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Abstract In a hypersaline mangrove scrub forest in
northern Florida, coexisting trees of Laguncularia race-
mosa and Avicennia germinans were either fertilized with
nitrogen or phosphorus, or not fertilized (controls). We
aimed to test whether nutrient additions differentially
altered photosynthetic performance and resource utiliza-
tion in these two species. In control trees, photosynthetic
rates were higher in L. racemosa than A. germinans.
However, leaf nitrogen concentrations were higher in A.
germinans than L. racemosa. Avicennia germinans re-
sponded to fertilization with nitrogen by increasing leaf
nitrogen concentrations and rates of photosynthesis such
that they were equivalent to photosynthesis in L.
racemosa. Laguncularia racemosa did not show a
response to nitrogen additions. Neither species showed
strong responses to phosphorus fertilization. Avicennia
germinans had high photosynthetic water-use efficiency
(photosynthesis/transpiration), but low photosynthetic
nitrogen-use efficiency (photosynthesis/leaf nitrogen). In
contrast, L. racemosa had comparatively low photosyn-
thetic water use efficiency and high photosynthetic
nitrogen use efficiency. Leaf level characteristics lead
us to hypothesize that coexistence of A. germinans and L.
racemosa should occur where nitrogen levels are low and
salinity is moderate, or at least moderate for some period
of the year.
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Introduction

Mechanisms leading to species coexistence are those
responsible for the maintenance of diversity. One of the
most commonly proposed hypotheses for the coexistence
of species is that some species are better than others at
utilizing resources within an environment (Tilman and
Pacala 1993). Here we examine resource use in two
mangrove tree species coexisting in a scrub mangrove
swamp in Florida. We experimentally manipulated re-
source levels to test whether changing resource availabil-
ity is likely to compromise coexistence.

Scrub mangrove forests are an important component of
mangrove ecosystems (Cintrén et al. 1978). They are
often found at high elevation in the intertidal zone,
typically where tidal flushing occurs at low frequency,
and evaporation leads to concentration of salt in the soil
(although short stature can also be caused by nutrient
deficiencies, see Feller 1995). These highly saline scrub
mangroves are usually dominated by two tree species:
Avicennia germinans (L.) L. (Avicenniaceae) and Lagun-
cularia racemosa (L.) Gaertn. f. (Combretaceae). These
two species often coexist, but in extremely saline areas A.
germinans is usually dominant (Cintrén et al. 1978). L.
racemosa can also form monospecific stands (Schaeffer-
Novelli et al. 1990; Sherman et al. 1998). The distribution
of these species has also been correlated with nutrient
availability gradients (Sherman et al. 1998), and labora-
tory studies have suggested that they differ in their growth
rates in response to nutrient enrichment (Pezeshki et al.
1989; McKee 1995). Although many factors could be
influential in determining the dominance of a tree species
in any given area (Smith 1992), physiological differences
among species in their tolerance of environmental con-
ditions are likely to be important (Ball 1988, 1996).

Previous work on the physiology and ecology of
mangroves has suggested that mangrove species show
more conservative water-use strategies with increasing
salt tolerance of the species (Ball 1996). The selective
pressure on plants to enhance water-use efficiency in
highly saline environments may lead to the evolution of
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traits that result in reductions in the competitive abilities
for other resources. For example, there could be trade-offs
between photosynthetic water-use efficiency and nitro-
gen-use efficiency (Field et al. 1983). This could drive
changes in forest species composition, structure and
function along salinity and resource gradients (Ball 1996).
Here, in a hypersaline forest where A. germinans and L.
racemosa coexist, we test whether A. germinans has more
conservative water-use than L. racemosa under moderate
to high sediment salinity. By applying fertilizer to pairs of
A. germinans and L. racemosa trees, we also assessed
how photosynthetic performance and utilization of water
and nitrogen resources for photosynthetic carbon gain
were altered by increased nutrient availability. Our aim
was to construct predictions of the environmental condi-
tions that would promote coexistence of these species,
and also to predict what conditions may lead to
dominance of either one.

Materials and methods
Site description

The experimental site is in the northern Indian River Lagoon on
North Hutchinson Island, St. Lucie County, Fla., USA. Tempera-
ture and rainfall are highly seasonal. Conditions are dry and cool
from November through to April, and warmer and wetter May
through to November. Tidal amplitude has a maximum of 50 cm.
Most mangroves areas in this region were impounded for insect
control between 1954 and 1970 (Rey and Tain 1991). In this
process, a dyke is built around the wetland so water flow and
mosquito populations can be manipulated. The experimental site
was in the northern end of impoundment no. 23. This impoundment
was constructed in 1966 and abandoned because of a breach in the
dyke in 1979 when natural tidal flow was reestablished. The
sediments are sandy, possibly due to the addition of spoils during
dredging of the lagoon. The vegetation has reestablished in a
typical zonation pattern observed in many natural mangrove sites.
There is a fringing zone of Rhizophora mangle approximately 4 m
tall, grading into a short (1 m), scrub mangrove adjacent to the
terrestrial forest, which is composed of both A. germinans and L.
racemosa, with herbaceous Batis maritima and Salicornia sp.

Experimental design

In the scrub forest, L. racemosa and A. germinans coexist in
patches. In May 1997, 18 pairs of similarly sized A. germinans and
L. racemosa trees were randomly chosen from within the
impoundment. A third of the pairs of trees were fertilized with
nitrogen (N) by coring two 15 cm diameter holes in the sediment
between the paired trees, approximately equidistant from each tree,
and inserting 200 g urea into each hole and resealing it, a third with
phosphorus (P) using 200 g triple super-phosphate, and the final
third cored but not fertilized. These were designated as controls (C).
All trees were fertilized at approximately 6 monthly intervals for 2
years. Photosynthetic responses of plants to the fertilization
treatments were measured in November 1998 during the wet
season when leaves of both species were at a similar stage of
development. Three leaves from each tree were sampled. At the
same time pore water under each species pair was collected using
the methods of McKee (1993). Salinity over the paired trees varied
from 33 to 55 ppt and mean eH for the scrub mangrove was
—-166 mV (SD=121, n=20).

Photosynthetic gas exchange

Rates of photosynthetic gas exchange were measured with a Li-Cor
6400 photosynthesis measuring system (Li-Cor, Lincoln, Neb.,
USA). Photosynthesis was measured on sunny mornings with little
or no cloud cover, using natural light. Light levels were generally
saturating for photosynthesis (greater than 800 gmol m2s™), and
thus photosynthetic rates were assumed to be close to maximal.
Measurements were made on the youngest, fully expanded leaves
(usually the penultimate leaf on a twig) that were exposed to full
sunlight at the time of measurement. After each measurement was
completed (usually in approximately 1 min), the leaf was harvested.
Leaf area was measured using a Li-Cor leaf area meter (Li-Cor).
Leaves were then dried in an oven at 60°C and later weighed. Dried
leaf material was ground to a fine powder in a small mill. Nitrogen
concentration within the leaves was analyzed in a CHN analyzer
(Perkin Elmer, Norwalk, Conn., USA) using a small subsample of
the ground leaf tissue. Photosynthetic nutrient use efficiency
(PNUE) and photosynthetic water use efficiency (PWUE) were
calculated as photosynthetic CO, assimilation (A) divided by the
leaf N concentration (A/N), and A divided by evapotranspiration (A/
E), respectively (Field et al. 1983).

Chlorophyll fluorescence was measured with a Diving PAM
(H.Walz, Effeltrich, Germany) at midday and 2 h after sunset in
March 1998. Dark-adapted minimum (F,) and maximum fluores-
cence (Fp,) were obtained at midday after placing excised leaves in
darkness for 20 min before the measurement. Nighttime values
were measured in situ. The variable fluorescence, F.,/Fy, was
calculated as (Fy,—F,)/Fy,.

Stomatal densities were measured using impressions made with
clear nail polish. Because of the hammer hairs that cover the
abaxial surface of A. germinans leaves, stomatal impressions were
made by peeling away the upper layers of leaf tissue to reveal the
internal surface of the abaxial epidermis. Laguncularia racemosa
has stomata on both sides of the leaf, and thus stomata were
counted on both the abaxial and adaxial surfaces. Total stomatal
density for this species was calculated as density on abaxial surface
+ adaxial surface. Stomatal densities were counted from five nail
polish peels for one leaf per tree within each treatment at x250
using a light microscope.

Data analysis

Rates of photosynthesis, stomatal conductance, specific leaf area
(SLA), leaf nitrogen concentrations, PNUE, and PWUE were
analyzed by analysis of variance (ANOVA) using the statistical
program Data Desk (Data Descriptions, Ithaca, New York, USA).
The effects of fertilization treatments on stomatal densities were
also analyzed by ANOVA. Species and fertilizer treatment were
fixed effects in the model, while pairs of trees were random. The
effect of fertilizer additions on chlorophyll fluorescence parameter
F\/F, was analyzed by ANOVA for each species separately as data
were not available at both times for both species. For L. racemosa
fertilizer treatment was a fixed effect in the ANOVA, while for A.
germinans both fertilizer treatment and time (either midday or
nighttime) were considered fixed effects. The suitability of all
ANOVA models was determined by inspecting residual plots.

Spearman’s Rank correlation, a non-parametric measure of
correlation that does not assume a linearity, was used to describe
the correlation of substrate salinity under each tree pair with
maximum rates of photosynthesis, PNUE, and PWUE for each
species.
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Results

SLA and leaf nitrogen concentrations and photosynthesis

SLA was similar in both species, but slightly higher in A.
germinans than in L. racemosa (Fig. 1A). Fertilizer
application had no significant effect on SLA in either
species. In control trees, leaf nitrogen concentrations per
leaf area were higher in A. germinans than in L. racemosa
(Fig. 1B). In A. germinans, leaf N concentrations were
higher in N fertilized trees compared to P fertilized and
control plants. Expressed on a dry weight basis, N
concentrations for fertilized A. germinans were 1.5 times
greater than controls and over 2 times the N concentration
within L. racemosa leaves (26.8 mg N g™ in N fertilized
A. germinans, 17.5 mg g! in A. germinans controls and
11.9 mg gl in L. racemosa controls).

Maximum rates of photosynthesis varied between
species and over treatments (Fig. 1C). In control plants,
L. racemosa had higher rates of photosynthesis than A.
germinans. Fertilization with N or P had no effect on the

average maximum photosynthetic rates of L. racemosa.
Fertilization with N enhanced photosynthesis of A.
germinans leaves relative to controls, while fertilization
with P did not. Nitrogen fertilized trees of A. germinans
had photosynthetic rates that were equivalent to L.
racemosa. Photosynthetic rates did not correlate with
leaf nitrogen concentrations in L. racemosa, but did, if
weakly, for A. germinans (R*=0.13, P=0.0041, data not
shown). Stomatal conductance was greater in L. racemosa
compared to A. germinans (Fig. 1D). Stomatal conduc-
tance was slightly higher in N fertilized A. germinans than
in controls, but this effect was not significant.

To support our measurements of photosynthetic gas
exchange, the chlorophyll fluorescence parameter F,/Fy,
was used to provide a measure of photosynthetic
efficiency. F,/F, declines as plants are exposed to
photooxidative stress. In A. germinans, midday F,/Fy
was lower in control and P fertilized trees than in N
fertilized trees, but all leaves recovered to a similar level
after dark (Table 1). In L. racemosa, fertilization had no
significant effects on midday F\/Fy,.

Table 1 Midday and nighttime
values of chlorophyll flores-

Laguncularia racemosa

Avicennia germinans

cence parameter, F\/Fp,. Values

Midday F,/Fy,

Nighttime F\/F, Midday F/Fy, Nighttime F\/Fy,

are means of 1526 measure-

ments on 59 trees +SE Control 0.738+0.009
Nitrogen 0.761+0.009
Phosphorus 0.731£0.012

- 0.688+0.007 0.770+0.004
- 0.736+0.005 0.788+0.005
- 0.705+0.006 0.776+0.003
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Fig. 2 Response of maximum rates of photosynthesis of A.
germinans (A) and L. racemosa (B) to variation in salinity over
the experimental site. Trees were either fertilized with nitrogen

Table 2 Stomatal density of abaxial and adaxial leaf surfaces of
Laguncularia racemosa and abaxial surface of Avicennia germi-

(solid triangles), or with phosphorus (open circles), or were
unfertilized controls (filled circles). Values are means of 3 leaves
per tree +SE

nans. Values are means of 30 measurements from 5 leaves for each
of the 6 trees within each treatment +SE

Laguncularia racemosa Abaxial+adaxial Avicennia germinans

Abaxial Adaxial Abaxial Adaxial
Control 11.3£1.9 17.9+0.3 29.2+2.7 20.0+2.8 -
Nitrogen 10.5+1.7 16.7+0.4 27.2+43.4 19.1£2.6 -
Phosphorus 11.0£2.3 17.7£0.5 28.7+4.8 20.6+£2.9 -

Mean photosynthetic rates of L. racemosa but not A.
germinans declined as salinity increased (Spearman Rank
Correlation for A.germinans=0.148 and for L. race-
mosa=0.583, Fig. 2 A, B). Although pairs of trees were
randomly assigned to treatments, in November 1998
sediments under N-fertilized trees were generally more
saline, resulting in a non-random distribution of treat-
ments over the salinity gradient and making statistical
tests inappropriate. However, visual inspection of the data
shows N fertilized trees of both species tended to have
high photosynthetic rates than P fertilized trees in the
more saline region of the salinity gradient.

Stomata occur on both the abaxial and adaxial surface
of L. racemosa, and only on the abaxial surface of A.
germinans (Table 2). In L. racemosa greater stomatal
density occurred on the abaxial surface compared to the
adaxial surface. Measures of total stomatal density
(abaxial + adaxial) were lower in A. germinans compared
to L. racemosa (F 15=72.48, P=<0.0001). Fertilization
did not have a significant effect on stomatal density.
There was no reduction in stomatal density with increas-
ing salinity for either species.

PNUE and PWUE

PWUE was higher in A. germinans than L. racemosa
(Fig. 1E). This was largely due to lower stomatal
conductance in A. germinans compared to L. racemosa
(Fig. 1D). In both species fertilization with N or P had no
effect on PWUE. PNUE was greater in L. racemosa than

A. germinans (Fig. 1F). Fertilization had no effect on
PNUE in A. germinans. Fertilization with P slightly
increased PNUE of L. racemosa compared to controls.

Increases in salinity over the site were correlated with
a decline in PNUE in both species, although the effect
was stronger in L. racemosa than in A. germinans
(Spearman Rank Correlation for A. germinans=—0.193,
and for L. racemosa=-0.710, Fig. 3A, B). The decline in
PNUE in L. racemosa with increasing salinity tended to
be more apparent in control and P fertilized trees than in
N fertilized trees. PWUE did not vary consistently with
salinity in either species (Spearman Rank Correlation for
A. germinans=0.059, and for L. racemosa=-0.159).

To assess the relative investment strategies for water
and nitrogen for both species, PNUE was plotted against
PWUE (after Field et al. 1985, Fig. 4). For A. germinans,
PWUE was positively correlated with PNUE. Photosyn-
thetic NUE of A. germinans was lower than that of L.
racemosa. PWUE was higher and more variable for A.
germinans than for L. racemosa. In L. racemosa, there
was no correlation between PNUE and PWUE; instead, L.
racemosa appears as a cloud of points with high PNUE,
but comparatively low PWUE. There is little overlap
between the species in this analysis. Fertilization with N
or P did not alter the relative positions of the species on
this graph.
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0 20 40 60 80 100 density with increasing salinity has been reported for both

Photosynthetic nitrogen use efficiency
{umol CO, mol' N's™)

Fig. 4 Relationship among photosynthetic nitrogen-use efficiency
and photosynthetic water-use efficiency of leaves of A. germinans
(open circles) and L. racemosa (filled circles)

Discussion

Photosynthetic water-use efficiency

Photosynthetic rates of both A. germinans and L. race-
mosa are in the range measured for other mangrove tree
species (Ball 1996), but are low compared to herbaceous
salt marsh species (Long and Baker 1986; Dai and
Wiegert 1997; Lovelock and Ball 2002). Comparable
rates of photosynthesis and PWUE have been measured in
the Indo-Pacific species A. marina growing in highly
saline environments, and appear to be typical for this
genus (Sobrado 1999; Sobrado and Ball 1999). The
decline in photosynthesis, particularly in control and P
fertilized trees with increasing salinity in L. racemosa
confirms the perception that it is less tolerant of highly
saline conditions than A. germinans.

Our hypothesis that A. germinans should have higher
PWUE than L. racemosa under high salinity to hypersa-
line sediments was supported by our data (Fig. 1E). The
contrasting results presented by Pezeshki et al. (1989) are
likely due to the low salinity conditions (50% seawater)
or some other condition during plant culture. Higher

species (Garcia 1979, cited in Roth 1992), but was not
observed in our study, possibly because of the restricted
range of salinity occurring at the Fort Pierce site.
PWUE of both species was not greatly affected by
variations in salinity over the site. Small increases in
PWUE with increasing salinity were reported by Sobrado
and Ball (1999) for Avicennia marina (PWUE of
4.5 mmol umol! and 4.9 mmol umol™! at 35 and 60 ppt
salinity respectively). Increasing PWUE with increasing
substrate salinity in mangrove tree species has been
observed over a wider range of salinity (1050 ppt) than
measured in the current study (Clough and Sim 1989).

Photosynthesis-nitrogen relationships

Our second hypothesis was that conservative water use
would limit plant responses to nutrient additions. There-
fore, under hypersaline conditions the less salt tolerant
species, L. racemosa, should benefit less than the more
salt tolerant species, A. germinans, with N enrichment.
This hypothesis was also supported by our results.
Fertilization with N enhanced leaf nitrogen concentrations
and the photosynthetic performance, including the mid-
day measures of photosynthetic light use efficiency F,/
F,, of A. germinans but not that of L. racemosa (Fig. 1,
Tablel). The photosynthetic rate of A. germinans fertil-
ized with N was equivalent to L. racemosa. These
improvements in photosynthetic performance in A. ger-
minans were significant despite the higher sediment
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salinity observed under N fertilized trees. Higher sedi-
ment salinities under N fertilized trees may have arisen
over the course of the experiment due to the enhanced
photosynthesis and transpiration of A. germinans, as
theoretically proposed by Passioura et al. (1992).

From the work of Evans (1989), and others (e.g.
Seeman and Sharkey 1986; Reich et al. 1989; Poorter and
Evans 1998), as well as from the few studies of response
of photosynthesis to N additions in higher plants from
saline ecosystems (Chalmers et al. 1979; Dai and Wiegert
1997), we expected that increases in photosynthetic rates
with N fertilization would be due to a strong relationship
often observed among leaf N concentrations, RUBISCO
concentrations, and maximum rates of photosynthesis.
However, there was no correlation between leaf N
concentrations and photosynthesis for L. racemosa, and
despite increases in leaf N and photosynthesis in A.
germinans when fertilized with N, photosynthetic rates
were not highly correlated with leaf N concentrations.
This may indicate that N availability is not the limiting
factor for photosynthesis of L. racemosa at this site, and is
only partially limiting photosynthesis in A. germinans.

Other species have also shown low sensitivity to
fertilization with N. For example, a weak correlation
among photosynthesis and leaf N has been observed in a
study of a desert evergreen species (Lajtha and Whitford
1989), and in arctic dwarf species (Baddeley et al. 1994).
Weak relationships among maximum rates of photosyn-
thesis and leaf N concentrations are proposed to occur
where species have evolved under conditions where
investing high concentrations of N in the photosynthetic
apparatus is constrained by some other more important
environmental pressure (Chapin 1991). The weak rela-
tionship among leaf N concentrations and photosynthesis
at our hypersaline site suggests N is partitioned into non-
photosynthetic tissues, and that in A. germinans this
somehow, possibly indirectly, leads to increases in rates
of photosynthesis. Additionally, in L. racemosa fertiliza-
tion with N appeared to alleviate salinity-related reduc-
tions in photosynthesis (Fig. 2). One possible mechanism
that could account for the positive effect of N on
photosynthesis in A. germinans is that N is invested in
the osmotically compatible solute, glycine betaine (Popp
et al. 1996), resulting in improved water status of tissues.
In either species, N could be invested in a greater number
of growing apices (roots, shoots or reproductive struc-
tures), which in turn may enhance photosynthesis through
increased sink strength (Cheeseman 1988; Farrar 1996).

Photosynthetic nitrogen-use efficiency

PNUE reflects investment of N in photosynthetic tissue
compared to other compartments within leaves. In C3
herbaceous species, PNUE was found to be a major
determinant of both plant and leaf N productivity (Garnier
et al. 1995). However, whole plant NUE may not only be
determined by instantaneous PNUE, but can also depend
on patterns of allocation of N and the residence time of N

within plant organs, all factors that can vary among
species (Berendse and Aerts 1987). For example, DeLucia
and Schlesinger (1995) found that PNUE of swamp
species from Florida did not correlate with another
measure of NUE, the retranslocation of nutrients out of
leaves. L. racemosa had levels of PNUE that are similar to
what has been observed in many other species (Poorter
and Evans 1998). In contrast, A. germinans had low
PNUE’s, approximately half of that observed for L.
racemosa, and were similar to values reported for
Californian desert shrubs (Field et al. 1983). Low PNUE
in A. germinans is likely due to allocation of N to non-
photosynthetic pools (e.g. glycine betaine), although
direct measurements of N partitioning have not yet been
made. The PNUE of A. germinans was insensitive to
fertilization and salinity. In contrast, PNUE of L. race-
mosa declined with salinity, suggesting that high salinity
compromised this species’ utilization of N resources.

Trade-offs among PNUE and PWUE and implications
for coexistence

After studying photosynthesis in five species of ever-
greens, Field et al. (1983) first hypothesized there was a
tradeoff between PNUE and PWUE in C3 plants. Species
with both higher PWUE and PNUE were simply not
possible because opening stomata to allow high rates of
photosynthesis per unit of nitrogen resulted in catastroph-
ic water loss in plants inhabiting water limited environ-
ments. Our data support this hypothesis (Fig. 4), as do
other studies (Reich et al. 1989; Mulkey et al. 1991;
Wang et al. 1998). L. racemosa has relatively high PNUE,
but low PWUE, making it a “nutrient conservation
specialist”. In contrast, A. germinans has very low PNUE,
and high PWUE making it a “water conservation
specialist”.

The commonly observed dominance of A. germinans
in highly saline and hypersaline soils is likely to be at
least partially due to its high PWUE. Additionally, if
highly saline sites are enriched in N then A. germinans
may be even more likely to dominate over L. racemosa. A
recent study has detailed the distribution of mangrove
species with respect to soil resource levels. Sherman et al.
(1998) found the distribution of A. germinans was highly
correlated to sediment N concentrations (measured at
50 cm depth), while the distribution of L. racemosa was
correlated with surface water P concentrations. At their
site, A. germinans became the dominant species at low
salinity, but at high N concentrations. All three common
mangrove species (L. racemosa, R. mangle and A.
germinans) coexisted in the intertidal zone at a region
where salinity was intermediate, N concentrations were
low, and P was high or variable. R. mangle dominated low
in the intertidal. Building on the arguments of McKee
(1995), Sherman et al. (1998) hypothesize that L.
racemosa 1s the most responsive to high nutrient levels
and may out-compete other species where nutrient
resources are high. From the results presented here, an



alternative hypothesis is that L. racemosa occupies a
realized niche constrained by competition with A. germi-
nans where nitrogen concentrations are high, and possibly
constrained by competition from R. mangle lower in the
intertidal, or by abiotic stress imposed by flooding
(McKee 1996).

We also hypothesize that coexistence of L. racemosa
and A. germinans is facilitated at high salinity by low soil
N levels, allowing competitive rates of carbon gain in L.
racemosa. Additionally, species differences in phenology
(M.L. Ewe, unpublished data) and photosynthetic rates
over seasons (C.E. Lovelock and I.C. Feller, unpublished
data) may indicate that resource use is temporally
partitioned by these species, which could also facilitate
coexistence (Chesson 1986). For example, each species
may experience a period of time that is more favorable for
photosynthesis and growth than it is for the other species.
Seasonal variation in salinity due to annual patterns in
rainfall and evaporation could be responsible, and has
been proposed to explain the distribution of other
sympatric mangrove species (Ball and Pidsely 1995).
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