, respectively; Table 2). RF and cRF models also



876 K. O. MALONEY ET AL. [Volume 28
<6.5% >6.5%
>1.2% <1.1% >1.1%
Ecoregion Perimp
p <0.001 p=0.036
<110.9 cm >110.9 cm
a <1114 cm >111.4 cm <7715 >-77.15 S12.7%  >12.7%
5
PerPast PerTree
p=0.015 p=0.006
<14.6% >14.6% <23.2% >23.2%
7 \ / Y
Node 6 Node 7 Node 8 Node 9 Node 12 Node 14 Node 15 Node 16 Node 19 Node 20 Node 21
(n=102) (n=40) (n=201) (n=154) (n=74) (n=15) (n=12) (n=419) (n =46) (n=141) (n=44)
1 Fair Fair Good Fair Very Poor Fair Fair Very Very Fair
0.8 poor poor poor
0.6
0.4
0.2
0
VPFG VPFG VPFG VPFG VPFG VPFG VPFG VPFG VPFG VPFG VPFG

Fic. 3. Classification tree from the conditional inference tree (cTree) model. See Fig. 2 for an explanation of the organization of
the tree. BR = Blue Ridge, CA = Central Appalachians, CP = Mid-Atlantic Coastal Plains, NP = Northern Piedmont, RV = Ridge

and Valley, SP = Southeastern Plains.

classified <% of the validation sites correctly (Ta-
ble 2), but weighted k values and AUC indicated that
RF and cRF models performed equally well and better
than CART and ¢TREE models (Table 2). The OLR
performed worst according to PCC and weighted «
values, but AUC suggested the OLR model predicted
as well as CART and cTREE models.

CART and cTREE models had high misclassification
error rates for validation sites that were in poor
biological condition (0.91 and 0.97, respectively), but
both models had low misclassification rates for
validation sites that were in very poor biological
condition (both error rates = 0.25; Table 3). Validation
sites in good biological condition were most often
misclassified as being in fair biological condition, and
sites in fair biological condition were most often
misclassified as being in good biological condition by
both single-tree models. RF and cRF models had high
misclassification error rates for validation sites that
were in poor biological condition (error rate = 0.63 and

0.79, respectively), and sites in this category were
misclassified as being in good, fair, and very poor
biological condition. Validation sites in good biological
condition were misclassified most often as being in fair
biological condition, and sites in fair biological condi-
tion were misclassified most often as being in good
biological condition by both ensemble-tree models.
Like the other models, the OLR model misclassified
sites in poor biological condition most often (error rate
= 0.77). Sites in good biological condition were
misclassified most often being in fair biological
condition, sites in fair biological condition were
misclassified most often as being in good biological
condition, and sites in very poor biological condition
were misclassified most often as being in poor
biological condition (Table 3). Across all models, sites
in good biological condition rarely were misclassified
as being in poor or very poor biological condition, and
sites in very poor biological condition rarely were
misclassified as being in good biological condition.
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Fic. 4. Variable importance plots from the random
forests (A) and conditional random forests (B) models for
classification of stream biological condition based on a
benthic macroinvertebrate Index of Biotic Integrity. Vari-
ables more important to the classifications have larger
values for mean decrease of accuracy. See Table 1 for
variable names.

Prediction of stream biological condition for the Maryland
portion of the Chesapeake Bay watershed

We used the cRF model to predict stream biological
condition for all small nontidal stream reaches in the
Maryland portion of the Chesapeake Bay watershed.
The RF and cRF models performed equally well and
better than CART, cTREE, or OLR (Table 2). We chose
the cRF over the RF model because the RF algorithm is
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Fic. 5. Partial dependence plots for % impervious
surface cover (PerImp) in the random forests (RF) model
for classification of stream biological condition based on a
benthic macroinvertebrate Index of Biotic Integrity for sites
in very poor (A), poor (B), fair (C), and good (D) biological
condition categories. Vertical hash marks on the x-axes
indicate the deciles of the data distribution of the variable.

biased against selecting categorical variables and
treats ordinal variables as nominal variables.

The cRF model predicted 29.9% of NHDplus
streams to be in good biological condition, 33.8% to
be in fair biological condition, 22.7% to be in poor
biological condition, and 13.6% to be in very poor
biological condition (Table 4). Sites that were predict-
ed to be in poor biological condition were concen-
trated near urban areas (Fig. 7), and the distribution
of predicted biological conditions differed among
ecoregions (Fig. 7, Table 4). The most frequent pre-
dicted biological conditions were fair in the Blue
Ridge, Central Appalachian, and Ridge and Valley
ecoregions; poor in the Mid-Atlantic Coastal Plain;
and good in the Southeastern Plains. Predicted
biological conditions in the Northern Piedmont were
more evenly distributed across the 4 categories.

Discussion
Model performance

We tested the ability of 5 modeling techniques to
predict stream biological condition from watershed
attributes. Two of these techniques, CART and
cTREE, yield intuitive output that is easy to interpret.
However, reliance on a single tree yields weak
predictive ability, and these models can fail to predict
some categories of nominal or ordinal data, as
evidenced by their high misclassification error rates
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Fic. 6. Partial dependence plots for % impervious
surface cover (PerImp) in the conditional random forests
(cRF) model for classification of stream biological condition
based on a benthic macroinvertebrate Index of Biotic
Integrity for sites in very poor (A), poor (B), fair (C), and
good (D) biological condition categories. Vertical hash
marks on the x-axes indicate the deciles of the data
distribution of the variable.

for sites in poor biological condition (Table 4).
Multiple-tree analogs (RF and cRF) have fewer such
weaknesses than do single-tree models. RF and cRF
models performed similarly and predicted measured
biological condition in a validation data set more
accurately than did the single-tree methods or the
OLR model (weighted «, AUC; Table 2). RF models
are consistently better predictors than are CART
models (Gislason et al. 2006, Cutler et al. 2007), but
our study is the first to show that cRF models have
better predictive ability than do cTree models in an
ecological setting. In studies that generate categorical
or ordinal data, the cRF model is more appropriate
than the RF model because the RF model is biased
against selecting categorical variables and treats
ordinal data as nominal data (Strobl et al. 2007).
Across all models and biological condition catego-
ries, most misclassifications occurred between adja-
cent biological condition categories. For example, 44
of the 47 sites in good biological condition were
misclassified as being in fair biological condition by
the cRF model, only 3 were misclassified as being in
poor biological condition, and none were misclassi-
fied as being in very poor biological condition
(Table 3). All models weakly discriminated between
adjacent categories, and this weakness reduced
overall model accuracies. However, all models accu-
rately separated sites in very poor or poor biological
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TaBLE 2. Accuracy measures for predictions of biological
condition for stream sampling sites in the Maryland portion
of the Chesapeake Bay watershed. Resub = resubstitution
accuracy estimates (model evaluated with same data used
for calibration), Eval = accuracy estimates for an
independent data set not used in calibration, PCC = %
correctly classified, AUC = area under the receiver
operating characteristic curve. Values in boldface indicate
the weighted k« and AUC accuracy statistic for the
evaluation data set.

Accuracy measure

Weighted
Classification method Estimate PCC K AUC
Classification trees Resub 50.6 0.58 0.65
Eval 49.5 0.57 0.61
Conditional Resub 44.6 0.54 0.58
classification trees Eval 45.0 0.58 0.61
Random forests Resub 46.4 0.55 0.64

Eval 49.2 0.62 0.69
Conditional random Resub 65.5 0.75 0.80

forests Eval 47.6 0.64 0.68
Ordinal logistic Resub  39.8 0.48 0.58
regression Eval 42.5 0.55 0.62

condition from sites in good biological condition.
Therefore, the models could be applied to distinguish
high-quality streams deserving of conservation efforts
from impaired streams in need of restoration.

We tested how the accuracy of the cRF model
would change if we used only 2 biological condition
categories (good and very poor). Model accuracy
improved significantly, and the cRF model correctly
classified 40 of 48 (83%) sites in the validation data set
as being in very poor biological condition and 94 of
103 (91%) sites as being in good biological condition.
These rates of classification success are nearly double
those of the model built using all 4 biological
condition categories. However, considerable informa-
tion is lost by removing the poor and fair categories
because predictions for unsurveyed locations are
limited to either very poor or good ratings. A better
approach might be to use the probability of member-
ship in a biological condition category provided by
each model (see below).

Important independent variables

VI and partial dependence plots help identify the
variables contributing most to stream impairment and
quantify how those variables affect stream biological
condition. PerImp was the most important variable
influencing stream biological condition in our RF and
cRF models (Fig. 4A, B) and in previous research
(Paul and Meyer 2001, Wang and Lyons 2003, King et
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Data set
. ) Training Validation
Biological
Model condition class Very poor Poor Fair Good Very poor Poor Fair Good
CART Very poor 150 97 26 7 36 18 8 3
Poor 16 41 11 9 2 6 3 1
Fair 49 112 221 93 5 29 54 40
Good 20 68 108 220 5 17 27 59
Error rate 0.36 0.87 0.40 0.33 0.25 0.91 0.41 0.43
cTree Very poor 143 89 24 5 36 18 7 3
Poor 3 10 2 0 0 2 1 0
Fair 77 200 287 207 12 44 69 66
Good 12 19 53 117 0 6 15 34
Error rate 0.39 0.97 0.22 0.64 0.25 0.97 0.25 0.67
RF Very Poor 125 68 20 9 26 13 5 0
Poor 63 87 82 27 14 26 17 7
Fair 26 114 164 90 7 18 40 34
Good 21 49 100 203 1 13 30 62
Error rate 0.47 0.73 0.55 0.38 0.46 0.63 0.57 0.40
cRF Very Poor 157 54 7 2 31 15 4 0
Poor 47 143 41 7 9 15 11 3
Fair 23 90 251 54 6 30 47 44
Good 8 31 67 266 2 10 30 56
Error rate 0.33 0.55 0.31 0.19 0.35 0.79 0.49 0.46
OLR Very Poor 89 50 16 2 23 12 2 1
Poor 74 98 84 35 17 16 17 8
Fair 54 117 154 136 8 26 48 48
Good 18 53 112 156 0 16 25 46
Error rate 0.62 0.69 0.58 0.53 0.52 0.77 0.48 0.55

al. 2005, Walsh et al. 2005). Impervious surface
changes the patterns and magnitudes of stream flows,
which in turn alter stream geomorphology (Booth and
Jackson 1997, Paul and Meyer 2001, Wang and Lyons
2003). Impervious surface also increases the delivery
of nutrients, metals, and other contaminants to
streams (Paul and Meyer 2001), further degrading
biological conditions. Stream habitat and communi-
ties change when the percentage of impervious
surface in a watershed reaches 10 to 15% (Booth and
Jackson 1997, Paul and Meyer 2001, Wang and Lyons
2003, King et al. 2005), and our models show a rapid
increase in the probability that a site will be classified
as in very poor or poor biological condition as PerImp
rises from 0 to 20% (Figs 5A-D, 6A-D). Carlisle et al.
(2009) recently used RF modeling to show a similar
increase in the probability of changes in benthic
assemblages as high-density residential development
in a 100-m riparian zone increased from 0 to 10%
cover. Such analyses are useful for developing
conservation and land-management strategies be-
cause they document the relationships between land
use and stream biological conditions.

The VIs of precipitation and ecoregion/longitude in
the models probably were related, and demonstrate
the need to account for physiographic variation when
examining land-cover and ecological relationships
(Poff et al. 2006). In our training data set, average
watershed annual precipitation differed among ecor-
egions (ANOVA, F = 202, p < 0.001). Watersheds in
the Blue Ridge and Central Appalachian ecoregions
receive higher precipitation than watersheds in the
Ridge and Valley and Southeastern Plains ecoregions
(Tukey Honestly Significant Difference test, all p <
0.01). Such climate differences can influence the effect
of land cover on instream biological conditions
(Kaushal et al. 2008, Palmer et al. 2008).

Ecoregion was unimportant in the RF model and
very important in the cRF model, probably because
the RF algorithm is biased against selecting categor-
ical variables (Hothorn et al. 2006). The cRF model
overcomes this bias and should provide sounder
rankings of environmental factors for guiding conser-
vation and management decisions.

PerTree was one of the 4 most important variables
in both the RF and cRF models (Fig. 4A, B), and the
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TaBLE 4. Stream biological condition predicted by conditional random forests (cRF) model for all small nontidal watersheds in
the Maryland portion of the Chesapeake Bay watershed. Numbers in parentheses are % of total sites in an ecoregion.

cRF
Ecoregion Very poor Poor Fair Good
Blue Ridge 5(2.7) 74 (39.6) 108 (57.8) 0 (0.0
Central Appalachians 21 (10.6) 41 (20.6) 89 (44.7) 48 (24.1)
Mid-Atlantic Coastal Plain 3 (0.1) 927 (44.0) 694 (32.9) 484 (23.0)
Northern Piedmont 684 (25.1) 509 (18.7) 718 (26.4) 811 (29.8)
Ridge and Valley 115 (13.7) 104 (12.4) 478 (56.8) 144 (17.1)
Southeastern Plains 248 (13.4) 141 (7.6) 585 (31.6) 877 (47.4)
All 1076 (13.6) 1796 (22.7) 2672 (33.8) 2364 (29.9)

probability that a site was in fair or good biological
condition increased with PerTree. Other studies also
have reported that benthic biotic integrity, macroin-
vertebrate richness, and abundance measures of
sensitive taxa all increase with forest cover in a
watershed (Roth et al. 1996, Strayer et al. 2003).
Higher tree cover also is correlated with smaller
percentages of impervious surface, agricultural land,
and other land covers that impose anthropogenic
stressors on streams (King et al. 2005).

Predicting stream biological condition for the Maryland
portion of the Chesapeake Bay watershed

We selected the cRF model to predict unsurveyed
stream biological conditions for small nontidal

streams in the Maryland portion of the Chesapeake
Bay watershed because other models (CART, ¢TREE,
OLR) had weaker performance or known weaknesses
(CART, RF). Others have applied RF and OLR models
successfully to predict biological conditions in un-
surveyed locations (Bigler et al. 2005, Carlisle et al.
2009), but we are unaware of any similar application
of cRF models.

The MBSS was a statewide probability-based
survey with spatially intensive sampling, so the
sample provides a good estimate of statewide stream
integrity. MBSS estimates of the percentages of sites in
the 4 biological condition categories were 26 * 1.3%
(SE) in good, 28 * 1.5% in fair, 30 = 1.5% in poor, and
16 = 1.2% in very poor biological condition (South-
erland et al. 2005a). The cRF model predictions for all

Biological condition
B \ery poor

Fic. 7. Maps of predicted biological condition of small nontidal stream reaches in the Maryland portion of the Chesapeake Bay
watershed. Biological condition was predicted from the conditional random forests model. Black polygons indicate areas of
urbanization. Inset shows an enlarged view of the model output for the area around Frederick, Maryland.
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stream reaches in our study area were 29.9% in good,
33.8% in fair, 22.7% in poor, and 13.6% in very poor
biological condition. Model estimates for all catego-
ries were within 5% of the MBSS percentages, and the
small differences probably were the result of our
exclusion of sites with watershed area >200 km” or
outside the Chesapeake Bay watershed.

Unlike the statewide extrapolation from sampled
streams (Southerland et al. 2005a), our models also were
able to provide a reach-specific prediction of biological
condition for every small stream in the study area. Such
predictions can be mapped to help guide research and
management efforts (Fig. 7). We assigned each reach to
the biological condition category with the highest
probability, but all models provided probability of
membership in each category. These probabilities are
useful because they provide a measure of confidence in
the predictions. For example, a model might assign site
A probabilities of 0.20, 0.20, 0.29, and 0.31 for very poor,
poor, fair, and good categories, respectively, and assign
site B probabilities of 0.08, 0.02, 0.05, and 0.85. Although
both sites are most likely to be in good biological
condition, we can be more confident about the biological
condition of site B than of site A. These probabilities can
be used to prioritize costly conservation or restoration
efforts by identifying sites where confidence about
current biological condition is highest.

Predicted stream biological conditions varied among
ecoregions (Table 4), probably because of regional
differences in percentages of land cover types. The
high percentages of sites predicted to be in very poor
and poor biological condition in the Northern Pied-
mont probably was the result of high average PerImp
(51%) and low average PerTree (25.7%) in this
ecoregion. The prevalence of sites predicted to be in
poor biological condition in the Middle Atlantic
Coastal Plains probably was related to low average
PerTree (26.8%). The relatively high percentages of
sites predicted to be in fair or good biological condition
in the Southeastern Plains might have been related to
low average PerCrop (6.0%) and PerPast (8.4%), even
though this ecoregion had the highest average PerImp
(7.2%). The Blue Ridge, Ridge and Valley, and Central
Appalachian ecoregions all had relatively high per-
centages of sites predicted to be in fair biological
condition, probably because these ecoregions had high
average PerTree (62.1%, 63.1%, 72.7%, respectively)
and PerPast (14.4%, 14.4%, 8.5%, respectively).

Management implications

Effective conservation and land management strat-
egies require scientifically sound estimates of biolog-
ical condition over large geographic areas, including at

sites where biological data are unavailable. Past
research has identified the effects of anthropogenic
disturbance on ecosystem structure and function and
has provided the necessary scientific background for
broad regional studies. Recent advances in computa-
tional power, spatial-analysis software (geographic
information systems), statistical methods, and digital
geographic data provide the data and tools needed to
make generalizations and predictions over large areas.
We combined these resources to construct models that
predicted biological condition for all small nontidal
stream reaches in the Maryland portion of the
Chesapeake Bay watershed. The models were not
useful for separating sites in intermediate biological
condition categories (i.e., poor and fair) from sites in
adjacent categories (very poor and good), but were
useful for separating sites in good biological condition
from sites in very poor biological condition. Therefore,
the models can help conservation and land managers
identify high-quality streams deserving of conserva-
tion and badly impaired streams in need of restoration.
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