Table of proportionate measurements.

Speeies \qquad Locality \qquad	Parophrys ischyrus.				Hippoglossoides classodon.			
	Seattle.		Seattle.		Seattle.		Tacoma.	
		100ths $\underset{\text { length. }}{\substack{\text { of } \\ \text { lon }}}$	Inches and 100ths.	100ths of length.	Inehes and 100 ths.	100ths of length.	Inehes and 100ths.	$\begin{aligned} & 100 \text { ths } \\ & \text { of } \\ & \text { length. } \end{aligned}$
Extreme length.	17.05		14.20		9.75		12. 90	
Length toend of middle candal rays.	14.30		11.50		7.80		10.50	
Body: Greatest heicht		$43 \frac{1}{2}$		$45 \frac{1}{2}$		41		46
Least height of tail		$9{ }^{9}$		$9{ }_{9}^{2}$		$9 \frac{1}{2}$		11
Length of caudal peduncl		$10{ }^{1}$		$9 \frac{1}{2}$		$10 \frac{1}{2}$		
Head: Greatest lenoth								
		${ }^{261}$		${ }_{1}^{31}$		30 1		29 1
Length of longest gill-raker						3_{3}		1
Length of maxillary (from tip of snout)						13		12
Leugth of maxillary (from tip of snout, blind sitle).								14
Length of mandible						$16 \frac{1}{2}$		15
Distanee from snout to orbit...		$4 \frac{1}{2}$		6		5		$6 \frac{1}{4}$
Diameter of orbit..		5		$5 \frac{1}{2}$		8		
Dorsal:								
Height at longest ray		13		$14{ }^{1}$		14		14
Anal:								
Distance from snout						40		36
Height at longest ray		132		142		15		13.1
Caudal:								
Length of middle rays.		19		$22 \frac{1}{2}$	$23 \frac{1}{3}$		19
Pectoral, length............		15		16		17		14
Dorsal rays ..	6		70			77	-	84
Anal rays...	57		52			59		61
Ventral rays. 6 6 6^{6}........ 6								
Number of transverst rows........ 120.1 110								
Number of caxcal appendages						4		

Astoria, Oreg., Jatne 16, 1850.

ACTEES.

By S. THI. CATTTE, Armheim, Hohianal.

As is well known, Darwin \dagger has callerl attention to the experience of Giinther that the females of fishes are in almost all cases larger than the males. This was perhaps the reason that Syrski, in $1874, \ddagger$ in investigating the reproductive organs of eels, directed his attention more especially to the smaller individuals, where he was fortunate in finding what is called by many the organs of Syrski, and also considered to be the male genital apparatus. Afterwards, in a variety which is known

[^0]in France under the name of Anguille pimperneau, Dareste* found the same organ. It appears that only in one case (Anguilla bostoniensis) have living spermatozoa been found in a male ecl, as we learn from a communication to the Zoologischer Anzeiger, vol. ii, No. 18, p. 15, by A. S. Packard. The male in this case was about $430^{\mathrm{mm}} \operatorname{long}$ (17 inches). That the finding of sueh specimens is so very rare should not astonish us, since the young eels migrate to the deep sea, where the reproductive organs complete their development very rapidly (6 to S weeks), when spawning takes place; the old eels, the females as well as the males, dying after the reproductive act is consummated. Though on this account the spermatozoa, and in most cases their testicular mother cells, are wanting, the investigation of the histological structure of the organ of Syrski may still bring us somewhat nearer to the truth.

If one examines partially grown eels measuring $200-500^{m m}$ in length one will find a moderate broad band in the abdominal cavity of some of them, attached at its inner margin by a narrow duplicature of the peritoneum to the air-bladder, the other margin, however, hanging free in the cavity of the abdomen. This band extends from the liver to behind the anal opening, and is covered by thousands of fat cells. Λ lobular organ, consisting also of fat cells, overlies the hinder portion of the alimentary canal and ovarimm. I found the eggs to average 0.75^{mu} in diameter from specimens $20-50^{\mathrm{cm}}$ in length. Treated with acetic acid and ammoniacal carmine solution, a large nucleus and nucleolus became visible. In other examples, although the fat lobules were present, the broad band was absent. But in exactly the same position and along the dorsal aspect of the abdominal cavity a quite thin band or strip of tissue of glass-like transparency is attached, and likewise by a fold of connective tissue (peritoneum), to the air-bladler, and extends from the liver to behind the anal opening. This band or strip of tissue is crenated along its free margin, the lobes of which measure 0.75^{mm} in length and 0.5^{mm} in depth, their convex portion depending into the abdominal cavity. In this Syrskian or lobed organ one finds, along the margin where it is attached, a fine canal, the efferent seminal duct, which, upon being tinged with carmine, becomes quite distinet, and which may also be demonstrated by means of injections. The histological structure of the foregoing lobulated organ was investigated by Freud. \dagger He found an areolar structure with connective tissue corpuscles, similar to the histological structure of the immature testes of fishes. My preparations had a similar appearance as long as the smaller examples were the subjects of investigation. In the largest specimens of eels with lobulated organs investigated by me (445^{mm} long) I found cylindriform strings, which jassed from the bases to the tips of the lobes, and were filled with cells. After repeated trials with the most different reagents, I did not succeed in clearly distinguishing a nucleus in these cells. My observations

[^1]were made with a Zeiss immersion, objective K, oculars 2 and 3 . According to Jacoby,* Von Seibold saw similar strings of cells in an eel, in which the lobes were very strongly developed. These strings of cells presented to the eye the most undoubted similarity to the testicular mother cells of spermatozoa. I also believe that the strings of cells observed by me must be regarded as such. In no case did I observe any spermatozoa.

Previous to my mestigations into the histology of the testicular lobes of the eel, I occupied myself with the question whether there were not some other exterual characters distinguishing the sexes besides the alreaty mentioned difference in size and length. Jacoby remarks as follows upon this point:
"1. A distinctly broader snout in the female as compared with the slender, either elongatel or short, and pointed snont of specimens with the lobulates organs.
".2. A lighter coloration of the female, usually quite green on the back and yellowish or yellow on the belly, whilst the other sex is much darker green in color, often an intense black on the back, with always a more marked metallic luster on the sides, and usually whitish on the belly.
"3. A further and important external character is an appreciable difference in the height of the dorsal fin (a point confirmed by me). All the females hare a distinctly higher and wider dorsal than males of the same size.
" 4 . And, finally, we may note, althongh not a constantly appreciable character, the greater diameter of the eye of the male. Eels with strikingly small eyes seem almost always to be females. Dels which have a Syrskian organ usually have relatively large eyes, thongh large-eyed femalẻs are equally common."

Jacoby then gives some measurements, the averages of a great mumber of cels measured by him, from which the actual value of his characters becomes apparent. I believe, nevertheless, that he attaches too much importance to some of his characters, and some others, not less important, he has not noticed at all.

Ont of a great momber of cels measured by me I select the following, in which the measurements given in the parallel rows are taken from pairs the lengths of which are, as nearly as possible, the same:

[^2]| | Length of the body. | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mm． | $m m$ ． | $m \mathrm{~m}$ ． | mm． | mm． | | mm ． |
| | 270 | -4. | 8. | | | 35 | 6 |
| | 305 | 4.5 | 8.5 | 9 | 3.5 | 35 | 7 |
| | 325 | －4 | 8 | 9 | 4.5 | 37 | 8 |
| | 324 | －5 | 9 | 10 | 5 | 39 | 8 |
| IH | 327.5 | －4 | 9 | 9 -10 | 4 | 40 | 6.5 |
| III | 327.5 | 5 | 10 | －10 | 5 | 40 | 7.5 |
| IV $\{0$ | 345 | －4． | 8 | 10 | 5 | 41 | $\underline{6}$ |
| If | 34.4 | 4.5 | $\begin{array}{r}9 \\ +9 \\ \hline\end{array}$ | ＋10 | $\begin{array}{r}4 \\ \hline\end{array}$ | 43 | $-\frac{7}{7}$ |
| V $\{$ | 35． | 4 | ＋${ }_{10}^{9}$ | 9 10 | 5 +5 | 41 42 | -7.5 |
| VI | 359 | －－4． 5 | ＋9 | -9.5 | 5 | ＋ 41 | -7 |
| 11 | 358 | 5 | 10 | 10 | 5 | 42 | ＋88 |
| リП\｛ | 378 | 4.5 | 9.5 | 10 | 5 | 43 | ${ }^{7}$ |
| | 319 389 | | 11 9.5 | 12 | 5 | 45 | ＋${ }_{7}$ |
| VIII $\left\{\begin{array}{l}\text { a } \\ \hline\end{array}\right.$ | 380 | －5．5 | 10^{5} | 11.5 | 4.5 | 47.5 | ＋88189 |

-4 indicates somewhat less than $4 ;+4$ somewhat more than 4.
From this table the conclusion is reached that all the females have the dorsal fin higher than those specimens of the same length presumed to be males，and that with age this dif－
 \＆ference becomes still more marked．

The larged－eyed character of cels with the lobulated organs has ap－ peared to me to be too uncertain a feature，so much so that，according to the foregoing table of measure－

σ^{*} ments，the same feature might be assumed as characteristic of the females．On the other hand，I attach great importance to the broader snout of the female in contrast to the slender and pointed snout of the male．But the snout of the female is not only broader，but also more depressed，and has the eyes more prominent，a feature to which I would call special attention，and one which I do not find in the male．In contrast，the snout of the male eel is more conrex，as will be seen by comparing the accompanying outline sketches．

If one will only notice the width or slendermess of the dorsal，and more especially the broad，depressed snout of the female，with the promi－ nent eyes，as compared with the slender，convex snout of the male，it will require little trouble to pick out the specimens from these data con－ jectured to be males．

On an arerage amongst twenty eels，measuring $300-500 \mathrm{~mm}$ in length， furnished me by different fishermen，I found 5 cels with lobulated organs or 25 per cent．If，howerer，I paid attention to the two most impor－
tant characters, namely, the relative proportions of the dorsal and snont, by their help picking out those specimens which appeared to be males, I actually found $S 0$ to 90 per cent. of the individuals so selected to be males with the Syrskian organ.

I found it impossible to discorer distinctive sexual differences of coloration; all the males and females investigated by me were of a white color ventrally, green above, with a metalic luster on the sides.

DEACHIPTION OF NEW NPAROID FISH (SPARUSIBRACHESOMUS), HROM LOWEIR CAHIEORNIA.

By W. N. LOCEINGTON.

Sparus brachysomus n. sp.

$$
\text { D. } \frac{12}{12} ; \text { A. } \frac{3}{11} ; \text { P. } 15 ; \text { V. } \frac{1}{5} ; \text { C. } 3-9-S-3 ; \text { L. lat. cir. } 50 .
$$

Body compressed, high; snout and forehead rising in nearly a straight line, at an angle of about fifty degrees with the axis of the body, to the occiput. From this point the dorsal outline arches upwards to the third dorsal spine, then downwards in a continnous arch to the end of the dorsal fin. Abdominal outline much less curved than the dorsal, the anal portion more curved than the anterior portion, lower jaw curved, ontline between lower jaw and ventrals nearly straight.

Greatest depth $2 \frac{2}{3}$; length of head about $3 \frac{1}{11}$; dorsal base about $2 \frac{3}{10}$; pectoral abont 32 times in the greatest length ; snout (along axis of body) $\frac{8}{7}$; orbit $4 \frac{1}{2}$; interocular width $3 \frac{33}{46}$ in the length of the head; least depth of candal perluncle $5 \frac{1}{4}$ times in the greatest depth.

Posterior extremity of maxillary falling somewhat short of the anterior margin of the orbit, its upper margin concealed beneath the preorbital thronghout; no prominent knob at upper extremity. Lower jaw shorter than the upper.

Nostrils simple; the posterior a large elongated slit close in front of the orbit and on a level with the lower half of the eye; the anterior a small circular foramen situated at a lower level than the posterior and about one-fourth of the diameter of the eye in advance of it.

Interocular space considerably convex transversely, but only slightly so longitudinally.

Posterior margin of preoperculnm straight and vertical, lower line convex, the angle of junction strongly rounded. Operculum ending in a flat point; suboperculum membranous at tip.

Numerous conical teeth in front of the jaws, the anterior row considerably larger than those behind. Three rows of molars in the upper jaw, two in the lower. In the specimens examined there are 9 large incisors in the mandible, forming a bold arc, the interior of which contains about five irregular rows of crowded cardiform teeth, reaching back to the anterior small molars. Upper jaw similar, with 7-10 large incisor teeth.

[^0]: * Ueber die Genitalien der maimulichen Aale und ilure Sexualuntersehiede, von S. Th. Cattie, Phil. nat. Cand., Docent an der Realschule zu Aruheim (Holland). Extracted. from the Zoologischer Anzeiger, 7 th June, 1330, pp. 275-279. Translated by J. A. Ryder.
 †Ch. Darwin, Descent of Man, trauslated into German by Carns, part ii, p. 5 et seq.
 \ddagger Abhandl. d. kais. Akad. d. Wissenseh., Wien, April Heft, 1874.

[^1]: * Compt. Rendus, 1875. t. lxxxi p. 159.
 \dagger Sitzungsber. d. kais. Akad. d. Wisseusch., Wien, 18:7, Mïrz Heft,

[^2]: * Dr. L. Jacolyy, Der Fischfing in der Lagune von Commachio.

