Malyngamide 3 and Cocosamides A and B from the Marine Cyanobacterium Lyngbya majuscula from Cocos Lagoon, Guam

Sarath P. Gunasekera, ${ }^{+}$Chivas S. Owle, ${ }^{\dagger}$ Rana Montaser, ${ }^{\dagger}$ Hendrik Luesch, ${ }^{\dagger}$ and Valerie J. Paul ${ }^{*,+}$
${ }^{\dagger}$ Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, Florida 34949, United States
${ }^{\ddagger}$ Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, Gainesville, Florida 32610, United States

Supporting Information

Abstract

Malyngamide 3 (1) and cocosamides A (2) and B (3) were isolated from the lipophilic extract of a collection of Lyngbya majuscula from Cocos Lagoon, Guam. The planar structures of compounds 1-3 were determined by spectroscopic methods. The absolute configuration of $\mathbf{1}$ was determined by modified Mosher's method, NOESY data, and comparison with lyngbic acid (4). The absolute configurations of 2 and 3 were assigned by enantioselective HPLC analysis and comparison with the closely related compound pitipeptolide A (5). Compounds 1-3 showed weak cytotoxicity against MCF7 breast cancer and HT-29 colon cancer cells.

Marine cyanobacteria of the genus Lyngbya are a prolific source of chemically diverse bioactive secondary metabolites. ${ }^{1}$ Malyngamides are small amides first discovered in the late 1970s and early 1980s from L. majuscula by Richard E. Moore's research group. ${ }^{2-6}$ There are now over 30 known examples of malyngamides, and the majority are reported from cyanobacteria. ${ }^{7}$ Recently, William Gerwick's group reported the newest addition, malyngamide 2, isolated from L. sordida collected from Papua New Guinea. ${ }^{8}$ Malyngamides are characterized by a fatty acid side chain, which is most commonly $7 S$-methoxytetradec-4(E)enoic acid (lyngbic acid). The other part of the malyngamides usually encloses a cyclic unit. In one notable example (malyngamide J) the cyclic ketone has a pendant 2,4dimethoxyxylose. ${ }^{9}$ Malyngamides O and P are the only examples ${ }^{10}$ of acyclic molecules in this series. Malyngamide 3 (1) described here is the next example of an acyclic malyngamide.

Cyclic depsipeptides containing a unique 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya), 2,2-dimethyl-3-hydroxy-7-octenoic acid (Dhoea), or 2,2-dimethyl-3-hydroxyoctanoic acid (Dhoaa) were first reported by Scheuer's group from a marine mollusk. ${ }^{11,12}$ Subsequently, Richard Moore's ${ }^{13}$ and William Gerwick's ${ }^{14}$ groups have isolated several of these unique cyclic depsipeptides from L. majuscula. Here, we report the isolation, structure determination, and biological activity determination of two new cyclic depsipeptides that possess these distinctive moieties (Dhoea/Dhoya), namely, cocosamides A (2) and B (3), from L. majuscula collected from Cocos Lagoon, Guam. Interestingly, this is the first report of cyclic depsipeptides in this series with one ester linkage, while other related compounds reported thus far with these unique acids have two or more ester linkages. ${ }^{11-14}$

The sample of the marine cyanobacterium L. majuscula was collected from a patch reef near Cocos Island, Guam, in February 2001. The freeze-dried material was extracted with a mixture of
$\mathrm{EtOAc}-\mathrm{MeOH}(1: 1)$ to afford a lipophilic extract, which was subsequently partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The EtOAcsoluble portion was repeatedly fractionated by SiO_{2} chromatography followed by reversed-phase C18 HPLC to give three new compounds, malyngamide 3 (1) and cocosamides A (2) and B (3), in addition to the known compounds malyngamide $\mathrm{A},{ }^{4}$ malyngamide B, ${ }^{3}$ and an unresolved mixture of majusculamides A and B. ${ }^{15}$

Malyngamide 3 (1) was obtained as a colorless, amorphous powder. The molecular formula $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{ClN}_{2} \mathrm{O}_{7}$ was determined from HRESIMS data. Its infrared spectrum contained absorption due to an amide proton at $3320 \mathrm{~cm}^{-1}$, an ester carbonyl at $1725 \mathrm{~cm}^{-1}$, and an amide carbonyl at $1636 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 1) showed signature signals for the presence of the characteristic 7 -methoxytetradec-4(E)-enoic acid moiety, suggesting compound $\mathbf{1}$ to be an analogue of the malyngamides.

Following the interpretation of DQF COSY and edited HSQC experiments, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were assignable to three partial structures, $\mathrm{C}-1$ to $\mathrm{C}-4, \mathrm{C}-8$ to $\mathrm{C}-10$, and $\mathrm{C}-2^{\prime}$ to $\mathrm{C}-14^{\prime}$, and an isolated $\mathrm{C}-6$ methylene group. In addition, the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and edited HSQC spectra indicated the presence of signals for two $O-$ Me groups ($\mathrm{C}-12, \delta_{\mathrm{H}} 3.68, \delta_{\mathrm{C}} 51.9$ and $\mathrm{C}-15^{\prime}$, $\left.\delta_{\mathrm{H}} 3.30, \delta_{\mathrm{C}} 56.5\right)$, one $N-\mathrm{Me}\left(\mathrm{C}-13, \delta_{\mathrm{H}} 2.93, \delta_{\mathrm{C}} 35.5\right)$, and four carbonyl groups (C-5, $\delta_{\mathrm{C}} 202.2$; $\mathrm{C}-7, \delta_{\mathrm{C}} 166.6 ; \mathrm{C}-11, \delta_{\mathrm{C}} 172.4 ;$ and $\left.\mathrm{C}-1^{\prime}, \delta_{\mathrm{C}} 174.0\right)$. The chemical shift values for $\mathrm{C}-2\left(\delta_{\mathrm{C}} 131.4\right.$, C) and C-3 ($\left.\delta_{\mathrm{H}} 6.08, \mathrm{~s} ; \delta_{\mathrm{C}} 120.7, \mathrm{CH}\right)$ indicated the presence of a chloromethylene moiety in the C-1 to C-4 partial structure as in other malyngamides ${ }^{4,5,16}$ and accounted for the chlorine atom in the molecular formula. HMBC correlations (Table 1) from H-3 ($\delta_{\mathrm{H}} 6.08$) to C-1 ($\delta_{\mathrm{C}} 45.9$), C-2 ($\delta_{\mathrm{C}} 131.4$), and C-4 ($\delta_{\mathrm{C}} 46.8$) confirmed the position of the chloromethylene moiety. Similarly,

[^0]

Malyngamide 3 (1)

Cocosamide A (2): R=§
Cocosamide B (3) : R $=\{\underline{ }$

Lyngbic acid (4)

Pitipeptolide A (5)
HMBC correlations from $\mathrm{H}-4 \mathrm{a}$ and $\mathrm{H}-4 \mathrm{~b}\left(\delta_{\mathrm{H}} 3.20,3.15\right)$ to $\mathrm{C}-5$ (δ_{C} 202.2) and $\mathrm{H}_{2}-6\left(\delta_{\mathrm{H}} 3.39\right)$ to the $\mathrm{C}-5$ and $\mathrm{C}-7\left(\delta_{\mathrm{C}} 166.6\right)$ carbonyl groups extended the carbon chain to the amide carbonyl group. The HMBC correlations of $\mathrm{N}-\mathrm{H}\left(\delta_{\mathrm{H}} 7.26\right)$ to C-7 and C-8 ($\delta_{\mathrm{C}} 45.2$), H-9 ($\delta_{\mathrm{H}} 4.17$) to C-8, C-10 ($\left.\delta_{\mathrm{C}} 38.9\right)$, and C-11 $\left(\delta_{\mathrm{C}}\right.$ 172.4), and $\mathrm{H}_{3}-12\left(\delta_{\mathrm{H}} 3.68\right)$ to the $\mathrm{C}-11$ carbonyl group established the planar structure for the right-hand end of the molecule. The HMBC correlations from $\mathrm{H}_{3}-13\left(\delta_{\mathrm{H}} 2.93\right)$ to the $\mathrm{C}-1^{\prime}$ carbonyl ($\delta_{\mathrm{C}} 174.0$) and to $\mathrm{C}-1$ connected the fatty acid chain to the right-hand end of the molecule via an amide linkage, resembling other malyngamides. An E configuration was assigned for the $\mathrm{C}-4^{\prime} / \mathrm{C}-5^{\prime}$ olefin on the basis of the coupling constant $(15.7 \mathrm{~Hz}) .{ }^{17}$ The NOESY spectrum of $\mathbf{1}$ did not show any crosspeaks between $\mathrm{H}-3$ and $\mathrm{H}_{2}-1$ nor between $\mathrm{H}-3$ and $\mathrm{H}_{3}-13$. However, the presence of a strong cross-peak between H-3 $\left(\delta_{\mathrm{H}}\right.$ 6.08) and $\mathrm{H}-4 \mathrm{~b}\left(\delta_{\mathrm{H}} 3.15\right)$ established a Z configuration for the chloromethylene moiety in $\mathbf{1}$ as in isomalyngamides A and $\mathrm{B} .{ }^{17}$ In order to determine the configuration at $\mathrm{C}-7^{\prime}$, compound 1 was hydrolyzed under basic conditions to give lyngbic acid (4). The observed specific rotation of $4\left([\alpha]_{\mathrm{D}}^{25}-12\right)$ was comparable to the reported value for $7(S)$-methoxytetradec-4 (E)-enoic acid $\left([\alpha]^{20}{ }_{D}-12.6\right)^{16}$ and, thus, established a $7(S)$ configuration at the $\mathrm{C}-\mathbf{7}^{\prime}$ position in $\mathbf{1}$. The absolute configuration at $\mathrm{C}-9$ of $\mathbf{1}$ was determined by the modified Mosher's method. ${ }^{18}$ Compound 1 was converted to (S) - and (R)-MTPA esters. The $\Delta \delta\left(=\delta_{S}-\delta_{R}\right)$
values of (S) - and (R)-MTPA esters (-0.078 for Ha-8; -0.031 for $\mathrm{Hb}-8 ;+0.028$ for $\mathrm{H}_{2}-10 ;+0.072$ for $\mathrm{CH}_{3}-12$) revealed the R configuration at C-9. These data confirmed the structure $\mathbf{1}$ for malyngamide 3.

Cocosamides A (2) and B (3) were obtained as white solids. The molecular weights of 2 and 3 differ by two mass units on the basis of HRESI/TOFMS analysis. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were indicative of depsipeptides (Table 2).

Following the interpretation of DQF COSY, edited HSQC, and HMBC experiments, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals of 2 and 3 were assignable to six partial structures, which accounted for all atoms in both molecules. These partial structures consisted of the amino acids valine, proline, glycine, and two $\mathrm{N}-\mathrm{Me}$ phenylalanines, besides 2,2-dimethyl-3-hydroxy-7-octenoic acid (Dhoea) in 2 and 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya) in 3. The ${ }^{1} \mathrm{H}$ NMR spectra showed the presence of three olefinic protons ($\delta_{\mathrm{H}} 5.76, \mathrm{H}-7 ; \delta_{\mathrm{H}} 4.96,5.04, \mathrm{H}-8 \mathrm{a}, \mathrm{b}$) in the spectrum of 2 , while no olefinic protons were seen in the spectrum of 3, which instead revealed a characteristic acetylenic proton ($\left.\delta_{\mathrm{H}} 1.96, \mathrm{t}, J=2.7 \mathrm{~Hz}, \mathrm{H}-8\right)$. The ${ }^{13} \mathrm{C}$ spectrum of 2 indicated olefinic signals ($\delta_{\mathrm{C}} 138.0, \mathrm{CH}, \mathrm{C}-7 ; \delta_{\mathrm{C}} 115.2, \mathrm{CH}_{2}$, $\mathrm{C}-8$), while the ${ }^{13} \mathrm{C}$ spectrum of 3 indicated acetylenic signals ($\delta_{\mathrm{C}} 83.6, \mathrm{C}, \mathrm{C}-7 ; \delta_{\mathrm{C}} 69.2, \mathrm{CH}, \mathrm{C}-8$). These data together with other data presented in Table 2 confirmed the presence of a 2,2-dimethyl-3-hydroxy-7-octenoic acid in 2 and 2,2-dimethyl-3-hydroxy-7-octynoic acid in 3, respectively. The residue sequences for 2 and 3 were determined from HMBC data, which showed linkages Val-NH to $\mathrm{C}-1, \mathrm{Me}-25$ to $\mathrm{C}-11, \mathrm{CH}_{2}$ 30 to C-16, Me-40 to C-26, Gly-NH to C-31, and H-3 to C-41, and these connections were confirmed by NOESY correlations. These data established the residue sequences as $1,6-$ anhydro[Dhoea-Val- N -Me-Phe(1)-Pro-N-Me-Phe(2)-Gly]
for 2 and 1,6 -anhydro[Dhoya-Val- N -Me-Phe(1)-Pro-N-Me-Phe(2)-Gly] for 3. The absolute configurations of the amino acids were determined by enantioselective HPLC analysis of the acid hydrolysates of 2 and 3 . The analysis revealed Lconfigurations for valine, proline, and both N-Me-phenylalanines in compounds 2 and 3. Because we have isolated only small quantities of 2 and 3, the configuration at C-3 of the hydroxy acids (Dhoea and Dhoya) was investigated by comparison of NOE data with pitipeptolide A (5). ${ }^{13}$ Pitipeptolide A (5) is a cyclic depsipeptide that has a (S)-Dhoya moiety, which is connected to L-valine and glycine, forming amide and ester linkages similar to compounds 2 and 3 . The NOE data for 5 were not previously reported; ${ }^{13}$ therefore, we used 5 that we isolated from another Lyngbya sample for NOE comparison studies. The ${ }^{1} \mathrm{H}$ NMR spectrum, HRMS, and specific rotation data for this sample matched those reported in the literature. ${ }^{13,19}$ The NOESY spectrum of 5 showed a strong correlation between $\mathrm{H}-3\left(\delta_{\mathrm{H}} 4.94\right)$ and $\mathrm{H}_{3}-10\left(\delta_{\mathrm{H}} 1.15\right)$ and another correlation between $\mathrm{H}-4 \mathrm{a}\left(\delta_{\mathrm{H}} 1.80\right)$ and $\mathrm{H}_{3}-10$. Similarly, strong correlations were observed between H-4b ($\delta_{\mathrm{H}} 1.58$) and $\mathrm{H}_{3}-9\left(\delta_{\mathrm{H}} 1.29\right)$ and methyl $\mathrm{H}_{3}-9$ and $\mathrm{L}-\mathrm{Val}-\mathrm{NH}$ ($\delta_{\mathrm{H}} 6.08$). There was no correlation seen between $\mathrm{H}-3$ and $\mathrm{H}_{3}-$ 9. These data clearly indicated that in 5 the methine (H-3) is closer to methyl $\mathrm{H}_{3}-10$ and away from methyl $\mathrm{H}_{3}-9$. Cocosamides A (2) and B (3) showed the same patterns of NOE correlations for $\mathrm{H}-3, \mathrm{H}_{3}-9$, and $\mathrm{H}_{3}-10$. These data suggested a $3 S$ configuration at C-3 in compounds 2 and 3.

Compounds 1-3 were tested for antiproliferative activity against MCF7 breast cancer and HT-29 colon cancer cells and found to be weakly active. Malyngamide 3 (1) showed cytotoxic

Table 1. NMR Spectroscopic Data for Malyngamide 3 (1) in $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H} 600 \mathrm{MHz},{ }^{13} \mathrm{C} 150 \mathrm{MHz}\right)$

position	δ_{C} mult.	$\delta_{\mathrm{H}}(J$ in Hz$)$	cosy^{a}	HMBC	NOESY ${ }^{\text {b }}$
1a	45.9, CH_{2}	4.24, d (15.1)		2, 3, 4, 1^{\prime}	13
1b		4.17, d (15.1)	3	2, 3, 4, 1^{\prime}	13
2	131.4, C				
3	120.7, CH	6.08, s	1, 4	1, 2, 4	4b
4a	$46.8, \mathrm{CH}_{2}$	3.20, d (17.1)	3	1,2,3, 5	3, 6
4b		3.15, d (17.1)	3	1,2,3, 5	1b, 3, 6
5	202.2, C				
6	49.7, CH_{2}	3.39, s		5,7	4, NH
7	166.6, C				
8 a	$45.2, \mathrm{CH}_{2}$	3.52, ddd (14.2, 7.0, 5.4)	NH, 9	7, 9, 10	9, NH
8 b		3.21, ddd (14.2, 9.0, 5.4)	NH, 9	7, 9, 10	9, NH
9	67.2, CH	4.17, m	8, 10	8, 10, 11	8a, 8b, 10
10	38.9, CH_{2}	2.50, d (6.9)	9	8, 9, 11	8a, 8b, 9
11	172.4, C				
12	$51.9, \mathrm{CH}_{3}$	3.68, s		11	
13	$35.5, \mathrm{CH}_{3}$	2.93, s		1, 1^{\prime}	1a, 1b, 2^{\prime}
N-H		7.26, t (5.4)	8	7, 8	$6,8 \mathrm{a}, 8 \mathrm{~b}$
1^{\prime}	174.0, C				
2^{\prime}	33.1, CH_{2}	2.35, m	3^{\prime}	$1^{\prime}, 3^{\prime}, 4^{\prime}$	13, 4^{\prime}
3^{\prime}	28.1, CH_{2}	2.28, m	$2^{\prime}, 4^{\prime}$	$1^{\prime}, 2^{\prime}, 4^{\prime}, 5$	$5{ }^{\prime}$
4^{\prime}	130.8, CH	5.43, dt (15.7, 3.5)		$3^{\prime}, 5^{\prime}$	$2^{\prime}, 6^{\prime}$
5^{\prime}	127.6, CH	5.49, dt (15.7, 3.5)		$3^{\prime}, 4^{\prime}, 6^{\prime}$	$3^{\prime}, 7^{\prime}, 15^{\prime}$
6^{\prime}	$36.4, \mathrm{CH}_{2}$	2.17, m	5, 7	$4^{\prime}, 5^{\prime}, 7^{\prime}, 8^{\prime}$	$4^{\prime}, 7^{\prime}$
7^{\prime}	80.8, CH	3.14, m	6,8	$5^{\prime}, 9^{\prime}, 15^{\prime}$	$5^{\prime}, 6^{\prime}, 15^{\prime}$
8^{\prime}	$33.4, \mathrm{CH}_{2}$	1.41, m	7, 9	$6^{\prime}, 7^{\prime}, 9^{\prime}, 10^{\prime}$	
9^{\prime}	25.4, CH_{2}	1.32, m	8, 10	$8^{\prime}, 10^{\prime}$	
		1.26, m			
10^{\prime}	29.4, CH_{2}	1.27, m			
11^{\prime}	29.9, CH_{2}	1.27, m			
12^{\prime}	31.9, CH_{2}	1.27, m			
13^{\prime}	22.7, CH_{2}	1.27, m			
14^{\prime}	14.2, CH_{3}	0.86, t (6.9)	13	$12^{\prime}, 13^{\prime}$	
15^{\prime}	56.5, CH_{3}	3.30 s		$7{ }^{\prime}$	$5^{\prime}, 7^{\prime}$

${ }^{a 1} \mathrm{H}^{-1} \mathrm{H} \operatorname{COSY}$ correlations are from proton(s) stated to the indicated proton(s). ${ }^{b}$ NOESY correlations are from proton(s) stated to the indicated proton(s).
activity against MCF7 and HT-29 cells with IC_{50} values of 29 and $48 \mu \mathrm{M}$, respectively. This is an about 10 -fold weaker activity than reported for the closely related analogue malyngamide O. ${ }^{10}$ Cocosamides A (2) and B (3) showed cytotoxic activity against HT-29 cells with IC_{50} values of 24 and $11 \mu \mathrm{M}$, respectively. MCF7 cells were slightly less susceptible to both compounds, with IC_{50} values of $30 \mu \mathrm{M}$ for 2 and $39 \mu \mathrm{M}$ for 3 . The closely related pitipeptolides A and B exert similar activity against cancer cells. ${ }^{13}$

EXPERIMENTAL SECTION

General Experimental Procedures. The optical rotations were recorded on a Perkin-Elmer model 343 polarimeter. UV spectrophotometric data were acquired on a Hitachi U-3010 spectrophotometer. IR spectroscopic data were obtained on a Bruker Vector 22 FT-IR spectrometer. NMR data were collected on a JEOL ECA-600 spectrometer operating at 600.17 MHz for ${ }^{1} \mathrm{H}$ and 150.9 MHz for ${ }^{13} \mathrm{C}$. The editedHSQC experiment was optimized for $J_{\mathrm{CH}}=140 \mathrm{~Hz}$, and the HMBC
spectrum was optimized for ${ }^{2 / 3} \mathrm{~J}_{\mathrm{CH}}=8 \mathrm{~Hz} .{ }^{1} \mathrm{H}$ NMR chemical shifts (referenced to residual CHCl_{3} observed at $\delta 7.25$) were assigned using a combination of data from 2D DQF COSY and multiplicity-edited HSQC experiments. Similarly, ${ }^{13} \mathrm{C}$ NMR chemical shifts (referenced to CDCl_{3} observed at $\delta 77.0$) were assigned on the basis of multiplicityedited HSQC experiments. The HRMS data were obtained using an Agilent 6210 LC-TOF mass spectrometer equipped with an APCI/ESI multimode ion source detector at the Mass Spectrometer Facility at the University of California, Riverside, CA. Silica gel 60 (EMD Chemicals, Inc. 230-400 mesh) was used for column chromatography. All solvents used were of HPLC grade (Fisher Scientific).

Collection, Extraction, and Isolation. The sample of cyanobacterial assemblage of Lyngbya majuscula for this study was collected in February 2001 from a patch reef near Cocos Island, Guam. This was a collection of ECO 27, first collected in March 1999. This chemotype of L. majuscula grew during winter months on Guam (January-March) and consistently produced malyngamides A and B and majusculamides A and B. The samples were identified by one of us (V.J.P.) based on morphological characteristics of the genus, and a voucher specimen (VPECO 27) is maintained at the Smithsonian Marine Station, Fort Pierce,

Table 2. NMR Spectroscopic Data for Cocosamides A (2) and B (3) in $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H} 600 \mathrm{MHz},{ }^{13} \mathrm{C} 150 \mathrm{MHz}\right)$

unit	position	cocosamide A (2)				cocosamide B (3)	
		δ_{C} mult.	$\delta_{\mathrm{H}}(\mathrm{J}$ in Hz$)$	$\mathrm{HMBC}^{\text {a }}$	NOESY ${ }^{\text {b }}$	δ_{C} mult.	$\delta_{\mathrm{H}}(\mathrm{J}$ in Hz$)$
Dhoea ${ }^{c} /$ Dhoya d	1	176.5, C				176.5, C	
	2	48.9, C				46.3, C	
	3	77.8, CH	5.19, dd (11.0, 2.1)	1, 9, 41	4a, 4b, 10	77.3, CH	5.20, br. d (11.0)
	4a	27.9, CH_{2}	1.54, m	5	3, 10	27.6, CH_{2}	1.75, m
	4 b		1.48, m	5	3, 9		1.58, m
	5	25.0, CH_{2}	1.34, m	7	3, 6	24.6, CH_{2}	1.51, m
	6	33.3, CH_{2}	2.06, m		5,7	18.1, CH_{2}	2.21, m
	7	138.0, CH	5.76, ddt (17.0, 11.6, 6.9)	6	6, 8a	83.6, C	
	8 a	115.2, CH_{2}	4.96 , dd (11.6, 3.4)	6	7	69.2, CH	1.96, t (2.7)
	8 b		5.04, dd (17.0, 3.4)	6			
	9	17.5, CH_{3}	1.25, s	1,3,10	4a, 4b, NH (Val)	17.6, CH_{3}	1.28, s
	10	$23.5, \mathrm{CH}_{3}$	1.17, s	1,3, 9	3, 4a, 9	$23.5, \mathrm{CH}_{3}$	1.20, s
Val	11	172.2, C				172.3, C	
	12	55.5, CH	4.33, dd (7.7, 7.5)	1, 11, 14, 15	13, NH (Val), 25	55.6, CH	4.32, dd (7.7, 7.5)
	13	30.5 , CH	1.91, m	12	12, 14, 15	30.6, CH	1.93, m
	14	19.1, CH_{3}	0.97, d (6.9)	12, 13, 15	12, 13, 15	19.2, CH_{3}	0.97, d (6.9)
	15	18.7, CH_{3}	0.88, d (6.9)	12, 13, 14	12, 13, 14	18.8, CH_{3}	0.90, d (6.9)
	NH		5.82, d (7.5)	1, 12	9, 12, 13, 14		5.83, d (7.6)
N-Me-Phe-1	16	168.9, C				169.0, C	
	17	54.2, CH	5.08, dd (12.4, 3.9)		18a, 18b, 25, 27	54.3, CH	5.03, br d (12.4)
	18a	$37.7, \mathrm{CH}_{2}$	3.18, dd (12.4, 12.3)	16, 19, 20/24	17, 20/24, 25	$37.8, \mathrm{CH}_{2}$	3.18, dd (12.4, 12.3)
	18 b		3.02 , dd (12.4, 3.9)	16, 19, 20/24	17, 20/24, 25		3.02 , dd (12.4, 3.9)
	19	137.6, C				137.6, C	
	20/24	129.8, CH	7.41, d (7.6, 2.7)	18	17, 18, 21/23	129.9, CH	7.40, d (7.6, 2.7)
	21/23	128.5, CH	7.24, m	19	20/24, 22	128.6, CH	7.24, m
	22	127.0, CH	7.18, m	20/24	21/23	127.0, CH	7.18, m
	25	$32.3, \mathrm{CH}_{3}$	3.58 s	11, 17	12, 17, 18a	$32.3, \mathrm{CH}_{3}$	3.58, s
Pro	26	171.5, C				171.6, C	
	27	56.0, CH	3.08, dd (8.2, 1.8)	28, 29, 30	17, 28a, 32	56.1, CH	3.06, dd (8.2, 1.8)
	28a	$29.8, \mathrm{CH}_{2}$	0.46, m	26	27, 28b, 29b	29.9, CH_{2}	0.47, m
	28 b		-0.18, m		28a, 32		-0.19, m
	29a	21.9, CH_{2}	1.31, m		28b, 29b, 30a	22.0, CH_{2}	1.31, m
	29b		1.21, m		28a, 29a, 30b		1.21, m
	30a	46.2, CH_{2}	3.38, m	16	29a, 30b	46.0, CH_{2}	3.37, m
	30b		3.22, m	16	29b, 30a		3.21, m
N-Me-Phe-2	31	169.4, C				169.5, C	
	32	63.5, CH	3.93, dd (9.7, 3.5)	31, 33, 40	27, 33, NH (Gly)	63.6, CH	3.94, dd (9.7, 3.5)
	33a	$34.9, \mathrm{CH}_{2}$	3.68 , dd (12.0, 3.5)	32, 34, 35/39	32, 33b, 35/39	35.0, CH_{2}	3.68 , dd (12.0, 3.5)
	33 b		2.75 , dd (12.0, 9.7)	32, 34, 35/39	32, 33a, 35/39		2.75 , dd (12.0, 9.7)
	34	138.1, C				138.2, C	
	35/39	129.4, CH	7.05, d (7.6)	33, 37	33, 36/38	129.5, CH	7.05, d (7.6)
	36/38	128.8, CH	7.23, m	34	35/39, 37	128.9, CH	7.23, m
	37	127.0, CH	7.22, m	35,39	36/38	127.1, CH	7.22, m
	40	$31.0, \mathrm{CH}_{3}$	2.82, s			31.0, CH_{3}	2.82, s
Gly	41	168.3, C				168.4, C	
	42a	41.9, CH_{2}	4.80, dd (16.8, 8.9)	41	42b, NH (Gly)	41.9, CH_{2}	4.78, dd (16.8, 8.9)
	42b		3.66 , dd (16.8, 1.0)	41	42a, NH (Gly)		3.68 , dd ($16.8,1.0$)
	NH		8.91, dd (8.9, 1.0)	31	32, 40, 42b		8.91, dd (8.3, 1.0)

${ }^{a} \mathrm{HMBC}$ correlations, optimized for ${ }^{2 / 3} J_{\mathrm{CH}}=8 \mathrm{~Hz}$, are from proton (s) stated to the indicated carbon. ${ }^{b}$ NOESY correlations are from proton(s) stated to the indicated proton(s). ${ }^{c}$ Dhoea moiety in cocosamide A. ${ }^{d}$ Dhoya moiety in cocosamide B.

FL. The freeze-dried material (328 g) was extracted with $\mathrm{EtOAc}-$ $\mathrm{MeOH}(1: 1)$. This lipophilic extract was partitioned between EtOAc
and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous portion subsequently partitioned between n BuOH and $\mathrm{H}_{2} \mathrm{O}$. Concentration of these extracts furnished 9.56 g
(2.9\%) of EtOAc-soluble fraction and 2.24 g (0.6%) of BuOH -soluble material. The EtOAc-soluble fraction $(9.56 \mathrm{~g})$ was chromatographed on a column of $\mathrm{SiO}_{2}(100 \mathrm{~g})$ using a hexanes -EtOAc step gradient system followed by an $\mathrm{EtOAc}-\mathrm{MeOH}$ step gradient to give 13 subfractions. The combined subfractions 7 to $9(2.0 \mathrm{~g})$, eluting with hexanes -75% EtOAc , was further chromatographed on a Si-column (100 g) using a hexanes-EtOAc step gradient system to give eight subfractions. Subfraction $6(36 \mathrm{mg})$, eluting with hexanes $-25 \% \mathrm{EtOAc}$, was further purified by reversed-phase HPLC (semiprep $250 \times 10 \mathrm{~mm}, 5 \mu \mathrm{~m}, \mathrm{RP}$ 18 , flow $3.0 \mathrm{~mL} / \mathrm{min}$) using $15 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ to give 3 mg of impure cocosamide $\mathrm{B}, 20 \mathrm{mg}$ of majusculamides A and $\mathrm{B}, 4.0 \mathrm{mg}$ of malyngamide 3 ($\mathbf{1}$, yield, 0.001% dry wt), and 1.4 mg of cocosamide A (2, yield, 0.0004% dry wt). The impure cocosamide B fraction was further separated by reversed-phase HPLC using $30 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ to give 2.0 mg of cocosamide B (3 , yield 0.0006% dry wt).

Malyngamide 3 (1): colorless, amorphous powder; $[\alpha]^{25}{ }_{D}-10.1$ (c $0.36, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 205$ (4.19), 274 (3.40) nm; IR (film) $\nu_{\max } 3320,2932,1725,1636 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1, assignments were made by interpretation of 2D DQF COSY, edited-HSQC, HMBC, and NOESY data; HRESI/TOFMS m / z $559.3146[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{28} \mathrm{H}_{48}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{7}, 559.3145$).

Cocosamide A (2): white solid; $[\alpha]^{25}{ }_{\mathrm{D}}-77.7(c 0.12, \mathrm{MeOH})$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 208$ (4.36), 260 (3.26) nm; IR (film) $\nu_{\text {max }}$ 3330, 2920, 1665, 1634, 1527, $1197 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 2, assignments were made by interpretation of 2D DQF COSY, edited-HSQC, HMBC, and NOESY data; HRESI/TOFMS m / z $744.4330[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~N}_{5} \mathrm{O}_{7}, 744.4331\right)$.

Cocosamide B (3): white solid; $[\alpha]^{25}{ }_{\mathrm{D}}-103(c 0.18, \mathrm{MeOH})$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 208$ (4.54), 260 (3.35) nm; IR (film) $\nu_{\text {max }}$ 3416, 2950, 1665, 1634, 1541, $1032 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 2, assignments were made by interpretation of 2D DQF COSY, edited-HSQC, HMBC, and NOESY data; HRESI/TOFMS m / z $742.4186[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{~N}_{5} \mathrm{O}_{7}, 742.4174$).

Preparation of (R)-MTPA and (S)-MTPA Esters of 1. Compound $1(1.0 \mathrm{mg})$ was dissolved in $\mathrm{CHCl}_{3}(50 \mu \mathrm{~L})$, and pyridine (50 $\mu \mathrm{L}$) and a catalytic amount of 4-DMAP were added. The solution was treated with $S(+)$-MTPA chloride $(1.0 \mu \mathrm{~L})$ and stirred at room temperature for 12 h . The reaction was terminated with the addition of $\mathrm{MeOH}(200 \mu \mathrm{~L})$, and the solvent was evaporated to give the (R) MTPA ester of $\mathbf{1}$. Similarly, the (S)-MTPA ester of $\mathbf{1}$ was prepared with $R(-)$-MTPA chloride using the same procedure. Both esters were subjected to HPLC (semiprep $250 \times 10 \mathrm{~mm}, 5 \mu \mathrm{~m}, \mathrm{SiO}_{2}$, flow $3.0 \mathrm{~mL} /$ \min) using $\mathrm{EtOAc}-3 \% \mathrm{MeOH}$ to yield the pure (R)-MTPA ester of $\mathbf{1}$ $(0.4 \mathrm{mg})$ and (S)-MTPA esters of $\mathbf{1}(0.3 \mathrm{mg})$.

R-MTPA ester of 1: ${ }^{1} \mathrm{H}$ NMR δ (only key resonances are listed) $5.921(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}, \mathrm{NH}), 5.292(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 3.584(3 \mathrm{H}, \mathrm{s}$, OMe12), $3.536\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-6\right), 2.624\left(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{2}-10\right)$; ESIMS m / z $777.4[\mathrm{M}+\mathrm{H}]^{+}$; HRESI/TOFMS $m / z 777.3404[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{38} \mathrm{H}_{57}{ }^{35} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{9}, 777.3422$).

S-MTPA ester of 1: ${ }^{1} \mathrm{H}$ NMR δ (only key resonances are listed) $5.732(1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}, \mathrm{NH}), 5.292(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 3.656(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}-$ 12), $3.535\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}-6\right), 2.652\left(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{2}-10\right)$; ESIMS m / z $777.4[\mathrm{M}+\mathrm{H}]^{+}$; HRESI/TOFMS $m / z 777.3443[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{38} \mathrm{H}_{57}{ }^{35} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{9}, 777.3422$).

Base Hydrolysis of Malyngamide 3. Compound 1 (1.9 mg) was dissolved in a 0.5 mL solution of $10 \% \mathrm{KOH}$ in 80% aqueous EtOH and refluxed for 12 h . The hydrolysate was concentrated in vacuo and partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{H}_{2} \mathrm{O}$ layer was separated, acidified, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield lyngbic acid $(5,0.4 \mathrm{mg})$: colorless oil; $[\alpha]_{\mathrm{D}}^{25}-12\left(c 0.04, \mathrm{CHCl}_{3}\right)\left[\right.$ lit. $\left.-12.6(c 0.8, \mathrm{MeOH})^{16}\right]$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.48(2 \mathrm{H}, \mathrm{m}), 3.31(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.15$ $(1 \mathrm{H}$, quin, $J=5.5 \mathrm{~Hz}), 2.42(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.34(2 \mathrm{H}, \mathrm{m}), 2.18(2 \mathrm{H}$, $\mathrm{m}), 1.43(2 \mathrm{H}, \mathrm{m}), 1.27(10 \mathrm{H}, \mathrm{m}), 0.87(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz})$; HRESI/ TOFMS $m / z 257.2113[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{3}, 257.2114\right)$.

Acid Hydrolysis and Enantioselective HPLC Analysis. Compounds 2 and 3 (0.1 mg each) were suspended in $6 \mathrm{~N} \mathrm{HCl}(0.3$ mL) and heated at $115^{\circ} \mathrm{C}$ for 18 h in two sealed tubes. The hydrolysates were concentrated to dryness. The residues were reconstituted in 0.3 mL of $\mathrm{H}_{2} \mathrm{O}$ and analyzed by enantioselective HPLC, comparing the retention times with those of authentic standards [Phenomenex Chirex (D) penicillamine, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$]; solvent mixtures of 2.0 mM $\mathrm{CuSO}_{4}-\mathrm{CH}_{3} \mathrm{CN}$ (85:15 or 90:10); detection at 254 nm . Using 2.0 mM $\mathrm{CuSO}_{4}-\mathrm{CH}_{3} \mathrm{CN}(90: 10)$ with a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$, the retention times $\left(t_{\mathrm{R}}, \mathrm{min}\right)$ for authentic standards were L-Pro (10.0) and d-Pro (19.6), and with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ the retention times $\left(t_{\mathrm{R}}, \mathrm{min}\right)$ for authentic standards were $\mathrm{L}-\mathrm{Val}$ (17.0) and D-Val (22.9). Using 2.0 $\mathrm{mM} \mathrm{CuSO} 4-\mathrm{CH}_{3} \mathrm{CN}(85: 15)$ with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$, the retention times $\left(t_{\mathrm{R}}, \min \right)$ for authentic standards were N -Me-L-Phe (34.2) and N-Me-d-Phe (36.6). The retention times (and respective HPLC conditions) of the amino acids in the hydrolysates of 2 and 3 were $(\mathrm{min}) 10.0(90: 10,0.8 \mathrm{~mL} / \mathrm{min}), 17.0(90: 10,1.0 \mathrm{~mL} / \mathrm{min})$, and 34.2 ($85: 15,1.0 \mathrm{~mL} / \mathrm{min}$), indicating the presence of $\mathrm{L}-\mathrm{Pro}, \mathrm{L}-\mathrm{Val}$, and N-Me-L-Phe.

Cell Viability Assays. Cells were propagated and maintained in DMEM (Invitrogen) supplemented with 10% FBS (Hyclone) at $37^{\circ} \mathrm{C}$ in humidified air and $5 \% \mathrm{CO}_{2}$. Cells were seeded in 96-well plates (MCF7 10500 cells/well; HT-29 13000 cells/well). After 24 h , cells were treated with various concentrations of the test compound or solvent control ($1 \% \mathrm{EtOH}$). After 48 h of incubation, cell viability was measured using MTT according to the manufacturer's instructions (Promega). Paclitaxel was used as a positive control; IC_{50} values were 7 and 6 nM in HT-29 and MCF7 cell lines, respectively. Experiments were done in duplicate. IC_{50} values were determined using nonlinear regression in GraphPad Prism.

ASSOCIATED CONTENT

(s) Supporting Information. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and 2 D NOESY NMR spectra in CDCl_{3} for malyngamide 3 (1) and cocosamide A (2). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{COSY}, \mathrm{HMBC}$, and 2 D NOESY NMR spectra in CDCl_{3} for cocosamide B (3). ${ }^{1} \mathrm{H}$ and 2D NOESY NMR spectra in CDCl_{3} for pitipeptolide A (5). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: (772) 462-0982. Fax: (772) 461-8154. E-mail: paul@si.edu.

ACKNOWLEDGMENT

This research was supported by the NIH, NIGMS Grant P41GM806210. We thank E. Cruz-Rivera for collecting the sample. We also thank the Harbor Branch Oceanographic Institute at Florida Atlantic University spectroscopy facility for 600 MHz NMR spectrometer time and UV measurements and the Florida Atlantic University, Jupiter Campus, for the use of their polarimeter and infrared spectrometer. The high-resolution mass spectrometric analysis was performed by the UCR mass spectrometer facility, Department of Chemistry, University of California at Riverside. This is contribution number 840 from the Smithsonian Marine Station at Fort Pierce.

REFERENCES

(1) Tidgewell, K.; Clark, B. T.; Gerwick, W. H. In Comprehensive Natural Products Chemistry, 2nd ed.; Moore, B., Crews, P., Eds.; Elsevier Limited: Oxford, 2010, in press.
(2) Ainslie, R. D.; Barchi, J. J.; Kuniyoshi, M.; Moore, R. E.; Mynderse, J. S. J. Org. Chem. 1985, 50, 2859-2862.
(3) Cardellina, J. H.; Dalietos, D.; Marner, F.-J.; Mynderse, J. S.; Moore, R. E. Phytochemistry 1978, 17, 2091-2095.
(4) Cardellina, J. H.; Marner, F.-J.; Moore, R. E. J. Am. Chem. Soc. 1979, 101, 240-242.
(5) Moore, R. E. In Marine Natural Products: Chemical and Biological Perspectives; Scheuer, P. J., Ed.; Academic Press: New York, 1981; Vol. IV, pp 1-52.
(6) Mynderse, J. S.; Moore, R. E. J. Org. Chem. 1978, 43, 4359-4363.
(7) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2010, 27, 165-237, and references therein.
(8) Malloy, K. L.; Villa, F. A.; Engene N.; Matainaho, T.; Gerwick, L.; Gerwick, H. W. J. Nat. Prod. 2011, 74, 95-98.
(9) Wu, M.; Milligan, K. E.; Gerwick, W. H. Tetrahedron 1997, 53, 15983-15990.
(10) Gallimore, W. A.; Scheuer, P. J. J. Nat. Prod. 2000, 63, 1422-1424.
(11) Reese, M. T.; Gulavita, N. K.; Nakao, Y.; Hamann, M. T.; Yoshida, W. Y.; Covel, S. J.; Scheuer, P. J. J. Am. Chem. Soc. 1996, 118, 11081-11084.
(12) Nakao, Y.; Yoshida, W. Y.; Szabo, C. M.; Baker, B. J.; Scheuer, P. J. J. Org. Chem. 1998, 63, 3272-3280.
(13) Luesch, H.; Pangilinan, R.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J. J. Nat. Prod. 2001, 64, 304-307.
(14) Sitachitta, N.; Williamson, R. T.; Gerwick, W. H. J. Nat. Prod. 2000, 63, 197-200.
(15) Marner, F.-J.; Moore, R. E.; Hirotsu, K.; Clardy, J. J. Org. Chem. 1977, 42, 2815-2819.
(16) Kwan, J. C.; Teplitski, M; Gunasekera, S. P.; Paul, V. J.; Luesch, H. J. Nat. Prod. 2010, 73, 463-466.
(17) Kan, Y.; Sakamoto, B.; Fujita, T.; Nagai, H. J. Nat. Prod. 2000, 63, 1599-1602.
(18) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096.
(19) Pitipeptolide A: HRESI/TOFMS $m / z 808.4875[\mathrm{M}+\mathrm{H}]^{+}$ (calcd for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{~N}_{5} \mathrm{O}_{9}, 808.4855$); $[\alpha]_{\mathrm{D}}^{22}-110(c 1.0, \mathrm{MeOH})$.

[^0]: Received: November 4, 2010
 Published: February 22, 2011

