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In the face of ever-increasing threats to coral reef 
ecosystems, it is essential to understand the 
impact of natural predators in order to devise 
appropriate management strategies. Destructive 
population explosions of the crown- of-thorns star- 
fish Acanthaster planet have devastated coral 
reefs throughout the Indo-Pacinc for decades. But 
despite extensive research, the causes of outbreaks 
are still unclear. An important consideration in 
this research is that A. planci has been regarded 
as a single taxonomic entity. Using molecular data 
from its entire distribution, we find that A. planci 
is in fact a species complex. This discovery has 
important consequences for future coral reef 
research, and might prove critical for successful 
reef conservation management. 
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1. INTRODUCTION 
Coral reefs, the most species-rich marine ecosystems, 
are subjected to growing anthropogenic pressure, limit- 
ing their resilience to natural threats such as corallivor- 
ous predators (Bellwood et al. 2004). Among those, 
the crown-of-thorns starfish (COTS) Acanthaster planci 
is infamous for its dramatic population explosions 
(called outbreaks) that have devastated coral reefs 
throughout the Indo-Pacific for decades, making it a 
major management issue (Birkeland & Lucas 1990; 
Veron 2008). But despite extensive research into 
COTS biology, the causes of outbreaks are still not 
clear; they probably involve a variable set of interacting 
natural and anthropogenic factors that lead to 
increased recruitment (Engelhardt & Lassig 1997). 
An important consideration in both COTS research 
and management is that A. planci has been regarded as 
a single species throughout its distribution, and there- 
fore the same ecological and behavioural traits are 
assumed worldwide. 
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Acanthaster planci's long-lived pelagic larva— 
surviving from three to four weeks in normal con- 
ditions (Yamaguchi 1973) to about seven weeks 
in marginal food regimes as found in oceanic con- 
ditions (Lucas 1982)—would be expected to promote 
genetic homogeneity. But this species appears to be 
highly structured (Benzie 1999), in line with other 
recent studies of widespread marine invertebrates 
(e.g. Becker et al. 2007). Using sequences of the 
mitochondrial cytochrome oxidase subunit I gene 
(COI) from samples covering its entire distribution, 
we show that A. planci consists of four deeply 
diverged clades that form a pan-Indo-Pacific species 
complex (as identified by DNA taxonomy; Vogler & 
Monaghan 2007). 

2. MATERIAL AND METHODS 
DNA was extracted using a Qiagen MagAttract 96 DNA Plant Core 
Kit from 237 A. planci and two Acanthaster brevispinus tissue samples, 
collected by SCUBA diving and snorkel from 1987 to 2008 (table 1 
in the electronic supplementary material). A fragment of COI, 
corresponding to the 'barcoding' fragment, was amplified and 
sequenced with the following primers: COTS_COI_F4734 5'- 
GCCTGAGCAGGAATGGTTGGAAC-3' and COTS_COI_R5433 
5'-CGTGGGATATCATTCCAAATCCTGG-3'. Sequences were 
assembled using CODONCODE ALIGNER (http://www.codoncode.com/ 
aligner), and the 632 bp remaining after quality-based end-clipping 
were aligned in SEAVIEW (Galtier et al. 1996) with Patiria pectinifera 
(accession number: D16378) as an outgroup. All sequences were 
deposited in EMBL Nucleotide Sequence Database (http://www.ebi. 
ac.uk/embl/: accession numbers: FM174472-174675, FM177190- 
177203, FM202070-202090). 

Genetic distances between and within clades were calculated 
with MEGA4 (Tamura et al. 2007) using the Kimura two-parameter 
model of sequence evolution (K2P), to enable comparisons with 
other asteroid datasets (Waters et al. 2004). There are no fossil 
data or geological calibration points available to date the separation 
between the four clades, so divergence times were approximated by 
applying the most accurate COI divergence rates available for 
echinoderms to the K2P distances (2.9—4.5% Myr~ ; Lessios 
2008). To test the 95 per cent connectivity limit as a species 
threshold (Hart & Sunday 2007), a parsimony haplotype network 
was built using TCS 1.2.1 (Clement et al. 2000). A neighbour- 
joining (NJ) analysis and NJ bootstrap analysis (1000 replicates) 
were carried out in PAUP* v. 4.0.M0 (Swofford 2003). After inferring 
the best-fit nucleotide evolution model using the Akaike informa- 
tion criterion as implemented in MODELTEST V. 3.7 (Posada & 
Crandall 1998), we estimated the maximum-likelihood tree under a 
GTR+T + I model in PHYML V. 2.4.4, including 1000 bootstrap 
replicates (Guindon & Gascuel 2003). 

We used a method separating species diversification from 
coalescent processes in a phylogenetic tree by comparing two 
models describing the likelihood of branching patterns (Pons et al. 
2006). The null model assumes that the entire sample derives from 
a single population undergoing a single coalescent process, whereas 
the general mixed Yule coalescent (GMYC) model classifies the 
observed branching time intervals into two categories, as the result 
of either inter- or intraspecific processes of lineage sorting. A log- 
likelihood ratio test is then used to assess which model provides a 
better fit. The GMYC model additionally integrates scaling 
parameters for both the diversification (pk+\) and coalescent (p,) 
processes, which allow departures from strict assumptions of 
constant population size and rates of cladogenesis. The models 
were fitted using an R script provided by T Barraclough (Pons 
et al. 2006) to an ultrametric tree obtained by non-parametric rate 
smoothing of the NJ tree (Sanderson 1997), as implemented in the 
R package APE (Paradis et al. 2004). 

3. RESULTS 
Evidence for species status of the clades comes, first, 
from the extent of the genetic distances between 
them. These ranged from 8.8 to 10.6% (as opposed 
to <0.7% within clades), equivalent to the distances 
between sibling species in other starfish (Waters et al. 
2004). According to these distances, the four clades 
are estimated to have diverged between   1.95  and 
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Figure 1. Pan-Indo-Pacific Acanthaster species complex (a) Acanthaster COI NJ tree (rooted with Patiria pectinifera, not 
shown), GMYC clusters in colour, bootstrap support values for both the NJ and maximum-likelihood analyses depicted on 
main nodes only; scale bar, 1% difference), (b) Lineages-through-time plot based on the ultrametric tree obtained by non- 
parametric rate smoothing of the phylogeny depicted in (a); grey line is branching rate threshold T; green shaded area 
highlights the timing of the diversification events, which at a COI divergence rate of 2.9-4.5% Myr~ (Lessios 2008) 
corresponds to the Pliocene-early Pleistocene (between 1.95 and 3.65 Myr ago), (c) Four disconnected statistical parsimony 
networks at the 95 per cent connectivity limit, corresponding to the putative species; same colours as in (a). 

3.65 Myr ago. Second, the COI haplotypes grouped 
into four disconnected statistical parsimony networks 
at the 95 per cent connection limit (figure lc) 
suggested as a species delimitation threshold (Hart & 
Sunday 2007). Third, using a method that differ- 
entiates (i) interspecific from (ii) intraspecific diversi- 
fication processes through a phylogenetic approach 
(Pons et al. 2006), we identified the same four 
clusters, corresponding to the putative sibling species 
(figure la). Indeed, the GMYC model, which 
assumes a steep increase in branching rates from 
(i) to (ii) at a threshold T, was preferred over the null 
model of uniform branching rates (logLGMYC = 
432.6, 2AL = 31.1, xf-test, j><0.001; figure lb). 
Both of the scaling parameters for the diversification 
(_p&+i = —0.27) and coalescent (py=0.04) processes 
were smaller than 1. 

4. DISCUSSION 
We find that A. planci consists of four strongly 
differentiated and highly supported mitochondrial 
clades,  from the  Red  Sea,  the Pacific  (Pac),  the 

Northern (NIO) and the Southern Indian Ocean 
(SIO) (figures la and 2), that together form a species 
complex. Although cryptic speciation is a widespread 
phenomenon in the marine realm, this finding is quite 
surprising for an organism as extensively studied as 
A. planci over the past decades. 

Assuming a COI divergence rate of 2.9-4.5% Myr-1 

(Lessios 2008), the four clades are estimated to have 
diverged in the Pliocene-Early Pleistocene (1.95- 
3.65 Myr ago). The speciation process was probably 
driven by sea-level changes (Pillans et al. 1998), 
isolating populations between major oceans (e.g. Pac 
versus NIO; Voris 2000). Additionally, restricted circu- 
lation patterns could have reduced larval interchange 
between populations (e.g. SIO versus NIO; Pollock 
1993). Furthermore, the strong patterns of regional 
differentiation may have been enhanced by ecological 
differences among lineages (Reid et al. 2006). The 
populations of all four sibling species appear to be 
expanding, as supported by both the GMYC scaling 
parameter for the coalescent process (pj< 1; Pons et al. 
2006) and the overall star shape of each species' 
haplotype network (figure lc; Avise 2000). 
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Figure 2. Geographical distribution of COI haplotypes from the four putative COTS species. Pie charts indicate relative 
frequency of each species per sampling location. Colours are the same as in figure 1. 

Our discovery of four highly differentiated clades in 
one of the world's most destructive coral predators 
has significant conservation implications. Identifying 
cryptic speciation is essential to adequately study and 
contain species that require management (Bickford 
et al. 2007). Although the status of A. planci is 
relatively poorly documented from the Indian Ocean 
and the Red Sea, outbreaks there do not appear to be 
as massive and widespread as in the Pacific (Zann 
2000), suggesting that outbreak patterns might vary 
between the different sibling species. Up to now, 
however, the overwhelming majority of COTS 
research has been performed in the Pacific. Failure to 
recognize the existence of the sibling species could 
have contributed to a lack of understanding of the 
processes that lead to outbreaks in the different 
COTS lineages, by extrapolating results obtained 
from the Pacific studies to A. planet's entire distri- 
bution for both research and management purposes. 

Future research will be required to investigate 
whether the life history, behavioural patterns and/or 
ecological requirements that may affect the outbreak 
dynamics of these four independent evolutionary 
COTS lineages have diverged sufficiently to necessi- 
tate lineage-specific management. This could prove 
to be crucial for the design of appropriate manage- 
ment strategies to minimize the impact of future 
catastrophic COTS outbreaks in different regions of 
the world. 
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