SMITHSONIAN
 I N S TITUTION

MUSEUM
 0 F
 NATURAL
 II ISTORY

Two FORTRAN II Programs for the Univariate and Bivariate Analysis of Morphometric Data

THOMAS R. WALLER

SMITHSONIAN INSTITUTION PRESS
CITY OF WASHINGTON

Publications of the United States National Museum

The scientific publications of the United States National Muscum include two series, Procerdings of the United States National Museum and I'mited States National Museum Bullctio.

In these series are published original artickes and monographs dealing with the collections and work of the Muscum and setting forth newly acquired facts in the fields of anthropology, biology, geology, history, and technology. Cinpies of each publication are distributed to libraries and scientifie organizations and to specialists and others interested in the various subjects.

The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, of tave in size, with the publication date
of each paper recorded in the table of contents of the volume.
In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902, papers relating to the botanical collections of the Museum lave been published in the Bulletin series under the heading Contributions from the United States National Herbarium.

This work forms number 285 of the Bulletin series.

Frank A. Taylor
Director, United States National Museum

Contents

Page
1
Abstract 1
Introduction 3
Statistics 4
DASAN: Description of Program 8
Listing of FORTRAN II Statements in DASAN
23
23
Input Data Preparation for DASAN
28
28
Alternative Statements and Subroutines for DASAN
Alternative Statements and Subroutines for DASAN 28
Sample Input Data for DASAN 30
Sample Output from DASAN 38
Error Messages in DASAN 38
VPLOT: Description of Program
39
39
Listing of FORTRAN II Statements in VPLOT 49
Input Data Preparation for VPLOT 50
Sample Input Data for VPLOT 51
Sample Output from VPLOT 54
Error Messages in VPLOT 54
Availability of Program Decks 55
Literature Cited

Two FORTRAN II Programs for the Univariate and Bivariate Analysis of Morphometric Data

Abstract

Two computer programs, written in FORTRAN II for the IBMI 709ł, perform univariate and bivariate analyses of morphometric data and plot bivariate scatter diagrams of pairs of data. Basically, the programs are designed to process arrays in which rows (up to 100) represent specimens and columns (up to 52) represent measured and computed variables. Alternatively, an input array may represent a single organism, for example a coiled snail or a segmented arthropod, with the rows representing, respectively, individual whorls or segments. A high degree of adaptability to different kinds of problems is achieved because of the numerous control cards which specify input and output format, table headings, and column numbers of sariables on which operations are to be performed.

Progran devices allow for the elimination of zeroes representing missing data and for the conversion of selected columns to logarithms to the base 10 . The computed univariate statistics include the maximum, minimum, observed range, arithmetic mean, standard deviation, standard error of the mean, and coefficient of variation. Bivariate statistics include the correlation coefficient, slopes and intercepts of either regression lines or the reduced major axis, coefficients of relative dispersion, and factors for the computation of confidence intervals. Finally, the programs plot selected pairs of data on bivariate scatter diagrams and furnish the end points for the plotting of regression lines or reduced major axes.

Introduction

Morphometry, or the measurement of form, is becoming increasingly important in the study of fossil and living organisms. The uses and limitations of univariate and bivariate terhniques in the analysis of morphometric data in paleontology have been summarized by Imbrie (1956), and the application of such analytic techniques in zoology has been described by Simpson, Roe, and Lewontin (1960).

In paleontology, it is often necessary to deal with fragmentary specimens in order to obtain samples (groups of specimens) which are large enough to be statistically treated. If the missing data are represented by zeroes, these zeroes must be eliminated from any statistical analysis. Furthermore, if the data are transformed to logarithms, a zero representing the logarithn of one to the base ten must be treated statistically and must therefore be differentiated from a zero representing missing data.

Examples of other operations which may be required in morphometric work are as follows:

1. Subtract the thickness of a measuring platform from a measurement where, in order to obtain the measurement, this thickness had to be included.
2. Convert certain measurements, which are invariably in ocular micrometer units, to millimeters.
3. Convert certain measurements, which are in ocular micrometer units only when the specimen is small, to millimeters.
4. Compute the cross-sectional area of a muscle or ligament, where such an area can be approximated by a simple formula, e.g., the area of a circle or a triangle.
5. Compute measurements which are the sums or differences of other measurements.
6. Convert any or all measurements to logarithms.
7. Compute ratios of one measurement to another.
8. Arrange data in order of decreasing size of one of the measurements and/or preserve the order of specimeus in the input.
9. Construct bivariate scatter diagrams of ratios and compute regression lines or lines of best fit.

The programs described lere, for use on the IBM 7094,
perform all of these operations. In addition, they punch out the final measurements and ratios and print out the statistics listed in Table 1.

Table 1.-Symbols and Formulae for Statistics Computed by Data Assembly and Analysis (DASAN) (x or $y=$ any variate; ${ }^{*}$ sce section on statistics)

Statistics	Output Symbol	FORTRAN Symbol	Math Symbol	Formula
Univariate Statistics				
Number of non-zero values or pairs of values	NUM.	NUM1BER	N	-.-----.-.-.------ - .
Maximum value	MAX.	AMAX	x_{1}	---------.-.-. -- -- -
Minimum value	MIN.	AMIN	x_{2}	-------------------
Observed range	RANGE	RANGE	$O R_{x}$	$O R_{x}=x_{1}-x_{2}$
Arithmetic mean	MEAN	AMEAN	\bar{x}	$\bar{x}=\frac{\Sigma x}{N}$
Standard deviation	STDDV	STDDV	s_{x}	$s_{x}=\sqrt{\frac{\bar{\Sigma}(x-\bar{x})^{2}}{N-1}}$
Standard error of the mean	SDVMN	SDVMN	$\sigma_{\bar{I}}$	$\sigma_{x}=\frac{s_{x}}{\sqrt{N}}$
Coefficient of variation	V	V	V	$V^{\prime}=\frac{100 s_{x}}{\bar{x}}$
Bivariate Statistics (Routine \#1) $\mathrm{\Sigma}(x-\bar{x})(y-\bar{y})$				
Correlation coefficient	R	R	r	$r=\frac{\Sigma(x-x)(y-y)}{\sqrt{\Sigma(x-\bar{x})^{2} \Sigma(y-\bar{y})^{2}}}$
Slope of reduced major axis	A	A	a	$a=\frac{s_{y}}{s_{x}}$
Standard error of A	SIG(A)	STERRA	$\sigma_{\text {A }}$	$\sigma_{\mathrm{a}}=a \sqrt{\frac{1-r^{2}}{N}}$
y-intercept of reduced major axis	B	B	b	$b=\bar{y}-\bar{x} a$
Coefficient of relative dispersion from reduced major axis	D (RMA)	DRMA	D	$D=\sqrt{\frac{2(1-r)\left(s_{x}^{2}+s_{y}^{2}\right)}{\bar{x}^{2}+\bar{y}^{2}}} \cdot 100$
Arithmetic mean of y	MEAN Y	AMEANY	y	------------.-.------
Arithmetic mean of x	MEAN X	AMEANX	x	------------
Ordinate of point at which reduced major axis crosses maximum value of x on scale of a plot printed by VPLOT	YMAX 1	YMAXJ		-----------------
Ordinate of YMAX I in seale-units of a plot printed by VPLOT	TOI 1	TOP1		-------------------
Ordinate of y-intercept in scale-units of a plot printed by VPLOT	BASE 1	BASEI		-------------------
Bivariate Statistics (Routine \#2)				
Correlation cocfficiont	IR	R	r	Same as above.
Slope of regression of y on x	$\mathrm{A}(\mathrm{YX})$	BYX	$b_{\nu x}$	$b_{y x}=\frac{\Sigma(x-\bar{x})(y-\bar{y})}{\Sigma(x-\bar{x})^{2}}$
Y-intercept of regression of y on x	B (Y)	AY	a_{v}	$a_{y}=\bar{y}-b_{y x} \vec{x}$
Slope of regression of x on y	A(XY)	BXY	$b_{x v}$	$b_{x y}=\frac{\Sigma(x-\bar{x})(y-\bar{y})}{\Sigma(y-\bar{y})^{2}}$
S-intercept of regression of x on y	$\mathrm{B}(\mathbb{\text { (}}$)	AX	a_{x}	$a_{x}=\bar{x}-b_{x y} \bar{y}$
Standard error of estimate in y direction	$\mathrm{S}(\mathrm{Y} . \mathrm{K})$	STESTY	$s_{v i}$	$s_{y x}=s_{y} \sqrt{1-r^{2}}$
Standard error or estimate in x dircction	$S(X . Y)$	STESTX	$s_{x y}$	$s_{x y}=s_{x} \sqrt{1-r^{2}}$
Coefficient of relative dispersion from regression of y on x	$\mathrm{D}(\mathrm{Y} . \mathrm{X})$	DYX	$D_{y \pm}$	$D_{y x}=\frac{100 s_{y x}}{\bar{y}}{ }^{D_{y I}}$
Standard error of D(Y.X)	S(DYX)	ERRDYX	${ }^{D_{\nu i x}}$	$\sigma_{D_{v x}}=\frac{\sigma_{v I}}{\sqrt{2 N}}$

Table 1.-Symbols and Formulae for Statistics Computed by Data Assembly and Analysis (DASAN) (Continued) (x or $y=$ any variate; *see section on statistics)

| Statistics | Output
 Symbol | FORTRAN
 Symbol | Math Symbol |
| :--- | :--- | :--- | :--- | :--- |

Basically, the programs are designed to process arrays of data in which rows represent specimens and columns represent measured and computed variables. Alternatively, an input array may represent a single organism, for example, a coiled snail or a segmented anthropod, with the rows representing, respectively, individual whorls or segments. A high degree of adaptability to different kinds of problems is achieved because of the numerous control cards which specify input and output format, table headings, and column numbers of variables on which operations are to be performed.

The first program, referred to here as DASAN (Data Assembly and Analysis), computes the output arrays and all statistics; the second program, referred to as VPLO'T (Variable Plotting), plots the bivariate scatter diagrams, using the punched output deck from DASAN as input.

Background and Acknowledgments.-The initial versions of the programs described here were lengthy and were designed for the author's own research concerned with the morphometric analysis and phylogenetic interpretation of a closely-knit group of species within the Pectinidae (Mollusca: Bivalvia). Interest expressed by others made clear
the value of revising the programs so that they would be adaptable to a wide variety of problems.

The reprogramming was carried out at the Smithsonian Institution, Washington, D.C., as part of a continuing project concerned with the paleobiology of the Pectinidae, which is supported by a grant from the Smithsonian Research Foundation. Use of the IBMI 7094 of the Columbia University Computer Center was made possible through the generosity of Dr. John Imbrie of the Department of Geology. Invaluable assistance in constructing the initial programs, particularly in incorporating the variable plotting routine (Subroutine APLOT), was received from D. M. Vincent Manson of the American Museum of Natural History. The APLOT subroutine originally appeared in a program written by Clarence Bradford and Arthur Gasche of the University of Chicago and has subsequently been adapted to a number of programs by Manson. Constructive suggestions regarding both programs and texts have been gratefully received from Alan Cheetham of the Smithsonian Institution, Stephen Jay Gould of Harvard University, and Niles Eldredge of Columbia University.

Statistics

The statistics appearing in the output of DASAN are computed by means of the formulae shown in Table 1 , all of which have been taken from either Imbrie (1956) or Simpson, Roe, and Lewontin (1960). In addition to their use in summarizing data and in the drawing of regression lines or lines of best fit directly onto the output of VPLOT, the statistics are of use in the construction of modified DiceLeraas diagrams (Simpson et al., p. 355) and in determining whether differences in the position and slope of reduced major axes are statistically significant (Imbrie, p. 237).

Using the factors marked by asterisks in Table 1, confidence intervals (CI) for the slopes and intercepts of regression lines may be calculated as follows, where t is the familiar Student's t with N-2 degrees of freedom and other symbols are the mathematical symbols of Table 1:

$$
\begin{aligned}
C I_{b} & =b_{y x} \pm C A_{y x} t \\
C I_{a} & =a_{y} \pm C B_{y} t \\
C I_{b} & =b_{x z} \pm C A_{x y} t \\
C I_{a} & =a_{x} \pm C B_{x} t
\end{aligned}
$$

DASAN: Description of Program

Construction and Handling of Arrays. - The construction and handling of arrays by DASAN is itlustrated in Figure 1. Note that the input, referred to as the univariate in put array, contributes to and becomes part of a univariate output array. The latter consists of the univariate input array plus any new variables, other than ratios, which are computed from the input variables. All of the variables represented in the univariate output array may therefore not be univariate in a mathematical sense, but they serve here as the data for a statistical analysis which yields the univariate statistics listed in the introduction. The bivariate array consists only of form ratios, which are computed from pairs of variables drawn from the univariate output array.

In each of the three arrays, the first variable (first column) consists of specimen identification numbers, with the renuaining variables consecutively numbered from left to right beginning with variable No. 2.

In the sehematic problem illustrated in Figure 1, the univariate input array, containing a column of specimen numbers (a) and five columns of measurements (b through f), becomes a subarray (A) within the univariate output array. Two of the original variables, d and f, are modified so that

$$
d^{\prime}=\frac{d}{10.18}
$$

and

$$
f^{\prime}=\mathrm{f}-9.45
$$

where 10.18 and 9.45 are constants specified on control cards.
Four new subarrays have been generated and included in the univariate output array. The subarray B contains two variables, g and h, where

$$
g=\frac{b \cdot c}{2}
$$

and

$$
\mathrm{h}=\mathrm{d}^{\prime} \cdot \mathrm{e}
$$

These are special computations made possible by the insertion of special statements in DASAN, as described in a following section. Subarray C consists of variables generated by subtracting one of the variables in the preceding columns from another. Let us suppose that here
and

$$
\begin{aligned}
& i=b-e \\
& j=b-p
\end{aligned}
$$

Subarray D consists of variables generated by adding any two of the variables in the preceding columns. For example,

$$
\mathrm{k}=\mathrm{e}+\mathrm{h}
$$

Subarray E consists of the logarithms (base 10) of variables in the preceding columns. For example,

$$
\mathrm{l}=\log _{\mathrm{to}} \mathrm{~b}
$$

and

$$
m=\log _{10}
$$

Univariate statistics for all of the variables (except for the specimen identification numbers) in the univariate output array are computed. Both univariate and bivariate statistics are computed for the variables in the bivariate array.

In addition to the bivariate statistics which are computed for each variable (ratio) in the bivariate array, an option exists whereby a bivariate analysis of x and y transformed to logarithms (base 10) may be performed for certain columns, the column numbers of which are specified on a control card. Let us suppose that in the sample problem illustrated in Figure 1 a control card specifies that the variables comprising the ratios appearing in columns 2,3 , 5,6 , and 8 in the bivariate array are to be transformed to logs for an additional bivariate analysis. These statistics appear in Array IV. The wavy lines beneath the ratios f^{\prime} / c, j / d^{\prime}, and l / m mark those variables which were not designated for logarithmic transformation and for which the bivariate statistics from Array III are merely repeated (with the exception of the coordinates of the end points of the lines of best fit or regressions, which have been altered and are no longer valid).

In the bivariate array for this same sample problem, the ratio l / m is the ratio of one $\log (\log b)$ to another $(\log c)$. Such ratios which are constructed from variables previously transformed to logarithms in the univariate output array cannot be processed to yield correct univariate and bivariate statistics. These invalid statistics are indicated by a wavy line in Arrays II and III. Note that correct bivariate statistics for this same ratio $(\log b / \log c)$ appear under b / c in Array IV.

If the horizontal dimension of an output array exceeds the width of standard output paper, the array must be broken into segments, each of which can be printed on the computer paper. This has been done in the sample output (see listing of sample output).

Flow of Control.-The flow of control through DASAN is schematically represented in Figure 2, and the main steps followed by the program during an execution involving all subroutines are listed below:
DASAN (main)

1. Control cards, variable formats, and data are read in.
2. Subroutine RAWTAB is called if so indicated by option.

Figure 1.- Construction of arrays by DASAN for a sample problem. (Abbreviations and construction procedures are explained in the description of the program. The bivariate statistics shown here are for the reduced major axis.)

Subroutine RAWTAB

Each of the following steps in RAWTAB is optional, depencling upon values on control cards.
3. A read-in constant is subtracted from certain columns of variables, the column numbers of which are specified on control cards. The results replace the original values.
4. Certain variables, the column numbers of which are specified on control cards, are divided by a read-in constant. The results replace the original values.
5. If so indicated by signals on each data card, certain data cells, the column numbers of which are specified on control cards, are divided by a read-in constant. The results replace the original values.
6. Special variables are computed (e.g., the areas of muscle attachments). The results are new columns of variables which are added to the original data array:
7. Certain variables, specified on control cards, are subtracted from certain other variables, also specified on control cards. The results are new columns of variables added to the univariate input array.
8. Same as Step 7, but involving the addition of variables.
9. Certain variables, specified on control cards, are converted to logarithms to the base 10 . The logs are added to the univariate input array as columns of new variables.
10. Control is returned to the main program.

DASAN (main)

11. Subroutine XRATlO is called, if so indicated by option.

Subroutine XRATIO

12. Ratios are computed and entered in a new array. The column numbers of variables comprising the ratios are specified on control cards.
13. Control is retumed to the main program.
DASAN (main)
14. If so indicated by option, subroutine XPUNCH is called.

Subroutine XPUNCH

15. The univariate output array is punched onto cards according to format specified on control cards.
16. Control is returned to the main program.
DASAN (main)
17. If so indicated by option, the first page of the univariate output array is printed with no change in the
order of specimens in the input deck.
18. Subroutine UNIVAR is called.

Subroutine UNIVAR

19. Univariate statistics are computed from the variables which are to appear on one page of output.
20. The univariate statistics are printed out below the page of the univariate output array.
21. Control is returned to the main program.
DASAN (main)
22. If no more univariate output pages remain to be printed, the option to proceed to the first page of bivariate output is interrogated. If more pages of the univariate output array remain to be printed, the next page is printed out, followed by a call to UNIVAR and printing out of the univariate statistics as in Steps 17 through 21.
23. If so indicated by option, the first page of the bivariate array is printed out, with no change in the order of specimens in the input deck.
24. Subroutine UNIVAR is called.

Subroutine UNIVAR

25. Univariate statistics are computed from the bivariate variables on a page of output.
26. The univariate statistics are printed out below the page of the bivariate array.
27. Control is returned to the main program.

DASAN (main)

28. Subroutine BIVAR is called.

Subroutine BIVAR

29. Bivariate statistics are computed for the ratios appearing on one page of the bivariate array.
30. The bivariate statistics are printed out below the univariate statistics.
31. Bivariate statistics for $\log _{10} y$ and $\log _{10} x$ are computed for any or all of the ratios, as instructed by control cards.
32. The bivariate statistics of the \log data are printed out below the bivariate statistics of the non-log data.
33. Control is returned to the main program.

DASAN (main)

34. The number of bivariate output pages is checked. If more remain to be printed, Steps 23 through 33 are repeated.

Figure 2.--Simplified block diagram showing the flow of control through D.IS.IN and the major output options. The abbreviations UY' and BI' refer, respectively, to the univariate output array and the bivariate array. A and B indicate points between which flow lines cannot be conveniently drawn.
35. If no more bivariate output pages remain, the option to print all data in order of decreasing values of one of the variables, the column number of which is indicated on a control card, is interrogated. If so indicated, Steps 17 through 34 are repeated (flow returns to connecting point A in Figure 2) with an option to print the bivariate array in order of decreasing values of a specified variable replacing the option referred to in Step 23.
36. If more data decks remain to be processed, control is passed back to Step 1 (connecting point B in Figure 2) with the reading in of new Group-II control cards (see section on input data preparation) and data. Otherwise the execution is completed.

Computation Time.--The test run of DASAN (binary) on the IBM 7094, which used the input and furnished the output listed and described in following sections, analyzed 12 specimens, with 28 variables in the input array, 36 variables in the univariate output array, and 42 variables in the bivariate array, in 52 seconds.

Core Space.--DASAN in its present form approaches the maximum storage allowed in the IBM 7094. Increasing the dimensions so that up to 150 rather than only 100 specimens ean be included in a sample resulted in an overlap of COMMMON and PROGRAM storage areas. The maximum capacity of the program (in terms of numbers of specimens) which ean be reached through redimensioning is therefore between 100 and 150 .

Listing of FORTRAN II Statements in DASAN

C	- -	
C	PROGRAM FOR THE ASSEMBLY AND ANALYSIS OF MORPHOMETRIC D	
C	THOMAS R. WALIER, DEPT. OF PALEOSIOLOGY, SMITHSONIAN INSTITUTION	
C	FEBRUARY 6, 1967	
C	- -	
C		
	DIMENSION ANAME (21), FMMI (60), FMT2 (60), FMT3 (60), FMMT (60), FMT5 (60). DMAIN	
	IFMT6(60), FMT7 (60), FMT8(96), IDADDI (30), IDADD2 (30), IDGLAS (30), IDLOG(DMAIN	
	230), $\operatorname{IDMIN}(30), \operatorname{IDMTRI}(30), \operatorname{II} \operatorname{MTR2}$ (5) , IDSUBT 30$), \operatorname{INDXBV}(80,4), \operatorname{MMTRNS}(\operatorname{DMAIN}$	
	$3100,5), \operatorname{RATIO}(100,56), \operatorname{RAW}(100.53), \operatorname{SPMAX}(53), \mathrm{TEMPI}(53), \mathrm{TEMP2}(56), \quad$ DMAIN	
	$4 \operatorname{VNAME}(10,24), \operatorname{SLGMIN}(53)$	DMAIN
C		
	COMMON K, RAW, NLOG, NTRNS, GLASS, OCULAR, NGLASS, IDGLAS, NMMTRN, IDMTRI, DMAIN	
	IIDMTR2, NSUB, IDMIN, IDSUBT, NADD, IDADDI, IDADD2, JDLOG, NBIVAR, FMT8, FMT2DMAIN	
	2, FMT3, FMT6, FMT7, SPMAX, RATIO, INDXBV, MMTRNS , SLGMIN, NBVT	DMAIN
C		
	READ INPUT TAPE 5,34, NDATA, L, NUVTOT, NBVTOT, NRTAB, NRAT	DMAIN 9
	READ INPUT TAPE 5,36, NGIASS, NMMTRN, NTRNS, NSUB, NADD, NLOG	DMAIN 10
	IF (NGLASS) $30,56,55$	DMAIN 11
	55 READ INPUT TAPE 5, 36, (IDGLAS (J), $J=1$, NGLASS)	DMAIN 12
	56 IF (NMMTRN) $30,58,57$	DMAIN 13
	57 READ INPUT TAPE 5,36, (IDMTRI (J), $J=1$, NMMTRN)	DMAIN 14
	58 IF (NTRNS) $30,60,59$	DMAIN 15
	59 READ INPUT TAPE 5,36, (IDMTR2(J) , J=1,NTRNS)	DMAIN 16
	60 IF (NSUB) $30,62,61$	DMAIN 17
	61 READ INPUT TAPE 5,36, ($\operatorname{IDMIN}(J) . J=1, N S U B)$	DMAIN 18
	READ INPUT TAPE 5,36, (IDSUBT(J) , $J=1, \mathrm{NSUB}$)	DMAIN 19
	62 IF (NADD) $30,64,63$	DMAIN 20
	63 READ INPUT TAPE 5.36, ($\operatorname{IDADDI}(J), J=1, N A D D)$	DMAIN 21
	READ INPUT, TAPE 5,36, (IDADD2 (J , $\mathrm{J}=1$, NADD)	DMAIN 22
	64 IF (NLOG) $30,66,65$	DMAIN 23
	65 READ INPUT TAPE 5,36, ($\operatorname{IDLOG}(J), \mathrm{J}=1, \mathrm{NLOG})$	DMAIN 24
	66 READ INPUT TAPE 5,36, NUVAR,NPAGE1	DMAIN 25

READ INPUT TAPE 5, 36,NBIVAR,NPAGE2
IF (NBVTOT) $30,68,67$
67 NBVT = NBVTOT - 1
READ INPUT TAPE 5, 36, (($\operatorname{INDXBV}(I, J), J=1,4), I=1, N B V T)$
68 NPTOT $=$ NPAGE1 + NPAGE2
READ INPUT TAPE 5,37,((VNAME (I, J), J=1,24), I=1,NPTOT)
READ INPUT TAPE 5, 36, NFMT1, NFMT2, NFMT3, NFMT4, NFMT5, NFMT6, NFMT7,
1NFMT8
$\mathrm{KK}=12$ * NFMTI
READ INPUT TAPE 5,37, (FMTI(I), I=1, KK)
$\mathrm{KK}=12$ * NFMT2
READ INPUT TAPE 5,37, (FMT2(I), $I=1, K K$)
$\mathrm{KK}=12$ * NFMT3
READ INPUT TAPE 5,37,(FMT3(I), I=1, KK)
$\mathrm{KK}=12 *$ NFMT4
READ INPUT TAPE 5,37, (FMT $4(I), I=1, K K)$
$\mathrm{KK}=12$ * NFMT5
READ INPUT TAPE 5,37,(FMT5 (I), $I=1, K K$)
$\mathrm{KK}=12 * \mathrm{NFMT} 6$
READ INPUT TAPE 5,37 FMT6(I), I - 1,KK)
$\mathrm{KK}=12 * \mathrm{NFMD} 7$
READ INPUT TAPE 5,37, (FMIT (I), I - 1, KK)
$\mathrm{KK}=12 * \mathrm{NFMEP}$
READ INPUT TAPE 5,37, FMT8(I), $I=1, K K$)
C
READ INPUT TAPE 5, FMT2, ($\operatorname{SPMAX}(J), \mathrm{J}=1$, NUVTOT)
READ INPUT TAPE 5, FMI2, (SLGMTN (J), J-1, NUVTOT)
1 READ INPUT TAPE 5,38, PUNCH, WRITE1, WRIIE2, RITHYI, RITHM2, NORDER
READ INPUT TAPE 5,37,ANAME
READ INPUT TAPE 5, 39, GLASS, OCULAR, ISIDE,K
IF (NTRNS) $30,46,47$
46 READ INPUT TAPE 5, FMTI, ($(\operatorname{RAW}(I, J), J=1, I), I=1, K$ GO TO 51
47 READ INPUT TAPE 5, FMTl,$((\operatorname{MMTRNS}(I, J), J=1, \operatorname{NTRNS}),(\operatorname{RAW}(I, J), J=1, L)$, $1=1, K$)
51 IF (NRTAB) $30,49,48$
48 CALL RAWTAB (L, NSPCMP)

2 CALL XPUNCH (NUVTOT, NBVTOT, PUNCH)
3 IF (WRITIE1) 30,11,4
4 NPTEMP $=1$
$\mathrm{NPTOT}=0$
NVI $=2$
NV2 $=$ NUVAR
WRITEI $=0$.
5 IF (NPAGEI - NPTEMP) $12,6,6$

DMAIN 26
DMAIN 27
DMAIN 28
DMAIN 29
DMAIN 30
DMAIN 31
DMAIN 32
DMAIN 33
DMAIN 34
DMAIN 35
DMAIN 36
DMAIN 37
DMAIN 38
DMAIN 39
DMAIN 40
DMAIN 41
DMAIN 42
DMAIN 43
DMAIN 44
DMAIN 45
DMAIN 46
DMAIN 47
DMAIN 48
DMAIN 49
DMAIN 50
DMAIN 51
DMAIN 52
DMAIN 53
DMAIN 54
DMAIN 55
DMAIN 56
DMAIN 57
IDMAIN 58
DMAIN 59
DMAIN 60
DMAIN 61
DMAIN 62
DMAIN 63
DMAIN 64
DMAIN 65
DMAIN 66
DMAIN 67
DMAIN 68
DMAIN 69
DMAIN 70
DMATN 71
DMAIN 72

6 NPTOT - NPTOT + 1
DMAIN 73
WRIIE OUTPUT TAPE 6,40,ANAME
DMAIN 74
IF (ISIDE) 7,9,8
7 WRITE OUTPUT TAPE 6,41,K
GO TO 10
8 WRITE OUTPUT TAPE 6,42,K
GO TO 10
9 WRITE OUTPUT TAPE 6,43,K
C
10 WRITE OUTPUT TAPE 6,45, (VNAME (NPTOT, J) , $J=1,20$)
WRITE OUPPUT TAPE 6,FMT4, (RAW (I, 1$),(\mathrm{RAW}(I, J), J=N V 1, N V 2), I=1, K)$
CALL UNIVAR (RAW,NVI,NV2,NPTEMP,NUVAR, $1, L, N S P C M P, N S U B, N A D D)$
GO TO 5
C
11 NPTOT = NPAGEI
DMAIN 75
DMAIN 76
DMAIN 77
DMAIN 78
DMATN 79
DMAIN 80
DMAIN 81
DMATN 82
DMAIN 83
DMAIN 84

12 IF (WRITTE2) $30,20,13$
13 NPTEMP = 1
NVI $=2$
NV2 $=$ NBIVAR
NPIMP2 $=1$
NROWI $=1$
NROW2 $=$ NBIVAR -1
WRITED $=0$.
14 IF (NPAGE2 - NPTEMP) $20,15,15$
15 NPTOT $=$ NPTOT +1
DMAIN 85
DMAIN 86
DMAIN 87
DMAIN 88
DMAIN 89
DMAIN 90
DMAIN 91
DMAIN 92
DMAIN 93
DMAIN 94
DMAIN 95
WRITE OUTPUT TAPE 6,40,ANAME
IF (ISIDE) $16,18,17$
DMAIN 96
DMAIN 97
16 WRITE OUTPUT TAPE 6,41,K GO TO 19
17 WRITE OUTPUT TAPE 6,42,K
GO TO 19
18 WRITE OUTPUT TAPE 6,43,K
C
19 WRITE OUTPUT TAPE 6,45, (VNAME (NPTOT, J), $J=1,20$)
WRIPE OUTPUT TAPE 6,FMT5, (RATIO (I, 1$),(\operatorname{RATIO}(I, J), J=N V I, N V 2), I=1, K)$
C
CAL工 UNIVAR (RATIO,NV1,NV2,NPTEMP,NBIVAR, $2, ~ L, N S P C M P, N S U B, ~ N A D D)$
CALL BIVAR (NROWI,NROW2,NPTMP2)
GO TO 14
DMAIN 98
DMAIN 99
DMATNIOO
DMAINIO1
DMATNIO2
DMAINIO3
DMATNIO4
DMAINI 05
DMAINI 06
DMAIMLO7
C
20 IF (RITHPII) 30,22,21
21 WRITE1 = 1 .
22 IF (RITHT2) $30,24,23$
23 WRITE2 $=1$.
DMAIML08
DMATML09
DMAINIIO
24 IF (RITHII + RIIFT2) $30,32,25$
DMAINIII
C
$25 \mathrm{~K} 2=\mathrm{K}-1$
DMAINII2
DMATNII3

```
        DO 29 I=1,K2 DMAINII4
        IPI = I + I DMAINII5
        DO 29 I2=IPI,K DMATNLI6
    IF (RAW(I,NORDER) - RAW(I2,NORDER))26,26,29 DMAINI17
```



```
    TEMMPI(J) = RAW(I,J)
    RAW(I,J) = RAW(I2,J)
    27 RAW(I2,J) = TEMPI(J)
    DO 28 J=1,NBVTOT
    TEMP2(J) = RATIO(I, J)
    RATIO(I,J) = RATIO(I2,J)
    28 RATIO(I2,J) = TEMP2(J)
    29 CONTINUE
C
    RITHTl = 0.
    RITHPT2 = 0.
    GO TO 3
        30 WRIIE OUTPUT TAPE 6,44
        GO TO 33
        32 NDATA = NDATA - I
    IF (NDATA) 33, 33,70
    70 WRITE OUTPUT TAPE 6,71
    GO TO I
    33 CALL EXIT
C
    34 FORMAT (I3)
    36 FORMAT (24I3)
    37 FORMAT (12A6)
    38 FORMAT (F2.0,4F3.0,I3)
    39 FORMAT (F6.2/F6.2/I2/I3)
    40 FORMAT (1HI,2IA6)
    4 1 ~ F O R M A T ~ ( I H O , I 3 , I 2 H ~ L E F F T ~ V A L V E S ) ~
    4 2 ~ F O R M A T ~ ( 1 H O , I 3 , 1 3 H ~ R I G H T ~ V A L V E S ) ~
    4 3 \text { FORMAT (1HO,I3,1OH SPECIMENS)}
    4 4 \text { FORMAT (IHI,23HANOMALOUS VALVE IN DATA)}
    4 5 \text { FORMAT (1HO,2OA6)}
    7] FORMAT (1HI/IHI)
C
C
END
    SUBROUTINE RAWTAB (L,NSPCMP)
    RAWTB
    DIMENSION DUMMYI(390),DUMMY2(100,56),IDADDI(30),IDADD2(30),IDGLAS(RAWTB
        130), IDIOG(30), IDMIN(30), IDMTRI(30), IDMTR2 (5), IDSUBT(30), MMTRNS (IOORAWTB
        2,5),RAW(100,53), DUMMY3(80,4) RAWTB
            COMMON K,RAW,NLOG,NTRNS,GLASS,OCULAR,NGLASS,IDGLAS,NMMTRN,IDMTRI, RAWTB
            IIDMTR2,NSUB,IDMIN,IDSUBT,NADD,IDADD1,IDADD2,IDLOG,DUMMY1,DUMMY2. RAWTB
298-540 0-69-_
```

```
    2DUMMY3,MMTRNS RAWTB
```

\square 8
DO $28 \mathrm{I}=\mathrm{I}, \mathrm{K}$ RAWTB
IF (NGLASS) $30,4,1$ RAWTB 9

```1 DO \(3 \mathrm{~J}=1\), NGLASS
        J2 = IDGLAS(J)
        IF (RAW(I,J2))30,3,2
2 RAW(I,J2) = RAW(I,J2) - GLASS
    3 CONTINUE
    4 IF (NMMTRNN) 30,7,5
    5 \mp@code { D O ~ 6 ~ J = l , N M M T R N }
        J2 = IDMTRI(J)
    6 RAW(I,J2) = RAW(I,J2) / OCULAR
    7F (NTRNS)30,11,8
    DO lO J=l,NTRNS
        J3 = IDMTR2(J)
        IF (MMTRNS(I,J))9,30,10
    9 RAW(I,J3) = RAW(I,J3) / OCULAR
IO CONTINUE
11 J4 = L
    NSPCMP = 0
    J4 = J4 + I
    NSPCMP = NSPCMP + I
12 RAW(I,J4) = .5 * RAW(I,2I) * RAW(I,20)
RAWTB 10
RAWTB }1
RAWTB 12
RAWTB 13
```

```RAWTB 14
IF (NSUB) \(30,18,13\)
13 DO \(17 \mathrm{~J}=1\), NSUB
\(\mathrm{J} 2=\operatorname{IDMIN}(\mathrm{J})\)
\(\mathrm{J} 3=\operatorname{IDSUBT}(\mathrm{J})\)
\(\mathrm{J} 4=\mathrm{J} 4+1\)
IF ( \(\operatorname{RAW}(I, J 2)) 15,14,15\)
\(14 \operatorname{RAW}(I, J 4)=0\) 。
GO TO 17
\(15 \operatorname{IF}(\operatorname{RAW}(I, J 3)) 16,14,16\)
\(16 \operatorname{RAW}(I, J 4)=\operatorname{RAW}(I, J 2)-\operatorname{RAW}(I, J 3)\)
17 CONTINUE
C
```

18 IF (NADD) 30,24,19
19 DO $23 \mathrm{~J}=1$, NADD
$J 2=\operatorname{IDADDI}(J)$
$\mathrm{J} 3=\operatorname{IDADD2(J)}$
$J 4=J 4+1$7

RAWTB

RAWTB 15
RAWTB 16
RAWTB 17
RAWTB 18
RAWTB 19
RAWTB 20
RAWTB 21
RAWTB 22
RAWTB 23
RAWTB 24
RAWTB 25
RAWTB 26
RAWIB 27
RAWTB 28
RAWTB 29

IF (RAW(I, J2))21,20,21
$20 \operatorname{RAW}(I, J 4)=0$.
GO TO 23
$21 \operatorname{IF}(\operatorname{RAW}(I, J 3)) 22,20,22$
$22 \operatorname{RAW}(I, J 4)=\operatorname{RAW}(I, J 2)+\operatorname{RaW}(I, J 3)$
23 CONTINUE
C
24 IF (NLOG) $30,36,25$
25 DO $28 \mathrm{~J}=1$, NLOG
$\mathrm{J} 2=\operatorname{IDLOG}(\mathrm{J})$
$\mathrm{J} 4=\mathrm{J} 4+1$
$\operatorname{IF}(\operatorname{RAW}(I, J 2)) 30,28,26$
$26 \operatorname{RAW}(I, J 4)=\operatorname{LOGIOF}(\operatorname{RAW}(I, J 2))$
28 CONTINUE
GO TO 36
C
30 WRITE OUTPUT TAPE 6,31
31 FORMAT (1H1, 23HANOMALOUS VALUE IN DATA) CALL EXIT
C
36 RETURN
RAWTB 63
END
C - - - - - - - - DASAN (SUBROUTINE XRATIO) SUBROUTINE XRATIO (NBVT)

RATIO
DIMENSION DUMMY1(613), INDXBV(80,4), RATIO(100,56), RAW(100,53)
COMMON K,RAW,DUMMYI,RATIO,INDXBV
RATIO
RATIO 4
DO $1 \mathrm{I}=1, \mathrm{~K}$
RATIO 5
$\operatorname{RATIO}(I, I)=\operatorname{RAW}(I, I)$
$\mathrm{J} 2=1$
DO 1 II=1,NBVT
$J Y=\operatorname{INDXBV}(I I, I)$
$J X=\operatorname{INDXBV}(I I, 2)$
$\mathrm{J} 2=\mathrm{J} 2+1$
$1 \operatorname{RATIO}(I, J 2)=\operatorname{RAW}(I, J Y) / \operatorname{RAW}(I, J X)$
C
RETURN
END
RATIO 6
RATIO 7
RATIO 8
RATIO 9
RATIO 10
RATIO 11
RATIO 12 RATIO 13

C - - DASAN (SUBROUTINE XPUNCH)
C
SUBROUTINE XPUNCH (NUVTOT,NBVTOT, PUNCH)
DIMENSION DUMMYI(320), DUMMV2(173), FMT2(60), FMT3(60), RATIO(100,56), PUNCH 2 IRAW (100,53)

PUNCH 3
COMMON K, RAW, DUMMY1, FMT2, FMT3, DUMMY2, RATIO
C
IF (PUNCH - 2.) 1,2,1
1 PUNCH $=$ PUNCH -1 。
RAWTB 46
RAWTB 47
RAWTB 48
RAWTB 49
RAWTB 50
RAWTB 51
RAWTB 52
RAWTB 53
RAWTB 54
RAWTB 55
RAWTB 56
RAWTB 57
RAWTB 58
RAWTB 59
RAWTB 60
RAWTB 61
RAWTB 62

RAWTB 64

RATIO 2
3

```
        ANUM(J) = 0. UV
        SUM(J) = 0.
        39 IF (IDLOG2(I,J))28,4,7
        4 IF (X(I,J))7,5,7
        5 IF (I-K)6,7,28
        6 I = I + I
        GO TO }3
        7 AMIN(J) =X(I,J)
        SUM(J)= X(I,J)
        ANTMM(J) = I.
    8 I = I + I
        IF (I - K)40,40,13
    40 IF (IDLOG2(I,J))28,9,10
    9 IF (X(I,J))10, 8,10
    IO ANUM(J) = ANUM(J) + I.
    SUM(J) = SUM(J) + X(I,J)
    IF (AMIN(J) - X(I,J))8,8,II
    11 AMIN(J) = X(I,J)
    12 GO TO 8
    13 RANGE(J) = AMAX(J) - AMIN(J)
    14 AMEAN(J) = SUM(J)/\operatorname{ANUM}(J)
C
    DO 19 J=NNI, NN2
    I = I UV
    SUMSQR(J)=0.
    IF (IDLOG2(I,J))28,I5,17
    15 IF (X(I,J))I7,16,17
    16 I = I + I UV
    IF (I - K)I5,15,19
    17 IF (I - K) 18,18,19
    18 DIFFER(I,J) = X(I,J) - AMEAN(J)
        DIFSGR(I,J) = DIFFER(I,J) ** 2. UV 67
        SUMSQR(J) = SUMSQR(J) + DIFSQR(I,J) UV 68
        GO TO 16
    19 CONIINUE
    C
        DO 20 J=NNI,NN2 UV
        STIDDV(J)=(SUMSQR(J)/(ANUM(J) - I.)) ** .5 UV 72
    20V(J) = 100.* STDDV(J)/ AMEAN(J) UV
    C
        DO 23 J=NNI,NN2 UV
        NUMBER(J) = 0 UV
            MO 22 I = I,K 
            DO 22 I = l,K 
    4 2 \mathrm { IF } ( X ( I , J ) ) 2 1 , 2 2 , 2 1 ~ U V ~
    21 NUMBER(J) = NUMBER(J) + I
    2 2 ~ C O N T I N U E ~ U V ~
        BNUM(J) = NUMBER(J)
    23\operatorname{SDVMN}(J)=STDDV(J)/\operatorname{BNUM}(J) **.5 UV }8
    C
    24 GO TO (25,26),M UV
    25 WRITE OUTPUT TAPE 6,FMTG, (NUMBER(J),J=NN1,NNN2), (AMAX(J),J=NNI, NNN2)UV
            4 9
    50
        UV
        UV
        UV
        UV
        UV
        UV
        UV
            UV
        UV
            UV
            UV
            UV
            UV
            UV
            5 1
            52
            UV
            UV
            53
            UV
            UV
            54
            5 5
            UV 56
            UV
        5?
    UV
    5 8
        UV
            UV
        6 0
        6 1
            UV
        6 2
            UV
    UV
        UV 63
            UV 64
    18 IF (I K)10,18,19 UV
        UV
    65
        UV
        DIFSGR(I,J) = DIFFER(I,J) ** 2. UV 67
        UV68UV 69
```

UV

```70
```



```UV71
7 2
UV }7UVUVUVUV
    UV
    NV
UV
    23\operatorname{SDVMN}(J)=STDDV(J)/\operatorname{BNUM}(J) **.5 UV U2
        76
        7 7
78
        7 9
        80
81UV8325 WRITE OUTPUT TAPE 6, FMT6, (NUMBER(J), J=NNI, NN2), (AMAX (J) , J=NNI, NN2) UV
24 GO TO (25,26), M
25 WRITE OUTPUT TAPE 6, FMTG, (NUMBER(J) , J=NNI, NNL2), (AMAX(J), J=NNI, NN2) UV
```

26 WRITE OUTPUT TAPE 6, FMT , (NUMBER $(J), J=N N 1, N N 2),(A M A X(J), J=N N 1, N N 2)$ UV 88
$1,(\operatorname{AMIN}(J), J=N N 1, N N 2),(\operatorname{RANGE}(J), J=N N 1, N N 2),(\operatorname{AMEAN}(J), J=N N 1, N N 2),(S T U V$ 89
$2 \operatorname{DDV}(J), J=N N 1, N N 2),(\operatorname{SDVMN}(J), J=N N 1, N N C),(V(J), J=N N 1, N N 2)$ 90
GO TO 27 91
34 WRITE OUTPUT TAPE 6,36 UV 92
CALL EXIT 93

C
27 NPTEMP $=$ NPTEMP +1
UV 94
$\mathrm{NI}=\mathrm{N} 2+1$
UV
$\mathrm{N} 2=\mathrm{N} 2+\mathrm{NVAR}-1$
UV 96
C
36 FORMAT ($1 \mathrm{Hl}, 23 \mathrm{HANOMALOUS}$ VALUE IN DATA UV 97

C
28 RETURN UV 98
END UV 99
CC
SUBROUTINE BIVAR (NROW1, NROW2, NPTMP2) BVRMADIMENSION A (20), AMEANX (20), AMEANY (20), B (20), BASEI (20), DIFFER (100, 2BVRMA2
1), DIFSQR (100,2), DRMA (20), DUMMYI (222), DUMMY2 (240), DUMMY3 (100, 56), FMBVRMA 3$2 T 8(96), \operatorname{INDXBV}(80,4), \operatorname{PAIRS}(20), R(20), \operatorname{RSQ}(20), S P M A X(53), S T D D V X(20), B V R M A 4$3STDDVY (20), STERRA (20), SUM2 (2), SUMMUL (20), SUMSQ2 (2), TOPI (20), TX (IOOBVRMA5
$4,2), \mathrm{X}(100,53), \mathrm{YMAXI}(20), \operatorname{LGCOL}(20), \operatorname{DUMMY} 4(100,5), S L G M I N(53)$

BVRMA 6

C
COMMON K, X, NLOG, DUMMY1, NBIVAR,FMT8, DUMMY2, SPMAX, DUMMY 3, INDXBV, DUMMBVRMA7IY4,SLGMIN, NBVTBVRMA 8

C

$$
M=0
$$

BVRMA
9
$M M=0$
$I M=0$
32 DO 16 II = NROWI, NROW2
IF (II - NBVT) 55,55,54
$55 \mathrm{JI}=\operatorname{INDXBV}(I I, I)$
$J 2=\operatorname{INDXBV}(I I, 2)$
$L L=I N D X B V(I I, 3)$
$\mathrm{LGT}=\operatorname{INDXBV}(I I, 4)$
IF (M) $22,33,35$
$35 \operatorname{IF}(\operatorname{INDXBV}(I I, 4)) 34,33,34$
34 IM $=I M+1$
LGCOL(IM) = $二 L$
33 PAIRS $(L L)=0$.
$\operatorname{SUMSQ2}(1)=0$.
$\operatorname{SUMSQ2}(2)=0$.
$\operatorname{SUM} 2(1)=0$ 。
BVRMA 10
BVRMA 11
BVRMA 12
BVRMA 13
BVRMA 14
BVRMA 15
BVRMA 16
BVRMA 17
BVRMA 18
BVRMA 19
BVRMA 20
BVRMA 21
BVRMA 22
BVRMA 23
BVRMA 24
$\operatorname{SUM2}(2)=0$.
BVRMA 25
SUMMUL(LL) $=0$.
BVRMA 26
BVRMA 27

C

IF (M) $30,41,30$
41 IF (LGT)29,30,29
29 LGT = 0
$M M=1$
C
$30 \mathrm{Z}=0$.
DO $5 \mathrm{I}=\mathrm{I}, \mathrm{K}$
IF (LGT) $1,2,1$.
$1 \operatorname{TX}(I, I)=X(I, J I)$
$\operatorname{TX}(I, 2)=X(I, J 2)$
IF (X(I, JI))20,5,24
24 IF (X(I,J2))20,5,23
$23 X(I, J I)=\operatorname{LOGIOF}(X(I, J I))$
$X(I, J 2)=$ LOGIOF $(X(I, J 2))$
IF (Z) 4, 60,4
60 IF (SPMAX(J1))20,20,51
51 TSPMAX = SPMAX(Jl)
$\operatorname{SPMAX}(J 1)=$ LOGIOF(SPMAX(JI))
IF (SPMAX(J2))20,20,61
61 TSPMXX = SPMAX(J2)
SPMAX(J2) = LOGIOF(SPMAX(J2))
$Z=1$.
GO TO 4
2 IF (X(I,JI)) 3,5,3
$3 \mathrm{IF}(X(I, J 2)) 4,5.4$
4 PAIRS (LL) $=$ PAIRS (LL) +1 。 $\operatorname{SuM2}(1)=\operatorname{SUM2}(1)+X(I, J I)$ SUM2 (2$)=\operatorname{SUM2}(2)+X(I, J 2)$
5 CONTINUE
C

C

```
        AMEANY(LL) = SUM2( l) / PAIRS(LL)
```

 \(\operatorname{AMEANX}(L L)=\operatorname{SUM2}(2) / \operatorname{PAIRS}\left(L I_{1}\right)\)
 DO $6 \mathrm{~J}=1,2$
DO $6 \mathrm{I}=1, \mathrm{~K}$
$\operatorname{DIFSQR}(I, J)=0$.
$5 \operatorname{DIFFER}(I, J)=0$.
C
DO $9 I=1, K$
IF (LGT)47, 7, 47
$47 \mathrm{IF}(\mathrm{TX}(\mathrm{I}, 1)) 20,9,25$
$25 \operatorname{IF}(\operatorname{TX}(I, 2)) 20,9,10$
7 IF (X(I,Jl))8,9,8
$8 \operatorname{IF}(X(I, J 2)) 10,9,10$
$10 \operatorname{DIFFER}(I, 1)=X(I, J I)-\operatorname{AMEANY}(L L)$
$\operatorname{DIFFER}(I, 2)=X(I, J 2)-\operatorname{AMEANX}(I L)$
$\operatorname{DIFSQR}(I, I)=\operatorname{DIFFER}(I, 1) * * 2$. $\operatorname{DIFSQR}(I, 2)=\operatorname{DIFFER}(I, 2) * * 2$.
9 CONTINUE
C

BVRMA 28
BVRMA 29
BVRMA 30
BVRMA 31
BVRMA 32
BVRMA 33
BVRMA 34
BVRMA 35
BVRMA 36
BVRMA 37
BVRMA 38
BVRMA 39
BVRMA 40
BVRMA 41
BVRMA 42
BVRMA 43
BVRMA 44
BVRMA 45
BVRMA 46
BVRMA 4 ?
BVRMA 48
BVRMA 49
BVEMA 50
BVRMA 51
BVRMA 52
BVRMA 53
BVRMA 54
BVRMA 55
BVRMA 56
BVFMA 57
BVRMA 58
BVRMA 59
BVRMA 60
BVFMA 61
BVRMA 62
BVRMA 63
BVRMA 54
BVRMA 65
BVRMA 66
BVRMA 67
BVRMA 68
BVRMA 69
BVRMA 70
BVRMA 71
BVRMA 72
$11 \operatorname{DO} 14 \mathrm{I}=1, \mathrm{~K}$
$\operatorname{DIFMUL}=\operatorname{DIFFER}(I, 1) * \operatorname{DIFFER}(I, 2)$

BVRMA 73
BVRMA 74

```
    SUMMUL(LL) = SUMNUL(LL) + DIFMUL BVRMA 75
    IF (LGT)26,27,26
26 IF (TX(I,1))20,14,28
28 IF (TX(I, 2))20,14,13
27 IF (X(I,JI))12,14,12
12 IF (X(I,J2)) 13,14,13
13 SUMSQ2(I) = SUMSQ2(I) + DIFSQR(I,I)
    SUMSQ2( 2) = SUMSQ2( 2) + DIFSQR(I, 2)
    14 CONTINUE
    49 VDY = (SPPMAX(JI) - SLGMIN(JI)) / 49.
    50 TOPI(LL) = (YMAXI(LL) - SPMAX(JI))/VDY
        BASEl(LI) = B(LL) / VDY
    DO }17\textrm{I}=1,\textrm{K
    IF (LGT)15,16,15
    15 X(I,JI) = TX(I,I)
    17 X(I,J2) = TX(I 2)
    1)}\begin{array}{l}{\mathrm{ SPMAX(J1) = TSPMAXX}}\\{\mathrm{ SPMAX(J2) = TSPMXX}}
    SPMAX(J1) = TSPMAX
    16 CONTINUE
54 NN = NBIVAR
    IF (M+MM) 36,31,36
    BVRMAllO
    31 IF (89-K)45,46,46
    45 WRITE OUTPUT TAPE 6,19
    46 WRITE OUTPUT TAPE 6,18
        GO TO }3
    36 IF (M)43,42,43
    42 IF (70-K)44,46,46
    4 4 \text { WRITE OUTPUT TAPE 6,19}
    43 WRITE OUTPUT TAPE 6,40,(LGCOL(J),J=1,IM)
    BVRMAll.
    BVRMAlI2
        STDDVY(LI) =(SUMSQ2(I) /(PAIRS(LL) - I.)) ) ** . 5
        STDDVY(LI) =(SUMSQ2(I) /(PAIRS(LL) - I.)) ) ** . 5
    SY2 = STDDVY(LL) ** 2.
    SX2 = STDDVX(LL) ** 2.
    R(LL) = SUMMMUL(LL) / (SUMSQ2( 1) * SUMSQ2( 2)) ** . 5
    A(LL) = STDDVY(LL) / STDDVX(LL)
    RSQ(LL) = R(LL) ** 2.
    STERRA(LL) = A(LL) * ((I. - RSQ(LL)) / PAIRS(LL)) ** . }
    B(LL) = AMEANY(LL) - AMEANX(LL) * A(LL)
    BVRMA }7
    BVRMA }7
    BVRMA }7
    BVRMA }7
    BVRMA }8
    BVRMA 81
    BVRMA }8
    BVRMA }8
C
    DRMA(LL) = 100. * (2. * (1.-R(LL)) * (SX2+SY2) / ((AMEANX(LL)**2.)
    1 + (AMEANY(LL)**2.))) ** . 5
    YMAXI(LL) = SPMAX(JZ) * A(IL) + B(LI)
    IF (LGT)49,48,49
    48 VDY = SPMAX(JI) / 49.
    GO TO 50
    BVRMA }8
    BVRMA }8
    BVRMA }8
    BVRMA }8
    BVRMA }8
    BVRMA }8
    BVRMA 90
    BVRMA 91
    BVRMA 92
    ) BVRMA 93
    BVRMA }9
    BVRMA }9
    BVRMA }9
BVRMA103
BVRMA }9
BVRMA 98
BVRMA 99
BVRMA100
BVRMA1O1
C
    BVRMA104
    BVRMA105
    BVRMA106
    BVRMAIO?
BVRMAlO8
BVRMAIO9
    39 WRITE OUTPUT TAPE 6, FMT8, (R(J),J=2,NN),(A(J),J=2,NN), (STERRA(J) J=BVRMAIIG
    12,NN),(B(J),J=2,NN), (DRMA(J),J=2, NN), (AMEANY (J),J=2,NN), (AMEANX(J) BVRMA12O
    2,J=2,NN),(YMAXI(J),J=2,NN),(TOPI (J),J=2,NN),(BASEI(J),J=2,NN) BVRMAI21
```

 R(J) O. BVRMAl23
 A(J) = 0.
 STERRA(J) = 0.
 B(J)=0.
 DRMA(J) = 0.
 AMEANY(J) = 0.
 AMEANX(J) = O.
 MMAXI(J) = 0.
 TOPI}(J)=0
 53 BASEl(J) = 0.
 C
IF (MM)37,38,37
37M = 1
MM = 0
GO TO 32
38 NPTMP2 = NPTMP2 + 1
NROW1 = NROW2 + 1
NROW2 = NROW2 + NBIVAR - l
GO TO 22
C
20 WRITE OUTPUT TAPE 6,21 BVRMAI41
CALL EXIT
C
21 FORMAT(1H1,23HANOMALOUS VALUE IN DATA)
18 FORMAT (1H-,93HBIVARIATE ANALYSIS (REDUCED MAJOR AXIS) OF Y/X. REBVRMAI44
ISULTS NOT VALID FOR COLUMNS OF LOG Y/LOGX.)
BVRMA145
19 FORMAT (1HI)
4 0 ~ F O R M A T ~ (1 H - , 8 O H B I V A R I A T E ~ A N A L Y S I S ~ (R E D U C E D ~ M A J O R ~ A X I S) ~ O F ~ L O G ~ Y / L O B V R M A I 4 ?
IG X VALID ONLY FOR COLUMN(S),10I4/1H,10I4)
BVRMA148
C
22 RETURN
END
C - _ - _ - _ _ _ - - DASAN (SUBROUTINE BIVAR) - - _ - - - - - - - - -
ALTERNATE SUBROUTINE BIVAR WHICH COMPUTES
THE REGRESSIONS OF Y ON X AND X ON Y.
SUBROUTINE BIVAR (NROW1,NROW2,NPTMP2)
BVYXY$6 \mathrm{Y}(20), \operatorname{SYX}(20), \operatorname{TOP} 2(20), \operatorname{TOP} 3(20), \operatorname{TX}(100,2), \mathrm{X}(100,53), \operatorname{XMAX}(20), \operatorname{YMAX} 2 \mathrm{BVYXY}$7(20)? $7(20)$ BVYXY8
9
C
COMMON K,X,NLOG,DUMMY1, NBIVAR,FMT8, DUMMY2, SPMAX,DUMMY3, INDXBV, DUMMBVYXY 10 IY4,SLGMIN, NBVT BVYXY BVYXY 11
C

$$
M=0
$$

$M M=0$ BVYXY 13
$I M=0$
32 DO 16 II = NROW1, NROW2IF (II - NBVT) 55,55,54
$55 \mathrm{Jl}=\operatorname{INDXBV}(I I, 1)$$\mathrm{J} 2=\operatorname{INDXBV}(I I, 2)$$\mathrm{LL}=\operatorname{INDXBV}(I I, 3)$BVYXY 14
BVYXY 15BVYXY 16
BVYXY 17
$\operatorname{LGT}=\operatorname{INDXBV}(I I, 4)$BVYXY 18IF (M) 22, 33, 35
BVYXY 19
BVYXY 20
BVYXY 21
BVYXY 22
$35 \mathrm{IF}(\operatorname{INDXBV}(I I, 4)) 34,33,34$BVYXY 23
LGCOL(IM) = LL
BVYXY 24 24
33 PAIRS(LL) $=0$.$\operatorname{SUMSQL}(1)=0$.$\operatorname{SUMSQ2}(2)=0$.$\operatorname{SUM}(1)=0$ 。
SUM2 (2) $=0$.
SUMMUL(LL) $=0$.
C
$\begin{array}{ll} & I F(M) 30,41,30 \\ 41 \\ \text { IF (LGT) } 29,30,29\end{array}$
29 LGT = 0
$M M=1$
C
$30 \mathrm{Z}=0$.
DO $5 \mathrm{I}=\mathrm{l}, \mathrm{K}$
IF (LGT) $1,2,1$
$1 \operatorname{TX}(I, I)=X(I, J I)$
$T X(I, 2)=X(I, J 2)$
IF (X(I,JI))20,5,24
24 IF (X(I, J2))20,5,23
$23 X(I, J I)=\operatorname{LOG1OF}(X(I, J 1))$
$X(I, J 2)=$ LOGIOF $(X(I, J 2))$
IF (Z) 4,60,4
$60 \operatorname{IF}$ (SPMAX(JI))20,20,51
51 TSPMAX = SPMAX(JI)
$\operatorname{SPMAX}(J 1)=$ LOGIOF(SPMAX(J1))
IF (SPMAX (J2))20,20,52
52 TSPMXX $=$ SPMAX (J2)
SPMAX(J2) = LOGIOF(SPMAX(J2))
$Z=1$.
GO TO 4
$2 \operatorname{IF}(X(I, J I)) 3,5,3$
$3 \operatorname{IF}(X(I, J 2)) 4,5,4$
4 PAIRS(LL) $=$ PAIRS(LL) +1 .
$\operatorname{SUM2}(1)=\operatorname{SUM2}(1)+X(I, J I)$
$\operatorname{SUM2}(2)=\operatorname{SUM} 2(2)+X(I, J 2)$
5 CONTINUE
C
$\begin{array}{ll}\text { AMEANY (LL) }=\operatorname{SUM2}(\mathrm{l}) / \operatorname{PAIRS}(\mathrm{LL}) & \text { BVYXY } 59 \\ \operatorname{AMEANX}(\mathrm{LL})=\operatorname{SUM2}(2) / \operatorname{PAIRS}(\mathrm{LL}) & \text { BVYXY } 60\end{array}$
$\begin{array}{ll}\text { AMEANY (LL) }=\operatorname{SUM2}(\mathrm{l}) / \operatorname{PAIRS}(\mathrm{LL}) & \text { BVYXY } 59 \\ \operatorname{AMEANX}(\mathrm{LL})=\operatorname{SUM2}(2) / \operatorname{PAIRS}(\mathrm{LL}) & \text { BVYXY } 60\end{array}$
C
DO $6 \mathrm{~J}=1,2$
BVYXY 25
BVYXY 26
BVYXY 27
BVYXY 28
BVYXY 29
BVYXY 30
BVYXY 31
BVYXY 32
BVYXY 33
BVYXY 34
SUMC (1) $=0$.
BVYXY 35
BVYXY 36
BVYXY 37
BVYXY 38
BVYXY 38
BVYXY 39
BVYXY 40
BVYXY 41
BVYXY 60
BVYXY 61

BVYXY 62
DO $6 I=1, K$
$\operatorname{DIFSQR}(I, J)=0$.
$6 \operatorname{DIFFER}(I, J)=0$.
C
DO $9 I=I, K$ IF (LGT)47,7,47
$47 \mathrm{IF}(\operatorname{TX}(I, I)) 20,9,25$
$25 \operatorname{IF}(\operatorname{TX}(I, 2)) 20,9,10$
$7 \operatorname{IF}(X(I, J I)) 8,9,8$
$8 \operatorname{IF}(X(I, J 2)) 10,9,10$
$10 \operatorname{DIFFER}(I, 1)=X(I, J I)-\operatorname{AMEANY}(L L)$
$\operatorname{DIFFER}(I, 2)=X(I, J 2)-\operatorname{AMEANX}(L L)$
$\operatorname{DIFSQR}(I, I)=\operatorname{DIFFER}(I, I) * * 2$.
$\operatorname{DIFSQR}(I, 2)=\operatorname{DIFFER}(I, 2) * * 2$.
9 CONTINUE
C
11 DO 14 I=I, K
$\operatorname{DIFMUL}=\operatorname{DIFFER}(I, 1) * \operatorname{DIFFER}(1,2)$
SUMMUL(LL) $=$ SUMMUL(LL) + DIFMUL
IF (LGT)26,27,26
$26 \mathrm{IF}(\operatorname{TX}(I, I)) 20,14,28$
$28 \mathrm{IF}(\mathrm{TX}(\mathrm{I}, 2)) 20,14,13$
$27 \mathrm{IF}(\mathrm{X}(\mathrm{I}, \mathrm{J} 1)) 12,14,12$
$12 \operatorname{IF}(X(I, J 2)) 13,14,13$
$13 \operatorname{SUMSQ2}(1)=\operatorname{SUMSQ2}(1)+\operatorname{DIFSQR}(I, I)$
$\operatorname{SUMSQ2}(2)=\operatorname{SUMSQ2}(2)+\operatorname{DIFSQR}(I, 2)$
14 CONTINUE
$\operatorname{STDDVY}(L L)=(\operatorname{SUMSQ2}(1) /($ PAIRS $(L L)-1)) * *$.
$\operatorname{STDDVX}(L L)=(\operatorname{SUMSQ2}(2) /($ PAIRS $(L L)-1).){ }^{* *} .5$
$\operatorname{BYX}(L L)=$ SUMMUL(LI) $/ \operatorname{SUMSQ2}(2)$
$\operatorname{BXY}(L I)=\operatorname{SUMMUL}(L I) / \operatorname{SUMSQ2}(I)$
$\mathrm{AY}(\mathrm{LL})=\operatorname{AMEANY}(L L)-B Y X(L L) * \operatorname{AMEANX}(L I)$
$\operatorname{AX}\left(L I_{1}\right)=\operatorname{AMEANX}(L L)-B X Y(L L) * \operatorname{AMEANY}(L I)$
SY2 $=\operatorname{STDDVY(LL)~} * * 2$.
SX2 $=\operatorname{STDDVX}(L I) \quad * * 2$.
$Y Y=B Y X(L T) * * 2$ * * SX2
$X X=B X Y(L L) * * 2 . * S Y 2$
$S Y X(L L)=(\operatorname{PAIRS}(L L)-1.) /(\operatorname{PAIRS}(L L)-2) *.(S Y 2-Y Y)$
$\operatorname{SXY}(L L)=(\operatorname{PAIRS}(L L)-1.) /(\operatorname{PAIRS}(L I)-2) *.(S X 2-X X)$
$\mathrm{R}(\mathrm{LI})=\operatorname{SUMMUL}(\mathrm{LL}) /(\operatorname{SUMSQ2}(1) * \operatorname{SUMSQ2}(2)) * * .5$
$R S Q(L L)=R(L L) * * 2$.
$\operatorname{STESTY}(I L)=\operatorname{STDDVX}(L I) *(1 .-\operatorname{RSQ}(L L)) * * .5$
$\operatorname{STESTX}(L L)=\operatorname{STDDVY}(L L) *(1 .-\operatorname{RSQ}(L L)) * * .5$
$\operatorname{DXY}(L L)=100 . * \operatorname{STESTY}(L L) / \operatorname{AMEANX}(L L)$
$\operatorname{ERRDXY}(L L)=\operatorname{DXY}(L L) /(2$. * PAIRS (LL)) ** . 5
$\operatorname{DYX}(L L)=100 . * \operatorname{STESTX}(L L) /$ AMEANY(LL)
$\operatorname{ERRDYX}(L L)=\operatorname{DYX}(L L) /(2 . * \operatorname{PAIRS}(L L)) * * * 5($ PAIRS (LL) - I. $) * * .5))$ BVYXY107
CONBYX(LL) $=$ SYX(LL) $* * .5 /($ STDDVX(IL) $*(($ PAIRS (LI) - I.. $* * .5))$ BVYXYIO8
$\operatorname{CONBXY}(L L)=S X Y(L L) * * .5 /(S T D D V Y(L L) *((P A I R S(L L) \quad$ BVYXYIC9
CONAY(LI) $=\operatorname{SYX}\left(\mathrm{LI}_{1}\right) * * .5 /($ PAIRS $(\mathrm{LL}) \quad * *$.5)
CONAX (LI) $=$ SXY (LL) ${ }^{* *} .5 /(\text { PAIRS (LL) })^{* *} .5$)
$\operatorname{XMAX}(\mathrm{LL})=\operatorname{SPMAX}(J I) * \operatorname{BXY}(L L)+A X(L L)$

YMAX2 (LL) $=$ SPMAX(J2) * BYX(LL) $+A Y(L L) \quad$ BVYXYll2

C
IF (LGT) $49,48,49$
48 VDY $=\operatorname{SPMAX}(\mathrm{JI}) / 49$.
$\operatorname{VDX}=\operatorname{SPMAX}(J 2) / 35$.
GO TO 50
49 VDY $=(\operatorname{SPMAX}(J 1)-\operatorname{SLGMIN}(J 1)) / 49$.
$\operatorname{VDX}=(\operatorname{SPMAX}(J 2)-\operatorname{SLGMIN}(J 2)) / 35$.
50 TOP2(LL) $=(Y M A X 2(L L)-S P M A X(J l)) / V D Y$
BASE2(LL) $=A Y(L L) / V D Y$
$\operatorname{TOP} 3(L L)=(X M A X(L L)-S P M A X(J 2)) / V D X$
$\operatorname{BASE} 3(L L)=A X(L L) / V D X$
IF (LGT) $15,16,15$
15 DO $17 \mathrm{I}=\mathrm{I}, \mathrm{K}$
$X(I, J I)=T X(I, I)$
$17 \mathrm{X}(\mathrm{I}, \mathrm{J} 2)=\mathrm{TX}(I, 2)$
$\operatorname{SPMAX}(J 1)=$ TSPMAX
SPMAX(J2) = TSPMXX
16 CONTINUE
$54 \mathrm{NN}=$ NBIVAR
$1 \mathrm{IF}(\mathrm{M}+\mathrm{MM}) 36,31,36$
31 IF (81-K)45,46,46
45 WRITE OUTPUT TAPE 6,19
46 WRITE OUTPUT TAPE 6,18
GO TO 39
36 IF (M) 43, 42, 43
$42 \mathrm{IF}(50-\mathrm{K}) 44,46,46$
44 WRITE OUTPUT TAPE 6,19
43 WRITE OUTPUT TAPE 6,40, (LGCOL(J), J=1,IM)
39 WRITE OUTPUT TAPE 6, FMT8, ($R(J), J=2, N N),(B Y X(J), J=2, N N),(A Y(J), J=2, B V Y X Y 140$ l NN) , (BXY (J), J=2, NN), (AX(J), J=2, NN), (STESTY(J), J=2, NN), (STESTX(J), JBVYXY141 $2=2, N N),(D Y X(J), J=2, N N),(E R R D Y X(J), J=2, N N),(D X Y(J), J=2, N N),(E R R D X Y(B V Y X Y 142$
 $4,(\operatorname{CONAX}(J), J=2, N N),(Y M A X 2(J), J=2, N N),(X M A X(J), J=2, N N),(T O P 2(J), J=2 B V Y X Y 144$ 5, NN), (BASE2 (J), J=2, NN), (TOP3 (J), J=2, NN), (BASE3 (J), J=2, NN)

BVYXY145

BVYXY146
BVYXY147
BVYXY148
BVYXY149
BVYXY150
BVYXY151
BVYXY152
BVYXY153
BVYXY154
BVYXY155
BVYXY156
BVYXY157
BVYXY158
BVYXY159

```
        CONBXY(J) = 0. BVYXY160
        CONAX(J) = 0. BVYXY161
        YMAX2(J) = 0. BVYXY162
        YMAX(J) = 0. BVYXY163
        TOP2(J) = 0. BVYXY164
        BASE2(J) = 0. BVYXY165
        TOP3(J) = 0. BVYXY166
    53 BASE3(J) = 0.
    BVYXY167
C
        IF (MM) 37,38,37 BVYSY168
    37 M = 1 BVYXY169
        MM = 0 BVYXY170
        GO TO 32 BVYXY171
    38 NPTMP2 = NPTMP2 + 1 BVYXY172
        NROW1 = NROW2 + 1
        NROW2 = NROW2 + NBIVAR - 1
        GO TO 22
C
    20 WRITE OUTPUT TAPE 6,21 BVYXY176
        CALL EXIT BVYXYI7?
C
    21 FORMAT(1H1,23HANOMALOUS VALUE IN DATA)
    BVYXY178
    18 FORMAT (IH-,IO7HBIVARIATE ANALYSIS (REGRESSION OF Y ON X AND X ON BVYXY179
        IY) OF Y/X. RESULTS NOT VALID FOR COLUMNS OF LOG Y/LOG X.) BVYXY180
```



```
    40 FORMAT (1H-,93HBIVARIATE ANALYSIS (REGRESSION OF Y ON X AND X ON YBVYXYI82
        1) OF LOG Y/LOG X, VALID ONLY FOR COLUMN(S),7I4/IH ,13I4) BVYXY183
C
    22 RETURN
        END
```


Input Data Preparation for DASAN

The following section describes the preparation of control and data cards and the order in which they are to be placed behind the program source deck. The control cards are described in two groups. Group I is placed directly behind the program source deck and is not repeated for each data deck included in the computer run. Group II follows Group I and must be repeated before each data deck in the run. This means that operations controlled by Group I apply to all data decks in a run, but that operations controlled by each Group II apply only to the data deck immediately following that appearance of Group II.

In the description below, instructions are numbered consecutively. Numbers in parentheses indicate the minimum and maximum numbers of control cards which are pernitted for each instruction.

All numbers punched on control cards are without decimal points, unless otherwise indicated, and are right justified within their fields.

The schematic problem illustrated in Figure 1 is used as an example for some of the controls. All instructions are further demonstrated by the listing of controls in the input for a real problem.

Group I Control Cards

1. (1): The number of data decks (from 1 to 999) which are to be processed in a single run. Puneh in card columns 1-3.
2. (1): The number of variables in the univariate input array (from 2 to 53), including the column of specimen identification numbers. Punch in columns 2-3.

The number is 6 for the problem in Figure 1.
3. (1): The number of variables in the univariate output array (from 2-53), including the column
of specimen identification numbers. (Note that if the number for 1 nstruction 2 is maximal, i.e., 53 , there is no room remaining for additional univariate variables, and the univariate output array will consist only of the array A shown in Figure 1.) Punch in columns 2-3.

The number is 13 for the problem in Figure 1 .
4. (1): The number of variables in the bivariate array (from 0 to 56), including the column of specimen identification numbers. Punch in columns 2-3.

The number is 9 for the problem in Figure 1.
5. (1): Signal for the calling of Subroutine RAWTAB (one) or the bypassing of RAWTAB (zero), punched in column 3. RAWTAB may be bypassed if no new univariate variables are to be added to the input array.
6. (1): Signal for the calling (one) or bypassing (zero) of Subroutine XRATIO, punched in column 3. XRATIO may be bypassed if no ratios are to be computed and if no bivariate analyses are to be run.
7. (1): (a) Columns 2-3: The number of univariate input variables (from 0 to 30) from which a constant, the value of which is specified in Instruction 33 , is to be subtracted.
(b) Columns 5-6: The number of univariate input variables (from 0 to 30) which are always to be divided by a constant, the value of which is specified in Instruction 34. (See also Instruction 9.)
(c) Column 9: The number of univariate imput variables (from 0 to 5) which may or may not be divided by the constant referred to above (7b) depending on the value of a signal included with the data for each specimen. (See discussion of data deck in Instructions 21 and 37.)
(d) Columns 11-12: The number of univariate variables (fromı 0 to 30) to be generated by subtracting one input variable from another.
(e) Columns 14-15: The number of univariate variables (from 0 to 30) to be generated by adding two input variables.
(f) Columns 17-18: The number of univariate variables (from 0 to 30) to be transformed to logarithms to the base 10 and to be added as new columns to the original array.

For the problem in Figure 1, the control card for Instruction 7 is punched 01010020102.
8. (0-2): The column numbers of variables in the univariate output array from which a constant, specified in Instruction 33, is to be subtracted. (See also Instruction 7a.) Punch numbers in fields of 3 in columns 1-72.

The card is punched 006 for the problem in Figure 1.
9. $(0-2)$: The column numbers of variables in the univariate output array which are always to be divided by a constant, specified in Instruction 34. (See also Instruction 7b.) Punch numbers in fields of 3 in columns $1-72$.

The card is punched 004 for the problem in Figure 1.
10. $(0-1)$: The column numbers of variables in the umvariate output array which may or may not be divided by a constant, specified in Instruction 34 , depending on a signal read in with the data for each specimen (see Instruction 21). The maximum number of column numbers which can be listed here is 5 . Punch numbers in fields of 3 in columns $1-15$.

No card is required here for the problem in Figure 1.
11. (0-2): Column numbers of variables in the umvariate output array which are to serve as minuends (see Instructions 7d and 12). Punch in fields of 3 in columns 1-72.

The card is punched 002002 for the problen in Figure 1.
12. (0-2): Column numbers of variables in the univariate output array which are to serve as subtrahends, so that the first subtrahend specified here is subtracted from the first minuend specified in Instruction 11, the second subtrahend from the second minuend, etc. Punch numbers in fields of 3 in columns 1-72.

The card is punched 002002 for the problem in Figure 1.
13. $(0-2)$: Column numbers of variables in the univariate output array to which other variables, specified in Instruction 14, are to be added. (See also Instruction 7e.) Punch in fields of 3 in columns 1-72.

The card is punched 005 for the problem in Figure 1.
14. ($0-2)$: Column numbers of variables in the univariate output array which are to be added to variables specified in Instruction 13, such that the first variable specified here is added to the
first variable specified in Instruction 13, the second variable to the second variable, ete. Punch in fields of 3 in columns $1-72$.

The card is punched 008 for the problem in Figure 1.
15. (0-2): Column numbers of variables in the univariate output array which are to be transformed to logarithms to the base 10 and which are to be entered as new columns in the univariate output array. (See Instruction 7f.) Punch in fields of 3 in columns 1-72.

The card is punched 002003 for the problem in Figure 1.
16. (1): (a) Columns 2-3: The number of univariate variables which are to be fitted on an output page. (This includes a column of specimen identification numbers on each page.)
(b) Columns 5-6: The number of segments into which the univariate output array must be broken in order to fit on standard output paper. Each output segment of the array begins with a column occupied by the specimen identification numbers, so that rows in the segment may be readily identified. Calculate the number of segments by means of the following formula:

$$
N=\frac{T-C}{C-1}+1
$$

where N, the number of univariate output segments, is rounded to the next highest whole number; T is the number of variables in the univariate output array (Instruction 3) ; and C is the number of columns which can be fitted on an output page (Instruction 16a).

For the sample output (see listing), T is 6 , and C is 14 , so that N is 3 , after rounding 2.7 to the next highest whole number.
17. (1): (a) Columns 2-3: The number of bivariate variables which are to be fitted on an output page. (This includes a column of specimen identification numbers.)
(b) Columns 5-6: The number of segments into which the bivariate array must be broken in order to fit on standard output paper. Calculate by means of the formula in Instruction 16 b , where T is the total number of variables in the bivariate array (Instruction 4) and C is the number of bivariate columns which are to be fitted on an output page (Instruction 17a).

For the sample output (see listing), T is 42 and C is 12 , so that N is 4 after rounding 3.8 to the next highest whole number.
18. ($0-10$): Indexing of column numbers of variables to be used in computation of ratios, y / x, beginning with the first ratio to appear on the first bivariate output page and proceeding from left to right through consecutive pages. Each ratio is represented by a group of 12 card columns, punched as follows:
(a) Columns 2-3: Column number of y in the univariate output array.
(b) Columns 5-6: Column number of x in the univariate output array.
(c) Columns 8-9: Column number which the ratio will have on its respective output page. (The column of specimen identification numbers is column 1 on each page.)
(d) Column 12: Signal for the \log (base 10) transformation of both y and x in order to produce bivariate statistics of the ratio both before and after \log transformation. Punch zero if no transformation; punch one for transformation.

Indexing for the next ratio begins in the next field of 3 columns, and so on, through the first 72 columns of the card (6 ratios indexed jeer card). Indexing then begins again on a second card. Because the maximum number of ratios permissible is 55 , the maximum number of cards allowed here is 10 .

If no ratios are to be computed (i.e., if the control number described in Instruction 4 is zero), no cards should be present for this instruction.

For the schematic problem in Figure 1, two cards would be required which would be punched as follows: first card: 02030201 030403010603040006050501090406 0110040700 ; second card: 0206080112 130900.
19. $(2 n)$: Names of variables to be placed as column headings on each output page. The column headings of each page occupy two cards (columns 1-72 of the first card and columns 1-48 of the second card), with the spacing beginning with card column 1 , corresponding to print positions on the output page (120 print positions per line) . The names of variables on consecutive pages occupy consecutive pairs of cards. The number of cards required here is
twice the number of output pages. These cards must be present even if they are blank.
20. (1): Numbers of cards to be read in for each of 8 variable formats (Instructions 21-28). Punch in fields of 3 in card columns 1-24. The number of cards for each format must be at least one and cannot exceed 5, with the exception of the eighth format, for which up to 8 cards may be present.
21. (1-5): The format, in FORTRAN II, for the reading in of data cards. The format must begin with a left-parenthesis and end with a rightparenthesis.

If the control described in Instruction 7c is greater than zero, the following applies:

Make provision at the beginning of each data card (or each group of cards if a specimen is represented by more than one card) for reading in the signals which will determine whether certain variables (the column numbers of which were specified in Instruction 10) are to be divided (-1) or not divided $(+1)$ by a constant, the value of which is specified in Instruction 34.

There can be no more than 5 signals, and the signals are to be read in as fixed-point (integer) variables by means of an " I " specification as shown in the format listed with the controls for the sample output. All other variables on the data card must be read in as floating-point variables by means of an "F" or "E" specification.

In addition to the example given by the listing of control cards for the sample input, the following is given:

A data card which is puncled, beginning in the first card column, $+1-1-1001760321947$, and which is read in by the format (3I2, F3.0, 2F3.1, F3.3), will be read in as the following values: $+1,-1,-1,1 ., 76.0,32.1$, and 947.

For further instruction on format specification in FORTRAN II, particularly with regard to Hollerith "H" specifications and carriage control, the reader is referred to the FORTRAN Gencral Information Manual (IBM, 1961) or to McCracken (1961).
22. (1-5): The format, in FORTRAN II, for the punching out of the univariate output array. The order in which the variables are punched
out is the same as the order of the subarrays shown in Figure 1.

This is also the format for the reading in of maxima for the variables in the univariate output array (Instruction 29) and for the reading in of \log minima for the variables which will be transformed to logs by Instruction 18 d .
23. (1-5): The format, in FORTRAN II, for punching out the bivariate array.
24. (1-5): The format, in FORTRAN II, for printing the univariate output array. The format is repeatedly used for each row of the array throughout all segments, so that the maximum number of decimal places which will be required by any one variable should be used for all variables. The same applies to Instruction 25.
25. (1-5): The format, in FORTRAN II, for the printing of the bivariate array. (See Instruction 24.)
26. ($3-5$): The fommat, in FORTRAN II, for printing the univariate statistics beneath each table of the univariate array. Column alignment is achieved by matching the field specifications to those of Instruction 24. Note in the listing of the sample input that an " I " (integer) specification must be used for the row of numbers of non-zero values.
27. ($1-5$): The format, in FORTRAN II, for printing the univariate statistics beneath each table of the bivariate array, again with " I " specifications for the row of numbers of non-zero values.
28. $(1-5)$: The format, in FORTRAN II, for printing the bivariate statistics beneath each segment of the bivariate array.
29. ($1-$): Card (s) containing the anticipated maximum values of all the variables in the univariate output array of this run or any future run analyzing the same variables. The maxima are hypothetical and are specified in order to determine the calibration of the axes of the machine-plotted bivariate scatter diagrams, which in turn allows the computation of slopes and intercepts in terms of the scaleunits of the diagrams. (See Instructions 11 and 12 in the description of input data for VPLOT.) In this manner, the calibration is kept uniform throughout all runs so that the
scatter diagrams for any given ratio can be superimposed for comparison.

The axes of plots of non-log clata are assumed to cross at $(0,0)$. For \log data, however, the axes may cross at (a, b), where a and b are minima specified for x and y on control cards (Instruction 30).

The punching format, and hence the number of cards occupied by the maxima, is cletermined by Instruction 22. There must be at least one card present, even if no maxima are specified.
30. ($1-$): Card (s) containing the anticipated minimum \log values of those variables which will be transformed to logarithms (base 10) by Instruction 18 d . These minima are specified in order to determine the coordinates of the end points of regression lines in terms of scale units of a scatter diagram plotted by VPLOT. Generally the specified \log minima are -1 . or -2 .

The punching format is the same as in Instruction 29, with no data required in the fields of those variables which will not be transformed to logs.

Group II Control Cards

31. (1): (a) Columns 1-2: Signal for the punching out of the univariate and bivariate arrays, as follows:
$00=$ no punch-out
$+1=$ punch univariate array only
$+2=$ punch bivariate array only
$+3=$ punch both univariate and bivariate arrays.
(b) Columns 4-5: Signal for the printing out of the univariate array and accompanying univariate statistics with the order of the specimens in the data deck preserved:

$00=$ no print-out

$+l=$ print.
(c) Columns 7-8: Signal for the printing out of the bivariate array with its accompanying univariate and bivariate statistics, with the order of specimens in the data deck preserved:

$$
\begin{aligned}
& 00=\text { no print-out } \\
& +1=\text { print }
\end{aligned}
$$

(d) Columns 10-11: Signal for the printing out of the univariate array and accompanying univariate statistics, with the specimens sorted
according to decreasing values of a univariate variable specified in Instruction 31 f :

$$
00=\text { no print-out }
$$

$+1=$ print.
(e) Columus 13-14: Signal for the printing out of the bivariate array and accompanying univariate and bivariate statistics, with the specimens sorted according to decreasing values of a univariate variable specified in Instruction 31 f .

$$
00=\text { no print-out }
$$

$+1=$ print
(f) Columns 16-17: Column number of a variable in the univariate output array, the decreasing values of which will control the ordering of specimens (rows) in the output, if such output is indicated by the options described in Instructions 3ld and 3le.
32. (2): Any name or sample-identification information to be printed at the top of each output page. Punch in columns 1-72 of the first card and columns $1-48$ of the second card.
33. (1): A constant which is to be subtracted from certain univariate variables specified in ln struction 8. Punch in columns $1-6$ without decimal point. The decimal will be placed by the computer before the last two digits; for exanıple, 017291 will be read in as 172.91 .
34. (1): A constant by which certain univariate variables, specified in Instructions 7b and 9, are to be divided. Punch in columns $1-6$ in the same manner as the constant described in Instruction 33.
35. (1): A signal allowing for the following choices of lines to be printed at the top of the first output page, below the sample-identification information:

$$
\begin{aligned}
-1: & x \text { LEFT VALVES } \\
00: & x \text { SPECIMENS } \\
+1: & x \text { RIGHT VALVES }
\end{aligned}
$$

where x is the number of specimens in the data deck. Punch signal in columns 1-2.
36. (1): The number of specimens (from 1-100) in the data deck. Punch in columns 1-3.

Data Deck

The data cards must be punched according to the format specified in Instruction 20. There can be any number of continuation cards for each specimen provided that these are specified by the format.

Alternative Statements and Subroutines for DASAN

Comments following statement No. 28 in Subroutine RAWTAB mark the position in which may be inserted FORTR.IN II statements for the computation of special variables. As shown in Figure 1, these variables form a subarray B within the univariate output array. One specialcomputation statement and the two statements that must accompany it are included in RAWTTAB for the purpose of illustration. (The "C"" in column 1 makes each of these
statements inoperative in the program.) In this case a variable named "P.AR" in the sample output is computed, where P.AR is the area of a triangle, the base and height of which appear in the univariate output array in columns 21 and 20 respectively. No special control cards are required, but the number of variables in the univariate output array must be increased by l for each special computation earried out and adjustments must be made in the output formats.

Sample Input Data for DASAN

Listed below is the entire assembly of data for a test run of DASAN. The problem involves the analysis of 12 specimens, with 28 variables in the univariate input array, 36 variables in the univariate output array, and 42 variables in the bivariate array. The numbers on the far right side of each eard refer to instruction numbers in the discussion of input
preparation. Included within the listing (Instruction 28) is the format for the print-out of bivariate statistics involving regressions. The alternative format, to be used with the bivariate subroutine involving the reduced major axis, is shown below the input list.

SPE							

```
+1-1-1-1-1 7123117133129 243 74 72 35 55 501.71 1413219 3 6420300350410
    24290
+ユ-I-I-1-1 8111105124115 222 70 65 34 59 51162 1312521 3 6350210260320
    270
+l-I-l-l-1 99998100105 1936664 31 50 41151 1211120 2 6290180270280
    4 6 2 1 2 2 0
+l-1-1-1-1 10110111115123 226 68 66 34 50 49161 1212120 3 6350200290310
    66 54 80 49 49 17 270
+1-1-1-1-1 11127121126125 239 86 82 37 68 57185 1414420 3 6450190370520
    8566 954966 320
+1-1-1-1-1 12126111122130 236 81 76 35 6260188 1614120 36400210410460
    6627320
```

(1H-, $3 \mathrm{HR}, 11 \mathrm{~F} 10.3 / 1 \mathrm{HO}, 3 \mathrm{HA}, 11 \mathrm{~F} 10.3 / 1 \mathrm{H}, 6 \mathrm{HSIG}(\mathrm{A}), \mathrm{F} 7.3,10 \mathrm{~F} 10.3 / 1 \mathrm{HO}, 3 \mathrm{HB}$, 11F10.3/1HO,6HD (RMA), F7.3,10F10.3/1HO,6HMEAN Y,F7.3,10F10.3/1H ,6HMEAN X, F7.3,10F10.3/1HO, 6HYMAX 1,F7.3,10F10.3/1HO,5HTOP 1,F8.3,10F10.3/1H ,6H BASE 1,F7.3,10F10.3)

Sample Output from DASAN

Listed below are the puncli-outs of the univariate output array and bivariate array and the printed output for the sample problem. In the printed output, variable names consist of at least two letters, with parentheses enclosing letters which represent lower-case letters. The abbreviations for statistics have already been explained in Table 1 and the use of the output in the plotting of recluced major axes and regression lines will be explained at the end of the description of VPLOT.

The specimens, which were ordered from 1 through 12
in the input array, have been rearranged in order of decreasing values of the variable $A M$. As in the simplified sample problem illustrated in Figure 1, certain columns of statistics are not valid. In arrays of bivariate statistics these columns are indicated in output messages. In the arrays of univariate statistics for bivariate data, the statistics for variable No. $36(\log P . A . / \log A M)$ are or may be incorrect.

The bivariate analyses from an additional run using the alternate bivariate subroutine are shown for the second to the last page of the output.

PUNCH-OUT OF UNIVARIATE OUTPUT ARRAY

$$
\begin{array}{rrrrrrrrrrrrrr}
1 . & 14.5 & 13.0 & 14.8 & 15.0 & 28.0 & -0 . & 8.0 & 4.3 & 6.1 & 6.6 & 9.1 & 1.6 & 15.5 \\
19.0 & 3.0 & 4.0 & 2.1 & 1.4 & 1.5 & 1.7 & -0 . & -0 . & -0 . & -0 . & -0 . & -0 . & 34.0 \\
1.3 & 13.0 & 0 . & 29.3 & 0.0 & 0.1199 & 0.9614 & 1.4472 & & & & & \\
2 . & 11.9 & 11.0 & 12.5 & 12.8 & 24.0 & 7.2 & 7.1 & 3.5 & 6.1 & 5.0 & 7.9 & 1.3 & 13.4 \\
19.0 & 3.0 & 5.0 & 1.5 & 1.1 & 1.3 & 1.5 & -0.0 & -0.0 & -0 . & -0 . & -0 . & -0 . & 29.0 \\
0.9 & 11.2 & 2.2 & 24.4 & 14.3 & -0.0331 & 0.9004 & 1.3802 & & & & & \\
3 . & 11.0 & 10.9 & 11.7 & 12.1 & 21.9 & 7.0 & 6.4 & 3.0 & 5.1 & 4.3 & 6.6 & 1.1 & 11.5 \\
21.0 & 3.0 & 6.0 & 1.3 & 0.9 & 1.0 & 1.2 & -0 . & -0 & -0 . & -0 . & -0 . & 1.9 & 26.0 \\
0.6 & 9.8 & 2.7 & 22.7 & 13.4 & -0.2034 & 0.8162 & 1.3404 & & & & & \\
4 . & 13.9 & 14.1 & 14.2 & 15.1 & 27.4 & 8.9 & 8.9 & 4.2 & 6.9 & 5.9 & 8.9 & 1.5 & 15.5 \\
18.0 & 3.0 & 6.0 & 1.5 & 1.0 & 1.5 & 1.5 & -0.0 & -0 . & -0 . & -0 . & -0 . & -0 . & 33.5 \\
1.1 & 12.3 & 3.0 & 28.1 & 17.8 & 0.0592 & 0.9518 & 1.4378 & & & &
\end{array}
$$

5. $11.611 .612 .1 \quad 12.0 \quad 23.9 \quad 8.0 \quad 7.8 \quad 3.8 \quad 6.3 \quad 5.0 \quad 7.1 \quad 1.313 .4$ $21.0 \quad 4.0 \quad 6.0 \quad 1.1 \quad 0.9 \quad 1.2 \quad 1.4-0 . \quad-0 . \quad-0 . \quad-0 . \quad-0 . \quad-0 . \quad 28.5$ $0.911 .9 \quad 3.0 \quad 23.7 \quad 15.8-0.0574 \quad 0.85431 .03784$
$\begin{array}{lllllllllllllllllll}6 . & 12.7 & 12.7 & 13.5 & 14.1 & 26.0 & 8.2 & 7.9 & 4.2 & 6.7 & 5.6 & 8.6 & 1.4 & 14.6\end{array}$ $\begin{array}{llllllllllllll}19.0 & 3.0 & 6.0 & 1.6 & 1.0 & 1.4 & 1.6 & -0 . & -0 . & -0 . & -0 . & -0 . & -0 . & 31.5\end{array}$ $1.211 .9 \quad 2.6 \quad 26.216 .1 \quad 0.06760 .93201 .4150$
 $\begin{array}{llllllllllll}19.0 & 3.0 & 6.0 & 1.6 & 1.1 & 1.3 & 1.5 & -0 . & -0 . & -0 . & -0 . & -0 . \\ 2.4 & 29.0\end{array}$ $\begin{array}{llllllllllll}1.0 & 11.4 & 2.4 & 25.6 & 14.6 & 0.0012 & 0.8837 & 1.3856\end{array}$
 $21.0 \quad 3.0 \quad 6.0 \quad 1.3 \quad 0.8 \quad 1.0 \quad 1.2-0 . \quad-0 . \quad-0 . \quad-0 . \quad-0 . \quad-0.27 .0$ $\begin{array}{lllllllll}0.6 & 10.7 & 1.9 & 23.5 & 13.5-0.2356 & 0.8293 & 1.3454\end{array}$
$\begin{array}{rrrrrrrrrrrr}9 . & 9.9 & 9.8 & 10.0 & 10.5 & 19.3 & 6.6 & 6.4 & 3.1 & 5.0 & 4.1 & 5.6 \\ 20.0 & 2.0 & 6.0 & 1.1 & 0.7 & 1.0 & 1.0 & -0 . & -0 . & 11.1 \\ 0.0 . & -0 . & 4.6 & 2.1 & 22.0\end{array}$ $0.5 \quad 8.8 \quad 2.5 \quad 19.9 \quad 13.0-0.2772 \quad 0.75201 .2856$ 10. 11.0 11.1 $11.512 .3 \quad 22.6 \quad 6.8 \quad 6.6 \quad 3.4 \quad 5.0 \quad 4.9 .6 .6 \quad 1.212 .1$ $\begin{array}{llllllllllllll}20.0 & 3.0 & 6.0 & 1.3 & 0.7 & 1.1 & 1.2 & 6.6 & 5.4 & 8.0 & 4.9 & 4.9 & 1.7 & 27.0\end{array}$ $0.610 .31 .922 .513 .4-0.20190 .82281 .3541$
 $\begin{array}{llllllllllllll}20.0 & 3.0 & 6.0 & 1.7 & 0.7 & 1.4 & 1.9 & 8.5 & 6.6 & 9.5 & 4.9 & 6.6 & -0 . & 32.0\end{array}$ $1.311 .4 \quad 2.9 \quad 25.316 .8 \quad 0.1285 \quad 0.9566 \quad 1.3784$
 $20.0 \quad 3.0 \quad 6.0 \quad 1.5 \quad 0.8 \quad 1.5 \quad 1.7 \quad-0 . \quad-0 . \quad-0 . \quad-0 . \quad 6.6 \quad 2.732 .0$ $\begin{array}{lllllllllllllll}1.3 & 10.6 & 2.1 & 24.8 & 15.7 & 0.1199 & 0.9708 & 1.3729\end{array}$

PUNCH-OUT OF BIVARIATE ARRAY

1. $0.9560 .8241 .0211 .154-0$. 0.0 .0 .541 0.273-0. 0. 0.154
 -0. -0. 0. -0. -0. 0. -0. -0. 1. 154 1.014 0. 0.083 0.047-0. $0.2691 .1150 .144-0$.
2. 0.9840 .8281 .0501 .1430 .6050 .2950 .5680 .2911 .0140 .5860 .146 $\begin{array}{llllllllllllllllllllllllll}0.254 & 0.306 & 0.549 & 0.331 & 0.326 & 0.053 & 0.054 & 1.300 & 0.061 & 0.053 & 0.060 & 0.872\end{array}$ -0. -0. 0. -0. -0. 0. -0. -0. 1. 1641.024 0.185-0.024 0.0390 .3000 .2741 .0820 .1170 .248
3. $0.9650 .8421 .0641 .2350 .6360 .3080 .5470 .2821 .0940 .590 \quad 0.137$
$\begin{array}{lllllllllllllllllllll}0.233 & 0.386 & 0.507 & 0.299 & 0.289 & 0.048 & 0.050 & 1.458 & 0.060 & 0.048 & 0.053 & 0.875\end{array}$ -0. -0. 0. -0. -0. 0. -0. 0.084 1.110 1.034 0.245-0.152 $0.0290 .320 \quad 0.2521 .0090 .0960 .269$
$4.0 .9750 .818 \quad 1.0221 .2280 .6400 .3170 .6270 .3171 .000 \quad 0.6330 .153$
$\begin{array}{lllllllllllllllllllll}0.252 & 0.337 & 0.552 & 0.327 & 0.319 & 0.053 & 0.055 & 1.519 & 0.056 & 0.055 & 0.055 & 0.976\end{array}$
-0. -0. 0. -0. -0. 0. -0. -0. 1.0711 .0630 .2160 .041 0.0420 .3250 .2670 .9860 .1280 .266
4. 1.0080 .8391 .0431 .0080 .6900 .3380 .6450 .3291 .0260 .6670 .159

 0.0370 .3350 .2511 .0000 .1230 .281
6.0 .9920 .8251 .0631 .1850 .6460 .3130 .5850 .3021 .0380 .6150 .162
$\begin{array}{llllllllllllllllllll}0.258 & 0.317 & 0.557 & 0.329 & 0.326 & 0.053 & 0.054 & 1.536 & 0.062 & 0.055 & 0.063 & 0.864\end{array}$ -0. -0. 0. -0. -0. 0. -0. -0. 1.110 1.044 0. 2050.048 0.0450 .3150 .2711 .0000 .1370 .260
5. 0.9490 .8381 .0811 .1320 .6020 .2890 .5410 .2811 .0280 .5700 .144
$\begin{array}{lllllllllllllllllll}0.226 & 0.324 & 0.516 & 0.315 & 0.299 & 0.055 & 0.058 & 1.400 & 0.065 & 0.054 & 0.060 & 0.854\end{array}$
 $0.041 \quad 0.3050 .2641 .0510 .1310 .255$
6. $0.9450 .8221 .1171 .0750 .6310 .298 \quad 0.5240 .2771 .0770 .5740 .153$
 -0. -0. 0. -0. -0. 0. -0. -0. 1.095 0.927 0.171-0.175 $\begin{array}{lllll}0 & 0.026 & 0.315 & 0.250 & 1.057\end{array} 0.086 \quad 0.259$
7. $0.9700 .8771 .0101 .1930 .6670 .3320 .640 \quad 0.3221 .0310 .6530 .161$ $\begin{array}{lllllllllllllllll}0.259 & 0.379 & 0.558 & 0.293 & 0.284 & 0.060 & 0.062 & 1.611 & 0.056 & 0.052 & 0.053 & 0.964\end{array}$ $-0 . \quad-0 . \quad 0 . \quad-0 . \quad-0 . \quad 0.0 .2380 .1061 .0711 .050 \quad 0.253-0.216$ 0.0270 .3420 .2571 .0100 .0930 .300 10. 1. 0040.8371 .0451 .1940 .6180 .3020 .5740 .2931 .0300 .5960 .150 $\begin{array}{llllllllllllllllllll}0.221 & 0.279 & 0.538 & 0.294 & 0.296 & 0.053 & 0.053 & 1.750 & 0.058 & 0.048 & 0.052 & 0.935\end{array}$ $0.2930 .239 .1 .2220 .3540 .2181 .6330 .2170 .0761 .1081 .0700 .173-0.149$ 0.0280 .3010 .2460 .9910 .0940 .252 11. $0.9450 .747 \quad 0.9921 .0960 .6770 .340 \quad 0.6510 .3241 .0490 .6640 .155$ $\begin{array}{lllllllllllllllllllllll}0.285 & 0.337 & 0.569 & 0.379 & 0.358 & 0.055 & 0.059 & 2.368 & 0.070 & 0.058 & 0.077 & 0.712\end{array}$ $\begin{array}{llllllllllllllllllllll}0.336 & 0.276 & 1.288 & 0.397 & 0.194 & 1.939 & 0.276-0 . & 1.0392 & 0.228 & 0.093\end{array}$ 0.0560 .3600 .2831 .0500 .1490 .269 12. 0.9520 .7370 .9681 .2260 .6430 .3270 .6230 .3061 .0660 .6330 .148 $\begin{array}{lllllllllllllllllll}0.263 & 0.259 & 0.569 & 0.396 & 0.377 & 0.065 & 0.068 & 1.905 & 0.063 & 0.065 & 0.069 & 0.891\end{array}$
 0.0560 .3430 .2921 .1350 .1410 .253

AEQUIPECTEN NUCLEUS -- MIAMI ANO LAKE WORTH, FLA., MCZ 197942,232557,232553-- LIVING 12 right valves

SPEC	DG	$G P$	AO	AK	AM	DF	$C D$	E I	BJ	OE	LO	RIB HT	HI
1.	14.5	13.0	14.8	15.0	28.0	-0.	8.0	$4 \cdot 3$	6.1	6.6	9.1	1.6	15.5
4.	13.9	14.1	14.2	15.1	27.4	8.9	8.9	4.2	6.9	5.9	8.9	1.5	15.5
6.	12.7	12.7	13.5	14.1	26.0	8.2	7.9	4.2	6.7	5.6	8.6	1.4	14.6
7.	12.3	11.7	13.3	12.9	24.3	7.4	7.2	3.5	5.5	5.0	7.6	1.4	13.2
2.	11.9	11.0	12.5	12.8	24.0	1.2	7.1	3.5	6.1	5.0	7.9	1.3	13.4
11.	12.7	12.1	12.6	12.5	23.9	8.6	8.2	1.7	6.8	5.7	9.1	1.4	14.4
5.	11.6	11.6	12.1	12.0	23.9	8.0	7.8	3.8	6.3	5.0	7.1	1.3	13.4
12.	12.6	11.1	12.2	13.0	23.6	8.1	7.6	3.5	6.2	6.0	9.4	1.0	14.1
10.	11.0	11.1	11.5	12.3	22.6	0.8	6.6	3.4	5.0	1.97	6.6	1.2	12.1
8.	11.1	10.5	12.4	11.5	22.2	7.3	6.5	3.4	5.9	5.1	6.7	1.3	12.5
3.	11.0	10.9	11.7	12.1	21.9	7.0	6.4	1.0	5.1	4.3	6.6	1.1	11.5
9.	9.9	9.8	10.0	10.5	19.1	6.6	6.4	3.1	5.0	4.1	5.6	1.2	11.1
NUM.	12	12	12	12	12	11	12	12	12	12	12	12	12
HAX,	14.5	14.1	14.8	15.1	28.0	8.9	8.9	4.3	6.9	6.6	9.4	1.6	13.5
MIN.	9.9	9.8	10.0	10.5	19.3	6.6	6.4	3.0	5.0	4.1	5.6	1.1	11.1
RANGE	4.6	4.3	4.8	4.6	8.7	2.3	2.5	1.3	1.9	2.5	3.7	0.3	4.4
HEAN	12.1	11.6	12.6	12.8	23.9	7.6	7.4	3.6	6.0	5.3	7.8	1.4	13.4
S IDOV	1.3	1.2	1.3	1.4	2.4	0.8	0.8	0.4	0.7	0.7	1.2	J. 2	1.5
SOVHN	0.4	0.3	0.4	0.4	0.7	0.2	0.2	0.1	0.2	0.2	0.4	บ.U	0.4
\checkmark	10.7	10.2	10.2	10.6	10.0	10.2	11.0	11.6	11.5	13.7	15.9	11.5	10.8

AEQUIPECTEN NUCLEUS－－MIAMI ANO LAKE WORTH．FLA．．MCZ 197942．232557．232553－－LIVING

SPEC	PLICAE	ANICOS	POSCOS	INTRIB	INTGRV	［AO］	［CE）	（ $\\| K$	（PQ）	1831	［AB］	IHNI	（FG）
1.	19.0	3.0	4.0	2.1	1.4	1.5	1.7	－0．	－0．	－0．	－0．	－3．	こう。
4.	18.0	3.0	6.0	1.5	1.0	1.5	1.5	－0．	－0．	－0．	－0．	－3．	－0．
6.	19.0	3.0	6.0	1.6	1.0	1.4	1.6	－0．	－0．	－0．	－0．	－0．	－0．
1.	19.0	3.0	6.0	1.6	1.1	1.3	1.5	－0．	－0．	－0．	－0．	－J．	7.4
2.	19.0	3.0	5.0	1.5	1.1	1.3	1.5	－0．	－0．	－0．	－0．	－ 3 。	－0．
11.	20.0	3.0	6.0	1.7	0.7	1.4	1.9	8.5	6.6	9．5	4.9	6.6	－0．
5.	21.0	4.0	6.0	1.1	0.9	1.2	1.4	－0．	－0．	－0．	－0．	－ 0 ．	－0．
12.	20.0	3.0	6.0	1.5	0.8	1.5	1.7	－0．	－0．	－0．	－0．	6.6	2.7
10.	20.0	3.0	6.0	1.3	0.7	1.1	1.2	6.6	3.4	8.0	4.9	4.9	1.7
8.	21.0	3.0	6.0	1.3	0.8	1.0	1.2	－0．	－0．	－0．	－0．	－ 5 ．	－0．
3.	21.0	3.0	6.0	1.3	0.9	1．$)$	1.2	－0．	－0．	－0．	－0．	－	1.9
9.	20.0	2.0	6.0	1.1	0.7	1.0	1.0	－U．	－0．	－0．	－0．	4.6	2.1
NUM．	12	12	12	12	12	12	12	2	2	2	2	4	5
MAX．	21.0	4.0	6.0	2.1	1.4	1.5	1.9	8.5	6.6	9.5	4.9	6.6	2.7
MIN．	18.0	2.0	4.0	1.1	0.7	1.3	1.0	6.6	5.4	8.0	4.9	4.6	1.7
RANGE	3.0	2.0	2.0	1.0	0.7	0.6	0.9	1.9	1.2	1.5	0 ．	2.0	1.0
MEAN	19.7	3.0	5.7	1.5	0.9	1.3	1.5	7.5	6.0	8.7	4.9	5.7	2.2
STOOV	1.0	0.4	0.6	0.3	0.2	0.2	0.3	1.3	0.8	1.1	0 ．	1.1	0.4
SUVMN	0.3	0.1	0.2	0.1	0.1	0.1	0.1	1.0	0.6	0.1	0.	C． 3	3.2
V	4.9	14.2	10.8	18.6	22.6	16.2	18.6	17.8	14.1	12.1	0.	18.9	18.4

ALQUIPECTEN NUCLEUS－－MIAMI ANO LAKE HORTH，FLA．．MCL 197942．232557．232553－－LIVING 12 RIGHJ VALVES

SPEC	AL．${ }_{\text {a }}$	P．AREA	KM	EF	AG	LF	LOG P．	LOG LO	LOG AM				
1.	34．0	1．3	13.0	0.	29.3	0.	0.1	1.0	1.4	0.	0.	0.	6.
4.	33.5	1.1	12.3	3.0	28．1	17.8	0.1	1.0	1.4	0.	0.	0.	0.
6.	31.5	1.2	11.9	2.6	26.2	10.1	0.1	0.9	1.4	0.	0.	0.	2.
7.	29.0	1.0	11.4	2.4	25.6	14.6	0.0	0.9	1.4	0.	0.	0.	0.
2.	29.0	0.9	11.2	2.2	24.4	14.3	－0．0	0.9	1.4	0.	0.	U．	0.
11.	32.0	1.3	11.4	2.9	25．3	16.8	0.1	1.0	1.4	0.	0.	0.	0.
5.	28.5	0.9	11.9	3.0	23.7	15.8	－0．1	0.9	1.4	0.	0.	U．	0.
12.	32.0	1.3	10.6	2.1	24．8	15.7	0.1	1.0	1.4	0.	0.	3.	3.
10.	27.0	0.6	10.3	1.9	22．3	13.4	－0．2	0.8	1.4	0.	0.	9.	0 ．
8.	27.0	0.6	10.7	1.9	23.5	13.5	－0．2	0.8	1.3	0.	0 ．	0.	${ }^{\prime}$ ）．
3.	26.0	0.6	9.8	2.7	22.7	13.4	－0．2	0.8	1.3	0.	0.	0.	0.
9.	22.0	0.5	8.8	2.5	19.9	13.0	－0．3	0.8	1.3	0.	0.	3.	3.
NUM．	12	12	12	11	12	11	12	12	12	0	0	0	0
MAX．	14．0	1.3	13.0	3.0	29.3	17.8	0.1	1.0	1.4	0.	0.	2.	0.
MIN．	22.0	0.5	8.8	1.9	14.9	13.0	－0．3	0.8	1.3	0.	0.	3.	0.
KANGE	12.0	0.8	4.2	1.1	9.4	4.8	0.4	0.2	0.2	0.	0.	7.	2.
McAN	24.3	1.0	11.1	2.5	24.7	14.9	－0．0	0.9	1.4	0.	0.	3.	0.
STOOV	3.5	0.3	1.2	0.4	2.5	1.6	0.2	0.1	0.0	0.	0.	0.	0.
SUVMN	1.0	0.1	0.3	0.1	0.7	0.5	0.0	0.0	0.0	0.	0.	0.	0.
v	11.9	32.2	10.4	16.6	10.3	10.7	-353.3	8.0	3.2	0.	0.	9.	0.

AEQUIPECTEN NUCLEUS -- MIAMI ANO LAKE WORTH, FLA., MC2 197942,232557,232553-- LIVING
12 RIGHI VALVES

SPEC	AM/AG	AM/ALM	A0/0G	$A K / K M$	DF/DG	DF/AG	CD/AD	CO/AG	UF/CO	CF/AG	El/AM
1.	0.956	0.824	1.021	1.154	-0.	-0.	0.541	0.273	-0.	0.	12.154
4.	0.975	0.818	1.022	1.228	0.640	0.317	0.627	0.317	1.000	0.633	J.153
6.	0.992	0.825	1.023	1.185	0.640	0.313	C. 585	0.302	1.038	0.015	9.162
1.	0.949	0.838	1.081	1.132	0.602	0.289	0.541	0.281	1.028	0.570	- 144
2.	0.984	0.828	1.050	1.143	0.603	0.293	C. 568	0.291	1.014	0.586	$\cup .146$
11.	0.945	0.747	0.992	1.076	0.617	0.340	0.651	0.324	1.049	0.664	J. 155
5.	1.008	0.839	1.043	1.058	0.690	0.338	0.645	0.329	1.026	0.067	- 159
12.	0.952	0.737	0.968	1.226	0.643	0.327	0.623	0.306	1.066	0.633	0.148
10.	1.004	0.837	1.045	$1.1+4$	0.618	0.302	0.574	0.293	1.030	0.596	3.15
8.	0.945	0.822	1.117	1.075	0.631	0.298	0.524	0.277	1.077	0.574	3.153
3.	0.965	U. 842	1.364	1.235	0.630	0.308	0.347	0.282	1.094	0.590	0.131
7 。	0.470	0.877	1.010	1.193	0.607	0.332	0.640	0.322	1.031	0.653	0.101
NUM.	12	12	12	12	11	11	12	12	11	11	12
Mix.	1.008	0.817	1.117	1.235	0.690	0.340	0.651	0.329	1.094	0.667	0.162
MIN.	2.945	0.737	0.968	1.008	0.602	0.289	0.324	0.273	1.000	0.570	0.131
KANGE	0.064	0.140	0.149	0.226	0.088	0.051	0.127	0.056	0.094	0.046	0.023
MEAN	0.970	0.820	1.040	1.156	0.641	0.314	0.589	0.300	1.041	0.617	j.1b2
Stoov	0.023	0.039	0.040	0.069	0.028	0.018	4.046	0.020	0.028	0.036	0.001
SOVMN	0.001	0.011	0.012	0.020	0.008	0.005	0.213	0.006	0.008	0.011	$0.30)$
\checkmark	2.338	4.796	3.883	5.986	4.370	5.614	7.826	6.594	2.680	3.708	4.143

GIVARIAIE ANALYSIS IREDUCEO MAJOR AXISI OF Y/X. RESULIS NOT VALID FOR COLUMNS QF LEG Y/LOGX.

K	0.974	0.916	0.934	0.832	0.905	0.836	0.130	0.806	0.975	0.844	0.922
A	0.948	0.686	0.983	1.182	0.700	0.357	0.637	0.321	0.936	0.714	3.176
SIGIA)	0.062	0.074	0.102	0.189	0.090	0.059	0.126	0.055	0.063	0.119	0.02^{\prime}
B	0.530	3.821	0.675	-0.310	-0.700	-1.045	-0.623	-0.539	0.757	-2.857	-0.578
U(RMA)	2.277	4.597	3.804	6.091	4.187	5.191	7.637	6.441	2.401	5.276	3.482
MEAN Y	23.925	23.925	12.367	12.817	7.618	7.618	7.383	7.383	7.618	14.945	3.633
MEAN X	+24.667	29.292	12.100	11.108	11.882	24.245	12.367	24.667	7.327	24.245	23.924
YMAX 1	81.147	72.454	39.987	41.049	27.302	29.326	28.047	26.760	26.039	59.534	12.624
TUP 1	4.017	-1.664	-5.459	1.286	4.513	8.478	1.900	-0.435	2.037	414.201	-4.814
BASE 1	3.146	2.497	0.735	-0.380	-1.371	-2.048	-1.131	-0.978	1.484	-22.219	-2.024

5 PEC	BJ/AM	EF/OF	HI/AG	LO/AM	LO/AC	RIBHT/AG	RIGHT/AM	RIB/GRV	R18/AM	(AO)/4M	ICEJ/AG
1.	0.218	0.	0.529	0.327	0.312	0.055	0.057	1.514	0.075	0.055	0.059
4.	0.252	0.337	0.552	0.327	0.319	0.053	0.055	1.519	0.056	0.055	0.055
6.	0.258	0.317	0.557	0.329	0.326	0.053	0.054	1.536	0.062	0.055	0.063
I.	0.226	0.324	0.516	0.315	0.299	0.055	0.058	1.400	0.065	0.054	0.060
2.	0.254	0.306	0.549	0.331	0.326	0.053	0.054	1.300	0.061	0.053	0.060
11.	0.285	0.337	0.569	0.379	0.158	0.055	0.059	2.368	0.070	0.058	0.077
5.	0.264	0.375	0.565	0.299	0.302	0.055	0.054	1.200	0.047	0.052	0.080
12.	0.263	0.259	0.569	0.376	0.377	0.065	U. 068	1.905	0.063	0.065	0.069
10.	0.221	0.279	0.538	0.294	0.296	0.053	0.053	1.750	0.058	0.048	0.052
8.	3.266	0.271	0.532	0.304	0.281	0.055	0.059	1.667	0.059	0.044	0.051
3.	0.233	0.386	0.307	0.299	0.289	0.048	0.050	1.458	0.060	0.048	0.053
9.	0.259	0.379	0.358	0.293	0.284	0.060	0.362	1.611	0.056	0.052	0.053
NUM.	12	11	12	12	12	12	12	12	12	12	12
MAX.	0.285	0.386	0.569	0.396	6.371	0.065	0.068	2.368	0.075		
MIN.	0.218	0.259	0.507	0.293	0.284	0.048	0.050	1.200	0.047	0.044	0.051
KANCE	0.367	0.126	0.063	0.103	0.093	0.016	0.018	1.168	0.028	$0.0<1$	0.026
MEAN	0.253	0.125	0.545	0.324	0.314	0.055	0.057	1.602	0.061	0.033	2.059
SIOOV	J.021	0.044	0.021	0.033	0.029	0.004	0.005	0.307	0.007	0.005	9.00 H
SOUMN	0.006	0.013	0.006	0.009	0.008	0.001	U. 001	0.089	0.002	0.002	2.002
\checkmark	8.241	13.457	3.811	10.127	9.189	7.185	8.204	19.178	11.702	10.081	13.138

BIVARIATE ANALYSIS IREOUCEO MAJOR AXISI OF Y/X. RESULIS NOI YALIO FGR COLUMNS OF LOG Y/LOGX.

R	0.701	0.621	0.937	0.807	0.850	0.806	0.741	0.675	0.790	0.828	0.743
A	0.285	0.529	0.513	0.514	0.447	0.062	0.065	1.291	0.115	0.086	0.108
S1C(A)	ง.059	0.125	0.058	0.088	0.074	0.011	0.011	0.275	0.020	0.014	0.021
8	-0.847	-1.553	-0.694	-4.537	-4.735	-0.165	-0.700	0.257	-1.248	-0.781	-1.188
O[RMAJ	7.839	9.537	3.685	6.673	5.961	6.393	7.230	15.990	6.543	5.906	7.397
MEAN Y	5.967	2.473	13.442	7.783	7.783	1.358	1.358	1.464	1.464	1.274	1.464
MEAN X	23.925	7.618	24.667	23.925	24.667	24.667	23.925	0.935	23.925	23.925	24.667
YMAX 1	20.512	11.663	48.018	34.020	37.179	5.083	4.685	6.714	7.255	5.660	7.952
IOP I	2.542	41.710	-1.943	15.115	21.068	22.191	10.585	10.817	15.632	1.429	10.943
BASE 1	-2.127	-12.095	-0.680	-8.494	-7.981	-2.314	-2.797	2.292	-11.120	-6.954	-8.957

bIVARIATE ANALYSES [REOUCEU MAJOR AXISJ OF LOG Y/LOG X, VALLIO ONLY FOR COLUMNS S

H	0.701	3.621	0.937	0.835	0.850	0.806	0.741	0.675	0.790	0.828	0.743
4	J. 285	0.529	0.571	1.614	0.487	0.062	0.065	1.291	0.113	0.086	0.108
SIG(A)	0.059	0.125	0.358	0.256	0.074	0.011	0.013	0.275	0.020	0.014	0.021
H	-0.841	-1.555	-0.694	-1.336	-4.235	-0.165	-0.200	0.257	-1.240	-0.781	-1.18d
U(RMA)	7.839	9.537	3.685	2.929	5.961	6.393	7.230	15.990	6.543	5.906	7.397
MEAN Y	5.967	2.473	13.442	0.886	7.783	1.358	1.358	1.464	1.464	1.274	1.464
MEAN \times	23.925	7.618	24.687	1.377	24.667	24.667	21.925	0.935	23.925	23.925	24.667
YMax 1	20.512	11.663	48.018	1.690	37.179	5.045	4.685	6.714	7.255	5.680	7.952
IOP 1	2.542	41.710	-1.743	5.584	21.068	22.191	16.585	10.817	15.632	1.429	10.941
BASE	-2.127	-12.09	-0.680	-27.116	-7.981	-2.314	-2.797	2.292	- 11.120	-6.954	-8.957

AEQUIPECIEN NUCLEUS -- MIAMI ANO LAKE WORTH. FLA.. MCZ 197942, 232557,232553 -- LIVING

SPEC	(AD)/(CE)	[lK)/AG	(PQ)/AM	(1K)/(PQ)	18J]/AM	(AB)/AG	$(8 \mathrm{~J} /$ / 48)	(MN)/AM	(FG)/AG	AK / GP	AK/A1)
1.	0.891	-0.	-0.	0.	-0.	-0.	0.	-0.	-0.	1.154	1.014
4.	0.976	-3.	-0.	0.	-0.	-0.	0.	-0.	-0.	1.071	1.063
6.	0.864	-0.	-0.	0.	-0.	-0.	0.	-0.	-0.	1.110	1.044
7.	0.854	-0.	-0.	0.	-0.	-0.	0.	-0.	0.094	1.103	0.97 .1
2.	0.872	-0.	-0.	0.	-0.	-0.	4.	-0.	-0.	1.164	1.024
11.	0.712	0.336	0.276	1.288	0.397	0.194	1.939	0.276	-0.	1.033	$\overline{\square .992}$
5.	0.868	-0.	-0.	0.	- 0 .	-0.	\because.	-0.	-0.	1.034	3.997
12.	0.891	-0.	-0.	0.	-0.	-0.	0.	0.280	0.109	1.171	1.066
10.	0.935	0.293	0.239	1.222	0.354	0.218	1.635	0.217	0.076	1.138	1.072
6.	0.812	-0.	-0.	0.	-0.	-0.	0.	-0.	-0.	1.095	j. 927
3.	3.875	-0.	-0.	0.	-0.	-0.	0.	-0.	0.084	1.113	1.034
9.	0.964	-0.	-0.	0.	-0.	-0.	0.	0.238	0.106	1.071	
NUM.	12	2	2	2	2	2	2	4	5	12	12
max.	3.976	0.330	0.276	1.288	0.391	0.218	1.939	0.280	0.109	1.171	1.07)
MIN.	0.712	3.293	0.239	1.222	0.354	0.194	1.633	0.217	U. 076	1.C33	3. 427
RANGE	0.264	0.043	0.037	0.066	0.044	0.024	$\checkmark .306$	0.063	0.033	0.138	$\cdots .142$
MEAN	3.876	0.315	0.258	1.255	0.376	0.206	1.186	0.253	0.093	1.102	1.02
SIDOV	0.073	0.030	0.026	0.046	0.331	0.017	2.216	0.030	0.014	0.045	-. 044
SOVMN	0.023	0.021	0.019	0.033	0.322	0.012	0.153	0.015	0.006	0.613	?.013
v	7.962	9.581	10.217	3.699	8.188	8.284	12.122	12.024	13.114	4.127	4.204

hIVARIATE ANALYSIS IREDUCEO MAJOR AXISI OF Y/X. RESULTS NOT VALID FOR GOLUmNS QF LOG Y/LOGX.

K	3.875	1.000	1.000	1.000	1.000	0.	3.	0.835	0.589	0.921	1.917
A	0.758	0.679	0.923	1.583	1.154	0.	0.	0.510	0.178	1.146	1.363
SIG(A)	0.105	0.000	0.000	0.000	0.000	0.	c.	0.140	0.064	0.129	=.12)
8	0.165	-8. 668	-15.402	-1.950	-18.077	4.90 .9	8. 750	-5.724	-1.957	-0.516	-. .561
- (RMA)	8.803	0.002	0.001	0.033	0.001	11.477	14.957	5.900	8.850	4.146	4.224
MEAN Y	1.274	7.550	6.000	7.550	8.750	4.900	8.750	5.675	2.160	12.817	17.811
MEAN X	1.464	23.903	23.250	6.000	23.250	23.900	4.900	22.350	23.100	11.633	12.561
YMAX 1	5.389	49.011	33.769	31.300	68.462	4.900	8.150	32.528	13.191	45.328	47.344
TOP 1	-3.683	39.945	76.462	7.804	59.213	-32.993	-35.169	30.693	22.819	0.527	8.991
BASE 1	1.470	-15.731	-36.077	-3.539	-28.513	16.007	13.831	-14.024	-10.653	-0.633	- 3.688

AEQUIPECTEN NUCLEUS -- MIAMI ANO LAKE WORTH. FLA.. MC2 197942,232557,232553 -- LIV1NG 12 RIGHT VALVES

SPEC	EF/OL	LOG PM/AM	PA/AM	OF/AM	LO/ALM	OG/GP	P.AR/LO	OF/ALM			
1.	0.	0.083	0.047	-0.	0.269	1.115	0.144	-0.	0.	0.	0.
4.	0.216	0.041	0.042	0.325	0.267	0.986	0.128	0.266	0.	0.	3.
6.	0.203	0.048	0.045	0.315	0.271	1.000	0.137	0.260	0.	0.	3.
7.	0.195	0.001	0.041	0.335	0.264	1.051	0.131	0.255	0.	0.	0 .
2.	0.185	-0.024	0.039	0.300	0.274	1.082	0.117	0.248	0.	0.	0.
11.	0.228	0.093	0.056	0.360	0.283	1.050	0.149	0.269	0.	0.	0.
5.	3.259	-0.042	0.037	0.335	0.251	1.000	0.123	0.281	0.	0.	0.
12.	0.167	0.087	0.056	0.343	0.292	1.135	0.141	0.253	0.	0.	0.
10.	0.173	-0.149	0.328	0.301	0.246	0.991	0.094	0.252	0.	0.	0.
8.	0.171	-0.175	0.026	0.315	0.250	1.057	0.086	0.259	0.	0.	0 .
3.	3.245	-0.152	0.029	0.320	0.252	1.009	0.096	0.269	0.	0.	0.
9.	3. 253	-0.216	0.027	0.342	0.257	1.010	0.093	0.300	0.	0.	0.
NUM.	-11	12	12	11	12	12	12	11	0	0	0
max.	0.259	0.093	0.056	0.360	0.292	1.135	0.149	0.300	0.	0.	0.
MIN.	0.167	-0.216	0.026	0.300	0.246	0.986	0.086	0.248	0.	0.	0.
RANGE	0.092	0.309	0.030	0.060	0.046	0.149	0.062	0.052	0.	0.	0.1
MEAN	0.207	-0.034	0.039	0.324	0.265	1.041	0.120	0.265	0.	0.	0.
5 IOOV	0.034	0.112	0.011	0.019	0.014	0.050	0.022	0.015	0.	0.	0.
SOVAN	0.015	0.032	0.003	0.006	0.004	0.014	0.006	0.005	0.	0.	0.
\checkmark	16.202	-333.033	26.883	5.982	5.361	4.794	18.509	5.663	0.	0.	0.

BIVARIATE ANALYSIS IREOUCEO MAJOR AXIS) OF Y/X, RESULIS NOI VALIO FOR COLUMNS OF LOG Y/LOGX.

R	0.388	0.802	0.161	0.815	0.964	0.891	0.970	0.903	0.	0.	0.
A	0.370	3.426	0.128	0.364	0.353	1.095	0.250	0.233	0.	0.	0.
SIG14]	0.103	0.590	0.024	0.064	0.027	0.144	0.017	0.030	0.	0.	0.
8	-1.925	-4.763	-2.112	-0.961	-2.544	-0.644	-0.98T	0.885	0.	0.	\bigcirc.
O [RMA]	20.767	7.171	6.990	5.562	3.292	4.900	3.949	5.048	0.	0.	0.
MEAN Y	2.473	-0.043	0.955	7. 618	7.783	12.100	0.953	T. 618	0.	0.	0.
MEAN X	11.882	1.377	23.925	23.555	29.292	11.633	7.783	28.864	0.	0.	0.
YMAX 1	12.880	1.664	7.503	26.35 T	32.712	43.174	5.301	24.214	0.	0.	3.
$\begin{aligned} & 1 O P 1 \\ & \text { BASE } 1- \end{aligned}$	51.179 -14.973	13.689 -179.271	-30.618 -5.174	2.659 -1.884	12.650 -4.794	3.888 -0.789	-34.322 -2.418	-1.541 1.754	0.	0. 0.	3.

BIVARIAIE ANALYSIS IREGRESSION OF Y ON X ANU X ON YI OF Y/X. KESULTS NOI VALIO FOR COLUMNS OF LOG Y/LOG X.

R	0. 388	0.802	0.161	0.813	0.964	0.891	0.970	0.903	0.	3.	0.
A(YX)	0.144	2.749	0.098	0.297	0.340	0.976	0.242	0.211	0.	0.	0.
$8(\mathrm{Y})$	0.765	-3.828	-1.379	0.622	-2.170	0.750	-0.929	1.540	0.	0.	0.
$A(X Y)$	1.049	0.234	5.937	2.239	2.734	0.813	3.888	3.869	0.	0.	0.
$8(X)$	9.287	2.387	18.253	6.499	8.013	1.796	4.069	-0.611	0.	0.	0.
$s(y, x)$	1.021	0.026	1.558	1.233	0.932	0.539	0.298	1.431	0.	0.	J。
$s(X, Y)$	0.378	0.090	0.200	0.449	0.329	0.591	0.074	0.334	0.	0.	0.
Dir.x]	13.283	-210.843	20.905	5.893	4.223	4.881	1.791	4.383	0.	0.	0.
storx)	3.258	-43.038	4.267	1.256	0.862	0.946	1.590	0.934	0.	0.	0.
$0(X, Y)$	8.593	1.908	6.512	5.233	3.183	4.633	3.832	4.959	0.	0.	0.
S(0xy)	1.832	0.390	1.329	1.116	0.650	0.946	0.782	1.057	0.	0.	0.
CONAYX	J. 114	0.647	0.026	0.070	0.030	0.158	0.019	0.033	0.	0.	0.
CONB Y	0.125	0.027	0.060	0.143	0.100	0.179	0.023	0.106	0.	0.	0.
Conaxy	0.830	0.055	1.600	0.530	0.239	0.131	0.306	0.615	U.	0.	0.
CONBX	0.325	0.008	3.472	0.372	0.282	0.163	0.090	0.455	0.	0.	0.
YMAX 2	6.514	1.327	5.939	22.899	31.811	39.776	9. 166	22.597	0.	0.	0.
XMAX	15.897	1.692	137.000	62.468	19.094	34.317	81.836	96.114	0.	0.	0.
IUP YX	1.667	0.982	-34.450	-4.119	10.952	-0.215	-35.852	-4.710	0.	0.	3.
BASEYX	3.949	-144.163	-3.379	1.219	-4.091	0.919	-2.277	3.019	0.	0.	0.
IOP XY-	-21.090	-3.427	28.933	-5.848	-7.317	-4.973	73.164	-1.360	0.	0.	0.
HASEXY	8.127	25.886	8.518	3.033	2.803	1.571	5.477	-0.214	0 .	0.	0.

Error Messages in DASAN

Only one error message has been written into D D S $A N$, which reads, ANOMALOUS VALUE IN D.ITA. This statement will appear and the job will be terminated for any of the following reasons:

1. Control cards contain negative valucs where these are not allowed.
2. A zero on a card in the data deck has been used as a signal for division by a constant, whercas only $a+1$ or a -1 is permitted.
3. A variable which is to be converted to a logarithm is negative.

VPLOT: Description of Program

The variable plotting program (VPLOT) provides for very rapid plotting of bivariate scatter diagrams and the construction of reduced major axes or regression lines. The univariate output array of DASAN (Figure 1), or any array in which columns represent variables (measurements) and rows represent specimens, may serve as the input data array. Within VPLOT, this input array is altered and/or expanded to form an internal data array. Alterations consist of logarithmic (base 10) transformations of any of the input variables, with the logs replacing the original values. Alternatively, the logs may be entered in new columns of variables, thereby preserving the original values. An alteration of the input array is desirable if only the logs are to be plotted and not the original values. On the other hand, expanding the input array by entering the logs in new columns allows both the original data and the logs to be plotted.

The main routine of VPLOT is concerned with input, with the alteration and expansion of the input array, and with output. The actual plotting of each bivariate scatter diagram is carried out by the subroutine, APLOT, which employs both Boolean algebra and FAP. This subroutine accepts and plots the values in two columns of the internal data array at a time according to column indentification numbers specified on control cards.

Listed below are the main steps followed by the program:

VPLOT (main)

1. Control cards, variable format, and data are read in.
2. The value of each input variable (except for the first, which should be a specimen indentification number) is compared to a specified minimum value. If below this value, the variable is replaced by the specified minimum.
3. The value of each imput variable is compared to a specified maximum value. If greater than this value, the variable is replaced by the specified maximum.
4. Cohumns of variables, specified on control cards, are replaced by their logarithms (base 10).
5. The logarithms of specified columns of variables are computed and entered as new columns of data.
6. Two variables, designated as x and y on control cards, are entered as arguments in a call to Subroutine APLOT.

Subroutine APLOT

7. One bivariate scatter diagrams is computed, and control is returned to the main program.

VPLOT (main)

8. The scatter diagram computed by APLOT is printed.
9. If more diagrams remain to be plotted, Steps 6 through 8 are repeated for each plot.
10. If more data decks remain in the run, control returns to Step 1 with the reading in of new control cards and data. Otherwise, the job is completed.

Computation Time.-The sample problem described below (12 specimens, 36 input variables, and 43 plots) required only 50 seconds on the IBM 7094. Increasing the number of specimens does not add greatly to the computation time.

Core Space.-The space occupied by VPLOT is not large, but because there are difficulties in plotting points consisting of three digits rather than two, 99 must remain the upper limit of the number of specimens which can be run at a time.

Listing of FORTRAN II Statements in VPLOT

VARIABLE PLOTTING PROGRAM

1 READ INPUT TAPE 5,32, ANAME IF (ANAME (1)-(+6 HFINISH) $) 2,40,2$
$2 I I=0$
READ INPUT TAPE 5,37,NS
MLN $=$ NS +1
NS2 $=$ NS +2
NS3 = NS + 3
$K=0$
READ INPUT TAPE 5,37,NGROUP
3 READ INPUT TAPE 5,31, IDYVAR,IDXVAR,NY,NX,NODATA
IF (NODATA) 30,4,24
4 READ INPUT TAPE 5,37,NFMT
$\mathrm{KK}=12 * \mathrm{NFML}$
READ INPUT TAPE 5,32, (FMD(I), I=1, KK)
READ INPUT TAPE 5, FMI, ((X (I, J) , J=1, NVAR), I=1, NS2)
READ INPUT TAPE 5,37,LALTER,LENTER
IF (LALTER) $30,6,5$
5 READ INPUT TAPE 5,39, (LALCOL (J) , $\mathrm{J}=1$, LALTER)
6 IF (LENTER) $30,41,7$
7 READ INPUT TAPE 5,39, (LENCOL (J), $\mathrm{J}=1$, LENTER)
NVARI $=$ NVAR +1
NVAR2 = NVAR + LENTER
41 IF (LALTER + LENTER $30,8,45$
45 READ INPUT TAPE 5,42, (X(NS3,J), J=1, NVAR)

```
    IF (LALTER)30,18,13
    13 DO 43 JL=1,LALTER
    J = LALCOL(JL)
    DO 16 I=1,NS2
    IF (X(I,J))30,15,14
    14 X(I,J) = LOGlOF(X(I,J))
    GO TO 16
    15 X(I,J) = X(NS3,J)
    1 6 \text { CONIINUE}
    43 CONTINUE
```

C

```
        18 IF (LENTER)30, 8,19
        19 J2 = NVAR
            DO 23 J=1,LENTIER
            J = LENCOL (J)
            J2 = J2 + I
            DO 22 I=1,NS2
            IF (X(I,J))30,21,20
    20 X(I,J2) = LOGIOF(X(I,J))
        GO TO 22
    21 X(I,J2) = X(NS3,J)
    22 CONTINUE
    23 CONTINUE
C
        DO 46 I=l,NS
            DO 10 J=2,NVAR
            IF (X(I,J)-X(MINT,J) )9,10,10
            9 X(I,J) = X(MIN,J)
    lO CONTINUE
    4 6 \text { CONTINUE}
C
            DO 47 I=1,MLN
            DO 12 J=2,NVAR
            IF (X(I,J) - X(NS2,J))l2,12,11
            II X(I,J) = X(NS2,J)
    12 CONTINUE
    47 CONTINUE
C
        24 XA(I) = 0.0
            YA91) = 0.0
            II = II + I
C
            DO 28 M=1,NX
            L = IDXVAR(M)
            DO 27 J=1,NY
            JJ = IDYVAR(J)
            IF (JJ - L)25,27,25
    25 K = K + l
            DO 26 I=1,NS2
            B(I) = X(I,JJ)
            26 A(I) = X(I,L)
C
            WRITE OUTPUT TAPE 6,34,NS,ANAME
            WRITE OUTPUT TAPE 6,35,K,TAG(JJ)
            WRITE OUTPUT TAPE 6, 36,TAG(JJ),TAG(L),TAG(L)
            CALL APLOT (I,NS2,I, I, XA,YA,A,B)
    27 CONTINUE
    28 CONTINUE
C
    IF (NGROUP - II)29,29,3
    29 WRITE OUTPUT TAPE 6,33
        GO TO l
    30 WRITE OUTPUTT TAPE 6,38
```

C
31 FORMAT (20I2, 2X, $10 I 2,4 \mathrm{X}, 3 \mathrm{I} 2$)
32 FORMAT (12A6)
33 FORMAT ($1 \mathrm{HI} /$ IHI)
34 FORMAT ($1 \mathrm{HI}, 10 \mathrm{H}$ PLOT FOR , I4, 16 H SPECIMENS , 15A6)
35 FORMAT (1HO,5X,9HPLOT NO. , I3,40X,11HORDINATE - ,A6)
36 FORMAT (1H0,5X,A6,8H VERSUS ,A6,32X,11HABSCISSA --, A6)
37 FORMAT (I3)
38 FORMAT (IHI, 24HNEGATIVE VALUE IN INPUT.)
39 FORMAT (36I2)
42 FORMAT (F4.0,9F7.4/(10F7.4))
C
40 CALJ EXIT
END
SUEROUTINE APLOT(L, N,NXAXIS, NYAXIこ, XA, YA, X, Y)
c
 IA(275)
C
1 FORMAT(1H, 84×5 HALPHA, 10×14 HIDEATIFICATION)
2 FORMAT(1H,6XIH., 12A6, 1H., $11(2 \times 42))$
3 FORNAT (1H, $7 \times, 7(10 \mathrm{H}+\ldots),. 11+, 1 \mathrm{H}, \ldots 1 \mathrm{H}+$)
4 FORNAT(IH, 4XF6.2,4XF6.2,4XF6.2,4XF6.2,4X6.2,4XF6.2,4XF6.2,4XF6.2)
5 FORNAT(1H, FG. 2, 1H+,12A6,1H+,11(2XA2))
6 FORIMAT($1 H C, 2 H D X, 2 \times F 8.4,2 \times 2 H D Y, 2 \times F 8.4)$
c
LSAV $=L$
NSAV $=N$
$X L=X(L)$
$X S=X(L)$
$Y L=Y(L)$
$Y S=Y(L)$
$N=N+L-1$
c
DO $14 \mathrm{I}=\mathrm{L}, \mathrm{N}$
IF(XL-X(I))7,8,8
$7 \times L=X(I)$
8 IF (XS-X(I)) $10,10,9$
$9 \times S=X(I)$
10 IF (YL-Y(I))11,12,12
$11 \mathrm{YL}=Y(I)$
12 IF(YS-Y(I))14,14,13
$13 Y S=Y(I)$
14 CONTINUE
c
IF $(X L-X S) 102,102,15$
15 IF $(Y L-Y S) 102,102,16$
16 DX $=(X L-X S) / 35.0$
c
00 $300 \mathrm{~K}=1,50$
DO $300 \mathrm{~J}=1,12$

```
300 PLOT (K,J) = 1+6H )
    0O 200 I = 1,275
200 ALPHA(I) = (+6H)
    ALPHA(1) = (+6HAAAAAA)
    ALPHA(12)=(+6HDEBBLDÉ)
    ALPHA(23)= (+6HCCCCCC)
    ALPHA(34)=(+6HUODDDU)
    ALPHA(45)=(+6HLEEEEE)
    ALPHA(56) = (+6HFFFFFF)
    ALPHA(67) = (+6HGGGGGG)
    ALPHA(78) = (+6H几HHHHH
    ALPHA(89) = (+6HJJJJJJ)
    ALPHA(100) = (+6HKKKKKK)
    ALPHA(111)=(+6HLLLLLL)
    ALPHA(122)=(+6HMPMWMMM.
    ALPHA(133)=(+6HNNNNN.V)
    ALPHA(144)=(+6HOOOOOO)
    ALPHA(155)=(+6HPPPPPP)
    ALPHA(166)=(+6HQQQQQQ)
    ALPHA(177) = (+6HRRRRRR)
    ALPHA(188) = (+6HSSSSSS)
    ALPHA(199) = (+6HTTTTTT)
    ALPHA(210) = (+6HUUUUUU)
    ALPHA(221)=(+6HVVVVVV)
    ALPHA(232) = (+6H&NWWWN)
    ALPHA(243)=(+6HXXXXXX)
    ALPHA(254)=(+6HYYYYYY)
    ALPHA(265)=(+6HZZZZZZ)
    B(1) = 006100010001
    B(2)=006200020002
    B(3)=0003000300C3
    B(4)=00C400040004
    B(5)=000500050005
    B(6)=000600060006
    B(7) = 000700070007
    6(8)=001000100010
    B(Q)=001100110011
    B(10)=010001000100
    B(11) =01 j101010101
    B(12)=010201020102
    B(13)=010301030103
    B(14)=010401040104
    B(15)=010501050105
    B(16) =010601060106
    B(17)=C10701070107
    B(18)=011001100110
    B(19) =011101110111
    B(20)=020002000200
    B(21)=020102010201
    B(22)=02.202020202
    B(23)=020302030203
    B(24)=02C402040204
```

B	$B(25)$	$=020502050205$
B	$B(26)$	$=C 20602060206$
B	$B(27)$	$=020702070207$
B	$B(28)$	$=021002100210$
B	$B(29)$	$=021102110211$
B	$B(30)$	$=030003000300$
B	$B(31)$	$=030103010301$
B	$B(32)$	$=030203020302$
B	$B(33)$	$=030303030303$
B	$B(34)$	$=030403040304$
B	$B(35)$	$=030503050305$
B	$B(36)$	$=030603060306$
B	$B(37)$	$=030703070307$
B	$B(38)$	$=031003100310$
B	$B(39)$	$=031103110311$
B	$B(40)$	$=040004000400$
B	$B(41)$	$=040104010401$
B	$B(42)$	$=040204020402$
B	$B(43)$	$=040304030403$
B	$B(44)$	$=040404040404$
B	$B(45)$	$=040504050405$
B	$B(46)$	$=040604060406$
B	$B(47)$	$=040704070407$
B	$B(48)$	$=041034100410$
B	$B(49)$	$=041104110411$
B	$B(50)$	$=050005000500$
B	$B(51)$	$=050105010501$
B	$B(52)$	$=050205020502$
B	$B(53)$	$=050305030503$
B	$B(54)$	$=050403040504$
B	$B(55)$	$=050505050505$
B	$B(56)$	$=050605060506$
B	$B(57)$	$=050705070507$
B	$B(58)$	$=051005100510$
B	$B(59)$	$=051105110511$
B	$B(60)$	$=06000000000$
B	$B(61)$	$=060106010601$
B	$B(62)$	$=000206020602$
B	$B(63)$	$=060306030503$
B	$B(64)$	$=000406040604$
B	$B(65)$	$=060506050605$
B	B	$B(76)$

```
% B(78)=071007100710
B 3(79)=071107110711
E3 B(80)=100010001000
B B(81)=100110011001
B B(82)=100210021002
B B(83)=100310031003
B B (84)=100410041004
B B(85)=100510051005
B B(86)=100610061C06
B B(87)=100710071007
B B(88)=101010101010
B B(89)=101110111011
B B(90)=11 j011001100
B B (91) = 110111011101
B B(92)=110211021102
B B(93)=110311031103
B B(94)=110411041104
B E(95)=110511051105
B B(96)=110611061106
B B(97)=11\cup711C71107
B B (98) = 111011101110
B B(99) = 111111111111
    IF(NXAXIS)32,32,17
C
    17 DO 31 I = 1,NXAXIS
    IF(XA(I)-XS)31,18,18
    18IF(XA(I)-XL)19,19,31
    19 DIFX = XA(I)-XS
    DELX = DX
    J=1
20 IPOS = 1
21 IF(DIFX-DELX)24,22,22
22 DELX = DELX+DX
    IPOS = IPOS+2
    IF(IPOS-5)21,21,23
23 J = J +1
    GO TO 20
24 GO TO (25,25,27,27,29,29),IPOS
25 D0 26 K = 1,50
2 6 ~ P L O T ~ ( K , J ) = ( + 6 H I I ~ )
    GO TO 31
27 DO 28K=1,50
2 8 \operatorname { P L O T } ( K , J ) = ( + 6 H ~ I ~ )
    GU TO 3l
29 DO 30k=1,50
30 PLOT K, J) = (+6H I )
31 CONTINUE
C
32 IF(NYAXIS)41,41,33
3 3 D O 4 0 I = 1 , N Y A X I S ~ S
        IF(YA(I)-YS)40,34,34
34 IF(YA(I)-YL) 35,35,40
```

```
    35 DIFY \(=Y A(I)-Y S\)
    DELY \(=\) DY
    \(K=1\)
    36 IF (DIFY-DiLY) 38,37,37
    37 DELY = DELY+DY
        \(K=K+1\)
        GO TO 36
    \(380039 \mathrm{~J}=1,12\)
    39 PLOT \((K, J)=(+6 \mathrm{H}-\cdots-\cdots)\)
    40 CONTINUE
\(C\)
    41 DO \(88 \mathrm{I}=\mathrm{L}, \mathrm{N}\)
    DEL \(X=D X\)
    DELY \(=\) DY
    DIFX \(=X(I)-X S\)
    DIFY \(=Y(I)-Y S\)
    \(J=1\)
    \(K=1\)
    42 IF (DIFY-DELY) 44,43,43
    43 DELY = DELY+DY
        \(K=K+1\)
        GO TO 42
    44 IPOS \(=1\)
    45 IF (DIFX-DELX)48,46,46
    46 DFLX \(=\) DELX+DX
    \(I P O S=I P O S+2\)
    IF (IPOS-5) 45,45,47
    \(47 \mathrm{~J}=\mathrm{J}+1\)
    GO TO 44
    48 GO TO \((49,49,62,62,75,75)\), IPUS
\(49 D=(606000000000+(777700000070 * P L U T(K, J))) *(-(606000000000 * P L O T(N\)
        \(1, \mathrm{~J}) 1\)
    \(E=(404000000000+(777700000000 * P L O T(\kappa, J))) *(-(404000000000 * P L O T(K\)
    1, J) )
    \(F=(003100000000+(007700000000 * P L O T(\kappa, J))) *(-(003100000000 * P L O T(K\)
    1, J) ) )
    \(G=60020: 0000 * \operatorname{PLOT}(K, J)\)
    IF (D) 50,53,50
    50 IF (E) 51,53,51
    51 IF (F) \(52,53,52\)
    52 IF (G) b7,54,57
    \(53 \operatorname{PLOT}(K, J)=(000077777777 * \operatorname{PLUT}(K, J))+(77770000000 \mathrm{C}\) (1)(1))
    GO TO 88
    \(540055 \mathrm{M}=2,266,11\)
    IF (ALPHA (N) \(-(+6 H) 155,56,55\)
    55 CCNTINUE
    GO TO 88
    56 ALPHA(M) = PLOT(K, J)
    ALPHA \((:-+1)=B(I)\)
    PLOT (K, J) = (LכOC77777777\%PLOT (K, J) ) + (777700000000*ALPHA (Nー 1) )
    GO TO 88
    57 DO bo \(\mathrm{M}=1,255,11\)
    IF ( \(\left.(777700000000 * P L O T(K, J)) *\left(777700000000 *\left(-\left(A L P H A\left(N_{1}\right)\right)\right)\right)\right) 58,59,58\)
```

```
    58 CONTINUE
    GO TO 88
    59 JJ = M+2
    KK = Ki+10
    DO 60 NMN = JJ,KK
    IF(ALPHA(1.M)-(+6H )160,61,60
    60 CONTINUE
    GO TO 88
    61 ALPHA(MPM) = E(1)
    GO TO 88
62D = (000060600000+(000077770000*PLUT(N,J)))*(-1000060600000*PLCT(K
    1.J)!)
    E=(000040400000+(000077770000%PLOT(N,J)))*(-1000040400000*PLOT(N
    1,J)!।
    F=(000000310000+(00000077000n*PLOT(R,J)))*(-1000000310000*PLOT(K
    1,J)!)
    G = 00006000000n*PLOT(K,J)
    IF(D)63,66,63
    63 IF(E)64,65,64
    64 IF(F)65,66,65
    65 IF(G)70,67,70
    66 PLOT(K,J) = (777700007777*PLUT(K,J))+(000077770000*:(1))
        GO TO 88
    67 DO 68 M = 2,206,11
    IF(ALPHA(M)-(+6H1) )68,69,60
    6 CCNTINUE
    GO TO 88
    69 A = PLOT(R,J)
        E = 1
    CALL MOVE(A,E,12,1)
    ALPHA(M) = E
    ALPHA(M+1)=B(I)
    PLOT(K,J) = (777700007777*PLCT(K,J))+(000077770000*ALPHA(M-1))
    GO TO 88
    70 DO 71 M = 1,265,11
    IF((000077770000*PLOT(K,J))*(000077770000*(-(ALPHA(Mi)))))71,72,71
    71 CONTINUE
    GO TO 88
    72 JJ = NI+2
    KK = M+10
    DO 73 MM = JJ,KK
    IF(ALPHA(NMM)
    73 cONTINUE
    GO TO 88
    74 ALPHA(MM) = B(I)
    GO TO 88
B F = 1000000000031+1000000000077*PLOT(K,J)))*(-1000000000031*PLOT(K
    1,J)!)
    G = 000006006000*PLOT(K,J)
```

B IF (D) 76, 79,76
$76 \mathrm{iF}(E) 77,79,77$
$77 \operatorname{IF}(F) 78,79,78$
78 IF(G) 83,8し,83

GO TO 88
$800081 \mathrm{M}=2,266,11$
IF(ALPHA(iv)-1+6H 1181,82,81
81 CONTINUE
GO TO 88
82 'A $=\operatorname{PLOT}(K, \jmath)$
$E=1$
CALL MOVE(A,E,24,1)
ALPHA(M) $=E$
ALPHA $(11+1)=B(I)$
PLOT(K,J) $=(777777770000 * P L O T(K, J))+(000000007777 * A L P H A(: M-1))$
GO TO 88
$830084 \mathrm{~K}=1,265,11$
IF($100000 \cup 007777 * P L O T(K, J)) *(000000007777 *(-(A L P H A(M))))) 84,85,84$
84 CONTINUE
GO TO 88
$85 \mathrm{JJ}=M+2$
$K K=N+10$
DO $86 \mathrm{MN}=\mathrm{JJOKK}$
IF(ALPHA(MiM)-1+6H))86,87,86
86 CONTINUE
GO TO 88
$87 \mathrm{ALPHA}(\mathrm{MM})=\mathrm{B}(1)$
88 CCNTINUE
c
WRITE OUTPUT TAPE 6,1
$K=50$
$P=Y L$
$L=41$
$B=40.0$
$M_{1}=2$
89 IF (M-266)90,90,92
90 IF(ALPHA(的)-1+6H 1191,92.91
$91 M M=M-1$
$N N=M+9$
WRITE OUTPUT TAPE 6,5,P,(PLOT(K,J),J=1,12),(ALPHA(I),I=MM,NN)
GO TO 93
92 WRITE OUTPUT TAPE $6,5, P,(\operatorname{PLOT}(K, J), J=1,12)$
$93 M=M+11$
$K=K-1$
IF(K)10C,100,94
94 IF(K-L)96,95,96
$95 \mathrm{P}=Y \mathrm{~S}+(B * D Y)$
$L=L-10$
$B=B-10.0$
GO TO 89
$96 \operatorname{IF}(M-266) 97,47,99$
97 IF(ALPHA(1$)-(+6 H \quad 198.99,98$

```
    98 NM=M-1
        NN=M+9
        WRITE OUTPUT TAPE 6,2,(PLUT(K,J),J=1,12),(ALPHA(I),I=ME,NN)
        GO TO 93
    99 \thereforeRITE OUTPUT TAPE 6,2,(PLOT(K,J),J=1,12)
    GO TO 93
100 SRITE OUTPUT TAPE 6,3
    A=0.0
    OO 101 M = 1,8
    OUT(N)=XS+(A*DX)
101 A = A+5.0
    ~RITE OUTPUT TAPE 6,4,(OUT(泣), i=1,8)
    NRITE OUTPUT TAPE 6,6,DX,DY
    L = LSAV
    N = NSAV
lO2 FETTURN
    END
        FAP
        COUNT 30
        ENTRY जOVE
NOVE CLA 2,4
        STA 13F3
        ÇLA 4,4
        STA HERE
hERE Cla
        TZE RITE
        CLA 1,4
        STA AA
        CLA 3,4
        STA NEXT
NEXT CLA
    ARS 18
    STA NPL
    AA CAL
    NPL ALS
        TOV BB
        TRA BB
RITE CLA 1,4
        STA AR
        CLA 3,4
        STA TEMP
TEMP CLA
        ARS l8
        STA NPRT
    AR CAL
NPRT ARS
    BB SLW
        TRA 5,4
        END
```


Input Data Preparation for VPLOT

The following section describes the preparation of control and data cards for VPLOT, using the samic conventions as in the previous section describing the input for DASAN. Unlike the previous section, however, a third group of control cards is used. These Group III controls follow each data deck in the run and, like the Group II controls, contain infromation which affects only the data deck which they accompany. The major groups of cards appearing in a VPLOT run which contains two data decks are ordered as follows:

Program Source Deck
Group-I Control Cards
Group-II Control Cards
Data Deck
Group-III Control Cards
Group-II Control Cards (for following data)
Data Deck
Group-III Control Cards
FINISH Card

Group I Control Cards

1. (1): The number of variables in the input data array (from 3 to 100), including the column of specimen identification numbers. Punch in columns 1-3.
2. (1): The number of variables in the internal data array (from 3 to 100), including the column of specimen identification numbers. Punch in columns 1-3.
3. (1-9): Names of variables in the internal data array, with each name not to cxceed six characters. Punch in columns 1-72 on each card, 12 names per card, with each name centered in a field of 6 columns, such that the name in the nth ficld is for the nth column in the array.

Group II Control Cards

4. (2): Any name or sample-identification information to be printed at the top of each output page. Punch in columns 1-72 of first card and columns $1-18$ of second card. Both cards must be present even if blank.
5. (1): The number of specimens (from 3 to 97) in the input data array, punched in columns 1-3. The maximum number is 97 rather than the dimensioned 99 , because the cards containing the minima (Instruction 11) and maxima (Instruction 12) are read in as data for two additional specimens.
6. (1): The number of plotting groups (from 1 to 999). A plotting group is a scries of x and y variables such that each x is plotted against every y, as explained in Instruction 7. Punch in columns 1-3.
7. (1): Information for setting up a plotting group (Instruction 6), to be punched as follows:
(a) Columns 1-40: The column-identification numbers of the y-variables (from 1 to 20 numbers), with each number in a field of 2 card columns.
(b) Columns 43-62: The column-identification numbers of the x-variables (from 1 to 10 numbers), with each number in a field of 2 card columns.
(c) Columns 67-68: The number of y-variables in the plotting group (the number of values punched for Instruction 7a).
(d) Columns 69-70: The number of x-variables in the plotting group (the number of values punched for Instruction 7b).
(e) Column 72: Punch a zero if this is the first plotting group preceding the data deck; punch l if this is not the first plotting group and it follows the data deck. (See Instruction 18.)
8. (1): The number of cards (from 1 to 5) which are required to specify the format for reading in the data deck. Punch in column 3 .
9. (1-5) : The format, in FORTRAN II, for the reading in of data cards. (See Instruction 21 in the description of DASAN.) Punch in columns 1-72 of each of the cards needed.

Data Deck

10. See Instructions 21 and 37 in the description of DASAN. The specimen numbers, which form the first column of the data array and which must be read in, are not used by VPLOT. Rather, the specimens are assigned consecutive numbers in their read-in order, beginning with No. 1, and it is these consecutive read-in numbers which appear as the points in the output scatter diagrams.

Group III Control Cards

11. (1-): Cards containing a minimum valuc for each variable in the input array (sec also Instruction 17). The coordinates of the origin of each bivariate scatter diagram are determined by
the minima specified for the x and y variables in each plot. The difference between the minimum and maximum (1nstruction 12) specilied for each variable determines the scale of calibration of each scatter diagram in which these variables are plotted. (See explanation of sample output from VPLOT.) The cards are read in according to the same format as that used for the reading in of the data deck and must therefore be punched in the sane way as the data cards, with a specimen number being entered as the first variable.
12. ($1-$): Cards containing the anticipated maximum values for each of the variables in the input array, as explained in Instruction 29 in the description of DASAN. These values, together with the minimum values specified for each variable (Instruction 11), determine the scale to which the axes of each of the scatter diagrams are calibrated. These cards are read in according to the same format as that used for the reading in of the data deck and must therefore be punched in the same format as the data cards. with a specimen number being entered as the first variable.
13. (1): The number of columns of variables (from 0 to 60) which are to be replaced by their logarithms (base 10). Punch in columns 2-3.
14. (1): The number of columns of variables (from 0 to 60) which are to be transformed to logarithms, with the logs being entered as new columns of data and the original values being preserved. Punch in columns 2-3.
15. ($0-2$): Column identification numbers of the variables which are to be replaced by their logarithms. Punch in fields of 2 columns in columns 1-72 of the first card and in columns 1-48 of the second card.
16. $(0-2)$: Column identification numbers of the variables which are to be transformed into logarithms and entered as new columns of data in the internal array. Punch in fields of 2 col-
umns in columns 1-72 of the first card and in columns 1-48 of the second card.
17. $(0-7)$: Cards containing a minimum \log value for each variable in the input array which will be transformed to a logarithm and for which a zero minimum was specified in Instruction 11. This \log minimum will be inserted by the program into any blank data cells and, like the minima for non-log data described in Instruction 11, will determine the coordinates of the origin and the calibration of the axes of each diagram.

If the minimum specified for a variable in Instruction 11 is greater than zero, the \log of this value will become the \log minimum, and it is not necessary to specify any new \log minimum here. The maximum value for each \log variable is the \log of its maximum previously specified in Instruction 12.

Punch an imaginary specimen number in columus $1-4$ and the \log minima in fields of 7 columns in columns 5-67 of the first card and in columns $1-70$ of each succeeding card. Consecutive fields represent consecutive columns in the input array, so that a minimum for the 7 th variable, for example, must be punched in the field which is in columns $40-46$.

The decimal point will be placed by the program in front of the last four digits of each \log minimum.
18. If more plotting groups remain, enter one information eard (Instruction 7) for each group. Punch as clescribed in Instruction 7, placing a 1 in column 72.
19. If more data decks remain to be processed having the same numbers of variables in the input and internal data arrays and the same names for the variables, begin again with Instruction 4.
20. (1): If no more data decks remain, the last card consists of the word FINISH punched in columns 1-6.

Sample Input Data for VPLOT

Listed below are the control and data cards for a test run of VPLOT, the output from which is discussed in the following section. The input data is the univariate output ar-
ray punched by the preceding test run of DASAN. On the far right side of each control card are numbers which refer to instructions in the section on input preparation.

Sample Output from VPLOT

Reproduced below are two of the plots resulting from an execution of VPLOT involving 12 specimens, with 36
variables in the input array, 41 variables in the internal array, and a total of 43 ratios to be plotted.

Each point on the scatter diagram is a two-digit specimen number, with the lower left-hand corner of each twodigit cell representing the actual point. These specimen numbers are not the specimen numbers read in with the data, but rather are numbers, from 1 to n, which are assigned to n specimens in the data deck in the order in which they appear in the deck. The arbitrary set of minimum values is also assigned a specimen number, which is $n+1$, and so also is the set of maximum values, the specimen number of which is $n+2$. Where two or more points coincide, a double letter is printed, with the specimen numbers of the coincident points printed after the same double letter on the right side of the diagram.

In the sample output, specimens No. 13 and No. 14 represent, respectively, the plots of the specified minimum and maximum for the plotted variables.

The end points of the reduced major axis for the first diagram (DF z'ersus AM) are plotted as follows: The y-intercept (the y-coordinate of the point on the reduced major axis where $x=0$). given as BASE 1 in the output of DASAN, is -1.884 . Because this is in the scale units of the diagram, it is only necessary to count down -1.9 dots along an imaginary vertical line through the lower left corner of the two-digit cell occupied by specimen No. 13, which represents the origin. Similarly, the point at which the reduced major axis crosses the right-hand margin of the diagram is indicated in the DASAN output by TOP 1, which is 2.659 . This is plotted by counting 2.7 dots downward along a vertical line through the lower left comer of the two-digit cell occupied by specimen No. 14, the maximal point.

The values DX and DY, printed in the lower right comer of each output page, are, respectively, the values between each dot on the y-axis and between every second dot on
the x -axis. It will be seen that there are 49 such scale-units on the y-axis and 35 on the x-axis between the minimal and maximal points.

The regression of y on x is plotted in the same manner, but the end points of the regression of x on y are given in terms of units on the x-axis rather than on the y-axis. Thus, TOP 3 in the output of DASAN (on the last page of the output listed below) refers to the number of x-axis units to the left $(-)$ or right $(+)$ of point No. 14, and BASE 3 refers to the number of x-axis units to the left (-) or right (+) of point No. 13.

The second diagram shown is a double log plot (LOG LO zersus LOG AM) in which the coordinates of the specified minimal point are $(-1.0,-1.0)$. Here the basal end points of the reduced major axis and the regression of y on x have been measured along a vertical line through the dot (drawn for the purpose of illustration) which represents the coordinates $(0,0)$. The basal end point of the regression of x on y is measured along a horizontal line through the same dot with measurement in units of the x-axis. The upper end points of all three lines are plotted as in the preceding example.

It will be found that artificially constructed scales matching the spacing of units on the axes will increase the speed and accuracy of line-plotting. When only a small number of points are plotted, there may be an apparent discordance between the plotted points (specimens) and the hand-drawn line of best fit. This is because the two-digit plots are only approximations, the accuracy of which is determined by the print-spacing of the printer, whereas the regression lines and reduced major axis, which are plotted by hand, are limited only by the accuracy of the hand-plotting operation and by the data themselves.

Error Messages in VPLOT

Only one error message has been written into VPLOT, which reads NEGATIVE VALUE IN INPUT. It is printed out, and the run is terminated, whenever a negative value
appears where not permitted on a control card or in the data where this value is to be transformed to a logarithm.

Availability of Program Decks

Duplicates of the FORTRAN II source decks may be obtained through the Smithsonian Institution by writing to
the author care of the Department of Paleobiology, Smithsonian Institution, Washington, D.C. 20560.

Literature Cited

Imbrie, John

1956. Biometrical methods in the study of insertebrate fossils. Bull. Amer. Mus. Nat. Hist., vol. 109, pp. 215-252, figs. 1-10, tables 1-7.
International Business Machines Corporation
1957. FORTRAN General Information Manual. Edition F28-8074-1, 103 pp.

McCracken, Daniel D.
1961. A guide to FORTRAN Programming. New York, John Wiley and Sons, Inc., 88 pp.
Simpson, George G., Anse Roe, and Richard C. Lewontin
1960. Quantitative Zoology. Revised edition. New York, Harcourt, Brace and Co., 440 pp .

