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The frequency distribution of species abundances [the species 
abundance distribution (SAD)] is considered to be a fundamental 
characteristic of community structure. It is almost invariably 
strongly right-skewed, with most species being rare. There has 
been much debate as to its exact properties and the processes from 
which it results. Here, we contend that an SAD for a study plot must 
be viewed as spliced from the SADs of many smaller nonoverlap- 
ping subplots covering that plot. We show that this splicing, if 
applied repeatedly to produce subplots of progressively larger size, 
leads to the observed shape of the SAD for the whole plot 
regardless of that of the SADs of those subplots. The widely 
reported shape of an SAD is thus likely to be driven by a spatial 
parallel of the central limit theorem, a statistically convergent 
process through which the SAD arises from small to large scales. 
Exact properties of the SAD are driven by species spatial turnover 
and the spatial autocorrelation of abundances, and can be pre- 
dicted using this information. The theory therefore provides a 
direct link between SADs and the spatial correlation structure of 
species distributions, and thus between several fundamental de- 
scriptors of community structure. Moreover, the statistical process 
described may lie behind similar frequency distributions observed 
in many other scientific fields. 
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Many models have been proposed to explain the general 
observation that the majority of species are rare, and to 

predict the major properties of the species abundance distribu- 
tion (SAD) (1). Some assume a particular biological process, 
such as sequential niche division among species (2), stochastic 
population dynamics driven by simple rules and constraints (3, 
4), or spatial rules imposed on species geographic distributions 
(5-7). These models can produce quite realistic SADs, often 
close to lognormal distributions. However, the ubiquity of the 
SAD pattern (i.e., its independence of particular taxon specifics 
and other biological settings) indicates that the processes re- 
sponsible are much more general, and perhaps of a statistical 
rather than a biological nature (7). Indeed, similar patterns have 
also been observed in many nonbiological systems (8). 

It has been suggested (9) that the approximately log-normal 
shape of the SAD might result from a random multiplicative 
process acting on abundances (i.e., an additive process acting on 
their logarithms). Purely multiplicative processes cannot, how- 
ever, be responsible for the multiple SADs that are observed 
simultaneously at several spatial scales (10). The reason is that 
the SAD of an assemblage on a study plot (whose bounds may 
be arbitrary or ecological) is necessarily spliced from the SADs 
of subassemblages occurring in nonoverlapping subplots cover- 
ing that plot (6, 11, 12). Because abundances for the whole plot 
arise by summing the abundances of the subassemblages across 
all of the subplots, an additive process acting on abundances must 
also play a role. In fact, many models of the SAD explicitly or 
implicitly comprise additive processes (4, 13, 14). However, this 
has never been clearly identified as the major mechanism 
responsible for the shape of the SAD. Here, we show that it is 

the additive process itself that represents the clue to understand- 
ing the universally reported shape of SADs, regardless of any 
model-specific dynamics. 

Suppose that the SAD for an assemblage on a plot (SADp) is 
comprised from those of the subassemblages on nonoverlapping 
subplots (SADs-p). We can ask how the properties of the SADp 
depend on the properties of the SADs-p, and to what extent it 
is affected solely by the process through which the SADp arises. 
We will explore the possibility that the SADp is independent of 
the SADs-p for the smallest subplots (initial-SADs-p), because 
the statistical process giving rise to the SADp outweighs the 
contribution of the particular initial-SADs-p. This situation 
would be similar to the process that lies behind the central limit 
theorem (CLT) [introduced in 1733 by de Moivre and proved in 
1901 by Lyapunov (15)]. According to the CLT, the normal 
(Gaussian) distribution arises by addition of many mutually 
independent variables with finite variances regardless of their 
original distribution. 

The process through which an SADp arises, being spliced (see 
Materials and Methods) from many initial-SADs-p, is, however, 
different, because it is necessarily spatially determined. This 
means that the abundances of each of two adjacent subplots to 
be joined are dependent on each other, and that some species are 
missing from some subplots. The SAD then arises by summing 
pairs of abundances of the species common to both joined 
subplots, and appending abundances of the species missing from 
one subplot at each recurrent step. The resulting distribution is 
thus shaped by the spatial correlation structure, which is exem- 
plified by species spatial turnover and the spatial autocorrelation 
of abundances. Positive correlation between the abundances of 
given species in neighbouring subplots leads to elongation of the 
right-hand tail of the SAD, because eventual high abundance in 
one subplot is probably added to similarly high abundance in 
another. This elongation occurs even if abundances are not 
correlated (for abundances are positive and thus only the 
right-hand tail can grow), but the stronger is the autocorrelation 
the faster the tail grows, regardless of the exact nature of that 
autocorrelation (Fig. 1). However, species spatial turnover leads 
to the addition of species occurring in only one of two joined 
subplots, which produces a prevalence of rare species in the 
spliced SAD. These two effects combined thus lead to a right- 
skewed abundance distribution. 

Results 
We simulated the process described above (for details, see 
Materials and Methods), varying its inputs in terms of the shape 
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Fig. 1. Probability density functions presented as histograms of distributions arising through the splicing (above: abundance classes on arithmetic scale; below: 
abundance classes on logarithmic scale). Distributions of uncorrelated (A and C) and autocorrelated (B and D) abundances for high (black) and low (white) spatial 
turnovers (for Settings see Materials and Methods). Low correlation and turnover (white plot in A) approach the standard Central Limit Theorem and produces 
a nearly Gaussian distribution. High correlation and turnover (black plot in B) elongates the right tail, producing a right-skewed, almost lognormal (black plot 
in D), distribution. The positive skewness of the distribution is thus promoted by spatial turnover and autocorrelation. 

of the initial-SADs-p, and using observed levels of species spatial 
turnover (measured as the proportion of species common to both 
neighbouring subplots, i.e., the Jaccard index, /) and of spatial 
autocorrelation of abundances (determined by Pearson's corre- 
lation coefficient, r) (see Materials and Methods). We proceeded 
in a step-by-step manner, splicing pairs of neighbouring initial- 
SADs-p in the first step, then (the second step) splicing pairs of 
neighbouring SADs-p that resulted from the first step, and so on 
up to the SADp of the whole plot. 

Three different simulation experiments were performed, each 
beginning with a differently shaped initial-SADs-p (left-skewed, 
regular, right-skewed). We checked whether all of the simula- 
tions had reached a particular shape of the distribution, whether 
these shapes were the same regardless of initial-SADs-^s, and 
ultimately compared the resulting distributions from each of the 
3 simulations with the observed SADp of 2 well-resolved spatial 
datasets. These latter comprised (:) trees within a tropical study 
plot on Barro Colorado Island (ref. 16 and 17 and http://ctfs.si/ 
edu/datasets/bci) (see Materials and Methods), and (if) central 
European birds mapped on a transect through the whole of the 
Czech Republic (7) (see Materials and Methods). All of the 
observed and simulated SADp and SADs-p to be compared were 
standardized to the same mean abundance (i.e., ast = a/a, where 
ast is the standardized abundance, a is a raw abundance, and a 
is mean abundance), and veiled by minimum observed values. 
The SADs-p to be spliced were neither standardized nor veiled. 

Both datasets revealed close similarity to the respective 
SADs-p resulting from the convergent processes (Figs. 2 and 3). 
None of (:) a rank plot (Figs. 2 bottom row and 3C), (if) the 
maximum distance between simulated and observed cumulative 
distributions [Kolmogorov-Smirnov statistics (KS)] (see SI Ap- 
pendix, Fig. SI) or (Hi) the skewness of the SADp of log- 
transformed abundances (Fig. 3 A and 5) revealed disagreement 
between observation and the SADp resulting from the simulated 
splicing from the 200th step on. Visually, the simulations fol- 
lowed the usually reported shape (i.e., sigmoid and almost 
symmetric rank-log-abundance plot) from the 20th step on (for 

steps of 50 and 100 see Fig. 2, second and third rows). A 
nonparametric DKW test (18) based on Kolmogorov-Smirnov 
statistics could not reject agreement between modeled and 
observed SADp in any case, whereas for the earlier steps the 
agreement was rejected at P < 0.01 (see Materials and Methods). 
The difference between SADp for tropical trees and central 
European birds (Fig. 3C) was accurately predicted by the 
difference in species spatial turnover, /, and spatial autocorre- 
lation of abundances, r. The probabilistic process of splicing of 
SADs-p in neighbouring subplots, modeled by our simulations, 
thus represents a realistic mechanism for the emergence of 
observed SADs. 

Discussion 
We have demonstrated a universal principle that inevitably 
applies if summing variables irregularly distributed in space or 
time, and thus inevitably affects the SAD. This principle is 
similar to the CLT, which states that sums of the same numbers 
of mutually independent variables approach a bell-shaped dis- 
tribution. We argue that sums of various numbers of mutually 
independent or dependent, positive variables approach a right- 
skewed distribution, which is more or less symmetric on a 
logarithmic scale. The crucial difference between the CLT and 
our principle, i.e., "various numbers of variables," corresponds 
to the fact that some species are missing in some samples, 
whereas the potential mutual dependence of variables corre- 
sponds to spatial intraspecific correlation between abundances 
of two adjacent plots. The mutual dependence is not, however, 
necessary, because it only determines how heavy is the right tail 
of the distribution (Fig. 1). Applying this simple principle to 
abundance data, we get realistic SADs. Because missing obser- 
vations (either really missing or missing because of the limita- 
tions of the method of observation) and/or their mutual depen- 
dence is rather common across all fields of science, we would not 
be surprised if this principle governed many other asymmetric 
distributions observed there (8). 
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Fig. 2. Comparison of observed (full line) and simulated (gray circles) 
rank-log-abundance plots for tropical trees. Simulations are shown for 3 
different initial-SADs-p (left-skewed, regular, right-skewed) (columns) and for 
various steps of SADs-p and SADp (rows - steps 0, 50, 100, and 200-500). The 
observed SADp is apparently indistinguishable from the fully converged sim- 
ulated distributions, regardless of the initial-SADs-p. Plotted distributions are 
standardized (mean abundance = 1) and veiled by minimum observed values 
for comparison. 

The fit of our prediction was obtained using the simplified 
assumption that both of the spatial parameters are constant over 
all steps (i.e., all spatial scales). This is clearly unrealistic, because 
at least spatial turnover has been reported to be scale dependent 
(19). However, by parameterizing the process using measure- 
ments extracted from the whole plot, we set the process by the 
parameters crucial for the final convergent stage. If considering 
only a small part of the transect data, we should not assume that 
the observed SAD has yet converged, but we might still assume 
agreement between the observed abundance distribution and 
simulated SADs-/> at some particular step of the process. That is 
exactly what happened for all of the initial-SADs-p and, surpris- 
ingly, for various settings (see Materials and Methods) of the 
parameters (Fig. 4 and SI Appendix, Fig. S2). The process is thus 
so pervasive that it predicts the observed shape, whatever the 

initial-SADs-p, even for smaller areas with an SADs-p that does 
not represent a complete convergent stage. 

Having demonstrated this universal principle, it is possible to 
see why so many models that have been proposed (1) produce 
quite realistic SADs. All of the spatial models include the 
existence of species spatial turnover and most of them spatial 
autocorrelation. Various mechanisms then only tune their exact 
values to fit a model to data. For instance, manipulating the 
proportion of newly arriving individuals (13, 20) or the propor- 
tion of newly established species (21) effectively leads to specific 
levels of species turnover and spatial autocorrelation, and so it 
is not surprising that it affects the shapes of resulting SADs. 
Many similar processes effectively produce species turnover at 
several spatial scales, which is, according to our theory, the 
proximate driver of observed SADs. 

Importantly, we need not assume that SADs for real assem- 
blages have actually emerged because of the large number of 
steps of the process described above. However, we argue that this 
process encapsulates the major feature of the emergence of 
observed SADp, which is the splicing of SADs-p in neighbouring 
subplots. In reality, the spatial scale of the initial-SADs-p may 
correspond to the spatial requirements of an individual, i.e., 
home range of an animal or the spatial requirement of a plant. 
The shape of such an initial-SADs-p may be driven by that of the 
species-body size distribution (22), and thus may be much less 
extreme (i.e., closer to the shape resulting from the convergent 
process) than those used in our simulations. The process thus 
might actually require a much smaller number of steps to reach 
full convergence. 

Another possibility is that an SAD really originates from many 
steps of splicing, starting with initial-SADs-ps for extremely 
small patches. The "abundance" of a species in these small 
patches would then be represented by the probability of species 
occurrence, and the "true" SAD would be a frequency distri- 
bution of these probabilities. Because the probability of occur- 
rence corresponds to the reciprocal of the size of a species' home 
range, the SADs might still be linked with the species-body size 
distribution. Both interpretations of the initial-SADs-p have the 
potential to link our theory with the factors that affect landscape 
properties enabling species coexistence (productivity and habitat 
complexity) and species energetic and resource requirements at 
very local scales. According to our theory, only at the very local 
scale are biologically important processes taking place, whereas 
the patterns observed at large scales are dominated by a statis- 
tical process. The theory thus has the potential to separate 
statistical and biological effects. Importantly, we do not need to 
assume any particular "fundamental" scale (comprising initial- 
SADs-p) from which the patterns on other scales are derived; the 
convergent process leads to the observed SAD shape regardless 
of the scale we begin with, given a sufficient number of splicing 
steps. 
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Fig. 3. Convergence of the shape of the SAD. (A and S) Convergent series of skewnesses of SADs-p of log-transformed abundances starting with left-skewed 
(bold line), regular (thin line), and right skewed (dotted line) initial-SADs-p. Each series is parameterized by species spatial turnover and spatial autocorrelation 
of (A) tropical tree and (6) central European bird data. Dashed lines show the observed skewnesses. (C) Rank-log-abundance plots of the central European bird 
data (thin line), and a result of the respective convergent series (gray circles; steps 300-500), which started as the regular initial-SADs-p (dashed). For contrast 
see the tropical tree data (dotted line). SADs are standardized (mean abundance = 1), and veiled by minimum observed values. 
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Fig. 4. Simulated series of skewnesses of SADs-p of log-transformed data 
starting with (A) regular and (B) right-skewed initial-SADs-p and Central 
European bird data for 1/8 of the transect. The observed value (dashed line) is 
crossed in between steps 10 and 20 in A, and 10 and 12 in S (spaces between 
arrows). The simulated rank-log-abundance plots for these steps (gray circles) 
are plotted in Cand D, respectively. Observed SADp is marked by a solid line, 
initial-SADs-ps are dashed. Series vary in their parameters (for settings see 
Materials and Methods), but their values have little effect on the agreement 
between data and simulations (SI Appendix, Fig. S2). 

Our approach comprises purely bottom-up processes leading 
from SADs at local scales to convergent SAD at large spatial 
scales. This approach is in contrast to the top-down attempts to 
derive particular shapes of SADs by spatial sampling of given 
regional SAD (23), and to prevailing macroecological consider- 
ation of regional patterns as those determining local ones (24). 
Biologically relevant processes may actually act at regional scales 
or rather at many scales interacting together. Even then, the 
purely statistical bottom-up process we describe has in most cases 
an overwhelming influence on the shapes of regional SADs, 
because it acts whenever there are particular local distributions 
(of any shape), and nonzero spatial species turnover between 
subplots. 

Our theory provides a direct link between SADs on the one 
hand and species spatial turnover and autocorrelation on the 
other, i.e., between several fundamental descriptors of commu- 
nity structure. Many such links have already been determined 
(7), and the mathematical connections to other macroecological 
patterns have been demonstrated (e.g., the species-area rela- 
tionship) (25). Here, we have shown that abundance patterns can 
be derived using three assumptions: (;') that most species do not 
occur everywhere, («) that species abundances are positive (a 
trivial, but critical detail), and (Hi) that these abundances are 
spatially autocorrelated. These assumptions represent quite uni- 
versal biological observations, and thus it is understandable that 
they universally lead to the observed shape of the SAD. 

According to our theory, the approximately log-normal shape 
of SADs, universally found in species assemblages, is a conse- 
quence of a purely statistical limiting process parameterized by 
species spatial turnover. The exact parameters of each particular 
SAD are then given by the structure of species' spatial distribu- 
tions, and an SAD thus reflects the spatial distribution of 
habitats and (meta)population and metacommunity dynamics. 
Therefore, as in the case of other macroecological patterns (7), 
the overall shape reflects a universal statistical process, but the 
details and particular parameters reveal biology and can bring 
important information about the structure and dynamics of 
ecological communities. 

Materials and Methods 
Splicing. This is a newly introduced term for an operation over probability 
distribution functions, which comprises summing and concatenating (ap- 
pending) mutually dependent variables; the standard term "convolution" is 
related only to summation of (mutually independent) variables. The analytical 
expansion of the splicing is "f\ spliced with f2"=iTifi + Tiifi + #1 *c& where 
171 + wi+ J = 1, and *c is a correlated convolution. 

Simulation. It was a step-by-step process, each step with 3 inputs ((/) a pair 
of identical distributions given by S real positive numbers; (//) Jaccard index, 
J; and (Hi) a pair of real numbers {omin; omax}, which set up the spatial 
autocorrelation of abundances), and one output (a distribution given by S 
real positive numbers). Each step consisted of (/) drawing two sets of S X J 
abundances (those for species common to the two subplots) from the 
distributions input; (/'/) making random pairs of these abundances {31,82} so 
that o-mindi <a2s o-maxai (if the inequality cannot be met, the 32 that is 
nearest to the constraints omi„3i and o-max3i is attributed to the ai) and 
appending ai + 32 to the distribution in the output; (Hi) drawing S X (1 - 
J) abundances (those for species that occur only in one of two subplots) 
from a distribution input, and appending them to the distribution in the 
output. The parameter S = 5,000. Note that drawing from a distribution 
given by a set of particular values does not mean that only those values can 
be drawn. (For procedure and picture guide see SI Appendix, Guide and 
Procedures). For utility to run the procedure, see www.cts.cuni.cz/wiki/ 
ecology:start. 

Extracting of the Parameters. The J = Scom/St0t, where Scorn is the number of 
species common to the two (East and West in this case) halves of the observed 
plot, and Stot is the number of species within the whole observed plot. The (Tmin 

and o-max were chosen empirically to meet the observed r when running 
simulations; the r is a Pearson's correlation coefficient between abundances of 
the two halves of the observed region; the species occurring in only one-half 
were excluded. This applies to both the datasets. 

BC11983 Data. Data on 307 tropical tree species from the plot of 50 ha on Barro 
Colorado Island, Panama; all of the dead trees and the trees labeled as "which 
not yet entered census" were excluded. 

Transect (April-June) 2004-2005 data. Data on 144 temperate bird species 
censused within 150m distance around each of 768 points along a linear 
East-West transect in south Bohemia and Moravia; points were separated by 
between 300 and 500 m. 

Test. A test using the Dvoretzky-Kiefer-Wolfowitz inequality (P(KS>e) < 
2Exp(-2ne2); e > 0; Pis the probability that KS oversteps the e by chance; n is 
a number of samples from the tested distribution; if both the assumed and 
tested distributions are given by a sample, which is the case, the inequality is 
an even stronger criterion). KS takes values of 0.07 and 0.1 for steps from 200 
on in cases of tropical tree and central European bird data, respectively. If we 
wanted to reject the agreement of data and simulation using these values, we 
would need significance levels P > 0.09 (n = 307) and P > 0.1 (n = 144), 
respectively. However, the values KS >0.14 that hold for all of the steps <50 
in both cases, are easy to reject at level P <sc 0.01. The KS < 0.1 and level needed 
for rejection P > 0.37 (n = 84) in test for the Fig. 4. 

Settings. Fig. 1: Full bars J = 60%, empty bars J = 90%, regular initial-SAD, 
histograms show stages 450-500; Fig. 1 A and C: {<rmin; omax} = {0;1099}, which 
produces ? ~ 0; Fig. 1. B and D: {omin; omax} = {0.9; 1.1}, which produces ? «= 
0.953; Figs. 2 and 3A:J = 88.1%, {omin; omax} = {0.9;1.11}, which produces?- 
0.95 (observed values are: J = 88.1%,? = 0.97); Fig. 3 6 and C.J = 77%, {omin; 
o-max} = {0.5; 1.7}, which produces ?«= 0.84 (observed values are: J = 76.4%, ?~ 
0.81); Fig. 4 A and C: J = 70%, (%:„; o-max) = {0.9; 1.1), ? - 0.95; Fig. 4 B and D: 
J = 70%, {omin; omax) = {0.3; 100}, ? ~ 0.195. 
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