A STUDY OF THE WINGS OF THE TENTHREDINOIDEA. A SLPERFAMLLY OF HYMENOI'TERA.

By Alexander Dyeir MacGillifray,
Instructor in Entomoloyy, Cornell Chinersity.

INTRODUCTION.

This is a study in the phylogeny of a group of animals based on a study of the motifications of a single orgatn. It is an attempt to trane the combe of the fhanges wromeht by matural selection, an effort to apply the principles of descent to taxonomy.

Classifieations based on the moditications of at single wata are generally imperfect. But on no single organ of :ay group of animals or plants has the effects of natural selection been written so clearly as on the wings of insects. The record is spread out as on a printed page and only awaits the tramslator. The taxonomy of sereral groups of insects hased on a genetic study of their wings has been published, and in every case where phylogenies hased on other sets of organs have been made it has been found that they rontirm the conclnsions derived from a study of the wings.

The Tenthredinoidea have heen carefully stndied by many investigators. Soveral clasifications have been proposed, but no attempt has been mado hitherto to work ont an arrangement along the lines here proposed. In previons groupings a charater common to a large number of forms and not common to others has been taken as of high value, while those common to a smaller mmber of forms as of subordinate value. No account bas been taken of the question as to whether these characters include forms of one or of many lines of descent.

At the ontset I wish to express my obligations to Prof. J. H. Comstock and Dr. W. A. Riley for constant adviee throughout the preparation of this paper: to the authorities of the Urated states National Mnsenm for the loan of specimens from their eollections not otherwise atcessible to me, and to Mr. . J. ('hester Bradley for the privilege of examining a number of species and for looking orer the manmeript.

I. HISTORICAL."

Students of wing-renation in the past almost imvariably made the mistake of considering the fow-reined wing as the starting point and the many-veined wing as the arquired condition. In the Lepidoptera a wing-type like that oecurring in the Noctuide or Arctidae was considered the generalized condition, while the many-reined wings of the Ilepialide and Mieroptergoda were looked upon as being at the summit of specialization in that order. In the Diptera the wing of the Muscidae was taken as the starting point. and the extra reins found in the Tabanide and Leptidat were considered as entirely new developments and were given sperial mames. The same view was held by writers on the IIymenoptera, where a wing type similar to that found in the spheridae was made use of.

Our knowledge of the homology of the wing veins of insects is due to the work of sereral investigators. The first one to consider this suhjert was Hermam Hagen." He published a paper Ueber rationelle Benemmong des Geaders in den Flügela der Insekten, but this had little more effect than to call attention to the importance of the subject. The first serious attempt to homologize the wing veins of insects of all orders was not madertaken matil sixteen years later when Josef Redtenbachere published a paper on a Vergleichende Studien uber das Flïgelgeader der Insekten, whieh was an epordn-making work. Unfortmately he made the serious mistake at the heginning of his investigations of adopting the conclusions of Adolph; " who, from a study of the development of wing veins, had concluded that the veins were of two distinct kinds, concare and convex. The concare veins had been produced by a thiming and the convex veins by a thickening of the wing membrane; the former by a pushing in of the trachea, the latter her the formation of chitinous lines and orempied hy trachere only secondarily. Redtenbacher helieved further that the wing was longitudinally plaited, consisting of altermate ridges and grooves, the concave or primary veins being situated at the bottom of the grooves and the convex or secondary veins along the top of the ridges. He considered that in the primitive insect the two wings of each side were fan-like in form and similar in renation. like the wings of the Saltatorial Orthoptera and Ephemerida. starting with such a mansveined typr, he was successful in homologizing the main stems of the prineipal veins, but through his efforts to apply the theory of Adolph,

[^0]he was led into serions arons in homologizing the tips of the reins. In romparing the fow veined wings of the Lepidoptera, liptera, and Hymenoptera, where peactically all the comearo veins are wanting, with his primitive fan-type of wing. he concluded that fully one-half of the reins had been lost. He was the first to dovise a uniform nomenclature and to apply it to all the orders of winged insects. Beginning with the front margin of the wing, the veins were named costa, subeosta, larlins, media, cuhitus, and anal. The compex veins were designated by odd Roman mmerals, costa by l, radins hy III, media by V. cubitus by VII, and the comed anal reins hy IX, XI,
 the concare anal reins hy VIII, X, XII, ete. the roncate roins IV and VI being left manamed. The branches of the veins were designated by Arabice momerals appended as indices to the Roman numerals the Arabie indiees being odd or even in accordance with whether the veins were convex or concave.

Redtenbacher in conjunction with Brature in Ein Britrag zur Entwicklung des Flïgrolgeadros der Insekten." from a study of the development of the reins in the wing of : nymph of an . Eschnid, proved that hoth concave and convex veins are preceded by trachea and aro therefore similar in origin and consequently completely upset the eomelasions of Adolph.
spuler in 1 s:t? in a paper. 'Zair Phylogenie und Ontogenie des Flügelgeaders der schmettertinge." gave the results of an investigation of the trachere that precede the wing reins, determined the type of the lepidopterous wing. and wats the tirst to recognize that radius in the hind wings of this order has only two branches. A modified form of the Redtenbacher notation was adoped. the reins being numbrered conserutively with Roman numerals and Arabic indices regardles of their origin, Redtenbarher"s veins IV and VI being entirely disregarded. L'nfortmately however, he overlooked the tratchea of eosta, vein I, and began his numbers with the second of the principal reins.

The following year ('omstock published the results of a general investigation of winge reins, with sperial reference to the Lepidoptera. From a comparative study of the wings of carboniferous insects he showed that the two paiss of wings wre simila in form and renation. the most generalized forms being found among the carboniferons cockroaches, where, with one exception-the anal furrow, vein VIIIall of the veins are convex, while none of the wings are phated. He further showed that the fan-type of wing assumed by Redtenbacher as the primitive type was an extrome type of specialization for a particular kind of flight, and that instead of regulaly altermating roncave

[^1]and convex reins the concawe reins are secondary in origin. being either modified convex reins or veins that have arisen de noro. The concave reins having arisen to mert two distinct needs-- first, in those insects where the wings are broadly expanded so as to fit them for a sliding flight there is a necessity for a plaiting of the wings when not in use so an not to impede locomotion on foot; and second, where the wilth of the wings has been greatly reduced to fit them for a rapid rigorons flight and the wing. have been corrugated so ats to strengthem them. The concave veins IV and VI, here named "premedia" and "postmedia," respectively, were considered as wanting not only in the Lepidoptera. hut also in the primitive insect's wing. They were considered to be present only in those highly specialized wings of modern insects where a corrugation of the wing han arisen. The nomenclature of Redtenbarher was adopted in all details, except that the branches of the veins were numbered ronsecutively with Arabic indices regardless as to whether they were convex or concase.
lackard, " in 1895, gave an abstract of spuler's paper mentioned above, in which the nomenclature of spuler is followed. Apparently, if we may judge from his labeling of a motodontid wing, he has overlooked one of the most important facte discovered by spuler, namely. that the radius of the hind wings of the Lepidoptera consists of two branches.

In a Mannal for the Study of Insects," published during the same year, the homology of the wing reins in the orders Lepidoptera. Diptera, and Hymenoptera was carefully determined and mamed in aceordance with the modified Redtentacher notation. The concave veins IV and VI were shown to be wanting in these orders, but were supposed to be present as secondary developments in those orders where the fan-type of wing existed.
ln 1497 (Comstock and Needham ${ }^{\text {c }}$ began jointly the publication of a series of articles on the wings of insects of all orders. This insestigation was developed along two distinct lines and all the accessible material of all the orders of winged insects was examined. First, wherever possible, a careful study was mado of the trachere which precede the reins in the wings of immature insects; and, second, there was made a morphological comparison of the reins in the wings of adult insects. The following important results were reached:

First. That the concave reins IV and VI are wanting in the wings of all insects.
second. That the primitive insect's wings had eomparaiively few veins. These reins were eight in number. Beginning with the front

[^2]margin of the wing, they are costa unbranched, subcosta with two branches, radius with five branches, media with four branches, cubitus with two branches, and three unbranehed anal veins.

Third. That the modification in the number of wing veins of insects has proceeded along two distinct lines, the speeialization of wing veins by reduction and the specialization of wing veins hy addition. The former is illnstrated by the wings of the orders Lepidoptera, Diptera, and Hymenoptera; and the hatter by the wings of the orders Orthoptera, Ephemerida, and Nemroptera.

Fourth. The development of a hypothetical wing type, which was believed to represent the maximmm number, the arrangement, and the method of branching of the veins of the primitive insect's wing. This hypothetical type was shown to be of primary importance in determining the homology of the wing veins of inseets of all orders.

The terminology of Redtenbacher had heen applied in so many different ways hy previons investigators that these writers made use of a diflerent system of notation. They adopted the mames of the stems of the reins as used hy Redtenbather and used abherevations of these names to designate the reins, Arabie momerals being added as indies to the abhreviations for designating the branches of the veins. The ahhreviations used were the following: costa, C; subrosta, he; radius. K; metia, M; cubitus, Cu; and the anal veins as 1st A. ed A, and : id A .

In 1 !日e" Enderlein, in a discussion of an abnormal specimen of Tilan molyphrmms gives the results of an extended investigation of the interrelation of the wing and hody trachea. 'The trachea of ach wing is divided into two systems, the radial and the medial, the former inclading the rosta, suboosta, and radius; the latter, media. coubitus. amal, and axillary vems. It is unfortmate that this writer did not study some of the generalized Lepidoptera. such as the Heplalidae. It has been amply proven that in certain of the lewer orders of insects, as the Plecoptera, there are two tracheal trunks, the anterior giving rise to costa, subrosta, ratins, and media; the posterior, to cubitus and the amal roins. That this was probahly the primitive condition in the lepidopera is shown hy the adult wings of rertain species of Mepialus in which mediat amastomoses with cubitus for a short distance, bends abruptly toward the radius, joins it, and coalesces with it to the hase of the wing. In most Lepidoptera this hasal connection between media and radins has been lost, but the condition found in Hepialus would seem to indicate that the arrangement of the veins into systems as shown by Enderlein was probably an arpuired one. He has shown conchsively that eosta of both wings is

[^3]always precoded her a trachea and that in certain cases this is the most prominent trachea in the wing. The tracheal trmase behind cubitus are divided into two groups. The anterior he has called the anal group and the posterior the axillary group. The modified Redtenbacher nomenclature used by Comstock and Needham is adopted.

From a stady, extending over a period of several years, of the wing-reins of the superfanily Tenthredinoidea, which contains all the generalized wings fond in the order Hymenoptera, I :men convinced that the homologies established for the Hymmoptera hy Comstock in bis Manal for the study of Insects, and farther elaborated by Comstock and Needham, are eorrect, and they are aceepted and followed in this paper. An attempt will be made here to explain some details of the Hymenopterous wing as exemplitied ly the Tonthredinoidea and not dismensed by these investigators.

II. GENERAL CONSIDERATIONS.

In determining the homology of the wing-veine of insects. conclusions are reached ly two different methods. First, by a study of the ontogony of the wing-reins, which ronsiste of a careful examination of the tracheation that precedes the veins and a comparison of it with the wing-veins of the pupa and adult. As a rule. cross-veins are not preceded ley trathea, so that this method, where it can be applied, is of the greatest importane in determining the course and extent of the principal veins and their branches. Second, by a study of the phylogeny of the wing-reins, which consists of a careful comparison of the progressive modifications found in the wings of adult insects. By this methorl, the accuracy of the results depend on the skill of the investigator in deeciphering the record.

It has been shown by C'omstock and Needham" that an ontogenetic study of the wings of the Hymenoptera in not of any value in determining the homology of the veins, and I can not do better than quots their acromet:

The importance of this methot of stuty has been well shown by the results we have obtaines. But we also found that in the Trichoptera there is little correlation between the venation and the tracheation of the wings, a remarkable reduction of the wing trachere having takes place. A similar reluetion of the tracheas of the wingexists in most fanilies of Diptera; and even when a large proportion of the trachew are retained, as in certain Asilids, they afford little aid in the determining of the homologies of the wing-veins. For this reason we omitted a diseussion of the tracheation of the wings of Diptera. Again, in the Hymenoptera we find that the courses of the trachea can not bedepended upon for determining the homologies of the wing-veins. But here, in the more generalized members of the orter, we tind a very complete system of wing-tracheas, and it is, therefore, incumbent on us either to point out the corresondence between the trachea and the wing-veins, or (o) demonstrate that such a correspondence does not exist.
a J. H. Comstock and J. (i. Needham. Amer. Nat., XXXII, 1898, pp. 421-422.

In the Hymenoptera, as we have shown, the courses of the branches of the forked veins, in those forms where they have been preserverl, have been so modified that these branches extensl more or less transversely, making sharp angles with the main stems. It is not strange, therefore, that the trachee of the wings of the pupa lying free within the wing-sac, have not followed these changes.

It was founl, however, that this is not the explanation of the change. An examination of the wings of young pupe of the honey-bee revealed the fact that in this insect the laying out of the wing-venation precedes the tracheation of the wing. After the wing-veins reach that stage of development in which they appear as pale hands, the trachere grow out from the base of the wing into them.

It is obvious that trachere leveloped in this way will follow the paths offering the least resistance to their progress; and that it is not to be expected that the trachere will preserve their primitive arrangement under these conditions. This brings us to the conclusion, already announcerl, that in determining the homologies of the wingveins in the Hymenoptera we are forced to base our conclusions on a study of the veins themselves, and that a method of study which is of the highest importance in determining the homologies of the wing-veins in many other insects, is of little nse here for this special purpose.

From the results just given it is evident that we must depend entirely on a careful comparison of the wing-veins of the Tenthredinoidea, part by part, for a determination of their homology. Before considering the special modifications of wing-veins. some diseussion is necessary of the mamer in which the reins may be modified or reduced in number and the resultant reduction or combination of cells.

A reduction in the number of wing-veins may take place in two ways-first, by the coalescence of two or more adjacent veins; and second, by the atrophy of a whole or a part of a vein. The first method of reduction, coalescence, may proceed in three ways-first, by the coalescence of principal veins or branches from the base of the wing toward the margin; second, by the coalescence of the tips of veins or branches from the margin of the wing toward the base; and third, by the coming together of two veins at some point more or less remote from the margin of the wing and their coalescence for a greater or less distance. This third type of coalescence is gencrally spoken of as anastomosis. The modern hymenopterous type of wing has been produced, as will be described later, by a combination of all three of these methods.

The second method of reduction, atrophy, or the fading out of the whole or a part of a vein, is the means by which most of the changes found in the modern bymenopterous wing are brought about.

When two or more branches or any of the prineipal veins coalesce, this fact is indicated by placing a plas sign (+) between the abbreviations of the veins that have combined. If, for example, R_{2} and R_{3} coalesce, the legend would be R_{2+3}; while if any of the principal veins combine, as R, M, and Cu, it would be written thus: $R+M+C u$. This implies that not only the branches of the same vein, but that the stems of the different reins, as well as the branches of different reins, may coalesce.

Proc. N. M. vol. xxix-05--38

The cells of the wing are named by applying to them the abbreviations of the vein forming its front margin, the group of cells at the lase of the wing (fig. 1), being designated by the abbreviations of the principal veins, while the group of cells at the apex of the wing are designated by the branches of the veins. It should be borne in mind that when the vein forming the front margin of a cell is a composite one, as R_{2+3}, the cell behind this vein is not R_{2+3}, but R_{3}, the cell R_{2} having been obliterated by the soaleacence of the reins R_{2} and R_{3}. When cells are divided by a cross-vein, as cell M_{2}. the basal portion is spoken of as $1 \mathrm{st} \mathrm{M}_{2}$ and the marginal portion as $2 d \mathrm{M}_{2}$. In laheling the figures of entire wings, the names of the veins are put either on the reins or near them, and an arrow placed to indicate the vein to which the name applies, or at their apices around the wing margin, while the names of the cells are placed within the cells to which they :pply.

All that portion of a vein that does not coalesce with any other vein is spoken of as the free part of that vein. If media be taken as an example, then all that portion of I_{1} between the point where it separates from MI_{2} and the margin of the wing would be the free part of M_{1}. In the following pages the origin of particular reins is frequently spoken of. By this is meant the point or place where they separate or fork and does not refer to the actual point of origin. If media be taken again as an example, the point where M_{1} separates from M_{2} would be considered as the origin of the free part of M_{1}.

Althongh there are no facts in support of the method here given, and althongh it implies a condition much more generalized than is found in the hypothetical type, yet I have always found it easier in working out the homology of veins myself, and also in explaining venational problems to others, to consider each of the branches of any vein as extending from the base to the margin of the wing. If radius and its five branches be taken as an example, the stem part, always designated as R , would be considered as being a combination of all the branches of radins, or as $R_{1+2+3+4+5}$. which divides into R_{1} and R_{s}. In like manner the stem of the radial sector wonld be considered as being a combination of all the branches of the radial sector, or as R_{2+3++5}, which divides into R_{2+3} and R_{4+5}, and these in turn into R_{2} and R_{3}, and R_{4} and R_{5}, respectively. So that in tracing out the course of any of the bramehes of radius by drawing a pencil along them, as R_{4}, begiming at the base of the wing, we would pass first orer the stem of R, then orer the stem of the radial sector, then over $\mathrm{R}_{4}+5$, and finally over the free part of R_{4}.

III.-THE ORIGIN OF THE HYMENOPTEROUS TYPE.

In order that the reader can follow more intelligently the later discussions, the following general description of the origin of the wing of the Hymenoptera is introduced at this point. Use has been made of the following series of hypothetical figures to show how the existing arrangement of wing-veins was in all probability developed from a wing similar to that of the Comstock and Needham hypothetical type. This series hegins, therefore, with this hypothetical type and concludes with a typical generalized hymenopterons wing, which is the wing of Macroryela ferpmgimen to which has been added the free part of Cu_{2}. To the hypothetical type I have added the crossveins which are present in hymenopterons wings. These cross-veins are as follows:

The radial crosw-vein r, situated between K_{1} and K_{2} : this is wanting in the Hymenoptera only in certain genera of the Tenthredinoidea.

Fhi. I.-llypothetical wing type.
The radio-medial cross-vein $r-m$, situated between radius and media.

The medial cross-vein m. situated hetween M_{2} and M_{3}.
The medio-cubital eross-rein m-cn, situated between media and cubitus.

Begimning with the anal reins, the reins will be taken up in order. proceeding from the hind to the front margin of the wing.

The anal reins are three in momber, simple, till the anal portion of the wing, and are known as 1st A. od A, and 3d A. The first modification of the anal veins to be noted is the coalescence of the tips of $2 d$ A and $3 d A$, resulting in the closing of the second anal cell at the margin of the wing (fig. 2). This coaleseence proceeds farther and farther and the 1st A migrates toward the combined tip of $2 d$ A and $3 d \mathrm{~A}$ and combines with it, shoving the second anal cell toward the base of the wing and closing the first anal cell at the margin (figs. $3-t$). Coincident with this apical coalescence, the base of ed A migrates
forward to the base of 1st A , combines with it, and closes the first anal cell at hase as well as at apex (figs. 4-5). The further modifications of the anal veins and cells are all the result of this coalescence continued at apex and base until the free part of $2 d$ A appears as a cross vein just beyond the middle of the cell, while the apex of the cell bears an elongate, simple, spur-like vein formed by the combined

Fig. 2.-Modified hypothetical type.
union of the three anal veins (figs. 7-8). We thus have formed what is known to the students of the Tenthredinoidea as the lanceolate cell, which is in reality two very different cells. The modifications of the lanceolate cell serve as excellent characters for tracing the phylogeny of the family Tenthredinide and for dividing it into smaller groups.

The cubitus, Cu, is a forked rein lying just in front of the three anal veins (fig. 1). The two branches of cubitus, Cu_{1} and Cu_{2}, migrate

Fig. 3.-Modified hypothetical type.
toward the combined tip of the anal veins (fig. 3) and coalesce with it (figs. 4-5). By this meams, first, the cell Cu and then the cell Cu_{1} are closed at the margin of the wing. The branches of cubitus after combining with the united tip of the anal reins, follow along the front margin of 1st A. coalescing with it more and more, and at the same time crowding the cells, Cond Cu, farther and farther away from the
margin of the wing (figs. 6-7). This coalescence continnes until the free parts of Cu_{1} and Cu_{2} appear like short cross-veins near the middle of the wing. At the same time that the apices of the branches of cubitus are combining with the anal veins, the hase of cubitus migrates toward the front margin of the wing, combines with the united base of radius and media (figs. (6-8), and closes the base of the cell M. With the migration forward of the base of cubitus, the combined bases of 1 st A and 2 d A . also migrate forward to till the space vacated by the hase of cubitus.

The media, M. lies just in front of and parallel with the cubitus (fig. 1). Near the middle of the wing it divides into two branches, each of which divides again. With the migration and coalescence of the tips of cubitus and anal veins there begins also a migration of the three posterior branches of the media (figs. $\check{-5}$). M_{4} eventually combines with the combined tip of the anal veins and cubitus, closing the cell M_{4} at the margin of the wing (fig. 6), migrates along this rein, and

Fig. 4.-Modified hypothetical wing.
combines with the tip of the free part of Cur , crowding the cell M_{4} back still farther from the wing margin (figs. 7-8). M_{3}, pulled along by the same force that combined M_{4} with the anal veins and cubitus, migrates along the margin of the wing and combines with the tip of the spur-like rein situated at the apex of the first anal cell. In this way the cell M_{3} is closed at the margin of the wing. The spur-like tip now consists of the combined anal, cubitus, and two posterior branches of media. The tip of the rein 1st $A+2 d A+3 d A+C_{1+2}+$ M_{3+4} bas been lost, so as to permit of the folding of the posterior margin of the wing where the hooks of the hind wing are fastened. M_{2}, tied to M_{3} by the medial cross-vein, is also pulled around the wing margin, changing from a longitudinal to a transverse position, while the medial eross-vein is transformed from a vein extending transversely to one extending longitudinally (tigs. 5-7). The first branch of media maintains its primitive position near the middle of the wing throughout the entire series. The stem of media very early migrates forward and combines with the stem of radius (figs. $4-7$), thus com-
pletely closing the base of the cell R. This coalescence continnes until the stem of media and the stem of radius are combined for almost their entire length, while the cell R is crowded toward the middle of the wing and is found as a small trapezoidal-shaped area near the base of the stigma (figs. 7 - 8).

The radius, R, lies just in front of media (fig. 1). Near the middle of the wing it breaks up into tive branches. In its primitive condition radius divides by a series of characteristic dichotomies, separating first into two mequal parts, R_{1}, and a large part which, together with all its branches, is known as the radial seetor. The radial sector divides into two equal branches, each of which in turn divide into two more branches. This characteristic dichotomy is entirely lost in the Hymenoptera. The suppression of the dichotomy of the radius has been brought about by the coalescence of the stems R_{2+3} and R_{4+5}. This coalescence has proceeded so far that the branches of the sector now arise from a common stem (figs. Q-3). With the coalescence of

Fig. 5.-MODIFIED HYPOTHETICAL, TYPE.
the stems of R_{2+3} and R_{4+5}, R_{1} and R_{2} begin to migrate toward the apex of the wing, to stiffen the area vacated by R_{4} and R_{5}, which have migrated toward the tip of M_{1} (figs. 2-4). R_{4} and R_{5} each in turn coalesces with M_{1} and closes the cells R_{5} and R_{4} at the margin of the wing. The coalescence proceeds farther and farther until the free parts of R_{5} and R_{4} appear like cross-veins extending between R_{3} and M_{1}, and the cells. R_{5} and R_{4} as quadrangular areas within the disk of the wing (figs. 5-i). The primitive condition maintained by M_{1} near the middle of the wing is undoubtedly due to the early coalescence of R_{5} and R_{+}with it and holding it in place.

The subeosta, Sc, liew just in front of the radius and parallel with it. It breaks up into two branches, Sc_{1} and Sc_{2}, near the margin of the wing (fig. 1). The anterior branch is preserved in practically its primitive condition throughout the series. The posterior branch bends down and touches R_{1} (fig. 2), with which it anastomoses more and more (figs. 4-6), until there is only a small portion of the distal end free (lig. 7). This anastomosing of Sc_{2} and R_{1} divides the cell Sc into
two distinct parts, a long basal portion ice and a matll area at the ruex of the small free part of the vein hes and in front of the vein k_{1}. This cell in all Itymenoptera is strongly chitinized and is known as the stigna.

The costa. C, is situated on the front margin of the wing and does not undergo any marked modifications.

Flif. (i, - MODIFIED IIYPOTHETICAI. TYPE.
Thus far there has been considered only a hypothesis as to how the most generalized hymenopterons wing known could have been formed. The data upon which this hypothesis is founded is not original with the writer but is based on facts first pointed out by Prof. J. II. Comstock in his Manual for the Study of Insects and Elements of Insects Anatomy. Let us now look at a few of these facts on which this hypothesis is baserl. If a careful study be made of a number of wings of the Diptera, one of the most striking facts noted will be that "there is a

Fig. 7.-Modified hypothetical type.
marked tendency for veins to coalesce from the margin of the wing toward the base." In fact, if the wing of Mides (fig. $\because\left(\begin{array}{l}\text {) be examined. }\end{array}\right.$ it will be seen that a larger proportion of the veins are coalesced at apex than in any known hymenopterous wing. If Cu_{2} and $1 s t \mathrm{~A}$ be examined in the wings of Panturbes (fig. 21). Eran (fig. 22), Terlemus (fig. 23), Scenopinu* (fig. 24), Rhemphomyin (fig. 25), and Mихе" (fig. 26),
in the order named, there will be fonnd a complete series showing how C n_{2} has combined with 1st A. It is true that only one branch of cubitus has combined with the anal vein, yet it shows how this coalescence proceeds. When the medial area of Erow (fig. 22) is examined it will be noted that M_{3} and Cu_{1} have coalesced at apex, crowding the cell M_{3} back from the margin of the wing just as cell M_{4} is pushed back in the hymenopterons wing, and it does not need a long stretch of the imagination to understand what would be the result if the vein $\mathrm{M}_{3}+\mathrm{C}_{1} \mathrm{u}_{1}$ were to migrate toward the apex of the rein 1st A, as has occurred in the Hymenoptera. The wing of Eirar shows also how, through the combination of the apices of the veins, the medial cross-vein has been swung around from a transrerse to a longitudinal position. This same condition is also shown in the wing of I'antarbes (fig. 21), where the medial cross rein and the first three branches of media assume a position almost identical with that found in the Hymenoptera. It also shows how the branches of R_{5} and M_{1} have coalesced, the only differ-

Fli. . .-Typleal hymenopterous wing.
ence in the Hymenoptera being that this condition has proceeded much farther and R_{4} also has combined with M_{1}. This condition found in leanterbes is not peculiar to this wing, but is also found in Pipunculus, ('mops (fig. 27), most Syrphida, and many Calyptrate Muscide. The wing of Midrus (fig. 28) is an interesting example of how far this apical coalescence may proceed. In this wing the coalescence takes plare in a different direction, but is just as pertinent to the point in hand. Here veins $R_{v_{+3}}, R_{4}$, and R_{5}, have coalesced with R_{1} in just the same way that R_{4} and R_{5} have coalesced with M_{1} in the Hymenoptera, the difference being that in the Hymenoptera only two veins coalesce while in this dipterous wing three reins have coalesced and the fourth vein has migrated up to the tip of R_{1}. Both branches of subcosta are preserved in but very few insects and the peculiar anastomosis of $s c_{2}$ and R_{1} and the formation of the stigma are paralleled in the wings of the Plecoptera. In the gemns. Semoura (fig. 2.9), the anastomosis extends for only a short distance, while in the genus

Tacminptery, ${ }^{2}$ (fig. 30), the amastomosis is for almost the entire length of Sc_{2}, resulting in a condition similar to that found in the generalized Tenthredinoidea.

IV.-A STUDY OF THE WING AREAS.

As already indicated, the wings of insects may be divided into six well-marked areas, an area for each of the primeipal veins. It is true that these areas are closely interlocked in the Tenthredinoidea, but this seems the most logical way of approaching the subjert. An attempt will be made here to describe the most important modifications found in the wings of existing genera.

1. THE FRONT WINGS.

In all insects where the wings of a side are closely fastened together for unison in tlight, there is a great difference in the amount of reduction found in the two wings. It is a well-established fact that that animal whose wings approximate most nearly a triangle in ontline is the most efficient Hyer. For this reason it is apparent that when the wings are of this type, as in the order Hymenoptera, the hind wings are always the ones to mudergo the greater amonnt of reduction, and consequently it has been found necessary to discuss the areas of the two wings separately.

> THE COSTAL AREA.

Costa is a simple straight vein of the same width throughout in the Lydidx (figs. 36-43), Xyelidie (figs. 31-35), and Megalodontida (fig. 92). In most genera, as Dolerus (fig' 49), I'teromes (fig. 68), Blenmocampu (fig. 72), and Erincompu (fig. 47), it is decidedly thickened at apex, spatulate in outline, while in the Cimbicinse (figs. 59-60), it is thickened thronghout its entire length and lies aljaeent to $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$, practically squeezing out the costal and subcostal cells.

A peculiar condition found in most of the Tenthredinoidea, though not occurring outside this superfamily, so far as I have been able to observe, is a hinge-like thimning out of the margin of the wing at the hase of the stigma. It is present in all the genera except the largebodied, active species of the family siricidae (figs. 86-81), and the subfamilies Cimbicina ($\mathrm{figs} .59-60$) and Pterygopherine (fig. 81). It represents the space on the margin of the wing between the apex of the costa and the point where the second branch of subcosta joins the margin. In those forms where this structure is wanting it has been chitinized secondarily, and even here its position can often be detected becanse the band of chitin closing the space is not so broad as it is on either side of it.

The humeral cross vein, situated at the base of the wing between costa and subcosta, is one of the most constant of the cross reins found
in the other orders of insects. In the Tenthredinoidea it is present only in J/acroryeln femmemen, and even here is only faintly indicated. In the Lydida, there is a broad thickening at the base of sulscosta and a similar thickening in the Megalorlontidae (fig. 92) between costa and $\mathrm{Se}+\mathrm{R}+\mathrm{M}$ that maty be homologous with this cross-rein.

Subcosta does not occur in the Hymenoptera outside the superfamily Tenthredinoidea, and here only in the families Xyelida (figs. 31-35) and Lydide (figs. 36-43). In most of the genera of these families subcosta extends midway between costa and $R+M$. Near its apex it divides into Sc_{1}, which ends in the margin of the wing, and Sc_{2}, which amastomoses with $R+M$ and ends in the margin of the wing at the base of the stigma. Behind the stem of subcosta there is fomm the cell S c and behind and beyond the rein Se the cell Sc_{1}. In Mequaxyela (fig. 31) and Odontophyes (fig. 32) the cell Sc_{1} is very small, due to the great length of subcosta. Subcosta divides into Sc_{1} and Sc_{2} midway between the origin of media and the radial sector. In Macroryela (fig. 33) this separation takes place just beyond the origin of media, while in the Lydidae this separation is a considerable distance before the origin of media. These wings show that there is a progressive migration of the origin of Sc_{1} and Se_{2} from near the origin of the radial sector to a position near the base of the wing. In Tyela (fig. 35) and Manoryela (fig. 34) the stem of subcosta is closely appressed to $\mathrm{R}+\mathrm{M}$, thongh it is never coalesced with it, so far as I have been able to observe, almost obliterating the cell Se and causing the branch sc_{1} to extend like an oblique cross-vein from $\mathrm{R}+\mathrm{M}$ to the wing margin. In Neurotomu (fig. 36) the free part of Sc_{1} has completely atrophied, while the remainder of the rein is normal. An interesting related condition is found in certain of the large species of Siricida, as Tremex columbu (fig. 91), where the area of the wing situated between costa and $R+M$ is almost as strongly chitinized as the reins themselres. In wings mounted in balsam it is possible to trace as a pale line a condition of subcosta similar to that found in Venrotoma. This seems to indicate that subcosta has been suppressed in two ways, first, by the close appression of its stem to $R+M$ and its probable later coalescence with it, and. second, by the chitinization of the area between costa and $R+M$, and in this manner doing away with the necessity for a vein to stiffen this area.

In all other 'Tenthredinoidea, where any portion of subcosta is present, other than the apex of Sc_{2}, it is the free part of Sc_{1}. It extends as a cross-vein between costa and $R+M$, and is usually spoken of by the investigators on this superfamily as the intercostal cross-rein. It is generally situated just in front of the radial end of the mediocubital cross-vein, except in Kiphydria (fig. 85), where it is sometimes
opposite the point of origin of media, and in /himatre (fig. 63), where it is distinctly beyond the radial end of this crosserein. An interesting moditication is found in the subfamily Tenthredininae (figs. 56-58), where $\mathrm{R}+\mathrm{M}$ is bent at a prominent angle at the point where it is joined hy Sc_{c}. indiating a condition more closely related to the Xyolidee and Lydidae than is found in the other members of the family Touthredinide. se, is best preserved in those genera where the mediocuhital cross-vein and the stem of M_{3+4} are strongly divergent behind. In fact, there sems to be a direct correlation between the divergence of these reins, the widening of the area between costa and $\mathrm{sc}+\mathrm{R}+\mathrm{M}$, and the preservation of the free part of Sc. This in especially marked in the subfamily Nematime (fig. 68). The free part of Sc_{1} is entirely wanting in the Cephida (figs. 93-96). Oryssidae (fig. 97), Cimbiciate (figs. 5!-60), and mumerous genera of other groups as Lathelarge (fig.
 in many genera, as Strombereros (tig. 50). Dolerns (fig. fi!), and Macerophyu (fig. 57) there is a marked thimning ont of the costal half of the rein, while in still other genera as Allantus and A thalia, there is only a slight projection on the front margin of $\mathrm{sc}+\mathrm{R}+\mathrm{M}$.

If the record has been correctly interpreted, the free part of Sc_{1}, as represented in the genus Mimeurn (fig. 63), has undergone a double migration. First, from near the stigna to the condition found in Syrl" (fig. 35), as shown by the wings of the Xyelide and Lydide, and second, after the coalescenco of the stem of subcosta with $\mathrm{R}+\mathrm{M}$, a remigration toward the stigma has resulted. -

Tile Radial area.
Radius divides into R_{1} and the radial sector just before the stigma, of which the rein R_{1} forms the hind margin, and beyond the stigma extends along just within the wing margin to or beyond the apex of R_{3}.

There is only one family of Hymenoptera, the Xyelidx (figs. 31-35), in which all the branches of radius are present. In all the families except the one named the entire free part of R_{2} has been obliterated.

In the genus Macroryela (fig. 33) R_{2} arises about midway between the radial cross-vein and the origin of the free part of the vein R_{5} : in Manoxyela (fig. 3t) it usually arises near the apex of the cell R_{5}, though in the same species it maty in some specimens arise from the cell R_{5} and in others he interstitial with the free part of the vein R_{5}, and in Iyela (fig. 35), although it normally arises from the cell R_{4}, yet it is sometimes interstitial with the free part of the vein R_{5}.

The radial cross-rein is situated between the vein R_{1} and the stem of the radial sector, dividing the cell R_{1} into two parts. Within certain limits it is failly constant in its position. In every case, so far as I have observed, its anterior end is joined to about the middle of
the stigma. Its posterior end in the families Xyelidie (figs. 31-35) and Cephider (lign. 98-:, 6) is attached mear the middle of the cell R_{5}; in the Megalodontide (fig. 92) and Siricide (figs. Si-91), except the genera Tremra (tig. 91) and Teredon (fig. 90). where it is joined to the cell R_{4}, it is attached just beyond the middle of the cell R_{5}; in the Lydide (tigs. $36-43$) it raries in position from just beyond the middle of the cell R_{5} to the apex of this cell, and in some forms is interstitial with the free part of the rein R_{5}, and in all other Tenthredinoidea it is attached near the middle of the cell R_{4}, except in certain speries of Tentliredopsis, Scolionenrel (fig. 75), Monophludmus, Lycaota (tig. 55), and Blemnoctmpa (fig. 72), where it is interstitial with the free part of thr vein R_{4}, and in certain species of the genus Kaliosysplinga. (fig. 63), where it is attached to the cell R_{3}, but this latter change is not due to a shifting of the position of the radial cross-vein, but to a migration of the free part of the vein R_{4} toward the base of the wing. The radial cross-vein is present in the wings of all Hynenoptera where the base of the radial sector is present other than those of a few groups of Tenthredinidae, Lophyrine (fig. 45), Nematina (tig. 68), Perreyina (fig. 80), Pergina (fig. 84), and Pterygopherine (fig. 81).

The radio-medial cross-vein is rarely wanting, though in many genera it is so completely covered by a large clear spot or bulla that it is often diflicult to determine whether it is present or not. This condition is well shown in many Nematine, where all stages from a distinct well-marked eross-rein to its total disappearance can be found. In other genera, as Trichiosoma (fig. 59), Clarellaria (fig. 60),
 Blasticetoma (fig. 44), all trace of the cross-vein has disappeared, while in Jomoctenus (fig. 67) only the posterior balf is wanting. In those genera, where this cross-rein is retained, it always appears as a transerse rein extending between the stem of the radial sector and the stem of media. In the Xyelide (figs. 31-35) the medial end has swong toward the base of the wing so that it appears to be a continnation of the radial sector, white a portion of the stem of the radial sector appears to be the cross-rein. In certain genera of the Siricide, as Sirer (fig. 87-8s) and Tremer (fig. 91), the medial end has swung around stild farther toward the base of the wing so that it arises from the angle made by the transverse and longitudinal parts of the stem of media where it is joined by the medio-cuhital cross-rein, and in some species arises distinctly from the transserse part of media.

The free part of R_{5} is wanting in only a very few genera, as Dolems (fig. 49), Lodrum. Eumper, and Tremere (tig. 91).

The free part of R_{4} so far as observed is never wanting in this superfamily. It is not so constant in position as R_{5}; in the Xyelide (figs.

31-35) and Lydidae (figs. 36-43) it is an obligne transweme vein situated near the margin of the wing. In most Tenthredinidar, as Itoplorampa (fig. 61), Cladius (fig. (ifi), Tenthredo (fig. 56), and Dineure (fig. 63), it is found in the apical third of the distance between the base of the stigma and the apex of the wing, while in a few genera, as Leflecervens (fig. 82), temodelecern (fig. 83), and many Hyfotomina (fig. T6), it is found near the middle of this area.

In the apex of the wing of many Tenthredinoiden, ats Sirex and Tirmex (fig. 10, c), there is fomed a prominent spurlike projection from the apex of the cell R_{1+2}. The area included in front of this spur has been termed the appendiculate cell. As there is no vein forming the front margin of this cell, and as this name is in general use by the investigators on this order, it will be used here. The origin of the appendiculate cell will be more readily understood if we examine this region first in certain genera where

Fig. 9.-Origin of tile appendiculate celf. (1 , Marronyela ferruginea; b, MUNOMTENTS JUNIPERI: r°, Clavellaria amerine: d, Xiphydria (AMELUS; r, PERRYIA VITELLINA.

Fig. 10.-Appendiculate cell. a, DieLOCERES FORMOSCS; b, PACIIYLOTA AUDOUINII; c, l'TERYGOPHORUS (INCTUS; d, LABIDARGE DIBAPHA; f, TREMEX FUISCICORNIS. the appendiculate cell is not supposed to be present. If the front wing of almost any member of this superfamily be examined in this region, it will be noted that the portion of R_{1} beyond the stigma does not form the margin of the wing b hout is set in a short distance from it. This is especially marked in the genera Macroryela (fig. 9,1), Tenthrodo (fig. 56), c Momoctenus (fig. 9, 乍), (lentinis (fig. 66), and Strongyloguster (fig. 51). It should be also noted that i_{1} all these wings. K_{1} extends heyond the point where it is joined by R_{3}. This is especially marked in most Cimbicinar as Clarellaria (fig. 9, c), where there is also an slight curving down of R_{1} at the point where R_{3} joins it. Now if this region at the apex of R_{3} is examined in the following wings, it will be seen that the formation of the appendiculate cell is only a gradual modification of the condition existing in the wing of cracellaria. In Xiphydria (fig. 9, d), the bending down is slightly more pronomned
yet not so prominent that systematist have ascribed an appendiculate cell to this genus. In the genera Perreyiu (fig. 9,), Dielocerus (fig. 10, a), Pterygophomes (fig. 10 c), Lahider!fe (fig. 10, d), Sirex (figs. 87 88), and Tremex (fig. 10, e), all of which are considered as having an appendiculate cell, there is a perfect series from the condition found in Tenthoralo and C"curllaria to those genera in which the appendiculate cell is well marked. This series also shows clearly that the vein projecting from the apex of the cell $2 d \mathrm{R}_{1}+\mathrm{R}_{2}$ in Tremex is not of secondary origin but is rein R_{1}, which has moved in from the margin of the wing and that vein R_{3} ends at the point where it joins R_{1}. The formation of the appendiculate cell has arisen through the necessity for a stiffening of the apex of the wing.

The point of separation of the stem of media from radius and the position of the medio-cubital eross-vein are so intimately associated that they will be discussed together. Media is found in its most primitive condition in the wings of Manoxyela (fig. 3t). where it separates from radius very nearly midway between the stigma and the base of the wing. It does not bend down at right angles, as is the case in most of the reins of the Hymenoptera, but branches off in a manner similar to that found in the branches of radius and media in the dipterous wing. This has a marked effect on the size and shape of the cell R , which is here three times as long as it is broad at its widest point. The medio-cubital cross-vein also occupies a very generalized position. It is located at the apex of the cell R , almost interstitial with the radio-medial cross-vein, while in all other Tenthredinoidea it is found at or near the base of the cell R. In Macroxyela (fig. 33) we find a slight moditication of the condition found in Menoxyela. Here media has combined with radius for a greater distance, separating from radins distinetly beyond the middle of the distance between the stigma and the base of the wing, while the cell R is only about twice as long as broal. The medio-cubital cross-vein arises from near the apex of the cell R and is about the same length as the portion of media between it and radius, the two standing at about the same angle like the top of a Y. In all other Tenthredinoidea the media has coalesced with radins for a much greater distance-for at least three-fourths of that portion of radius extending between the stigma and the base of the wing. In Xiphydria (fig. 85) media arises very much as in the wings just described and the medio-cubital cros-refin is transterse and placed just before the middle of the cell R. The wing of (Orys:sus (fig. 97) is another interesting example. In this wing the reduction in the number of wing reins has been carried farther than in any other Tenthredinoidea, yet as regards the origin of media and the position of the medio-cubitat cross-vein it is practically the
same as is fomd in Jiphychion. This is an interesting example of how very specialized a wing may be in one part while in others it may have retained a very generalized condition. In the Lydidae (figs. 36-43) media arises in a mamer similar to that just described, but the modiocubital cross-rein is always many times longer than the transerse part of media and meets it soon after it separates from radius in the genera Bactrocorow (fig. 41), Cephalein (fig. 42), N'urotoma (fig. 36), Liolyda (fig. 43), and Pemphilins (fig. 39), while in the genera Itycorsxin (fig. 40), Cenolyda (fig. 38), and Lydle (fig. 37) it arises in the angle formed between radins and media. It is of interest to note that in the case of those genera where it arises in the angle between radius and media no part of the cross-vein has migrated onto radius, but that it is attached to the very base of media. In the amomalons gemus B/astiontoma (fig. 44) media, after separating from radius, goes off at a right angle for a short distance and then turns abruptly toward the apex of the wing, the anterior end of the cross-rein being joined to media at the point where the abrupt bend is made and the posterior end, instead of joining cubitus almost direetly behind its anterior end, as in the generalized families Xyelide and Lydide, has migrated along cubitus toward the base of the wing and extends toward media at an angle of about 45 . In most Cephide (figs. 93-94) media arises as in the Lydide and the cross-vein is in a similar position, but on first examination it appears to be very different. This is due to the migration of the basal end of the radial sector toward the radial eross-vein and the migration of the radio-medial cross-rein toward the apex of the wing, in this way greatly inereasing the size of the cell R .

The modifications found in the family Tenthredinide (figs. 45-84) are a continuation of those just described. The cell R instead of being a large irregular area with no two sides parallel has been transformed into a small quadrangular cell with the opposite sides parallel. Media has not changed its position materially from that found in the Lydide and Blasticotomidre, but the medio-eulital cross-vein is very inconstant in its location. It is usially fomd in a position similar to that found in Blasticotomen (fig. 44), extending at an angle of ahout 45 . The posterior or cubital end is fairly constant in position, but the anterior end, from being attached to the base of media, as in Periclista (fig. 69), swings toward the base of the wing; in Acordulecere (fig. 83), Rhadinocres (fig. 70), Loboceres (fig. 82), Jumoctemes (fig. 67), and Perga (fig. st) it is attached in the angle between radins and media; in Strongyloguster (fig. 51), Strombeceros (fig. 50), Dolern.s (fig. 4.9), and (ludius (tig. 66) it is attached to radius just before the angle; in Mherophyn (fig. 57), I'teronus (fig. (i8), Hophocempet (fig. 61), and Dineura (fig. 63) it is attached to radius for a considerable distance before the angle, and, finally, in Trichiosomu (fig. 59) and C'lacelluria
(fig. 60), it is attached as far distant from media as its own length, standing almost perpendicular between radius and cubitus.

In the wings just described the modifications of the origin of media and the ehanges in the position of the medio-cubital cross-rein marks ont a distinct line of development, the rhanges proceeding from a generalized to a very specialized condition.

The families Megalodontide (fig. 92) and Siricidae (figs. 86-91) illustrate a very different line of specialization. In those groups, when the cross-vein reaches a position similar to that found in Tiphydria (fig. 85), it becomes fixed in its location and all further modifications are due to the migration of the base of media. With the genus Xris (fig. 89), there is a perpendicular transverse vein forming the apex of the cell M. 'The anterior half of this vein represents the transserse part of M and the posterior half the medio-cubital cross-vein. The peculiar condition found here has been brought about by the coalescence of the base of media with radius to a point opposite the anterior end of the medio-cubital cross-vein. This coalescence has been carried farther and farther until in the genera Tremex (fig. 91) and Megalodontes (fig. 92) the medial vein separates from radius distinctly beyond the apex of the anterior end of the medio-cubital cross-vein, while the vein forming the apex of the cell M is a fairly straight but very oblique vein with M apparently arising from its middle, as has been described.

All the branches of media are fairly constant in position and depart but little from the condition found in the typical hymenopterous wing. Ouly the more marked of these secondary modifications will be discussed here.

The transverse part of M_{2} in many of the highly specialized genera of the 'Tenthredinidre, as Loloceras (fig. 8\%), Acordulecera (fig. S3), Perreyin (fig. 80), and Dielocerus (fig. 79), has migrated toward the base of the wing so that the length of the medial cross-vein is greatly reduced. In Oryssus (tig. 97) the transverse part of M_{2} is entirely wanting, and if it were not for the presence of the first anal cell and the interrelation of the transserse part of M and the medio-cubital cross-vein, it might be easily mistaken for the wing of a Braconid.
M_{3+4} has undergone a slight modification in direction in many genera. This will be best understood if we look first at some of the genera of the Xyelida (figs. 31-35) and Lydidx (figs. 36-43). In these genera it will be noted that if this rein were continued at the same angle to the margin of the wing that it would reach the margin at a point at or beyond the apex of the cell 1st A. while if the mediocubital (ross-vein be continued it would end near the free part of $2 d$ A. If now we examine such genera as Pteromus (fig. 68), Iophorampu (fig. 61), Monoctomes (fig. 67), and (Thellios (fig. 666), we find that with the marked migration of the cubital end of the medio-cubital cross-
vein toward the base of the wing there is a corresponding migration of the posterior end of the stem of M_{3+4} toward the apex of the wing, and although this latter vein keeps relatively the same inclination. yet in these genera it would end at or a little before the apex of the cell Lst A. As was pointed out above, there seems to be a marked correlation hetween the divergence of these veins and the widening of the cell (. together with a usually well preserved Sc_{1}; an exception is found in the genera Latidarge (fig. 78) and Blasticotomu (fig. 44), where the free part of Sc_{1} is entirely wanting and cell C is hardly more than a line, hut this discrepancy is due to another canse, the different way in which the stress exerted in flight is transmitted from the stigma to the anal margin of the wing, which is shown by the angulate condition of M at the origin of the stem of $\mathrm{M}_{3+\ddagger}$. If now we examine another series, as Kiphydria (fig. 85) and Kris (fig. 89), where the medio-rnbital cross-vein is transerse, we find that the posterior and of the stem of M_{3+4} has migrated slightly toward the base of the wing and is parallel with the cross-vein. In Mequlodontes (fig. :2y), where the cross-vein is oblique, the posterior end of the stem of M_{3++} has migrated still farther, yet maintains its parallel course. While in such genera as Stromgylogaster (fig. 51), ('ephome (fig. 96), Phymutoreme (fig. 71), Blommocampel (fig. 72), and Tentluredo (tig. 56), where this crossvein is strongly inclined and if continned would approximate the base of the wing, there is a corresponding migration of the posterior end of the stem of $M_{3+ \pm}$ toward the hase of the wing which has kept pace with the cross-vein. and if it were continued it would reach the margin some distance hefore the apex of the first anal cell.

The base of cubitus in most Tenthredinoidea coalesces with the combined bases of radius and media for only a very short distance, for one-fifth to one-sixth the length of the distance between the base of the wing and the apex of the cell M. The family Lydida (figs. 36-43) represent a marked sidewist development as regards this coalescence, where cubitus has coalesced with $\mathrm{R}+\mathrm{M}$ for fully one-third of the distance between the base of the wing and the apex of the cell M.

The free part of ($u_{1}+M_{4}$ is almost always found extending between the cells M_{4} and 1st A. In the Lydidæ (figs. 36-43) it joins the cell M_{4} at or beyond the middle and the cell 1st A on its apical third or fourth with this end always pointed toward the apex of the wing. In Manoryela (fig. 34) it occupies a similar position except that the end joining the anal rein points toward the base of the wing, while in Macroryele (fig. 33) it joins rell M_{4} on its apical, fifth and hends toward the base of the wing. It is found in I'anrurns (fig. 86) near the middle of the cell M_{+}and on the basal third of the first anal cell; in Seris (fig. 89) it joins the cell $M_{ \pm}$on its hasal fourth and the

Proc. N. M. vol. xxix-05-39
first anal cell as in Petururus; in Siphydria (fig. 85) it joins M_{4} at the base, being almost interstitial with the medio-cubital cross-reim, and the first anal cell at middle; and in Tremex (fig. 91) it joins the cell M distinctly before the medio-cubital cross-vein and the first anal cell on its basal fourth. In most other Tenthredinoidea it joins the cell M_{4} just before, at, or just beyond the middle. is either transverse or inclined toward the apex of the wing, and joins the first anal cell near the middle, except in the genns Labidarge (fig. 78), where it joins it near the apex, a secondary modification due to the coalescence of the reins at the apex of the first anal cell. In the subfamily Tenthredinine it joins the cell $\left\langle I_{4}\right.$ at base just in front of the medio-cubital eross-vein and inclines strongly toward the apex of the wing. In the genera Megalodontes(fig. 92), Oryssus (fig. 97), Trichiowoma (fig. 59), and Perga (fig. 8t), it is interstitial with the medio-cubital cross-vein and likewise inclined toward the apex of the wing. In the genus Perreyia (fig. 80) there is a marked convexity in the reins $\mathrm{C}_{1} \mathrm{H}_{1}$ and M_{4} with the convexity turned toward the anal veins, the free part of C $\mathrm{H}_{1}+\mathrm{M}_{4}$ starting off at the point of greatest convexity and inclining strongly toward the base of the wing. This condition seems to he tharmeteristic of practically all the species of this subfamily.

All restige of the free part of the vein Cn, is wanting except in certain specties of the genera P (amphilins (fig. 39), Cephateia (fig. 42). Bactroceros (fig. 41), Lyder (fig. 37), and Cituolyda (fig. 38) of the Lydida, and the species of the genns P'mumus (fig. 86). The position of the free part of this vein is represented in various other genera of Siricida, as Sircer califormicns (fig. 87). by a mimute spur. In the remaining genera of the family Lydida, where the free part of this vein is wanting, the prominent bend indicating the usual location of this rein is as prominent as in those generat where the vein is present, but even this bend is wanting in all other Tenthredinoidea.

As already described, the wing area inclosed by the three anal reins has been named the lanceolate cell by the students of the Tenthredinoidea. This so-called lanceolate cell is in reality two cells, 1st A and $2 d \mathrm{~A}$. The front margin of the first anal cell is formed for the most part by the coalesced reins, 1 st $\mathrm{A}, \mathrm{Cu}_{1}, \mathrm{Cu}_{2}$, and M_{4}; its, hind margin is formed by the combined 2 d A and 3 d A . The front margin of the second anal cell is formed for the most part by the coalesced 1st A and $2 d A$; its hind margin is formed by the Bd A. The cells 1st A and $2 d \mathrm{~A}$ are separated by the free part of $2 d \mathrm{~A}$, which extends transversely and is generally spoken of as the cross-vein of the lanceolate cell.

The lanceolate cell is found under five different forms: First, open at the shoulder with an oblique or st raight eross-vein; this is the form found in the typical hymenopterous wing and is of most frequent
occurrence (fig. 11, a-d); second, open at the shoulder without a eross-rein-that is, with the free part of $2 d$ A wanting (fig. 11, e); third. contracted at middle without a cross-rein (fig. 11. (1-!) : fourth, petiolate (fig. 12, $1-r$); and fifth. with the laneeolate cell represented only by the vein forming its front margin (fig. Si).

The origin of the cells of the anal area has already been disensed. and only the origin of the different types of cells will be considered here. The anal cells are found in their simplest condition in the families Xyelida (figs. 31-35) and Lydide (figs. 36-43). In these families the important points to le noted are, that the vein forming the front margin of this area is straght, while the vein forming its hind margin is straight on its apical half and has a prominent bend or emargination on its hasal half, known as the contraction of the lanceolate or second anal cell; that the anal veins have not coalesced at hase: and that there is a short. oblique, transverse rein near the apex. This same trpe of cell is found in the genera Dolerus (fig. 49). Emphytus (tig. 46), PsenlosioMa (fig. 48), and Erincompe (fig. 47). except that the emargination on the hind margin at hase is not so deep while the cells themselves are not so hroad. In Blasticotomme (fig. 4t) these cells are narrowed, but the portion of the vein on the basal side of the emargination has been enlarged shoulder-like. Among the Siricida there has been a gradual but marked change; in Joris (tig. 89) and Paumuris (fig. 11, b) the

Fig. 11.-TyPES of ANAL CELLS. a, MACPoxyelea ferruginea; b Patrurus cyanevs: c, CEPHTS PYGM\&Us, d, KONOWIA WALSHII: f, strongylogaster inglylatus; f, HoploCAMPA FERRUGINEA: g, LABIDARGE DIBAPHA. cells have been greatly elongated, together with a corresponding elongation of the emargination, while in Teredon (fig. go) and Tiemere (fig. :1) the emargination is so gradual that it would be overlooked if it were not for its presence in the closely related forms, while there has been developed an additional spur which extends from the apical end of the emargination toward the base and margin of the wing. In Megulodomtes (fig. 92) these cells have been much shortened the emargination is almost entirely wanting. while the bellying out of the third anal rein just in front of the free part of the second anal, which is only slightly indicated in the Lydidar, is well marked here. In almost all those genera where there is a frominent emargination of the third anal vein at base, there is a corresponding expansion of the wing area behind the
anal reins. The (ephida (fig. 11, c) are an interesting example of how far the reduction of this area may be carried; in this family the emargination of the base of the third anal is entirely wanting, the free part of the second anal is perpendicular to the other veins and opposite the medio-cubital cross-vein, while the wing area behind the third anal is so greatly reduced that this rein in some species practically forms the hind margin of the wing.

The genera Derecyrta, Brachy,riphos, and Konouria (fig. 11, d), of the family Xiphydriide are described as having the free part of the second anal vein present and the third anal vein mited with 1st $\mathrm{A}+2 \mathrm{~d} \mathrm{~A}$ at the contraction of the third anal vein. The first two genera are unknown to me in nature, but the species of these genera, figured by Westwood "and Kirby, show the contraction of the anal cells of the same type as found in Kiphydria (fig. 85). In Kiphydria the contraction is much deeper and the third anal approximates more closely the 1st $A+2 d A$ than in any of the other genera of the Tenthredinoidea. In homowia ualshi; ${ }^{\text {b }}$ the contraction is still deeper, yet the two veins do not come into actual contact with each other. Siphydria and homonia are of interest in showing snccessive stages of the anterior migration of the third anal at the contraction and to prove that at least one method of the modification of the anal cells is by the anastomosing of the veins at this point.
The anal area has been reduced in two very different ways: first, by the anastomosis of the third anal with the first and second at the contraction in the second anal cell; second, by the shortening of the free part of the second anal until the third anal comes in contact with the comlined tirst and second anals. Thus it will be seen that in both cases the reduction is due to anastamosis, but that it takes place at a different point and in a different way.

With the exception of the genera of the family Oryssida (fig. 97). the only place where the anal area mondergocs any reduction at all is in the family Tenthredinidx, and even here the great majority of the genera fall under the first class. As to whether the third anal anastomoses with the combined first and second anals before or after the atrophy of the free part of the second anal, it is impossible to tell. If we base our conchsions on the Xiphydriida, the natural supposition would be that it took place before the atrophy of the free part of the second amal; but. from a careful study of this area, I have been led to conclude, because of the difference in the stages within the different families, that these modifications have arisen independently within

[^4]each family: and further believe, judging from the existing forms, that in the family Tenthredinida, where there are closely related forms with and without the free part of the first anal, that this anantomosis took place after the loss of the free part of the second anal.

The type of cell, where the free part of the second anal is wanting, is illustrated by the genera Noldudria. Stromgylofocter (fig. 11. e), Stromboceros (fig. 50), and Thrimer of the subfamily Selandrina. These gencra have an anal area identical with that fonnd in the genera Mol. rees (fig. 49), Lopheyrus (fig. 45), Erioctompoidos (figs. 52-53), and Emphytus (fig. tif), except for the atrophy of the part named, and represent the type of lanceolate cell open at the shoulder without a cross-rein.

In the genera $/$ Iophoctempu (fig. 11. f^{\prime}). ("ladius: (tig. 6ifi), Monoctenus (fig. 67), Lalidar!ge (fig. 11, !), and Mylotomu (fig. 76), the type of cells foumd in the Selandrina has been further modified by the anastomosis of the third anal rein with the combined first and second anal roins at the point where the third anal is deeply emargimate in the Selandrina, and consequently, with the losis of all trace of the emargination. The anastomosis baries from a short distance in $/ I_{\text {oph }}$ locamper and Monometenns to almost the entire length of the area in Mylotoma and Labidarge and is the type of lanceolate cell considered as being contracted at middle.

The so-called petiolate type of lanceolate cell is a direct modification of the

Fig. 12.-REHUCTION OF THE ANAL CELLS a, Rhadinoreraea reitteri; b, PeriCLIS'TA MELANOCEPHALA; c, PTERONU'S PAVIDFS; d, MACROPHYA ALBICINCTA; e, TENTHRELO FLAVA; f, LY'CAOTA sodALIS: g, Clavellaria amerine. coutracted type. It is brought about in two very different ways. By the atrophy of that part of the third anal rein adjacent to the basal end of the anastomosis, or by the contimation of the anastomosis of the basal part until it reaches the base of the wing. IMylotoma and Lablidartfe show the basal part of the second anal cell as a minute area at the extreme base of the wing while in I'echylotn (fig. 77) this area is obliterated by the completion of the coalescence. Although there is no data avalable, yet from the shape of the anal cells in the Oryssida (fig. 97) it is quite probable that the reduetion has taken place here in the same mammer. That the petiolate type is brought about by atrophy is readily proven hy an examination of the wings of Rhatinucerad (fig. 12, "), Periclista (fig. $12, b$), and Ihymatocerle (fig. 71), in the order named. In these wings,
the basal part of the third anal vein is preserved in every ase, but is interrupted at the point where it should join the anastomosis. I'terom, in
 only the longitudinal part of this vein is preserved, while many genera, as Dinemra (fig. 63), show the complete atrophy of the entire basal part of the third anal, or at most it is represented only by a fold. In Γ^{3} ermaia (fig. sor there is developed a peculiar spur on the posterion margin of the cell 1st A opposite the free part of $\mathrm{M}_{4}+\mathrm{C}^{\prime} u_{1}$.

The greatest reduction of the anal area is reached in the sulfamilies Lohocerine (fig. 82), Pterygophorine (fig. s1), and Pergine (fig. 84), where all that remains is the simple straight vein. The members of these subfamilies, at least so far as this area is concerned, have reathed the condition found in all the higher Hymenoptera. This condition has been reached by a continuation of the anastomosis found in Lablidarge (fig. 78). As was shown above, the petiolate type of cell might be produced by the anastomosis of the basal part of the third anal, while the condition here is produced by anastomosis of both basal and apical parts. It is an interesting fact that the cell on the basal side of the anastomosis is hounded in front by 1st $A+\theta d A$ and behind by $3 d \mathrm{~A}$, while the apieal half is bounded in front by 1st A and behind by $2 d A+3 d A$, so that the resulting vein is a combination of all three anal veins, which has certainly been brought about in a very roundabout manner.

The second method of the modification of the anal area, namely, by the gradual shortening of the free part of $2 d \mathrm{~A}$ and the almost complete obliteration of the emargination of the $3 d \mathrm{~A}$ is found only in the subfamilies Lyeatine (fig. 12, f). Tenthredininx (fig. 12, $d-e$), and Cimbicina (fig. 12, g). When the wing's of Itycorsia (fig. t0). Lyda (fig. 37), (cemolycla (fig. 38), Eriocemper (fig. 47), and Strom!ylogrester (fig. 51) are carefully examined there will be found at the base of the emargination a prominent shouker, which is distinctly thickened. This shoulder is present in varying degrees in all those genera where the third anal is emargimate at base, but is especially prominent in the genera named. If, now, we examine the wings of most any member of the subfamily Tenthredinine, as Macroplya (tig. 57), we will find neat the basal side of the anastomosis a slight emargination, and just beyond it a thickening. In this emargination and thickening we find the reason for our conclusions that in these subfamilies the contracted type of cells has been produced by a shortening of the free part of the serond anal. This conclusion is further confirmed by the great variation in the amomet of anastomosis. In the genus Macroy haya alone this condition varies from a well-marked perpendicular free part of the second amal to an anastomosis for some distance. The perpendicular free part of the second anal or the anastomosis in the Tenthredinine ocennies a position nearer the base of the wing than the corre-
sponding parts in Ioderns or Emplhytus, but this is undoubtedly dus to the elongation and narrowing of the wing. That this position is due to the elongation of the wing is proven ly the wing of Lycrentu (fig. 5.5), which is hroad and not at ath elongated, while the anastomosis occupies a position similar to that of the free part of the second anal in Dolerus (fig. 49), and Emphytus (fig. 46). In the Cimbicina most of the genera have lost the emargination found in the Tenthredinine, but in a few generat as Ahm, it is prominent. Even though the emargination were wanting in all the genera of this subfamily, the general contour of the anal area in the more generalized genera, as Cimber and Trichiosome, would show their intimate relation to the Tenthredinina and Lycaotine. In the Cimbicine (figs. 59-60) the first anal cell is much reduced by the eoalescence of the veins at its apex. In ('lacellariu(fig. 60) this has proceeded so far that $2 d A+3 d$ A has coalesced with 1 st Λ to just before the free part of $\mathrm{M}_{4}+\mathrm{Cu}_{1}$.

2. THE HIND WINGS.

The hind wings of most Hymenopterat have been so greatly reduced that the primary homologies can be determined only after careful study. Once the primary homologies have been established the deter-

Fig. 13.-Typifal hind wing with the lacking; veins indicated by motted lines.
mination of the different veins in different wings is a very simple matter. As the superfamily Tenthredinoidea contains all the hymenopterons insects in which the hind wings are at all generalized, it is apparent that a study of the wing areas of the members of this superfamily is of the first importance. Practieally all the modifications found in this wing are due to the atrophy of the transerse parts of veins or to a secondary shifting of the transverse parts of veins so as to stiffen the wing more effectually. Fig. 13 represents a generalized hind wing in which the wanting veins are indicated by dotted lines.

The costal area is represented by the costa, which is present in the hind wings of practically all Tenthredinoidea as a strong vein thickened at base. So far as observed costa is wanting only in the gener:a Oryssus (fig. 97) and Stromboceros (fig. 50).
On the front margin of the hind wings of all Hymenoptera there is a series of hooks for fastening the two wings of a side together so that they will move as a unit during flight. These hooks are of vary ing extent, in the Siricidx there is a prominent group at the base and another near the apex of Sc_{2} with isolated hooks between; this same condition is found in certain Lydida while in others only the basal and apical areas are preserved. The Xyelide and Xiphydriide also have basal and apical areas. In the Orysside there is an apical area with four or five isolated hooks just hefore the apical area. In most Tenthredinoidea there is only the apical area, which is likewise characteristic of the higher Hymenoptera. The apical area is of about the same extent in all the groups except the Cimbicina, where it extends from one-half to two-thirds the length of the cell R_{1+2}.

All vestige of the subcosta has disappeared except in the single family Lydidæ (figs. 36-43), where in the genera Lydla (fig. 37) and Buctroceros (fig. 41) it is as fully preserved as it is in the fore wing of the Lydidae and Xyelidx. Subeosta and its continuation, Sc_{1}. extend as a straight vein from the base of the wing to near the apex of the vein $\mathrm{Sc}_{2}+\mathrm{R}_{1}$. The basal free part of Sc_{2} is a short rein only three or four times as long as broad and in some genera, as Bactroceros, Neurotomu (fig. 36), and I'mphilius (fig. 39), it is only about as long as broad, while in the genus Comolydu (fig. 38) it is entirely wanting. When present it is generally situated about midway of the vein R_{1}, making the cells Sc and Sc_{1} subequal in length. The only exception observed is in the genus Neurotoma, where the free part of Se_{2} is much nearer the apex of the wing, the cell Sc_{1} being less than one-half the length of the cell Sc. The apical free part of Sc_{2} has been obliterated by its coalescence with R_{1} to the margin of the wing. In the genera Pamplitious, Neurotoma, Cephulein (fig. 42), Itycorsia (fig. 40), and Lyda a considerable portion of the subcosta found between the base of the wing and the free part of Sc_{2} has completely atrophied, the amount varying in the different genera. The conditions found in the genera just mamed go to show that the reduction of the subcosta in the hind wings has proceeded in a very different way from what it has in the fore wing, where the modification is clearly due to coalencence. The cell lying between costa and $\mathrm{S}+\mathrm{R}+\mathrm{M}$, $\mathrm{C}+\mathrm{Sc}+\mathrm{Sc}_{1}$, is broad and well marked in all the specialized Tenthre-
dinoidea except in the family Cephidx (tig's. 93-96), where it has been completely squeezed ont by the elose apposition of costa and $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$.
the radial area.
The bases of radius and media are combined in the same way as in the forewing. The single rein $\mathrm{R}+\mathrm{M}$ extends to near the middle of the wing, where it divides into K_{1} and $\mathrm{K}_{5}+\mathrm{M}$. In most sperialized Tenthredinoidea the stem of $\mathrm{R}+\mathrm{M}$ is only moderately thickened, but in (Iryssum (fig. 97), the costa being wanting, the vein $\mathrm{R}+\mathrm{M}$ has been excessively thickened, evidently to take up the stress that would have been transmitted along the costa.
R_{1} combined with 's c_{2} extends obliquely to the front margin of the wing, where it anastomosis with costa in a single point, or at most for only a very short distance, just before the apial area of hooks, then curves away from the costa and joins it again at the apex of the apical area of hooks, forming a cell sce homologons with the stigma of the front wings. This cell is prominent in such genera ass Poridistu (fig. 69), Pteromes (fig. 65), Phymatoceru (fig. 71), Strongylongaster (fig. 51), INineura (fig. 63), Dolerm: (fig. 49), Tenthredn (fig. 54i), and Trichiosoma (fig. 59), and is generally situated at the base of the cell $\mathrm{R}_{\mathrm{r}+2}$. In the Xyelide (figs. 31-3:). Xiphydriidx. Cephidx (figs. 93-9ti). Megalodontidx, and Blasticotomidre (fig. 44), this stigma-like cell is entirely wanting, while the apical area of hooks is situated on an enlargement of the costa opposite the middle of the cell R_{1+2}. This cell is faintly indicated in the Lydida (figs. 36-43) and sitnated as in the Xyelidx, while in the Tenthredinida it is generally distinct except in the more specialized subfamilies. This is especially true in those genera with an appendiculate cell. The course of the apex of R_{1} here confirms our conclusions regarding its course around the stigma in the front wings and that the stigma is nothing more than a stronger chitinization of the wing membrane in front of R_{1} than is found in the other cells.

The front margin of the cell R_{1+2} in the Siricidx (figs. 86-91), Megalodontidx (fig. 92), X yelidx, Lydidae, and Blasticotomidx is hounded by a vein of uniform width. R_{1}. which, after joining the costa beyoud the apex of the apical area of hooks, coalesce with it, the single vein extending along just within the front margin of the wing. It ends in the Xyelidæ (figs. 31-35), Lydidx (figs. 36-43), Megalodontidx and Blasticotomide (fig. 44), at or slightly beyond the apex of R_{3} and a considerable distance before the apex of the wing. This results in a cell contour identical with that fonnd in the front wings. In most genera of the family Tenthredinidx, as Macroplya (fig. 5ti), Blemnocampu (fig. 72), Stromboctos (fig. 50), Periclista (fig. 69), and I'teromus (fig. 68), R_{1} likewise ends at or slightly beyond the apex of R_{3}, hut in these genera the veins R_{1} and R_{3}, coincident with the lengthening and nar-
rowing of the wing, have migrated to the apex of the wing, so as to stiffen it, while in the genera Blemmodmpa and Periclista R_{1} extends around the apex. In the Cephider and Cimbicine R_{3} has retained its primitive position distinctly before the apex of the wing while R_{t} has been extended spur-like to the apex. The gemus IIoplocampu (fig. 61) shows a similar condition, except that the prominent spur-like tip has not been developed. Orysus (fig. 97), Tremer (fig. 91). Paumurus (fig. 86), Momoctenns (fig. 67), Dielocerves (fig. 79), and I Pachylota (fig. 77) show a modification of the condition fomb in Blennocrempa and Periclistu. In these genera R_{1} and R_{3} have migrated to the apex of the wing, but the apical half of the vein R_{1} atrophied, cansing the cell K_{1+2} to return to its origimal condition, open at the margin. The genera Seris (lig. 8:1), Mylotomm (fig. 76), Labidarge (fig. 78), Perga fig. 8t), Perreyia (fig. 80), and Luloceras (fig. 82) show a still different type. Here R_{3} ends distinctly hefore the margin of the wing while R_{1} is continued to the apex, but in the comse of its development was pulled away from the margin for a comsiderable distance, forming an appendiculate cell in the same way that it is formed in the front wing.

The second part of the vein $R+M, R_{s}+M$, very soon divides into R_{s} and M. In all the wings observed the fiee part of R_{2} is wanting: also R_{5}, except in the genera Megaxyela, Odontophyes, and Macroryela. R_{3} oceupies a position similar to that found in the front wings; the only marked modification is the point at which it reaches the margin, and this was fully discussed above.

The tip of the fourth branch of radius has combined with $\mathrm{K}_{5}+\mathrm{M}_{1}$ as in the forewing, while the free part of R_{4} is a transterse vein extending between R_{3} and $\mathrm{R}_{5}+\mathrm{M}_{1}$. In the Xyelide (figs. 31-35), Lydidae (figs. 36-43), and Megalodontidap (fig. 92), it is situated near the margin of the wing, but in most Tenthredinoidea it has migrated toward the hase of the wing: while in such genera as Loloceras (fig. s2), Dolerus (fig. 49), Pteromus (fig. 68), and Cludius (fig. 66), it is situated in a line with the costal area of hooks. The free part of R_{4} is entirely wanting in the subfamilies Blemocampine (fig. 72), Phyllotomine (fig. 54), Fenusinse (fig. 74), and the genera Tetmetneure and Acidophore.

The radio-medial cross rein is wanting in all the genera observed.

In all the wings examined, except in Sirer (figs. 87-85), and Manoryeld (fig. $3 \pm$), the vein M in coalesced with the radial sector for a greater or less distance. This is very diflerent from the conditions found in the front wing, where M always arises from R some distance before the origin of the radial sector. In Sirex and Manoryda M arises from R distinctly before the origin of the sector, but much nearer to it than is the case in the front wings of all other Tenthredinoidea. In Paumurns (fig. Sti) and Koris (fig. 89) M arises from the sector at or just beyond its origin: in Hacroryela (fig. 33) it extends
abont twice as far as in /'enn'mme: in the Lydide, Megralochontiate. and most Tenthredinide it arises a considerable distance heyond the
 (fig. 5.). Leidophom, and the subfamily Blennoemmpine (fig. 72), it arises at or just before the middle of the cell R_{1+2}. but the moditication found in these genera is undoubtedly due to the atrophy of the free part of R_{1}.

As soon as M separates from the radial sector it extends transrersely until it joins the medio-cubital cross-rein, where it usually bends at about a right angle and extends longitudinally. About midway between its mion with the medio-eubital erosserein and the margin of the wing it divides into two branches, M_{1}, which extends direct to the wing margin, occupying a position very similar to the same vein in the front wing. and M_{2}, whieh extends tramsersely to near the middle of its length where it joins the medial eross-vein. from which point it extends longitudinally to the margin of the wing.

The medial eross-rein extends longitudinally toward the hase of the wing, where it joins a vein which extends longitudinally or obliguely from the cubital end of the medio-cubital cross-rein. That portion of this rein which lios betwen the medio-enbital cross-rein and the medial eross-rein is the free parts of M_{4} and C'u , the free part of $\mathrm{M}_{4}+\mathrm{Cu}_{1}$ being wanting, while that portion which lies between the medial eross-rein and the tip of the amal reins is the free part of M_{3}. In the front wings there is a branch which extends from the stem of M and joins M_{3} just before its union with the medial eross-rein. This is the stem of M_{3+4} and is entirely wanting in the hind winge of all Hymenoptera. If the position of $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$, and the medial erossrein be compared with the corresponding veins in the front wings it will be seen that they orrapy a similar position and are in fact the most important landmarks in homologizing the veins of the hind wings.

 Pergu (fig. St), the transverse part of M_{2} has atrophied so that the cells M_{1} and 1st M_{2} are united.

The free part of M_{3} in most Tenthredinoirlea extends almost tramsversly to the margin of the wing, but in the Cephidax (figs. 93-9ti), Tenthredininar (figs. 56-5s), and Manoryela (fig. $3 t$), where the anal area of the wing has been greatly reduced longitudinally, the free part of M_{3} has been bent abruptly toward the base of the wing. White in most genera the free parts of M_{3} and M_{4} are subequal in length, ret in Lulonerres (tig. s义) and Pergu (fig. 84), M is two or three
 81), and I'terygophorms (fig. s1) M_{3} is several times the length of M_{4}. The medial cross-rein is in most genera subequal in length with the longitudinal part of Ml_{2}, yet in Leris (fig. s?), Tremex (fig. :91), Serico-
rere, and Dielocrow (fig. 79), the cress-vein is much shorter, one-third to one-fourth the length of this part of M_{2}.

The medio-cubital cross-vein in the generalized Tenthredinoidea is transverse and subequal in length to the transverse part of M, but there is considerable variation throughout the varions genera of the other gromps. Its departures from the generalized condition may be divided into five groups. In the first of these the longitudinal part of M hats migrater along the transverse part of M , greatly increasing the length of the cross-vein, although the cross-vein and the transverse part of M retain relatively the same position. This is shown in the genera Trichiosmmu (fig. 59), Lubidurge (fig. 78), Dolerus (fig. 49), and Monoctenus (fig. 67). In the second group the length of the cross-vein has been greatly increased by the migration of the transverse part of M from its position at or near the base of the cell $\mathrm{M}_{4}+1$ st M_{2} to near its middle as in the genera Tenthredo (fig. 56), Periclista (tig. 69), and Strongylograstea (iig. 51). In the C'ephidae this migration has proceeded so far that the transverse part of M is joined to the cell $M_{4}+1$ st M_{2} near its apex. The third group is represented by the gencra Kiphydria (fig. 85), Macorphya (fig. 57), Phymutocert (fig. 71), Rhudinocersere (fig. 70), and Lycuota (fig. 55). In these genera there has been a combined migration of the longitudinal part of M along its transverse part, together with a migration of the transverse part of M toward the apex of the wing. The fourth group is represented by the genus I'trygophorus (fig. 81), where the longitudinal part of M has migrated toward $\mathrm{M}_{ \pm}$along the mediocubital cross-vein, resulting in a distinct shortening of the crossvein. In the fifth group there has been a migration of the transverse part of M toward the apex of the wing, while the free part of M_{4} has swung around from a longitudinal or oblique position to a transverse one. Coordinated with the change in position of the free part of $\mathrm{M}_{ \pm}$ there has heen a swinging forward of the part of cubitus on the basal side of the medio-culital cross-rein until it has come into line with the base of the longitudinal part of M, so that in this group the mediocubital cross-vein extends longitudinally instead of transversely. This is practically the same condition as is found in the higher Hymenoptera and is shown by the genera Pergu (fig. St), Perreyia (fig. s0), Acordulecera (ig. s3), and Lobocerus (fig. S2).

In the hind wings coubitus is represented by the long, straight vein extending. from the base of the wing to the medio-cubital cross-rein. All trace of the free part of Cu_{1} is wanting, and the same is true of Cu_{2} unless we homologize the short vein found in the Xyelida (figs. $31-35)$ at the base of the wing with this vein. That this spur represents the free part of Ca there can not be much doubt. That it is not
a supermmerary vein is proven by its persistence throughout all the different genera of this family. Its preservation is mdoubtedly due to its position at the extreme base of the wing, and also to the fact that its anal end curves toward the base of the wing, giving it a location wheie its liability to be obliterated would be reduced to a minimum.

THE ANAL AREA.
The anal veins of the hind wings, like those of the fore wing, have undergone marked changes but along very different lines. Here, as in the fore wings, there has been a combination of the apices of M_{3}. $M_{4}, \mathrm{Cu}_{1},\left({ }^{\prime} u_{2}\right.$, 1st A, and $\xlongequal{2} d$. the transverse free part of the first four of these, except M_{3}, being wanting'. The first anal vein extends directly from the base of the wing to the transverse part of M_{3}, in many eases being strongly howed in front, and from M_{3} there extends an oblique vein to or nearly to the margin of the wing. This vein is wanting in the Cephide (figs. 93-940), Xyelide (figs. 31-35), Acordnlecern (fig. 83), and Blomocampm (fig. Te).

The second anal rein is fomed in its most generalized condition in the wings of Stromgylograster (fig. 51), Tenthredo (fig. Sti), Pericliste (tig. 69), and strombocros (fig. 50), where it extends from the hase of the wing as a slightly bowed rein and miter with the first anal rein distinctly beyond the tramserse part of M_{3}. In the genera Iolemon (tig. 49), Netamdra, and Marmothya (tig. 57), the eoalescence is only for a short distance in front of the transerse part of M_{3}. The amount of coalescence increases until in the genera IIylotomm (tig. T6) and Labidarge (fig, 78) the eoalesence is for more than half the length of the anal eell. The second anal rein is entirely wanting in Jearis (fig. 89),
 (fig. 81), Perreyin (fig. s0), and Acomdulecera, (fig. 83). The disappearance of the second anal vein is undoubtedly due to the fold in the wing just hehind the line where the rein would be situated. This supposition is strengthened by the wing of Keris and lielocerus (tig. 79), where the transverse apical part of the stump is retained. While in Siren albicornis (fig. 88), the basal half of the uncoalesced part is retained. In Mucroryelle (fig. 33) there is a different type of modification. The second anal rein is situated just in front of the furow, is as well developed as the other reins and extends almost to the margin of the wing, where it bends abruptly forward and joins the first anal vein just before the free part of M_{3}. The transserse part in Manoryela (fig. $3 t$) is nearer the base of the wing and there has been developed in addition a secondary spur from the onter posterior angle to the margin of the wing. The Cimbicine (figs. 59-650) show a similar condition, except that the transerse part of the second anal is near the middle of the wing with a long spur contimous with the longitudinal part of the vein. In Mucrocephus, (fig. 95) the spur is present
and the transverse part of the second anal is curved toward the hase of the wing, while (ep)lus (fig. 96) differs only in lacking the spur.

The third anal vein is almost miversally present, and extends as a slightly curved vein near the anal lobe of the wing from the base of the wing to the margin. It is represented in Oryssus by a fold and in Acordulecera by a pale band of pigment. In many of the generalized genera there is present a prominent transverse spur on its hind margin near the base of the wing, which is joined to the spiral vein, a cordlike thickening which extends along the base of the wing to the scutellum.

V.-DYNAMICAL CONTROL OF WING TYPE.

It has already been pointed out in a number of cases that certain modifications were due to mechanical causes. The wing of an adult insect is a machine purely for locomotion, and the rapidity and skill of the locomotion is directly dependent on the perfection of the machine. It is a fact that those insects are the swiftest flyers whose wings approach most nearly a triangle in outline, that is, having wings. broad at base and pointed at tip. This is illustrated by the wings of the hawk-moths, the bee-flies, and the bees. The efficiency of a wing is dependent not only upon its outline but upon the arrangement and constraction of its various parts. This construction consists in the arrangement of the veins in such a manner as to best fit it to withstand the stress exerted upon it in striking the air and at the same time without increasing the weight of the organ.

The different kinds of insects fly in two ways-by a soaring flight, for which a broad expanse of wing is required, and by a swift dashing flight, for which a narrow, stiff wing is necessary. It is also a fact, at least so far as insects are concernet, that those species whose wings are broad and approximate closely the arrangement of the veins found in the hypothetical type are never swift flyers, while those in which there has been a marked reduction in the number of veins, together with a trussing of that part of the wing subject to the greatest stress. are always swift flyers: that is, there is always a direct correlation between the structure of a wing and its efficiency as an organ for tlight.

Where insects possess four wings, the wings of a side are generally fastened together in some manner to insure a more synchronous: motion. This is accomplished in the Lepidoptera by a jugum on the hind margin of the front wing, or by a fremulum on the front margin of the hind wing, or by an expansion of the front margin of the hind wing so that the two wings overlap. These fastenings are all located at the base of the wing. and conserguently cam not exert much influence over the couse of the reins fombl nar the middle of the wing. With the Hymenoptera in general and the Tenthredinoidea in partionlar the conditions are different. The wings of the Tenthredinoidea
are fastened by a series of hooks on the costal margin of the hind wing whirh fasten into a fold along the hind margin of the front wing. These hooks may extent from the base of the wing to near the middle of the eell R_{1+2}, they may be aranged in two gromps, one near the hase of the wing and another near the base of the cell K_{1+2}, or they may be arranged in a compact group near the base of the cell R_{1+2}. In all cases this latter group is always the strongest, and boing situated near the middle of the wing exerts a strong inflnence on the course of the reins found in this ragion in both wings, as will he shown later.

The path of the tip of an insect's wing during flight is that of a fig. ure 8 (fig. 14). This has been shown by Marey and other investigators. It is a well-known faet that during flight the wings go through two distinet motions, a stroke or downward motion and a recorery or upward motion. The relation of the strike and recovery are shown on the accompanying figure copied from Marey. The up and down motion is due entirely to muserular aten while the resistance of the air "effects those changes in surface obliquity which determine the formation of an s-shaped trajectory by the extremity of the wing."

From a mechanital standpoint, so far as inserts are eoncerned, the act of tlight is really a simple one. The wing is so constructed that there is a rigid front margin for striking the air and " a sort of flexible sail behind." which inclines the wing at the most farorable angle. This is usually about 45^{-}. During the downward motion the wing is expanded to its fullest extent by the resistance of the air beneath it, while during its recovery it is contracted by being folded or corrugated along the lines of the wing furrows, which in this way reduce the amount of surface of the wing and consequently reduce the resistance during recovery.

The wings of most insects are corrugated or folded along certain lines. In many orders these furrows are so persistent that they have been named. Although they are not so constant in position as the reins, yet they oceupy so nearly the same relative position that it is generally possible to homologize them. The function of the furrows in an insect:s wing are twofold, to strengthen it and to make it flexible. The latter function seems to be their only use in the wings of the Tenthredinoidea. In this superfamily all the following furrows are present.

The anal furrow. -This is a longitudinal furrow extending from the base of the wing to the margin just in front of the first anal rein. It is distinct in both wings. In the front wings it separater the free parts of $\mathrm{Cu}_{2}, \mathrm{M}_{4}+\mathrm{C}^{\prime} \mathrm{u}_{1}$, and M_{3} from the vein behind the furrow and has mdoubtedly been an important factor in cansing the atrophy of the free part of these reins.

The secomd ancl fierome. This furrow also extends from the base to the margin of the wing. It is found only in the hind wings and is situated just behind the second anal vein. It is at the end of this furrow that there is loated the emargination which eventually develops into a slit, the axillary incision, which separates off the hind angle of the wing into a lohe or alula. This alula, which always contains the third anal vein, whether it is separated or not by an incision, is always turned back under the remainder of the wing.

The medial furrorr.--This is a straight furrow in many Tenthredinoidea, starting in the cell R and extending along just in front of M_{1} to near the margin of the wing. It nsually bends down near the middle of the cell R_{5}, so that it is close to the vein. This furrow finds its greatest development in the famity Tenthredinida. In most of the genera of this family it extends along close to M_{1} until near the middle of the cell R_{5}, where it subdivides into two or three branches. The posterior hranch crosses; M_{1+2} near its origin and passes obliquely across the cells 1st M_{2} and M_{1}. The anterior hranch passes midway between M_{1} and R_{3} to near the margin of the wing; in some cases the anterior brauch subdivides, one branch extends just behind R_{3}, while the other extends just in front of MI_{1}. Only a casmal examination is necessary to see how important the medial furrow must be in maintaining the flexibility of this area of the wing. The so-called bulle of many writers on the Tenthredinoidea are the clear spots in the reins where these furrows cross them.

The rudiul furrou. - This is a short longitudinal furrow situated just in front of the radial sector and may be a branch of the medial furrow.

The costal hinge. -This is a thin area of the front margin of the wing, situated between the apex of costa and Sc_{2} at the base of the stigma.

The greatest stress on a wing is always on its front or striking margin and on that part of the margin that is most prominent. In the Hymenoptera this is the region in the neighborhood of the stigma. This stress is in a plane parallel with the wing membrane. This is due to two camses, the angle at which the wing strikes the air and to the sail area-that is, approximately the posterior two-thirds of the wing, which maintains the wing-membrane at relatively the same angle. The sail areat of the wing has the same effect on the wing as the tail on a kite when it is drawn rapidly through the air near the ground, causing it to maintain practically the same angle at all times.

If we examine a simple type of truss, as fig. 15, where the sides AB and BC are equal and the distance AD is equal to the distance DC ', we will find that any stress exerted at the point B in the plane of the truss and perpendicular to the line AC will be equally distributed along the sides AB and BC . But if we take such a truse as fig. 16, where the
side AB is much greater than the side BC . we will find that any stress exerted at the point B will not be equally distributed, hat that a much larger part of the stress would fall on the side BC than on the side AB .

We may assmme that that wing is the most porfect mechanical device which approaches the closest to some type of trase. From onr previous studies of the wing topography of the Tenthredinoidea we are justified in concluding that if such at thing an a truss exists in their wings it must be of the type where one side is longer than the other. for there is no point situated near the middle of the front margin of the wing to which veins converge.

Before taking up a direet comparison of the wings of the Tenthredinoidea with the types of trusses given above, we should not overlook the fact that we have to do not with a simple but with a complex type. The front wings must in reality be trusised on looth sides. for the hymenopterous wing has stress exerted upon it by the air upon both front and hind margins. The primary stres in exerted at some point on the front margin where it strikes the air, while the secondary stress is exerted on the hind margin where the hind wings are hooked

Fig. 15.-TyPE OF THONS.

Flif. 16.-TYIE OF TRINS.
to it. This secondary stress in due to the necessity for a symehronous motion and to the fiact that the hind wing monst be pulted atong. The force exerted on the front margin of the front wing would be a push or a force causing retardation, while the force exerted on the hind margin of the front wing and the front margin of the hind wing would be a pull or a forer causing acceleration.

A clearer conception of the arrangement of the trusses in the hymenopterous wing will be had if we study first in some detail the topography of a wing in which these structures are self-evident. For this purpose a front wing of Blennocempuct alternipes has been selected. tracings from a photograph have been made, and the truses found in these wings marked as triangles by means of dotted lines (fig. 1i). For convenience in following the course of these triangles on the figure they have been numbered, the same number being placed on each side of the same triangle. For the sake of brevity they will be referred to in the following descriptions by these numbers.

From what has already been said, it would be expected that these truseses should arrange themselves into three groups, the first strength-

[^5]earning the stigmata region of the front wing, the second, the apex of the first anal cell of the front wing, and the third, the stigmata region of the hind wing. The stigma, as already shown above, is the cell sig. in which the wing membrane is almost as strongly chitinized as the reins sumbunding it. In generalized genera it is a broad ovate area, which undergoes a great reduction in the highly specialized genera until it becomes a long, narrow cell, pointed at both ends. It is located at the point where the greatest stress is exerted, and is in reality a solid truss p hared like a cap over this area subject to the greatest stress. So that we hate in the shape of the stigma a readily observed criterion for judging the efficiency of the flight of any series, and theretore the degren of specialization to which the specioshas at tanned. Now if the stigmata region of the front wing is examined, the following conditions are found. A large truss. trass 1 , whose apex is near the middle of the stigma. With one of its basal angles at the base of the wing. and the other at the apex of R_{3}. 'Truss 2 has its apex near the

Fifo 17. -THE FRGNT WLN: OF FLEANOCAMPA AND ITS TRUSSES.
base of the stigma, with one of its basal :ogles at the point of separatron of R and M, and the other in the angle formed by R_{4} and M_{1}. Truss 3 has its apex near the middle of the stigma with one of its basal angles in the angle between the medio-enbital cross-vein and enbitus, and the other in the angle formed by R_{4} and M_{1}. Truss 4 has its apex near the apex of the stigma with one of its basal angles at the point of separation of R_{1} ant R_{s} and the other in the angle formed by the radial woss-vein and R_{3+4}. Truss 5 has its apex in the angle formed by R_{1} and R_{s} with one of its basal angles in the angle formed by the mediocubital (ross-vein and cabins, and the other in the angle formed by R_{5} and M_{1}. Truss i has its apex in the anglo formed by R and M, with one of its basal angles in the angle formed by the medio-cubital cross -vein and cubitus, and the other in the angle formed by $\mathrm{M}_{3+ \pm}$ and M_{1+2}. Truss 7 has its apex at the point where the free part of R_{5} arises, with one of its basal angles in the angle formed by M_{3} and M_{4}, and the other
in the angle formed loy the medial cros-vein and M_{3}. Of the seven trusses here enmerated, four of them have the ir apices in the stigma. while the remaining three have their apices so situated as to be a direct. support to the trusses ending in the stigma. This does not take into aerount the thickened eosta and the radio-medial cross-vein, which are also additional supperts to this region, while truss !, which is behind culitus, is the main spport of the strese tramsmitted her truses 2.0 . and 46. Although eath of these trusses is here demeribed as a separate entity, yet the fact should not be overleoked that there is a direct interrelation between all the trusses. Each is dependent on the other. It is like the side of a bridge, compored of a complex of rock and heams: that to the casmal observer do not bear much relation to each other, but get can be resolsed by the engineer into atseries of simple trusses. all directly interrelated in the satme way an the trusses described here in this wing.

The anterior three-fourthe of the wing being so strongly hated, there is no necesity for so perfect a bracing in the region of the tirst anal cell. becanse the stress exerted at this point can not he great, and in addition the strese is applied at a point where it can be easily disseminated. There are three of these trinsses, though only two of them are directly comected with the anal area. Tronss 10 occupies the first anal cell, with it- apex directed toward the hind margin of the wing and opposite the point where the hooks of the hind wing fasten into the fold of the fore wing. Just in front of the apicat half of truss 10 , with its apex at the middle of the lave of truss 10 . is trusis s, with one of its basal angles at the apex of M_{3} and the other at the angle formed $b_{y} \mathrm{M}_{4}$ and $\mathrm{M}_{4}+\mathrm{Cu}_{1}$. It is of interest that the stress sustained by truss is is not transmitted directly to the front margin of the wing. but is dissemimated over its apical two-thirds. The stress tramsmitted l_{y} the vein $\mathrm{M}_{1}+C \mathrm{H}_{1}$ one side of truss s . is taken up by truss 11, whith has its apex almost opposite this vein. The medio-cubital cross-rein is an excellent example of the interrelation of these trisses. It is an important factor in two trusses transmitting stress from the stigmatal region, and is equally important in tramsmitting stress from the anal region toward the base of the wing.

It is not necessary to diseuse the trusses of the hind wings in any detail. A glance at the figure of a wing (fig. 81) is sufficient to show that all the principal trusses are behind the costal area of hooks. They are all arranged so as to spread the stress orer as wide an area as possible and alio to stiffen the wing membrane, for one of the principal functions of the hind wing is to furnish satil area.

In the preceding description no account has heen taken of trusses 12. 18, and 1t. They are not of primary importane hut serve to diswipate the stress tramismited from the stigmatal and amal regions, and to keep the membrane or sail part of the front wing expanded.

When the conditions existing in such a wing as Blemocampar alternipes are compared with those found in the front wing of Maneroryela formagima the difference is very apparent. The trusses in the wing of Ifurror,ryda have not been numbered. Only the most important have been indiated. From their fewness in mumber the reader might be led to conclude that the wing of Dacroryelin had not been done full justice, but when the form of the cell areas is takem into consideration, all of them being either trapezimms or trapezoids in form, it is seen that this arrangement is one of the weakest possible. In such an arrangement as this each angle of each cell is the apex of a truss. whieh can have no other function than to stiffen the sail area. Consequently, if all the trusses found in the wing of Marromplyle had been indicated on the dratwing, it would have resulted in this wing being apparently much more efficiont, at least in momber of trusses, than that of $B 1$ connememin'. Although there are several trusses in the wing of Macroryelw. yet it is a striking fate that these trusses are not nearly

Fli, 1h.-THE FHONT WING OF MACROXYELA AND its trisees.
so efficiently placed (fig. 15). There is not so great a concentration of the stress to one region. The trusses instead of stiffening a detinite area are sattered orer the entire wing surface. Veins that in Blemunampuare constitnents of important trusses are of little more value than to keep the wing membrane expanded in Mumporyelu. some of the most prominent differences are the position of the mediocubital cross-vein and the origin of M_{1}, the course of the veins bounding the cell M_{3}. the position of the radial crons-rein, the narrowing of the cells induded between the veins K_{3} and MI_{1}. and the course of the transerse part of M_{1}.

The adults of Marroryela fermginen are common at Ithatea. The latra feed on the leares of the mumerous elms found along the walks on the campus. The adults are ver? inactive, so much so, in fact, that they will lie still and allow themselves to be crushed underfoot on the walks. When they are disturbed in such a way an to he compelled to use their wings, they have a slow lumbering tlight and woon alight again;-that is, the generalized condition of their wings as
regards the mumber and armagement of their reins and trusses in_{n} contirmed by field observations that prove that this insect not only has wings that are poorly fitted for a rapid flight, hot that in fact it is an extremely poor flyer.

If now the different gronps representing families and subfamilies be examined, begimning with the more gencratized, it will be found as we proceed from generalized to speciatized that there is a gradual approximation to the type described for Blemmentmpm, white in other gromps more specialized than Blemmeramp, that the conditions are even more perfect than in this genus. These modifications are readily traceable in the change in position of the radial eross-rein, its posterior end swinging toward the apex of the wing and forming one side of a truss behind the stigma; the moving of the medio-cuhital cross-vein from a position between media and cuhitus, where it is only of secondary importance in transmitting stress, to a position between radius and cubitus. where it is of primary importance; the migration of $\mathrm{I}_{4}+$ (m_{1} until it is practically in line with the mediocubital cross-rein; the shortening of the radio-medial cross-rein and the free parts of R_{5}, R_{4}, and R_{3}, in this way greatly strengthening the area lying between the most important areas of trusses, those of the stigma and those of coll Ml_{4}. The reduction of the anal cetls of the front wings, the second anal cell being of only secondary importance, the base of the third anal rein in gradually atrophied, and the wing membrane ocrupied hy it reduced until the petiolate type of rell is obtained. Which is gradually moditied further by coalescence, and the further redurtion of the wing membrane until the condition existing in the higher Hymenoptera is reathed by certain subfamilies of the family Tonthredinide. The migration of the apex of k_{1} awty from the margin of the wing, forming an appendiculate cell, to a position opposite the apex of the wing. 'Those genera in which this type of cell has been developed have their wings greatly elongated. and the migration of R_{1} is to stiffen this increased sail area.

The migration of the transerse parts of the veins, due to an eflopt to form more efficient trusses, results in a marked modification of tho position of these reins, and one of feefuent oecurrence. Where there is a seeondary change in the position of veins, it can generally be told by a eomparison with the generalized forms. 'This is shown in the
 and lergut (fig. 84), where the transverse part of M_{2} has migrated along $\mathrm{R}_{5}+\mathrm{M}_{1+2}$ on one side and along the medial cross-rein on the other.

When the wings of the Lydide (figs. 36-4:) or Xyelidx (figs. 31-85) are compared with those of Blemmonmm, one of the mos noticeable features is the great number of reins. The greater efticiency of the truss system of the winges of Blemomompu over that of the many
bined wings would seem to indicate that the extra veins are a hinthaner rather than anaid in stifleming the wing. This is confimed by the fact that they have been suppressed. If these superfluons veins are a hindrance in the formation of truses, they are also in the way in the development of wing furrows as will be seen by an examination of any of these or similar generalized forms. In the generalized wings the wing furrows are straight folds, permitting of only the minimum amount of Hexibility, while in Blemencomy", (fig. T2), Lymota (fig. 50), and Labidterge (fig. i8), they have been developed to their full extent. These wing furrows are undoubtedly the primary factor in effecting the suppression of such reins as the radial crossvein, the radio-medial cross-rein, and the free part of R_{5} in the front wing: and the transerse part of M, the free part of R_{4}, and the tramsverse part of M_{2} in the hind wing. The way in which the radial furrow has effected the radial cross-rein is seen in the wings of Dincuru (fig. 63), and Rhendineceren (fig. 70), where the crons-vein is gradually losing its chitimation through the promineme of this furow. The effect of the median furrow on the radio-medial cross-vein is seen in
 tiphorm. In this latter gemm there exist all stages from a fully preserved radio-medial cross-rein to its entire disappearance. In the genera Monoctomis (fig. 67) and Lophyrus (fig. 45) an intermediate sidewise development is shown in certain species where only the posterior half of the cross-rein hats atrophied, while the anterior half is fully preserved.

That the loss of the free part of Cu, is due to the anal furrow is seen by an examination of the wings of the following genera in the order maned: Butctrocoros (fig. t1). Permphilius. (fig. 39), ('ephatein (fig. 42), Lyder (fig. 3i), Cenolydel (fig. 38), and Ityconsion (fig. 40). In these genera there is a complete series from a fully formed Cu to a minute swelling on the side of C'u. The anal furrow is the most important as well as the most prominent and persistent furrow found in either wing. It is form in the same position throughout the entire order llymenoptera. It is this furrow that furnishes the flexibility in movement between the two wings. Cug, having been separated from the anal reins by this furrow, could be of only secondary importance in supporting this area: in fact it is more efliciently supported in the wing of Blomnectmp w withont it than it is in the wing of Bactroceros: with it. The series here named shows that we have a gradual movement toward the assumption of the condition foum in Blemucompor. This is shown in the straightening of that part of cubitus situated between the medio-rubital cross-vein and the base of the wing, and the migration of the anterior end of the medio-enbital cross-rein from a mion with media to a mion with radin, by this movement coming into direct line with the subtransverse part of radius. Correlated
with these changes, though not neeensarily due to the same calluse, is the migration of the posterior end of the radial eros-vein towarl the apex of the wing.

The rostal hinge as shown above is a thin place in the membrame of the wing between the apex of costal and the tip of sce. This is undonbtedy a weak place in the wing that hats theen handed down from generalized progenitors which did not rectuire such an elticient organ for flight. That it is a weak place in the wing is shown by the fact that in those forms that are especially efticient flyers this area has been bridged over. This is the case in the (imbicina (figs. sy-fio), the Siricide (figs- sti-91), the Cephide (figw. 98-96), and in all the higher Hymenoptera. In other forms this weakness has heen overeme by a flecided thickening of the apex of costa, which simply rests against $\mathrm{K}_{1}+\mathrm{sc}$, and the stigma, but never roalesces with them. The hinge is especially prominent in those genera with a broad area between costa and So $+\mathrm{R}+\mathrm{MI}$, and probably serves to make this pegion more flexible. That the prominence of the hinge in these genera is for flexibility is emphasized ber the fact that the apex of the conta is not decidedly thickened. This falusis a fold in the wing membrane between costa and $\mathrm{sc}+\mathrm{R}+\mathrm{Ml}$ very similar to the furrow found in this same region in the Diptera, and eonsequently tends to stiflen it.

In the wings of (myssus (tig. :97) ocems the greatest amomit of reduction foud in the wings of any member of the superfamily Tenfloredinoidea. It is an interesting fact that the reduction found in this gemas is not amemable to amy of the explamations already given. In (ryyssus the membrane of the wing has been more strongly chitinized than in the wings of other genera, and with the increased chitinization of the wing membrame the nevessity of veins for stiffening the membrame has been done away with, and consegnently they have gradually disappeared, being represented only hy hands of pigment.

Although it is not within the seope of the present paper, yet it may not be ont of place to say something about the dynamical control of the wing type in those orders where approximately all the veins are parallel and extend lengthwise or approximately lengthwise of the wing. This is especially true of the ordars Lepidoptera and I iptera.

Among the members of the order Lepidoptera the wings are broad and long. The stress exerted on the front margin of the front wings is not applied at one point as in the Hymenoptera, but is spread out along the entire front margin of the wing. Another point that must not be overlooked is the fact that there is no marked necessity for a transerse stiffening, beealse this is aromplished by the overlapping scales covering both surfaces, which stiflem it in the same mamer that the overlapping shingles stiffen a roof. The great majority of the trasses in this order have their apices near the apex of the cell R+M and their basal angles at the margin of the wing. They serve merely
as ribs for stiffening the wing membrane and keeping the sail area of the wing expanded. If the wings of such generalized families at the Hepialidx, Pyromorphidx, Megalopygida, and Eucleide be examined, it is found that this elongate type of truss is present not only on the hind but also on the front margin of the wing. But in the wings of the specialized families, Sphingidæ, Saturniidx, Papilionida, and Nymphalidx, which are noted as being rapid flyers, there is a very different condition. In these families all the branches in front of vein R_{5} have been crowded close to the front margin of the wing, forming a compact series of five stiff braces for supporting the area subject to the greatest stress.

In the liptera, is in the Lepidoptera, the stress is applied along the entire front margin of the wing, but in the wings of this order the covering of overlapping scales is wanting. As there is only one wing on each side of the body. and this is sublanceolate in outline, the factor of a sailing surface is reduced to the minimum. Since the stress is applied along the entire front margin, and there is no posterior wing to exert any influence, there has not arisen any necessity for a transrerse stiffening across the middle of the wing. In the generalized families the veins radiate out from the center of the wing to the margin somewhat like the spokes around the bub of a wheel. The reason for this is seen in the necessity for the stiffening of all parts of the wing. Most of the species are light bodied, and consequently the wing membrane is delicate and the wings light in weight. Those species that are predacious or hover about flowers are generally very atetive flyers. In these families there has been dereloped a marked tendency toward the coalescence of the tips of the veins, se as to prerent the fraying of the wing margin. There has also been developed along the front margin from the base to the apex of the wing a heary vein in which the longitudinal veins terminate. This is especially marked in the families Bombyliidx (fig. 21), A pioceridx, and Midaidx (fig. 2s), where the tips, of all the branches of radius curve forward and terminate close to the wing margin, thus accomplishing the double purpose of protecting the wing margin and at the same time stiffening that part of the wing subject to the greatest stress. The wing of Midas, which haw been referred to before becanse of the great number. of the tips of it, reims that have migrated forward, illustrates this point well. It shows how the stress applied on the front margin of the wing is tramsmitted to the base along the radial stem, while that on the hind margin is tramsmitted along the medial stem. We find here the reason for the coalescence of the branches of the radial sector to R_{1} rather than to M_{1}, as happens in the Hymenoptera; namely, becamse the stress in this wing is applied only on its front margin, and there is a greater need for a stiflening in this direction. That this is the correct interpretation is shown ly the change in the contonr of the
front margin of the wing of Midus as compared with that of Poutarbes or Erax (fig. 22), Midas showing the highest type of efficiency, a long, narrow triangle.

VI.-THE PHYLOGENY OF THE TENTHREDINOIDEA.

It is essential in determining the phylogeny of any group to ascertain what are the most primitive forms, to compare them, and to determine the ways in which they have been modified. ln making these comparisons the structure of a set of organs should be studied and the phylogeny of the group determined from this study; then other sets of organs should be examined, until all the organs of the animal have been examined, phylogenies based on these studies should be made, and then compared with the phylogeny tirst determined. If it is found that these successive phylogenies corroborate each other, we have a demonstration of the correctness of our conclusions. If they disagree, then there is indicated a need for a further examination of the disagreeing forms, for when correctly interpreted it will bue found that the different records of the action of natural selection will not contradict but confirm each other. In the following pages the first step in such an investigation, a phylogeny based on an examination of the wings of the Tenthredinoidea, is given.

There arises, in working out the phylogeny of any group, the necessity for distinguishing between different kinds of characters.

First, characters indicating difference in kind of specialization; and reeond, characters indicating difference in degree of specialization of the sume kind. The former will indicate dichotomons divisions of lines of descent; the latter merely indicate degrees of divergence from a primitive type. Thns, it is shown that there are two distinct ways of miting the two wings of each side in the Lepidoptera; they may be united by a frenulnm, or they may be united by a jugum. These are differences in kimd of specilization, and indicate two distinct lines of descent or a dichotomons division of the order. Among those Lepidoptera in which the wings are united by a fremulum great differences occur in the degree to which this organ, or a substitute for it, is developed; such differences may merely indicate the degree of divergence from a primitive type, and may need to be correlated with other characters to indicate dichotomous divisions."

There is also a necessity, as is shown by Comstock, to distinguish between the characters used by systematists merely to make it possible for students to recognize the members of a group-recomintion churncters and the asential characters of a group. The cosential characters of a group are not necossarily dependent on the presence or alnsence of any character or in the form of amy part of the hody. but on the characteristic structure of the progenitor of the group and the direction in which the descendants of this progenitor have been specialized. Recognition characters are generally those first observed and used by the systematist. They may also be essential characters,

[^6]but as a rule taxonomists seareh only for characters indicating a difference in kind.

Speeialization mar take place in two very different ways-" first, by an addition or complication of parts, specializution by ondition: second, by a reduction in the number or in the complexity of parts, specielliantion by reduction." The specializations to be considered later are all of this latter type.

It should also be borne in mind that when an organ disappears in any phyllum or line of ascent it can not reappear in the descendants of this phythm, though they might develop a substitute for it. Eren if such a sulstitute should be developed, it is not probable that the substitute would resemble the organ so closely as to be mistaken for it.

In determining the phylogeny of any group, those characters indirating a difference in degree of specialization of the same kind are the most nseful in allotting the rank of the different groups. Every large group has mmerons characters indicating a difference in degree of specialization of the same kind. Certain of these characters show the ascent of the group as a whole. While others show only small lateral lines of aseent or a sidewise development. Characters indicating a sidewise development frequently arise independently several times, and do not indicate anything as to the hine of ascent of the group as a whole. This is illustrated by the presence or absence of the radial cross-rein in the families Xiphydriida (fig. 85) and Tenthredinida. The presence or absence of this cross-vein in of value in indicating the line of ascent of the genera of each of these families, but is worthless so far as indiating any rank between the families themselves. Therefore care most be taken to differentiate between those characters that show the ascent of the group as a whole and those characters that show only a sidewise derelopment.

The front wing of the original progenitor of the Hymenoptera, and therefore of the Tenthedinoidea, was mondontedly very similar to the one already described as the typical hymenopterons wing (fig. 8). This wing contains not only all those parts that are generally wanting in the Hymenoptera, but the varions parts are arranged in the most primitive comdition known to us, as can madily be seen by comparing this wing with those of the Xyelide (figs. 31-35) and Lydide (figs. 36-43). No hymrnopterons wing contains all the reins shown in the typical wing. lout ly combining the wings of the families just named the wanting parts can be readily supplied.

The chanacters that have been fomed the most nseful in determining the ascent of the Tenthredinoidea are the position of the radial crossvein, the position of the medio-rubital cross-vein, and the reduction of the anal cells of the front wing-

Hitherto the sperial moditications of the wing veins of the Tenthredinoidea have been considered in detail, particularly with respeet to
the way in which the progressive morlifeationsor each part has arisen. Let us now eonsider the interredation of the varions parts in its bearing on the phylogeny of the group as a whole, and its bearing on the relation of the Tenthredinoidea to the other superfamilies of the Hymenoptera.

The superfamily Tenthredinoidea is a homogenous group asily demareated from all other lymenoptera by several struetural characters other than those found in the wings. The effeet of natural splection on their wings has tended to modify them along so many different lines that it would be strange if we should find any single character that would ciremseribe the gromp. This has heen fomed to be true. though the sepanation of the group is readily areonplished by the employment of several coordinate charatters.

As has already been pointed out sereral times. the superfamily Tenthredinoidea contains all those genera of the I y ymenopter:a that are especially generalized, as the free part of the veins R_{1}. (' $\mathrm{H}_{2}, 2 \mathrm{~d} \mathrm{~A}$, and $B \mathrm{~d}$ A is found only within the limits of this superfamily. The great majority of the members of this superfanily can be distinguished by the presence in the front wings of either the second or third anal cells or both.

Ffir, 19.-ThF base of the radial sector, a, C.eNolyda semidea; b, Tenthreion Flava; r, Claditis pertini(ORNIS: d, PATRURUS (YANEES; e, IlEGALOHONTES APISSI CORNIS.

In a few subfamilies of the
family Tenthredinida both of these eells are wanting. But these subfamilies. Incalina, Acordulecerina (fig. S3), Lobocerina (tig. 82), Pteryogphorine (fig. S1), and Pergine (fig. 8t), of which only the second is represented in our famma, are easily distinguished by the position of the medio-cubital eross-vein, which always extends between radius and cubitus, while in all other Ilymenoptera other than the Tenthredinoidea, and even in certain members of the Tenthredinoidea, as has already been shown, this eross-vein always extends hetween media and enhitus. Other minor difforences that should be noted are the preservation of a much greater number of reins in the radial and medial areas of the hind wings-this is true even in those subfamilies in which the anal cells of the front wings have been suppressed-and the preservation of the third anal vein
of the hind wings, which appears to be wanting only in the genus

The most notable difference is found in the condition of the base of the radial cross-vein. The radial sector separates from R_{1} at or hefore the base of the stigma. This is shown in the wings of Macroxyela (fig. 33) and (renotydu (fig. 19, , 1), where the radial sector, after separating from R_{1}, extends transersely for a considerable distance before extending longitudinally. The radial cross-vein in Macroryela is a perpendicular rem extending from near the middle of the stigma to near the middle of the cell R_{5}. In Bactroceros (fig. 41) this crossvein joins the stigma near its apex and the cell R_{5} near its apex. In the genus Tenthredo (fig. 19, b) the radial sector likewise arises from the base of the stigma, but differs from Marroryela and Caxnolyda in that the base of the radial sector does not extend transversely, but extends from R_{1} along R_{3} to the margin of the wing in a continuous regular curve. The anterior end of the radial cross-vein is heyond the middle of the stigma, as in Buctroceros, and the posterior end has migrated to near the midhlle of the cell R_{*}. Cladius (fig. 19, c) shows a condition similar to that found in Tenthrede, except that the radial cross vein has atrophied. but it should be noted that in both of these genera-the one with a radial cross-vein, the other without-the radial sector arises in exactly the same mamer. In I'mmums (fig. 1!), il) the radial sector arises in a similar mamer to that of Macroryela and Cxmolycle, except that the transerse part is not so prominent. The radial cross-rein extends between the apical third of the stigma and the apical third of cell R_{5}. It should be noted that this cross-rein is parallel with the transerse part of the radial sector and appears to be the direct contimation of that part of the radial sector beyond it. This appearance is emphasized by the position of the posterior end of the radio-medial cross-rein, which has migrated along the hase of media until it has come into line with the longitudinal part of the radial sector, so that one not very familiar with the topography of this area might asily make the mistake of considering this vein as arising at the posterior end of the radio-medial cross-vein and the basal or transverse part of the radial sector, as woll as the radial cross-vein, as cross-veins.

The wings of Maydodontes (fig. 19. r) are shorter and more compact. and there has been a crowding of the cells $\mathrm{K}, \mathrm{R}_{5}$, 1st R_{1}, and M_{4} into the area behind the stigma, resulting in a condition similar to that found in Pempums. There are the following differences, however: The tramserse part of the radial sector and the radial crossvein are longer: the cross-rein is moto oblique, and the appearance that it is the base of R_{3} is more strongly emphasized; and the radiomedial (ross-rein appears to be the continnation of the rein extending from the posterior end of the radial aross-vein to the anterior end
of the radio-medial (ross-vein, the entire vein appearing as a transverse vein comparable to the free part of R_{5}. In J/acrocephos sutyms (fig. 20. a) there is a further modification of the condition found in Mequludontex: the cells 1 st R_{1} and R are about equal in length. so that the vein forming their outer ends, which extends from the posterior end of the radial crosserein to the posterior end of the radio-medial crossrein, is but little longer than the free part of R_{5}, and is only shightly angulate. The fact shouk not be lost sight of that this vein is a composite one, being made up of the radio-medial eross-rein and a part of the radial sector. In this wing the cell $2 d R_{1}+R_{2}$ is much longer, and the inclimation of the radial crossvein, together with the course of the vein forming the apices of the cells R and 1st R_{I}, emphasizes the fact still more strongly that it might be the base of R_{3} instead of the radial cross-vein. That part of the radtial sector extending from the base of the stigma to the anterior end of the radio-medial cross-rein in this wing extends almost longitudinally. In .Jomus (ynowheti (fig. 20, 万), the base of that part of the vein just described has fated out for a short distance near the stigma, while in .Jamus ablnervistus (fig. 20, c) the base of this rem has faded out for over half its

Fig. 20.-THE SWITCHINGOF THE BASE OF THE RADLAL SECTOR. a, MACROCEPHUS SATYRUS; b, JANI'S CYNOSBATI; c, JANI'S ABBREVIATUS: d, ORYSsUS ABIETINUS; c, PELOR.ET'S CEMENTARIUS; f, APIS MELLIFICA. length. If the remander of the basal part of the radial sector should atrophy up to the point where it is joined to the anterior end of the radio-medial cross-vein, and if it were not for the surcessive stages just described, then the radial sector would be considered as arising from the middle of the stigma and the entire first transerse vein, as a cross-rein. This is exartly the interpretation that has been given to these veins thronghout the higher Hymenoptera, where this rery condition exists. The same condition is found in the Tenthredinoidea in the genns (roysens (fig. 20. d). but this genns is not so interesting in this rommection, because the first tramserse rein, i. e., the radio-medial cross-rein plas
a part of the radial sector, has also atrophied. The atrophy of the hase of the radial sector results in the mion of the cells R and 1 st R_{1}, a condition not found in any Tenthredinoidea other than Orys.sus and Op,hrymomes. This character is probably common to the other two genera of this family which are not known to the writer. That the above interpretation is the correct one is contirmed by the examination
 (fig. 20. c), and Apis (fig. 20, f^{\prime}). If the base of the rein starting off from the stigma in the first four of these genera be examined, it is found that it extends obliquely to the first transerese vein just as in Meyrulontontes, Cephens, and . Jomen. If this vein were the base of the radial sector, it would proceed in a regular curve, as in the genera Tenthredo and Chudius. The composite mature of the first transverse vein is shown by an examination of this rein in certain specimens of Apis, where it is not straight but angular, as in Ceplus. In certain generat of Apoidea, as Bombus, Psithyrus, and osmicu, and of Larridae, the base of the radial sector is presered as a tine thread-like rein, frequently entirely colorless, while in some other genera only the transparent stubs remain.

The superfamily Tenthredinoidea can be differentiated from the other superfamilies by the presence in the front wings of one or both of the anat eells, or, if both be wanting, with the medio-cubital erossvein extending between $\mathrm{R}+\mathrm{M}$ and cubitus: the cells R and 1-t R_{1} separated by a rein as broad as any of the others, or if not separated, with the first anal rell present.

The superfanily Tenthredinoidea is divisible into nine families. They are the Xyelida, Lydidx, Blasticotomide, Tenthredinidx, Xiphydriidx, Sirieidx, Megalodontida. Cephide, Orysidae. They are all represented in the American fama except the Megalodontide and the Blasticotomida, and contain a very limited number of species exept the family Trentherdinida, which embraces several hundred species and a large number of subfamilies.

The close relation of these families is proven by characters showing a difference in degree of specialization of the same kind, but through the loss of certain of the intermediate stages those characters indicating a difference in degree of specialization of the same kind are here just as useful as chatacters indicating a difference in kind of specialization for marking dichotomons divisions. Although each of these families represents a period in the development of certain characters, yet the series is not a lineal one: that is, the comecting links do not lie between the rarons families, but behind them. They have been developed from a common progenitor which transmitted its characters to its offispring in ans clementary condition, and these offispring have dereloped along several parallel lines. Fortunately for our study,
these otfispring have all arrived at ditferent stages in their aseont, and hy a comparative study it is possible to determine the road along which they have traveled. From this it is evident that in this superfamily those characters of vahe as essential charaters are efually valuable as recognition charactors.

The relation of the familios of the Tenthredinoidea can be best shown by the following synopsis.

The generalized Tenthredinodea	X yelida
The spectializer Tenthredinoirleat	
The cell R_{4} group . Blastientomidip.	
	Tenthredinidia.
The cell K_{3} group	Xipherlriidit. siricilde.
	Mewalorionticke.
	Cephita'.
	oryssidie.

THE (iENERALIZED TENTIIREDINOIDEA.

The generatized Tenthredinoidea embracen two familien, both of which are near the stem form of the original progenitor of the Hymenopteria. They are marked as generalized types hy their whort, broad, many-veined wing-, in which the veins have not heon aramged to the hest adrantage for atiflening the stigmatal and anal areats. They are further distinguished by the origin of the radial sector distinctly before the stigma, and hy its prominent subtranserse bend amay from the stigma. The course of the apex of the rein K_{3} in both wings also demarcates them: this rein near the point of origin of the vein R_{t} bends abrmptly toward the margin of the wing. so that the cell on its front side, R_{2} or $2 d R_{1}+R_{2}$ is hlunt or suhtruncated at apex, a condition found only in generalized generan

This group is of particular interest to the stulent of phylogenies. becanse it approaches nearest to the typical wing in its retention of subcosta, the free part of R_{2} and the free part of ("u,., though this latter is also fomd complete in one genus of Siricidae.

Tyelida. A small family embracing five genera and a limited momher of species, which are confined manly to the American fama. It is easily separated from all other Hrmenoptera by the presence in its wings of the free part of the rein R_{0}. The family contains, at least so far as their wing remation is concemed, the most generalized Hymenoptera known (figs. 31-35). This is shomn hy the origin of media near the middle of the costal area; hy the perfere transwerse direction of the radial cross-rein, which is situated midway between the radio-
medial cross-rein and the origin of R_{2}; by the position of the mediocubital cross-vein near the posterior end of the radio-medial cross-rein in Manoryela (fig. 34), its location abont halfway hetween this erossvein and the point of separation of media in Jycla (fig. 35), its migration toward the base of the wing motil still nearer the origin of media in Megraryrla (fig. 31), and odontophyes (tig. 32), and finally in Macroxyela (fig. 33), to a position only a very short distance before the origin of media; by the progressive migration of the free part of $\mathrm{M}_{4}+\mathrm{Cu}_{1}$ from just before the apex of the first anal cell in Tyelu to just heyond the middle in Maroryela: by the preservation of the radio-medial (ross-vein in the hind wing's of Megaxyela, Odontophyes, and Macroryela: and by the location of the free part of R_{4} of the hind wings near the apex of M_{1} in these same genera.

It is worthy of note that the Xyelidse have departed from the type of wing assumed for the original progenitor of the Hymenoptera only in the loss of the free part of the vein Cu_{2}. It is also of interest that although their wings are distinctly generalized, yet in many ways they have undergone prominent progressive specializations, and that in each case these specializations have not proceeded in the same order. The variation in the order of specialization of the different genera will be seen in the following lists of genera which are arranged from generalized to specialized. If the modifications of the subcosta be taken they would be arranged, thus, Odontophyes, Megaryela, Maroxyela, Kyela, Mamoxyela; if the shape of the stigma thus, Tycla, Manoxyela. Macroxyela, Megaxyelen, Odontophyes; if the position of the mediocubital cross-vein, thus, Manoxyela, Myelu, (Jlomtophyes, Meguryela, Macroryela; if the position of the free part of $\mathrm{M}_{4}+\mathrm{Cu}_{1}$, thus. Xyeler. Odontophyes, Mequryela, Manoxyela, Macroxyela; if the origin of media thus, Myela, Macroryela, Mammayela, ondontophyes, Meyaxyela. If now the position of the five genera be tabuated for the five characters given, it is found that Megaryela occupies all the positions but the first, and occupies the fourth twice, Odomtophyes occupies each of the five places, Macrorybell occupies the third and fifth each twice, and does not oceupy either the first or fourth, Manoryela occupies each of the tive places, Tyela occupies the first place three times, and does not occupy either the third or fifth.

This family is divisible into two subfamilies on the form of the base of the subcosta of the front wings. In one subfamily, of which Macroryela (fig. 33) may be taken as the type. the subcosta extends from the base of the wing midway between costa and $R+M$ to beyond the origin of media. where it divides into two branches, one going to the costal margin, the other extending transversely coalesces with radins. In the other subfamily of which Tyela (fig. 35) may be taken as the type, the hase of suberosta is closely appressed to $\mathrm{R}+\mathrm{M}$ but does not coalesce with it, to about the middle of the distance between
the lase of the wing and the stigma. where it turns abruptly toward the margin of the wing. The free part of the rein Sc, and the cell se have heen suppressed by the close approximation of the stems of Sc and $\mathrm{R}+\mathrm{M}$.

Lydidit. -The Lydidae is an easily circmmseribed family of ten genera and ahout one hundred and twenty-five species which are peculiar to the northern hemisphere. Thin and the Xyelida are the only families of Hymenoptera in which subeosta has heen preserved in the hind wings (figs. 36-43). In this character the Lydida are more generalized than the Xyelidae. The serjes of wings here shown are of value as indicating the mamer in which the subeosta of the hind wings has been suppressed, mamely, by atrophy from the base toward the apex. This family is noteworthy for the retention in many species of the free part of ('u, , though this character has heen preserved in a limited number of species of the family Siricida' (fig. sti). The Lydidæ have departed farther from the tyical hympnopterons wing, and are therefore more specialized than the Xerelida. This is shown by the origin of media much nearer the origin of the radial sector, so that the cell R is only abont as long as wide; hy the position of the posterior end of the radial cross-rein, which raries from a position on the apical two-thirds of the cell R_{5} to a position interstitial with the free part of the roin R_{5} : ly the position of the anterior end of the medio-cuhital cross-rein at or just beyond the origim of the media; by the loss of the free part of R_{2} : hy the coalescence of the tip of R_{4} for a greater distance from the margin of the wing; by the difference in the shape and position of the cell I_{+}due to change in position of the stem of media and of the medio-crabital cross-rein; in the hind wings by the greater coalescence of the stem of media and the radial sector: and hy the greater constriction of the apex of the first anal cell of the hind wings dur to a coalescense of the first and second anal veins. The loss of the free part of the seeond branch of cubitus is a gradual one. It is complete except for the point where it is crossed by the anal furrow in Liolydel (fig. +3), I'mphtitins (fig. 39), and Buctroneros (fig. 41); in Lyrla (fig. 37) and ('epluletile (fig. 42) the posterior half is wanting: in ('armolyld (fige. 3s) it is only a small tubercle on the posterior side of cubitus, while in Venmontom (fig. 36) and Itycorsin (fig. 40) there is left only the convexity, indicating where the free part of C u_{2} was situated. The Lydida differ from the sperialized Tenthredinoidea in the preservation of subeosta of both wings, the origin of media, the shape of the cell Lst $R_{1}+R_{2}$ and the course of the radial cross-vein.

THE SPECIALIZED TENTHREDINOIDEA.

Begimning with the families here included, there is found the first marked departure from the typieal hymenopterous wing. This group is differentiated hy the almost entire loss of the base of subcosta. The only exception is found in certain species of Siricida (fig. 87), in which as subcosta of the type found in Verrotomm (fig. 36) persists. It can be traced as a pale, indistinct line through the middle of the area hetween costa and $\mathrm{R}+\mathrm{M}$ in wings which have been cleared and monnted in Canada balsam. In addition to the loss of the base of subcosta, there is a decided shortening of cell R, due to the coalescence of radius and media to near the base of the stigma. The wings are longer, narower, and more efficient organs of tlight. The base of the radial sector has lost its prominent transverse curve, and measured along R_{3} extends to the margin of the wing in a regular curve. The stigma has lost its broad quadrate outline, and, except in the genus Blasticotome (fig. 44), it is narrow and diamond shaped.

The specialized Tenthredinoidea are divisible into two distinet phyllogenctice groups on the position of the posterior end of the radial cross-vein, in one ending in the cell R_{5}, in the other in the cell R_{4}. The position of this cross-vein, together with the position of the mediocubital cross-vein and the direction of the base of media, mark these groups ats very different lines of development.

The determination of the sequence of these groups in a lineal arrangement has been a difficult one. In the answering of questions of this nature, the rule laid down by Comstock" seems the most available one:

It seems to me that the most practicable way of meeting this difticulty is to begin with the description of the most generalized form known, and to follow this with descriptions of forms representing a single line of development, passing successively to more and more specialized forms included in this line. When the treatment of one line of development has been tompleted take up atother line, beginning with the most generalized member of that line and clearly indicating in the text that a new start has been marle.

This shows clearly the method of procedure so far as the components of each line of developmont are concerned. but the difficulty here to be met is the determination of the sequence of the lines of development themselses. For the sake of hrevity and convenience in referring to these lines of derelopment, they may be known the cell R_{5} group and the cell R_{4} group. As is indicated above, in the former the radial cross-rein ends in the cell R_{5} and in the latter in the cell R_{4}. Both lines contain families that are very generalized and are consequently near the stem form. In the arrangement bere adoped, it has been assimed that the group that departs farthest from the condition of the original progenitor of the group should be given the highest rank, becanse

[^7]they have shown by the adoption of these modifications greater ability to conform to enviromental modifications.

The cell R_{4} group finds its greatest modifications in the position of the radial cross-vein, the position of the medio-cubital cross-rein between sce $+R+M$ and cuhitus, and in the loss of the anal cells. The cell R_{5} group finds its greatest modifications in the swinging of the base of media toward the apex of the wing, the atrophy of the base of the radial sector, and the loss of the second anab cell. It has been shown that the trend of morlifications in these wings is toward the arrangement of the rems in such a way as to form supporting trusses in the stigmatal area. The cell R_{4} group has accomplished this hy means of the medio-cubital rross-vein alone. while the rell K_{5} group has employed not only the cross-rein, but combined it with the transverse part of media. 'The fact that this latter type is the one preserved thromghout the higher Ilymenoptera would seem to indicate that it is the one that has been most suecessful in meeting the requirements of natural selection, and consequently must be the most efticient type. The loss of the base of the radial sector, which is peeuliar to the cell R_{5} gromp, and likewise to the higher Hymenopterat, would also seem to point in this same direction. On the other hand, the retl K_{4} group has exceeded the cell R_{5} gromp in the loss of the amal eells, which is likewise peculiar to this group and the higher Hymenoptera; but even this condition is approximated by the cell R_{5} gronp in the genus (royssos (fig. ! 9), where the second amal cell is apparently wanting. So far as structural modifications are concerned, the weight of the evidence shows that the modifications found in the cell R_{s} gronp hare departed farthest from the primitive type, and we are therefore justified in giving it the precedence here.

Another fact that should not be overlooked, although it does not refer to structural predominamee, is the mumber of descendants. The rell $R_{\text {s }}$ group contains tive families. all of which are limited as to number of gencra and species. The cell $\mathrm{R}_{\text {a }}$ group contains two familios, one contaming a single speries and the other many times as many genera and species as is found in all the remander of the Tenthredimoidea together. The predominance of the cell K_{4} group would seem to contradiet our conclusions from structural superiority and therefore of efficiency of type. namely, that the predominance of individuals is a direct confirmation of the superiority and efticiency of the cell R_{4} type. This is only an apprent rontradiction, for, if strmetural superiority and predominanco of descendants are compared in other gromps of animats, it is fomed that in those gromps where there is a marked structural superiority there are a limited mumber of genera and species, while in those groups where there is a marked predominance of deseendants, they are as a rule only mediocre so far as structural superiority is concerned.

THE CELL R_{4} GROUP.

It hats been moted that there are two modifications in the stigmatal region that go hamd in hand. The one is the progressive coalescence of the media from the middle of the costal area to near the stigma; the other is the progressive migration of the medio-rubital cross-vein from a position near the apex of the cell R to a position in the angle between R and M . In the cell K_{+}group there is fomd the consummation of these modifications, the base of the media moving still nearer the stigma and the cross-rein cutting loose from media and migrating: along sic $+\mathrm{R}+\mathrm{M}$ motil in some genera it is more than its own length away from the media. It is donbtful that this moving of the radial end of the cross-vein toward the hase of the wing is in every case a bona fide migration, and herein probably lies the explanation of why this character in of little value in certain subfamilies of the Tenthredinida. If the wings of Strongylorgerster (fig. 51). Stromboceros (fig. 50), and selandrin are examined. it is found that in the first the cross-rein arises in the angle between R and M , and that radius extends toward the stigmat in a regular curve; in the second the eross-rein is farthest from M, but that beyond the cross-rein radius makes a more prominent bend toward the stigma, while in the third the cross-rem is distant from Mand radins makes an abrupt bend toward the stigma. The evidence here suggests that in the ase of Selondrio this condition was reached by a coalescence of the anterior end of the cross-vein and $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$.

This group is noteworthy as being the only one showing the different ways in which the anal area has been modified and therefore the successive changes that have resulted in the complete reduction of the anal cells.

The position of the radial and medio-cubital cross-reins marks the group as a sidewise development, this arrangement of parts being peculiar to the group. With the exception of a single case in the cell R_{5} group, it is the only place where the radial cross-rein is lost. This peculiarity has arisen independently a number of times in the family Tenthredinida. When present, this cross-vein is always oblique to R_{3++} and never perpendicular, as in the generalized Tenthredinoidea.

The hind wings are practically the same in venation as those of the Lydide, except that in some forms the free part of the second anal, the free part of R_{4}, and the transverse part of M_{2} has atrophied.

Blasticotomidit.-A family contaming a single genus and species. found only in contral and eastern Emrope (fig. 44). This is an isolated archaic type. It is, in certain of its chatacters, closely related to the Xyelide and Lydidar; in others it approximates the 'Tenthredinidea; that is, it is intermediate between these two groms. The area between costa and sc+ $\mathrm{R}+\mathrm{M}$ is hardly more than a line and all trace of the sub-
costa is wanting. The stigma in a broad oralarea like that of the Nyol ide. The radial sector separates from k, distinetly before the stigmat and extends to the wing margin along R_{3} in a regular curve. The apex of the cell $2 d \mathrm{R}_{1}+\mathrm{R}_{2}$ is broadly romeded, just as in the generalized Tenthredinoidea and Megalodontidee (fig. :sy). The radial crows-rein is joined to the stigma at its apieal fourth and to the rein $\mathrm{K}_{3^{+4}}$ near the middle of the cell R_{+}. The radio-medial eross-rein is wanting. Media separates from radius a short distance in front of the radial sector; it extends transwersely for a short distance, then extends in a broad bow-like bend to the point of separation of M_{1+2} and M_{3+4}. much as in Buctroneres (tig. 41) and Ityonswiel (fig. 40). The anterior end of the medio-culbital cros-sein is joined to media at the posterior end of its, transerwe part and the posterior end of the croservein to cubitus just beyond its middle, the crosi-vein extending from this point to media in a prominent curve, so that the cell M_{4} is in the shape of a semicircle. The cubitus is a straight vein, closely appressed to S $\mathrm{c}+\mathrm{R}+\mathrm{M}$ at the base of the wing, but not coalesced with it. The free part of $\mathrm{M}_{4}+\mathrm{Cu}_{1}$ is situated near M_{3}. as in the Lydidac the rein being transrerse instead of obliqne. The anal cell is of the form found in the typical wing. In the hind wings the cell R_{1+2} is bluntly rounded as in the fore wing and they differ from the Lydidar only in wanting the nubcostal rein and in that the transerse part of media is nearer the apex of the wing.

Amost every writer who has studied this speries has located it in a different place. It has been placed in the subfamily Hylotomine (figs. $76-79$) or as a separate subfamily or as a tribe near the generalized Tenthredineidea. It has affinities with the generalized Tenthredinoidea in the shape of the stigma, the shape of the apex of the cell R_{2}, and the position of the medio-enbital aroswerein. It is allied to the family Tenthredinide (tiges. tis-st), in the course of the base of the radial sector and in the position of the radial cross-rein. It differs from the generalized Tenthredinoidea and the generalized Tenthredinidae in the constriction of the area hetween costa and Sc+R+M. These characters indieate it as a primitive form closely related to the family Tenthredindae, which tinds its proper lowation as a distinct family just before the Tenthredinide.

Tenthredinidiz. - A large family with mumerous subfamilies, genera, and speries, found in all parts of the world. The stigma is of moderate size, ovate in outline. The costa in most of the speries is distimetly thickened towat the apex. The area between conta and se+R+M is of rarying width, the subeosta is represented only by the free part of c_{1}, and only in rare cases is all trace of this wanting. The radiad cross-wein is joined to the stigma near its apex and to R_{3+} near the apex of the cell R_{4}. The radial sector extende from the base of the stigma in a regular curve. In many genera the angle between the
stigma and the base of the radial sector has been strongly chitinized secondarily, so that the radial sector appears to arise from the base of the stigma, but it is always possible to differentiate this secondary part from the stigma and the vein hecanse of the difference in the amount of chitinization. This condition is very prominent in Hemicherot (fig. 62) and Periclistn (fig. 69). Media separates from radins near the stigma. The anterior end of the medio-cubital cross-vein may. be joined to it at itw origin or arise from the angle between K and M , or be joined to $\mathrm{s} \cdot \mathrm{C}+\mathrm{R}+\mathrm{M}$ at varions distances from the origin of M . The amal cells show a marked progressive modifieation, but this and the other modifications can be dealt with better under the discussion of the subfamities, and will be treated there.

It has been shown that the interrelation of the medio-cubital crossvein and the origin of media is one of the most useful chanaters in indicating the sequence of the different familios. Althongh there is quite a little modification in this region within the family Tenthredinidre, yet it is worthless for our present purpose, since it does not indicate anything as to the phylogeny of the group. The anal veins and cells mantain the same form and relation in all the families of the Tenthredinoidat except the Orysidae and the Tenthredinidar. In the Tenthredinide this area goes through a series of successive changes that are just as valuable in indicating the sequence of the sulfamilies as the position of the medio-mbital cross-vein is in indicating the sequence of the families. Using, therefore, the amal area as a basis, this fanity can be divided into the following subfamilies, the relation of which can he best understood by means of the following synopsis:

SYNOPSIS OF THE SUBFAMILIES OF TENTIREDINIDÆ.

(ieneralizer Tenthredinidar .	Lophyrine. Emphytiner. Selandriins. Dolerinar. Phyllotominer.
Sterialized Tenthredinida.	
Anal cell conservers.	
Seeond amal rein conservers	
	Tenthredinina: Cimbicinte.
Serond amal vein losers.	
Second anal tell reduced by atrophy.	
Contal area conservers.	
Radial cross-vein consarrors.	Hoplocampinar.
	Dineurinar.
Radial [ross-vein la	Monoctenin:
	Cladiinse.
	Nematinar.

Costal area losers.	Blennocampinr.
	Fenusina.
	scolioneurinx. .. Hylotomine.
Anal cell losers	Schizorerina.
	Perreyiinte.
	Incaliins.
	Lohocerint.
	Acordulecerinze.
	Pterygophorinat.
	Perginie.

GENERALIZED TENTHREDINID.E.

The five sulfamilies bere included do not represent a continuons line of modification. Wach subfamily is a sepatate entity, representing only the tip of a line of aseent. la the amal area they have retained the primitive condition of the typical wing, but in other regions they are distinctly modified. The group contains gencrat that have been distributed among various subfanilies. The primitive condition of the anal cells and the prominent contraction in the third anal rein shows their close relation to the generalized Tenthredinoidax. their close attinity as a group, and furnishes ample reason for their inclusion as separate subfamilies in this phace.

Lo, haprime. - The broad area between costa (fig. 45) and $\mathrm{s}_{\mathrm{a}}+\mathrm{R}+\mathrm{M}$, together with the distinct free part of ser and the origin of media from k, much as in the generatized families, denominates this group as a generalized one. It is specialized in its lons of the radial crossvein and the open condition of the apex of the cell R_{1+2} of the hind wings, in these ways surpassing all the subfanilies of the generalized Tenthredinida. The base of the radial sector bends abruptly toward the apex of the wing, hut not as abruptly as this rein bends in the Xyelidx (figs. 31-35) and Lydidxe (figw. 3(i-13). The apex of the cell R_{1+2} of the front wing: is moderately blunt, due to the bending of R_{3} abruptly toward the wing margin at the origin of R_{4}, though pointed at its actual apex; the cell XI_{4} is about twice ans long wide; the rein $\mathrm{M}_{4}+\mathrm{Cu}_{1}$ is joined to the middle of the cell M_{4}; the medio-cubital crossvein is joined to $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$ just before the origin of media, the cross vein and M_{3+4} are slightly divergent, the free part of R_{4} and the transverse part of M_{2} of the hind wings is present, and the first anal cell is petiolated at apex for a short distance. An interesting modification is the loss of the posterior half of the radio-medial cross-rein in many species.

This subfamily as known to me contains only the genus Lophyrus (fig. 45). It is usually associated with the genus Momoctenus (fig. 67), and plared near the Hylotomine and its allies, but I believe that the most important modification that can be used in assigning a location
for a gromp, in lineal arrangement in the family Tenthredinidæ is the condition of the anal cells, and judged by this eriterion the Lophyrinat must fall among the generalized Tenthredinida.

Empliytinat. The Emplyytine have the area between corta figs. $4(i-48)$ and $\mathrm{sc}+\mathrm{R}+\mathrm{M}$ restricted, though in some genera it is fairly broad with a distinct $\mathrm{c}_{\mathrm{c}}^{1}$. in others it is narrow, and Sc_{1} is only represented by a projection upon the front margin of Sc $+\mathrm{R}+\mathrm{M}$. The mediocubital cross-rein is attached in the angle between radius and media, this cross-rein and M_{3+4} are parallel. The ratio-medial aross-rein is wanting in certain genera, as Emplaytus (fig. 46) and Pacilostomidea, so that the célls R and R_{5} are combined. Many writers on the Tenthredinoidea content themselves with the statement that there are three or four submargimal cells present, but it is very apparent that this does not give a hint as to what vein is wanting and therefore what cells have combined. The radial cross-vein is never wanting. The cells $2 d \mathrm{R}_{1}+\mathrm{R}_{2}$ of the fore wings and R_{1+2} of the hind wings are distinctly pointed at apex. The free part of $\mathrm{M}_{4}+\mathrm{C}^{\prime} \mathrm{u}_{1}$ varies as to the place at which it joins the cell M_{4} from near the middle of the cell to at point almost interstitial with the medio-cubital cross-rein. In the hind wings the free part of R_{4} is frequently wanting, while in other genera hoth the free part of R_{4} and the transverse part of M_{2} are wanting. There is considerable rariation in the amount of coalescence of the first anal cell of the hind wings. In Acidophore the second anal vein separates from the first distinctly beyond the free part of $\mathrm{M}_{4}+\mathrm{Cu}_{1}$ in other gencra, as Titratumoro, the apex of the first anal is, interstitial with $\mathrm{M}_{4}+\mathrm{Cu}_{1}$, while in Ervortmp (fig. 47) the coalescence is for a considerable distance before $\mathrm{M}_{4}+\mathrm{C}_{1} \mathrm{u}_{1}$. The following genera would be referred to this subfamily as here constituted: Athalia, EFincompue. Stromgylogestronden, Perilostomider. Pacilostoma, Turouns, Hypotaxomus. Hemitaromus. Emplhytus. IKurpipltor-

Selundrimix.-A group with only a limited number of genera, but fairly rich in species. It is of especial interest, becamse it marks the tirst stage in the reduction of the anal area, the free part of the second anal vein being wanting (figs. 50 $0-51$). It is only recently that systematists have considered the loss of the free part of this rein of even generic value, but the modifications of this area are of such great phyllogenetic importance that there is not the slightest reason for not considering the loss of this rein as of subfamily value. The loss of the free part of the second anal rein mank a high specialization within the generalized Tenthredinida and should place this subfamily at the head of this series: but, as pointed out above, each of these subfamilies is only the tip of a line of ascent, and as the other characters of the wings ally it closely with the Emphytina its most natural location is after this group, where all previous systematists have placed it.

In the flont wings the eostal area varies from a broad prominent sace to a narow restricted area, the later being the predominant condition. The anterior end of the medio-cubital eross-vein may arise aither from the angle between radins and media or from $\mathrm{Se}+\mathrm{R}+\mathrm{Il}$ distinctly before the origin of media. This shows that in tertain gromps at least the location of this eross-vein at or before the origin of media does not include forms belonging to the sume line of ascent, hut it does show the successive modifitations within this line of ascent. The other wing structures are practically the same as in the Emphytinae except that. so far as observed, the free part of R_{f} and the transerse part of M_{2}, are never wanting in the hind wings. This suhfamily includes the following genera: Strongylogaster, Thrinor, Ntromboreros, and Selandria.

Dolerinx. - A subfamily (fig. 49) with a distinct habitus, closely related to the Emphytina and Selandrime. The eostal area has been greatly redured, the free part of $s r_{1}$ is only a projection upon the front side of $s c+R+M$. The costa is prominently thickened at apex. This, together with the thickening of $\mathrm{Be}+\mathrm{R}+\mathrm{I}$, have undoubtedly been important factors leading to the reduction of this area. The mediocubital cross-vein joins sc $+\mathrm{R}+\mathrm{M}$ just before the origin of media. This cross-vein and the stem of $\mathrm{M}_{3^{+}}$are slightly dirergent behind. The most important eharacters for differentiating the group from the other subfamilies of the generalized Tenthredinidse is the atrophy of the free part of R_{5}, so that the cells R_{5} and R_{4} are combined. The free part of $M_{4} \frac{1}{6}$ ('un is situated near the middle of the cell M_{4}. The hind wings are of the nsmal form found in the gencratized Tenthredindat. This subfamily contains two genera, Molerus and Loderus.

I'h. Ilotominie. -This subfamily is distinctive in the ohligue course of the medio-cubital ross-roin (fig. $52-54$), which is joined to sic $+\mathrm{R}+\mathrm{M}$ distinetly before the origin of media and hy the direction of the stem of $\mathrm{M}_{3+\ddagger}$, which is strongly divergent from the cross-vein behind. The costal area is narrow, the free part of se, is represented by a mere projection on the front margin of $\mathrm{sc}+\mathrm{R}+\mathrm{M}$ in Chliron, and is entirely wanting in IMyllotoma.

The costa is broadly expanded at apex. The radial and ratiomedial cross-veins are so completely covered by furows in certain species as to be apparently wanting. The free part of $\mathrm{M}_{4}+C \mathrm{H}_{1}$ is joined to the cell M_{4} near its middle. The hind wings have andergone the greater reduction, the free part of R_{4} and the thamserse part of M_{2} are generally wanting, though this latter vein is sometimes pres. ent. In the males there has been a peculiar change in the direction of the veins, all of them rumning direct to the margin, the free part of R_{4} and M_{3} and the transverse part of M_{2} are wanting, and in their place there has heen developed secondarily a vein along the margin of the wing from the apex of the cell $R_{1+2}{ }^{\circ}$ to the apex of the first anal
cell very much like the ambient vein of the Diptera．This condition can be explained in another way by assuming that the free part of R_{4} ， the tramserse part of M_{2} ，and the free part of M_{3} are all present，and simply have migrated to the margin of the wing．The difficulty in the way of this explamation is that the free part of K_{4} in always want－ ing in the females of these genera．In certain species of Phyllotomu the free part of the second anal vein coincides with the second anal furrow and the apee of the free part has atrophied．This subfamily contains the genera，Culirou，Plyglotomu，and Erioctmpuides．

THE SPECIALIZED TENTHREDINIDA．

A group contaning the greater part of the genera and species of the family Tenthredinidx．They are differentiated from the gene－ ralized Tenthredinider through the loss of the constriction near the middle of the serond anal cell．The subfamities fall into sereral well－ marked lines of development．The Lycatina（lig．5．5），Tenthredinine （figs．5ti－58），and Cimbicine（figs．59－60）are the only members of this series in which the free part of the second anal vein of the front wings is preserved．The marked contraction of the third anal vein is repre－ sented as a slightly thickened emargination just before the free part of the second anal rein，this is found only in the Lycootine（fig．b5）and Tenthredinime．In the genera Macrophyin（fig．s7）and Tenthredo（fig． 5ti）the presence or absence of a tramserse vein between the second and third anal veins is not of generic value．The Itoplocampine，Dimurine， Cladimx，Monoctenine，Nematine，Blennocampiner，Scolioneurine， and Fenusina have the anal cells cither anastomosed at middle or with the basal half of the third anal vein atrophied．In the Hylotomina， Schizocerinae and Perreyina the second anal cell has been reduced by the progressive coalestence of the anasmosis to the base of the wing． In the Lobocerine，P＇tergophorina，and Perreyina the anastomosis hats proceeded both ways，so that both the first and second amal cells have been reduced．

Lyrentinit．This subfamily contains the single gemus L yoconte（fig． 55）．It lofation with the Tenthredinina and Cimbicinae is due to the form of the anal cells，which amatomose at a single point at the usual place for the location of the free part of the second anal vein．The wings are hoad and their apices are bunt．The medio－cnbital cross－ vein arises from $\mathrm{s} \cdot+\mathrm{R}+\mathrm{M}$ ，just before the origin of media．This cross－vein and λ_{3+4} are paralled．In the hind wings the free part of R_{4} is wanting and the first and second anal veins are coalesced for nearly one－half the length of the veins．This subfamily is placed as the most genemazed member of the specialized Tenthredinide becanse of the form of the anal reins of the front wings and the position of the medio－ruhtalal woseverin．

Tenthredininir. The limits of this subfanily as given here is the same as that usually assigned it by systematists with the exclusion of those genera in which the free part of the second anal rein appears like an oblique cross-vein. The 'Tenthredinine are generalized in the preservation of the remmant of the contraction of the typical wing (figs. $56-58$), the fairly broad costal area, and in the paallel mediocubital cross-vein and M_{3+4}. The medio-cubital cross-rein is oblique, and is joined to $\mathrm{s}+\mathrm{P}+\mathrm{R}+\mathrm{M}$ a considerable distance before the origin of media. The cells between R_{1} and R_{3} are broad, the madial cross-rein long and bowel. The topography of the hind wings is of the ordinary type formd in the Tenthredinidx, except that there has been a notable reduction of the anal area of the wing, so that the lobe behind the second anal rein is almost entirely wanting. In the front wings the modification of the sercond anal rein varies from a long vein in Tenthredo (fige. 5f) to a broad contraction in Pedehyprotusix (fig. 5s); in the hind wings the cell R_{1+2} extends to the apex of the wing R_{1}. extending beyond as a shopt spur. Although it is imposible to put it inte words, yet the general appearance of the wings of this subfamily is distinctive and easily recognized and would never be confused with those of any other group.
(imbicince- Like the preceding group, this one has the same limits as that given it ly systematists. Its distinctive chameters are the narrow costal area (figes. 59-60); the long, narrow-pointed stigma; the narrow-pointed area between the reins: R_{1} and R_{3}, which always ends: considerable distance before the apex of the wing, the vein R_{1} being always extended for a considerable distance heyond the apex of this area; the radial cross-rein is straight and slightly oblique; the medioculital eross-rein usually joins $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$ more than its own length before the origin of media; the medial cross-rein is frequently oblique: the free part of the second anal vein may be present or its location represented ly a broad anastomosis; the medio-cubital cross-vein and the stem of M_{3++} are divergent hefore; the first anal cell has been shortened at apex by the coalescence of the first anal and the combined second and third anals; the radio-medial cross-vein is wanting, so that the cells R and R_{5} are coatesced. The wing area of the hind wings has not been modified from the usinal type and the vein topography is the same, except that the rell R_{1+2} end a considerable distance before the apex of the wing, the vein R_{1} being continned to near the apex of the wing. The apex of the free part of the second anal rein is transerse like at eross-vein, and there has been developed from the apex of the first anal cell on the hinder angle a long secondary spur to the wing margin. The costal area of hooks extends to or beyond the middle of the cell R_{1+2}.

Iloploctumina. - A small group, embracing two genera, Hoplocomper (fig. 61) and ILemicheron (fig. 62). This and the following sub-
family represents a series in which the amal reins have been modified before the loss of the radial cross-rein. In this subfamily the costal area is hroad with the free part of Sc_{1} distinct. The area between R_{1} and R_{3} is very broad, the radial cross-vein is long, straight, and slightly obligue. The area between the base of the stigma and the base of the radial sector has been chitinized so that it appears as a part of the stigma. The medio-cubital cross-vein is joined to $R+M$ distinctly before the origin of media, ustally near the free part of Sc_{1}. The free part of $\mathrm{M}_{4}+\mathrm{C}_{1}$ is joined to the cell M_{4} near its middle. The amal cells are contracted for a short distance in Moplocempatard for a considerable distance in Hemichoor. In the hind wings the amal lobe is larger, the remation is of the usual type.

Dineurina.-This subfamily as generally limited contains the genera Dimeure (fig. 63) and Mesomentre (fig. (it). 'To these has been added the genus Psendodimenre (fig. 65), which is closely allied to them. The Dinemrina are quite similar in wing type to the preceding subfamily, the most notable difference is in the loss of the base of the third anal rein, so that the cell included between 1st $A+2 d A$, and $3 d$. has coaleseed with the third anal cell. There is a notable variation in the amonnt of thickening of the apex of the costa, the greatest thickening being found in the gemus Mesoneura. The free part of Se, oconpies a different position in each of the genera; in Mesonenre it is about its own length before the medio-cubital cross-vein, in I semdodineure it is almost interstitial with the cross-vein, and in Deneure it is about its own length beyond it. The position of the free part of sc c_{1} is usually of but little value systematically, at least in certaing groups. This is marked in I'teronus centralis, one of the Nematina, where this rein is not constant within a single species, bat may in different individuats occupy all three of the positions described for the genera of this subfamily. In Premdodinemra the aper of the free part of the second anal rein is wanting. The hind wings are of the usual type.

Monnetemince. Brogiming with this subfamily there is a series of three closely related subfamilies in which the loss of the radial erossvein has preceded the modifications of the amal veins. The Monorteninae contains a singlo genns, Monnetemm (fig. (it), which all systematists have agreed hitherto in associating with the gemms Lopheyrom (fig. 45), described above. Monoctenus is like Lophyrus in lacking the radial cross-vein and in having the costal area broad, with a prominent free part of Si_{1}. In Monoctemus the costa is slighty thickened at apex: the medio-cubital dross-rein is joined in the angle between R and M ; this dross-vein and the stem of $\mathrm{M}_{3^{+}+}$are divergent behind; the anal cells are broadly anastomosed at middle: the free part of $\mathrm{M}_{4}+\mathrm{Cu}_{1}$ joins the cell M_{4} near its middle and is strongly oblique; the cell R_{1+2} is broad and pointed at apex. and the area between the base of the stigma and the radial serotor is distinctly chitinized. In the hind wings the
cell R_{1+2} is brod and open at apex: the radial sector reaches the wing margin at the actual wing apex; the remainder of the wing is of the usual type.
('ludimis.- The genera induded in this subfamily are generally placed with the next. the Nematina. The costa is some what thickened at apex (fig. biti); the medio-rubital erosis-rein joins $\mathrm{S}+\mathrm{C}+\mathrm{R}+\mathrm{M}$ just before the origin of MI , this arose-vein and the stem of M_{3+4} is strongly divergent behind. In the hind wings the cell l_{1+2} is hroat, pointed. not open at apex, and ends on the front margin distinctly before the apex of the wing with the rein h_{1} extending beyond the apex of the cell spur-like. This subfamily includes the gencra (Indius, Priophorins, Trichiscetmpus, and Campomiscus.

Sematina. - A large subfamily of several genera and momerous spedies. The genera here ineluded are those generally included in this suhfanily. in which the hase of the thid anal vein has atrophied so that the cells ed A and 301 are coatenced (fig. 6s). The costa is distinctly thickened at anex, the contal area is hoad: the area between the base of the stigma and the bave of the radial seetor is strongly
 crable distance before the origin of media; the base of the free part of the thind anal rein is wanting; the free part of R_{5} is wanting in Emum; and the radio-medial crosis-rein in freguently sin completely covered by the radial furrow as to be partally or whelly wanting, a condition expectally noticeable in the gemus Prastiphown

Fomsina. --Of the genera known to me, there are two, Fennsel (fig. it) and Ficliosyypl/imgn (fig. is), which would fall into this subfamily as here limited. The group in indicated by the narrow eontal area: the thickened apex of the costal the lows of all trace of sc c_{1}; the broad stigma: the subtranserse hases of the radial sector and of media: the strongly bowed medio-cubital cross-vein, which is joined either in the angle between R and M , or just hefore the origin of media; the strong divergence of the medio-eubital cross-vein and the stem of A_{3+1}. The radio-medial (row-rein in wanting; in haliowsysphimgu. the base of the third anal rein is represented by a dark loand of coloring matter, which in Fenusu is completely wanting. In the hind wings there is the atrophy of the free part of k_{4} and the transverse part of M_{2}. The apical two-thirds of the serond anal rein is wanting in Falionysylfingu. and the amal area of the wings is great! reduced. The apex of the cell R_{1+2} is open, the vein R_{3} reaching the wing margin at the actual apex of the wing.

Scolimemrinic.-A small subfamily containing two genera. Entodecte and somloneure (fig. Ta), which are chosely related to the preceding subfamily. It ditters from the Fennsme in having the fee part of se preserved as a protuberance upon the front margin of s+ $+\mathrm{R}+\mathrm{M}$, and in having the cell K_{1+2} of the hind wings closed some distance before
the apex of the wing, the rein R_{1} being continued spur-like beyoud the apex of the cell. In Scolimemen the radial cross-vein is interstitial with the free part of R_{3}, and the base of the free part of the third anal is preserved, though its connertion with the other anal veins at the contraction is wanting. The ratio-medial cross-vein is present, although almost intirely covered by the radial furrow. In Eintoudecta the base of the thisd anal rein is represented in the wing membrane as a dark, straight band.

Blemmecrmpinap. -This and the two following subfamilies begin a series in which the costal arrea has been greatly reduced, and the free part of S'; is represented only by a spur (figs, 69-72). The Blemocampina is a large group rich in general and species, in which systematists have placed a number of genera bearing no relation to the group at all, as here restricted. The costa is prominent and thickened at apex: the medio-cubital cross-vein is joiner to radius in the angle between radius and media and is usually parallel with M_{3+4}, very slightly divergent in Rhadinoceran; the base of the third anal vein is partly atrophied, different genera showing the sucessive stages in the atrofieation of this vein; the free part of $\mathrm{M}_{4}+\left(\mathrm{u}_{1}\right.$ varies in position from near the middle of the cell M_{4} to a position almost interstitial with the medio-cubital cross-rein. In the hind wings the free part of R_{4} and the transerse part of M_{2} are wanting in certain genera; the first anal cell is of varying lengtho, the first and second anal reins being coalesced from a point opposite the free part of M_{3} to near the middle of the distance between the base of the wing and the free part of M_{3}; the cell R_{1+2} usually ends just before the apex of the wing, but in lericlista R_{3} ends at the actual apex, the cell being closed; in the males of certain species the apex of the wing is margined by an ambient rein as in the males of certain Phyllotomina.

Ihylotominae andl allies.-This group (figs. 76-80) includes three subfamilies, the Hylotomine, Sehizoerrina, and Perreyine. As only a rery limited amount of material of the last two subfamilies is at hand for study, it will be impossible to more than point out some of the more salient characters of the group, and for this reason the groups are given the same limits in the table on another page that is generally asigned them by systematists. It seems doubtful that these groups as now aranged represent natural divisions. The Itylotomina and Schizocerine are differentiated by the moderately broad costal area together with a well-marked se_{c}, which is common to the former and wanting in the latter, while both conditions are found in the Perregina. The characters ahove given would place the genera IIylotoma (fig. ifi) and I'ecleylote (fig. 77) in the same subfamily. In hoth the cell R_{1+2} of the front wings is prominently appendiculate, hont in the hind wings of Pachyloter this cell is open at the apex, the reins R_{1} and R_{3} extending parallel to the margin of the wing. This condition is also
found in the Schizocerinae, where this cell is appendiculate in Lathi-
 (fig. T! $)$; in fact, in werlbime this cell is not appendienlato in cither wing. If the results of onr studies on the other gronps of this family be of any value, then the variation in the characters just rited must indicate very different lines of aseent, and be of more value than for the more differentiation of genera. The medio-robital cross-vein is generally joined to $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$ at or rery near the origin of media. Although it is not true of all the genera, yot in certan gencrat there semm to be a marked tendency for the migration of the free parts of R_{4} and R_{5} and the tramsere part of M_{2} toward the hase of the wing, thas greatly increasing the size of the apical cells. The second anal cell is wanting in the Perreyine but arooding to descriptions of genera may be either present or absent in both the Hylotomina and schizocorine. This character is not of amy phylogentic value, since, so fiar as it is concerned, these subfamilies are madergoing a progressive reduction of this cell. In the Mylotomina and Schizocerime the hind margin of the cell M_{4} is a fairly straight rein, the free part of $M_{1}+$ (u_{1} joining it near its middte, and is either perpendicular to it or inclined toward the apox of the wing. In most Porreyime the hind margin of the cell M_{4} is deeply curved, the free part of $M_{4}+\left(n_{1}\right.$ is joined to it at or before the middle, and is always strongly inclined toward the base of the wing. This is the only renational chatacter thus far discovered that is of any value in separating the Perreyine fiom the other two subfamilies. In the hind wings it is onty with rare exerption that either the free part of R_{4} or the transvore part of M_{2} wre wanting in the Hytotomine and schizocrrine, and when either of them are wanting it is always the latter. In marked contrast to this is the almost entire absence of the transerse part of M_{2} in the lerreyinar, the free part of R_{4} heing alway present, so far as can be julged from tigures of wings. Here, just as in the front wings, there is a markod tendency toward the migration of the free part of $\mathrm{R}_{ \pm}$and the transverse part of M_{2}. when it is present, toward the base of the wing. In many Tenthredinide the transerse part of Ma_{2} is either interstitial, on nearly so, with the free part of R_{4}, but in this group it has migrated toward the base of the wing until it is near, or sometimes even before, the free part of M_{3}. There is also in many Tenthredinide a prominent angle opposite the anterior end of the free part of M_{3}, hat in this group this angle has heen straightened out and cuhitus appear- to extend directly to the margin of the wing. The Perreyine are frequently separater from all the preceding subfamilies by the loss of the free part of the second anal rein. It has been pointed out above that this rein is also wanting in the Phyllotomime and Fenusine, and the same condition is found in certain Schizocerina and Hylotomine. This is a character' that has arisen several times in widely separated groups, and does not
appear to be of any phyllogenetic value. Although the Hylotomine, Schizorerine, and Perreyine are so clowely related in their wing characters that there is a great dearth of prominent differences for dividing them, yet the Perreyine are readily separated from the other sul)families on antennal chatracters.

The annt cell lomeros..-The genera included moder this heading are generally divided into three subfamilies, the Lobocerinae, Pterygophorine, and Pergine. Such a grouping combines forms that are not closely related and they have therefore been divided into the following subfamilies: The Incaline, including the genera Incalinand Paralypia, which are limited to South America; the Lobocerine, including the genera Lobocerus ($\mathrm{fi}_{5} .82$), Aulacomerus, Syzyomia, and Corymophitus, which are also limited to South America; the Acordulecerina, including the single genus Acordulecern (fig. 83), found in North and South Ameria; the Pterygophorine including the genera Pteryyo, horus (fig. s1), Pteryymphorinns, Lophymotomu, and IMilomastix, which are limited to Australasia: and the Pergina, including the genera Coreulcos and Pergu (fig. 8t), and its subdivisions, which are limited to Australasia. It has been impossible to examine specimens of all these groups, and the writer has had to depend in many cases on figures, so that the characters given in the tahle on a later page may not be of any more value than to indicate the regions which are undergoing modifications. These subfamilies are set off from all the other Tenthredinida by the reduction of both anal cells of the front wings. The wings are long and slender, and the anal area of the hind wings is generally greatly reduced. In the front wings the costal area is broad, and the free part of Sc_{1} is preserved in the Lobocerina, but in the other subfamilies the costal area is hardly more than a line, and the free part of Sc_{1} is wanting. The radial cross-vein is wanting. The cell R_{1+2} is appendiculate in the Incalina, Lobocerina, Pterygophorinte, and Pergina, ending at or before the middle of the cell R_{3}, the vein R_{1} being continued to the apex of the wing.

In the Acordulecerina this cell is not appendiculate, and ends distinctly beyond the middle of the cell R_{3}. The medio-cubital crossvein joins $\mathrm{S} \cdot+\mathrm{R}+\mathrm{M}$ at or very near the origin of M . In the Pterygophorine the free part of R_{5} is wanting, in Acordulecera and certain species of Pergine the radio-medial cross-tein is also wanting. The free part of $\mathrm{M}_{4}+\mathrm{Cu}_{1}$ joins the cell M_{4} just before the middle in the Lohocerine and Pterygophorine, and insterstitial with the mediorubital cross-vein in the Pergine. In the hind wings the cell R_{1+2} is appendiculate in the Pergina and Lohocerinae, while in the Acordulecerina and l'terygophorine it extends as a long, pointed cell to the apex of the wing. The free part of R_{1} is always present, and the tramserse part of M_{2} always wanting. As in the Hylotomina and its allies, the base of cubitus apparently forms a continuous vein to the
wing margin hy coming into line with M_{4}, the medial cross-vein. and the longitudinal part of M_{2}. The medio-cubital ross-vein is longitudinal in the Incalina, Lobocerinx, and Pergina, and transverse in the Acordulecerine and Pterygophorime. The free part of M_{4} is longitudinal in the Pterygophorina and only about one-third the length of the free part of N_{3}, while in the Lohocerine and Pergina the free part of M_{4} is tramserse and two or three times as long as the free part of M_{3}. This is due to the migration of the hasal end of the medial cross-rein along the free part of M_{3}. The free part of the second anal vein is wanting throughout the group, due to the great reduction of the anal lobe of the wing, while the second anal furrow and the axillary incision are near the first amal vein. The loss of the second anal is the consmmmation of a variation that has appeared sporadically in other subfamilies.

THE (${ }^{+} \mathrm{ELL} \mathrm{R}_{5}$ GROCP.
It has been pointed out in the case of the generalized Tenthredinoidea that the radial cross-rein always ends in the cell K_{5}. In the families Xiphydriide (fig. 85), Siricida (ifgs. 86-91), Megalodontidæ (fig. 92), and Cephida (figs. 98-96) this cross-vein, with rare exceptions, also ends in the cell K_{5}. In the family Oryssidxe (fig. 97) this eross-rein is apparently wanting, bat, as was shown above, the crossrein is present and is represented by the transverse vein at the base of R_{3}. The only modification in the course of the cross-rein is that its posterior end has migrated toward the apex of the wing, so that it is always oblique to R_{3+4} instead of being perpendicular.

The interrelation of the radio-medial cross-rein, the base of the radial sector, and the base of the media is a prominent characteristic of this group of families. In the Xiphydriida there is only a slight departmre from the arrangement of parts existing in the typical wing, the base of the radial sector and the hase of media being parallel, and the cross-rein perpendicular to them. In the other families, howerer, the posterior end of the cross-vein has swing around at such an angle as to form an apparently continnons vein with a part of the radial sector, while the basal part of the sector extends transsersely between the cross-rein and the stigma like a cross-vein. As a result of this change in the direction of the reins. the cells $R, 1$ st R_{1}. and $2 d R_{1}+R_{2}$ are arranged in a row.

The position of the medio-cubital cross-rein in those families in which the posterior end of the radial cross-rein ends in the cell R_{5} is also of especial interest. In the Xiphydriidar this cross-rein occupies practically the same position that it does in the typical wing. The Oryssidx show a stage slightly more advanced than that of the Xiphydriide. The cross-vein is longer than the transverse part of media, which has been brought about by a combined migration of the anterior
end of the cross-vein along media, and by a further coalescence of media with radius until it is almost opposite the anterior end of the cross-vein. A similar condition is found in certain Cephida, the cross-vein being about three times as long as the transverse part of media. In this family the modification has been a migration of the anterior end of the cross-vein along media until in certain species, as Cephus pygmaxs (fig. 96) it arises in the angle between $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$ and media. In the Siricidex and Megalodontide the modification has been in an entirely different direction. The cross-vein and the transverse part of media in these families are subequal in length, while the origin of media is either opposite or beyond the anterior end of the crossvein and never before it, as it is in all the forms previonsly described. The manner in which this arrangement of parts has arisen can be best monderstood if a study be made first of the condition found in the Xiphydriidæ (fig. 85). In this family the cross-vein and the transverse part of media are subequal in length, just as in the families named above. The cross-vein is distinetly bowed on the side toward the base of the wing. This bow in the cross-vein has been preserved in practically all the Siricidæ (figs. 86-91). Now, if the cross-rein maintain this same form and position, and the point of separation of media from radius be gradually changed, moving toward the apex of the wing by the coalescence of media more and more with the radius until it is opposite or beyond the anterior end of the cross vein, exactly the same condition will be had as is found in the Siricida. The Megalodontide (fig. 92) differ only in that the coatescence has proceeded farther, the transverse part of media being distinctly inclined toward the base of the wing, and the cross-vein is straight instead of being bowed.

The only other possible solution of the arrangement of reins in the the stigmatal area of the Sirieide would be that starting with a wing like that of Ceplus pygmeus, the base of media had migrated along the eross-vein until near its middle, and that at some later time the anterior end of the combined cross-vein and media had migrated along radins toward the apex of the wing. This would give exactly the same result that has been explained above in another way. That this latter explanation can not be the correct one is proven by the relation of these veins in the Xyelidæ, Lydidx, Cephida, and the Tenthredinidx. It has been shown that in the first three of these families the tendency is for the progressive coalescence of media with radius, and coordinated with this a progressive migration of the medio-cubital cross-vein from a position near the apex of the cell R to the point of separation of media from radius. That the tendency is not for media to migrate along the cross-rein when the cross-vein reaches the angle between radius and media, as has been shown in the Tenthredinide, but instead that the cross-vein continues its migration toward the base
of the wing along $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$. This is conclusively shown in Trichiosoma (fig. 59), where the cross-vein has migrated more than its own length away from the origin of media. That this latter solution is untenable is further proven by the position of the posterior end of the radio-medial cross-vein, which in both the Siricida and Megalodontidxe is so near the posterior end of the transverse part of media as to prechude such a migration.

It has been shown that the preservation of the radial cross-vein as the base of R_{3}, as in the Oryssidx, is the same condition existing in all the higher Hymenoptera. It is of especial interest that the form of the medio-cubital cross-vein and the base of media is also the same arrangement of parts found in the other Hymenoptera. Both of these conditions go to show that the other superfamilies of the Hymenoptera were derived from a progenitor closely allied to the families. Siricidæ, Megalodontidx, and Oryssidæ.

Siphydrida.-This family contains four genera and about twentyfive species, which are distributed over North and South America, Europe, and Asia. Their wing type (fig. 85) is the most generalized found in the specialized Tenthredinoidea. The front wings are long and narrow: the costal area is broad and distinct; the free part of Sc_{1} is represented by a prominent transverse vein sitnated near the origin of media, which is a direct modification and migration of the condition found in Tyela (fig. 35) and Manoryela (fig. 3t); the anterior end of the radial cross-rein is situated near the apex of the stigma and its posterior end near the apex of the cell R_{5} or interstitial with the free part of the vein R_{5} and is either perpendicular or slightly oblicque; this cross vein is wanting in the genus Derecyrtu. The radial sector arises at the base of the stigma and continues along R_{3} in a regular curve. The base of the sector is subtrauserse; it does not make as abrupt a bend as in the generalized Tenthredinoidea, while, on the other hand, it is not so gradual a curve as in the more specialized forms. The radiomedial cross-vein is somewhat oblique and distant from the origin of media, and is wanting in the genus Kononcia. Media separates from radius but little nearer the stigma than in the Lydida. while the portion before the medio-cubital cross-vein is oblique, just as in Macroryela (fig. 33). though both this part of media and the cross-rein are longer than in that genus, resulting in a much wider cell M; the free part of $\mathrm{M}_{4}+\mathrm{C}_{1}$ is near the posterior end of the radio-medial crossrein, almost interstitial with it. In the hind wings the origin of media is distant from the origin of the radial sector, and the first anal cell is of a type similar to that found in the Lydida (figs. 36-43) except in Fonomia, where it is open at the apex.
The migration of the apex of R_{1} in the front wings away from the margin of the wing in Tiphydria comelus, as already described, has developed into a distinct appendiculate cell in Derecyrte and Brachyxiphus.

The renation of the wings of this family is like the typical wing in the origin of media, the location of the medio-cubital cross-vein, and the type of anal cells.

The Xiphydriida has generally been considered by systematists as a subfamily of the family Siricida. That it represents a distinct line of development is shown by the condition of the area between costa and $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$, which is broad, and the wing membrane not any thicker than that of any other part of the wing, while the remnant of subcosta retained is a modification of the type found in Syelu, the type found in the Siricidx, as will be shown later, is a modification of the trpe found in Neurotomu. That the Xiphydriidæ represent a distinct line is further shown by the origin of the base of media, by the position of the radio-medial cross-vein, and by the origin of the base of media in the hind wings, which is in reality quite a specialized condition. All these characters go to show that the wings of this family are more nearly like those of the generalized Tenthredinoidea than those of the specialized 'Tenthredinoidea.
siricidre.-This family contains five genera, all of which are limited to the northern hemisphere. The Siricida are large, active, flying insects, and as a result their wings are long and narrow. The wings are like the typical wing (figs. 86-91) only in having homologous veins. The stigma is narrow, pointed, and eight to ten times as long as broad. The area between costa and $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$ is narrow and almost as strongly chitinized as the veins themselves. The suppression of the subcosta, which is represented in some species as a pale, indistinct line, is undoubtedly due to the chitinization of the membrane of this area. In Tremex columba (fig. 91) the chitinization has proceeded so far that there is a large trathea unprotected by a rein ramifying through this area. The peculiar arrangement of the veins forming the apex of the cell M has already been discussed and need not be considered here. The posterior end of the radio-medial cross-vein joins the cell M_{4} on its hasal third; in Tremex fuscicomis it ends in the angle between the transerse and longitudinal parts of media, while in Sirex californicus (fig. 87) it ends on the posterior third of the transverse part of media. Correlated with the migration of the posterior end of this cross-vein there is a corresponding migration of its anterior end along the radial sector until, in Tremer fuscicomis, it arises almost at the origin of the sector, so that the cell R is hardly more than a broad line. In Tremex the radial cross-vein is situated near the apex of the cell $R_{5}+R_{4}$, the free part of the vein R_{5} is wanting. On the apex of the front wings of all the species of the family there has been developed a large appendiculate cell, with the apex of R_{1} as a prominent vein extending toward the actual apex of the wing. An especially interesting feature of the wings of the Siricida is the preservation of the free part of Cu_{2} in the renus Paururus (fig. 86) and a portion of it in different species
of Sirex. This vein is found besides in the siricida only in certain species of the family Lydidae. It is noteworthy that it is situated nearer the medio-cubital eross-vein than in the Lydida, and that the prominent bow in the base of cubitus, so characteristic of the Lydida, is wanting in the Siricide. The first and second anal cells approximate the type found in the typical wing, but the emargination near the base of the third anal rein, instead of being an abrupt one, as in the typical wing, is a long, continnous curve. There hats also been a progressive migration of the free part of the second anal toward the apex of the wing until in Pummous and Sirer culfifmicus it is situated midway between \mathbf{M}_{3+4} and the medio-cubital cross-vein. In Teris (fig. 89) it is just beyond the cross-vein, while in Tremer it is before. In the hind wings there is in certain species a well-marked appendiculate cell, but in Tremex and Imurumes the transverse part of R_{1} has been obliterated, leaving the cell R_{1+2} open at apex. This family is so specialized in most of its structures that it is of interest to find at least one of its characters very generalized. This is the point of origin of media. which is more primitive than the same region in the Xyelide (figs. 31-35). There is a progressive migration from a position distinctly before the radial sector in Sirer califioments, from the origin of the radial sector in Penmmen, and finally from the radial sector distinetly beyond its origin in Tremes. We find a eonfimation of the generalized condition of this character in its great variability. which is not constant even in the same species. The tirst anal cell in P^{\prime}, \ldots, pums and Sirer califormicus is of the type described for the Lydide and Xiphydriida, but in Tremer and Seris the free part of the second anal rein is entirely wanting. The explanation of the obliteration of this rein is found in the following species: In Sirer ulbicommis the basal two-thirds and the small transverse part is preserved; in sirex Ataricornis only the basal two-thirds is preserved, while in leris only a part of the small transverse part remains. It should be noted that in the three species just naned the longitudinal part of this vein coincides with the second anal furrow, along which this part of the wing is folded, while in l'mumus, where the entire free part of the second anal rein is preserved, that the free part of this rein is distinctly before the furrow. There is only one solution possible for the loss of this vein, and that is that it is due to the presence and location of this furrow, which has migrated forward in certain species hand in hand with the reduction of the anal area of the wing. That there is a marked migration of this furrow and reduction of the anal area will be readily seen by an examination of the wings of the different specien of Tremex.

The genus Teredom " (fig. 90) possesses a number of interesting fea-

[^8]tures. The radial cross-vein is intermediate in its location between Sirex and Tremex, being almost interstitial with the free part of R_{5}, which is fully preserved; the transverse part of the base of media has begun to disappear and the radio-medial cross-vein to function for it; the apices of the veins forming the appendiculate cell of the front wing have faded out, so that there is found exactly the same condition in both wings that exists in Tremex ; the free part of the second anal vein is preserved and the anal area of the wing is large. All these characters ally this genus more closely with a form like Sirex ulbicomis than with Tremex, near which it has been placed.

The Siricidx are a well-circumscribed group, defined by the condition of the area between costa and $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$, by the relation of media and the medio-cubital cross-vein, by the position of the radio-medial cross-vein, and by the prominent appendiculate cell at the apex of the front wing.

Megalodontidx.-This family (fig. 92) contains four genera and about twenty-five species, and is peculiar to Europe, Asia, and northern Africa. It represents a line of specialization very similar to that found in the Siricidre. This is shown by the condition of the base of media and the medio-cubital cross-rein. The cells R, 1 st R_{1}, and $2 d$ $R_{1}+R_{2}$ are arranged in a row. The base of the radial sector is transverse, as in the Lydida, but that portion of the sector between the anterior end of the radio-medial cross-rein and the posterior end of the radial cross-vein is not so strongly curved, so that the cell 1 st R_{1} is almost a parallelogram. The Megalodontida differ from the Siricida in that the cells R and 1 st R_{1} are snbequal in size, the cell $\mathrm{M}_{ \pm}$is proportionately much smaller, the cell $2 d \mathrm{R}_{1}+\mathrm{R}_{2}$ is of about the same length, but is much broader, while the apex of the cell is like that of the Xyelidx and Lydidx, and is not appendiculate. The anal cells are like those of the typical wing. The area between costa and $\mathrm{Sc}+\mathrm{+}+\mathrm{M}$ is broad, and all trace of the subcosta is wanting. The vein forming the apex of the cell M is a straight one; each of the components of this vein is not separately bowed on the basal side with an emargination between them, as is so characteristic of this vein in the Siricida, while it is more strongly inclined than in this latter family. The hind wings are just like those of the Lydidx, except that the subcosta is wanting. The generalized condition of the apex of the cell R_{1+2}. obliquely truncated and not pointed, is notable.

The forms considered here as constituting the family Megalodontidæ are invariably classified by systematists as a subfamily of the Lydida. That they do not have any aflinities with this family is shown by the difference in the position of the medio-cubital cross-rein, by the difference in the position of the cells R and 1 st R_{1}, by the entire loss of the subcosta in both wings, by the loss of the free part of Cu_{2}, by the straightening of the cubital vein, so that the curve so characteristic of
this rein in the Lydidx is wanting, by the lack of coalescence between cubitus and $S c+R+M$, which extends for almost one-half the length of the vein $s c+R+M$ in the Lydidar, and by the difference in the shape of the cell M_{4}. The facts just given show conclusively that the Megalodontide are more closely allied to the Siricidae than to any other family, while there are an abondance of characters for retaining them as a distinct family.

Cephidir.-A family of about a dozen genera and moderately numerous in species of intercontinental distribution. It is not closely related to any of the families described hitherto. The front wings (figs. 9396) are long and narrow, the hind wings have been remarkably reduced in the anal region, and the insects are very rapid lliers. The area between costa and $\mathrm{Se}+\mathrm{R}+\mathrm{M}$ has been eliminated in both wings. Media separates from radius distant from the stigma, in about the same region as in the Xyelide. The cell R is long, subequal in length to the cell R_{5}, and is in line with the cells 1st R_{1} and $2 d \mathrm{R}_{1}+\mathrm{R}_{2}$, as in the Siricidæ and Megalodontida, lout differs from these families in that the apex of the cell R is almost opposite the apex of the cell 1st R_{1}. The radio-medial cross-vein is transverse. The portion of the radial sector between this cross-vein and the stigma is longitudinal, while the portion of the sector between the radio-medial eross-vein and the radial eross-rein is subtransverse and might readily be mistaken for a part of the radio-medial cross-vein if it were not for the angle at its anterior end. The radial cross-vein is ohlique and appears to be the base of R_{3}. The cell $2 \mathrm{~d} \mathrm{R}_{1}+\mathrm{R}_{2}$ is very long, as in the Siricida, but is pointed at tip. The anterior end of the medio-cubital cross-rein is joined to media in certain species distinctly beyond its origin, while in others it arises from the angle between R and M . The cell M_{4} is as long as or longer than the cell R . The cubitus coalesces with $\mathrm{Se}+\mathrm{R}+\mathrm{M}$ for only a very short distance at base. The cells 1 st A and $2 d A$ are subequal in width, and the free part of the second amal vein is situated just beyond the middle of cubitus and is perpendieular to the first and third anal veins, while the contraction of the third anal vein is wanting. The hind wings are just as distinctive the front wings. With the exception of the subcostal area, costa being coalesced with $R+M$, the number of reins is the same as in the Xiphydrida. The most distinctive character is in the arrangement of the cells. Beginning at the hase of the wing' (fig. 95) the cells 1st $\mathrm{A}, \mathrm{M}_{3}+\mathrm{C}^{\prime} u+\mathrm{C}_{1} \mathrm{u}_{1}, \mathrm{M}_{4}+1$ st $M_{2}, R+R_{5}+R_{4}$, and R_{3} are arranged in an oblique row from the base to the apex of the wing.

Practically all systematists are agreed in considering the Cephide as a distinct group worthy of family rank. So far as the wings are concerned, they are the most distinctive of any group of the Tenthredinoidea, and are only indirectly related to any of the other families. They are generalized, so far as the origin of media is concerned, but
are very specialized in the region of the radial and radio-medial crossreins and in the arrangement of the cells of the hind wings in an oblique row.

Oryssidie. - A small family consisting of four genera and a very limited number of species found in all parts of the world. The family in known to the writer only in the genera ompsence (fig. 97). Ophrymopmis, and the notes given here refer only to these genera. It has been found that as a rule the figures of wings given by writers who have not made an especial study of wing venation can not he depended upon, hut, judging from suth figures of speeies not accessible to the writer, they would seem to indicate more generalized conditions than those existing in oryssus. The costal area is narrow; the costa is a delicate vein quite strongly thickened at base; $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$ is a strong vein which functions for the costa, and at the origin of media it hends abruptly toward the stigma; enbitus and $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$ are coalesced for a short distance at the base of the wing ; the veins heyond and behind the stigma are nothing more than datk bands of color; the transverse part of media is ahost entirely wanting; the radio-medial cross-vein, the base of the radial sector, the free part of R_{5}, and the tramserse part of M_{4} are entirely wanting. The weakening of these veins is undoubtedly due to the thickening of the wing membrane. The second anal cell has been reduced, probably by the coalescence of the third anal with the combined first and second anal. The base of R_{3} is joined to the stigma by means of the radial eross-vein, as was fully described in the preceding pages. In the hind wings the costa is entirely wanting, $R+M$ is thickened and takes the place of costa; the cubitus and the remainder of the veins are only lines of color; the second anal is entirely wanting; the third anal is preserved as a very delicate line.

So fiar as their wings are concerned the presence of the second anal cell in the front wings is the only structure that would place the gemus Oryssus in the superfamily Tenthredinoidea. In their form and topography they are much more like the higher Hymenoptera than the other Tenthredinoidea. It stands at the summit of specialization, so far as this group is concerned, as an extreme isolated line of development.

> VII.-SUMMARY.

In the course of the study presented in the preceding pages the following topies have been diseussed:

1. An historical consideration of those investigations that have had to do with the development of a uniform nomenclature for the wing reins of all orders.
2. It has been shown how the complex hymenopterous wing has been developed from a wing of the simplest type.
3. How the apex of rein R_{1} has been gradually pulled away from the wing margin to form an appendieulate cell.
t. The progressive coalescence of the base of media and radius toward the middle of the wing and, coordinated with this, the progressive migration of the medio-cubital cross-rem toward the point of separation of radius and media to form a transrerse support for the stigma.
4. How all the types of anal cells found in the superfamily Tenthredinoidea have been developed from the form of this area found in the generalized families.
5. The reins of the hind wing have been homologized with those of the front wing and all the marked modifications occurring in the superfamily discussed.
6. An attempt has been made to show that all the modifications in wing topography are directly dependent on the efficiency of the wing as an organ of flight, and that this efficiency is che to the arrangement of the veins in such a mamer as to stiffen the areas of the wing subject to the greatest stress.
s. The venational distinction of the Tenthredinoidea from the other superfamilies of the Hymenoptera has been pointed on-
:1. The distinctive chatacters of the families of the Tonthredinoidea hare been considered in detail and their phylogenetic importance indicated.
7. The loss of the base of the radial sector and its bearing on the homology of the veins of the wings of the higher Hymenoptera has been discussed.
8. A dassification of the superfamily 'Tenthredinoidea is given. The sequence of the families and subfamilies, whether generalized or spectialized, has been detemined by a genealogieal study of the differ-- ent structural modifications of the wings.
9. Analytical tables are given for separating the families of the superfamily Tenthredinoidea and of the subfamilies of the family Tenthredinide. These tables are based on venational characters alone, and are examples of the value of such studies as the one given in the preceding pages.
10. Front and hind wings of all the generalized genera and exampleselected from the numerous other groups are figured and their wing reins homologized.
11. All previous classifications have been based on recognition characters and are therefore likely to be artificial. (ireat use hat been made of the form of the antenna and claws, modifications that have arisen independently several times. The foregoing investigation is only a beginning of what needs to be done. Plyylogenetic studies should be made of all those structural parts that will indicate anything as to the complete genealogy of the group. Two such regions are the mouth parts and the structure of the thorax.

TABLE FOR SEPARATING THE FAMILIES OF THE TENTHREDINOIDEA.

a. Front wings with the free part of vein R_{2} present

NYELIDE tal. Front wings with the free part of vein R_{2} always wanting.
b. Front wings with the base of subcosta present as a distinct rein..... LY'DIDE
b. Front wings with the base of subcosta wanting, if present, only as a pale indistinct line; the subcosta is represented only by the free part of the vein $S_{c_{1}}$, which is like a cross-vein near the apex of the costal area, and even this is sometimes wanting.
c. Front wings with the radial cross-vein ending in the cell R_{4}, very rarely in the cell R_{3}; the medio-cubital cross-vein joined to the rein $\mathrm{Sc}+\mathrm{R}+\mathrm{MI}$ or to the vein M; if joined to the vein M, the transverse part of the vein M not more than one-sixth the length of the cross-vein.
d. Front wings with the medio-cubital cross-rein joining media distinctly beyond the point of separation of radius and media; the cell 1st $R_{1}+R_{2}$ hunt at apex; the veins surrounding the front margin of the cell M_{4} in the form of a semicircle -.....................................BLASTICOTOMID.E dd. Front wings with the medio-culital cross-vein either joined to the vein $\mathrm{Sc}+\mathrm{K}+\mathrm{M}$ or to the vein M in the angle between radius and media; the cell 1st $R_{1}+R_{2}$ always pointed at apex; the veins surrounding the front margin of the cell λ_{4} never semicircular but always with prominent angles beiore

TENTHREDINIDE
cc. Front wings with the radial cross-vein ending in the cell R_{5}, rarely in the cell R_{4}; and, if so, with the medis-cubital eross-vein joining media distinctly heyond the radius and subequal in length to the transverse part of media.
d. Front wings with the transverse part of the vein M_{2} present.
e. Front wings with the medio-cubital cross-vein subequal in length with the transverse part of media; the portion of the radial sector between the stigma and the anterior end of the radio-medial cross-vein always distinctly less than the portion between this cross-vein and the posterior end of the radial cross-vein, or when the radial eross-vein is wanting, less than the portion between the radio-medial cross-vein and the anterior end of the free part of the vein R_{5}, resulting in the apex of the cell R extending but little beyond the base of the cell 1 st R_{1}, or if the radiomedial cross-vein be wanting, the cell $\mathrm{R}-\mathrm{R}_{5}$ extending but little beyond the apex of the cell 1st R_{1}.
f. Front wings with the free part of the vein $S c_{1}$ present and situated near the point of the separation of radius and media; the base of media extending longitudinally and separating from radius distinctly before the anterior end of the medio-culital cross-vein; the radio-medial cross-vein, when present, transwerse and not appearing as the base of the radial sector .-.-.. If. Front wings with the free part of the vein Sc_{1} wanting; the base of media extending transversely and separating from radins either opposite or beyond the anterior end of the medio-cubital cross-rein; the radio-medial cross-vein oblique and appearing as the base of the radial sector.
g. Front wings with the area between costa and the vein $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$ hardly more than a line; the cell $2 d \mathrm{R}_{1}+\mathrm{R}_{2}$ of both wings either appendiculate or extending to the apex of the wing; the free part of the vein $\mathrm{M}_{4}+\mathrm{Cn}_{1}$ joined to the cell 1st A near its base, never more than twice the length of the free part of the second anal vein from its base

SIRICID.E
gy. Front wings with the area between costa and the vein $\mathrm{Ac}-\mathrm{R}+\mathrm{M}$ broad and distinct; the cell $2 \mathrm{~d} \mathrm{R}_{1}+\mathrm{R}_{2}$ of the front wings and cell R_{1+2} of the hind wings never appendiculate, never reaching the apex of the wing, and bluntly rounded at apex; the free part of the vein $\mathrm{M}_{4}+\mathrm{Cu}_{1}$ joined to the cell 1st A near its apex, over three timer the length of the free part of the vein $2 \mathrm{~d} A$ from its bave.

MEGALODONTIDE
ee. Front wings with the medio-cubital cross-vein joined to media at or near its point of separation from radins, never less than three and usually four or five times the length of the transverse part of mertia; the portion of the radial sector between the stigma and the anterior end of the radio-medial cross-vein subequal to or greater, usually greater, than the portion between this cross-vein and the posterior end of the radial crossvein, resulting in the apex of the cell R extending to near the apex of

dd. Front wings with the transverse part of the vein M_{2} wanting. o ORYSSID.E

TABLE FOR SEPARATING THE SUBFAMILIES OF THE TENTHREDINID.E.

u. Front wings ahways with the first and frequently with both first and recond anal celts present.
b. Front wings with the second anal cell contracted at middle.
c. Front wings with the free part of the second anal vein present.
d. Radial cross-vein present.
e. Front wings with the free part of the vein R_{5} present and the cells R_{5} and R_{4} therefore separate.
f. Front wings with the medio-cubital cross-vein and the rein M_{3+4} parallel.. Eмрнутіл...
.ff. Front wings with the merlio- cubital cross-rein and the rein M_{3+4} strongly divergent behind Pavilotomin...
ee. Front wings with the free part of the rein R_{5} wanting, so that the cells

dd. Radial cross-vein wanting Lophyrinet
ce. Front wings with the free part of the second anal rein wanting. .Selandrin.e
lb. Front wings with the second anal cell not contracted at middle.
c. Radial cross-vein present.
d. Front wings with the medio-cubital cross-vein joined to the vein $\mathrm{s}+\mathrm{c}+\mathrm{R}+\mathrm{n}$ at or near the origin of media, its distance from media always less than one-half the length of the cross-vein.
e. Front wings with the medio-cubital cross-rein and the vein M_{3++} parallel.
f. Front wings with the base of the third anal vein present and the second anal cell therefore not combined with the third ... Lscaotive
ff. Front wings with the base of the third anal vein atrophied or at least in part so that the second and third anal cells are combined.

Blenvocambine
e. Front wings with the medio-cubital cross-vein and the rein M_{3+4} strongly divergent behind.
f. Hind wings with the vein R_{3} reaching the margin distinctly before the apex of the wing; the cell R_{1+2} pointed at apex and closed.

Scolionevrine
If: Hind wings with the vein R_{3} reaching the margin at or beyond the apex of the wing; the cell R_{1+2} round at apex and open ... Fencsines dd. Front wings with the medio-cubital cross-vein joined to the vein $\mathrm{Sc}+\mathrm{R}+\mathrm{M}$ distant from the origin of media; its distance from media always one-half or more of the length of the cross-vein.
e. Front wings with the base of the third anal vein present and the second anal cell therefore not combined with the third.
f. Front wings with the medio-cubital cross-vein and the rein M_{3+4} 1arallel, or at least not divergent hehind.
g. Front wings with the medio-cubital cross-vein and the vein M_{3+4} parallel; media separating from radius at the base of the cell M_{4} : the radio-medial cross-vein rarely, if ever, wanting; hind wings with the cell R_{1+2} extending to the apex of the wing....Tenthredinis.a: gg. Front wings with the medio-cubital cross-vein and the vein M_{3+4} strongly divergent before; media separating from radius at or near the middle of the cell M_{4}; the radio-medial cross-vein always wanting; hind wings with the cell R_{1+2} ending a considerable distance
 If'. Front wings with the medio-cubital cross-vein and the vein M_{3+4} strongly divergent behind
.Hoplocampine
ee. Front wings with the base of the third anal vein atrophied and the second and third anal cells therefore united................... . Dineurne. .
cr. Radial cross-vein wanting.
d. Front wings with the third and combined first and second anal veins anastomosed at middle for a short distance, the length of the coalescence always being less than the length of the second anal cell.
e. Hind wings with the vein R_{3} reaching the margin before the apex of the wing; the cell R_{1+2} pointed at apex and closed
. Cladinee
ce. Hind wings with the rein R_{3} reaching the margin at the apex of the wing; the cell R_{1+2} broad at apex and open

Monocteninee
$d d$. Front wings with the third and combined first and second anal veins anastomosed at middle for a considerable distance, the coalescence being two or three times the length of the second anal cell or the second anal cell wanting or combined with the thirl anal cell.
e. Front wings with the portion of the free part of M_{3} situated between the apex of the rein M_{3+4} and the basal end of the medial cross-vein always more than one-half, usually snbequal, and frequently greater in length than the free part of the vein M_{4}, causing the cell M_{4} to appear distinctly longer longitudinally than transversely; the free part of the vein $\mathrm{M}_{4}+\mathrm{Cu}_{1}$ perpendicnlar to the first anal vein, if oblique, inclined toward the apex of the wing.
f. Front wings with the free part of the vein Sc_{1} present.
g. Front wings with the cell R_{1+2} never appendiculate, closed at apex and not reaching the apex of the wingintine
gg. Front wings with the cell R_{1+2} appendiculate at apex or open, never closed at the wing margin before the apex of the wing.

Hylotomine
ff. Front wings with the free part of the rein Sc always wanting.
Schizocerin.e
ee. Front wings with the portion of the iree part of the rein M_{3} and the basal end of the medial cross-vein always less than one-half and generally not more than one-fourth or one-fifth the length of the free part of the rein M_{4}, causing the cell H_{4} to appear longer transversely than longitudinally; the free part of the vein $\mathbf{1}_{4}+C u_{1}$ oblique and always
 au. Front wings always with both the first and second anal cells wanting.
b. Front wings with the free part of the vein $\mathrm{H}_{4}-\mathrm{Cu}$ distinctly beyond the posterior end of the medio-cubital cross-vein.
c. Hind wings with the cell R_{1+2} distinctly appendiculate.
d. Hind wings with the free part of the vein M_{i} subequal in length with the

dd. Hind wings with the free part of the vein II_{4} three or four times the length of the free part of the vein I_{3}..................................... Lobocerin.s
cc. Hind wings with the cell R_{1+2} never appendiculate, but open at apex.
d. Front wings with the cell R_{1+2} not appendiculate; hind wings with the portion of the vein $R s+M$ forming the base of the cell R_{1+2} transverse.

Acordulacerinsa
$d d$. Front wings with the cell R_{1+2} appendiculate; hind wings with the portion of the vein $\mathrm{Rs}+\mathrm{M}$ forming the base of the cell R_{1+2} longitudinal.

Pterygophoringe
bl. Front wings with the free part of the vein $\mathrm{M}_{4}+\mathrm{Cu}_{1}$ interstitial with the mediocubital cross-vein, at most not more than the width of the vein beyomd the cross-vein

Pergine

LIST OF ABBREVIATIONS.

3st A	=First anal vein.	m-cu	$=$ Medio-cuhital cross-vein.
$2 \cdot \mathrm{~d}$	= Second anal rein.	R	=Stem of radius.
3 l A	$=$ Third anal vein.	r	= Rarlial eruss-vein.
C	= Costa.	R_{1}	$=$ First branch of radius.
ct	$=$ Contraction in second anal cell.	$\begin{aligned} & \mathrm{R}_{2} \\ & \mathrm{R}_{3} \end{aligned}$	=Second branch of radias. $=$ Third branch of radius.
Cu	$=$ Stem of cubitus.	R_{4}	$=$ Fourth branch of radius.
Cu_{1}	$=$ First branch of cubitus.	R_{5}	$=$ Fifth branch of radius.
Cu_{2}	=Second branch of cubitus.	ri	$=$ Radial furresw.
M	=Stem of media.	Rs	= Radial sector.
m	$=$ Medial cross-vein.	$\mathrm{R}+3 \mathrm{I}$	=Combined stems of radius
M_{1}	= First branch of media.		and media.
M_{2}	=Second branch of media.	r-m	$=$ Radio-medial cross-vein.
M_{3}	$=$ Third branch of media.	$\mathrm{R}+\mathrm{Sc}_{2}$	= 'ombined radial stem and
M_{4}	= Fourth branch of media.		second branch of sub
II_{1+2}	$=$ Stem of the first and second		costa.
	branches of media.	s	=stigma.
M_{3+4}	$=$ Stem of the third and fourth	Sc	-Stem of subensta
	branchas of mertia.	Sc_{1}	First branch of subcosta.
$\mathrm{IH}_{4}+\mathrm{Cn}_{1}$	= Combined fourth medial and		=Second hranch of subcosta.
	first cubital branches.	$\mathrm{Sc}+\mathrm{R}$	$=$ Combined stems of sub costa,
$\mathrm{M}_{1}+\mathrm{R}_{4+5}$	= Combined first medial and		radius, and media.
	fourth and fifth radial	sp	=Secondary spur.
	branches.	sv	-Spring vein.

ENPLANATION OF PLATES.

Plate XXI.

F1g. 21. Wing of Pantarbes capito.
22. Wing of Erax furax.
23. Wing of Tabamus lineola.
24. Wing of Scenopinus fenestralis.
25. Wing of Rhamphomyia sp.

Plate XXII.

Fig. 26. Wing of Musca domestica.
27. Wing of Comops afinis.
28. Wing of Midas militaris.
29. Front wing of Vemow a completa.
30. Front wing of Tewiopteryx frigida.

Plate XXIII.

Fig. 31. Wings of Megaxyela major.
32. Wings of Odontophyes avinigrata.
33. Wings of Mucroryela ferruginea.

Plate XXIV.

Fig. 34. Wings of Mamoxyela sp.
35. Wings of Jyela julii.
36. Wings of Neurotoma fasciata.

Plate MXV.

Fig. 37. Wings of Lyda erythrocephala.
38. Wings of Cmolyda semidea.
39. Wings of Pamphilius pallimacula.

Plate XXVI.

F1g. 40. Wings of Itycorsia hieroglyphica.
41. Wings of Bactroceros depressus.
42. Wings of Cephaleia abretis.

Plate XXVII.

Fig. 43. Wings of Liolyda froutalis.
44. Wings of Blasticotoma filiceti.
45. Wings of Lophyrus sp.

Plate XXVIII.
Fig. 46. Wings of Emphytus balteatus.
47. Wings of Eriocampu ovata.
48. Wings of Pseudosiobla excarata.

Plate NXIX.

Fig. 49. Wings of Iolerus thomsoni.
50. Wings of Stromboceros signarius.
51. Wings of Strongylogaster cingulatus.

Plate XXX.
Fls. 52. Wings of Eriocampoides athiops female.
53. Wings of Eriocampoides varipes male.
54. Wings of Phyllotoma vagans.

Plate XXXI.

Fig. 55. Wings of Lyeartu sodulis.
56. Wings of Tenthredt Atara.
57. Wings of Macrophyue albicinctu.

I'late NXXiI.

Fici. 58. Wings of Puchyprotasis rupa.
59. Wings of Trichiosomu lecorum
60. Wings of 'lavellaria amerines.

Plate NXXIII.

Fit. 61. Wings of Moplocamp, ferruginen.
62. Wings of Hemichroa americana.
63. Wings of Dineura geeri.

Plate NXXiv.
Fig. 64. Wings of Mesoneuru opect.
65. Wings of Pseudodimenre heputicer.
66. Wings of Cludius pectimicornis.

> Plate NXIV.

Fig. 67. Wings of Monortems.s jemiperi.
68. Wings of Pteromes pueidus.
69. Wings of Periclista melanocephate.

> Plate NAXif.

Fif. 70. Wings of Rhadinocercen reitteri.
71. Wings of P'lymutosera uterrima.
72. Wings of Blemnorumpu ulternipes.

> Plate NXXViI.

Fig. 73. Wings of Kaliosysphinga dohmii.
7t. Wings of Fenusa pygmara.
75. Wings of scolioneura betuleti.

> Phate NXXVifi.

Fig. 76. Wings of IIylotomu virescens.
77. Wings of Pachylote uudouinii.
78. Wings of Labidarge dibapha.

Plate NXNXN.

Fig. 79. Wings of Dielocerus formosus.
80. Wings of Perreyia vitellina.
81. Wings of Pterygophorns cinctus.

Plate NL.

Fig. 82. Wings of Loboceras frater.
83. Wings of 1 cordulecera sp.
84. Wings of Pergu sp.

Plate NLI.

Fle. 85. Wings of Xiphydria maculatu.
s6. Wings of Poururus cyaneus.
87. Wings of Nires californicus.

> Plate XLII

Fig. 88. Wings of sirer albicomis.
s9. Wings of Xeris spectrum.
90. Wings of Teredon latitursis.
91. Wings of Tremex columba.

Plate XLili.

Fig. 92. Wings of Megalodontes spissicornis.
93. Wings of Janus integer.
94. Wings of Jomus abbreciatus.

> Plate Xlif.

Firs. 95. Wings of Macroceplus sutyrus.
96. Wings of Cephus pygmaus.
97. Wings of Oryssus ubietinus.

Wings of Pantarbes, Erax, Tabanus, Scenopinus, and Rhamphomyia.
For explanation of plate see page 651.
Proc. N. M. vol. xxix-05-43

Wings of Musca, Conops, Midas, Nemoura, and Teniopteryx.
For explanation of plate see page 652.

Wings of Megaxyela, Odontophyes, and Macroxyela,

[^9]

Wings of Manoxyela, Xyela, and Neurotoma

Wings of Lyda, Cefnolyda, and Pamphilius.

WINGS OF ITYCORSIA, BACTROCEROS, AND CEPHALEIA.

Wings of Liolyda, Blasticotoma, and Lophyrus.
For explanation of plate see page 652.

Wings of Emphytus, Eriocampa, and Pseudosiobla.
For explanation of plate see page 652.

Wings of Dolerus, Stromboceros, and Strongylogaster. For explanation of plate see page 652.

Wings of Eriocampoides and Phyllotoma.
For explanation of plate see page 652.

Wings of Lycaota, Tenthredo, and Macrophya.
For explanation of plate see page 653.

Wings of Pachyprotasis, Trichiosoma, and Clavellaria.
For explanation of plate see page 653.

Wings of Hoplocampa, Hemichroa, and Dineura.
For explanation of plate see page 653.

Wings of Mesoneura, Pseudodineura, and Cladius.

Wings of Monoctenus, Pteronus, and Periclista.
For explanation of plate see page 653.

Wings of Rhadinocerfea, Phymatocera, and Blennocampa.
For explanation of plate see page 653.

Wings of Kaliosysphinga, Fenusa, and Scolioneura.
For explanation of plate see page 653.
Proc. N. M. vol. xxix-05-45

Wings of Hylotoma, Pachylota, and Labidarge.
For explanation of plate see fage 653.

Wings of Dielocerus, Perreyia, and Pterygophorus.
For explanation of plate see page 653

Wings of Loboceras, Acordulecera, and Perga.
For explanation of plate see page 653.

Wings of Xiphydria, Paururus, and Siret.

Wings of Sirex, Xeris, Teredon, and Tremex.

Wings of Megalodontes and Janus.
For explanation: of plate see page 654.

Wings of Macrocephus, Cepheus, and Oryssus.
For explanation of plate see page 654.

[^0]: "For extented hibhographise of papers lealing with the wing veins of insecte the following shomld be consulted:
 II. J. Kolbe. Einführmg in dir Kemotnisw der Inserten. 1893. Pp. 269-271.
 A. N. Packard. Text-hook of Entomology. 1898. Pי. 147-148.
 ${ }^{b}$ Hermann Hagen. stett. Ent. Keit., NXXI, 1870, pp. :316-320.
 (Josef Redtenbacher. Inn. k. k. Naturh. IIofmus., I, 1886, pl'. 153-832.
 d G. Ernst Adolpね. Ueber Insectenflïgel. 1879.

[^1]: "F. Bianer and J. Redtembacher. Zool. Anz., N1, 1s8s, pp. 44-447.
 ${ }^{b}$ A. Spmer. Zeit. Wism. Zani., LIII, 1892, ppr. 597-6it6.
 ${ }^{c}$ J. H. Comsteck. Wilder (2narter-Century Book, 1893, pp. :3ī-113.

[^2]: "A. S. Packard. Peyche, V'It, 1895, pp. 2:5-24.
 "J. H. and A. B. Comstock. Ithalea, N. Y., 1895.
 "J. H. Comstork and J. (i. Needham. The Wings of Insects, Amer. Nat., XXXII and XXXIII, 1898 and 1899.

[^3]: a Dr. G. Enderlein. Eine einseitige Hemmengsbildung leei Telea polyphemus vom ontogenetischen standpunkt. Ein Beitrag zur Kenntniss der Fintwirklung der schmetterlinge. Zool. Jahrb., NVI, 1902. Part 4.

[^4]: "J. O. Westwood. Thesaurus Ent. Oxomiensis. 18it. W. F. Kirby. List Hymen. Brit. Mns., Tenth. and Siric. I, 1882.
 ${ }^{\prime}$ I am indebted to Mr. J. Chester Bradley for an opportunity to see a specimen of this species betonging to the U. S. Nationat Musemn Collections. The generic reference was made by Dr. W. H. Ashmeati.

[^5]: Proc. N. M. vol. xxix-05- 40

[^6]: "J. II. Comstock. Evolution and Taxonomy, Wiider (Quarter Century Book, p. t2.

[^7]: "J. H. Comstock, Wilder (Quarter-Century Book, 1. 42.

[^8]: a The figure of Teredon latitursus was enlarged from a photomicrograph of the wings of the type in the Collection of the American Entomological Society made and loaned the writer by Mr. J. Chester Bradley.

[^9]: For explanation of plate see page 652.

