Title: \quad The influence of blue crab movement on mark-recapture estimates of recreational harvest and exploitation

Authors: | Robert Francis Semmler (Corresponding author) | |
| :--- | :--- |
| | Smithsonian Environmental Research Center, |
| | 647 Contees Wharf Rd; Edgewater, MD 21037 |
| | rsemmler37@ gmail.com |
| | Matthew Bryan Ogburn |
| | Smithsonian Environmental Research Center, |
| | 647 Contees Wharf Rd; Edgewater, MD 21037 |
| | Robert Aguilar |
| | Smithsonian Environmental Research Center, |
| | 647 Contees Wharf Rd; Edgewater, MD 21037 |
| | Elizabeth Watkins North |
| | University of Maryland Center for Environmental Science, |
| | P. O. Box 775, Cambridge, MD 21613 |
| | Marjorie Lindquist Reaka |
| | Department of Biology, University of Maryland, |
| | College Park, MD 20742 |
| Anson Hemingway Hines | |
| Keywords: | Smithsonian Environmental Research Center, |
| | 647 Contees Wharf Rd; Edgewater, MD 21037 |
| | Mark-recapture |
| Movement | |
| Recreational harvest | |
| Exploitation rate | |
| Blue crab | |

Abstract

Despite the need to quantify total catch to support sustainable fisheries management, estimating harvests of recreational fishers remains a challenge. Harvest estimates from mark-recapture studies have proven valuable, yet animal movements and migrations may bias some of these estimates. To improve recreational harvest estimates, explore seasonal and spatial harvest patterns, and understand the influence of animal movement on exploitation rates, a markrecapture experiment was conducted for the blue crab fishery in Maryland waters of Chesapeake Bay, USA. Data were analyzed with standard tag-return methods and with revised equations that accounted for crab movement between reporting areas. Using standard calculations, state-wide recreational harvest was estimated to be 4.04 million crabs. When movement was included in the calculations, the estimate was 5.39 million, an increase of 34%. With crab movement, recreational harvest in Maryland was estimated to be 6.5% of commercial harvest, a finding consistent with previous effort surveys. The new methods presented herein are broadly applicable for estimating recreational harvest in fisheries that target mobile species and for which spatial variation in commercial harvest is known.

Introduction

Mark-recapture experiments are valuable tools for obtaining information on individuals, populations, and harvest regimes. Mark-recapture data have been modeled for closed and open populations, and models have increased in complexity to include multiple stages, multi-model comparisons, and new statistical techniques (Pollock 2000). For fishery species, mark-recapture experiments have been designed to investigate local population sizes and sources of mortality like fishery exploitation rates (Seber 1986, Pine et al. 2003). Models for analyzing markrecapture data have been adapted to address various sources of uncertainty, including unequal catchability (Chao 1987, Agresti 1994), mixed stocks (Michielsens et al. 2006), and tag loss (Kremers 1988, Conn et al. 2004). Mark-recapture studies also have been used to study animal movements (Dorazio et al. 1994, Aguilar et al. 2005, Trudel et al. 2009). However, animal movements can influence mark-recapture-based estimates of exploitation rates (Nichols et al. 1995, Munro and Kimball 1982), especially in cases where the harvest areas are small enough that there is substantial movement of tagged individuals among them.

Blue crabs (Callinectes sapidus) can make extensive movements during the open season of the blue crab fishery in Maryland waters of the Chesapeake Bay. The fishery targets this highly mobile species which is known to make short-duration movements as well as longdistance ontogenetic migrations (McConaugha et al. 1983, Walcott and Hines 1990, Hines 2007). For crabs of harvestable size (>127 mm carapace width in Maryland), this movement can be as much as 569 m per day; far enough to allow movement between harvest areas (Walcott and Hines 1990). Crabs in Maryland are targeted by two fishery sectors: commercial fishers which are required to report their harvest and recreational fishers which are not. Fishers in both sectors use multiple gear types (e.g. crab pot, trotline, hand-line, crab scrape) (Cargo 1954, Van Engel

1962, Kennedy et al. 2007). Knowledge of crab movement is important for understanding the dynamics of the crab population (Hines 2007) and spatiotemporal patterns of harvest effort (Slacum et al. 2012).

Management of the blue crab fishery in Chesapeake Bay is based on integrated targets and thresholds for the abundance and exploitation of female crabs (Miller et al. 2011). These are jointly estimated within the stock assessment model so both sets of indices are fully compatible. Additionally, there is an empirically determined trigger for management of male crabs, based on their exploitation. Abundance and exploitation are calculated based on commercial harvest reporting data, estimated recreational harvest from effort surveys (Miller et al. 2011), and three annual fishery-independent surveys: a dredge survey of overwintering crabs (Sharov et al. 2003), a trawl survey in MD (Davis et al. 2001, Miller et al. 2011), and a trawl survey in Virginia (Tuckey and Fabrizio 2019). In Maryland, the fishery is divided into 29 commercial harvest reporting areas which range from large areas of the mainstem bay to small tributaries (Fig. 1, Table 1). Recreational harvest of females was banned in Maryland in 2008 as one of several measures to address recruitment overfishing, potentially shifting fishing effort onto males (Miller et al. 2011) and altering sex ratios which can have negative consequences for population reproductive output (Ogburn 2019). Recreational crabbers are not required to report their male crab harvest, which is instead estimated by effort surveys to be 8% of commercial harvest (Ashford et al. 2009, 2010a,b, 2013a,b). Fishery managers and stakeholders have expressed concern that the effort surveys may underestimate recreational harvest (Fogarty and Lipcius 2007, Miller et al. 2011), although substantial efforts to minimize bias have been undertaken (Ashford et al. 2009, 2013a,b). We conducted a mark-recapture study to provide an independent estimate of recreational harvest in Maryland for comparison with effort surveys and evaluated
the potential influence of crab movement among harvest areas on estimates of harvest and sectorspecific exploitation rates.

Methods

A large-scale mark-recapture study was conducted to study harvest patterns in the blue crab fishery in Maryland waters of Chesapeake Bay. Detailed below are 1) the tagging methods and experimental setup for the mark-recapture study, 2) methods used to estimate recreational harvest and exploitation from the tagging results without taking into account crab movement, and 3) the adjusted equations used to include the influence of crab movement on these estimates. Using mark-recapture data to answer these questions relies on an important set of assumptions; namely that marked animals 1) are well-mixed within the population, 2) behave in a similar manner as unmarked individuals , and 3) do not vary in catchability (Schwarz and Taylor 1998). Evidence from prior studies indicates that crabs tagged using the method described below undergo full spawning migrations and otherwise behave similarly to unmarked individuals (Turner et al. 2003, Aguilar et al. 2005) and are healthy and thus unlikely to have reduced catchability (Turner et al. 2003). Several characteristics of the blue crab fishery in Maryland especially the continuous fishery during the time of year when crabs are available for tagging, the large spatial scale of the study area, and expected strong spatial and temporal variation in fishing effort - prevented us from meeting the assumption that tagged crabs were well-mixed within the state-wide population. Instead we estimated spatial and temporal variation directly in smaller regions and then aggregated estimates up to the state-wide level as detailed below.

The primary goal of this mark-recapture experiment was to estimate the level of recreational harvest by multiplying reported commercial harvests with the ratio of recreational to commercial harvest determined from reported tag recaptures, as follows:

$$
\begin{equation*}
H_{R}=\frac{n R}{n C} * H_{C} \tag{1}
\end{equation*}
$$

where H_{R} was the total estimated recreational harvest, $\frac{n R}{n C}$ was the ratio of the number of recreational recaptures $(n R)$ to commercial recaptures $(n C)$ observed from the tagging experiment, hereafter referred to as the "recapture ratio", and H_{C} and was the total reported commercial harvest. A similar method is employed in the management of striped bass (Morone saxatilis) fishery, whereby commercial discards are estimated based on known recreational discards, and the ratio of tags reported from discarded fish in the commercial sector to the recreational sector (NFSC 2019).

Because we were unable to ensure that tagged crabs were well-mixed in the population, we designed the mark-recapture experiment to directly estimate variability in recapture ratio over the course of the crabbing season (section 2.2) and spatial variability in recapture ratio across harvest reporting areas (section 2.3). In addition, unequal tag reporting between the two sectors was accounted for (section 2.1). Finally, the calculation of recapture ratio by harvest area could have been influenced by crab movement, so the analyses were conducted both with and without information on crab movement, making it possible to identify the effects of movement on estimates of harvest and exploitation rates (section 3.1).

Although population-level estimates of exploitation can be calculated from the estimate of total recreational harvest plus commercial harvest and population data from the stock assessment, our secondary goal was to explore variation in sector-specific exploitation rates
among harvest reporting areas. This was calculated by dividing the number of crabs recaptured by each sector by the number of crabs initially released, as follows:

$$
\begin{equation*}
\text { uSector }=\frac{R P_{\text {Sector }}}{R L} \tag{2}
\end{equation*}
$$

where uSector was the exploitation rate (proportion of crabs caught per month) of either the recreational or commercial sector, $\mathrm{RP}_{\text {Sector }}$ was the number of tagged crabs that were captured by that sector, and $R L$ was the number of tagged crabs initially released. As before, potentially influential factors were accounted for in these calculations, including: unequal reporting between the two sectors (section 2.4), various sources of tag loss (section 2.4), and effects of crab movement (section 3.2).

1. Mark-Recapture Experiments

A total of 6,800 adult male blue crabs were tagged and released to study the blue crab fishery in Maryland waters of the Chesapeake Bay over two consecutive summers, 2014 and 2015. During the first summer (2014), 2,261 crabs were tagged and released during early summer (June/July), late summer (August), and fall (September) in four representative harvest reporting areas to determine seasonal trends in the recapture ratio (Table 2). During the second summer (June - August 2015), 4,539 crabs were tagged and released in 15 representative harvest reporting areas to investigate spatial patterns in recapture ratio and sector-specific exploitation rates (Table 1).

Crabs were tagged with $2.5 \mathrm{~cm} \times 5 \mathrm{~cm}$ vinyl discs attached to their dorsal surface with stainless steel wire wrapped around the lateral spines (Turner et al. 2003, Aguilar et al. 2005). The front of each tag used for this study had a unique identification number, the word "Reward", and contact information for reporting recaptures either by phone or web form. Standard rewards
were $\$ 5$. Five percent of tags were randomly assigned high value tags for estimating reporting rates. The high value tags had $\$ 50$ written in black ink on the front and back. On the reverse side, all tags listed information for fishers to record and report (tag number, date, GPS coordinates, capture depth, gear type and crab sex). Within each reporting area, all tagging was conducted on the same day. Crabs were tagged at given site over the course of day and were released as they were tagged while drifting across the tributary. This helped disperse crabs across the tagging area. Although tagged crabs were occasionally recaptured more than once, only the initial recapture was used in analyses. Some crabs that were released in Maryland were recaptured in Virginia ($n=44$ of 2,039 total returns in 2015). Nearly 90% of crabs recaptured in Virginia were captured by commercial fishers. While these returns were included in harvest calculations when movement was not considered, tag returns from these crabs were excluded when making estimates that accounted for crab movement. We follow the Guide for Care and Use of Laboratory Animals in our crab tagging protocol.

2. Estimating Recreational Harvest and Exploitation without Animal Movement

2.1 Estimating statewide recreational harvest

The statewide recreational harvest of crabs in $2015\left(H_{R}\right)$ was estimated using crabs that were tagged and released in 15 representative harvest reporting areas in $2015(n=4,539)$. Our multiple harvest area approach was similar to that of the first year of release and year of first recapture for multi-stratum capture-recapture models of an open population as described in Brownie et al. (1993) except that we also accounted for two harvest sectors, seasonal variation in harvest, and tag reporting rates. H_{R} was computed by taking the ratio of recreational to commercial recaptures from the mark-recapture experiment and then multiplying this ratio by the reported commercial landings:

$$
\begin{equation*}
H_{R}=\sum_{l=1}^{29} \sum_{m=1}^{9} \frac{n R_{l, m}}{n C_{l, m}} * H_{C} \tag{3}
\end{equation*}
$$

where H_{C} was the total reported commercial harvest of male hard crabs in 2015 in each of the 29 harvest areas (l) for each of the 9 months (m) of crab harvest season, and $n R$ and $n C$ were the number of recreational and commercial recaptures, respectively, estimated from tagging data for each area. H_{C} values for each area and month were obtained from the Maryland Department of Natural Resources (MD DNR 2015a,b). For these calculations, all crab recaptures from a particular release, regardless of their eventual recapture area were used (e.g., Fig. 2a).

The number of recreational and commercial recaptures from each release were adjusted with sector-specific tag-reporting rates, as follows:

$$
\begin{equation*}
\frac{n R_{l, m}}{n C_{l, m}}=\frac{R P_{R, l, m}}{R P_{C, l, m}} * \frac{R R_{R}}{R R_{C}} \tag{4}
\end{equation*}
$$

where $n R$ and $n C$ were the number of recreational and commercial recaptures, estimated from tagging data for each area (l) and month $(m), R P_{R, l, m}$ and $R P_{C, l, m}$ were the raw number of recaptures for each sector reported by crabbers in the given area and month, and $R R_{R}$ and $R R_{C}$ (equation 5) were the tag-reporting rates for recreational and commercial crabbers in 2015. A single reporting rate was calculated for each sector in each year. These were calculated across all harvest reporting areas, using standard and high-value tags as follows:

$$
\begin{equation*}
R R_{\text {Sector }}=\left(R_{S} / N_{S}\right) /\left(R_{r} / N_{r}\right)=R_{S} N_{r} / R_{r} N_{S} \tag{5}
\end{equation*}
$$

where $R R$ represents the proportion of caught crabs which were reported, N_{s} was the number of standard tags released, N_{r} was the number of high-value tags released, R_{s} was the number of standard tags returned, R_{r} was the number of high-value tags returned, and sector was either commercial or recreational (Pollock et al. 2001). These reporting rates were calculated including
both male and female crabs released in 2014 because there were not sufficient crabs recaptured to determine reporting rates for each crab sex within each fishery sector. Budgetary limitations on tagging prevented calculation of sector-specific reporting rates for each harvest reporting area or for each month of the crabbing season. While significant spatial or seasonal variation in tag reporting could affect the accuracy of these values, a single value was used for each sector to best focus on differences in reporting between the two sectors.

Similarly, it was not feasible within our budget to determine the recapture ratio $\left(\frac{n R}{n C}\right)$ for all 29 reporting areas directly through releases of tagged crabs. For areas where tagging was not conducted ($\mathrm{n}=14$), the ratio of recreational to commercial recaptures for nearby reporting area was used (Table 1). For example, crabs were not tagged in the Manokin River so the recapture ratio from the nearby Nanticoke River was used in calculations. Decisions about these data substitutions were based on our best professional judgement and took into account discussions with fishery managers, characteristics such as proximity to other sites, and visual comparisons of the level of residential development in satellite imagery.

2.2 Seasonal variation in recapture ratios

Monthly commercial harvest data were available for each reporting area and tagging data provided reliable estimates of recreational recapture rates for a single month, which allowed calculation of monthly ratios of recreational to commercial recaptures $\left(\frac{n R_{\text {Season }}}{n R_{\text {Season }}}\right)$ across the harvest season. Recapture data from 2014 and 2015 were used to calculate these monthly recapture ratios. In 2014, a total of 2,261 crabs were tagged in early summer, late summer, and fall in four harvest areas representative of the Eastern and Western Shore tributaries of Maryland's Chesapeake Bay (South River, Rhode River, Eastern Bay, Little Choptank River)
(Table 2). In 2015, 1,368 crabs were tagged in these areas (Table 1). Hence, a total of 3,629 tagged crabs were used to identify monthly variations in recapture ratios.

Using releases from both 2014 and 2015, recreational and commercial recaptures from the four harvest areas above were summed across these regions for each month. Then recreational recaptures for each month (m) were divided by commercial recaptures to determine a statewide ratio of recreational to commercial harvest for each month:

$$
\begin{equation*}
\frac{n R_{\text {Season }, m}}{n C_{\text {Season }, m}}=\frac{\sum_{l=1}^{4} R P_{R, l, m}}{\sum_{l=1}^{4} R P_{C, l, m}} \tag{6}
\end{equation*}
$$

where $R P_{R, l, m}$ and $R P_{C, l, m}$ represented the number of tagged crabs reported $(R P)$ that were captured by recreational crabbers (R) or commercial crabbers (C) in the given month (m) in one of the four harvest areas (l) where crabs were tagged in both 2014 and 2015.

Without tagging in the months of April, May, and November, the recapture ratio for these months at the beginning and end of the crabbing season could not be empirically determined. Compared to the mid-season peak, the recapture ratios in these months were expected to be quite low. Recapture ratios for the months of April, May, and November were assigned values of 0 to generate a more conservative estimate of recreational harvest. The sensitivity to this assumption was gauged by performing a separate calculation where the recapture ratios were constant during these months $\left(\frac{n R_{\text {Season }}}{n R_{\text {Season }}}\right.$ in April $=$ June, May $=$ June, November $=$ October $)$. This second calculation served as an upper bound for recapture ratios.

2.3 Spatial variation in recapture ratios

To characterize spatial variation in the ratio of recreational to commercial recaptures, records of the 4,539 crabs that were tagged in 15 harvest reporting areas in 2015 were analyzed
(Table 1). These releases occurred during the middle of the harvest season (July-September), when recreational harvests were expected to be at their peak. The exact date of each tagging event was dependent on weather and the availability of commercial fishermen to assist with capturing crabs in each of the 15 locations. Recreational and commercial recaptures occurring within 60 days of release were tallied. The sixty-day timeframe for recaptures was used because it accounted for 98% of recaptures reported by the end of the fishing season.

When calculating monthly ratios of recreational to commercial harvest for each reporting area in 2015, additional estimates were necessary because tagging occurred only once at each site in 2015, either in July, August, or September (Table 1). The ratios of recreational to commercial recaptures were estimated for all months of the harvest season with no available data using the seasonal relationship developed above (equation 6). To calculate the recapture ratio $\left(n R_{l, m} / n C_{l, m}\right.$) for a given month (m) in a specific harvest area (l), it was necessary to determine how recapture ratios in that month (m) compared to those in the month the release occurred (o). Specifically, we divided the recapture ratio for that month of the seasonal relationship $\left(\frac{n R_{\text {Season }, m}}{n C_{\text {Season, } m}}\right)$ by the recapture ratio of the seasonal relationship in the month when the release occurred $\left(\frac{n R_{\text {Season }, o}}{n C_{\text {Season,o }}}\right)$. This was then multiplied by the recapture ratio observed at that site in 2015 $\left(\frac{n R_{2015 l, o}}{n C_{2015,0}}\right)$ following the equation:

$$
\begin{equation*}
\frac{n R_{l, m}}{n C_{l, m}}=\frac{\frac{n R_{\text {Season }, m}}{n C_{\text {Season }, m}}}{\frac{n R_{\text {Season }, o}}{n C_{\text {Season }, o}}} * \frac{n R_{2015 l, o}}{n C_{2015 l, o}} \tag{7}
\end{equation*}
$$

2.4. Spatial variation in exploitation

To determine spatial variation in exploitation, exploitation rates for each fishery sector were calculated for each of the first two months (standardized as two 30-day periods) after each release in each of the harvest areas in 2015. Monthly exploitation rates were calculated by comparing the number of crabs that were caught within the month and the number of crabs available to be caught at the beginning of the month. All tagged crabs were assumed to be available for harvest in the first month. In the second month, a tagged crab was considered to be unavailable for recapture if it had died, molted, or otherwise lost its tag.

Exploitation (proportion of crabs caught per month) in each area was calculated as follows:

$$
\begin{equation*}
\text { USector }_{l, m}=\frac{R P_{\text {Sector }, l, m} / R R_{\text {Sector }}}{R L_{l, m}} \tag{8}
\end{equation*}
$$

where $R P_{\text {Sector, } m}$ was the number of tagged crabs reported as captured by the given sector in the first month ($m=1$), $R R$ was the reporting rate of tags caught by that sector over the crabbing season (equation 5), and $R L$ was the number of tagged crabs released in each area (l) at the beginning of the first month. In the second month, crabs were removed from the number of released crabs if they were caught in the first month, or were predicted to have died, molted or lost their tag during the first month. Exploitation in the second month was calculated as follows:

$$
\begin{equation*}
\text { uSector }_{l, m}=\frac{R P_{\text {Sector } l, m} / R R_{\text {Sector }}}{\left(R L_{l, m}-\left(C_{l, m-1}+M_{l, m-1}+D_{l, m-1}+L_{l, m-1}\right)\right)} \tag{9}
\end{equation*}
$$

where $R P_{\text {Sector, } m, l}$ was the number of tagged crabs reported as captured by the given sector in the second month $(m=2)$ in each area $(l), R R_{\text {Sector }, l}$ was the reporting rate of tags caught by that sector, $R L_{l}$ was the number of tagged crabs released in each area (l), and $C_{m-1, l}, M_{m-1, l}, D_{m-1 l}$, and $L_{m-1, l}$ were the number of tagged crabs caught (C) or expected to have molted (M), died (D), or lost their tag (L) in the time leading up to month m.

In this analysis, natural mortality was set at a rate of 0.075 month $^{-1}$ based on the instantaneous rate of natural mortality $(\mathrm{M}=0.9)$ used in the stock assessment (Miller et al. 2011). The proportion of crabs that had molted prior to the given month was based on a probabilistic model, using published data on the time to molting for tank-held crabs in degreedays (Tagatz 1968), as well as average monthly water temperatures for the mainstem Chesapeake Bay obtained from the Maryland Department of Natural Resources. This resulted in a molting rate ranging from 0.107 month $^{-1}$ (June 18, 2015 release in the Little Choptank River) to 0.199 month ${ }^{-1}$ (July 11, 2015 release in the Patuxent River) which corresponded to 492 and 556 degreedays passing at these sites, respectively. Physical tag loss was estimated as thirty times the daily rate of tag loss $\left(0.00067 \mathrm{~d}^{-1}\right)$, previously estimated from tank-holding studies (Hines, unpublished data). Given that the number of tagged crabs remaining at large decreased with time, exploitation calculations for both months were then somewhat conservative. This is due to the fact that calculations only accounted for recaptures, tag loss, molting or mortality which occurred prior to each month, ignoring any losses which occurred during the period of calculation.

3. Revised Estimates Accounting for Crab Movement

3.1 Revised estimates of recreational harvest

Our basic approach for evaluating the effect of movement was to multiply reported commercial harvest $\left(H_{C}\right)$ by two estimates of recapture ratio calculated either with or without accounting for movement and then comparing the two resulting sets of recreational harvest estimates. Without crab movement, H_{R} was calculated using equations 3-7 above, which were based on crabs released in each reporting area and recaptured in all areas (Fig. 2a). To incorporate crab movement, H_{R} was calculated for each area based on crabs released in any reporting area and only those recaptured in the reporting area of interest (Fig. 2b). These
methods yield identical results when no movement occurs among reporting areas. Comparing their results allowed us to estimate the effect of crabs moving from the release area into a different area before recapture on area-specific recapture ratios.

3.2 Revised estimates of exploitation

The influence of movement on exploitation in each harvest area was also evaluated by incorporating information about the movements of tagged individuals among harvest reporting areas into area-specific exploitation rate calculations. As illustrated above (eqs: 8-9), traditionally exploitation rate (u, proportion of crabs caught per month) is calculated as the number of tagged individuals caught and reported $(R P)$ divided by the number of tagged individuals released and available to be caught $(R L)$ in a given amount of time (Ricker 1975). Both the catch and availability components of each exploitation rate in each region and each month were adjusted to reflect crab movements. Movement-adjusted exploitation in the first (equation 10) and second (equation 11) month were calculated as follows:

$$
\begin{align*}
\text { uSector }_{l, m} & =\frac{R P_{\text {Sector }, l m}{ }^{*} / R R_{\text {Sector }}}{R L_{l, m}{ }^{*}} \tag{10}\\
\text { uSector }_{l, m}{ }^{*} & =\frac{R P_{\text {Sector }, l m}{ }^{*} / R R_{\text {Sector }}}{\left(R L_{l, m}{ }^{*}-\left(C_{m-1, l}+M_{m-1, l}+D_{m-1, l}+L_{m-1, l}\right)\right)} \tag{11}
\end{align*}
$$

using adapted versions of equations 8 and 9 , where $R P_{\text {Sector }, l, m}{ }^{*}$ indicated the number of tagged crabs recaptured from the release during that month, after accounting for crab movement (see equation 12), and $R L_{l}{ }^{*}$ indicated the number of crabs available to be caught during that period after accounting for movement (see equation 13).

When implementing equations 10 and 11 , the number of recaptures $\left(R P_{\text {Sector,m,l }}{ }^{*}\right)$ was adjusted to reflect crab movement during the month by 1) removing crabs that were released in
the reporting area and were captured in other reporting areas and 2) adding crabs that were released in other reporting areas and were captured in the reporting area (Fig. 2c). This recapture adjustment was calculated as follows:

$$
R P_{\text {Sector }, l m}{ }^{*}=R P_{\text {Sector }, l, m}+\left(\sum_{b=1}^{14} R P_{\text {Sector }, b, l}\right)-\left(\sum_{c=1}^{28} R P_{\text {Sector }, l, c}\right)
$$

Where $\mathrm{RP}_{\text {Sector,l,m }}$ was the total number of recaptures in the reporting area (l) and month (m) and the first sum represented the number of crabs released at each of the 14 other release areas and were caught in the given reporting area during the given month (moving from any of the 14 other reporting areas where crabs were released (b) to the given reporting area (l)). The second sum indicated the number of crabs released within the given reporting area which were captured within each of the 28 other harvest reporting area during the given month (moving from the given reporting area (l) to any of the 28 other reporting areas used in this study $(c))$.

The number of crabs that were available to be caught within the harvest reporting area in a given month was adjusted with conditional probabilities of crab movement, in two steps: First, the total number of tagged crabs predicted to have left the reporting area were subtracted off. Then the total number of tagged crabs predicted to arrive in the harvest reporting area from other areas was added in (Fig. 2c). The availability adjustment was calculated as follows:

$$
R L_{l, m}{ }^{*}=\mathrm{RL}_{\mathrm{l}, \mathrm{~m}}+\left(\sum_{b=1}^{14} \mathrm{RL}_{b, m} * P_{b, l}\right)-\left(\sum_{c=1}^{28} \mathrm{RL}_{l, m} * P_{l, c}\right)
$$

where $\mathrm{RL}_{l, m}$ was the was the total number of available crabs in the reporting area (l) and month (m) and the first sum was the predicted number of tagged crabs moving into the given reporting area during the given month from the 14 other release areas. This sum was a function of the crabs available in the given month (m) at each of the 14 sites (b) where crabs were released ($\mathrm{RL}_{b, m}$) and the proportion of crabs $\left(P_{b, l}\right)$ at each of those sites which moved to the given
reporting area (l). The second sum indicated the number of crabs predicted to move from the given reporting area to each of the 28 other harvest reporting areas in the given month. The second sum was a function of the crabs available in the given month (m) at the given reporting area $(l)\left(\mathrm{RL}_{l, m}\right)$ and the proportion of crabs $\left(P_{l, c}\right)$ in the given reporting area (l) which moved to each of the 28 other harvest reporting areas (c). It was assumed that the proportion of tagged crabs moving out of each harvest reporting area was equivalent to the proportion of tagged crabs caught within or outside the release location. We also gauged the reliability of movement probabilities by evaluating their consistency between years. To assess this, we compared movement probability matrices for the four reporting areas which were tagged in both 2014 and 2015 and calculated the overall level of correlation between them.

Results

Tag return rates

Of the 6,800 tagged crabs released in 2014 and 2015, a total of 1,891 tags were returned (Tables 2 and 3) for an overall return rate of 27.8%. This rate is higher than prior studies on female blue crabs (Aguilar et al. 2005 (4-17\%), Turner et al. 2003 (5-21\%), Rittschof et al. 2011 (15.6\%). This can be expected because males are the primary target of the fishery. A similar return rate for tagged female crabs (8.6%) was seen from a separate but concurrent study performed by our lab, with an overall exploitation rate of 10.5% (Corrick 2018).

When examining seasonal variations in recapture ratios, the analysis included 1,211 recaptures from 3,629 crabs which were tagged during 16 releases (12 releases in 2104 and 4 releases in 2015) (Table 2). Of the 2,261 male crabs released in 2014, 728 (32.2\%) were recaptured and reported (Table 2). Of these, 527 (72.4\%) were captured by commercial crabbers,
$195(26.8 \%)$ by recreational crabbers, and $5(0.7 \%)$ by unidentified crabbers. Of the $3,085 \$ 5$ tags (male and female) released in 2014, 786 (25.5\%) were recaptured. Of the $163 \$ 50$ tags released, $47(28.8 \%)$ were recaptured. This resulted in an overall reporting rate of 88.4% across the fishery in 2014 with sector-specific reporting rates of 93.3% and 75.1% for the commercial fishery and recreational fisheries, respectively. Area-specific reporting rates in 2014 ranged from 80.2% in South River to 98.5% in Eastern Bay. Of the additional 1,368 male crabs released in the 4 reporting areas in 2015, $483(35.3 \%)$ were recaptured and reported (Table 1). Of these, 360 (74.5\%) were captured by commercial crabbers, 110 (22.7\%) by recreational crabbers and 13 (2.7\%) by unidentified crabbers.

When examining spatial variations in recapture ratios in 2015, the analysis included 1,163 recaptures (25.6%) from the 4,539 male crabs tagged and released during all 15 releases in 2015 (Table 1, Fig. 3). Of these, 897 (77.1%) were captured by commercial crabbers, 235 (20.2%) by recreational crabbers, and $31(2.7 \%)$ by unidentified crabbers. Of the $5,244 \$ 5$ tags (male and female) released in 2015, 1,159 (22.1\%) were recaptured. Of the $276 \$ 50$ tags released, 84 (30.4\%) were recaptured. This resulted in an overall reporting rate of 72.6% across the fishery. Sector-specific reporting rates in 2015 were 67.2% for the commercial fishery and 85.3% for the recreational fishery. There were insufficient recaptures in individual harvest reporting areas to produce reliable area-specific reporting rates. Of the 1,147 male crabs released in 2015 that were recaptured and reported with sufficient spatial information, $220(19.2 \%)$ were recaptured in a different reporting area from where they were released. Of these, 157 (71.4\%) were crabs that moved from tributaries into the mainstem Bay.

There was notable consistency in recapture and reporting of crabs between the two years of the analysis. The overall reporting rate of across the fishery was 88.4% and 72.6% in 2015. In

2014 the reporting rate for male crabs was 93.0%. When all crabs (male and female) were included that number decreased slightly to 88.4%. In 2015, the reporting rate for males was (71.5\%), however, when all crabs (male and female) were included this increased slightly to (72.6\%).

Seasonal variation in recapture ratios

The ratio of recreational to commercial recaptures $\left(\frac{n R}{n C}\right)$ exhibited a domed relationship over time, increasing during June and July to a similar high values in August (0.50) and September (0.52) followed by a sharp drop in October (Fig. 4a).

This seasonal trend in recapture ratio likely stemmed from a strong seasonal trend in recreational fishing effort. It should be noted that commercial harvests showed a domed relationship, with a peak in July/August (MD DNR 2015). If the seasonal variation in recreational effort was proportional to that of commercial effort, there would have been little change in recapture ratios across the harvest season. Because the recapture ratios showed a seasonal trend on top of changing commercial harvest, the seasonality of recreational effort was likely much greater than that of commercial effort.

Spatial variation in recapture ratios

There were spatial variations in the ratio of recreational to commercial recaptures in 2015, with the highest values on Maryland's Western Shore and middle Eastern Shore (Fig. 4b) indicating higher proportions of recaptures in those regions. When animal movement was included in the calculations, there were substantial changes in the recapture ratios (Table 4), especially in the regions with high recreational recaptures.

Estimates of recreational harvest

Statewide recreational crab harvest in 2015 was estimated to be 4.04 million crabs without crab movements and 5.39 million crabs when accounting for crab movement (Table 3). These levels of harvest were 4.9% or 6.5% of total commercial crab harvests (all male and female harvests), or 8.4% or 11.2% of male hard crab harvests, when crab movement was not, or was, included (higher values included movement information). When movement was included, the estimate of Maryland-wide recreational harvest increased by 33.5%. These harvest values were computed with recapture ratios equal to zero for the months of April, May, and November. When using constant values instead of zero (i.e., the value for April and May = June, and November $=$ October), recreational harvest calculated with movement was 5.46 million crabs (11.3\% of male hard crab harvests), a value very similar to the estimate when ratios in these months were set to zero.

Estimated recreational harvest of crabs varied substantially across the different harvest reporting areas, with most landings occurring in tributaries (Fig. 5c). In particular, incorporating data on movement increased the estimate of recreational harvest in tributaries (Fig. 5d) because many crabs moved from tributaries that had greater recreational harvest to mainstem bay areas that had almost exclusively commercial harvest. Using data that accounted for movement, recreational harvest estimates ranged from 0 crabs in Fishing Bay and the Honga River to 1.91 million crabs in the Patuxent River (Fig. 5c). The spatial pattern was substantially different from reported commercial harvest (Fig. 5b), which was characterized by high harvests in the Choptank River and the mainstem bay. Tributaries with high recreational landings included the Patuxent (1.91 million crabs), Severn (0.52 million crabs), and Miles rivers (0.40 million crabs).

Spatial variation in exploitation

There were marked differences in recreational and commercial exploitation rates among
the 15 harvest reporting areas in which crabs were tagged (Table 5). The most noticeable differences were observed between sites in tributaries along the Western Shore of the Bay, Eastern Bay, and the Miles and Wye rivers, where recreational fishing was greatest, and areas of the Bay Mainstem, where recreational harvest was negligible. Mean commercial exploitation per month (calculated using movement information) ranged from 0.04 month $^{-1}$ in the Patuxent River to 0.48 month $^{-1}$ in the Wicomico River tributary of the Potomac River. Notably high rates of commercial exploitation were observed in the Wicomico River (0.48 month $^{-1}$), Magothy River (0.34 month $^{-1}$), and West River (0.29 month $^{-1}$). Mean recreational exploitation per month ranged from 0 month $^{-1}$ in both the Honga River and Fishing Bay to 0.34 month $^{-1}$ in the Magothy River. Notably high rates of recreational exploitation were observed in the Magothy River and in South River (0.288 month $^{-1}$).

Accounting for movement resulted in substantial differences in sector-specific exploitation rates. Estimates of commercial exploitation increased by 37.0% in the Magothy River and by 246.4% in the Bay Mainstem S region after movements were considered (Fig. 6a). For the Magothy River, this increase was a result of decreases in the number of crabs available to be caught, because many left the area. In the case of the Bay Mainstem S, however, the large increase in commercial exploitation was due to a large number of crabs leaving other areas and subsequently being caught by commercial fishers in the Bay Mainstem S. Commercial exploitation decreased by 30.0% in the South River and by 36.5% in the West River because of the large number of crabs from these releases that were caught by commercial fishers in the Bay Mainstem (Fig. 6a). Recreational exploitation rates increased by 283.4% in the Magothy River, by 48.3% in the South River, and by 186.5% in the Severn River due to reductions in the number of crabs available to be caught in these systems (Fig. 6b). These differences are underpinned by a
great degree of consistency in movement probabilities between years. For the four sites tagged in both 2014 and 2015, there was a strong degree of correlation in movement probabilities between years $(r=0.99, t=36.72, p<0.01)$.

Discussion

The movement of tagged individuals strongly influenced the results of a mark-recapture study of the blue crab fishery in Maryland waters of the Chesapeake Bay. Tag return data revealed strong variation in the ratio of recreational to commercial recaptures among adjacent harvest reporting areas that set the stage for movement to influence estimates of area-specific recreational harvest and exploitation. In the most extreme case (Severn River), a crab could move from an area where it is 2.5 times more likely to be caught by a recreational fisher than a commercial fisher, to one with 100% commercial harvest, by moving only a few km. Adult blue crabs are easily capable of traveling this distance in a few days (Souza et al. 1980, Wolcott and Hines 1990) and commercial fishing effort is concentrated at tributary mouths to intercept crabs moving out of shallow nursery habitats (Slacum et al. 2012). Overall, the resulting estimate of statewide recreational harvest was 34% higher when movement was taken into account compared to the estimated based on the release location of tagged crabs only. The results of this study highlight the importance of incorporating movement into mark-recapture studies focused on exploring spatial variation in exploitation among harvest areas when the target species commonly moves among them.

Although mark-recapture studies are often used to address fishery management questions at the population level when the effect of individual movements may be negligible, there are a few examples that incorporate movement data into calculations of exploitation rates. In a study
of snapper, site-by-site estimates of density and exploitation were used to standardize movement patterns of snapper that were determined from recapture locations in New Zealand (Parsons et al. 2011). The method used by Parsons et al. (2011) is in some sense the inverse of the technique employed in the present study. In other examples, exploitation calculations are conducted for each release area but did not account for movement between release areas (e.g. Rudd et al. 2014, Whitlock et al. 2016). Analyses of waterfowl data provide examples for incorporating information on movement among multiple harvest areas into harvest and exploitation rate calculations (Munro and Kimball 1982, Nichols et al 1995). Our methods expand on this to incorporate within-year temporal variation and multiple harvest sectors which was needed to estimate recreational harvest based on reported commercial harvest.

The present study represents the first quantitative, statewide assessment of recreational exploitation and harvest for a blue crab fishery using mark-recapture information. Recreational harvest was highest in tributaries near population centers along Maryland's Western Shore, and in the Miles and Wye Rivers on the Eastern Shore. These areas also had some of the highest recreational and total exploitation rates. The extremely high total exploitation rates in the Patuxent (0.71) and Magothy (0.68) rivers indicate that total exploitation was high enough in some tributaries to remove the majority of male crabs large enough to recruit to the fishery each month. If these removals substantially reduce the operational sex ratio (the ratio of mature males to reproductively active females), they could potentially lead to sperm limitation (the reduction in lifetime reproductive output) of females maturing in these locations (Ogburn et al. 2014, 2019). In contrast, recreational exploitation made up a smaller proportion of total exploitation, and recreational harvest was smaller, at sites along the southern portion of the Eastern Shore and in the mainstem bay.

One reason for the difference in commercial reporting rate between 2014 and 2015 could be the effect of prior crab tagging efforts by our lab (Turner et al. 2003, Aguilar et al. 2005, Corrick 2018). We have a good working relationship with a number of crabbers in the areas tagged in 2014 (Eastern Bay, Little Choptank River, Rhode River, South River) but have not had as much outreach within other areas of the Bay tagged less frequently. This could have led to greater reporting in 2014 when tagging was concentrated in these areas. However, the 2015 commercial reporting rate is more accurate on a bay-wide scale because of the broader spatial distribution of tagging, and these data were used in harvest ratio calculations herein.

Investigating possible spatial variations in reporting would be particularly valuable if this type of mark recapture study were used on a regular basis to inform stock assessments. While there also were slight differences in reporting rates among sex (males vs males and females), the direction of this difference changed by year and could reflect variations in high-value captures, gear types, and effort between years.

Information on the size of the recreational blue crab harvest in Maryland has regularly been identified as a critical management need. Prior studies in 2001, 2002, 2005, and 2009 using effort survey methods (Ashford and Jones 2002a, 2002b, 2005, 2011) estimated that the ratio of recreational to commercial harvest within Maryland remained close to the 8% estimate chosen in the stock assessment. Estimates of recreational harvest from effort surveys averaged 11.6% of commercial male hard crab harvests and 5.8% of total commercial harvests. In the present study, recreational harvest of male hard crabs in 2015 was estimated at 11.2% the size of commercial male hard crab harvests and 6.5% of total commercial harvests (male and female) when movement was included. Although comparison of effort surveys and a Maryland-wide markrecapture experiment conducted in the same year would be preferable, the similarity between
recreational harvest fraction estimates suggests that the methods proposed herein are consistent with effort surveys.

With data for only a single statewide recreational harvest estimate, it is difficult to quantify uncertainty, but the sensitivity of the estimate to potential sources of uncertainty can be discussed (Semmler 2016). In terms of uncertainty related to underreporting, the underreporting of high value tags by the commercial sector would increase the estimated recreational harvest an equivalent amount (e.g. 5\% underreporting would yield a 5\% increase in the recreational harvest estimate). In addition, underreporting of regular value tags by the commercial sector would also inflate recreational harvest estimates, with the magnitude of the increase depending on whether underreporting occurred in areas with only commercial recaptures (no effect), a high fraction of commercial recaptures (minimal effect), or a relatively high fraction of recreational recaptures (larger effect). The regions where commercial underreporting could have occurred were in areas with only commercial recaptures, so underreporting would not have substantially inflated the estimate of recreational harvest.

Other sources of uncertainty include the focus on a single year and the lack of tagging data during the first and last months of the harvest season within that year. Between years, when replacing the 2015 commercial harvest data with the previous 5 years of data, the ratios of recreational to total commercial harvest were 10.4% - 13.1% (11.2% in 2015), suggesting that our estimate was not very sensitive to annual variation in commercial harvest. Within 2015, setting the recapture ratios in April, May, and November to the June and October values instead of assuming a value of 0 increased the percent of recreational harvest from 11.2% to 11.3%, suggesting that recreational harvest in these months was negligible. Repeating the mark-
recapture study in one or more years in combination with effort surveys or recreational harvest reporting would help assess the validity of this approach.

Additionally, uncertainty in conditional movement probabilities themselves are important to consider. While we do not have a means of assessing error in these estimates, consistency in movement probabilities between years may serve as some indication of their reliability. To assess this, we compare movement probabilities matrices for the four reporting areas which were tagged in both 2014 and 2015. There was a strong degree of correlation between the movement probabilities $(\mathrm{r}=0.99, \mathrm{t}=36.72, \mathrm{p}<0.01)$, supporting the expectation that the probabilities were reliably determined.

Our method of calculating recreational harvest based on commercial harvest assumes that the level of commercial harvest is reliably known. Commercial crabbers in Maryland are required to report their daily harvest under penalty of license suspension/revocation and the state has an electronic reporting system coupled with a check point program to evaluate compliance with reporting, although we do not know the degree of compliance in 2014 and 2015. While these measures help ensure reliable harvest estimates, an analysis of the possibility of random error and potential differences in harvest reporting across the state would further strengthen confidence in this method of calculating recreational harvest estimates.

The proportion of recreational to total commercial harvest (8\%) used in the stock assessment was set prior to the moratorium on recreational harvest of female crabs in Maryland in 2008 (Miller et al. 2011). However, after 2008, recreational harvest was thought to be better calculated as 8.0% of male harvests (CBSAC 2016). While recreational harvest could have been 8.0% of male harvests in 2011, our estimated harvest in 2015 equates to 11.2% of male harvests, representing a 40% increase over the 8% guideline. It's unclear whether this increase resulted
from the shifting of recreational fishing effort from female onto male crabs, or simply from increased recreational fishing effort targeting male crabs.

The estimated contribution of the recreational fishery to total harvest in this study was at the lower end of recreational harvest fractions for temperate or subtropical crab fisheries and is comparable to other blue crab fisheries within the US. In Maryland, recreational crabbers take roughly 6.5% percent of the commercial harvest of male and female blue crabs. In Louisiana, which has the second largest commercial blue crab fishery by state in the US, recreational crabbers take in roughly 5% of all blue crabs (Guillory 1999b, LDWF 2011). Similar results were observed for recreational blue crab fishers in Galveston Bay, Texas (5.6\% of harvest) (TPW 2007). In Oregon, 5.6% of landings in the Dungeness crab Metacarcinus magister fishery are taken by recreational crabbers (ODFW 2014). In contrast, some crab fisheries have a much higher proportion of recreational harvest including the mud crab Scylla serrata fishery in Queensland, Australia ($\sim 50 \%$ recreational harvest) (Ryan 2003), the Dungeness crab fishery in Washington (41\% of harvest) (WDFW 2016) and the blue swimming crab Portunus pelagicus fishery in South Australia (29.8\% of harvest) (Jones 2009). Other crab fisheries, such as those for Atlantic Jonah crabs Cancer borealis and California Dungeness crabs, do not have sufficiently reliable recreational harvest data to make similar comparisons (ASMFC 2015, CA OPC 2014). Understanding the contribution of recreational fisheries to total harvests, estimated at 12% globally, is a critical issue in conservation of fishery resources (Cooke and Cowx 2004). The methods used here could be applied to blue crab fisheries in other regions or used as a model for crab fisheries for which recreational harvest estimates are needed and commercial harvests are known.

The present study illustrates clear influence of animal movement when mark-recapture methods are used to estimate harvest and exploitation rates for multiple harvest areas. Results of the study reduce uncertainty in recreational harvest estimates by complementing results of effort surveys and could be useful for refining stock assessments of the blue crab fishery in Chesapeake Bay. In addition, these new methods for including animal movement could be useful for other fisheries for which variation in sector-specific harvest or exploitation rates among harvest areas is of interest and the scale of movement of the target species exceeds that of harvest area boundaries. These methods were applied to a two-sector fishery, but could be modified for one to several fishery sectors for blue crabs in other regions or for other species and fisheries with similar characteristics.

Acknowlegements:

We are most grateful to several commercial fishermen for assistance with tagging and for reporting recaptures. This study could not have been conducted without their valuable contributions. We thank Maryland Department of Natural Resources for providing commercial crab harvest reporting data and two anonymous reviewers for their thoughtful comments which strengthend this research. M. Goodison, K. Heggie, K. Richie, M. Kramer, W. McBurney, and other SERC staff and interns participated in tagging and provided logistial support. James Holmquist provided technical assistance with data analyses. Funding was provided by Maryland Sea Grant (Award \#P0-6150), including a Graduate Fellowship awarded to Robert Semmler. This work was conducted in accordance with Maryland Department of Natural Resources permits SCP201456 and SCP201513.

References:

Agresti, A. 1994. Simple capture-recapture models permitting unequal catchability and variable sampling effort. Biometrics 50(2): 494-500.

Aguilar, R., Hines, A.H., Wolcott, T.G., Kramer, M.A., and Lipcius, R.N. 2005. The timing and route of movement and migration of post-copulatory female blue crabs Callinectes sapidus Rathbun, from the upper Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 319: 117-128.

Ashford, J.R., Jones, C.M., and Fegley, L., 2009. A license registry improves sampling efficiency for a marine recreational survey. Transactions of the American Fisheries Society, 138(5), pp.984-989.

Ashford, J., Jones, C.M, and Fegley, L. 2010a. Private waterfront householders catch less per trip than other fishers: Results of a marine recreational survey. Transactions of the American Fisheries Society 139: 1083-1090.

Ashford, J.R., Jones, C.M., Fegley, L., and O’Reilly, R. 2010b. Catch data reported by telephone avoid public access bias in a marine recreational survey. Transactions of the American Fisheries Society 139(6): 1751-1757

Ashford, J.R., Jones, C.M., and Fegley, L., 2013a. Independent estimates of catch by private and public access fishers avoid between-group sources of error in a recreational fishing survey. Transactions of the American Fisheries Society, 142(2), pp.422-429.

Ashford, J.R., Jones, C.M., and Fegley, L., 2013b. Within-day variability in catch taken by public access fishers during a recreational fishing survey. Transactions of the American Fisheries Society, 142(4), pp.974-978.

Atlantic States Marine Fisheries Commission. 2015. Interstate fishery management plan for jonah crab. Arlington, VA. 73pp. [https://www.asmfc.org/uploads/file/55d7720eJonahCrabInterstateFMP_Aug2015.pdf]

Brownie, C., Hines, J.E., Nichols, J.D., Pollock, K.H. and Hestbeck, J.B., 1993. Capturerecapture studies for multiple strata including non-Markovian transitions. Biometrics, pp.1173-1187.

California Ocean Protection Council. 2014. Dungeness crab (Metacarcinus magister) rapid asessement. Sacramento, CA.

Cargo, D.G. 1954. Commercial fishing gears. III. The crab gears. Maryland Board of Natural Resources, Chesapeake Biological Laboratory, Educational Series 36: 1-18.

Chao, A. 1987. Estimating population size for capture-recapture data with unequal catchability. Biometrics 43(4): 783-791.

Chesapeake Bay Stock Assessment Committee. 2013. 2013 Blue crab advisory report. NOAA Chesapeake Bay Office. Annapolis, MD. 12pp. [https://www.chesapeakebay.net/documents/Final_CBSAC_Advisory_Report_2013_.pdf]

Chesapeake Bay Stock Assessment Committee. 2015. 2015 Blue crab advisory report. NOAA Chesapeake Bay Office. Annapolis, MD. 18pp.
[https://www.chesapeakebay.net/documents/CBSAC_2015_Advisory_Report_6-
30_FINAL.pdf]
Chesapeake Bay Stock Assessment Committee. 2016. 2016 Blue crab advisory report. NOAA Chesapeake Bay Office. Annapolis, MD. 18pp. [https://www.chesapeakebay.net/documents/CBSAC_2016_Report_6-30-16_FINAL.pdf]

Clark, M.E., Wolcott, T.G., Wolcott, D.L., and Hines, A.H. 1999a. Intraspecifc interference among foraging blue crabs Callinectes sapidus: Interactive effects of predator density and prey patch distribution. Marine Ecology Progress Series 178: 69-78.

Cooke, S.J., and Cowx, I.G. 2004. The role of recreational fishing in global fish crises. Bioscience 54:857-859.

Conn, P.B., Kendall, W.L., and Samuel, M.D. 2004. A general model for the analysis of markresight, mark-recapture and band-recovery data under tag loss. Biometrics 60(4): 900909.

Corrick, C.T. 2018. Spatial variation in fishery exploitation of mature female blue crabs (C. sapidus) in Chesapeake Bay. (Master's Thesis, University of North Florida, Jacksonvilled, FL USA). Retrieved from https://digitalcommons.unf.edu/etd/798/

Cronin, L.E. 1949. Comparison of methods of tagging the blue crab. Ecology 30: 390-394. Davis, G.R., Davies, B.K., and Walstrum, J.C. 2001. Annual Report of the Blue Crab Trawl Survey., Maryland Department of Natural Resources, Annapolis, MD.

Dorazio, R.M., Hattala, K.A., McCollough, C.B., and Skjeveland, J.E. 1994. Tag recovery estimates of migration of striped bass from spawning areas of the Chesapeake Bay. Transactions of the Amercian Fisheries Society 123(6): 950-963.

Epifanio, C.E. 2007. Biology of Larvae, p. 513-533. In V. S. Kennedy and L. E. Cronin [ed.], The Blue Crab, Callinectes sapidus. Maryland Sea Grant College.

Fielder, R.H. 1930. Solving the question of crab migrations. Fishing Gazette 47: 18-21.
Fogarty, M. J., and Lipcius, R.N. 2007. Population dynamics and fisheries, p. 711-756. In V. S. Kennedy and L. E. Cronin [ed.], The Blue Crab, Callinectes sapidus. Maryland Sea Grant Program, College Park, MD.

Gelpi, C.G. Jr, Condrey, R.E., Fleeger, J.W., and Dubois, S.F. 2009. Discovery, evaluation and implications of blue crab, Callinectes sapidus, spawning, hatching, and foraging grounds in federal (US) waters offshore of Louisiana. Bulletin of Marine Science 85(3): 203-222. Guillory, V. 1998b. A survey of the recreational blue crab fishery in Terrebonne Parish, Louisiana. Journal of Shellfish Research 17: 543.

Hines, A.H. 2007. Ecology of juvenile and adult blue crabs, p. 575-665. In V. S. Kennedy and L. E. Cronin [ed.], The Blue Crab, Callinectes sapidus. Maryland Sea Grant Program, College Park MD.

Hines, A.H. and Ruiz, G.M. 1995. Temporal variation in juvenile blue crab mortality: Nearshore shallows and cannibalism in Chesapeake Bay. Bulletin of Marine Science 57: 884-901.

Hines, A.H., Wolcott, T.G., González-Gurriarán, E., Gonázlez-Escalante, J.L., and Freire, J. 1995. Movement patterns and migrations in crabs: Telemetry of juvenile and adult behaviour in Callinectes sapidus and Maja squinado. Journal of the Marine Biological Association of the United Kingdom 75: 27-42.

Jones, K. 2009. South Australian Recreational Fishing Survey. PIRSA Fisheries, Adelaide. South Australian Fisheries Management Series Paper No 54.84 pp.

Kennedy, V. S., M. Oesterling, W. A. Van Engel. 2007. History of blue crab fisheries on the U.S. Atlantic and Gulf coasts. Pages 655-709 in V. Kennedy and L. Cronin (eds.) The Blue crab: Callinectes sapidus. Maryland Sea Grant College, College Park

Louisiana Department of Wildlife and Fisheries. 2011. Assessment of Blue Crab Callinectes sapidus in Louisiana Waters, 2011 Report. Baton Rogue, LA.

Maryland Department of Natural Resources. 2015a. Reported Commercial Harvest Data: 2015. Delivered through personal communication.

Maryland Department of Natural Resources. 2015b. Reported Commercial Harvest
Data: 2010-2014. Delivered through personal communication.
McConaugha, J.R., Johnson, D.F., Provenzano, A.J. and Maris, R.C. 1983. Seasonal distribution of larvae of Callinectes sapidus (Crustacea: Decapoda) in the waters adjacent to Chesapeake Bay, Journal of Crustacean Biology 3(4): 582-591.

McKenzie, J.R., Parsons, B., Seitz, A.C., Kopf, R.K., Mesa, M., and Phelps, Q. 2012. Advances in Fish Tagging and Marking Technology. Symposium 76, American Fisheries Society. ISBN: 978-1-934874-27-1, 560 pp .

Michielsens, C.G.J., McAllister, M.K., Kuikka, S., Pakarinen, T., Karlsson, L., Romakkaniemi, A., Perä, I., and Mäntyniemi, S. 2006. A Bayesian state-space mark-recapture model to estimate exploitation rates in mixed-stock fisheries. Canadian Journal of Fisheries and Aquatic Sciences 63(2): 321-334.

Miller, T. J., Wilberg, M.J., Colton, A.R., Davis, G.R., Sharov, A., Lipcius, R.N., Ralph, G.M., Johnson, E.G., and Kaufman, A.G. 2011. Stock assessment of the blue crab in Chesapeake Bay. NOAA Chesapeake Bay Office. Annapolis, MD. 214pp. [https://hjort.cbl.umces.edu/crabs/docs/Assessment document_final_approved.pdf]

Munro, R.E. and Kimball, C.F. 1982. Population ecology of the mallard: VII. distribution and derivation of the harvest. Resource U.S. Fish and Wildlife Management, Office of Migratory Bird Management: Resource Pulication 147. Laurel, MD. 133pp. [https://pubs.usgs.gov/unnumbered/5230180/report.pdf]

Nichols, J.D., Reynolds, R.E., Blohm, R.J., Trost, R.E., Hines, J.E., and Bladen, J.P. 1995. Geographic variation in band reporting rates for mallards based on reward banding. Journal of Wildlife Management 59(4): 697-708.

Northeast Fisheries Science Center. 2019. 66th Northeast Regional Stock Assessment Workshop (66th SAW) Assessment Report. 19-08; 1170 p. https://doi.org/10.25923/nhqe-jd35

Ogburn, M.B. 2019. The effects of sex-biased fisheries on crustacean sex ratios and reproductive output. Invertebrate Reproduction and Development 63(3): 200-207.

Ogburn, M.B., and Habegger, L.C. 2015. Reproductive status of Callinectes sapidus as an indicator of spawning habitat in the South Atlantic Bight, USA. Estuaries and Coasts 38(6): 2059-2069.

Ogburn, M.B., Richie, K.D., Jones, M.A., Hines, A.H. 2019. Sperm acquisition and storage dynamics facilitate sperm limitation in the selectively harvested blue crab Callinectes sapidus. Marine Ecology Progress Series 629: 87-101.

Ogburn, M.B., Roberts, P.M., Richie, K.D., Johnson, E.G., Hines, A.H. 2014. Temporal and spatial variation in sperm stores in mature female blue crabs Callinectes sapidus and potential effects on brood production in Chesapeake Bay. Marine Ecology Progress Series 507: 249-262.

Oregon Department of Fish and Wildlife. 2014. Oregon Dungeness Crab Research and Monitroing Plan. Salem, OR. 25pp. [https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/docs/2014/ODFW_Dungen essCrabResearchMonitoringPlan_updated2014_Final_081414.pdf]

Parsons, D.M., Morrison, M.A., McKenzie, J.R., Hartill, B.W., and Bian, R. 2011. A fisheries perspective of behavioral variability: differences in movement behavior and extraction rate of an exploited sparid, snapper (Pagurus auratus). Canadian Journal of Fisheries and Aquatic Science 68: 632-642.

Pine, W.E., Pollock, K.H., Hightower, J.H., Kwak, T.J., and Rice, J.A. 2003. A review of tagging methods for estimating fish population size and components of mortality. Fisheries 28(10): 10-23.

Pollock, K. H. 2000. Capture-recapture models. Journal of the American Statistical Association 95(449): 293-296.

Pollock, K. H., Hoenig, J.M, Hearn, W.S. and Calingaert, B. 2001. Tag reporting rate estimation: 1. An evaluation of high-reward tagging method. North American Journal of Fisheries Management 22: 521-532.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada, Bulletin 191, Ottawa. 401pp. [https://www.dfo-mpo.gc.ca/Library/1485.pdf]

Rudd, M.B., Ahrens, R.N.M., Pine III, W.E., and Bolden, S.K. 2014. Empirical, spatially explicit natural mortality and movement rate estimates for the threatened Gulf sturgeon (Acipenser oxyrinchus desotoi). Canadian Journal of Fisheries and Aquatic Sciences 71: 1407-1417.

Ryan, S. 2003. Ecological assessment: Queensland mud crab fishery. Queensland Fisheries Service, Queensland Department of Primary Industries. 55p.

Seber, G.A.H. 1986. A Review of Estimating Animal Abundance. Biometrics 42(2): 267-292.
Semmler, R.F. 2016. Mark-recapture assessment of the recreational blue crab (Callinectes sapidus) harvest in Chesapeake Bay, Maryland. (Master's Thesis, University of Maryland, College Park, MD USA). Retrieved from
https://drum.lib.umd.edu/handle/1903/19026

Sharov, A.F., Volstad, J.H., Davis, G.R., Lipcius, R.N., and Montane, M.M. 2003. Abundance and exploitation rate of the blue crab (Callinectes sapidus) in Chesapeake Bay. Bulletin of Marine Science 72: 543-565.

Slacum, Jr., H.W., Methratta, E., Dew-Baxter, J., Wong, D., and Corbin, R. 2012. 2011 monthly commercial blue crab effort survey in the Maryland portion of Chesapeake Bay. Annual report to Maryland Department of Natural Resources. Annapolis, Maryland.

Souza, P.A., Polgar, T.T., Miller, R.E., and Holland, A.F. 1980. Results of blue crab studies at Chalk Point: Final Report to the Maryland Power Plant Siting Program. Report No. PPSP-CP-80-10. Annapolis, Maryland. 167 p.

Tagatz, M.E. 1968. Growth of juvenile blue crabs, Callinectes sapidus Rathbun, in the St. Johns River, Florida. Fishery Bulletin 67: 281-288

Texas Parks and Wildlife. 2007. Stock asessment of blue crabs (Callinectes sapidus) in Texas coastal waters. Austin, TX.

Trudel, M., Fisher, J., Orsi, J.A., Morris, J.F.T., Thiess, M.E., Sweeting, R.M., Hinton, S., Fergusson, E.A., and Welch, D.W. 2009. Distribution and migration of juvenile chinook salmon derived from coded wire tag recoveries along the continental shelf of western North America. Transactions of the American Fisheries Society 138: 1369-1391.

Truitt, R.V. 1939. The blue crab. Pages 10-38 in Our Water Resources and their Conservation, University of Maryland, Chesapeake Biological Laboratory, Contribution 27. Solomons Island, Maryland.

Tuckey, T.D., and Fabrizio, M.C. 2019. 2019 Annual Report Estimating Relative Juvenile Abundance of Ecologically Important Finfish in the Virginia Portion of Chesapeake Bay (1 July 2018-30 June 2019). Virginia Institute of Marine Science, William \& Mary.

Turner, H.V., Wolcott, D.L., Wolcott, T.G. and Hines, A.H. 2003. Post-mating behavior, intramolt growth, and onset of migration to Chesapeake Bay spawning grounds by adult female blue crabs Callinectes sapidus Rathbun. Journal of Experimental Marine Biology and Ecology 295(1): 107-130.

Van Engel, W.A. 1962. The blue crab and its fshery in Chesapeake Bay. Part 2 - Types of gear for hard crab fishing. Commercial Fisheries Review 24(9): 1-10.

Van Engel, W.A. 1987. Factors affecting the distribution and abundance of the blue crab in Chesapeake Bay. p. 179-209 in S.K. Majundar, L.W. Hall and H.M. Austin (eds.). Contaminant Problems and Management of Living Chesapeake Bay Resources. Pennsylvania Academy of Science. Easton, Pennsylavaina.

Washington Department of Fish and Wildlife. 2016. "Puget Sound dungeness crab, yearly harvest estimates." [Data Table] http://wdfw.wa.gov/fishing/shellfish/crab/estimates.html (accessed Jan 2017).

Whitlock, R.E., Kopra, J., Pakarinen, T., Jutila, E., Leach, A.W., Levontin, P., Kuikka, S., and Romakkanieni, A. 2016. Mark-recapture estimation of mortality and migration rates for sea trout (Salmo trutta) in the northern Baltic sea. ICES Journal of Marine Science 73(9).

Wolcott, T.G., and Hines, A.H. 1989a. Ultrasonic biotelemetry of muscle activity from freeranging marine animals: A new method for studying foraging by blue crabs (Callinectes sapidus). Biological Bulletin 176: 50-56.

Wolcott, T.G., and Hines, A.H. 1990. Ultrasonic telemetry of small-scale movements and microhabitat selection by molting blue crabs (Callinectes sapidus). Bulletin of Marine Science 46: 83-94.

Table 1. Harvest reporting areas and unique site codes in Maryland for which the ratio of recreational to commercial blue crab Callinectes sapidus captures was assessed. Site codes preceded by a M or T represent reporting areas which were split into portions spanning the bay mainstem (M) and adjacent tributaries (T). All male crabs were released on the date listed (see Fig. 1 for map), as is the number of crabs recaptured within the end of the 2015 crabbing season. Tagging was not possible in all areas. For areas where tagging was not conducted (bold type), data from a similar area was used to estimate results.Finally, the recapture ratio is listed, scaled to the late-summer peak (August).

Site Code	Site	Date	Released	Recaptured	Estimated As	Peak Recapture Ratio (August)
005	Big Ammenesex	-----	-----	-----	Nanticoke River	0.046
M014	Mainstem NN	-----	-----	-----	Mainstem N	0.009
T014	Tribs NN	-----	-----	-----	Magothy River	0.703
M025	Mainstem N	8/05/2015	385	52		0.009
T025	Tribs N	7/21/2015	-----	-----	Magothy River	0.703
M027	Mainstem S	7/31/2015	357	23	-----	0.007
T027	Tribs S		387	187	-----	0.304
M029	Mainstem SS	-----	-----	-----	Mainstem S	0.007
T029	Tribs SS	-----	-----	-----	Patuxent River	1.273
031	Chester River	-----	-----	-----	Eastern Bay	0.310
037	Choptank River	7/30/2015	343	91	-----	0.269
039	Eastern Bay	7/17/2015	381	80	-----	0.310
043	Fishing Bay	6/25/2015	220	22	-----	0.000
047	Honga River	6/19/2015	277	32	-----	0.000
053	Little Choptank River	6/18/2015	259	56	-----	0.046
055	Magothy River	7/29/2015	350	123	-----	0.703
057	Manokin River	-----	-----	-----	Nanticoke River	0.046
060	Miles River	8/04/2015	181	46	-----	0.670
062	Nanticoke River	8/25/2015	376	80	----	0.042
066	Patapsco River	-----	-----	-----	Magothy River	0.703
068	Patuxent River	7/15/2015	182	21	-----	1.273
072	Pocomoke Sound	---	-----	-----	Nanticoke River	0.046
074	Potomac (MD Tribs)	7/20/2015	305	150	-----	0.239
082	Severn River	8/10/2015	195	40	-	2.363
088	South River	7/22/2015	341	160	-----	0.471
M092	Tangier Sound	-----	-----	-----	Nanticoke River	0.046
T092	Tangier Sound Tribs	-----	-----	-----	Nanticoke River	0.046
096	Wicomico River	-----	-----	-----	Nanticoke River	0.046
099	Wye River	-----	-----	-----	Miles River	0.670
Total			4,539	1,163		

Table 2. The number of male blue crabs Callinectes sapidus which were released and recaptured in 2014 to evaluate seasonal patterns in the fishery. Releases occurred during early (June/July), middle (August), and late (September) periods of the fishing season on the date indicated. The number of crabs recaptured by the end of the 2014 fishing season is also reported. The small crab population in 2014 resulted in low numbers tagged in some seasons.

Site	Release	Date	Released	Recaptured
South River	Early	$7 / 14 / 2014$	102	54
South River	Middle	$8 / 11 / 2014$	233	126
South River	Late	$9 / 10 / 2014$	108	14
Rhode River	Early	$6 / 24 / 2014$	53	22
Rhode River	Middle	$8 / 4 / 2014$	333	201
Rhode River	Late	$9 / 8 / 2014$	135	38
Eastern Bay	Early	$6 / 23 / 2014$	61	16
Eastern Bay	Middle	$8 / 13 / 2014$	343	123
Eastern Bay	Late	$9 / 16 / 2014$	185	31
Little Choptank River	Early	$7 / 16 / 2014$	338	66
Little Choptank River	Middle	$8 / 6 / 2014$	312	35
Little Choptank River	Late	$9 / 17 / 2014$	58	2
Total			$\mathbf{2 , 2 6 1}$	$\mathbf{7 2 8}$

Table 3. Estimates of recreational harvest of blue crabs Callinectes sapidus calculated based on release location (standard method) or recapture location (movement-adjusted method). Data reported include estimated size of the recreational harvest, recreational catch as a percentage of commercial male hard crab harvest, and recreational catch as a percentage of total commercial harvest of male and female crabs.

	Standard Method	Movement Adjusted
Total recreational harvest (million crabs)	4.04	5.39
Percent recreational harvest of male commercial harvest	8.36%	11.17%
Percent recreational harvest of total commercial harvest	4.88%	6.52%

Table 4. Recapture ratio ($n R / n C$) and overall recreational harvest (in thousands) for blue crabs Callinectes sapidus in the 15 harvest reporting areas where tagging was conducted. These are reported with and without movement-adjustment. Site codes preceded by a M or T, represent reporting areas which were split into portions spanning the bay mainstem (M) and adjacent tributaries (T)

	Recapture Ratio			Recreational Harvest	
	Site Reporting Area	No Code	Movement Adjusted	No Movement	Movement- Adjusted
Choptank River	037	0.04	0.03	244.99	177.48
Eastern Bay	039	0.29	0.31	248.14	262.39
Fishing Bay	043	0.00	0.00	0.00	0.00
Honga River	047	0.00	0.00	0.00	0.00
Little Choptank	053	0.01	0.03	19.37	42.27
River					
Magothy River	055	0.30	0.70	24.27	56.66
Mainstem N	M025	0.03	0.01	97.80	27.23
Mainstem S	M027	0.08	0.01	314.85	28.36
Miles River	068	0.43	0.67	259.10	399.17
Nanticoke River	062	0.04	0.05	17.55	18.58
Patuxent River	068	0.48	0.79	1169.24	1913.30
Severn River	082	0.64	2.36	143.01	524.38
South River	088	0.37	0.47	94.56	118.78
Tribs S	T027	0.20	0.30	214.58	333.68
Wicomico River	074	0.20	0.24	181.33	215.28
(Potomac)					

Table 5. Estimated monthly exploitation rate (month ${ }^{-1}$) for blue crabs Callinectes sapidus in the 15 harvest reporting areas where tagging was conducted. Commercial, recreational and total exploitation rates were calculated after accounting for crab movement among harvest reporting areas. Site codes preceded by a M or T , represent reporting areas which were split into portions spanning the bay mainstem (M) and adjacent tributaries (T)

Reporting Area	Site Code	Commercial	Recreational	Total
Choptank River	037	0.221	0.005	0.226
Eastern Bay	039	0.161	0.037	0.198
Fishing Bay	043	0.076	0.000	0.076
Honga River	047	0.093	0.000	0.093
Little Choptank River	053	0.152	0.020	0.172
Magothy River	055	0.338	0.338	0.675
Mainstem N	M025	0.160	0.001	0.161
Mainstem S	M027	0.172	0.003	0.175
Miles River	068	0.140	0.126	0.266
Nanticoke River	062	0.146	0.006	0.153
Patuxent River	068	0.041	0.039	0.080
Severn River	082	0.100	0.213	0.313
South River	088	0.205	0.288	0.492
Tribs S	T027	0.292	0.065	0.357
Wicomico River (Potomac)	074	0.479	0.226	0.705

Figure 1. Boundaries of the 29 commercial harvest reporting areas in Maryland waters of the Chesapeake Bay. Three-digit numerical designations assigned for reporting data (i.e., site codes) for each reporting area are shown within or adjacent to their boundaries. Site codes preceded by a M or T, represent reporting areas which were split into portions spanning the bay mainstem (M) and adjacent tributaries (T). Note that reporting area names are listed in Table 1.

Figure 2. Example illustrating two types of recapture data that were used to calculate recreational harvest and sector-specific exploitation of blue crabs Callinectes sapidus for the Magothy River, Maryland: a) data used for calculation based on crabs released in the Magothy and recaptured anywhere in Maryland's reporting areas, and b) data used for calculation based on crabs released anywhere in Maryland's reporting areas and recaptured in the Magothy River. Also pictured c) are arrows that depict the movement of crabs into or out of the harvest area with the arrow weight indicating the relative magnitude of animal movement. These subsidies were used to adjust local exploitation rates in the analysis that included movement.

Figure 3. Release and recapture locations for blue crabs Callinectes sapidus tagged in 2015 to evaluate spatial patterns. White dots with Xs represent the 15 sites where crabs were tagged and released. a) Crabs caught by recreational crabbers (dark gray, $\mathrm{N}=230$). b) Crabs caught by commercial crabbers (light gray, $\mathrm{N}=883$). Many recapture locations are overlapping.

Figure 4. Seasonal and spatial variation in the ratio of recreational to commercial recaptures of tagged blue crab Callinectes sapidus. a) Ratio of recreational to commercial recaptures ($\frac{n R}{n C}$) by month in 2014 and 2015 for tagged crabs released from four representative sites (listed in Table 2). b) Proportion of recreational (dark gray) to commercial (light gray) recaptures for each harvest reporting area where crabs were tagged at 15 sites (listed in Table 3) in 2015.

b)

Figure 5. Estimated recreational harvest (a, c) and reported commercial harvest (b) of male hard blue crabs Callinectes sapidus in each harvest reporting area of Maryland in 2015. (a) Recreational harvests (number of crabs, dark gray circles) were estimated based on standard methods and the tagged crabs recaptured from each release area, ignoring crab movement. (b) Reported commercial harvests (number of crabs) are shown in light gray. (c) Recreational harvests (number of crabs, dark gray circles) were estimated based on the method which adjusted for crab movement and the tagged crabs which were recaptured within each reporting area, accounting for animal movement. (d) Difference between recreational harvest in each reporting area between the standard and adjusted approaches. A greater estimate for the movement approach is shown in black, and a greater estimate for the standard approach is shown in white. Numbers indicate harvest reporting area site codes.

Figure 6. Comparison of (a) commercial exploitation rates and (b) recreational exploitation rates for blue crabs Callinectes sapidus when using standard calculation methods (X-axes) and when incorporating movement information (Y-axes) for each harvest reporting area where tagging occurred in 2015. The dashed line is the $1: 1$ line. Values for reporting areas (black dots) falling along this line did not differ when movement was considered. Labeled data points are examples noted in the text.

Has any part of your manuscript been previously published?
No.

Please confirm that all authors are aware that the "license to publish" form must be submitted by each author before acceptance. Instructions for submitting the form will be emailed to each author once the manuscript is processed by the editorial office. If you prefer to complete the form in French please contact the editorial office.
Yes.

Is the paper being invited for consideration in a special issue?
If yes, state the name of the special issue.
No, standard issue.

Are there any real or perceived conflicts of interest?
Author Elizabeth North has previously collaborated with CJFAS editor M. Wilberg and works at the same institution.

Has the manuscript been previously rejected by CJFAS with permission to resubmit as a new manuscript?

If so please state the manuscript number assigned to the previous submission and include an additional letter outlining the responses to all points raised during the previous evaluation. No, this is a new submission.

Does your manuscript contain previously published figures/tables or any modified/adapted figures and tables from other previously published manuscripts, books, or any type of publication?

No part of the work has been published in an academic journal. The work was completed as part of a Master's Thesis for the lead author (RFS,
https://drum.lib.umd.edu/handle/1903/19026). Some figures and tables have been adapted from the thesis, while others are newly created for this submission.

If yes you must secure written or electronic permission from the holder of the copyright (the publisher in most cases) to reproduce the material for both the print and electronic formats. These letters must accompany the submitted manuscript.

As the copyright holder of my thesis, I (RFS) give permission to reproduce the material in print and electronic form.

Are you submitting LaTeX files? If so, and you would like your paper to appear in the JustIN section of a Journal's Web site, you must create a PDF and upload that as the main manuscript along with the LaTex files and all accompanying files. Authors may choose to use any generic LateX article class file.
No, all files are PDFs.

Does your manuscript represent original work that is not being considered for publication, in whole or in part, online or in print, in another journal, book, conference proceedings, or government/funding agency publication with a substantial circulation?
Yes.

Have all the formatting guidelines outlined in the Instructions to Authors been respected (e.g., double spaced, line numbering, etc)?Click here for Instructions to authors.
Yes.

Title: The influence of blue crab movement on mark-recapture estimates of recreational harvest and exploitation

Authors: | Robert Francis Semmler (Corresponding author) | |
| :--- | :--- |
| | Smithsonian Environmental Research Center, |
| | 647 Contees Wharf Rd; Edgewater, MD 21037 |
| | rsemmler37@gmail.com |
| | Matthew Bryan Ogburn |
| | Smithsonian Environmental Research Center, |
| | 647 Contees Wharf Rd; Edgewater, MD 21037 |
| | Robert Aguilar |
| | Smithsonian Environmental Research Center, |
| | 647 Contees Wharf Rd; Edgewater, MD 21037 |
| | Elizabeth Watkins North |
| | University of Maryland Center for Environmental Science, |
| | P. O. Box 775, Cambridge, MD 21613 |
| | Marjorie Lindquist Reaka |
| | Department of Biology, University of Maryland, |
| | College Park, MD 20742 |
| Anson Hemingway Hines | |
| Smithsonian Environmental Research Center, | |
| Keywords: | 647 Contees Wharf Rd; Edgewater, MD 21037 |
| | Mark-recapture |
| Movement | |
| Recreational harvest | |
| Exploitation rate | |
| Blue crab | |

Abstract

Despite the need to quantify total catch to support sustainable fisheries management, estimating harvests of recreational fishers remains a challenge. Harvest estimates from mark-recapture studies have proven valuable, yet animal movements and migrations may bias some of these estimates. To improve recreational harvest estimates, explore seasonal and spatial harvest patterns, and understand the influence of animal movement on exploitation rates, a markrecapture experiment was conducted for the blue crab fishery in Maryland waters of Chesapeake Bay, USA. Data were analyzed with standard tag-return methods and with revised equations that accounted for crab movement between reporting areas. Using standard calculations, state-wide recreational harvest was estimated to be 4.04 million crabs. When movement was included in the calculations, the estimate was 5.39 million, an increase of 34%. With crab movement, recreational harvest in Maryland was estimated to be 6.5% of commercial harvest, a finding consistent with previous effort surveys. The new methods presented herein are broadly applicable for estimating recreational harvest in fisheries that target mobile species and for which spatial variation in commercial harvest is known.

Introduction

Mark-recapture experiments are valuable tools for obtaining information on individuals, populations, and harvest regimes. Mark-recapture data have been modeled for closed and open populations, and models have increased in complexity to include multiple stages, multi-model comparisons, and new statistical techniques (Pollock 2000). For fishery species, mark-recapture experiments have been designed to investigate local population sizes and sources of mortality like fishery exploitation rates (Seber 1986, Pine et al. 2003). Models for analyzing markrecapture data have been adapted to address various sources of uncertainty, including unequal catchability (Chao 1987, Agresti 1994), mixed stocks (Michielsens et al. 2006), and tag loss (Kremers 1988, Conn et al. 2004). Mark-recapture studies also have been used to study animal movements (Dorazio et al. 1994, Aguilar et al. 2005, Trudel et al. 2009). However, animal movements can influence mark-recapture-based estimates of exploitation rates (Nichols et al. 1995, Munro and Kimball 1982), especially in cases where the harvest areas are small enough that there is substantial movement of tagged individuals among them.

Blue crabs (Callinectes sapidus) can make extensive movements during the open season of the blue crab fishery in Maryland waters of the Chesapeake Bay. The fishery targets this highly mobile species which is known to make short-duration movements as well as longdistance ontogenetic migrations (McConaugha et al. 1983, Walcott and Hines 1990, Hines 2007). For crabs of harvestable size ($>127 \mathrm{~mm}$ carapace width in Maryland), this movement can be as much as 569 m per day; far enough to allow movement between harvest areas (Walcott and Hines 1990). Crabs in Maryland are targeted by two fishery sectors: commercial fishers which are required to report their harvest and recreational fishers which are not. Fishers in both sectors use multiple gear types (e.g. crab pot, trotline, hand-line, crab scrape) (Cargo 1954, Van Engel

1962, Kennedy et al. 2007). Knowledge of crab movement is important for understanding the dynamics of the crab population (Hines 2007) and spatiotemporal patterns of harvest effort (Slacum et al. 2012).

Management of the blue crab fishery in Chesapeake Bay is based on integrated targets and thresholds for the abundance and exploitation of female crabs (Miller et al. 2011). These are jointly estimated within the stock assessment model so both sets of indices are fully compatible. Additionally, there is an empirically determined trigger for management of male crabs, based on their exploitation. Abundance and exploitation are calculated based on commercial harvest reporting data, estimated recreational harvest from effort surveys (Miller et al. 2011), and three annual fishery-independent surveys: a dredge survey of overwintering crabs (Sharov et al. 2003), a trawl survey in MD (Davis et al. 2001, Miller et al. 2011), and a trawl survey in Virginia (Tuckey and Fabrizio 2019). In Maryland, the fishery is divided into 29 commercial harvest reporting areas which range from large areas of the mainstem bay to small tributaries (Fig. 1, Table 1). Recreational harvest of females was banned in Maryland in 2008 as one of several measures to address recruitment overfishing, potentially shifting fishing effort onto males (Miller et al. 2011) and altering sex ratios which can have negative consequences for population reproductive output (Ogburn 2019). Recreational crabbers are not required to report their male crab harvest, which is instead estimated by effort surveys to be 8% of commercial harvest (Ashford et al. 2009, 2010a,b, 2013a,b). Fishery managers and stakeholders have expressed concern that the effort surveys may underestimate recreational harvest (Fogarty and Lipcius 2007, Miller et al. 2011), although substantial efforts to minimize bias have been undertaken (Ashford et al. 2009, 2013a,b). We conducted a mark-recapture study to provide an independent estimate of recreational harvest in Maryland for comparison with effort surveys and evaluated
the potential influence of crab movement among harvest areas on estimates of harvest and sectorspecific exploitation rates.

Methods

A large-scale mark-recapture study was conducted to study harvest patterns in the blue crab fishery in Maryland waters of Chesapeake Bay. Detailed below are 1) the tagging methods and experimental setup for the mark-recapture study, 2) methods used to estimate recreational harvest and exploitation from the tagging results without taking into account crab movement, and 3) the adjusted equations used to include the influence of crab movement on these estimates. Using mark-recapture data to answer these questions relies on an important set of assumptions; namely that marked animals 1) are well-mixed within the population, 2) behave in a similar manner as unmarked individuals, and 3) do not vary in catchability (Schwarz and Taylor 1998). Evidence from prior studies does suggestindicates that crabs tagged using ourthe method described below undergo full spawning migrations and otherwise behave similarly to unmarked individuals (Turner et al. 2003, Aguilar et al. 2005) and are healthy and thus unlikely to have reduced catchability (Turner et al. 2003). Several characteristics of the blue crab fishery in Maryland - especially the continuous fishery during the time of year when crabs are available for tagging, the large spatial scale of the study area, and expected strong spatial and temporal variation in fishing effort - prevented us from meeting the assumption that tagged crabs were well-mixed within the state-wide population. Instead we estimated spatial and temporal variation directly in specifiesmaller regions and then aggregated estimates up to the state-wide level as

disperse rabs aress the tageging area.

The primary goal of theis mark-recapture experiment was to estimate the level of recreational harvest by multiplying reported commercial harvests with the ratio of recreational to commercial harvest determined from reported tag recaptures, as follows:

$$
\begin{equation*}
H_{R}=\frac{n R}{n C} * H_{C} \tag{1}
\end{equation*}
$$

where H_{R} was the total estimated recreational harvest, $\frac{n R}{n C}$ was the ratio of the number of recreational recaptures $(n R)$ to commercial recaptures $(n C)$ observed from the tagging experiment, hereafter referred to as the "recapture ratio", and H_{C} and was the total reported commercial harvest. A similar method is employed in the management of striped bass (Morone saxatilis) fishery, whereby commercial discards are estimated based on known recreational discards, and the ratio of tags reported from discarded fish in the commercial sector to the recreational sector (NFSC 2019). Our method of calculating recreational harvest based on commercial harvest assumes that the level of commercial harvest is reliably known. Commercial erabbers in Maryland are required to timely repert their harvest under penalty of license suspension/revocation and the state has an electronic reporting system. While these measures help ensure reliable harvest estimates, an analysis of the possibility of random error or differences in reporting across the state would further strengthen confidence in recreational harvest estimates:

Because we were unable to ensure that tagged crabs were well-mixed in the population, we designed the mark-recapture experiment to directly estimate variability in recapture ratio over the course of the crabbing season (section 2.2) and spatial variability in recapture ratio across
harvest reporting areas (section 2.3). In addition, unequal tag reporting between the two sectors was accounted for (section 2.12). Finally, the calculation of recapture ratio by harvest area could have been influenced by crab movement, so the analyses were conducted both with and without information on crab movement, making it possible to identify the effects of movement on estimates of harvest and exploitation rates (section 3.1).

Although population-level estimates of exploitation can be calculated from the estimate

 of total recreational harvest plus commercial harvest and population data from the stock assessment, our secondary goal was to explore variation in sector-specific exploitation rates among harvest reporting areas. This was calculated by dividing the number of crabs recaptured by each sector by the number of crabs initially released, as follows:$$
\begin{equation*}
\text { uSector }=\frac{R P_{\text {Sector }}}{R L} \tag{2}
\end{equation*}
$$

where uSector was the exploitation rate (proportion of crabs caught per month) of either the recreational or commercial sector, $\mathrm{RP}_{\text {Sector }}$ was the number of tagged crabs that were captured by that sector, and $R L$ was the number of tagged crabs initially released. As before, potentially influential factors were accounted for in these calculations, including: unequal reporting between the two sectors (section 2.42), various sources of tag loss (section 2.4), and effects of crab movement (section 3.2).

1. Mark-Recapture Experiments

A total of 6,800 adult male blue crabs were tagged and released to study the blue crab fishery in Maryland waters of the Chesapeake Bay over two consecutive summers, 2014 and 2015. During the first summer (2014), 2,261 crabs were tagged and released during early summer (June/July), late summer (August), and fall (September) in four representative harvest
reporting areas to determine seasonal trends in the recapture ratio (Table 2). During the second summer (June - August 2015), 4,539 crabs were tagged and released in 15 representative harvest reporting areas to investigate spatial patterns in recapture ratio and sector-specific exploitation rates (Table 1).

Crabs were tagged with $2.5 \mathrm{~cm} \times 5 \mathrm{~cm}$ vinyl discs attached to their dorsal surface with stainless steel wire wrapped around the lateral spines (Turner et al. 2003, Aguilar et al. 2005). The front of each tag used for this study had a unique identification number, the word "Reward", and contact information for reporting recaptures either by phone or web form. Standard rewards were $\$ 5$. Five percent of tags were randomly assigned high value tags for estimating reporting rates. The high value tags had $\$ 50$ written in black ink on the front and back. On the reverse side, all tags listed information for fishers to record and report (tag number, date, GPS coordinates, capture depth, gear type and crab sex). Within each reporting area, all tagging was conducted on the same day. We alsoCrabs were -tagged at given site over the course of day, releasing crabs and were released as they were tagged. We did so while drifting across the tributary where tagging took place. This helped to disperse crabs across the tagging area. Although tagged crabs were occasionally recaptured more than once, only the initial recapture was used in analyses. Some crabs that were released in Maryland were recaptured in Virginia ($n=44$ of 2,039 total returns in 2015). Nearly 90% of crabs recaptured in Virginia were captured by commercial fishers. While these returns were included in harvest calculations when movement was not considered, tag returns from these crabs were excluded when making estimates that accounted for crab movement. We follow the Guide for Care and Use of Laboratory Animals in our crab tagging protocol.
2. Estimating Recreational Harvest and Exploitation without Animal Movement

2.1 Estimating statewide recreational harvest

The statewide recreational harvest of crabs in $2015\left(H_{R}\right)$ was estimated using crabs that were tagged and released in 15 representative harvest reporting areas in $2015(n=4,539)$. Our multiple harvest area approach was similar to that of the first year of release and year of first recapture for multi-stratum capture-recapture models of an open population as described in Brownie et al. (1993) except that we also accounted for two harvest sectors, seasonal variation in harvest, and tag reporting rates. H_{R} was computed by taking the ratio of recreational to commercial recaptures from the mark-recapture experiment and then multiplying this ratio by the reported commercial landings:

$$
\begin{equation*}
H_{R}=\sum_{l \equiv \underline{1}}^{29} \Sigma_{m \equiv \underline{1}}^{9} \frac{n R_{l, m}}{n C_{l, m}} * H_{C_{l, m}} \tag{3}
\end{equation*}
$$

where H_{C} was the total reported commercial harvest of male hard crabs in 2015 in each of the 29 harvest areas (l) for each of the 9 months (m) of crab harvest season, and $n R$ and $n C$ were the number of recreational and commercial recaptures, respectively, estimated from tagging data for each area. $\underline{H}_{\underline{C}}$ values for each area and month were obtained from the Maryland Department of Natural Resources (MD DNR 2015a,b). For these calculations, all crab recaptures from a particular release, regardless of their eventual recapture area were used (e.g., Fig. 2ad).

The number of recreational and commercial recaptures from each release were adjusted with sector-specific tag-reporting rates, as follows:

$$
\begin{equation*}
\frac{\underline{n R_{l, m}}}{\underline{n C_{\underline{l, m}}}} \equiv \frac{\underline{R P_{\underline{R}, l m}}}{-\underline{R P}_{\underline{C l, m}}} * \frac{\underline{R R_{\underline{R}}}}{\underline{R R_{\underline{C}}}} \tag{4}
\end{equation*}
$$

where $n R$ and $n C$ were the number of recreational and commercial recaptures, estimated from tagging data for each area (l) and month $(m), \underline{R P_{R}, l, m}$ and $\underline{R P} \underline{C}, l, m$ were the raw number of

(equation: 5) were the tag-reporting rates for recreational and commercial crabbers in 2015. A single reporting rate was calculated for each sector in each year. These were calculated across all harvest reporting areas, using standard and high-value tags as follows:

$$
\begin{equation*}
\underline{R R_{S e c t o r}}=\left(R_{s} / N_{s}\right) /\left(R_{r} / N_{r}\right)=R_{\underline{s}} \underline{N}_{r} / R_{\underline{r}} \underline{N}_{\underline{s}} \tag{5}
\end{equation*}
$$

where $R R$ represents the proportion of caught crabs which were reported, N_{s} was the number of standard tags released, $N_{\underline{r}} \underline{\text { was the number of high-value tags released, } R_{\underline{s}} \text { was the number of }}$ standard tags returned, R_{r} was the number of high-value tags returned, and sector was either commercial or recreational (Pollock et al. 2001). These reporting rates were calculated including both male and female crabs released in 2014 because there were not sufficient crabs recaptured to determine reporting rates for each crab sex within each fishery sector. Budgetary limitations teon tagging prevented us from calculatingon sector-specific reporting rates for each harvest reporting area or for each month of the crabbing season. While significant spatial or seasonal variation in tag reporting could affect the accuracy of these values, a single value was used for each sector to best focus on differences in reporting between the two sectors.

Similarly, it was not feasible within our budget to determine the recapture ratio $\left(\frac{n R}{n C}\right)$ for all 29 reporting areas directly through releases of tagged crabs. For areas where tagging was not conducted $(\mathrm{n}=14)$, the ratio of recreational to commercial recaptures for nearby reporting area was used (Table 1). For example, crabs were not tagged in the Manokin River so the recapture ratio from the nearby Nanticoke River was used in calculations. Decisions about these data substitutions were based on our best professional judgement and took into account discussions with fishery managers, characteristics such as proximity to other sites, and visual comparisons of the level of residential development in satellite imagery.

2.2 Seasonal variation in recapture ratios

EMonthly commercial harvest data were available for each reporting area at monthly intervals butand tagging releasesdata themselves would only reliably estimate the recapture ratieprovided reliable estimates of recreational recapture rates for a single month calculation of This required the calculation of monthly ratios of recreational to commercial recaptures $\left(\frac{n R_{\text {season }}}{n R_{\text {season }}-}-\right)$ for each reporting area across the harvest season. It 0 -Recapture data from 2014 and 2015 were used to characterize calculate thesevariation-monthly recapture ratiosthroughout the harvest season. In 2014, a total of 2,261 crabs were tagged in early summer, late summer, and fall of 2014 in four harvest areas representative of the Eastern and Western Shore tributaries of Maryland's Chesapeake Bay (South River, Rhode River, Eastern Bay, Little Choptank River) (Table 2). 1,368 crabs were tagged in these areas summer 2015 (Table 1) and used in this analy sis, forHence, a total of 3,629 tagged crabs tagged-were used to identify seasonal-monthly variations in recapture ratios $\left(-\frac{n R}{n c}-\right)$.

IncludingUsing releases from both 2014 and 2015, recreational and commercial recaptures from the four harvest areas above were summed across these regions for each month. Then recreational recaptures for each month (m) were divided by commercial recaptures to determine a statewide ratio of recreational to commercial harvest for each month:

$$
\begin{equation*}
\frac{n R_{\underline{S e a s o n, m}}}{n C_{\underline{S e a s o n,}, m}}=\frac{\sum_{l=1}^{4} R P_{R, l, m}}{\sum_{l \equiv 1}^{4} R P_{C l, m}} \tag{6}
\end{equation*}
$$

where $R P_{R, l, m}$ and $R P_{C, l, m}$ represented the number of tagged crabs reported $(R P)$ that were captured by recreational crabbers (R) or commercial crabbers (C) in the given month (m) in one of the four harvest areas (l) where crabs were tagged in both 2014 and 2015.

Without tagging in the months of April, May, and November, the recapture ratio for these
months at the beginning and end of the crabbing season could not be empirically determined. Compared to the mid-season peak, the recapture ratios in these months were expected to be quite low. Recapture ratios for the months of April, May, and November were assigned values of 0 to generate a more conservative estimate of recreational harvest. The sensitivity to this assumption was gauged by performing a separate calculation where the recapture ratios wereas constant during these months $\left(\frac{n R_{\text {season }}}{n R_{\text {season }}}\right.$ in April $=J u n e, ~ M a y=J u n e$, November $=$ October $)$. This second calculation served as an upper bound for recapture ratios.

2.3 Spatial variation in recapture ratios

To characterize spatial variation in the ratio of recreational to commercial recaptures, records of the 4,539 crabs that were tagged in 15 harvest reporting areas in 2015 were analyzed (Table 1). These releases occurred during the middle of the harvest season (July-September), when recreational harvests were expected to be at their peak. The exact date of each tagging event was dependent on weather and the availability of commercial fishermen to assist with capturing crabs in each of the 15 locations. Recreational and commercial recaptures occurring within 60 days of release were tallied. The sixty-day timeframe for recaptures was used because it accounted for 98% of recaptures reported by the end of the fishing season.

When calculating monthly ratios of recreational to commercial harvest for each reporting area in 2015, additional estimates were necessary because tagging occurred only once at each site in 2015, either in July, August, or September (Table 1). The ratios of recreational to commercial recaptures were estimated for all months of the harvest season with no available data using the seasonal relationship developed above (equation 6). To calculate the recapture ratio (
$n R_{l, m} / n C_{l, m}$) for a given month (m) in a specific harvest area (l), \qquad determine how recapture ratios in that month (m) compared to those in the month the release occurred (o). Specifically, we divided the recapture ratio for that month of the seasonal relationship $\left(\underline{n R_{\text {season, }}} \underline{n C_{\text {Season, } m}}\right)$ by the recapture ratio of the seasonal relationship in the month when the $\underline{\text { release occurred }\left(\frac{n R_{\text {Season, }, 0}}{n C_{\text {Season, }, 0}}\right) \text {. This was then multiplied by the recapture ratio observed at that site in }}$ $\underline{2015\left(\frac{n R_{2015 l, 0}}{n C_{2015 l o}}\right.}$) following the equation:

2.4. Spatial variation in exploitation

To determine spatial variation in exploitation, exploitation rates for each fishery sector were calculated for each of the first two months (standardized as two 30-day periods) after each release in each of the harvest areas in 2015. Monthly exploitation rates were calculated by comparing the number of crabs that were caught within the month and the number of crabs available to be caught at the beginning of the month. All tagged crabs were assumed to be available for harvest in the first month. In the second month, a tagged crab was considered to be unavailable for recapture if it had died, molted, or otherwise lost its tag.

Exploitation (proportion of crabs caught per month) in each area was calculated as follows:

$$
\begin{equation*}
\text { uSector }_{l, m}=\frac{R P_{\text {Sector }, l m} / R R_{\text {Sector }}}{R L_{l, m}} \tag{8}
\end{equation*}
$$

where $R P_{\text {Sector,m }}$ was the number of tagged crabs reported as captured by the given sector in the first month ($m=1$), $R R$ was the reporting rate of tags caught by that sector over the crabbing
season (equation 5), and $R L$ was the number of tagged crabs released in each area (l) at the beginning of the first month. In the second month, crabs were removed from the number of released crabs if they were caught in the first month, or were predicted to have died, molted or lost their tag during the first month. Exploitation in the second month was calculated as follows:

$$
\begin{equation*}
\text { usector }_{l, m}=\frac{R P_{\text {sector }, \text { lm }} / R R_{\text {sector }}}{\left(R L_{l, m}-\left(C_{l, m-1}+M_{l, m-1}+D_{l, m-1}+L_{l, m-1}\right)\right)} \tag{́}
\end{equation*}
$$

where $R P_{\text {Sector }, m, l}$ was the number of tagged crabs reported as captured by the given sector in the second month $(m=2)$ in each area $(l), R R_{\text {Sector }, l}$ was the reporting rate of tags caught by that sector, $R L_{l}$ was the number of tagged crabs released in each area (l), and $C_{m-1, l}, M_{m-1, l} D_{m-1 l}$, and $L_{m-1, l}$ were the number of tagged crabs caught (C) or expected to have molted (M), died (D), or lost their $\operatorname{tag}(L)$ in the time leading up to month m.

In this analysis, natural mortality was set at a rate of 0.075 month $^{-1}$ based on the instantaneous rate of natural mortality $(M=0.9)$ used in the stock assessment (Miller et al. 2011). The proportion of crabs that had molted prior to the given month was based on a probabilistic model, using published data on the time to molting for tank-held crabs in degreedays (Tagatz 1968), as well as average monthly water temperatures for the mainstem Chesapeake Bay obtained from the Maryland Department of Natural Resources. This resulted in a molting rate ranging from 0.107 month $^{-1}$ for the (June 18, 2015th release in the Little Choptank River to
 and 556 degree-days passing at these sites, respectively. Physical tag loss was estimated as thirty times the daily rate of tag loss $\left(0.00067 \mathrm{~d}^{-1}\right)$, previously estimated from tank-holding studies (Hines, unpublished data). Given that the number of tagged crabs remaining at large decreased with time, exploitation calculations for both months were then somewhat conservative. This is due to the fact that calculations only accounted for recaptures, tag loss, molting or
mortality which occurred prior to each month, ignoring any losses which occurred during the period of calculation.

3. Revised Estimates Accounting for Crab Movement

3.1 Revised estimates of recreational harvest

Our basic approach for evaluating the effect of movement was to multiply reported commercial harvest $\left(H_{C}\right)$ by two estimates of recapture ratio calculated either with or without accounting for movement and then comparing the two resulting sets of recreational harvest estimates. Without crab movement, H_{R} was calculated using equations 3-7 above, which were based on crabs released in each reporting area and recaptured in all areas (Fig. 2âA). To incorporate crab movement, H_{R} was calculated for each area based on crabs released in any reporting area and only those recaptured in the reporting area of interest (Fig. 2bBB). These methods yield identical results when no movement occurs among reporting areas. Comparing their results allowed us to estimate the effect of crabs moving from the release area into a different area before recapture on area-specific recapture ratios.

3.2 Revised estimates of exploitation

The influence of movement on exploitation in each harvest area was also evaluated by incorporating information about the movements of tagged individuals among harvest reporting areas into area-specific exploitation rate calculations. As illustrated above (eqs: $\underline{8}-\underline{9}$), traditionally exploitation rate (u, proportion of crabs caught per month) is calculated as the number of tagged individuals caught and reported $(R P)$ divided by the number of tagged individuals released and available to be caught ($R L$) in a given amount of time (Ricker 1975). Both the catch and availability components of each exploitation rate in each region and each
month were adjusted to reflect crab movements. Movement-adjusted exploitation in the first (equation 10) and second (equation 11) month were calculated as follows:

$$
\begin{align*}
\text { uSector }_{l, m}{ }^{*} & =\frac{R P_{\text {Sector }, l m^{*} / R R_{\text {Sector }}}}{R L_{l, m}{ }^{*}} \tag{10}\\
\text { uSector }_{l, m}{ }^{*} & =\frac{R P_{\text {Sector }, l m}{ }^{*} / R R_{\text {Sector }}}{\left(R L_{l, m}{ }^{*}-\left(C_{m-1, l}+M_{m-1, l}+D_{m-1, l}+L_{m-1, l}\right)\right)} \tag{11}
\end{align*}
$$

using adapted versions of \underline{e} Equations $\underline{8}$ and $\underline{9}$, where $R P_{\text {Sector }, l m}{ }^{*}$ indicated the number of tagged crabs recaptured from the release during that month, after accounting for crab movement (see equation 12), and $R L_{l}{ }^{*}$ indicated the number of crabs available to be caught during that period after accounting for movement (see equation 13).

When implementing equations $\underline{10}$ and $1 \underline{1}$, the number of recaptures $\left(R P_{\text {Sector }, m,{ }^{*}}\right)$ was adjusted to reflect crab movement during the month by 1) removing crabs that were released in the reporting area and were captured in other reporting areas and 2) adding crabs that were released in other reporting areas and were captured in the reporting area (Fig. 2́ㅡ). This recapture adjustment was calculated as follows:

$$
\begin{equation*}
R P_{\text {Sector }, l, m}^{*}=R P_{\text {Sector }, l, m}+\left(\sum_{b=1}^{14} R P_{\text {Sector }, b, l}\right)-\left(\sum_{c=1}^{28} R P_{\text {Sector }, l, c}\right) \tag{2}
\end{equation*}
$$

Where $\mathrm{RP}_{\text {Sector }, \mathrm{m}}$ was the total number of recaptures in the reporting area (l) and month (m) and the first sum represented the number of crabs released at each of the 14 other release areas and were caught in the given reporting area during the given month (moving from any of the 14 other reporting areas where crabs were released (b) to the given reporting area (l)). The second sum indicated the number of crabs released within the given reporting area which were captured within each of the 28 other harvest reporting area during the given month (moving from the given reporting area (l) to any of the 28 other reporting areas used in this study (c)).

The number of crabs that were available to be caught within the harvest reporting area in a given month was adjusted with conditional probabilities of crab movement, in two steps: First, the total number of tagged crabs predicted to have left the reporting area were subtracted off. Then the total number of tagged crabs predicted to arrive in the harvest reporting area from other areas was added in (Fig. 2c). The availability adjustment was calculated as follows:

$$
\begin{equation*}
R L_{l, m}^{*}=\mathrm{RL}_{\mathrm{l}, \mathrm{~m}}+\left(\sum_{b=1}^{14} \mathrm{RL}_{b, m} * P_{b, l}\right)-\left(\sum_{c=1}^{28} \mathrm{RL}_{l, m} * P_{l, c}\right) \tag{3}
\end{equation*}
$$

where $\mathrm{RL}_{l, m}$ was the was the total number of available crabs in the reporting area (l) and month (m) and the first sum was the predicted number of tagged crabs moving into the given reporting area during the given month from the 14 other release areas. This sum was a function of the crabs available in the given month (m) at each of the 14 sites (b) where crabs were released ($\left.\mathrm{RL}_{b, m}\right)$ and the proportion of crabs $\left(P_{b, l}\right)$ at each of those sites which moved to the given reporting area (l). The second sum indicated the number of crabs predicted to move from the given reporting area to each of the 28 other harvest reporting areas in the given month. The second sum was a function of the crabs available in the given month (m) at the given reporting area $(l)\left(\mathrm{RL}_{l, m}\right)$ and the proportion of crabs $\left(P_{l, c}\right)$ in the given reporting area (l) which moved to each of the 28 other harvest reporting areas (c). It was assumed that the proportion of tagged crabs moving out of each harvest reporting area was equivalent to the proportion of tagged crabs caught within or outside the release location. We also gauged the reliability of movement probabilities by evaluating their consistency between years. To assess this, we compared movement probability matrices for the four reporting areas which were tagged in both 2014 and 2015 and calculated the overall level of correlation between them.

Results

Tag return rates

Of the 6,800 tagged crabs released in 2014 and 2015, a total of 1,891 tags were returned (Tables 2 and 3) for an overall return rate of 27.8%. This rate is higher than prior studies on female blue crabs (Aguilar et al. 2005 (4-17\%), Turner et al. 2003 (5-21\%), Rittschof et al. 2011 (15.6\%). This can be expected because males are the primary target of the fishery. A similar return rates for tagged female crabs (8.6%) was seen from a separate but concurrent study performed by our lab, with an overall exploitation rate of 10.5\% (Corrick 2018).

When examining seasonal variations in recapture ratios, the analysis included 1,211 recaptures from 3,629 crabs which were tagged during 16 releases (12 releases in 2104 and 4 releases in 2015) (Table 2). Of the 2,261 male crabs released in 2014, 728 (32.2\%) were recaptured and reported (Table 2). Of these, 527 (72.4%) were captured by commercial crabbers, $195(26.8 \%)$ by recreational crabbers, and $5(0.7 \%)$ by unidentified crabbers. Of the $3,085 \$ 5$ tags (male and female) released in 2014, 786 (25.5\%) were recaptured. Of the $163 \$ 50$ tags released, $47(28.8 \%)$ were recaptured. This resulted in an overall reporting rate of 88.4% across the fishery in 2014 with sector-specific reporting rates of 93.3% and 75.1% for the commercial fishery and recreational fisheries, respectively. \qquad 0.930. When all crabs (male and female) were included that number decreased slightly to 0.884 .

Area-specific reporting rates in 2014 ranged from 80.2% in South River to 98.5% in Eastern Bay. Of the additional 1,368 male crabs released in the 4 reporting areas in 2015, 483 (35.3\%) were recaptured and reported (Table 1). Of these, 360 (74.5%) were captured by commercial crabbers, $110(22.7 \%)$ by recreational crabbers and 13 (2.7\%) by unidentified crabbers.
\qquad When examining spatial variations in recapture ratios in 2015, the analysis
included 1,163 recaptures (25.6%) from the 4,539 male crabs tagged and released during all 15 releases in 2015 (Table 1, Fig. 3). Of these, 897 (77.1\%) were captured by commercial crabbers, $235(20.2 \%)$ by recreational crabbers, and 31 (2.7\%) by unidentified crabbers. Of the 5,244 \$5 tags (male and female) released in 2015, 1,159 (22.1\%) were recaptured. Of the $276 \$ 50$ tags released, $84(30.4 \%)$ were recaptured. This resulted in an overall reporting rate of 72.6% across the fishery. Sector-specific reporting rates in 2015 were 67.2% for the commercial fishery and 85.3% for the recreational fishery. \qquad when all crabs (male and female) were included this inereased slightly to (0.720) There were insufficient recaptures in individual harvest reporting areas to produce reliable area-specific reporting rates. Of the 1,147 male crabs released in 2015 that were recaptured and reported with sufficient spatial information, 220 (19.2\%) were recaptured in a different reporting area from where they were released. Of these, $157(71.4 \%)$ were crabs that moved from tributaries into the mainstem Bay.

There was notable consistency in recapture and reporting of crabs between the two years of the analysis. The overall reporting rate of across the fishery was 88.4% and 72.6% in 2015. In 2014_-the reporting rate for male crabs was $\theta .93 .0 \%$. When all crabs (male and female) were included that number decreased slightly to $0.88 .4 \%$. In 2015, the reporting rate for males was (0.71.5\%), however, when all crabs (male and female) were included this increased slightly to ($0.72 .6 \%$).

Seasonal variation in recapture ratios

The ratio of recreational to commercial recaptures $\left(\frac{n R}{n C}\right)$ exhibited a domed relationship over time, increasing during June and July to a similar high values in August (0.50) and September (0.52) followed by a sharp drop in October (Fig. 4a). \qquad of April, May, and November, we could not empirically determine the recapture ratio for these months at the beginning and end of the crabbing season. Compared to the mid season peak, these are expected to be quite low. Recapture ratio for the months of April, May, and November were assigned values of 0 to generate a more conservative estimate of harvest. We also gauged the sensitivity to this, by performing a separate calculation where the recapture ratio remains eonstant through these months ($n \mathrm{R} / \mathrm{nC}$ for April / May - June, nR/nC for November - October). This serves as an important upper bound, as the domed seasonal relationship is expected to continue into these months.

This seasonal trend in recapture ratio elearlylikely stemsmed from a strong seasonal trend in recreational fishing effort. It should be noted that commercial harvests already showed a domed relationship of their own, with a peak in July/August (MD DNR 2015). If the seasonal variation in recreational effort was proportional to that of commercial effort, we would seethere would have been little change in recapture ratio across the harvest season. AsBecause the $\underline{\text { recapture ratio showsed a seasonal trend on top of changing commercial harvest, we can see that }}$ $\underline{\text { the seasonality of recreational effort iswas likely much greater than that of commercial effort. }}$

Spatial variation in recapture ratios

There were spatial variations in the ratio of recreational to commercial recaptures in 2015, with the highest values on Maryland's Western Shore and middle Eastern Shore (Fig. 4b) indicating higher proportions of recaptures in those regions.

When animal movement was included in the calculations, there were substantial changes in the recapture ratios (Table 4), especially in the regions with high recreational recaptures.

Estimates of recreational harvest

Statewide recreational crab harvest in 2015 was estimated to be 4.04 million crabs
without crab movements and 5.39 million crabs when accounting for crab movement (Table 3). These levels of harvest were 4.9% or 6.5% of total commercial crab harvests (all male and female harvests), or 8.4% or 11.2% of male hard crab harvests, when crab movement was not, or was, included (higher values included movement information). When movement was included, the estimate of Maryland-wide recreational harvest increased by 33.5%. were computed with recapture ratios equal to zero for the months of April, May, and November. When using the alternateconstant values seasonal estimateinstead of zero (i.e., the value for April tand May $=$ June, and $\underline{\text { November }=\text { October) }, \text { recreational harvest was calculated with movement }}$ 5.46 million crabs (11.293% of male hard crab harvests), a value very similar to the estimate when ratios in these months were set to zero.

Estimated recreational harvest of crabs varied substantially across the different harvest reporting areas, with most landings occurring in tributaries (Fig. 5c). In particular, incorporating data on movement increased the estimate of recreational harvest in tributaries (Fig. 5 d) because many crabs moved from tributaries that had greater recreational harvest to mainstem bay areas that had almost exclusively commercial harvest. Using data that accounted for movement, recreational harvest estimates ranged from 0 crabs in Fishing Bay and the Honga River to 1.91 million crabs in the Patuxent River (Fig. 5c). The spatial pattern was substantially different from reported commercial harvest (Fig. 5b), which was characterized by high harvests in the Choptank River and the mainstem bay. Tributaries with high recreational landings included the Patuxent (1.91 million crabs), Severn (0.52 million crabs), and Miles rivers (0.40 million crabs).

Spatial variation in exploitation

There were marked differences in recreational and commercial exploitation rates among
the 15 harvest reporting areas in which crabs were tagged (Table 54). The most noticeable differences were observed between sites in tributaries along the Western Shore of the Bay, Eastern Bay, and the Miles and Wye rivers, where recreational fishing was greatest, and areas of the Bay Mainstem, where recreational harvest was negligible. Mean commercial exploitation per month (calculated using movement information) ranged from 0.04 month $^{-1}$ in the Patuxent River to 0.48 month $^{-1}$ in the Wicomico River tributary of the Potomac River. Notably high rates of commercial exploitation were observed in the Wicomico River (0.48 month $^{-1}$), Magothy River (0.34 month $^{-1}$), and West River (0.29 month $^{-1}$). Mean recreational exploitation per month ranged from 0 month $^{-1}$ in both the Honga River and Fishing Bay to $0.3 \underline{4} 38$ month $^{-1}$ in the Magothy River. Notably high rates of recreational exploitation were observed in the Magothy River and in South River (0.288 month $^{-1}$).

Accounting for movement resulted in substantial differences in sector-specific exploitation rates. Estimates of commercial exploitation increased by 37.0% in the Magothy River and by 246.4% in the Bay Mainstem S region after movements were considered (Fig. 6a). For the Magothy River, this increase was a result of decreases in the number of crabs available to be caught, because many left the area. In the case of the Bay Mainstem S, however, the large increase in commercial exploitation was due to a large number of crabs leaving other areas and subsequently being caught by commercial fishers in the Bay Mainstem S. Commercial exploitation decreased by 30.0% in the South River and by 36.5% in the West River because of the large number of crabs from these releases that were caught by commercial fishers in the Bay Mainstem (Fig. 6a). Recreational exploitation rates increased by 283.4\% in the Magothy River, by 48.3% in the South River, and by 186.5% in the Severn River due to reductions in the number of crabs available to be caught in these systems (Fig. 6b). These differences are underpinned by a
great degree of consistency in movement probabilities between years. For the four sites tagged in both 2014 and 2015, there was a strong degree of correlation in movement probabilities between years $(r=0.99, t=36.72, p<0.01)$.

Discussion

The movement of tagged individuals strongly influenced the results of a mark-recapture study of the blue crab fishery in Maryland waters of the Chesapeake Bay. Tag return data revealed strong variation in the ratio of recreational to commercial recaptures among adjacent harvest reporting areas that set the stage for movement to influence estimates of area-specific recreational harvest and exploitation. In the most extreme case (Severn River), a crab could move from an area where it is 2.5 times more likely to be caught by a recreational fisher than a commercial fisher, to one with 100% commercial harvest, by moving only a few km . Adult blue crabs are easily capable of traveling this distance in a few days (Souza et al. 1980, Wolcott and Hines 1990) and commercial fishing effort is concentrated at tributary mouths to intercept crabs moving out of shallow nursery habitats (Slacum et al. 2012). Overall, the resulting estimate of statewide recreational harvest was 34% higher when movement was taken into account compared to the estimated based on the release location of tagged crabs only. The results of this study highlight the importance of incorporating movement into mark-recapture studies focused on exploring spatial variation in exploitation among harvest areas when the target species commonly moves among them.

Although mark-recapture studies are often used to address fishery management questions at the population level when the effect of individual movements may be negligible, there are a few examples that incorporate movement data into calculations of exploitation rates. In a study
of snapper, site-by-site estimates of density and exploitation were used to standardize movement patterns of snapper that were determined from recapture locations in New Zealand (Parsons et al. 2011). The method used by Parsons et al. (2011) is in some sense the inverse of the technique employed in the present study. In other examples, exploitation calculations are conducted for each release area but did not account for movement between release areas (e.g. Rudd et al. 2014, Whitlock et al. 2016). Analyses of waterfowl data provide examples for incorporating information on movement among multiple harvest areas into harvest and exploitation rate calculations (Munro and Kimball 1982, Nichols et al 1995). Our methods expand on this to incorporate within-year temporal variation and multiple harvest sectors which was needed to estimate recreational harvest based on reported commercial harvest.

The present study represents the first quantitative, statewide assessment of recreational exploitation and harvest for a blue crab fishery using mark-recapture information. Recreational harvest was highest in tributaries near population centers along Maryland's Western Shore, and in the Miles and Wye Rivers on the Eastern Shore. These areas also had some of the highest recreational and total exploitation rates. The extremely high total exploitation rates in the Patuxent (0.71) and Magothy (0.68) rivers indicate that total exploitation was high enough in some tributaries to remove the majority of male crabs large enough to recruit to the fishery each month. If these removals substantially reduce the operational sex ratio (the ratio of mature males to reproductively active females), they could potentially lead to sperm limitation (the reduction in lifetime reproductive output) of females maturing in these locations (Ogburn et al. 2014, 2019). In contrast, recreational exploitation made up a smaller proportion of total exploitation, and recreational harvest was smaller, at sites along the southern portion of the Eastern Shore and in the mainstem bay.

One reason for the difference in commercial reporting rate between 2014 and 2015 could be the effect of prior crab tagging efforts by our lab (Turner et al. 2003, Aguilar et al. 2005, Corrick 2018). We have a closegood working relationship with a number of crabbers in the areas tagged in 2014 (Rhode River, South River, Eastern Bay, Little Choptank River, Rhode River, South River) but have not had as much outreach within other areas of the Bay tagged less frequently ${ }_{\text {T }}$. This could have leading to greater reporting in 2014 when tagging was concentrated in these areas. However, the 2015 commercial reporting rate is more accurate on a bay-wide scale because of the broader spatial distribution of tagging, and this was the onethese data were used in harvest ratio calculations herein. Investigating possible spatial variation in reporting would be particularly valuable if this type of mark recapture study iswere used on a regular basis in the future to inform the stock assessments. While there also were also slight differences in reporting rate among sex (males vs males and females), the direction of theis difference changed by year and could reflect variations in high-value captures, gear types, and effort between yearsdifferences are unlikely to be significant given the stochasticity of high value eaptures. For example: single additional high value capture of a male in 2014 would change the male reporting rate from 0.930 to 0.906 , well in line with the rate for males and females combined (0.884).

Information on the size of the recreational blue crab harvest in Maryland has regularly been identified as a critical management need. Prior studies in 2001, 2002, 2005, and 2009 using effort survey methods (Ashford and Jones 2002a, 2002b, 2005, 2011) estimated that the ratio of recreational to commercial harvest within Maryland remained close to the 8% estimate chosen in the stock assessment. Estimates of recreational harvest from effort surveys averaged 11.6% of
commercial male hard crab harvests and 5.8% of total commercial harvests. In the present study, recreational harvest of male hard crabs in 2015 was estimated at 11.2% the size of commercial male hard crab harvests and 6.5% of total commercial harvests (male and female) when movement was included. EAlthough comparison of effort surveys and a Maryland-wide markrecapture experiments conducted in the same year would be preferable , but the consistencysimilarity between-of recreational harvest fraction estimates hints that they likely are reasonable estimates of the true valuesuggests that the methods proposed herein are consistent with effort surveys.

With data for only a single statewide recreational harvest estimate using mark recapture methods, it is difficult to quantify uncertainty, but the sensitivity of the estimate to some potential sources of uncertainty can be evaluateddiscussed (Semmler 2016). In terms of uncertainty related to underreporting, 1) Uthe underreporting of high value tags by the commercial sector would increase the estimated recreational harvest an equivalent amount (e.g. 5% underreporting would yield a 5% increase in the recreational harvest estimate). 2) UIn addition, underreporting of regular value tags by the commercial sector would also inflate recreational harvest estimates, with the magnitude of the increase depending on whether underreportingit occurred in areas with only commercial recaptures (no effect), a high fraction of commercial recaptures (minimal effect), or a relatively high fraction of recreational recaptures (larger effect). -The regions where commercial underreporting could have occurred were in areas with only commercial recaptures, so underreporting would not have substantially inflated the estimate of recreational harvest. The only cases of commercial reporting we are aware of were in areas with only commercial recaptures, so we do not think underreporting substantially inflated the estimate of recreational harvest. 3) R Other sources of uncertainty include the focus on a single year and the lack of tagging
data during the first and last months of the harvest season within that year. Between years, when
replacing the 2015 commercial harvest data with the previous 5 years of data yieldsthe ratios of $\underline{\text { recreational to total commercial harvest efwere } 10.4 \%-13.1 \%(11.2 \% \text { in } 2015), \text { suggesting that }}$ our estimate iwas not very sensitive to annual variation in commercial harvest. 4) Within 2015, setting the recapture ratios in April, May, and November to the June and October values instead of assuming a value of 0 increased the percent of recreational harvest from 11.2% to 11.3%, suggesting that recreational harvest in these months was negligibleSetting the recapture ratio flat across the early and late season (April / May = June, November = October), did not substantially alter harvest estimates (11.29% vs 11.17%) and this is bound to be an overestimate. Repeating the mark-recapture study in one or more years in combination with effort surveys or recreational harvest reporting would help assess the validity of this approach-would provide additional information for estimating uncertainty. If these mark recapture methods, or the effort surveys, Were implemented annually at the baywide scale, either or both could improve stock assessments by replacing the constant 8% value currently used.

Additionally, uncertainty in conditional movement probabilities themselves are important to consider. While we do not have a means of assessing error in these estimates, consistency in $\underline{\text { movement probabilities between years may serve as some indication of their reliability. To }}$ assess this, we compare movement probabilities matrices for the four reporting areas which were tagged in both 2014 and 2015. There was a strong degree of correlation between the movement probabilities $(\mathrm{r}=0.99, \mathrm{t}=36.72, \mathrm{p}<0.01)$, supporting the expectation that the probabilities were reliably determined. Our method of calculating recreational harvest based on commercial harvest assumes that the level of commercial harvest is reliably known. Commercial crabbers in Maryland are required to report their daily harvest under penalty of license suspension/revocation and the state has an electronic reporting system coupled with a check point program to evaluate compliance with reporting, although we do not know the degree of compliance in 2014 and 2015. While these measures help ensure reliable harvest estimates, an analysis of the possibility of random and potentialer differences in harvest reporting across the state would further strengthen confidence in this method of calculating recreational harvest estimates.

The proportion of recreational to total commercial harvest (8%) used in the stock assessment was set prior to the moratorium on recreational harvest of female crabs in Maryland in 2008 (Miller et al. 2011). However, after 2008, recreational harvest was thought to be better calculated as 8.0% of male harvests (CBSAC 2016). While recreational harvest could have been 8.0% of male harvests in 2011 , our estimated harvest in 2015 equates to 11.2% of male harvests, representing a 40% increase over the 8% guideline. It's unclear whether this increase resulted from the shifting of recreational fishing effort from female onto male crabs, or simply from increased recreational fishing effort targeting male crabs.

The estimated contribution of the recreational fishery to total harvest we observedin this was at the lower end of recreational harvest fractions for comparable to many other temperate or subtropical crab fisheries 工 $^{-}$and is comparable to other blue crab fisheries within the US. In Maryland, recreational crabbers take roughly 6.5% percent of the commercial harvest of male and female blue crabs. In Louisiana, which has the second largest commercial blue crab fishery by state in the US, recreational crabbers take in roughly 5% of all blue crabs (Guillory 1999b, LDWF 2011). Similar results were observed for recreational blue crab fishers in

Galveston Bay, Texas (5.6\% of harvest) (TPW 2007). In Oregon, 5.6% of landings in the Dungeness crab Metacarcinus magister fishery are taken by recreational crabbers (ODFW 2014). In contrast, some crab fisheries have a much higher proportion of recreational harvest including the mud crab Scylla serrata fishery in Queensland, Australia ($\sim 50 \%$ recreational harvest) (Ryan 2003), the Dungeness crab fishery in Washington (41\% of harvest) (WDFW 2016) and the blue swimming crab Portunus pelagicus fishery in South Australia (29.8\% of harvest) (Jones 2009). Many other Other crab fisheries, such as those for Atlantic Jonah crabs Cancer borealis and California Dungeness crabs, do not have sufficiently reliable recreational harvest data to make similar comparisons (ASMFC 2015, CA OPC 2014). Understanding the contribution of recreational fisheries to total harvests, estimated at 12% globally, is a critical issue in conservation of fishery resources (Cooke and Cowx 2004). The methods used here could be applied to blue crab fisheries in other regions or used as a model for crab fisheries for which recreational harvest estimates are needed and commercial harvests are known.

In Maryland, recreational harvest of male crabs was 11.2% of commercial male harvest, a 40% increase over the 8% expected after recreational harvest of females was banned in 2008.

These updated harvest values should be incorporated into future blue crab stock assessments. Recreational harvests remain small in comparison to the commercial sector, and this difference, while notable, likely did not have a large effect on the overall exploitation of male crabs.

Nonetheless, accurate and timely estimates of harvest and exploitation are required to reliably make management decisions. For example, the exploitation fraction of adult males has not exceeded 33% in recent history, the threshold level triggering male harvest restrictions (CBSAC 2015). The exploitation fraction of males has often been as low as $21.6 \quad 22.2 \%$ (CBSAC 2015). However, in 2011 male exploitation was estimated to be 32% (CBSAC 2015). If recreational
male harvests were similar in 2011 to those seen here, then exploitation would have been even eloser to that trigger. However, one caveat to this possibility is that the 33% trigger is calculated for the Chesapeake Bay as a whole. While it makes sense that banning recreational harvest of females might have shifted fishing effort onto male crabs in Maryland, no such ban occurred in

Virginia.

The present study illustrates clear influence of animal movement when mark-recapture methods are used to estimate harvest and exploitation rates for multiple harvest areas. Results of the study reduce uncertainty in recreational harvest estimates by complementing results of effort surveys and could be useful for refining stock assessments of the blue crab fishery in Chesapeake Bay. In addition, these new methods for including animal movement could be useful for other fisheries for which variation in sector-specific harvest or exploitation rates among harvest areas is of interest and the scale of movement of the target species exceeds that of harvest area boundaries. These methods were applied to a two-sector fishery, but could be modified for one to several fishery sectors for blue crabs in other regions or for other species and fisheries with similar characteristics.

Acknowlegements:

We are most grateful to several commercial fishermen for assistance with tagging and for reporting recaptures. This study could not have been conducted without their valuable contributions. We thank Maryland Department of Natural Resources for providing commercial crab harvest reporting data \qquad
strengthend this research. M. Goodison, K. Heggie, K. Richie, M. Kramer, W. McBurney, and other SERC staff and interns participated in tagging and provided logistial support. James

Holmquist provided technical assistance with data analyses. Funding was provided by Maryland Sea Grant (Award \#P0-6150), including a Graduate Fellowship awarded to Robert Semmler. This work was conducted in accordance with Maryland Department of Natural Resources permits SCP201456 and SCP201513.

References:

Agresti, A. 1994. Simple capture-recapture models permitting unequal catchability and variable sampling effort. Biometrics 50(2): 494-500.

Aguilar, R., Hines, A.H., Wolcott, T.G., Kramer, M.A., and Lipcius, R.N. 2005. The timing and route of movement and migration of post-copulatory female blue crabs Callinectes sapidus Rathbun, from the upper Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 319: 117-128.

Ashford, J.R., Jones, C.M., and Fegley, L., 2009. A license registry improves sampling efficiency for a marine recreational survey. Transactions of the American Fisheries Society, 138(5), pp.984-989.

Ashford, J., Jones, C.M, and Fegley, L. 2010a. Private waterfront householders catch less per trip than other fishers: Results of a marine recreational survey. Transactions of the American Fisheries Society 139: 1083-1090.

Ashford, J.R., Jones, C.M., Fegley, L., and O'Reilly, R. 2010b. Catch data reported by telephone avoid public access bias in a marine recreational survey. Transactions of the American Fisheries Society 139(6): 1751-1757

Ashford, J.R., Jones, C.M., and Fegley, L., 2013a. Independent estimates of catch by private and public access fishers avoid between-group sources of error in a recreational fishing survey. Transactions of the American Fisheries Society, 142(2), pp.422-429.

Ashford, J.R., Jones, C.M., and Fegley, L., 2013b. Within-day variability in catch taken by public access fishers during a recreational fishing survey. Transactions of the American Fisheries Society, 142(4), pp.974-978.

Atlantic States Marine Fisheries Commission. 2015. Interstate fishery management plan for jonah crab. Arlington, VA. 73pp.
[https://www.asmfc.org/uploads/file/55d7720eJonahCrabInterstateFMP_Aug2015.pdf]
Brownie, C., Hines, J.E., Nichols, J.D., Pollock, K.H. and Hestbeck, J.B., 1993. Capture-
recapture studies for multiple strata including non-Markovian transitions. Biometrics, pp.1173-1187.

California Ocean Protection Council. 2014. Dungeness crab (Metacarcinus magister) rapid asessement. Sacramento, CA.

Cargo, D.G. 1954. Commercial fishing gears. III. The crab gears. Maryland Board of Natural Resources, Chesapeake Biological Laboratory, Educational Series 36: 1-18.

Chao, A. 1987. Estimating population size for capture-recapture data with unequal catchability. Biometrics 43(4): 783-791.

Chesapeake Bay Stock Assessment Committee. 2013. 2013 Blue crab advisory report. NOAA Chesapeake Bay Office. Annapolis, MD. 12pp.
[https://www.chesapeakebay.net/documents/Final_CBSAC_Advisory_Report_2013 .pdf]

Chesapeake Bay Stock Assessment Committee. 2015. 2015 Blue crab advisory report. NOAA Chesapeake Bay Office. Annapolis, MD. 18pp. [https://www.chesapeakebay.net/documents/CBSAC 2015 Advisory Report 630 FINAL.pdf]

Chesapeake Bay Stock Assessment Committee. 2016. 2016 Blue crab advisory report. NOAA Chesapeake Bay Office. Annapolis, MD. 18pp. [https://www.chesapeakebay.net/documents/CBSAC_2016_Report_6-30-16_FINAL.pdf]

Clark, M.E., Wolcott, T.G., Wolcott, D.L., and Hines, A.H. 1999a. Intraspecifc interference among foraging blue crabs Callinectes sapidus: Interactive effects of predator density and prey patch distribution. Marine Ecology Progress Series 178: 69-78.

Cooke, S.J., and Cowx, I.G. 2004. The role of recreational fishing in global fish crises. Bioscience 54:857-859.

Conn, P.B., Kendall, W.L., and Samuel, M.D. 2004. A general model for the analysis of markresight, mark-recapture and band-recovery data under tag loss. Biometrics 60(4): 900909.

Corrick, C.T. 2018. Spatial variation in fishery exploitation of mature female blue crabs (C.

 sapidus) in Chesapeake Bay. (Master's Thesis, University of North Florida, Jacksonvilled, FL USA). Retrieved from https://digitalcommons.unf.edu/etd/798/Cronin, L.E. 1949. Comparison of methods of tagging the blue crab. Ecology 30: 390-394. Davis, G.R., Davies, B.K., and Walstrum, J.C. 2001. Annual Report of the Blue Crab Trawl Survey., Maryland Department of Natural Resources, Annapolis, MD.

Dorazio, R.M., Hattala, K.A., McCollough, C.B., and Skjeveland, J.E. 1994. Tag recovery estimates of migration of striped bass from spawning areas of the Chesapeake Bay. Transactions of the Amercian Fisheries Society 123(6): 950-963.

Epifanio, C.E. 2007. Biology of Larvae, p. 513-533. In V. S. Kennedy and L. E. Cronin [ed.], The Blue Crab, Callinectes sapidus. Maryland Sea Grant College.

Fielder, R.H. 1930. Solving the question of crab migrations. Fishing Gazette 47: 18-21.
Fogarty, M. J., and Lipcius, R.N. 2007. Population dynamics and fisheries, p. 711-756. In V. S. Kennedy and L. E. Cronin [ed.], The Blue Crab, Callinectes sapidus. Maryland Sea Grant Program, College Park, MD.

Gelpi, C.G. Jr, Condrey, R.E., Fleeger, J.W., and Dubois, S.F. 2009. Discovery, evaluation and implications of blue crab, Callinectes sapidus, spawning, hatching, and foraging grounds in federal (US) waters offshore of Louisiana. Bulletin of Marine Science 85(3): 203-222.

Guillory, V. 1998b. A survey of the recreational blue crab fishery in Terrebonne Parish, Louisiana. Journal of Shellfish Research 17: 543.

Hines, A.H. 2007. Ecology of juvenile and adult blue crabs, p. 575-665. In V. S. Kennedy and L. E. Cronin [ed.], The Blue Crab, Callinectes sapidus. Maryland Sea Grant Program, College Park MD.

Hines, A.H. and Ruiz, G.M. 1995. Temporal variation in juvenile blue crab mortality: Nearshore shallows and cannibalism in Chesapeake Bay. Bulletin of Marine Science 57: 884-901.

Hines, A.H., Wolcott, T.G., González-Gurriarán, E., Gonázlez-Escalante, J.L., and Freire, J. 1995. Movement patterns and migrations in crabs: Telemetry of juvenile and adult behaviour in Callinectes sapidus and Maja squinado. Journal of the Marine Biological Association of the United Kingdom 75: 27-42.

Jones, K. 2009. South Australian Recreational Fishing Survey. PIRSA Fisheries, Adelaide. South Australian Fisheries Management Series Paper No 54. 84 pp.

Kennedy, V. S., M. Oesterling, W. A. Van Engel. 2007. History of blue crab fisheries on the U.S. Atlantic and Gulf coasts. Pages 655-709 in V. Kennedy and L. Cronin (eds.) The Blue crab: Callinectes sapidus. Maryland Sea Grant College, College Park

Louisiana Department of Wildlife and Fisheries. 2011. Assessment of Blue Crab Callinectes sapidus in Louisiana Waters, 2011 Report. Baton Rogue, LA.

Maryland Department of Natural Resources. 2015a. Reported Commercial Harvest Data: 2015. Delivered through personal communication.

Maryland Department of Natural Resources. 2015b. Reported Commercial Harvest
Data: 2010-2014. Delivered through personal communication.
McConaugha, J.R., Johnson, D.F., Provenzano, A.J. and Maris, R.C. 1983. Seasonal distribution of larvae of Callinectes sapidus (Crustacea: Decapoda) in the waters adjacent to Chesapeake Bay, Journal of Crustacean Biology 3(4): 582-591.

McKenzie, J.R., Parsons, B., Seitz, A.C., Kopf, R.K., Mesa, M., and Phelps, Q. 2012. Advances in Fish Tagging and Marking Technology. Symposium 76, American Fisheries Society. ISBN: 978-1-934874-27-1, 560 pp .

Michielsens, C.G.J., McAllister, M.K., Kuikka, S., Pakarinen, T., Karlsson, L., Romakkaniemi, A., Perä, I., and Mäntyniemi, S. 2006. A Bayesian state-space mark-recapture model to estimate exploitation rates in mixed-stock fisheries. Canadian Journal of Fisheries and Aquatic Sciences 63(2): 321-334.

Miller, T. J., Wilberg, M.J., Colton, A.R., Davis, G.R., Sharov, A., Lipcius, R.N., Ralph, G.M., Johnson, E.G., and Kaufman, A.G. 2011. Stock assessment of the blue crab in Chesapeake Bay. NOAA Chesapeake Bay Office. Annapolis, MD. 214pp. [https://hjort.cbl.umces.edu/crabs/docs/Assessment document final_approved.pdf]

Munro, R.E. and Kimball, C.F. 1982. Population ecology of the mallard: VII. distribution and derivation of the harvest. Resource U.S. Fish and Wildlife Management, Office of Migratory Bird Management: Resource Pulication 147. Laurel, MD. 133pp. [https://pubs.usgs.gov/unnumbered/5230180/report.pdf]

Nichols, J.D., Reynolds, R.E., Blohm, R.J., Trost, R.E., Hines, J.E., and Bladen, J.P. 1995. Geographic variation in band reporting rates for mallards based on reward banding. Journal of Wildlife Management 59(4): 697-708.

Northeast Fisheries Science Center. 2019. 66th Northeast Regional Stock Assessment Workshop
(66th SAW) Assessment Report. 19-08; 1170 p. https://doi.org/10.25923/nhqe-jd35
Ogburn, M.B. 2019. The effects of sex-biased fisheries on crustacean sex ratios and reproductive output. Invertebrate Reproduction and Development 63(3): 200-207.

Ogburn, M.B., and Habegger, L.C. 2015. Reproductive status of Callinectes sapidus as an indicator of spawning habitat in the South Atlantic Bight, USA. Estuaries and Coasts 38(6): 2059-2069.

Ogburn, M.B., Richie, K.D., Jones, M.A., Hines, A.H. 2019. Sperm acquisition and storage dynamics facilitate sperm limitation in the selectively harvested blue crab Callinectes sapidus. Marine Ecology Progress Series 629: 87-101.

Ogburn, M.B., Roberts, P.M., Richie, K.D., Johnson, E.G., Hines, A.H. 2014. Temporal and spatial variation in sperm stores in mature female blue crabs Callinectes sapidus and potential effects on brood production in Chesapeake Bay. Marine Ecology Progress Series 507: 249-262.

Oregon Department of Fish and Wildlife. 2014. Oregon Dungeness Crab Research and Monitroing Plan. Salem, OR. 25pp. [https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/docs/2014/ODFW_Dungen essCrabResearchMonitoringPlan updated2014 Final 081414.pdf]

Parsons, D.M., Morrison, M.A., McKenzie, J.R., Hartill, B.W., and Bian, R. 2011. A fisheries perspective of behavioral variability: differences in movement behavior and extraction rate of an exploited sparid, snapper (Pagurus auratus). Canadian Journal of Fisheries and Aquatic Science 68: 632-642.

Pine, W.E., Pollock, K.H., Hightower, J.H., Kwak, T.J., and Rice, J.A. 2003. A review of tagging methods for estimating fish population size and components of mortality. Fisheries 28(10): 10-23.

Pollock, K. H. 2000. Capture-recapture models. Journal of the American Statistical Association

 95(449): 293-296.Pollock, K. H., Hoenig, J.M, Hearn, W.S. and Calingaert, B. 2001. Tag reporting rate estimation: 1. An evaluation of high-reward tagging method. North American Journal of Fisheries Management 22: 521-532.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada, Bulletin 191, Ottawa. 401pp. [https://www.dfo-mpo.gc.ca/Library/1485.pdf]

Rudd, M.B., Ahrens, R.N.M., Pine III, W.E., and Bolden, S.K. 2014. Empirical, spatially explicit natural mortality and movement rate estimates for the threatened Gulf sturgeon (Acipenser oxyrinchus desotoi). Canadian Journal of Fisheries and Aquatic Sciences 71: 1407-1417.

Ryan, S. 2003. Ecological assessment: Queensland mud crab fishery. Queensland Fisheries Service, Queensland Department of Primary Industries. 55p.

Seber, G.A.H. 1986. A Review of Estimating Animal Abundance. Biometrics 42(2): 267-292.
Semmler, R.F. 2016. Mark-recapture assessment of the recreational blue crab (Callinectes sapidus) harvest in Chesapeake Bay, Maryland. (Master's Thesis, University of Maryland, College Park, MD USA). Retrieved from
https://drum.lib.umd.edu/handle/1903/19026

Sharov, A.F., Volstad, J.H., Davis, G.R., Lipcius, R.N., and Montane, M.M. 2003. Abundance and exploitation rate of the blue crab (Callinectes sapidus) in Chesapeake Bay. Bulletin of Marine Science 72: 543-565.

Slacum, Jr., H.W., Methratta, E., Dew-Baxter, J., Wong, D., and Corbin, R. 2012. 2011 monthly commercial blue crab effort survey in the Maryland portion of Chesapeake Bay. Annual report to Maryland Department of Natural Resources. Annapolis, Maryland.

Souza, P.A., Polgar, T.T., Miller, R.E., and Holland, A.F. 1980. Results of blue crab studies at Chalk Point: Final Report to the Maryland Power Plant Siting Program. Report No. PPSP-CP-80-10. Annapolis, Maryland. 167 p.

Tagatz, M.E. 1968. Growth of juvenile blue crabs, Callinectes sapidus Rathbun, in the St. Johns River, Florida. Fishery Bulletin 67: 281-288

Texas Parks and Wildlife. 2007. Stock asessment of blue crabs (Callinectes sapidus) in Texas coastal waters. Austin, TX.

Trudel, M., Fisher, J., Orsi, J.A., Morris, J.F.T., Thiess, M.E., Sweeting, R.M., Hinton, S., Fergusson, E.A., and Welch, D.W. 2009. Distribution and migration of juvenile chinook salmon derived from coded wire tag recoveries along the continental shelf of western North America. Transactions of the American Fisheries Society 138: 1369-1391.

Truitt, R.V. 1939. The blue crab. Pages 10-38 in Our Water Resources and their Conservation, University of Maryland, Chesapeake Biological Laboratory, Contribution 27. Solomons Island, Maryland.

Tuckey, T.D., and Fabrizio, M.C. 2019. 2019 Annual Report Estimating Relative Juvenile Abundance of Ecologically Important Finfish in the Virginia Portion of Chesapeake Bay (1 July 2018 - 30 June 2019). Virginia Institute of Marine Science, William \& Mary.

Turner, H.V., Wolcott, D.L., Wolcott, T.G. and Hines, A.H. 2003. Post-mating behavior, intramolt growth, and onset of migration to Chesapeake Bay spawning grounds by adult female blue crabs Callinectes sapidus Rathbun. Journal of Experimental Marine Biology and Ecology 295(1): 107-130.

Van Engel, W.A. 1962. The blue crab and its fshery in Chesapeake Bay. Part 2 - Types of gear for hard crab fishing. Commercial Fisheries Review 24(9): 1-10.

Van Engel, W.A. 1987. Factors affecting the distribution and abundance of the blue crab in Chesapeake Bay. p. 179-209 in S.K. Majundar, L.W. Hall and H.M. Austin (eds.). Contaminant Problems and Management of Living Chesapeake Bay Resources. Pennsylvania Academy of Science. Easton, Pennsylavaina.

Washington Department of Fish and Wildlife. 2016. "Puget Sound dungeness crab, yearly harvest estimates." [Data Table] http://wdfw.wa.gov/fishing/shellfish/crab/estimates.html (accessed Jan 2017).

Whitlock, R.E., Kopra, J., Pakarinen, T., Jutila, E., Leach, A.W., Levontin, P., Kuikka, S., and Romakkanieni, A. 2016. Mark-recapture estimation of mortality and migration rates for sea trout (Salmo trutta) in the northern Baltic sea. ICES Journal of Marine Science 73(9).

Wolcott, T.G., and Hines, A.H. 1989a. Ultrasonic biotelemetry of muscle activity from freeranging marine animals: A new method for studying foraging by blue crabs (Callinectes sapidus). Biological Bulletin 176: 50-56.

Wolcott, T.G., and Hines, A.H. 1990. Ultrasonic telemetry of small-scale movements and microhabitat selection by molting blue crabs (Callinectes sapidus). Bulletin of Marine Science 46: 83-94.

